

ELECTRONICS TODAY INTERNATIONAL

EII 'EPROMMER' EPROM PROCRAMMER

With Personality Modules

Are Your lights On? - Car Headlight Warning Speed Controlling DC Motors - Frial and Sucess
 Peak-Reading VU Meter - Aims for 100\%

For over 5 years, Quickroute has been a solution for those seeking easy to use Schematic \& PCB design software. Users from all walks of life have found Quickroute's simple approach a refreshing alternative.
"probably the most intuitive of the integrated schematic-drawing and autorouter products" Electronics World Dec 96

For example, because Quickroute integrates both schematic \& PCB design into one package, you only have to learn how to use one set of tools!
"The drawing facility is logical, sequentially organised and really user-friendly" Educational Computing \& Technology Oct/Nov 96

Furthermore, with schematic capture available at the touch of a button, there is no need to mess with net-lists or files.

We haven't forgotten value for money either.
"extremety good value for money for such a comprehensive package"
Practical Wireless July 96
Quickroute 3.6 Designer costs just £149 and includes "one click" schematic capture to turn your circuit into a PCB rats-nest, auto-routing, design checking and support for drill \& B.O.M files. For those seeking more power, we have Quickroute PRO+, together with a range of plug in modules and extended libraries. Phone us now or fill in the coupon for a free demonstration pack.

Tel 01614760202 Fax 01614760505 www http://www.quickroute.co.uk EMail info@quicksys.demon.co.uk

QUICKROUTE

*FREE Demonstration Pack 'FREE Technical Support *FULL. Printed Documentation *Windows 3.1/95/NT Compatible

Tell me more!

Quickroute Systems Lid, Regent House, Heaton Lane, Stockpor, SK4 IBS, U.K.

Name

Contents

Volume 26 No. 7

Next Issue 18th July 1997

Regulars

8, 9
Practically Speaking
Terry Babbirnie looks at measurements and abbreviations for electronics

PCB.foils

68,70
Round the Corner

Catching The Universal Serial Bus

The Universal Serial Bus SB is a new single-interface protocol standard for
PC computer peripherals giving unlimited expansion capability at transfer at rates of more than 1 megabyte per second. Robin Abbott reports.

Switch Tuned AF generator

Robert Pentold's design for an audio trequency signal generator covering a range of 10 Hertz to 100 kiloHertz has switch controlled tuning rather than the continuous type. No calibration is needed once the unit is finished - you just switch on and dial up.

The New Generation of PC processors
A report on the new processors from Intel and AMD that will be driving PCs into the millenium.

Are Your Lights On?

Driving away without activating your headlights can be embarassing and
dangerous. Terry Balbimie's circuit is deslgned to give you an audible waming.
"Eprommer" Eprom Programmer
Keith Wardill's new Eprom Programmer connects to a computer serial port, and will program and read most eproms now available up to 64 KByte now availabie. A special feature is a piug-in 'Personality Module' for each type of eprom.
Peak Reading VU Meter 58

Tony Sercombe's peak-reading VU meter is designed to have a faster response and greater linearity than many moving-coil VU meters, giving better peak reading against short overioads.

Spiced Circuits (Part 3) - More About Frequency
Using SpiceAge simulator and an experimental filter circuit, Owen Bishop examines frequency response, phase, square waves and Fourier analysis.

Book Reviews
The Electronic Pathway in Advanced GNVQ Engineering and Satellite Projects Handbook.
New This Month
The ETI PCB Service returns - buy your ready made boards here.
Ham Radio Today 73
Good news for Radio Amateurs

DIGITAL MULTIMETERS

FEATURES: LARE LCD DISPLAY
LEIGHT 18mm
MASIMLM READING $1999+$ UNIT SINGLE MANUAL ROTARY SWITCH FOF - FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 mm) DIODE TEST FUNCTION - ALL RANGES OVERLOAD PROTECTED - SUPPLIED WITH TEST PROEES - OC VOLTAGE: 200mViV2

700V ACCURACY $\pm 0.5 \%$
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V}$ VOOV/ROOVITOOV - DC CURPENT A: ZOOU AZOOMAZOOMA A2AZOA AC CURRENT A: ZOOU AZOMAZDOOMAZAZZOA RESISTANCE: 200 гоомя

FEATURES:

- TEMPERATURE MEASUREMENT
- DIODE \& TRANSISTOR HFE TEST - large lco displar
- HEIGHT 18mm
- maximum READING 1999 \& UNIT - SINGLE MANUAL ROTARY SWITCH FOR FUNCTION ANO RANGE OPERATION - AUTO POWER OFF (APPROX 15 mins) - DFDE TESWT FUNCTION - ALL RANGES OVERLOAD PAOTECTED - DC VOLTAGE: 200 mV VRVROBVS TOOOV ACCURACY $\pm 0.5 \%$ - AC VOLTAGE: $200 \mathrm{~m} \mathrm{~V} / \mathrm{FV}$ VOUVROOV/700V - DC CURRENT 2 mAZOmAZOOmANOA - AC CURRENT A: 200mARZA - RESISTANCE : $200 \mathrm{~K} / 2 \mathrm{~K} \Omega 2200 \mathrm{ct} / 2 \mathrm{ma} / 20 \mathrm{MR}$ z00MSa - CAPACTTANCE: 2nF/20nF/200nF/2uF/ZO

ORDER CODE: CM3920
PRICE: 4100p

FEATURES:
3.75 LCD DISPLAY WTTH OECIMAL POWTT 33 SEGMENT BARGAAPH DISPLAY overrange indication
ROTARY SWITCH FOR FUNCTIO
SELECTION
AUTO POWER OFF (APPROX 15 mAS) AUTO POLARITY WITH INDICATION - DIODE TEST \& CONTNUITY TEST WTTH buzzer

- all ranges overload protected LOW BATTERY INOYCATKON
- DC VOLTAGE: $320 \mathrm{mV} / 32 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} / 600 \mathrm{~V}$ - AC Voltage: $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} 600 \mathrm{~V}$
 320 maHOA
- ac CURRENT A: 320 \quad anzeoonazzamN 320mANIOA
- RESISTANCE z208/3.2kr23encrizeoncor 3.2Ms/3zma

ORDER CODE: CM2700
PRICE: 4050p

FEATUPES:

- 3.3 lcD DISPLAY
- mugm ibmm READING 1999
- capactance 9 RANGES FROM roopf. 20000 F
MEASUARING FROM 10 F - 20000 UF SINGEE MANUAL ROTARY SWITCH FOR FINCTION AND RANGE ONEFAIION CEPO ARUST KNOE

8 Way Preprogrammed Universal Remote Control

A single remote control to operate Television, Videos and Satellite Receivers. Plus Auxilary Options!!

- Replaces up to 8 remotes with one
- Simple 4 digit setup routine
- Controls 1000 's of models
- Teietext functions with

Fastext

- Clear (large key) layout
- Code Search Facility
- Stylish and easy to operate
- Replace broken or lost remotes
- Original Remote note required

Order Code: 8 WAY
Price: 1450 P + VAT

ORDER CODE: CM3900A PRICE: 2900p

GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send $£ 1$ P\&P and VAT at 17.5%. Govt. Colleges, etc.
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice.

TV and video parts sold are replacement parts. Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

SATELLITE POWER SUPPLY REPAIR KITS

AL.8A	Wand	ECHOSTAR	CODE	MIMTEC	CODE
SAT660	SATPSU2	SR5500 EARLY PSU WITH ADJ	SATPSU12	SOPRENSON TYPE PSU ONLY	SATPSU15
		6500, SR7700, SR8700	SATPSU13		
AHSTAAD	CODE			NETWORK	CODE
SRD510, SRD520, SRD540, SRD550	SATPSU3	FEACISON	Catpit	9000,9200	SATPSU2
SRDR45		SRD 5, SPD16	SATPSU1		
SRD500	SATPSU4	SRV1	SATPSUZ	Hokia	CODE
SRX320, SRX340, SRX345, SRX350	SATPSU5	SRDE4	SATPSU11	SAT1500	SATPSU2
SRX100	SATPSU6				
SRD600	SATPSU14	FINLIX	CODE	PACE, PROOO PSPOOO PSP900	CODF
SAT250, SR950, SRD700, SRD950,	SATPSU16	SR5700	SATPSU12	PRD800, PRD900, PSR800, PSR900	SATPSU1
SRX1002, SRX2001. SRX301.				MRD920, SS9000, SS9010, SS9200,	SATPSU2
SRX501, SRX502		GOODMANS	Catim:	SS9210, SS9220	
SRD2000	SATPSU18	ST700	SATPSU1	D100, D150,	SATPSU6
				APOLLO, MSS200, MSS300	SATPSU8 SATPSU9
ERITSH TanECOM	cope	crivnpic	bobs	MSS500, MSS1000	SATPSU10
SVS300	SATPSU17	STR1	SATPSU1		
		GIRD200, FIRD3000	SATPSU2	PMILIPS	(2902
P1/SH	COTPSU12			STU802\%05M STU801	SATPSUZ
$\begin{array}{\|l} \text { IRD150 } \\ \text { IRD155 } \\ \hline \end{array}$	SATPSU19	850,950	SATPSU1		
				THOMSON	CODE
		MASPRO	fromer	SRSA	SATPSU2
CHIFCHILL	Copre	SRE250S/1, SRE350S/1	SATPSU1		
D3MAC DECODER	SATPSUT	SRE250S, SRE350S, SRE450S	SATPSU2	TOSHIBA	COOE

Corat		CODE	PRICE	CODE	PRICE	CODE	PRICE
SATPSU1	650 p	SATPSU6	650p	SATPSU11	835p	SATPSU16	730p
SATPSU2	650p	SATPSU7	650p	SATPSU12	1735p	SATPSU17	850p
SATPSU3	650p	SATPSU8	730p	SATPSU13	3125p	SATPSU18	1175 p
SATPSU4	650 p	SATPSU9	900p	SATPSU14	3135 p	SATPSU19	650p
SATPSU5	650p	SATPSU10	1230p	SATPSU15	77.5p		

PACE SATELLITE TUNERS

PRD800, MSS200 (2GHZ) (221-2077062)
PRD900, MSS500, MSS 1000 (2Ghz) $(221-2177012)$

S

TUNER01	PRICE
TUNER02	1650 P

PACE SWITCH MODE TRANSFORMERS		
MODELS	CODE	PRICE
PACE9900	PACE9000	800 p
PACEPRD800, PRD900	PRD800	550 p

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYSTEMS. THE SATMETER CAN BE USED AS STAND ALONE METER WITH POWERING THE LNB AS WELL AS IN LOOP. THROUGH OPERATION WITH SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm MAX.INPUT SIGNAL: -10 DBM

LED INDICATOR: VERTICALHORIZONTAL POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO -10 DBM

ORDER CODE: TOOL 22 PRICE: 8500p

SATELLITE LNB'S					
MAKE \& Hont	ORDER CODE	P81	MAKE \& MODEI	Crm	
Cambrioge AE22/AE5 0.808 standard $10.95-11.70 \mathrm{GHz}$ Gold Range	LNB1	2160p	Cambridge AE7 iwin O/P H+V 8oth Enhanced	LNB?	4000p
Cambridge AE14 Universal LNB 10.7-11.7111.7-12.75 GHz	LNB2	2500p	Cambridge AE2 Dual O/P H-V Separate Enhanced	88	3550p
Cambridge AE21/AE5 Single O/P Switching LNB 1.0dB Standard	LNB3	2050p	Grundig Super Universal 'Anis' 10.7-12.75 GHz 0.BdB	LNBP	2600p
Cambridge AE19/AE6 Single O/P Switching LNB 1.0才B Enhanced	LNEA	2050p	Grundig Universal 'Anis' 10.7-12.75 GHz 1.0dB	LNE 10	2250p
Cambridge AE23/AE12 0.BdB Enhanced 10.7-11.8GHz Gold Range	LNB5	2160p	Cambndge AE1 Twin O/P H+V Both Standard	LNE1!	4000p
Cambridge AE8 Dual O/P H-V Separate Enhanced	LNB6	4000p			

	TIMELAG		QUICK BLOW	(20MM)
CURRENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75p	FUSE37	60P
160 mA	FUSE01	75p	FUSE17	60p
250 mA	FUSE02	75p	FUSE18	$60 p$
315 mA	FUSE03	75p	FUSE19	60p
400 mA	FUSE04	75p	FUSE20	60p
500 mA	FUSE05	75p	FUSE21	60p
630 mA	FUSE06	75p	FUSE22	60p
800 mA	FUSE07	60p	FUSE23	60p
IA	FUSE08	60p	FUSE24	60 p
1.25A	FUSE09	60p	FUSE25	60p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE11	50p	FUSE27	60p
2.5A	FUSE12	50p	FUSE28	60 p
3.15A	FUSE13	55p	FUSE29	50p
4A	FUSE14	55p	FUSE30	50p
5A	FUSE15	60p	FUSE31	50p
6.3A	FUSE16	60 p	FUSE32	50p

[^0]CERAMIC PLUG TOP

CUARENT BATING	ORDES CODE	118
3A	FUSE33	$100 p$
5A	FUSE34	$100 p$
$13 A$	FUSE35	$100 p$

20 mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	FUSE38
$6.3 A$	$100 p$	
8A	FUEE39	$100 p$
10 A	FUSE40	$100 p$
3.15A	FUSE41	$85 p$
4A	FUEE42	$85 p$
5A	FUSE43	$85 p$

38 mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	PRIGE
FOA	FUSEA8	815 P

32 mm CERAMIC SLOW BLOW

CURRENT RATING	ORDER CODE	PRYM
8A	FUSE44	$185 P$
10 A	FUSE45	$185 p$
15 A	FUE46	$185 p$
20A	FUSE47	$210 p$

	 Egros

SERVICE AIDS							
DESCRIPTION	VOLUME	CODE	PRICE	DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75 ML	SP01	180p	EXCEL POLISH 80	250ML	SP18	150p
VIDEO HEAD CLEANER	200ML	SP27	250p	ADHESIVE 120	400 ML	SP19	190p
SWITCH CLEANER	176ML	SP02	180p	LABEL REMOVER 130	200ML	SP20	240p
SUPER 40	400 ML	SP15	250p	REFURB 140	400 ML	SP21	240p
SILICONE GREASE	200ML	SP03	210p	TUBE SILICON GREASE	50 GRAMMES	SP11	220p
FREEZE IT	170ML	SP04	320p	TUBE TUBE SILICON			
FREEZE IT	400ML	SP16	600p	SEALANT WHITE	75ML	SP22	280p
FOAM CLEANER	400 ML	SP05	200p	TUBE SILICON SEALANT			
ANTI STATIC	200ML	SP06	190p	CLEAR	75 ML	SP23	280p
AEROKLEANE	200ML	SP07	220p	TUBE HEAT SINK COMPUND	25 GRAMMES	SP12	150p
AERO DUSTER	150ML	SP08	310p	DRIVE CLEANER	200ML	SP24	150P
AERO DUSTER	400 ML	SP17	550p	SCREEN CLEANER	200ML	SP25	150p
PLASTIC SEAL	200ML	SP09	250p	COMPUTER CARE KIT		SP26	2100p
GLASS CLEANER	250ML	SP10	160p	ANTI STATIC FOAM CLEANER	400 ML	SP28	175p
COLDKLENE	250ML	SP13	230p	AIR DUSTER	400 ML	SP29	450p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILL BE CHARGED AS FOLLOWS: 300P FOR 5 CANS

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR

Orders accepted. Please allow 7 days for dellivery. Prices quoted are subject to stock avallability and may be changed without notice.

Mobile Phone Call for Recycling

The Association of European Telecommunications and Professional Electronics Industry (ECTEL) in conjunction with British Telecommunications (BT) is running a pilot scheme to encourage the recycling of mobile phones on the basis of "takeback", where manufacturers offer to take back and recycle items once users have finished with them.

The idea is that technology is moving so fast that new "state of the art" equipment can be overtaken quickly by newer ones, creating obsolescence and a problem of waste management. The issue of waste electronic equipment is gradually being considered by Governments and industry is being encouraged to take a lead in establishing what is "technically possible and economically sensible". A Government spokesinan said: "We need to establish how much electronic equipment is gong into the waste stream and the extent of its potential environmental impact. We must also define the equipment to be considered and decide which categories should be earmarked as priorities for recovery. This should help to establish a methodology for the recycling of electronic equipment."

Under the scheme, owners of old mobile phones will be invited to retum them to their nearest BT communication centre, on the understanding that they will be disposed of in an environmentally friendly way. The aim is to establish if there is a

real consumer interest in the-recycling of phones and whether "take-back" is an environmentally and economically viable solution for small electronic products.

Users can take used mobile phones and batteries to the following contact points:

Atlas (Northern Ireland, Cumbria, South and West Scotland) 01387 251010; Tyne Tees Telecom (North East) 0191232 4536; JWE Foneshops (Yorkshire and North Midlands) 0990 130130; Landalow (East and North Scotland 01738 633674; Midland Phones (West Midlands) 01384 572144; Phoneline (Thames Valley) 01753553553 Crown Talk (Midlands) 01203 447844; Keeping You In Touch (Greater Manchester, Lancs and North Cheshire) 0161848 0599; Uplands (South Wales and South West) 0800 240000 Phone The World (South Coast) 01489 577770; Radiophone (Cambs and Norfolk) 01603 434000; National Radiofone (Milion Keynes and Northants) 01933 402202; Moco (Kent and West London) 0800 371214; Straight Talk (South London) 0800 171819. ECTEL can be contacted at 01753 500074.

Users interested in the scheme can contact their nearest BT shop for information.
in April, leading recycling experts from the Department of the Environment, industry and local government have addressed a conference on the implications for industry of recent packaging recovery legislation. Legislation covering a gamut of materials, from card to batteries, is gradually placing greater obligations on manufacturers and users to recycle used materials.

Matchbox-sized recharger for in-car use

Travelling users of computer and other equipment are constantly on the guard against unwanted power-failures caused by their batteries running out while in use. Small chargers that can be connected via a car's 12 V supply are becoming more popular. The NOTEpower $75 i$ inverter by Merlin Equipment (shown) converts the car's 12 volts to 230 VAC mains. Specifically designed by a computer manufacturer for operating small appliances, the NOTEpower $75 i$ plugs into that mainstay of portable eiectrical appliances, the car's cigar lighter socket. Output is sent to the appliance's own power supply "brick" using a standard cable provided.

The NOTEpower $75 i$ can also be used to power peripherals such as bubblejet printers for a complete mobile workstation. Designed to be more than 90 percent efficient, it is also fully overload and overheat protected, and stated by its makers to be smaller, lighter and easier to use than any other on the market at present. It also features a battery alarm to warn if the vehicle battery is low and turn of the invertor to allow the car to re-start. So you will not have to substitute a dead computer with an immobile car.

Other useful applications include running chargers for camcorders, small power tools and other equipment that can run on mobile 230 volt AC power. The NOTEpower $75 i$ is CE approved for electrical interference and safety. The retail price is $£ 86$ ex VAT and carriage. This is a top-end example of a useful class of power add-on.

For information contact Merlin Equipment, Unit 1, Hithercroft Court, Lupton Road, Hithercroft Industrial Estate, Wallingford, Oxon OX10 9BT. Tel. 01491824333 fax 01492 824466.

Rockwell bring in 56 Kbps analogue modem chip
The K56Plus modem lechnology from Rockwell provides data transfer rates of up to 56,000 bps across standard telephone lines Faster transfer rates are now in greater demand, particularty from intemet users wanting high speed connection.

One ackyantage of the K56Plus tectinology is the Gvailability of higher speed of transmission without the extra expense of ISDN installation. The Rockwell techrology has atready received the support of over 300 Internet'Service Providers (ISPS) and comms equipment manufiacturers. K56Plus crosses the gap between analogue and digitat commis; where extisting analogue modems normally assume an analogue oonnection at both ends of the communications, K56Plus assumes that ore end is a purely digital connection - which tends to be the case for corporate users and ISPs

For the user accessing the internet or alarge central computer site from a K56Plus modem, the upstreamapart of the dialogue. mainly keystrokes. and mouse commands, flows at the conventional rate of 33.6 Kbps, and the downstream conversation, frequently Web pages loaded with graphics, sound, video and other large data files, can be downloaded al the higher 56.6 Kpbs rate. Time and cost are reduced. a significant factor as the Not access grows more congested.

Rockwell have used a new encoding method that reduces-the analogue noise that has intherto restricted data rates to 33.6 Kbps when employed with a K56Plus modem to dial snto a digital connection. K56Plus products will be upgradeable to the expected new ITU standard, say distributor Telecom Desighn Comimunications, and compatibility should be ensured by Rockwell's very large existing modem manufacturer and user base.

This may be as fast an anaiogue modems get - unil technology springs another surprise.

Information from TDC Lid., Stroudley Road, Basingstoke, Hants RG24 8FN. Tel 01256332800 Fax 01256332810.

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44 .

MODSMODSMODSMODSMODSMODS

CampLight (October 1996): for future constructors: Electrovalue, who supply the magnetic core, have moved. The new address is Unit 5, Beta Way, Thorpe Industrial Park, Egham, Surrey TW20 8RE Tel 01784 433604. Overseas mail order customers please write to Electrovalue for ordering information. (And the coil-winding wire is 0.20 mm insulated copper.)

PIC Programmer (Vol 26 issue 6): for a non-DIY copy of the 'PIC devices programmed' table on page 40 of last month's issue. please send your address to Lynn at Nexus House (see page 74).

Test and measurement catalogue

Keithley Instruments have published their 1997 test and measurement catalogue and reference guide. The 300-page catalogue includes DMMs, electrometers, precision sources, voltmeters, picoammeters, ohmmeters, source-measure units, power supplies, switch systems, semiconductor characterisation systems, a new line of miniaturised measurement modules and more. The guid includes application examples to help design a test system, selector guides to compare important specifications and complete product specifications.

Specially featured in the colour section is the model 2400 digital sourcemeter, the fastest system instrument offered by Keithley to date, a high-speed test solution for large volume component manufacturers.

The catalogue is available in print or on CD rom from Keithley Instruments, The Minster, 58 Portman Road, Reading, Berks RG30 1EA. Tel 01189575666 fax 0118 9596469.

Nevada Catalogue

Nevada's 1997 hobby communications catalogue is available now to anyone who sends an A4 stamped self-addressed envelope to Nevada, 189 London,Road, North End, Portsmouth, Hants PO2 9AE. Radio enthusiasts will find antenna equipment, scanning receivers, transceivers, airband and marine radios, filters, packet radio
equipment, TVI filters, Morse
equipment and many more things for the radio shack. Their showroom in Portsmouth is also open to the public.

DIFFERENTIAL THERMOSTAT KIT Porfect for heat recovery, solar systems, boiler emiciency ect Two sensors will operate anclay when a tempdifier
and pcb. E29 ref LOTg3
MAGNETIC RUBBER TAPE Selfadhesve 10 meve reel, 8 mm MAGNETIC RUBBER TAPE Selfadnesve 10 meve
wide perfect for all sorts of applicationsl E15 rel LOT87
MAINS POWER SAVER UK made plug in unit fitted inseconds, can reduce your energy consumption by 15% Worlss with fridges,
soldering trons conventional bulbs efc. Max $2 A$ rating $\mathrm{E9}$ each ref soldering trons conventional butbs etc Max $2 A$ rating $£ 9$ each ref LOT71. pack of 10 f 69 ral LOT72
YUASHA SEALED LEAD ACID Bameries, ex equipmem but on bargain ponce juse $£ 599$ each ref YA1. 100 or more $£ 350$ each DC TO DC CONVERTERS
DRM58 input 10-40voc output Sv 8A E15 ORM128 input 17 -4Ovde
 ouput 12v 8A $£ 18$ DRM158 input 20-40vde oupput 15N 8A £.18
 DRS243 input $29-40 \mathrm{vac}$ output 2 kv 3 A 8
HITACHI LM225X LCD SCREENS $270 \times 150 \mathrm{~mm}$, standard 12 way connector, 640×000 dots. tec spec sheet. E15 each ref LM2 VARIABLE CAPACITORS Dual gang, $60 \times 33 \times 45 \mathrm{~mm}$, reduction gearing. unknown capacity but probably good quafity (milrary spec) eneral purpose radio tuner, E9 ref VCl
ELECTRONIC FLASH PCB Small pct fitted with components including a flash tube, Just connect 12vac and in hashes, variabie speed potentoometer, E6 rel FLSI
THIEF PROOF PENI Amazing new ball point pen fitted with a combination lock on the end that only you knowl $\mathrm{EP}_{2} 49$ If TP 2 JUMBO BI COLOUR LEDS PCB with 15 fithed also 5 giant seven segment displays (55 mm) £8 rol JUMM1
HOME DECK CLEARANCE These units must be cleared UHF modulator, a standerd 120075 BT UHF modulator, a standard 120075 BT approved modem and loads 6.8NW HELIUM NEON LASERS Now unts, 665 HI LOT33 6.8NW HELIUM NEON LASERS Now unts, $£ 65$ rif LOT 33
COINSLOT TOKENS You may have a use for these? mined beg of 100 tokens E 5 ref LOT20
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and chasp way to build a home X-ray machinel Effective divice. X-ray sealed assemblies can be usedfor ecpenimental purposes Not atoy or for minorsi f61set Rel FIXPY.
TELEKINETIC ENHANCER PLANS Mystify and amaze your frends by creating motion with no known apperent means or cause Uses no electrical or mechanical connectons, no special gimmicies yet produces positive motion and ellact Excelient for science projects magic shows. party demonstrations or serious research \& developmem! of this strange and amazing phychic phenomenon

EA/set Ref FTTKE

ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to pun subjects under your control. Included is afull voturne reference text and several construction plans thet when assembled can produce highly effective stimuli. This material must be usec cautiously. n is for use as entertainment at perbes etc only, by those expenenced in its use E15/sel RJFFER
GRAVITY GENERATOR PLANS This undque plan dernonstrates a simple electncal phenomena thet produces an antgrevity effect You can actually build a smail mock speceship out of simple materieis and without any visibie means- cause it to levitate. ElOMSer Ref FIGRA1
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Praduces up to 750,000 vots of discharge, expeniment with exarsordinary HV effects, Plasma in a jar', St Elmo's fire, Corona, excelient science profect or conversation plece ESKsel Ret FIBTCIRG5
COPPER VAPOUR LASER PLANS Produces 100 mm of visibie green light High comerency and spectral quality similas to Argon laser but easier and less costly to build yet fore more enticient this parbcular design was developed the Atorte Energy Commision of NEGEV in israet $£ 1$ iolset Ref FICM 1
VOICE SCRAMBLER PLANS Minature solid state system bums speech sound intoindecipherable naise that cannot be understood without a second matching unit. Use on telephone to preventtuird paty listening and bugging. $£ 6 /$ set Ref FNSs
PULSED TV JOKER PLANS Litio hand held dence uthises puise techmiques that will completely disrupt TV picture and soundł worts on FM toct DISCRETKON AOVSED £8/set Rel FIT 15. BOOYHEAT TELESCOPE PLANS Highly directionai long range dence uses recent technotogy to detbet the presence of imng bodies, warm and hot spots, heat leates etc intended for security, tow enforcement research and deveiopmemt exc. Excelvent secunty device or very interesting science project $[8 /$ set Ref F/BHT1.
BURNING, CUTTING CO2 LASER PLANS Profects an invisible beam of heat capable of buming and metting meterials over a consideradie distance This laser is one of the most eficiont comverting 10% input power into useful output Not onty is this device a workithorse in weiding. cutting end heat processing materials but it is also alikely candidate as an effective directed energy beam weapon against missties aircrat. ground-to-ground, etc Particie beams may very well utihze laser of this type to biast a channel in the atmosphere for o high energy stream of neutrons or other perticles The dence is eesity applicabte to burning and etching wood, cutting. plastics, textiles etc C12/set Rof FAC7
MYSTERY ANTI GRAVTYY DEVICE PLANS Uses simple concept Obyects fioet in an and move to the touch Defies gravity, amazing it co
Rel fiANTIK.
FRUIT POWERED CLOCK Just add a lresh orange tomato. benana or any other fruit plug in the probess and the clock wortsi 59 os ref SC154
DYNAMO FLASHLIGNT inleresting concept, no battenes needed just squeeze the trigger lor instant light apparenty even works under water in an emergency abhough we hent tried in yet E6 99 rel SC152 ULTRASONIC BLASTER PLANS Laboratory source of somic shock waves Blow holes in metal, produce 'coll'd stoom, atomize
fiquides Many cleaning uses for PCBoards jowlery, coins small perts fiquides Many cloaning u
etc. $\mathrm{f} /$ /set Rof FALB1.
etc. E /seer Ref FALB1. ULTRA HIGH GAIN AMPISTETHOSCOPIC MIKEI SOUND

AND VIBRATION DETECTOR PLANS UITTasenstive device enabies one to hear a whole new world of sounds Listen through waiks,
windows, floors etc Many aopolications shown, from isw entorcement windows, floors etc. Many applications shown, from iaw enforcement,
nature instening. medical hearibeat to mechanical dences Efiset Ref nature ist
FIHGA?

