

ELECTRONICS TODAY INTERNATIONAL

4.GO ROCKET LAUNCHER FOUR FIRINGS AND A COUNTDOWN

DIGITAL PHOTOGRAPHY COMING OF AGE?

MIGHTY MIDGET AUDIO METER AND SIGNAL TRACER

REC

CHARGE

PLUS

- A High Performance Medium Wave Receiver
- Computer Controlled Christmas light Show

T ELNET

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Moblle: 0860400683

 Howlett Pactard B015A - Solvily Puse Conerator Mownor Pactard 8405 A - Vector Vortotor

 Mewlett Packard 8180A - Data Genverator $\$ 1500$ Mownott Packurd 8182 A - Dam Ancyser

Hewlent Peckard 8750A Storme normmiser
Hewivet Peckard 0756A - Schltr Notwork Aneition C375
Hewotl Packard B903A - Audio Aneycer (2014 - 10010 kt) -
Hewioff Pacleard 8958 A - Colluler Redio Inverfaci
Hewion Packard 8901 A - Modutation Anelvor.

Hewiott Packard 16300 - Loge Andyser (43 Chernet) $-\quad 850$
Hewlett Peckard 117290 - Carrien Noise Wat Sel
Krohn Hite 2200 Linlog Sweep Goneralo
Krohn-Hite 40244 Onciato
Krohn Hite 5200 Sweeg. Function Generator

Marconi $20222 \mathrm{~A}-1010 \mathrm{~Hz}=1 \mathrm{GHz} \mathrm{AWFM}$ Signal Gonerato
Marconi 2432 A s00Nuly digrai trea meter
Marconi 2671 Dala Comms Anmpsor.
Marconi 2955 - Redio Comme Test Sel $\quad 1000$

Marconi 6966 - Power Meter os Sensor.
Philipe PM S167MH2 function os Sone
Philipe PM S167MHz tunction (GiPn.

Philips PMSE87 - Vactorscoce
Philipa PMS716 $=50 \mathrm{MH} 2$ Putse Generator
Philpe purees2 15012 Prog Generator.

Phillpe Puse 73 - 120 M (z High Resolution Unversel Countier
Proma $4000-6$ y Opt Multimeter (NEW)
Recel Dane 9081/9002 Symul ing gen 5 50MMHz
Racel Dana 9084 Syith sug gen, odNHz
Racel Dana 9303 RF Leve Noter 8 Hoed......
Aacel Dana 9917 UHF frequency moter 560 WHz
Recel Dana 9917 UhF frequenclumet (560 wh va

Rotide i Schwerz Scud Redio Code Tast Sel $\quad 8300$

Schatine, NSG 203A Line Vohage Variation Simulator
Schaftier NSG 222A interterence Simulato
Scheftner WSG 431 Electrostatic Discharge Simulator.
Schiumberger 4923 Redio Code Tes1 Sel.
Schiumberger 4031 - 1 GHz Redo Coms Test Set
Schiumberger $4031-1 \mathrm{GHz}$ Redo Comms Test 8 Sol

whivetorm generald - Microweve Froquency Counter (2850 Mz)
Teloquipment CT71 Cune Trwow,
Totrirenti 1240 Logic Aralyser
Tetrionir DAS9906-Senes Lopic Anatyat
Tedtronir DAS9100 - Senes Lagic Ahalvser - SCSO4, SW503 SQ50e
PGs0s. FGS04. FGSO3. TGS01. TRS00 \& meny more

 Tomronir PGS00, TGSO1 \& SG503 f Y 503 - Oscilloscope Calboalo Tetronir 577 - Cunv Trucer
Time 9811 Programmacie Res
Time 9614 Vollage Ceitrator

Time 9614 Voltape Celbrator

Vathalle Seiontific -2724 Programmabie Resistance Suandiard \quad EP.O.A.

Wayne Kart 2225 -LCA B
Wayne Ker 8425 - Precrson Componemi Anelveer.
Wayne Ker asos - Precision LCP Wolef
$\begin{array}{ll}\text { Wovetek } 171 \text {-Symithetised Function Gienerator } & \text { CR50 } \\ \text { C250 }\end{array}$
Wavotek 1728 Programmuoid Sig Sowce $(0.0001 \mathrm{~Hz}-13 \mathrm{milz})$
Wevelek $3010=1-1 \mathrm{CHz}$ Sipnal Genee eto
Wiltron 6620 S - Proprammebide Sweep Generator $(3.6-650 \mathrm{Mt})$ ——

MANY MORE TTEMS AVAILABLE

Contents

Volume 26 No. 13

Next Issue 2nd January 1998

Regulars

ORDER CODE: CM3900A
PRICE: 2900 p

FEATURES

LAHOE LCD OISP

Manmer
masmum Reaping 1000 • UNTT SNCCLE MWUAL ROTARY SWRTCH FOR AUTOTION ANO RONGE OPERATION OLOOE TEST FUNCTICN ALS ANOES OVERE OAO PHOTECTEO SUPPLEO WITN TEST PROBES
OC VOLTMOE: 200 NVIRVROOV/ROOV 700 V ACCURACV 205
 DC CURRENT A: 200w 220 m WZ00m 2 anzoa ac Cunhent a zoornamanoomaz nzoa roomy

CM2300 DIGITAL MULTHETER

- 3 licD oisplay
 - heicort izmo

- max reapng 1900
hn noication for mion voltage - smgle mainul hotaen swtoci for FUNCTION AND RUNGE OPERATION - ALL RWNGES OVERIONO PMOTECTEO soa dC Curaent test - DC Voltage zvaovroovisoov, AC VOTHOE 200500
- resistance zasa rold pooda rama - SUPPUEO WTTM TEST PROBES ORDER CODE: CM2300 PRICE: 975p
CM2400T DIGITAL QULITMETER WITM TEMP MEASUREMENTT RLATVE - seco displar - MEICNT tamom MAXIMM REAONG YOD IOA DC CURAENT TEST
OC Voctace zoomvirvizov/200V/1000V dC VCUATE zoorsjov.
 SUPPLED WITH TEST PROBES tenperature measuriement - COMTMMITY VEST - OOOE TEST \& CONTMUTV CRECX - mll ravces overlono protected ORDER CODE: CM2400T PRICE: 1450p

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send โ1 Pap and VAT at 17.5%. Govt. Colleges, otc
Orders accepted. Please allow 7 days for delivery. Prices quoted are subjeci to stock availablity and may be changed without notice.

TV and video parts sold are replacement parte
Access 8 Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION

models	CODE	Price
PRO800, MSS200 (2GHZ) (221-2077062)	TUNERO1	16509
PRD900, MSS500, MSS 1000 (2Ghz) (221-2177012)	TUNER02	1650p

MODELS	CODE	PRICE
PACE9000	PACECO00	8000
PACEPR0800, PRD900	PRD800	5500

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYSTEMS. THE SATMETER CAN BE USED AS STAND ALONE METER WITH POWERING THE LNB AS WELL AS IN LOOP. THROUGH OPERATION WITH SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm
MAXINPUT SIGNAL: - 10 DBM

LED INDICATOR: VERTICALHORIZONTAL POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO-10 OBM

ORDER CODE: TOOL 22 \qquad PRICE: 8500 p

			FUSES	
	TIME LAG)	OUICK BLOW	(20MM)
CURAENT RATMNG	OMDER CODE	PRICE	ORDER CODE	PAICE
100 mA	FUSE36	$75 p$	FUSES	60 P
160 mA	FUSE01	75p	FUSE17	$60 p$
250 mA	FUSE02	75p	FUSE18	600
315 mA	FUSE03	75p	FUSE 19	$60 p$
400 mA	FUSE04	75p	FUSE20	60p
500 mA	FUSE05	75p	FUSE21	60 p
630 mA	FUSE06	75p	FUSE22	60 p
800 mA	FUSE07	$60 p$	FUSE23	60p
1 A	FUSE08	60p	FUSE24	60p
1.25A	FUSE09	60p	FUSE25	60p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE 11	50p	FUSE27	60 p
2.5A	FUSE12	50p	FUSE28	60 p
3.15A	FUSE13	55p	FUSE29	50p
4A	FUSE14	55p	FUSE30	50p
5A	FUSE15	60 p	FUSE31	50 p
6.3A	FUSE16	$60 p$	FUSE32	50p

NB.
all fuses are made in the uk and fully meet BS4265 \& BS 1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

CERAMIC PLUG TOP

20 mm CERAMIC TIME LAG

Remibating	ORDER CODE	PRICE
63 A	FUSE38	1000
84	FUSE39	1000
10A	FUSE40	1000
3.15A	FUSE41	85p
$4{ }^{4}$	FUSE42	850
5 A	FUSE43	85p

38 mm CERAMIC TIME LAG

	ORpincos	Pat
10 A	FUSE48	Alse

32 mm CERAMIC SLOW BLOW

CURRENT RATING	ORDER CODE	PRICE
OA	FUSEEA	$155 P$
$10 A$	FUSEA5	1850
104	FUSEE6	1859
$20 A$	FUSEA7	210 p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILL BE CHARGED AS FOLLOWS: 300P FOR 5 CANS
450p FOR MORE THAN 5 CANS

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND OUOTATIONS ARE GIVEN FOR

GII
 ELECTRONICS
 TODAY IMTEAMATIONAL

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

The Patent Office puts intellectual copyright information on the Web

The UK Patent Office has launched its own Web site at http://www.patent.giv.uk, with access to over 400 pages of information about intellectual property, and the publications and servicos of the Patents Office. The site is held on the Patent Office's own Web server and will be updated on the day that news or other information amtives at the office.

The home page offers iniks into sectlons on Copyright. Designs, Patents and Trade Marks. There are also links to a Newcomers' Guide (which explains the differences between types of intelectual property), contact detals, news pages, publications, prices and commercial search services. Users are helped by an Excite search engine within the site. A section on intelectual property tights on the Internet is intended to be useful to those providing or using on-line material.

Under each of the major neadings is a description of the
nature of the right described, and the protection is offers, as well as guidance on how to acqure or assert the nights and how. where necessary or appropriate, 10 renew them.

The Patent Office plans to develop interactive elements on the site to enable users to gain acoess to forms. In the long term, access to the patent and trade mark databases is under consideration.

The site was designed by the Central Olfice of information to be "styish, easy to load and use, and full of hetpul crossreferences and useful information." Welcoming the site, minister of state John Battle said: "... the Patent Office Web site provides a valuable resource and point of reference. Innovalive businesses, unversity departments and schools should bookmark this site now." isaac Asimov would like the idea of bookmarking internet sites.

The home page also provides a link to a "Focus on a particular lecthology". The first technology to be featured is the widget or "device for promoting froth", starting with Guiness's first patent on the subject in 1972. The site is clearly being promoted with engineering and lechnology personnel in mind, although whether the marketing focus is night on target is open to debate, as observation indicates that they tend to prefer real ale and imported beers in chunky bottles.

For more information (on the Patent Office Web site) contact Dave Morgan, the Patent Office, tel. 01633814703.

Radio Rally at Canvey Island next month

The Thirteenth South Essex Amateur Radio Society Padio and Computer Rally will be held at The Paddocks, Long Road, Canvey Island, Essex at the end of the A130 on 1st February 1998. Doors open at 10.30 am and the Rally features Amateur Radio, computer and electronic component exthbitors, Bring and Buy, RSGB Morse testing on demand (bring two passpor photos if you want to take the test) and refreshments. There is reee car parking, with space by the main doors for disabled visitors. "One of the biggest and best ralies in Essex, getting bigger every year!" say the organisers. Admission is £1. For more information contact David G4UVJ Tel. 01268697978.

New Amateur 136 kHz Receiver Kit

Cambridge Kits have produced a receiver kit for the new amateur band on 136 kiohertz. This is a lower-cost version of their 60 kHz receiver, originally designed for their MSF Clock. with details for modification to 136 kHz . The compact receiver features a narrow band If (100 Hz wide), S meter and
headphone outputs, 50 dB AGC range and a built-in antenna capable of receiving stations up to 3000 miles away. The introductory price to readers quoting EII with their order is £29.30 including UK post and packings Contact Cambridge Kits, 45 Old School Lane, Milion, Cambridge CB4 48S. Tel 01223860150.

Radio Spectrum group set up by Government

Minister for Science, Energy and Industry John Battle has announced a new body, the Spectrum Management Advisory Group (SMAG), to advise Ministers on "strategic spectrum management issues" and play an important role in developing the application of spectrum pricing.

The SMAG will initially report to Barbara Roche, Minister
responsible for the Radiocommunications Agency, who will also make appointments to the committee.

A summary of 60 responses to the consultative document "Implementing Spectrum Pricing". issued on May 29th this year, is available from the Radiocommunications Agency's library and information service (Tel. 0171211 0500, fax 0171 211 0507), and with the responses in full from the Agency's Web site at http://www.open.gov.uk/radiocom/

New P3 cordless mini power tool

The new cordless powertool from Minicraft is compact and useful for craft and household precision tasks. The Mini Power Tool can cut, polish, grind, engrave and drill in wood, plastic, ceramics, glass and light metals, runs at $9,500 \mathrm{rpm}$ and has 25 interchangeable accessories to do the tasks. The new model P3 can run for 35 minutes between recharges, considerably longer than its M81037 predecessor.

Another feature of the new model is the Minicraft

3-grip position with Pen Grip for close work and engraving, Palm Grip for sanding, cutting and carving. and Pistol Grip for drilling. The Mini Power Tool and its 25 accessories come in a sturdy plastic carrying case and includes an overnight plug-in charger and 12 months full guarantee.

For more information, a catalogue or list of stockists, call Minicraft on 07000646427238.

Memory cards for use with digital cameras

Memory maker Kingston Technology is launching two new data storage devices capable of use In, among other things, the current digital cameras from Kodak and Fufi. The Kodak Digltal Sclence DC120 camera, the 15 MB CompactFlash memory card retails at £173, while for the Fuji DS-7 digital-camera it is offering a 2 MB Solid State Floppy Disk Card (SSFDC) for £21. Optional PCMIA type II adapters for downloading the data to a computer for processing are availablè for the CompactFlash Card at $£ 17$, and the adapter for the SSFOC card at $£ 73$.

The Fuif DS-7 uses the new SSFDC lechnology, with its postage stamp-sized cards, for data storage. The makers offer a serial link cable to connect the camera and a computer for transfer of the stored data. With the help of the SSFDC adapter, it is possible to transfer data from the floppy disk card directly without a cable, to a computer equipped with a PC Card type II siot. The floppy disk cards can be inserted into the adapter and removed again while the computer is running, as with a standard disk drive. The adapter is fully compatible 'with Fujl hardware, software and diagnostics, and runs under Dos and Windows 3.1 and 3.11. Windows 95, Windows NT and OS/2, and supports plug and play under Windows 95 and Windows NT.

Kingston's CompactFlash memory cards, which are likewise fully compatible with the hardware, software and diagnostics for the Kodak DC25 and DCT20 digital cameras, have robust design and fast data transfer rates of up to 8 MB per second. The PC card ádapters for these memory cards permit rapid, convenient transfer of data to any computer with a PC Card type II siot. The CompactFlash products support Dos/Windows 3.1 and 3.111. Windows 95, Windows NT and OS/2.

The memory devices can also be used in personal organisers, pages, games consoles and portable computers, printers and scanners. Kingston also runs a free technical support hotline.

The CompactFlash and SSFDC memory cards and adapters are distributed in the UK by Datrontech, tel. 01256 360360, Ingram Micro, tel. 01908260422 and Simms International, tel, 0181,8777777 . Further and information and a compatibility list for the FlashCard and digital cameras can be obtained from Kingston Technology, Kingston Court. Brooklands Closg. Sunbury-on-Thames, Middx TW16 7EP. Tel. 01932738813.

MIGH POWER．TWO CHANNEL 19 IWCH RACK
 BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS：－MXF200（100W＋100W）MXF400（ $200 \mathrm{~W}+200 \mathrm{~W}$ ） $4 \times 3 F 600(300 \mathrm{~W}+300 \mathrm{~W}) \mathrm{MXF9} 90(450 \mathrm{~W}+450 \mathrm{~W})$
ALL POWER RATINGS RMS．TWTO 4 OMm B，DOTM CHANMELS ORIVEN

 USED THE WORLD OVEA IW CLUES，PUES，CINEMAS，DISCOS TTC．

mXF400 W 18 xNB4＂（3U）KD12＂

PRICESO－MXF200 E175．00 mXF400 233.85
MXF600 〔329．00 MXF900 449.15
SPECLALST CAARIER DEL E12 SOEACM
OMP XO3 STEREO 3－WAY ACTIVE CROSS－OVEE

 Price $£ 117.44+85.00 \mathrm{P} \mathrm{\& P}$
STEREO DISCO MIXER SDJ34OOSE ECHO \＆SOUND EFFECTS＊

Price C144．99＋C5．00 P\＆P SIZEs 482 a 240 』 120 mm
PIEZOELECTAIC TWEETERS－MOTOROLE
 transient response with a lowser distorsion hevel then ordhery dmemic tweatert As a crossover th not reoured EXPC UNW COM LOM LEAFLETS ARE SUPPLIED WITM EACM Tw IET ER
EXP

TYPE＇ A^{\prime}（KSN1038A）${ }^{3}$＇round with protective wive mesh ideal for bookshell and medium uized HiFi spesters Price t 4.90 ＋ 500 PAP． TVPE－${ }^{-1}$（KSN1005A） $3 \%^{\circ}$ super horn tor general purpose speakers． disco and PA．systems etc Price $\mathrm{Cs} .99+500 \mathrm{~Pa}$ P．
 lems and quatity dincos elc．Price $t 6.99+30 p$ PAP．
TYPE＇D^{\prime}（KSN1025A） $2^{\prime \prime}$ re wide dispersion nom．Upper Irequancy iesponse retained entending down 10 mid－range（ 2 KH Hz ）．Sultable lor high qualify $\mathrm{Hi}-\mathrm{Fi}$ systoms and quatily dizcos Priee $\mathrm{CP} .9 \rho+50 \mathrm{p}$ PLP．
 suincob lor Hi－Fi monitor systems efe．Price CS．90＋ 509 PAP P． LIVEL CONTROL Combines on a rocessed mounting plele，level contro and ceobinot ingut iect sochet 85 r 85 mm ．Price CA .10 ＋ 50 p PSR

TIFIGHT CASED LOUDSPEAKERS

A nuw renge of quality houdspasters Gesigned to tabe sovantege of the laves －peater wermology and anciosure designs bost modets utrize stubio quality Cass aluminum loudspeakers with tectory lined grilies，woe dispersion constand directivity horne．oxtruded sluminium corner protection and stow are fined as stancard with top hats for optional locidipeatier stands
POWER MATINGS OUOTEO IW WATTB RMS FOR EACH CABINET
FREOUTMCY RESPONS FULL RANOI $4 B W E=2 O K H z$
WFFC 12－100WATTE（100dB）PRICE E130．00 PEN PAIR IDIPC 12－200WATTS（1000 B）PRICE C175．00 PERPAIR SPECLULST CARRER DEL． 112 SO PER PAIR
OPTIONAL STANDS PRICE PER PAIN SSQ．00 Dellvery ri．co per pel

IN－CAR STEREO BOOSTER AMFS

 PRICAS：

CAR STEREO SOOSTEM POWEA 150 WATTS（7s＋79）Slereo isow Eridged Mtono
250 WATTS（125＋125）Stereo，250w 250 Warts $(125+123)$ Stereo， 250 w
Bridged Miono
$\$ 00$ Warts $(200+200)$ scereo． 500 w Brldged Mono Peotures：
Eivera，bricgabie mono Chotce of
 controls Remote on－oll＊Spoalier \＆
thermal orotection controts Remote on－ont Sopalier
thermal orotection
ming

OHP IOSनET POWER AMPLIFIER MODUTES

 exe Whon comporing pricea．MOTE Mol all mosels include veroved power rupply imegral

TMOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP／MF 100 Mos－Fet Oulpul power 110 watts R．M．S．Into 4 ohms，frequency response $1 \mathrm{Mz}-100 \mathrm{KMz}$.3 dB ，Damping Factor >300 ，Slow Aate $45 \mathrm{~V} / \mathrm{uS}$ ， T．M．D．typlat 0.002% ，input Sensitivity 500 mV ，S．N．R． -110 dB ．Size 300×123 ： 60 mm
PRICE ESO．8S＋C3．80 PAP
OMPMAF 200 Mos－Fel Output power 200 walts A．M Su into 4 ohms．frequency response $1 \mathrm{Mz}-100 \mathrm{KHz}$ -308 ，Demping Factor >300 ．Slew Rote $50 \mathrm{~V} / \mathrm{uS}$ ． T．M．D．typical 0.001% ，input Sensitivity 500 mV ，S．N．R． -110 dB ，Size $300=155 \mathrm{z}=100 \mathrm{~mm}$
PRICE C84．38＋ 4.00 PAP
OMPIIMF 300 Mos－Fef Output power 300 watts ค．M．S．Into 4 ohms．Irequency response $1 \mathrm{Mz}-100 \mathrm{KHz}$ -308 ．Damping Factor >300 ，Stew Rate $60 \mathrm{~V} / \mathrm{uS}$ ． T．M．D．Typleat 0.001% ，Inpul Senallivity 500 mV ，S．N．M． -110 dB．Stze 330×175 a 100 mm
PRICE C81．75＋C5．00 PAP
OMPNMF 450 Mos－Fot Output powner 450 watls R．M．S．into 4 ohms，trequency response $1 \mathrm{Mz} \cdot 100 \mathrm{KHz}$ 308 ，Damping Factor >300 ，Slow Rale 75 V／us． T．M．D．typical 0.001% ，Input Sensilivity 500 mV ，S．N．A． 110 dB，Fan Cooled．D．C．Loudspeatier Prolection， 2 Second Anti－Thump Delay．Size 385 ¥ 210 \＃ 105 mm ． PWICE C132．85＋E5．00 PAP

OMP／MF 1000 Mos－Fet Output power 1000 watts R．M．S．into 2 ohms． 725 watts R．M．S．into 4 ohme． trequency response $1 \mathrm{Kz}=100 \mathrm{KMz} \cdot 308$ ，Domping Factor >300 ．Siew hate 75V／uS，TAM．O．typical 0.002% ，inpul Sensitulity 500 mV ，S N．．．-110 dB ，Fan Cooled．D．C．Loudspeatier Protection， 2 Second Anti－Thump Delay．Size 422 I 300 y 125 mm ．
PRICE $5250.00+$ C12．00 PAP
mote mot mit moour me ane avarlate in Two veranowan

LOUDSPEAKEMS

LaAGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUOINO CABINET FITTINOS，SPEAKER GRILLES，CROSS－OVERS AND MIOM POWER，HIOM FREOUENCY EULLETS AND MORNS，LAROE（AS）S．A．E． （ 80 P STAMPED）FOR COMPLETE LIST．
McKerzio and Fane Loudepeakers are also avallabte．

EMINENCE：－INSTRUMENTS．PA．DISCO．ETC

ALL EMINEMCE UNITS \＆OMMS IMPEOANCE
－ 100 WATT R．M．S．MUB－ 100 GEM．PURPOSE LEAD OUITAA．EXCELLENT MMD，OISCO RES FREQ T2Mz，FRE O．RESP．TO AKHZ．SENS OTOB
$10^{\circ} 100$ WATT R．M．A．MB1 O－ 800 QUITAM．VOCAL，
RES FAEO TMH．FREO．AESP 107 KHL SENS 87 OB， $10^{\circ} 200$ WATT RMES．ME $10-200$ OUITAR，KEV V＇D． RES FREO．ASH2．FREO，RESP．TO 3 SKH2．SENS PPO
 AES FREQ SMH2．FREO．RESP．TO CKMR．SENS IOOdB．
 pqial C32．71－ EXCELLENT MID Paice c33．74＋ 82.50 PaP ONITOR，AE S FREO 4ZH2．FAEO．AESR．TO IOXME SENS IOE RESPONSE．PA．，VOCAL，STACE 12 200 WATT R．M．S．ME1 2－200 GEM．PURPOSE，GUTTAA．DISCO，VOCAL EXCELLENT MID． AES．FRE O．SOH2．FREO．RESP，TO 6 KME．SENS Sede $12^{\circ} 300$ WATT RM．S ME $12-3000$ MIGN POWER BA
RES TREO 4 TME．FREQ．ME SR，TO SKME．SENS 103 AB ． PRICE C4S．71－E3．50 PCR KEYBOAAD，DISCO ETC． 10° 200 WATT RMA．S．MEI 8－200 GEN PURPOSE BASS INCLUDING BASS GUTTAR． RES FREQ．HMNz．FAEQ．RESP．TO SKME．SENS MOB．PRICI CSO．7 IS 300 WATT RMME MEIS－ 1500 HIGHPOWER BASS，INCLUDING BASS OUTTAR． RES，FAEO． 36 Hz ，FREQ RESP TO 3 KHz ．SENS 103 aB ．

सAREENDERSS－MIFI．STUOIO．IN－CAR，EFC

 AASS，SINOLE CONE，MIOM COMPLIANCE，MOLIED SURROUND B^{-}BOWAlt MEA－SO DUAL IMPE OENCE，TAPPE D WI OWM BASS，WI－FI，IN－CAR． MES FAE O．CONZ，FRE O，AESP．TO TKMZ SENS 9 TUQ RES FAEO HMM，FREO RESP TO SKMz，SEWS 99dB OWIW BASS，W．FMICAR MES FREO $35 M \mathrm{H}$ ．FREO．RESD．TO 3 KH ．SENS S 900 1E＇LOOWATT EB12－100 BASS，STUDIO，MIFI，EXCELLENT OISC O RES．FREO $24 M 2$ ，FREO RESA．TO 3 KME．SENS $930 B_{6}$ FULL RANOE TWIA COWE，MION COMPLIAWCE，MOLLED SUAROUND E＊。＂GOWATT EES－COTC（TWIN CONE）WI－FI．MULTI－AARAY OISCO ETC． MES，FRE Q G3ME，FREO．RESR，TO 2OKH2．SENS P20B\％ C He GOWATT EAC－GOTC（TWW CONE）W1－FI，MULTH－ARRAY OISCO ET

 RES FAE Q，HMH2．FAE O．RESP．TO YOXMz．SENS 89OB，

LhANSMITTER HOBBY KIIS
PROVIM THANSMITTER OISIGNS WCLUDNG GLASS FIBRE DRINTED CIACUIT BOA AD ANO HIGM OUALITY COMPO
COMALETE WITN CIRCUIT AND IWSTRUCTIONS
sw rumspryin mimere vancal commouto moresiome

Newr sews hicl Ca .00 © 1.00 MAP

3．K．＝L＝CTRONIeS UNI＇s is 5 comer wav southeno onsea．

Book Reviews DO II YOURSELF ROBOTICS

An Introduction to Robotics
Author: Harprit Sandhu
Publisher: Nexus Special Interests
Price: $£ 9.95$
This is a book covering the essentials of robotics, aimed at people who want to understand the technical details of how a robot can be made to function, but who may not necessartity wish to assemble one at present. Nevertheless, should you wish to assemble one, this book will help you do it.

