

TUNFFUU TRITIE

Vol 26 Issue: II IO October I997 $\mathbf{2 2 . 5 0}$

The Autumn Collection

Programmable Logic is one of the fastest growing areas in the Electronics Industry. This system allows you to both learn about PLDs (Programmable Logic Devices) and to implement them in practical projects. It comes complete with a Programmer (Capable of programming $16 \mathrm{~V} 8,20 \mathrm{~V} 8$ and 22 V 10 devices), a training module, a stand alone training course and a free copy of the industry standard CUPL for Windows, plus a Flash based device that can be reprogrammed 100 s of times.

Assembler, Simulator, Book, Programmers (In System and Standalone) - All you need to give this new micro a try.

Serial EEPROMs are found in virtually every piece of programmable equipment made. From televisions, VCRs, Burglar Alarms, Mobile Phones and Microwave ovens right through to Aircraft. Worldwide over £2 Billion are sold every year and they are manufactured by over 20 companies. This, low cost, system allows you to both experiment with and implement these devices. The system allows the user to program all the popular versions including the 24, 25, 59, 93 and 17C series, both in system and standalone. The kit comprises a programming lead, programming module, Windows programming software (with integrated Hex and ASCII editors) and a comprehensive reference manual.

C is rapidly becoming the language of choice for embedded systems programming. We can now offer the professional C compiler from IAR (The acknowledged Industry Leaders) for most micros e.g. AVR Compiler $=£ 450$. Please contact us for full details. Free working Demo available on request.
A full Residential Training Course is also available, ideal for INSET or enhancing your job prospects.
 Circuit Emulators (I.C.E) and development Systems available for the 51, PIC and (shortly) the AVR. Please call for details.

VISA
Prices do not include VAT

Microcontroller Training Systems for PIC, AVR or 51 series micros. Includes full coursework, Hardware and Software neatly bound into an A4 Ringbinder. Starts from basics and goes step by step through to project design. A full review of this product is available in Everyday and Practical Electronics.

Introduction to the AVR book. Written by a Lecturer, this book is the perfect introduction, not only to the AVR microcontroller, but also to microcontrollers in general. Includes Official Software. Only £18.

Training System

Volume 26 No. 11

Next lssue 7th November 1997

Regulars

NewsPCB foilsETI PCB ServiceRound the CornerDigital Signal Processing 13
Now used in modems, amateur radio equipment, high-end sound equipment, and in many of the fastest-developing areas of electronics, DSP is becoming more accessible and certainly more necessary to electronic design.
Fast Fivers - A Tuneful Trifle 41Would you like some light music? You can produce your own With this little light-controliedtone generator, you can make music to fit the mood with a light-dependent resistor.
GCSE Grounding: Sound Switcher55Terry Balbirnie starts a series of adaptable circuits which can be incorporated or adapted forGCSE- and other projects. In this issue: a module to trigger a reaction when a sound ismade.
Alphanumeric Morse Touchkey EIThe Alphanumeric Morse Touchkey is designed to enable beginners learning Morse tobecome familiar with the dot-dash codes and their mythmic patterns without the aid of aninstructor.
The MKII Electronic Auto-Checker 33Tim Parker's original Ell Multi-checker now has a 'voice' to tell you what's going on whenyou are upside-down under an instrument panel, along with improved functions andstraightforward one-pushbutton operation.
Total Harmonic Distortion Meter25Robert Penfold's Total Harmonic Distortion (THD) Meter has a good quality notch filter and anaudio millivoltmeter.
Computer Radio Control for Home Automation Part 2 15

Dr. Pei An describes the Radio Mains Control System interfaces to control up to 1024 mains outlets via up to 256 radio receivers and a transmitter connected to the Centronics port.

FEATURES:

- Large lco display
- MASIMUM READING 1999 + UNI - SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION - AUTO POWER OFF (APPROX 15 min) - DIODE TEST FUNCTION - all ranges overload protected - SUPPLIED WITH TEST PROBES -700V ACCURACY $\pm 0.5 \%$
- AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} 700 \mathrm{~V}$ - DC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~mA} 200 \mathrm{~mA} 2 \mathrm{~A} 20 \mathrm{~A}$ - AC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~mA} 200 \mathrm{~mA} 2 \mathrm{~A} / 20 \mathrm{~A}$ - RESISTANCE : $200 \Omega / 2 \mathrm{kS} / 200 \mathrm{ks} / 2 \mathrm{M} / 20 \mathrm{M} \Omega$ 200MS

ORDER CODE: CM3900A
PRICE: 2900p

FEATURES:

- TEMPERATURE MEASUREMENT - DIODE \& TRANSISTOR HFE TEST - LaRge lco displar
- HEIGHT 18 mm
- MAXIMUM READING 1999 + UNIT - SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION - AUTO POWER OFF (APPROX 15 mins) - DIODE TESWI FUNCTION - ALL RANGES OVERLOAD PROTECTED - SUPPLIED WITH TEST PROBES 1000V ACCURACY 10.5% - AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} 700 \mathrm{~V}$ - DC CURRENT 2 mA 20 mAN 200 m AV20A
- AC CURRENT A: 200 mAN 20 A
- RESISTANCE : 200s/2KS2/200ks/2M2/20M 200MR2
- CAPACITANCE: 2nFi20nF/200nF/2 μ F/2O $\mu \mathrm{F}$

ORDER CODE: CM3920
PRICE: 4100p

FEATURES:

- 3.75 LCD DISPLAY WITH DECIMAL POINT
- 33 SEGMENT BARGRAPH DISPLAY
- overrange indication
- ROTARY SWITCH FOR FUNCTION

SELECIION

- AUTO POWER OFF (APPROX 15 mins - DIODE TEST \& CONTINUITY TEST WITH BUZZER
- all ranges overload protected - LOW BATTERY INDICATION - SUPPLIED WITH TEST PROBES - DC VOLTAGE: $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} / 600 \mathrm{~V}$ - AC VOLTAGE: $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} 600 \mathrm{~V}$ - DC CURREN
- ac CURREN
- AC CURRENT A: $320 \mu \mathrm{~A} / 3200 \mu \mathrm{~A} 32 \mathrm{~mA}$ - RESISTANCE
3.2Mన/32MS: $3202 / 3$ 2Ks/32Ks/320K』

ORDER CODE: CM2700
PRICE: 4050p

| CMM3230 DIGITAL |
| :--- | :--- | :--- |
| CAPACITANCE MEIER |

8 Way Preprogrammed Universal Remote Control

A single remote control to operate Television, Videos and Satellite Receivers. Plus Auxilary Options!!

- Replaces up to 8 remotes with one
- Simple 4 digit setup routine
- Controls 1000's of models
- Teletext functions with Fastext
- Clear (large key) layout
-Code Search Facility
- Stylish and easy to operate
- Replace broken or lost remotes
- Original Remote note required

Order Code: 8 WAY Price: $1450 \mathrm{P}+$ VAT
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send £1 P\&P and VAT at 17.5%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts.

WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

TRANSISTORS

SATELLITE POWER SUPPLY REPAIR KITS

NIMTEC	COTE
SOPRENSON TYPE PSU ONLY	SATPSU15
NETMORK	CODE
9000, 9200	SATPSU2
NOKIA	Cown
SAT 1500	SATPSU2
PRCE	CODE
PRD800, PRD900, PSR800, PSR900	SATPSU1
MRD920, SS9000, SS9010, SS9200,	SATPSU2
SS9210, SS9220	
D100, D150,	SATPSU6
MSS100	SATPSU8
APOLLO, MSS200, MSS300	SATPSU9
MSS500, MSS1000	SATPSU10
PHILPS	Conte
STU802/05M	SATPSU1
STU801	SATPSU2
THOMSON	CODE
SRS4	SATPSU2
TOSHIBA	CODE
SAT99, TU-SDU200	SATPSU1

CODE	PRICE	CODE	PRICE	code	Price	CODE	PRICE
SATPSU1	650p	SATPSU6	650p	SATPSU11	835p	SATPSU16	730p
SATPSU2	$650 p$	SATPSU7	650p	SATPSU12	1735p	SATPSU17	850p
SATPSU3	650p	SATPSU8	730p	SATPSU13	3125p	SATPSU18	1175p
SATPSU4	6500	SATPSU9	900p	SATPSU14	3135p	SATPSU19	650 p
SATPSU5	6500	SATPSU10	1230p	SATPSU15	77.5p		

PACE SWITCH MODE TRANSFORMERS		
MODELS	CODE	PRMCE
PACE9000	PACE9000	800 p
PACEPRD800, PRD900	PRD800	550 p

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYStems. THE SATMETER CAN be USED AS STAND ALONE METER WITH POWERING THE LNB AS WELL AS IN LOOP. THROUGH OPERATION WITH SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm MAX.INPUT SIGNAL: -10 DBM

LED INDICATOR: VERTICAL/HORIZONTAL POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO -10 DBM

ORDER CODE: TOOL 22 PRICE: 8500p

SATELLTTE LNB'S					
RAKE A MODE 1	ORP做COPR	Patice	TAKEA MOPat	ORnaricompa	Ratc
Cambridge AE23/ ${ }^{\text {a }}$ (0.8 dB stancard 10.95-1i.70 GMz Goid Range	LNB1	2160p	Cambridge AE7 Twin O/P H+V Both Enhanced	LNE7	4000p
Cambridge AE14 Universal LNB 10.7-11.7/11.7-12.75 GHz	(NB2	2500p	Cambridge AE2 Dual O/P H-V Separate Enhanced	LNB8	3550p
Cambridge AE21/AE5 Single O/P Switching LNB 1.0dB Standard	LNB3	2050p	Grundig Super Universal 'Anis' 10.7-12.75 GHz 0.8dB	LNB9	2600p
Cambridge AE19/AE6 Single O/P Switching LNB 1.0dB Enhanced	LNB4	2050p	Grundig Universal 'Anis' 10.7-12.75 GHz 1.0dB	LNE10	2250p
Cambridge AE23/AE12 0.8dB Enhanced 10.7-11.8GHz Gold Range	LNB5	2160p	Cambridge AE1 Twin O/P H+V Both Standard	LNB11	4000 p
Cambridge AE8 Dual O/P H-V Separate Enhanced	LNB6	4000p			

			FUSES	
	TIME LAG		OUICK BLOW	(20WMM)
CURPENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100mA	FUSE36	75p	FUSE37	60 P
160mA	FUSE01	75p	FUSE17	60p
250 mA	FUSE02	75p	FUSE18	60p
315 mA	FUSE03	75p	FUSE19	60p
400 mA	FUSE04	75p	FUSE20	60p
500 mA	FUSE05	75p	FUSE21	60 p
630mA	FUSE06	75p	FUSE22	60p
800mA	FUSE07	60p	FUSE23	60p
IA	FUSE08	60p	FUSE24	60p
1.25A	FUSE09	60p	FUSE25	60 p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE11	50p	FUSE27	60p
2.5A	FUSE12	50p	FUSE28	60p
3.15A	FUSE13	55p	FUSE29	50p
4A	FUSE14	55p	FUSE30	50p
5A	FUSE15	60p	FUSE31	50p
6.3A	FUSE16	60p	FUSE32	50p

NB.

all fuses are made in the uk and fully meet BS4265 \& BS1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

CERAMIC PLUG TOP

CUMRENTRATING	ORDER CODE	PRICE
3A	FUSE33	100 p
5A	FUSE34	$100 p$
13 A	FUSE35	100 p

20mm CERAMIC TIME LAG

CUARENTRATING	ORDER CODE	PRICE
$6.3 A$	FUSE38	100 p
8 A	FUSE39	100 p
10 A	FUSE40	100 p
3.15 A	FUSE41	85 p
4 A	FUSE42	85 p
5A	FUSE43	85 p

38 mm CERAMIC TIME LAG

CURPENT RATMG	ORDER CODE	PRICE
$10 A$	FUSE 48	$815 P$

32 mm CERAMIC SLOW BLOW

CURRENTT RATING	ORDER CODE	PRICE
8 A	FUSE44	185 P
10A	FUSE45	$185 p$
15 A	FUSE46	$185 p$
20A	FUSE47	210 p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILL BE CHARGED AS FOLLOWS:
300P FOR 5 CANS
450p FOR MORE THAN 5 CANS

[^0]
ETI ELECTRONICS
 TODAY INTERNATIONAL

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

Ivex Design International's WinDraft CAD package for Windows will now have the capability to act as a "schematic viewer" and view any size of sheet. The facility applies to all versions, including the 100 pin capacity shareware version.

WinDraft's view mode is analogous to Microsoft's Word 6 viewer, and allows the user to view a document without having to purchase a "full" version of the software. According to lvex, WinDraft V1.26 will give engineers the ability to distribute schematics freely in a standardised

Update to WinDraft for schematic design

format, including over the Internet.
Features available with V1. 26 include the ability to view any size of sheet created with a licensed copy of WinDraft Schematics; added printing functionality to allow x and y offsets in the print dialog box; user definable attribute fields to include in the Bill of Materials (the user can include information such as the module name, part stock number or any other attribute); an improved Library Editor to allow easier pin mobility when creating or editing parts and changed configuration to speed up use; added default module footprints of hundreds of additional parts to facilitate PCB layout; user-request to view pin numbers on power pins; revised Getting Started Guide which includes netlist information and important PCB layout information; revised on-line Help with up to date
information.
WinDraft is the ideal front end for WinBoard PCB layout software. Prices range from $£ 19.95$ (including VAT) to £350 plus VAT, depending on the pin capacity. Version 1.26 is a free upgrade to existing customers

A free shareware version of both WinDraft and WinBoard can be obtained from the Web at http://www.ivex.com by downloading wdshare.exe and wbshare.exe on the anonymous FTP service. These shareware versions are complete, fully functional programs with an 100pin/pad limitation, and will now view any size of schematic.

For more information contact The PC Solution, 2 a High Road, Leyton, London E15 2BP. Tel 01819261161 Fax 0181 9261160 email: info@The PCSol.Demon.co.uk.

Shorts

Author Bill Davies has produced a substantial first volume in a series covering all areas of applied robotics,
Practical Robotics. For
information about the contents, price, delivery costs etc. please contact the author at WERD
Technology Inc., Unit 35B,
Suite 155,10520 Yonge St.
Richman Hill, Ontario L4C 3C7,
Canada. Information may also
be available from CPIC
Technical Books email
cpic@idirect.com
The Federation of
Electronics Industry has
appointed a new President for 1997-1998, Barry Wood,
chairman and MD of Celab

Ltd., specialists in power conversion for defence telecomms and cable TV Speaking to the FEl annual dinner, Barry Wood said, "Well over 80 percent of the 50,000 companies in the electronics and related industries employ less than 20 people and over 95 percent less than 200 people. Successful partnerships between large and smail enterprises are crucial to the economic success of national and European industry. Without innovative and flexible small firsm the industry will not prosper." IT, electronics and telecommunications is set to represent 10 percent of all

Yes, There are 5 prizes to win!

But no prizes for spotting that we only-printed one question last month, instead of the three questions needed to enter our RD Research/B2Sprice competition. Technical details: it was right when it left our end of the phone lines, and different when it came out at the other end, burying the all-important questions under the answer coupon.
The three questions are:
Question 1 What is the latest SPICE ENGINE used in B2 Spice V2?
Question 2: Which university developed it?
Question 3: What does SPICE stand for?
The competition is open to purchasers of EII Issue 10 1997 (last month's issue) who are not empolyees of Nexus Special Interest Ltd. or RD Research. Please send your entries on the coupon in Issue 10, or a neat copy of it, to: Spice Competition, ETI Magazine, Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST. Terms are as published in ETI issue 10 1997, and the final date for entries has been extended to October 30th 1997.

B^{2} Spice \& B^{2} Logic £199

- Design and test analogue and digital circuits quickly and easily
- Incorporates a dedicated model editing package
- Fast 32 bit SPICE 3F5 engine
- Windows 3.1/95/NT
- Mac version also available
- CD ROM or 3.5^{n} disk

Fully integrated and Interactive

Build the circuit on the screen and set up the simulations by choosing options from menus and dialogues. Then run the simulation and view your results.

Flexible Visuallsationof Results

in B^{2} Spice results can be displayed in graphs, ables or directly in voltmeters and ammeters. Change from typical to worst case analysis and include the effectsof temperature on components. You can customise everything, right down to the colour of an individual trace so you see just what you need. B̀Spice and B^{2} Logic let you export data to other applications.

Versatility

A plethora of components include resistors. capacitors, inductors. mutual inductors transformers, controlled sources, bipolar junction transistors, zener diodes, powe MESFETs. JFETs, MOSFETs, votlage regulators. operational amplifiers, optocouplers, voltage comparators, quartz crystals, IBIS I/O buffers and switching matrix connectors and much more All devices and model parameters can be edited to suit your needs. Implement hierarchical circuits in your designs quickly and easily

No Limits

With B^{2} Spice and B^{2} Logic there is no limit on the number of components in the circuit.

Models

There are literally thousands of them... The complete Berkeley SPICE model library as well as commercial libraries from manufacturers such as. Motorola, Texas Instruments, Burr-Brown, Maxim, National Semi, APEX Comlinear, AMP, Elantec, Linear Tech, and many more. Included with BSpice is a full model and symbol editing package so you can create. import and edit custom models.

Commands

B^{2} Spice supports AC frequency sweep. DC operating point. transient analysis, fast founer Nase, sensitivity distortion, Tf small signal transfer.

SImulation Optlons

Added facility for sub-circuits (macro-models). You can set all simulation options. Allows you to set initial conditions at all nodes Allows you to set initial guess at nodes for simulation.
Allows "not given" state for all values

Total Control

B^{2} Spice gives full access to Berkeley SPICE simulation control options. For example you can set global defaults for transistor channel lengths and widths! Plus much more.

Waveform Analysis

Display and compare multiple response curves in a single graph at the same time. BSpice simulation results can be selectively displayed and analysed graphically and in numerical format as well as exported to other applications. All of B^{\prime} Spice and B^{2} Logic's display capabilities are completely flexible.

Devices \& Stimulus for Simulation

In B^{2} Spice sinusoidal, constant. periodic
pulse, exponential. single frequencyFM. AM, DC voltage. AC voltage, VCO, Vce, piecowise linear, exponential, polynomial /arbitrary source. voltage-controlled voltage, voltagecontrolled current, current-controlled voltage current-controlled current. Lossy and ideal transmission line. MESFET uniform RC. current and voltage switches are all available.

Cross Probing

Cross probing allows you to display waveform results simply by marking pins, wres and devices on the circuit drawing. Monitor results while the simulation is in progress then plot analogue results on linear or \log scales.

Graphs

in B^{-}Spice analogue traces may be displayed as raw voltages and current values or further processed using arithmetic expressions. functions and Fast Fourier Transforms. High quality graphs let you see just what you need to, clearly and easily You can also display multiple simulations in one graph. Mutiple graphs can then be aligned and compared.

Data Analysis

Position detection wilth mouse for data paints mport and export data to and from other industry standard SPICE programs. B' Spice supports Polar Smith and Nyquist charts.
Digital Options.
B^{2} Logic is completely flexible. Set up ROM. RAM and PLA to your own requirements. Shrink a whole circuit to a block and use it as a component in a new design. Run the simulations in real time or step by step Customise rise and fall time of all components. Results displayed in a logic analyser or table. Select parts from all major logic families. Create your own custom libraries.

Design engineers need software that produces results they can rely on. Anything less is a liability. B^{2} Spice \& B^{2} Logic will give you the accurate results you need fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do... risk free for 30 days.

We guarantee you will be 100% satisified with the results or your money back.

To order your copies to try for 30 days call: 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

VISA

RD Research

Research House, Norwich Road, Eastgate, Norwich. NR10 4HA Postage \& packing £4.50. Prices quoted are ex VAT. All tradomanks are acknowlodpod

Electrical recycling charges up in Yorkshire

Businesses in Yorkshire have been invited to attend two seminars on electronic waste in Hull and Bradford in September as part of a trial collecting project to target the region's share of the 6 million or so pieces of electronic waste discarded annually in the UK. Equipment like computers, printers, telephones, fax machines and monitors contain valuable materials and components which can be collected for reuse and recycling.

The seminars were arranged by Save Waste and Prosper (SWAP) in conjunction with Leeds Environment Business Forum, Bradford Business and Environment Forum and the Humber Resource Efficiency Centre, with attendance by representatives from the Industry Council for Electronics Recycling and the Corporation of London. The main theme was a survey carried out by SWAP which revealed widespread uncertainty in local companies about how to dispose of obsolete electronic and electrical equipment. The 200 Leeds companies surveyed tackled the problem in a variety of ways from long-term storage, donation to schools, selling off to staff and disposal with general waste. Leeds-based collection company Silver Lining Ltd, began a trial collection service in July, to continue till January 1998 in the Leeds, Bradford and

Humber areas. Considerable interest is expected from businesses that do not yet know about the scheme.

Few businesses know that they can pay to have specifically electronic waste removed; some items, such as nicad batteries, should by law be disposed of (by businesses) through specialist commercial waste collection, not via normal rubbish collection.

The seminars are part of a project funded by Cleanaway Ltd. through the Landfill Tax mechanism, which was one of the first to gain support in this way. Support has also come from the Government Office for Yorkshire and Humber.

Businesses that have electronic waste they want collected can contact the organisations listed below - please note that companies will be charged for collection according to the amount and weight of waste.

Paul Twiddy at Business Link Bradford tel. 01274 751399; John Frank at Leeds Environmental Business Forum, tel. 0113 2470000; Terry Lander, Humber Resource Efficiency Centre, tel. 01482228580.

For further information, contact Elaine Kerrell or Rebecca Shannan at Save Waste and Prosper Ltd., tel. 01132438777 fax 01132344222.

Reclaim and recovery gathers pace in Scotland

A new electronics recycling plant is being opened at the Dumfries site of R Frazier Reclamation, Scotland's Waste, Electrical and Electronic Equipment (WEEE) Recycler. R Frazier Reclamation specialises in the recycling of computers, telecoms and office equipment, including the reclamation of components and parts, and the recycling of materials.

MD Gary Griffiths said, "The purpose-built recycling plant has been designed to process electrical and electronics equipment and related plastics. Sophisticated mechanical separation equipment will reduce electronic parts such as computer boards to small particles, enabling separation of metals from plastics and other materials more effectively than existing processes. The recovered material will them be recycled into new products." He also adds, "R Frazier's asset management approach maximises revenue earning potential as re-used equipment earns more than recycled material."

The company acknowledges openly (not all reclaiming operations do this) that a proportion of waste electronics will be recovered and resold for reuse in its original function.
Product handling by the company is prioritised on the basis of re-use, reclaiming components and materials recycling. Trained operators sort incoming equipment to identify any products that can be sold for re-use. The remainder is
dismantled and reusable components recovered for re-sale. Hazardous parts such as capacitors, VDUs and batteries are safely disposed of. The company states that security-sensitive equipment is guaranteed destruction - a reassurance that may be necessary as companies frequently forget to clean or overwrite company information on hard disks before parting with their obsolete computers. All products will be tracked and clients will receive reports on how and where materials end up.
"This offers clients the opportunity to turn waste management costs into possible revenue in a process offering both commercial and environmental benefits", says Chairman Liam McKenna.

The company is aiming for zero landfill at the end of the process, and reckons that it has already achieved 99 percent recovery on IT products and 97 percent on telecoms products. The company aims to work with organisations to improve the commercial viability of electronic and electrical equipment recycling, rather than have such recyclable material dumped at cost into landfill.

For further details, contact Gary Griffiths or Katie Martin tel. 01387721513.
ELECTRONIC COMPONENTS
Station Road，Cullercoats，
Tyne \＆Wear，NE30 4PQ
Tel：（0191） 2514363
Fax：（0191） 252 2296
Email：sales＠esr．co．uk
http：／／wwwesr．co．uk

	\％			
	$\operatorname{NiN}_{\sim}$			○あむこへニこ\＆

10 Way Straight	£0．27
14 Way Straight	£0．36
16 Way Straight	¢0．36
20 Way Straight	£0．41
26 Way Straight	£0．57
34 Way Straight	£0．57
40 Way Straight	¢0．63
50 Way Straight	£0．96
10 Way 90°	£0．33
16 Way 90°	£0．42
20 Way 90°	£0．53
26 Way $90{ }^{\circ}$	¢0．70
34 Way 90°	10．72
40 Way 90°	10.83
50 Way 90°	¢0．99
PCB Latch	

		5 Pin Chassis Skt 240° 5 Pin Line Plug 360°	$\begin{aligned} & 10.32 \\ & f 0.24 \end{aligned}$
		5 Pin Chassis Skt 360°	£0．32
16 Way Straight	f0． 70	6 Pin Line Plug	£0．27
20 Way Straight	¢0．78	${ }^{6}$ Pin Chassis Socket	£0．32
26 Way Straight	$\underline{1} 0.81$	7 Pin Chassis Socket	£0．34
34 Way Straight	$¢_{60.86}$	8 Pin Line Plug	E0．44
40 Way Straight	¢1．56	8 Pin Chassis Socket	± 0.36
50 Way Straight	£1．29	Phono Series	
10 Way 90°	$¢_{60.58}$		
16 Way 90°	£0．78		
20 Way 90°	¢0．82		
26 Way 90°	£1．06		
34 Way 90°	£1．14		
40. Way 90°	¢1．26	Red Line Plug	£0． 20
50 Way 90°	£1．74	Black Line Plug	£0． 20
DIL Headers		Yellow Line Plug	± 0.20
		White Linc Plug	£0． 20
		Red Line Socket	£ 0.20
		Black Line Socket	£0． 20
		Yellow Line Socket	£0．20
		White Line Socket	£0．20
14 Way DIL	£0．54	Red Chassis Socket	£0． 20
16 Way DIL	£0．59	Black Chassis Socket	£0． 20
24 Way DIL	¢0．90	Gold Plated Plug－Red	£0．76
40 Way DIL	£1．02	Gold Plated Plug－Black	£0．76
Transistion Hea		XLR Series－metal	
10 Way Transistion	¢0．49		
14 Way Transistion	¢0．47		
16 Way Transistion	£0．47		
20 Way Transistion	¢0．54		
26 Way Transistion	¢0．62	3 Pin Line Plug	£1．50
34 Way Transistion	¢0．67	3 Pin Line Socket	£1．82
40 Way Transistion	£0．90	3 Pin Chassis Plug	£1．50
50 Way Transistion	¢1．02	3 Pin Chassis Socket	£1．70

All Available in－Red．Black．

250
7 N
N
B
R
K
C
B
W
N
B
Miniature Round
$250 \mathrm{~mA} 125 \mathrm{~V} 28 \times 10 \mathrm{~mm}$
$7 \mathrm{~mm} \emptyset$ Mounting Hole Non Latching Push to Make
Black P＇TM

1

．

ORDERING INFORMATION－Carriage $£ 1.25+$ Vat，Prices Exclude Vat（ $171 / 2 \%$ ），Add Carriage \＆Vat to all orders．Payment with Order．PO／Cheques payable to ESR Electronic Components．ALL Credit Card Orders Accepted．NO Credit Card Surcharges．Trade discount for Schools \＆Colleges．

(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

SPECIAL OFFER
HITACHI V212 - 20 MHZ DUAL TRACE
HITACHI V222 - 20 MHZ DUAL TRACE + ALTERNATE MAGNIFY

Advantest $4133 \mathrm{~B}-10 \mathrm{KHz}-20 \mathrm{GHz}$ (60GHz
Ando AC8211-Spectrum Analyser 1.7GHz
dveom PSA65 S - 1000 MHz - portable
Eaton/Altach $757-10 \mathrm{KHz}-22 \mathrm{GHz}$
owlett Packard 182T with 8559A (10MHz-21GHz) ...
Hewlett Packard 35601A - Spectrum Analyser Interface $\ldots . .$.
Hewlett Packard 141T $+8552 \mathrm{~B}+8555 \mathrm{~A}-(10 \mathrm{MHz}-18 \mathrm{GHz})$
5200
wh Peck 141T + 85528 + 8555 - ($\mathrm{M} \mathrm{Mz}-18 \mathrm{GHz} \mathrm{)}$
ewlett Packard 3562A Dual Channel Dynamic Sig. Analyser.
Hewlett Packard 853A $+8558 \mathrm{~B}-0.1$ to 1500 MHz
whett Packard $182 \mathrm{~T}+8558 \mathrm{~B}-0.1$ to 1500 MHz
Howlett Packard 8754A - Network Analyser 4-1300MH2 z...........
arcon $2370-110 \mathrm{MHz} \ldots \ldots \ldots$
Marcon $2371-30 \mathrm{KHz}-2000 \mathrm{MHz}$.........
Meguro MSA $4901-1-300 \mathrm{GHz}$ (ASNEW)
polrad $641-1-10 \mathrm{MHz}-18 \mathrm{GHZ}$...............................
ohde \& Schwarz - SWOB 5 Polyskop 0.1-130
Tektronix 7 L 18 with mainframe $(1.5-60 \mathrm{GHz}$ with extemal mixers)

Hewlett Pacicard 83498 - Microwave Broad Band Amplifier $\ldots23500$
dowlett Packard 8015A - 50MMHz Pulse Generato owlett Packard 8015A - 50MHz Pulse Generato4250
8750
towlett Packard 8165A - 50MHZ Programmabte Signal Source 1650
awlett Packard 83508 - Sweep Oscillator Maintrame (various Plug-Ins available) extraHewlett Packard 8158B - Optical Attenuator (OPTS $002+0$
Hewlett Packard 8180A - Data Generator
(lewtet Packard 89554 - Wave Source Module 26.5 to 40 GHz .. 81500
Hewlett Packard 8684 A 5.4 GHz to 12.5 GHz Sig-Gen -.... E 2750
Hewlett Packard 86568 - Synthesised Signal Generator8375
dowlett Packard 8756A - Scaler Network Analyse
fewlett Packard 8958A - Cellular Radio interiaceHewlett Packard 8901A - Modulation Analyser.
-
tewlett Packard P382A Variable Attenuatorowlett Packard 16300 - Logic Analyser (43 Channels)
($\mathbf{4 0 0 0}$Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 4024A Oscillato
Krohn-Hite 5200 Sweep, Function Generator
Marconi $2019-80 \mathrm{KHz}-1040 \mathrm{MHz}$ Synthesised Sig. Genarconi 2019A - 80KHz - 1040MHz - Synthesised Signal Generator... 850arconl 2022A - $10 \mathrm{KHz}-1 \mathrm{GHz}$ AM/FM Signal Generator.
Marconi 2432 A 500 MHz digital freq. meter
Marconl 2610 - True RMS Voltmeter
Marconi 2871 Data Comms Analyser.