WOLVERHAMPTON ELECTRONICS STORE NOW OPEN IN WORCESTER ST TEL 0190222039

ANTI DOB FORCE FIELD PLANS Hohly oflectve arcuir produces time veriabte puises of accoustical enorgy ther dogs cannot therate E6/see Ree FIDOG
LASER BOUNCE LISTENER SYS TEM PLANS AHOWE You to hear sounds from a premises withour gaining access $£\{2 /$ set Re FI FI LLIST 9
LASER LIGHT SHOW PLANS DO it yoursell plans show three

methods. 26 Ref FALSI

PHASOR BLAST WAVE PISTOL SERIES PLANS Handheid, hes targe transducer and bstrery capecity with external controts E6/set Ref FIPSP4
INFINITY TRANSMITTER PLANS Telephone line grabbert room monifor The ultimate in homelofice security and sabetyl simple to usel Call your home or office phone. push a secret tone on your Existing comversation with break-incapsbility or ound and voices or B) £7 Ref FTELEGRAB
BUG DETECTOR PLANS is that someone geting the goocts on you? Easy to construct device locates any nioden source of radio you? Easy to construct dence locates any nioden source ol interference. Detects low, high and UMF thequencies $£ 5 \mathrm{~h}$ tet Ref
ELECTROMAGNETLC GUN PLANS Projects a metal object - considerabie distance-requires adull supervision $\mathbb{5}$ rif FIEM2. ELECTRIC MAN PLANS, SHOCK PEOPLE WTH TME TOUCH OF YOUR HANDI E5/set Ref F/EMA!
PARABOLIC OISH MICROPHONE PLANS Listen to distam sounds and voices, open mindows, sound sources in hard to ger or hostie premises Uses satelite technotigy to gather dirstant sounds and focus them to our ultre sensitve electronics plans also show an 2 FOR 1 MUL TIFUNCTIONAL HIGH FR
2 FOR 1 MUL TIFUNC TIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{vdc}$, many possible expeniments E 10 Rel FAMMM7 TCLA
ME GA LED DISPLAYS PCB fited with 5 seven segment displays eech measuning $55 \times 38 \mathrm{~mm}$ E5 ref LEDS
MOD TRANSMITTING VALVES $5 . J 180 E ~ £ 80$ ref LOT112 SWTCHED MODE PSU'S 244 watt $+532 A+1284-502 A$.
 P. Cased, $175 \times 80 \times 145 \mathrm{~mm}$. IEC intra Sutarle for PC use (6 oddrve connectors 1 mboard) £15 rit LOT135
HYDROGEN FUEL CELL PLANS There is a lot of interest in using Hyrogen as the fuer of the future, Hydrogen it easy to produce using chemicals and surphs solar penerated elbecticity, it is abso easy to store with intse or no loss itrogen fuel cells are designed to store hydrogen end weight for weight wil hold iwoe as much energy as a full petoot tank Our plans give you losds of information on Hyrogen production. storege and prsctical plans to build your own Hyarrogen fuel coll you will need access to a well equiped worishop for this but fulf constructon detaits and drewings are meluded Fut cell plans $£ 9$ FWIHV1 VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V 8 A TX Not too sure what the function of these units is but they cortainly make 900 d strippersl measures $300 \times 320 \times 120 \mathrm{~mm}$, on the front are on the tew, inside $2 \times$ or 10aH seaied lead acio betts pcb's end a 8 A? 24vtorroidial vansformer (mains in), sold as seen, may have one crimo broken knobs etc due to poor storage $£ 1599$ VP2
RETRON NIGHT SIGHT Recognition of a standing men at 300 m in $1 / 4$ moonlight hermutically sealed, rume on 2 M batteries 80 mm F1 5 lents, 20 mw intrened laser included E 325 n/ RETRON
MAKE YOUR OWN CHEWING GUM KIT Everything you need to make real chewing gum, even the bowl and tree eap trom the Sapooill tree E7 98 rér SCigo
MINI FM TRANSMITTER KIT Very high gain preamp, supplied complete with FET eiecter microphons. Oesigned to cover $88-108 \mathrm{MMz}$ but eesily changed to cover $63-130 \mathrm{Mhz}$ Worlss with common 9 V (PP3) batter. O 2W RFF. 59 Ref 1001
3 30V POWER SUPPL Y KJT Varisble, stabilced power supply for tat use. Short circuir protected, surtable for prolesional or amatour use 24v 3A transformer is needed to complete the het $£ 14$ Ref 1007. 1 WATT FM TRANSMITTER KIT Suppled with piezo eiectric mic. 8-30vac As $25-30 \mathrm{v}$ you will get nearly 2 watsil E 15 ref 100 S FM/AM SCANNER KIT Weft not quite, you hive to turn the knob your sett but you will hear things on this radio that you would not hear on an ordinary modio (even TM Covers $50-160 \mathrm{mhz}$ on both AM and FM 8 suil in 5 watt amplifer, inc speaker $£ 18$ ret 1013.
3 CHANNEL SOUND TO LIGHT KIT Wiretess systom, mains operind, separate sensitivity actustment for amich channed, 1,200 w

BULL ELECTRICAL

250 PORTIAND ROAD, HOVE, SUSSEX BN3 SQT. (ESTABLISHED 50 YEARS). MAIL, ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE E4.50 PLUS VAT. OVFRSFAS ORDIGS ATCOST PLUS E3.5 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders : 01273203500 FAX 01273323077
E-mail bull@pavilion.co.uk
power handing, microphons included E:17Red 1014
4 WATT FM TRANSMTTER KIT
4 WATT FM TRANSMITTER KIT Small bue powerful FM transmetter, 3 RF stages, microphone and audio preamp included E2 Ref 1028.
STROBE LIGHT KIT Adjustabie from 1.60 nz (a kt faster then conventional strobes) Mains operated $£ 17$ Ref 1037
COMBINATION LOCK KIT 9 key, programmable, complete with keyped. will switch 2A mains, gV dc operation E 13 rif 1114. PHONE BUG DETECTOR KIT This dence will warn you somebody is eevesdropping on your line c9 1130 ROBOT VOICE KIT interesting circut that distorts your vicel adjustable, answer the phone with a diflerent vorel $12 \mathrm{vac} \mathrm{£9}$ ref 1131 TELEPHONE BUG KTY Small bug powered by the 'ohone hine, starts transmiting as soon as the phone is picked upt E12 Rel 1135 3 CHANNEL LIGHT CHASER KTI 800 wats per channel speed and direction controlssupplied with 12 LEDS (you cme fir triecs instead to make kit mains, no supplied) 9-12voc £17 rel 1026
12V FLOURESCENT LAMP ORIVER KTT Ligt up 4 toot
fubes from your car battery' gV 2a uransformer aiso tequirted $\mathbf{8 8}$ rel tubes
1069.
HELPING HANDS Perfect for thase fiddly jobs that need sox hands. 6 bell and sociket joints. magnifier. $\mathbf{E 7} 99$ ref YOS7A
VOX SWITCH KIT Sound actuated swich ideal for maling bugging tape recorders etc, edfustable sensitivity. $£ 10$ ref 1073. PREAMP MIXER KIT 3 inpur mono moxer, seo bass and treble controis plus individual levet controts. 18voc, input sens 900 mA £ 15 ref 1052.
SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens Complete with speaver, add sound effects to your proinctas lor just $\mathrm{C9}$ in 1045
15 WATT FM TRANSMITTER (BUILT) \& stage nigh power, preamprequ 1021
HUMIDFTY METER KIT Builds into a pracision LCD mumidity meter, 9 le devign. pet, lod display and all components included $£ 29$ PC TIMER KIT Four chamel output controlled by your PC, wll switen high curremt mewns with roters (supplied). Software supplied so ou can program the chernels to do what you want whenever you want dive with min 100k fre E2499
MAGNETIC MARBLES They have been around for a number of ears but soll give rise to curionity and amazememt A pack of 12 is just years Dur stilgne
c3.99 n/ GHPZ
NICKEL PLATINO KTT Promevonal electropleting lot that will rensorm nusting perts into showpieces in 3 hoursl Wif plate onto teei ron, bronza ounmel copper, weided, silver soldered or brazed ounts Ke includes enouphto ptol 1,000 sq inches You will also need

Minature adjustable timers, 4 pole clo output 3 A 240 V , HY1230S, 12 vDC adustable from $0-30$ secs. £4.99 HY1260M, 12 VDC adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240 vilusable from $0-60$ mins. $£ 6.99$ BUGGING TAPE RECORDER Sman voice activated recorder.
 POWER SUPPLY iey Cesed wir malis and of leads 17 v DC 900 mA output Bergen once E5 99 rel MAG6P9
COMPOSITE VIDEO KTT. Comverts composite video into sepa rate H symc, V sine and voso 12v DC E1200 REF: MACBP2. FUTURE PC POWER SUPPLIES These ire 295x $135 \times 60 \mathrm{~m}$ FUTURE PC POWER SUPPLIES These ire $295 \times 135 \times 60 \mathrm{~mm}$,
4 dIrve connectors 9 mother board connector. 150 welt. 12 V fen, 4 drve connectors 1 mother board
inlot and onvolf ewith $\mathrm{E12}$ R EF6
VENUS FL. Y TRAP KIT Grow pour own carnivorous plamt with this simple kit E3 HEEFBA
$6^{\prime \prime} \times 12$ " AMORPHOUS SOLAR PANEL $12 \mathrm{~V} ~ 155 \times 310 \mathrm{~mm}$ 130 mA Gargain price jusp ES 99 ea REF MAGBP12
FIBRE OPTKC CABLE BUMPER PACK 10 metos for 5499 of MAG5P 13 ideal tor expenmenters 130 m for $£ 1299$ rel MAG 13 P1 ROCK LIGHTS Unusuw things these mo pieces of rock thet giow when rubbed mogether belveo to cause rainl'3 a pair Ref EFza 3° by ${ }^{\circ}$ ' AMORPHOUS SOLAR PANELS $145 \mathrm{~N}, 700 \mathrm{~mA} 10$ watts, aluminium framo. screw lorminals. £.55 Nol MAG45
ELECTRONIC ACCUPUNXTURE KIT Bullds into an etectronic version instead of neecives good to expenimemt wat. $\mathrm{f9}$ if TP30 SHOCKING COIL KIT Buid tis liep bethery opersted dence into all sorts of things. aso gets worms out of the grounct $\mathrm{E9}$ ref TP36 HIGH POWER CATAPULTS Hinged amm Drace for stability, tempered steer yato. super stength iztex power bands Departure numunoor is ine
COMPAQ POWER SUPPLIES WTH 12V DC FANS EX equipment osur's some ok some not but worth if for the fan alonel probabty chout 300 watt PC unt with IEC input $£ 3.50$ each ref COI EALLON MANUFACTURING KJT Britsh made, small blot blows into a large longlasting balloon, hours of funi 23.99 ref GUES9R 9-0-9V 4A TRANSFORMERS, chassis mount $£ 7 \mathrm{~m}$ LOT18A MEGA LED DISPLAYS Buld your seff a clock or something with these mega 7 seg displays 55 mm nigh. 38 mm wide 5 on a pco for just £4.99 ref LOT18 or a bumper pack of 50 displays for just E29 wol LOT17.
SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operztion, 0-200vde 1A $\sum 2.50$
SMT20000r3 3-24vdc operation, 28-280vac $34 \mathcal{E A} .50$

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
 SURPLUS STOCK LINE 0802660335

Catching

The Universal Serial Bus

The USB is a new standard providing a single interface protocol for PC peripherals. It could take over from RS232 and other standards - if it gets support from hardware manufacturers. Will it be a long wait, or will there be three along in a minute? Asks RobIn Abbott.

The Universal Serial Bus (USB) is a new standard for interfacing peripherals to a computer at transfer rates in excess of 1 megabyte per second. It is intended to be flexible, inexpensive, easy to use, easily expandable and sufficiently defined to allow any kind of peripheral to be connected and remain compatible with other devices connected to the bus. The bus standard has been sponsored by Compaq, Digital Equipment Corporation, IBM, Intel, Microsoft, NEC and Northern Telecom - an impressive list of names whichever way you look at it!

In this article we will look at the USB bus from the viewpoint of its capability and benefits to the user, and we will also look in some detail at its operation, although it is worth noting that much of the functionality of the bus at the lower level protocols - electrical and signalling - will be available in integrated form and therefore removed from the direct concern of anyone actually implementing it.

The need for USB

Why do we need a new protocol for addressing peripherals? Let us consider a typical medium- to high-end PC. For the sake of example I have chosen to consider my own PC, which is used for software and hardware development as well as word processing, data analysis, accounting, and games. This PC is Pentium-based and has the following peripherals:

- A keyboard and mouse for input
- A gamepad/joystick for games
- A colour inkjet printer.
- A laser printer which is used in place of the ink jet for high speed output.
- A scanner, used for OCR, photocopying and incorporating photographs in documents.
- Speakers used for sound output.
- An internal modem.
- An internal ZIP drive used for backup
- An internal CD-ROM
- External development peripherals, including a PIC programmer, an eprom programmer, and the FED PIC Basic development system.

This PC is shown in figure 1, which includes a view of the internal cards required to support all these devices. Note that the following physical data standards are used in this system:

- An RS232 serial interface (COM1) is used for the mouse. - An RS232 serial interface (COM2) is used for the development peripherals, which are connected through a simple data switch
- The joystick is connected on a standard PC games port.
- A SCSI interface is used for the scanner.
- A slightly different SCSI interface is used for the ZIP drive. Note that two SCSI cards are required, because the particular scanner in use does not operate correctly on a standard SCSI interface.
-'A parallel printer port is used for the inkjet and laser printers. As the PC has only one printer port, and as no further slots are available for additional printer port expansion cards, an external printer switch is required.
- The modem is internal, emulates a standard serial port (COM4) and, because of the way interrupts are used in the PC, cannot be used at the same time as the development peripherals.
- The keyboard is connected to the PC on a standard PC keyboard interface.
- The speakers are connected on a standard analogue output from an internal sound card.
- The CD-ROM is connected on an internal E-IDE interface.

Once the power cables are thrown in, this adds up to a grand total of 18 different cables and 9 different physical interface

Figure 1: connections on a PC used for development and games
standards required to connect and power all the penipherals which are a fairly standard set for a busy professional or semiprofessional personal computer.

Switching between printers requires not only a selection on the PC, but also manual switching. If this is forgotten, the current print command has to be cancelled and submitted again once the printer switch is in the correct position.

There are four different expansion cards required (two SCSI, a modem and a sound card), which occupy all the ISA slots on the motherboard, so that future expansion using this type of PC bus slot is not possible. Setting up these cards to ensure that there was no clash on the l/O port addresses used by the sound card and the second SCSI interface caused considerable problems, as they both clashed with the first SCSI card which was already installed. If you are not yourself a PC owner, ask anyone who is they will almost certainly have a similar story to tell.

Another issue is that of interrupts. In a typical PC there are 15 interupts available for peripheral devices, a number of which are reserved for internal operation, and in my PC all the remaining interrupts have been used. Although well-behaved applications and cards can share intermupts, this is not always possible, and in practice I have rarely found it possible to install two peripherals on one interrupt.

The Bus

The Universal serial bus (USB) system is intended to overcome some of these problems. The USB is a new interface standard which provides the following features:

- Removal of the limit to the expansion capability of a PC due to a limited number of expansion stots.
- Allows simple expansion of a PC with common low-level software drivers.
- Powering of peripheral devices via the USB cable.
- Up to 127 devices may be served per USB host connection.
- "Hot swapping" - devices may be connected, disconnected, reset, and power cycled while the host PC is in use.
- Operation for simple low bandwidth devices at $1.5 \mathrm{Mb} / \mathrm{s}$.
- Operation at up to $12 \mathrm{Mb} / \mathrm{s}$ for other devices, including audio and compressed video.
- Reduction in cabling.
- Reduction in different type of cables.
- Cabling is simple, physically flexible, low cost 4-core cable.
- Up to 5 m distance per cable run.
- The electrical signalling allows the PC to place all peripherals on the USB into a suspended low power state. This is used for "green" energy saving systems.
- Automatic assignment of addresses to devices, together with software interrupt polling requires no user intervention for device set-up.

The universal serial bus is not intended as a LAN, or to provide networking services, but purely as a local connection facility to a single host PC.
The topology of a complete USB system is illustrated in figure 2. The root hub is the host PC. All data transfers are performed between the root hub and devices on the USB

Figure 2: topology of a complete USB system
network, and devices on the USB network do not communicate directly with each other. There is only ever one root hub. A USB node (also known as a function) is a device which uses the USB to communicate to the host PC, so our USB nodes are the keyboard, the mouse, the printer, and so on.

The devices shown as hubs are special USB equipments which provide one port towards the host PC, but several downstream ports to which further hubs or USB nodes may be connected. This allows a treelike connection of USB nodes, and has the advantage that unplugging a device from the hub does not affect any other devices connected to it. It is envisaged that in practice hubs will normally form part of an equipment. For example, a keyboard may contain a hub device as well as a USB node for the keyboard itself. The hub on the keyboard now allows a mouse and gamepad to be directly plugged into it. This is called an embedded hub.

We can now redraw figure 1 to show how the example PC and all its connections can now be interconnected using the USB system (figure 3). The keyboard is an embedded hub, and the other hub connections are used for the mouse and the game pad. The monitor is a hub for the speakers and microphone (note that in figure 3 we now have the capability for monitor control which was not present in the original PC configuration). The scanner operates as a hub for the two printers, and also operates as a hub for a special hub to which the other peripherals (the modem, ZIP drive and development peripherals) are connected.

Note that we now have considerably less cabling to the PC (as well as this, many of these functions will also be powered from the USB, eliminating some power cables), and we have removed three expansion cards - the USB root hub is implemented on the motherboard.

There are a number of peripherals that are unlikely to use the USB system:

CD-ROMs intended for internal mounting

Disk drives - internal disk drives, and external hard disks will not use the USB system because they have a continuous very high bandwidth requirement when they are in use. Monitor video data. This has a very high continuous bandwidth requirement (up to tens of megahertz), and as the monitor is usually located close to the PC system unit then the usual' SVGA connector can be employed. However, control of the monitor from the PC can use the USB system, and in our example we have shown the monitor as a hub used to connect the microphone and speakers.

Devices on a USB system may be high speed or low speed. High speed devices may use up to the full USB bandwidth of 12 MHz , low speed devices use a 1.5 MHz transfer rate. The lower speed device requirement is intended to drive simple devices such as mouse or keyboard which do not send large amounts of data, and send it (relatively) infrequently. There is a limit placed on the number of low speed devices on a USB system, as each byte sent by or to a low speed device occupies the same amount of bus time as 8 bytes sent by a high speed device.

Devices on a USB system are elther asynchronous, or isochronous. Asynchronous devices generate or receive data as required. For example, the keyboard and the mouse are asynchronous devices. Isochronous devices are defined as devices whose bit rate is defined by the data. For example, speakers are an isochronous device, and a telephone would also be isochronous, as the speakers require a constant bit rate of around 1 Mb for a high quality stereo sound system, and the phone requires a constant bit rate of 128 Kb for a duplex conversation when in use.

USB protocols

The normal RS-232 serial interface on a PC has just two layers, the electrical which defines the voltage and impedance levels, and the serial to parallel conversion. Applications are then responsible for defining the meaning of bytes transmitted on the interface.

The USB system consists of a number of layers. The USB specification covers the mechanical and electrical interface and addresses the issues of packetising data, addressing data, and the control and set-up of peripherals to the minimum level required for communication by application software. The communication layers in a USB system using a hub are illustrated in figure 4. We will now consider each layer in detail.

Mechanical

The USB plug is normally supplied moulded to a cable. If you have a PC manufactured within the last 12 months or so, you probably have a dual USB connector on the back panel which will be the two port connections for the root hub. The symbol for the USB connector (which may be

Figure 5: the USB symbol

Figure 4: USB protocol layers (system using hub). Hub communications to the host are now shown
printed alongside it) is llustrated in figure 5 . The connectors are unique for upstream and downstream ports on a hub, and so it is impossible to create loops within a USB system which would almost certainly cause failure of the USB system. Any node is connected to a hub using a single cable with a connector on each end, and any hub is connected to a higher level hub using a single cable.
The cable used for a USB link is four-core. The cores and pin numbers in the connector are as follows:

Pin 1	VCC
Pin 2	- Data
Pin 3	+ Data
Pin 4	Ground

A high speed connection (12 MHz) is made through shielded twisted pair for the data lines, the low speed connection may be made through unshielded untwisted pair. The impedance of the cable is 90 ohms $+/-15$ percent. The high speed cable is illustrated in figure 6.

Figure 6: USB cable

Electrical

There are two data lines for signalling $D+$ and D-. These are be normally driven with data which causes differential signalling, that is to signal a 0 then D - has a voltage level which is above D_{+}, and to signal a 1 then D - has a voltage which is below $D+$.

The basic electrical standard used to drive the data is balanced drivers with a source impedance of between 58 ohms and 84 ohms. Each driver should have the same impedance, so typically two drivers with identical source resistors will be used. The transmitters must have an output
swing of greater than 2.8 V into a 15 k load, and must be capable of being switched off.

The receivers are balanced and must switch with an input differential of 200 mV . Each data line must also have a single ended receiver to enable the device to detect differential violations (where both data lines are switched to the same state), to allow for additional switching.

To differentiate between a high and low data rate device 1.5 k pull-up resistors are used. See figure 7 which shows complete USB transceivers for high speed and low speed applications implemented in a USB node, or in a port on a hub. A high speed device has a pull-up resistor on the $D+$ line and a low speed device has a pull-up resistor on the Dline. The drivers have pull-down resistors of 15k. In the idle state of the line (when the USB peripheral device is not powered, and the downstream driver is in a high impedance state), the pull-down and pull-up resistors may be used to determine the bit rate by the hub.

These resistors may also be used to determine when a device is connected to a hub port. With no device connected to a port, its transmission drivers will be in a high impedance state, and the two data lines will both be pulled to ground. This is called a 'single ended 0 ' state (or SEO). When a device is connected to the port, it will be powered up, but its transmission drivers will be in a high impedance state. Therefore the pull-up resistor on the device's upstream port will pull one of the data lines high. This may be detected by the hub's downstream port.

When no packets are being sent (when the USB is in the idle state), the data lines are in the high impedance state, and one data line is pulled up to indicate the data rate. Data is grouped into packets for transmission on the USB. At the start of a packet (SOP), the data lines are driven into the opposite state so that the first bit of the packet holds the opposite state to the idle state. At the end of the packet (EOP), the data lines are driven to a single ended 0 for a period of 2 bit times, and then the bus is released for a minimum of 1 bit period, so that it has returned to the idle state ready for the next packet. Figure 8 illustrates transmission of a complete packet.

It is also possible to reset all devices connected to a port; this is achieved by the hub placing the data lines into an SEO

Figure 7: USB tranceivers

Figure 8: complete packet
state for a period of 10 ms . All devices which see this state should then act as if they have just been connected to the bus.

Normally at least one packet will be sent on the bus every millisecond. If the USB is idle for more than 3 ms , all devices may enter a suspend state. In the suspend state devices should power down and use less than 500uA current. However they do not have to do this, and may continue to draw power as required for monitoring functions. For example, if the host PC enters a low power state due to lack of keyboard or mouse activity, then it may suspend the bus by placing it into the idie state for more than 3 ms . However, the keyboard and mouse must remain fully available to detect user key presses or mouse movements to wake the PC from its low-power state: To do this they may draw the current they require to perform this task.

Once suspended, devices may be woken by a reset, by a resume state, or by normal traffic on the bus. It is permissible to take up to 20 ms to wake from the suspended state.

All hubs must use high speed data rates on their upstream port, and may allow high or low speed data rates on the downstream port.

Data transmission

The data sent over the physicai link employs NRZI encoding with bit-stuffing. In this data transmission scheme, a 0 bit is represented by a change in the state of the data lines and a 1 bit is represented by no change in the data line.

The receiver determines the clock to be used from the transitions in the bit stream, so it could be seen that a long series of $1 s$ will result in no transitions in the bit stream, which would be disastrous for the receiver's clock-recovery circuitry. To prevent this problem, "bit stuffing" is employed. This technique inserts a ' 0 ' bit in the data stream if six 1 bits have been seen, prior to the NRZI process. The receiver then removes the 0 bit after six 1 s . This means that when transmitting a long series of 1 s , there is a potential inefficiency

Figure 9: transmission of bit stream using NRZI with bit stuffing
of 14 percent in the data, however, if this is a problem then higher levels of the software are expected to employ data compression to optimise out this inefficiency.

The complete transmission process is shown in figure 9 which illustrates the transmission of a bit stream.

The USB power distribution system

The USB systems allows distribution of power to attached peripherals. The nominal supply voltage is 5 V , but devices must operate with a power supply as low as 4.75 V when drawing fuil current. The maximum current consumption of all loads powered together is 5A, and any one peripheral may draw a maximum current of 100 mA on configuration, and up to 500 mA maximum load. This is likely to be ample for nearly all peripherals. The current drawn in suspend mode is a maximum of 500 uA .

Looking again at our example PC, the following peripherals may be powered from the USB:

- Keyboard.
- Mouse
- Gamepad
- Speakers.
- Modem.
- High capacity floppy drive
- External development peripherals.

Clearly the scanner and printers will require their own power supplies, as power drawn by these devices may be tens of watts. This type of device is known as a self powered device. It is expected that even self powered devices will still power their USB circuitry from the USB power distribution system. This allows the host to determine that these devices are present even if the external power supply is not available, or allows the host to enable the power supply of the device remotely.

When initialising a USB system, the host controller must determine the identities of all the devices attached to the USB bus. This is called bus enumeration. In performing this function, the host also requests each device to inform it of its current requirement during the configuration period (when each device will be drawing less than 100 mA). If the total requested current is greater than can be supported by the host (which may be less than the 5A maximum capability defined by the USB specification), then high power devices will be informed that they cannot draw full current and may have to operate with reduced capability, or not operate at all.

Addresses and endpoints

Every function (device) on the USB has an address. Addresses range from 0 to 128, and are programmed by the host during the configuration of the bus by the host following power up, up to 127 devices may exist on the USB system without the necessity for each to have a different address set up by the

THERE IS ONE DANGER YOU CAN'T SEE, HEAR, SMELL OR FEEL-ITS RADIATION. THERE ARE OVER 10,000 SHIPMENTS OF RADIOACTIVE MATERIAL IN THE UK EVERY YEAR BY ROAD AND RAIL! WOULD ANYBODY TELL YOU OF A RADIATION LEAK? NEW GEIGER COUNTER IN STOCK Hand netd Uni with LCDscreen, autoranging low battery alarm, audite 'dick outpu New and guarameed $£ 129$ rel GE1
RUSSIAN BORDER GUARD BINOCULARS $£ 1799$ Probabiy the Dest binoculars in the world ing for colour brochure RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER Exceptional coverage of 9 wave bands, (5 shor, 1 LW. (FM, IMW) internal ferme and external tetescopic serials, mans/ battery £45 rel VEGA
NEW LASER POINTERS $45 \mathrm{mw}, 75$ metre range, hand held unit runs on two AA batteries (suppled) 67 omm £29 rel DEC49 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprenensive 270 page book covers all aspects of spift production from everyday matenais indudes constinuction detains of simple stills etc $£ 12$ ref MS3 NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bual hess than 1" square and a 10 m woice pickup range $£ 28$ Ref LOT 102 BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators and propellors. Armed with this pubication and a good local scrap yard could make you seff sufficient in electricityl $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top quaility suilabte for all 286 i 386/486 ecc £ 10 ret PCKB. 10 for £65
NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT E29 range 1.5 .5 miles. 5.000 hours on AA battenes. transmits into on car direction, left and night turms, start and stop information Works with any pood FM radia. £29 ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brand newitakan lock and latch assembly withboth Yale type lock (keys inc) and 12 voperated deadlock $£ 10$ rel LOT99
*NEW HIGH POWER WIRELESS VIDEO AND AUDIO BUG KIT 1/2 MLLE RANGE Transmits voeo and audio sionats Trom a minature CCTV camera (inclucied) to any standard televiaioni Supplied with telescootc aenal $£ 169$
CCIV PAN AND TILT KITMatorze your CCTV camera wint this simple 12 vid hid 2 hermentically sealed DC linear seno motors 5 mm
innesued output 5 secs slop to stog, can be stopped any where, 10 mm itreaded outpur 5 secs slop to stop, can be stopped any where. 10 mm
trevel, powerful. $£ 12$ rer LOT125 travel, powerful. $£ 12$ rel LOT125
GPS SATELLITE NAVIGATION SYSTEM Made by Garmin. the GPS38 is hand held, pockers sized. 255 g. possition, antitude, graphic CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm} .30$ grame, $12 V$ 100 mA auto electronic shutter, 36 mm F2 lens, CCIR, 512×492

 to be used in total darknessi E 6 ret EF 138
INFRA RED POWERBEAM Handhetd battery powered lamp. 4
It inch reflector. gives out powerful pure inflared lighti perfect for CCTV use nightsights etc $E 29$ ret PB1.
SUPER WIDEBAND RADAR DETECTOR Detects Doth radar and laser, XK and KA bands, speec cameras, and all known apeed detection yystems 360 degree coverage tront 8 eenwaveguides

CHIEFTANTANK DOUBLELASERS

 9 WATT+3 WATT+LASER OPTICS Could be adapted for inser listener, long range communications etc Double beam units designed to fit in the quin barrei of a tank, each unit has two semi conductor lasers and motor drve units for atomement 7 mile range, no circut diagrams due to MOD . new price $£ 50,0007$ ug? $£ 199$ Each unit has iwo gatlium Assenide injection lasers, 1×9 watt, 1×3 witt, 900 mm wavelengith, $220 \mathrm{dc}, 600 \mathrm{hz}$ pulse frequency The unts also contain an electronic recemvertargets $£ 199$ lor one. Ref LOTA.
EASY DYYIPROFESSIONAL TWO WAY MIRROR KIT Includes speciai adhesive filimto make two way mirror(s) up to $60^{\prime \prime} \times 20^{\circ}$. (glass not included) includes full instructions $£ 42$ ref TW9.
NEW LOW PRICED COMPUTERNORKSHOP/HI-FI RCB UNITS Complete protecion from faully equipment for everybodyl Inline unit fits in standard IEC lead (extends it by 750 mm). fited in less than 10 seconds, resethest button, 104 rating $£ 699$ each
ref LOT5. Or a pack of 10 at $£ 49.90$ ref LOTG. If you want a box of 100 ref LOT5. Or a pack of 10 at $£$
you can have one for $£ 250$:
TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are returns sothey will need attention (usualty physical damage) cheap way of buying TX and $R X$ phus servos etc for new projects etc $£ 12$ each sold as seen ref LOT2.
MAGNETIC CREOIT CARD READERS AND ENCODING MANUAL 29.95 Cased with fiyleads, designed to read standard credit cards! complete whth control etctronics PCB and manual

FREE 10\%

DISCOUNT VOUCHER
CUT OUT AND INCLUDE THIS
CORNER WITH YOUR ORDER AND DEDUCT 10\%
FROM ALL THE ITEM
ETI

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuats thwe owe you Information on setting up difierent businesses, you pernuse these al
your lersure using the text edfitor on your PC. Also included is the your lersure using the text edtior on your PC. Also included is ine
 RUSSIAN 9OOX MAGNIFICATION ZOOM MICROSCOPE

Wewnin screen, lots of accessories $£ 29$ ret AnAYLT. RUSSIAN NIGHTSIGHTS Mode TZSA weth infra red illuminator, views up to 75 metres in full danness in infrared mode. 150 m range. 45 mm lens. 13 deg angle of vew. tocussing range 1.5 m to imfity. 2 M battenes requirec 9500 weigtt $£ 199$ ret 8AR61. 1 years warranty LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, 99)24mm £2.99 ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC 1640 A TAL-1, 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian Supert astronomical 'coope, everything you need for some sencus star gazingl up to $169 x$ magnifcation Send of fax for futher information 20 kg . $885 \times 800 \times 1650 \mathrm{~mm}$ ref TAL-1. $£ 249$ YOUR HOME COULD BE SELF SUFFICENT IN ELEC TRICITY COMprehenesve dlans with loads of info ondesigruing systerms, panels, control electronics ecc $\mathbf{5 7}$ ref PV1

COLOUR CCTV

 VIDEO CAMERAS, BRAND NEW AND, CASED, FROM £99.
PERFECT FOR SURVEILLANCE, INTERNET,VIDEOCONFERENCING, SECURITY, DOMESTIC VIDEO

Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, 1v P.P, composite, $75 \mathrm{hm}, 1 / 3^{\prime \prime} \mathrm{CCD}, 4 \mathrm{~mm}$ F2.B, $500 \times 582,12 \mathrm{vdc}$, mounting bracket. auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF 150,10 or more $£ 99$ ea $100+£ 89$ MICRO RADIO its timy, Hest $3 / 8$ unck auto tunning. complete with neadphones FM $£ 999$ ref EP35
25 SQUARE FOOT SOLAR ENERGY BANK KTI 400 5T0 Ov Amorphous 100 mA panels 100 diodes, connection details etc to

CONVERT YOUR TV INTO A VGA MONITOR FOR E25! Converts a colour TV into a basic VGA screen. Complete with buith in ppu, lead and sware. Ideal lor laptops or a cheap upgrade Supplied in kot form loo home assembly SALE PRICE E2S REF SA34