The book starts with a brief view of ideas about robots in history, related to the technological developments required to make such robots a practical possibility. Considerable coverage is given to the software requirements, particularty robotic vision. At one point the author states that the software is the most important part of a robot. an opinion with which I would agree.

As a preliminary to addressing the general requirements for a robot, the author describes robots currently in use. Robot arms and automatically guided vehicles are the most widely used robots to date.
There are brief chapters covering motors, how to drive them (for example with pulse width modulation), and encoders to measure position. Chapter 7, about a third of the way through the book, pulls together all the requirements for a basic robot, while Chapter 8 covers the basic requirements of computer control. After that it gets rapidly more technical and detailed, dealing in turn with a software control code for robots, an vision systems. This section deals understandably with
concepts sometimes thought complicated. The author explains what can be done without getting lost in mathematics, as can too easily happen when dealing with convolution and the like.

By hall way through the book, the author is dealing with the assembly of a robot intended to be straightforward enough for most diy constructors to build, and good enough to illustrate some of the problems and solutions for controlling a robot. The last section of the book deals with programming the robot, making it move and walk using a programming code designed for the purpose.

Appendices include a glossary and ascili table, information on a PIC based controller for robots, assembly drawings, and other necessanes.

If you are interested in robotics, and particularly if you would like to do some practical experiments, then you may find that, with the aid of this book, you can reach the stage of having something to experiment with rapidly and efficiently.

SURFACE MOUNT FOR EVERYONE

A Practical Introduction to Surface Mount Devices
Author: Bill Mooney
Publisher: Babani Electronics Books
Price: $£ 4.99$
Modern electronic equipment is more likely to be made with surface mount components than with conventional throughhote ones nowadays. A major reason is to make consumer items smaller, but in addition assembly by automatic
component placernent and infra red reflow soldering can be cheaper than the through hote alternative.

One consequence of this is that a number of useful component devices are only made in surface mount packages, and through hole equivalents are not always introduced. increasingty, in the future, it will become useful for the home constructor to be able to handle surface mount components.

Here is a book which aims to show the home constructor how to make practical use of surface mount techniques, without the need for the methods used in industry. Industrial techniques use very expensive tools. such as infra red reflow equipment, and have high setup costs but low cost per unit manufactured. This is the exact reverse of the normal amateur constructor's requirement.

This book covers prototyping, which is possible using smds, as well as design of pcbs for home manufacture. The different
approach to design and etching necessary for surface mount pcbs is perfectly well explained, as are the specialist tools useful for the task.

Size codes for surface mount passives are explained, both in metric and the currently more normal imperial terms.

There are a couple of sample constructional proiects - one for an audio amplifier, and one for a live wire detector, both useful modules.

The techniques and tools covered here should give a better result than techniques I have found just good enough for surface mount prototyping. Author Bill Mooney is an smd designer and constructor with long experience of small-scale prototyping and building, and knows the problems and pleasures well. Follow the guidelines in this little book, and you should have consistent success with surface mount assembly.

Digital Cameras Coming of Age?

Now that digital cameras are within reach of the ordinary photographer, Douglas Clarkson believes that the secret of their popularity will be in the versatile output that data capture and home printing offer to users.

To delve into the field of emergent digital camera technology is to become aware of another tidal wave of technology being offered to $u s$. This in itself may make the buyer beware, bocause, in a game with many keen players, product lifetimes are likely to be relatively short, at least at first.

While the technology of digital cameras is fascinating, an analysis of the emergence of digital cameras has more to do with understanding the integrated use of such systems than their technology alone. As the Internet expands at breakneck speed, the process of capturing images, processing and incorporating them into weo sites has been fundamentally athered. Suddenly the process of conventional film developing and print/transparency/negative scanning for digital use appears stow and outdated.

Where images can be captured digitally and transferred directly and quickly to perconal computers at an acceptable quality of resolution, this is likely to become the method of choice.

In the media, newspapers from the locals to the nationals are issuing staff photographers with professional digital cameras, so that only minutes after that vital front page image is captured hundreds or even thousands of miles away, it can
be incorporated into page-making software. It is the immediacy of the digital age that is leading to the use of digital cameras where resolution and quality permit.

The uptake of digital cameras by professional photographers doing studio work tends to be determined by the resolution required. Where priht sizes are relatively small, such as for calalogues, professional digital cameras provide a convenient means of rapid capture and review of images. Where the image is needed for a large glossy magazine cover, only top of the range digital cameras with a matching price tag will suffice.

It is obvious, however, that digital cameras are beginning to take off now that the cheapest are below the $£ 200$ mark. The most expensive digital cameras hover at around the $£ 40,000$ mark. It is also obvious that the very newness of the
technology, and the vanous means of linking digital cameras to systems to process the data, can be confusing-for the newcomer.

The appearance of digital camera technology is itself an indication of the maturity of a much broader marketplace in the technology that makes such systems viable. The whole field of exchangeable smart card media which simplifies the process of readout from digital cameras is itself a mushrooming
processing. Advances in this field were introduced by the Kodak Photo CD technology using the standard image resolutions listed in Table 2.

linage resolution Data size		
128×192	72 k	
256×384	288 k	
512×768	1.1 Mb	
1024×3072	18 Mb	

Table 2: Standard image resolution of PhotoCD

This was the first step to providing cheap, high quality scanning to the general public. For 35 mm work the cost per image is around 60 p and up to 100 images can be stored on each disk.

This development has established CDs as a usefut medium for distribution of 'stock' images for media industries such as advertising. Companies such as DigitaNision make available a wide range of royalty-free digital stock photography.

35 mm positives or negatives or film transparencies can typically be scanned over a range of densities. At the high end, the Polaroid Sprint Scan 35 Plus can scan up to 2700 dpl with the 35/LE model processing a very adequate 1950 dpi. The cost of 35 mm desktop film scanners has come down dramatically in the last 18 months, with systems costing now between $£ 400$ and $£ 750$ plus VAT. Entry level desktop scanners cost around $£ 100$.

Scanners tend to use a single-pass system, where a line of pixels has a separate colour filter. Colour data tends to be stored in 8,10 and 12 bits, though display arrays usually handle only 8 bits per separate colour.

The Kaiser company of conventional photoenlarging fame has introduced a camera scanner for capturing digital images with 9.7 million pixel resolution, achleved by moving a scanning head with linear CCDs across the image plane. Such a process can only be used to capture images that are completely static.

With the wide range of products on the market, it is now quite possible for individuals to scan their existing 'conventional film' photographic library and store the images in data bases on PCs or MACs.

DVD

While Compact Disc has emerged as a useful storage media for Kodak's PhotoCD system and others like it, Digital Versatile Disk (DVD) could provide a significantly higher storage capacity of around 7.46 GB , initilally on single sided disks, with a possible extension to 17.6 GB on double sided disks in the future. It is possible that in a few years' time dual CD ROM/DVD drives will allow CD-rom and DVD disks to be read by one format. As image quality increases, DVD systems could be a useful means of distribution of high quality images.

Post processing

Digital camera enthusiasts are replacing the spills and chills of the damp darkroom with the subtle mousework of a PC. In the broadest context, PCs and MAC photo-production and photoediting systems can be seen as an evolution that is almost as significant as the introduction of photography itself. In the context of photography itself, however, the emphasis will be on taking care of the image once it has been captured, or
shooting the same shot many times and recycling the storage space spend on unsatisfactory images - not possible with conventional film. Conventional photography aims to get the image correct as close to first time as possible, with all the relevant appfication of knowledge of light, field of view, depth of focus, aperture and so on.

There is always the nisk that the techniques of post processing, such as red eye elimination, opening the bride'e eyes if she blinks as the wrong moment, sharpening up out of focus lines, and so on. could become, in the wrong hands, fust a makeshift means of 'correcting' poor photography.

Part of the appeal of digital cameras is the degree of control that the photographer has in processing images. In post processing. where image size is increased, different types of interpolation of mages, such as nearest neighbour, bilinear and bicubic, are possible. In nearest neighbour, additionai pixels are

added at the level corresponding to neighbouning pixels, while in bilinear, a linear correspondence of changing values is made between neighbouring pixels. In bicubic interpolation, more complex level-finding is achieved by using data from a range of nearest neighbour pixels.

Advances in CCD technology

Noise in digital cameras can appear as pixels of the wrong colour appearing at random in dark areas. Under ambient dark conditions, a CCD array will produce an average background level of noise. A 'black' reference is typically stored in a given camera system to allow subtraction. One of the quality factors of a digital camera specfication would be the level and variation in nolse levels.

In seeking to make still camera chips ever smaller, the problem of reading the output of smaller charges leads to the introduction of extra unwanted signal noise. Systems such as Canon's Basic Stored Image Sensor (BASIS) are seeking to amplify signals using indindual pixel amplifiers to overcome this problem.

Figure 4: Three CCD image system of the Minolta RD-175 in order to achieve higher resolution

The considerably more advanced DS-300 has a $2 / 3$ inch CCD with 1.4 million pixels, the same chip that is used in the top-of-the-range DS505/515A SLR-type digital cameras. The effective array size is 1280×1000 pixels, which is roughly twice the resolution (four times the pixels) of the standard 640 x 480 pixels of VGA resolution. An increasing amount of connectivity and interaction is available with this modet, as outlined in figure 2. The DS-300 won the Best Digital Camera 1997/8 presented by the Technical Image Press Association (TIPA).

Still further up the ladder lies the Digital/SLR types, DS. 505A and DS-515A, with the DS-515A continuous exposure model costing over $£ 10,000$. The keynote of the DS range is the use of condenser optics to increase light levels at the CCD to increase the apparent speed of the system to ISO 3200. This extends the usefulness of the camera to areas such as sport where up till now digital cameras were 100 slow to capture rapid events. The higher specification of the DS-515A provides a series of three frames per second in a series of seven shots, while the DS505A can record continuously at one frame per second. The condenser optics of the DS-505A and DS-515A are demonstrated in figure 3. The design concentrates the light on the CCD using specialised lens focusing optics. The sensitivity of CCDs will no doubt increase with research, allowing shorter and shorter exposure times. Compression of data is usually in JPEG form, with a variable amount of compression.

Memory cards

The conventional means of image storage can be by SmartMedia with PC adaptor, or ATA type 1 or 1 PC Card (PCM CIA release 2.1). A 10 MB Fullx memory card is supplied with the system, which can In turn accommodate four high resolution TIFF images and 16 'rine' (JPEG) images.

As an option, a SCSI extension unit can be added to connect to a PC SCSI port for high speed data transfer. The PC in this mode can also act to control the camera, effectively making the camera into a computer peripheral.

The SCSI interface allows direct output to a digital colour printer such as a Fujifilm Digital Colour Printer NC-500 or Pictography 3000. In addition, the NTSC/PAL video interface allows viewing of these images remotely.

The memory cards, however, are relatively expensive. With the current price of the DS-300 at over $£ 2000$, this is at present the domain of the very dedicated photographer.

In the present state of digital camera development it is more or less essential that the user has access to a PC or Mac to process the data through data transfer. The day may come when a SmartMedia card can be inserted into a specialised photo developing booth, and you can select which images are to be printed and in what format. Already, colour printers for the dedicated amateur are on the market
which will print directly from a digital camera. The required high definition that is often required, however, is at present only abailable on professional systems available at a few selected sites.

On another front, Sony have resurrected the floppy disc as a means of data storage. One $3.5-\mathrm{in} 2 \mathrm{HD}$ floppy used in the Mavica MCV-FDS and MCV-FD7 can store 20 high resolution and up to 40 standard resolution images.

Unusual features

Searching around will locate digital cameras with unusual assets. The Dimage V by Minolta has many of the standard features - a 1.8 -In colour LCD monitor, 680×480 pixel sensitivity, and so on, but has a novel lens that can be rotated and is detachable from the main camera body. This incorporates a $2.7 \times 200 \mathrm{~m}$ lens, and the camera costs around £599.99. Minolta have identified a number of interesting applications for the system, such as business card databases, pictorial information files for property or vehicles for sale, or

Figure 5: Colour sensitivity of RGB filters is important for rendering faithful colour rendition of, for example, two light spectra A and B
other catalogues that benefit from pictures, making greetings. cards and creating internet pages.

As the number of pixels in the CCD increases, the cost of the CCD rises sharply. The Minolta RD-175 uses a clever mechanism (figure 4) where three separate 380,000 pixel arrays incorporate colour filters and are diagonally shifted to 'fill in' any gaps in the image plane. The final effective resolution achieved is 1528×1146 pixels. Data storage is achieved with 131 MB which can record 114 image frames. This design shows considerable ingenuity and its success requires the relative registration of the CCDs to remain fixed and absolute.

Multiple exposure CCDs

Among the most advanced CCD chip technology is the $2048 \times$ 2048 pïxel chip manufactured by Loral Fairchild. This device has been used in cameras intended for professional use. The technology of these cameras can capture either through multiexposure technique where red, green and blue filters are used for separate exposures or, alternatively, via a single exposure with a mosaic filter placed over the CCD with each pixel generating a red, green or blue signal during one exposure. An interpolation algorithm produces an RGB data file using localised pixel values.

In a commercial environment, the ability to capture images, verily them quickly and print them locally saves time, so that

The Minolta Dimage V with its remote lens

Printers

A range of colour printers developed originally to meet the demand for printing of computer originated/processed images using modern graphics packages, can now be used with digital camera technology if you have the correct format and software.

To recap, Inkjet printers are low cost and usually reliable, but the fibrous nature of standard printing paper tends to blur the edges of dots so that edges appear softer and colours appear weaker. Specialist inkjet papers, however, can make a startling difference to print quality.

Colour laser printers work typically with four separate toners, cyan, magenta, yellow and black (CMYK). Each toner is separately mapped onto the final printing surface by electrostatic charge buildup on a photoelectric belt. In the final stage, the toners are heat fixed on to the paper surface. While output is fast and needs no special paper, the final quality is good but not considered to be photographic quality. Dye sublimation printers operate by moving a plastic dye ribbon-under a series of print heads: which can be accurately heated to varying degrees. This results in dye from the ribbon being sublimated onto the paper surface, providing fine definition copy. Full size A3/A4 printers are expensive, but small printers such as the Fargo FotoFUN are now appearing on the market for around $£ 400$.

While the printing needs of amateur photographers are fairly modest, the developments in mainstream digital colour printing are quite staggering. Various companies are now offering a data download/digital print service. The FoloNet service provided by Fujifim in the UK allows digital images to be printed on state-of-the-art printer Pictography 3000 at 400 dpi . A choice of one, two or four images can be printed on each A4 sheet.

Printing techniques can typically give 300 dpi for high resolution colour printing on A4 to AO sheets and with lengths up to 59 feet. It is even possible, in theory, to design your own wallpaper and have it manufactured in this way. This kind of design will see great change in the next few years. The designer can be anywhere, and the means of final production can be anywhere, and the market for such goods and services can be everywhere.

Fabric printing

The interest in digital photography is growing because the image can printed in so many forms. Among others, interfor decorators should take note. Using the technique of
after a day's shooting hundreds of images can be captured and transmitted to a client for comment and review on the same day. Depending on the quality of the phone lines, distance should be no object. In commercial photography, sharpness of focus in the fietd of view is an absolute key factor. With conventional film, this is typically improved by narrowing down the diameter of the lens ins and using fast film. With digital cameras, normally using multiple exposure, this requires high levels of either tungsten or flash illumination. It can take flash units of the order of 3000 Joules per pulse, and fungsten units with a power rating of 4 kW to give enough illumination.

Rather than invent a wholly new digital camera, independent companies have developed so-called Digital Camera Backs for existing high-quality cameras such as Hasselblad. Camera chips in general offer a smaller field of view compared with conventional film. This can be a complication with studio camera systems using 'Camera backs' with front optics designed for conventional film.
specialised dye sublimation printing onto fabrics, photo-quality colour images can be printed at an incredible 400 dots per inch; a lot more than you get on your souvenir t-shirt. This printing is durable, fully washable and can be ironed. (Although many of us will think it is better progress when ironing is not needed!) In the UK, a company called CPL provide a range of services from eight locations (see points of contact, below). So the new path of fabric production could be artwork, digital camera. PC image processing and dye sublimation printing. It will be interesting to see how the uptake of this kind of process interacts with conventional fabric print technology. There are abundant market opportunities for designer fabrics and designer clothes.

Scanners

Don't throw away your prints, negatives or transparencles. These conventional media with their intrinsically high analogue resolution will conthue to be used for high quality digital image

industry which is shaping other areas such as mobile phone technology. Colour print systems are being developed to provide low cost and acceptable print quality directly from digital data. So digital photography has a complex interaction with a rapidly expanding product base in other areas.

The Internet is already providing one means of distributing digital images, so that before long millions of useful images will be available over the Internet. It remains to be seen, however, how great the demand for such images will be. The real market for professional photography is probably the day by day need for specific studio work.

MediaCards

In a curious twist of technology, SmartMedia Cards have been incorporated into a 3.5-inch floppy disk adaptor that can be inserted into a PC floppy disk drive. This is also being used in paraliel developments such as personal security and access systems for home banking developed by Fischer International Systems. When the "lookalike" floppy disk is inserted into the disk drive it "tricks" the PC Into believing that it is reading a normal floppy disk.

SCSI

The Small Computer System Interface (SCSI) has found ready application in routing data between digital cameras and computers. The first version of SCSI provided a transfer rate of 5 megabytes per second over an 8-bit bus. Table 1 shows how various enhancements of the initial standards have provided increasing performance.

Mode Transfer Rate	M bytes/sec
Original SCSI	5
Fast SCSI	10
Ultra SCSI	20
Ultra 2 SCSI	40

Table 1: Developments of Transfer rate of SCSI
implementations.

The product spectrum

There are probably now over 100 digital cameras on the market, with new models announced daily. It is interesting to
look across a range of products from one manufacturer to see the stages from basic to professional grade.

The Fuif range, for example, runs from the DX-5, which meets the need of the basic digital photographer, to the top of the range FUJXC-DS-515A. Figure 1 shows the basic configuration options of the DX-5. The DX-5 is a typical entry level digital camera with the VGA resolution of 640×480. Data is stored in a SmartMedia Card which can be read by the PC card reader of a desktop PC, or the a PC card adaptor of a Notebook PC with a PC card slot. A senal cable also provides connectivity for PC capture and processing of data. The cable connected is a MiniDIN 9 pin for the serial interface. The basic model has a viewfinder and flash but no LCD monitor. With a 350,000 square pixel array in standard VGA 640×480 form, a 2 MB SmartMedia Card will store around 30 normal images and 22 'fine' images. The sensitivity of the device is equivalent to ISO 150 and shutter speeds are available between $1 / 4$ and $1 / 5000$ of a second.

The next member of the family, the DS-7, incorporates a 1.8 -inch active matrix colour LCD as an aid to picture composition and browsing captured Images. In the "live imaging" mode the screen updates at 60 frames per second using the CCD array directly. Images once recorded can also be played back immediately, providing the option to delete any that are not required. The LCD display is therefore a considerable move on from the basic glass viewfinder. At the same time, it does not give the direct one-10-one viewing of an SLR camera.

Figure 3: Condenser optics of the DS-505A and DS-515A which increases light intensity in the plane of the CCDs

B^{2} Spice $_{8}$

 New Features

 New Features Outstanding Performance

 Outstanding Performance}

- Even more simulation options.
- Perform full temperature and parameter sweeps.
- New graphical functions.
- New libraries of parts including the entire Texas Instruments library.
- Nothing extra to pay for the libraries...they are all included in the price.

As always..

- Everything you would expect from a professional quality SPICE simulator.
- Fully integrated and interactive.
- No limit no maximum circuit size.
- Free technical support.
- 30 day money back guarantee.
B^{2} Spice for analogue simulation $£ 199$
B 2 Logic for digital simulation $£ 199$
Special bundle price $£ 295$
B^{2} Spice Lite (adcal for first time users) $£ 42.75$

Prices quoted exclude VAT
Existing users. If you have purchased a copy within the last 12 months you are entitled to a free upgrade.

Software for design engineers

B^{2} Spice \& B^{2} Logic will give you the accurate results you need quickly and easily.

This software is used by thousands of designers, research institutions and universities around the world. But the best way to be certain that it's right for you is to try it, which is were are giving you the opportunity to do, risk free for 30 days.

For more information call: 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

A growing digital family - some with software included

The first company to introduce low-cost digital cameras was Casio. already well known for personal organisers and calculators. Examples of two ends of their range are the "entry level" QV-11, costing just under §300, which replaced their basic QV-10 earlier this year, with a reputation for good close-up focusing and ease of use. The viewfinder/ monitor consists of the $1.8-\mathrm{in}$ TFT cotour LCD, and the camera can store 96 images in 2 megabytes of Flash memory. The lens has a fixed focal length with a Macro position, and the CCD is $1 / 5$ inch. PC Windows and Macintosh connection kits (software and cable) and video cable are accessories.

The $£ 400$ QV- 200 has built-in special effects with 4 MB internal flash memory and JPEG-based digital storage of up to 192 images in "normal" mode or 64 images in the higher-resolution "fine" mode. The CCD is $1 / 4$. in with 360.000 pixels, and again the 1.8 -in backlit colour LCD doubles as the viewfinder. The lens block rotates through +90 to -180 degrees, with 90 to-180 degrees for reversed images. The QV200 has a facility, for camera-to-camera image datà transfer between Casio cameras with an optional cable at data output resolution (fine) of 640×480 (VGA). The Fine images can be converted to the Normal images to expand remaining memory. Images can be automatically scrolled through for autodemonstration, VCR recording, and so on and individual unwanted images can be deleted after veritying on the display. Software included in the UK is QV-Link, Spir/Panorama and AOL Internet connection.

The very new QV- 700 checks in at around $£ 500$ and as well as a $2.5-\mathrm{in}$ LCD screen - the largest size found in popular models - the QV-700 uses removable Flash Memory cards that can be plugged directly into a PC slot. It is also one of the generation that has internal image manipulation software, so that the user can do certain things without even plugging into a PC: convert an Image to black and white, add labels or store in one of slx named files for easier location. Software includes QV Link, Spin/Panorama for linking separate images into a single image (the our front cover) and before Christmas 199750 hours of free AOL Internet operation.

Lastly for Christmas - the new $£ 330$ QV-70 is a lightweight digital camera that has an optical vewfinder as well as the Casio LCD monitor. This is an interesting departure as the presence of an optical viewfinder saves battery life when the LCD is not in use, and is considered an advantage by many photographers.

While one basic limitation of CCDs is the inherent resolution. the-other is that of the inherent sensitivity. Most digital cameras correspond to a film speed of ISO 150 - equivalent to a fairly slow but high resolution film. The use of micro lenses above the CCD array can concentrate light and bypass the sensitivity of the device accordingly. Most advances, however, are likely to come from improving the inherent sensitivity of each CCD element.

The information gaps

Ifound some gaps in the technical descriptions of standard resolution digital cameras. While the 640×480 resolution is quoted as applying to the three colours red/greentblue, this is not explicitly described as beting obtained by means of a mosaic of RGB filters over the pixel array and with interpolation of colours as appropnate by software within the camera. It is only with 'single shof' mode, higher resolution studio cameras that this method is described in detal.
Also, the spatial design of the RGB mask must have a bearing on image quality, although these design aspects are not usually discussed in the companies' descriptive literature.

A critical part of digital camera image quality is the spectral response of each fitter in the RGB mosaic filter. Figure 5
illustrates the general principle of the way an RGB fitter represents colour. The spectral components of a given part of the light spectrum are separated using the vanous fillers. Variations as part of this include the absolute spectral response of each pixel acting as a discrete detector and also the degree of uniformity of this response amongst all of the pixel components of the array.

It is quite possible for curves A and B to give the same sensitivity signal for each pixel detecting Red/GreenBlue, though they are not in fact the same colours. The quality of colour rendition is determined by the "sharpness' of the transmission profile of each pixel. Clearly there is an effect here of the basic sensitivity of the human eye to cotour - that is, how much it can of itself differentiate different cohours. There is much in the way of absolute measurement that can be undertaken to identify absolute colour rendition, though such measurement techniques appear not to be over-used in photographic evaluation of digital cameras. Colour is generally described as either "lifelke", "dullt, 'vibrant' or 'hat".

There are even subjective claims that digital camera colour is better than filmi colour. Film has its own colour mapping, with colour film and CCD behaving singhtly differently. Some observant prolessionals even indicate that CCDs can detect

WHIB EENERATORS 300 WHTT

 neotymumeleic cune aternato, orly no moving petis. martimenot thet simnit root too neteltion efor wo soeed 7 mon mex outh (50mph 360w Cage rel AlRI

PINNS

PORTABLE X RAY MACHINE PLANS Ensy to conmeruc

TELEKINETIC ENHANCER PLANS Unotiy and amare your trienion by cruting motion with no trown zppertert mems ar coue uwes no evacticel or mochanicet connections no specim gmmictes wix prosuces poesive motion and efted. Emoetiont for science propect
 of the strange und amajing giychic phenomenon
cume Rof FTHE:
ELECTRONIC HYPNOSIS PLANS 8 DATA THis dati shows severa ways to put subpects under your control inchuind be the cheme reverence tead and severa conaluction ptive the when ssomoied cen prodice hatiy effective stinut thes motene must be used cutiounty. If tor ces on everthinmert it pertes etc only. by those emperienced on ts upe EI9het Ruf Ffere
GRAVITY GENERA TOR PLANS The unque pon demonat ale esmpip evectice phanomens thet producee en enb- cravty eflect You
 whour ery viel meene- caued if to lovime cromer Ref FIGRAI. WORLDS SMALLEST TESLA COIL ILIGMTENING OISPLAY GLOBE PLANS Procuces LD to 750,000 vofe a ancrurge enperment wath estreordinery $+N$ ethects. Pleeme in a j or st Enote inc. Corone, awotent scisnce prowet or com treation pione C.Smer Rod FBTCIRGS

COPPER VAPOUR LASER PLANS Produces 100 mm of

 perticuty desion wis developed of the Atomac Energy Commaion a NEGEV in wrel \& 10 het Rer FKCM 1
VOICE SCRANBL.ER PLANS Wnuturo ncto rtate eytuom tume speeon sound imto inoeciphirable nowe the cennot be undirstood wemout a peoond metoring unit Ue on teetenone to prevent miod pert mening and buggic $E 6 /$ het Ref FNS
PULSED TV JOKER PLANS Letie hand taid device vieme pues techniques tiner wal comptetedy dieruph TV pucture and sound worto un FM too DUSCRETION AOMSED £8\%m Ret FIT.5 BODYMEAT TELESCOPE PLANS Herty diractiona tono

 antorcoment memerch and dinntopmert, etc Eroberot ascurty omo or very intoresting somenos prout coher Ref FREMTI.
BURNING. CUTTING CO2 LASER PLANS Propects an matie beem of noak ompeote of burning and meting matersit over a convidersble dist inse The leser is one of the moat tilcient, ocmerting Tos inplo power meo uectio output Not onty iethe ounce e wonthore
 candiacte to en efictive drected enorgy boen wespon mownt mione fichi, ground-to ground elc Perticie heams may woy wet Letiop o ineer of thas type to diast a chemer in the stmoephere for a high energy streen of netione or oller perticies the civioe to enginy epolicatie to buming end efching yoed alting piestice toatitee etc [12het Ref FAC7
 squeere the ticoer for initint ligat copepurtily oven worla under weter m an emergency sthough we hoven? thed if rel' $£ 699$ rel SC 152 ULTRASONC BLASTER PLANS : sbormory source of Eonm shock wivet biow homete in meter proouce cold sleam nomues aqudes Many cianing ueos ior PC bourth hawnory, oom amen perts ote E6mer R-N FMLBI
ANTI DOG FORCE FIELD PLANS Horly mlective cirout croouces ome venable puth of eocouticei eneroy the doce camot owerte csmen Rel FIOOG2
LASER BOUNCE LISTENER SYSTEM PLANS ANOW you toher sounds from premses wethou geining acoess E12het R/F/ USST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Hororide nas lege vineoucer and bevery casectiy wet paeme controis i6hat Ret FPSPA
INFINITY TRANSMITTER PLANS Telepnone ine plober room montioc. The unimute in homedoiloe securthy and semetrl wemble To usel Cel your home or afloe phons. puah a eecrestone on your tewohone to scoese ether A) On premives sound and voices or B) Eouting carmerseion
BUG DETECTOR PLANS is thes someone geting the gooos on pon Eeay to construct devoe hocmes enty riddion source of redio onergy' Snits ou and finds bups and other sounces of bothersome
 81.

