EII
 ELECTRONICS TODAY INTERNATIONAL

MicroAmp - The Professional Microphone Amplifier

Improved Background Noise Generator "Phoney Phone"• Where is it?

Infegrated Schematic \& PCB Design System "exiremely good value for money for such a comprehensive package"

NEW Library Packs Available!
Quickroute 3.5 is a powerful, affardable and easy to use integrated schematic \& PCB design system for windows. With its multiple button bars, ' tool tips' , and ' parts bin' Quickroute helps you to get warking quickly and efficiently

Quickroute is available in 4 different versions (see Table) all of which offer great value for maney. Quickroute is avallable with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of poputar file impont/export features allowing connection to simulatars and other software packages (details on request). Prices are Personal ($(668$), Designer ($£ 149$), PRO $\$ 249$) and PRO+($£ 399$). Please add P\&P and V.A.T to total (see below ${ }^{\circ}$).

THE 32 BIT AUTO-ROUTER WITH FLEXIBILITY \& POWER

SMARTRoute 1.0 is a new 32 bit auto-router that offers amazing flexibility \& power at an affordable pricel Compatible with Windows $3.1 / 95 /$ NT, SMARTRoute gives you total control over routing strategies including layers used, track \& via sizes, design rules, etc.

SMARTRoute is completely compatlble with Quickroute 3.5 and offers improved completion rates compared with Quickroute' s built in outorouter (ask for details) SMARTRoute is ovailable for \& 149 plus P\&P and V.A.T. Special bundle pricing for Quickroute and SMARTRoute when purchased together.

VISUALISATION, DATA ANALYSIS \& APPLICATION DEVELOPMENT

MExpress is a powerful tool that can be used Interactively to lood, analyse and display data - or by using its powerful BASIC-like scripting language - you can create fechnical applications with buttons, menus 2D \& 3D graphics, and powerful numerical methods (ask for details).
MExpress is available in Standard ($£ 99$) and Developers Editions ($£ 299$). Prices exclude P\&P and V.A.T (see below'). The Developers Edition includes lools for fuming MExpress script files Into C++ code. This con then be compiled by an MExpress compatible $\mathrm{C}_{++}+$compiler into a stand alone executable!

Tel/Fax 01614497101

Contents

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS：－MXF200（100W＋100W）MXF400（200W＋200W） MXF600（300W＋300W）MXF900（450W＋450W）
ALL POWER RATINGS R．M．S．INTO \＆OHMS，BOTM CHANNELS DRIVEN
FEATURES：あindependent power supplies with two toroidal transformers \＃Twin L．E．O．Vu meters＊

USED THE WORLD OVER IN CLURS，PUBS，CINEMAS，DISCOS ETC．
SIZEST－MXF200 W19＂xH34\％＂（2U）XO11＂ MXF400 W $19^{\circ} \times \mathrm{HHS}_{4^{\prime \prime}}(3 \mathrm{U}) \times \mathrm{D}+2^{n}$

PRICES：$M X F 200 £ 175.00$ MXF400 £233．85 MXF600 \＆329．00 MXF900 £449．16 SPECIALIST CARRIER DEL．E 12.50 EACH

OMP XO3 STEREO 3－WAY ACTIVE CROSS－OVEA

Advanced 3－Way Siereo Active Cross－Over，housed in a $19^{\prime \prime} \times 1 \mathrm{Case}$ ．Each channel has three level controle： bass，mid a 190 ．The removable froni fascis allows access to the programmable DIL swiches to adjusl the
cross－over Irequency：Bass－Mid $250 / 500 / 800 \mathrm{~Hz}$ ，Mid－Too $1.8 / 3 / 5 \mathrm{KHz}$ ，all al 24 dB per octave．Bass inverl swiches on each base channel．Nominal 77 SmV input／output．Fully compatible with DMP reck amplifier and modules． Price $£ 117.44+£ 5.00$ P\＆P
STEREO DISCO MIXER SDJ3400SĖヨ＊ECHO \＆SOUND EFFECTS＊ STEAEO DISCO MIXER with 2×7 band L \＆R graphic equalisers with owi graph LEO VU meters．MANY OUTSTANDING FLATURES：－mcluding Echo with repert a speed control，D Mic with talk－over
switch， 6 Channels with indtividual feders plus cross fade，Cus Headphone Montor plus cross facte，Cuefuacphone wontor． following inputs：－ 3 turntables（mag）， 3 mics， 5 Line for CO, T eps，Video etc．
Price 1444.99 ＋ 55.00 Pgp

PIERO ELECTATC TWESIERS－MOTOROLA
Join the Plezo revolution！The low dynamic mass（no volce coil）of－Plezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters，As a crossover is not required these units can be added to existing speaker syslems of up to 100 wat
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER．

TYPE＇A＇（KSN1036A） $3^{\prime \prime}$＂round with protective whe mesh．Ideal for bookshelf and medium slzed Hi－Fi apeakers．Price $£ 4.90+50$ p PAP．
TYPE＇B＇（KSN1005A） $31 /{ }^{\circ}$＂super horn lor general purpose speakers． disco and P．A．systems atc．Price $£ 5.99+50$ p PAP．
TYPE＇C＇（KSN1016A） $2^{\text {＂}} \times 5^{\prime \prime}$＂wide dispersion horn for quallity Hi－Fi sys tems and quaility discos etc．Price $\mathrm{E} 6.99+50 \mathrm{p}$ PAP．
TYPE＇b＇（KSN1025A） $2^{\prime \prime} x 6^{\prime \prime}$ wide dispersion hom．Upper Irequency response retained extending down to mid－range（ 2 KHz ）．Suitable for high quality Hi －Fi systems and quality discos．Price $£ 9.99+50 \mathrm{p}$ PAP．
TYPE＇E＇（KSN1038A） 33^{46} horn tweeter with attractive silver finlsh trim． Sultable for HI－fi monitor systems etc．Price $\mathbf{\Sigma 5 . 9 9}+50$ p P 8 ． P ． LEVEL CONTROL Combines，on a recessed mounting plate，level control and cabinet input Jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $\mathbf{E 4 . 1 0}+50 p$ P $\&$ P．

IDIFLIGHT CASED LOUDSPEAKERS

A new range of quatity loudspeakers．designed to take advantage of the latest speaker fechnology and enclosure designs．Both models utilize studio quality
12^{-}casi aluminum loudspeakers with lactory fitted grilles，wide dispersion constant directivity horns extruded aluminium corner protection and steel ball corners，complimenled with heavy duty black covering．The enclosures are fitted as slandard with top hats for optional loudspeaker stands．

POWAR RATINGS QUOTED IN WATTS AMS FOR EACN CABINET FREQUENCY RESPONSE FULL RANOE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
Ib1FC 12－100WATTS（100dB）PRICR E150．00 PER PAIR IbIFC 12 －200WATTS（ 100 dB ）PRICE E 175.00 PER PAIR SPECIALIST CARAIER DEL．£12．50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$ Dellvery $£ 6.00$ per palr

IN－GAR STEREO BOOSTER AMPS

PRICES： 150 W 849.99 250W 899.00
400W E109．95 P\＆P 52.00 EAC

CAR STEREO BOOSTER AMPLIFIER 150 WATTS $(75+75)$ Stereo， 150 W Briaged mono 250 WATTS（ $125+125$ ）Stereo， 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo， 400 W ALL POWERS INTO 4 OHMS
Features：
storeo，bridgable mono＊Choice o high is low level inputs＊L \＆level
controis $\#$ Remote on－off \＆Speaker a

PO
PR
PRI POBTAL CHAMGES PER OROER EYOO MINIMUM．OFFRCIAL WFCHKABR
 INCLUSIVE OF VAT．BALES COUNTEA．VIEA
ACCESBACCEPTEOBY PDST，DHONEORFAX．

IMP MOS－FET POWER AMPLIFIER WOOULES SUPPLED READV BUILT ANDTESTED

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

 OMP／MF 100 Mas－Fet Outpul power 110 waths R．M．S．Into 4 ohms，Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ T．M．D．typical 0.002% ，Input Senslitvity 500 mV ，S．N．R 110 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE E40．85＋E3．50 P\＆P

OMP／MF 200 Mos－Fel Output power 200 watts R．M．S．into ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rale $50 \mathrm{~V} / \mathrm{uS}$ T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R 110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE $£ 64.35+$ C4．00 P\＆P

OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{Mz}-100 \mathrm{KHz}$.3 dB ，Damping Factor >300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typlcal 0.001% ，Input Sensitlvity 500 mV ，S．N．R -110 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE E81．75＋E5．00 P\＆P
OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．A． 110 dB，Fan Cooled，D．C．Loudspeaker Protection， Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE E $132.85+$ E5．00 P\＆P

OMP／MF 1000 Mos－Fet Outpul power 1000 watt R．M．S．into 2 ohms， 725 watts R．M．S．Into 4 ohms frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$ ，Damping Factor >300 ，Slew Rate 75V／US，T．H．D．typica 0.002% ，input Sensitivity 500 mV, S．N．R．-110 dB ，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Antl－Thump Delay．Size $422 \times 300 \times 125 \mathrm{~mm}$ ． PRICE $5259.00+$ E12．00 PeP NOTE MOS－FET MODULES ARE AVAILABLE IN TWO VERSIONE
STAMDARD．INPUT SENS GOOMV AAMD WIDTH IOOKME PEC（PROFESSIONAL EOUTPWENT COMPATIELES）－INPUT
775 mV ，BANO WIDTH SOKMZ．ORDER STANDARD OR PEC．
 LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGM FREQUENCY BULLETS ANO MORNS，LAROE（A4）S．A．E （ 60 p STAMPED）FOR COMPLETE LIST．