- 15 WATT FM TRANSMITTER Airesdy assembled but some RF knowedge will be usetul tor setting up. Preamp rea'd. 4 stage 80 108mhz. 12-18vac, can use ground plane. yagl or dipole $£ 69$ rel 1021 -4 WATT FM TRANSMITTER KIT Small bul powermi FM transmmeter kit. 3RF stages, mic $\&$ auctio preamp maluded $£ 24$ ree 1028 VUASHA SEALED LEAD ACID BATTERIES 12 V 15AH at E18 ret LOT8 and below spec or 10 AH at E5 a pair ELECTRIC CAR WINDOW DE-ICERS C plug etc SALE PRICE JUST 54.99 REF SA28 AUTO SUNCHARGER 1553300 mm sola metre lead fited with a cigar plug 12v Twett E12.99 REF AUG10P3. SOLAR POWER LAB SPECIAL You pet $25^{\circ} \times 8^{\circ}$ ov 130 mA cells, 4 LED's, wre, ouzzer, swich +4 relay or motor. 27.99 REF SA27 $12 V$ DC MOTOR SPEED CONTROL KIT COMplete with PCB etc. Up to 30A. A heat sink may be required $£ 4900$ REF: MAO47 SOLAR NICAD CHARGERS $4 \times$ AA stre $£ 999$ ref 6P476, $2 \times$ C size $£ 9.99$ ref 6 P477
MEGA POWER BINOCULARS Made by Helios, $20 \times$ magnification precision ground fulty coated aptica, 60 mm objectives. shock resistant caped prisms case and neck strap $£ 89$ ref HPFH1
GIANT HOT AIR BALLOON KIT Buid a 45 m circumftence. fuly functioning balloon, can be launched with home made burmer etc. Reusabre (untily you loose tit) $£ 1250$ rof Hal
AIR RIFLES. 22 As used by the Chinese army for training puposes. so there is a lot aboutl $£ 39.95 \operatorname{Ref}$ EF/B 500 pellets $£ 4.50$ ref EF80 -NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT. Transmits both audio and video signats from enther a video camera. video recorder, TV or Computer ecc to any standard TV set in a 500 m
rangel (tune TV to channel 311) 12v DC op Price is $£ 65$ REF: MAG15 12 DCS Ds $£ 5$ edra REF: MAGSP?
"MINATURE RADK TRANSCEIVERS A Dair of walke talikes
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHIED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS E3.50 P\&P PLUS VAT 24 HOUR SERVICE $£ 4.50$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS $£ 3.50$ 'phone orders: 01273203500 (ACCESS, VTSA SWITCH, AMERICAN EXPRESS)

FAX 01273323077
E-mail buli@pavilion.co.uk

Whth a range up to 2 km in open cournn. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Including cases and earpices. $2 \times P$ P3 req'd. $£ 37.00$ pr.REF: MAO 30 *FM TRANSMITTER KIT noused in a standard working 13A adapteril the bug runs directiy of the mains so lasts forevert why pay £700\% or price is $£ 18$ REF: EF62 (ktr) Transmits to any FM radio Buill and tested version now available of the above unit at $£ 45 \mathrm{nt}$ ExM34
${ }^{\circ}$ FMM BUG BUILT AND TESTED supenor design to kt. Supoted to detective agencies ov battery req'd. £14 REF. MAG14
GAT AIR PISTOL PACK Complete with pistol, darts and pelets £1495 Ret EF82B extra pellets (500) E4 50 ret EF80
HEAT PUMPS These are maims operated air to air units that consist of a aluminium plate (cooting side) and a radiator (warming side) connected topether with a compressor. The plate II inserted into water will freeze in. Probebly about $3-400$ watts so could produce 1 kw in ideal condifions $£ 30$ rel HP1
3 FOOT SOLAR PANEL Amorphous wilicon, 3×1 housed in an aluminium trame 13 v 700 mA ouput \& 55 ref MAG45
SOLARWIND REGULATOR Prevents batteries from over charging On reeching capacity the regutator dwerts excess power into heat avoiding damage Max power is 60 wratt $£ 27.99$ ref SNCA11.105 FANCY A FLUTTER? SEEN OUR NEW PUBLICATION? Covers all aspects of horse and dog betting, systems etc and gives you a copy rel BETI
a CIDY rel BETI
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 499$ ref MAGSP13 ideal for expenmenters 30 m for $£ 1299$ ref MAG 13 P1 4×28 TELESCOPIC SIGHTS Surtable for all air ines, ground lenses, g00d light gathenng propertien $\sum 2495$ rel R/I GYROSCOPES Remember these? well we have found a company thet still manufactures these popular scientinc toys, perfect oif or for educational use etc. £6 rel EP70
NICAD CHARGERS AND BATTERIES Standard Unwersal maths operated charger, takes 4 batts + 1 PP3, £ 10 rel PO11D. Nicads. AA size (4 peck) £4 ref 4P44, C size (2 pack) £4 ree 4P73. D size (4 pack) E9 ref 9p 12.
RECHARGE ORDINARY BATTERIES UP TO 10 TIMES! With the Battery Wizardi Uses the latest putse wave charge system to
charge all pooular brands of ordimany patteries AMA AA C. D. four at charge all popular brands of ordinary batteries AMA, AA C. D. four at a timel Led system shows when betteries are charged, automatically rejects unsuitable coils, complefe with mains adaptor. BS approved Price is $£ 21.95$ ref EP31.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevert even the most responsible of divers from losing therr icencot Adjustable audible alanm winh 8 nashing leos pives instam waming of radar zones Defects $X K$ and Ka bands, 3 mie range, over the hif around bends and reart tap tachmes micros3.
3^{3} DISCS As used on oider Amstrad machines, Spectrum puss3s etc E3 each ref bara00
STEREO MICROSOPES BACK IN STOCK RUSSIan 200x complete with lenses lights, filiers efc etc very comprehensive
microscope that would normaily be around the $£ 700$ mark our proce is fust $£ 299$ (full money back guarantee) fill detaifis in catalogue SECOND GENERATION NIGHT SIGHTS FROM E748 RETRON Russian nightsight: 1.8 xx infra realamp. $10 \mathrm{~m}-\mathrm{mf}$, standard M42 lens. 1.9 kg £ 349 ref RET1
LOW COST CORDLESS MIC 500 range. 90 - 105 mhz . 115 g $193 \times 28 \times 39 \mathrm{~mm}$, gv PP3 battery required. $£ 17$ ref MAG15P1 HI POWER SURVEIL LANCE TELESCOPE COntinuous zoom control from 20 times to anamazing 60 times magnification 60 mm huly
coated objective lens for maximum light transmission. complete with coated obiective lens for maximum hight transmission
tnpod featunng micro elevation control $\varepsilon 75$ ref $\mathrm{ZT1}$
thiod featuning micro elevation control $£ 75$ red $\mathrm{ZT1}$
JUMBO LED PACK 1510 mm bicotou leds, plus 5 giamt (55 mm) seven segment displays all on a pCb $£ 8$ ret JUM1. Pack of 3055 mm seven seg displays on pcbs is $£ 19$ rel LED4 peck 150 © $£ 31$ ref LEO50 12VDC 4OMM FANS MADE BY PANAFLO, NEW E4. REF FAN12 HELP WANTED WITH MOTORS We have thousancs to clear at rock bothom pricesil bumper pack ol 20 motors (our choico) is fust $£ 19.951$ Some of these will be 5 "or maybe larger
HELP WANTED WITH MULTI RAIL POWER SUPPLIES ADain we have thousands avallable, most with fans, mosty cased. sold as see
not Pack of 10 is $£ 19.95$
HELP WANTED WITH TELEPHONE COIN BOXES Need we say, thousanos avaiabtel these are units designeato convel the electronics and coinshats are ofk speech ohip on the board talks to you as you program it Pack of 40 is $£ 19.95$
HELP WANTED WITH EXTERNAL mICRO TAPE STREAMERS 10.000 in stock space needed brand new cased units with hoods of interesting Dits (motor, tape heeds. PC8 etc etc Very HELP WANTED WTH YUASHA 12 V 6.5AH SEALED LEAD ACID BA TIERIES ADout 10 palkets fill inst inside warehouse no 21 pack of 5 tor jut $£ 19.96$ also some betow spec or 10aH at $£ 19.95$ for a pack of 8

Check out ourWEB SITE
 full colour interactive
 1997 eatalogue

httpa//www.pavilion_oukh/bull-aleotrioal
FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
 SURPLUS STOCK LINE 0802660335

Figure 10: USB 1 millisecond frame structure
user - anyone who has tried to set up expansion cards in a PC and has to worry about setting the address and interrupt number of the card will appreciate how much of a benefit this can be!

A function may have a number of endpoints. An endpoint is an internal address within the function which allows the controlling software to address packets to different internal functions of a single USB function. For example, a combined scanner/printer may have an endpoint for the scanner and an endpoint for the printer within a single USB address to allow the host software to treat the single device as two independent functions. A device may have up to 16 endpoint addresses. Endpoint address 0 is the controlling endpoint which is used by the host software to set up all devices on the USB system, and cannot be used by the application.

Packetising

Data to be sent on to the USB is divided into packets, the maximum size of which is around 8 kbits - at 12 MHz this takes around 700 us to transmit on the bus. Data is transmitted on
the bus Least Significant Bit (LSB) first. Most data transfers are in bytes, however, some bit fields transmitted in headers are not aligned on a byte boundary.

The USB host divides time into 1 ms frames, Every 1 ms the host sends a special packet, the start of which (the SOP bit) is accurately timed. At the end of each frame there is a guard time during which no data is sent, and during which time hubs on the USB system electrically disconnect any active transmitters. This ensures that the bus is idie for the SOF. This is illustrated in figure 10. These frame packets are not sent when the bus is suspended.

A packet is delimited by the SOP and EOP markers on the data lines as described above.

A packet always starts with a synchronising pattern which is sent as seven Os followed by a 1 - this represents the byte 80 hex. This is used to enable the receiver's clock synchronisation circuitry to recover the clock. Following the synchronisation pattern the first bit of the packet is sent on the bus.

The format of the various USB packets is shown in figure 11.

Figure 11: packet formats

\section*{Surplus always
 wanted for cash!
 LOW COST PC's
 SPECIAL BUY
 'AT 286^{\prime}
 | $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram | |
| :---: | :---: |
| MITED QUANTITY only of these 12 Mhz HI GRADE 2 ade in the USA 10 an industrial specification, the sy
 PSU and EGA video card with single $5 \mathrm{y}_{4}{ }^{*} 1.2 \mathrm{Mb}$ bettery backup is provided as standard. Supolied in OS 4.01 complete with enhanced keyboard, 640k + Order as HIGRADE 286 GN/ | $\begin{aligned} & \text { lems } \\ & \text { other- } \\ & \text { y disk } \\ & \text { clock } \\ & \text { used } \\ & \text { UAM, } \end{aligned}$ |
| tional Fitted extras: VGA graphics card $\mathrm{Mb} 3 \mathrm{y}^{2}$ fioppy disk drive (instead of 1.2 Mb) ordpertect 6.0 for Dos - when 33° FDD option ordered 2000 Ethernet (thick, thin or twisted) network card | £29.00 £19.95 £22.50 £29.00 |

LOW COST 486DX-33 SYSTEM FLOPPY DISK DRIVES $31 / 2^{\prime \prime} \cdot 8^{\prime \prime}$ $51 / 4^{\prime \prime}$ or $31 / 2^{2}$ from only $£ 18.95$

HARD DISK DRIVES

THE AMAZING TELEBOX

 tining at electronics ready to plug into a host
made by makers such as MICROVITEC, ATARI
COMMODORE, PHILIPS, TATUNG, AMSTRAD
\qquad
\qquad
\qquad VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video oulput is located on the rear panel video systems, For complete compatibility - even for monitors whh TELEBOX ST for composite video input type montors
TELEBOX STL as ST' but fitted whit integral speaker
\qquad

DC POWER SUPPLIES

supply you can imaglne. Over
o, opo power Supplles Ex Stock

Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality ${ }^{19^{\circ}}$ rack cabinets made in UK by
Optlma Enclosures Ltd. Units feature designer, smoked acrylic lockable fron
full height lockable half louvered bac and louvered removable side panels. Fully for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp
socket swithed mains distribution sinp make
these racks

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see - At this price - Don't miss it!!

LENT Mime isedocondeocicic.
hos of compla ers nduudin IBM PC S I I CGA EGA VGA\& SVGA
 Only E119 (E) MTISSVGA

CA cable for IBM PC included xtomel cables for other types of computers CAL

As New - Used on film set for 1 week only!!
$15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors.
Swivel \& tilt etc. Full 90 day guarantee. £145.00 (E)

Just in - Microvitec $20^{\prime \prime}$ VGA (800×600 res.) colour mo
Good SH condition-from $£ 299-$ CALL for info

Khz video inputs via SCART socket and separate phono jack Integral audio power amp and speaker Por al ouduters. Ideal for ail Wiil connect direct to Amiga and Atari BBC complen video monitoring / security applications with direct connection to most colour cameras. High guality with many features such as Dimensions: W14 $\times \mathrm{H} 12 \%^{-} \times 15 \%^{\circ} \mathrm{D}$. PHIUPS HCS31 Uttra compact $9^{\prime \prime}$ colour video monitor with stan dard composite 15.625 Khz video Input via SCART socket Ideal fully tested \& guaranteed (possible minor screen butrs). In atrrac 240 V AC mans powered. Only $£ 79.00$ (D)

20" $22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made UK manulacture. PIL all splid stale colour moniors,
complete with composite video \& optlo nal sound hiput. Atraetive eak style oase. Perfect ior Schools. Shoos, Disco, Clubs.
20"....£135 22"....£155 26"....£185 (ค)

SPECIAL INTEREST ITEMS

 these racks some of the most versatsie wehave ever sold. Racks may be stacked side by side and therefore
require only two side panels to stand singly or in multiple bays.
Overall dimensions are: $77 \%^{\circ} \mathrm{H} \times 3212^{\circ} \mathrm{O} \times 22^{\circ} \mathrm{W}$. Order as:
OPT Rack I Complete with removable side panels. $£ 335.00$ (G)
OPT Rack 2 Rack. Less side panels
$£ 225.00$ (G)
32U - High Quality - All steel RakCab

Made by Eurocraft Enclosures Ltd to the highest possible spec.

\section*{| sid |
| :--- |
| hin |} hinged for easy access and all are back doors

designer style' smoked acrylic front panel to panel. yet remain unobirusive. Internaly fal fixing
fealures fully sloted reinforced vertical fixict memberst. The two movable vertical fixing struts (extras available) are pre punched for standard mounled to the bond $\times 13$ amo 3 pl $8 \times$ IEC 3 pin Euro sockets and 1×13 amp 3 pin switchec ully louvered back
With top and side castors and floor the sub plate elc. Other features include: fited candition with access etc. Supplied in excellent, slightly used

Sold at LESS than a third of makers price II

A superb buy at only $\mathbb{L} 195.00$ (G)

Over 1000 racks - $19^{\prime \prime} 22^{\prime \prime}$ \& $24^{\prime \prime}$ wide 3 to 44 U high. Available from stock !!

 Call with your requirements.TOUCH SCREEN SYSTEM
The ultimale in 'Touch Screen Technology' made by the experts -
M/croTouch - but sold at a price below cost !i System consists of a llat translucent giass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ a llat translucent giass iam
\qquad where a finger is touching the panel-as the finger moves, the data instantly changes. The X \& Y information is given at an Incredible size II A host of available translatlon software enables direct conels, pointing devices, POS systems, controllers for the disabied or 'Windows', instead of a mouse I! (a driver is indeed avaitiable I) The applications for this amazing product are ontionll Complete system including Controller. Pow by your and Data supplied at an incredible price of only: $£ 145.00$ (B)
AIM 501 Low distortion Oscillator 9 Hz to 330 Khz , IEEE Trend DSA 274 Data Analyser with G703(2M) 64 Vo
HP16508 Loglc Analyser
HP3781A Pattem generator \& HP3782A Error Detector
HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts HP3081A industrita workstation clw Barcode swipe reader
HP6264 Rack mount variable 0.20 V © 20 A metered PSU HP6264 Rack mount variable 0.20 V 20A me
HP54121A DC to 22 GHz four channel test set HP54121A DC to 22 GHz lour channel test set
HP7580A A1 8 pen HPGL high speed drum plomer HP7580A A1 8 pen HPGL high speed drum plone
EG+G Brookdeal 95035C Precision lock in amp
Vlew Eng. Mod 1200 computerised inspection system Ling Dynamics 2 kW programmable vibration test system Kaithliey 590 CV capacitor/ voltage analyser
Racal ICR 40 dual 40 channel volce recorder system
Flisers 45 KVA 3 ph On Line UPS. New batts Dec. 199 Fiskers 45KVA 3 ph On Line UPS - New batts Dec. 199
CI R5030UV34 Cleanline ultrasonic cleaning system Mann Tally MT645 High speed line printer , Mb Ram Intel SBC 486/133SE Multibus 486 syslem. BMb Ram Zeta $3220-05$ AO 4 pen HPGL fast drum ploters Motorola VME Bus Boards \& Components List. SAE / CA Trio $0-18 \mathrm{Vdc}$ linear, metered 30 amp
Fulitsu M3041R 600 LPM band printer
Fujitsu M3041R 600 LPM band printer Perkln Elmer 2998 Infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter Sekonic SD 150H 18 channel digital Hybrid chart recorder TAYLOR HOBSON Tallysurf amplifier / recorder System VIdeo 1152 PAL wavetorm

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Memory Expansion Board. Fullieng
and PC-AT compatible card with 2 Mbytes of memory Card is fully selecta Fully tested and guaranteed. Windows compatible. Fuly tested and guaranteed. Windows comparible, E59.95(A1) memory ether 256 k or 512 k in 64 k steps. May also be used to fitl in RAM above 640k DOS limit. Complete with data $\mathbf{O r d e r}$ as: XT RAM UG. $256 \mathbf{k}$. $£ 34.95$ or $512 \mathrm{k} £ 39.95$ (A1 SIMM SPECIALS

4 MB 70 ns 72 pin SIMM -with parity-
INIEL $486-\mathrm{OX} 33 \mathrm{CPU}$ £55.00 INTEL 486 -DX66 CPU £69.00 (A

FANS \& BLOWERS

$\begin{array}{lr}\text { EPSON DO412 } 40 \times 40 \times 20 \mathrm{~mm} 12 v D C & £ 7.9510 / £ 65 \\ \text { PAPST TYPE } 61260 \times 60 \times 25 \mathrm{~mm} 12 v D C & \varepsilon 8.9510 / £ 75\end{array}$ MITSUBISH MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 v$ DC $£ 4.9510 / £ 42$ MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm}$ 12v DC
MITSUBISHI MMF-09812DH $92 \times 92 \times 25 \mathrm{~mm}$
12 v DC
$£ 5.9510 / £ 53$ PANCAKE $12-3.592 \times 92 \times 18 \mathrm{~mm} 12 \mathrm{~V}$ DC or 240 v $\varepsilon 6.95$.
IMHOF 8261900 rack mnt $30 \times 19^{\circ}$ Blower $110 / 240 \mathrm{~V}$ NEW $£ 79.95$

Issue 13 of Display News now available - send Iarge SAE - PACKED with bargains!

ELECTRCNHICS

LONDON SHOP Open Mon - Sal 9:00-5:3
215 Whitehorse Lane South Norwood

ALL © ENQUIRIES 01816794414

FAX 01816791927

OUT	First packet of a host to function transaction. Packet includes address of function and the address of the endpoint.
IN	First packet of a function to host transaction. Packet includes address of the function and the address of the endpoint which is generating data.
SOF	Start of frame, followed by the 11 bit frame number. This is the packet sent every 1 ms.
SETUP	This is used in setting up the function by the host bus enumeration software.
DATAO	Data packet. Followed by up to 1023 bytes of data in 8 bit form.
DATA1	Data packet. (See below for details of how DATAO and DATA1 packets are used). Followed by up to 1023 bytes of data in 8 bit form.
ACK	Acknowledgement by receiver that the packet was received without errors.
NAK	Receiver cannot accept data.
STALL	Indicates that an endpoint is stalled, for example this may be sent to indicate that a device has been unable to process all the data sent to it as yet.
PRE	Preamble - used for communication to low speed devices.

Note that the fields of the packet do not line up on 8 -bit boundaries; for example, the 7 bits of the address in an OUT packet are followed immediately by the 4 bits of the endpoint address. These packets are also known in the specification as tokens.

The first four bits sent are the PID. This stands for packet identity, and is a 4-bit code (the upper four bits of the PID byte are the same 4 -bit code, but inverted providing a simple check on the code). The types of PID available are shown in the table above.

Addresses are seven bits in length, endpoint addresses are four bits in length.

CRC checking is applied to the longer of the packets. The CRC check is either five bits long or 16 bits long dependant on the packet type. The CRC check is intended to ensure that the packet has been received correctly without errors.

Sending and receiving data

Data transfers always occur between the host and an endpoint on a function with a specific address. This unique address to which data is transferred is called a pipe. A pipe may be a stream pipe or a message pipe. A message pipe contains data in a defined structure, a stream pipe contains unstructured data such as sound information for speakers or from a microphone.

Data transfers are always based on a multi way packet transfer and are always initiated by the host - it is not possible for any function on a USB system to send data autonomously. The direction of transfer is indicated by the host sending either an \mathbb{N} or an OUT packet. The \mathbb{N} packet is a request to the function from the host to send the host some data in one or more packets, the OUT packet is a request to the function to send the host some data in one or more packets. Following the \mathbb{N} or OUT packet the function or the host respectively send a DATA packet, following each data packet the receiving end of the USB transaction sends an ACK for NAK or STALL if there is a problem), and then the next packet may be sent. The initial packet sent is a DATAO packet, the next packet is a DATA1 packet and then back to DATAO, the packet types toggle between DATAO and DATA1 throughout the data transfer.

When the function is receiving data it may return an ACK packet if the data was received without error, a NAK packet if the function was temporarily unable to receive data, and a STALL packet if there is a problem with the function which requires resetting from the host.

An example of an occasion when a STALL packet may be sent would be if a watchdog circuit timed out.. A watchdog circuit in a microprocessor based system is usually based on a resettable monostable, the software must keep resetting the monostable, if it fails to do so due to a software failure or unexpected external event then the monostable times out and produces a hardware reset or non-maskable intermupt. If a watchdog time-out occurred in the function the function may send STALL packets in response to any query by the host, and may then be reset and initialised by the host, and can continue operation.

An intempt transaction occurs to a special type of endpoint called an intermpt endpoint. Intermupt endpoints are normally polled by the host on a regular basis. If the endpoint has data then it sends it using the intemupt endpoint when it is polled. It is usual that there is only a small amount of intemupt data, if larger amounts are to be sent the interrupt packet may identify the need for the large data transfer which can be transferred at the request of the host at a later time.

An example of interrupt data may be a keyboard which returns a keycode when a new key is pressed. Thus the endpoints on a keyboard may be:

Endpoint 0 , which is always used for USB management control. Endpoint 1 which may be used to control the state of the keyboard - for example in setting LED's on the keyboard. Endpoint 2 an interrupt endpoint used to send the keycode of a key which is pressed.

Transfer to an isochronous endpoint is achieved without the handshake packet, the host issues an \mathbb{N} or OUT packet and then the DATA packet is sent. Only DATAO packets are used. As an illustration of bus bandwidth required by an isochronous device, consider a stereo microphone which employs audio compression to achieve a bandwidth requirement of $50 \mathrm{Kbits} / \mathrm{s}$ per channel. This will require a packet size of 12.5 bytes per millisecond. By the time that the size of the IN packet, the header and CRC on the DATA packet, and the SOP and EOP states, are taken into account this device will use about 170bits during the frame, or around 1.5 percent of the USB bandwidth at 12 MHz .

Connecting and disconnecting USB functions

When a USB function is attached to a hub the hub detects its presence by the change in electrical levels (as described above in the section on the electrical interface of the bus).

TELNET

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)


```
2995
```

Howlett Packard 4342A - 'Q' Meter.
Hewlet Packard 4952 A

ewiett Packard 4953A . Protocol Analyser (With interfaces).
$\begin{array}{r}2750 \\ 8275 \\ \hline\end{array}$

```
Hewlett Packard 435A - Power Meter (with 478 A Sensor)....
```

```Hewiett Packard 42718 - LC. R. Meter (Digital)
Hewlett Packard 4279A. 1MMZ. C-V Meter,
Hewlett Packerd 4948 A (TMM) Transmrssion impein................................
Hewiett Packard 4972A - Lan Protocol Analyser .........
Hewlett Packard 5420A Digita! Signal Analyser
Hewiet Packard 5335A - 200MHz High Performance Systems Counter
Hewlett Packard 5314A. (NEW) 100 MHZ Universal Counter.
Hewlett Packard 5238A Frequency Counter 100 MHz
(
Hewlett Packard 6034. 60 V -10a System Power Supply.
Hewlett Peckard 6253 A Power Supply 20 V - 3A Twh....
Hewlett Packard 6181C D.C. Current source.
Hewlett Packard 6255A Power Supphy 40V - 1.5A Twin
Hewlett Packard 6266 B Power Supply \(40 \mathrm{OV}-5 \mathrm{~A}\)
Hewlett Packard 6271 B Power Supply \(60 \mathrm{~V}-3 \mathrm{~A}\)
Hewlett Packard 6034A - O-60V-10A Syslem P.S.U.
Hewlett Packard 7475A - 6 Pen Plotter..........
Hewlett Packard 7550A - 8 Pen Plotter A3/A4
```


HEWLETT PACKARD $6261 B$

Power Supply 20v-50A £450 Discount for Quantitles

Hewlett Packard 8015A - 50MHz Pulse Generator
Hewlett Packard 8405A - Vector Vormetor...
Hewlett Packard $165 A$ - 50 MHZ Pronal
Hewlett Packard 8165A - 50 MHZ Programmable Signa! Source

tewlett Packard 8152A - Optical Average Power Meler .. 1250

Hewiett Packard 8620C Sweep oscillator mainframe
Hewlett Packard 8684A 5.4GHz to 12.5GHz Sig-Gen ..
Hewiett Packard 8620C Sweep oscilkator mainframe ..

Hewlet Packard 8901A - Modulation Analyse
Hewlett Packard P382A Vanable All

Hewiett Packard 16500A - Ftted whi 18510A16515A16530A18531A - Logic Analyser.. Krohn-Hike 2200 Lin/Log Sweep Generator
Krohn-Hite 4024A Oscilaior

Krohn-Hite 6500 Phase F 40 MHz Synthesised Sig. Gen

Marconi 2022A. $10 \mathrm{KHz}-\mathrm{tGHz}$ AMFM Signal Generator
Marconi 2432 A 500 MHz dipital treq. meter
Marconi 2610 - True RMS Voltmeter.........
Marconi 2610 . Ine RMS V 2871 Data Comms Analyser
Phllips PM 5167 10MHz function gen...
Philips 5190 LF. Symesiser (G. P.I.B.)
Philips 5190LF. Symnesiser (G. P. B.)
Philips PM551. TV Pattem Generator
Philps PM5667-Vectorscope
Phillps PM6652-1.5GHz Programmable High Resolution Tmer/Counter

Prema 4000-61/2 Digit Multimeter (NEW).
Pacal 1992-1.3GHz Frequency Counter.......
Racal Dana $9081 / 9082$ Synth. sig. gen. 520 MHz
Racal Dana $9081 / 9082$ Synth. sig. gen. 520
Racal Dana 9084 Synth. Sig pen. 104 MHz
Racal Dana 9303 RIF Leve Meter 8 Head
Racal Dana 9917 UHF trequency meter 560 MHz
Racai Dana 9302A RF milivoltmeter (new version)....
Racal Dana 9082 Synthesisod arntin sig gen (520 MHz)
Racal Dana 9082 Synthesised am/trn sig gen (520 MHz)........
Racal 9301 A - True RMS R/F Millivohmete
Racal $9921-3 \mathrm{GHz}$ Frequency Counter
Rohde \& Schwarz AMF 2 - TV Demodulator
and
Ronde a Schwarz LFM 2-60 Mhz Group Detay Sweep Gen
Rohde a Schwarz SMFP2 - 1 GHz Radio Comms T/Sel.........
Rohde a Schwarz SMFP2 - 1GHz Radio Comm
Rohde a Schwarz UPSF 2-Viceo Notse Meter
Ronde A Schwarz URE - RMS Vohmeter ($10 \mathrm{~Hz} 2-25 \mathrm{MHz}$)
Rohde \& Schwarz. Scud Aadio Code Test Set.
Rohde a Schwarz SUF 2 Noise Generator
.
Rohde \& Schwarz SMOU - 15 Hz to 525MHz Signal Gen (FM \& AM) ..
schattner NSG 203A Line Voltage Vaniation Simulator.
Schaftiner NSG 222 A interferance Simulato
Schaffiner NSG 223 interferance Generator
Schaffner WSG 431 Electrostatic Discharge Simutator
Schlumberger 4923 Radio Code Test Sel
Schlumberger 27201250 MHz Frequency Counter
Schlumberger $70607065 / 7075$ Muttimeters.
Solartron 1250 - Freq. Response Analyser..................................
Slanford Research DS 340 . 15 MHz Synteasize Function (NEW)
and arbitrary waveform generator..
Telequipment CT71 Curve Tracer..............................

Tektronix- Plug-ins - many avallable such as SC504. SW503. SG502.

Time 9811 Programmable Resistance
Toellner 7720 - Programmable 10 MHz Function Gen (AS NEW)
Toellner720 - Programmable 10 MMZ Function Gen (AS NEW)
Nayne Kerr 3245 - Precision Inductance Analyer
Wayne Kert 4225 - LCR Brldoe
Wayne Kerr 6425 -Precision Component Analyser
Waye Ker 8905 . Precision LCA Melet......
Wavelek 171. Synthesised Function Generat

Wavetek 1728 Programmable Sig Source ($0.0001 \mathrm{HZ}-13 \mathrm{MHZ})$
Wavetek 184 . Sweep Generator -5 MHz .
Wavetek $3010-1-1 \mathrm{GHz}$ Signal Generato

MANY MORE ITEMS AVAILABLE - SEND LARGE S.A.E. FOR LIST OF EQUIPMENT
 ALL EQUIPMENT IS USED
 WITH 30 DAYS GUARANTEE
 PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING - CARRIAGE \& VAT TO BE ADDED

The hub notifies the host of the attachment (recall that the host PC has a hub itself - the root hub). The host then enables the port on the hub and addresses the peripheral on that port using the USB default address, the host then assigns an address to the peripheral and establishes control pipe 0. From this point onwards the peripheral can be set up from the host and then used by application software. It is likely that in most implementations of the host, then the host will set up all USB devices during the boot up sequence of the host, applications may then run at a later time and will have the USB peripherals which they address immediately available.

Connection of a hub requires the hub to be initialised, and then each port of the hub to be initialised in order.

Disconnection of a function or hub is also recognised by the change in electrical levels. The hub notifies the host which removes all records referring to the hub or function, and notifies any application software of the removal.

Implementing the USB interface

Those readers who have studied this article in detail will probably have realised that providing a USB interface on a peripheral is considerably more complex than interfacing to earlier standards, such as RS232 or the parallel port. On the other hand, the problem of interfacing to USB is likely to become crucial if it becomes widely accepted, and in this case it is likely that microcontrollers will increasingly become available with USB ports, and with USB application software provided as standard.

The first decision to be made is whether the peripheral will contain an embedded hub, or whether it will simply consist of a USB function. It is likely that most non-commercial users will implement peripherals without embedded hubs, and rely on the commercial manufacturers to produce either dedicated hubs, or peripherals with embedded hubs and multiple downstream ports.

Figure 12: Cypress USB microcontroller (low speed peripheral) - block diagram
 2 John Street, Larkhall, Lanarks, ML9 1HE Tel: 01698883334 | 884585 Fax: 884825 Send a S.A.E. for your $\underline{\underline{F R E E}}$ Catalogue \& Quote.

Unconditional replacement or refund on any item if not as requested

TOP SELLING BOOKS	SER	3 UNIOUE SERVICE MANUAL OFFERS guaranteed savings to you NowII
Pract TV or VCR Repairs-£16.95 (Both £ $£ 3$)	MANTJALS	*LIBRARY Joining fee $\mathbf{E 6 5 . 0 0}$
Buy/Sell/Serv/Repair Used Equipment :-		You receive any Service Manuals, no matter
CD. TV or VCR - ¢ 10.95 each (All 3 £27)	DESIGNER COLLECTIONS	how expensive, for $£ 10$ each, and you get a $£ 5$ credit for any you return.
6 Giant IC Rer Manuals- £ 12.95 each	Comprehensive Circuits Collections of any make of CTV	*PRE-PAY MANUALS
Data Ref Guide - Identifies/ prices/ cross-ref's data for most models - $£ 9.95$ (3.5* Disk $£ 5$)	as requested, prices from $£ 8$ to [49 (IE. Alba/Bush $£ 20$) full list in Free Catalogue.	You get 20 Service Manuals, as and when you
Microwave Energy \& Ovens - $£ 9.95$	Amateur Kit: 10 Service Manuals las neededi). Data Ref',	want, for a one-off payment of $£ 185$
3.5" Disk Drives - £9.50	Pract' TV \& VCR Repairs, Radio Repairs, Thorn Serv' Set \&	*SERVICE MANUAL EXCHANGE
The Giant Fault-Finding Guides:-	any 3 CTV Circ Collections. $£ 199$	If you have a Service Manual we don't have
CTV's £16.95/VCR's £16.95	Professional Kit: As above +10 Serv' Man's, Microwave E\&O, Buy/Sell/Serv' Collection \& 2 More CTV Circ's. £370	and need another manual (ie. TV for TV, VCT for VCR), we will exchange it for FREE.