Iarconi 6960 - Power Meter \& Sensor .. £1050
Philips PM 5167 MHz function gen...8400
8800

Philips PM 5167 MHz function gen.......
hilfps 5190 L.F. Synthesiser (G.P.I.B).
Phillps PM5667 - Vectorscope
(1.5GHz Programmable High Resolution Timer/Counter
Phillps PM6670 - 120MMZ High Resolution Universal Counter
Philtps PM6673-120MHz High Resolution Universal Counter .. $\mathbf{8 4 3 0}$
Prema 4000-6 $1 / 2$ Digit Multimeter (NEW)

Recal Dana 9004 Synth. sig. gen. 104MHz ... 450
acal Dana 9303 R/F Level Meter \& Head .. 6650

Racal Dana 9082 Synthesised am/tm sig gen (520 MHz)... 500
Racal 9301A - True RMS P/F Multivoltmeter .. 8300

Rohde \& Schwarz SMFP2 - 1GHz Radio Comms T/set... 5500
Rohde \& Schwarz UPSF2 - Video Noise Meter... 1400
Rohde \& Schwarz Scud Radio Code Test Set .. 550. . 5300
Rohde \& Schwarz SUF 2 Noise Generator...
Rohde \& Schwarz SMDU - 15 MHz to 525 MHz Signal Gen (FM \& AM)
schatfner NSG $203 A$ Line Vottage Variation Simulator
chaffiner N
schatfiner WSG 431 Eiectrostatic Discharge Simulator
chlumberger 4923 Radio Code Test Set

chlumberger 2720125010 Hz Frequency Counter... 5500

Stanford Research DS $340-15 \mathrm{MHz}$ Synthesised Function (NEW) and arbitrary
wavelorm generator..
Systron Donner 6030 - Microwave Frequency Counter
iktronix TM5003 + AFG 5101 Arbitrary Function Ge

- many available s SC504, SW503, SG502
G508, FG504 FG503 TG501, TR503 + many mors, SW503, SG502,
Tektronix 577 Curve Tracer ..
Tektronix AM503 + TM501 P602 - Current Probe Amplifier
$-\quad-\quad . \quad 1595$
aktronix PG506 + TG501 + SG503 + TM503 - Oscilloscope Calibrator
ektronix 577 - Curve Tracer
Ime 9811 Programmable Resistance
me 981 Vottage Calibrator... 8750

Wandel \& Goltermann PCM4 + options
Wayne Kerr 4225 - LCR Bridge
Wayn Kerr 8425 - Precision Component Analyser
ction Generator

Wavelek $184-$ Sweep Generator - 5 MHz .
Wavetok $3010-1-1 \mathrm{GHz}$ Signal Generator

Digital Signal Processing

Signal processing in a chip, DSP will soon become as ubiquitous as the general purpose microprocessor.

Digital signal processing (DSP) is used in modems, amateur radio equipment, high-end sound equipment, and in many areas where you might not at first expect to find it. Although it is difficult to design a complicated DSP system, the principles on which DSP works are accessible to anyone. It is only the mathematics and coding for complex systems which present a challenge.

Apart from fashion, why should DSP be used in preference to other filtering techniques? There are many reasons, but one of the most important is that DSP can do things that are not achievable with conventional signal processing (see finite impulse response filters below), or that are too expensive or complicated to be practical with other techniques.

A DSP system is controlled by software, so that the same system can be dynamically reconfigured for different functions (for instance, for different modem speeds) or can even be self-adapting. Depending on speed of signal and the speed of the DSP system, the same DSP chip may be able to carry out several functions at once, or perhaps to control a user interface with controls and displays in addition to its real-time signal processing task. For these and other good reasons, DSP is becoming widely used.

Digital signal processing, once the signal is in digital form, requires adders, subtractors, multipliers and dividers. It also needs time delays, which can normally be provided by the use of memory.

Digitisation

In order to use a digital filtering system, the first requirement is to digitise the signal (unless, as with the data stream from a CD, it has already been digitised). In order to implement a high quality DSP function, the digitisation of the signal must be carried out to a high standard. Otherwise, even if the rest of the system is well designed, the overall performance will be disappointing. Since the aim of this article is to cover DSP itself, I shall cover only the highlights of digitisation.

An analogue signal, which may also be called a continuous time sequence, may be converted into a digital signal or discontinuous time sequence by sampling at regular intervals and assigning a digital value corresponding to the voltage of the signal at the

instant of sampling. This principle is illustrated in figure 1.
In some cases the voltage to be measured will always be positive, in which case a binary representation starting at all zeros for the lowest voltage to be represented to all ones for the highest voltage will be suitable. However, in many cases positive and negative values must be represented, as in an audio signal. There are two major methods of using binary numbers to represent such voltages, offset binary, and twos complement.

Offset binary is straightforward to understand. If 8 bits are used to represent the signal than the zero point is set to 127

Figure 2: Converting a bipolar signal to a unipolar signal
(01111111 in binary, 7F in hexadecimal). A simple way to do this is illustrated in figure 2 . Here a signal with a range of $+/-$ 2.5 V is halved and added to a halved copy of the 2.5 V reference, converting it to a signal having a range from zero to 2.5 V . An inverter converts this to an equivalent positive range, which matches the voltage reference of the analogue to digital converter. This provides offset binary independent of the number of bits.

This can be useful for such things as data logging on a PC, where the data logging program can do the necessary calculations for offset and scaling. It is less useful for real time digital signal processing, where calculations must be done with maximum speed. For this purpose "two's complement" is more useful. This is a means of representing positive and negative values with a single binary sequence, in a manner compatible with binary arithmetic operations, so that if a positive and a negative number are added, the resulting number is correct.

To convert a number to two's complement, invert all the bits and add 1 . This is the same as saying that the most significant bit is the sign bit, with 0 representing positive numbers and 1 representing negative ones. It is also necessary to ignore the carry bit.

Here are some examples of additions:
$\begin{array}{ll}00010110 & (+0010110) \\ 1111101 & (-0000011)\end{array}$
100010011 (+0010100) (Disregard the carry bit, and the sign bit is 0 , meaning positive)

00000011 (+0000011)
11101010 (-0010100)
11101101 (Two's complement for -0010011)
Most analogue to digital converters intended for use in DSP can output data in two's complement mode. Often the converter itself cannot accept negative input voltages, but can use an analogue ground offset of half the reference voltage. In this case a voltage of half the reference is added to the signal in a manner similar to that shown in figure 2 for the offset binary conversion.

Conversion techniques

There are a number of ways to convert a voltage to a binary number. The fastest is the flash converter, in which, for an eight-bit conversion, 255 comparators are used with a
reference chain and the output is encoded into binary. This principle is illustrated in figure 3 , which shows a two-bit flash converter.

Two bits of binary can have a total of four states: 00, 01, 10,11 . To split an input voltage into four states requires three comparators, with the states being: all comparators off, one on, two on, and all three on. In general, one comparator less than the number of states is needed, so 255 comparators would be needed for an eight-bit conversion. For video encoding, six bit flash converters are sometimes used, with one converter for each of the colour signals (RGB).

The advantage of a flash converter is that it is as fast as a single comparator, faster than any other technique.

Figure 3: the operation of a flash converter
Disadvantages include the large number of comparators needed, and the power dissipation of the resistor chaln. It is normally only considered practical to use integrated flash converters.

Perhaps the most accurate, and slowest, is the dual slope converter, used widely in digital multimeters. However, the majority of converters for medium frequencies (including audio) use a variety of successive approximation technique. The idea is illustrated in figure 4.

The procedure is to start with all bits set to 0 , then set the most significant to 1 (that is, half scale). If the comparator switches, then the most significant bit gives too high a voltage, so it is set to 0 and the next most significant bit is set to 1 . This

process continues until all the bits have been tested. Thus a sixteen-bit conversion takes sixteen comparisons.

Normal digital to analogue converters use a series of resistors, either weighted in the sequence $1,2,4,8$ etc. or the widely used $\mathrm{R}-2 \mathrm{R}$ network.

It is difficult to integrate precision resistors of the quality required for accurate conversion using normal chip fabrication technology. Even for a 12 -bit conversion, the most significant bit resistor must be accurate to one part in 4096. A 16-bit conversion requires an accuracy of one part in 65536 .

Another interesting technique used in some A to D converters is to use capacitors instead of resistors, with analogue switches to sample and integrate the charge. Capacitor errors can be corrected by comparing larger value capacitors in the chain with all the smaller ones, and averaging the errors. Correction figures are stored in registers and used to correct the output for calibrated linearity errors. A detailed discussion of this is beyond the scope of this article, but various semiconductor manufacturers literature explains it in more detail.

It is worth noting that, in order to design a good quality DSP-based system, the analogue signal conditioning must be of an adequate standard. If the noise and offsets of the signal conditioning exceed one least significant bit, then the signal conditioning is probably degrading the overall result significantly.

Aliasing

When converting an analogue signal to a digital form, it is sampled at fixed times. It must be sampled sufficiently often that the instantaneous signal value has not changed too much since the last sample. Sampling less than once per half cycle of the maximum input frequency causes a particular problem, that of the generation of non-existent lower frequency signals as a result of a beat between the sample rate and the input frequency. This is illustrated in figure 5.

The resulting frequency in this example is in the audible range, and would definitely interfere with the sound of a CD if
this effect were present on the recording. A sampling rate of exactly two samples per cycle is called the Nyquist frequency. This sample rate is the lowest possible one that avoids aliasing.

Clearly, it is better to sample at well above the Nyquist frequency if possible. There are several reasons for this. One is that, to avoid aliasing, the analogue signal must be filtered to remove all frequency components above half the sampling frequency. A higher sampling frequency permits the filter cutoff frequency to be well above the maximum frequency of interest, which improves the phase response in band. This is of interest in audio applications, where the effects of very sharp filters can be heard.

In addition, sampling generates noise power spread evenly over the spectrum. If the sampling rate is higher, the spectrum over which the noise power is spread is greater, so the proportion in the band of interest is less.

A digitisation technique particularly well suited to audio applications is called sigma-delta conversion. The sampling rate

Figure 6: aliasing
is much higher than the Nyquist rate, but the conversion is only one bit. In effect, the one bit says whether the signal went up or down during the preceding sample period. Figure 6 shows the block diagram of a sigma-delta analogue to digital conversion. The loop here acts as a low pass filter for the input signal and a high pass filter for the quantisation noise. This noise shaping suits audio requirements well.

After the one-bit conversion is a decimation filter, which

Figure 7: a sigma-delta converter

Figure 5: an RC filter

OUTPUT FROM ONE-BIT ADC:-

Figure 8: operation of a digital decimation filter
lowers the data rate and increases the accuracy. Figure 7 shows the effect of the decimation filter.

Simple filters - FIR and IIR

The first point to note is that almost all other filter technologies give an infinite impulse response. This is easily illustrated by the simplest possible low pass filter, using one resistor and one capacitor, as shown in figure 8 . The output voltage from this filter is affected by all previous inputs back to the time it was built, because the charging and discharging of the capacitor is exponential. The voltage on the capacitor approaches its aiming point more and more closely, but never actually reaches it. The exact voltage at any given point on a charge or discharge waveform is affected by the starting voltage, which is itself affected by the starting voltage of previous charge and discharge waveforms.

Equally, a tuned circuit will ring forever, with decreasing amplitude, after being excited with one impulse. So, the defining characteristic of an infinite impulse response filter is that its output is dependent on all the inputs it has ever received, and its output for a given input will persist theoretically to infinity. In real systems, the output will decline to a negligible level after a short time, but this level, though too small to measure, is not zero.

The infinite impulse response of analogue filters is not always brought out in mathematical descriptions. When Laplace transforms are used to analyse the filter response, there is normally an implicit assumption that the starting state of charge of all capacitors is zero, and that the initial inductor current is also zero. A rigorous Laplace transform would have to include the initial conditions of the system being analysed.

By contrast, a transversal filter using surface acoustic wave technology, shown in figure 9 is, apart from any imperfections, a finite impulse response filter. Different parts of the input signal are fed to the output with different amplitudes and delays, and after the input signal ceases, and has passed through the filter, its output is zero except for the effects of stray reflections from the acoustic absorbers.

Figure 9: surface acoustic wave transversal

Figures 10 and 11 show examples of FIR and $\|$ R filters. Note that the FIR filter has no feedback paths, and that the feedback paths are what make the filter infinite impulse response. Signals can be fed round and round the loop, being modified (probably attenuated) each time, but theoretically persisting forever. In practice, of course, the amplitude of the recirculating signal in a practical IIR filter will rapidly fall below one least significant bit.

DSP is often thought of as something only esoteric, but, although the term is not often used in this context, the averaging of a series of readings (to average out the noise) in a microprocessor based control system, is a simple form of digital signal processing.

Figure 10: a simple finite impulse response filter

Figure 11: a simple infinite impulse response filter

Characteristics of FIR and IIR filters

FIR filters can be linear phase and cannot oscillate. They also need a lot of stages to achieve a sharp cutoff.

IIR filters could oscillate if badly designed, and normally have a non-linear phase response, but a much sharper cut off than a similar order of FIR filter.

DSP chip major functions

As may already have become apparent, digital signal processing can be carried out on any microprocessor. The basic mathematical functions used - addition, multiplication etc. - are just the same. The reason for having specific chips or whole dedicated chip sets is because the arithmetical functions required involve a great deal of repetitive computation which is usually done in real time. A general-purpose microprocessor, while being capable of performing such 'number crunching', in practice would not be able to provide sufficient signal bandwidth to be useful. To overcome this, the chip designers have taken some of the software functions - such as
 \title{
ICII-PONOL
}
 \title{
ICII-PONOL
}

TRIED \& TRUSTED STRAIGHT FROM GERMANY

C

1
5
$!$
$!$
ANY FORMAT, ANY OHTLMF
NO PREMATM!

Eurocard + Soldermask + Position print

Beta LAYOUT Ltd.
IRELAND PCB-Brokerage
1 i Y 0 U i 6 College Grove Ennis - Co. Clare

(2)

pcbpool@betalayout.ie http://www.pcb-pool.com
 ++353 (0) 6566500 FAX 66514

Fax/send back

get
 conneded

multiplication - and provided a dedicated hardware multiplier that will provide the product of two digital numbers very quickly while the DSP processor is performing another task. The advantages of this are that a multiplication task is performed faster than the processor could do it, but at the expense of cost because the chip includes extra hardware.

On the other hand, it is optimised for the job, and in many cases a cheap dsp chip could perform dsp better than a Pentium.

The techniques of DSP have been around for a considerable time, but have been used much slower than real-time on previous generations of computers. For example, an audio recording could be digitally reprocessed to remove clicks and noise, and a new recording made to a quality more suitable for broadcast. Even if the process took several hours to improve a five-minute recording, the quality of the result was good enough to be worth the effort.

Nowadays, however, the term DSP is used to refer to realtime processing, often on audio or video frequency signals. Instead of the microprocessor carrying out multiplications using successive additions with shifts in between (shift and add), a hardware multiplier is used to do what is otherwise a software function. It is this approach that enables DSP chips to keep up with the real world signals that they are required to process.

Equally, time can be saved in fast Fourier transforms by incorporating a special addressing mode in the DSP chip (bitswapped addressing). This permits samples to be stored in the order in which they occur, and be addressed in the order in which they are required, without doing any extra address calculations.

A major function of DSP chips is to carry out Fourier transforms. The reason is that the Fourier transform is a representation of a waveform in terms of frequency instead of time. In this representation, it is simple to remove a frequency component from the signal to generate a notch, or to make any other modification to the frequency response. To understand this, it is unavoidably necessary to look at the mathematics to a certain extent.

Fourier transforms

All complex (non-sinusoidal) signals are made up of various component frequencies. Viewing a square wave on an oscilloscope will show an easily recognisable trace, but feeding that same waveform into a spectrum analyser gives a very
different picture indeed. The spectrum analyser, through the use of linear filters (or, if it's more modern, DSP), breaks the square wave up into its component frequencies and displays them as relative amplitudes. It is important to note that they are both giving the same information but in different domains. The oscilloscope shows the signal in the time domain with the horizontal axis representing time as defined by the timebase control. The spectrum analyser displays the signal in the frequency domain where the horizontal axis shows the frequency range over which the instrument is working. But note: the spectrum analyser does not give phase information of the displayed frequencies, which is vital to reconstituting the original signal from the displayed data.

In order to understand how a software program can calculate the frequency spectrum of a signal it is necessary to simplify for a moment by leaving out the effect of the sampling, and by using a repetitive signal such as a square wave. The Fourier transform converts between the time domain and frequency domain according to the following formula:
$X(\omega)=1 / 2 \pi .-\infty{ }^{+\infty} X(t) \cdot e^{-j \omega t} . d t$
Where $X(t)$ is the time waveform; $X((\omega)$ is all the component frequencies that go to make up the time waveform; $1 / 2 \pi \mathrm{~s}$ converts between radians and hertz; e-j ω t is a phasor representation of both sine and cosine terms represented as a time dependent waveform; and dt is the differentiation of the time waveform ($X(\mathrm{t})$) with respect to time (t$)$, which extracts the rate of variation of the time waveform in time.

Examining this formula shows that it encompasses minus infinity to plus infinity, which means that it can cover random signals. The square wave, because it is repetitive does not need to solved over this range, only the period over which one complete cycle exists.

If a single frequency is represented by a sine wave and, as described above, the square wave contains many different frequencies, then the formula must describe the shape of the waveform in order to be able to extract the frequency data. Therefore to convert the square wave from a time domain waveform to a composite set of frequencies and phases, we modify the Fourier transform formula as follows:

For a square wave of amplitude N and duration at each level T (that is, the total period 2T), the Fourier series is:
$X(\omega)=1 / 2 \pi_{\cdot 0} \int{ }^{t}(+V) \cdot e^{-j \omega t} \cdot d t+1 / 2 \pi \cdot t \int 2 t(-V) \cdot e^{-j \omega t} \cdot d t$
Where \int indicates integration.
This formula describes the basic shape of the waveform mathematically over the various time periods that go to make up the overall signal, a positive DC level which lasts for T seconds followed by a negative DC level which also lasts for T seconds. In fact any repetitive waveform can be described in this manner and the associated frequency spectrum derived accordingly.

When the data describing the waveform is entered into the formula it was presented in the form "over the time period 0 to X, the waveform was a DC level of $+V$ volts", "over the time period X to Y the waveform was a $D C$ level of $-V$ volts". Examining the form of the data entry shows that we have described the shape of the waveform completely in a theoretical manner. In effect we have looked at the waveform outside of time and described how it varies with respect to time. .

DIFFERENTIAL THERMOSTATKIT P erfect for heatrecovery, solar systoms, boiler efficiency ecc. Two sensors will operme e roitiay When a temp difiterence (adjustabte) is detected. Al components and pcb. £29 ref LOT93

PC POWER SUPPLIES PACK OF 8 FOR $£ 9.95$

Thats rightl 8 power supplies for $£ 9.95$ t These are all fan cooled (usually 12 v) our choice of specs etc, and are sold as seen. But worth it for the fans alonel ref XX17
MAINS POWER SAVER UK made piug in unit, fited inseconds, can recuce your energy consumption by 15%. Works with fridges, sodsering irons, conventional butbs otc. Max 2A rating. £9 oact rof LOT71. pack of 10 ह69 rof LOT72
DC TO DC CONVERTERS
DRM58 input $10-40$ vdc output 5 v 8 A £15 DRM128 input 17 -40vdc ourtput 12v 8 E $£ 18$ DRM158 input $20-40 \mathrm{vac}$ output 15v 8 A £18 DRM248 input $29-40$ vdc ourtput 24 V 8A E12 DRS 123 input 17 -40vdc output 12v 3A $£ 10$ ORS 153 input $20-40 v d c$ output 15v $3 \mathrm{~A} £ 20$ DRS243 input $29-40 \mathrm{vdc}$ output 24 V 3 A £8
HITACH LM225X LCD SCREENS $270 \times 150 \mathrm{~mm}$, tanderd 12 way connector, 640)200 dots, tec spec sheet, $£ 15$ each rof LM2 HOME DECK CLEARANCE These units must be cleared! loads, a ninfra red remole qwerty kayboard and recosiver, a standard UHF modulator, a standard 1200775 BT approved modem and loads of chips, capactiors, diodes, resizitors otc al for just $£ 10$ rot BAR33. PORTABLE X RAY MACHINE PLANS Essy to construct plans on a simple and cheap way to build a home X-ray machinel Eliccuvodavice, x-ray soabd assemb bess can be uned
TELEKINETIC ENHANCER PLANS Mystly and amaze your fiends by creating motion with no known apparent means or ciruse. Uses no electrical or mechanical connections, no special gimmicks yot produces positive motion and effect. Excelientifor science proiects, megic shows, party demonstrations or senious recearch \& development of this strange and amazing phychic phenomenon.
E4/set Ref FTKKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to putsubjects under your control. Incuded is a fill volume reference text and several construction plans thet whion assembied can produce highty effocive stimuli. This matarial must be used cautiousty, his for use as entertainment at partios ect only, by
those experienced in its use. $\mathrm{E} 15 / \mathrm{sec}$. Ref FIEH2.
GRAVITY GENERATOR PLANS Thls unique plen demonstretes a simple ofectrical phenomena that produces an antigravity effiect You can actually build a smail mock spacesthip oun of simple materials and without any visible meanz-cause h to levitate.
$£ 10 /$ ger Ref $\mathrm{F} / \mathrm{GRA} 1$.
WORLDS SMALLEST TESLA COIL/LIGHTENING DISPLAY GLOBE PLANS Producos up to 750,000 volis of discharge, experiment with oxtraordinary HV effects, 'Plesma ina ajar St Elmo's fire, Corona, excatient science project or conversation piece. E5/3et Rel F/BTC $1 /$ LG5
COPPER VAPOUR LASER PLANS Produces 100 mm of visible grsen light. High coherency and spectral quality similarto A rgon laseer but easier and lass costly to bulld yot far more efficient. This paritcular design was devoloped at the Atomic Energy Commivion of NEGEV in Israel. E10/sot Ref F/CVL1
VOICE SCRAMBLER PLANS Minature solid state syotem tums speech sound into indecipherable noise thet camnot be understood listaning and bugaing EEV/sed Ref $F N$ So

PULSED TV JOKER PLANS

PULSED TV JOKER PLANS Litte hand hold device ubitises pulse tochniques that will Compleetly dierupt TV picture and sound works on FM tool DISCRETION ADVISED. £\&/sot Ref FTJJ BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent techmology to derioct the prosence of living
bodies, warm and hot spots, heat toaks etc. Intended for necunty, tew bodies, warm and hot spots, heat toaks elc. Intended for soculty, tew enforcement, ressearch and doveloprnent, etc. Excollort socurity device or very interesting science project. E8/isel Ref F/BHT1.
BURNING, CUTTING CO2 LASER PLANS Project an invisible beem of heat capable of buming and meting materials over a considerable distance. This laser is oneof the most eficiont, converting 10% input powerinto useful output. Not only is this devica a worthorse in weiding, Cutting and heat processing materials but its ateo alikely candidete as an effoctive directed energy beam weapon against missiles, aircreft, ground-to-ground, etc. Particie boems may very well utilize a laser of this type to blast a channel in the atmosphere for a high onergy stream of neutrons or other particles. The device is easily applicable to burming and etching wood, arting, plastics, toxties etc £12 2 sel Rof FLC7.
DYMANO FLASHLIGHT Interesting concept, no batteriee needed just squeeze the trigger for inwtiant light apparentity even works under water in an amergency athough wo haven't tried ty yel 58.99 ref SC 152 ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'ook' steam, atomize mquides Many ctoaning uses for PC boarts. jowition, coins, amell parts etc. $£ 6 /$ /eot Rof FNLB 1

Water pump motors, mains powered, $165 \times 75 \mathrm{~mm}, 5 \mathrm{~mm}$ shaft. $£ 6$ ea ref MM10. Pack of $\mathbf{3}$ for $\mathbf{£ 1 2}$ ref MM11.

ANTI DOG FORCE FIELD PLANS Highly effective circuit produces ime vaniable puise
tolerate $£ \in / 8 \mathrm{sec}$ Rel FDOG 2
LASER BOUNCE LISTENER SYSTEM PLANS Alows You to hear sounds from a premises without geining accoss. E12/set Ref F/ LLIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has targe transducer and battery capactly wth extemal controls. E6/sem Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ultimete in home/office security and safetyl simple to use! Cell your home or ottice phone, push a secret tone on your telephone to access either. A) On premises sound and voices or B) Existing conversention with break-in capability for emergency messeges. £ 7 Rof F/TELEGRAB.
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to consituct device locates any hidden source of radio energyl Snifts out and finds bugs and other sources of bothersome interference. Dotects low, high and UHF frequencies. £5/sen Ref FI BD1.
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adut supervision £ 5 rof F/EML2. ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI $5 / \mathrm{sel}$ Ref F/EMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostio premises. Uses satelite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optional wiretoss ink system. $£ 8 /$ set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $\%-12 \mathrm{voc}$, many possible experments. £10 Ref FAMVM7/ TCL4.
MEGA LED DISPLAYS PCB fited with 5 seven segment displays each measuring $55 \times 38 \mathrm{~mm}$. £5 rof LED5.
MOD TRANSMITTING VALVES $\mathbf{5} \mathbf{J 1 8 0 E} \mathbf{£ 8 0}$ ref LOT112 SWITCHED MODE PSU'S 24 watt, $+532 \mathrm{~A},+126 A,-50.2 \mathrm{~A}$,120.2 A . There is also an optionad 3.3 v 25 A rail avaikable. $120 / 240 \mathrm{VII}$ P. Cemed, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inler Suitable for PC use ($6 \mathrm{~d} / \mathrm{drive}$ connectors $1 \mathrm{~m} / \mathrm{board}$). £15 ref LOT135

VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V 8A TX Not too sure what the function of these units is but they certainly make good strippersl Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controls for scan speed, scan detay, scan mode, loeds of connections on the rear. Inside $2 \times 8 \mathrm{~V} 10 \mathrm{AH}$ sealed lead acid batts, pcb 's and a 8 A? 2 Zv torroidial transformer (mains in). sold as seen, may have one or two broken knobs etc due to peor storage. £15.99 ref VP2
MINI FM TRANSMITTER KIT Vory high gain preamp, supplied complete with FET electred microptone. Designed tocover $88-108 \mathrm{Mhz}$ but essidy changed to cover $63-130 \mathrm{Mhz}$. Works with a common 9 V (PP3) bettery. 0.2W RF. £9 Ref 1001.
3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use. Short circuin protected, suitable for profesional or amateur Use 24V 3A transformer is needed to complete the kit. E14 Ref 1007 1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. s-30vdc. At $25-30 \mathrm{v}$ you will get nearty 2 wattel E 15 ref 1009. FW/AM SCANNER KIT Well not quite, you have to tum the knob your self but you will hear things on this radio that you would not hear on an ordinary radio (oven TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. Buili in 5 wett amplifier, Inc speaker. £18 rof 1013.
3 CHANNEL SOUND TO LIGHT KIT Wireless syatem, mains operated, separate sensitivity adjustment for each channel, 1,200 w

BULL ELECTRICAL
250 PORTL,AND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). MAL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS E 3.50 P\&P PLUS VAT. 24 HOUR SERVICE $\mathbf{E 4 . 5 0}$ PLUS VAT. OVERSLAS ORDERS AT COST PLUS 23.50 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS)
'phone orders : 01273203500
FAX 01273323077
E-mail bull@pavilion.co.uk

wower handinge, microphone included. $\mathfrak{E 1 7 \text { Ref } 1 0 1 4}$

Install a coin box telephone at

 home
for less than $\mathbf{£ 5}$

By using our phone box, you get everything you need to convert any standard telephone into a coinbox telephone. You simply open the box, plug your talephone into a connector inside and then plug the coinbox lead into your telephone socket, it's that simptel There are one or two catches however,
Catch one is that the lock and hinges my be dameged/broken, this doesn'treally matter because you could replace the hinges easily and change the lock or you could reft the from panel onto box of your own choosing.
Catch two is that the three coinslots accept $£ 4,50 \mathrm{p}$ and 10 p 's this is fine except that the 10p stot is for the older 10p pieca so you would need to glue a smanl piece of plastic across the bottomof the slot on the inside to reduce the hole size. Full programming instructions are included with every coinbox Bargain price $£ 4.99$ ref CBT1
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. E24 Ref 1028.
STROBE LIGHT KIT Adjustable from $1-60 \mathrm{hz}$ (a lot fastor than conventional strobes). Mains operated. £17 Ref 1037.
COMBINATION LOCK KIT 9 key, programmable, complete with keypad, whil switch $2 A$ mains. $9 v$ dc operation. $£ 13$ ref 1114
PHONE BUG DETECTOR KIT This device will wam you if somebody is oavasdropping on your line. E9 ref 1130 .
ROBOT VOICE KIT Interesting circuit thet distorts your voice! adjustable, answer the phone with a different voicel 12 vdc £9 ref 1131 TELEPHONE BUG KIT Small bug powered by the 'phone line starts transmitting as soon as the phone is picked upl £12 Ref 1135 12V FLOURESCENT LAMP DRIVER KIT Light up 4 foo iubes from your car batteryl ov 2a transformer atso required. £8 raf 1069.

VOX SWITCH KIT Sound activated switch ideal for making bugging tape recorders etc, adjustable senstivity, E10 ref 1073. SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects to your projects for just $£ 9$ ref 1045.
15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamprequired 12-18vdc, can use ground plane, yagior open dipole. E68 rof 1021.