McKenzie and Fane Loudspeakers are aiso available．

EMINENCE：－INSTRUMENTS，P．A．，DISCO．E＇C

ALL EMINENCE UNITS B OMMS IMPEDANCE
8＂$^{\prime \prime} 100$ WATT R．M．S．MEB． 100 GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO． RES．FREO． 72 Hz ，FREO．RESP．TO 4 KHz ，SENS 97 dB ． C ． 10 100 WATT R．M．S．ME10－100 GUITAR，VOCAL，KEYBOARD，DISCO，EXCELLENT MID． 10＂ 200 WATT R．M．S．MESP，TO 7KHz，SENS97dB．DISCO，VOCAL，EXCELLENT HIGH POWER MID． RES．FREO． 65 Hz ，FREO．RESP．TO 3.5 KHz ，SENS 99 de ．
12＂ 100 WATT R．M．S．MEY 2－100LE GEN．PURPOSE，LEAO GUITAR，OI RES．FREO． 49 Hz ，FREQ．RESP．TO $6 K \mathrm{KHz}_{2}$ ，SENS 100 dB ． 12 F． 100 WATT R．M．S．ME $12.100 L$ T（TWIN CONE）WIDE RESPO PRICE C35．84 + MTOR．
12 ． MONITOR．RES．FREO 42 Hz ．FREO．RESP．TO 10 KHz ，SENS 98 dB $12 " 200$ WATT R．M．S．ME $12-200 \mathrm{GEN}$ ．PUAPOSE，G
RES，FREO．S8Hz，FREO．RESP．TO 6 KHz SENS 98 dB ． RES．FREO．SBHz，FREQ．RESP．TO GKHZ，SENS 98dB．
$12^{\circ} 300$ WATT R．M．S ME $12-300 G P$ HIGH POWER B RES．FREO． 47 Hz ，FREO．RESP．TO 5 KHz ．SENS 103 d ${ }_{15} \mathrm{E}^{\circ} 200$ WATT R．M．S．ME15－200 GEM．PURPOSE B RES，FREQ． 46 Hz ，FREQ． RESP．TO 5 KHz ，SENS 99 dB ． $15^{\prime \prime} 300$ WATT R．M．S．ME1 5－300 HIGH POWER BASS，INCLUDWG BASS GUITAR． RES．FREO． 39 Hz ，FREO．RESP．TO 3 KHz ，SENS 10368.
EAREENDERS：－HI－FI，STUDIO，IN：CAR．EIC
ALL EARBENDER UNITS 8 OHMS（Except Ese－50 E EBi0－S0 which sre due
BAS5，SINOLE CONE，MIOH COMPLIANCE，ROLLED SURROUND $8^{\prime \prime} 50$ Watt EB8－5O DUAL tMPEDENCE，TAPPED A／B OMM BASS，HI－FI，IN－CA AES．FREO AOHz FPEO DESP TO TKM SENS OTdP 10＇SOWATT EB1O－5O DUAL IMPEOENCE，TAPPED $4 / 8$ OHM BASS．HIFFIMCE C8． RES．FREO A HHz FREO RESP TO KKMz SEMS 10＇．FOOWMT RES．FREO． 3 SHz ，FREO．RESP TO 3 KHz ，SENS OF 12＇100WATT EB12－100 BASS，STUDIO，HIFI，EXCELLENT DISCO RES．FREO． 26 Hz ，FREO．RESP．TO 3 KHz ，SENS 93 dB ． IN－CAR． PAICE $13.65+52.50$ P1 PAICE $\mathbf{C 1 3 . 6 5}+\mathbf{C 2 . 5 0}$ P最 PRICE C30．39 + C 3.50 PAP PRICE C42．12＋E3．50 P\＆ P Bral GOWMT EBS－GOTC（TWIN CONETHI－FI，MULTI－ARRAY DISCO ETC RES．FREO． 63 Hz FREO．RESP．TO 20 KHz ．SENS 92 dB ．
 RES．FREO． 38 Hz ，FREO．RESP．TO 20KHz．SENS 94 dB 8＂6OWATT EB8－6OTC（TWIN CONE）HIFI，MILTI－ARRAY DISCO ETC． RES．FREO． 40 Hz ，FREO．RESP．TO 18KHz．SENS 89dB
$10^{\prime \prime}$ BOWATT EB10－60TC（TWIN CONE）HI－FI．MULT TO＂GOWATT EB 10－6OTC（TWIN CONE）HIFFI，MULTI ARRAY DISCO ET
RES．FREQ． 35 Hz ，FREO．RESP．TO 12 KHz ．SENS 98 dB ．

TRANSMUTVR HOBAY KTITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIERE PRINTED CIRCUIT BOARD AND HIGH QUALITY CDMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER $80-108 M H H_{2}$ ．VARICAP CONTROLLED PROFESSIONAL PERFORMAHCE，RAMGE UP TOJ MLES．SZZE IH I 123 mm
FM MICRO TRANSMITTER $100-$－108MHZ VARICAP TUMED，COMPLETE WITh

VERY SENS FET MIC RANGE $100-300 \mathrm{~m}$ ．SZZE $56 \times 45 \mathrm{~mm}$ ．SUPPLY GV BATTERY

Temperaturecontrolled soldering

A new coilection of temperature-controlled soldering stations offers two reasonably priced soldering stations, and a more
sophisticated soldering and desoldering station for production use.

The SL20 is an eiectronic temperaturecontrolled soldering station incorporating a plug-in 48 W 24 V soldering iron. The temperature is fully adjustable between 150
degrees C and 420 degrees C, and the station has a 12 LED bargraph indicator of actual temperature and heat-on mode. The SL30 is similar to the SL20, but with a higher temperature range of 160 degrees to 480 degrees C, and a digital readout of preset and actual heat.

These models cost $£ 59$ and $£ 69$ respectively.
The SL916 is a combined soidering and desoldering station with independent temperature control of the soldering iron and desoldering gun so that both can be used simultaneously. The desoldering gun uses a vacuum pump to remove solder from the joint and collects the solder waste in a see-through cartridge that can be easily emptied when full. The station can be used effectively on tradifional, plated-through-hole and surface-mount pcbs. It costs £349, beyond the pocket of most amateur constructors, but a
time-saver in the long run for anybody running a production line or repair workshop with a steady turnover.

The stations have optional accessories including a wide range of bits for both conventional and surface-mount soldering. Constructors seeking to extend their range of building into smaller or larger boards, greater integration, or surface mount should examine their soldering equipment and consider if they would benefit from an iron, such as the ones described here, with greater temperature-control and tip capabilities. There are now many good models on the market.

Information fiöm Vann Draper Electronics, Unit 5, Premieí Works, Canal St., South Wigston, Leicester LS18 2PL. Tel 01162771400 Fax 01162773945.

New Basic compiler for the PIC16C74

Forest Electronic Development have released a compiler for their range of PIC-based microcontrol modules that can be programmed in Basic. The compiler produces hex code which may be used to program a PIC16C74 directly, and which requires no external eeprom or other support circuitry apart from a power supply and oscillator.

The compiler is compatible with the eeprom versions of the Basic modules. Programs can be developed and debugged on a Basic module in the eeprom and, when complete, compiled and used to program 16C74 devices directly. The compiler is hosted under the same Windows development environment as the normal Basic development system, and programs may be edited, debugged,
downloaded to a Basic module and compiled all within the same environment. Up to 2600 words of program space is available for the compiled program, allowing up to 2000 lines of Basic to be compiled. The code is optimised to remove unwanted modules. For instance, if code for driving an LCD module is not needed, then it is not included. Code is produced that is between 3 and 100 times faster than the eeprom-based modules. No knowledge of PIC Assembler is required.

For more information about the PIC Basic compiler, and about FED PIC Basic for the 16C74, contact Forest Electronic Developments, 10 Hoimhurst Avenue, Christchurch, Dorset. Tel 01425270191

Free tickets for consumer electronics at Connect 96

Central Presents
CENNECT
The Home Entertainment Experience

The organisers of 1996 consumer electronics show Connect are offering 10 pairs of free tickets to the first 10 Ell readers to contact-them with the reference number below.
Connect 96 appears at the National Exhibition Centre (NEC) just outside Birmingham from 18th to 26th October. The exhibition is presented by Central Broadcasting, and a major attraction will be a custom-built TV studio, a "sneak preview" of Central's new broadcast headquarters in Birmingham. The organisers are also promising the Connect Sound Stage, "a state-of-the-art 'UFO' structure", with entertainments from chart bands and DJs, light shows and special effects. The show concentrates on consumer electronics, including hi-fi, home cinema theatre and interactive displays. Sennheiser, TDK, Virgin Games, Denon and AJP are among the exhibitors.
The Home PC Show, the Autumn Ideal Home Show and the international Motor Show are running at the NEC at the same time. Tickets to Connect cost $£ 7$ (adults) and $£ 5$ (children and senior citizens) and include entry to the PC Show and the Ideal Home show. A ticket to all four shows costs $£ 14$. Preview Day tickets to Connect (18th August) cost £10.
The NEC is quickly accessible by motorway (M42) and rail. Connect is open 9.30 to 19.00 on most days and 9.30 to 17.30 on the final day.

For advance ticket information and booking, and, if you are one of the 10 quick lucky ones, for your free pair of tickets, phone 01217674114 and quote reference C08.

Quick Look Over: Tip-tinner

Remember the lead free tip tinner from the September news page? it looked interesting so I decided to try it. It seemed to work better than my ordinary one, removing the crust of black scale which won't melt solder and leaving a well tinned tip which did not scale up again too quickly. As lead-free soldering becomes more widespread, with outwork as one driving force, a good lead-free tip tinner will contribute to keeping lead out of the domestic environment.

The two packages are priced at $£ 5.88$ and $£ 10.41$. Information from Intertronics, Unit 9, Station Field Industrial Estate, Banbury Road, Kidlington, Oxon OX5 1JD Tel 01865842842 Fax 01865842172.

Alpha test equipment

Alpha Electronics' new 2-page catalogue of test equipment includes cable detectors and fault locators (including a new LAN
 section), high voltage and battery testing, chart recorders and data loggers, oscilloscopes and scopemeters, signal sources, time and frequency measurement and other equipment. Alpha also have an instrument hire section and BS 5750/SO 9002 repair and calibration service. Free from Alpha Electronics (Southern) Ltd. Tel 01622690187 Fax 01622678827.

CE-compliance testing comes in-house

BEST 96 from Schaffer is an entire EMC test system in a single unit. It is the first self-contained unit to combine all the functions required for full EU compliance testing of residential, commercial and light-industrial electrical and electronic products. The EMC tester is designed to allow manufacturers who need a CE mark to complete pre-compliance and compliance testing in-house quickly and more cheaply than via an independent testing house.

The core of Best 96 is a compact mutti-function generator giving burst, electromagnetic discharge (ESD), surge and power quality pulses for single-phase power-line and data-line compliance tests to the EU electromagnetic immunity standard EN 50082-1 (which applies to the areas of usage mentioned in the previous paragraph. Ground-plane, cables, ground-strap, grounding resistor and coupling clamp for data-line testing are included as part of the standard package, as are instructions for completing tests to compliance standards.