TOP SELLING BOOKS

Pract TV or VCR Repairs-£16.95 (Both £30) Buy/Sell/Serv'/Repair Used Equipment C. TV or VCR - Elo.9S each (All 327) Data Ref Guide - Identifies/ prices/ cross-ref's data for most models - $\quad £ 9.95$ (3.5* Disk $£ 5$) Microwave Energy \& Ovens -
$£ 9.95$
3.5" Disk Drives

CTV's £16.95 / VCR's £16.95
Please add $£ 2.50$ to all orders to cover Postage \& Handling

GREENWELD Greenweld has been established for 23 years specialising in buying and selling surplus job lots of Electronic Components and Finished Goods. We also keep a wide range of new stock regular lines. Why not request our 1997 Catalogue and latest Supplement - both absolutely FREE!

Our stores (over 10,000 sq. ft) have enormous stocks. We are open 8.00 am - 5.30 pm Monday to Saturday. Come and see us!

Standard Bargain List Subscription
For just $£ 6.00$ a year UK/BFPO ($£ 10.00$ overseas). we'll send you The Greenweld Guardian every month. With this newsletter comes our latest Bargain Ust giving details of new surplus products available and details of new lines being stocked. Each issue is supplied with a personalised Order Form and details of exclusive offers available to Subscribers only

Gold Bargain List Subscription

For just $£ 12.00$ a year ($£ 20.00$ overseas) the GOLD Subscriber category offers the following advantages
\square The Greenweld Guardian and latest Bargain List every month, together with any brochures or fiers from our suppliers
\square A REDUCED POSTAGE RATE of $£ 1.50$ (normally $£ 3.00$) for all orders (UK only) and a reply paid envelope
[] 5\% DISCOUNT on all regular Catalogue and Bargain List items on orders over $£ 20.00$

So Don't Miss Out - Subscribe Today!

> 27E Park Road. Southampton
> SO15 3U0 TELEPHONE: 01703236363 FAX: 01703236307 INTERNET: http://www.herald.co.uk/clients/G/Greenweld/greenweid.html

Given the relative complexity of the USB it is hardly surprising that the only support chips currently available or planned are based on microcontrollers, we will take a look at two series of planned microcontrollers from Intel and from Cypress. It is likely that mask programmed microcontrollers like these will become available for specific applications such as keyboard and mouse functions, these chips are likely to be available at very low cost.

Implementing a peripheral device

The CY7C63x00 series are USB microcontrollers designed for peripherals operating using low speed USB. The series is intended to be fully available by the end of 1997 with full production now. The block diagram of this device is shown in figure 12. The smaller devices offer 10 in/out pins, and the larger devices offer $16 \mathrm{ln} /$ out pins. The USB transceiver is on chip, and the chips offer 128 byte of ram and 2 K or 4 K of eprom. As an example of the use of one of these microcontrollers, figure 13 shows a mouse implemented using one of the Cypress ics using Cypress's promotional literature As can be seen in this circuit, there is very little to a USB device implemented using a controller such as this.

Anyone used to using the PIC series of microcontrollers would have little problem using these devices. There is an on chip timer generating 128 us and 1.024 ms interrupts. The device supports USB suspend mode directly, which can be woken up by USB interrupt or external interrupts. Interrupt sources are the timer, external action, or USB endpoint actions. The device has two endpoints, endpoint 0 is capable of receive and transmit, endpoint 1 is capable of transmit only, data is loaded into the endpoint FFFO register, and will be transmitted automatically by the microcontroller on receipt of an \mathbb{N} packet. The microcontroller will generate an interrupt on receipt of a packet to endpoint 0 . The microcontroller has a risc core, and supports immediate, direct, and indexed addressing modes.

Figure 14: $8 \times 930 \mathrm{Hx}$ USB hub/peripheral controller pin-out (64 pin package)

Implementing a Hub

The $8 \times 930 \mathrm{Hx}$ microcontroiler from intel is a complete hub peripheral controller which offers one upstream port, an internal hub, and three external downstream ports. All the ports have internal USB transceivers. The internal embedded controller has three endpoint buffers of 16 bytes, and a configurable 1 Kbyte buffer, this will allow endpoint 0 and control functions on the 16 byte buffers with large scale data transfer on the 1 K buffer. The device has 1 Kbyte of internal ram, and up to 16 Kbyes of rom, although it is possible to use external eprom/ram up to a total of 256 Kbytes. This particular device offers operation at up to 12 Mbps . The controller is available in a 64 pin package - the pin out is shown in figure 14, and this is clearly a non-trivial device!
This device is code compatible with the 8051 series of microcontrollers.

The future of USB

The USB is a new interface standard. To become accepted and widely used a standard must be supported by suppliers of equipment which may use it. One only has to look at the Betamax video tape standard, or the IBM Micro-Channel architecture for bus interfacing, to see that good ideas can fail to conquer the market if they have insufficent third party support.
it seems unlikely that USB will be supported until it is widely available on host PCs. This is because suppliers of peripherals will want a market which is not limited to people who have purchased new PCs in the last year or so. This could be achieved if add-on USB host cards become widely available for those that do not have USB on the motherboard, but a quick scan of the computer magazines showed a distinct dearth of such cards available at time of writing. A number of PCs are advertised with dual USB ports, and I found that many new PCs which are not advertised with USB ports are in fact supplied with them. However, when I phoned three PC suppliers, only one could actually tell me what USB stood for and for what it is used!

The first peripherals likely to use USB are the higher bandwidth complex devices such as printers and scanners where the cost of the USB interface is not significant in comparison to the overall cost of the device. For simpler devices such as keyboards and mice, it seems unlikely that USB will be cost competitive with the cheapest devices which are currently available, and it will take some time for USB chipsets for these applications to be widely available and cost competitive. I spent some time scanning advertisements in several PC magazines, but I was unable to find a single peripheral which used the USB.

In conclusion, the attractions of USB are such that if the system starts to become widely available on peripherals as well as on PCs, then it will snowball, becoming the de facto interfacing standard. In the longer term as the application ics become more widely available I hope to be able to bring the readers of ETI an example interface using the USB.

The USB standard

The current issue of the USB standard is available on the internet from the USB implementors forum at: nttp://teleport.com/~USB, on on email at USB@FES.FM.INTEL./COM. The author is prepared to supply copies of the USB specification in Microsoft Word 6.0 (and above) format. Please send an SAE and $£ 3.00$ to Robin Abbott, 60 Walkford Way, Christchurch, Dorset, BH23 5QG mail order only.

 200 ma out 300 in inpul 10 output
4.95 each or pact of 10 c39.50 Hour counler used 7 dight 240 V ac 50 Hz
OWERTY ke How counler used 7 dight 240 ov ac 50 Hz 11.45
OWERTY keyboerd 58 key good qually swiches new Airpex As2903-C 1arge stepoing motor isv 755.00 27 ohm 68 mm dia body 83 mm shatt $\{B .95$ or $\mathbf{C 2 0 0} \mathbf{D}$ for a bou of 30
oryester capacitors box type 22.5 mm baad pich 0.9 f 250voc 18p each $14 \mathrm{p} 100+9 \mathrm{p} 1000+$
1 f 250vdc 20 p each, $15 \mathrm{p} 100+10 \mathrm{p} 1000+$ lif 50 b bpoter olectrytic axual leads 15 p esch, 7.5 p 100 $022 u$ 250v poyvester axial leads 15 p each $7.5 \mathrm{p} 100+$ Polypropylene 1 Ht 400 vdcc (Wima MKP 10) 27.5 mm pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p aach 60 p $100+$
Philips 123 senes solid aluminum axial leads

Philips 108 senes long life 22 ut 63 v axial 30 p each $15 \mathrm{p} 1000+$
Aultilayer AVX ceramic capacitores all 5 mm phich 100 00p. 350 pt . 220pt. 10.000 pt (10n) 10p each. 5 p 100 t .3 .5 p 1000 -
500 pi comprest
500 p comprossuon trimmer 60 p
10 of 37 verac molor star capacior idinincmi
 Soltainang non pesisisiors very low inductance ideal for Solid carcion
AF cricutis
27
27 ohm 2 W . 680hm 2 W 25 p each 15 p each $100+$ we 27 ohm $2 W$. 68 ohm 2 w 25 p each 15 p each $100+\mathrm{w}$
have a range of 0.25 w 0.5 w 1 w and 2 w solid carton have a rangs of $0.25 w$.
P. . 400 W PSU (intel part 201035-001) with standerd mothertoard and 5 disk dirve conneccors, tan an mains inievoutter connectors on back and swin
the side (top for tower case) dims
$212 \times 49 \times 149$ minn exctuding swinch
526.00 each $212 \times 49 \times 149 \mathrm{~mm}$ exctuding swinch $\mathrm{\Sigma} 26.00$ each
8138.00 for 8 MX 180 Digital mulimeter 17 ranges 1000 Vdc 750 vac
2 Mohm 200 mA transistor Hie 9 v and $1 / 5 \mathrm{v}$ baller tes AMD 272563 Eproms हn.00 each, E1.25 $100+19.95$ 40 p 100 .
Disk drve boxes for 525 disk dive with room for a power supply light grey plasbc $67 \times 268 \times 247 \mathrm{~mm} ~ \$ 7.95$
or $£ 49.50$ or 10 Hand helo ultrasonic remote control
 terminats will also work as a neon light 20 peach o 87.50 per 100

Varbatim RsooNH Streamer tape commonty used on nc machines and ponnting presses etc. fi looks lite a nomal cassente with a stot cut out of the top E4.95 each ($\mathrm{E}_{2} .75100+$)
Heatsink compound rube

ROBOTICS!

LYNX ARM

ROBOTIC ARM Kiz, five axus motion with gripper Control from anty serlal port Uses R/C. servos Lood repeatasility anc accuracy. lit incluces precti arm componenc, eecuonic.

STAMP BUG

STAMP basec insect kit whistrates basic wationg mechanisms. Twn feeiers cerec: oojects causung backup and tum fie prograrmmec out with the option io reprogramme |neecs Stamp programming packi Powertul 3 servo construction carries payoad's up to 250 grns and up to 3 hours motion fiom the on-Doarc HCads. $20 \times 15 \times 5 \mathrm{~cm}$

MUSCLE WIRES

Eascinating wies that CONTRACT WHEN ELECTRICALLY HEATED producing a usefld amount of lorce IUp ro 09 kg for 250 um wrel. Requre $03 \mathrm{~V} / \mathrm{cm}$ and currents from 100 ma to 1 Amp . Choose from four gauges of were $150,100.150$ and 250 um dial Detailed Data anc Project Book $\{128$ pages atso avatable separarely and wath Delux Wire kre suitetule for 13 projects

SERVO - IR - LCD CONTROLLERS

A range of low cost controtier kTE R/C senvos (up 108 sevos per Doarc- simple RS232 commancts from your PC, hold servo in postion unol updatec ecc).
LCD display divers wh stanciard Hiraxh controther types up to 4×20 characters- R5232 input) IR programmable recervers 17 cutput channets - accept any TVAFifi controber up to 25 mA outpur per channel- programmable :oggte/momentary swithirgg action)

Please call to receive further details on any of the above products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

Beginners Course on 16C84. One day course. Fee: $£ 125$, includes lunch, 16C84 chip and Development Board plus software.

Advanced Course on 16C84 and 16C71. One day course including look-up tables, long delays, keypads, 7 segment displays and A-D conversion. Fee: $£ 125$ includes lunch and 16C71 reprogrammable Microcontroller chip, with 4 channel A-D.

Complete Teach Yourself Package including PSU, Switch Input Board, Keypad Board, Development Board, 7 Segment Display Board and Buzzer, LED Output Board, Analog Development Board and 115 page course book, plus software. Fee: $£ 145+£ 6 p+p+$ VAT.
Four-day Course - Understanding Microcontrollers Course Fee: $£ 395$, includes lunches and the complete teach yourself package. Accommodation available.

For dates and further details contact Dave Smith, Crewe+Alsager Faculty,
The Manchester Metropolitan University,
Hassall Road, Alsager, Stoke-on-Trent, ST7 2 HL
Tel: 01612475437 Fax: 01612476377
E-mail D.W.Smith@MMU.AC.UK

\square TID STEVENAGE
 Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
 Do you have a requirement for any of the following services: PCB Assembly (Conventional and Product Design/Consultation Surface Mount)
 Wave \& Hand Soldering
 Complete Equipment Manufacture
 Device Programming from hand written shts or PC $31 / 2$ " disc Cable Hamess Assembly/loom Manufacture
 Card Cage and Module Wiring Full Inspection
 Full Procurement Service PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circults Drawn Professionally Kit Procurement \& Supply Component Sales
 Refurbishment a speciality Top Quality Work at Reasonable Rates
 Phone Steve on (01438) 360406 or fax detalls of your requirements to us on (01438) 352742
 EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

Printed Circuits in Minutes Direct from LaserPrint!

$81 / 2^{\prime \prime} \times 11^{\prime}$ * Or Photocopy
**Use standard houschold Iron or P-n-P Press.

Use Standard Copper Clad Board
5 Sheets $£ 12.50,10$ Sheets $£ 25.00+$ VAT. Add $£ 2.50$ postage Complete kits to manufacture your own PCB's from $£ 40.00$, or individual items of material, chemicals, etchant atc. PRESS-N-PEEL ETCHING SUPPLIES
18 Stapleton Road • Orton - Southgate
Peterborough PE2 6TD - Tel: 01733233043

c/c

CHELMER VALVE COMPANY

If you need Valves/Tubes or RF

 Power Transistors etc. ...then try us!We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road. Cheimsford, Essex CM2 ORG. England.
Tel: 44-01245-355296/265865 Fax: 44-01245-490064

Power Robotics . . . for your PC

A series of high-powered kits that link to your PC's serial port
 Robotic Arm
This 5 axis arm delivers fast, accurate and repeatable movement. The kit includes all hardware, structural components, 6 Hitec servos, a Mini Serial Servo Controller kit, software, sample programs and a detsiled assembly manual.

Mobile Arm

The mobile version adds to the excitement. The kit includes everything mentioned in the standard arm kit with the addition of wheels and 2 Hitec servos. This makes a great foundation to add sensors to create a fully featured robot. $\{£ 185$
Hexapod Walker

Micro Mouse

All prices exclude 17.5% V.A.T. and $£ 4.50$ carriage charge.
technologyindex@btintemet.com
http:/www.technologyindex.com

Technology Education Index 40 Wellington Road Orpington
Kent BR5 4AO
Tel: (01689) 876880

RHAL ALES

FOR THE HOME BREWYR by Marc Ollosson

A Winner!

 Classic authentic Real Ales for the home brewer.In this book you will find many recipes which will allow you the craft brewer, to make superb real ales at a fraction of the price of those that are commercially available. With easy to follow instructions, both beginners and seasoned mashers can quickly start brewing
 such classics as Flowers, Wadworths and many others.

All the recipies are based on information supplied by breweries which, combined with skill and quality ingredients from specialist homebrew shops, will virtually guarantee superb resulting ales.

Telephone orders: 01322616300 ask for Nexus Direct
Please send me........... copies @ $£ 7.95$ inc. P\&P
I enclose my remittance of $£$
I enclose my cheque/PO for
made payable to
Nexus Special Interests or please debit my Access / Visa.

Expiry date. \qquad Signature.
Name..
Address..
\qquad

Post code.

Telephone Number.

\qquad
Complete details and return coupon to:
Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead,
Herts, HP2 7ST.
If you do not wish to receive mailing from other companies, please tick box.

Switch tuned

Robert Penfold's design for an audio frequency signal generator has switch controlled tuning rather than the continuous type. Covering a range of 10 hertz to 100 kilohertz, no calibration is needed once the unit is finished.

Aconventional audio frequency signal generator typically covers a range of 20 Hertz to 200 kilohertz in four ranges, with continuously variable tuning over each range. A unit of this type represents a fairly straightforward project for the home conductor to build, but it can be difficult to get the finished generator accurately calibrated. Matters are made more difficult by the fact that the scaling is decidedly non-linear unless a difficult to obtain anti-log potentiometer is used for the tuning control. Even then, accurate linear scaling is not guaranteed, and producing an accurate scale can be difficult. In fact it is not possible at all, unless you have access to either a frequency meter or another signal generator that is accurately calibrated.

This audio generator covers a range of 10 Hertz to 100 kilohertz, but it has switch controlled tuning rather than the continuous variety. On the lowest of its four ranges it provides output frequencies of $10,15,20,25,30,40,50,60,70,80,90$, and 100 Hertz. The other three ranges provide output frequencies at 10,100, and 1000 times these frequencies. The advantage of using switch controlled tuning is that there is no calibration to contend with once the unit has been completed. You just switch on and dial up the required frequencies using the two frequency control switches. Close tolerance components in the critical parts of the circuit ensure that the accuracy of the output frequencies is reasonably good. The actual error will very somewhat from one frequency to the next, but in general the output frequency will be within five percent of the required figure, and in many cases the error will be under one percent. This is

Figure 1: the basic Wien oscillator configuration

more than adequate for most purposes, including most frequency response testing.

Obviously it is not possible to set any desired frequency using this method of frequency control, but in practice you do not often need to set odd output frequencies such as 876 Hertz. However, it is only fair to point out that this generator is not suitable for testing filters that have either a very narrow passband or provide a very narrow "notch." It is well suited to most general audio testing, such as checking the frequency responses of tone controls and RIAA preamplifiers, voltage gain measurement, and so on.

Good quality sine and squarewave output signals are provided at a maximum output voltage of about three volts peak-to-peak. The squarewave signal has rise and fall times of well under one microsecond, and is free from overshoot and ringing effects. An attenuator switch can be set to reduce the output level by about 40 dB , and a continuously variable attenuator is also provided. Power is obtained from an internal nine volt battery and the unit is therefore fully portable.

Sinewave Generation

Audio signal generators are almost invariably based on a Wien oscillator which produces the sinewave signal. The squarewave signal is then produced from the sinewave signal using a clipping amplifier. The basic circuit for a Wien oscillator is shown in figure1. The Wien network consists of R1, R2, C1, and C 2 , and it is connected so that it provides positive feedback over the operational amplifier.

At a certain frequency the Wien network will produce a phase shift of zero degrees, and the circuit will oscillate at this frequency provided the voltage gain of the amplifier fractionally more than compensates for the losses through the Wien network. Conventionally, $\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{R} 1=\mathrm{R} 2$, but the circuit

will operate if the two resistors and the two capacitors are not of equal value. Assuming that they are, a voltage gain of approximately three must be provided by the amplifier in order to produce oscillation.

Athough, on the face of it, the voltage gain could be set at the correct level by giving negative feedback resistors R3 and R4 suitable values, in practice this will not work properly. The circuit will provide a high quality sinewave output signal provided the voltage gain is set very accurately. It only requires slightly too little gain to prevent the oscillator from working at all, or fractionally too much gain to produce a clipped and badly distorted output signal. Using a preset resistor for R3 or R4 would enable the voltage gain to be set very accurately, but this would not give satisfactory results in practice. Any variations in the loading on the output would tend to upset the balance of the circuit, causing changes in the output level. In an extreme case the oscillator could stall completely. Where a variable output frequency is required it is normally obtained by using a dual gang potentiometer for R1 and R2. The matching of the two gangs is never perfect, and this means that the precise voltage gain needed to sustain oscillation will vary somewhat from one setting of the tuning control to another.

The only practical way of stabilising the output level is to use some form of automatic gain control (agc) circuit. There is more than one way of achieving this, but by far the most common is to use one of the self-heating thermistors that are designed specifically for this application. Unlike an ordinary thermistor, a self- heating type is contained in an evacuated glass envelope that largely isolates it from the ambient temperature. Passing a small current through one of these components results in it rising in temperature, which in tum causes its resistance to fall. In a Wien oscillator the thermistor is connected in place of R3.

Initially the resistance of the thermistor is quite high, which gives high voltage gain through the amplifier and strong oscillation. This strong oscillation produces a heavy flow of current through the thermistor, which results in the thermistor heating up. The thermistor's resistance therefore drops and produces weaker oscillation. In fact it normally results in oscillation ceasing, and the thermistor starting to cool off again. Its resistance then rises again and quite strong oscillation occurs once more. This process continues a few times with the circuit gradually settling down and oscillating gently.

As with any form of automatic gain control, this system relies on a form of negative feedback action. If the circuit oscillates more strongly for some reason, the amount of current through the thermistor increases and the gain of the circuit is reduced. Conversely, if the level of oscillation reduces, the current flow through the thermistor reduces and the gain of the circuit is increased. Any change in output level is therefore counteracted
by a suitable change in the voltage gain of the amplifier. Obviously some variations in the output level will occur, since the thermistor will not quite fully compensate for any change in the amplitude of the output signal. However, under normal loading the circuit will keep the output level within a fraction of a decibel of its unloaded level. In the case of a variable frequency Wien oscillator the stabilisation also maintains a virtuaily constant output amplitude over the full audio range.

Single resistor tuning

Life would be easier if the frequency of a Wien oscillator could be varied via just one of the resistors in the Wien network. A switch tuned audio generator would then only need one set of precision resistors. Also, an ordinary single pole switch would suffice, which would give a considerable cost saving over a multi-way two pole type.

It is actually possible to tune a Wien oscillator via one of the resistors in the Wien network, but it produces practical difficulties. The gain needed to just sustaln oscillation varies greatly if the value of one resistor is altered. Although one might expect the automatic gain control to compensate for these variations in gain, in reality the variations are so great that normal thermistor stabilisation can not cope adequately. In fact it is difficult to produce an output stabilisation circuit that can cope adequately with both variations in loading and changing losses through the Wien network.

One way around this problem is to use the alternative Wien oscillator configuration of figure2 (the "Brokaw" configuration). In this circuit the positive feedback is once again provided by a Wien network which consists of R1, R2, C1, and C2. This time there is a slight change in that R1 is returned to the virtual earth formed at the non-inverting input of IC1, rather than to the zero volt earth rail. Whether it is returned to the true earth or a virtual earth makes no difference to the operation of the Wien oscillator, and the circuit therefore oscillates normally. The negative feedback circuit of this design is much more complex than the simple two resistor network of the basic Wien oscillator. R4 and R5 form what at first appears to be an ordinary negative feedback network, but R4 is returned to the output of IC1 and not to the earth rail. IC1 operates as a noninverting amplifier, and its voltage gain is controlled by the ratio of R3 to R1. The input signal for this amplifier comes from the output of the Wien network, and as we have already seen, R1 is actually part of this network.

When considering the operation of this circuit you need to bear in mind that any increase in the value of R1 will reduce the output frequency, but it will also produce stronger oscillation. The input signal to the inverting amplifier is taken from the output of the Wien network, and this is of course in-phase with the output slgnal. This means that the output of the inverting

Figure 2: an alternative Wien oscillator that can be tuned by varying the value of R1

Figure 3: the circuit diagram of the switch tuned audio generator
amplifier is out-of-phase with the output signal. IC2 operates as an inverting amplifier to this signal, with R4 and R5 acting as the negative feedback network. This further inversion means that the output signal from IC1 boosts the output signal from IC2. The stronger the output from IC1, the greater the boost.

Increasing the value of R1 produces stronger oscillation, but it also produces reduced voltage gain from IC1 and a weaker output signal from this amplifier. This produces a reduction in the boost to the output level of the oscillator. The stronger oscillation is therefore counteracted by the reduced boost to the output level, and wide variations in the value of R1 produce no significant change in the output level. The circuit still requires automatic gain control to compensate for variations in output loading, etc. This can be provided in the normal way by using a thermistor in place of R5. It is possible to cover a wide frequency span by altering the value of R1, but the scaling is extremely non- linear. This is not really of any consequence in the present application where R1 is a series of fixed resistors rather than a potentiometer.

Circuit operation

The circuit diagram for the switch tuned audio generator appears in figure 3. IC1 is used in the Wien oscillator, and with the only exception that the circuit is powered from a single supply rail, it uses exactly the same configuration as the circuit of figure 2. R1, R2, and C2 produce a centre-tap on the supply rails that is used for biasing purposes. R5 to R24 are the range resistors which give the circuit its basic repertoire of 12 output frequencies. It is inevitable that some rather odd values are requires, and most of the tuning resisfances are made up from two resistors connected in series. There are four sets of capacitors in the Wien network (C3 to C 10) and these provide the circuit with its four frequency ranges. S1 is the frequency control and S 2 is the range switch. Th 1 is the self-heating thermistor which stabilises the output level.

Sinewave to squarewave conversion is provided by IC2 which is an operational amplifier used openloop and in the non-inverting mode. The high voltage gain of IC1 results in a heavily clipped output signal that is a squarewave of reasonable quality. However, the wave shape is improved by the diode clipping circuit based on D1 to D4, and this circuit also reduces the peak-to-peak output level of the squarewave generator to one that is comparable to the output level of the sinewave oscillator. The required output signal is selected via $\mathrm{S3}$, and C11 couples the output from S 3 to the attenuator circuit.VR1 is the variable attenuator, and S4 is the attenuator switch.VR1 receives the full output level when S4 is closed, but R26 introduces losses of about 40 dB (that is, it reduces the output level by a factor of 100) when S4 is open. It is easier to set very low output levels when S4 is set to attenuate the output signal. Due to the 20 percent tolerance rating of VR1, the attenuation provided by R26 may not be precisely 40 dB .

Power is obtained from a nine volt battery (B1), and the current consumption of the circuit is about 10 milliamps. A PP3 size battery is just about adequate to power the circuit, but a higher capacity battery would be a better choice if the unit is likely to be used for long periods.

Construction

Details of the stripboard component panel are provided in figure 4 (component layout) and figure 5 (copper side view). The board measures 37 holes by 22 copper strips. Construction of the board is very straight forward since the majority of the components are hard wired to the switches. Construction would be slightly easier and the finished unlt would be somewhat neater if printed circuit
mounting switches were used. The tuning resistors and range capacitors could then be mounted on the circuit board. This method of construction had to be discounted due to the high cost of the switches, which is out of proportion to the cost of the other components.

Construction of the component panel foliows along normal lines. First a board of the appropriate size is cut out using a hacksaw. Any rough edges are then filed to a smooth finish, and the two 3.2 millimetre diameter mounting holes are drilled in the board. These will accept either metric M3 are 6BA mounting bolts. I would not recommend using plastic stand-offs with stripboard components panełs. Next the breaks in the copper strips are made using either the special tool or a hand-held twist drill bit of about five millimetres in diameter. Make quite sure that the strips are cut across their full width, especially if you are not using the proper tool. The board is then ready for the components and linkwires to be added. Be careful to fit the diodes and electrolytic capacitors with the correct polarity. Fit single-sided solder pins to the board at the points where connections to the controls will " eventually be made.

When building the circuit board, bear in mind that the CA3140E used for 1 C2 has a PMOS input stage. The normal antistatic handling precautions must therefore be taken when dealing with this device. It must be fitted in a holder and not soldered direct to the circuit board. It should not be plugged into the holder until the unit is in all other respects finished, and it should be handled as little as possible when it is eventually fitted into place.

The thermistor (TH1) has a glass encapsulation, and it should be treated with due care as it is inevitably quite fragile. This

S5
Figure 6: details of the hard wiring (use in conjunction with figure 4)

component seems to be sold as both the PA53 and as the R53, but it is suitable for use in this circuit in either guise. It is quite an expensive component, and it is worth checking in a few component catalogues to find the best price as there seems to be significant variations from one catalogue to another. Inexpensive bead and rod thermistors are not suitable for use in this circuit; only a self-heating type will work in this application.

Hard wiring

As already pointed out, a substantial number of the components are mounted on the controls. Details of all the hard wiring are shown in figure6, which should be used in conjunction with figure 4. Provided you go about things in the right way this wiring is reasonably easy to complete. S1 is a standard four way three pole rotary switch, but in this case one pole is left unused. It is a good idea to fit the range capacitors to S 1 and the tuning resistors to S 2 before these two switches are mounted on the front panel of the case. Start by doing any necessary trimming of the leadout wires, and then "tin" the ends of the leadout wires and the tags of the switches. Before adding the components to a switch it must be fixed in place on the work-top. All that is needed is a generous blob of Bostik Blu-Tack or Plasticlne. The switch is then easily repositioned as you work your way around the tags.

In order to obtain good frequency accuracy the tuning resistors must be close tolerance components, as must most of the other resistors in the circuit. In fact I would recommend using 1 percent tolerance resistors throughout the circuit. Ideally the range capacitors would also have a tolerance rating of 1 percent, but it might be difficult to obtain suitable components having values of 47 n and 470 n . Capacitors having a tolerance of 5 percent are readily available in these values though, and should give good results. The tolerance rating indicates a maximum error, and in practice the actual error is likely to be considerably less. Due to stray capacitance in the circuit the output frequencies might be fractiontlly low on the highest frequency range. Perfectionists can replace each 470pF range capacitor with a 390 pF capacitor in parallel with a 68 pF type.

It is a good idea to connect long flying leads to the pole tags of S1 and S2 before mounting these switches in the case. Once they are in position it can be difficult to gain access to the pole tags as they are shielded by the tuning resistors and range capacitors. The remaining hard wiring is very straight forward and should present no real difficulties. The general layout used for this project is not critical, but it is always a good idea to avoid too much criss-crossing of the connecting wires. The prototype is housed in a plastic instrument case which has aluminium front and rear panels, but a much smaller case could be used if greater portability is required. However, make sure that you choose a case that can accommodate all the controls and the output socket on its front panel.

Testing, testing...

If you have access to suitable test equipment, use this to check that the unit is providing the correct output waveforms, frequencies, and output levels. Note that the sinewave peak-topeak output voltage will be slightly higher than the squarewave peak-to-peak output potential. The quality of the squarewave output signal inevitably reduces slightly at high frequencies, but it should be reasonable even at the highest output frequency of 100 kilohertz. In the absence of suitable test equipment the output can be monitored using an amplifier and loudspeaker, are even a crystal earphone will suffice. This will enable the
basic function of the unit to be verified, but bear in mind that apart from 10 kilohertz, the output frequencies on the highest range are beyond the limits of human hearing. The sinewave signal has a very distinctive "pure" sound, whereas the squarewave signal is
more of a rough buzzing sound. The difference between the two is more obvious at low output frequencies where the harmonics of the squarewave signal are largely at audible frequencies.

Resistors

(All 0.6 W 1 percent metal film)

$R 1,2$	$2 k 2$ (2 off)
$R 3,4,25$	$2 k 7$ (3 off)
R5	$390 k$
$R 6$	$22 k$
$R 7$	$180 k$
$R 8$	$10 k$
$R 9$	$100 k$
$R 10$	$6 k 8$
$R 11$	$68 k$
$R 12$	$47 k$
$R 13$	$27 k$
$R 14$	$16 k$
$R 15$	$1 k$
$R 16$	$12 k$
$R 17$	$8 k 2$
$R 18,24$	$330 R$
$R 19$	$5 k 6$
$R 20$	$1 k 1$
$R 21$	$4 k 7$
$R 22$	$470 R$
$R 23$	$3 k 9$
RR1	$1 k$ lin carbon rotary

Capacitors

$C 1$
$C 2$
$C 3,7$
$C 4,8$
$C 5,9$
$C 6,10$
$C 11,12$

> 100 u 10 V axial electro 470 u 10 V radial electro 470 p polystyrene 1 percent $4 \mathrm{n7}$ polystyrene 1 percent 47 n polyester 5 percent 470 n polyester 5 percent 220 U 10 V radial electro

Semiconductors
IC1 TL072CN
IC2 CA3140E
D1 - D4
1N4148
Miscellaneous
S1
4 way 3 pole rotary (only 2 poles used) 12 way 1 pole rotary spdt min toggle spst min toggle (2 off) RA53 thermistor 9 volt (PP3 size) BNC socket
Instrument case about $225 \times 180 \times 70 \mathrm{~mm}, 0.1$ inch pitch stripboard measuring 37 holes by 22 copper strips, control knob (3 off), battery connector, 8 -pin dil holder (2 off), wire, solder, etc.