ELECTROMAGNETKC GUN PLANS Prowets B melw oomo comabracie anance requires adul euperveion \&S ref Ff:MM.?

ELECTRXC MAN PLANS, ShOCK PEOPLE WITH THE TOUCH OF YOUR MANOI GGMER RW FIEMAS PARABOLIC DISH MICROPHONE PLANS Lmen to datare souncs and wacses osen wercoms cound sources on havo to ger or nostio premives ubes attelke bechotigy to gamer ciatart sounos end bous them to our were seneswe cuatronios plens ben miow on
 2 FOR I MULTIFUNCTIONAL HIGH FREQUENCY ANO HIGH DC VOLTAGE, SOLLD STATE TESLA COR AND VARLABLE 100,000 VDC OUTPUT GENERATOR PLANS Cperales on o Itvac, meny powecie asperments EIORW

colour cetv VIDEO CAMERAS,

BRAND NEW AND, CASED. FROM £99 Works with most modern video's, TVs, Composite monitors, video grabber cards etc
Pal, iv P-P, composite, 75ohm, 1/3" OCD, 4mm F2.8. 500×582, 12 vdc , mounting brackal, auto shumer. 100 z 50 z 180 mm . 3 months werranty, 1 off price E1t9 ref XEF 150, 10 or more C 99 ea $100+\mathrm{CB9}$

SUPERWIDEBATID bumar detractor 350 deg COUERAGE

Derects boun raom and lever, $x<$ eupermaes ini uenas LED wone
 mong opticel maveonoma irplesineck wernication ory mode tutons mode sark mode. our foil volume contiol these may be hegs to une in certion oountries

$1.1-274{ }^{2}$

Superband £149 ref RD2

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 SQT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS E3.50 PEP PLUS VAT 24 HOUR SERVICE 25.00 PLUS VAT. ontrgeras orimbes at cout plis ise (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders: 01273203500

FAX 01273323077

E-mail bullQpavilion.co.uk

HEHIOS PNB-2 RUSSIAN border cuard OESETMYATION BINOCULARS EI799

weonded tor the mocium to lorg rence athentition of er eno ground targets thd the determina tion of the anguace co ordintive theee glant binccutions are a Irible Ruecion octical ingenuty, with o gethomence thet empiy Am a to be seen to be tellined A wrge eat pugit
 men comtined with es high
megincition of ris mows the user to wew over vart outanoes with
 conitruction inoonporating en uncompticesd yofthouphitliy y oevignec mechencel leyour ensurng-wase of operition and ouct precine areting Mees binoculars have wole vernty of epptcetions end are wathet for une by comension inw ortorownent argenizations, av ama fermors en
Specificutions
 $100 \mathrm{~m}=96 \mathrm{~m}$ hooung $10 \mathrm{~m}-\mathrm{l}$. thy conted precivion ground opticis.

 operiting temperifuret -40 c to $\cdot 50 \mathrm{e}$, wegn 25 a a $(151 \mathrm{~m}$ wano mpode stippited in woodin cerying case
Border quird bochors £1799 W/PNB?

TSA INFRARED MEAT SIBAT

 mon et 150 m . it toter derioness of 75 m fifoniticetion 25 240 oes 180 mm .0 ok n fooving cerge $15 \mathrm{~m}-\mathrm{rinity}$. M42 comers mourt inctuoud nime on 2TMM daneries 100 mm toce lench 8 oec muminetor divergenoe 50 ms contenuous (no lumintion lorve wath cervincesese and etreo
TZSA Niomestion t150 ret Eater
colour which film cannot detect. Also, some aspects of film processing can degrade the image - for instance, by scratching and nonhomogeneity in the film substrate. Again, however, there is very little 'absolute' measurement of colour quality to allow a true comparison to be made.

Business focus

It is not enough, however, to focus on the cameras alone when assessing digital photography. There are a whole range of applications that could benefit. Surveyors, builders, mobile engineers and service personnel often need to send data from the fieid to headquarters for verification and consultation. This can lead to shorter decision times and greater efficiency. Companies seem to be interested in maintaining image databases of staff and visitors, both for production of ID cards and for storage for longer term security.

House buying could begin in the future as an inspection of thumbnail images on the home page of an estate agent, including pcitures of rooms and perhaps the new conservatory. A lot of shopping is visual: wallpaper, curtains, tiles, jewellery, some clothing and so on. The biggest experiment in cyber shopping will probably unfold as individuals get fast access to digital images of thousands of products.

Learning the facts

There are any number of monthly publications that review and compare digital cameras with each other and with a variety of standards, including the quality of 35 mm colour film photography. The feeling is still that digital cameras will never be as good as 35 mm film, except, perhaps, in the very top of the range models. Publications like Electronic Imaging provides a more distanced view on digital camera technology, devoting more time to professional studio photographers whose digital camera is usually worth more than their R reg company car. In high street retail outtets, the correct and informative way to demonstrate digital cameras would be data links to a PC, but you would be lucky to find such a demonstration at the moment. But without the link-up, digital photography loses much of its advantages.

Internet links

The Internet supports many pages dedicated to camera technology. Table 3 provides some main addresses that can be used a starting points for information about digital cameras. This is particularly relevant it images which have been taken using a specific digital camera can be inspected.

Company	Address
Agfa	http://www.agfahome.com
Apple	http://www.apple.com
Canon	http://www.canon.com
Casio	http://www.casio.com
Epson	http://www.epson.com
Fuji	http:/home.fujfilm.com
Kodak	http://www.kodak.com
Nikon	http://www.ktt.co.jp/Nikon
Otympus http:J//ww.olympusamerica.com/digita//dhome.html	
Polaroid http://www.polaroid.com/digiworld/index.html	
Ricoh	http://www.ricoh.com
Sanyo	http://www.sanyo.co.uk
Sony	http://www.sony.com

Table 3: Some useful Internet addresses.

Two pictorial disk labels made up with with the use of digital photo editing and a printer. Useful dly home-and-workshop items like this are one of the attractions of digital camera systems.

A last word

The key to digital photography at present is the inherent resolution of the CCD devices. For on screen inspection of standard resolution images, many basic 680×480 resolution systems provide acceptable image quality. The gap between conventional film and digital prints becomes clear when prints are produced at standard sizes.

Basic resolution digital cameras provide, however, excellent opportunity for practical applications that depend on the rapid capture and transmission of images. For many applications, basic digital cameras are already good enough to be used seriously. Cameras with improved resolution give a comfortable margin of image quality in many cases. At the high end of the market, digital cameras are increasingly used to capture high quality images with the advantage of fast turnaround.

For now, if you wish to make a collection of ultra high resolution images capable of being blown up to large sizes, a good 35 mm camera and film is still the cost-effective route.
Negatives or transparencies scanned with good quality equipment can be archived digitally with their inherent resolution preserved.

Grasping the full potential of digital cameras is about seeing the scope for applications in the future.

Points of contact

Digital Vision Ltd., Chelsea Reach, 79-89 Lots Road, London SW10 ORN.
tel 01713515542 fax 01713516487
web http://www. digitalvision.lid.uk

CPL (Fabric Printing)
tel 01732862555
web http://www.cpinet.co.uk
Electronic Imaging, Market Link Publishing, The Mill,
Bearwaiden Business Park, Wenden's Ambo, Essex C811 4JX. tel 01799544212.

Photo credits

Photographs courtesy of Casio UK, Minolta UK, Sony UK and Fuipilim UK as appropriate. Thanks particularty to Casio for assistance with cover images.

SALE PRICE $£ 9.95$
VIDEO PROCESSOR UNITSTNFV TOAN BATTSR2AV 8A

 two broken laces ect av io poor stornee E9 95 Fe VP2x

Dell switched mode psu 12v $15 \mathrm{amp} £ 9.95$

UX mede energy seving device the can give yous 45% saving on the runrie coate of thitien
Sution for meine ippterces miod vet e motor of up $102 A$ rating We heve ined the divice on other thrige lio soldering rome. compentioner bubse and etri schiever asevng

Pect of 10 mes nef Lot72
Pack of 20 e $\mathrm{El19} \mathrm{re}$ LOTr3

SALE PRICE 10

These units muat be cleered th the sbeure price of fute cyou
 stenderd ulf moetwer, e stencerd at aporoved modem 120075 end loede of chps reviztors, cepectiors elc vic ye for fuet $£ 10$ tat ber 33

Switched mode psu special offer £2.99
Brand now peare give so at ecempe Grand now perre givno Sv of <4 chmpe ongiely made for the Archimedee but obvoury now mery omer 42 mm Q 09 ne AROWIX

SALE PRICE $£ 2.50$
Customer returns, domestic telephone coin boxes, used to convert ordinary phones in to pay phones. ref CBTIX

The ultimate enclosure for your projects must be one of these!
Wel mese AgS screw together bece meseump $120 \approx 150$ z 50 mm Alvecy fined wim ruoper leet and fort mountoo LED

 NOD

Order via our web site at www.bull-electrical.com

SOLAR PANELS

$3^{\prime} \times 1^{\prime}$ Amorphous silicon, 7 watt $12-14 \mathrm{v}$ output. Unframed Ref SOLX
SALE PRICE 4 for $£ 59$
PC KEYBOARDS sale price just $£ 2.99$
Standard ps 2 type connoctor, 104 keys. ref PCX

Compaq

244 watt pc power supplies buy 2 for $£ 16$
Ex equipment oui in tis wonang arder arect from one of the top

 nutd to chenge the mother boerd cornector so wo hove nctuded enother ore weh the power eugply lo hein \&18 for? rel COM 2
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN3 SQT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS 23.50 P\&P PLUS VAT. 24 HOUR SERVICE 25.00 PLUS VAT. ovirstas ormers at cot plis cas (ACCESSIVISA, SWITCH, AMERICAN EXPRESS) 'phone orders : 01273203500

FAX 01273323077
E-mail bull@pavilion.co.uk

12V FANS, EX EQUIPMENT COMPLETE WITH METAL CASES PACK OF 10 FOR $£ 9.95$

RCB UNITS $£ 2.99$

 uppty in the event of ery curtert flowing
between ive and eert thu proverting a potentiony woth thock IEC patg one and, socket the other, fited in wocide. reset bution the utimete every ed when wortong on efectronc eampmert, comoutere atc.
Ao these units are fited with an intive IEC pug on one end end sociote on the ather then could even be uend to eft und wemnoerc IEC compuner reeds

Complete accounts system

 for your PC for just $£ 9.95$Untimed compenies. general begoer, malipte aizh bocim deptors end arwitors mook imoing purcheme butevis. repon wher coocutetar, wordproceverr, mutomated bectiopa on ins het mending nemprieste up to 10 wonat fions free tilephone sup port lor 30 des from MAP computer products 0187673313

MAINS SMOKE ALARMS (GENT) NEW AND BOXED $£ 4.99$ ref SMKX

BBC selector videocrypt 's' tvtuner with smart card

sale price $£ 9.95$

 BOC to eind enorypeo vieo this to vou VCR if neis ome The proped eepres to now thed
Vory complas untis consenting of a emmint cerd wat in the tront plue nevers entonse and in UR recener. Fily cosed and memurng 250 $\mathrm{x} 430 \times 90 \mathrm{~m}$ n now end base
 A cremel tuning controi numberio 28 to 40 end en IR socitoe inuce es compranensive tuner section, enert ccerd nesoier mecheniem and cortiol enectronics pune pown supply esction
These untes are cond me minopers bre we inmegn you could use one to comette montar utio a TVor mevie ues the videocrndt side of thinge for comating ehe Suppied compete wat menued and meres liod

Introducing our mega magnet that lifts 33 kilo's!
Juth in thes ween ere theve increctio Neopymium meoretes thet will in en increditie 33 iatole Eech megret has a thruced boll protucing

LOW COST PC's
SPECIAL BUY
AT 286^{\prime}
40 Mb HD + 3Mb Ram

UMITED OUANTTIY Only of those 12 Mhz HH GRADE 286 sysems

 whin batery bockup is provised es stanciand Suppleo in good uese OTbor As HGAADE 286 ONLY E\$29.OO(E)
 LOW COST 486DX-33 SYSTEM

 £399.00

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}$ - $8^{\prime \prime}$

$51 / /^{\prime \prime}$ or $31 / 22^{\prime \prime}$ from only $£ 18.95$!

FWUIFK. 3092620 mb MFM UF RFE

 Uun IRFEWESTERN OIGITAL 850 mb IOE UF EMend ANW

- IEAGAE STT, 3 SR 30 MO RLL UF R Returb

THE AMAZING TELEBOX

TV SOUND \& VIDEO TUNER chate companate.

 The TELEBOX is an aitracive tuity careo mahs powved unt con- OMWCOORE, PHILUPS. TATUNG. AMSTRAO Mc. The composse Hocmpuon of TV Chennie not nommelly recivabie on moin thivt
 HHF and UHF ncluding the HYPERBAND as Used oy most cabie TV operatorn. A composste viseo cutpur is hocated on the ees pentul
 undo ounout are promici as standera EELEBOX ST Tor Composis. ndeo mpul type monaras

${ }_{5} 53.05$

DC POWER SUPPLIES

surfaiy ovory ypo of power
 10,000 power supplis Ex Stoc

IC'S -TRANSISTORS - DIODES
,000,000 litems EX STOCK
VIDEO MONITOR SPECIALS
One of the highest speciflcation monitors you will ever see -

\thereforeAt this price -

Levi ite useo concoion
Only £119 (e) mristsessa
GGA cobie lor BMM PC hacuuced

As New - Used on film sel for 1 week onlyll $15^{\circ} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilh etc. Full 90 day guarantee. E145,00 (E)

$20^{\circ} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALSSPECIAL INTEREST ITEMS

IBM $\mathbf{2 z 0 0}$ Ty
18M 53FSSOP To
I8M MAU Token ring distribution panet B228-23-5050N
Merconl 6310 Programmadie 2 to 22 (H) (2M) 64

HP3781A Pariom generator \& HPJ782a Error Denceror
HP APOLLO RX700 system Unis
HP3081A Industrita wonkstation cim HP6264 Rack mount variabio $0-20 \mathrm{~V}$ a 20 A metored PSU HP54121A DC to 22 GHMz lout chennol test set HP7580 A1 8 pen HPGL hen speed drum plothor EG.G Brookdeal 95035 C Priction loct in amp
Viow Eng. Mod 1200 computarised neppetion system
 Koiltioy 590 CV capactior I voltace anarysei
Racal ICRAO dual 40 chemel voice recorder system

Mann Tally MTG45 Hion spoed ine primer aMo Ram Zote 3220-05 AO 4 pen HPGL fest drum ploners
Nitu on HFX-11 (Eppighot) exposure control uni
Trio O-18 vdc inear, metered 30 amp Dench PSU New
Fufiteu M3041R 600 LPM bend promer
Fuiteu M30410 600 LPM printer with network
Perkin Elmer 2998 interared spectrophotometer
Pelkin Elmer 2998 intrared spectrophotometer
VG Electronics 1035 TELETEXT Decooing Margin Meter Andrews LARGE 1 In Sole TAYLOR HOBSON Tallysurt amplifin / recorder
Test Lab-2 2 mt square quirticed acoustic test cabinets
Kenwood 9601 PAL Vector socope - NEW

19" RACK CABINETS
Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality 19° rack cabinets made in UK by
Optims Enclos ures Lid. Unts fesfure
desioner, smoked acryic locksote tront door, designer, and louvered removabie side panelis. Fully plus ready mounted iniegral 12 way 13 amp have over sold. Racks may be slacked side by stide and thepefore tequire only two side paneis to stand singly or in multioto bays
Overall dimensions are $77 \mathrm{k}^{\circ} \mathrm{H}$ a $32 \mathrm{y}^{\circ} \mathrm{D}$ \& $22^{\circ} \mathrm{W}$. Order ab: OPT Rack 1 Complete with removeblo side penela. $£ 335.00$ (G)
OPT Reck 2 Rasck Less side penets
$\$ 225.00$ (G) 32 U - High Quality - All steel RakCab
 tully louvered back door end coubie skimed top section for fiting castors and foor tovelers. orecunched utility penel at hower fear for

Sold at LESS than a third of makers price If
A superb buy at only $£ 195.00$ (G)

Over 1000 racks - $190^{\prime \prime} 22^{\prime \prime} \& 24$ wide 3 to 44 U high. Available from stock 11 Call with your requirements.
 TOUCH SCREEN SYSTEM

WioroTouch. Du sold a! A price below cost II System consists of

 connedted to en electronic comroder PCA. The controlier produces - standard eertal RS232 or TIL output which contimuousty gives simpte serial data contrining positional X \& Y co-ordinates as to instantly changes The X \& Y enformation is given at an incredibie nection to e PC for a myriad of applications inctuding control panWindows, insteed of a mouse is (e driver is indeed avilinde i) The

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Momory Expenstion Boert. Fult iength PC.XTT and PC-AT compatioie card wah 2 Mbytes of memory on board. Cerd is fulty sphectebio for Expanded or Extended (206 processor and above memory. Full data and driver disks supplied AFE. Fully teeted end guarentea. Windows competiole R59.95(A1) Hell length ot bif memory epprede carde for PC AT XI empands memory either 256 k or 512 k in 64 k steos. May also be used to fill In RAM above 840 DOS imi Complete with data. Order ns: XT RAM UG. 256 k . $\mathbf{5 3} .95$ or $512 \mathrm{k} £ 39.95$ (A1) SIMM SPECIALS 1 MB \# 9 STMMM 9 chip 120 ns Only $1 \mathrm{MB} \times 9$ StMM 3 chip 80 ne E 19.50 or 70 ms $£ 16.50$ (A1) 1 M8 29 SIMM 9 chip 80 ns 21.50 or 70 ns E22.95 (A1) $\boxed{2} 23.75$ NTEL SBA-OXES CPU E55.00 NTEL AES-OXES CPU 95.00 (A1) 4 MB 70 ns 72 pin SIMMA -with perify- FUL RNNGE OF COPROCESSORS EX STOCK. CALL FOR EE

FANS \& BLOWERS

 EXGEAKE 12-3.5 $92 \pi 92 \times 18 \mathrm{~mm} 12 \mathrm{~V}$ DC $120 \equiv 38 \mathrm{~mm} .9510 / \mathrm{C} 99$

FAX 01816791927

4-Go Rocket Launcher

Fire up your ingenuity! For the more ambitious rocket modeller, Robin Abbott has made a four-rocket launch controller to work with popular rocket kits.

1his project was inspired by my interest in model rocket building. Model rockets made up from kits are available in a wide vanety of sizes and configurations from small 6-inch rockets up to 4 feet or more. The rockets are launched with a small cartnige engine which is electrically fired. Model rocketry company Estes provide a simple kit which includes a controller. The controller is a very simple 6 V powered unit with a satety key, a buunch button, a small bulb which 性uminates to indicate that the ignter is connected, and 8 metres of cable to connect to the rocket. The connection to the igniter is made with crocodile clips The controller does not fire more than one rocket, or fire rockets with more than one engine cartndge, so for more ambitious modellers this proiect was devised to provide a more comprehensive controller.

Rocket Modelling

Model rocket fiying in the UK is dominated at the less ambitious end of the market by the Estes company of America. Estes manulacture the rocket cartndge engines, igniters and kits for the rockets which are available from large model shops. The home constructor cannot manufacture engines or igniters, but the rockets are quite straightforward to construct with or without a kit.

Most rockets are made of two stages (see figure 1). The stages slot into each other at the launch and are connected by a length of elastic cord. The upper stage has a simple plastic parachute
pushed into the rocket. The parachute is folded and iucked in below the top stage of the rocket which is plugged into the lower stage.

The rocket has a smatiJength of crinking straw glued vertically to its side. This is shotted over the "launch pad" which is a length of piano wire held vertically in at stand with a metal blast plate at the bottom. The igniter is pushed into the engine cantidge, and held in place with a small nubber stopper. At this point the launch controller may be clipped to the igniter, ensuring that the safety key is held by the rocket operator so that the controller cannot fire the engine while it is being connected.

When the engine fires, the igniter is connected to its power supply. The igniter has a resistance of around 1.2 ohms and is surrounded by a chemical similar to a match head which lights due to the heat of the igniter. The igniter then lights the rocket engine which fires pushing the igniter plug out of the engine and the rocket lifts off to height which may exceed several hundred metres when small rockets are fired with larger engines.

The cartndge engine is a three stage system. The first stage is the power stage which lifts the rocket to the majority of its final height and speed. Next the engine continues with a delay stage which has considerably less thnust, but.shows its presence with a plume of smoke following the rocket. During this stage the rocket normally has enough speed from the first stage to continue climbing vertically. Without this delay the whote flight seems very short. Finally the ejection charge fires. This pushes a jet of gas out

tied to it, the lower stage has the fins for stability. The lower stage has a simple engine cartndge hokder with a metal dip which allows engines to be replaced easity and to allow the rocket to be fired a number of times. On finng, a new rocket engine cartridge is inserted into the holder, and fireproof parachute wadding is
of the back of the engine into the body of the rocket. This pushes out the parachute wadding (Mence the need for fireproof wadding), and the top of the rocket pops off, the parachute opens, and the rocket floats gently to earth. It may then be recovered and fired again.

Types of rocket

There are many different types of rocket available, and they are identified by three parameters: for example, A8-3, or D10-2.

The first is the engine power - A, B, C, and D. The letter represents the total power of the engine: each letter is twice the power of the one before it. Thus B engines have twice the total power of A engines and D engines have 8 times the total power of A engines. A engines are small, B and C engines are both medium size (70 mm long by 18 mm diameter), D engines are bigger again.

Each engine has a thrust number in Newtons, so an A4 engine will have a thrust of 8 Newtons, and will burn for hatf as long as a B4 engine, and for the same length of time as a B8 engine.

The final parameter associated with the engine is the delay time in seconds. this is the time taken between the end of the first stage, and the ejection charge fining duning which smoke is efected.

Thus for our example the engine has a total power rating of A. a thrust of 8 Newtons, and a cruising delay time of 3 seconds. Typically B and C rocket engines cost about $\Sigma 1.50$ per fight.

In general bigger rockets require bigger engines and higher thrusts. Thus a small rocket will fily higher as the thrust may be bower, will take it higher, and will burn longer. Also bigger rockets will cruise for less time before they furn over and start heading earthwards, so the delay time should be shorter in general.

The launcher

This launcher provides for firing of up to four rocket engines. There are four firing modes:

All four rockets may be fired simultaneously when the firing button is pressed (allowing for more than one engine on a single rocket). The launcher detects when rocket igniters are connected by the low resistance (approximately f ohm) of the igniters, and shows the status of each rocket on its own LED. - Rockets may be fired in sequence, the next rocket being fired each time that the fining button is pressed.

- Rockets may be fired automatically at one second intervals in sequence.
- One or more rockets may be fired at the end of a traditional 10 second count down.

The firing pulse given to the rocket is limited in duration to 3 seconds. This means that even if a rocket cunnection is shorted out, the batteries will not be rapidly drained - a common probiem on the launchers. where accidentally shorted crocodile clips can drain the batteries through the igniter detection lamp.

II PC control is added it allows specialist applications (note that hardware is included for PC control, but the software is not yet developed).

Safety

Safety in a profect such as this is of great importance, and the profect provides a number of safety features. The intention is that any single failure should not cause the rocket to fire while the operator is connecting the rockets. and to this end the following features are provided:

There is a single safety key. This connects power to the relay switches, and is also used by the
firing logic to disable the firing button when it is not present. Once the launcher detects that a rocket has been connected, the fire button is disabled for 3 seconds afterwards regardless of the presence of the safety key. This allows operators to get away even if the safety ke y is connected.
The launcher will only fire the rockets detected when the firing sequence was started. For example with a 10 second count down, then once it has started even if additional rockets are connected during the countdown they will not be fired.

The project may also be used for firing other electrically ignited devices such as fireworks or thunderflashes, provided that they operate on a supply of 24 V or less.

Controls and the launcher

The launcher is battery operated, and for reasons which will be described below there are two sets of battenes, one for the controller, and one for the igniters. The battenes should be alkaline, and should last an very long time, provided that the unit is turned off after use.

There are two switches on the launcher which control the operation of the launcher. There is a 2 -digit 7 -segment display, and four LEDs, one for each rocket to show when the rocket is connected. There is a connection for a-PC-input, which connects directly to another socket which may be used to chain launchers. From the back of the launcher there are four 8 -metre cables with crocodile clips, one for each rocket. As the safety key is inserted directy into the launcher, the launcher should be located with the operator, and not with the rockets. The fining button is on a short cable connected to the launcher.

Figure 2: the circuit of the rocket launcher

The power supply for the controller is separate from the igniter supply. This is due to the extremely low resistance of the igniter (which drops as the igniter heats). If the controller and igniter share the same supply the voltage drop as the igniter draws current was sufficient in the prototype to cause the relay to drop out, and to crash the PIC controller. The igniter never lit! The supply for the controller module may be 9 V (for example,. PP3), or as in the prototype may be four AA battenes (the regulator used is an extremely low dropout device. The igniter supply may be any voltage from 1.5 V (used for some thunderflashes), 6V (used for rocket igniters) up to a maximum of 24 V , which is the $D C$ limit switch voltage of the relays. The safety key is in senes with the igniter battery, and therefore completely isolates the igniter relays, even if a controller fautt pulls in the relays there will be no supply to the igniters.

The sense input for the safery key is driven from R12 and R13. The input is normally iow, and pulled high when the safety key is inserted. Note that the inpur/output pins of the PIC (in common with most CMOS devices) have static protection diodes down to the Vdd supply pins. Therefore resistor R12 is required to limit the current drawn from the igniter power supply, especially when the igniter supply is 12 V .

There are four igniter relays which are driven by transistors Q5-8. The diodes in parallel with the relays quench the inverse voltage generated by the relay colls as the transistors turn off. The igniters are sensed by resistors R15 to R18, these drive the port B inputs which are configured with the internal pullups enabled. Thus when the igniter is connected the sense input is pulled low. The resistor is required for the same reason as for the safety key input - to protect the PIC inputs when the relays pull in connecting the input to the igniter supply.