Schaffner say that no specialist EMC skills are needed and that the equipment can be operated by a QA technician or nonspecialist engineer. The system offers test management tools including sequencing, customisation, storage options and data analysis, and test certificates, engineering reports and user documentation can be generated and printed within the system.

Equipment covered by the EN 50082-1 standard includes some products designed for use in cinemas, parks, petrol stations, light industrial sites, offices, shops and homes.

Systems like Best 96 offer assistance to manufacturers and designers needing testing facilities to establish the conditions for CE compliance and who may be discouraged by price considerations from using large independent test facilities.

Businesses interested should refer to Schaffner sales offices for pricing information. The UK offices is Schaffner MEC Ltd., Ashville Way, Molly Millar's Lane, Wokingham RG41 2PL Tel 01491410700 Fax 01189792969.

Digital photography storage by PC

NBA Photowallet is a computer-based picture storage system for digital camera users. Makers NBA Quality Systems says that the system can be connected directly to the Kodak DC40, Kodak DC50, Chinon ES-3000 and Casio QV-10 cameras, as well as many other models and others as they become available, and any TWAIN-source scanners and video digitisers. Picture manipulation includes rotate, copy to clipboard, paste-in image from another application, copy, view full size with zoom, print to page size or custom scale, and send pictures via GSM, satelite, telephone or radio using NBA Inter-Comm software.

The software stores digital pictures in named groups called 'Wallets', with unlimited number of pictures to a Wallet and unlimited Wallets (limited, that is, only by the memory size available). It displays Windows bitmap images JPEG images, and can store the Wallets on hard disk, CD-ROM and network drives.

The preferred hardware needed is a 486 X or higher PC, 12MB of RAM, 2MB of free hard disk space plus a minimum 10 MB for pictures, and a High Colour or True Colour graphics card. 256 colours is workable, although a higher standard is recommended.

Informatlon from The Digital Camera Company, Guildford, Tel 01483452100 , or NBA Quality Systems, Guildford,

Tel 01483301970 Fax 01483564746.

Tiny control module

The Devantech EM320 control module is based on the popular high-speed architecture $25-\mathrm{MHz}$ Dallas 80 C 320 processor, which carries the standard 8051 instruction set, three 16 -bit timer/counters, a programmable watchdog timer and an early warning power failure interrupt. The tiny ($46 \mathrm{~mm} \times 49 \mathrm{~mm}$) multilayered PCB is surface mount with a full ground plane. The module provides 32 KB static RAM, 32 or 64 KB of eprom, $30 \mathrm{I} / \mathrm{O}$ lines, plus the cull CPU bus access and nearly 32 KB of expansion space. A cross assembler and a fully-optimising C cross compiler are also available for programming the EM320.

For information contact M J Turner Tel/Fax 01945466672.

High-power self-cooling laser diode module

A laser diode module from Mitsubishi incorporates integral thermal electric cooling circuitry with a capacity of 40 degrees centigrade with a cooling current of 1.5 A maximum and a maximum coding voltage of 3 V . Optimised for pump operation, the FU-622SLD-2M4 is designed specifically for the 1.48 micrometre band and has an output of 100 milliwatts of optical power from its fibre end. The aptical output is monitored by photodiodes.

The laser diode is rated at 200 milliamps forward voltage and 2 V reverse voltage. The photodiode is rated at 2 milliamps forward current and 20 V reverse current. The device operates over temperatures from -20 to +65 degrees C , and can be stored at a greater range. Typical operating current of the laser diode is 590 mA , operating voltage 1.4 V and threshold current 30 mA . The spectral width is typically 10 nanometres, and the very accurate diode has a tracking error of typically only 0.3 dB . The device is in a butterfly package with an optical pigtail of mode field diameter 10 micrometres and cladding diameter of 125 micrometres.
information from Mitsubishi marketing. Tel 01707276100.

Overseas Readers

To call UK telephone numbers, replace the initlal 0 with your local overseas access code plus the digits 44.

Exclusive to ETI Readers

15\% off all Number One Systems' Electronic CAD Software!

Number One Systems are the European market leaders in affordable CAD software for electronic design. Since 1983 their PCB layout and simulation programs have become an indispensable tool for thousands of design engineers and are used by leading companies like GEC, HewlettPackard, IBM and Motorola.

Low cost easy-to-use entry-level programs include the award-winning PCB Drafting program EASY.PC, with over 20,000 licences sold in 90 countries through the world, the powerful analogue and digital circuit simulators ANALYSER 111 and PULSAR, and the time-saving FILTECH filter designer that can produce a complete active or passive filter circuit from a simple graphical description of the required frequency response.

For advanced users, the Professional range extends the capabilities of the entry-level programs with a high-speed autorouter, MultiRouter, typically capable of 100% routing a 200 mm by 150 mm double-sided board with 140 components including a large PGA device in under 10
minutes, and LAYAN a revolutionary electromagnetic simulator based on original research at Philips Research Laboratories, Redhill, Surrey. With LAYAN, it is possible to simulate the behaviour of an analogue circuit taking full account of the effects of the physical PCB layout. This means that designers can see the effects of unwanted couplings across the layout and can also make use of printed couplers, fitters and inductors in their designs.

List prices range from $£ 75.00$ for EASY-PC up to $£ 495.00$ for LAYAN with free lifetime telephone support for all customers. EIl readers quoting the reference number on the Discount Card can claim 15\% off the list price of all Number One Systems' software until the end of December 1996. A full catalogue and price list is available from Number One Systems, Harding Way, St. Ives, HUNTINGDON, Cambridgeshire, PE17 4WR. Telephone: 01480461778 , e-mail: sales@ numberone.com. Please quote the reference number on the card with all enquinies and orders.

MOONSHINE BIBLE 270 page book covering the production of alchoho from potaloes. nice, grains etc Drawings of simple home mace soils nght through to commercial systems. $£ 15$ ref MS NEW HIGH POWER MINI BUG With a range of 800 metres or more and up to 100 hours use from a PP3 this whe be poputarl Bug meas ures less than 1 ' squarel £28 Ref LOT 102
SINCLAIR C6 MOTORS We have a new ones aveil able without gearboxes at $£ 50$ ref LOT25
BUILD YOU OWN WINDFARM FROM SCRAP NEW publication gives step by step guide to buidding wind generators. Amed with ins p publication and a good local scrap yard could make you sell sufficient in elecricimy E 12 rel LOT81
PC KEYBOARDS PS2 connector, top quatity sutable for all $286 /$ $386 / 486$ etc $£ 10$ ref PCK8. 10 tor 565
TRACKING TRA SMATTE R range $1.5-5$ miles, 5.000 hours on AA bateres, also tansmits info on car direction and motiontWonks with any FM, radio. 1.5° square. $£ 65$ ref LOT 101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12v operated deadiock (keys included) £ 10 ref LOT99 GALLIUM ARSENIDE FISHEYE PHOTO DIODES Complete with suggested circuits for long range communlcationsiswitching E12 complete
SURVEILLANCE TELESCOPE Suparb Russian zoom telescope adjustable from 15 x to 60 xl complete with metal tripod (mposibie to use without ths on the hi
leather carning case $£ 149$ tof BAR69
WIRELESS VIDEO BUG KI Transmits video and audio signals from a minature CCTV camera (included) to any standard televisionl All the components including a PP3 battery will it into a cigarette packet with the lens requifing a hole about 3 mm diameter. Supplied with telescopic aenial but a piece of wre about 4* long will still give a range of up to 100 metres A single PP3 will probably give less than 1 hours use. £89 REF EP79. (probably not licensabiel) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30 \mathrm{grams}$. 12 V 100 mA . auto electronic shutter, 36 mm F2 lens. CCIR 512×492 pixels. video output is iv p-p $(75 \mathrm{ohm})$. Wonks directyy into escart or video Input on a iv of video. IR sensitive $£ 79.95$ ref EF137.
IR LAMP KIT Sutable for the above camera enables the camera o De used in total danknessl E5. 99 ref EF 138 .
REMOTE CONTROLTANDATA TD1400 MODEM/ VIEW DATA Complete system compnsing 120075 modem, auto dialler, infra red remote keyboard. (could be adapted for PC use7) pSu, UHF and RGB output, phone lead. RS232 ouput, composite
oulbut. Absplute barcain for pants alonel 129.95 ret BARz3.
9 WATT CHIEFTAN TANK LASERS
Double besam units designed to ffin the gun barrel of a tank, each unit has two semi conducior lasers and motor drive units for alignement 7 mife range. full circuil diagrams, new price $\mathbf{£ 5 0 , 0 0 0 7}$ us? $£ 349$. cach unit has two gallium Arsenide injection lasers. 1×9 wath, 1 x 3 watt, 900 nm waveiength. $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The units targets. five or more units $£ 299 \mathrm{ea}$. $£ 349$ for one Ref LOT4.

TWO WAYMI IRROR KT Includes special adhesive îlm to make two way mirrors) up to $60^{\circ} \times 20^{\circ}$. (glass not included) Inciudes fil instructions. £ 12 ref TW1.
NEW LOWPRICED COMPUTERWORKSHOP/HLFIRCB UNITS Compleie protection from fauty equipment for everybodyl Intine unit fit sin standard IEClead (extends it by 750 mm). Atted inless Or a pack of 10 at $£ 49.90$ ret LOT6. If you w am a box of 100 you can Or a pack of 10 at £
have one for $£ 2501$

RADIO CONTROLLED CARS FROM $\mathbf{e} 6$ EACHIIII All retums from famous manufacturer, types available, single channel (left,right,forwards, backwards) $\varepsilon 6$ ref LOT1. Two channel with more features $£ 12$ ref LOT2.