AN5521	1.35	STK73410/2	5.95	TEA2026C	4.50
AN5732	1.40	STK73605	4.50	TEA5170	1.40
AN6327	9.85	STR441	18.99	TUA2000-4	4.25
AN6677	8.50	STR451	29.99	U884B	2.35
BAS114	1.55	STR3125	5.50	UAA1008	3.00
BA6218	1.85	STR4211	5.50	UPC1178	1.05
846219	1.20	STR4090	11.15	UPC1182H	5.15
HA11423	1.65	STR20005	5.00	UPC1278H	2.20
HA13119	2.50	STR40090	4.00	UPC1420	4.50
KA6210	4.99	STR50103A	3.85	UPD1937	3.00
LA3220	0.60	STR54041	3.75	25 A814	0.71
LA4183	1.35	STR58041	3.75	25A839	1.40
LA4445	1.90	STR80001	6.00	25A1062	1.00
LA4495	1.40	STR1706	4.75	ELECTRO	
LA4588	2.55	STRD1806	4.50	CAPACIT	
LA7835	2.35	STRD6008	10.00	250 V Working	
LB1415	2.25	TA227	1.85	1UF (5/pack)	1.00
LM301	0.25	TA7271	2.50	4.7UF (5/pack)	1.50
LM317T	1.50	TA7280	2.25	10UF (5/pack)	1.70
$\mathrm{M491BBI}$	4.75	TA7281	2.20	22UF (each)	0.40
M49BBI	6.75	TA7698	5.00	33UF (each)	0.56
M51393	5.95	TA8200	3.50	47UF (each)	0.65
M58655	3.30	TA8210	3.00	100UF (each)	1.28
M83730	1.70	TA8214	3.00	400 V Worklng	
MB3756	8.00	TA8215	3.00	1UF (5/pack)	1.10
STK078	6.00	TA8205	3.95	4.7UF (5/pack)	1.50
STK435	4.00	TA8659	13.00	10UF (each)	0.70
STK461	10.50	TA75339		22UF (each)	0.75
STK2250	7.45	TDA3500	4.99	4.7UF (each)	1.40
STK4121/2	7.00	TDA3645	8.00		
STK4141/2	5.50	TDA3650	8.99	IC-DATABAS	
STK4142/2	6.50	TDA3850	18.99		
STK4162/2	6.25	TDA4400	1.75	$\text { functions of } 48000 \text { se }$	$k \text { cala } 8$
STK4171/2	8.10	TDA4500	3.50	28k Transisiors / Trac	oppr_{i}
STK4191/2	8.50	TDA4505A	4.10	disk onty	8 Vat
STK4352	6.20	TDA4505B	4.10	TESY CD2	
STK4372	5.65	TDA4505M	5.25	This CD can be player- 71 difterant te	
STK4803	7.05	TDA4505K	6.15	- Rurring time 30 m	
STK4843	7.05	TDA4660	4.50	Rectangle white is pon	
STK5315	5.85	TDA4950	1.40	Complete whin istuc	
STK5332	1.80	TDA5660P	2.50	TEST C03	
STK5338	3.25	TDA7072	3.99	With the $C D$ a tectric	,
STK5361	4.15	TDA8370	14.00	conntiol sadust the of	disa
STK5372	2.85	TDA8405	8.00	of CD players in a min	of time
STK5372H	4.15	TDA8732	5.95	adquating od player a	nging
STK5412	3.75	TEA2018A	1.50	the laser unit.	each
STK5471	3.85	the ase phene us for the types not histed Please add 60u posi \& packing and thon acd 17.58 VAT, to the total. Calkars by appomtmenl onty.			
STK6732	14.00				
STK7226	7.50				
STK7308	4.05	J.J. COMPONENTS Rear of 243/247 Edgeware Foad. The Hyde, Collindale, London NW9 6LU Tel: 01812059055 Fax: 0181 2052053 Free Fax Order Line only : 0800318498			
STK7308	4.05				
STK7348	4.05				
STK7356 STK7004	4.75 6.50				
STK73410	5.15				
HONE FOR OUR FREE TIES CATALOCUE					

Visible Sound Limited
 are proud to announce our new "Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an on' word and 'off' word giving you up to 99% speaker dependant recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word, upload and download of word lists.
Automatic gain control on microphone jack $£ 55$ input. Runs off $9-12$ volt dc supply via 2.1 mm H 138 A plug

Pic Programmer:

H137A £25 Programs
PIC 16C71, PIC 16C84 and the new 8 pin PIC 12 C 508 and PIC 12C509. Connects to parallel port. Kit K137A £24 PC compatible software F.O.C. when supplied with programmer.
ALL Prices INCLUSIVE of vat and deltivery (UK Only) Same duy despatch.
151-n, The Fxchange Building. Mount Stuart Square. Cirdiff. CF1 6E1B.
Tel $(01222) 458+17$ Fas $(01222) 625797$ http:liwww,vitec.demon.co.uk
ELECTRONIC COMPONENTS
Station Road, Cullercoats,
Tyne \& Wear, NE30 4PQ
Tel: (0191)251 4363
Fax: (0191)252 2296
Email: sales@esr.co.uk
http: //www.esr.co.uk

DIL Sockets D Type Connectors

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W $+450 \mathrm{~W})$ ALL POWER RATINGS R.M.S. INTO 4 OHMS, BOTH CHANNELS DRIVEN
FEATURES: \#independen power supplles with two toroides lranslormers \# Twin L.E.O. Vu meter: *

 USED THE WORLD OVEA INCLUBS, PUBS, CINEMAS, DISCOS ETC.

MXF $900 \mathrm{~W} 40^{\circ} \times H 5^{4} \%_{4}(3 U) \times D 13^{4 / 4}$
PRICES:- MXF200 £175.00 MXF400 £233.85
MXF600 £329.00 MXF900 E449.15
MXF600 £ 329.00 MXF900
SPECIALIST CARRIER DEL. £ 12.50 EACH
OMP XO3 STIEREO 3-WAY ACTIVE CROSS-OVE:

 Price $£ 117.44+\mathbf{2 5 . 0 0}$ P\&P

STEREO DISCO MIXER SDJ3400SE

* ECHO \& SOUND EFFECTS* STEREO DISCO MIXER with 2×7 band \& 8 graphic equalisers with ber graph LED YO meters MANY OUTSTANDING FEATUAES:- incloding Echo with repeat a
speed control, of mic with teoter speed control, of mic with talk-over
switch, 6 Chamnols with indivifual faders swich, 6 Channols with indivicual foder,
plas cross fade, Cue Hesdphone Manitor. Plas crozs tade, Cue Hosdphone Monitor. 8
Sound Enects. Usoful combination of the Foutowing inputs:- 3 furntabies (mag), 3 mics, 5 Lime for CD, Tapen, Video etc.
Price E144.99 + E5.00 P\&P

7\%

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piozo revolution! The low dynamic mass (no voice coil) of a Plezo tweeter produces an improved
transienl response with a 10 wer diatortion level transient response with a lower distortion level than ordinary dynamic tweeters As a crossover is not required
these units can be added to exising speaker systems of up to 100 . These units can be added to exisling speaker systems of up to 100 wans
EXPLAMATORY LEAFLETS ARE SUPPUED WITH EACH TWEETER.

TYPE ' N ' (KSN1036A) $3^{\prime \prime}$ ' round with protective wire mesh. Ideal lor bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{p}$ P P .
TVPE ' g ' KSN 1005 A) 31 " TVPE ' 8 ' (KSN1005A) $31 /{ }^{\prime \prime}$ " super horn for general purpose speakers. disco and P.A. syslems etc. Price $£ 5.99+50$ p PAP.
TYPE ' C ' (KSN1016A) $2^{\circ} \times 5^{\circ}$ wide dispersion horn for quality Hi-Fi sys-
 TYPE ' D ' (KSN1025A) $\mathbf{2}^{\prime \prime} \times 6^{\circ}$ wide dispersion horn. Upper trequency response retained extending down to mid-range (2 KHz). Suitable for high quality H1-FI systems and quality discos. Price $99.99-50 \mathrm{p}$ P\&P. TYPE 'E' (KSN1038A) $3^{34}{ }^{3}$ " horn tweeter with atiractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $\mathbb{£ 5 . 9 9 + 5 0 p \text { P\&P. }}$
Suitable for Ti-f monitor systems etc. Price $\varepsilon 5.99+50 \mathrm{p}$ P\&P.
LEVEL CONTROL Combines. on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbb{E} 4.10+50 \mathrm{p}$ P Pep.

HTFLGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the Iatest Apeaker tectnology and enciosure designs. Both models ufillze studio quality
12^{2} cast aluminium loudspeakers with factory fitted grilies, wide dispersion conslant directivity homs, oxtruded atumintum corner protection and sieel
tall corners ball corners. complimented with heavy duty blacich covering. The enclosures are fitted as slandard with lop hats for optional lourdspeaker stands.
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FAEQUENCY RESPONSE FULL RANGE $45 \mathrm{Mz}-20 \mathrm{KHz}$ IBLFC 12-400WATTS (100dB) PRICE E459.00 PER PAIR
CiblFC 12-200WATTS (100dB) PAICE C175.00 PER PAIR SPECIALIST CARRIER DEL. E12.50 PEA PAIR
OPTIONAL STANDS PRICE PER PAIR E49.00 Deltvery E 6.00 per palr

PRICES: 180 W c49.99 250 W c99.90
400W \&109.95 P\&P C2.00 EACH
 CAR STEREO BOOSTER AMPUER 150 WATTS $(75+75)$ Stereo, 150W Bridged Mono 250 WATTS $(125+125)$ Siereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo. 400 W Brldged Mono
ALL POWERS INTO 4 OMMS
Features:
high \& low bridgable mono * Choice of high \& low level inputs L \& R level
controls Remote on-off Speaker \& controls Remote on-off Speaker a

OMP/MF 100 Mos-Fet Output power 110 watts

 R.M.S. Into 4 ohms, irequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 50 \mathrm{~mm}$. PRICE $40.85+$ C3.50 PAPOMP/MF 200 Mos-Fel Output power 200 wats R.M.S. Into 40 oms , Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rale $50 \mathrm{~V} / \mathrm{us}$. T.H.D. typleal 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Slze 300 ㅍ 155 п 100 mm PRICE © 64.35 + C4.00 PEP

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate 60V/uS, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. PRICE E81 $530 \times 175 \times 100 \mathrm{~mm}$

PRICE E81.75 + 55.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rale $75 \mathrm{~V} / \mathrm{us}$, T.M.D. typical 0.001%, Input Sensitivity 500 mV, S.N.R. 110 dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $\mathbf{3 8 5} \times \mathbf{2 1 0 \times 1 0 5 m m}$. PRICE C132.85 + E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. Into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. lypical 0.002%, Input Sensitivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Antl-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE $2259.00+$ ¢12.00 P\&P
NOTE: MOS-FET MODULES ARE AVAILABUE IM TWO VERSIONS STANDARD INPUT SENS SOOMV, BAND WIPTH 100 KHz PEC (PROFESSIONAL EOUIPMENT COMPATIELE) - INPMY SENS
TTAMV, EANO WIOTM SOKMZ. ORDER STANDARD OR PEC

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND MIOH POWER HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also avallable.

IBMINENCEF-INSTRUMENTS, P.A. OISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE

R 100 WATT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, OISCO RES. FREQ. 72 Hz , FREO. RESP. TO 4 KHz , SENS 97 dB . PRICE C 32.71 + $\mathbf{1 0} 2.00 \mathrm{PE}$ 10 100 WATT R.M.S. ME $10-100$ GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MIO. AES. FREQ. THz, FREQ. AESP. TO 7 KHz , SENS97dB. AES. FAEO. 65 HZ FREO. RESP TO 3.5 KHZ , KENS ${ }^{\circ} \mathrm{O}$, DISCO, VOCAL, EXCELLENT HIGH POWER MID. $12^{\prime \prime} 100$ WATT A.M.S. ME1 2-100LE GEN. PURPOSE, LEAO GUITAR, PAICE C43.47 + £2.50 PR RES.FREQ. 49 Hz , FREQ. RESP. TO 6 KHz , SENS 100 dB . $12^{\prime \prime} 100$ WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE PA VOCAL STA MONITOA. RES. FREQ 42 Hz , FREQ. RESP. TO 10 KHz , SENS 98 dB , PRICE C36.67+ +3.80 PEP 12200 WATT R.M.S. ME $12-200$ GEN. PURPOSE, GUITAR. DISCO, VOCAL, EXCELLENT MHO RES. FREO. 58 Hz , FAEO. RESP. TO 6 KMz , SENS 98 dB . $12^{\prime \prime} 300$ WATT R, M.S ME 12 -300
RES. FREO. 47 Hz , FREO. RESP. TO 5 KHz , SENS POWER BASS, LEAD GUITAR, KEYB OAAD, DISCO ETC. RES. FREQ. 47 Hz , FREO. RESP. TO 5 KHz , SENS 103dB. RES RRE WATT R.W.S. ME1 S-200 GEN. PUAPOSE BASS, INCLUDING BASS GUITAR. 15' 300 WATT R.M.S. ME15-300 HIGH POWER BASS, INCLUDING BASS GUTTAR RES. FREQ. 39 Hz , FREO. RESP. TO 3 KHz , SENS 103 dB .

EARBENDEKS:- HI-FI. STUDIO, IN-CAR, ETC

ALL EARBENDER UNITS B OHMS (Excepl EB8-SO \& E810-50 which are dua
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
RES. FREO. 40 Hz , FREO. RESP. TO 7 KHZ SENS 97 AB .
10" SOWATT EB10-50 DUAL IMPEOENCE TAPPED $4 / 8$ OMM BASS, HI-FPICE $£ 8.90+\mathbf{C 2 . 0 0}$ P PP AES. FREQ. 40 Hz , FREQ. AESP. TO 5 KHz , SENS. 99 d 8 .
10 100WAIT EB10-100 BASS, RT-FI, STUDIO.
RES. FREO. 35 Hz , FREQ. RESP, TO 3 KHz , SENS 96 dB .
12" 100 WATT EB1 2-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz . SENS 93 dB .
FULL RANGE TWIN CONE, HIGH COMPLIANCE, RO
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SUAROUND
 RES. FREO. 63 Hz, FAEQ. RESP. TO 20 KHz . SENS 92 dB .
RES. FREQ. 38 Hz FREQ. RESP. TO 20 KHZ) SENS 94 dB . R' ${ }^{\circ}$. FRWATT E日8-6OTC (TWIN CONE) HI-FI, MILTT-ARR AES. FREQ. 40 Hz . FREQ. RESP. TO 18KHz, SENS 89 dB . 10 GOWATT EB $10-60 T C$ (TWIN CONE) MI-FI, MULTI ARRAY OISCO ET RES. FREQ. 35 Hz . FREQ. AESP. TO 12 KHz , SENS 98 dB . IN-CAR. PRICE C13.65 + ع2.50 P P P PRICE $£ 30.30+$ e3.50 PaP

URANSMITTER MOBBY KITS

PROVEN TAANSMITTER DESIGNS INCLUOING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TRANSMITTEQ \&O-109MHE, VARICAP COWTROLLED PAOFESSIOWAL PERFORMANCE, RANGE UP TOJ WIFS 5 RE 38123 mm , SUPPLY $12 V$ S $0.5 A M P$ PRICE C14.85 - C 1.00 PIP
FN MICRO TRANSMITTER TOO-108MHZ, VARICAP TUNED, COMPLETE WTM VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$. SIZE 56 \& 46 mm , SUPPLY $9 V$ BATTERY.
> B.K. FL=CTBONICS UNITS 1 \& 5 COMET WAY, SOUT Tel. 01702. 527572 Fax: 01702-420243

FROM MAJOR MANUFACTURERS

Intel introduces "next level" with the Pentium II processor

The Intel Corporation has introduced a new generation of Pentium processors, the Pentium II processor. The new device, which has been introduced at speeds of 300,266 and 233 megahertz, combines Intel's advanced Pentium Pro processor with the capabilities of its MMX (tm) media enhancement technology. MMX, which has been added to the Pentium II to enhance performance for audio, video and graphics applications as well as speed up data encryption and compression, was originally developed primarily for the games market (which has driven so much popular computer deveiopment) but, to give an example, can also be used to allow a PC to do most of the work of a modem so that the modem itself becomes just a low cost interface to the telephone line. (Though the PC cannot do much else at the same time.) The 7.5 -million transistor processor core is based on Intels P6 architecture, and is manufactured on .35micron process technology with a new packaging method.

The new processor is provided in a new style of package, the Single Edge Contact cartridge. This incorporates the processor itself, plus 512 KB of level 2 cache unified for code and data. The L2 cache is made from industry-sourced static ram, and runs at half processor speed on its own bus, while the system bus (used for memory of V/O requests) runs at 66 MHz . Consequently, the Pentium II at 266 MHz can achieve around three times the peak bus bandwidth of the highest speed Pentium processor system, which runs one bus at a peak of 66 MHz . (This feature is referred to as dual independent bus architecture).

L2 cache performance has a major impact on overall system performance, and running the L2 cache bus at half processor speed would be difficult to achieve if the cache and the processor itself were both separately mounted on the motherboard. No doubt Intel intend to use this new packaging method to permit further advances in power for further processor generations. Another advantage for Intel may be that the cartridge processor makes a break from standard motherboards, compeling users to choose between Intelspecific motherboards and competing types.

The processor core has 32 KB of non-blocking L 1 cache running at processor speed, divided as 16 KB data and 16 KB instructions, also a vital feature for performance.

The new processor also has the Pentium Pro's features of dynamic execution, which executes instructions ahead of time when possible. A 12 stage pipeline is used, with a two level adaptive branch prediction mechanism to reduce the probability

of there being a clock cycle when the processor is wasting time.
Dynamic Execution incorporates the two concepts of "out of order" and "speculative execution", effectively eliminating the constraint of linear instruction sequencing between the traditional "fetch" and "execute" phases of instruction execution. Up to three instruction can be decoded per clock cycle. Considered conceptually, the decoded instructions are put into a dataflow graph, which can hold up to 40 instructions; these are executed from the graph when their operands are available (versus instruction order). Up to four instructions can be executed per clock cycle.

Intel's MMX Technology incorporates 57 instructions oriented to highly parallel operations with multimedia and communications type data. These instructions use a technique known as SIMD (single instruction, multiple data) to crunch several bytes in the same way, delivering better multimedia and comms performance. The Pentium II processor can execute two MMX instructions at a time.

Multi processor systems are also catered for. The Pentium II system bus supports up to eight outstanding bus requests (four per processor), allowing more parailel operation between processors and I/O, as well as supporting smooth performance scaling to a two-processor system. The GTL+ electrical signalling of the system bus will assist the migration of this bus to higher frequencies as DRAM technologies with higher performances reach the market. The GTL+ bus will provide "glueless" (no additional chip logic required) support for two processors, giving cost-effective SMP (symmetric multiprocessor) solutions.

The Pentium II's write-combining technology, which combines multiple writes to one region of memory (for example, a video controller frame buffer) declared as WC type in a single burst write operation, can be used to get very high graphics I/O performance

Testing and fault-monitoring features include built-in self: test, providing single stuck-at fault coverage of the microcode and large PLAs, as well as testing of the instruction cache, data cache, Translation Lookaside Buffers and roms. There is a standard test access port and boundary scan architecture mechanism (a growing test technique which is becoming a new industrial standard).

The 266 - and $233-\mathrm{MHz}$ Pentium II processors are already available in desktop systems from more than a dozen leading computer manufacturers, and the $300-\mathrm{MHz}$ version will be appearing in workstations after the middle of 1997.

A new high end processor from AMD

Flash memory leaders AMD are also releasing a new PC microprocessor in 1997. In April AMD introduced the AMD$\mathrm{K} 6(\mathrm{tm}) 233,200$ and 166 MHz processors, its 6 th generation processors with MMX technology. AMD's view is that Intel's product strategy is to encourage PC makers away from the current motherboard and processor technology (Socket 7) to its unique daughter board technology, or single edge card (SEC). "These new technologies do not offer direct benefits to the PC manufacturer, or necessarily to the user. This strategy ties manufacturers deeper into Intel, as it moves to propriety chip sets for the Pentium II. Intels's market strategy also requires different processors for 16 -bit and 32 -bit software."

The AMD-K6 is a single chip solution for 16 -bit and 32bit software. Importantly, the AMD-K6 maintains Socket 7 compatibility and therefore allows manufacturers to develop
new, more powerful PCs using the current infrastructure, (motherboards, casing, power supplies etc), allowing cost saving.

Perhaps because AMD are not the company setting the standard for PCs, their strategy seems to be to aim for technological advantages in certain areas. For example, comparing the cache size, the level 1 cache on the AMD-K6 processor is 32 K instruction and 32 K data. AMD say that they have cut the number of transistors required for random logic compared with the Intel Pentium processors, and have used the space on the chip thus saved to incorporate a larger level 1 cache. In addition, they have concentrated on maximising the cache hits by using a very large branch prediction table.

The relevance of the branch prediction table is that if the instruction cache is loaded with a series of instructions from memory, these will be able to be accessed very rapidly for as long as the software does not branch outside the instructions in the cache. As soon as there is a branch requiring an instruction not in the cache, the processor has to wait while the extra instructions are fetched. The branch prediction table is a means of determining the likely direction of the branch, and thus having the instructions ready when they are required. As a comparison, the AMDK6 has 8192 branch history table entries, as compared with 512 in the Intel Pentium Pro.

There are several other areas in particular where AMD's top of the range processors are aiming to offer features that will be an advantage to some users. One of these is that the AMD-K6 processor will plug into the widely-used Socket-7, often referred to as the Pentium bus connection. By comparison, Intel's Pentium II processor plugs into a proprietary slot, which will mean that new motherboard designs will be required. Some PC manufacturers may find it advantageous to offer comparable performance without changing motherboard designs.

The other competitive edge offered by the AMD-K6 processor is that the delay when switching from 32-bit to16-bit instructions is less than with the Pentium Pro. What this means in practice is that when running an operating system such as Windows 95, which incorporates 16 -bit code as well as 32-bit code, the AMD-K6 processor has significant speed advantages. An operating system such as Windows NT, which is exclusively 32-bit, will not show such differences between the two processors.

Nevertheless, a comparison between an AMD-K6 processor running at 200 MHz and an Intel Pentium Pro processor running at 200 MHz , both running the Windows

NT operating system, shows according to AMD's figures, a speed advantage to the AMD-K6. It is therefore possible that PC manufacturers offering machines specifically for use with Windows ' 95 may prefer to use the AMD-K6 processor for this purpose.

The AMD-K6 processor is almost a risc machine in some respects. x86 instructions are translated into risc-86 instructions then executed. In some cases the x86 instruction results in zero risc-86 instructions. This raises the question as to whether a K6 native code running even faster would be possible.

Another interesting technological step taken in the manufacture of the AMD-K6 processor is that instead of
connecting to the chip by using bond-wires welded to pads round the edge of the chip, solder bumps on the chip are used to bond it upside-down into the package, taking connections from all over the chip. This saves some chip area, gets the signals in and out faster, and improves thermal performance.

Below: A selection from comparison figures issued to AMD In May 1997. "Data shown are estimates based on industry publications and derived from reports that Pentium II is based on Pentium Pro. Pentium II is not publicly available at time of writing. Final product features may vary from estimates shown.

Processor features	AMD-K6 200MHz	*Pentium If	Pentium Pro	Pentium with MMX (P556)
x86 decoders	2 sophisticated 1 long, 1 vector	1sopisticated 2 simple	1 sophisticated 1 simple	1 sophisticated 1
Branch history table entries	8192	512	512	258
Branch prediction accuracy	95 percent	90 percent	90 percent	$75-80$ percent
L1 instruction and data cache	$32 \mathrm{~K}+32 \mathrm{~K}$	$16 \mathrm{~K}+16 \mathrm{~K}$	$8 \mathrm{~K}+8 \mathrm{~K}$	$16 \mathrm{~K}+16 \mathrm{~K}$
Processor bus	Socket 7 7 66 MHz	Pentium Pro 66 MHz	Pentium Pro 66 MHz	Socket 7 66 MHz
Latency (smaller is better)	2 clock	$5-7$ clock	$5-7$ clock	2 clock

NEW \& HARDLY USED TEST EQUIPMENT

KENWOOD RIEBA WOW/FLUTIER WETE 0.003% - 10\%: Fmevency $3 \mathrm{KH} 2 / 3.15 \mathrm{KHZ}$, RMSAVERAGEPEAK: Weated Fiters: Cigizal Displey.

PGUSOMIC VPEITHA FM/M SIGMA GEMERATOA TH 1000 KHZ -110 WHz; Dutput -19088 to 998 B :
 Used Cuso

PMALSOMIC VP7B37L STEREO SIGRLI GEMERATOR Gencultes
Used $\xi 400$

S000wIL GFC 80106 FRERUEMCY COUITER Rarge 1 HZ -12014 Iz ; 8 Digh Display: $15 m$ vims Semsintity Un-umed E15

Robotic Arm Kits TOYBOT - EDUBOT
5 Axis open Kinematic Robotic orm kits with superb precision CNC machined ports, PC controlled with WINDOWS Software and fully progrommable. Con be interfoced with four external devices or other robots.

PIC Servo Controller

Controls up to 8 Servo
Fully Addressoble
feotures two in and out ports
for interfocing with up to 4 externol devices or other controlliers

Phone for a brochure and price list

Robotica

3 PARK GATE, GLASGOW, G3 6DL TELEPHONE: +44 1413532261 FAX: +441413532614

TEACHERS - STUDENTS HOME USERS, ETC.

Your opportunity to save $£ £ £ £ £ ' s$

With this non commercial version of our software produced for single users, this is your dream come true!
Software as you are probably aware has no real material value, but is priced to recover the enormous costs of development. The software house tries to evaluate how many units will sell at a specific price to generate the amount needed and produce a healthy profit.
As the electronics marketplace shrinks, due to expanding competition, it means that, in reality, powerful user friendly software, such as EDWin, must be very highly priced and therefore remains inaccessible to the individual and small businesses.

Until today Norlinvest, one of the biggest software houses in the electronics sector, has decided to put onto the market a "Non Commercial" version of their EDWin software, which is known worldwide.

This is the first truly seamlessly integrated suite of software running in all Windows formats simulation, schematics and PCB design. At last allowing amateurs, teachers, students, in a word any "individual" to take advantage of current technology, without any restriction.

To avoid misunderstanding - there is no difference between the industrial software at $£ 3,515.25$ VAT inc. and the "NC Deluxe 3" normally at $£ 114.00$ VAT inc. - the difference rests solely in the licence. In other words, industry is subsidising the development costs and the individual can now take full advantage of this.

Computer Compatibility

To run the program you will need:

- Windows 3.x, Win95 or Win NT,
- a min. 386 processor
- 8 mb of RAM - CD-ROM Drive

All Major Credit Cards Accepted

1. EDWinNC Basic: Schematics, PCB Layout with Basic Autorouter and Postprocessing. Max. 100 component database and 500 symbol Device Library.

The De Luxe 1 version has the above, but also includes. Professional Libraries and unlimited database components.
De Luxe 2 is the same as the basic version, but with Professional Libraries and adds Mix-mode Simulation.
De Luxe 3 all the above plus the Arizona Autorouter.
Options: Professional Libraries
Professional Database (Unlimited components)
Mix-mode Simulation
Arizona Autorouter
EDSpice Simulation
Thermal Analysis
Post and Packing $£ 5.00$ UK. Overseas $£ 10.00$

EDWN

 ELECTRONCDESIGNFOR WINDOWS NONCOMMERCIAL

This offer also applies to all
academic institutions -
minimum order two systems.

Price
£49.00
$£ 79.00$
$£ 79.00$
£114.00
$£ 24.00$
$£ 24.00$
£24.00
£24.00
§49.00
£19.00
Prices include VAT

Swift Designs Ltd., Business \& Technology Centre, Bessemer Drive, Stevenage, Herts. SG1 2DX Tel 01438310133 Fax 01438722751 For information contact our web page www.swiftdesign.co.uk. Email designs@swiftdesigns.co.uk

EDWNNC

System Features

- Complete End-io-End CAE/CAD system
- Simultancous Schematic and Layout generation
- Autornatic front and back annotation
- Intuitive hierarchical menu structure
- Mousc or kcyboard commend activation
- Macro operations
- Reat-time display of: ratsnest. active nodeś. single line or true trace width
- On-line help
- Auto reconnect
- Full Integration of Schematic and Layouf
- Automatic filc backup
- User definable text sizes
- DXF in and output
- Screen hardcopy
- Library viewer with editing possibility
- Switching on'off possibility for tool and scroll bars
- Visible schematic and PCB symbols by editing
- Monochrome mode for better print resolution
- Bitmap support. for loading logos. documentation. etc. Can be used in hierarchical as well as in simple schematic or PCB design
- Maximun number of nets: 16,000
- Maximum number of nodes: 32.000
- Maximum number of bend points: 64,000
- Maximum number of connections: 64.000
- Maximum number of symbols: 32.000
- Maximum number of components: $\mathbf{3 2 , 0 0 0}$
- Maxinnum number of multi-segment traces: 32.000 , with a total of 64.000 trace segments ANSI/IEC libraries

Schematic Capture

- Up to 100 schematic sheets
- Up to $64^{\prime \prime} \times 64^{\prime \prime}$ sheet size
- Industry standard sheet sizes
- Rotate, scale and mirror symbols
- Real-time dragging of components and wires
- Automatic package and pin assignnient
- Orthogonal and free mode manual routing
- Automatic bus annotation
- Block save, load move and delete
- Direct access to mixed mode simulation
- Autorouting of comnections
- Merging and splitting of nets possibility
- Definable line width. also for bus-lines
- Swapping of component positions
- Automatic component renumbering by swapping

PCB Layout

- 32 layers (28 route layers, 2 silk-screen layers (front and back), 2 soldemask layers (front and back))
- User definable trace sizes
- User definable pads
- Curved traces
- I mil grid resolution - Fine grid 10 micron
- SMT, fine line, analog support
- Component repeat. rotate and mirror
- Component "move by name"
- Component, gate and pin swap
- Automatic component renaming

- Trace repeat

- On-line, multi-layer routing with automatic via insertion
- Pin-to-pin, free or 45 degree routing
- Change segment side and width, trace side and width
- Fast interactive generation of ground planes with user definable cross-hatch or solid fill
- Automatic ground plane with thermal relief insertion
- Automatic DRC with user specified parameters
- Electrical connectivity checking
- Linear rotation of symbols
- Gerber input read and use possibility
- Built-in interface for Spectra 6.0, Max route 6.0 and Arizona Autorouter
- Bitmap functions (logos. drawings. ...)
- Sophisticated database viewer

Mixed Mode Simulatlon

- AC analysisffrequency domain)
- DC analysis (Linear/non-linear)
- TD analysis (Time domain)
- Diagram generator
- Dynamic parameter definition of active and passive components
- Output graphs displayed on screen, hardcopy or placed on schematic
- Oscilloscope function
- DLL based analog/digital simulation primitives. modelling language and library creation tools
- Built-in model generator for discrete devices

Please Note: Some of the above are ONLY provided on the De Luxe 3 Version.
EdSpice and Thermal Analysis are available as bolt-on extras. See previous page.