HUMIDITY METER KIT Builds into a precision LCD humidity

 meter, 9 ic design, pcb, lcd display and ail components included. £29 PC TIMER KIT Four channel output controlied by your PC. will owitch high current mains with relays (supplied). Softwere supplied so you can program the channets to do whet you want whenever you want you can program the channets to dowtrat you want whenever you want.Minimum system configeration is $286, ~ V G A, 4.1,640 \mathrm{k}$, serial port, hard Minimum system configerestion is
divio with min 100 k free. $£ 24.99$
NICKEL PLATING KIT Profiesionat electroplating kit that will NICKEL PLATING KIT Proffesionat electroplating kit that will
transiorm rusting parts into showpieces in 3 hoursl Wink plate onto transiorm rusting parts into showpieces in 3 hours! Win plate onto
steel, iron, bronze, gunmetell,copper, weided, siver soldered or brazed steel, iron, bronze, gunmetel,copper, welded, siver soldered or brazed
joints. Kit includes enough to plate 1,000 sq inches. You will aiso need joints. Kit indudes enough to plate 1,000 sq inches. You willaiso
a 12 v supply, a container and 212 v light bubs. £ 45 ref NiK39.
Minature adjustable timers, 4 pole clo output 3A 240 V , HY1230S, 12vDC adjustable from 0.30 secs. $£ 4.99$ HY1260M, 12vDC adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240v adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with heedphones. £28.99ref MAR29P1, POWER SUPPLY fully cased with mains and o/p toads 17 vDC 900 mA output. Bargain price $£ 5.99$ ref MAG8P9
COMPOSITE VIDEO KIT. Converts composite video into sepa rate H sync, V sync, and video. 12 vDC . £12.00 REF: MAGBP2. VENUS FLY TRAP KIT Grow your owncamivorous plant with this imple ka £3 ref EF34.
6"X12" AMORPHOUS SOLAR PANEL 12v $155 \times 310 \mathrm{~mm}$ $6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL 12v
130mA. Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 motres for $£ 4.98$ rof MAG5P13 ideal for experimentersI 30 mfor K 12.99 rol MAG13P1 ELECTRONIC ACCUPUNCTURE KIT Buids into an electronic version instead of neediesl good to experiment with. £9 rol 7P30 SHOCKING COIL KIT Buidd this litte battery operated device into an sorts of things, also gets worms out of the groundl £9 ref 7P36. HIGH POWER CATAPULTS Hinged arm brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hourl Range of over 200 metresl £8.99 rof R/9.
COMPAQ POWER SUPPLIES WITH 12V DC FANS EX equipment psu's, some ck some not but worth it for the fan abonel probably about 300 watt PC unlit with IEC input. $£ 3.50$ each ref CQ1 9-0-8V 4 A TRANSFORMERS, chassis mount $£ 7$ rof LOT19A FRESNEL PERSPEX SCREENS $11^{\prime \prime} \times 11^{\prime \prime} \times 316^{\prime \prime}$ as used in overhead projectors etc. New. $£ 19$ ref FRESN

MEGA LED DISPLAYS Build your seff a clock or something with these mega 7 seg displays 55 mm high, 38 mm wide. 5 on a pcb for just E4.99 ref LOT 16 or a bumper pack of 50 displays for just $£ 29$ rel LOT17
SOLID STATE RELAYS
CMP-DC-200P S-32vdc operation, 0-200vdc $1 A £ 2.50$
SMT20000/3 3-24vdc operation, 28-280vac 3A £4.50

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
SURPLUS STOCK LINE 0802660335

Discrete transforms

If a dsp processor analyses a waveform it cannot "look ahead" to examine the whole waveform, all it can do is look at the signal level now plus a data array of historical values which describe the shape of the waveform over a specific period. To be able to analyse the signal fully, the dsp must be able to process sufficient sampling points to cover the entire square wave from its start point to the end point. Obviously the more complex a waveform is, the more sampling points are necessary and the larger the number of computations the processor has to cope with. Equally the samples must accurately describe the waveform shape without missing any fast transient edges.

All this applies to repetitive waveforms but not to the more random waves that dsp is really targeting. If a single sentence of speech is considered, there is virtually nothing within it that can obviously be described at repetitive, yet the sentence is rich with fundamental frequencies and associated harmonics, all of which can be extracted and either displayed or mathematically adapted.

Try connecting a microphone to a spectrum analyser and looking over the range 50 Hz to 20 kHz . Speaking into the microphone will show a continually varying display of frequencies. This is an important aspect of the digital processing of a real time signal - the information is not constant as in the square wave analysed above. Thus a modification to the Fourier transform is needed, one that can cope with real world signals with time varying frequency components. The discrete Fourier transform is used to do this, and it works on a range of data samples during a discrete time period that can be used to interpret a portion of the incoming waveform and extract the frequency and phase information. Thus the dsp processor has to extract information from a small time window that contains a limited number of digitised samples of data. The more samples in a given window means a more accurate frequency description equally a bigger window will also increase the accuracy.

The easily understood means to carry out a Fourier transform on a set of sampled data is to generate data points for sinewaves of different frequencies which fit exactly into the length of the sample. The lower frequency limit is where one cycle fills the available space, while the upper limit is either the highest frequency of interest, or when there are only two samples per cycle.

These sinewaves are multiplied by the data samples point by point, and the amplitude of the resulting signal is computed. The same is done with cosine waves. Then, for each frequency computed, there is a sine and a cosine amplitude. This defines the amplitude and the phase, necessary to reconstitute the signal in time from frequency information.

Of course, to be useful the process is continuous, and as soon as one set of sampled data has been computed a further set is processed, to give a time varying set of frequency and phase components, like a spectrum analyser but with the addition of phase information. Often successive sets of data will overlap, to give a better representation of the waveform being processed.

This can be useful if, for example, a very sharp cutoff filter is required. For a lowpass filter, all that is necessary is to ignore frequencies above the cutoff point, then reconstruct the time varying waveform from the sine and cosine components from below the cutoff point. This would appear to be a perfect filter, but it is not because of the finite number of samples in a given window, and because not every frequency component in the

input signal has a whole number of cycles fitting within the set of samples used.

Also, it is fundamental to the principle of a Fourier transform that it is carried out on a waveform that repeats. Clearly speech or music waveforms do not fit this criterion, so that the answer is an approximation to the truth rather than being perfect. One way to improve this situation is to use a windowing function before the Fourier transform. This is effectively a means of scaling the data samples so that the ones at the beginning and end of the sequence are reduced in amplitude relative to the ones at the centre. This artificially makes the samples seem to contain only waves with whole numbers of cycles fitting in the window. Then the data is moved along by one sample and the whole process is carried out again.

This all takes a great deal of processing, and a typical DSP chip might only be able to deal with signals up to a few tens of hertz using the straightforward approach to the Fourier transform. However, looking at the maths carefully, it is discovered that the straightforward approach involves much duplication. An improved numerical technique called the fast Fourier transform has been developed. This reduces the computation to a series of pairs of additions, for which the only difficulty is that they are not done on consecutive addresses. Therefore many DSP chips have a special addressing mode called bit swapped addressing which automatically addresses the correct data points without extra machine samples. The fast Fourier transform is then a rapid and practical means to process signals, and it is widely used.

Image processing

There are a number of ways to process images so that they can be transmitted in less bandwidth. A widely used technique, typical of the field, is the discrete cosine transform. This analyses blocks of pixels to extract their frequency components, after which the higher frequency parts can be processed to reduce the total bandwidth requirement. There are two major approaches to this: one is simply to ignore high frequency components, perhaps below a certain amplitude. The other is to make use of the fact that the high frequency components are almost always of a lower amplitude than the rest of the signal and assign reduced length bit sequences to them. This is just a sample of what dsp is and can do. As mentioned in a previous editorial, dsp chips are now available to carry out all the functions of television intermediate frequency

GA8 HOBS Standard domestic units, new and boxed, 3 bumer, household gas, brown. Bargain ed just $£ 12.95$ ref BAR318 INFRA RED FILM $6^{\prime \prime}$ square plece of fasible infre red film that will only allow IR light through. Perfect for converting ordinary torches, lights, heedights etc to infer red output onty using standerd light bulbs Easlly cut to shape. $6^{\prime \prime}$ square $£ 15$ rel IRF2
HYDROGEN FUEL CELL PLANS Loads of information on mydrogen storage and production. Practicel plans to build a Hydrogen fuol cell (good workshop fecilities required) $\mathrm{E8}$ set ref FCP1
STIRLING ENGINE PLANS Interesting information pack covering als aspects of Stirling engines, pictures of home made noines made from an asrosol can ruming on a candle/ $£ 12$ ref STIR2 12V OPERATED SMOKE BOMBS Type 3 is a 12 v trigger and 3 smoke can nisters, each cannister wiff fil a noom in a very short space of timel $£ 14.90$ ref SB3. Type 2 is 20 smaller cannisters (euriteble for imutated equipment fires etc) and 1 trigger moduit for $£ 29$ Type 1 is a 12 v trigoer and 20 large cannisters £49 rol SB1
HI POWER ZENON VARLABLE 3 TROBES Usefu $12 V$ PCB fitted with hit power atrobe tube and control electronics and speed control potentiometer. Perfect for interesting projects etc $70 \times 55 \mathrm{~mm}$ 12 valc operation. £6 ea rel FLS1, peck of 10 £49 rel FLS2
NEW GEIGER COUNTERS IN STOCK Hand hed Unit with LCD screen, auto ranging, low bettery alem, audible 'click' output. Now and guaranteed. £129 ref GE
RUSSIAN BORDER GUARD BINOCULARS E1799 Probably the beet binoculars in the worldil ring for colour brochure. RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER, Exceptional coverage of 9 wave bands, (5 short, 1 LW, TM, 1NW) internar formi and exiernal tevescopic aenak, mains, bettery. E 45 rel VEGA
NEW LASER POINTERS $4.5 \mathrm{mw}, 75$ metre range, hand heid unit uns on two AA bettenes (supplied) 670 nm . E29 rof DEC49 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 poge book overs ett aspects of spit producion from evervday meteriats. Incuides consiruction detaits of simple stive etc. $£ 12$ rel MS3
NEW HIGH POWER MINI BUG Win a tange of up to 800 motres and a 3 days use from a PP3 this is our top sething bugl leas than 1 " equare and a 10 m voice pickup range. £28 Ref LOT 102 BUILD YOU OWN WNDFARM FROM SCRAP Now publication gives step by step guide to building wind generators and propellors. Armed with this publication and a good local scrap yard could make you seff sunficient in electrictiy! \& 12 rof LOT81
PC KEYBOARD 8 PS2 connector, top quality suitabto for all 286 $386 / 486$ etc $\{10$ rel PCKB. 10 for $£ 65$.
NEWLOW COST VEHICLE TRACKING TRANSMITTER KIT E29 range $1.5-5$ miles, 5,000 hours on AA betteries, transmits info on car direction, left and right turns, start and stop information. Works with any good FM radio. £29 ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete orand new haslian lock and latch essembly with both Yale type lock (keys inc) and 12 v operated deadlock. $£ 10$ ref LOT 99
*NEW HIGH POWER WIRELESS VDEO AND AUDIO BUG KIT 1/2 MILE RANGE Transmite video and audio signals from a minature CCTV camera (included) to any standard telovision! Supplied with telescopic aerial. £169
CCTV PAN AND TILT KITMotorize your CCTV camera with this imple 12 vidc kit. 2 hermentically soaled DC linear servo motore 5 mm threaded ouput 5 secs stop to stop, can be stopped any where, 10 mm ravel, powerful. £12 rel LOT 125
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30 \mathrm{grams}, 12 \mathrm{v}$ 100 mA . auto stectronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is iv p-p (75 chm). Works directly into a

IR LAMP KIT Suitabie for the above camern, enabies the camera to be used in totel darknetsil E 6 rof EF138
UK SCANNING DIRECTORY As supplied to Police, MOD,M15 and GCHOI coverers everything from secrol govemment frequencies and in the sky, prisons, miltary ovietion etc $£ 18.50$ ref SCANE
INFRA RED POWERBEAM Handheld battery powered lamp. 4 noth refector, gives out powerful purs infrared light! perfect for CCTV use, nightsights etc. ©29 rel PB1
SUPER WIDEEAND RADAR DETECTOR Detects both redar and laser , X K and KA bsends, speed cameras, and at known epeed detection sytems. 380 degree covernge, front \&earwaveguides,
$1.9^{\prime \prime} \times 2.7^{\prime \prime} \times 4.6^{7}$ fits on sun visor or desh $£ 149$ ref
CHIEFTANTANKDOUBLELASERS 9 WATT+3 WATT+LASER OPTICS
Could be adapted for laser listener, long range communications etc Double bearn units designed to ffi in the gun barrel of a tank, eech unit has two semi conductorlasers and motor drive units for elignement. 7 mile range, no circuil diagrams due to MOD, new price $£ 50,000$? us? $£ 199$. Each unit has two gellium Arsenide injection lesers, 1×9 wath, 1×3 wett. 900 nm wa veltongth, $28 \mathrm{vdc}, 600 \mathrm{hz}$ putse frequency. The units also contain an electronic receiver to detect refiected signals from targets. $£ 199$ for one. Ref LOT4
NEW LOW PRICED COMPUTERNORKSHOP/HI-FI RCB UNITS Complete protection from faulty equipment for overybodyl Inine unit fits in standard IEC lead (extends it by 750 mm), ined in lese than 108000 nds, nosettest button, 104 rating. 6.99 each LOTS. Or a pack of 10 at $£ 49.90$ ref LOTE. If you want a box of 100 you can have one for E 250
TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From Wond famous manutacturer these are retums sothey will need attention (usualy phyaical damnge) cheap way of buying TX and RX plus servos etcior now projects etc. E12 each sold as sean re LOT2.
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL 69.98 Cessed with fyleeds, designed to read standard Grodit cards! complete with control aictronics PCB and manua covering overything you could want to know about whits hidden in that magnetic atrip on your cardl just $£ 9.05$ ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have coltated 140 business manuals that give you information on setting up differant businessos, you peruse these at
your teisure using the text editor on your PC. Also inctuded is the corticate enabling you to reproduce (and sell) the manuals as much as you likel $£ 14$ rof $\mathrm{EPO} / \mathrm{C}$
HIGH POWER DC MOTORS, PERMANENT MAGNET $12-24 \mathrm{v}$ operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaff with a machined flat on Fiong is simple using the two inreaded boits protruding from the from the motor $4 \mathrm{~mm} \times 12 \mathrm{~mm}$). These motors are perfect for model ongineering etc they may ever be suitable as a cycle motor? We expect high demand so if you would like one or think you may require one in the uture plece your order todayl $\Sigma 22$ ref MOT4 10 pack $£ 185$ cof MOT5B ELECTRONIC SPEED CONTROLLER KIT For the above motoris $£ 19$ ref MAG17. Save $£ 5$ il you buy them both topether, 1 motor plus speed controllor πp is $£ 41$, offer price $£ 36$ ref MOT5A RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction, buith in light, miror erc. Russian thrimpfarml, group viewing screen, lots of accessories. £29 re/ ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ rel EAR34 RUSSIAN NIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens, 13 deg angle of view, focus sing range 1.5 m to infinity. 2 AA atteries required. 950 g weloht $£ 199$ rel BAR61. 1 years worranty LIQUID CRYSTAL DISPLAYS Bargain prices 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SMC2024A 16 character 4 line, $62 \times 25 \mathrm{~mm}$ £5.99 ref SMC1640A TAL-1, 110MM NEWTONIAN REFLECTOR TELESCOPE Rustian. Supert astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for further senious star gazingl up to $169 \times$ magnification. Send or
YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensive plans whth loads of info on designing ystems, panets, control electronics etc £7 ref PV1

COLOUR CCTV VIDEO CAMERAS BRAND NEW AND, CASED, FROM £99 Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, 1v P-P, composite, $750 \mathrm{hm}, 1 / 3$ " CCD, 4 mm F2.8, 500×582, 12 vdc, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more f 89 ea 100+ 189
YUASHA SEALED LEAD ACIDS FROM $£ 2.50$ 12v 6.5Ah ex equipment batteries to clear at just $£ 9.99$ for pack of fourl ref XX1
A MAGNET THAT LIFTS 33 KILO'SI Just in this week are these incredible magnets that lif 33 kilo's! Price is $£ 14.99$ ref MAG33
25 SQUARE FOOT SOLAR ENERGY BANK KIT $1006^{\prime \prime X} \mathrm{~B}^{\prime \prime}$ sv Amorphous 100 mA penelis, 100 diodes, connection details etc to suld a 25 squere foo solar cen for just $£ 99$ rof EF112. CONVERT YOUR TV INTO A VGA MONITOR FOR £25! Converts a colour TV into a basic VGA screen. Complete with buill in
 kit form for home assembly. SALE PRICE £25 REF SA34
*15 WATT FM TRANSMITTER Alroedy assembled but some RF knowldge with be useful for setting up. Preamp rea'd, 4 stinge $80-$ 108mhz, 12-18vde, can use ground plane, yegt or dipote 669 ref 1021 4 WATT FM TRANSMITTER KIT Smal bur powertul FM transmitter kit. 3 RF stages, mic \& audio proemp incluced $£ 24$ rof 1028 YUASHA SEALED LEAD ACID BATTERIES 12v 15AH at \&18 ref LOT8 and below spec ©V 10AH at f 5 a pair
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, phug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel win diode and 3 metre loed fited with a cigar plugg. 12v 2watt. $£ 12.09$ REF AUG10P3. SOLAR POWER LAB SPECIAL You pet $26^{\circ} \times 6^{\circ} 6 \mathrm{~V} 130 \mathrm{~mA}$ colis, 4 LED's, wire, buzzer, switch +1 relay or motor. 87,99 REF SA27 SOLAR NICAD CHARGERS $4 \times$ AA size $\varepsilon 9.99$ rol 6P476, $2 \times$
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $£ 4.50$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS 53.50
'phone orders: 01273203500 (ACCESS, VISA, SWTTCH, AMERICAN EXPRESS)

FAX 01273323077
E-mail bull@pavilion.co.uk

C sice 59.99 ref 6P477
GIANT HOT AIR BALLOON KIT Build 4.5 m circumfrence, fully functioning belloon, can be launched with home made bumer etc. Rousabve (until you loose itl) £12.50 ref HA1
ARR RIFLES . 22 As used by the Chinese army for training puposes, so there is a lot about $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80. *NEWMEGAPOWERVIDEOANDAUDIOSENDER UNIT. Transmits both audio and video signals from either a video camera. video recorder, TV or Computer otc to any standard TV set in 500 m rangel (tune N to channel 31) 12v DC
op. Price is $£ 65$ REF: MAG15 $12 v$ pau is $\mathbb{L} 5$ extra REF: MAGsp2 *MINATURE RADIO TRANSCEIVERS A pair of walkie talkies with a range up to 2 km in open country. Units mowsure $22 \times 52 \times 155 \mathrm{~mm}$. Including cases and earp'ces. 2xPP3 req'd. £37.00 pr.REF: MMO30 *FM TRANSMITTER KIT moused in a standard working 13A acapterl the bug nuns directy of the mains so lants forever! why pay $£ 7007$ or price is £18 REF: EFB2 (kit) Transmits to any FM redio. Buit and tooted version now avallable at $£ 45$ ref EXM34
*FM BUG BUILT AND TESTED superior design to kit. Suppliod to detective agencies. 9v battery req'd. \&14 REF: MAG14
GAT AR PISTOL PACK Complete with pistol, darts and pellota §14.05 Red EF828 extra peltets (500) £4.50 rel EF80
HEAT PUMPS These are mans operated eirto air units that conalist of aluminium plate (cooling side) and a radietor (warming side) connected together with a compressor. The plate if inserted into water will freeze it. Probably aboun $3-400$ watts so could produce 1 kw in ideal conditions. £30 rel HP1
3 FOOT SOLAR PANEL Amorphous silicon, 3 ' $\times 1$ ' housed in an ailuminium frame, 13v 700 mA ouput. $£ 55$ ref MAG45
SOLARWIND REGULATOR PTevents botteries from over charging. On reaching capmaity the regutwor diverts exceste power into heat avoiding damage. Max power is 60 watts. $£ 27.99$ ref S/CA11-105 4×28 TELESCOPIC SIGHTS Suitable for an air rimes, ground lenses, good light gathering properties, £24.95 rel $\mathrm{R} /$ f
NICAD CHARGERS AND BATTERIES Standard Universel mains operated charger, takes 4 betts +1 PP3, $£ 10$ ref PO11D. Nicads- AA size (4 pack) £4 ref 4P44, C size (2 pack) E4 row 4P73, D size (4 peck) E9 rof 9P12
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 rader detector can prevent even the most responsible of divers from losing their licencel Adjustable audible alarm whth 8 finahing lods gives instant warning of radar zones. Delects X, K, and Ka bands, 3 mile range, 'over the hili' 'around bends' and 'rear trap facifities. micro size just $4.25^{\prime \prime} \times 2.5^{\prime \prime} \times .75^{\prime \prime}$, Can pay for itself in just one dayl $\mathrm{\Sigma e9}$ ref EP3.
STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, fitters otc etc very comprehensive microscope that would normally be around the $£ 700$ mark, our price is just $£ 299$ (full money bock guarantee) full details in catalogue. SECOND GENERATION NIGHT SIGHTS FROM $£ 748$ RETRON Rusaian night sight. 1.8 x , infra red lamp, 10 m -inf, standard M42 lens. 1.1 kg . $₹ 349$ ref RET1
MANS MOTORS 180 RPM $90 \times 70 \mathrm{~mm}, 50 \times 5 \mathrm{~mm} 50 \times 5 \mathrm{~mm}$ outper shan, stant cap included. £.22 ref MGM1

PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OURCHOICE, BARGAIN AT 8 PSU'S FOR $£ 9.99$ REF XX18

LOW COST CORDLESS MIC 500' range, $90-105 \mathrm{mhz}, 1150$. $193 \times 26 \times 39 \mathrm{~mm}$, 9 P PP3 battory required. $£ 17$ red MAG15P1 JUMBO LED PACK 1510 mm bicolour leda, plus 5 gimmt (55 mm) seven segment displays all on a pct $£ 8$ rod JUM1. Pack of 3055 mm 12 VDC 40 MM FANS 12 VDC 40MMM FANS MADE BYPANAFLO. NEW. E4. REF FAN12

WIND GENERATORS 380 WATT
1.14 metre dia bledes, carbon matrix blades, 3 year warrenty, 12 vac output, 24 v version avalable, control electronics inctuded, brushless neodymium cubic curve allemator, only wo moving parts, maimenance froe, simple rod top instalikn, start up speed 7 mph , max output (30mph) 380w. £499 rel ARR1

Check out ourWEB SITE
 fuil colour interactive
 1997 eatalogue

http://www.pavillonco.uk/bull-electrical
FREE COLOUR CATALOGUE WITH EVERY ORDER

-SOME OF OUR PRODUCTS MAY BE UNLCENSABLE EN THE UK
WE BUY SURPLUS STOCK
FOR CASH
SURPLUS STOCK LINE 0802660335

amplifiers, with very good filter response. This has for some years been done using surface acoustic wave devices, but inevitable dsp will take over in an increasing number of television sets.

Digital television will only be practical because of the substantial bandwidth reduction possible due to dsp, thought the actual processing used will be multi-stage and more complex than just a discrete cosine transform.

Another function available from dsp is to correct for unpleasant frequency and phase responses by applying the reverse function. Thus it is possible to cancel the effects of room resonance etc much more accurately with DSP then with a graphic equaliser. It is also possible to do this automatically, so that the correction characteristics can adapt to a dance floor filling up during the evening.

Echo cancellation can be carried out conveniently using DSP. An algorithm analyses the time delay, amplitude, and frequency response of any echo on, for example, a telephone line, and subtracts a suitable signal to cancel the echo. This is important to permit modems to run at higher speeds.

As time goes on, more signal processing previously done by analogue electronics will instead be carried out using DSP. In most respects this will result in improved performance for less cost. The slight downside, which it is wise to try to avoid, is to put too trivial functions into DSP, so that a signal may be digitised, processed, and turned back into analogue, all to do what could be done just as well with one op-amp and four passive components.

DSP is not a panacea, but it is an increasingly important aspect of signal processing, enabling otherwise impossible functions to be carried out cheaply. Like the conventional microprocessor, DSP chips will soon be widely found in consumer electronics.

In the market

I have selected three examples from major semiconductor manufacturers to give an outline of what is happening in the field. The manufacture of dsp chips is now a widespread field undertaken by many semiconductor companies.

Texas Instruments have introduced a new dsp chip, the TMS320C6x, which is aimed at the digital cellular telephone market - not the handsets but base stations! The high points are the 200 MHz operation, and an architecture called Very Long Instruction Word, which packs up to eight 32-bit instructions into a cycle. The performance is rated at 1600 mips, and it is able to carry out a 1024 point complex fast Fourier transform in 70ns.

The chip includes dual buffered serial ports intended to interface to standard telecommunication systems, and can implement a base station with 30 full GSM channels with a single dsp chip.

Another chip in the Texas range, the TMS320C54x, is used in a well-known range of 33.6 kbps modems designed to be upgradable to 56 kbps .

Analog Devices have recently added a lower cost dsp device to their high-power family, named SHARC (presumably from the Super Harvard Architecture). This is intended for applications such as home theatre, professional audio mixers, office scanners and printers among many others. Harvard architecture machines store code and data in separate memory banks with separate busses to speed access to program and data.

This is no device for the amateur, though. Costing $\$ 49$ in quantity, the chip is supplied in a 240 lead quad flat pack.

The ADMC300 series is aimed at a very different function, that of motor control. By measuring various electrical parameters it is possible to determine the speed of an ac motor, how close it is to stalling, and so on, but to do this without sensors on the motor a dsp chip is needed. The ADMC incorporates five channels of 12 -bit sigma-delta analogue to digital conversion for the necessary measurements, with an interface designed for position encoders for applications requiring this function.

Analog Devices even have a chip (the ADSP-2104) whose applications include use in toys. Other uses include telephone answering machines and music synthesisers. The chip provides 20 mips for $\$ 4.50$ in quantity

Another semiconductor giant, Motorola, has recently released their DSP56300 family, whose features include one instruction per clock cycle, a low power consumption per MIPS, and carefully chosen instruction sets to give enhanced performance per mips. The chip is designed to carry out in one instruction what many chips must do in two.

The chip runs at 81 MHz , but uses an internal phase locked loop frequency multiplier to permit the use of a lower frequency crystal. Applications at which the chip
is aimed include DVD (digital versatile disc), HDTV, and receivers incorporating Dolby AC3, for which Dolby labs have certified it.

In the market

I have selected three examples from major semiconductor manufacturers to give an outline of what is happening in the field. The manufacture of dsp chips 'is now a widespread field undertaken by many semiconductor companies.

Texas instruments have introduced a new dsp chip, the TMS320C6x, which is aimed at the digital cellular telephone market - not the handsets but base stations! The high points are the 200 MHz operation, and an architecture called Very Long Instruction Word, which packs up to eight 32-bit instructions into a cycle. The performance is rated at 1600 mips, and it is able to carry out a 1024 point complex fast Fourier transform in 70 ns .

The chip includes dual buffered serial ports intended to interface to standard telecommunication systems, and can implement a base station with 30 full GSM channels with a single dsp chip.

Another chip in the Texas range, the TMS320C54x, is used in a well-known range of 33.6 kbps modems designed to be upgradable to 56 kbps .

Analog Devices have recently added a lower cost dsp device to their high-power family, named SHARC (presumably from the Super Harvard Architecture). This is intended for applications such as home theatre, professional audio mixers, office scanners and printers among many others. Harvard architecture machines
store code and data in separate memory banks with separate busses to speed access to program and data.

This is no device for the amateur, though. Costing $\$ 49$ in quantity, the chip is supplied in a 240 lead quad flat pack.

The ADMC300 series is aimed at a very different function, that of motor control. By measuring various electrical parameters it is possible to determine the speed of an ac motor, how close it is to stalling, and so on, but to do this without sensors on the motor a dsp chip is needed. The ADMC incorporates five channels of 12-bit sigma-delta analogue to digital conversion for the necessary measurements, with an interface designed for position encoders for applications requiring this function.

Analog Devices even have a chip (the ADSP-2104) whose applications include use in toys. Other uses are telephone answering machines and music synthesisers. The chip gives 20 mips for $\$ 4.50$ in quantity

Another semiconductor giant, Motorola, has recently released their DSP56300 family, whose features include one instruction per clock cycle, a low power consumption per MIPS, and carefully chosen instruction sets to give enhanced performance per mips. The chip is designed to carry out in one instruction what many chips must do in two.

The chip runs at 81 MHz , but uses an internal phase locked loop frequency multiplier to permit the use of a lower frequency crystal. Applications at which the chip is aimed include DVD (digital versatile disc), HDTV, and receivers incorporating Dolby AC3, for which Dolby labs have certified it.

LTD STEVENAGE

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:
PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $31 / 2$ disc
Cable Harness Assemblylloom Manufacture
Card Cage and Module Wiring Full Inspection

Product Design/Consultation Full Procurement Service PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales Refurbishment a speciality Top Quality Work at Reasonable Rates

Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF
wheeman scimmer agruls
 commecto for improved UHF perfommene E39.95. "REVCOME PUUS" with improwd low fequanc coveroge E48.95. "REVCOWE EXTRA" roody to go poodage: discone, 10 m coox ifited P1259, must domps, BMC phy E49.95. THE "REVCOHE" IS THE UK's ORIGILLL QUALTY DISCOME VHF/UHF MOBLIE AERLALS
 "MOMAD" Portable schnier aertal
 traveling, with $4 m$ crox \& BKC phog. E17.95.
ative "momad"
 SCAMMER AERLLL FITER

 WW intrifeenco, BHCC connetoss $£ 28.95$

Wita, phone or fux for lists.
culars by Gpindmeat enty, ploms.
GAREX ELECTRONICS

mectronics Principles 4.0

 For Windows 3.1, '95 \& NT: If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.
 bihor fisex and octal number
conversion, addition ond subtraction to Bookean algebia. plus. micropiocessor and microcomputer operation, registers, gilthmèlic and logic unit, ROM, RAM ACdiessing modes and full instuction set which can be simulated on the screen. All version 3.0 tóplas are included within this program.
Currenty used in hundreds of UK and overseas schools \& colleges to support GCSE, A-level, BIEC. Cliy \& Gullds and university foundation courses. Also NVO's and CAVQ's where students are required to 部ave an understanding of electronics principles.

The popular Electronics Principles 3.0

A comprehensive Introduction to ac \& dc circuit theory. Ohm's low, voltage. current. Phase angles, alternating voltages and currents, RCL series and parallel networks, reactance and impedance. Active devices - diodes, bi-polar and field effect tranststors, SCR's and OP-Amps. Logic gates, counters, shift registers and binary, ocial and hex number converstons.

There are nearly three hundred anaiogue and digital main topics, all with fully Interactive graphics in colour, with supporting calculations that reflect your inputs along with notesto explain each topic.

- All inputs \& outputs use electronics symbols.
- Hundreds of electronics formulae avaliable for circuit nvestigation.
- Ideal for students and hobbyists who require a quick and easy way to get to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current levels or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.

A fully interactive 'electronics textbook' on the screen. OHP slides and studenthandouts within minutes. Multi-user network version available

Series Resistors.