Finally, the mode of the launcher is set by swiches Mode1

This Juno Il was built using the instructions in Peter Alway's The Art of Scale Model Rocketry. Modeller Sven Knudson scribed card stock for the corrugations at the base of the rocket. He was unsatisfied with the way they showed up after painting, so he marked each corrugation with a pencil to emphasise t . The decals are from the Saturn Press decal set. Photos courtesy of Sven Knudson

and Mode2, and the serial input from the PC is a simple transistor buffer/inverter. The oscillator shown is a ceramic resonator, but for this application it would be possibie to use an RC oscillator, as timing is not critical.

Software
The PIC is hardly stretched in this application, the system operates two interrupt timers. The first is roughly once every 4 miliseconds used for the multiplexed display drive. The second interrupt operates 10 times a second and is used for all system timing and for scanning the press buttons. For the rest of the time the PIC operates in simple loons waiting for buttons to be pressed, or for timers to expire.

For interest the logic flow diagram for the main software loops is shown in figure 3

Athough timing for this application is not critical, the system actually operates on a very accurate clock which causes an internupt every 100 ms . This is not the most difficult part of the software, but it is worth showing how it is achieved with a 4 MHz clock, as the author has been consulted on this subject on a number of occasions. The reason why it seems difficult at first is that the internal timers of the PIC may be set to cause an interrupt when they overflow, and this will only happen on a multiple of 256 us with a 4 MHz clock.

The solution to this problem is to use the Compare facility of the 74. This allows the systern to generate an intermupt every time that the 16 -bit counter/timer reaches a value which is the same as the compare register. The internupt routine should then update the compare register to generate another interrupt at the end of the next time penod.

The code in figure 4 is a self-standing program which demonstrates this as an example to other programmers. It performs no function, but simply increments a variable called IntCount exactly once every 100 ms with a 4 MHz clock.

Figure 4: example code for accurate timing on the 74
\#include "d:\pic\p16c74.inc"
\#define TIMER1TIME $12500: 12500$ counts of timer 1 is 100 ms
cblock 0×20 int Count STATUS_TEMP
: Block of RAM variables
; Counts interupts
; Stores STATUS in interrupt
routine
W_TEMP : Stores W in interrupt routine
endc
org-0
: Reset vector
call init
goto Mainloop
org 4
inthand goto introutine
; This is the main loop, replace with application code I
MainLoop goto MainLoop \quad gry

: Initialisation routine

init bof INTCON,GE
movtw 0x301@TMR1ON
mown T1CON
cirf TMR1L : Clear timer 1 sulp eulf

- 3 chf TMR1H
moviw TIMER1TIME ; Write to compare register
mowi CCPR1L
moviw TMER ITME>>8
mown CCPR1H
movtw OxOa
monn CCP1CON
- Set timer 1 to-Compare mode

tho bsi STATUS,RPO
bst PIE1.CCPIIE bCI STATUS,RPO
cirf intCount
bSI-INTCON.PEIE

bsi INTCON,GIE ; Enable intermpts

Figure 3: a firing sequence flow diagram

EASY-PC Schematic and PCB CAD

From Super Schematics

To Perfect PCB's

- Runs on:- PC/ 386/ 486 with VGA display
- Links to the PULSAR range of Logic simulators, the ANALYSER range of analogue simulators and LAYAN our spectacular electromagnetic simulator.
- Use of simulators allows testing of designs prior to bread boarding
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.

MultiRouter THE Autorouter for EASY-PC

How long did your last layout take you?

\author{

- EE Product News "Product of the Year" Award Winner
 - Uses the latest Shape Based, $\mathbf{3 2}$ bit, Multi-pass, Shove-aside and Rip-up and Re-try technology
 - Autoroute very large and complex boards
 - User Controllable, User Configurable
 - From single sided to up to 8 layers
 - 100% Completion where other autorouters fail!
 - 100% routed 140 Components on a $210 \mathrm{~mm} \times$ 150 mm board in less than 10 minutes!
 (75 MHz Pentium)
 - Could Easily Pay For Itself On The First Project!
}

For full information and demo disk, please write, phone, fax or emall:-

Number One Systems

Products Stocked by:- Electromall, RS Components, Farnell Components, CPC, Maplin, Cirkit, Mega, etc.

return
; This is the code which deals with intemupts,
introutine MOWWF W_TEMP
: Microchip's
status save routine
SWAPF STATUS,W
BCF STATUS,RPO
MOWWF STATUS_TEMP
btiss PIR1,CCP1IF; Test for compare interupt goto NotCompare 1 : Not a compare interrupt incf IntCount
bcf PIR1,CCP1F
: Add one to the internupt count
; Clear the interrupt flag
movtw TIMER1TME
addwf CCPR1L
skpnc
inct CCPR1H
movtw TIMER1TMME>>8
addwt CCPR1H
; Other intermpts are actioned here !
NotCompare 1
intret SWAPF STATUS_TEMP,W
MOWWF STATUS
SWAPF W_TEMP:F
SWAPF W_TEMP,W
retfie

Construction

The circuit board

referring to the Parts List, note that the relays shown are 5 V devices, and the coils of the relays are driven directly from the main board power supply. It the main board uses a 9 V battery then the relay colls should be uprated to 9 V , atthough in practice the system will probably operate correctly even if they are not uprated.

There are two circuit boards, one of which holds the relays and relay drivers, the other of which holds the main processor, switches, displays and LEDs. Two boards are used for the profect, because the processor and display board is mounted directly to the front panel, and there is insufficient clearance for the relays to be mounted on this board.

The main board overlay is shown in figure 5 , note that if the

Electronic DESIGNERS

know how to get their

PROTOTYPE PCBs

from their usual manufacturer for a

FRACTION :COST!

DO YOU?

STOP WASTIUG YOUR MONEY! CALL NOW: 003536566500

(2) 003536566500 FAX 66514

serial link is not to be used the main circuit board will not require R14 and Q4. The main circuit board has five links, use snipped component leads for the links, and insert these first. The ic sockets are inserted next. Use an ic socket for IC1, and also for Display 1, the connector for the relay board is also a 16 -pin ic socket. Next, solder in the resistors and the capacitors, finally the transistors and IC2. For testing purposes the LEDs (D1 to D4) should be soldered in, but leave them sticking out of the board to the length of the leads as they will be adjusted later. Switches SW1, 2 and 3 are mounted on Veropins soldered into the board to ensure adequate clearance when they are used to mount the board. The centre of the three switch leads needs snipping so that all switch leads are of identical length. The leads must be carefully soldered directly onto the top of the Veropins. All external connections to the board are made by Veropins.

The relay board overlay is shown in figure 6 . There are seven links on the board, again these should be soldered first. Follow with the discrete components, the ic socket, Veropins, and finally the relays. If less than four rocket engines are to be driven, the associated circuitry may be left out and included at a later date.

The lead for the connection between the main processor board and the relay board is made from 16 -way flat ribbon cable. The connectors are IDC 16-pin headers which fit well into standard ic sockets. IDC connector assemblers are quite expensive, however a simple aliemative may be constructed. Solder a scrap 16 -pin ic socket into a piece of Veroboard. Press the IDC header pins into the socket and assemble the header around the flat cable. Press the top of the header down by hand, and then complete the assembly by gently squeezing the complete unit with a mole wrench, or in a vice. Note that the headers should be assembled on opposite sides of the cable to ensure that pin 1 is connected to pin 1.

The safety key used in the prototype was a US mains plug and socket with the plug shorted out. Clearly this key would be completely unacceptable in countries which use this kind of plug and socket for mains supply, and in these countnes a different plug/socket must be used. The safety key may be any plug and socket which allows a physical method of breaking
the circuit, and which can carry the currents drawn, which can reach iwo or more amps with larger igniter batteries. Do not use a key switch unless the key cannot be removed in the on position. This is very important, as it is vital that the safety key cannot be enabled while the key is removed from the launcher.

Testing

For testing purposes the profect should be assembled outside the main case allowing faults to be rectified far more easity. Directly solder the firing push button to the veropins, and use test leads with crocodile clips to connect test resistors to the rocket connections. Connect the safety key. Cable up the batteries for the main processor board and relay board, and connect the boards with the nibbon cable. Insert IC1 and the display, and power up the system.

Check that the system operates as described above. To simulate rocket igniters being connected to the system, the test leads should be connected to 100 -ohm resistors. The voltage across the resistor may be measured to verity relay operation. Remember that the fire button is disabled for 3 seconds following power up, and for 3 seconds following connection of a rocket.

Case

The case used for the project is a Maplin type M1006. This case has an offset aluminium front panel on which the processor and display board is mounted. The driling pattern for the front panel of the case is shown in figure 7. The holes for the firing button and serial input/output sockets are on the right, all the other mounting holes are for the switches. Giue a small piece of red filter over the display hole. This is essential for viewing in daylight. Four holes need drilling in the rear of the case for the grommets for the rocket cables, and for the prototype the satety key was also mounted on the back panel of the case. The relay board and battery holders are fixed to the base of the case using double sided adhesive pads.

Unsolder the LEDs D1 to D4, but leave them loosely fitted into the board holes, connect short cables to all pins on the main board, and plug in the nibbon cable. Fit the main board to the front panel and fix it firmly in case by screwing on the switch nuts. Now carefully move the LEDs so that the top of the LED fits snugly behind the front panel hole. Solder the leads of the LEDs into the board.

The firing button is connected through a phono socket. The lead used was a single cored microphone lead, and the button mounted in a 35 mm plastic film canister. Do not use a jack plug for the lead, as the plug may cause a short - and an accidental rocket fining = when it is inserted.

Resolder all the cables and check that the project still operates property before assembling the case.

Using the launcher safely

As with any rocket launching system (be it electrical or simply a match), the safety of the systern depends on the operator displaying common sense and taking all sensible precautions. With this systern the operator must take out the satery key whenever connecting rockets to the launcher. This provides a strong guarantee of safery. The display will flash whenever the key is removed, and this may be used as confirmation that the key is removed and that there is no internal short that might fire the rocket. The unit should be powered up whenever connecting rockets to allow the three second safety time-out to operate when new rockets are connected, although the time-out operates automatically on power up.

Please follow the instructions provided with the rocket

ELLCTRONIC DESIGN POR WINDOFSS NON COMMERECLAL

TEACHERS... STUDENTS... HOME USERS... etc.

Your opportunity to save fegef's
With this non commercial version of our software produced for single users, this-is your dream comer true!

Software as you are probably aware has no real material-value, but is priced to recover the enormous costs of development. The software house tries to evaluate how many units will sell at a specific price to generate the amount needed and produce a healthy profit.

As the electronics marketplace shrinks, due to expanding competition, it means that, in reality, powerful user friendly software, such as EOWin, must be very highly priced and therefore remains inaccessible to the Individual and small businesses.

Until today -. Norlinvest, one ofthe biggest software houses in the electronics sector, has decided to put onto the market a "Non Commercial verslon of their EDWII software. which is known world wide.

This is the first truly seamiessly integrated suite of sottware running in all Windows formats ... simulation, schematics and PCB design. At last allowing amateurs, teachers, students, ... in a work "individual" to take advantage of current technology, without any restriction.

To avoid misunderstanding x there is no difference between the industrial version of the software and our Non-commerclal version, except the price. In other words; industry is subsidising the development cost and now the individual can take full advantage of this.

Computer Compatibility
To run the program you will need:

- Windows 3.x, Win95 or Win NT,
- a min. 386 processor $(486+$ rec. $)$
- 8 mb of RAM
- CD-ROM Drive

System Features
Complete End-to-End CAE/CAD syssem Simultaneous Schematic and Layout generation. Automatic Frónt and back annotation intuitive tiferarchical menu structure.
Mouse or keyboard commend activation Macro operations
Reai-sime display of: ratsnest. active nodes. singte line or true trace width. On-line help
Auto reconnect.
Full iniegration of Schematic and Layout Automatic file backup. User definable rext siaes. DXF in and output. screen hardcopy:
Library viewer with editing possibility. Switching onvoff possibility for tool and scroll bars.
Visible schernatic and PCB symbols by editing Monoctirome mode for better print resolution Bitmap support for loading logos. documentation, efc Can be used in herarchical as well as in sumple schematic or PCB design. Maimum number of nets. 16.000 . Maximum number of nodes 32,000 . Maxrmum number of bend points: 64,000 . Maximum number of connections: 64,000. Maximum number of 5 mimbots: 32.000 . Maximum number of comporients: 32,000 Maxumum number of multr-segment vraces: 32.000 , whth a total of 64,000 trace segments Aarsinec libranes
Full Gerber, NCD. pic and place output
Schematic Capture
Up 10100 schematic sheets. Up to $64^{\circ} \times 64^{\circ}$ sheet sive. Industry standard sheet sibes. Rotate, scale and mifror symbols Real-time dragging of components and wires. Automatic package and pin assignment Orthogonal and free mode manual routing. Automatik bus annotation. Block save, load, move and delete.
Direct access to mured mode simulation. Autorouting of connections.
Merging and splating of nees possibility Definable line with, also for bus-lines Swapping of component positions. Automatic component renumbering by swapping.

PCB Layout
32 layers $(28$ route layers. 2 silk-screen layers (front and back), 2 soldermask layers (front and back).
User definable trace siges. User definable pads Curved traces.
1 mil grid resolution. Fine grid 10 miaron. SMT, fine line. analog support. Component repeat, rotate and mirror Components "Move by name".
Component, gate and pin swap.
Automatic component renaming.
Trace reped.
On-line, multi-layer routing with automatic via insertion.
Pin-io-in, free or 45 degree routing. Change segment side and width. trace sude and width
Fast imeractive generation of ground planes with user definable cross-hatch or solid fill Automatic ground plane with thermal relief insertion.
Automatc ORC with user specified parameters Electinal connectivity checking. Linear rotation of symbols
Gerber input read and use possibility. Buifitin interface for spectra 6.0 , Max route 6.0 and Arizona Autoroutes Bitmap functions (logos, trawnigs, ...). Sophusticated database viewer.

Mixed Mode Simulation
$A C$ analysis (Frequency doman)
$D C$ analysis (Linear/non-linew).
TD analysis (Time comain).
Diagram generator.
Dynamic parameter detinition of active and passive components.
Output graphs displayed on screen, hardcopy or placed on schematic
Oscilloscope function
DLL based analog/digital simulation primitives. modeling language and library creation tooks. Buit -in modet generator for discrete devices

Please Note: Some of the above are ONLY provided on the De Luxe 3 version EdSpice and Thermal Analysss are ovvilable as bolt-on entras

£1 BARGAIN PACKS

－List 5

One hem only per pack unless otherwise stated． TEST PRODS FOR MULTIMETERS with 4 mm sockets．Good length very flexible lead，ref D86 8 OHM PM SPEAKERS，size $8 \times 4^{\circ}$ ，pack of 2 These may be slightly rusty and that is why they are so cheap，but are electrically OK．Ref 0102.
PAXOLIN PANELS sLze $6 \times 6^{\circ}$ ，approximately ho $_{0}{ }^{\circ}$ thick，pock of two，ref D103．
13A SOCKET，virtually unbreakable，ideal for trailing lead，ref O95．
PIEZO BUZZER with electronic sounder chrcuik， 3 to 9V DC operated，Ref D76．
DITTO but without imternal electronics，pack of 2. Ref 064.
LUMINOUS ROCKER SWITCH，approximately 30 mm sq，peck of 2 ．Ref 064.
ROTARY SWITCM， 9 pole 6 way，small slze and Ko $^{\circ}$ spindle，peck of 2，Ref D54．
FERRITE RODS， 7^{*} with colls for Long and Medium waves，pack of 2，Ref D52．
DITrio but wrthout the colls，pack of 3，Ref D52．
SLIDE SWITCHES，SPDT，pack of 20，Ret D50．
MAINS DP ROTARY SWITCH with y_{4}^{*} control spindle，pack of 5 ，Rel 049.
ELECTROLYTIC CAP， 800 uf at 6.4 V ，pack of 10 ． Ref D48．
ELECTROLYTIC CAP， $1000+1000$ ut 12 V ，pack of 10，Ref D47．
MINI RELAY with 5 V coil，size only $26 \times 19 \times$ 11 mm ，has 2 sets changeover contacts．Ref D42．
MAINS SUPPRESSOR CAPS．Iuf 250 V AC，pack of 10．Ref 1050.
TELESCOPIC AERIAL．chrome piated，extendable and tolds over for improved FM reception，Rel 1051. mes lamp holders，slide on to W° tag．pack of 10，Ref 1054.
Pax TUBING，x^{*} imternal diameter，pack of $2,12^{*}$ lengths，Ref 1056.
ULTRA THIN DRILLS，． 4 mm ，pack of 10，Rel 1042. 20A TOGGLE SWITCMES，centre off．part spring controlled，will stay on when pushed up but will spring back when pushed down，pack of 2，Ref 1043. HALL EFFECT DEVICES，mounted on small heat sink．pack of 2．Ref 1022.
12V POLARISED RELAY， 2 changeover contacts． Ref 1032
PAXOUN PANEL． $12 \times 12^{\circ} \mathrm{K}^{-}$thick，Ref 1033.
MINI POTTED TRANSFORMER，only $1.5 \mathrm{VA} 15-0$－ 15 V or 30 V ，Rel 964.
ELECTROLYTIC CAP，32ut at 350 V and 50uf section at 25 V ．in aluminium can for upright mounting，pock of 2 ，Ref 995.
PRESET POTS， 1 meg．pack of five，Ref 998.
WHITE PROJECT BOX，with rocker switch in top lef－ hand side，size $78 \times 115 \times 35 \mathrm{~mm}$ ，unprinted，Ref 1006.

6 V SOLENOID，good strong pull but quite small． pack of 2，Ref 1012.
FIGURE 8 MAINS FLEX，also makes good speaker lead， 15 m ，Ref 1014.
migh current relay， 24 V AC or 12 V DC， 3 changeover contacts，ref 1016.
LOUD SPEAKER， 8 ohm $5 \mathrm{~W}, 3.7^{\circ}$ round，Ret 962.
NEON PILOT LIGMTS，oblong for front panel mounting，with internal resistor for normal mains operation，pack of 4．Ref 970.
3．5MM JACK PLUGS，peck of 10，Ref 975.
WONOER PLUGS，pack of 10，Rel 986.
PSU，mains operated． 2 outputs， 19.5 V at 550 mA and the other 15 V at 150 mA ．Ref 988.
ANOTHER PSU，mains operated．output 15V AC at 320 mA ，Ref 989.
PHOTO CELLS．silicon chip type，pack of 4，Ref 939. LOUD SPEAKER， $5^{\circ} 4$ ohm 5W rating．Ref 946.
230 V ROD ELEMENTS． 500 W terminal ended 10° long．peck of 2 ，Rel 943.
LOUD SPEAKER， $7 \times 5^{\circ} 4 \mathrm{ohm}, 5 \mathrm{~W}$ ，Ref 949
LOUD SPEAKER， 4^{*} circular 6 ohm 3 W ，pack of 2 ． Ref 951．
FERRITE POT CORES， $30 \times 15 \times 25 \mathrm{~mm}$ ，metching pair，Ref 901.
PAXOLIN PANEL， 8 为 $x 3$ 为 with electrolytics 250 uf and 100uf，Ref 905.
CAR SOCKET PLUG，with PC8 compartment．Ref 917.

4 CORE FLEX，sultable for telephone extensions， 10 m ，Ref 918.
VERO OFF CUTS．approximately 30 square inches of useful sizes，Ref 927.

PROJECT CASE， $95 \times 66 \times 23 \mathrm{~mm}$ with removal lid held by 4 screws，pack of 2 ，Ref 976.
SOLENOIDS， 121024 V ，will push or pull，pack of 2 ． Ref 877
2M MAINS LEAD， 3 core with instrument plug moulded on，Ref 879
TELESCOPIC AERIAL chrome plated，extendable． peck of 2 ，Rel 884.
MICROPHONE．Oynamic with normal body for hand nolding，Ref 885.
CROCODILE CLIPS，supenor quality flex，can be attached without soldenig． 5 each red and black． Ref 886.
BATTERY CONNECTOR FOR PP3，superior quality， pack of 4 ，Rel 887
LIGHTWEIGHT STEREO HEADPHONES，Ref 898.
PRESETS， 4700 hm and 220K．mounted on single panel．pack of 10，Ref 849.
THERMOSTAT，for ovens with $y_{0^{*}}$ spindle，to take control knob．Ref 857.
12－0．12V 10 W MAINS TRANSFORMER，Ref 812.
180－18V 10 W MAINS TRANSFORMER， $\operatorname{Ref} 813$.
AIR SPACED TRIMMER CAPS， 2 to 20pp，pack of 2，Rel 818.
AMPLIFER， 9 or 12 V operated Mullard 1153，Ref 823.

2 CIRCUIT MICRO SWITCMES，Lincoln，pack of 4 ． Ref 825.
LARGE SIZED MICRO SWITCHES（ $20 \times 6 \times 10 \mathrm{~mm}$ ）， changeover contacts．pack of 2 ，Rel 826 ．
MAINS VOLTAGE PUSH SWITCH with white dolly through panel mounting by hexagonal nut．Ref．． POINTER KNOB，for spindie which is just under \mathcal{W}^{*} ． like most thermostats pack of 4 ．Ref 833.

TOROIDAL MAINS TRANSFORMERS

All with 220／240V primary winding．
$0.30 \mathrm{~V}+0.30 \mathrm{~V}$ at 120 VA would give you 30A at 4 A or 60 V at 2 A ，price 88 ．Order Rel $8 P G 2$ ．
$0.110 \mathrm{~V}+0.110 \mathrm{~V}$ at 120 VA would give you 110 V at just over 1 A or 220 V at KA ，price $\mathbf{2 8}$ ，Order Ref 8PG3．
$0.35 \mathrm{~V}+0.35$ at 150 VA would give 35 V at 4 A or 70 V at 2A．price $£ 8$ ，Order Ref 8PG9．
$0.35 \mathrm{~V}+0.35 \mathrm{~V}$ at 220 VA woutd give 35 V at 6 KA or 70V at 3 KA ．price 29 ，Order Ref 9PG4．
$0.110 \mathrm{~V}+0.110 \mathrm{~V}$ at 220 VA would give 110 V at 2 A or 220 V at 1 A ，price $£ 10$ ．Order Ret $10 \mathrm{PG5}$ ．
$0.45 \mathrm{~V}+0.45 \mathrm{~V}$ at 500 VA would give 45 V at 11 A or 90V at 5 KA ．price $£ 20$ ．Order Ref 20PG7．
$0.110 \mathrm{~V}+0.110 \mathrm{~V}$ at 500 VA would give 110 V at 5 A or 220 V at nearly 3 A ．price $£ 25$ ．Order Rel 25 PG8．

NORMAL MAINS TRANSFORMERS

5V 45A．£20．Order Ref 20 P 16
6V 1A． 2 for E1．Order Ref 9
8V 1A．£1．Order Ref 212
9V KA． 2 for $£ 1$ ．Order Ref 266
9V 1A．£1．Order Ref 236
9V 3A，£2．Order Ref 2 P408
IOV 1A，£1．Order Ref 492
12 V KA， 2 for £1．Order Ref 10
12V 14．£1，Order Rel 436
12V 2A．£2，Order Ret 2P337．
12V 3A，13，Order Ref 3P181．
15V 1A，£1，Order Ref 267
17V 14．E1，Order Ref 492
18V 1 KA．E1．Order Ref 491
20V 4A $£ 3$ Order Ref 3P106
24 V is $\mathrm{E1}$ Order Ref 337
24 V 1A．£2．Order Rel 2P413．
$24 \mathrm{~V} 1 \not 1$ A．$£ 2.50$ ，Order Rel 2．5P15．
25 V 10A．$£ 20$ ，Order Ref 20 P 33.
$28 V 2 \mathrm{KA}$ ． EA ．Order Ref 4P24．
30 V 25 VA ．$£ 2.50$ ．Order Rel 2.5 P 25.
40 V 2A，$£ 3$ Order Rel 3 P107．
43 V 3 \＄A．E5．Order Ref SP262．
50V 15A £20 Order Ref 20P2．
675 V 100 mA ． 55 ．Order Rel 5P166． $4 \mathrm{kV} 2 \mathrm{~mA}, 15$ ．Order Ret 5 P 139 60.6 V 5 VA .2 for $£ 1$ ．Order Ref 612. $6-06 \mathrm{~V} 10 \mathrm{VA} . £ 1$ ．Order Ref 281 $7.5-0.7 .5 \mathrm{~V}$ 8VA．£1．Order Ref D104， $7.50-7.5 \mathrm{~V} 50 \mathrm{VA}, £ 4$ ，Order Ref $4 \mathrm{P98}$ ． 808 V 8VA，$£ 1$ ，Order Ref 212. 120.12 V 3VA．$£ 1$ ，Order Ref 636. $12-0.12 \mathrm{~V} 6 \mathrm{VA}, £ 1$ ，Order Ref 811. 12.012 V 30 VA ． 22.50 ，Ret 2.5 P 15. $150-15 \mathrm{~V}$ IVA，$£ 1$ ．Order Ref 937. $150-15 \mathrm{~V} 15 \mathrm{VA} .12 .50$ ．Ref 2.5 P 24. $18-18 \mathrm{~V} 10 \mathrm{Va}, ~ £ 1$ ．Order Rel 813.