YES! Please Rush Me My EDWInNC Program.

Swift Designs Ltd., Business \& Technology Centre, Bessemer Drive, Stevenage, Herts. SG1 2DX
Tel 01438310133 Fax 01438722751
Name:
Address:
Postcode:
Tel.: (Day)
(Evening)
Version Required: Basic De Luxe 123 (please circle)
1 enclose $£ \quad .00+$ p.p. $£ 5$ UK (p.p. $£ 1 \mathbf{0} .00$ Outside UK)
Cheque/P.O./Credit Card: Visa/Access/Mastercard:
No.: \square Expiry Date: \square Signature:
Please allow 10-15 days for delivery.

:lactronics Principles 4.0

 Fo Windows 3.1, '95 \& NT.If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.

Electronics Principles 4.0 now has an even more comprehensive range of fully interactive analogue and digital topics. From current flow and dc circuits through swiching and transistor operation to passive and active filters. Logic begins with simple gates through binary, hex and octal number conversion, addition and subtraction to Boolean algebra. Plus, microprocessor and microcomputer operation, registers, arthmetic and logic unit, ROM, RAM, Addressing modes and full instruction' set which can be simulated on the scieen. All version 3.0 topics are covered within this program.
Curently used in hundreds of UK and overseas schools \& colleges to support GCSE, A-level, BTEC, CIty \& Guilds and university foundation courses. Also NVQ's and GNVQ's where students are required to hove an understanding of electronics principles

Mathematics Principles 3.0

£49.95*
Study or revise mathematics in what we belleve is an interesting and enjoyable woy. Nearly two hundred graphics presentations, to enable learning by exploration. including the GCSE syllabus.

The papular Electronics Principles 3.0 £49.95*
Contains nearly 300 fully Interactive analogue and digital topics. Electron current flow. transistor operation and biasing, MOSFET enhancement and depletion modes. Frequency and tuned circults. Logic gates, counters and shift registers to binary arithmetic. To list Just a few of those available

- All inputs \& outputs use eiectronics symbols.
- Hundreds of electronics formulae available for circult Investigation.
- Ideal for students and hobbyists who require a quick and easy way to get to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current leveis or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.

A fully interactive 'textbook' on the screen. OHP slides and student handouts within minutes.
Multi-user network version available.

Tuned Crevir Banimatih

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008. e-mail sales@eptsoft.demon.co.uk * UK \& EC countries add £2 per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

Are Your

Keep on the light side of the law with Terry Balbirnie's after-dark warning

ave you ever driven off in the dark without switching on the car headlights? If you are honest, you will probably admit that you have done so at some time or other. If you were lucky, you were alerted by other motorists flashing thelr lights or by noticing the lights on other cars. If you weren't so lucky you might have caused an accident or been stopped by the police.

Overview

This circuit provides an audible warning when the headlights need to be switched on. The sound is only glven while the ignition key is turned and will stop as soon as the headlights are operated. The warning takes the form of two rapid high-pitched bleeps given every so often. The signal is discrete and enables the motorist to disregard it when, for example, the engine is left running with only the sidelights on. It is also distinctive and will be easily heard above other noises inside the car.

At the end of construction, the light level at which the unit needs to operate will be set to individual requirements. The time between sets of bleeps is also adjustable to one of three periods - 1 minute, 2 minutes and 4 minutes approximately.

Providing it is dark enough, the first signal will be given as soon as the ignition is switched on. This ensures that a warning is obtained at the first opportunity. Of course, it may be dark enough inside the garage or in an enclosed car park to operate the unit while it is still light outside. Although a signal would be given under such circumstances, this is not thought to be a problem and the effect is simply ignored.

The circuit comprises two parts. The first is housed in a small plastic box and contains the light sensor. This is placed so as to respond to the light outside. The other section contains the rest of the circuit including the buzzer. This will probably be mounted out of sight under the dashboard. The connection between the two parts is made

Figure 1: The circuit of the lights-off bleeper
using light-duty twin wire. Connections will also need to be made to the 12 V supply and to the lighting circuits. Details for doing this are given later. The unit draws current only while the ignition is switched on and since it requires only a few milliamps, it imposes a negligible load on the car system.

How it works

The circuit for the Lights Needed Bleeper is shown in figure 1. IC1 is a timer integrated circuit configured as an astable.

Thus, as long as it receives a supply, it will provide a string of pulses at the output, pin 3. The rate at which these are given depends on the values of resistors R1, R2, R3, preset potentiometer RV1 and capacitor C1. With those specified, RV1 may be used to adjust the rate between about 4 and 11 per second. For the purpose of explanation, assume that it has been set to provide eight pulses per second.

These pulses are applied to the clock input, pin 10, of 12-stage binary counter, IC2. Its outputs, Q1 to Q12, then go high in various combinations to record, in binary, the total number of puises registered. Table 1 shows the state of IC2 outputs over the first six and last six pulses. It would be very difficult showing the entire truth table because it would have 4096 lines! it will be seen that output Q1 goes high every second pulse, Q2 every four pulses and so. It will also be noted that, starting from the beginning, output Q3 goes high on the fourth pulse, Q4 would do so on the eighth one, etc. By the same reasoning, the final output, Q12 would go high on 2048 counts and all outputs would end up high on 4095. On the next pulse, all outputs would return to zero and the whole process repeat. In this circuit, a whole cycle is not allowed to happen because the i.c. is reset to begin a further one prematurely by making pin 11 (reset input) high momentarily. More will be said about this later. The reset pin is normally kept low via resistor, R4 to prevent possible false resetting. Additionally, capacitor, C3 makes pin 11 go high for an instant when the supply is connected (that is, when the ignition is switched on) and this ensures that the count will always begin at zero.

Since output Q1 goes high every two pulses, it will operate at half the astable frequency - that is about 4 per second. This output is connected to one of the inputs, pin 4 , of 4 -input NOR gate, IC4. (in fact, this ic contains two identical gates but only one of them is used here). A NOR gate output is high only when all of its inputs are low. If any input is high, the output must therefore be low and will have no further effect. Referring to the truth table, it will be seen that when Q1 has gone through two low states (shown by asterisks), outputs Q3 to Q12 go high in various ways until the device has performed a complete cycle or has been reset. Note that output Q2 is not used. A high condition at any output $\dot{Q} 3$ to Q 12 will ailow this state to pass via one or more of diodes D4 to D13 and hence to another NOR gate input, IC4 pin 2. The output, pin 1 will therefore be kept low. Assume for the moment that the remaining NOR gate inputs, pins 3 and 5, are also low (this will be the case when it is sufficiently dark and when the lights are switched off). IC4 output, pin 1, will then give two pulses (shown by the asterisks) at the beginning of the cycle then remain off until the next one.

Seeing the light

The light sensor comprises light-dependent resistor, LDR1, and this works in conjunction with operational amplifier, IC3.

The resistance of an LDR rises as the amount of light falling on its sensitive surface falls. The LDR forms the lower arm of a potential divider with resistor R6 and preset RV2 in the upper one. The voltage at IC3 pin 2 (the inverting input) will therefore rise as the light level falls. If the voltage at the inverting input is less than that at the non-inverting one (pin 3) the output, pin 6, will be high. In other cases it will be low. The non-inverting input, pin 3, recelves a fixed voltage equal to one-half that of the supply (nominally 6 V) due to the further potential divider consisting of equal-value resistors, R7 and R8. With suitable adjustment to RV2, the voltage at pin 2 will be less than that at pin 3 during daylight hours and pin 6 will be high. As it becomes darker, the voltage at pin 2 will rise above that at pin 3 so pin 6 will go low. Note that variations in supply voltage will have no effect on the operating point since the voltages at both inputs will rise or fall in sympathy. Their relative conditions will therefore remain unchanged. Resistor R9 applies a little positive feedback to the system and sharpens the switching action. The logic state of IC3 pin 6 is connected to another NOR gate input, IC4 pin 3. During daytime, therefore, IC4 output can never be high.

Beam me up

The fourth NOR gate input, pin 5 , receives a feed from the headlight circult. Due to the logistics of wiring this part up later, it will probably be easier to gain access to the main and low-beam circuits separately. If either headiamp filament is on, a high state will pass via either R12 and D14 or R13 and D15. As the dlp switch is moved between the positions in the course of driving, there could be a brief period when neither filament is on. This would present a momentary low input to IC4 and allow the output to go high if there happened to be low states at the other three inputs. To prevent this effect, capacitor C5 will be charged when elther filament is on. When the dip-switch changes over, the capacitor will maintain the high state for sufficient time to allow the other filament to take over. With the headlights on, it is therefore impossible for IC4 output to be high. During periods when all IC4 inputs are low (dim light conditions, headlights off and at the times shown by the asterisks in Table 1), pin 1 will go high. Current will then flow into the base of transistor, Q1, with current limited by resistor R14. The buzzer will then bleep.

Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	O4	Q3	Q2	26
Q1											
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	1	0^{*}
0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0	1
1	1	1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1	1	1

Time settings

Imagine both switches SW1 and SW2 are off for the moment. Counting will continue until pin 1 (Q12) goes high whereupon diode D3 will apply a reset pulse to IC2 pin 11 and a new cycle will begin. This takes some 4 minutes.

Figure 2 : the component layout

$$
\begin{array}{r}
\text { DR \& GND) } \\
\hline \text { (LIGHTS) } \\
\hline \\
\text { (LIGHTS) } \\
5
\end{array}
$$

$$
\frac{\mathrm{O}}{\mathrm{TB1}}
$$

Switches SW1 and SW2 provide options to reset IC2 when pin 14 (Q10) or pin 15 (Q11) goes high by allowing a reset pulse to flow through diode D1 or D2 as appropriate. The timings will then be about 1 or 2 minutes.

A signal is derived from IC2 pin 6 (Q3 output) for testing and setting-up purposes. This allows current to flow through red light emitting diode LED1 each time it goes high with the current limited by resistor R5. Since this output pulses at one-eighth clock frequency, the LED will flash at about once per second which is easy to monitor. A signal is also obtained at the output of op-amp, IC3. This causes green light-emitting diode LED2 to glow under the "bright" condition. Here, R10 limits the operating current. This LED simplifies the setting-up of the operating light level at the end of construction.

Construction

The PCB component layout is shown in figure 2. Begin by soldering the four ic sockets in position. Add the 5 -section piece of PCB screw terminal block, TB1, the four link wires and the twin dil switches SW1/SW2. Solder the resistors and capacitors. C6 is an electrolytic type - check the polarity. Add the diodes and transistor - there are 16 diodes and care must be taken to observe the orientation
of all of them. Solder the LEDs close to the PCB using minimum heat to prevent damage. Complete the circuit panel by soldering the buzzer in place - the polarity is clearly marked on the body.

Basic test

The circuit panel may be tested using a 9 V battery before installing it in the car. Note, however, that the buzzer will be much quieter than when used with the car 12 V system. Insert all the ics into their sockets with the correct orientation. CMOS can be static-sensitive - it helps to touch something earthed (such as a water tap) before handling the pins. Adjust both presets to approximately mid-travel and switch SW1 on (for one- minute timing).

Refer to figure 3. Attach the 9 V battery connectors to positions 1 (positive) and 3 (negative) and secure the LDR wires temporarily to terminal block positions 2 and 3 . Connect the battery - the buzzer may make a sound. Check that the red LED is flashing and adjust RV1 until it operates once per second. This does not need to be done very accurate but a timing of one second will result in the operating times mentloned earlier. Note also that this setting also alters the buzzer on time. Providing there is sufficient light reaching the LDR, the green LED will be on. If necessary, adjust RV2 until it is. Place a piece of Plasticine or Blu-Tak over the LDR window so that the LED swtiches off. The buzzer should now sound with double bleeps given every one minute or so (with a clock rate of exactly 1 pulse per second it would actually be 64 seconds). Switch SW1 off and SW2 on - the timing should now double to about 2 minutes. Finally, switch both SW1 and SW2 off. The timing should be about 4 minutes.

Remove the covering from the LDR so that the green LED operates again. The bleeping should stop. Cover the LDR again so that bleeping resumes. Inter-connect either of terminals 4 or 5 to 1 (to simulate the headlights being on) - the bleeping should again stop.

Making contact

Before mounting the circuit panel inside the box, drill two holes in the side close to the terminal block position. These should be large enough to accommodate all six wires passing through (terminal 3 carries two wires). If the circuit panel is a tight fit inside the box, no mounting holes are needed. If you need to file off corners so that it will go inside, do this after having removed the ics Also, take care not to damage any tracks on the underside. To prevent vibration, place thin pieces of plastic foam on the base of the box and above the circuit panel avoiding the area of the buzzer. Measure the position of the hole in the buzzer and drill a hole in the lid to correspond with it so that the sound will pass through.

Prepare the sensor box by drilling a hole of sufficient size in the lid for a large grommet through which the LDR will be secured (see photograph). Alternatively, a tight hole could be made in the plastic and the LDR held in position using a little quick-setting epoxy resin adhesive. If this method is used, the window of the LRD should be made level with the face of the case. Mount a piece of tag strip on the lid inside and solder the LDR wires to this. If there is any chance of them touching, sleeve them using short pieces of insulation stripped from connecting wire. Drill a hole for the twin wire which will lead from the light sensor to the main unit. Measure sufficient wire to interconnect the

Figure 3: basic checking circuit

Resistors

R1, R2	330 k
R3	5 k 6
R4, R11	1 M
R5, R10	1 k
R6	220 R
R7, R8, R12, R13	47 k
R9	2 M 2
RV1	1 M
RV2	10 k
LDR1	ORP12 light dependent
	resistor

Capacitors:

C1, C4, C5
100 n min . metallised polyester, 5 mm pin spacing
C2, C3 $\quad 47 \mathrm{n} \mathrm{min}$. metallised polyester, 5 mm pin spacing C6 22 u 16 V radial electrolytic

Semiconductors:

D1-D15	1N4148
D16	1N4001
LED1	3 mm red LED
LED2	3mm green LED
Q1	ZTX300
IC1	7555 low-power timer
IC2	4040 12-stage counter
IC3	CA3130 op-amp
IC4	4002 dual quad NOR
	gate

Miscellaneous

sw1, sw2
BUZ1
TB1
Dual dil SPST switches PCB mounting buzzer 12 V 5 mA dc operation. 5-way PCB mounting
screw terminal biock -5 mm spacing.
2 off 8 -pin dil sockets, 14 -pin dil socket, 16-pin dil socket. Tag strip. Plastic box for circuit panel, small plastic box for light sensor. 9 V battery and connectors for testing. Auto-type wire and snaplock connectors as required.
two sections. Light-duty twin wire such as loudspeaker type would be suitable. Pass one end through the hole and, leaving some slack, tie a knot in it to provide strain relief. Solder the wires to the LDR tags. Route the wire back to the main unit position but do connect it up yet.

Car connections

Check how you will gain access to the connections which need to be made to the car wiring. One must be made to a wire which is live only when the ignition is switched on. It is essential that this is on the outlet side of a low-value fuse. A ground (earth) connection (which may usually be made to an existing earth point) and connections to the wires leading to both filaments of one of the headlights. In some older cars, the headlights are not fused. If this is the case, include line fuse holders in each wire close to the connections and insert a low-value (say 3A) fuse.in each. Connections to existing wires may be conveniently made using "snap lock" connectors which avoids having to break wires.

This additional wiring must of proper automotive type and a rubber grommet must be used wherever it needs to pass through a hole in metal.

Run the wires back to the unit and connect them to the terminal block in the following way: Terminal 1 to the +12 V feed, Terminal 2 to one sensor wire, Terminal 3 to the earth connection and the other sensor wire, Terminals 4 and 5 to the lighting circuits. Attach the lid on the main unit box and secure it in position.

Assemble the sensor unit and decide on a suitable location for it. Some experimentation will be needed to find the best one. Make checks in lighting conditions rather brighter than the required switching point. If the sensor is placed so that direct light falls on its sensitive surface, such as in the corner of the windscreen, it wilt be found that RV2 needs to be adjusted almost to the zero resistance end of its track. If such adjustment is difficult, it will be found helpful to restrict the amount of light reaching the LDR by, for example, using translucent plastic or by partially covering it with PVC tape. If no rubber grommet was used, the sensor box could be stuck to window glass using two self-adhesive pads of the type normally used to attach the interior mirror, making sure, of course, that it is clear of your field of view. Self-adhesive pads are readily available from car accessory shops. In the protofype unit, the sensor was placed behind a grill so that it could not be seen. This automatically restricts the light reaching it and makes for easy adjustment to RV2. Do not place it where shadows will be cast on the sensitive surface by items inside the car since this will cause false operation.

Test the unit under actual conditions. Re-adjust the timing if necessary. Over a period of use, set RV2 to provide a warning at the required brightness level and set the operating time as required.

let the postman DO THE ШORK

SUBSCRIBE... AND SADE UP TO £9

ACORN ARCHIMEDES WORLD 13 issues UK: WAS £48.75, NOW £39.75. YOU SAVE £9, Europe: $£ 60.50$, Overseas: £62.50, USA: $\$ 100.00$

HAM RADIO TODAY
13 issues
UK: WAS £32.50. NOW £29.00, YOU SAVE £3.50. Europe: $£ 39.50$, Overseas: £41.50, USA: $\$ 66.00$

Now this just has to be a good deal! Not only will you save a considerable amount of money. but your postman will also deliver the next 13 issues of your favourite electronics magazine directly to your door- with no fuss. no hassle, and no future price increases.
So go on, subscribe now, save your shoe leather, and up to 70p per issue. Here's why YOU should subscribe to either ETI, Ham Radio Today or Acorn Archimedes World: - FREE home delivery in the UK. - A saving of up to $£ 9$ a year.

- Price protection- you won't pay any more if the cover price goes up.
- Guarantee receiving every issue.

This is one deal where you really can't lose.
E.t.

13 issues
UK: WAS $£ 30.55$, NOW
£27.00, YOU SAVE £3.55,
Europe: $£ 40.00$, Overseas:
£41.80, USA: $\$ 64.00$

REMEMBER, it's always cheaper to subscribe!

All savings are based upon buying the same number of issues from your newsagent. UK only.

SUBSCRIPTION ORDER FORM

\square Acorn Archimedes World
\square Ham Radio Today
\square E.T.I.
YES, I would like to subscribe to (please tick): for the next 13 issues (all subscriptions will start with the next available issue, unless extending).
The total value of my order is $£ \ldots I$ enclose a cheque/PO payable to 'Nexus Special Interests', or please debit my Access/Visa/Mastercard/AMEX account:
Card No:

\qquad
Your Details:
Name: Mr/Mrs/Miss Initial:.............Surname:
Address:

Tel no:...
Piease retum, together with your payment, to: Nexus Sübscriptions, Tower- House, Sovêreign Park, Lathkill Street, Market Harborough, Leics LE16 9EF

"Eprommer"

Eprom Programmer

with Personality Modules

Keith Wardill's versatile Eprom Programmer uses a PC serial port and a set of six "Personality Modules" to connect a wide range of eproms up to 64KB.

This Eprom Programmer connects to a computer serial port, and will program and read most eproms up to 64 kilobytes now available. To avoid complex switching to cope with different eprom configurations in use, the Programmer uses a plug-in 'Personality Module' for each type of eprom. This module makes the correct pin connections, sets the programming voltage (Vpp), and determines the program pulse duration.

Operating protocol

The Programmer is designed to answer with a data byte when it receives a data byte. In PROGRAM mode, the data to be programmed to a particular address is sent to the Programmer, written to the eprom, and then the Programmer will read the programmed data back and send it to the host computer. By doing this, the software on the host can check if the eprom is correctly programmed before carrying on. In READ mode, a durnmy byte is sent to the Programmer, which prompts the Programmer to read a byte of eprom data and transmit it to the host computer. Note that random access to program or read specific addresses is not possible, but as it is usual to program or read the entire eprom in one go, this is not really a handicap.

After PROGramming or READing, the eprom Address Counter is incremented. If the reset switch is pressed to zero the Address Counter, then by repeatedly sending data the complete eprom can be stepped through and programmed or read. It is the responsibility of the host computer to send the correct number of programming bytes, or dummy bytes to allow reading.

The serial interface

The serial computer interface (figure 1) uses a MAX232 RS232 converter, IC1, to convert serial RS232 levels to and from the computer into standard TTL for the Programmer.

The Transmit and Receive Data signals are connected to a 6402 UART, IC2, which carries out seriaf \parallel conversion. This is an industry standard device, and is easy to use because it can be configured by connections to its pins, rather than writing control data to it from a CPU. In this application, it is set up to operate with 8 bits, no parity, and 2 stop bits. This ic also has a number of status and handshake signals, which are used by the Programmer as described later.

The Transmit and Receive clocks are generated by the 2.4576 MHz crystal oscillator IC3C/D. Dual binary divider IC4 divides the output to produce four clock outputs. The UART has an internal divider, and requires a clock which is 16 times the required Baud speed. Thus, if it is to operate at 9600 Baud, the clock frequency will be:
$16 * 9600=153600 \mathrm{~Hz}$.

Figure 1: the Eprom Programmer serial interface circuit

Figure 2: the Eprom Programmer control circuit

The divided outputs available correspond to Baud rates of 2400 , 4800,9600 and 19200, selected by a dip switch. Normally, the highest speed can be used, unless a long cable is used to connect the Programmer to the computer. Note that no RS232 handshakes, software or hardware are used, so the cable for the computer connection need only be a simple three core type, carrying Tx and Rx Data, and Ground.

The divider IC4 also provides a sync signal of 9600 Hz to the Programmer Control.

The Reset Circuit around NAND gate IC7B provides a switchon reset, by means of C8, and a manual reset, with SW1. This resets the eprom address counter, as well as the UART.

Programmer control

In the Programmer Control section (figure 2), many of the pins, such as the Data pins DO-D7, and Address pins AO to A10 and A12, are the same on most eproms. Unfortunately as eproms have increased in size over the years, manufacturers have been forced to use other pins on the eproms for different purposes. Table 1 shows the pin functions of the 27XX series, which differ from eprom to eprom: these are pins 1,20,22,23, 26 and 27. The appropriate connections to these pins are made via the Personality Module.

PROGRAM mode

(In the following, note that /Q means 'not Q'.) To program most eproms, a programming voltage (Vpp) is applied to the appropriate pin, then a program pulse, usually negative going of 1 millisecond duration is applied. The exceptions are the 2716, which requires a positive going 50 ms pulse, and the 2732 , which requires a negative going 50 ms pulse.

IC5A, IC5B and IC6B generate the program pulse. Until data is received by the UART, its DR (Data Ready) output on pin 19 is low, keeping D-Type fllp-flop IC5A In its 'set' state, so its Q output is high, and the / Q is low. The high Q output keeps IC6B in its 'reset' state. It also maintains TR1 in the Power Supply in the 'on' state. If TR1 is on, then R17A and B are effectively short-circuited, and the Vpp output of the PSU is held at +5 V by R15/R16. (It also keeps IC8 reset, but more about this later.) Let us assume that a connection exists between pins 16 and 17 of the Personality Module, so the 9600 Hz sync signal is applied to pin 13 of IC6B.

Before any WRITE operation, the reset button must be pressed to set the address counters to zero. The ' D ' input of IC5A (pin 2) is pulled low when switched to 'PROG'. When a data byte is received, DR goes high, and the next positive edge of the sync signal at IC5A clock input will set the Q output of IC5A low, releasing the 'reset' on IC6B (and IC8). Q1 in the PSU is switched off, so Vpp rises to a level determined by R17A and B, and Rp on the Personality Module.

Counter IC6B will now count negative going edges of the sync signal. After 8 edges, the Q4 output of IC6B goes high, and on the 10 th edge, Q2 also goes high (reference to the Timing Diagram, figure 3, will make this clear). This causes the /Q output on pin 8 of IC5B to go low, and the Q output on pin 9 to go high. The /Q output is applied to the DRR (Data Ready Reset) input on pin 18 of the UART. This resets DR, allowing the UART to accept a new data byte. Since DR has gone low, IC5A will be forced into its 'set' state, and the circuit will now be in its original state, with Vpp switched back to +5 V .

Table 1: Eprom pin functions

EPROM	1	20	22	23	26	27
	F W	A W	A W	F W	P W	R W
2716	X	$0-11$	0-5V	5.25Vpp	5-5	x
2732A	X	0-125	0.21 Vpp	A11	5-5	x
2764	5-21Vpp	0-0	0.5V	A11	x	+5-13-1
2764A	$5-12.5 \mathrm{Vpp}$	0.0	0-5V	A11	\times	+5-135
27128	5 -21Vpp	$0-0$	0-5V	A11	A13	+5-13
27128A	5.12.5Vpp	0-0	0.5V	A11	A13	+5-19
27256	5-12.5Vpp	0.135	0-5V	A11	A13	A14
27256A	5-12.6Vpp	0.13	0-5V	A11	A13	A14
27512	A15	0-135	0.12 .5 Vpp	A11	A13	A14

न1. POSITIVE GOING TTL $50 \mathrm{mS} * \cdot 10 \%$
12. NEGATIVE GOING TTL $50 \mathrm{mS} 410 \%$

NOTE THAT 2716 AND 2732 ARE 24 PIN DEVICES. THE PIN NUMBERS GIVEN ASSUME THAT A 28 PIN SOCKET IS IN ASSUME THAT A 28 PIN SOCKET IS IN USE, AND THE EPROW IS FITTED SO
THAT DEVICE PIN 1 IS IN SOCKET THAT DEVICE PIN 1 IS IN SOCKET
PIN 3. HENCE PINS $1,2,27$.AND 28 ARE NOT USED
13 NEGATIVE GOING TIL $1 \mathrm{mS} \quad$ w-5\%
x DONT CARE - NOT CONNECTED

Figure 3: the Eprom Programmer timing diagram

The timing diagram in figure 3 will shows that after IC5A changed state, IC6B effectively counted $91 / 2$ periods of the sync signal, then IC5A reverted to its original state. Since the period of the sync signal is $1 / 9600$ seconds, or slightly more than 104us, then dividing this by 9.5 gives a time interval of slightly more than 989 us. We need 1 ms for the program pulse, but the eprom tolerance is 5 percent, so 989 us is sufficient. Hence a negative going program pulse is produced at pin 5 of IC5A, connected to the Personality Module as PGM1. A positive going pulse appears also at IC5A pin 6, and is connected as PGM2. This is also inverted and gated by IC3B, to produce a negative going PGM3. This is used for 2732 and 27512 eproms.

To produce the 50 ms pulse required for the 2716/2732 eproms, the sync signal is divided by 50 by IC8, connected to divide by 25 and 2 , producing. a sync/50 clock with a period just over 5.2 ms . Now the program pulse period will be $9.5 \times 5.2=$ 49.48 ms . To select the appropriate period for the programming pulse, both the sync signal and sync/50 are fed to pins 16 and 18 respectively of the Personality Module. Depending on which eprom is to be programmed, the appropriate connection to Personality Module pin 17 is made, thence to IC6B pin 13. If you intend never to program 2716 or 2732 eproms, then $1 C 8$ can be omitted, and a permanent link made between pins 16 and 17 of the Personality Module.

Several other signals are also derived from the control circuit: After the programming pulse has finished, the Programmer must transmit the programmed data back to the host computer as a check, and to inform it that the next data byte can be sent to the Programmer. The high output from IC5B pin 9 is applied to the UART RRD input (Receive Register Disable, pin 4). This forces the Receiver Register outputs into a high impedance state, disconnecting it from the internal data bus. If the eprom output is now enabled, then the data on the eprom can be clocked into the UART transmit register and sent to the host.

This is achieved with IC6A. When IC5B /Q output goes low after the program pulse, it releases the reset on IC6A, which will then be clocked by the negative edge of the sync pulse. Hence 52 us later, the Q1 output of IC6A will go high. Since Pin 10 of IC7C is already high, then this Q1 signal will cause the output of IC7C to go low. This is used, via the Personality Module, as an Output Enable signal to the eprom, placing eprom data on the internal data bus.

Since IC6A Q1 is now high, pin 2 of IC7A is also high, and the next positive half-cycle of the sync signal will cause the output of IC7A to be a negative pulse. This signal is applied to the UART as TRBL (Transmit Buffer Load). This causes the eprom data on the internal bus to be latched into the UART Transmit Register and automatically transmitted. The UART also generates a signal known as TRE (Transmit Register Empty). Since data has just been loaded into the Transmit Register, this signal will be low. The negative going edge is used to clock the Address Counters, IC9 and IC10, so the eprom address is advanced ready for the next program byte. TRE also resets IC5B, removing the RRD signal, so everything is now ready to receive another byte. TRE will return high when the data has been transmitted by the UART

READ mode

Before any READ operation, the reset button must be pressed to set the address counters to zero. When the Programmer is switched to READ, IC5A pin 2 is held high by R7, so IC5A does not change state when clocked with the sync pulse. Therefore no program pulse is produced, and Vpp is not switched on, hence the eprom will not be programmed.

IC7D pin 13 is also pulled high by R7. When a data byte is received the DR signal from the UART is applied to IC7 pin 12. It is inverted and 'sets' IC5B, producing the DRR, RRD and OE signals as described for programming. This will place the eprom data on the internal bus, and transmit it back to the computer as described above.

To provide some indication of what is happening, an LED is driven by one of the outputs of the address counter, to indicate that the counter is incrementing during programming and reading.

The personality modules

The 'personality modules' (figure 4) consist of small doubie-sided PCBs which plug into a 24 -pin dil socket, and make the appropriate connections for a particular eprom. It also caries Rp. the programming resistor for the programming voltage. The PCB layouts for the standard 27XX range are given: obviously if you don't need all of them, just make the one(s) you require. Table 2 shows the connections to be made on the Personality Modules for most of the standard eproms. Note that some eproms are available with different programming voltages, notably the 2764 , which is available with 21 V or 12.5 V programing voltages. Usually those types with an ' A ' suffix are 12.5 V types. Make sure that you fit the correct values for Rp to provide the appropriate programming voltage.

It is not essential to use the personality module PCBs as given: I originally used ic sockets, soldering small wire links on the top side of the socket to make the connections. This turned out to be a bit messy and fragile, so I opted for the PCBs. Maybe the reader has a better idea.

The pins for the PCBs were made from standard office staples (the type used to staple paper together). Any PCB 'through' connections are made with short wire links. The general construction is shown irfigure 4. After making all the connections, and ensuring that Rp was the correct value, the personality modules were given a coat of protective varnish.

Figure 4: the general construction and component layout of the personality modules

The power supply

The power supply (figure 5) uses a simple voltage doubler/rectifier to produce a stabilised +5 V supply via IC12 for the logic, and a higher voltage, which is regulated by IC13 to provide the programming voltage, Vpp.

The programming voltage is determined by the ratio of R15 to the resistor chain R16 and the value of R17A and B in parallel with $R p$, which is mounted on the personality module. By selecting different values for Rp, then Vpp can be set as

From the Microcontroller Professionals:

Program PIC Microcontrollers:
 We now have 3 programmers for PIC's !

Original - This is our original programmer for 16C5X, 16C55X, 16C6X, 16C7x, 16C8x, 16F8X devices.
Price : $£ 40$ for the kit, or $£ 50$ ready built.
Serial - This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also In-Circuit programming.
Price : $£ 40$ for the kit, or $£ 50$ ready built.
Introductory - This programmer is intended for the smaller user, or newcomer to PIC's. Will program 8 pin and 18 pin devices: 16C55X, 16C61, 16C62X, 16C71, 16C71X, $16 \mathrm{C} 8 \mathrm{X}, 16 \mathrm{~F} 8 \mathrm{X}, 12 \mathrm{C} 508$, and 12C509.
Price $\boldsymbol{£ 2 2}$ for the kit (not available ready built).
Note : All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4).
No hard to handle parallel cable swapping !
All programmers are supplied with full instructions,
Windows programming software, MPASM, MPSIM and
PICDE - the Windows based PIC assembler environment. (offers all features of PICDESIM below without the simulator).