Total 'R' $=4700+2500+100=7300=7.3 \mathrm{k}$
$V=3.424658 \mathrm{E}-03 \times 7300=25=25 \mathrm{~V}$
$\mathrm{I}=\frac{25}{7300}=3.424658 \mathrm{E} .03=3.4247 \mathrm{~mA}$
Total 'R' $=\frac{25}{3424658 E-03}=7300=7.3 \mathrm{k}$
$V_{1}=4700 \times 3.424658 \mathrm{E} \cdot 03=16.09589=16.0959 \mathrm{~V}$
$V 2=2500 \times 3.424658 \mathrm{E}-03=8.561644=8.5616 \mathrm{~V}$
$V 3=100 \times 3.424658 \mathrm{E}-03=.3424658=342.4658 \mathrm{mV}$

EPT Educational Sofiware. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008. e-mail sales@eptsoft.demon.co.uk * UK \& EC countries add £2 per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

A Total Harmonic Distortion Meter

For testing audio amplifiers, Robert Penfold's Total Harmonic Distortion (THD) meter incorporates a good quality notch filter and an audio millivoltmeter

When dealing with audio equipment there are several important parameters that often need to be measured. Most of these, such as frequency response and voltage gain, can be measured using just a sinewave generator and some form of audio millivolt meter. Total harmonic distortion (THD) is slightly more difficult to measure as it also requires a high quality audio notch filter. Furthermore, the quality of the audio signal generator is much more important for distortion measurement than it is for frequency response testing, etc. There is no point in trying to measure 0.1 percent distortion using a signal generator that itself has about 1 percent distortion on its sinewave output signal. Fortunately, most modern signal generators have very low distortion levels, and even some quite low cost units have a distortion figure of only about 0.01 percent at middle audio frequencies. This is more than adequate to measure the THD of all but the highest quality audio equipment. Note, though, that most function generators do not have low distortion output signals and are unsuitable for distortion measurements on all but the cheapest of audio equipment. Sinewave distortion figures of around 0.5 to 2 percent are quite common for this type of equipment.

The THD meter featured here consists of a high quality notch filter and an audio millivolt meter. The filter is tunable from about 100 Hz to 10 kHz in two ranges. The audio millivolt meter has four ranges with full scale values of $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}$, and 1 volt rms. These correspond to full scale distortion ievels of 100 percent, 10 percent, 1 percent, and 0.1 percent. A separate signal generator is required, and any good quality Wien type audio generator should suffice.

THD basics

The two main forms of audio distortion are total harmonic and intermodulation distortion. Intermodulation distortion is where two frequencies are mixed to produce sum and difference frequencies (for example, signals at 1 kHz and 3 kHz would produce new signals at 2 kHz and 4 kHz). Total harmonic distortion is the more simple form, and it results in the generation of harmonics (multiples of the input frequency). For example, with a 1 kHz test signal the harmonics will be at $2 \mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}$, etc. This is the type of distortion normally specified in data sheets, amplifier specifications, etc. It is relatively easy to measure, and the block diagram of figure 1 shows the basic arrangement used.

The amplifier under test is fed with a high quality sinewave signal. The salient point here is that a sinewave signal consists of just the fundamental frequency, and has no harmonic content. The signal generator is set to provide the required output level from the

Figure 1: the basic arrangement used for measuring total harmonic distortion

amplifier, and if necessary a dummy load resistor is used at the output of the amplifier. When testing a preamplifier it may not be necessary to include this load resistor, but it will invariably be required when testing power amplifiers. This is due to the fact that power amplifiers provide greatly reduced performance when driving a low impedance load, which is of course the way that they will operate in normal use. Without the dummy load resistor the test will give a highly flattering account of the amplifier's performance.

A variable attenuator at the output of the amplifier enables the signal voltage to be reduced to a convenient reference level. This distortion meter is designed to operate at an input level of 1 volt ms , and the output of the attenuator is switched direct to the input of an audio millivolt meter so that the correct signal voltage can be set. The meter is then switched to monitor the output of the amplifier via a high quality notch filter. The tuning control of the notch filter is carefully adjusted to the test frequency so that the signai from the audio generator is removed. In practice it requires some careful adjustment of tuning and balance controls in order to obtain a really high degree of attenuation, but the fundamental signal can be reduced by about 80 dB . This application requires a very high quality filter as it must provide around 80 dB of attenuation in the notch, but it must provide no significant attenuation at twice the notch frequency or it will significantly reduce any second harmonic component in the signai.

With the fundamental signal removed, all that remains are the harmonics generated by distortion in the amplifier, plus any noise generated by the amplifier. This gives a figure for the noise and distortion of the amplifier, and this is called the distortion factor. The total harmonic distortion is equai to the distortion factor minus the noise level. The noise revel can be determined by disconnecting the signal generator from the input of the amplifier, short-circuiting the amplifier's input, and then measuring the noise using the audio millivolt meter. We are assuming here that the
signal generator is perfect, and that it does not produce any noise or distortion of its own. In reality the noise and distortion from the signai generator will sometimes be a significant factor, and must be determined by initially measuring the direct output from the generator. Where necessary, the noise and distortion level of the signal generator itself can then be deducted from the figure obtained when testing an amplifier.

When you start testing modem audio equipment you soon discover that it is quite common for low cost equipment to have more mains hum on the output signal than general background noise and distortion. In fact the hum level can sometimes be many times higher than the harmonic distortion, resulting in the distortion products being swamped by the hum. In such cases it is only possible to make an accurate assessment of the distortion level if a hum filter is added ahead of the distortion meter circuit. Such a filter should be regarded as an essential item rather than as an optional extra if you intend to test a lot of "budget" audio equipment.

Circult operation

The circuit diagram for the filter section of the unit appears in figure 2. The filter is based on a Wien network, which is the same type of network that is used as the basis of most high quality audio signal generators. In this case the two sections of the Wien network are fed with anti-phase signals, as shown in the skeleton circuit of figure 3. At a certain frequency there will be zero phase shift through both sections of the network, And precise cancelling of the two signals will result provided the signal levels are accurately balanced. This balancing is achieved by having the gain of the inverting amplifier variable, so that it can be adjusted to precisely match the amplitudes of the two signals. This produces a notch of very high attenuation at the frequency where zero phase shift occurs, but at other frequencies the amount of phase shift is unequal, and little cancelling of the signais occurs.

If we now consider the circuit of figure 2, VR1 is the variable input attenuator. From here the signal is coupled to a buffer amplifier which is based on IC1 and operates in the inverting mode. The signal is then applied to the main filter circuit which has IC2 as the non- inverting buffer stage and IC3 as the inverting mode amplifier. VR3 and VR4 enable the voltage gain of the inverting mode amplifier to the varied, and these two potentiometers respectively act as the fine and course balance controls. The restive elements in the Wien network are R5 plus VR2a, and R10 plus VR2b. VR2 is, of course, the tuning control. S1 enables either C 4 and C 7 , or C 5 and C 8 to be used as the capacitors in the main network. This gives the unit its two tuning

Figure 2: the circuit diagram for the filter section of the THD meter

Figure 3: the basic configuration used in the notch filter. Ra, Rb, Ca and Cb are the Wien network
ranges of approximately 100 Hz to 1 kHZ (C5-C8) and 1 kHz to 10 kHz (C4 and C7). IC4 simply acts as a buffer stage at the output of the filter. Either the direct output of the input attenuator or the filtered signal can be selected using S2.

There is a slight problem with the basic filter circuit in that it provides about 6 dB of attenuation at twice the notch frequency, which means that it would tend to reduce any second harmonic distortion and produce an unrealistically low total harmonic distortion figure. This problem is overcome by introducing some overall negative feedback to the circuit, and this feedback is provided by R11. As one would expect, the negative feedback reduces the voltage gain of the circuit and tends to flatten the frequency response. The reduced voltage gain simply brings the gain down to the required level of unity, and the flattening of the frequency response results in losses at double the notch frequency being reduced to about 1 dB . This level of attenuation is not high enough to significantly affect results and is therefore perfectly acceptable. One slight drawback of using the negative feedback is that it also tends to reduce the amount of attenuation in the notch, but this does not prevent the circuit from achieving some 80 dB or more of attenuation if the tuning and balance controls are carefully adjusted. Anyway, it is a price that has to be paid in order to obtain low levels of attenuation at the frequencies of the harmonics. Figure 4 shows the frequency response of the prototype filter when set for a notch frequency of 1 kilohertz.

Figure 5 shows the circuit diagram for the millivolt meter section of the unit. IC5 is used as a non-inverting buffer stage that provides the circuit with a high input impedance of 500 kilohms. A high input impedance is essential as the millivolt meter circuit will otherwise significantly bad the input attenuator when S 2 is switched to the direct mode. This would give a jump in the input level when S2 was set back to the filter mode. An input impedance of 500 kilohms is more than adequate to ensure that there is no significant change in the signal level when S 2 is operated. The output from IC5 is coupled into a conventional four

Figure 4: the frequency response of the prototype filter when turned to 1 kHz
step attenuator which provides attenuation levels of zero, 20, 40, and 60 dB . The basic sensitivity of the circuit is 1 millivolt ms , and the attenuator therefore provides additional ranges of 10 millivolts, 100 millivolts, and 1 volt rms. These correspond to full scale distortion figures of 0.1 percent, 1 percent, 10 percent, and 100 percent. Having the attenuator in a low impedance part of the circuit enables fairly low values to be used, thus avoiding the need for any frequency compensation capacitors.

IC6 is used as a simple non-inverting amplifier which has a voltage gain of about 40 dB and an input impedance of 470 kilohms. This high input impedance ensures that there is no significant loading on the attenuator and that its accuracy is not impaired. SK2 enables the filtered signal to be monitored using an oscilloscope, or the signal can be monitored via a crystal earphone (but do not connect any other type of headphones or earphone to SK2). Testing the filtered signal "by ear" or using an oscilloscope can be quite revealing as it will show the nature of the noise and distortion signal. If the signal is predominantly mains hum or "hiss" type noise, it will be immediately obvious. The meter only shows you the level of the noise and distortion, with no hint as to its exact nature. You may also find that it is easier to null the fundamental signal "by ear" rather than using the meter as a signal level indicator.

IC7 is used in a conventional full-wave precision rectifier. A passive rectifier circuit based on semiconductor diodes gives inadequate performance due to the non- linearity of the diodes. In the case of ordinary silicon diodes this non-linearity is very severe

Figure 5: the circuit diagram for the audio millivolt meter section
indeed, and a forward voltage of about 0.5 volts or so is needed before any significant current starts to flow. Germanium diodes have much better performance in this respect, but they still provide something well short of good linearity. The standard approach to counteracting this non-linearity is to use the diodes in the negative feedback circuit of an amplifier. The general idea is to have non-linear feedback that counteracts the distortion through the diodes. This distorts the output signal of the amplifier in such a way that it accurately balances the non-linearity of the diodes and gives linear scaling on the meter.

In this precision rectifier circuit diodes D1, D2, D5, and D6 form a conventional bridge rectifier. Germanium diodes are used in the rectifier circuit as their better linearity places less demand on the amplifier, and provides better performance at high frequencies

Resistors	
(All 0.6 watt 1 percent metal film)	
R1,5,6,10,15,22	10k
R2,3,7,8	33k
R4	27k
R9	12k
R11	15k
R12	$4 k 7$
R13,14	1M
R16,24	1k
R17,23	100R
R18	11R
R19,20	39k
R21	470k
R25	150R

Potentiometers

VR1	10k log rotary
VR2	100k lin dual gang rotary
VR3	1 k lin rotary
VR4	10k lin rotary
VR5	220R min hor preset

Capacitors

C1
C2
C3,6
C4,7 \quad n5 polyester
C5,8 15n polyester
C9 100 ceramic
C10,14 $\quad 10 \mathrm{u} 25 \mathrm{~V}$ radial elect
C11 47 n polyester
C12 2 u 250 V radial elect
C13 $\quad 100 \mathrm{n}$ polyester
C15,16
100 u 16 V radial elect

Semiconductors

IC1,2,3,4,5,7	LF351N
IC6	NE5534AN
D1,2,5,6	OA91
D3,4	1N4148

Miscellaneous

B1,2 9 volt (PP3 size)

S1 DPDT min toggle switch
S2 SPDT min toggle switch
S3 $\quad 12$ way 1 pole rotary with adjustable end-stop
SPST min toggle switch 1 mA moving coil panel meter Phono socket
Instrument case about $246 \times 220 \times 100 \mathrm{~mm}$ printed circuit board, 8 -pin DIL holder control knob, battery connector, wire, solder, etc.
where the open loop gain of the amplifier is relatively low. The meter (ME1) is driven from the output of the rectifier via series resistor R25. D3 and D4 provide overload protection for ME1. IC7 is used in the non-inverting mode, and the rectifier circuit is connected in a negative feedback network which has VR5 and R24 as the other elements. The closed loop voltage gain of the rectifier circuit is controlled via VR5, and this is adjusted to give the circuit the correct sensitivity. The millivolt meter circuit has a -3dB point at about 100 kHz .

The circuit requires a supply voltage of at least 18 voits, and this is provided by two nine volt batteries connected in series. On the face of it a supply potential of 9 volts would be adequate, since the circuit is handling a maximum input level of 1 volt ms (about 2.8 volts peak-to-peak). However, at some points in the filter circuit the signal level is very much higher than this, and the operational amplifiers provide better performance with a higher supply voltage anyway. The current consumption of the circuit is about 12 to 14 milliamps. Two PP3 size batteries are just about adequate to supply this, but it would probably be more economic to use higher capacity batteries if the unit is likely to receive a great deal of use.

A mains power supply unit can be used, but this should have a well smoothed output. Obtaining really good results using a mains power supply can be difficult though, with the general hum and noise level severely compromising results on the one millivolt range of the unit. In many areas the mains supply seems to be contaminated with a fair amount of noise, and it can be difficult to effectively screen sensitive audio circuits from this interference. Also, using a mains power supply unit is likely to introduce problems with hum loops unless you are very careful. Using a battery supply is an easy way of ensuring that a high level of performance is attained.

Construction

The component overlay for the printed circuit board is provided in figure 6. None of the integrated circuits are static sensitive types, but it is still advisable to fit them in DIL holders. Do not overlook the to link-wires (one just to the right of IC2, and the other above and to the right of IC4). D1, D2, D5, and D6 are all germanium diodes, and as such they are more easily damaged by overheating than silicon types. Take due care when soldering these components to the board, and try to complete each soldered joint reasonably quickly. In other respects construction of the board is perfectly straightforward.

Although the printed circuit board and batteries require only a modest amount of space, it will almost certainly be necessary to use a fairly sizeable case in order to accommodate the controls, sockets, and meter on the front panel. The prototype is housed in a metal and plastic instrument case which has a front panel measuring about 235 mm by 90 mm . This represents about the

minimum size that will comfortably accommodate everything, although a slightly smaller panel will be acceptable if the two sockets are relegated to the rear panel. With sensitive test equipment such as this there is some advantage in using an all metal case which will provide screening of the components and wiring. No significant problems with stray pickup were experienced

Figure 6: the component layout for the printed circuit board
with the prototype equipment, but it is clearly not a good idea to operate the unit close to any likely sources of interference if it is housed in a non-metallic case.

Use a front panel layout that will make the unit reasonably straightforward to use, but also use one that will avoid too many long collecting wires, especially in the millivolt meter section of the unit. I used phono input and output sockets, but it is acceptable to use BNC sockets or any other type that will fit in better with your other equipment. Mounting the meter on the front panel can be slightly awkward as it requires a large circular cut-out which is 38 millimetres in diameter for a standard 60 by 45 millimetre panel meter. This can either be cut using a special hole cutting tool, or using something like a coping saw or an Abrafile. Once the large cut-out has been made the meter itself can be used as a sort of template to help locate the positions of the four small mounting holes. These are for the four threaded mounting rods that are built into the meter. These rods require three millimetre diameter mounting holes.

A substantial amount of hard wiring is required, and details of this wiring are provided in figure 7 (which should be used in conjunction with figure 6). Resistors R15 to R18 are mounted on S3, which helps to avoid problems caused by stray capacitance in the wiring. S 3 is a standard 12 way 1 pole rotary switch having an adjustable and-stop, and in this case it is obviously set for four way operation. Fitting the resistors on the switch should be very easy provided the ends of the leadout wires and the tags of the switch are tinned with solder first. The rest of the wining is perfectly straightforward, but with so much hard wiring it is obviously necessary to proceed carefully and to check everything very thoroughly once the wiring has been completed.

The 0-1 scaling of the meter is correct for the 1 percent range, and it is not difficult to convert readings into the corresponding distortion figures on the other ranges. Consequently, it is probably not worthwhile bothering with any recalibration of the meter's scale. If you should decide to do this, the front of the meter simply unclips, and removing two small screws then enables the scale plate to be slid clear of the meter movement. Rub-on transfers can then be used to add further numbers to the meter's scale, after which the meter is reassembled. Moving coil meter movements are very delicate mechanisms, and great care must be taken or the meter could be irreparably damaged.

Calibration and use

The millivolt meter must be calibrated before the unit can the be used in earnest. In order to do this the unit must be fed with an audio sinewave signal having an amplitude of 1 volt ms . Most ready-made audio signal generators have accurately calibrated output attenuators that make it easy to set the required output level. This feature is absent on most home constructed generators, and with these it will be necessary to measure the output level so that it can be set with a fair degree of accuracy. Most multimeters can measure a potential of 1 volt ms with moderate accuracy, but note that many multimeters (especially the digital variety) have very restricted bandwidths and will only give accurate results if the signal generator is set at a frequency of no more than a few hundred hert. Fortunately, any error in the calibration will not impair the accuracy of results, it will simply mean that the unit is operating at a signal level which is not precisely 1 volt ms .

Start with VR5 at a roughly middle setting, and VR1 set in a fully clockwise direction. S2 should be set so that the millivolt meter is fed direct from the wiper of VR1, and S3 is set to the 1 volt position. With a suitable test signal applied to SK1,VR5 Is then adjusted to provide a full scale reading on the meter. The unit is then ready for use.

Figure 7: the hard wiring (use in conjunction with figure 6)

Before making any meaningtul distortion measurements it is necessary to determine the distortion level of the signal generator you will be using. This is basically just a matter of making a normal distortion measurement, but the input of the distortion meter is fed direct from the signal generator rather than via an amplifier. The distortion performance of signal generators often varies quite significantly with changes in the output frequency, and it is therefore advisable to check the distortion figure of the generator at 100 hertz, 1 kilohertz, and 10 kilohertz. In each case it is a matter of first setting the signal generator to the correct output frequency, switching S2 to the direct mode, and setting S3 to the one volt range. VR1 and the output level controls of the generator are then adjusted to produce a full scale reading on the meter.

With S2 switched to the filter setting, the tuning and balance controls of the distortion meter are carefully adjusted to produce the lowest possible reading from the meter. The millivolt meter should be set for progressively higher sensitivities as the signal level is reduced.

There is no well defined distortion level at which the audio generator becomes unusable. A distortion level of 0.1 percent may be perfectly acceptable if you will only be testing low and medium fidelity equipment, but it will be of little use for testing "state of the art" hi-fi equipment having distortion levels of around 0.01 percent. The lower the distortion factor of your audio generator, the greater the scope of the distortion meter.

Microchip PIC and Motorola HC11 based development Tools

PIC Microcontroller Programmers Original - This is our original programmer for 16C5X, 16C55X,16C6X, 16C7x, 16C8x, 16F8X devices. Price : $£ 40$ for the kit, or $£ 50$ ready built. Serial - This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also In-Circuit programming, Price: £40 for the kit, or $£ 50$ ready built. Introductory - Will program 8 pin and 18 pin devices: 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X, 12C508, and 12C509. Price £22 for the kit (not available ready built). Note : All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4). No hard to handle parallel cable swapping ! All programmers are supplied with instructions, Windows programming software, MPASM, MPSIM and PICDE (Windows based PIC assembler)
PIC or HC11 Windows Based Development: PICDESIM and HC11DE allows assembly and simulation of your PIC or HC11 projects in one Windows program. Incorporate multiple files, view help file information directly from the code, edit within project, build and track errors directly in the source, then simulate. Simulator allows 3 breakpoint types, follow code in the source window, set breakpoints directly in code. Run programs, or single step, or step over subroutines. Track variable values and trace for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program - examine frequently called routines which are timed and use the information to optimise out bottle necks. PIC Version Simulates up to 50 times faster than MPSIM ! NEW !-32 bit version allows full use of Windows '95/NT4.0 facilities. Cost £30.00, or $£ 25.00$ for exlsting and new purchasers of any of our programmers. Please specify Windows 3.1, or Windows '95 (32 bit) and either PIC or HC11 version
PIC BASIC FED's PIC BASIC products - straightforward, capable, powerful, rapid development. Operating in a Windows Development Environment our modules need no assembler or UV eraser to program your PIC's, and operate from a serial link to your PC. The 16C74 module features - 8k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 A/D inputs, Interrupt driven serial RS232 interface, Peripheral I2C bus interface, LCD display driver routines, up to 178 bytes for variables and stack, extendible with optional external RAM and all the standard 16C74 features. Ask about the 16C57 version.
Compiler - The FED PIC BASIC compiler for the 16C74. It produces hex code to program your 16C74 directly with no need for external EEPROM. Compatible with the EEPROM versions of PIC 16C74 BASIC modules - develop on an EEPROM based module then compile and program your PIC chips directly.
16C57 Module Kit (8k EEPROM, 4MHz) £25.00, Pre-built £30.00 16 C 57 Module Kit (8k EEPROM, 10MHz) £31.00, Pre-built $£ 37.00$ 16 C 74 Module Kit (8k EEPROM, 4MHz) £35.00, Pre-built £42.00 16 C 74 Module Kit (8k EEPROM, 20MHz) £40.00, Pre-built $£ 46.00$ 16 C84 chip programmed with BASIC - £25.00 Compiler - £60.00, or $£ 50.00$ when ordered with a module

PIC16C74/JW	Erasable	20 MHz	$£ 24.00$
PIC16C74-04P	OTP	4 MHz	$£ 8.00$
PIC16C57-04P	OTP	4 MHz	$£ 5.00$
PIC16C84-04P		4 MHz	$£ 6.00$
PIC16F84-04P		4 MHz	$£ 6.00$
PIC14000-04P	OTP	4 MHz	$£ 10.00$
PIC12C508-04P	OTP	4 MHz	$£ 2.70$

PIC and HC11 devices

PIC16C558			$£ 5.00$
PIC16C74-20P	OTP	20 MHz	$£ 11.00$
PIC16C57-10P	OTP	10 MHz	$£ 6.00$
PIC16C84-10P		10 MHz	$£ 8.00$
PIC12C508-04P	OTP	4 MHz	$£ 2.20$
PIC14000/JW		Erasable	$£ 23.00$
Motorola MC68HC811E2	Ring for details		

Forest Electronic Developments

VISA
10 Holmhurst Avenue, Christchurch, Dorset, BH23 5PQ 01425-270191 (Voice/Fax) .
http://www.lakewood.win-uk.netfed.htm e-mail: fed elakewood.win-uk.net Prices are inclusive, please add $£ 3.00$ for P\&P and handling to each order. Cheques/POs payable to Forest Electronic Developments, or phone with credit card details. Serial Cables - $£ 7.50$

TEACHERS... STUDENTS... HOME USERS... etc.

Your opportunity to save fffef's

With this non commercial version of our software produced for single users, this is your dream come true!

Software as you are probably aware has no real material value, but is priced to recover the enormous costs of development. The software house tries to evaluate how many units will sell at a specific price to generate the amount needed and produce a healthy profit.

As the electronics marketplace shrinks, due to expanding competition, it means that, in reality, powerful user friendly software, such as EDWin, must be very highly priced and therefore remains inaccessible to the individual and small businesses.

Until today ... Norlinvest, one of the biggest software houses in the electronics sector, has decided to put onto the market a "Non Commercial" version of their EDWin software, which is known worldwide.

This is the first truly seamlessly integrated suite of software running in all Windows formats simulation, schematics and PCB design. At last allowing amateurs, teachers, students, ... in a work "individual" to take advantage of current technology, without any restriction.

To avoid misunderstanding - there is no difference between the industrial version of the software and our Non-commercial version, except the price. In other words; industry is subsidising the development cost and now the individual can take full advantage of this.

Computer Compatibility

To run the program you will need:

- Windows 3.x. Win95 or Win NT,
- a min. 386 processor $(486+$ rec. $)$
- 8 mb of RAM
- CD-ROM Drive

System Features

Complete End-to-End CAE/CAD system Simultaneous Schematic and Layout generation Automatic front and back annotation. Intuitive hierarchical menu structure. Mouse or keyboard commend activation. Macro operations.
Real-time display of: ratsnest, active nodes, single line or true trace width.
On-line help
Auto reconnect
Full Integration of Schematic and Layout. Automatic file backup.
User definable text sizes
DXF in and output
Screen hardcopy.
Library viewer with editing possibility
switching on/off possibility for tool and scroll bars
Visible schematic and PCB symbols by editing. Monochrome mode for better print resolution. Bitmap support for loading logos,
documentation, etc. Can be used in hierarchical as well as in simple schematic or PCB design Maximum number of nets: 16,000 . Maximum number of nodes: 32,000 . Maximum number of bend points: 64,000 Maximum number of connections: 64,000 Maximum number of symbots: 32,000 . Maximum number of components: 32,000 Maximum number of multi-segment traces: 32,000 , with a total of 64,000 trace segments ANSIAEC libraries
Full Gerber, NCD, pic and place output
Schematic Capture
Up to 100 schematic sheets
Up to $64^{\prime \prime} \times 64^{\prime \prime}$ sheet size
Industry standard sheet sizes.
Rotate, scale and mirror symbols. Real-time dragging of components and wires. Automatic package and pin assignment. Orthogonal and free made manual routing. Automatic bus annotation.
Block save, load, move and delete Direct access to mixed mode simulation. Autorouting of connections. Merging and splitting of nets possibility. Definable line width, also for bus-lines Swapping of component positions. Automatic component renumbering by swapping.

PCB Layout

32 layers (28 route layers, 2 silk-screen layers (front and back), 2 soldermask layers (front and back)).
User definable trace sizes
User definable pads
Curved traces.
1 mil grid resolution - Fine grid 10 micron SMT, fine line, analog support.
Component repeat, rotate and mirror. Components "Move by name" Component, gate and pin swap. Automatic component renaming. Trace repeat.
On-line, multi-layer routing with automatic via insertion.
Pin-to-pin, free or 45 degree routing. Change segment side and width, trace side and width.
Fast interactive generation of ground planes with user definable cross-hatch or solid fill. Automatic ground plane with thermal relief insertion.
Automatic DRC with user specified parameters. Electrical connectivity checking.
Linear rotation of symbols
Gerber input read and use possibility
Built-in interface for Spectra 6.0, Max route 6.0 and Arizona Autorouter.
Bitmap functions (logos, drawings, ...)
Sophisticated database viewer.

Mixed Mode Simulation

$A C$ analysis (Frequency domain)
DC analysis (Linear/non-linear).
TD analysis (Time domain).
Diagram generator.
Dynamic parameter definition of active and passive components.
Output graphs displayed on screen, hardeopy or placed on schematic.
Oscilloscope function.
DLL based analog/digital simulation primitives modelling language and library creation tools Built-in model generator for discrete devices.

Please Note: Some of the above are ONLY provided on the De Luxe 3 version. EdSpice and Thermal Analysis are available as bolt-on extras.

EnviraMan

 Temperature / Humidity Logger \& Alarm SystemEnviroMon has many applications in: food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.
$\boldsymbol{\nabla}$ Monitors up to 30 channels of temperature over a 400 m . distance.
$\nabla-55$ to $100^{\circ} \mathrm{C}$ temperature range (typical accuracy $\pm 0.2^{\circ} \mathrm{C}$).
V Data can be downloaded to PC.

EnuiraMan

Starter Kit from £393.00
3 temperature Sensors on 5 m lead, 3 channe Converter, Enviromon Logger, cables \& fittings. Expandable at any time for around $£ 50$ / channel

TC-08
8 channel Thermocouple to PC Converter
Simple to use thermocouple to PC interface.

- Connects to serial port no power supply required.
V Supplied with PicoLog data logging software.
∇ Resolution $0.1^{\circ} \mathrm{C}$.
TC-08 $£ 199.00$
Supplied with serial cable and adaptor. Calibration certificate $£ 25.00$.
Thermocouple probes available.

TH-03 3 channel

Thermistor to PC Converter

V Connects to serial port -
no power supply required.
∇ Picolog data logging software.
$\nabla-55$ to $105^{\circ} \mathrm{C}$ temperature range

- Resolution $0.01^{\circ} \mathrm{C}$.

TH-03

$£ 79.00$
Supplied with serial cable and adaptor. Thermistor sensors available.

Call for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@ picotech.co.uk

| Data Acquisition | Pico Technology |
| ---: | ---: | ---: |
| Environmental Monitoring | |
| Virtual Instrumentation | |

PPico's Virtual Instrument is

 the most poweriul, flexible test equipment in my lab.'

- 100, 50 or $20 \mathrm{MS} / \mathrm{s}$ sampling.
- 50,25 or 10 MHz spectrum analysis.
- Advanced trigger modes - capture intermittent one-off events.
∇ Less than half the cost of a comparable benchtop scope.

$$
\begin{array}{ll}
\text { ADC 200-100 } & £ 549.00 \\
\text { ADe 200-50 } & £ 499.00 \\
\text { ADC 200-20 } & £ 359.00
\end{array}
$$

Supplied with cables and power supply.

$400-100$

Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate $100 \mathrm{kS} / \mathrm{s}$ and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use. ADC-100
with PicoScope software $£ 199.00$ with Picoscope \& PicoLog software $£ 219.00$

ADC-40/42

Single Channel - Iow cost
$\nabla 20 \mathrm{kS} / \mathrm{s}$ sampling.
$\boldsymbol{\nabla} 10 \mathrm{kHz}$ spectrum analysis.
$\nabla \pm 5 \mathrm{~V}$ input range.
ADC-40 8 bit resolution $£ 59.00$ ADC-42 12 bit resolution $£ 85.00$

Call for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@picotech.co.uk

MKII Electronic Auto-Checker

Abstract

Tim Parker has updated the original multi-purpose Multi-checker to be a new, improved audible/visible low voltage tester, with a special relevance to cars

Regular readers will remember the Multi-checker from the August 1995 issue of ETI. Excellent piece of handy test gear though it was, it only had a visual indicator, lacking any audible feedback to the user. This made testing for voltages in awkward places a little difficult, since the user had to be able to actually see the tester in order to check the states of the two LEDs. The scenario which immediately comes to mind will be recognised by anyone who has tried to find a supply line, or install even the simplest pieces of equipment anywhere near the dashboard of a motor vehicle: lying on your back in either the driver's or the front passenger footwell, with your feet and lower leg portions either on, or up the back of the seat! As if that wasn't uncomfortable enough, if it's the drivers side, you also have the added pain in the neck - literally - from the control pedals folding up your skin like a baker kneading dough!