THOUSANDS AVAILABLE RING/FAX FOR DETAILSI MAGNETIC CARD READERS (Swipes) E9.95 Coseo with nyileass. designed to read standerco creatit cardsi they nave 3 wices coming out ot the hend so they may wite as well? compiete with
control elcronics PCB. jusi 99.95 rel BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you intomation on serting up dimerent ousin iesses. you peruse inese at Your liesure using the text editor on your PC. Also maluuded is the
cerifcate enabing youto recroouce (and sell item manulisa centincate enabing you to
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or verbca mode. Complete with strap $£ 7.99$ ref BAR1
COIN OPERATED TIMER KIT Complete with coinsiot mechanism. adjustable ome delay, relay outpur. put a coinslot on anything you fikel TV.s, videos, fridges, drinks cupboards. HIFI.
takes 50 p's and $£ 1$ coins. DC operated, price Just $£ 7.99$ ref BAR27. ZENITH $900 \times$ MACNIFICATION MICROSCOPE Zoom, metal construction, buith in ligm, shimp farm. group viewing screen lots of accessories e29 ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads E2. 99 ref BAR3A PLASMA SCREENS 220310 mm , no data hence E4.99 re? BAR67
NIGHTSIG HTS Model TZSA whth infra red illuminator, views up to 75 metresin full darkness ininfrared mode, 150 m range, 45 mm lens. 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA batteries requred. 950 g weight. £ 199 ref BAR61. 1 years warranty
LIQUID CRYSTAL DISPLAYS Bargain prioes
16 character 2 line, $99 \times 24 \mathrm{~mm} £ 299$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 599$ ref SMC1640A TAL. 1110 MM NEWTONLAN REFLECTORTELESCOPE Russion. Superb astronomical 'scope. everything you need for some

WOLVERHAMPTON BRANCH NOW OPEN AT WORCESTEER ST

details E249 ret TAL.

CENTRAL POINT PC TOOLS Award winning software, 1.300 wirus checker, memory optmiser, disc optmiser, nie compression. low leve formating, backup scheduler, disk defragmemer, undelete. 4 cakcuators. Diase, disc editor, over 40 viewers, remote computing. password protection. encryption, comprehensive manual supplied elc $£ 25$ ref lot 973.5° disks.
GOT AN EXP ENSNE BIKE? Youneed one of our botle alams, they look like a standard water botwe, but open the lop, insert a key to actvate a motion sensor alam buth insice. Fits ath standard sothe carlers, supplled with two keys SALE PRTCE ET 09 REF SA 32
GOTAM EXP ENSNE ANYTHING? Youneed one ofourca vibration alams. keyswich operated, fully cased just if tit to
anything from wieos to caravans, provides a years protection from PP3 battery. UK made SALE PRICE E4.99 REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repar so Jusk $£ 4.98$ each. BT response 200 machines REF SA30 COMPUTER DISC CLEAROUTWe are let with slo o s sonware packs that need cleating sowe are sefling atdilisc value ontil 50 dsc for E4, thats just $8 p$ eachll(our cholce of discs) E4 ref EPSO IBM PS2 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supoly. E995 rel EPET DELL PC POWER SUPPLIES 145 wath $+5,-5,+12,-12$ $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyeads and IEC socket SALE PRICE E9.99 rel EP55
1.44 DISC DRNES Standard PC 3.5° drives but eetums so they will need attention SALE PRTCE E4.99 ref EP68
1.2 DISC DRNES Standard 5.25° divives but retums so they will need attention SALE PRICE NOW ONLY E3. 50 ref EP69 PP3 NICADS Unused but some storage manks. $£ 499$ ref EP52 DELL PC POWER SUP PLIES (Customer retums) Standard PC psu's complete with fyl leads case snd tan $, 12 \mathrm{v} .12 \mathrm{v},+5 \mathrm{v},-5 \mathrm{v}$ SAL PRICE $E 1.99$ EACH worth itor the Dits alonel ref DL1. TRADE PACK OF 20 ezs.95 Ret D22.
GAS HOBS AND OVENS Brand new gas appliances, perfect to small hats etc. Basic 3 bumer hob SALE PRICE £24.99 ret EPT2 Basic small buht in oven SALE PRICE C79 ref EPT3 $^{\text {ef }}$
RED EYE SECURTTY PROTECTOR 1,000 watt outocor PIR switch SALE PRICE $\mathbf{E 6} .99$ ret EP57
ENERGY BANK KT $1006 \times 6^{\circ} 6 \mathrm{~V} 100 \mathrm{~mA}$ panels. 100 diodes connectoon details etc E69.95 rel EF 112
PASTEL ACCOUNTS SOFTWARE, does everyting for all Se es of businesses. Indudes wordprocessor, repon witer, windowing setworkabie up to 10 stations multple cast books etc 200 page omprenensive manual. 90 days free technical suppon (01342 326009 try belore you buyl) Current retail price is $£ 120$, SALE
PRICE $£ 958$ ret SA12 SAVE $£ 12$ II PRICE $£ 9.95$ ret SA12. SAVE $£ 1201$
COMPLETE PC 200 WATT UPS SYSTEM TOp of the range UPS system providing protection for your computer system and
valuabie sofware against mains power fluctuations and culs New and boxed. UK made Provides up to 5 mina running ime in the even of complete power failue to aillow you to run your system down COrrecty. LAST FEW TO CLEAR AT E49 SAVE $£ 30$ ref LOT61 BIG BROTHERPSU Cased PSU, GV 2 A Oulput. 2 m aplead, 1.6 m input lead. UK made. 2zov. SALE PRICE E4.99 REF EP7

Check out our WEB SITE

http://www.pavillon.co.uk/bull-eleotrical RACAL MODEM BONANZAI 1 Raca MPS 1223120075 modem, cheapest way onto the netl all this for jusi $£ 13$ ref DEC13.
4.6 mw LASER POINTER. BRA ND NEW MODEL NOW IN STOCK1, supplied in fully buit form (looks lilke a nioe pen) oomplete with handy pocket clip (whioh also acts as the onlofl switch.) About 50 motros rangel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments eto. Just £39.96 ref DEC49 TRADE PRICE $\mathbb{C} 28$ MIN 10 PIECES

BULL TENS UNTT Fully built and tested TENS (Transcutaneous Eiectical Nene Sumulaton) unit, compiefe with electrodes and ith instivcion. TENS is useo ior me rever of pain eic in $4 p$ lo 10\% of anmera drug inee pan roid, sale and easy io use. can be usedin conjunction with analgesics etc EA9 Ret TEN
PC PAL VGA TO TV CONVERTER COnverts a colour TV into a basic VGA screen Complete with buili in psu, lead and sware.. Ideed for taptops or a cheap upgrade. Supplied in kt form for home assembly. sALE PRICE eZS REF SA34
EMERGENCY LIGHTING UNIT Complete unt with 2 double

- some or oux products mar be unlacensable in the ue

BULL ELECTRICAI
250 PORTLAND ROAD, HOVE, SUSSEX BN3 SOT, (ESTABLISHED SO YEARS) MAIL ORDER TERMS: CASKL, PA OR CHEQUE
 FLEASE AILOW T-GO OAYS POR BELVERYPHONE ORBER ILCOME faccrss vist
TEL: 01273
203500 FAX 01273323077
3amail hnillopavilion, co,uk
lead acld req'd. (seconthano) EA rel MACAP1
YUASHA SEALED LEAD ACID BATTERIES Two size currently avalable ens month, 42 V 15 AH atE 18 ref LOT8 and 6 y 10 AH (sultable for emergency lights above) at ust $£ 6$ ref LOTT
ELECTRIC CAR WINDOW DE-ICERS Complete with cable plug etc SALE PRJCE JUST E4.99 REF SAZ8
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plugg. 12v 2watt $£ 8.99$ REF SA25 MICRODRNE STRIPPERS Small cased tape dives ideal to stripping. lots of useful goodies including a smant case and lots of components. SALE PRICE JUST E4.90 FOR FME REF SA26
SOLAR POWER LAB SPECLAL YOu get TWO $6^{\circ} \times 6^{\circ}$ 6y 130 m solar cells, 4LED's, wire, buzzer, swith plus trelay or motor. Superb value bot SALE PRICE JUST E4.99 REF SAZ7
RGBICGA/EGAITLL COLOUR MONTTORS 12° in 90 condition Back anodised meta case. SALE PRIC E E49 REF SA 16 B PLUG IN ACORN PSU 19 V AC 14w, £299 REF MAG3P 10 13.8V 1.9A PSU cased with leads Just $£ 9.99$ REF MAG10P3 UNNERSAL SPEED CONTROLLER KTT Designed by us for the C5 motorbut ok for any 12v motor up to 30A. Complete with PCB etc. A heat sink may be requifed. $£ 17.00$ REF: MAG17 PHONE CABLE AND COMPUTER COMMUNICATIONS PACK IVt contains 100 m of 6 core cable. 100 cable alips. 2 ll me drivers with RS232 intertaces and all connectors etc. Ideat low cos methoc of communicating betweens sover along distance utilizin the senal ponts Complete kit 5899 Ret comp 1
VIEWDATA SYSTEMS made by Puilips, complete with intemal $1200 / 75$ modem, keyboard, psu etc RGB and composite outputs, menu diven, sutodialler etc SALE PRNCE $£ 12.99$ REF SA 18
AIR RIFLES .22As usead by the Chinese amyfortraining puposes so there is a lot about! $£ 3995$ Ref EF78. 500 pellets $£ 4.50$ ret EF80. PLUG IN POWER SUPPLY SALE FROM E1.60 Plugs in to 13A socket with outp utiead. three thpes avaitable, gvdc 150 mAE 1.50
 VIDEO SENDER UNTT. Transmits both udio and video signai VIDEO SENDER UNT. Transmits both audio and video signals Yrom erner a video camera, videorecorser, TVor Computer eic ba ny
 ap. Pnce is E2S REF: MAG15 12 V pSU is $£ 5$ extra REF: MAGSP2
-MINATURE RADIOTRANSCENERS A pair of wallice taikies MIN ATURE RADIO TRANSCENERS A pair of walloe taikies with a range up to 2 kmin open country. Units measure 22x52x 150 mm induding cases and eand'ces $2 x$ PP3 req'd $E 30.00$ pr er. mains solasts forever why ay E700\% or phice is E 15 REF. EF62 (xil) Transmits to any FM radio. FM BUG BUiLT AND TESTED supertor design to kit. Supplie 10 derective agencies $9 v$ battery reaid. $£ 14$ REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COINSLOT M ECMAMISMS onginally made to retail ate79 each these unts are designed to convert an ordinary phone into payphone. The unis have the locks missing and sometmes broken xinges. However they can be a dapted for their original use or usedio Fomwithing el seph SALE PRICE JUST E2.50 REF SAZ3
GAT AIR PISTOL PACK Complete with pistol, darts and pellets E12.95 Ref EF82B extra pellets (500) E4.50 rel EF80.
${ }^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE $£ 4.9 \theta$ REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for 54.99
ef MA GSP13ideal for expenmenters 30 m for $£ 12.99$ rel MAG $13 P$.