Forest Electronic Developments
10 Holmhurst Avenue, Christchurch,
Dorset, BH23 5PQ. htrp $/ / \mathrm{mww}$ ibmpcug uk-gmwamer/fed hm 01425-270191 (Voice/Fax)

Windows Based PIC Development:

 PICDESIM - the Windows based development environment.PICDESIM allows you to develop your PIC projects in one Windows program.
Incorporate multiple files, view help file information directly from the code, edit within the project, build, and track errors directly in the source, then simulate.
Simulator allows addressed, conditional and timed breakpoints, follow your code in the source editor window, set a breakpoint directly in the code. Run your program, or single step, or step over subroutines. Track variable values and trace them for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program examine frequently called routines which are timed and use the information to optimise out bottle necks.
Trace Analyser allows any register or port value to be examined in analogue (graphical), waveform, or numeric values, check your program directly against your predicted waveforms.
Runs up to 50 times faster than MPSIM !
NEW :- 32 bit version allows full use of Windows ' 95 and Windows NT 4.0 facilities.
Cost $£ 30.00$, or $£ 25.00$ for existing and new purchasers of any of our programmers. Please specify Windows 3.1, or Windows '95 (32 bit) versions of PICDES/M.
 PC16C74-04POTP PIC16C57-04P OTP PIC16C84-04P PIC16F84-04P $\begin{array}{llr}\text { P1C16C84-04P } & 4 \mathrm{MHZ} & \boxed{ } 8.00 \\ \text { PIC16F84-04P } & 4 \mathrm{MHz} & \varepsilon 7.00 \\ \text { PIC14000-04P OTP } & 4 \mathrm{MHz} & \varepsilon 10.00\end{array}$ PIC14000-04P OTP PIC12C508-04P OTP 4 MHz
$4 \mathrm{MHz} \quad £ 8.00$

MHz 25.00

$\begin{array}{ll}\mathrm{MHz} & £ 10.00 \\ \mathrm{~Hz} & £ 2.70\end{array}$

PIC16C556 (14 bit vërsn 16C56) $£ 4.50$ PIC16C74-20P OTP 20 MHz §11.00 PIC16C57-10P OTP 10 MHz £6.00 $\begin{array}{lll}\text { PIC16C84-10P } & 10 \mathrm{MHz} \quad £ 8.00\end{array}$ PIC12C508-04P OTP $4 \mathrm{MHz} \quad £ 2.20$ PIC14000/JW Erasable $£ 23.00$

Figure 5: the Eprom Programmer power supply
 DEPENDING ON TYPE OF EPROM BEING PROGPAMMED
required for a particular eprom. Resistor values for the common programming voltages of $+12.5,+21 \mathrm{~V}$ and +25 V are given in Table 2. Use 1 percent or 2 percent resistors.

Unfortunately, because of the different functions of various pins as mentioned earlier, the programming voltage must be switched between Vpp when programming, to +5 V when reading. (Just to make life difficult, the 2732 and 27512 are different) This is done with IC13 and Q1. If Q1 is on, then R17A and B and Rp are effectively short-circuited and the output of IC13 is determined by the ratio of R15 to R16. (+5 V). The Programming Pulse is applied to the base of Q1. When high (in the Read Mode), Q1 is on, and the output of IC13 is +5 V . When the Program Pulse goes low (Program Mode), Q1 is off, so the output voltage of IC2 is determined by Rp.

A further complication is caused by the differing requirements of the Output Enable (pin 22 of the eprom) during reading and programming. Due to lack of pins, the programming voltage is applied to the OE pin of the 27512, so it must be high during programming, and OV to read. The other eproms only require logic 0 or 1 . To do this, Vpp is switched by Q3 and Q4. When the level from IC5A pin 6 is high (programming), then Q4 is switched on, pulling the base of TR3 low, and switching it on to apply Vpp to the Personality Module, and thence to the appropriate eprom pin.

A final power problem is that Vcc to 27256 and 27512 eproms, normally +5 V , must be increased to +6.2 V during programming. This is done with IC11 and Q6. The negative going 1 ms programming pulse on pin 15 of the Personality Modules for these eproms is connected to pin 11, so that Q4 is switched off during programming, and the output from IC11 will rise to 6.2 volts, determined by R3\R4. When Q6 is switched on, during Read Mode, then R3 is effectively shortcircuited, and the output of IC11 is +5 V . For those eproms which normally only require +5 V during both Read and Program modes, then the connection to Q6, via the Personality Module pin 11, is taken to +5 V , ensuring IC11 output is always at +5 V .

Table 2: pin connections for Personality Modules. Note: " $3 \mathrm{~K} 3 / / 5 \mathrm{~K} 6^{\text {" }}$ means 3 k 3 resistor in parallel with 5 k 6 resistor. Some Eproms are available with different program voltages. The value of Rp connected between pins 12 and 16 should be selected accordingly where both values are given. The values of R17A and B on the PSU are $10 \mathrm{~K} / 2 \mathrm{~K} 6$

| EPROM 2732 | | | |
| :---: | :--- | :--- | :--- | :--- |
| PIN | | PIN | FUNCTION |
| 3 | \rightarrow | 24 | +5 V VCC |
| 4 | \rightarrow | 7 | A11 |
| 5 | \rightarrow | 22 | VPD (+21V) |
| 6 | \rightarrow | 14 | CE \& PGM PULSE |
| 18 | \rightarrow | 19 | 50 mS PULSE |
| 12 | - | 16 | $39 \mathrm{k} / / 22 \mathrm{k}$ |

EPROM 2764			
PIN		PIN	FUNCTION
1	\rightarrow	23	Vpp
2	\rightarrow	15	PGM PULSE
4	\rightarrow	7	A11
5	-	20	OE
6	\rightarrow	12	CE
11	\rightarrow	24	+5V Vcc
17	\rightarrow	18	1 mS PULSE
12	Rp	16	39k // 22k (21V TVPE)
12	Rp	16	3k3 //5k6 12.5V TYPE)

EPROM 27128				
PIN		PIN	FUNCTION	
1	\rightarrow	23	VPP $(+12.5 \mathrm{~V})$	
2	\rightarrow	15	PGM PULSE	
3	\rightarrow	10	A13	
4	\rightarrow	7	A11	
5	\rightarrow	20	OE	
6	\rightarrow	12	CE	
11	\rightarrow	24	$45 V$ VCC	
17	\rightarrow	18	1 mS PULSE	
12	$R p$	16	$3 \mathrm{k} 3 / / 5 \mathrm{k} 6$	

EPROM 27256			
PIN		PIN	FUNCTION
1	\rightarrow	23	$\mathrm{V}_{\mathrm{pp}}(+12.5 \mathrm{~V}$)
2	\rightarrow	9	A14
3	\rightarrow	10	A13
4	\rightarrow	7	A11
5	\rightarrow	20	OE
6	\rightarrow	14	PGM PULSE
11	\rightarrow	15	+6.2V/ +5 VVCc
17	\rightarrow	18	1 mS PULSE
12	Rp	16	3k3 /15k6

EPROM 27512			
PIN		PIN	FUNCTION
1	\rightarrow	8	A15
2	\rightarrow	9	A14
3	\rightarrow	10	A13
4	\rightarrow	7	A11
5	\rightarrow	22	OE/ V Pp 9 $9+12.5 \mathrm{~V}$)
6	\rightarrow	14	PGM PULSE
11	\rightarrow	15	+6.2V/ +5 V Voc
17	\rightarrow	18	1 ImS PULSE
12	Rp	16	3k3 /15k6

the Autorouter for easy-pc Pro' xm!

EE Product News "Products of the year" Award Winner (USA Magazine)
"The Best Autorouter that I have seen costing less than $£ 10,000$ l" R.H. - (Willingham, UK)

- Uses the latest Shape Based, 32 Bit, Multi-pass, Shove-aside and Rip-up and Re-try Technology
- AutoRoute very large and complex boards
- User Controllable,

User Configurable

- 100% Completion where other autorouters fail
- 100\% Autorouted 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- Could Easily Pay For Itself On The First Project

MultiRouter - only £295/\$475!

Integrated Electronics CAD

Prices from UK£75 / US\$145

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From 5275	£145
MultiRouter: 32bit Muiti-pass Autorouter for EASY-PC Professional XM	From \$475	¢295
LAYAN: Electro-Magnetic Layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER Ill Professional	$\$ 950$	8495
PULSAR: Digital Circuit Simulator	From \$195	898
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	898
FILTECH: Active and Passive Filter Design program	From \$275	$\Sigma 145$
STOCKIT: Comprehensive Stock control program for the small or medium sized business	From \$275	$\Sigma 145$
EASY-PC: Award Winning PCB and Schematic CAD.	\$145	875
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From $\$ 275$	$\Sigma 145$
We operate a no penalty upgrade policy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

For Full Information and Demo' Disk, please write, phone, email or fax:-

UK/EEC: Ref: ETI, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: ETI, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249
http://www.numberone.com

- TECHNICAL SUPPORT FREE FOR LIFE - PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Figure 6: the component layout of the main board

Mechanical construction

The main PCB layout is double-sided (figure 6): this normally requires through-hole plating to connect one side of the board to the other. This is virtually impossible to do if you make the board yourself (as I do), and the board expensive to have made. To get round this, some of the 'through' connections are made by soldering the IC sockets on both sides of the PCB. I strongly recommend that good quality turned-pin IC sockets are used. These stand slightly clear of the PCB when fitted, and it is possible, with a steady hand, to solder to pads on the component side of the board under the sockets, and on the 'copper' side of the board, creating a through connection. Figure 7 shows how this may be done. Be warned: a steady hand, good eye, and small, hot soldering iron is essentiai for thls. It is possible to do without the ic sockets, and solder directly to the pins of the ics, but this is not recommended because testing and replacement is difficult (or impossible).

There are also a number of through connections made by wire links soldered on both sides of the PCB, and also a number of the resistors and capacitors are soldered on both sides. The through links are shown on figure 8 , the component layout, by an ' X '. Fit all these links first, because some are under IC sockets, followed by the other components, the ic sockets, and the crystal. A small blob of glue gives added security for the crystal. Check carefully to see which components require soldering on both sides of the PCB.

The eprom socket should ideally be a zero insertion force (ZIF) type, although a normal good quality ic socket can be used if you don't anticipate a lot of use. This socket, and also the 24 pin socket for the personality module, are fitted on the 'copper' side of the board. This is so that the sockets protrude through matching holes cut in the case when the PCB is mounted, allowing you to insert and remove the eprom and personality module. Figure 8 shows these mechanical details.

Figure 6: Eprom Programmer - general construction

Once again, some care is necessary to fit these sockets because they require soldering on both sides.

The PSU presents no special difficulties: it is a single-sided board (figure 9), and no through connections are required. Observe the polarities of the diodes and electrolytic capacitors when fitting them. Check also that no 'whiskers' of copper remain around the connections to cause short circuits. It is wise to check operation of the PSU before connecting to the main board. See under 'Testing'

It is difficult to give mechanical design instructions for the box, since not everyone can lay hands on the same box, or has the same skills. However, Figure 8 shows how the original was mounted in its box. Holes were cut in the appropriate place in the top of the box, and the PCB mounted with plastic spacers so the ZIF socket protruded through the hole, and the 9 pole D-type RS232 connector protruded through a hole cut in the rear panel. If you have problems finding plastic spacers, short pieces cut from a plastic ballpoint pen barrel are ideal.

The Reset Switch, Mode Switch and Mode LED are mounted on the front panel, connected to the PCB with short

Figure 9: the component layout of the power supply board
lengths of multicore wire. I used a piece of flat cable as this keeps things tidy. The power switch and fuse are mounted on the rear panel, and the power cable is routed through a notch cut in the edge of the rear panel.

The PSU was bolted into the base of the box, again using short M3 bolts and plastic spacers.

Testing

Connect 230V AC to the PSU, and switch on, taking great care not to touch the high voltage points -230 V
$A C$ is lethal! This is a mains construction - if you do not have mains construction experience, seek the assistance of someone who does.

With a voltmeter, check the +5 V supply is available. If so, connect the voltmeter between ground and the output of IC13 (Npp). If $+5 v$ is applied to the VpC input (R18) using a short piece of wire, then Q1 should switch on, and the Vpp output should be +5 V . If the $V p c$ input is now taken to ground, Q1 should be off, and $V p p$ should be +25 V . This is determined by the values of R17A and B in parallel. If it differs by more than 0.2 volt, switch off and disconnect the 230 V AC and adjust the values of R17A and B . When all these voltages appear OK, switch off the power, connect the main PCB without inserting the ics, and switch back on. Check that +5 V is available on the appropriate pin of any IC socket. If it is not, switch off and disconnect the power and look for the probable short-circuit on the main PCB.

When all is well, insert the ics. If you have access to an oscilloscope, then the oscillator can be checked, as can the Baud rate divisor. If the UART is not fitted, then a link between pins 24 and 17 of the UART socket connects a clock signal to the address counters for checking at the eprom socket. Don't forget A11, A13, A14 and A15 are connected via the personality module.
Operation of the Vcc Switch, $Q 6 / I C 11$ is checked by monitoring the eprom Voc on pin 28 of the ZIF socket. Connecting pin 11 of the Personality Module to +5 V (pin 24), should switch on Q6, so pin 28 of the eprom should be +5 v . Remove the connection, and it should rise to +6.2 volts.

Conclusion

The Programmer is not restricted to use on an IBM compatible PC. There is no reason why it should not be used on any machine with a serial port, providing the user can produce the appropriate software. I have tested the prototype with an Atari ST machine, as well as $386 / 486 /$ Pentium based PCs running at various speeds.

Software

Because the Programmer responds to a byte, and returns a byte, it is not possible just to use a simple terminal program and transmit a data file to the Programmer. The software must be able to check that each byte has been received and acted on by getting a response. The original software was written in QBasic supplied with the later versions of DOS. The problem

here is that it is not possible to compile an executable program, although it can be done with the stand-alone versions of QBasic. The full QBasic listing is too long to reproduce here. However, two annotated listings are given: these show how to write data to the Programmer, and how to Read data. These are very much 'bare-bones' listings: you are encouraged to expand these and write your own software: it really is not difficult. An executable program in Visual Basic 3 for use with Windows 3.1 or Windows 95 has been developed, plus a small application which sends a selected number of bytes to check the operation of the Programmer on a 'oneshot' basis, and to confirm the operation of the address counter.

Programming the Programmer

The following addresses apply to standard PCs, and can be declared as constants.

Constant Name	Port COM2	Port COM1	Function
txport	$\& H 2 F 8$	$\& H 3 F 8$	Tx Buffer
report	$\& H 2 F 8$	$\& H 3 F 8$	Rx Buffer
intenreg	$\& H 2 F 9$	$\& H 3 F 9$	Interrupt
Enable Reg.			
intident	$\& H 2 F A$	$\& H 3 F A$	Interrupt Identification
linecont	$\& H 2 F B$	$\& H 3 F B$	Line Control

In the following description the actual program instructions are shown in bold type. \&HFF is the QBasic convention for showing hexadecimal data, in this case hex FF. The following variables must be inltialised in your program:
workfile \%
Byte \%
workfile\$
counter\& programmersizes available $=4$
integer containing the active filenumber. integer containing the databyte. string variable containing the name of a file. long integer used as an index.

Port Setup

Before using the Programmer, your program should set up the PC port to be used to match the UART settings. This requires a divisor to be loaded to set the baud rate (in this case, 9600 baud), and the appropriate stop bits, parity and handshakes must be set:

OUT linecont, \&H80 set up baud rate: enable baud rate divisors OUT txport, \&HC baud rate division (1843200/baudrate* $16=8 \mathrm{HOC}$)
OUT intenreg, \& HO
OUT linecont, 3 no parity, 1 stop bit, 8 bits/char, no handshakes
OUT intenreg, 1 enable data available interrupt
Writing data to the Programmer from file (this assumes that a file of data exists to be written to the Programmer):
counter\& $=1 \quad$ 'initialize the counter
OPEN workfile\$ FOR BINARY AS workfile \%
'Now loop until all the data is read from file and sent to Programmer.

GET workfile \%, counter, byte \% 'QBASIC reads 2 bytes	
byte \% = byte \% AND \&HFF	'so reduce it to 1 byte
OUT txport, byte \%	'then send it to the
	Programmer
'now wait until the Programmer echoes the data	
do	'wait for 'data available'
	interrupt
TIMER ON	'switch timeout watchdog
	on
ready $=$ INP(intident) AND available	
LOOP UNTIL (ready = available)	
TIMER OFF	'exit when data received
counter\& $=$ counter\& +1 'increment the counter	
loop until counter \& > Programmersize\& 'and loop if not	
	completed
close workfile \%	'close the file when
	finished
Reading data from Programmer to file: if data is received by the PC, it sets a bit in the Interrupt Identification Register. The	
Read process enters a loop until this bit is set, then reads the	

counter\& = 1 'initialize the counter
OPEN workfile\$ FOR RANDOM AS workfile $\%$ LEN $=1$ FIELD \#workfile \%, 1 AS databyte\$
'Now loop until all data read from Programmer and written to file.
do

OUT txport, \&HFF	'prompt programmer to return data
DO	'loop until 'data available'
	interrupt occurs.
TIMER ON	'switch timeout watchdog
ready $=\mathbb{N P}$ (intident) AND available	
LOOP UNTIL (ready = available)	
TIMER OFF	'exit loop when data
	received
rxbyte \% = INP(rxport)	'then read returned data

LSET databyte\$ = LEFT\$(MKI\$((rxbyte \%), 1)

Resistors

All 0.25 Watt 5\%	
R1, R8, R11, R17A, R18, R20	10k
R2, R21	$33 k$
R3	100R
R4	470R
R5	10 M
R6, R19	$100 k$
R7, R9, R13	$4 k 7$
R10	$3 k 3$
R12	$12 k$
R14	$120 R$
R15	$220 R$
R16	$680 R$
R17B	$5 k 6$
Rp	See Text

Capacitors

C1, C2, C3, C4, C5
C6, C7, C9
C8
C10
C11, Cd 1-3
C12
C13
Cd 4

22uF 35 V radial electro (Maplin AT56L)
10pF ceramic (Maplin WX44X)
1uF 63 V radial electro (Maplin AT73Q) 150pF ceramic (Maplin WX58N) 100nF polyester (Maplin DT98G) 470uF 25 V radial electro (Maplin AT51F) 1000uF 25 V radial electro (Maplin AT52G) 47 UF 16 V radial electro (Maplin AT39N)

Semiconductors

IC1		Max 232CPE (Maplin FD92A)
		6402 uart (Maplin Q004E)
IC3		74HC02 quad 2 I/P NOR (Maplin UB01B)
IC4, IC6, IC9, IC10		74HC393 dual binary divider (Maplin AE80a)
IC5	74HC74 dual 'D'-type flip flop (Maplin UB19V)	
IC7	74 HC 132 a obtain, use	/P NAND Schmitt (if difficult to 0) (Maplin UBOOA)
IC8	74HC390 d	de $2 / 5$ (Maplin UB84F)
IC11	74L05 volta	ulator (Maplin AVO2C)
IC12	78MO5CV (QL28F)
IC13	317LP volta	ulator (Maplin AV26D)
Q1, Q2,	Q4, Q5, Q6	BC107 (Maplin Q831J)
Q3		BC328 (Maplin QB69A)
D1, D2		1N4001 (Maplin QL73Q)
LED		Red LED (Maplin UK48C)
XL1		2.4576 MHz crystal (Maplin
FY81C)		

Miscellaneous

T1 Transformer 230Vac/ 12Vac - 250 mA (Maplin YN14Q)
F1 Chassis mount fuse holder 100 mA (Maplin RX96E)
Power switch 2 pole on-off (Maplin FH04E)
Mode switch 1 pole 2-position (Maplin FHO4E)
Reset switch Momentary push to make (Maplin FF98G)
Serial connector 9 pin 'D' type plug PCB mount (Maplin FG66W)
Baud rate switch 4 pole dip switch (Maplin JH08J) 14-pin I/C sockets (7 off) use 'turned pin' type (Maplin FJ64U) 16 -pin I/C sockets (2 off) (Maplin FJ65U) 24-pin I/C socket for target cable (Maplin FJ67X) 40-pin I/C socket (Maplin FJ69A)
28-pin ZIF socket for eproms (Maplin FT14Q) Box
(H×W×D) $6.5 \times 13 \times 13 \mathrm{cms}$
"convert number to a 1 char string
'and put it in the file "increment the counter
PUT \#workfile \%
counter \& = counter $\&+1$ loop until counter\& > Programmersize\& 'and loop if not completed
close workfile $\%$
'close the file when
finished

Any data may be sent to the Programmer as a prompt in Read mode (I used FF). It may also be worth noting that if the Programmer fails to return a byte for any reason, this routine
will stay in the loop forever waiting for data. You should include a check on the Timer value, and exit after a short period, noting this is a Timeout Error. The remainder of the program is left up to you.

Software

A disk containing the Eprommer software is available from Forest Electronic Developments, 10 Holmehurst Ave., Christchurch, Dorset BH23 5PQ, priced $£ 5$ inclusive of post and packing. A kit may be available in the future - please enquire at FED at the address above.

Tony Sercombe's peak-reading VU meter combats momentary overloads in your audio system.

vo
or volume unit meters, were first used in the early days of broadcasting, principally in the United States. These early versions suffered many drawbacks. They consisted of a basic moving coil meter, with a diode, and perhaps resistor in series, simply connected across the signal path. They thus did little more than indicate the average value of the signal. The main problems with such a simple system were an inability to follow the signal levels accurately, poor frequency response, and a tendency to indicate a different level for differing programme contents of the same level. Another point is that other than the 0 dBm or 100 percent scale marking, leveis could not easily be read.

At that time these meters were used in the UK also, but in the early 1930s attempts were made to improve matters, and the PPM or peak programme meter, was developed. This represented a great step forward. These meters had active electronics driving them. To begin with, they used variable slope [gain] pentode valves, and a right-hand mechanical zero system, so that an increase in signal was indicated as the valve gain reduced, being pulled up by the hair-spring. Modern PPMs use the conventional left-hand zero system, and solid state electronics.

The PPM has many advantages over the WU meter. Perhaps the most significant is that the circuit is logarithmic in nature and thus imitates the response of the human ear. This allows the scale to be marked in a linear fashion. The scale covers a range of 28
dB , or 25 times, and can be read over its entire length quite easily. The meter itself is specially designed to have a very fast response, or attack, an the electronics provide a slow decay or fallback of about 1 second. This has been the standard in this country and the majority of Europe for many years. Lately the LED column has become popular, however, many technicians find they suffer a degree of eye strain with this system, and still prefer the PPM.

A professional PPM attempts to indicate .5 Hz at 20 kHz , and to do this they have become very expensive, particularly as a stereo pair, and so are probably well beyond the pocket of most enthusiasts.

Between the extremes

This present circuit is intended to fall somewhere between these two extremes. It uses a WU meter movement, but has a fast response time and good frequency response beyond the audio bandwidth of 20 Hz to 20 kHz . The circuit is linear, in theory making the scale accurate. However, the point of real interest is the 0 dBm or 100 percent mark on the scale, which will be the reference point adjusted to in use.

The circuit uses two single ics and one dual ic per channel. The first stage is a TL071 connected as an inverting amplifier with a gain of approximately 6 dB , or two times. The 22 k preset enables the basic sensitivity to be set. If somewhat more gain is required, the value of the feedback resistor from pin 6 to pin 2 may be increased. The input resistor should not be reduced much in value, otherwise the cirout being monitored may be loaded unduly by the meter. The resistor from pin 3 to ground goes some way to reducing the offset voltage, and should have the same value as the input resistor. The output of the amplifier is connected to the input of a full wave rectifier. Full wave rectification is needed because the level of the signal in one half of the waveform may exceed that in the other, and therefore could be missed using a half wave system. With all the resistors of equal value, the rectifier operates broadly by inverting a positive signal twice, with D1 off and D2 on, and with negative inputs it inverts it once, with D1 on and D2 off, to provide a positive output.

The output of the rectifier is fed, via a further diode, to a buffer amplifier. The purpose of this is to provide a very high input impedance, and to supply out put current from a very low impedance source. Because the input is at high impedance, a capacitor may be connected to ground. This has the effect of delaying the signal voltage decay after large peaks. Since the Impedance is very high and the input current tiny, a large value resistor is needed to shunt the capacity. By this means, the decay time is controlled. The diode is used to prevent the decay voltage from dissipating through the previous circuit. The resistor at pin 6 of the buffer is simply to give the meter some protection, and should be

Figure 1: the circuit of the Peak Reading VU meter with power supply
adjusted to suit the movement, as should the values of the decay components. If the meter has a tendency to fall back too quickly, the capacitor may be increased to about 1 uF . It is recommended that if a stereo pair are to be constructed, that polyester type capacitors are used, since the tolerance of the electrolytic variety is such that they might have to be selected to give equal decay times. If it falls too slowly, the resistor value may be reduced by a small amount to adjust for this. No standard reference voltage is given, since it is assumed that this will differ, depending on the equipment to be monitored; however, a reference level of about .75 of the maximum to be used should be chosen and set by VR1 to 0 dBm or 100 percent on the scale.

Linearity

Although the drive circuitry is essentially linear, there exists a degree of non-linearity at the diode output. Since WU meters first came into being, they have been very simple instruments, simple a diode and sometimes a resistor as already mentioned, in serious with the meter. The scale calibration has historically taken this into account. Of course, this is only a half-wave rectifier, and thus ignores the other half of the signal, adding another limitation to the system. The reason why it is included in the present circuit is to bring the calibration to equality, and isolate the decay components, as aready stated.

The next, and perhaps most practical point to note, is that the main importance of the scale is for setting steady tone. The main ponit of interest is the 0 dBm or 100 percent marking, and a slight overswing of the pointer on peaks here should be what is aimed for. The calibration cannot be used in the same way as a PPM - the diode specified will introduce a non-linear characteristic at the start of conduction, but in this case it is only around the $-18 / 20 \mathrm{~dB}$ point on the scale, which is 10 times below peak, and of little importance in practical terms. Once the reference level of 0 dBm has been established, any signal below that must be within the dynamic range of the circuit being monitored anyway. The voitage drop across a gemmanium diode is in the order of $2 / 300$ millivolts, which is absorbed by the previous circuitry

It is perhaps worth mentioning here that many VU meter movements are damped in much the same way as the traditional moving coil panel meter. This causes a VU meter to rise, or attach, a little more slowly. It is better to obtain an undamped movement if possible. A simple check for this is to gently rock the meter from side to side. The pointer should move by a few mil each time. However, an undamped meter will exhibit a degree of overshoot. That is to say, if a steady tone is applied, the pointer will rise quickly, and then settle back a small amount to a steady value. This is probably the best in use, since any overshoot will be taken up in controlling the levels anyway. The prototype instrument has been built into an audio mixer as an "aux send" level monitor, however, as described here it is intended as a stand-alone unit, and to this end a suitable power supply circuit is shown. If this is constructed, the proper care should be taken with mains supply connections, as mains voltages can be very dangerous, and all work and any adjustments, apart from the level setting preset, must be camied out without the power supply connected.

The choice of enclosure is left to the constructor; it could, for example, be used as a master monitor in a home studio, in which case it could be built into a separate free-standing case and so be transportable.

All components, except the meter movements, may be obtained either from Maplin Electronics (01702 554000) or Cirkit Distribution (01992 448899). Suitable analogue movements may be obtained from Henry's Electronic Components (formerty Henry's Radio) at 404 Edgware Road London W2 1ED Tel. 01717231008.

Figure 2: the component overlay and connections

The Low Cost Controller That's Easy To Use

Fcatures
The K-307 Module provides the features required for most embedded applications
Anologue - 4 Channels in 1 Channel out
Digitol - 36 Digital in or out \& Timers
Seriol - RS-232 or RS-485 plus 12C
Display - LCD both text and graphics
Keyboard \quad Upto 8×8 matrix keyboard
Memory $\quad>2$ Mibytes available on board
Low Power

- Many modes to choose from

Development
The PC Starter Pack provides the quickest method to get your application up \& running
Operating System - Real Time Multi Tasking
Longuages - 'C', Modula-2 and Assembler
Exponsion - Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

By

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

£199-£399 Prices to suif your pocket

USM PARTRIDGE ELECTRONICS

Suppliers of approved equipment for use on P.S.N. or private circuits

56 Fleet Road, Benfleet ESSEX, SS7 5JN
Phone:01268 793256 Fax: 01268565759

Sjp
 cIiculds

Circuit simulation with software, by Owen Bishop. This month, part 3 - More about frequency.

We begin by analysing the circuit in part 2 (ETI Issue 5, 1997), which some readers may have recognised as a band-pass filter of the multiple feedback type (figure 1). The netlist is entered either by typing it in, or by using Geseca, as described in part 2. When specifying the voltage generator, set its amplitude to 100 mV (a greater amplitude might saturate the op amp) and its frequency to 1 kHz (see later). The problem was to investigate the frequency-dependent behaviour of the circuit.

Using a signal generator and an oscilloscope with a breadboarded version of the circuit, you can sweep the generator frequency over a given range, using a sine-wave signal, and watch the changing signal amplitude on the oscilloscope. A simulator program such as SpiceAge plots output amplitude against frequency to obtain the frequency response. To make interpretation easier, we can elect to have the results plotted on logarithmic scales. For the first run of this analysis, where we have no idea of the possible result, we select a wide range, say from 1 Hz to 1 MHz (figure 2). The plot has a sharply peaked pass-band, centre frequency 531 Hz , rolling off symmetrically on either side. Note that it does not matter to what value we originally set the frequency of the generator, as the frequency response test sweeps it over the specified range, irrespective of its nominal value.

The operation of the circuit is based on feedback. We have two feedback loops, each containing a filter. The C1/R1 combination is a high-pass filter and the C2/R2 combination is a low-pass filter. High-frequency and lowfrequency signals passing through the op amp are fed back to the inverting $(-)$ input where they act to cancel out the signal coming from the generator. Only signals of intermediate frequency can pass. Taken as a simple highpass filter, the C1/C2 combination has a cut-off frequency of $0.5 \mathrm{piRC}=4813 \mathrm{~Hz}$. This is the frequency at which the power of the output signal has been reduced to half the input power. This happens when the output voltage amplitude is 3 dB below the input amplitude, so this is sometimes known as the -3dB point. For the low-pass filter C2/C3, the -3 dB point is 0.5 piRC $=60 \mathrm{~Hz}$. The responses of the two filters overlap, as in figure 3 and we can see why the pass-band is so narrow, for the frequency at the -3dB point of the high-pass filter is higher than that of the low-pass filter. The location of the peak would be

Figure 1: last month's Problem - the filter circuit

Figure 3: overlapping responses of the low-pass and high-pass sections of figure 1 produce a sharply peaked band-pass response
expected to come half-way between the two -3 dB points, but this is a mean on a logarithmic scale, the geometric mean. Instead of adding them and dividing by 2, we multiply them and take the square root:

Centre frequency $=$ Square root of $(4823 \times 60)=538 \mathrm{~Hz}$
This agrees well with the curve plotted in figure 2. We can use the cross-hairs to measure roll-off. For example, place the cross-hairs on the curve with the vertical cross-hair exactly on 10 Hz . Read the corresponding decibel figure, which is -47.3 . Now move the cross-hairs further up the curve to 80 Hz . This is 10 Hz doubled three times, a span of 3 octaves. The $d B$ value at this point on the curve is -29.57 . So the amplitude has increased by 17.73 dB per 3 octaves, or about 6 dB per octave. This is a typical figure for the rolloff of a single stage RC filter.