200．20V 10VA．£1．Order Rel 812.
20－20V 10VA．£2，Order Ref 2 P85． $200-20 \mathrm{~V}$ 20VA．52．Order Rel 2 P138． 20－0．20V 40VA．£3，Order Rel 3P205． $200-20 \mathrm{~V}$ 80VA．£4，Order Ref 4P36． 250.25 V 40VA，£3．Order Ref 3P206
$36-0.36 \mathrm{~V} 20 \mathrm{VA}, \mathrm{E}_{2}$ ．Order Ref 2 P156．

SPECIAL TRANSFORMERS

15VA gives IV 7V 8 V 9 V or $10 \mathrm{~V}, \mathrm{E1}$ ．Order Ref 744. $38-0.38 \mathrm{~V} 150 \mathrm{VA}$ with regulated winding．$£ 10$ ．Order Ref 10P 36.
230－115V auto auto transformer 10VA．£1．Order Ref 822.
$230-115 \mathrm{~V}$ auto transformer $1 \mathrm{kVA}, £ 20$ ，Order Ref 20 P 29.
$230-115 \mathrm{~V}$ auto transformer 300VA can be made from our Ref 4P97．This is a big mains transformer but it has 1115 V tapping on ks primary，$£ 4$ ．

SUPER WOOFER LOUDSPEAKERS

Two available．The first is a $10^{\circ} 4 \mathrm{ohm}$ with a power rating of 250 W music and normal 150 W ．Has a very heavy magnet and is beautifulty made and finished by Challenger．Normal selling price for this is $£ 55$＋ VAT，you can buy at $£ 29$ mnciuding VAT and carriage． Order Rel 29P7．
The second one is a $8^{\circ} 4 \mathrm{hmm} .200 \mathrm{~W}$ music． 100 W normal．Again，by Challenger，price $£ 18$ ．Order Ref 18P9．Incidentally，as these are so heavy，it you collect，then you will make a seving of 52 on the 10° and $£ 1.50$ on the 8^{*}

LOUDSPEAKERS

2° round 500 hm coil kW speaker，pack of $2, \mathrm{£1}$ ． Order Ref 908.
$2 \%_{6} 8$ ohm，pack of $2, \leqslant 1$ ，Order Rel 454 ．
$2 \%^{\circ} 35 \mathrm{ohm}$ ，pack of 2，$£ 1$ ．Order Ref 514.
3 \％＊ 8 ohm，pack of 2．$£ 1$ ．Order Ref 682.
$5^{\circ} 4 \mathrm{ohm}$ ，pack of 2，£1．Order Rel 136.
6 y． 4 ohm with tweeter，£1．Order Rel 895.
6 久n $^{-} 6 \mathrm{ohm}, ~ £ 1$ ．Order Ref 896.
6 \％$^{\circ} 8 \mathrm{chm}$ whh weeter，$£ 1$ ．Order Ref 897.
6 x＂ 4 ohm 12W（supenor make with Hhachi tools）． E1．Order Ref 900.
$6 \times 4^{\circ} 4 \mathrm{ohm}, \mathrm{\varepsilon}$ ．Order Rel 242.
$5 \times 5^{\circ} 15 \mathrm{ohm}, £ 1$ ．Order Ref 906 ．
$5 \times 3^{-16} \mathrm{omm}$ ，pack of 2，£1，Order Ref 684 ．
$8^{-} 15 \mathrm{ohm}$ Audax，$£ 1$ ．Order Rel 504.
$3^{-} 4$ ohm tweeter，$£ 1$ ．Order Ret 433
$6 夕^{*} 4 \mathrm{ohm}$ Sanyo speaker $10 \mathrm{~W}, ~ £ 1.50$ Order Rel 1.5 P 11.
$6 \times 4^{*} 15 \mathrm{ohm} 10 \mathrm{~W} . ~ £ 2$ ，Order Rel 2P167．
$6 \%^{\circ} 4 \mathrm{ohm}$ Mitachi speaker whth tweeter，$£ 2$, Order Ref 2 P301．
20W tweeter 4 chm．£1．50，Order Ref 1．5P9．
Tweeter on flange with crossover，£3．Order Ref 3 386．
Horn speaker，£3．Order Rel 3 P82．
$5^{\circ} 20 \mathrm{~W}$ loudspeaker by Goodmans for Ford， E 3. Order Ref 3P145．
$8^{*} 8$ ohm Amstrad 15 W speaker with matching tweeter，£4，Order Ref 4P57．
Mid speaker in cabinet 4 ohm 5W， 55 ，Order Ref 5P137．
Boxed speakers 4 ohm．$£ 5$ each of pair for $£ 8$ ． Order Ref $8 / 14 \mathrm{~L}$ ．
Double wound voice coil 25 W speaker，ITT，$£ 7$ ． Order Ref 7P12．
8ulkhead speaker，metal cased，£10，Order Ref 10 P 43.
25W 2 way crossover，pack of 2，E1．Order Rel 22. 40W 3 way crossover，£1．Order Rel 23

BIG BUYERS DISCOUNT

Many of the Kems on this page are are available in quantity and if you order 10 of an item，you can deduct $10 \% .50$ of an item 15\％， 100 of an item 25% ，or a mixed order totalling $£ 200$ from hems on this page，again 25% discount．

TERMS

Send cash，PO，cheque or quite credih card number －orders under $£ 25$ add $£ 3.50$ service charge．

J \＆N FACTORS
Pitgrim Works（Dept．E．E．）
Stairbridge Lane，Boine\％
Sussex RH17 SPA
Tetephone： 01444 881965
engines, in particular the recommendation that the rockets are used onty under responsibie adult supervision, and are fired onty in suitable locations. Estes recommend that rockets are fired at least 5 m away, and in the event of a launch falure the rocket must be left for at least one minute before approaching in to attempt to re-launch it.

II less than four rockets are connected, attach the rockets to the lower numbered cables: therefore with two rockets to launch. connect them to cables 1 and 2.

Figure 8: the code for the 16C74

:04000000A720052808

:10000800E9287B20A4 102411241 AOC28072824117D :10001800A001A101241E0528A708031D0B28241DE3 :100028000C282411A4142C08AD002E08033C031935 :1000380059282E08023C031964282E08013C03198C :100048003E28A0010130A90029088E202908A10016 :100058001E30A200A41C3A28A208031D2E287B20CB :100068002908043C03193A28A90A2828A4107B2047 : 10007800 A 7010 C28A0010130A900A 10029088 E20A1 :100088002908A1001E30A200A41C3A28A208031DBA : $1000980048287 B 202908043 C 03193 A 28 A 41 C 3 A 283 C$:1000A800241D52282411A90A4228A001A101802058 :1000B8001E30A200A41C3A28A208031D5E283A2874 : 1000 C 8000 A30AB000130A000A101A411A41C3A28F9 :10000800A41106A28A411A008031DA003A108031DDC :1000E80077280A30A100A103031D6A2859280510A2 :1000F8008510051185110800B0012D183014AD18B0 :10010800B0142D193015AD19B0150508FC053004CB : 10011800850008008000043 C031D9428AD1985151E :100128003008033C031D9A282D1905153008023C98 :10013800031DA0288514AD183008013C031D0800D4 :100148002D18051408008B137B2OFF30FF30850025 :1001580086008700880007308900831605108510FF :1001680005118511071207138710871107118712C8 :100178000710081288120813831287000816881689 :1001880008170330831681008312313090008E01E6
:100198008F0104309500303096000A3097008B16C6
:1001A8000B1783160C158312A401AA01A701A2013B : 1001B800AC01A501A601AF01A801A001A10111216F : 1001C8000A30AB008B1748210800B100030E8312D8 :1001D800B2000C1D0529AFOAAB0BF528A4150A308F :1001E800AB0011210C11D43095070318960A303052 :1001F80096072414A708031DA703A208031DA2033A :100208000C290B1D0C290B11A50A0319A60A4B2151 :10021800320E8300B10E310E0900AE01061BAE147A :10022800861A2E1486191D292C142A1C48212A14D2 :100238001F292C102A1006192629AC14AA1C48219B :10024800AA142829AC10AA1086182F292C152A1DA3 :1002580048212A1531292C112A1106183829AC15DC :10026800AA1D4821AA153A29AC11AA11861B4029B2 :100278002A1E24152A1641292A12051A462924124B :10028800A4104729241608001E30A7000800A80A51 :100298002808033C0319A801081688160817241A09 :1002A8005729AF180800A80803195F2928186329D7 :1002B800A818672908130812200800276929881236 :1002C80021080027692908132C088000FF3087008F :1002D800301807128018071330198710B019871192 :OE02E800301A0711B01A871230180710080009 :100E0000B0000A3C031C003407308A003008093E59 :100E100082003F3406345B344F3466346D347D34A5
:O80E200007347F346F34003405 :00000001FF

Obtaining programmed chips

The code for the 16 C 74 is shown in figure 8. A disk containing the object and source code for the project may be obtained by sending an SAE and a cheque for $£ 5$ to Forest Electronic Developments, 10 Holmhurst Avenue, Christchurch, Dorset BH23 5PQ. They will take credit card orders on 01425 275962. Alternatively a pre-programmed 16C74 is available from FED for £15.00.

Estes model rockets can be found at most good model shops. A catalogue is available from Estes in the USA at: Estes Industries, 1295 H Sireet, Penrose, CO 81240, USA. Tel. from UK (for other origins, add the appropriate international code): 001 (800) 820 0202; fax 001 (800) 820 0203, or on the World Wide Web at http://www.service.com/estes/ estes.html.

All photographs courtesy of rocket builder Sven Knudson. Sven's web site can be found at www.dtm-corp.com/-sven. His email is sven@dtm-corp.com .

GAZINE

9am-5.30pm Monday - Friday Fax order line: 01858434958

PROTEUS

Schematic Capture

- Produces attractive schematics like you see in the magazines. - Netlist, Parts List \& ERC reports. -Hierarchical Design. © Full support for buses including bus pins. Extensive component/model libraries. Advanced Property Management. - Seamless integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation. Event driven Digital Simulation with modelling language. Partitioned simulation of large designs with multiple analogue \& digital sections. -Graphs displayed directly on the schematic.

Now Foatures

Component Auto-Placer Pinswan/Gateswap Optimizer Backyround Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Control of Schematic Appearance Extensive Hew Compenent Llurarles

Avallable in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further Information \& upgrade prices.

apjorsins
as pancomining good

Electronics

Write, phone or fax for your free demo dlsk, or ask about our full evaluation kh. Tel: 017567534 a. Fax: 01756 752857. EMALL: Info@tabcenter.co. uk 53-55 Main 5l, Grassingion. 8023 5AA. WWW: ntpiflmwe labcontor.co. ut
Fully interactive demo versions available for downioad from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanter. Prices exclude VAT and delivery. All manufacturer's trademarks acknowiedged.

Highn-Low GCSE Grounding Timer M od ul le

Terry Balbirnie continues his series of adaptable circuits for GCSE projects with an adjustable delayed timer module

he purpose of this series is to describe some electronic modules which will be of interest to students and hobbyists, particulanty those studying for GCSE Technology and similar examinations. Ali the devices may be used as they stand, or modified to suit a particular application. All have possibitities for experimental work buili in to challenge the more ambitious student.

No frills

The crounts are given without frils = they are-not buil into a"box, and there is no on-off switch, for example. These detals are left to the constructor. The way in which each device works is described with the aid of the circuit diagram.

Construction is based on a stripboard Neroboard) layout. Veroboard is preferred by many students and it is readily available. Aso, the inherent "in-ine" arrangement of components inherent in stripboard more nearly resembles the arrangement of a crouit diagram than a true PCB does, and is therefore more easy to match to the crircuit under study. The relay output means that the circuits are able to control other battery-operated devices such as lamps or motors using a separate supply. They are atso able to switch other electronic circuits on or off without any care needed over interfacing.

Note that these circuits must not be used to control mains equipment as this would be very dangerous.

Just in time

This month we shall look at a time delay module which may be used to switch some external device on or off during operation. The "highlow" aspect is provided by a switch on the circuil panel. In one position, the timings may be adiusted from about 30 seconds to 11 minutes. In the alternative position, they may range from about 4 minutes to 2 hours. This makes the circuit sutable for a wide vanety of punposes. For example, it could be used for process timing (possibly for photographic work or cookery). It could also be used to operate a radio for a preset time at night so that it will switch off after the user has gone to sleep. The timings are easity changed if required and details for doing this are given later. The total current requirement is about 80 mA while timing. This is not important for short timings. However, over long periods the battery would soon be drained. It would then be befter to use a commercial plug-in power supply unit. More about this will be said later.

The circuit is shown in figure 1 . Power is obtained from a Pp9 battery or six AA size cells in a suitable holder (or from a plug-in

supply). Diode D2 allows current to flow from supply positive to charge up capactor CA which then provides a supply for the circuit The capactior provides a reserve of charge and helps to provide stable operation. This is especially useful when the battery is becoming old or when a poorly-smoothed plug-in supply is used. D2 also prondes protection if the supply were to be connected with incorrect polarity since then it would be reverse biased and would not allow current to flow.

The principle component is the integrated circuit timer, IC1. This functions with very few extermal components to provide reasonably accurate time delays. The chip inconporates a digital counter and logic crocuitry which enables it to give very long timings with relatively low vatue components. It operates as follows. Current from the battery positive line, flows through resistor R2 to pins 4 and 5 . An onchip 5 V regutator then provides a stabilised supply for the ic. The excess voltage - that is, the difference between the nominal 9 V input and 5 V - appears across R2. Decouping capactor C 3 is essential for stable operation of the ic. On powering-up, timing begins and pin 3 goes high.

Pin 14 provides a precision 2.5 V supply for the timing components (RV1, R1, C1 and C2). Assume that swith SWi is open (ofi) for the mornent so C1 is discomected and has no effect. Current flows from pin 14 through preset RV1 and resistor R1 and charges capacior C 2 . When the voltage across C 2 reaches a certain value, this is detected by pin 13 and the on chip counter registers "one". The capacior is then discharged by intemal circuitry. The charging process then starts again with the counter keeping a record of the number of charge/discharge cycles. When this reaches 4095, pin 3 goes low and timing is ferminated. The ic is then ready to begin a futher cycle when the supply is switched off then on

Figure 1: the chrcult of the High-Low timer module
again. When SW1 is closed (on), capacior C1 is cornected in peratial with C2 and the overal vatue is increesed. This extends the tinings.

While pin 3 is high, carrent flows through resistor R3 to the bese of transistor Q1. This allows collector carent to flow through the

Figure 2: the stripboerd leyout of the High-Low timer modute

Figure 3: the back of the stripboard layous
relay coll. The relay has SPDT contacts and access is provided to both the normaly-open (make") and the narmaly-dosed (break) ones so that external devices may be swiched either on or off during the timing cycle. D1 bypesses the reverse high-vollage pulse which appeers across the relay coll when il switches off. Without
this, the high vollage could damage
semiconductor devioes in the circuit.

Construction

The topelde stipboerd layout (component side view) is shown in figure 2. Note that a large number of track breaks and inter-stip inils are needed. Make the track breeks first, using a proper spot face cutter, then attend to the Irks. Most causes of mallunction are due to strips not being broken completely, a break or Ink wie being left out, a breek in the wrong place or a blob of solder or siver of copper bridging adpacent tracks. Some of these mistakes are invistle to the naked eye, so chock with a magrilying glass

Next, solder the swilch in position. With the specitied unit, the centie tag wil not it the 0.1 in . matric. It wil be necesesy to dill a emall hole between the tracks as indicated. The centie tag is connected to the copper stips on each side of il by soldering a short link wie between them. Do not rely on a blob of solder to do this. Follow by sotiding the ic socket in postion, the relay, then all remaining components. Take care to mount the transistor, diodes and capactior C4 the correct wey round. Solder bettery comectors to the +9 V and OV tracks as inclcated. If a plug-in supply is to be used, use the appropriate
connector. Solder wires to the required relay contact tracks - the common and either the NO (normally-open or "make") or NCC (normally-closed or "break"). Probably the "make" contacts are more usetul and these are accessible from the edge of the board. Note. however, that the photograph shows wres soldered to the "break" contacts.

Adjust RV1 fully dockwise and switch SW1 off lever açusted upwardsh. This will give minimum timing which is best for testing purposes. Insert the ic taking care over the orientation. This is a CMOS devce and could be damaged by static charge - earth yourseff by touching a water tap or other earthed point before handing the pins.

Testing

Comnect the battery and listen for a click from the relay. It should then switch off again some 30 seconds later. Disconnect the battery Advance RV1 to give longer timings and switch on again. Check the higner timing range by switching SW1 on (lever downwards).

If you are using a plug-in power supply, make sure that its voltage output does not exceed 12 V . If it is of the stabilised type there will be no problem. The hexpensive non-stabilised type will need to be checked since the output vottage is usuaty stated for full-load conditions and with this crouit it will be loaded only lightly. You may find that a 6 V nominal supply provides 9 V under a light load. It it has a polarity reversing plug, it is quite in order to try it one way round and if the cricuit does not work, reverse it.

Ideas for experiments

Remember. this circult must not be used to operate mains devices. To extend to time periods, capacitors C1 or C2 could be increased in value. Attemately, increase the value of RV1 or R1. If the timings need to be adjusted from outside the case, remove RV1
and comect wres from a standard panel-mounting potentiometer to the same positions. If a motor or a lamp requiring more than abour 1A is to be operated, it will be necessary to up-rate the reiay with one having appropnately rated contacts.

:lactronics Principles 4.0

 For Windows 3.1, '95 \& NT.If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.

Electionics Principiess 4.0 niow hos an
exfended ronge of fulty interactive analogue aric digtal topics. from current flow'and dc, che utith finotis passive and active fillers. Logic begins with simple gates through Binary, hex and octờ number conversiont adamon-and subifacticin 10 Boolean algebra. priss, microprocessor and miciocomputer operotion, registers, arithmettic and logic unit. ROM. RAM. Addressing modes and full histruction set which can be simutated on the sciect. af version $3: 0$ topics are included within this programs
Currently used in hundreds of UK and overseas schools \& colleges to support GCSE. Alevel, BTEC, Cliy a Guilds dind university foundation courses. Also NVE's and GIVEs where students are required to have an understanding of electronics principles.

The popular Electronics Principles 3.0
A comprehensive introduction \%o ac \& ac cheuit insgiy. Ohm's iaw, voltoge. curent, Phose angles, athemating voltages and currert. RCL series and poroliel networks, feoctance and mpegance. Active devices - diodes, bi-potar and fielid etfect transistors. SCR's and OP-Amps. Logic gates. counters, shift fegrsters and binary, octal and hexnumber conversions.

There are neary- three hundred' analogue and digitol moin fopics. all with fulty inferacive graphics'th solou, with supporting catculations that reflect vour imputs atong with notes to explain each topic

- Arinpuits \& outputs use electronics symbols.
- Hundrects of electronics formulie ovarlable for circull nuestigation.
- Ideal for students und hoboyists who require a quick and easy woy to get io grips with o particular point.
- Explore the subjeci as the inferoctive graphics rre rediawn showing phose angles, vollage and cujent levels or logic states for your chosen component values.
- Generote hard copies of graphics, iext and calculations.

Schools and Colleges.

A fully inferactive 'electronics fextbook' on the screen: OHP slides and student handouts within minutes. Mult-user network version available.

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: $01376514008 . e$-mail sales@eptsoft.demon.co.uk * UK \& EC countries add £2 per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

Computer-controlled Christmas Light Show

Pel An uses his Centronics port to drive a "melody" of programmable light patterns

1his article describes a computer-controlled LED light show system. There are 24 LEDs $(8$ red, 8 green and 8 yellow) arranged in three concentric circles on the dilsplay board (see Figure 1). with one blue LED in the centre. The board is connected to an V/O control board via a 26-way nibbon cable. The control board is then connected to the computer's Centronics port using a printer cable. The lighting sequence for each LED is programmable. Users can write software to output different lighting sequences and thus achieve various visual effects.

The project can be a fancy hi-tech decoration at home. If you have several such devices running, you probably can just about bring the Blackpool Illuminations_into your home.

The hardware princtple is very easy to understand and the project is easy to construct. Programming the light sequence is greariun. You can use your imagination to create any visual effects you like. If you are a bit lazy, you could let your computer to 'compose' its own melody of lights..

The works

The system consists of two boards: the VO board and the LED (display) board. The I/O boards is connected to the printer port of a PC, and provides 24 output lines. The LED board contains 25 LEDs of 10 mm diameter.

The details of the Centronics port are described in the article "Centronics Mini-Data Lab" in ETI Volume 26 issue 2, earlier this year.

The circuit diagram of the VO board is shown in Figure 2. It contains three 74LS374 octal latches (IC1, IC2 and IC3). The pin-out of the 74LS374 is given in Figure 3. When latching a data to the output, firstly, the data is applied to the inputs (D). The a low-to-high-then-low pulse is applied to the CLK pin (pin

11). At the low-to-high transition, the input data is latched to the output. In the circuit, data inputs to the three latches are provided by the Data port of the Centronic port. DBO, DB1 and DB2 of the Control port are connected to CLK inputs of IC1, IC2 and IC3, respectively. The output ports A, B and C are available from $\mathrm{J1}$ and the pin-out functions of the connector are shown in figure 5.

The VO board requires an 81015 V DC 1 A power supply. The voltage is converted to +5 V using an on-board voltage regulator. A fuse is used to limit the total current consumption within 500 mA .

The circuit diagram of the LED display board is shown in Figure 4. Each LED is driven by one output of the 74LS374 latches. A resistor is connected in series with the LED to limit the LED current below 15 mA . The LEDs used are 10 mm diameter LEDs, and there are 24 of them arranged in three circles of 8 LEDs each, with a blue LED in the centre. In my display, the inner circle has yellow LEDs; the middle circle has red LEDs and the outer circle has green LEDs. They are controlled by Port B, Port C and Port A, respectively.

Figure 2: the circuit diagram of the Centronics //O card

Programming

The Turbo Pascal 6 program for the project is listed below. Readers can convert the program into Basic or other programming languages.

The present program contains some useful functions and procedures.
Procedure input_printer_address reports the number of Centronics ports installed on your pc and allows you to select a printer port. Procedure
write_port(port_number,port_data:byte) wites port_data into one of the three 74LS374 latches specified by port number. The port_data could be a value from 0 to 255 and the port_address could be 0,1 or 2 . This is the only VO control procedure in this program. Procedure Timer(second:rea) is a timer procedure. If the time elapsed is in excess of the second, it will set the time-out flag (a Boolean number) true.

When you run the program, it first reports the number of Centronics ports installed on you pc and asks you to select a printer port to which the light show board is to be connected to. After this, the program will play a number of lighteffect melodies which I have programmed.
In this demonstration program, I have written some light effect procedures. They are designed to work as follows:

Procedure All_on_off (second) puts all the LEDs on or off at the same time. The time period of this effect is determined by the vaniable: second. The details of the procedure are given in the program list.

Procedure Binary (second) simply sends binary data from 0 to 255 to the three ports. The lighting sequence of the LEDs is like a binary counter. This is a good demo of binary data.

Procedure Chase (No, effect1, effect2, second) gives an LED chase effect. To find out the functions of parameters, type the program and try it.

Procedure Red_Green (second)

 illuminates one red LED and one green LED. The two LEDS rotate in a circle.
Construction

The two boards are constructed on single-sided PCBs. The component layout of the I/O board and the LED board are shown in figure 5 .

Construction of the boards is straightforward. Care should be taken to ensure that the polarity of the LEDs is right. When soldering LEDs on the PCB, keep the soldering time as short as you can to make a good connection, as LEDs can be heatsensitive.

Procedure Explode (second) makes the yellow LEDS (the inner circle) light up first, then the green LEDs (the middle circte), and finally the red LEDS (the outer circte) lights up last. It will repeat this action again and again. The effect is exploding circles in different colours.

Procedure All ofi will switch off all the LEDs.
This also 'switches off' the descriptions of my demo program.

Program Light_show;
[Software driver for PCcontrolled Light Show Pei An 1997]

uses
 dos, crt, graph:

var
bitnumber,outputbyte:byte;
P_address, Delaynumber_delay:integer:
bit:array[1..8] of byte;
timeoutflag:booiean;
h1,m1,s1,s1001,h2,m2,s2,s1002:word;
time1,time2: real;
Procedure find_delay_number_2;
\{Check pc speed and find the delaynumber for 1 ms \} var
time1,time2,dt:real;
t,h1,m1,s1,s1001,h2,m2,s2,s1002:word;
begin
clrscr;
gotoxy(25,24); write('Checking computer speed');
gettime(h1,m1,s1,s1001):
time $1:=3600^{\circ} \mathrm{h} 1+60^{\circ} \mathrm{ml} 1+\mathrm{s} 1+\mathrm{s} 1001 / 100$;
for $t:=1$ to 1000 do delay(1);
gettime(h2,m2,s2,s1002);
time2: $=3600^{\circ} \mathrm{h} 2+60^{\circ} \mathrm{m} 2+\mathrm{s} 2+\mathrm{s} 1002 / 100$; dt:=time2-time 1 :
delaynumber_delay:=round($1000 / \mathrm{dt} t^{\circ} 0.001$);
clrscr,
gotoxy(30.24); write('Finished....');
Cirscr;
end;
Procedure input_printer_address:
(Universal auto detection of printer base address)
I $\$ 000: \$ 0408$ hoids the printer base address for LPT 1
$\$ 000: \$ 040$ A holds the printer base address for LPT2
$\$ 000: \$ 040 \mathrm{C}$ holds the printer base address for LPT3
$\$ 000: \$ 040$ e holds the printer base address for LPT 4
$\$ 000: \$ 0411$ number of parallel interfaces in binary format\}

var

Ipt:array [1..4] of integer;
number_of_Jpt,LPT _number,code:integer;
kbchar:char;
begin

clrscr;

LPT_number: $=1$; \{defaut printer\}
number_of_lpt:=mem(\$0000:\$0411); (read number of parallel ports)
number_of_lpl:=(number_of 1 pt and $(128+64)$) shr 6; |pt $\mid 1]$:=memw $\$ \$ 0000: \$ 0408$]; \{Memory read procedure\}
1pt $(2):=m e m w(\$ 0000: \$ 040 A)$;
lpt(3]:=memw|\$0000:\$040C];
Ipt[4]:=memw[\$0000:\$040E];
texibackground(blue); clrscr;
textcolor(yellow); textbackground(red); window($10,22,70,24$);
cirscr;

> writeln('Number of LPT installed : ',number_of_1pt:2); writenn('Addresses for LPT1 to LPT 4: ',1pt(1):3,' ', Ipt(2):3.' $\left.\therefore \operatorname{lpt}(3): 3^{\circ} \quad, \quad \operatorname{lpt}[4]: 3\right)$;
write('Select LPT to be used ($1,2,3,4$) : ');
delay(delaynumber_delay ${ }^{*} 1000$):

if number_of_lpt>1 then begin (select LPT1 through LPT4 if more than 1 LPT installed)

repeat

 kbchar:=readkey; \{read input key\} val(kbchar, LPT_number, code); \{change character to value)until (LPT_number>=1) and (IPT_number<=4)-and (lpt(LPT_number)<>0):

> end:
clrscr;
P_address: =1pt(LPT_number);
writeln('Your selected printer interface: LPT',LPT_number:1);
write('LPT Address : 'P_address:3);
delay(delaynumber_delay* ${ }^{\circ} 1000$);
textbackground(black); window($1.1,80,25$); clrscr; end;

Procedure timedelay:
[A short time delay]
var
dummy:real;
l:integer:
begin
for $\mathrm{i}:=1$ to 50 do dummy:=0;
end:
Procedure initialization;
begin
por $[$ P_address +2$\}:=0+2+0 ;\{D S L=1$, data load \#1 $=0$, data load \#2=0

Program your PIC12C508/9s

Visible Sound's Pentium Friendly PIC programmer will program the PIC12C508/9, PIC16C71/84. The programmer includes a ZIF socket to easily mount the device to be programmed. (H137A).
All this for only $£ 25$ inc. P\&P (UK Only) and VAT.
$\mathbf{2 5}$ way M/M cable $£ 6$ (A057A). Power Supply $£ 5$ (A061 A).
Christmas Special PIC Programmers
Starter Kit
This value for money Special Offer, conslists of our PIC
This value for money Special Offer, consists of our PIC
programmer (H 137 A) , parallel connection cable (A057A) and Power supply (A061A) AND 10: PIC12C508-04/P.
Incredible value at $£ 49.99$ inc. VAT and (UK) Páp.P.
PIC12C508-04/P $1 \times \approx 230,10 \times 52.00,50 \times 1.88$ and $100 \times £ 1.76$ (C504A). PIC12C508/JW 1x£13.50 (C503A). PICI6C84 1xef6.00 (C500A).

Voice Command Module

$£ 60$
Based on the Sensory Devices RSC meural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an "on' word and 'off' word giving you up to 99% speaker dependent recognition. Simply traln the module with up to 40 words
VCM low cost microphone (AO60A) 86.50 , VCM low cost Speaker (A062A) $£ 5.00$, VCM serial cable (A059A) $\mathbf{E 9 . 0 0}$.
Supply Voltage: 9 V to 13 V DC, 13 mA , external.
Trigger, ground, power \& serial cables included.