MIXED GOODIES BOX OF
 MIXED COMPONENTS WEIGHING 2 KILOS

4×28 TELESCOPIC SIGHTS Sutable for all air thes, grounc enses, good light gathering properties. $£ 1995$ ref R/
GYROSCOPES Rememberthese? well we have found a company that sell manutaclures these popular scaentifc toys. perfect gitit or for ducational use etc. $\varepsilon 6$ rea EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket, refiects more than 90% of Dody neat. Also suitable for the construction of two way mimors $E 3.99$ each ref O/.041
LENSTATIC RANGER COMPASS Oil filled capsule, strong metal case. large luminous points Sight line witr magnifying viewer 50 mm dia, $86 \mathrm{gm} . \mathrm{E} 10.99$ ref OK 604
RECHARGE ORDIWARY BATTERIES UP TO 10 TMES With the Battery wizardt Uses the latest pulse wave charge system WTh the Batery Wrart Uses the latest puse wave charge systern
to charge all popular Drands of ordinary battenes AAA. AA. C. D. four lo charge all Dopular brands do ordinary battenes AAA. AA. C. D, four
atabinelied system shows when battenes are charged, eutomatically refects unsuliabie cells. complete with ma nis adaptor. BS approved. refects unsu wase cells.
Price is $£ 21.95$ ref EP 31
TALKING WATCH Yes. it actualty tells you the of eat the press of button Aiso features a voice alam that wakes you up and tells you hat the ime is Lithlum cell Induded. $\mathbb{7} 99$ ret EP26.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU
YOUR LICENCE! The new mutiband 2000 radar detector can prevent even the most responsible of divers from losing theiricencel Aqustabie audible alarm with 8 nashing leds gives instant warming of adar zones Detects $X . K$ and Ka bands. 3 mile range. 'over tive hil'' around Dends' end'rear trap facilitles micro size just4.25' $2.5^{\prime \prime} \times 75^{\prime \prime}$, Can pay for itself in just one day E 7995 rel EP 3 .
$3^{\text {" }}$ DISCS As used on older Amstrad mactines, Spectrum plus3"s etc $£ 3$ each rel BAR400.
STEREO MICROSOPES BACK IN STOCK RUssian, 200x complete with lenses, lights, firers etc etc very comprehensive

FOR CASH

BUYERS DIRECT LINE 0802660377 FREECATALOGUE

> 100 PAGE CATALOGUE NOW AVAILABLE, 50P STAMP OR FREE

> ON REGUEST WITH ORDER.

Electrical storage cells represent the ultimate flexibility in the provision of energy, in large or small amounts, industrial, residential or mobile. They are catching up, especially in the automative industr̈tes, as Dodylas Clärkeson describes

IIn many ways, the path to greener energy requires. progress with technology but also a shift in thinking. The field of fuel cell technology represents just such a challenge of development, and also mental level shifting. The significance of the fuel cell technology is that it has the ability to alter the source of electrical power to a house, to a car or a bus, to a block of flats, or to a city requiring 100 MW of power.

Power stations utilising fuels such as coal, oil and natural gas tend to be economical in relatively large units. Nuclear power stations are even more concentrated units of investment and typically cost several billions of pounds to construct. The long term significance for the power industry may be the ability of fuel celis to decentralise it, with power generation systems being sited even in residential neighbourhoods.

The process of deregulation of the power industry is seen in the USA as a means to reduce utility power costs as a potential attraction for industry. This process has already gone some way, especially in California where by 1998 companies can be in a position to buy power from the utility of their choice.

This choice is being opened up to residential customers by 2003. The development of fuel cell technology is coming at a time where increasing decentralisation will take place in power supply systems and there will be a gap in the market for more flexible, more efficient and less polluting forms of power generation. This move for deregulation would allow the cost of grid distribution to be reduced as less power is required to be transmitted across it.

There could even be some 'wild card' scenarios within the fuel cell field. With millions of homes connected to natural gas in the UK, what is to prevent the development of a flexible 'multi-boiler' system that provides both heat and electricity derived from the fuel cell function? A lot of the energy from my gas boiler seems just to heat the gas exit flue. (And you have probably noticed the same thing in yours.)

Developers, on your marks

Fuel cell technology also has the potential to interact hopefully not to interfere - with alternative sources of power such as wind, solar and biomass, Linked together in a
supportive way,
fuel ceils could
provide a means of efficiently
using hydrogen produced by electrolysis from wind and solar sources, or producer gas or methanol from biomass sources.

In terms of global warming, fuel cells can help reduce carbon dioxide emissions by using fuels such as natural gas much more efficiently. When hydrogen is used directly, no carbon dioxide is released as a direct result of the fuel cell process.

Discovery of the fuel cell

One of the surprising aspects of fuel cell technology is that it was discovered by Sir William Robert Grove in 1839. Sir William Grove was also the first to demonstrate the dissociation of steam into hydrogen and oxygen by a heated catalyst such as Platinum. In today's parlance, this would be described as 'reformer' technology. He also developed a battery with one cell consisting of zinc in dilute sulphuric acid and another of a platinum cathode in nitric acid, with the cells being separated by a porous container.

Sir William Grove initially made his career in law, but ill health made him turn to science, becoming professor of Physics at the London Institution between 1840 and 1847. He was later to combine both careers by being involved in patent law. His background identifies him as being indeed most suited for the modern day world of fuel cell development - a mind filled with science and the finer points of patent law.

General developments

While the concept has been understood for nearly 160 years, it has only been relatively recently that progress in materials technology has advanced the cause of the fuel cell. Pratt and Whitney successfully developed fuel cells for the Gemini IV mission. These subsequently provided an invaluable source of power for the Apollo moon landing missions. Currently a 12 KW alkaline fuel cell provides power for NASA's space shuttle. This cell can only be run on pure hydrogen and oxygen and is seen as having limited potential for future application.

In the USA, the Department of Energy developed fuel cell systems through the 1970s and 80 s with principal effort going
into Phosphoric Acid Fuel Cells (PAFC) technology. The commercialisation of this technology is now visible as systems are being supplied to customers. One key research centre in the USA is the Department of Energy's Morgantown Energy Technology Centre (METC). More recently, over the last five years, there has been increasing interest in advanced high temperature fuel cells which operate at higher efficiencies and also require lower capital costs and which in particular can utilise coal gas as a fuel.

With Europe a framework of collaborative projects sponsored by national governments, EC funding and commercial sources are active in developing a range of fuel cell technologies with a bias towards high temperature processes with internal conversion of natural gas to hydrogen.

Similarly within Japan, a diverse mix of organisations and companies are actively involved in development of fuel cell technology.

General types of fuel cell

Table 1 summarises the main types of fuel cell currently being developed or in commercial production.
advantage in general transport situations such as cars and buses.

SPFC or PEM (Proton Exchange Membrane) cells

Figure 1 indicates the essential structure of a section through a SPFC or Proton Exchange Membrane (PEM) fuel cell.
Hydrogen is supplied to a gas porous hydrogen anode. Hydrogen migrates across a layer of catalyst (usually platinum) as hydrogen ions after having given up an electron. The protons are small enough to migrate through the membrane across the catalyst and into the oxygen cathode which is a porous structure supplied with oxygen. Electrons left behind at the hydrogen anode travel in a connected circuit to the cathode where the hydrogen ions (protons) are neutralised and water is formed.

The hydrogen ions therefore develops a negative voltage and the oxygen electrode a positive voltage. Under open circuit conditions with no current flowing, the cell potential is around 1V. Under conditions of load the cell potential falls to around 0.6 V . A key feature of the fuel cell technology, however, is its

TYPE	SPFC Solid Polymer	PAFC Phosphoric Acid	MCFC Molten Carbonate	SOFC Solid Oxíde
Operating Temp C	$80-200$	200	650	1000
Predicted \% Efficiency	60	up to 40	65	55
Internal Reforming	No	No	Yes	Yes
Pressure atm	$1-8$	$1-10$	$1-10$	1

Table 1: Summary of main types of fuel cells.
The SPFC is also frequently referred to as the PEM (Proton Exchange Membrane) fuel cell. The SPFC cell typically has sulphuric acid in polymer as its electrode and the PAFC unit phosphoric acid in a silicon carbide matrix. The MCFC cell typically has a mixture of lithium/potassium carbonate sintered on lithium aluminium oxide tile surface.

The use of thin polymer membranes in the SPFC cell provides for a high power density factor which is especially an

Figure 1: Operation of the PEM Fuel Cell
relatively high efficiency. For the SPFC cell, values of around 45% can be achieved. This compares favourably with the typical value of 25% of the internal combustion engine. This is one of the key parameters stacked in favour of fuel cells.

Sulphur and carbon monoxide must be removed from the fuel gases to avoid poisoning the platinum catalyst present in the anode and cathode structures. One of the anxieties about using this cell in vehicle transport is the risk of contamination from vehicle exhausts from vehicles with internal combustion engines.

Within Europe, SPFC technology is being developed in Holland by ECN, in Italy by Sere De Nora and In Germany by Siemens and Dornier with a wider range of companies including Rolls Royce and VESL showing interest in associated technology and applications.

A key developer of SPFC technology is Ballard Power Systems Inc in Vancouver, Canada. Energy Partners Inc of Florida, founded in 1990, is also another developer of proton exchange membrane fuel cells and has developed 20 kW PEM facility using compressed hydrogen. For low to medium sized PEM fuel cell installations, Ballard Power is in many ways already demonstrating the future.

Ballard Power Systems

While there is a wide range of fuel cell technologies available, it is widely considered that the appropriate technology for vehicles is that of PEM or proton exchange membrane. The key characteristics of high power density and quick start up time and the tolerance of variable power demands, map exceedingly well to the driver waiting for the red light to change.

Figure 2: Comparison of efficiencies of PEM fuel cell with state of the art spark ignition internal combustion engine.

Initial reception of the second generation bus has been equally enthusiastic. Powered by a $205 \mathrm{~kW}(275 \mathrm{HP}$) fuel cell systern, the bus has a range of 250 miles. In a significant commercial development, the City of Chicago has signed a US $\$ 5.8$ million two year deal to put three buses into service. If this is successful then the Chicago Transit Authority will consider converting its entire 2000 bus fleet to Ballard Fuel Cell engines as the buses become due for replacement.

Figure 3 shows the general construction of a fuel cell unit. The fuel cell module is very much a sandwich with the membrane electrode assembly (3) held between the flow field plate (1). Thus air (4) and hydrogen (2) is distributed on opposite sides of the flow field plate. The alr flow channels (4) guide flow over the active membrane and remove water produced by the combination of hydrogen and oxygen.