Similarly, the portion of the curve above the pass-band shows a roll off of $-6 \mathrm{~dB} /$ octave. There is a slight increase of response above about 1 MHz . This is due to the frequency response of the op amp itself; amplification falls off above about 1 MHz , the exact point depending on the type of op amp. The effect is that feedback is reduced, the high frequencies are not cancelled out as strongly as before, so there is an upturn in response.

Phase

Another piece of information provided by a frequency analysis is the phase of any given signal with respect to the input signal. We obtained this by checking 'Phase' in the Frequency Selector box when we plotted figure 2, which shows the phase response at node 4 (filter output). In general, it is -90 degrees for frequencies below the centre frequency, and +90 degrees for frequencies above it. There is a sharp 180 degree change in frequency at centre frequency. Sudden changes in frequency are bound to mean abrupt changes in the timing of signals. Signals around 531 Hz that are close together in frequency may show big difference of phase. Since most signals we produce in everyday life are not pure sine waves, but consist of a mixture of sine waves of a wide range of frequencies, we might expect that this leads to distortion. Signals below and above 531 Hz will be retarded or advanced in phase. One way of quantifying this is known as Group Delay, and we can obtain a group delay analysis by checking Group Delay in the Frequency Selector box. The curve (figure 4) shows both positive and negative delay.

While delay may have its uses in other circuits, it plays havoc with a signal of mixed frequencies, and is a disadvantage of this kind of filter. But perhaps this is being unfair to the filter. Usually we set the cut-off point of the low-pass section to be higher than that of the high-pass section. This results in a wider pass-band (figure 5). Phase lag decreases gradually and fairly evenly from -90 degrees to about -180 degrees. The phase curve falls below the scale at the centre frequency, but is plotted 180 degrees higher up the scale above the cut-off point. This is a continuous fall, not an abrupt reversal, and a plot of group delay shows only a gradual variation in delay throughout the frequency range.

Fourier

We continue by using last month's problem circuit to illustrate another important aspect of frequency response. The basis of the Fourier analysis is the fact that any periodic signal, or whatever shape, can be analysed into a number of sine waves of different frequencies and amplitudes. If f is the frequency of the original signal, the fundamental, the frequencles of its other constituent sine waves, the harmonics, are f, $2 \mathrm{f}, 3 \mathrm{f}, 4 \mathrm{f}$, and so on. Sometimes one or more of the harmonics may have zero amplitude. We may, for example, find that only the oddnumbered harmonics are present. After you have processed a signal in SpiceAge, you may carry out a Fourier analysis to find out what sine-wave components it has and what are their amplitudes.

To obtain the signal, we use another major kind of Spice analysis, the Transient Analysis. In this analysis the voltage generator (one or more), and current generators (if any) are put to work feeding their outputs into the circuit and the resultant voltage at all the nodes and currents through all the branches are calculated at specified time-intervals. For example, since our generator has a frequency of 1 kHz , and we would like to follow the action of the circult for 10 cycles of the generator, we click on Time, then on Sweep Times and set the Start time to 0 , Stop time to 10 m (milliseconds) and the Step time to 10 u (microseconds). This gives us 1000 sampling times during the run. We can then plot the voltage at one or more nodes. Figure 6 shows output voltage from time 0 . The 1 kHz signal has an initial bias superimposed on it as the capacitors gradually acquire their charges. To eliminate this stage, return to Sweep Times and amend Start and Stop times to 10 ms and 20 ms

Figure 6: a Transient analysis shows how filter output varies in time
respectively. Re-run the Transient Analysis to obtain 10 reasonably stable oscillations. Having done this, clicking on Fourier produces a plot of the spectral composition of the signal. It is similar to what we could produce by using a Spectrum Analyser.

The analysis (figure 7) shows its strongest component at 1 kHz , as expected. But distortion has introduced signals at other frequencies. The next strongest signal is at 500 Hz , but this is -45 dB down on the 1 kHz signal. This means that its amplitude is only about 0.000032 of the maln output signal, so we can lgnore it. This particular component is probably due to the initial oscillations that have not completely died away. The other signals shown by a multitude of vertical lines really represent a continuous spectrum of 'signals' and probably all of them are due to approximations in the calculations. In short, they are mathematlcal noise. Usually we put a -60 dB Hold on the minimum of the decibel scale to eliminate this noise from the display.

The Fourier analysis also displays the phase of the signals, using small square symbols. In figure 7 the phase of the 1 kHz output signal is +9.81 degrees. Owing to the way the analysis is calculated, this is with respect to the input plus 90 degrees, so at 1 kHz the output is 99.81 degrees ahead of the input, as already shown in figure 2.

Square waves

Pure sine waves are instructive but now for something more exciting! Amend the netlist to Ex=square on the
generator line, and re-run the Transient analysis (figure 8) to plot both input and output signals. The square wave input is clearly seen and we can see an output signal of larger amplitude, but what has become of the 'squareness'? The Fourier analysis of the input (figure 9) demonstrates whatwe mean when we say that a square wave is rich in harmonics. We have cut out the noise by holding the minimum dB level to -50 dB and are not plotting phase. The 1 kHz signal dominates and the next strongest signals are the odd harmonics at $3 f, 5 f, 7 f, 9 f$ and so on. There are also even harmonics, but at considerably lower amplitudes.

The Fourier analysis of the output signal (figure 10) shows what the filter does to each component of the signal. The 1 kHz signal is still the strongest. The next in decreasing order of amplitude are $3 f, 5 f, 7 f$, and $9 f$.

It can be seen that the filter attenuates the higher frequencies more strongly. For example the 1 kHz signal is amplified from 127 mV to 850 m , a gain of over 6 times. By contrast the higher harmonics are reduced more and more as frequency increases. The 5 kHz signal, originally at -14.2 dB has been reduced to 31.0 dB , an attenuation of -16.8 dB .

Further along, the 9 kHz signal shows attenuation of -22 dB . There are also signals at $2 \mathrm{f}, 4 \mathrm{f}, 6 \mathrm{f}$ etc. in the square wave, but of these only the $2 f$ signal is above the -50 dB level in the filtered signal. The output spectrum is dominated by the odd harmonics, which is typical of a triangular wave.

Exploding netlists

If you re-load the netlist used in Part 1 (ET1 issue 3 1997), which included a BC548BP transistor, you can explode it

Figure 11: the 'npn' transistor model is basic but quick-running
by clicking on Netlist and then Explode. The transistor is normally specified in the netlist solely by its model name and its netlist connections. Exploding calls up more detail from a file stored in the Nets subdirectory. In this case the file is one originated by Zetex PLC, using the full Spice format. As in other Spice model files, the description consists simply of a list of parameters and their values. What the computer is to do with these parameters is decided by the Spice software. Parameters include such quantities as $I S$, the saturation current, here with the value $1.3 \times 10^{-14} \mathrm{~A}$. Another important parameter is the forward current gain, BF , which equals 400 in this transistor. Altogether Spice has 40 parameters for specifying a bipolar junction transistor. The BC548BP model specifies only 22 of these, the remainder of the parameters being given default values when a simulation is run. Thus the transistor is represented by a set of equatlons with 40 parameters to put into them. A model such as this gives a highly accurate representation of the transistor, but at the cost of taking an appreciable time to evaluate. If the netlist includes several transistors, it may take too long to run.

An alternative way of modelling a complex component is to represent it by a netlist of simpler components. Models of this kind are stored as .lib files and their netlist is incorporated into the main netlist wherever they are named. One such is the cheap-and-cheerful 'npn' model (figure 11), which is perfectly good enough for non-critical modelling. We leave the reader to discover how it operates. At least it runs very fast!

Problems

Set up the circuits of figure 12 on a breadboard or simulator: (a) is an amplifier which needs improving; find out what is wrong with it and do what you can to correct it. (b) is a precision voltage regulator; how precise is it?

Figure 12: two more problem circults

The Electronic Pathway in Advanced GNVQ Engineering

Barry Lewis and Tim Strickland Price £16.99 ISBN 0333499144 P/b Macmillan Press Basingstoke 1996

This practical textbook covers the Advanced GVNQ Optional Units 11 (Electrical Principles) 13 (Electronics) 19 (Microelectronic Systems) and 9 (Communications Engineering), which between them contain many of the most important topics in basic electronics - to illustrate, the chapter headlngs run through DC circuits, capacitance, electromagnetism, AC circuits, semiconductors diodes and transistors, power supplies, amplifiers, digital electronics, information transmissions (comms), microelectronics and test meters (including oscilloscopes).

The book starts with DC circuits, covering Ohms Law, series and parallel circuits, power dissipation, and so on. It has a good explanation of resistor colour codes, including five-band resistors, and goes on to describe other resistor components such as pots and light-dependent resistors. The text does not avoid advanced concepts - by page 23 we have Kirchoff's Laws - but there are practical experiments to demonstrate, and detailed circuit calculations to help make things clear. By page 31, you are learning Thevinin's Theorem and Norton's Theorem, and when you have completed this, you have a better than average understanding of DC circuits. Matched attenuators, bias networks, and the like are treated matter-of-factly. Chapter 2 covers capacitors equally well. There are examples, with detailed illustrations of individual types of capacitors showing the structure and the dielectric, with the relevant formulae.

Each section also has "guided examples", showing how calculations are applied to practical circuits. At the end of the sections there are sample questions to test your knowledge.

Subsequent sections include Semiconductors, Power Supplies, and Amplifiers (with a selection of op-amp building blocks). The important aspects of combinationai and sequential logic circuits are covered, and there is a substantial section on information transmission, which includes radio modulation systems and fibre optics. Section 10 covers machine code programming, and section 11 covers test equipment.

Satellite Projects Handbook

Price £14.99 ISBN 075062406 X P/b ButterworthHeinemann/Newnes Oxford 1996

This book has been written by Lawrence Harris, who has worked in a satellite ground station, sending commands and receiving data from British scientific satellites. Clearly he has maintained a personal interest in the subject in his spare time as well, and he relates his experiences of satellite monitoring with various types of equipment.

The first five chapters talk about satellites in general, experiences of launching and operating a particular satellite, and various current satellites in detail: what they are for, the frequencies on which they transmit, and other information

The basics of electronics are presented clearly in this book, with understandable explanations throughout, even for topics which are easily made confusing. The authors have aimed for clarity and a down-to-earth approach without sacrificing detail. I would have appreciated this book in my first year at university, and yet it would also be useful to a complete novice.

If you want to learn about electronics at this level, I recommend this book - it is good enough to read for interest, not only to help with gaining GNVQs. The text makes nothing more complicated than it has to be, and will appeal to practical engineering people who want to make things work.

Kits are mentioned as a good way to build up equipment, but circuits and designs are not given. It must be said that the title may be a little misleading to project constructors: this is not a "project" book - It is a handbook for the electronics and radio enthusiast who already understands the principles but has not dealt with satellite reception before. Personally, I would have liked to see some practical circuits.

Subsequent chapters deal with the decoding of weather satellite images, including a fair amount about the necessary computer equipment, although much of this will be familiar to those readers of EII who are more computer-oriented. There are pointers on how you might understand and use weather satellite data once it has،been converted to a picture: monitoring hurricanes and looking at thermal ocean currents are among the suggestions.

Of course, there is more to satellite monitoring than simply receiving weather pictures from known spacecraft. Chapter 10 talks about listening for new or unfamiliar signals and identifying the source - with a warning: sometimes the source of an apparent satellite signal can be the clock of your computer.

This book is not a reference source for information on microwave and UHF reception. Assuming that you already have a fair knowledge of general electronics and at least a minimal acquaintance with rf , then this book tells you how to go about receiving satellite signals and how to start making sense of what you receive. There are useful appendices, and I found the one on Kepler elements of particular interest. I have noticed Kepler orbital elements specified for amateur radio satellites, but Appendix 3 here is the first simple

explanation I have seen of how to use these figures to calculate where the satellite will be at a given time.

Although developments move faster than any book publication can, much of the information here will probably be relevant for years to come. If you want to monitor satellite transmissions but do not know much about how to make a start, this is a good handbook.

Construction Authors

Ifyou have designed and built any kind of electronics gadget for yourself, your home, your friends or your business, it may be suitable for publication in ETI.

Read on!

You may have a one-off project you would like to share; you may be a regular constructor with a new design you are especially pleased with, or you may be a pro designer trying out ideas and looking for feedback.

Your ideas may be simple or complex, analogue or digital, computer-related or rooted in tradition; elaborately cased or (in some cases) not cased at all.
You may be a private hobbyist, an engineer of
advanced standing, or a student. You may be yourself and a soldering iron, a club or a business.

ETI is looking for original project design for publication. "Original" simply means that you have designed the project for a particular purpose or to a general specification, and have worked out how you want to do it for yourself. You can be applying well-known and established techniques, or using the latest components in new applications, as long as the final result is your own design.

For further details of authors' fees and how to write up a project for publication, please write to ETI for our Potted Project Production information sheet at PPP, ETI Nexus House, Boundary Way, Hemel Hempstead Herts HP2 7ST. A self-addressed envelope is always a help, but not a necessity.

WRITE FOR ETH

CONTACT

Cooke Internatlonal

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OHO U.K
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CATALOGUE AVADABLE

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OHO U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CETALOGUE NOW ALSO AVARLABLE ON DISK

OPERATING \& SERVICE MANUALS

CONTACT

OMNI ELECTRONICS
 174 Dalkeith Road, EDINBURGH EH16 5DX

The following items are available until stocks are finished. MISCELLANEOUS

Microswitch Omron V4 1A button RF screened ABS box $150 \times 80 \times 50 \mathrm{~mm}$ PCB switches red, yellow, green \& blue Please state colour mix required.

Ceramic

Polyester
Polyester Polyester Bipolar (Rad) 6.8uF Axial Elec. 470uF Axial Elec. 220uF Radial Elec. Radial Elec. Radial Elec. Radial Elec. Radial Elec. Radial Elec.

CAPACITORS

30p/each £1.50/each 10p/each £1/pk 16 £5/pk 100
50p/pk 10 $2 \mathrm{n} 2 \quad 50 \mathrm{Vdc} 5 \mathrm{~mm} \quad 80 \mathrm{p} / \mathrm{pk} 20$ 100 nf 50 Vdc dil £1/pk 20 $470 \mathrm{nF} \quad 63 \mathrm{Vdc} \quad 7.5 \mathrm{~mm} \quad$ £1/pk 10 $680 \mathrm{nF} \quad 100 \mathrm{Vdc} 15 \mathrm{~mm}$ 250 Vdc 15 mm 100 Vdc 7.5 mm 25 Vdc 32 mm 35 Vdc 22 mm 10 Vdc 2.5 mm 100 uF 10 Vdc 2.5 mm 220 uF 10 Vdc 2.5 mm 100 uF 25 Vdc 5 mm 47 uF 63 Vdc 5 mm 50p/pk 10 50p/pk 5 30p/each £1/pk 5 £1/pk 5 30p/pk 10 40p/pk 10 50p/pk 10 £1.25/pk 10 £1/pk 10 $105^{\circ} \mathrm{C} \quad 150 \mathrm{~mm}$ solder tails $1,000 \mathrm{uF} 16 \mathrm{Vdc} 5 \mathrm{~mm} \quad 25 \mathrm{p} /$ each $4,700 \mathrm{uF} 16 \mathrm{Vdc} 63 \times 25 \mathrm{~mm} 50 \mathrm{p} /$ each $3,300 \mathrm{uF} 25 \mathrm{Vdc} \quad 83 \times 25 \mathrm{~mm} 50 \mathrm{p} / \mathrm{each}$

TOMORROW'S TECHNOLOGY TODAY

STrixi Andy Forder 0144266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 75 p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) £10.50 + VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

\section*{| Veronica |
| :---: | :---: | :---: |
| WWNKITs |
 $88-108 \mathrm{MHz}$ FM TRANSMITTERS}

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.

18 Victoria St, Queensbury, BRADFORD, BD13 1AR Tel 01274816200 Email veronica@legend.co.uk

SWC SCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW
fAX 01815591114

TELEPHONE BUGGNG?

"STOP IT NOW!!" WITH THE NEW BUG X TERMINATOR.
Blocks all phone taps \& telecorders, keeps phone calls and fax's private. For details send a S.A.E. or Tel/Fax: Write for details with
S.A.E. to: F.K.Electronics services, Northgate house, St. Marys Place, Newcastle Upon Tyne, NE1 7PN. Tel: 01914601706 Fax: 01914601707.

WANTED

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. We also welcome the opportunity to quo for complete factory clearance

COLES-HARDING \& CO
Unit 58, Queens Road, Wlisbech, Cambs PE13 7PQ ESTABLISHED OVER INVENTORY TeSTABLISHED OVER 20 YEARS

£50 BT INSTRUMENT

 FOR ONLY $£ 7.50$

 rager on a nom up os so, 3 raxpos of milompor and ane
 guveronned Complen minh haos ond pros 9.50 . Ordor Ref
 Possoge $E 3$ untes y pur arder $8: 75$ ord orec Dent in, pilerim Wen factors
Dept In, Pilygin Weats, Staribridge lome, Boiney. Sensex, RH17 5 PA Telephore: $(0144) 881965$

Professional AUDIO TRANSFORMERS FREE 16 PAGE CATALOG AVAILABLE Fax Toll-Free 0800-96-7106 SESCOM, INC. sescome amrnet 2100 WRRO DR, HENOERSON, NY SSO15 OAfice $702.565-3450$ Fan $70.555-4828$

TRANSFORMERS

 VI Variable Voltage Technology Ltd
TRANSFORMERS

For valve and transistor circuits HT Filament chokes high \& low voltage Standard and custom design large and small quantities Unit 24E, Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 TLP Tel 01983280592 Fax 01983280593

> FAX your advert to us on 0144266998

and
aumel Strobe kits.

SERVICE TRADING CO
57 ERIDGMAN ROAD, CHISWICK, LONDON W4 5BB
TEL 0181-995 1560 FAX 0181-995 0549

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7 , Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

PRINTED CIRCUIT BOARDS

Call Our Friendly Sales Team on 0144266551 \& ask for details

EPROMMER: THE MAIN BOARD TRACK SIDE

FOILS FOR THIS ISSUB

ARE YOUR LIGHTS ON?

EPROMMER: THE POWER SUPPLY BOARD

ETl can supply printed circuit boards for most of our current projects see the list below for boards available. For recent boards not listed, check the constructional article for an atternative supolier
Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in $£$ sterling only, payable to Nexus Special Interest Limited. Please allow 28 days for delivery. AccessNisa orders may be made on 0144266551 (ask for Readers Services). Only boards listed here are available from our PCB Service. For past issues of magazines, copy articles or binciers, please see the admin panel (page 75) or contact Readers Services (see below) for information.

Terms of trade

Terns strictly peyment with order. We carnot supply creoit orders, but will supply a protorma Invoice it requested. Protorma orders will not be processed untl payment is received. Al boards are manutactured from the tods that appear in the EII Foils Pages for the appropnate issue. Pleese check that our foits are sutable for the component packages you intend to use before ordering as we cannot supply modfied boarcts or replace boards that have been modfied or soldered. Boards are only supplied th the listed units. Sorry, we cannot break unts. Prices and stock may bo altered whithout prior notice. Phces and stock isted in this issuo supersede prices and stock appearing in any previous issue. EII, Nexus Special interests and the' representatives shall not be labla for any loss or damage suttered howsoever arising out of or in cornection with the suppily of printed chant loss or darnage sumered howsoever arising out of or in cornection with the supply of printed chr boards or ofther goods or services by EII, Nexus Special interests or their ropresentatives other
than to supply goods or services offered or refund the purchaser any money peid in respect of than to supply goods
goods not suppliad.

Name and Issue of project	Unit code	Price
EIT Issue 7 1997		
Eprommer - main board (double sided)	E797/1	$£ 13.32$
Eprommer - PSU board	E797/2.	$£ 5.64$
Eprommer - personality modules (double sided):	E797/3	
Any ONE module board		$£ 5.09$
Any two modules		$£ 7.90$
Any three modules		$£ 11.85$
Any four modules		$£ 15.80$
Any five modules		$£ 19.75$
All six modules		$£ 23.70$

All six modules

Phease specily which Eprom modules you require. Modules are for 2716, 2732. 2764, 27128, 27256 or 27512. One order codie/overseas postal charge applies whether a selection or all six personality moctile boards are ordered.

Are Your Lights On?	$\mathrm{E} / 797 / 4$	E 5.09
Peak Reading W Meter	$\mathrm{E} / 797 / 5$	$£ 5.09$

Please supply:
Quantity Proiect Unit Order Code Price Total price

Prices are inclusive of post and packing in the UK
Overseas Post and Packing (f applicable): Add $£ 1$ per unit
Name

\qquad
\qquad

I enclose payment of \mathcal{L} \qquad (cheque/PO/money order in $£$
Stering only) to:
PCB Service, READERS SERVICES DEPARTMENT, Nexus Special Interests Ltd., Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST UK.

Practically Speaking

BY TERRY BALBIRNIE

Over the next few months we shall be looking at some calculations used in electronics. Don't be put off - the maths is quite easy! We shall start by looking at units.

Beginners - and not only beginners - in eiectronics are often confused by the number of abbreviations - usually standard scientific symbols - in use. For instacne, on any multi-tester there are milliamp and microamp scales, and there may be a millivolt scale as well as volt scales, and so on.

The reason for this complication is that the measurements need to span a very wide range of values, and the use of prefixes like milli (one thousandth) and micro (one millionth) makes life much easier and avoids a lot of zeros. Some examples will make this clear. Suppose, in making a check on a circuit, we measure a current of four amps (written 4A). This would be measured on the 0-10A scale (many amateur muti-testers do not have one of these, but many professional models do). Suppose, at some other time we measured a current of five thousandths of an amp. This would be measured on a milliamp scale - 1 milliamp being one-thousandth of an amp. This is written " $5 \mathrm{~mA}^{\text {" }}$ because it is much quicker and more straightforward than writing 0.005A - and there is not the risk of "losing" zeros in reading or writing it. And please note! These "value signs" are case-sensitive - " m " is not the same thing as " M " - but we will come to that below.

In a similar way, one millivolt (mV) is one-thousandth of a volt and one milliwatt (mW) one thousandth of a watt.

Suppose we then need to measure six millionths of a an amp. This would be measured on a microamp scale - 1 microamp being one millionth of an amp. Six microamps would be written $6(\mu) A$. The prefix micro μ is the Greek letter called "mu" and is used - like many, many Greek letters in scientific notation - because otherwise we simply run out of letters to designate the different values. The letter " m " could not be used for both thousandths and millionths. The "longhand" way of writing $6 \mu \mathrm{~A}$ is 0.000006 A . Again, the micro prefix may be used in other situations such as microvolt $(\mu \mathrm{V})$ and microwatt ($\mu \mathrm{W}$).

But, as you will have noticed, there is a catch here modern typesetting is faster and more reliable than the old "retyping" process - but still shares some limitations with oldfashioned typewritersI. "Copy" (the publishers' name for what you are reading here) may "hop" several different computers before it reaches the printer - and Greek notation is not part of the basic ascii character set, just as it was not featured on a normal typewriter keyboard. Ascii is still the most reliable way of "moving" copy without inviting unwanted transformations so authors and publishers still use substitute letters for Greek

Ohm, amp and volt scales on a popular type of multi-meter

notation. The most well-known ones are " u " for " μ " and " R " for " Ω " (ohms).

We sometimes use prefixes to divide a unit into even smaller parts. This is best illustrated by capacitor values. The standard unit of capacitance, the farad, is generally too large for everyday use. A 1 F capacitor is not needed very often. It is much more usual to use millionths, thousand-millionths and millionthmillionths of a farad. The prefix for a thousand-millionth is nano (n) and for a millionth-millionth, pico (p). Thus, a capacitor having a value of 100 millionths of a farad would be written $100(\mu)$ F or 100 uF (or simply 100 u). One having a value of 100 thousandmillionths of a farad would be written 100 nF (or 100 n) and one of $\mathbf{1 0 0}$ millionths of a millionth of a farad, 100pF, or 100 p.

Bigger and bigger

Other prefixes are used to scale units up. In electronics, this is usually by factors of one thousand and one million. One thousand is given the prefix "kilo-" and one million the prefix "mega-". This is familiar in everyday life as the kilogram (1000 grams), the kilometre (1000 metres) and even someone earning megabucks! it is particularly convenient when talking about resistance values. Remembering that the symbol for the ohm is " Ω " or (informally) "R", a 10 -ohm resistor would be written 10R. However, it is common to use resistor values of thousands or millions of ohms. Ten thousand ohms ("ten kilohms" - not "ten kilo-ohms") is written 10kR or just 10k, and ten million ohms, 10MR or just 10M ("ten megohms", not "ten mega-ohms"). To carry this further, a resistor having a value of four thousand and seven hundred $(4,700)$ ohms would be written 4.7 k , and one of six million eight hundred thousand $(6,800,00)$ ohms wauld be written 6.8 M .

There is a clever way of avoiding the decimal point and that is to use the prefix in place of it. For example, in a parts list you may find $4 k 7$ or $6 M 8$ specified for the values of the resistors above. A resistor of value 4.7 ohms may be written 4R7 or $4 \Omega 7$, and so on.

No mixing!

There are hundreds of alphabetic, Greek and other letters in use as abbreviations and symbols, although you may meet only a few of them, and you can see that there is room for confusion. For instance, if you write "Ma", instead of "mA", it could be read by the unwary as "mega-metres-per-second" (a unit of acceleration), instead of "milliamps" as required. Whereas "S" means "siemens" (a unit of conductance), "s" means "seconds" (the most commonly used unit of time in electronics) - an "ms" is a "millisecond", but an "mS" is a "milliseimens". " k " means "kilo" (one-thousandth) but to confuse matters further, a computing "digital thousandth" is 1024, written " K " and is still called a "kilo-" (as in a "kilobyte", 1024 bytes). The whole field of computing is still ambiguous as to abbreviations, but " B " is most consistent for "bytes", and "bit" for "bits". But in a different field "K" also stands for "Kelvin", a specialised measure of temperature. And " m ", as everyone knows, also means "metre", as in "mm" for "millimetre". So it is wise to be wary.

Fortunately, not many of these notations clash in meaning in a disasterous way, but there is one where wariness is really important. The high voltage needed for a TV picture tube is several thousand volts (kV) and in scientific research voltages of several million may be used (MV). An LED may consume 20 milliwatts $(20 \mathrm{~mW})$ but a power station may generate 2000 megawatts (2000MW). So you will see that it is vital not to mix up your " m " with your " M "

New equipment, scanners, packet radio, construction, dub news, views and much more.

This month in HRT:

Control that rig!
Bob Howlett G6RHB describes a simple digital controller for your ex-PMR transceiver based on the PIC 16058 miacocontroller chip
On Test: Realistic scomner receivers
Chris Lorek GAHCL takes a look of the new PRO-2014 base scanner and PRO-29 handheld

Free Competition

Your chance to win a Radio Receiver Trainer in this month's free competition

All In A Day's Work

Harry leeming G3ull brings a worrying tale of $\mathbf{2 5 0 0 \mathrm { V }}$ appearing ot an aerial sodket from his experience in repairing amoteur radifo equipment
50 MHz repeaters now active
Lotest news on the new 50Milz repeaters now on the cir
Book review: Personal Computers in the Ham Shack
Reviewed by the HRT editorial staff

Rig bargains

In our Second Hand Dealer equipment lists
PIUS
Radio Today, Scanners for listeners, free redio Software Offers, free reader's ad's, band reports and more.

Around the

 orner

Published by Nexus Special Interests Limited Nexus House. Boundary Way, Hemel Hempstead. Herts HP2 75 T Tel: 0144266551 Fax: 0144266998
EDITORIAL
Editor
Helen Armstrong
Administration Assistant Lynn Bugden Consultant Andrew Armstrong
PRODUCTION Designer Dan Sturges
Technical Illustrator John Puczynski

Production Executive (Copy control) Marie Quilter Printed By Wiltshire Led., Bristor Origination by Ebony. Liskeard SALES
Advertisement Manager Andrew Forder 0144266551×331

Group Sales Manager Jason Wollington
MANAGEMENT Divisional Managing Director John Bridges
Buslness Manager Stuart Cooke

Circulation Manager William Pearson
Marketing Manager Jason Doran
Copy Sales Manager David Pagendam

Next Month...

Volume 26 no. 8 of Electronics Today International will be in your newsagent on 18th July 1997 ... Douglas Clarkeson will be chasing intelligent robots (or maybe they will be chasing him) ... as valve hifi, radio and and amplifier equipment becomes evermore popular , Peter Kenyon has designed a portable Value Characteristic Tester for identifying and matching valves ... If you can never find the tiles, the cards and the dice for the family word games, try Electronic A-Z for your letters of the alphabet Terry Balbirnie's Brake Light Checker is a safety feature for your car ... If you are thinking of doing Electronics at college, we look at some of the country's leading departments ... all the regulars, and more.

Contents are in preparation but are subject to space and availability.

The lucky winners of last month's Swift Designs competition (skilful as well as lucky, of course) are Mr. K Mitchell of Loughton and Mr. L Hadden of Ballygawley. Mr. Mitchell wins a copy of EDWin NC Deluxe 3 along with Thermal Analysis and EDSpice simulation. Mr. Hadden wins our runner-up prize of EDWin NC Basic. Congratulations and we hope that both readers enjoy many happy hours in CAD country.
us when we need long runs. The "recession" only affected the cash flow, not the quality.

Bear essentials

Swindon-based part-time adventurer and explorer David Hempleman-Adams and fellow adventurer Rune Gjeldnes from Norway were presented with two custom-programmed "Mincier" pagers by Blick Telefusion Communications Ltd. of Swindon to accompany them on their unsupported walk to the North Pole.
The four preprogrammed pager messages were: "Stop", "Lunch", "Emergency" and "Bear".
The two travellers are travelling some distance apart for safety reasons. The pagers pass essential information between them. On the face of it, these messages contain 75 percent of all the information needed for survival in the modern world - never mind the Arctic. But what is the fourth essential? Our consultant says that the answer is obvious - but is he right? The Editor welcomes suggestions, of course.

Last Month's Competition Winners

Or coure, as ther unusul packe start with one rather unusual package this month - including the Eprommer personality modules, tiny double-sided optional PCBS - which we decided in the end to offer on a pick-and-mix basis. But no, we won't be doing liquorice allsorts next month.
I would like to thank our new suppliers, and I would also like to thank our old suppliers, who provided us with a fine service and still make boards for

PROTEUS

The $\mathrm{V}^{\text {h }}$

cencrilion

Schematic Capture

NEW Version IV

Now Foatures
 Gomponent Amto-Placer Pinswan/Gateswan Optimizer Background Regencration of Power Planes Enhanced Amorouting with Tidy Pass Full Gontrol of Schematic Aupearance Extensive New Gombonent Libraries

Available in 5 levels - prices from $£ 295$ to $£ 1875+$ VAT. Call now for further information \& upgrade prices.

- Produces attractive schematics like you see in the magazines. ©Netlist, Parts List \& ERC reports. OHterarchical Design. ©Full support for buses including bus pins. Oxtensive componient/model libraries. Advanced Property Management. oseamiless integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation. © Event driven Digital Simulation with modelling language. OPartitioned simulation of large designs with multiple analogua \& digital sections. OGraphs displayed directly on the schematic.

-Automatic Component Placement. QRip.Up \& Rety Autorouter with tidy pass. ©PinswaptGateswap Optimizer \& Backannotation 32 bit high resolution database ofull DRC and Connectivity Checking, OShape based gridess power planes. ©Garber and DXF Import capability.
- PSOJEUS
is parisiouterly y O O.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit, Tel: 01756753440 . Fax: 01756752857 . EMAll Sintelaberntencu uk

[^1]TPCIB-IP(D)L ${ }^{\circledR}$
(R)

TRIED \& TRUSTED STRAIGHT FROM GERMANY

[^0]: NB.
 ALL FUSES ARE MADE IN THE UK AND FULLY MEET BS4265 \& BS1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

[^1]: Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