Microchip PIC and Motorola HC11 based development Tools

PIC Microcontroller Programmers Original - This is our original programmer for $16 \mathrm{C} 5 \mathrm{X}, 16 \mathrm{C} 55 \mathrm{X}, 16 \mathrm{C} 6 \mathrm{X}, 16 \mathrm{C} 7 \mathrm{x}, 16 \mathrm{C} 8 \mathrm{x}, 16 \mathrm{~F} 8 \mathrm{X}$ devices. Price : $£ 40$ for the kit, or $£ 50$ ready bultt. Sertal. This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also In-Circuir programming. Price: $£ 40$ for the ktt, or $£ 50$ ready built, Introductory - Will program 8 pin and 18 pin devices : 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X, 12C508, and 12C509. Price $£ 22$ for the klt (not available ready built). Note: All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4). No hard to handle parallel cable swapping 1 All programmers are supplied with instructions, Windows programming software, MPASM, MPSIM and PICDE (Windows based PIC assembler)
PIC or HC11 Windows Based Development: PICDESIM and HC11DE allows assembly and simulation of your PIC or HC11 projects in one Windows program. Incorporate multiple files, view help file information directly from the code, edit within project, build and track errors directly in the source, then simulate. Simulator altows 3 breakpoint types, follow code th the source window, set breakpoints directly in code. Run programs, or single step, or step over subroutines. Track variable values and trace for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program - examine frequently called routines which are timed and use the information to optimise out bottle necks. PIC Version Simulates up to 50 times faster than MPSIM I NEW 1-32 bit version allows full use of Windows '95/NT4.0 facilities. Cost £30.00, or £25.00 for existing and new purchasers of any of our programmers. Please specity Windows 3.1, or Windows '95 (32 bit) and either PIC or HC11 version
PIC BASIC FED's PIC BASIC products - straightforward, capable, powerful, rapid development. Operating in a Windows Development Environment our modules need no assembler or UV eraser to program your PIC's, and operate from a serial link to your PC. The 16C74 module features - 8k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable VO, 8 AD inputs, Interrupt driven serial RS232 interface. Peripheral I2C bus interface, LCD display driver routines, up to 178 bytes for variables and stack, extendible with optional extemal RAM and all the standard 16C74 features, Ask about the 16 C 57 version.
Comptler. The FED PIC BASIC compiler for the 16C74. It produces hex code to program your 16C74 directly with no need for extemal EEPROM. Compatible with the EEPROM versions of PIC 16C74 BASIC modules - develop on an EEPROM based module then compile and program your PIC chips directly.
16 C 57 Module Kit (8 k EEPROM, 4 MHz) 225.00 , Pre-bullt $£ 30.0016 \mathrm{C} 57$ Module Kht (8 k EEPROM, 10 MHz) £31.00, Pre-bullt $£ 37.00$ 16 C 74 Module KIt (8 k EEPROM, 4 MHz) £35.00, Pre-bult $£ 42.0016 \mathrm{C} 74$ Module Kit (8 k EEPROM, 20MHz) $£ 40.00$, Pre-built $£ 46.00$ 16 C84 chip programmed with BASIC $\mathbf{£ 2 5 . 0 0}$ Compller - $£ 60.00$, or $£ 50.00$ when ordered with a module

PIC16C74/JW
PIC16C74-04P PIC16C57-04P PIC16C84-04P PIC16F84-04P PIC14000-04P PIC12C508-04P

Erasable	20 MHz	$£ 24.00$
OTP	4 MHz	$£ 8.00$
OTP	4 MHz	$£ 5.00$
	4 MHz	$£ 6.00$
	4 MHz	$£ 6.00$
OTP	4 MHz	$£ 10.00$
OTP	4 MHz	$£ 2.70$

PIC and HC11 devices

PIC16C558 PIC16C74-20P PIC16C57-10P PIC16C84-10P PIC12C508-04P PIC14000/JW Motorola MC68HC811E2
Ask about other chips!

		$£ 5.00$
OTP	20 MHz	$£ 11.00$
OTP	10 MHz	$£ 6.00$
	10 MHz	$£ 8.00$
OTP	4 MHz	$£ 2.20$
	Erasable	$£ 23.00$
1E2	Ring for details	

Forest Electronic Developments

Figure 4: the circuit diagram of the LED board

end:

Procedure write_port(port_number,por_data:byte):
(write port_data into one of the 74LS373 D-type latches)
begin

> port [P_address]:=port_data; \{output a byte to the data port!
timedelay;
if port_number $=0$ then begin
port $[$ P_address +2$]:=0+2+4$; \{load denail $1=1\}$
timedelay;
port(P_address +2): $=0+2+0 ;$ fload data \#1 $=0$,
loading data)
timedelay:
end;
if.port_number $=1$ then begin
port \mid P_address +2$\} ;=0+0+0 ;\{$ load data $:$: $2=1\}$
timedelay:
port $\left[P _\right.$address +2$\}:=0+2+0$; \{load data $\# 2=0$, loading
data)

timedelay;

end;

If port number $=2$ then begin
port $[\mathrm{P}$ _address +2$\}$: $=0+0+0$; $\{$ load data $\# 2=1\}$
timedelay;
port \mid P_address +2$\}:=1+0+0$; $\{$ load data $\# 2=0$, loading
data)
timedelay;
end;
end;

Procedure find_bit_weight;
(find the bit weight)
begin
ber 1): $=1$;
bit (2): $=2$;
bit $[3]:=4$;
bit $(4):=8$;
bit $(5):=16$;
bit $(6):=32$;
bit(7):=64i
$\operatorname{bri}[8]:=128 ;$
end:
Procedure Timer(second:real);
begin
time1: $=3600^{\circ} h 1+60^{\circ} \mathrm{m} 1+s 1+s 1001 / 100$,
gettime(h2,m2,s2,s1002);
time2: $=3600^{\circ} \mathrm{h} 2+60^{\circ} \mathrm{m} 2+\mathrm{s} 2+\mathrm{s} 1002 / 100$;
if (time2-time1>second) then timeoutflag:=true else timeoutflag:=false;
end:
Procedure Allon_off(second:real);
begin
gettime(h1,m1,s1,s1001);
repeat
write_port(0, 255);
write_port(1, 255);
write_port $(2,255)$;
delay(delaynumber_delay*300);
write_port(0.0);
write_port(1,0);
write_port(2,0):
delay(delaynumber_delay" 300); timer(second):
until timeoutflag:
end;
Procedure binarysecond:real);
var

i:Integer;
begin
gettime(h1,m1,s1,s1001):
repeat
for $t:=1$ to 255 do begin
write port(0, i);
write_port(1, i);
write_port(2, i);
delay(delaynumber_delay` 10); end;
timer(second):
until timeoutflag:
end;

Procedure chase(no,effect 1,effect2;integer;second:reaf); var
i,data1,data2, ,: integer;
begin
gettime(h1,m1,s1,s1001):
repeat
for $\mathrm{l}:=1$ to 7 do begin
data1:=bitlij;
data2:=bit|abs(effect2*8-i)];
for $j:=1$ to no- 1 do begin
data $1:=$ data $1+$ bit $[i+]$:
data2:=data $1+$ bit $\left[\right.$ abs (effect $\left.\left.2^{\prime} 8-i-i\right)\right]$ end;
write port(0, abs(effect1 "255-data1)):
write_port(1, abs(effect1-255-date2)):
write_port(2, abs(effect1-255-data2)):
delay(delaynumber_delay"100): end:
timer(second):
until timeoutflag;
end;

Procedure red green(second:byte);
var
i:integer
begin
gettime(h1,m1,s1,s1001):
repeat
for $i:=1$ to 4 do begin write_port(0,bit(2"i-1)); write_port(2,bit(2"i-1));
delay(delaynumber_delay ${ }^{-100}$):
write_port(1,bit(2"i);
write $\operatorname{port}\left(2, b i t\left[2^{*} i\right)\right.$);
delay(delaynumber_delay ${ }^{\circ} 100$);
timer(second):
end;
until timeoutflag:
end;

Procedure explode(second:real);
var
i,data:integer:
begin
gettime(h1,m1,s1,s1001);
repeat
write_port(0, 255);
delay(delaynumber_delay"200);
write_por(1. 255)
write_port(0,0):

Figure 5b: the component layout of the I/O card
delay(delaynumber_delay*200)
wnte_port(2.255):
write_port $(1,0)$;
delay(delaynumber_delay*200);
wnite_port(2,0):
timer(second):
until timeoutflag:
end;
Procedure all_off;
begin
write_port(0,0):
write_por(1,0);
end;
[............"Main program**........
begin
find_bit_weight;
find_delay_number_2;
Initialisation:
input_printer_address;
repeat
red_green(4)
chase (1,0.0.2) ;
all_on_off(2);
chase (1,1,1,2); explode(2); chase($3,0,0,2$); explode(2); chase $(3,0,1,2)$; explode(2); chase $(1,0,0,2)$; explode(2); all_on_off(2); binary(2); until keypressed
end.

Some ideas

Constructors may find that the LEDs are too small and the light emitted is not bright enough for their preferences. You could improve this by using bigger lights. If the current required by each light is too high, a power driver should be provided. You could also add more lights on your display to give more complicated visual effects. This however requires extra circuitry to expand the outputs of the I/O board.

Now, it's time for you to think about your light effects and write your own procedures!

Technical support

Constructors should be able to obtain most of the components from Maplin, PO Box 3. Rayleigh, Essex SS6 8LR, UK (catalogues from main newsagents) or Electromail, PO Box 33, Corby, Northants NN17 9EL. UK (Tel. 01536 204555). The TP6 software driver (source code and EXE files) is available for

$£ 5.00$ pounds from the address below. The price of the two PCB together is $£ 15.00$. I also have a limited number of kits which put everything together in a package. Please direct your enquiry to Dr. Pei An, 11 Sandpiper Driver, Stockport, SK3 8UL, UK. My telephone and answer phone number is $44+(0) 161-477-9583$ and my θ-mail is
PAN@FSI.ENG.MAN.AC.UK.

The Winter 97/98 Edition brings you:

- Our most comprehensive selection of Computer equipment ever, including all the latest CPU's, the fastest CD-RDM's, new ranges of Scanners, Printers, Motherboards, Graphic \& Sound cards etc. etc., extending our range of PC components and accessories at unbeatable prices.
- $£ 25$ worth discount vouchers.
- 208 Page main Catalogue, plus 32 Page full Colour
52.20 Computer Catalogue, incorporating 26 Sections with over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.
- Get your copy today!

CirkitCirkit Distribution Ltd
 Park Lane - Broxbourne . Hertfordshire EN10 7NQ
 Tel: 01992448899 . Fax: 01992471314 Email: mallorder ©cirkit.co.uk
 Website: http://www.cirkit.co.uk/cirkit

Protect Your Microchios from STATIC DISCHARGE!

Use an SSE grounding hit Mit includes:
OStatis dissipative solder resustant rubber mat OWrist strap
GGround lead
OEarth plug
Ret: AGKI Mat size 70 a 30 cm - offer price $£ 16.55$ per hit +V at Ref: ACW2 Mat slize $25 \times 20 \mathrm{~cm}$

- offer price $\mathbb{} 12.55$ per hut +VAT

STATIC SAFE ENVIRONMENTS
Woodgate Business Park. Ketties Wood Drive. Birmingham 832 3GH Tel:01214219800 Fax:0121 4219828 E-Mail sseestotk-soterauck
Payment by CHEOUE MSMMASTERCARD
CATALOGUE AVA/LABLE

 chosonic mio lus for neay (1 LUX) to ongle 2.13 rolly powive mpoly and componto noteo out Al napd to to hoves in you aw undowere and neve ragte peos a much clever prave men men the smal iomes re sonic Ezs 43-vere exs os Hat quily mepong mator tese foll noluding uppong mators by PC ithrough the peritel pory wat 2 motorn contiol arover ces 10 rap to the thes. He coltector end emitior and it 15 MPN Hawlo hend hid MOSFET enywer doneloo gwo tren and source and $C P$ or N anemel Hew ino cen in STR300 2rigomme (ratum loed ivig c3se00 capecity no merons il chered at 100 ma end ascreged el 230 ma or iess 1100 maH espectir fown cupecoly for figh decheres nites) Ca.rs of 42 I 16 mm nced bentores 17 inmaliomm in	alls ein solder heos the weso mow commonty uned condens acrovedivon and oile 22 do I 42 mm tin) If ie Wy to chach open and was mendectured in 1999 carl wach or T 110.50 per bon of 14 conviras on edpe connector (12 may 8 mvm plath) and cerve rerrinim to cornect to mives and 5 atdo in cabio chotis crem 10. 57 as ecse7a manmior 20 lor $\$ 1,00$ SLOS2 UnF Lemthy angifier LC. 10 witece mounteng roam out 300 r nou to a apedolver ive in 5 l sech or pact of 10833 so Amper A83900. C wege meporno motar 16y 75 steo 27 atm 60 mm de booy 83 mm mat \$0 1000- lut asovere 200 wech. 150 1000, 1001000 . 1000 Polypropitans iu soovde (Wime Le(PiOC) 27 smm gilen Shanitimen case 7Sp each 600 p 1000 wevener e0p solid ceteon mevitors why lou nouctence eech 1000 mo nowe if reng of 025 m 0 sw iw end 2 w of coveon covirion ploceo remo SAE for bir PC. Loow PSU (hnel pen 201006-001) shencero C2s 00 enan tise 00 for 8 surice Diptor mutione 19 and isv loseory west coss Hend now wistoric comoter cles CV2ase gan Stroemer bipe commonty ued on ne mechins and compouno res ro.es pis DI peckico caxo ceach (1000 re.20) sovirimed are now end unied unibes othenwes araces wies recheng of CMOS TIL TunC TuF Linee Trinevion Preaie add E1 es howerds PEP fardion from the Scolt vat ncludeo on el pries JPG ELECTRONICS Efl 273278 Chatswom Pood Chestortiad S40 2BM

Printed dircults in Minutes Direct from Laserprint!

$81 / 2^{\prime \prime} \times 11$

- Or Photocopy - Use standard household iron or P.n-P Press.

Use Standard Copper Clad Board
5 Sheets $£ 12.50,10$ Sheets $£ 25.00+$ VAT. Add $£ 2.50$ postage Complete kits to manutacture your own PCB's from $£ 40.00$, of individual Hems of material, chemicals, etchant etc.
PRESS-N-PEEL ETCHING SUPPLIES 18 Stapleton Ŕoad OTron o Soüthgate Peferborounh PE2 STD - Tel: 01733133043

THE MIGHTY Midget

This little device for repair and development of audio equipment is Bob Noyes' way of getting an audible indication for audio signal tracing as well as a meter reading.

Figure 1: the circult diagram of the Mighty Midget

For many years I have-had an audio signal tracer (or amplfier and speaker) consisting of a good old LM 386 audio amplifier IC and a single transistor pre amp. The LM 386, although a great little amp not requiring many external components. has one drawback: its output is limited to half a watt or so. This limitation is not a problem when using it to trace signals in radios, tape recorders and, dare I say it, rocord players where the level of signal is fairly constant; but with equipment such as synthesisers and guitar effects units a much greater dynarnic range is produced, so in order to reproduce loud and quiet sounds without distontion a more powerful amplifier is needed. A Marshall 4×12200 watt with KT88s all aglow is ideal, but for bench use something a little smaller and a lot cheaper is

required.

Enter the Mighty Midget. The output is capable of some six watts and, although not suitable for stage work, its output is really surprising. Remember, human hearing is not linear, but more logrithmic, so to double the effective volume the power must be increased ten-fold. This is a major problem for groups and discos wanting more and more volume, but it is an advantage coming down the scale, where only a few watts can sound very loud, as my neighbours will testity; combined with a

PWNO.	FUNCTION	NOTES
1	POWER AMP INPUT	FROM VOLUME CONTROL
2	12 VOLTS OUT	5mA MAX
3	PRE-AMP OUTPUT	TO VOLUME CONTROL
4	OV	VOLUME OV
5	OV	
6	OV	
7	PRE-AMP INPUT	TIP CONTACT JACK SOCKET
-8	PRE-AMP INPUT RETURN	SLEEVE CONTACT OV JACK
9	418V OUT OR IN	DC ONLY
10	METER \&VE OUT	
11	METER -VE OUT	
12	12 VOLTS AC IN	
13	12 VOLTS AC IN	
14	POWER AMP OUT	SPEAKER (LIVE)
15	POWER OV	
16	POWER AMP OUT RETURN	SPEAKER (RETURN)

Figure 2. the inputoutput pin connections to the PCB. - see transformer options
good low impedance speaker or speakers, this will more than do the trick.

The output stage of the Mighty Midget is a TDA 2003, not to be confused with the more popular TDA $2030 \mathrm{hi}-\mathrm{fi}$ amp. The 2003 is about the same size as a TO 220 transistor but hes five legs: these are not on 0.1 -in spacing, so to ard layout the legs are rearranged and spread out a little so as to conform with it. The metal tab or heatsink is at pin 3 potential, or OV in

Figure 3a and b: a suggested front panel and rear panel layout
our case. A large heatsink is required to bolt to it. which in this instance is a 85 mm long piece of aluminium angle $25 \mathrm{~mm} x$ 25 mm by 3 mm thick; this in turn is used to mount the Mighty Midget in the box. The heatsink should be earthed on the bolt holding the TDA 2003 to ft . Only one earth connection is made to the OV in order to prevent earth leaps (that loud humming noise).

NiCad batteries

The gain of the TDA 2003 has been set at around 100 by the ratio of R9 and R10. This ic is a handy little device onginally designed for car radios, etc., where it can develop around four watts into 4 ohm speakers without the need for bridging or the use of output transformers.

The only drawback is that the ic is a little inefficient and not suitable for dry battery operation; large capacity nicads can be used, connected into pin 9 via a forward-biased IN 5401 to give the Midget a battery option for field use. Ten to sixteen 1.2 volt batteries will be required, or alternatively a 12 volt alarm battery would do.

On anything over a few watts consumption an external nonregulated supply is not recommended as the voltage fluctuates depending upon the current being drawn. External regulated supplies are OK, but can get hot in operation, which is never ideal and needs extra ventilation. The advantage of external regulated supplies is that they plug directly into the wall socket, eliminating the risk of any problems associated with exposed mains. However, I chose a built-in (internal) mains supply as the best option, but anyone not familiar with working with mains should seek help from someone qualified. This internal supply is not regulated, but the use of 4,400 uF of reservoir capacitor keeps the supply voltage close to 17 volts or so.

Although only 12 volts $A C$ is used in the power supply, after full wave rectification and good smoothing (the reservoir capacitors) the resulting DC voltage is close to the peak, hence 17 volts,

The output capacitor used for the TDA 2003 is 2200uF. This is to give a good low frequency response, as the ic rolls off at about 40 Hz ; to avoid more attenuation at low frequencies a large capacitor is required.

The pre amp is a typical iwo transistor directly coupled amplifier. Transistors were chosen over an ic because they are far more tolerant of accidental overload. C3 and C4 have been added to reduce the noise generated in the pre amp. This high end loss is not a problem as the TDA 2003 has a roll off at about 15 kHz ; after all this is a piece of test equipment not a hifi system.

If required a passive tone control can be fitted between the output of the pre amp and the volume control [figure ?]. As this is a passive tone control, that is, it does not amplity the bass or treble, only reduces the level of the unwanted frequencies, there will be an overall loss. The preamp has a gain of around 30 and the power amp around 100, so the total gain is around 30×100 (or 3000) which means for a frill output of about 15 voits peak to peak an input of around 5 mV peak to peak is required. If more gain is required, R2 can be reduced down to $\mathbf{1 k}$ or so, but increasing the gain also increases the background noise as well as hum pick up.

A basic audio meter has been included in the Mighty Midget. As can be seen, this is a passive monitor with no active elements. It will indicate anything coming out of the amp, even high frequencies above the normal hearing range. Audio amplifiers under development often oscillate at frequencies above the audio range. This can cause damage to

the amplifier, or to the loudspeaker, and if it does neither of these things it can cause distortion the source of which is not easy to determine. The audio meter included in the Midget is capable of registering frequencies much higher than audio so that it can give you evidence of high frequency oscillation if it is occurring. This is invaluable for fault finding.

Meters and speakers

This meter does not conform tó peak or WU calibration, but indicates output although it will jig about in time to the output signal. R8 should be selected to give full scale deflection of the meter at the point of clipping of the amplifiers output. Its value will depend upon the type of meter and the current required to produce full scale in it. A cheap meter will do, as there is no advantage in having one that is accurately calibrated when the reading is not. Some meters require backlighting to illuminate them; for this the 12 volt $A C$ should be used on a 14 volt bulb. Having a higher voltage bulb than the supply will extend its life.

Because of the limited frequency response of the 2003 it is not worth using a large, expensive bass speaker. I would suggest one with an 8 -in maximum diameter, and again the use of a crossover and tweeter is of limited use due to the high frequency roll off.

To maximise the power out, the speaker (or speakers') impedance should be as near to 2 ohms as possible. To achieve this, two small 4 -ohm speakers can be connected in parallel. 4 -in or 6 -in speakers will do fine, and can normally be obtained as car radio speakers, a lot cheaper than hi-fi speakers.

Do not build the box for the project until the speaker or speaker-combination has been selected, as this will dictate the size of the box.

Construction of the box

One easy solution is to use an old loudspeaker cabinet from an obsolete stereo system, as this will have the speaker already mounted, but if it is an 8 -ohm speaker the power will be reduced dramatically; a 4 -ohm speaker is good, and two 4. ohms are even better. The back panel can then be removed and a metal panel mounted in its place which can hold the input jack socket, volume control, meter and mains switch.

The PCB and transformer can also be mounted onto the back panel as well, care being taken that the transformer is

NOTE: 12 VOLT OUT FROM PCB NOT SUITABLE

Figure 4a-f: input and output connections to specific components

C10	220n 35V disc
C11	3.3 n poly
C12	47 n 25 V radial
C13	100 n 25 V disc
C14, $15,16 \quad 2,200$	25 V radial

Semicondtuctors

IC1 TDA 2003H (horizontal mount)
Q1, Q2 BC109
D1,2 IN4148
D3,4 INS401 3 amp
D5,6 INS401 3 amp**
ZD1 12 V 500 mW or 1 watt
-- Do not fit if 12-0-12V transformer is used (see diagram)
Transformer $\quad 12 \mathrm{~V} 20 \mathrm{~V}$ A min
Loudspeakers See text. 2×6 in 4 ohm
parallel Any cheap peak of VU
audio type
Jack skt 25 standard inono 1 or (see text)
Mains switch 2-pole on/off 2501 Vild
Ready-built speaker box, or materials : bulld one.
Size and type to suit chosen speatrort
Metalwork to suit. Jackplugs as requi Heatskink

Detalls not criticaleth
the larger the better. Use suitable materials to hand.
and 10 mm to 12 mm thickness will be best. To find the size the speakers should be laid out as in the diagram, there should be a space between the speakers so as to give strength to the front panel. Also there should be enough room all the way round to allow for the batten which will hold the panel in place. To add strength a $25 \mathrm{~mm} \times$ 25 mm batten should be fixed to all the inside edges and corners and glued into position. After the round holes for speakers have been cut the front of the front panel should be covered in thin foam rubber about 10 mm thick and then sprayed black, the speakers will not show through. Speaker cloth is then used to cover the front of the speaker panel, it should be secured using staples and glue. A weight should be applied to the back of the speaker when doing this so as to keep the foam rubber under tension. When the weight is removed the front of the speaker cloth should be tight and not subject to vibration in use.

Figure 5: an external tone and volume control circuit

Figure 6a and b: Low signal input and a higher signal input mod

Figure 7: Input leads and connecting the jack plugs
well mounted and there is no risk of the mains wiring touching anything, things can get a little tight. The transformer should be mounted as near to the bottom of the box as possible so as not to be top heavy. A small hole can be drilled for the mains cable and a knot tied inside the cabinet to stop the cable being pulled back out.

If a ready made box is not available one can be made out of MDF (medium density fibreboard). This material come in sheets

The speakers are held in position with countersunk botts through from the front, these go through the speaker fixing holes and shakeproof washers prevent the nuts from coming loose through vibration.

Great care should be taken when testing the Midget because until the box is finally closed there will be live mains exposed on the switch and transformer, although not on the PCB or speakers. Close the case or cover the opening whenever possible.

A jack plug with a co-ax lead is required. A coupte of crocodile clips on the other end allow contact to be made to the points being monitored. Always check that the OV retum lead to the Midget is making contact before the signal lead, this limits the hum pick up. A couple of leads can be made, one as stated above. the other having a crocodile clip for the earth and a probe like a meter lead for the signal; this then can be used to make contact on a PCB more accurately than a crocodile clip.

A jack mod

A modification made since the original construction consists of mounting another jack socket, such that with no jack plug in it the output of the pre amp goes to the Volume control, but when a jack plug is inserted the connection is broken. Now the volume control is connected to the jack plug and lead enabling a higher level signal to be applied without the volume control being right on minimum. When the jack plug and lead are withdrawn from this socket the circuit is remade via the switched tip contact in the jack socket and the pre amp circuit is connected back to the volume control.

Another way round this is to make an attenuated lead with a 100 k resistor in series and a 4k7a resistor across the input of the pre amp, this then reduces the input by roughly 20 to 1.

- legs mave to be spaead to conform TO 0.1" Spaces

INPUT OUTPUT POWER CONNECTIONS ON 0.2 SPACING PCB SCREW TERMINAL BLOCKS 2×8 WAY OR 4×4 WAY CAN BE USED. TO KEEP COST DOWN SOLDER PINS CAN BE USED INSTEAD

> HEATSINK 1° AIGHT ANGLE ALUMINIUM 31/ LONG (NOT CRITICAL)
holes through pce
Figure 8: the component layout for the Mighty Midget

Unconditional replacement or refund on any item if not as requested

TOP SELLING BOOKS

Pract' TV or VCR Repairs- $\{16.95$ (Both £30) Buy/Sell/Serv/Repair Used Equipment :CD. TV or VCR - $\quad 10.95$ each (All 3 £27) 6 Giant IC Rer Mamuals - $\quad 12.95$ each Data Ref Guide - Identifies/prices/cross-refs data for most models. $\quad £ 9.95$ (3.5° Disk $£ 5$)
Microwave Energy \& Ovens. $£ 9.95$
3.5" Disk Drives . $\varepsilon 9.50$
The Giant Fault-Finding Guides:-
CTV's $£ 16.95$ / VCR's $£ 16.95$
SH SERVICE E MANUALS

DESIGNER COLLECTIONS

Comprehensive Circuits Collections of any make of CTV as requested, prices from C8 to (49 (IE. AlbalBush (20) Full list in Free Catalogue.

Amatour Kit: 10 Service Manuals las needed), Dats Rel'. Pract" TV \& VCR Repairs. Radio Repairs, Thorn Serv' Set \& any 3 CTV Cire Collections.