Once you have managed to get into this position, you then have to start the testing, prodding around with the test leads in the hopes of finding a 'live' wire, only to discover you cannot see the test equipment without inducing excruciating cramp in your neck or your stomach, or both. By this time you are in no position to manoeuvre your body to ease the pain.

To overcome this problem, and also in response to numerous requests from constructors for some form of audible indication, the original Multi-checker has now acquired a 'voice' - well, a buzzer at least. The overall operation of the original tester has also been made much simpler, converted from a (slightly tedious) three position slide switch, to a simple, one-press pushbutton operation. Given the above scenario, and because the majority of enquiries related to motor vehicle work, the new tester is known as the Auto-Checker.

As a reminder, figure 1 shows the circuit diagram of the original Multi-checker. This has two basic modes or functions: a voltage finder with polarity indicator, and a
continuity/component tester. We won't ponder on the original circuit for long, because it was explained fully in the earlier issue of ETI, but a brief recap of how it works, using the new circuit in figure 2, will benefit new readers. We should point out that the Auto-Checker is not aimed solely at motor vehicles; it should satisfy the majority of basic 'good/no good' testing requirements for a range of low-volt electrical and electronic

components, where just a simple indication of whether or not a device is working will do, or whether a low voltage connection has a potential on it or not.

The Auto-Checker uses two LEDs and a piezo buzzer to indicate the status of its two test points, to which a pair of test leads can be attached if required. A third LED is provided to warn you that the internal battery is being used, and serves as a reminder to switch off the tester afterwards. The test pads shown in figure 1, and which were fitted to the front of the original unit have been removed, because it was possible for either or both these to come into contact with (earthed) metal body parts during testing and, since they were connected directly to the test probe sockets, this was perhaps an undesirable situation with respect to motor vehicle testing, whereby a test pad in contact with the chassis of the vehicle might just happen to be the one corresponding to the particular test probe you have connected to the 'live' wire!

Note: This equipment is not for use on mains voltages.

Figure 1: the original Multi-Checker circuit diagram from ETI August 1995

Figure 2: The Auto-checker circuit diagram

Auto-Checker Modes

Mode 1 is a simple, low voltage indicator with an input level of up to about 25 volts. This is the default mode when the pushbutton is 'out', and the internal battery is on standby for the buzzer only. The test leads are not polarised, but are simply labelled ' A ' and ' B ', and you don't even have to worry about which way round to connect them to your circuit, since the Auto-Checker will light the LED(s) and sound the buzzer when a voltage is detected. The states of
the LEDs and the type of sound from the buzzer indicate whether that voltage is $A C, D C$, or pulsing (on/off) DC up to about 20 Hz . Furthermore, the Auto-Checker provides polarity indication for DC voltages, by showing which of the two test probes is connected to the positive terminal - ideal if you're looking for power when installing in-car accessories.

Mode 2 is enabled by depressing the pushbutton to the 'in' position. The Auto-Checker now becomes a simple
audible/visual continuity tester, giving good or bad indication of fuses, light bulbs, switch contacts, transformer windings, speaker coils and heating elements, etc. - in fact, anything which has a relatively, low resistance. This mode also provides a very useful facility for 'good/no good' testing of diodes and LEDs. By connecting them either way round across the test probes, the Auto-Checker will show which of the two probes is connected to the cathode of the device. Furthermore, if a good LED is being tested, not only will the cathode be identified, but it will also light up in a flashing manner, giving visual confirmation that it does actually work.

The circuit

With SW1 in position 1 (out), R5 is connected in series with the test points and LEDs 2 and 3 . With a low voltage DC potential applied to the test points, the buzzer will sound and one of the LEDs will light, which also indicates the polarity of the voltage. If test point ' A ' is connected to the positive connection then LED2 will light up. If the positive is on test point ' B ' then LED3 will light up. If the voltage is pulsing at a frequency below about 20 Hz , then the buzzer will pulse at the same rate, and either LED2. or LED3 will flash at this frequency, depending on which test point is connected to the pulsing line. At frequencies above 20 Hz it will be difficult to detect the flashing and buzzer pulsing, which may give the (wrong) impression that the voltage is constant.

With a low voltage AC input, the buzzer sounds continuously and both LEDs light up, but each one on opposite half cycles of the input signal. Again, frequencies below about 20 Hz should produce a noticeable pulsing. How apparent this is depends on the rise and fall times of the input waveform, a sinewave input will produce less flashing effect than a squarewave input, for instance.

Pressing SW1 (in) connects R4 and R6 in series with the test leads and the LEDs, and power is applied to IC1. D1 protects against reverse polarity, just in case the battery makes reverse contact with its connector clip when being replaced while SW1 is depressed. C1 and C2 provide supply rail decoupling and LED1 serves as a power on indicator, this helps to remind you to turn it off.

IC1, R2 and C3 form a low frequency squarewave oscillator with complimentary outputs on pins 10 and 11, which are connected in series with the test points, LEDs and current limiting resistors R4 and R6. With pin 10 high, and continuity or a low resistance across the test points - such as a good fuse or light bulb, current flowing through the load across the test points will light up LED3. With pin 11 high, LED2 will light up.

The buzzer circuit

Many constructors of the original Multi-checker attempted to connect a buzzer driver circuit of their own, usually by driving the base of a transistor from one of the test points via a suitable resistor (which, initially, seems the logical way to do it), only to discover it was not possible using a simple transistor switch, due to the fact that the test point terminals were bi-directional, and they also cannot have a current path to OV . When they did manage to get it to work in a fashion, it would only respond to unipolar signals, and wouldn't work in the voltage test mode at all unless the buzzer was tied permanently to the positive supply rail. This was fine until they touched the test point terminal with just their fingers, which produced sufficient base drive to turn on the transistor and sound the buzzer, even with the Multichecker turned off!

Bridge rectifier

In reply to all those who questioned the possibility of adding a buzzer, here's how it's done. The answer is to detect current flowing in either direction through either of the two status LEDs. This is achieved by connecting the AC input of a bridge rectifier - formed by D2 to D5 - across the LEDs themselves, and making use of the unipolar output from the bridge. Simple as this may seem in theory, it's a little more difficult to put into practice, because the voltage drop across an LED and the voltage losses through a bridge rectifier are pretty similar, the overall result being not enough usable voltage at the output of the bridge rectifier. To overcome this, D6 and D7 have been added in series with each LED to increase the amount of voltage drop across them.

On its own, the bridge rectifier hasn't overcome the problem of having a current path to OV . For this, an optoisolator with NPN transistor output is used - OP1. Only C4 and the internal LED of the opto-isolator are connected across the output of the bridge rectifier, which eliminates any current flow to OV . The voltage drop across either LED can now be used to drive the LED of the opto-isolator. The transistor output from this, together with Q1 forms a darlington driver which is used to turn on the buzzer. By connecting the positive lead of the buzzer permanently to the internal battery's positive supply rail, the buzzer will sound whenever either of the test LEDs light up, which means the buzzer is functional in both voltage finder and continuity modes. To ensure negligible drain on the battery, R3 keeps Q1 turned off in the event of no input signal, and also prevents instability which is always present in open base high gain darlington driver circuits such as this.

Figure 3: the component layout of the Auto-checker

Construction

Compared to the original multi-checker, the overall construction of the Auto-Checker has been made much simpler. So much so, that everything is mounted on the board, which in turn is held in place by the test sockets and a double sided self adhesive foam pad. The PCB component layout is shown in figure 3. The first items to solder in place should be the solder tags supplied with the 4 mm test sockets, since these are soldered to the underside of the PCB, and are used to hold the board in

Figure 4: the layout inside the case
place. Also, they are not accessible with the board in place. Only solder about 3 mm of the tag to the A and B copper pads, leaving sufficient to bend and form the remainder of the tag to facilitate the final mounting position of the board. Solder all components except the LEDs in a low-to-high profile sequence, taking care with the orientation of all the polarised ones - capacitors, diodes, ics etc. - and don't forget the leads from the battery clip.

In order to make fitting the LEDs easier, it is best to crop the leads to the correct length prior to soldering them in

place, otherwise you will have to keep re-soldering them at different heights until you get them right. To do this, turn each one upside down and place the top face of the LED on the inside bottom of the case as shown in the diagram, then crop the leads level with the outer edge of the case. These can now be soldered into the PCB with about 1 mm of lead protruding through to the copper side of the board, and they should be at the correct height when the PCB is finally secured in place. Note that the LEDs all face in different directions, so take care with their polarities. They won't be damaged if they are soldered the wrong way round, they just won't light up. However, if you also get one of the diodes back-to-front, then you will have the oddest results displayed when using the tester, so please pay take great care with the orientation of them all.

The front panel suggestion in figure 6 can be used as a drilling template for the three LED hole positions to ease the process of ensuring the various holes needed in the lid of the case are lined up relative to the component positions on the PCB. Only the rounded top face of the LEDs should . protrude through the case, with none of the body showing, so drill undersized holes for them, and taper the insides to provide a tight fit, allowing for about 1 mm of the LEDs showing externally. The shorter body length of the 3 mm power on LED (LED1) means that most of it is taken up by the thickness of the case lid, so the hole diameter for this one can be full size. For a louder buzzer sound, drill a hole in the lid of the case somewhere above it. Drill two holes in the end of the case to accept 4 mm test sockets, and a final hole in the side of the case for the switch button.

Figure 7: the pattern for the Auto-Checker front panel. Our original is white on black

Enclosure

The new Auto-Checker is designed to fit the same pocket sized plastic case as the original Multi-checker. Prior to final installation, it's a good idea to power up and test the board for correct operation by connecting test pieces across the solder tags. Once you're satisfied everything is operational, the board can becured in place according to the details shown in figure 5.

The inset of figure 5 shows how the 4 mm test sockets would normally be used, particularly in the case of metal enclosures, whereby the insulating bush is inserted from the outside of the case, so as to isolate the socket from any other metal parts. For our purposes, not only because we're using a plastic case, but also to increase the testing area so that fuses and the like can be tested directly on the unit without inserting the test probes, the metal washer is used
on the outside of the case, and the two bushes are both slotted onto the shaft of the socket from the inside of the case. This forces the solder tag to be slightly further away from the edge of the case to where it would normally sit, which benefits us by preventing the PCB being too close to the test socket, where it might be more awkward to finally secure it in place, especially if the solder tags are a touch on the short side.

In use - voltage mode

This mode is used to locate or detect low voltages between about 3 and 30 volts, and is selected when the mode switch is in the out position. This mode can be used without an internal battery fitted to the Auto-Checker, and the status LEDs will function normally, but no sound will be produced

A	B	BLEEPER	POSSIBLE DIAGNOSIS
OFF	OFF	NO SOUND	NO VOLTAGE POTENTIAL ACROSS A AND B. ALSO OCCURS IF BOTH LEADS CONNECTED TO THE SAME POSITIVE OR NEGATIVE VOLTAGE
ON	OFF	CONSTANT	DC VOLTAGE PRESENT. POSITIVE ON A, NEGATIVE ON B
OFF	ON	CONSTANT	DC VOLTAGE PRESENT. POSITIVE ON B, NEGATIVE ON A
ON	ON	CONSTANT	AC VOLTAGE PRESENT AT 20 Hz OR GREATER FREQUENCY*
FLASHING	OFF	PULSING	PULSING DC VOLTAGE PRESENT. POSITIVE PULSES ON A*
OFF	FLASHING	PULSING	PULSING DC VOLTAGE PRESENT. POSITIVE PULSES ON B*
FLASHING	FLASHING	CONSTANT OR PULSING	AC VOLTAGE PRESENT AT 20 Hz OR LOWER FREQUENCY*
*PULSES FASTER THAN ABOUT 2OHz (20 TIMES PER SECOND) MAY APPEAR ON THE STATUS LEDs AS A CONSTANT AC OR DC VOLTAGE. THIS IS NOT A FAULT, THE HUMAN EYE CANNOT EASILY DETECT LIGHT PULSES WHICH TURN ON AND OFF at rates much faster than this. The bleeper may also produce either a warbled or constant note.			

Table 1
DC VOLTAGE. THIS IS NOT A FAULT, THE HUMAN EYE CANNOT EASILY DETECT LIGHT PULSES WHICH TURN ON AND OFF AT RATES MUCH FASTER THAN THIS. THE BLEEPER MAY ALSO PRODUCE EITHER A WARBLED OR CONSTANT NOTE.

	BLEEPER SOUND AND LED STATUS IN CONTINUITY MODE (MODE SELECT SWITCH IN - POWER LED ON)			
	A	B	BLEEPER	POSSIBLE DIAGNOSIS
	OFF	OFF	NO SOUND	BAD CONNECTION - OPEN CIRCUIT, SWITCH CONTACTS OPEN, BLOWN FUSE OR LAMP, OR HIGH RESISTANCE (> 47 KILOHMS)
	FLASHING BRIGHTLY	FLASHING BRIGHTLY	CONSTANT	GOOD CONNECTION - SHORT CIRCUIT, SWITCH CONTACTS CLOSED, FUSE OR LAMP OK, OR A LOW RESISTANCE (< 1 KILOHM)
	FLASHING BUT DIMLY	FLASHING BUT DIMLY	CONSTANT (MAYBE POOR)	POOR CONNECTION - RESISTANCE GREATER THAN 10 KILOHMS, OR LOW INTERNAL BATTERY VOLTAGE - CHECK/REPLACE BATTERY
	$\begin{array}{ll} \text { CAUTION } \\ 1 & \text { ALWAY } \\ 2 & \text { DON } \\ 3 & \text { REMEM } \end{array}$	S DISCONNE OT ATTEMPT MBER TO RETU	AND ISOLATE ANY CHECK FOR VO N THE SWITCH T	T ITEM BEFORE TESTING. DO NOT CARRY OUT IN SITU' TESTING ES WHEN THE AUTO-CHECKER IS SET TO CONTINUITY MODE OUT POSITION AFTER USE TO CONSERVE THE INTERNAL BATTERY POWER

COMPONENT	DESCRIPTION OF MULTI-CHECKER STATUS
DIODE OR $>10 \mathrm{~V}$ ZENER DIODE	FLASHING A OR B (BUT NOT BOTH). PULSED BLEEPER TONE. WHICHEVER STATUS LED IS FLASHING DENOTES THE CATHODE OF THE DIODE UNDER TEST.
SINGLE (ONE) COLOUR LED	FLASHING A OR B (BUT NOT BOTH). LED UNDER TEST FLASHING AT SAME RATE. PULSED BLEEPER TONE. WHICHEVER STATUS LED IS FLASHING DENOTES THE CATHODE OF THE LED UNDER TEST
BI AND TRI COLOUR LED	FLASHNG A AND B. ALTERNATING COLOURS OF LED UNDER TEST. CONSTANT BLEEPER TONE. THE CATHODE IS IDENTIFIED BY THE STATUS LED WHICH FLASHES WHEN THE TEST LED IS RED
TRANSISTOR (NPN)	FLASHNG A OR B (BUT NOT BOTH). PULSED BLEEPER TONE. THE BASE TERMINAL OF THE NPN TRANSISTOR IS IDENTIFIED BY THE STATUS LED WHICH DOES NOT FLASH
TRANSISTOR (PNP)	FLASHING A OR B (BUT NOT BOTH). PULSED BLEEPER TONE. THE BASE TERMINAL OF THE PNP TRANSISTOR IS IDENTIFIED BY THE STATUS LED WHICH DOES FLASH
REMEMBER TO RETURN THE SWITCH TO THE OUT(OFF) POSITION AFTER USE TO CONSERVE THE INTERNAL BATTERY POWER	

Table 3
by the bleeper. The conditions given in both Table 1 and Table 2 assume there is a battery fitted. For testing purposes, the test leads, although red and black, can be fitted and used either way round, since the test sockets are not polarised.

In use - continuity mode

This is selected when the mode switch is in the 'in' position and the power indicator is lit. This mode can be used for testing fuses, lamps, coils, switch contacts, diodes and other electronic components.

Component testing

When testing electronic components on the AutoChecker, in all cases they may be connected any way round across the test leads. Transistors are tested two legs at a time and may require up to three configurations before the base terminal is identified. The 'good' states of the two status LEDs are given in Table 3. Any conditions other than these states could represent a possible fault, which should be investigated further.

Finally, a word of caution. The Auto-Checker makes an ideal piece of tackle to have around the home, garage, workshop or in the tool box, and when used for its intended purposes should provide many years of trouble-free use, as long as it is not abused. When checking for voltages, make sure that you have selected mode 1 (switch in the out position) prior to starting, otherwise permanent damage to IC1 could result if the continuity mode is selected with top much voltage applied to the inputs.

A complete kit of parts which includes the case, PCB, and a pair of test leads and probes (* battery not included) is available from the author by mail order only from:

DTE Microsystems, 112 Shobnall Road, Burton-onTrent, Staffs DE14 2BB, UK Tel 01283542229

The price for the complete kit of parts is $£ 17.93$ The PCB is also available separately at $£ 5.30$. (It is included in the kit).
Please.add postage \& packing (per order): $£ 2.00$ for the UK, £ 4.00 elsewhere.

Please make Cheques/postal orders payable to 'DTE Microsystems'. If lordering from overseas, payment must be in Pounds Sterling (\mathcal{E}) and cheques must be drawn on a British bank. Goods will normally be dispatched within five working days from receipt of order (subject to availability and cheque clearance), but please allow up to 28 days for delivery.

DO NOT under any circumstances, or for any reason whatsoever, subject the Auto-Checker to mains voltage potentials. This piece of equipment is not designed for mains voltage purposes and any such misuse would be extremely dangerous and could prove fatal.

The TI Technical Bookshop currently stocks over 80 Data Books, Design Manuals and User's Guides.
They cover the entire spectrum of semiconductors from Texas Instruments' - the company with one of the world's broadest S / C product ranges, and the acknowledged leader in Digital Processing Solutions. If you are a system designer or product specifier you cannot afford to be without ready access to this invaluable data bank.
Now, you can once again order this complete range of reference books from a UK supplier.

Contact the T1 Technical Bookshop (UK)
for the full list of books, prices
and ordering information,
or visit our web site at:
http://www.ti-techbooks.co.uk
Or writeffax to:
Π Technical Bookshop (UK)
PO Box 712
Milton Keynes MK17 8ZH

Tel: 01908282121

Fax: 01908585660

OMP MOS-FET POWER AMPLIFIERS THOUSANDS PURCHASED HIGH POWER, TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
all power ratinas r.m.s. Into 4 OHMS, BOTH CHAMMELS DRIVEN
FEATURES: \#ndependent power supplies with two toroidal transformers \# Twin L.E.D. Vu meters * Level controls * Mlluminaled onfoth swich \& XLR connectors \& Standard 775 mV Inpuls \& Open and short circuil
proot $\$$ Latest Mos-Fets tor strass tree power dellvery Into virtually any load \& High slew rate $\&$ Very low diatortion \star Aluminium cases $\# M X F 600$ \& MXF900 tan cooled with D.C. Ioudspeaker and thermal protection. USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.
 MXF600 W $19{ }^{\prime \prime} \times \mathrm{H} 5 \% \%^{\circ}(3 \mathrm{C}) \times \mathrm{D} 13^{\prime \prime}$

PRICES:- MXF200 \& 175.00 MXF400 2233.85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CARAIER DEL. 812.50 EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER

Advanced 3.Way Stereo Active Cross-Over, housed in a $19^{\prime \prime} \times 10$ case. Each channel has three level controls: bass. mid \& top. The removable front fascia allows access to the programmabie DIL switches to adjust the
cross-over frequency: Bass-Mid $250 / 500 / 800 \mathrm{~Hz}$. MId-Top $1.813 / 5 \mathrm{KHz}$, all at $24 d \mathrm{de} \mathrm{per} \mathrm{octave}$.Bass invert switches on each Dass channel. Nominal 775 mV Input/output. Fully compatible with OMP rack amplifier and modules. Price $£ 117.44+\varepsilon 5.00$ P\&P

STEREO DISCO MIXER SDJ3400SZ \star ECHO \& SOUND EFFECTS \star

STEREO DISCO MIXER with 2×7 band L. ${ }^{\text {R }}$ graphic equalisers with bar graph
LED
Vu
meters. MANY OUTSTANDING FEATURES:- inctuding Echo with repeat a apeod control, of mic. with talk-over plus cross fade, Cue Headphione Monitor. B sound Effects. Useful combination of the oollowing inputs:- 3 turntables (magh 3 Pa, 5 Line for CD, Tape, Video etc.
Price ع144.99 + E5.00 P\&P
 PIELO ELECTRIC TWEETERS - MOTOROLA
Join the Plezo revotution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improve Iransient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE ' A ' (KSN1036A) 3 " round with protective wire mesh. Ideal to bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+50$ p P\&P. TYPE 'B' (KSN1005A) $31 / 2$ " super horn lor general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50 \mathrm{p}$ P\&R.
TYPE ' C ' (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality HI-FJ sys tems and quality discos etc. Price $\mathbf{E 6 . 9 9}+\mathbf{5 0 p}$ PSP.
TYPE ' D ' (KSN1025A) 2 " $\times 66^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high qualty Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P䨿P. TVPE 'E' (KSN1 038A) 33." horn tweeter with attractive silver finish trim. Sultable for Hi-Fi monitor systems elc. Price $£ 5.99+50$ p PaP. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50 \mathrm{P}$ P\&

IDTFLIGHT CASED LOUDSPEAKEFS

 A new range of quality loudspeakers. designed to take advantage of the latestspeaker technoloogy and enclosure designs. Both models utilize studio quality
12 12 cast aluminium loudspeakers with factory fitted grilles. wide dispersion $12 "$ cast aluminium loudspeakers with factory fitted grilles. wide dispersion constani directivity horns, extruded aluminium corner protection and steel
ball corners, complimented with heavy dury black coverino The enclosures are fitted as standard with top hats for optional loudspeaker stands.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
ibl FC 12-100WATTS (100 dB) PRICE E159.00 PER PAIR
IFC 12-200WATTS (100dB) PRICE E175.00 PER PAIR SPECIALIST CARRIER DEL S12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $₹ 49.00$ Delivery $£ 6.00$ per pair

PRICES: 150 W £49.99 250W ع99.99 400W ع109.95 PRPE2.00 EAC

THREE SUPERE MIOM POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo, 150 W 250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo, 400 W Bridged Mono ALL POWERS INTO 4 OHMS Features:
\# Stereo, bridgable mono * Cholce of high \& low level inputs \& \& level
controls $\$$ Remote on-off \& Speaker a thermal protection.
 models are avallable to suit the needs of thy professional and hobby markel h.e. Industry, Leisure, Instrumental and Hi-F drive circults lo power ecompatible Vu motter. All models are open and shorl circull prool.
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/NF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate 45V/uS, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE $840.85+83.50$ P\&P
OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $864.35+84.00$ P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3d8, Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. 110 dB . Size $330 \times 175 \times .100 \mathrm{~mm}$
PRICE $881.75+85.00$ PRP
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensltivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE E132.85 + E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV, S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE 2250.00 + E12.00 P\&P
NOTE: MOS-FET MODULES ARE AVAILAELE IN TWO VEPSIONS: STANDARD. INPUT SENS SOOmV, BAND WIDTH 100K Mz.

LOUDSPEAKE:S LARGE SELECTION OF SPECIALIST LOUDSPEAKERS available, including cabinet fittinos, speaker GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AMD HORNS, LARGE (A4) S.A.E. (60p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also available.

EMINENCE:- INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
8" 100 WATT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 72 Hz , FREO. RESP. TO 4 KHz , SENS 97 AB . PRICE ع 32.71 + 10 100 WATT R.M.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID
 OES. FREO 12". 100 . 65 Hz , FREO. RESP. TO 3.5 KHz , SENS 99 dB . 12" 100 WATT R.M.S. ME12-100LE GEN. PURPOSE, LEAD GUITAR, DISCO, STAGE MONITOR
 MONITOR RES. FREO 42 Hz , FREQ. RESP TO 10 KHz SENS 98 dB P PRICE C36. 57 + C3. 50 PEP $12^{\prime \prime} 200$ WATT R.M.S. ME12-200 GEN, PURPOSE, GUITAR, DISCO, VOCAL, EXCELLENT MID RES. FREO. 58 Hz , FREQ. RESP. TO 6 KHz , SENS 98 dB . $12^{\prime \prime} 300$ WATT R.M.S ME 12-300GP HIGH POWER BASS, LEAD GUITAR, KEYBOARD, DISCO ETC. RES. FREQ. 47 Hz, FREO. RESP. TO 5 KHz , SENS 103 dB . RICE E70.19 + E3.50 PR 15 " 200 WATT R.M.S. ME1S-200 GEN. PURPOSE BASS, INCLUDING BASS GUITAR.
RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99dB. PRICE E50.72 + C4.00 PAP $15 " 300$ WATT R.M.S. ME15-300 HIGH POWER BASS, INCLUDING BASS GUITAR PES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB .

PRICE $£ 73.34+$ \& 4.00 PAP

EARBENDERS:- HI-FI, STUDIO, IN-CAR, ETC

ALL EAREENDER UNITS 8 OHMS (Except EB8-S0 \& EB10-50 which arr du
BASS, SINGLE CONE, HIGH COWPLIANCE, ROLLED SUAROUND SES. FREO. 40 Hz , FREQ. RESP TO 7 KHz SENS 974 O 10" 50WATT EB10-50 DUAL IMPEDENCE TAPPED 4/8 OMM BASS, HI-FI, IN-CAR $8.90+$ E2.00 PAP RES. FREO. 40 Hz , FREQ. RESP. TO 5 KHz , SENS. 99 dB . 10" 100WATT EBIO-100 BASS, KI-FI, STUDIO. RES. FREQ. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB 12 " 100 WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO RES. FREQ. 26 Hz, FREQ. RESP. TO 3 KHz , SENS 93 dB . PRICE 13.65 + $£ 2.50$ PE ULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND 51/4" BOWATT EB5-GOTC (TWIN CONE) HI-Ft, MULTI-ARRAY DISCO ETC RES. FREQ. 63 Hz, FREO. RESP. TO 20KHz, SENS 92 dB . PR PRICE C9.99 + c1.50 PRP AES. FREQ. 38 Hz , FREO. RESP. TO 20 KHz , SENS 94 AB . 8" GOWATT EB8-GOTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC. RES. FREQ. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . 10" 60 WATT EB10-60TC (TWIN CONE) HI-FI, MULTI ARRAY DISCO ET RES. FREQ. 35 Hz , FREO. RESP. TO 12KHz, SENS 98dB. PRICE $10.99+1.50$ PR P PRICE $\mathrm{C1} 2.99+$ E1.50 Pa URANSMITTER HOBEY KITS
PROVEN TRANSNITTER DESIONS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTEA RG-188MHZ, VARICAP CONTROLLED PROFESSIONAL DERFORMANCE, RANGE UP TO 3 MLES, SLE $38 \times 123 \mathrm{mmm}$, SUPPLY 12 V © $0.5 A M P$. PRICE E14.85 + C1.00 PIP
FIM MICRO TRANSMITTER $100-108 \mathrm{MHz}$, VARICAP TUNED, COMPLETE WITH VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY GV BATTERY.

$$
\text { PRICE } \mathbb{C B} .80+\S 1.00 \text { PSP }
$$

PHOTO IW FM TRANSMITTER

Adaptable, affordable - handy circuits for around £5. By Owen Bishop

6. A tuneful trifle

Would you like some light music? You can produce your own with this light-controlled tone generator. This is a toy for budding young musicians in which the pitch of the note depends on the amount of light falling on the instrument. The light sensor is a lightdependent resistor (LDR) which consists of a block of semiconductor material, often cadmium sulphide. Because of this, the LDR is sometimes known as a cadmium sulphide cell (CSC). It is also known as a photoconductive cell (PCC).

The principle of the LDR/CSC/PCC is that, when the material is exposed to light, the energy of the light causes free charge carriers to be produced. The more light, the more charge carriers. And the more charge carriers, the less the electrical resistance of the material.
The LDR has a pair of electrodes deposited on its exposed surface and, as the light level increases, the amount of current flowing from one electrode to the other increases roughly in proportion. In this circuit the LDR forms half of a potential divider network, with R1 as the other resistor. As light increases, the resistance of LDR1 becomes smaller in

proportion to that of R1, which is fixed at 15 kilohms. As a result, the voltage across LOR1 is reduced in proportion to that across R1. Since the total voltage across the pair is fixed at 9 V , the voltage at the junction of LDR1 and R1 must increase. By varying the amount of light falling on LDR1 we can vary the voltage at pin 9 of IC1.

IC1 is actually a phase-locked loop ic, but we are using only a part of it, the voltage-controlled oscillator (VCO). Now, that's enough TLAs! (Three-letter abbreviations.) The higher the voltage applied to pin 9 the higher the frequency of the tone produced. Frequency also depends on the values of C1 and R2, higher values giving lower tones. The frequency produced when the input voltage is half the supply (4.5 V in this case) is $f=1 /(C 1 \times R 2)$. Resistor R3 also affects the frequency by producing an offset which determines the lowest and highest frequencies produced as the voltage is swept from $0 V$ to 9 V . R3 should be greater than R2, and the bigger R3 the bigger the range of tones. The capacitor and resistor values given in figure are suitable for producing a useful range of audio frequencies.

The output from IC1 appears at pin 4 and this is fed through R4 to Q1, which amplifies the signal and causes sound to be emitted from the loudspeaker, LS1.

Figure 1: the circuit of the Tuneful Trifle

Construction

Although the circuit could be housed in an opaque box with a hole cut to allow light to reach LDR1, we decided to build it in a transparent box with the circuit totally enclosed. Only the push-button S1 is accessible when the lid of the box is screwed down. Drill a hole in one end of the box (figure 3) to take the pushbutton. Drill several small holes in the box in the region where the speaker is to be mounted.

The circuit is assembled on a piece of stripboard (figure 2). Note that the strips are cut across at D8, E5, B13 to J13 and C17. There are blobs of solder joining adjacent strips at AI5/B15 and J12/K12. There are many different types of LDR suitable for this proiect. You can use the popular ORPI2 or one of the less expensive LDRs which have a resistance of a few tens of kilohms in normal indoor

daylight levels. If in doubt, measure the voltage at pin 9 when the circuit is assembled and the power is on. It should be around 4.5 V when the LDR is partly shaded. If it tends to be much lower of higher, substitute a higher or lower resistor for R1. Similarly, when you test the operation of the circuit you may decide that the notes are too low-pitched (perhaps even separating out to a rapid series of 'ticks') or too high-pitched. If so, alter the value of R2. You can increase R3 to obtain a wider range of pitch.

It is easier to connect the off-board items to the board before mounting everything inside the box. The circuit is powered by a 9V PP3 battery which can be fixed to the lower side of the box by a piece of doublesided adhesive tape or a 'Sticky Fixer' (figure 3). We wanted to mount the circuit board just below the upper

surface of the box and found that it is sufficiently secure to attach it using double-sided tape applied to the upper surface of IC1. The loudspeaker is glued in position using clear adhesive (Uhu, for example) applied to its rim.