One of the surprising features of the developments at Ballard Power Systems has been the speed with which the power density of the PEM cells has been increased. Figure 4

Figure 5: Milestone in development: On the left the cell of 1989 and on the right that of 1995. The difference is an improvement by a factor of ten in power density. (Courtesy Ballard Power Systems Inc)

Figure 6: Current design of the second generation Ballard Bus, with a 275 HP Ballard Fuel Cell engine. (Courtesy Ballard Power Systems Inc)
than that of the earlier cell.
Figure 6 shows the 'second generation' version of the Ballard Bus and figure 7 the fuel cell module used to power it.

Figure 8 shows how the fuel cell module integrates into the rear structure of the vehicle.

Beyond this, the use of 25 kW stacks and regenerative breaking will hopefully extend the vehicle range to 560 km . This is the vehicle concept that will be scrutinised by transit operators.

The efforts at Ballard are now focused into reducing manufacturing costs. One of the key developments currently being undertaken by Ballard Power is that of a new membrane material which if successful will lower membrane costs by as much as 90%. In addition, alternative lighter and less expensive materials are being investigated to further reduce manufacturing costs for the flow field plate. It is anticipated that volume manufacturing will begin in pilot scale towards the end of 1996. A key player in the technology deveiopments at Ballard Power has been Johnson Matthey plc of the UK. This

Figure 7: Current PEM module array used to power the second generation Ballard Fuel Cell Bus. (Courtesy Ballard Power Systems Inc)

Figure 8: Location of the fuel cell modules at the rear of the Ballard bus. (Courtesy Ballard Power Systems Inc)
company has made a significant contribution to reducing the amount of Platinum catalyst in some cell by 75% with no deterioration in performance but with significantly reduced cost and weight.

The future cost projections of the Ballard Fuel cell is indicated in figure 9. This is based both on lower cost of materials and increased volume of production.

Ballard Power System is also working on a 250 kW module powered by Natural Gas. This project was initially one in which Dow Chemical was involved but which Ballard now seeks to complete with a new series of partners. The timescale to complete this stage is now set at the first quarter of 1997.

In a parallel development, Ballard Power has won a $\$ 5.9$ million contract to develop a methanol fuel cell engine delivering $100 \mathrm{~kW}(135 \mathrm{HP})$ in association with Georgetown University, Washington D.C.. This development would be appropriate for smaller sized buses such as airport shuttles and the technology will be generally appropriate for powering cars.

OCTODC CONVERTERS

DRM58 input 10-40vic output 5N $8 \mathrm{~A} £ 15$
DRM128 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 8 \mathrm{~A} £ 50$
DRM158 input $20-40 \mathrm{vdc}$ output 15 V 8 A £50
DRM248 input $29-40$ voc output $24 \mathrm{~V} 8 \mathrm{~A} £ 40$
DRS 123 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS 153 input $20-40 \mathrm{vdc}$ output $15 \mathrm{~N} 3 \mathrm{~A} £ 20$ DRS243 input $29-40 \mathrm{Vdc}$ output $24 \mathrm{v} 3 \mathrm{~A} £ 15$ SOLID STATE RELAYS
CMP-DC-200P 3.32vdc Operation, 0-200voc 1A $E 2.50$ SMT20000/3 3-24vdc operason, 28-280vac 3A EA 50 SMT20000/4 3-24vdc operabon, $28-280 \mathrm{vac} 4 \mathrm{~A}$ £5.00
ZRA6025F 28-280vd/ac operation. 28 -280vac 25A $\mathrm{E}_{2} .00$ 200 WATT INVERTERS Nicely cased units 12 V input 240 V output 150 wath continuous, 200 max E49 ret LOT62
6.85W HELIUM NEON LASERS Now Unts. $£ 65$ ref LOT33 COINSLOT TOKENS You may have a use for these? muxed bag of 100 tokens $£ 10$ rel LOTZO.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel
 experimental purp ENHANCER PLANS Mystify and amaze your inends by creating motion with no known apparent means or cause. Uses no electincal or mechanical connectons, no spedin gimmicks yetproducespositive mofon and efled Excelient tor sciencepropeds. magic shows. party demonstrations or serious research
develcoment of tis strange and amazing phychic phenomenon develooment of this
E4/sel Ref FTTKE1
ELECTRONIC HYPNOSIS PLANS\& DATA This data shows several ways to put subjects under your comtro. Induded is a fult volume reference text and several construction plans that when assemblec can produce highty effective strmuli. This matenai must by utose experienced in its use £. $15 /$ set Ref FIEH2.
GRAVITY GENERATOR PLANS This unlque plan demonstrates a simple electrical phenomena that produces an antgravity effect You can actually build a small mock spacoship out of stmple matenals and without any visiole means causell
E10/set Ref FIGRA1. WORLDS SMALLEST TESLA COILLIGHTENING
OISPLAY GLOBE PLANS Produces up to 750,000 vots of DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV erfects, "Plasma in a lar, St Emo's fire. Corona, excel
pieco. E5/set Rel F/BTCILGS.
COPPER VAPOUR LASER PLANS Produces 100 mm of visible green ligm. high conerency and specral quatity simuler to Argon laser but easier and iess costly to build yet far more efficiont Titsparifutardesign was deveroped at the Atoric Energy Commiston of NEGEV in Israel. £ 10 Bet Rel F/CVL 1 .
VOICE SCRAMBLER PLANS Minature sold state system turns speech sound into indecipherable noise that cannot be understood without a second matching unt. Use on teleph
prevent thirrd party listening and bugging $£ 6 /$ sel Ref $F N S S$.
PULSED TV JOKER PLANS Ltte hand held derice uffilses puise lechnigues that will completely disupt TV picture and so
works on FM toot DISCRETION ADVISED. E8Sel Rel FITJ5. BOOYHEAT TELESCOPE PLANS Highty directional tong range device uses recent technology to delect the presence of living bodies. warm and hot spots, heat leazs etc. intended for secumy, tow onforcement research and development etc. Exceltem socumit device or very interesting science project $£ 8 /$ set Ret $\mathrm{F} / \mathrm{BHT1}$. BURNING, CUTTING CO2 LASER PLANS Projects an invisible beem of heat capable of burning and meiling maternis over a considerabte distance This laser is one of the most effidemt, converting 10% inputpower into uselul output Not only is th's device a worknorse in welding, cuttong and heat processing materals butt is also $\begin{aligned} & \text { likely candidate as an effective directed energy beam } \\ & \text { ind }\end{aligned}$ weepon against wlysiles aircrat grounc-to ground, etc. Partide Deams may very woll utbize a laser of tis type to dolast a channet in
the amoshere for a tigh energy stream of neutrons or other the atmosphere for a tigh energy stream of neutrons or other
particies. The device is easily appilicable to bumming and etching particles The device is easily appictable to burning
wood. cutting, plastcs, textles etc $\varepsilon 12$ /set Ret FnC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simplo concept. Objects float in air and move io the touch. Deffes gravity. amazing giti.conversation piece. magict trick or science project $\varepsilon 6$ ULTRASONIC BLASTER P LANS Laboratory source of sonic Shock waves Blow holes in metal. produce 'cold' steam, atomize shock waves Blow noles in metal. produce 'olot' sleam, atomize
Ihquides Many cleaning uses for PC boards. jewilery, colns, smail \#quides Many cleaning uses
parts etc. E6/set Ret FMLB1.
PaIt etc. EbIGe Rel ULTRAHIGHAN AMPISTETHOSCOPICMIKESOUND AND VIBRATION DETECTOR PLANS Ultrasensifve device enables one lo heer a whole new world of sounds Listen through
walls, windows floors etc. Many applications shown, from law Walls, windows, foors etc. Many apptications shown, from taw
enforcement, nature listening, medical heartoeat, to mechanical enforcement, nature listienin
devices $E 6 /$ set Ret $F / H G A 7$
ANTI DOG FORCE FIELD PLANS Highly eflective dreult produces ime variable puises of accoustical energy that dogs produces ime valiabe pel
cannot tolerate $£ 6 /$ set Ref
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access $£ 12 /$ see Ref FんLUST1
LASER LIGHT SHOW PLANS DOll yourself plans show three mothods. E6 Rel F ILLS?
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transoucer and battery capacity with external controls. E6/set Ref F/PSP4
INFINTTY TRANSMITTER PLANS Teleptione fine grabbet/ room montor. The uitma te in hormetofice secunty and sateyly simple to usel Call your home or office phone, push a secret tone on your teiephone wa access ether A) On premises sound and vaces or B)
Exisfing conversation with break-in capablility for emergency Existing conversation wht brea
messiges \&7 Rei FTELEGRAB.
BUG DETECTOR PLANBIs that someone gettong the goods on you? Easy to construct device locates any hidden source of radio energy' Snits out and finds bugs and other sources of bothersome

WOLVERTAGMTON BRANCH NOW OPEN AT WORCESTER SY WHAMPION TXI. 01922.22039

interference Delects low, high and UHF frequencles $£ 5$ sset Ret FI BD1.
ELECTROMAGNETIC GUN PLANS Projects a metal oblect a
considerable distance-requires adult supenvision £5 re F/EML2.
ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE
TOUCH OF YOUR MANDI E5/sel Rel FIEMA1.
PARABOLIC DISH MICROPHONE PLANS LIsten io distant sounds and voices. ocen windows, sound sources in 'therd lo get or hostile premises Uses satelife technology to gather dilstamt sounds and focus them toour ultra sensitve electronics Plans also show an aptional wreless link sysiem, £8/sel rel F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND MIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VOC OUTPUT GENERATOR PLANS Operate
INFINITY TRANSMITTERS The ultmate 'bug' firs to a any hone or line, undetectable, listen to the conversatons in the room from anywhers in the wordl 24 hours a day 7 days a weok' just cali the number and press a button on the mini controller (supplied) and you can hear everythingI Monltor conversations for as long as you choose $\Sigma 249$ each, comptete with leads and mini comproterl Rei LOT9. Undetectabie with nomal RF defectors, thed in seconds. no batteries required, lasts forever
SWTCHED MODE PSU'S 244 watt. $+532 A+126 A,-50.2 A$. 120.2 A There is also an optonai 3.3225 A rail avaliable. 120240 VV P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inver Sutable for PC USe (6 d/drive