E199
Prefessional Mit: As sbove - 10 Serv' Mar's. Microwave E80. BuylSelWServ Collection \& 2 More CTV Circ's. $£ 370$

3 UNIOUE SERVICE MANUAL OFFERS GUARAMTEED SAVINGS TO YOU NOW!!

- L.JBRARY Joining fee $\mathbf{8 6 5 . 0 0}$ You receive any Service Manuals, no matter how expensive. for $£ 10$ each. and you get a $£ 5$ credit for any you return.
-PRE-PAY MANUALS
You get 20 Service Manuals, as and when you need them; as many or few at a time as you want, for a one-off payment of $£ 185$.
-SERVICE MANUAL EXCHANGE If you have a Service Manual we don'! have and need another manual (ie. TV for TV, VCR for VCR), we will exchange it for FREE

Please add $£ 2.50$ to all orders to cover Postage \& Handling

WORLD'S LARGEST SERVICE MANUAL COLLECTION

Normal Prices Given (Some Manuals may be Cheaper or more Expensive)
VCR/VIDCAM - FULL MANUALS $£ 16.50$ - CIRCUITS $£ 8.00$ COMPLETE
CTV's / CD's - FULL MANUALS $£ 12.50$ - CIRCUITS $£ 6.00$ COMPLETE
AUDIO, CD, COMPUTERS, MONITORS, DOMESTIC / TEST EQUIP', ETC.. FROM £4.00

Plus, a comprehensive list of specialist pubitcations and much, much more!
As a member you would heveRedCom, the 100 page colour migiane delvered to your door every month

We are the national society for radio angathurs and if you are incerested in electronics we can help you
 Tel: 01707659015 Fax: $01707645105 ;$
e-mail: sales@rsgb.org.uk

A High Performance Medium Wave Receiver

In Part 2 of this selective design for Medium Wave, Raymond Haigh describes the construction, setting up and operation of his radio.

Part 2

IIn the last lssue of En, we described the High Performance Medium Wave Radio and printed the circuit diagrams and the component layouts for the three main PCBs, as well as a constructional diagram for the special four-gang turing capactor (which is described in more detail in this part). The Parts List also appeared in the first part. This month, we round up with information about the specialised components, constructional descriptions of the boards and other hardware, and the testing, alignment and operation of the radio.

To recap on last month, the High Performance receiver here has been specially designed for medium wave, with atterable selectivityto to sut different reception conditions, and signal frequency amplification that can be set manually to achieve the best signal-to-noise ratio. The AGC system acts anead of the mixer to help to avoid recemer overload. Output is reasonably steady over wide variations in signad inpurt. and I have been very pleased with the audio quality. I employed a modular construction so that constructors could use other audio amplifiers or power supplies if they wish. Suggestions are made ifor simplifying the cricuit for those who would prefer to start with a less complicated receiver.

Simplifying the receiver

Some of you may not want all the features shown in the circuit diagrams, or you may wish to build a basic radio and add to it later. Constructed as described, this is a very pleasant and effective receiver, but it will continue to perform well if some reductions are made to the specification. The following possiblities are suggested:
(1) Delete the front-end bandpass funing unit and AGC circuitry, and connect the input attenuator and aerial switching to L3. More care will have to be taken with the attenuator setting when long aenals are used, and the recerver will be more prone to spurious responses.
(2) Detete the 2.6 kHz ceramic filter, the relay and its activating switch, and wire the 4 kHz mechanical fitter permanently into circuit.
(3) Detete the tone control circuitry and the pre-amplifier stage Q8, and connect C29 to the "top' of the AF gain control.
(4) Delete the mains power supply and use a pack of eight ' D ' cells to power the recelver. R56 will need reducing to $3 k 9 \mathrm{ohms}$ and R57 should be reduced to 270 ohms. The recelver will

function with supply voltages as low as 6 V , but the signal strength meter zero adjustment anfts when the voltage talls significantly.

Components

The Toko solid dielectric variable capacitors and plastic spindie extenders are available from Cirkit (Cirkit Distribution Ltd., Park Lane, Broxbourne. Herts EN10 7NO. Tel. 01992 448899) who also supply the tuning colis, IFTs and fiters. The signal switching relay is listed in the Maplin catalogue, and the remaining components are available from many sources.

An inexpensive speaker is to be preterred, and it should be as large as your cabinet space permits (a $200 \times 130 \mathrm{~mm}$ unit is fifted in my prototype). Please note that hi-fi speakers can be insensitive. and should be avoided.

A signal strength meter of reasonable size will be helpfui, when setting a loop aenal, to check the bearing of a transmitter. An 120 x 90 mm unit is installed in my prototype.

Brass strip for the tuning capactor linkage is sold in most model shops and is also listed in the Maplin catalogue. Steer shaft needed to ensure the perfect alignment of the capacitor couplings is sold by most large DIY outlets.

The tuning capacitor assembly

The four-gang tuning capactor is made up from two x polythene dielectric variables. These units have a very low minimum capacitance and this makes it easy to extend the coverage of the recelver to above 1700 kHz .

Figure 2 and the photographs give a view of the arrangement. The luning capacitors are mounted on small PCBs which are fixed

at night angles to the main receiver PCB by aluminium brackets. The plastic spindle extenders are connected by brass spindle couplers. Expenenced users can use a gas stove or plumber's blowtorch to heat the items if a heavy duty soldering ron is not available.

Shide the couplers and the cranked brass strip onto a length of 6.3 mm diameter steel shafting, then re-heat the items to sweat them together. The steel shaft ensures the perfect alignment of the couving system.

Mount the capacitors onto the small PCBs with their three-tagside towards the bottom, and fit Vero pins at the lead-out points. Fox the capactor PCBs to the brackets with 8BA nuts and bolts.

Loosely bolt the brackets to the main PCB. Slide the coupling system onto the plastic spindle extenders. check the entire assembly for periect alignment, and then tighten the foings to the main PCB.

Set both capactors at minimum, position the cranked arm, then tighten the grub screws in the spindle couplers. The assembly is now complete.

Trimmer capacitors are included in the funing capacitor casings. but they are difficuit to access with this arrangement, and separate trimmers are mounted on the PCB.

The solid dielectnic capacitors are hexpensive. closely matched, and function well in this application. Some constructors may, however, wish to use air-spaced vanables, and there is ust sufficient space on the PCB for two Jackson Type O win-gang capacitors. This atternative was not tried during the development of the receiver, but it should work well and it should stili be possibie to extend the coverage to 1700 kHz , despite the increased minimum capacitance (10 instead of 5 pf). The dimensions of the cranked brass strip may need changing sightily. Jackson capacitors are retailed by Cikit and Maplin.

Constructing the RF, IF and detector circuits
With the exception of the swiches, the signal strength meter, and

R1-R9, all of the parts are assembled on a prited circuit board. The layout of the components is given in figure 3. Vero pins. inserted from the component side of the board, soldered to the copper side and then cropped, can be used to form connection points for the cual gate mostets, Q2, 4, and 5 . It is a good idea to $r e$ tin the heads of the pins, and to grip the leads of the devces with metal tweezers during the soldening process.

Mounting these transistors in this way, rather than by"soldering them to the copper tracks, permits removal without the need for access to the underside of the board.

Note that:O2 is located with its type number towards the PCB. Q4 and 5 have their type numbers uppermost. The 2.6 kHz fiter is orientated by means of the solderng tag on its can. The 4 kHz fiter has an indentation in its plastic case.

With this and the other PCBs, Vero pins inserted at the lead-out points will simplity the task of off-board wining, and the use of IC sockets for the relay and ICI will make it easy to check these components by substitution and avoid any resoldering.

The aerial switching and attenuator clircuit

The attenuator resistors are mounted directly onto the tags of S 1 . Figure 4 gives details of the arrangement, and also the wring between the aenal selector switch and the recelver. The tag identification numbers and letters in this figure correspond with those on the specified Lorin switches. Try and keep the wining to the short aenial socket as distant as possible from earthed components, to avoid placing too much stray capactance across L1.

A DIN plug and socket are suitable for the loop aerial connection.

The audio amplifier

Again, most of the parts are mounted on a PCB, and the component side is illustrated in figure 5. Bass, treble and AF gain controls are, of course, located on the front panel of the recever. Use screened leads between the stiders and the "hot". ends of these controts and the PCB, and connect the metal cases of the potentioneters to the OV rail via the screening braid.
The loudspeaker is connected to +12 V as this resuts in some econorny in components. With this arrangement, it is wise to isolate the speaker chassis from the OV rail.

The power supply

Readers who have no experience of building or commissioning mains-powered equioment (as per our publisher's normal wamingl) should note that the voltages involved are lethal. Extreme care must be taken when buviding and testing this part of the crrcuit, and if the constructor has any doubts about his abiity he should use batteries to power the recemer.
The component side of the power supply board is shown in figure 6. Provision is made for both axial and radial lead versions of the large reservoir capacitor C47. If the board must have the lowest possible profile to suit your particular cabinet layout, choose an axial lead component.
A heat sink must be fitted to the regulator IC - any one designed for a TO220 package will be suitable.

The use of a Euro style intet plug and line socket to connect the unit to the mains supply is a wise safely feature.

Initial testing.

The PCBs can be wred up on the bench for initial testing and alignment before being, mounted in a cabinet. First of all, check the boards for poor soldered joints or bridged copper tracks, check the onentation of all semiconductors, polanised capacitors (electrolytic

and tantailum), and fiters. Set ail potentiometers to mid travel. Do not connect the signal strength meter at this stage.

With the power supply output cisconnected from the equipment, switch on the mains supply. The voltage across resenvor capacitor C47 should be approxmately 23V. The voltage at the regulator output should be precisely 12 V . Connect the 12 V output to the RF, IF and detector board. Curent consumption should be of the order of 10 mA . Actuating the filter relay shoutd make current consumption rise to around 40 mA . Serles resistor R57 limits the voltage across the specified relay coil to aboult 8 V .

Connect the audio amplifier. Under no-signal conditions, current consumed by this pan of the crout is approx. 12 mA . When music is reproduced at good volume, current rises to around 100 ma .

Setting up and alignment

While it should be possible, with care and patience, to bring the receiver into a reasonatbe state of afignment without a signal generatos, it will not be possible to optimise its performanoe. Guidance on aligrment will, therefore, assume access to a simple signal generator. A mutimeter, preferably a high-impedance digital or electronic model, will also be required. Some advice on aigning the receiver without a signal generator is given later for constructors who wish to try.

Before attempting the setting-up and atignment process, it is as well to remember that the HF turing ifnit Is mainly deternined by the setting of oscillator timmer C15, and that LF coverage is controlled largely by the setting of the oscilator coil core (L4). The oscillator must in at $4551 \mathrm{H}, \mathrm{Zz}$ above the signal frequency tuned circuits over the entire luning range. This is achieved by using an oscilator coil of lower inductance than the signal frequency colls. and by placing a padder capacitor C 16 in senes with the oscilator turing capacior C18 to reduce its swing. The optimum value of the padder is retated to the inductance of the osclator colt, and C17 is inctuded so that the padder can be aclusted sifightly.

With modutation switched on and the signal generator output kept as low as possible all times. proceed as foltows.
(1) Switch in the manual IF gain control and sel th to half travel. Set the AF gain control to hall travel also. Apply a 455 kHz signal to the crain of the mbeer Q2, and adfust the cores of the IFTs for maximum response in the loudspeaker. The If is determined by the filiers and not the signal generator, so rock the generator output gently around $4551 \mathrm{t}-\mathrm{zz}$ to ensure that it is set to the required frequency. If the transformer cores are so our of position that aligrment proves elusive, apply the signal to the crain of Q5, adfust the core of IFT4 frrst, and then work back. This was not tound to be necessery with either of the two prototype receivers.
(2) Connect a multimeter reeding 0-1mA to the signal strength meter output, set the sider of R32 to the meter end of the potentiometer, and set R31 to minimum resistance. Adust R36 to zero the meter pointer. Connect up the signal strength meter, or switch the muttimeter to a range in the $50-100 \mathrm{~A}$ region, and refine the zero adifustment.
(3) Inject a 455 kHz signal at the drain of Q2. The meter should swing over. hicrease the value of R31 to reduce the reading and reduce the setting of the \mathbb{I} gain control, as necossary. Switch in the $2.6 \mathrm{k}-\mathrm{z}$ filter and use the visuat incication of signal strengti to refine the adjustment of the IFT cores. Final adiustments to peak the response will be quite critical.
(4) Switch IF gain control fo automatic, connect the testmeter across the IF AGC ine, and adust R38 to give a reading, under nosignal conditions, of 4 V . If a meter of only moderate sensitivity is used, set the reading to, say, 3.5 V to allow for the shunting effect.) The precise setting is not excessively critical. Inject a $455 \mathrm{k}-\mathrm{zz}$ signal at the crain of C 2 . The AGC vottage should drop aimost to zero il the signal is suflicientily strong.
(5) Connect the testmeter to the sider of R12, and set the potentiometer to give a reeding of IV (a ittile less fi a low sensititity instrument is used). Set R13 for maximum input to the gate of Q1.
(6) Set all trimmer capaciors to hali-mesh, set the turing capacitors to the fuly open (dockwise) position, cornect the signal generator to the low-impedance primary on L1, and sweep it around 1700 kHz until a note is heard in the speaker and the signal strength meter kicks. Adjust the trimmer capaciors (out not C17) to peak the output, gradually opening out oscillator-stage trimmer C15 if necossany, to bring the peak above 1700 kHz .
(7) Fully dose the ganged tuning capacitors, inject a 480 kHz signa, and ad,ust the core of $L 4$ until the meter pointer rises. Adfust the cores of L1, L. 2 and L3 to peak the outpur. The recepiver is now in a state of approximate alignment and, if an aenal is connected, signats should be heard as it is tuned across the band.
(8) Check that the turing range stili extends to 1700 kHz or above. opening out C15 a intle more, il necsssary, to restore coverage. and ad,usting the trimming capacitors to peak alignment. (9) The tracking of the oscillator and signal fiequency crouits must now be optimised. Set the signal generator to 900 htz and tune the receiver to this frequency the ganged tuning capacitors should be at about hali-mesh). Adfust the cores of L1, $L 2$ and LJ'io peak output. Sei the generator to 600 kHz , and tune in the signal. Gently rock timmer C 10 to establish the state of the tradking. If reducing the value of this trimmer increases output, the padder capacitance is too low and C17 must be increased in value, If increasing the value of C10 increases outpur, the padder capacitance is too high and the vanes of titmmer, C17, must be opened slightly. Make any
necessary adjustments to the cores of L1, L2 and L3 to peak output at the 600 kHz tuning setting.
(10) Set the generator to 1500 kHz and make any necessary aofustments (they should only need to be slight) to C1, C5 and C10 to peak output, Do not make any futher adustments to oscllator trimmer, C15, unless HF coverage has fatien below the 1700 kHz imit (most unilikely).
(11) Repeat the check on tracking described in (9), above, refining the adjustments until no firther improvement can be obtained and alignment is close to perfect at 600,900 , and 1500 WHz . A check at other points around the dial should reveal that changing the setting of the cores and trimmers does not pruduce any significant improvement in response.
(12) If it proves difficult to optimise the tracking (most unikely), reset the oscallator coil core and try again (coverage need not go below 510 kHz or so). Note that instability will probably be encountered if the core is driven too far down as this will permit the receiver to be funed to its IF.

Alignment without a signal generator

(13) Turn the IF and AF gain contirots up to maximum, connect an aerial to the "hot' end of L3, and adjust the IFTs for maximum noise in the speaker. H_should now be possible to tune in a strong signal. If not, adjust the core of L4 until a station can be heard at some setting of the turing capacitors.
(14) Make the signal strength meter operational, all as described in (2), above, and use it, and the incoming signal, to refine the adustment of the IFT cores.
(15) Tine in a station as close as possible to the HF end of the band, and adjust $\mathrm{C} 1, \mathrm{C} 5$ and C 10 to peak output. Tune in a station at the LF end of the band and adjust the cores of L1, L2 and L3 to peak oulput. The receiver should now be quile responsive.
(16) Use a known transmission to set the oscillator coll trmmer C15, so that the HF tuning linits are around 1700 Hzz . In the UK the handsets of corctess "phones operate on channels between 1600 and $1800(\mathrm{~Hz})$. Use a known transinission at the LF end of the band to set the core of the oscillator coll. (Try Spectrum International from Crystal Palace. London, on 558 kHz , or RIE from Thitamore, Ireland, on $557 \mathrm{k} \boldsymbol{\mathrm { H }} \mathrm{J}$.
(17) When the coverage has been set, use steady transmissions to carry out the procedure described in (9), (10) and (11), above. Care and patience will be required but, with the aid of the signal strength meter, it should be possible to bring the recever to an acceptable state of aligrment.

Tuning drive

Enhanced selectivity makes the ad, ustment of the turing control more critical than usua, especially when the narrow fiter is switched in and one or other of the sidebands is being selected. some form of reduction drive is, therefore, essential. A tuning knob of decent size and a slow-motion drive with a reduction of at least 6:1 should be considered minimum requirements. Connecting two epicycic drives in tandern to give a 36:1 reduction, or using a cord dive and drum saivaged from an old recelver, are better alternatives.

Mousing the receiver

Unscreened, the receiver is sufficiently senstive to pick up a number of stations without an eerial cornection, and some form of metas enclosure is desirable, at least for the RF, IF and detector board, or signal nuling with a loop aerial will be impaired. The incut attenuator and aerial selector switches should be mounted as close as possibte to the inpun point on the PCB to avoid unwanted signad pick-up.

The arrangement adopted for my prototype is incicated in the various pholographs. The RF and IF PCB is enclosed in a die cast box, and the entre recelver is assembled behind a plywood fromt panel. The tuning dial is wrapped around an 170 mm diameter chum buil up from fibreboard disks, to which is secured a hardboard puley for the cord drive. Whatever dial and drive system is adopted, take care not to impose excessive loading on the bearings of the funing capacitors, and fit end stops to prevent any stressing of the moving parts. The loudspeaker faces rearwards, and large vents, formed in the sides of the cabinet, ensure a dear pleasant tone, which is free from 'boxiness'.

This arrangement enables an easily read dial, a large signal strength meter, and a speaker of decent size, to be accommodated in a cabenet measuring $250 \times 220 \times 190 \mathrm{~mm}$. The front panel is finished with car spray paint and annotated with rib-down lettering. The plywood case is staned and French polished. The bezel which links the dial aperture and the signal strength meter is cut from hardboard and sprayed mat black.

Not all constructors wil have the time, inctination or resources to house the receiver in this traditional way, and one of the styish metal enclosures retaited by component supplers would do ust as wet. It would also be cheaper if the construction and finishing matenals are not to hand.

Final adjustments

Atter the recelver has been enclosed in a cabinet, carry out a last check on the alignment and make any final adustments. Adjust R31 to fox the sensitivity of the signal strength meter, and set R32 to prevent the strongest signals driving the pointer against the end stop. Carry our any last adfustments to the AGC system pre-sets, and the pre-sets which control AF gain (R33 and R54), in order to make the 'teel' of the receiver sutt the operator.

Callibration

On medium waves it is not too dificilit to callorate areceiver dial by tuning in transmissions of known frequency. However, a quicker and less tedious method is to use a crystal caltbrator. The dial of the prototype recever was marked out with a unit of this knd which has outputs at 1 MH Hz and $100,50,25$ and 10 kHz . A signal generator can, of course, be used, but the accuracy of caltoration will be inited to that of the generator.

Operating the receiver

The receever can be used with short (up to, say, 3 metres); long (10 metres plus); and loop aerials; tis a good idea to try all three and using S2 to select the one that performs best. Listeners with back yards several hundred metres long could try a Beverage aenal: detals of these are given in relevant textbooks. Earting the receiver va a 1 metre length of copper pipe criven into damp ground usualy improves reception. The mains earth can be used, but may introduce electrical interference. Test for this by switching it in and out with 55 .

Under normal condtions, the selectivity provided by the 4 kHz Iz fiter is perfectly adequate. Reducing bendwiath by switching in the 2.6 kHz fiter will, however, greatly improve reception when electrical noise is severe. This namrower fiter will also eliminate co-channel
interference (splatter), and enable the receiver to be tuned to either the upper or lower sideband when attempting to resolve 'difficalt" signals. It is, of course, particularly useful when picking out transmissions that are close to the noise floor, or weak signals tightly sandwiched between strong ones. Tirning down the bass and treble controls can also improve the clarity of signals that are overlaid by noise.

The recelver is reasonably immune to overload, but if a very long aerial is connected and the problem is encountered on strong signais. use the attenuator to reduce input. Switching in the manuat IF gain control makes it possible to optimise the recever noise factor, and inter-station noise when tuning across the band can be largety eliminated when maximum sensitivity is not needed.

Performance

Instruments capable of measuring the sensitivity, selectivity, dynamic range and other parameters of the medium wave radio were not available. It was, however, possible to directly compare it with a high-performance, mutiple-conversion cornmunications receiver.

The test was camed out in a town-centre location, not much more than 1 km away from the 70 m mast of a commercial radio station operating at 250 W , and where man-made electrical interterence is otten severe. A long (30 m) aerial was switched between the two sets during the comparison test, which involved the receivers being carefully tuned, in step, across the band, over the period of a summer aftemoon and evering.

All of the stations picked-up by the communications recemer could be resolved by the dedicated meolium wave radio described here. Indeed, several signals that were lost in noise with the communications receiver could be heard dearly on the medium wave set.

There were no overloading problems, even with IF gain switched
to automatic and the input attenuator switched out. Most simple receivers are badly overloaded by the local transmitter when a 30 metre long aenial is used.)

The medium wave radio did not have any discernible image responses. Only one heterodyne was evident, located close to twice the IF, that is, 910 kHz . It could be tuned to zero beat with the incoming signal and did not spoil reception. There were nerther images nor heterodynes with the communications receiver.

The above results would seem to confirm the vew that, at medium frequencies, a single conversion superhet with good frontend selectivity can outperform more complex cormmunications receivers.

A future aerial

In a future issue we will be describing a Medium Wave loop aenal, designed with Medium Wave radio very much in mind.

MODWODMODMODMODMOD

There are two smatt errors in the drawings in Part 1 : in figure 1 a , page 34, the Aerial Selectox, the left hand connection from S2A to the LOOD Aerial is shown wired to terminal 1 of S2A: it should be wired to terminal 3 of S2A. That ine is shown correctly crossing the Ground line. The middle comection from the Loop Aenal to terminal I of S2B is cornected correctly at each end, but should also be shown connected to the Ground line the crossing point should be marked with a dot). unlike the other two lines from the Loop Aerial.

In figure 1b, page 35 , on the far nght, the line from $\mathrm{D} 4 / \mathrm{C} 2$ is shown crossing the line between R26/R27: in should be connected to it. That is, the crossing point should be marked with a dot. The PCB folls are correct.

x

NEWS FROM THE NEXUS PHOTOSTAT SERVICE.

The Nexus Photocooying Service can provide you with all those interesting features and valuable projects that have been published in your favourte magazine. The new costs of our photocopying service are as follows:
First article: $£ 2.75$ inc of VAT. Please note that projects published over several issues must be ordered as a series of individual articles, each for $£ 2.00$.
A 82.75 search fee is required if full information is not supplied. Please note delivery could be up to 28 working days.
Pleone supply photo copies of the following articles from
|Comples in BOCK CARINSI:
Month Year.................. (fif known)
mis.
Month Year. -.... Page fif knownt.

Monim
TME
I enclose a chequa/postol order made out to Nexus Special Intierests to the volue of
\&. \quad PBP EL.OO (UK only) 20\% Overseas
Toral romintance \&
Name:
Address:

Post Code:

Send the completed form and reminarce to:
Photocopy Service. Nexus Speciol Interests, Neaxus House, Boundory Woy, Hemel Hempsiood, Hertordshire. HP2 7ST

HOW DOES YOUR EQUIPMFNT MEASURE UP? AT STEWART OF READING THERE'S ALWAYS 'SCOPE' FOR IMPROVEMENT!

Fast FTvers

Adaptable, affordable - handy circuits for around £5. By Owen Bishop 7. Animated light starburst

This is a 'animated' light display. Hang it on the wall, fix it to the front door, or suspend it from a Christmas tree. It features an array of 25 LEDs, arranged in three concentric clrcles, with a jumbo-sized LED in the centre. The display runs through its sequence about once a second. First the central LED comes on - the star. Then it 'bursts' - the star goes out and the concentric circles light up one at a time, starting with the inner one, then the middle one and finally the outer one. After a short period of darkness the sequence begins again. The effect is as if the star bursts and an explosive wave of light spreads outward from it.

Although this is described as a fast Fiver, it is fast only in the sense that the display runs rapidly. There is rather more wiring in this one than has been usual in this series (figure 1). This project will give you 2 or 3 hours of fun in assembling it, yet costs less than $£ 5$ (if you shop around). It also offers you scope for your own ingenulty in modifying the design. And, not least, it is a decorative object to be brought out every festival for several years ahead.

Figure1: the Starburst scheinatic
clock runs at about 10 Hz . The output from the clock goes to IC2 which is a divide-by-eight counter with 1-of-8 outputs. It has 8 outputs (numbered from 0 to 7) which are normally low (OV). As the counter is clocked, the outputs go high (6 V) one at a time, in numerical order. The result of

GII

\square

ELECTRONICS

today intermathohal

ET/ can supply printed circuil boards for most of our current projects - see the list below for boards avallable. For recent boards not listed, check the constructional article for an alternative supplier.

Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in \& sterling only, payablo to Nexus Special Interest Limited. Please allow 28 days for dellivery. Access/Visa orders may be made on 0144266551 (ask for Readers Services).

Only boards listed here are availsble from our PCB Service. For past issues of magazines, copy articles or binders, please see the admin panet (page 74) or contact Readers Services (see below) for information.

Name and issu of project Unit code - Price

Ell Issue 131997

4-Co Bocket Launcher - main board	E/1397/4	£5.64
4-Go Rocket Launcher - relay board	E/1397/2	¢6.20
Milghty Midget	E/1397/3	29.54
Auto Cupboard Light	E/1397/4	£5.6
Enl Issue 121997		
PC Phonecard Reader: ITT Cannon on	/1297/1	¢8.22
Minute Minder	E/1297/2	£13.98
Medium Wave Rece ver - RF board	E/1297/3	£11.76
Medium Wave-Recetver - Tuning bourd	E/1297/4	¢5.09
Medium Wave Receiver - Audio board	E/1297/5	
Medium Wave Recelver - PSU board	E/129	86.77

En Issue 111997

Total Harmonic Distortion Moter Alphanumeric Morse Touchkey Mighty Midget
PC Phonecard Reader - ITT Cannon Minute Minder

ETI Issue 101997
The IO Tester Fake Flasher DC Motors (Part 2) Valve Tester - Main Bhard
Valve Tester - Socket Board
Valve Tester - Heater Regulator
All three Valve Tester boards
(Due to price breoks there is a small discount on this
The IQ Tester (previously E/897/20

ETI Issue 91997
Eprom Emulator
The Power Supply
Electronic Door Chimes
Digital Power Supply
ETI Issue 81997
The Brake Light Tester
DC Motors (3 experimental boards)

Please supply:

Quantity Project Unit Order Code Price Total price

Prices are inclusive of post and packing in the UK. Overseas Post and Packing (if applicable): Add $\mathcal{E 1}$ per unit

Name

Address

\qquad
\qquad
I enclose payment of \mathcal{E}. (cheque/PO/money order in \& Sterling only) to:
PCB Service, READERS SEPVICES DEPARTMENT, Newos Spocial interests Lid.
Neous House. Boundary Way. Hernal Hernpsteed. Herts HP2 7ST UK

Signature

Card expiry date:
this is as follows:

1
For the first 3 counts, output 0 goes high, followed by output 1 and output 2. If any one of these is high, the output of the NOR gate (IC1a) is low. At all other times it is high. When it is low, it turns on the pnp transistor (Q1) and current flows to D1, which is the large LED in the centre of the display. So this LED is lit for the first 3 counts and is dark for the remainder.