Playtime

The circuit is silent when S1 is not pressed, and uses no current. Press S 1 to produce a note, but first position your hand so as to shade LDR1 to a greater or lesser extent. The more shading, the lower the pitch. Pressing and releasing the button for each position of your shading hand gives distinct notes. Or you can hold the button down as you vary the shading to obtain what musicians term a glissando effect. Waggling your fingers gives vibrato. Take it away, Maesto!

Resistors

All $0.25 \mathrm{~W}, 5$ percent or better.

rtR1	$15 k$
R2	$27 k$
R3	$100 k$
R4	$390 R$

Capacitor

C1 $\quad 100 \mathrm{nF}$ polyester layer

Semiconductors

LDR1	Light-dependent resistor (see text)
Q1	BC548 npn transistor (or similar)
IC1	CMOS 4046 phase-locked loop

Miscellaneous

$$
\begin{aligned}
& \text { S1 Push-to-make push-button } \\
& \text { LS1 Miniature loudspeaker, } 64 \text { ohm coil } \\
& \text { Stripboard } 27 \mathrm{~mm} \times 60 \mathrm{~mm} \text { (} 10 \text { strips } \times 23 \text { holes); } 1 \\
& \text { mm terminal pins (} 3 \text { off); } 16 \text {-pin dil socket; PP3 } \\
& \text { battery clip; small plastic enclosure, preferably } \\
& \text { transparent. }
\end{aligned}
$$

 Fecitures
 The K-307 Module provides the features required for most embedded applications Analogue
 - 4 Channels in 1 Channel out
 Digitol
 - 36 Digital in or out $\&$ Timer
 Serial
 - RS-232 or RS-485 plus I2C
 Disploy
 - LCD both text and graphics
 Keyboard
 - Upto 8×8 matrix keyboard
 Memory
 - >2 Mbytes available on board
 Low Power
 - Many modes to choose from
 Development
 The PC Starter Pack provides the quickest method to get your application up \& running
 Operating System - Real Time Multi Tasking
 Languages - 'C', Modula-2 and Assembler
 Expansion - Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE Í/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Protect Your Microchips from STATIC DISCHARCE!

Use an SSE grounding kit.

Kit includes:

- static dissipative solder resistant
- rubber mat.
- wrist strap
- ground lead
- earth plug

Mat size $70 \times 30 \mathrm{~cm}$ - offer price $£ 16.55$ per kit + VAT - Ref: AGK1 Mat size $25 \times 20 \mathrm{~cm}$ - offer price $£ 12.55$ per kit + VAT - Ref: AGK2

STATIC SAFE ENVIRONMENTS	Payment by CHEQUE / ACCESS
127 Hagley Road, Birmingham $8168 \times \mathrm{B}$	VISA/MASTERCARD
Tel: 01214548238 Fax: 01216252275	Catalogue available

[^1]B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLLEPORT CAMBS. CB6 1QE. Phone: 01353860185 Fax: 01353863245

Densitron Liquid Crystal Displays, 5 Digit, Type LSH5060RP. £1 each.

Bridge Rectifier Type W01G, 100 v at 1.5A. \&1 for 10.
Power Diodes Type IN5392, 100v at 1.5 A . £1 for 30 .
LTC1062CN8, Sth Order Low Pass Filter, 8 pins, $£ 2.25$ each.
CD4040BCN CMOS IC, 20 p each
TL082, Dual Bi-FET Operational Amp. 8 pin. 30 peach .
ZM324N Quad Op-Amp, 14 pin. 20p Zenner Diode 270v at $3 \mathrm{~W}, 20 \mathrm{p}$ each. surface mount, f 1 each.

MAIL ORDER ONLI DELIVERY FREEE, MIN ORDER E10. NO VAT

Printed Circuits in Minutes

 Direct from LaserPrint!8 1/2" x 11 "

1. LoserPrint*
*Or Photocopy
**Use standard household iron or P-n-P Press.
2. Press $\mathrm{On}^{* *}$
3. Peel Off
4. etch

5 Sheets $£ 12.50,10$ Sheets $£ 25.00$ + VAT. Add $£ 2.50$ postage Complete kits to manufacture your own PCB's from $£ 40.00$, or individual items of material, chemicals, etchant etc.
PRESS-N-PEEL ETCHING SUPPLIES
18 Stapleton Road - Orton - Southgate Peterborough PE2 6TD © Tel: 01733233043

ACTIVE MICRO DESIGNS

We can
design or re-design any piece of Analog or Digital Equipment to your Spec Software included with PC-based hardware

Tel: 01772814646 Fax: 01772816304

Active Micro Designs

34 Sutton Avenue • Tarleton • Preston PR4 6BB England

Visible Sound Limited
 are proud to announce our new "Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an 'on' word and 'off' word giving you up to 99% speaker dependent recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word, word lists are stored in non-volatile memory.
Automatic gain control on microphone jack input. Runs off 9-12 volt de supply via 2.1 mm plug.

н138A

Pic Programmer:

H137A $£ 25$ Programs
PIC 16C71, PIC 16C84
and the new 8 pin PIC 12C508 and PIC 12C509. Connects to parallel port. Kit K137A £24 PC compatible software F.O.C. when supplied with programmer

Components - PICs	
12C508/JW	£13.50
12C508-04/P	£2.30
12C509/JW	£15
12C509-04/P	£2.70
16C71/JW	£25
16C71-04/P	$£ 6.99$
16C84-04/P	£6

We also have available a full range of PC I/O cards and accessories, Call for details.

ALL Prices INCLUSIVE of vat and delivery (UK only) saxime day despatch.
151-s, The Exchange Building. Mount Stuart Square, Cardiff, CF1 6EB. Tel (01222) 458417 Fax (01222) 480326 http:llwww.vsltec.demon.co.uk

1024 mains outlets can be computer-controlled by Dr. Pei An's home automation interfaces. Part 2 describes the mains control modules

Ihe article describes a radio digital data control system which can be used for home automation applications. The complete system consists of one radio transmitters and 256 receivers with different addresses. The transmitter is connected to the Centronics port of a computer, and four bits of data issued by the computer can be transmitted to any one of the receivers. One of the four bits is used to control the ON/OFF of the mains of a socket. So a total of 1024 mains sockets can be controlled by one computer. The transmitting distance is about 50 meters in buildings and 200 meters in open fields. The system is illustrated in figure 1 .

In the first part of this series, ETI issue 3 1997, I described how to construct radio transmitter and receiver modules and how to write a Turbo Pascal 6 software driver. In this article, I will
show how to use the modules in a remote mains control application. I will also present a Windows Visual Basic software driver for the system.

A summary of the 418 MHz radio transmitter and receiver

Inside the transmitter, an encoder (HT-12E) converts a 12-bit parallel data into a serial encoded data. The 12 bits are supplied to the HT-12E by a computer via the Centronics port. The first 8 bits of the data represent an address and the other 4 bits are the data to be sent. The encoded serial data modulates a 418 MHz radio frequency signal using an FM modulation scheme. The radio frequency signal is then transmitted to the surroundings. The modulation is facilitated by an FM radio transmitter, TMX-$418-\mathrm{A}$. The assembly of the module is shown in figure 2.

Figure 2: the component layout of the radio transmitter (see ETI issue 3, 1997)
decoder ignores the data. As an 8-bit binary data has 256 possible combinations, the maximum number of receiver's address is 256 . The assembly of the module is shown in figure 3.

The transmitter is type-approved to the Radiocommunications Authority specification MPT 1340 in the UK. This avoids the need to submit the final project for approval.

The radio mains control system

The radio transmitter unit
The radio transmitter module is housed in a plastic box. The assembled unit has a 36-way female Centronics-type connector, an LED indicator, a power switch and a power socket. The antenna is a whip type, the total length of which is 160 mm . Figure 4 shows the cutting of the box. Figure 5 shows the assembly of the radio transmitter unit.

The mains controller unit
The circuit diagram of the mains controller unit is given in figure 6. Euro chassis plugs and sockets are used for the mains input and the controlled mains output. The incoming 240 V is converted into 12 V AC by T 1 , which is a mains transformer with an internal fuse. The AC voltage is rectified by BR1 and smoothed by C1. It is then fed into the 7812 voltage regulator where $\mathrm{a}+12 \mathrm{~V} \mathrm{DC}$ is produced. This is the supply voltage for other circuits. The radio receiver module is mounted on the controller PCB board. One of the outputs of the module is connected to J 6 . This signal is amplified by Q 1 and it controls the on/off of the relay. SW1 is used to select the automatic mode and override mode. In the automatic mode, the mains controller is controlled remotely by the computer. In the override mode, the relay is permanently energised. Two LEDs indicate the power on and off.

Important note: This project involves mains voltage. Constructors should be very careful in constructing it, in testing it and in using it in practice. Seek assistance if you are not experienced in constructing with mains voltages.

Inside a receiver, the radio signal picked up by the antenna is demodulated by an FM radio receiver module, SILRX-418A. The demodulated serial data is fed into the serial-to-parallel decoder (HT-12D), which converts the serial data back to the parallel data. The address bits are compared with the pre-set address of the decoder. If they match, the 4-bit data is latched to the outputs. If the address does not match, the

Figure 4: cutting details of the box for the transmitter

Figure 5: assembly of the radio transmitter unit in a box
be high to stop transmission. Transmit (P_address,flag:integer):integer starts (flag=1) or stops (flag=0) the transmission of the encoded data. DLLs are generated by MAKE or BUILD functions in the COMPILE pulldown manual in the editor. They are executable files, but they cannot be run on their own.

Listing one. WHDLL.PAS
library radio_mains_controller; \{Window DLL for the Smart Radio Mains Control System designed by Dr. Pei An, 4/5/97)
\{74LS164 latches the data sent serially by the computer's Printer port.
DB0, DB1, DB2 and DB3 are loaded with address $A 0, A 1, A 2$ and $A 3$
DB4, DB5, DB6 and DB7 are loaded with data D0, D1, D2 and D3)

Figure 7 shows the assembly of the PCB board of the unit. The PCB board is fixed inside a plastic box. The cutting of the box is shown in figure 8 and the assembly of the unit is shown in figure 9 .

The software driver

The Turbo Pascal 6 program which was listed in the previous article can be used to control the main switches.

In this article, a Windows Visual Basic software driver is described. Visual Basic allows users to develop user friendly graphic interfaces in Windows environment with ease. Although it offers a wide range of program supports for user interfaces, Visual Basic does not provide functions for direct I/O access and memory access. Dynamic link libraries (DLLs) are used to supply Visual Basic programs with functions. DLLs can be easily written using other Windows programming languages such as Turbo Pascal for Windows, Windows C, etc.,

The first program list is the DLLs for the radio mains control system written in Turbo Pascal for Windows. It contains several functions. Three of them which are related to the hardware control are explained below: Centronic(x:integer), integer is a function. Centronic(0) returns the number of number af Centronics ports installed on your PC. Centronic(1) returns the port address of LPT1 and Centronic(2) returns the address of LPT2, etc. send_data (P_address, address, data :integer) :integer sends the address and data to the 74LS164 shift register. The Centronics address should be supplied. When sending the address and data, the Transmit Enable (-TE) must

The assembly of the radio control mains unit in its box

```
uses
    wincrt, windos;
var
    address,i,j,swaddress,sdata:integer;
    delaytime,lighttime:real;
    dummy,P_address:integer;
    input_char:char;
Function Centronic(x:integer):integer; export;
(*) $000:$0408 holds the printer base address for
LPT1
        $000:$040A holds the printer base address for
LPT2
        $000:$040C holds the printer base address for
LPT3
        $000:$040e holds the printer base address for
LPT4
        $000:$0411 number of parallel interfaces in
binary format *)
var
            number_of_LPT, LPT1, LPT2, LPT3, LPT4 :integer;
begin
    number_of_LPT:=mem[$40:$11]; (* read number of
parallel ports *)
    number_of_LPT:=(number_of_lpt and (128+64)) shr
6;
        lpt1:=0; lpt2:=0; lpt3:=0; lpt4:=0;
        LPT1:=memw[$40:$08];(* Memory read procedure *)
        LPT2:=memw [$40:$0A];
        LPT3:=memw [$40:$0C];
        LPT 4 :=mernw [$40:$0E];
        case x of
            0: centronic:=number_of_LPT;
            1: centronic:=lpt1;
            2: centronic:=1pt2;
            3: centronic:=lpt3;
            4: centronic:=lpt4
        end;
end;
procedure delay;
var
    ij:integer;
begin
    for ij:=1 to }10000\mathrm{ do ij:=ij;
end;
Function bit_weight(bit:integer):integer; export;
var
    i,dummy:integer;
begin
        if bit=1 then bit_weight:=1
        else begin
            dummy:=1;
            for i:=1 to bit-1 do dummy:=2*dummy;
```


Figure 6: circuit diagram of the a mains controller unit

Figure 7: the component layout of the mains controller

Figure 8: cutting details of the box for a mains controller

Figure 9: assembly of the mains control unit, showing a radio receiver board (ETI issue 3 1997) mounted on the PCB

```
    bit_weight:=dummy;
    end;
end;
Function
send_data (P_address,address, data:integer) : integer;
export; (Send the address to the 74LS164 shift
register}
{When sending the address, the Transmit Enable (-TE)
must be high to stop transmit}
{During loading, (1) DBO is loaded with the data
sw[i].
    (2) DB1 (CLOCK) is made from low-
to-high-then-low
    (3) DB2 (-transmit enable) is kept
high all the time}
var
    sw:array[1..12] pf byte;
begin
    for i:=8 downto 1 do
    begin
        sw[i]:=0;
        if address>=Bit_weight(i) then begin
            address:=address-bit_weight (i);
            sw[i]:=1;
                end;
```

end;

```
for i:=4 downto 1 do begin
    sw[8+i]:=0;
    if data>=bit_weight(i) then begin
        data:=data-bit_weight(i);
        sw[8+i]:=1;
        end;
    end;
```

(loading address and data into the 74LS164
registers
for $i:=12$ downto 1 do
begin
port[P_address]:=sw[i]+4; $[\mathrm{DB} 0=\mathrm{sw}[i], \mathrm{DB} 1=0$,
$\mathrm{DB} 2=-\mathrm{TE}=1\}$
delay; \{a delay\}
port[P_address]: $=\mathrm{sw}[i]+2+4 ;\{\mathrm{DBO}=\mathrm{sw}[i]$,
$\mathrm{DB} 1=1$ (loading into register), $\mathrm{DB} 2=-\mathrm{TE}=1$ \}
delay; \{a delay for loading the bit\}
port[P_address]:=sw[i]+4; \{DB0=sw[i], DB1=0,
$\mathrm{DB} 2=-\mathrm{TE}=1\}$
end;
end;
Function
transmit(P_address, flag:integer): integer; export;
(Start or quit the encoded data transmitting

The radio transmitter unit in the box

```
'Bit_weight index 2,
send_data
transmit
{*******************Main
Program***********************}
begin
end.
```

The graphic interface of the Visual Basic software driver is shown in figure 10. The program first reports the number of LPTs installed on your PC, then it asks users to select an LPT port to be used. Next the control panel appears on the screen. Users need to input the address of the mains switch and the data to be sent. If DO of the radio receiver module is used to control the mains switch, input 1. Then users need to input the period of ON and the period of OFF of the mains switch. Clicking the Start button using the mouse starts the remote control. Clicking the Stop button any time will terminate the remote control.

The complete VB3 program listing is shown in listing 2. The VB program is very simple, but it shows the basics in Visual Basic programming. At the beginning of the program, declare functions declare four DLL functions. All the functions can be called elsewhere within the VB3 program.

Declare Function Centronic Lib "c:\projectVhomelwhdll.dil" (ByVal X As Integer) As Integer

Declare Function Bit_weight Lib "c:\project\homelwhdll.dill" (ByVal X As Integer) As Integer

Declare Function send_data Lib "c:\project Vhomelwhdll.dIl" (ByVal P_address As Integer, ByVal address As Integer, ByVal datax As Integer) As Integer

Declare Function transmit Lib "c:\projecthomelwhdll.dIl|" (ByVal P_address As.Integer, ByVal flag As Integer) As Integer

It should be pointed out that the dynamic link library, WHDLL.DLL, should be stored in the directory c:\project\home. Using the Windows DLLs provided, uses can write more sophisticated and more adventurous software for controlling the mains controllers.

Listing two WINHOME

```
Declare Function Centronic Lib
"c:\project\home\whdll.dll" (ByVal X As Integer) As
Integer
Declare Function Bit_weight Lib
"c:\project\home\whdll.dll" (ByVal X As Integer) As
Integer
Declare Function send_data Lib
"c:\project\home\whdll.dll" (ByVal P_address As
Integer, ByVal address As Integer, ByVal datax As
Integer) As Integer
Declare Function transmit Lib
"c:\project\home\whdll.dll" (ByVal P_address As
Integer, ByVal flag As Integer) As Integer
Dim address, datax, Onstatus, centronic_addxess As
Integer
Dim ontime, offtime As Integer
Sub Commandl_Click ()
    'assign variables
    address = Val(textl.Text) 'address of the mains
controller
    datax = Val(text2.Text) data sent to the mains
controller
    ontime = Val(text3.Text) * 1000'period of ON
    offtime = Val(text4.Text) * 1000'period of OFF
    timerl.Interval = ontime
    timerl. Enabled = True
    Onstatus = 1
```


End Sub

Sub Commandi_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Start the automatic control"
End Sub
Sub Command2_Click ()
timer1.Enabled $=$ flase
End Sub
Sub Command2_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption = "Stop the automatic control"
End Sub
Sub Command3_Click ()
End
End Sub
Sub Command3_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Quit the program"
End Sub
Sub Form_Load ()
dununy $=$ MsgBox(Str (Centronic $(0)-1) \&$ " Centronic ports are installed on your PC. Their base addresses are: " \& Format\$(Centronic(1), "\#\#\#") \& " \& Format (Centronic(2), "\#\#\#") \& " " \&c
Format (Centronic (3), "\#\#\#") \& " "\&
Format\$(Centronic(4), "\#\#\#") \& "Decimal", 48,
"Centronic ports on your PC")
Centroic_number = Val(InputBox\$("Input 1, 2, 3 or 4 to select a Centroic port (Centroic) for the Mini-Lab Data Logger/ Controller". "Select Centroic ports"))
centronic_address $=$ Centronic (Centroic_number)
centronic_address $=632$
timer1.Enabled = False
End Sub
Sub Label9_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "On-line help window"
End Sub
Sub Textl MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Input address of controller, 0 to $255^{\prime \prime}$
End Sub
Sub Text2_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Input the 4 -bit data $1,2,4$ or 8"
End Sub
Sub Text3_MouseMove (Button As Integer. Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Input the $0 N$ period in second" End Sub

Sub Text4_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
label9. Caption $=$ "Input the OFF period in second" End Sub

Sub Timer1_Timer ()
If Onstatus $=1$ Then
timer1. Enabled = flase
dummy $=$ transmit (centronic_address, 0)
dummy = send_data(centronic_address, address,
datax)
dummy $=$ transmit (centronic_address, 1)
For $i=1$ To 100000
$i=i$
Next i
Onstatus $=0$
timerl. Interval $=$ offtime

```
    timerl. Enabled \(=\) True
Else
    timerl. Enabled \(=\) flase
    dummy \(=\) transmit (centronic_address, 0 )
    dummy \(=\) send_data (centronic_address, address, 0 )
    dumury \(=\) transmit (centronic_address, 1)
    For \(i=1\) To 100000
        \(i=i\)
    Next i
    Onstatus = 1
    timer1. Interval = ontime
    timerl. Enabled \(=\) True
End If
End Sub
```


Final words

A number of mains switches can form a mains control network which is fully controlled by one computer. To make a good control of mains, you need a good software driver. As the radio transmitter is connected to the printer port, any type of computer can be used. Have you ever thought about using your Mac, your Amiga or your Psion organiser to control such a radio mains control system? Here imagination is unlimited.

Components

The parts lists for the radio transmitter and receiver modules were given in Part 1 of this series (ETI Volume 26 Issue 3).

Part 1

For anyone who missed Issue 3 this year, Back issues of ETI are available for $£ 3.05$ each from Nexus Subscription Services, EII, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Leicestershire LE16 9EF. Backissue enquiries 01858435322 . Please make cheques payable to Nexus Special Interest,

Technical support

Constructors should be able to obtain most of the components from Maplin or Electromail. The VB3 software driver (source code and EXE files) and DLLs are available at a price of $£ 15.00$ UK from me. The PCB boards for a pair of radio transmitter and receiver module is $£ 12.00$. The PंCB board for the mains switch is $£ 8.00$. The mains transformer is avialable for $£ 3.90$. I also have a limited number of kits which put everything together in a package. Please direct your enquiry to Dr. Pei An, 11 Sandpiper Driver, Stockport, SK3 8UL UK. My telephone and answer phone number is 01614779583 and my e-mail is PAN@FS1.ENG.MAN.AC.UK

Figure 10: a Visual Basic control panel for testing the radio mains control system
SUBSCRBE TO ANY M

NGODSS

29
magntines TO croose FROM 1 bacent Prices

WURTAStIT PIMENSTOWAL ATASUREMENT

BE

REMEMBERED

 FOR MONTHS AFTER CHRISTMAS
A SUBSCRIPTION

 IS THE PERFECT GIFT.CHRTSTMAS SUBSCRIPION OFFER - SAVE

GUZINE
 FOR
 OMIY

REMEMBER, A

 MACAZINE SUBSCRIPTION MAKES A GREAT CHRISTMAS GIFT that will last FOR MONTHS!
Householder

Whether you are looking for a magazine subscripion for yourself or as a superb Chrisimas gift, this offer is unbeatioble. And it couldn'1 be simpler:

So whatever your passion, you can have the magazine (or magazines!) of your choice delivered directly to your door post free ; for only $£ 25$. Remember, a subscription is always cheaper than buying your copies from the newsagent' In this case, you can save anyhing from $£ 2.00$ to $£ 8.75$, depending on your magazine choice.

TO ORDER, simply select your favourites from the 29 magazines we have available and fill in the details on the coupon below. The number of issues you will receive and the saving you are making are shown with each magazine, so you can see whal a sensalional deal you are geting! If you would like to give a subscriplion as a Christmas present, please make sure that you also fill in the gift recipients details.

SO ORDER NOW, and don't miss out on these exceptional Christmas subscrippion savings!

Important Deadlines

Please allow up to 4 weeks for the delivery of your first issue

- All savings are based upon byying the same number of issues from your newsagent, UK only.
please order all your goods using the coupon below ensuring you fill in efll sections OR simply use our order hotilne. Thank you.

```
YES! I would like to take advantage
of this Special Christmas offer and
subscribe to ANY magazine shown
            for only:
£25 UK - £34 EUROPE
    £37 OVERSEAS
        $62 USA
            Mugryem|Pinons gMoi=- 
```

```
                                ._.......................................
```

```
                                ._.......................................
```



```
Total Subscription Value
METHOD OF PAYMENT
The total value of my order is
\(r\) is \(\varepsilon\)
enclose a Cheque/P.O. made payable to Nexus Special Interests Ltd. or please debit my Access/Mastercard/Visa/AMEX account
```


Name: (Mr/Mrs/Miss)
Initial
Your Details (PLEASE USE CAPITALS) Name: (Mr/Mrs/Miss)
Initial

............................... Surname

Address:

Postcode
Telephone:
Gift Subscription - Please fill in the recipients details below (PLEASE USE CAPITALS)

Address:

Postcode
 Telephone:
 Please tick this box if you would like to receive a gift acknowledgement letter \square

Please send this completed form together with your payment to:
NEXUS SUBSCRIPTIONS, TOWER HOUSE, SOVEREIGN PARK, LATHKILL STREET, MARKET HARBOROUGH, LEICS., LE16 9EF
CLOSING DATE:
31/01/98
Please tick this box if you do not wish to receive direct mail from other companies \square CODE 3000
Christmas Subscription Express Order Hotline: 01858435344

(PLEASE QUOTE CODE 3000)

9am - 5.30pm Monday - Friday Fax order line: 01858434958

PROTEUS
 \section*{Schematic Capture}

 rise $\rfloor y^{\text {in }}$

 rise $\rfloor y^{\text {in }}$ cenernulon

-Produces attractive schematics like you see in the magazines. - Netist, Parts List \& ERC reports. ©Hierarchical Design. ©Full support for buses including bus pins. Extensive component/model libraries. Advanced Property Management. -Seamless integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation. ©event driven Digital Simulation with modelling language. OPartitioned simulation of large designs with multiple analogue $\&$ digital sections. -Graphs displayed directly on the schematic.

Now Features

Component Auto-Placer PInswap/Gateswap Optimizer Background Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Control of Schematic Appearance Extensivo Mew Component Libraries

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further Information \& upgrade prices.

- Automatic Component Placement. ORip-Up \& Retry Autorouter with tidy pass. Pinswap/Gateswap Optimizer \& Backannotation. 32 bit high resolution database. Full DRC and Connectivity Checking. Shape based gridless power planes. Gerber and DXF Import capability.
a PJOTEUS

with tis Inp-wpandoucery
EWW January 1997

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0175675344 . Fax: 01756752857 . EMALL: Inlo@labcenter.co.uk 53-55 Main St, Grassington. BD23 5AA. WWW: htp://www. labcenter.co.uk
Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

Sound Switcher

 Circuit
Terry Balbirnie starts a series of adaptable circuits for GCSE- and similar-level projects with a module to trigger a reaction when a sound it made.

Bvery so often during your school or college course in Electronics or Technology, you will be asked to undertake a project. Some teachers and lecturers give a fairly specific idea of what the finished device should do and what components it should contain. Some examinations boards require you to make a project with a specification set by them. However, for midcourse assessments and for many other examinations you will have to work on a project of your own choice.

Making a start

So, where do you begin? It is always best if the project reflects some specific interest which you have, such an another hobby or voluntary activity. It may be related to some other person such as an aid for the disabled, a child's toy and so on. This type of personal interest will show through when you come to write up your report. Also, since the finished device will probably be given back to you at the end of the course or module, you will have something else useful for your hard work!

Over the coming months (although not every month), we shall provide some basic projects which cater for a variety of interests. You will be able to use a circuit as it stands or modify it for the purpose you have in mind. All the designs will be fairly basic so no one should have too much trouble understanding how their chosen circuit works or how to construct it. Any modifications and experimental work is left up to you. The designs are open-ended, so that there will be plenty to make the more able student think - in fact, there are one or two
slightly off-beat features built into each one for this very purpose. The end product in each case will be a circuit panel which "does something".

All the devices are given in the form of a circuit diagram and a stripboard (Veroboard) layout. This will be useful for anyone who does not have the facility for making actual PCBs. Also, the "in-line" stripboard arrangement more resembles the circuit diagram than a true PCB and is more easily followed by some people. Of course, some students will wish to translate the circuit diagram into true PCB form.

Down, Rover

This month we shall look at a sound-operated switch which may be used to operate a toy - such as a cardboard dog which jumps out of a kennel when you whistle. It could also be used for environmental studies work where a light is meant to come on when the sound reaches a certain level. Another idea would be to use it to trigger a photographic flash gun. By setting up the camera in darkness with the shutter open, a photograph would be taken of anything that made a sound. Anyone want to try Ghost Busting?

The circuit terminates in a relay output so that it may be used to operate a wide variety of devices, including other electronic circuits, by means of a separate battery. For high-powered lamps, motors and solenoids it will be necessary to upgrade the relay to an appropriate heavyduty type. Another idea would be to use the relay on the PCB to operate the coil of the up-rated one "piggy back" fashion.

Sound circuit

The circuit for the sound switch is shown in figure 1. Power is obtained from a 9V PP9 battery or six "M" size cells in a suitable holder. A PP3 battery is not really up to the job. Diode DI allows current to pass and charge up capacitor C4 which then gives a supply for most of the circuit. The capacitor provides a reserve of charge and helps to promote stable operation. The relay coil is powered direct - that is, before DI and C 4 . Its power supply needs no special treatment.

Microphone MIC1, picks up the

sound and converts it into electrical signals. These take the form of very weak ac which changes in frequency and amplitude to represent the sound being received. The type of microphone specified contains a FET (field effect transistor) pre-amplifier which boosts the signal given at the output. Resistor R1 provides the supply to the pre-amplifier from the positive line. Note that the pre-amplifier supply input and the signal output are the same pin.

The signals, which are still very weak, are passed from the output via capacitor, C1, to the base of transistor, Q1. This amplifies them further. Resistors R2 and R3 provide bias with some negative feedback so that the transistor is partially turned on. It is then found that about one half of battery voltage appears across the collector resistor R3. The other half exists between Q1 collector and emitter. These points could be checked using a voltmeter at the end.

Capacitor C 1 allows the ac signal to flow from the microphone output to Q1 base while blocking the standing dc voltage which exists there. This would otherwise upset the bias of Q1 because the two voltages would be different.

When sound is received by the microphone, the steady voltage existing between QI collector and emitter will rise and fall in sympathy. Whistling at a distance of 1 m from the microphone in the prototype unit provided a 1 V change approximately. At the end of construction and particularly if the unit fails to work, this could be checked using an oscilloscope. Preset potentiometer RV1 behaves as a potential divider and scales down the voltage between Q1 collector and emitter. This will be used as a sensitivity control and the way in which it works will be expiained presently.

Voltage comparator

The next section of the circuit is a voltage comparator and is based on operational amplifier (op-amp), IC1. The rule is this: if the voltage applied to the non-inverting input (pin 3) exceeds that at the inverting one (pin 2) then the output, pin 6, will be high otherwise it will be low. Pin 2 receives a fixed voltage equal to about one-quarter that of the supply due to the potential divider action of resistors R4 and R5. RV1 will be adjusted so that the voltage applied to pin 3 is slightly less than that at pin 2 . Since there is about one-half of supply voltage existing across the outer terminals of RV1, the balance point will be found at about the mid-point of the track. With the voltage at pin 3 being less than that at pin 2, the op-amp output, pin 6, will be low and LED1 off. The LED will be used as an aid to setting-up RV1 correctly at the end. Resistor R7 limits its operating current to 12 mA approximately. When sound is detected, the rising parts of the waveform appearing at Q1 collector will be reflected in a rising voltage at IC1 pin 3 and, if is loud enough, will rise above the voltage at pin 2 on the peaks. Pin 6 will therefore go high and low as the wave rises and falls. This is passed on to the next section of the circuit which is a monostable based on the 7555 timer, IC2. Resistor R6 applies a little positive feedback to the system and this sharpens the switching action.