VIDEO PROCESSOR UNIT37/GV 10AM BATTS/12V BA TX Not too sure what the function of these untis is but they certarity make good strippersi Measures $350 \times 320 \times 120 \mathrm{~mm}$. on the front are controis for scan speed, scan delay, scan mode, loads of connections on the rear. Inside $2 \times$ UN 10AH seatediead acid batts. pcos's and 8 A? 12v torroidial transformer (mains in). Condtion not known, may have one or two broken kncoss due to poor storage. $£ 17.50$ ref VP2
RET RON NIGHT SIGHT Recogntition of a standing man at 300 m in $1 / 4$ moonlight hermatically seaied, runs on 2 AA battenes. 80 mm F1.5 lens. 20 mw infrared laser induded. $£ 325$ red RETRON
MINI FM TRANSMITTER KIT Very high gain preamp. supplied complete with FET eiectret microphona. Designed to cover 88108 Mhz but easily changod to cover
gv (PP3) battery. 0.2 W RF. F 7 Rel 1001.
$3-30 V$ POWER SU PP LY KTT Vartable, stabilized power supply 3-30V POWER SU PPLY KT Vartable, stabilized power supply
for lab use. Shord dircurt protected. suitabie for profesional or amateur for lab use. Short circult protected. sutabie for protesional or amateut 1 WATT FM TRANSMITTER KT Supplied with piezo eearic mic. 8-30voc. At $25-30 \mathrm{r}$ you will get nesty 2 watisl $£ 12$ ref 1009. FM/AM SCAN NER KIT Well not quite, you have to tum the knob your self but you wil hear things on this radio that you would not hear on an orrolinary radio (even TV) Covers $50-160 \mathrm{mhz}$ on both AM anc FM. Butt in 5 watt amplifier, inc speaker, £15 ret 1013
3 CHANNEL SOUND TO LIGHT KT Wireless system, mains operated. separate senativity adiustment for each channel. 1.200 w power handing. microphone induded $£ 14$ Ret 1014
4 WATT FM TRANSMITER KIT Small but powerful FM 4 WAIT FMF TRansmitter. 3 RF stages microphone and audio preamp hnduded. transmitter. 3 R
E.20 Ref 1028.
STROBE LIGIT KIT Aqustable from 9.60 nz (a lot laster than conventional strobes). Malns operated. £16 Ref 1037
COMBIWATION LOCK KTr 9 key, programmede complete with keypad, will switch $2 A$ mains gr oc coeration. $£ 10$ ref 1114. PHONE BUG DETECTOR KTT This device wit wam you it somebody is eavescroppling on your line. $£ 6$ ref 1130 .
ROBOT VOICE KTI Imeresing dirait that distorts your vaice adjustable. answerthe phone with a diferentvoico! $12 \mathrm{Vdc} £ 9$ ref 1131 TELEPHONE BUG KTT Small bug powered by the phone ine, starts transmmeing as soon as the phone is picked upl $\varepsilon 8$ Rel 1135 . 3 CHANNEL LIGKT CHASER KIT 800 watts per channel speed and direction controsssupplied winh 12 LEDS (you can Ant triac instead to make kit mains. not supplied) $9-12$ vdc $£ 17$ raf 1026. 12V FLOURESCENT LAM P DRNER KT LIght up 4 foot tubes from your car batteryi 9v 2 a transtomer also required $£ 8$ rel 1069. VOXSWTTCH KIT Sound activated swith ideal tormaking bugging tape recorders etc, aduustable sensitivty. $£ 8$ ref 1073.

Check out our
WER SITE
httpa//www.pavilion.co.uk/bull-eleotrical
PREAMP MDXER KIT 3 input mono mixer, sep dass and trebie controls plus individual leve controls, 18vdc, input sens $100 \mathrm{~mA} £ 15$ ref 1052
BULL ELECTRICAL
250 PORTLAND ROAD, HOFF, S1B8STKX
BN3 SOLT, (GSTABHISHED 50YCARS); LULL ORDBK TEPME: CASE, PO OR CHEQU1

WHYH ORDER FLIE 63 PAP MATE VAT.

FAX 01273 323077
E-mail bull@pavilion.co.uk

SOUND EFFECTS GENERATORKTT Produces sounds ranging

trom bird chips to sirens. Complete
to your profects for fust $E 9$ ref 1005

to your profects for Just $E 9$ ref 1045 .
16 WATT FM TRANMMTTER (BUILT) 4 stage migh power, preamp required $12-18 \mathrm{vdc}$, can use ground plane, yagi or open Glipole $\mathfrak{\varepsilon} 69$ ref 102
HUMIDTTY METER KTI Bulds into a precision LCD numidify meter. 9 ic design, pCD, led display and all components inciuced. £29 PC TMER KT Four channel output controlled by your PC, will switch high currem mains with telays (supplied). Software supplied so you can program the channels to do what you want whenever you
want Minimum system configeration is 286, VGA 41.640 k . senal want. Minimum system coningeraion
port, hard drive with min 100 k free. $£ 24.99$
FM CORDLESS [AICROPHON E This unhis an FM broaocasong staion In minature, 3 transistor transmilter with electret condenser mic + lef amp design resulth maximum sensiivity and broad frequency mic + ter amp design resulthmaxmum sensiovity and broad frequency
response. $90-105 \mathrm{~m} \mathrm{hz}$, $50-1500 \mathrm{hz}$, 500 foot range in apen countryi response. 90 - $105 \mathrm{mnz}, 50-1500 \mathrm{hz}, 500$ foct
MAGNETIC MARBLES They have been around for a number of yoars but stll give Ise to curlosity and smazement A pack of 12 is just
$£ 3.99$ ref GIR20
NICKEL PLATING KTT Pronfesional eiectroplatng kit that will transform rusting parts into showpieces in 3 hoursal Will plate onto steed, tron, bronze, gunmetal. copper, weided, siviver solderedor brazed joints krtindudes enough toplate 1,000 salnches. You will also need - 12v supply, a container and 2 12v light Dulbs. $£ 3999$ rel NiK39 Minature adjusta ble timers. 4 pole e/0 output 3A 240 y HY1230S, 12VDC adjustable from $0-30$ secs. $£ 4.99$ HY1260M, 12 VDC adjustable from 0.60 mins $£ 4.99$ HY2405S, 240 V adjustable from 0.5 secs. $£ 4.99$ HY $24060 \mathrm{~m}, 240 \mathrm{~V}$ adjustable from $0-60$ mins. $£ 6.99$ BUGGING TAPE RECORDER Small volce activated recorder, uses micro cs ssette complete with headp hones $£ 2899$ retMAR29p1 POWER SUPPLY filly cased with mans and op leads 17V DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
Tv DC POWER SUPP LY Standard plug intype $150 \mathrm{ma} 9 \mathrm{~V} D C$ with lead and DC power plug. price for two is $£ 2.99$ ref AUG3P4. COMPOSTE VIDEO $K \Pi$. Converts composite videointo separate H sync. V sync, and video. 12v DC. $£ 8.00$ REF: MAGBP2 FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$. 4 dive connectors 1 mother board o
Ilet aUS FLYTRAPKT EF6.
VENUS FLY TRAP KTI Grow yourown carnivorousplantwith this mple int $£ 3$ rel EF3
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} ~ 155 \times 310 \mathrm{~mm}$ 130円A Bargain pice Just $£ 599$ ea REF MAG6P 12
FIBRE OPTK CABLE BUMPER PACK 10 metres for EA.99 ref MAG5P13 ideal for experimenters 30 m for $£ 1299$ ret MAG 13 P1 ROCK LIGHTS Unusual trings these two pieces of rock thatglow when rubbed toget hen belived to cause ranifiz a pair Ref EF29. 3° by 1^{\prime} AMORPHOUS SOLAR PANELS 14.5 v . 700 mA 10 watts, alummium frame, screw lerminals, $\mathbb{E} 44.95$ ref MAGA5. ELECTRONICACCUPUNCTURE KT Bullds intoan electronic version instead of needesi good to expenment win $£ 7$ tol 7 P30
SHOCKIN G COIL KIT Buld this hitle obattery operated device into all sorts of things, also gets worms out of the groundl $£ 7$ ret $7 P 36$ FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and fies 50 m range $£ 6$ rel EF 2
HIGH POWER CATAPULTS Hinged am brace for stabiity. tempered steel yoke, super strength latex power bands Departure peed of ammunion is in excess of 200 miles oer houll Range of ove 200 metres $£ 7.99$ rel Rgg.
BALLON MANUFACTURING KTT British made, small blob Diows into a a arge, longlasting ballioon, hours offun! $£ 399$ Tri GVE 99 R 9-0-9V 4A TRANSFORMERS, chassis mount $£ 7$ rel LOT19A. 2.6 KILOWATT INVERTERS, Packed whth batteries eto but as they weigh about 100kg CALLERS ONLYI E120 MEGA LED DISPLAYS Bulld your seffa ciock or something with hese mega 7 seg a splays ssmm nign, 38 midas ion pect or jus 4.99 ret LOT1 or a bumper pack of 50 displays for just $\mathrm{Ez9}$ LOT17.

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.
2000 RES ISTORS ON A REEL (SAME VAL UE) 99P REF BAR 340 AT LEAST 200 CAPACTIORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUITBREAKERS, OUR CHOICE TOCLEAR S9P REFBAR33 CIRCUIT BREAKERS, OUR CHELE TO CLEAR E2 REF BAR 328 ICROW OF CHIPS (2 TPPES OUR CHOICE) BOP REF BAR3CS 2 TUBES OF CHIPS(2 TYPES OUR CHOICE)
LOTTERY PREDCTOR MACHINEII JUST E1.50 REF BAR 313 HELLALROVERELECTRIC H/LAMPLEVELIERE2 REF BAR31 MELLALROVERELECTRIC H/LAMPLEVELIERE2 REF BAR311 LARGE MAINS MOTORS (NEW) TO CLEAR AT 75P REF BAR310 LARGE MAINS MOTORS (NEW) TO CLEARAT 75P REF BA MODEMS ETC FOR STRIPPING E250 EACH REF BAR 324 T10VLARGE MOTORS (NEW) TO CLEAR AT SOP REF BAR32 MODULATOR UNITS UNKNOWN SPEC JUST SOP
GX4000 GAMES COSOLES JUST E4 REF BAR320
OX4000 GAMES COSOLES JUST E4 REF BAR3 20
SMART CASED MEMORY STORAGE DEVICE, LOADS OF BT SMART CASED MEMORY STORAGE DEVCE, LOADS OF BIT
INSIDE, PCB MOTOR CASE ETC, BUMPER PACK OF S INSIDE, PCB, MOTOR CASE ETC. BUMPER PACK OF
COMPLETE UNTS TO CLEAR AT E2 SOFOR 5) REF BAR 330. COMPLETE UNTS TO CLEAR AT Q2 SO(FOR 5) REF BAR 330.
2CORE MAINS CABLE 2MLENGTHS PACK OF AE1 REF BAR 337 2CORE MAINS CABLE 2 M LE EGTHS PACK OF A $£ 1$ REF BAR33
PC USERJBASIC MANUALS, LOADS OF INFO. 1 REF BAR304 PCB STRIPPERS TO CLEAR AT 2 FOR $99 P$ REF EAR341
3 M 3CORE MAINS CABLE AND 13 A PLUG. BOP REF BAR325
WE BUY SURPLUS STOCK
FOR CASH
BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMPS.