2 For the next 3 counts, outputs 3,4 and 5 go high in turn. These turn on transistors Q2, Q3 and Q4 one at a time. Actually these are not simple transistors, even thought they are drawn as such in figure 1, which shows that the MPSA14 contains two npn transistors connected

Figure 2: the Starburst stripboard layout
as a Darlington pair. The emitter current of the first transistor flows to the base of the second transistor. The gain of the pair of transistors is the product of their individual gains. This gives Darlington transistors gains of the order of 5000 to 10000, compared with only 100 for a typical single transistor. We have used Darlingtons here so that the small current $(0.44 \mathrm{~mA})$ avallable from the cmos outputs of IC2 are able to switch the rather large currents flowing through the LEDs. Allowing 20mA per LED, the inner circle of four LEDs needs 80 mA , the middle circle (eight LEDs) needs 160 mA and the outer circle (twelve LEDs) needs 240 mA .

For the final two counts of the 8 -stage sequence, outputs 6 and 7 go high but, as there are no connections to these. the display goes dark in preparation for the next 'burst'.

Construction

This circuit requires an average current of a little over 60 mA and it is likely to be run for several hours at a time. The most appropriate power supply is a 6 V DC plug-in malns adapter unit. A 300 mA unregulated one would be suitable. If you prefer batteries, the best sources are a 6 V 'lantern' battery (HP992) or a battery holder with 4 slze D cells.

The stripboard layout (figure 2) is compact so that the board can be small and easily conceated behind the display. For this reason, the various subcircuits are more mixed up than usual, so take special care that the wire links and resistors are soldered into the correct holes. Solder in the sockets for the two ICs first, together with

Figure 3: the Starburst display panel with dimensions in millimetres

R1, R2, C1, all the wire links and the terminal pins at B1 and L1. Note that the copper strips are cut beneath the board at C8 to F8, H8, J8, C14 to J14, C18 to K18, M12 to 012, P17, P22. S17, S22. T17, and T22. Solder blobs are used to bridge adjacent strips, joining: E8 to F8 to G8, B10 to C10, D10 to E10 to F10, K17 to L17, and B20 to C20. Insert the ICs in their sockets, apply power, and use a test meter to check that the clock is running. Also test the outputs of IC2 and the output at pin 9 of IC1 to confirm that output signals are as expected.

Now add the large capacitor (C2), which is provided to smooth out spikes on the power lines produced when large numbers of LEDs are switched on or off simultaneously. Without this smoothing, the counter operates erratically. Complete assembly by soldering in the

Figure 4: the Starburst - a pattern for a cardboard case/panel
transistors (Q1 is the pnp transistor) and the remaining resistors and terminal pins.

The display

This can take many forms, depending on your taste and skills, but we describe the one we designed as a decoration to hang on the Christmas tree. It does not have room for a battery. We wrapped the battery up in Christmassy paper to look like a 'present' and lodged it firmly in the fork of one of the lower branches, with wires running to the hanging display.

It is worth mentioning at this stage that this circuit could be the basis of a large-size 'Piccadilly lights' display. If you have experience of mains wiring, you can replace the groups of LEDs with four relays rated to take mains current. Then these relays can be used to switch banks of mains-voltage lamps.

The LED display panel (figure 3) is the bottom of a square shallow box made from thin card (we used red). Later you can decorate the surface of the box with tinsel or 'glitter' or in any other way that appeals to you. The sides of the box are 20 mm deep to allow room for the wiring and circuit board, and there is a 10 mm rim around the top edge of each side to stiffen the sides. First mark

Floure 5: wiring the pencl, as seen in rear view

Figure 6: soldioing the power supply wive to the anoce wiree of the LED;

Figure 7: the back of the stripboerd layout
out the patterri of (figure 4) on the thin card; make cuts where indicated and score along the dashed lines. Fold up the sides and glue the flaps marked A to adjacent sides, to form the box. Leave the rims until later. You now have a box 122 mm square and 20 mm deep. The panel needs stiffening from behind (that is, from inside the box) so cut out a 120 mm square of thick ($1.5 \mathrm{~mm}-2 \mathrm{~mm}$) cardboard. You could instead use plastic-board, hardboard or plywood. Mark this out to show where the LEDs are to go (figure 5). The LEDs are to be in circles $16.5 \mathrm{~mm}, 33 \mathrm{~mm}$ and 50 mm radius. so draw circles that are 1.5 mm larger and smaller than this to show where to prick the holes for the LED leads. Across these draw radli spaced 90 degrees apart on the inner circles, 45 degrees apart on the middle circle and 30 degrees apart on the outer circles. There are also two holes to be marked in the centre, spaced 3 mm apart for the jumbo LED. Now coat the back of the card evenly with glue and drop it into the box (it is a loose fit). Let it dry under firm pressure. Use a stout pin to prick through all the points where the circles intersect the radii (the dots in (figure 5). If you are using hardboard or plywood you will need a fine (0.8 or 1 mm) drill for this.
insert the 12 LEDs in the holes for the outer circle. If you like, you can give the base of each LED a drop of glue to fix it to the panel, but this is not essential as the wiring helps to hold the LEDs in place when it has been soldered. Check very carefully that the LEDs are arranged with their anode wires through the holes in the outermost circle. With most (though not all) makes of LED this means that the 'flat' on the rim of each LED faces toward the centre of the circle. Sinp a 350 mm length of singlestranded connection wire, which is to be the +6 V supply wire. Beginning at D25, solder it to the anode (a) wires of D25 to D14. Before soldering, cut each terminal wire of the LED so that it protrudes about $8-10 \mathrm{~mm}$ from the card. Bend the end of the anode wire over the supply wire and pinch it tightly (figure 6). This leaves a few millimetres between the supply wire and the card so that you can grip the anode with a heat shunt. This is a precaution against damaging the LED while soldering. Apply a small amount of solder to the joint, making sure it flows on to both the anode wire and the supply wire. Repeat this procedure with a second wire joining the cathode wires (k) of the LEDs. You now have 12 LEDs wired in parallel.

It is worth while to check the connections as you proceed so, when you have finished the outer circle.
connect the supply wire to +6 V . temporarily connect an 18 -ohm resistor to the cathode wire and the oy supply to the other end of this resistor. All LEDs should light up brightly. If any fail to do so. check the soldering and also re-check that the LEDs are the right way round. Repeat the above operation of soldering and testing for the middle and inner circles. Solder connections to join all the power supply wires together, as shown in figure 5 . Use insulated wire, or wire covered by plastic sheathing. Connect the other wire ends and also the terminals of the jumbo LED to the terminal, pins on the circuit board, using light-duty multistranded wire. Note that Q2, O3 and Q4 are NOT in numerical order on the board.

At this point the circuit is ready for its final testing, with the circuit board not yet placed inside the box. Just switch on and watch the display burst about once a second. Now Tix a piece of double-sided adhesive foam ('Sticky Fixer') at each corner of the circuit board on the copper-strip side. Cut a rectangie of thin card the same size as the board and press this on to the under-surface. This is to prevent short-circults between the board and the base wiring. Fold the rim strips inward, overlapping at the corners and giue them together there. Tuck the circuit board under one rim; this is not a very secure fastening but adequate for most purposes.

To complete the project you may like to add some form of decoration. Perhaps cover part of the panet with glue and sprinkle coloured glitter on it. Add a few strands of tinsel and in any other way you like add sparkle to its bursting brightness.

Resistors	
All $0.25 W, 5$ percent tolerance	
R1	470 k

$c^{7} \mathrm{c}$
 CHELMER VALVE COMPANY

If you need Valves/Tubes or RF

 Power Transistors etc. ...then try us!We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur

[^0]
CONTROL \& ROBOTICS
 from
 Milford Instruments

BASIC Stamps.
reprogrammable Stamp sized computers Easy to use BASIC language

- A or 16 InputOutpur lines each 20 mA capability - 80 or 500 Program lines
- Re-programmatble thousands of times from PC or Max - 5-12vDC Supply. Stamps from $£ 25.00$ each Development Kits including programming software. Stamp. Cable. Profect Board and $25+$ Application notes from $\mathbf{8 9 . 0 0}$.

Wires Muscle wires
(eg 250 mA current) -120 page Proiect hook and 3 one metre lengths of wire. $£ 40.00$

STAMP BUC
Autonomous roving insect using the BASIC Stamp as its "train". Approx 300 mm overall length

5 Axiss robot arm kit: approx size 300 mm . Control from any serial comms port or Stamp. Includes software to run from PC. KITS FROM E85.00

ELECTRONICS TODAY INTERNATIONAL

FOILS FOR THIS ISSUE

4-Go Rocket Launcher - main board

4-Go Rocket Launcher - relay board

Mighty Midget

Expiry Dote. Signature \qquad
Name. \qquad
Address.
\qquad Post code. \qquad
Telephone Number. \qquad
Complete denails and return coupon to: Nexus Direct, Nexus House; Boundary Way, Hemel Hempsiead, Herts. HP2 751 If you do not wish to recirive mailing, from other companies, please tick box

ETI Book of Electronics
This book is both o theoreficol and proctical introduction to eloctronics it dearty exploins the theory and principles of eledrortics ond eoch chopter inctudes a project for the beginner to make. The projects ore o loudspeaker divider, conlinuily fester. Brown-out' alarm, freezing alom, loudspeaker, mini-amptifier and a burgiar olorm, N:214

E12.45. UK
S12.95 Overseas
Scanners 2 International.
The companion booly fo'Scomers provides even more information on the yse of Vhr and UHF nommuhication bands and gives details on how to construct acoenvaries to "mprove the performance of soarming equipment the book is frtemationch in its scope and containg hequency alocetions for off thee IU regions, induding counin bby ccunlry verioions. NB216

C11.45 UK
211.95 Overseas

Scanners 3 - Putting Scanners info Practice
This is the fourth revised and completely updated edition of Scanners, the complele VHF / UHF rodio listeners quide and contoins everything you need to know"to put your scanner to better use. There is vastly more informotion than pijphese on frequency listing in particulor acfial frequancies used by coastal stations rpirfields and the emergency services Also included for the firsf fime is a section, ofy the HF (short wavel band as mary scanners now cover thits range.
NB217
E11.45 UK
£11.95 Overseas
Telephone orders: 01322616300 ask for Nexus Direct:
Ploase send me. \qquad copies of NB. \qquad - 0 Please send mecopies of NB........................... -... Please send me. \qquad copies of NB. \qquad e.

I enclose my remittonce of \boldsymbol{E} \qquad
I enclose my cheque/PO for. \qquad made payable to Nexus Special Interests or please debit my Access/Viso.
\square

$$
70] \square
$$

\square
\square

ATMEL AVR PROGRAMMING WITH FOREST ELECTRONICS
The ATMEL AVR microcontroller offers 32 working registers, 512 bytes of internal static RAM, from 15 to 32 IO lines and the capability for up to 64 K of external RAM. All devices are programmed using flash EEPROM, either in circuit, or in the programmer - no expensive UV erasable devices need be bought for development !

The AVR programmer from Forest programs all current dual in line AVR micro-controllers in a single multi-width ZIF socket. It operates on a standard PC serial port using Windows 3.1, 95, or NT. The programmer may be powered by battery supply, or a standard battery eliminator. It is supplied with the ATMEL Windows assembly and simulator packages and AVR data sheets in magnetic form.
Programmer : Kit $£ 40.00$, Pre-Bullt $£ 50.00$, Add £3.00 for P\&P/Handling

AVR Devices: (Please ring for prices)
AT90S 1200, 1K Flash, 64 Byte EEPROM
AT90S2313 2K Flash, 128 Byte EEPROM, 128 Byte RAM AT90S4144 4K Flash, 256 Byte EEPROM, 256 Byte RAM AT90S8515 8K Flash, 512 Byte EEPROM, 512 Byte RAM

Forest Electronic Developments Dorset, BH23 5PQ.
 01425-270191 (Vpice/Fax)

DISTANCE LEARNING COURSES in:
Analogue and Digital Electronics Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

Courses to suit beginners and those wishing to update their knowledge and practical skills
I- Courses are delivered to the student as self-contained kits
No travelling or college attendance is required
Learning is at your own pace
For information contact:
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 - Fax 01582492928

Computer Controlled Light Show - Output board

Computer Controlted Light Show - Display board

LTD stevenage

Prolessional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:

PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand writen shts or PC $31^{\prime 2}$ disc Cable Hamess Assembly/loom Manufacture
Card Cage and Module Wiring Full Inspection

Product Design/Consultation Full Procurement Service PCB Test 8 "Burn in " Facilties Enclosure Design a Manufacture PCB Artwork Manulacture Circuits Drawn Prolessionally Kit Procurement \& Supply Component Sales
Returbishment a speciality Top Quality Work at Reasonable Rates

Phone Steve on (01438) 360406 or fax details of your requlrements to us on (01438) 352742
EQt LTD, Cromer House. Caxton way, STEVENAGE, MERTS, SG1 2 DF

*MENDASCOPE REPAIR \& RECALIBRATE OSCILLOSCOPES ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERY
 FREE ESTIMATES Llangollen, Clwyd, N. Wales LL20 7PB
 PHONE: 01691718597

wideramo scanul artlats

 THE "REVCOWE" IS THE UK'S ORGNME OUALITY DESCOME

VWF /LU MOANI Astus

- womao portase scamer aflut

 SCANMER ARPMA BMTR

GAREX ELECTRONICS

Unit 8 Sandpiper Court Harrington lane Exeter EX 4 8NS Phone: (01392) 466899 Fax: (01392) 466887

ACTIVE MICRO DESIGNS

We can
design or re-design any piece of Analog or Digital Equipment to your Spec Software included with PC-based hardware

Tel: 01772814646 Fax: 01772816304

Active Micro Designs

34 Sutton Avenue Tarleton Preston PR4 6BB England

VISA

SUPPLIER OF QUALITY USED TEST INSTRUMENTS
 SERVICE MANUALS

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 OHD U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
NEW CATALOGUE ALSO AVAILABLE ON DISK

ADVERTISERS INDEX

ACTME MCRRO DESIGNS
.71 AGAR CIRCUITS 72 JPG 50 AMBYRLTD 62 KANDA SYSTEMS 72 BETA LAYOUT 31 LABCENTER ELECTRDNICS ... 38 BK ELECTRONICS 10 MASTERETCH (PRESS \& PEEL) 50 BULL ELECTRICAL19,21 MENDESCOPE 71
CHELMER VALVE .67 MILFORD INSTRUMENTS 67
CIRKITT DISTRIBUTIONS 50 NCT 69
CMS 49 NO NUTS 46
COOKE INTERNATVNAL .71 NO 1 SYSTEMS 29
CROWN HILL ASSOCIATES 61DATAMAN PROGRAMMER LTD OBCDISPLAY ELECTRONICS22
ELECTRONIC DESIGN ASSC. ... 72 SCIENTIFIC WIRE CO 72
EPT EOUCATIONAL SOFTWARE . 42 SEETRAX CAE 56
EQT 71
SERVICE TRADING CD 72
EQUINOX IBC,73 S
ESR EECTRONIC COMPONENTS. 27 STEWARTS OF READING 62
EXPO DRILLS CATALOGUE . . INSERT SWIFT DESIGNS 33.72
FOREST ELECTRONICS 46,69 TECHNO INFO SERVICES 55
GAREX ELECTRONICS 71
GRANDATA4,5,6,7
GREENWELD ELECTRONICS 41
HENRYS AUDIO 73
MLSON VALVES 73A. D RESEARCH1756502VERONICAFM72
VISIBLE SOUND 46

Kelly Helsey 01442266551

Send your requirements to:
ETI Classified Department, Nexus. Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: $85 p$ per word (\leftarrow VAT) (minimum 20 words) Semi display: (minimum 3 cms)
$\mathbf{\Sigma 1 2 . 5 0}$ + VAT per single column centimetre
Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid. Advertisements are accepted subject to the terms and condinions printed on the advertisement rate card (available on request).

FOR SALE

Veinieis $88-108 \mathrm{MHz} \mathrm{FM}$ TRANSMITTERS

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.

18 Victoria St, Queensbury, BRADFORD, BD13 1AR
Tel 01274816200 Email veronica@legend.co.uk

'C'
 FOR MICROCONTROLLERS

Phone: 01974282670 or
Sales@kanda-systems.com

> KANDA
www.kanda-systems.com

£50 BT INSTRUMENT
FOR ONIY £7.50

 0 con

 18 M fower
 Sonver RNIT SPA
Hanmer (01401) 81965

PRINTED CIRCUIT BOARDS

PRINTED CIRCUIT BOARDS DESIGNED \& MANUFACTUAED - PROTOTVPE OR PRODUCTION OUNTITES - fast tumhona avalure - PCBa OESTOAEO FROM CMACUT DNGRLUS - RLOST AL COM MTEA FLLES ACCEPTEO - ASSEMPY Y TEST AVAU NBE E TELEPHONGOT232 T38897 7": agar mix ory

- EDWIN -
- EED3 -
- CAPSTAR -

We could be the answer. Contact Swift Designs Ltd

Email:
Designs@ Swithesigns.co.uk Phone:
01438310133 - 01438821811
Web:
www.swiftdesigns.co.uk

SWC
 scientific WIRE COMPANY

 ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE UTZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1 HW FAX 01815591114ETI, ISSUE 1 to present, first 15 years in binders. Buyer collects. Offers to Dave. Daytime 0181 443-8697, Evenings 0181-4432289.

QUARTZ CRYSTALS

QUARTZ CRYSTALS 100 KH2 100 MHZ at low cost. Full list available and technical advice. Electronic Design Assoclates Tel: 0181-391-0545. Fax: 0181. 391-5258.

PCB CAMERA

BN MODULES
E39.00 + VAT
32 mm Pinhole of 3.5 lens just $£ 39$ - VAT with sound 42 mm lens version add ElO
un cart/packins. Es up to 10 por DISCOUNTS FOR QUANTITY
Open 6 days a week for callers. mo and eman.

HENRYS
404 Edgware Road. London W2 IED Tel. 01712581831 Faxe 01717240322 Emal : swesothenrys demon.co.ul internet: whw henrgs.co.te

ELECTRONIC PLANS, lase designs, solar and wind generators, high voltage teslas surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects, For catalogue, SAE to Plancentre Publications, Unit 7 Old Whart Industrial Estate. Dymock Road, Ledbury, Herefordshire, HR8 2HS.

MICRO - ISP

In-system 8051 Programming in a FLASH! Now supports the AVR Microcontroller Family

Code development for the 8051 family could not be easier. Simply plug the "Socket Slealer Module" into your existing 8051 socket and then use the Micro-ISP Programmer to downioad code (and data) to your target microcontrolier without even removing if from the target socket.

EQUINOX
 TECHNOLOGIES

The Embedded Solutions Company
Sales: 01204492010 Technical: 01204491110 Fax: 01204494883 Vish our web page at: www.equinox.tech.com Email: sales e equinoxtech.com

ETI

ELECTRONIC TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT NEXUS HOUSE, BOUNDARY WAY,
HEMEL HEMPSTEAD HP2 7ST

All adverts must be prepaid
Cheques payable to:
Nexus Special Interest's Lid.
Name
Address

Daytime Tel: No:

Signature
Date

PLEASE DEBIT MY ACCESS/BARCLAY CARD No.
\square

EXPIRY DATE

$$
\begin{gathered}
\text { FOR SALE COMPONENTS PLANS OTHER-PLEASE STATE } \\
\text { Please ring the required heading. }
\end{gathered}
$$

3×1
$£ 44.06$
inc

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact: Wise Owl Worldwide Publications 4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258

Around the $0{ }^{\circ}{ }^{\circ}$

Dntil recently, the major advances in DVD (digital versatile disc) seerned to have been in the area of hype. Now we can see that a clear standard and development path has been laid out, and aiready some PCs incorporate DVD drives instead of CD-rom drives Of course, the DVD drives can also read CD-roms.

The basic single sided single layer DVD, which is available now, holds seven times the data of one Compact Disc: 4.7 gigabyies per single side, as compared to 680 megabytes for CD. There are other options for the future: a dual-layer, singleside option, for even higher capacity: 8.5 gigabytes of a single side, or 17.0 gigabytes on a doulve sided disc.

Are CDs obsolete?

Refinements incorporated in DVD as compared with CD-rom include smaller pit dimensions, a more closely-spaced track and a shorter-wavelength laser (visible red 650 and 635 nanometre for DVD, as against 780 nanometre infra red for CDrom). The lens system has also been improved to give sharper focussing.

The improvements in the error correcting technology are of great importance. The Reed Solomon Product Code error correction system on DVD is approximately ten times more robust than the one on the current CD system.

At least some DVD systems are to be rewriteable. Apart from the facts that DVD is not yet widely available, and certainly not in portable form, and that DVD discs are larger than Minidiscs (see last month's Round the Corner), OVD should be a more attractive proposition for consumers.

Whichever system is widely accepted, so long as one of them is, then it-may be possible to buy your recorded music in a different way in the future. For example. you might choose your own track list and have the computer in the record shop make a custom Minidisc or DVD for you. Or perhaps you would purchase and \square in downioad individual tracks over the

Internet (legally, of course).
DVD is also for vide, but the CCIR-601 digital video standard specifies a video rate of 167 megatits per seoond. At this bit rate, the 4.7 gigabyte capacity of a standard DVD could enly store roughly four minutes of digital video. The ánswer to this is MPEG compressicn, which can store over two hours of video on a single sided, single layer disc.

MPEG2 w is by analysing the video picture for r- exition. Over 97 percent of the digital cita that represent a video signal is ledundant, and can be removed without visibly harming picture quality. As implemented for DVD, MPEG2 encoding is a two-stage process, where the signal is first evaluated for complexity. Then, higher bit rates are assigned to complex pictures and lower bit rates to simple pictures, using an "adaptive," variable bit-rate process. The DVD format uses variable bit rates with a range of up to 10 megabits per second. Atthough the "average" bit rate for digital video is often quoted as 3.5 megabits per second, the actual figure will vary according to movie length, picture complexity and the number of audio channets required.

The picture is stored as component video rather than in an encoded form, which should open the door to higher resolution television pictures. Certainly the PAL system, as it is normally implemented, loses almost half the horizontal detail which could be available. Perhaps this is one reason for the slow takeup of wide screen televisions: the picture is big, but blurred and short on detail. I have heard sour comments that some people can get that sort of picture just by taking off their glasses, so that the magic of wide-screen has some-way to go yet.

On the other hand, most people seem to be happy with standard VHS recordings, which lose much of the detail available in PAL pictures, so maybe if DVD takes off as a consumer music and video standard, it will be because it is conveniently backwards-compatible with CDs.

Next Month...

Volume 27 no. 1 of Electronics Today international will be in your nowsagent nearty as fast as 1998 \#sell - on 2nd January 1998 ... our leading feature will be packed with details about the current ranges of microcontrollers... Ray Haigh's custom Loop Aerial for medium wave and portable radios ... a new switched mode Power Supply from Bob Noyes ... Rober Penfold's four-channel inifa red remote controllet... a mutti purpose one-short timer ... plus all the reguiars. and more.
Contents are in preparation but are subject to space and availability.

1 NB The Villate 8057

- Supports Atmel FLASH 89C +895, Generic 87C51/52/FA/FB/FC microcontroller derivatives
- FLASH \& E2 libraries also available as chargeable update
- $£ 125.00$ Order Code: MPW.SYS

Boas 21 S Striter System For C51 Project Deveropment...in a FLASH Includes: Programmer, Evaluation module and PK51-2K

A £199.00 Order Code: AT-89C-2K-5T

In-Sy:tem

Prograitining (ISP)
"Now you can progrant the 8051 Dante AVR W Withour rembuing the device form the socket!"

FINTY:IES

- Suppe ints Atmel gos (AVR) RISC mic ocontroller family Support Parallel Programming mode in ZIF socket
- Supports In.System Programming via ribbon cable (provided)
- Equinox FAST ISP Programming Algorithm
All on-chip facilities supported e.g. RC Osc.
SYSTEM CONTENTS
- Professional Device Programmer - Power Supply
- Atmel AVR ${ }^{\text {M }}$ Assembler - ISP Ribbon Cable
- AVRM Basic Lite Compiler (NEW)
- Atmel Databook on CD ROM
∇ Programmer interface Software for Windows ${ }^{\text {Th }}$

\triangle Keil 8051 C compiler, Assembler, Simulator ($2 K$ code), Windows ${ }^{\text {™ }}$ IDE
- $\$ 99.00$ Order Code: PK51.2K

$89 S$ Socket Stealer Module

Simply plug this into your existing 8051 or AVR ${ }^{\text {mu }}$ socket for INS UA: ITU In-System Programming 930 Target
System redesign required.

The Embedded Solutions Company

RROUIDING TII: solvilins To YOUR PROBIRINS

Tel: +44 (0) 1204491110
Fax: +44 (0) 1204494883
For product information visit our web site at: www.equinox-tech.com
E-mail: sales?equinox-tech.com 229 Greenmount Lane Bolton BLI 5JB UK

From Only $£ 24.951$ - Ideal for educational, hobbyist and professional use

- Compiled BASIC generates tight AVR ${ }^{\text {W }}$ machine code - Not a Run-Iime Interpreter, NO code overhead!
- Target speeds comparable with assembler
- Breaks the cost barrier for small projects

arabasicio
AVR BM BA BUTE only Mppo \& the ATsos (\$12 words co.l) 8 K verito, aiso available

Order Code: AVR-BAS-UT £24.95

STILL THE WORLD'S MOST

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN - 48LV

SURELY NOT,
 SURELY SOMEONE SOMEWHERE HAS
 DEVELOPED A PORTABLE PROGRAMMER

THAT HAS EVEN MORE FEATURES, EVEN GREATER FLEXIBILITY AND IS EVEN BETTER VALUE FOR MONEY.
ACTUALLY, NO, BUT DON'T TAKE OUR WORD FOR IT, USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPARE.

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at $2,2.7,3.3 \& 5 \mathrm{SV}$
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN 54

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and I2V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portabilify
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC filles from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows:DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.
Alternatively, request more detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

If you do not agree that these truly are the most powerful portable programmers you can buy, simply retum your Dataman produt within 30 days for a foll refund

上in $e \square 5]$ (E)

 Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK
Telephone +44/0 1300320719
Fax +44101300321012
BBS +44/0 1300321095 (24hr)
Modem V. 34 N.FCN. 32 bis
Home page: http://www.dataman.com FTP: fip.dataman.com
Email: sales@dataman.com

[^0]: Chetmer Valve Company. 130 Now London Road, Cholmstord, Essex CM2 ORG. England.
 Tel: 44-01245-355296/265865 Fax: 44-01245-490064