Good timing

When the first low pulse is received at IC2 trigger input, pin 2, the output (pin 3) will go high for a certain time then revert to low. The time during which it does this depends on the values of capacitor C3, fixed resistor, R9 and preset variable, RV2. With the specified components, the timing will lie between 1 second and 10 seconds approximately with RV2 providing the adjustment. The timing could be increased by raising the value of C 3 in proportion and vice versa and this could be the subject of experiment at the end. In the absence of sound, the

Figure 1: the circuit of the Sound Switch

Low Cost Introduction to Smart Cards

THE SMARTEST SOLUTION

Crownhill can offer a broad range of processor based smart cards from just 51.00 . and Smart Card sockets for just £1.45 ea. PIC Microchip based Smart Cards now available at just $£ 4.50$ ea..........DEVELOP YOUR OWN SMART CARD I Crownhill can supply over 150 different types of IC from more than 12 silicon suppliers, all can be incorporated into smart card format. Some cards are available from stock, most are manufactured to the customers specification.

DIY SPECIAL $£ 9.95$

Circuit Diagram for an easy to build Smart Card Interface. Supplied with P.C. Driver software to communicate with Real Smart Cards PCB for above $£ 7.00$

CROWNHILL ASSOCIATES LIMITED

THE OLD BAKERY
NEW BARNES ROAD
ELY
CB7 4PW
Tel: 01353666709
Fax: 01353666710
Email Sales@crownhill.cambs.net

Prices are exclusive of VAT Please add $£ 5.00$ for Postage by registered delivery.
Cheques and P / O 's payable to: Crownhill Associates Linuted

VISA MASTERCARD

 SWITCH
SMART CARD INTERROGATION SYSTEM

- Smart Card Reader / Writer (Programming Interface)
- Smart Card Interrogation System, to identify the commands accepted by any valid Smart Card and log them to disk for evaluation. Will allow the user to "re send "known commands and monitor the result.
Passive interface to allow the user to monitor the data flow between Card and host system.
244 page Hard Back reference book, covering all aspects of Smart Card design and programming.
Sample program to read memory type Phone cards Data on NEW Visa Smart Cards

```
£149.99
```


Professional Reader Writer Package

Serial PC interface, technical documentation giving command protocols and .lib files for all cards listed below.
This Inteligent Reader Writer allows communication batween a PC and cards that have different communication protocols. By taking care of the card specific particulars, it allows control of the cards without the user getting involved with the technical details of the card operation.

US3	INTRODUCTORY PRICE $£ 225.00$			Siemans	Atmel
USF015 USM202	USD033	SGS	Gemplus	SLE4406	$\begin{aligned} & \text { AT88SCOG } \\ & \text { AT24C01 } \end{aligned}$
USM202	USL101	SGS	Gemplus GPM103	SLE4404	AT24C02
USM204 USM216	USL102	Thomson	GFM1K	SLE4418	AT24C04
USM264	USLA04	ST1305 ${ }^{\text {co }}$	GFM2K	SLE4428	AT24C08
USD019	USD304	ST14C02xC	GFM4K	SLE4432	AT24C16
USD032	USD018		GPM416	SLE4442	AT88SC101

GAL PROGRAMMER

 £89.9516V8 / 16V8A / 16V8Z / 20V8 / 20V8Z / 20V10

Works on IBMPC $\sqrt{ }$ compatible / laptops / Notebooks

- Plugs into Centronics printer port.
- Fast and reliable programming using manufactures algorithims.
- Program protection fuses - prevent unauthorised copying
- Easy to use software - load/save in JEDEC format
- Supplied with PLAN logic compiler software
- Stylish compact case with quality ZIF
- Complete with examples, connection lead and PSU
- Full 12 months parts and labour guarantee

P87C51/2 PROGRAMMER
 $£ 79.95$

Programs all makes of P87C51/2 and Amtel 89C51 Flash types Cased as above, this unit plugs into the serial port on any IBM PC or compatibles and is complete with software, connection lead, PSU, and 12 months guarantee

EPROM PROGRAMMER

$£ 99.95$
EPROMS / EEPROMS / FLASH EEPROMS / 12C BUS EEPROMS
Covers all devices from 2 K to 8 MEG
The Megaprom Eprom Programmer plugs into the
Centronics port on any IBM PC or compatible. The easy-touse software supports Bin, Intel Hex, Motorola S, and ASC file formats. Read / Edit / Verify / Reprogramme etc - very fast programming and verification. Requires $12-18 \mathrm{~V}$ AC/DC PSU. The megaprom comes with full 12 months guarantee

SMARTCARD READER / PROGRAMMER

$£ 79.95$
Read/Program 1,2,3 chip D2MAC, Wafer, new Digital 'Gold', ISO7816 (Videocrypt, GSM, Telephone, etc) cards.

This powerful unit reads and programs an amazing variety of smartcards, Easy to use software allows you to simply load in codes and program them to the card of your choice. The type of card is selected by setting the on-board jumpers. In ISO mode (Videocrypt, GSM, etc) you can send single or multiple bytes to the card and 'log' it's response. Knowledge of correct codes can result in cards being altered (eg serial number change, revival of dead cards, altering of unit amounts). Ideal for 'educational' use and 'investigation' into smart card technology the unit also allows the 'in circuit' programming of PIC 84 chips. Unit comes with 'interesting' text files relating to smartcard encryption, software, current D2MAC codes, connection lead details and full 12 months guarantee. Note: This unit must not be used to copy Videocrypt, GSM. or Telephone cards.

EPROM EMULATOR

This is the ideal way to test / change 'running' code on CPU based systems. It plugs directly to the printer lead of an IBM compatible computer. There are no internal cards so it is ideal for laptops etc. The unit emulates ALL Eproms from 24 pin 2716 (2 k) to 32 pin 27 CO 10 (128 k). The memory can be contigured as 128 k by 8 bits or $2 \times 64 \mathrm{k}$ by 8 bits. A CPU reset line is provided and the user can select. high/low or low/high reset signals. Software supplied has full screen editing and allows you to save and load code with offsets. Full 12 month guarantee.

LEADING EDGE TECHNOLOGY LTD

VISA
Internet Site: http://LET.cambs.net/
White Rose House, Xintill street, Tarxien, PLA 11, Malta Telephone: (00356) 678509

Fax: (00356) 667484
E-mail: johnmorr@email.keyworld.net
No VAT payable

£1 BARGAIN PACKS
 - List 1

1,000 items appear in our Bargain Packs List - request one of these when you next order.
$1 \times 12 \mathrm{~V}$ Stepper Motor. 7.5 dogree. Order Ref: 910. 1×10 pack Screwdrivers. Order Rel: 909 .
$2 \times 5 \mathrm{mpp}$ Pull Cord Celling Switches. Brown. Order Ref: 921
$5 \times$ reels insulation Tape. Order Ref: 911
$4 \times 1 \mathrm{~mm}$ Bull-races. Order Rel: 912
$2 \times$ Cord Grlp Switch Lamp Holders. Order Ref: 913.
$1 \times$ DC Voltage Reducer, $12 \mathrm{~V}-6 \mathrm{~V}$. Order Ref: 916. $1 \times 10 \mathrm{amp} 40 \mathrm{~V}$ Bridge Rectifior. Order Ref: 889 Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896
$2 \times 25 \mathrm{~W}$ Croseovers. For 40 hm loudspeakers. Order Ref: 22
$2 \times$ NiCad Constant Current Chargers. Easily adaptable to charge almost any NiCad battery. Order Ref: 30 .
18V-0-18V 10VA mains transformer. Order Ref: 813. $2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132
$2 \times$ Reed Relay Kits. You gel 8 reed switches and 2 coil sets. Order Ret: 148.
12V-0-12V 6 VA mains transformer, p.c.b. mounting. Order Ref: 938
$1 \times$ Big Pull Solenoid. Mains operaled. Has $1 / 2^{\prime \prime}$ pull. Order Ret: 871
$1 \times$ Big Push Solen
push. Order Ref: 872 .
$1 \times$ Mini Mono Arnp. 3W
into 8 ohm . Order Ret: 495 .
$1 \times$ Mini Stereo iw Amp. Order Ref:870.
15 V DC 150 mA p.s.u., nicely cased. Order Ref: 942. $1 \times \mathrm{in}$-flight Steroo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Moter. Full vision fact 70 mm square. Scaled 0-100. Order Ref: 756 .
$2 \times$ Lithlum Batterles. 2.5 V penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552.
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232.
$3 \times \ln$-Fiex Switches. With neon on/off lights, saves leaving things switched on. Order Rel: 7.
$2 \times 6 V 1 A$ Malns Transformers. Upright mounting with fixing clamps. Order Ref: 9 .
$2 \times$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a micro switch. Order Ref: 32 .
$4 \times 13 A$ Rocker Switch. Three tags so onvoff, or changeover with centre offi. Order Rel: 42.
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
$1 \times 6 V 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A. $2 \times$ Stripper Boards. Each contains a 400 V 2 A bridge recilifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120. 12 Very Fine Drills. For PCB boands etc. Normal cost about 80 p each. Order Ref: 128.
$5 \times$ Motors for Model Aeropianes. Spin to start so needs no switch. Order Ref: 134
$6 \times$ Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139
$6 x$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180
$1 \times$ inflex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref:196.
$1 \times$ Malns Solenold. Very Powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ret: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211.
412 V Alarms. Makes a noise about as loud as a car hom. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: 243
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Rel: 252
$2 \times$ Oblong Push Switches. For bell or chimes these can switch mains up to 5A so could be foo switch if fitted in pattress. Order Ref: 263.
$50 \times$ Mixed Sllicon Diodes. Order Rel: 293.
1 $\times 6$ Digit Mans Operated Counter. Sta other normally closed. Order Ret: 48 .
$1 \times$ Cablnet Lock. With two keys. Order Ref: 55
61/2 $8 \Omega 5$ Watt Speaker. Order Rel: 824
 powertul. Order Ret: 85
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86
$1 \times$ Case, $31 / 2 \times 21 / 4 \times 13$ with $13 A$ socket pins. Order Ret: 845.
$2 \times$ Cases. $21 / 2 \times 21 / 2 \times 13 / 4$ with 13 A pins. Order Ref: 565.
$4 \times$ Luminous Rocker Switches. 10A mains. Order Ref: 793.
$4 \times$ Oifferent Standard V3 Micro Switches. Order Ref: 340.
$4 \times$ Different Sub Min Micro Switches. Order Ref: ${ }_{313}$.

BARGAINS GALORE

NSULATION TESTER WITH MULMMETER. IHemaly generates voliages which enable you to read instation directy in megohns. The mullimeter has tour ranges, ACDC volts, 3 ranges millamps 3 ranges oorm but in very 5000 condtion, These instuments are ex-Erish teib cost af loast $£ 50$, yours for only $£ 7.50$ wiht laads, carying case 22 exta, Order Rel: 7.5 P 4.
THS MSTRU EMT but sighty lauly - you shoid be able to repair it We supply circul diapram and notes, E3, Order Ret: 3P176. 12V 1OM SWITCH MODE POWER SUPPLY. For only 8950 and a the bit of work because you have to convert our 135W PSU. Modifica ions are relativey simple - we supply instucluons. Simply Order PSU Rep:901 CJPqOADD AUM 1 cord be ined
any cupbord door is opened The ioht stining on the un mates the bell ing Complaty bui and nealy cased, requires only a ballery. E3, Onder Ret: 3P155.
DOMT LET IT OVERFLOW! Be bath, sink celar, sump or any oher fing that could food. This device will fell you when the water has risen oo the presot level. Adustable over quma a usefur range. Naaiy cassed or wail mounting, ready to work when baliery med, $E 3$, Order Rel: 3P156.
VERY
VERY POWERFUL MMNS MOTOR. Wh extra long ($21 / 2$) shans extending out each side. Makes it ideal lor a reversing arrangement lor, as you know, shaded pole moters are not reverste. E3, Order SOLAR P 2P324.

§1 SUPER BARGAN 12 V axial fan lor ondy $£ 1$, ideal for equipment cooling, brand new, made by West German comdrive circuit, we incude diagram. Only 11 , Order Rel: 919. When we supply this we will incude a iss of approximately 800 of our

other E 1 , bargains.
UGHTT DMmeRS. On standard plate to put drectly in place of mush which Avieble in colours green, red blue and yollow, 2250 , Order Pof: 2.5P9.
SA DOUBLE POLE MAWS SWTTCH Mounted on a $6^{6} \times 31 h^{\circ}$ aluminum pate, beaucituly finished in gotd, with piliot light. Top quality. made by McM, ε, Order ret: 2 STAND
DONT STAND OUT WNTHE COLD. OUT 12 m lelephone extension lead has a flat BT socket one end and fat BT plug other end, $£ 2$ Order Ret: 2P338
20W 4 OH SPEAKER. E3, Order Ret: 3P145. Malching 4 ohn 2OW
Lhis is a mh DIGTT PANEL MEIER
This is a mult-range volinderfarmeitur using the A-D converter chip 7106 to provide 5 rempes each of vots and arps. Suppled
TELEPHONE EXTENSION WIRE 4 core correcty colour coded, in
 trame lor hisy resolullon tame less than price of thoe arone onty 15 , Order Red ${ }^{5 P} 1$ HMGH CURFENT AC MAN'S RELAY. This has a 230 V coll and changeover swich rated at 15A with PCB mounting with claar plastic cover, $\mathbf{M 1}$, Order Rel: 965 .
ULTRA ThN DRilis. Aclualy 0.3 mm . To buy these regitar costs a ormne. However, hese are packed in hal dozens and the price to you is 11 per pack, Order Ref: 7978 .
To Car STAD ON ITM Made to house GPO tesephone equipmert, his box is extremey lough and would be ideal for keeping your smal ools in, intemal size approx. $101 / 2 \times 41 /{ }^{\circ} \times 6$ high. caryin sovid TRAMSDUCERS Tmo mo
, Order Ret: 1.5P4 POWER SUPPLY WIH EXTRAS. Mains input is fused and mored and the 12 V DC Output is voluge regukied, misnded for high class equipmert, this is mouniod on a FCB and aso moundod on me board but easily removed, are fwo 12V retays and Piezo sounder. Price E3, Order Ref: 3P908.
MWS ISOLATION TRANSFOPMER. SIops you gouing "to earth" shooks, 230 V in and 230 V out, 150W, 17.50 , Order Rel: 7.5P5, and a 250W version is 1010 , Order Ref: 10P97.
mis 2as Fest make "PAPST", 41/2 square, metal blades, E8, Ordar Ret: 8P8.
20P1 LSER. Hefium neon by Phings, fill spec., E30, Order Ref: 15P1. or in supply for this in kit form with case is $£ 15$, Order Ret. The targer un' mer case to house wbe as well, 118 , Order Ree: $18 \mathrm{PP2}$. twe, 20e, Order Ret: 65P1

> Hyou order ten of an item we will add an eleventh one free. AR SPACED TRAMER CAPS, 2-20pi, ideal for precision tuning UFF circuits, 4 for M1, Order Ret. 8188. MODEM AMSTRAD FM240. As new condition wilh leads POWER UiII. 13.5 V a 1.3 A or 12 V a 2 A encased and sow Meds and olput plug, normal mairs input, $\Sigma 6$, Order Ret: 6 P 23 . normal primaries and uprigh mounting, one is 20 V 4 A . Order Ref. normal primanes and upright mountry, on
3 P106, the other 40 V 2 A , Onder Ret: 3P107.
PROJECT BOX. Size approx. $8 \times 4 \times 4 / / 2$ metal, sprayed grey, lourred ends for ventitition cthenvise undriled. Made for GPO so best qualy, only 83 each, Order Ret: 3P74.
en mel COMPONENT BOARO. Amongst huncred of other parts, his has 15 ic.s. all plug in so do no
15W 8 OH ${ }^{2} 8$ SPEAKER \& 3 TWEETER. Made for a discontinued high quality music centre, gives real hi-f and only \&4 per paix, Order Ree: 4P57.
WATER PUMP. Very powertul, mains operaled, $\mathrm{s10}$, Order Rel: $10 P^{2} 4$.
O-1mA FULL VISION PANEL MEIER. $23 / 4^{\circ}$ square, scaled O but scale easiy removed lor re-witing, $£ 1$ each, Order Ref: 756. keyboard, having over 100 keys including, of course, fur numerical and qwerty. Brand now, still in maker s packing, Order Ret: 5P202. 4 RPI MOTOR. This is only 2 W so will nol cost much to na. Speed is ideal for revoving miriors or lights, $£$, Onder Ref: 2 P328.
UNUSUAL SOLIEIOD. Solencids normaly heve to be enempised to put in and hodd the core, this is a disadvantage where the applance is hold the core uri a voltage is appliad io retence it $\mathbf{2}$, Order Ret: 2P327. 2, Order Ref: 2P315.
£1 BARGAIN PACKS - List 2

This is the $£ 1$ Bargain Packs List 2 - watch out for lists 3 and 4 next month.
$3 \times$ Battery Model Motors, liny, medium and large, Order Ref: 35.
$2 \times$ Tuning Capactors for super-het wave radios, Or der Ref: 36 .
Miniature 12V Relay with low current consuming coll 2×3 A changeover contacts, Order Rel: 51
$2 \times$ Ferties Slab Aerlals with mecium wave colis. Idea or building smal radio, Order Ref: 61.
$\times 25 \mathrm{~W} 8$ OHM Variable Resistors, Ideal for loudspeaker volume control, Order Ref: 69.
2 x Wirewound Varisble Restistors in any of the folowing values, 18, 35, 50, 100 ohms, your choice, Or der Rel: 71.
x 30 A Procelein Fuse Holders. Make your own fuse boand, Order Ref: 82.
$1 \times 6{ }^{1 / 2} 2^{\prime \prime}$ Metal Fan Blades for $5 / 16^{\prime \prime}$ shatt, Order Ref: 86/61/2.
Mains Motor to suit the $61 / / 2^{\prime \prime}$ blades, Order Ref: 88.
$1 \times 4.5 \mathrm{~V} 150 \mathrm{~mA}$ DC Power Supply. Fully enclosed so quite safe, Order Ref: 104
10 each red and black small stze Crocodile Clips Order Ref: 116.
15 m Twin Wire, screened, Order Ref: 122 A .
100 Plastic Headed Cable Clips, nail in type, several izes, Order Ref: 123
x MES Batten Holders, Order Ret: 126
4×2 Circult Micro Switches (Licon) Order Fief: 157. $1 \times 13 A$ Switch Socket, quite standard but coloured, Order Ref: 164.
1×30 A Panel Mounting Toggle Switch, doublo-pole, Order Raf: 166.
$2 \times$ Neon Numicator Tubes, Order Ref: 170
$100 \times 3 / 8$ Rubber Grommets, Order Reit: 181.
4×8 C Lamp Holder Adaptors, Order Ref: 191
x Superior Type Push Switches. Make your own keyboard, Order Ref: 201.
ans ransiormer $8 \mathrm{~V}-0 \mathrm{~V}-8 \mathrm{~V} 1 / 2 \mathrm{~A}$, Order Rel: 212. $2 \times$ Sub Min Toggle Swtiches, Order Ref: 214. High Power 3' Specker (11W Bohm) Order Ref: 246. Modlum Wove Permeability Tuner. Its almost a com plete radio with circuit, Order Ref: 247.
x Scrowdown Terminats with through panel in sulators, Order Ret: 26
LCD Clock Display, $1 / 2$ "figures, Order Ref: 329
$0 \times$ Push-On Long Shifted Knobs for $1 / 4^{*}$ spindle, Order Ref: 339.
$2 x$ ex-GPO Speeker Insents, ref 4T, Order Ref: 352 $100 \times$ Sub Min $1 F$ Transtormers. Just night if you wan coil formers, Order Rel: 360 .
x 24 V 200 mA PSU, Order Ref: 393.
x Hoating Eloment, mains voltage 100 W , brass en cased, Order Rel: 8.
x Mains interference Suppressor, Order Ref 21 $3 \times$ Rocker Switches, 13A mains voltage, Order Ref:
$1 \times$ Minl Uni-Selector with diagram for electronic ingsaw, Order Ref: 56
$2 \times$ Appllince Thermostats, adjustable 15A, Order Ref: 65 .
$1 x$ malns Motor with gearbox giving 1 rev per 24 hrs. $0 \times$ Round Polnter Knobs for flatted $1 / 4$ spinclies, Order Ref: 295.
$1 \times$ Ceremic Wave Chenge Switich, 12-pole, 3-way with $1 / 4{ }^{\prime \prime}$ spindle, Order Ref: 303.
$1 \times$ Tubuler Hand Wike, suits cassette recorders, etc. Order Ref: 305
$2 \times$ Plastic Stethosets, take crystal or magnetic inserts, order Rel: 331
$20 \times$ Preeet Restetors, various types and values, Or der Ref: 332.
$5 \times$ Car Type Rocker Swhiches, assorted, Order Ref: 333.
$1 \times$ Reversing Switch, 20A double-pole or 404 single pole, Order Ref: 343.
\times skinted Control Knobs, engraved 0-10, Order Ref 355.
$3 \times$ Lumbnous Rocker Switches, Order Rel: 373
2×1000 W Tubular Heating Elements with terminal ends, Order Ref: 376
1 x Mains Transformer Operated NICad Charger cased with loads, Order Ref: 385.
$2 \times$ Clockwork Motors, run for one hour, Order Ref: 389.

нан⿰亻 AMFM TUAMAG

CAPACTIOR. Only ${ }^{\prime \prime}$ " square but has a good length of $1 / 4$ diameter spindle with 4 variable preset caps for fine uning. Price ©1 Order Ref D202
ANOTHETHER $7^{\prime \prime}$ ' FERRITE ROD AERIAL. This is an extra special $1 / 2$ " diameter with long and medium wave extra special $1 / 2{ }^{\prime \prime}$ dameter with
coits. Price E1, Order Ref: O203.

TERMS

Send cash. PO, cheques or quole credit card number orders under cz5 add E 3 service charge.

> J\&N FACTORS
> Pilgrim Works (Dept. E.E.)
> Stairbridge Lane, Bolney,
> Sussex RH175PA
> Telephone: 01444881965
trigger input, pin 2, is kept high through resistor R8 and this prevents possible false operation. Note that if sound continues to be picked up, IC2 will receive repeated triggering pulses and the output will remain high.

If the unit needs to be more sensitive, you will need to adjust RVI so that the standing voltage at ICl pin 3 is only slightly less than that at pin 2 . The monostable will then be triggered with only a very small sound.

With the monostable output high, current flows through resistor R10 to the base of transistor Q2. This turns it on and collector current flows through the coil of relay, RLA1. The "make" contacts of this component then act as a switch for any device requiring less than 2A which is the maximum current rating of the contacts. Diode D2 allows the high-voltage reverse pulse which appears across the coil when it switches off to be bypassed. This prevents possible damage to other semiconductor components in the circuit. The external device must be powered using a separate battery - do not try to use the battery which is used to operate the circuit. If you did, the sudden increase in current would cause a dip in the supply voltage. This would probably interfere with correct operation of the main section.

Construction

Note that an electret microphone insert is used for this project. This is the working part of the microphone without the case, lead, etc. This is much cheaper than a complete microphone. Some microphone inserts have pads on the base and other have short end wires. On the whole, wires are more convenient. If the microphore used is of the "pad" type, small bare wire "stalks" will need to be soldered to them before proceeding. Some microphones are of the three-wire type but the two-wire variety is used here.
transistors, microphone insert and capacitors $\mathrm{C} 1, \mathrm{C} 3$ and C 4 the correct way round. Look at the underside of the microphone - the pad which connects to the case is soldered to the OV line. Solder PP9-type battery connectors or as required to the " +9 V " and " 0 V " tracks as indicated. Solder wires to the relay contact tracks. Adjust RV1 to about midtrack position and RV2 fully clockwise (as viewed from 1C2 position) which will give minimum timing. Insert the ic taking care over the orientation. Both of them are CMOS components and could be damaged by static charge which might exist on the body. Earth yourself by touching the bare metal of a water tap first.

Testing

It is necessary to test the circuit in a quiet room! Connect up the battery. The circuit generally self-triggers on powering-up and the relay will probably be heard to operate. It will then click off again after about one second. Adjust RV1 until the LED is off. Clap your hands near the microphone. The LED should come on momentarily and the relay should click on and off again. If this does not work, adjust RV1 a little and try again. Try increasing the sensitivity noting that if RV1 is set too finely, the circuit will go unstable and the LED will flash on and off repeatedly. The circuit will work if the LED is normally just on instead of just off. However, this tends to be a less stable arrangement.

Ideas for experiments

This circuit must not be used to operate mains appliances. It is not designed to control mains and would be extremely dangerous. The relay "break" (normally closed) contacts could be used to switch an item off during the monostable timing period although this is probably less useful than switching it

Figure 2: the stripboard layout for the Sound Switch module

The topside stripboard layout (component side view) for the Sound Switch is shown in figure 2. Note that there are a large number of track breaks and several inter-strip links needed. Make the track breaks first using a proper spot face cutter. Most causes of malfunction are due to strips not being broken completely, a break or "bridge" being left out, a break in the wrong place or a small blob of solder or sliver of copper bridging adjacent tracks. Some of these are invisible to the naked eye. You have been warned! Make the inter-strip links and follow by soldering the ic sockets in position, and then all the remaining components. Take care to mount the
on. For more sensitive operation, the supply voltage might need to be stabilised. Set the monostable time period as required. If necessary use an alternative value for C 3 .

A small motor at the output could be used to make something turn or move, possibly for a toy. A solenoid could give a pushing or pulling effect to make "Rover" jump out of his kennel. Motors require a much higher current than their running value while they speed up. Also, other components such as solenoids and filament lamps require more current at the instant of switching on. All this must be taken into account when choosing a suitable relay.

Mint waterproof TV camera $40 \times 40 \times 15 \mathrm{~mm}$ requires 9 to 135 button cell 6 V 280 mAh battery with wires iVarta
volts at 120 mA with composite video output to feed into a $5 \times 250 \mathrm{DK}$ E2.45 volts at 120 mA with composite video output (to feed into a $5 \times 250 \mathrm{DK} 9 \mathrm{E} .45$
videc or a TV with a SCART plug) it has a tigh resclution Orbitel 866 batte of 450 TV lines Vertical and 380 TV lines horizontal, cellis with sattery pack 12 V 1.6 AH contains 10 sub electronic auto lris for nearly dark (1 LUX) to bright cordiess screwdrivers and drils 22 dia $\times 42 \mathrm{~mm}$ tall). It is sunlight operation and a small lens with a 92 degree field easy 10 crack open and was manufactured in 1994 of view, it focuses down to a few CM. It is fitted with a 3 E8.77 each or $£ 110.50$ per box of 14
wire lead (12 N in gnd and video outt). Now also available BCI box $190 \times 106 \times 50 \mathrm{~mm}$ with stots to house a pcb the lid $£ 93.57+$ vat $=£ 109.95$ or $10+£ 89.32+$ vat $=£ 104.95$. contains an edge connector (12 way 8 mm pitch) and Board cameras all with 512×582 pixels $4.4 \times 3.3 \mathrm{~mm}$ sensor blanks. $£ 2.95$
 io be housed in your own enclosure and nave fragile GaAs FET low leakage curremt $\$ 8873$ £ 12.95 each $\mathrm{c9} .95$
exposed suface mount parts. 47 MIR size $60 \times 36 \times 27 \mathrm{~mm} \quad 10+£ 7.95$ with 6 infra red leds (gives the same illumination as a small
orch would) $£ 50.00+$ vat $=£ 58.7540 \mathrm{MP}$ size SL952 UHF Limior 20 for $£ 1.00$
$39 \times 38 \times 23 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens package with data sheet $£ 1.95$
 40 MC size $39 \times 38 \times 28 \mathrm{~mm}$ camera for ' C ' mount lens this 200 gives a much clearer picture than with the small lenses
E68.79 standard ' C ' mount lens F 1.616 mm for 40 MC 26. 23 +vat $=\Sigma 31.06$

High quality stepping motor kits (all including stepping tean motors) Comstip independent control of 2 stepping
motors by PC (Through the parallel port) with 2 motors and software. Kit $£ 67.00$ ready built $£ 99.00$ software support and 4 digital inputs kit $£ 27.00$ power interface 4 A kit $£ 36.00$ power interface 8 A kit $£ 46.00$ Stepper kit
(manual control) includes 200 step stepping motor and control drcuit E23.00
OTA30 Hand held transistor analyser it tells you which lead is the base, the coliector and emitler and it it is NPN SCRs are transistors) DTA 30 E38.34 CRs are tran hind source and if P or N channel HMARO $£ 38.34$ Speaker cabinets 2 way speaker systems with Motorola tweeters
speaker dia
speaker dia
impedarce
treavency
ange

slese in mm
weight
weight
prico each tor:
black ving ccatin
black viny' cataing
grey tell coating
 = not nomally in stock atiow 1 week for delivery) meters
STA300 $2 \times 10 \mathrm{Wmms}$ (40 hm load) $11 \mathrm{~kg} \quad £ 339.00$ TA9000 2×490 Wms (4 ohm load) 15 kg §585.00 each cable ties ip each $£ 5.95$ per $1000 £ 49.50$ per 10,000 Rechargeable Battenes
AA(HP7) 500 mAH £0.99 AA 500 mAH with soider tags
 4AH with solder tags $£ 4.95$ PP $38.4 \mathrm{~V} 110 \mathrm{mAH} £ 4.95$ 122AA with soider tags $£ 1.55$ Sub C with solder tags £2.50 AAA (HP16) $180 \mathrm{mAH} £ 1.75 \quad 1 / 3 \mathrm{AA}$ with tags (philpsCTV) E1.95 Nickel Metal Hydride AA cells high
capacity with no memory. If charged at 100 ma and capacity with no memory. If charged at 100 ma and
discharged at 250 ma or less 1100 mAH capacity (lower capacity for high discharge rates) ci. 75 Special offers please check for availability stick $442 \times 16 \mathrm{~mm}$ nicad batteries $171 \mathrm{~mm} \times 16 \mathrm{~mm}$ dia with red \& black leads $4.8 v £ 5.95$

Cooma out 300v input to output Isolation with data $£ 4.95$ motor 14 pack of $10 £ 39.50$ Airpax AB2903-C large stepping 8.95 or 7.5 step 27 ohm 68 mm dia body 6.3 mm shan pe 225 mm .00 for a box of 30 Polyester capacitors box p $1000+$ lut 250 Vdc 20 p ach $15 \mathrm{p} 100 \mathrm{p}, 10 \mathrm{p} 1000+$ $000+$ bipolar electrotytic axial leads 15 p each, 7.5 p $00+$ Po.22uf 250 v polyester axial ieads 15 p each, 7.5 p phich $32 \times 23 \times 17 \mathrm{~mm}$ case 75 p each 60 M 100 P 10) 27.5 mm hilips 123 senes solid aluminium axial teads 33 ut 10 y a $2.2 u t 40 \mathrm{v} 40 \mathrm{p}$ each, $25 \mathrm{p} 100+$ Philips 108 senes tong life rimmer 63 axial 30 p each 15p $1000+500 \mathrm{pf}$ compression deal for AF croluts carbon resistors very low inductance each $100+$ we have a range of 025 w 0.5 w 1w and 2 w solid carbon resistors please send SAE for list:
P.C. 400W PSU (Intel part 201035-001) with standard motherboard and 5 disk drive connectors, fan and mains inlefloutlet connectors on back and switch on the side (top for tower case) dims $212 \times 149 \times 149 \mathrm{~mm}$ excluding switch,
$£ 26.00$ each $£ 138.00$ for 6 MX180 Digital mutimeter 1 ranges 1000 vdc 750 vac 2 Mohm 200 mA transistor Hfe 9 g and 1.5 v battery test $\mathrm{E9} .95$
Hand held ultrasonic remote control 3.95 CV2486 gas elay $30 \times 10 \mathrm{~mm}$ dia with 3 wire terminals will also work as treamer tape commonly used on ne machines an printing presses etc. it looks like a nomal cassette with a sot cut out of the top $£ 4.95$ each ($£ 3.75$ 100+) Heatsink compound tute $£ 0.95$
in Dll package $£ 3.49$ each ($100+£ 2.25$)
M 555 timer ic $16 \mathrm{p}, 8$ pin pll . 20.25) advertised are new and unused sockess 6 p all products wide range of CMOS TTL 74 HC 74 F Linearwise stansited tock rechargeable batteries capacitors tools etc. always in Slock Piease add $£ 1.95$ towards P\&P (orders from the Scottish highlands. Northem Ireland, isie of Man, iste of Wight ant verseas may be subject to higher P\&P for heavy tems)

JPG ELECTRONICS

ETI 276-278 Chatsworth Road
Chesterield S40 2BH
Access Visa Orders (01246) 211202 tax 550859

CONTROL \& from ROBOTICS Milford Instruments

BASIC Stamps

reprogrammable stamp sized computers
Easy to use BASIC language

- 8 or 16 Input/Output lines each 20 mA capability - 80 or 500 Program lines
- Re-programmable thousands of times from PC or Mac - 5-12vDC Supply. Stamps from $£ \mathbf{2 5 . 0 0}$ each Development Kits including programming software, Stamp, Cable, Project Board and 25+ Application notes from $£ \mathbf{7 9 . 0 0}$ (eg 250mA current) - 120 page Project book and 3 one metre lengths of wire. $£ 40.00$

STAMP BUG
Autonomous roving insect using the BASIC Stamp as its "brain". Approx 300 mm overall length. KITS FROM $£ 29.00$

All prices exclude VAT and shipping.
For a full catalogue of the above items and other products,
please call or fax Miliord Instruments at 01977683665 ; Fax 01977681465.

Touchkey

Roy Bebbington's dot-dash tone touchpad can be used for Morse or for music.

TIhe Alphanumeric Morse Touchkey is designed to enable beginners learning Morse to become familiar with the dot-dash codes and their rhythmic patterns without the aid of an instructor. The touchpad consists of a metallic baseplate covered by a plastic overlay template with hole patterns representing the alphanumeric Morse characters. These characters can be sounded and visually displayed by drawing a finger across them at an even speed. As experience grows, students can graduate to a finger-tapping proficiency pad, to emulate the movement of a Morse key.

Merely looking at a list of dots and dashes and learning it off by heart, or by head as the Dutch say, is not the way to learn Morse. While it is comparatively easy to make a mental translation from the code to alphanumeric characters at slow speeds, in a 12 wpm test there simply isn't the time for this! With characters arriving in quick succession, each must be identified by its unique sound pattern. The touchpad method ensures that even beginners can immediately send and hear characters that are formed correctly. This would appear to have wide appeal for radio amateurs, sea cadets, scouts and sailing clubs where a knowledge of Morse code is required. With two of these pads linked to a common circuit, students would be able to send and receive rhythmically correct

messages at a very early learning stage. And talking of 'rhythmical', music students could also benefit from a suitable plastic overlay to bone up on a few basic rhythms or to sort out a few awkward syncopated bars - always a problem for beginners.

For compactness, characters that are mirror images (for example, N is the same as A in reverse) have been combined. For instance, B is sounded by a left to right movement, and the same hole pattern sounds a V by a right to left movement.

The circuit and PBD uses two 555 timer ICs. Alternatively, these could be replaced by one 556. (This would require a different PCB or stripboard layout, which we leave to the reader's ingenuity.) There are two simple stages:
-A finger touch switch operating the first 555 in monostable mode, which triggers a tone generator formed by the second 555 in astable mode.
-A LED indicator and a loudspeaker provide visual and audible output.

The circuit

In the circuit (figure 1), IC 1 acts in the monostable mode as a touch switch. It is preferable to mount IC1 in an ic socket. When pin 2 and the 0 V rail are bridged by a resistance; the body resistance in this application, a negative-going trigger pulse is applied to IC1 that turns off an internal transistor that is normally short-circuiting pin 7 to the OV rail. This allows capacitor C1 to charge via R1, consequently, a positive-going output pulse is produced on pin 3. Light-emitting diode DI with its current-limiting resistor R2 provides a visual indication of the applied input signal. R3 feeds these long and short positivegoing pulses that represent the alphanumeric characters to pin 7 of 1 C 2 . C3 repeatedly charges via R3 and R4, and discharges via R4, oscillating at a frequency dependent on the RC values.

Frequency $=1.44 /(\mathrm{R} 3+2 \mathrm{R} 4) \mathrm{C} 3$
Rectangular pulses on pin 3 practice an audible output at a frequency of approximately 1 kHz in LS1. Variable resistor RVI

T1 0 c 5 (
 Did you know that there is an organisation ojhichthas 30,000 research assistants at you disposal?
 Members with creative ideas - they've done it - not just talled about it! Valuable resource information including.
 EMC advice
 Propagation forecasting
 Techical data
 Recruitment adverts
 Plus, a comprehensive list of specialist publications and much, much more!
 As a member you would receive RadCom, the 100° page colour magazine delvered to your door every month
 We are the national society for radio amateurs and if you are interested in electronics we can help you
 Radio Society of Great Britain (Dept ET19) Lambda House Cranborne Road Potters Bar Herts EN6 3JE Tel: 01707659015 Fax: 01707 645105;
 e-mail: sales@rsgb.org.uk

Figure 2: the baseplate and touchpad overlay
provides a series volume control to mute the loudspeaker if only visual signalling is required. A potentiometer with a switch could replace the separate on/off switch.

Construction

The prototype was built on a small piece of 0.1 in stripboard, but a suitable layout for a printed circuit board using two 555 s is given in figure 5 . Alternatively, a composite PCB could be made to include both the layout of the characters and the circuit.

A generous A4-sized baseplate is preferable to prevent fingers bridging the small spaces between the dots, and in the overlay, which would result in continuous sounds. Alternatively, a metal paper-clip held between the fingers can serve as a useful stylus.

The baseplate can be a sheet of polished aluminium or baking foil glued to thick card or plastic. Cut the holes in the plastic overlay with a sharp knife and tape or glue it to the metallic base. Use rub-down lettering for the alphanumeric characters or print them on the plastic overlay. A suggested layout for the plastic overlay is shown in figure 3.

The baseplate can either be free-standing or form the upper-side of the case that houses the circuit. Otherwise, you can house the loudspeaker and battery in a small case wired up to the baseplate, or even leave the loudspeaker "adrift" and the battery tacked to the baseplate with a battery holder or some double-sided tape. The left thumb touchpad can be an isolated part of the baseplate or a separate contact somewhere convenient on the case.

Musical coda

A suitable plastic overlay for sounding basic music rhythms is given in figure 4. Any other problematic rhythmic figures could also be stencilled on to a plastic overlay. However, a better solution for a teaching aid could be made up by mounting pieces of copper clad board into a multiway

Figure 4: a musical riythm simulator

EASY-PC Professional XM Schematic and PCB CAD

From Super Schematics

To Perfect PCB's

- Runs on:- PC/ 386/ 486 with VGA display
- Links to PULSAR (logic), ANALYSER III (analogue) \& LAYAN (electromagnetic) simulators.
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.
- Optional, powerful, 32 bit Multi-pass, Shape based, Shove Aside, Rip-up and Re-try Autorouter.

Simulation can even include the parasitic effects introduced by the Board Layout

LAYAN - Electro-magnetic Simulation ONLY £495

10.7 GHz Parallel Coupled Stripline Filler

For full information and demo disk, please write, phone, fax or email:-

Number One Systems

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR	From \$245	£145
MultiRouter: 32bit Multi-pass Autorouter	From \$475	£295
LAYAN: Electro-Magnetic PCB Layout Simulator. Include the board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	£495
PULSAR: Digital Circuit Simulator	From \$175	$£ 98$
ANALYSER III: Analogue Linear Circuit Simulator	From \$175	¢98
FILTECH: Active and Passive Filter Design program	From \$245	$£ 145$
STOCKIT: New comprehensive Stock control program for the small or medium sized business	From \$245	$£ 145$
EASY-PC: Entry level PCB and Schematic CAD.	\$135	£75
Z-MATCH : Windows based Smith-Chart program for RF Engineers	From \$245	$£ 145$
We operate a no penalty upgrade policy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Figure 3: musical rhythm overlay
socket as shown in the musical rhythm simulator of figure 5 , using it to activate the touch circuit of figure 1. All pins of the socket must be soldered together and taken to the OV rail. Several pieces of copper board board are needed for each type of note; quaver, crochet, etc., the widths of these depending upon the particular note values. As indicated in the diagrams, the physical widths of the notes correspond with their relative time duration; ie a crochet has a duration

Resistors

R1	$68 k$
R2	$1 k$
R3	$68 k$
R4	$18 k$

Potentiometers

RVI
 5k \log (see text)

Capacitors

C1,C2	10 nF
C3	20 nF
C4	4.7 u 10 V elect
C5	47 u 10 V elect

Semiconductors

IC1	555 timer
IC2	555 timer

DI LED

Miscellaneous

LSI 8R miniature
Switch spst (on/off)
\$W battery with clip, touchpad base and overlay, connecting wire, solder, etc.
of two quavers, so is twice as wide as a quaver. A minim is equal to two crochets, so is twice as wide, and similarly, a semibreve is twice as wide as at minim.

The copper clad side is deleted for the notes; the reverse side (or a piece of plain board) could be selected for an equivalent rest. Slightly space the notes in the socket to allow them to sound separately; butt any pieces together that need to sound continuously (ie as tied notes).

Figure 5: the component layout

EII
 tooay laternational

ETI can supply printed circuit boards for most of our current projects - see the list below for boards available. For recent boards not listed, check the constructional article for an alternative supplier.

Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in £ sterling only, payable to Nexus Special Interest Limited. Please allow 28 days for delivery.
Access/Visa orders may be made on 0144266551 (ask for Readers Services).

Only boards listed here are available from our PCB Service. For past issues of magazines, copy articles or binders, please see the admin panel (page 74) or contact Readers Serviges (see below) for information.

Name and issue of project Unit code Prico

ETI Issue 111997
Total Harmonic Distortion Meter Alphanumeric Morse Touchkey
Mighty Midget
PC Phonecard Reader - ITT Cannon
Minute Minder
ETI Issue 101997
The IQ Tester

Fake Flasher

DC Motors (Part 2) Valve Tester, Main Board
Valve Tester - Socket Board
Valve Tester - Heater Regulator
All three Valve Tester boards
(Due to price breaks there is a small discount on this
(Due to price breaks there is a small discount
The IQ Tester (previously E/897/20
ETI Issue 91997
Eprom Emulator
The Power Supply
Electronic Door Chimes
Digital Power Supply
ETI Issue 81997
ETI Issue 81997
The Brake Light Tester
DC Motors (3 experimental boards)
DC Motors: The first Control Unit
DC Motors: The 4046 Circuit
DC Motors: The Crystal Drive Circuit
All three DC Motors boards
ETI Issue 71997

Eprommer: main board (double sided)	E797/1	$£ 13.32$
Eprommer: PSU board	E797/2	$£ 5.64$
Eprommer: personality modules		
(double sided):	E797/3	
Any ONE module board		$£ 5.09$
Any two modules		$£ 7.90$
Any three modules		$£ 11.85$

Any four modules $£ 15.80$
Any five modules $£ 19.75$
All six modules - £23.70
Please spectry which Epron thodules you require. Modules are for 2716, 2732, 2764, 27128, 27256 or 27512 . Onelorder code/overseas postal charge applies whether a selection or all six personality module boards are ordered.
Are Your Lights On?
E/797/4
Peak Reading VU Meter
E/797/5
£5.09

Terms of trade .
Terms strictly payment with order. We cannot supply credit orders, but will supply a proforma invoice if requested. Proforma orders will not be processed until payment is received. All boards are menufactured from the foils that appear in the ETI Foils. Pages for the appropriate issue. Please check that our foils are suitable for the component packages you intend to use before ordering as we cannot supply modified boards or replace boards that have been modified or soldered. Boards are only supplied in the listed units. Sorry, we cannot break units. Prices and stock may be altered without priofnotice. Prices and stock listed in this issue supersede prices and stock appearing in any previous issue. ET, Nexus Special interests and their representatives shall not be liable for any loss or damage suffered howsoever arising out of or in connection with the supply of printed circuit boards or other goods or services by ETI, Nexus Special Interests or their representatives other than to supply goods or services offered or refund the purchase . money paid in respect of goods not supplied,

Please supply:

Quantity Project Unit Order Code Price Total price

Prices are inclusive of post and packing in the UK. Overseas Post and Packing (if applicable): Add $£ 1$ per unit

Name

\qquad

Address

\qquad
\qquad
\qquad
I enclose payment of $£$. (cheque/PO/money order in $£$ Sterling only) to:
PCB Service, READERS SERMCES DEPARTMENT, Nexus Special Interests Ltd., Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST UK.
\square
Signature:
Card expiry date:

RadioSport Ltd, 126 Mount Pleasant Lane, Bricket Wood, Herts AL2 3XD
Tel: 01923893929 FAx: 01923678770 Presented in association with Southgate Amateur Radio Club

FOLLS FOR THIS ISSUE

MKII AUTO-CHECKER

RADIO CONTROL FOR HOME AUTOMATION PART 2

TOTAL HARMONIC DISTORTION METER

ETI Book of Electronics
 This book is both a theoretical and practical introduction to electronics. It clearly

 explains the theory and principles of electronics and each chapter includes a project for the beginner to make. The projects are a loudspeaker divider, continuity tester, 'brown-ouf' alarm, freezing alarm, loudspeaker, mini-amplifier and a burglar alarm NB214 £12.45 UK
Scanners 2 International.
 The companion book to Sconners provides even more information on the use of VHF and UHF communication bands and gives details on how to construct accessories to improve the performonce of scanning equipment. The book is intemational in it's scope and contains trequency allocations for all three IUU regions, including country by country variations. NB216 £11.45 UK

£11.95 Overseas

Scanners 3 - Putting Scanners into Practice
 This is the fourth revised and completely updated edition of Scanners, the complete

 $\mathrm{VHF} / \mathrm{UHF}$ radio listeners guide ond contains everything you need to know to put your sconner to better use. There is vastly more information than ever before on frequency listing: in particular actual frequencies used by coastal stations, airfields and the emergency services. Also included for the first time is a section on the HF (short wave) band as many scanners now cover this range.NB217 £11.45 UK
£11.95 Overseos
Telephone orders: 01322616300 ask for Nexus Direct:
Please send me. \qquad
Please send me
copies of NB........................@
Please send me................copies of NB.
©

I enclose my remittance of $\boldsymbol{\varepsilon}$
l enclose my cheque/PO for.

NEW FROM NEXUS!

An Introduction to Robotics

A fascinating and unique book that breaks new ground by exploring the exciting world of robotics in a clear and concise way. Both the theoretical and practical aspects are presented in an uncomplicated fashion using everyday English, which makes this an ideal book for the amateur.
Divided into two sections, the first part explains how and why robots work and are controlled, while the
second shows you how to make a simple two legged humanoid robot that can be programmed to walk. There are no complicated formulas or equations to grapple with or incomprehensible circuit diagrams to decipher, - this robot can be built on your kitchen table and can be run from any personal computer! All you need are model aeroplane servos, a controller, a power supply and some
plywood - and all parts are easily available in the UK and the USA. This is a book that will be of interest to modellers and everyone with a fascination for things mechanical and electronic.
This is the way of the future, stay one step ahead and order your copy today!
Only \&II.50 UK \& \&12.50 Overseas (Includes Postage \& Packing).

Telephone orders: 01442266551 and ask for Nexus Direct
Please send me............ copies of NB299 @.

I enclose my cheque/PO for f \qquad made payable to Nexus Special Interests $O R$ please debit my Access/ Visa.

Expiry date
Signature \qquad Name
Address

Post code. \qquad Telephone No.

Complete details and return coupon to: Nexus Special Interests, Nexus House, Boundary Way,

\qquad OSCHLLOSCOPE Mocer HC3501 Duval Trace 20 MHZ

 POWER SUPPLY Mode HSP3010 Current Umbing 0.30V, 0.10 Amps

STEWART OF READING

c/c CHELMER VALVE COMPANY

If you need Valves/Tubes or RF

 Power Transistors etc. ...then try us!We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road. Chelmsford, Essex CM2 ORG. England.
Tel: 44-O1245-355296/265865 Fax: 44-01245-490064

MasterCord

SUPPLIER OF QUALITY USED OPERATING \& SERVICE MANUALS TEST INSTRUMENTS

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex P022 OHD U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
NEW CATALOGUE ALSO AVAILABLE ON DISK

ADVERTISERS INDEX	
active audio visuals	kanda systems
AGARCIRCUIS 72	LABCENTER LLECTRONICS
B BAMBERELECTRONICS 44	LEADING EDGE
betalayout	manchester uin
Bk leectronics	MASTERETCH
bullelectrical19,21	mlfor
CHELMER	NCT
cms.	no nut
cooke internatonal	NO1 SY
Crown hll Associates57	PICOTECHNOLOGI
DAtaman Programmer lto	R.D. RESEARCH
. OBC	RSGB
DISPLAY Elegitonics 71	SCIENTIFC WRE 0
Electromal 43	Service traing co
EPT EDUCATINALL SOFTWARE 24	SHEFFIELD SUPPLUS
	SSE
EQuInox 1 BC	Stewart of reaing
EsR Electronc	SWIFT designs
components	TECHNOLOGY ED
FOREST ELECTRONICS 30	INDEX
GAREX Electronics 23	telnet
Grandata 4,5,6,7	texas Instuumen
GREENWELD Electronics ... 62	vERONCA Fm
. HeNPYS AUDIO 73	VIIBLLE SOUND
J+NFACTORS 58,72	WILSON valves

			$\mathrm{h}!$
OW COST PC's.	C'S -TRANSISTORS - DIODES	19" RACK CABINET	
SPECIAL BUY 'AT 286' $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram MITED QUANTITY only of these 12Mhz HI GRADE 286 system signed for total reliability. The compact case houses the mother ard, PSU and EGA video card with single $5 \% / 41.2 \mathrm{Mb}$ floppy dis ve $\&$ integral 40 Mb hard disk drive to the front. Real time cloc der as HIGRADE 286 ONLY E129.00 (E)	6,000,000 items EX STOCK VIDEO MONITOR SPECIALS		
	- monitors you will At this price - Don't		
LOW COST 486DX-33 SYSTEM 		32 U - High Quality - All steel RakC	
	VEA		
FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$		enable status indicators to be seen through the panel, yet remain uncbrusive. Ined vertical fixing	
		with lop and side louvres. The top panel may be removed for fiting	
8185 Hi farbishew d lested		Sold at LESS than a third of makers price!! A superb buy at only $£ 195.00$ (G)	
		Over 1000 racks - 19" 22" \& 24" wide 3 to 44 U high. Available from stock !! Call with your requirements.	
ARD DISK DRIVES			
End of line purchase scoopl Brand new NEC D2246 8. 85 Mbyle drive with industry standard SMD Intertace, replaces Fujitsu (E)equivalent model.' Fuli manual. Only $£ 299.00$ or 2 lor $£ 525.00$ (E)		TOUCH SCREEN SYSTEM	
	and	The ultimate in 'Touch Screen Technology' made by the experts. MicroTouch - but sold at a price below cost 11 System consists ofa flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$	
		comele	
	55	simple serial daia containing positional $X \& Y$ co-ordinates as to here a tinger is touchng the panel - as the inger moves., the daia	
5\%* CDC 94205.5140mb HH MFM IF RFE tested	CIAL INTEREST ITEM		
THE AMAZING TELE			
		LOW COST RAM \& CPU'S	
		Card is fully selectable for Expanded or Extended 1286 processorand andand	
		FANS \& BLOWERS	
$\begin{aligned} & \text { verseas } \\ & \text { cable / hy } \end{aligned}$			
DC POWER SUPPLIES			
supply you can Mmagine. OverO.ooo power Suppies Ex Stock		PANCAKE $12-3.592992 \times 18 \mathrm{~mm} 12 \mathrm{DC}$ EX.EQUIP AC TAns. AL TESTED $120 \times 120 \times 38 \mathrm{~mm}$ specify 110 10 	
		 Shipoing on all fans (A). Blowers (B). so,000 Fans EX Stock CALL	

Poessolito

Alison Weatherill 0144266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House,
Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 85p per word (+VAT) (minimum 20 words)
Semi display: (minimum 3cms)
£12.50 + VAT per single column centimetre
Ring for information on series bookings/discounts.
All advertisements in this section must be pre-paid
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

To Advertise in the next issue of ETI phone our friendly sales team on: 0144266551
or fax your advert to us on: 0144266998

\backslash Veronicā $\ 88-108 \mathrm{MHz}$ FM TRANSMITTERS

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.

18 Victoria St, Queensbury, BRADFORD, BD13 1AR Tel 01274816200 Email veronica@legend.co.uk

£50 BT INSTRUMENT FOR ONLY $£ 7.50$

We refer to the BI insulation lesser and muti-meter wibh which you can reod insultion directity in magohns, $A($ whts up to 230 , 4 ranges of $O C$ vols up to 500,3 ranges of milliarps and one $5 A$ range and 3 rangos of rasideme. Thase wre in perfact cantition, have had very lithe use, if any, pesiod ond hily guoranted. Camplete with hadk and proak 57.50 , Ordar leff 7.5P4. Corming case widid will inke mall mods os wall, 12 exto. Postage $£ 3$ unless your order is 525 ond owr. J\& 1 f futors
Dopt ETL, Pligrimen Werks, Stirirriden Leme, Iehovy, Toloplowe: $(0144$) 81965

Scrap Electronic and Mainframe Computer Equipment Wanted

Can dismantle and collect
Tel: 01142853327
Sheffield Surplus
870 Penniston Road
Hillborough, Sheffield S6 2DL

'C'
 FOR
 MICROCONTROLLERS

Phone: 01974282670 or Sales@kanda-systems.com
KANDA
www.kanda-systems.com

SWC ${ }^{\text {saleninfic }}$ WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW
FAX 01815591114
PRINTIED CIRCUIT BOARDS
PRINTED CIRCUIT BOARDS
DESIGNED \& MANUFACTURED - PROTOTYPE OR PRODUCTION OUANTITIES - FAST TURNROUND AVAILABLE - PCBS DESIGNED FROM CIRCUIT DIAGRAMS ALMOST ALL COMPUTER FILES ACCEPI
EasyPC / Aries / VuTrax / CadStar Gerber/HPGL/IDraw and many others - ASSEMBLY \&TEST AVAILABLE
 Hi= agar Emax-01232 733897 Unit 5 , East Belfast Enterprise Park
308 Albortidge Road, Bellast, BT5 4/GX

- EDWIN -
- EED3 -
- CAPSTAR -

WE COULD BE THE ANSWER.
Contact SWift Designs Ltd
Email:
Designs@SwiftDesigns.co.uk
Phone:
$01438310133-01438821811$
www.swiftdesigns.co.uk

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact: Wise Owl Worldwide Publications 4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258

Around the orner

Talking of chucking old computers in skips - this is no longer the politically correct thing to do, now that the European Commission is close to publishing a draft directive on ways to recycle Europe's rocketing quantities of waste electrical and electronic equipment (WEEE for short).

You may profoundly wish to hear that your younger brother/sister/offspring's double-audio-power-blast CD-rom multimedia games PC is on its way to a landfill somewhere, but this won't be on the cards for much longer. It's more likely that the new waste directive will eat it up and spit it out as a refurbished, recycled, lowercost, not-so-neat but just-as-loud games PC - two for the price of one! Whoopeee!

More seriously, there has been concern for some time about the future pollution potential of the increasingly large quantities of plastics, batteries, electronic components and solder and other heavy metal products being discarded as they fall out of use. Behind this concern is the wider one of waste disposal as a whole. Currently only a few materiais (such as aluminium, a genuinely valuable recycling product) can be recycled with real cost-effectiveness, but landfills and other waste sites are filling up ever-faster, and local waste collection services in the UK are more and more strained. (Some people blame it on Wheelie bins tempting us to throw more in them, and others on Government spending cuts tendering out refuse collection to the lowest bidder.) And looking at the longer term, recycling is a habit that it would be good for all of us to get into, even though common materials like glass and paper are borderline in cost terms at the moment.

Once retrieval and recycling of used-up electronics becomes general, someone will have to pay for it, and it is expected that various parts of the electronics industry will pay a levy towards recycling, or arrange recycling themselves.

Already as we saw in the news pages of this issue of ETI, and the previous one, organisations with a track record in recycling electronics, or running pilot schemes, are on the move all over the UK. This will no doubt be a growth area for a while.

Some waste managers are inclined towards dismantling, separating materials and recycling as salvage, and some towards refurbishing and moving equipment (especially computers) into the second-user market, depending how viable they are. Properly organised, businesses updating quantities of equipment should be able to get a reasonable price for their old machines, while others will have to pay to get their junk removed.

Already businesses with rechargeable batteries to discard are expected to pay for removal, usually without even the option of delivering the waste themselves to collection points. It is high time the controlled collection of used batteries containing cadmium or lead was made easy, and mandatory, for everyone, including households.

As far as genuine "recycling" goes, talking to electronics constructors is preaching to the converted. Computer out of date? Cannibalise some parts, swap something with something else, add a couple of cards (wrestling with the compatibility problems - but so do people buying all-new systems) and an upgraded hard disk, and you have a-new computer, with not a lot left over but a handful of screws and tags and a superannuated disk module which a mate somewhere could probably use. Dead móbile phone? There should be a card for it ... Walkman? Fit a new motor and give it to the kids. Radio? No-one ever gives up on a radio. TV? Fred's experimenting with one of those whole-wall display drivers in his garage ... and ther there's the spare parts box.

It look as though industry will soon be doing all this on a Europe-wide scale.

Next Month...

Volume 26 no. 12 of Electronics Today International will be in your newsagent on 7 thth November 1997 ... Mike Bedford will be looking at new electronic products that can stand tough treatment ..., Ray Haigh has designed a dedicated classic medium wave receiver with high-sensitivity and reception to please the discerning ear ...
Robert Penfold has been working on an Infra-red remote controller ... all the regulars, and more.
Contents are in preparation but are subject to space and availability.
 Nexus Special Interests Limited Nexus House, Boundary Way. Hemel Hempstead, Herts HP2 75T Tel: 01442266551 Fax: 01442266998

Editor Helen Armstrong Administration Assistant Beverley Walden
Consultant Andrew Armstrong
PRODUCTION
Designer Mark Dodgson
Technical Illustrator John Puczynski
Production Executive (Copy control) Marie Quilter
Printed By Wiltshire Led., Bristol Origination by Ebony, Liskeard

SALES

SALES
Advertisement Manager
Alison Weatherill
ol 442266551×322
Group Sales Manager
Jason Wollington

MANAGEMENT
Divisional Managing Director John Bridges
Business Manager Stuart Cooke
Senior Editor David Watkins
Circulation Manager William Pearson
Marketing Manager Jason Doran
Copy Sales Manager David Pagendam

NEXUS
© Nexus Special Interests Limited 1997 All rights reserved Al rights reserved
ISSN 0142-7229
The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems.
While reasonable care is taken in preparation of magazine contents, the publishers, editors and their agents cannot be held legally responsible for loss howsoever arising from errors or other published material.

STILL THE WORLD'S MOST

POWERFUL PORTABLE

(4495...7) PROGRAMMERS?

DATAMAN-48LV

Surely not.
Surely someone somewhere has DEVELOPED A PORTABLE PROGRAMMER that has even more features, even greater flexibility and is even better value for money,
Actually, no, But don't take our WORD FOR IT, USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPARE,

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 \& 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN S4

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendo's
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions:

MONEY-BACK 30 DAY TRIAL

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

hotilime 01300320719

Orders received by 4 pm will normally be despatched same day. Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK
Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34N.FCN.32bis
Home page: http://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR

[^1]: British 3 pin plug top power supplies with transformer, rectifier, smoothing capacitor and regulator buit in. The inpur is 230 v and the
 output is 6 v at 100 mA . The unit has a 1.2 m output lead to 2.5 mm puwer plug. $£ 1.50$ each Thyristor models type IRKT2612, 1200v at 25A. $£ 7.00$ each
 Stud rectifiers type MRF7535, 35v at 60A,
 1/4" UNF, less nuts, $£ 1.25$ each.
 Transistors Type 2N3055E 60p each.
 2N6290, NPN, TO202, 65W, 40p each. BD240. PNP, TO 220. 30W. 30p each.
 BD438, PNP, TO $220,36 \mathrm{~W}$, 30p each. CMOS Low Power Timer IC Type TLLC555, 40p each.
 Bridge rectifier type WO8, 800v at $1.5 \mathrm{~A} £ 1$ for 10 .
 Diodes Type IN4007, Ikv at $1 \mathrm{~A}, £ 1$ for 50
 Dor Regulators LM723CN +2 v to 37 v , i 50 mA ${ }^{27 p}$ each.
 LM317K, TO3, $+1.2 v$ to $+37 v, 1.5 \mathrm{~A}, £ 2$ each. LM7905CT. -5v, $1.5 \mathrm{~A}, 36 \mathrm{p}$ each LM340A. 48p each. UA7812, 12v, 40p each. Super Twist Graphics Blue Mode LCDs 320 x 240 Pixel Size, 132×103 Overall. $£ 5$ each.