Figure 9: Projected costs of manufacture for Ballard Power units. (Courtesy Ballard Power Systems Inc)

Figure 10: Top Left: Methanol powered PEM unit for Canadian Defence Department Centre: Prototype hydrogen powered fuel cell system developed for German shipbuilder HDW. (Courtesy Ballard Power Systems Inc)

It is considered that methanol will be the fuel of choice for automotive requirements and this tends to be the technology that Ballard is negotiating with various manufacturers. In particular Honda have placed an order for $\$ 2$ million worth of Ballard Fuel Cells.

There has been interest in the use of Ballard fuel cells to power submarines. Fuel cells do run significantly quieter than diesel engines. Deals with Ballard in this area have been made with the Canadian Defence Department and the German ship builders Howaldtswerke-Deutsche Werft AG (HDW). In the case of the Canadian interest, this was for the building of a 40 kW demonstration power unit running on methanol. This project which is nearing completion could be followed by a contract to construct a full sized 400 kW power plant. The contract for HDW is a prototype hydrogen fuelled power plant.

Figure 11: Basic features of the Molten Carbonate Fuel Cell

Figure 12: Full size electrode tapes being passed for processing in a high temperature furnace prior to assembly. (Courtesy M-C Power)

Two units have been already delivered. These units are shown in figure 10. These contracts are especially valuable to Ballard to secure revenue at a time when there is a significant requirement for funds for research and development.

Ballard is also investigating the use of its fuel cell technology for a wide range of applications even including those for powering of the ubiquitous PC. In a demonstration desk top unit Ballard demonstrated the ability of a compact unit to work 20 hours on a single charge of fuel.

The molten carbonate fuel cell

A number of groups around the world are seeking to develop the technology of the Molten Carbonate Fuel Cell (MCFC) which brings advantages of high efficiency coupled with moderate construction costs. The prime market here is that of stationery power supplies.

Figure 11 indicates the basic principle of the molten carbonate fuel cell. The electrolyte of the cell is heated to 650 degrees C at which temperature the salt melts and becomes electrically conductive, allowing carbonate ions, to migrate to the anode through which reformed fuel is passed. The carbonate ions and the hydrogen at the anode react to form water and carbon dioxide. Meanwhile at the cathode, oxygen reacts with carbon dioxide (recycled from anode products) to replace carbonate ions that have migrated to the anode. In this set of chemistry, carbon dioxide is used as a link in the chain of ionic interactions but with in theory no net carbon dioxide

NEW -- MultiRouter!

There are autorouters and AutoRouters....

"The Best Autorouter that I have seen costing less than $£ 10,000$ l $^{\prime \prime}$

- New 32 Bit, Shape Based, Rip-up \& Re-try and Shove-aside Technology
- Extremely Fast Do in Minutes what would usually take days or weeks
- AutoRoute very large and complex boards
- User Controllable, User Configurable
- 100% Completion where other autorouters fail
- Could Easily Pay For Itself On The First Job

THE AutoRóuter!

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From \$275	£145
MultiRouter: 32bit Muiti-pass Autorouter for EASY-PC Professional XM	\$476	£295
LAYAN: New Electro-Magnetic layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	$¢ 495$
PULSAR: Digital Circuit Simulator	From $\$ 195$	$¢ 98$
ANALYSER III: Analogue Linear Circult Simulator	From $\$ 195$	¢98
FILTECH: Active and Passive Filter Design program	From $\$ 275$	£145
STOCKIT: New comprehensive Stock control program for the small or medium sized business	\$276	£146
EASY-PC: Award Winning PCB and Schematic CAD.	\$145	578
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From $\$ 275$	£145
We operate a no penalty upgrade pollcy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

For Full Information and Demo' Disk, please write, phone, email or fax:-

Number One Systems

UKIEEC: Ref: ETt, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR.

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Email: sales@numberone.com International +44 1480461778

USA: Ref: ETI, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249

being produced for pure hydrogen input.
One problem with the cell which is being receiving attention is the rate of degeneration of the nickel oxide cathode where it contacts the molten alkali electrolyte. Various initiatives are taking place within Europe to use more stable materials such as lithium cobaltate. Most development work on MCFC technology in Europe is taking place in centres in the Netherlands and in Germany although British Gas are playing a key role in evaluation of such systems. In Japan, a range of companies including $\mid \mathrm{HI}$, Mitsublshi, Hitachi and Toshiba are also pursuing MCFC technology, thus indicating that the technology is widely regarded as holding considerable promise. The emphasis on developments is in developing systems that are internally reforming - ie reforming of fuel takes place within the main MC stack.

Steady progress is being made in developing the molten carbonate fuel cell (MCFC) in the USA. The M-C Power Corporation at Burr Ridge, llinois, is essentially a consortium of companies and organisations with M-C Power as the team leader. With M-C Power, the Institute of Gas Technology (IGT) has been developing the stack technology of molten carbonate fuel cells. The IMHEX concept for MCFC was invented by IGT in the 1980's and this technology was subsequently transferred to M-C Power in 1989. The research and development mode
continues at IGT and with M-C Power focusing on manufacture of electrode materials and assembly of cell stacks.

The consortium was recently awarded a $\$ 104$ million contract by the US Department of Energy to develop MCFC technology. The main market sector for this technology is localised power generation. Already demonstration systems of 250 kW have been successfully implemented. A feature of M-C Power's technology is still the use of an external reformer module to process natural gas to hydrogen prior to supply to the fuel cell complex. Such a facility would also provide cogeneration of steam for a district heating system. The IH natural gas reformer was shipped from Japan after extensive field trials there.

While the fuel cell stack operates principally with hydrogen as the fuel, a so called reformer unit conditions other fuels such as natural gas, propane, methanol or ethanol into a hydrogen rich fuel stream. M-C Power are currently developing a 1 MW MCFC facility. One of the challenges of fuel cell development is to utilise gaseous fuels from as wide a range of sources as possible. It is considered possible, for example, that 50 MW size systems utilising coal gas may be possible by 2010.

Figure 12 shows the full size electrode tapes being passed for processing in a high temperature furnace prior to assembly.

Figure 13: Machine used to manufacture separator plates for MCFC systems (Courtesy M-C Power Inc)

Figure 14: Cell characteristics of MCFC units determined by British Gas with comparison to 'model' values. (Courtesy British Gas)

Figure 15: Summary of pollution emissions form petrol (gasoline), electric battery and methanol fuel cell.

This heat treatment process removes the binder material and sinters the metal particles together to form the electrode.

The furnace draws the tape through the high temperature zone of the furnace at a critically controlled rate. The anode and cathode tapes are manufactured using separate processes. With the MCFC the electrode material used can be nickel which is considerably cheaper than the Platinum used with other designs.

A key component of the fuel cell is the separator plate which has an active area of one square metre. Figure 13 shows the machine used to process the separator plate to specific customer requirements. Such a plate forms the structural backbone of the cell and is used also as a means to establish electrical

Figure 16:
Comparison of weight of fuel required to complete a 750 km range for various power systems. (Courtesy Ballard Power Systems Inc)
connection between cells. M-C Power utilises reformers made by Ishika WajimaHarima Heavy Industries for reformer technology.

Phosphoric acid fuel cells

Like the SPFC with a platinum catalyst, the sulphur and carbon monoxide must be removed from the fuel input otherwise the efficiency of the unit will decline. The current density achieved by such a unit is around 240 mA per square centimetre - with the cell voltage being around 0.66 V . Stacks consist of several hundred such individual cells linked in series. Hydrogen gas, however, requires to be produced in an external reformer system.

The development of the PAFC was principally undertaken by Pratt and Whitney in the USA who formed a strategic marketing/manufacturing alliance with Toshiba to from International Fuel Cells (IFC). The respectable level of sales of International Fuel Cell Corporation's PC25 200 kW systems utilising PAFC has given the whole field of fuel cells a push forward. The largest PAFC demonstration unit in Europe is the 1 MW plant in Milan which was built in 1993.

Solid oxide fuel cells (SOFC)

These cell represent the least technically developed but hold the promise of being potentially superior in the long run to all other fuel cell technologies. At the anode fuel such as natural gas is introduced in the presence of steam. An initial process of internal reformation takes places to produce carbon monoxide and hydrogen with in turn the carbon dioxide being changed to carbon dioxide and hydrogen.

At sufficiently high temperatures the oxygen lons begin to conduct across the electroiyte and constitute the fuel cell current. At the anode they react to form water and give up their electrons which in turn flow back to the cathode through the load.

Westinghouse in the USA has developed a tubular designed 100 kW system using air electrode supported cells. There is also a broad group of companies in Japan pursuing the technology and also within Europe research is being undertaken by a relatively wide range of companies. Much of the research is in the field of materials science and in the efficiency of gas reforming and susceptibility to carbon deposition

The UK perspective: British Gas

Based at its research site at Loughborough, British Gas has
established a wide range of academic and commercial links within the fuel cell community - both in the UK and abroad. Modest projections for fuel cell uptake indicate a global revenue of $£ 1.2$ billion from fuel cell sales. With the UK market, the potential additional gas sales for fuel cell power generation are considered to be significant.

British Gas at their Gas Research Centre in Loughborough have constructed an experimental 'Balance of Plant' (BOP) test rig to test the performance of a range of types of fuel cell. This unique test facility is critical for the evaluation of a range of fuel cell technologies where cells are tested under realistic operating conditions.

Work has been undertaken, for example, to investigate removal of carbon monoxide from reformer units used with SPFC cell stacks by means of specialised ceramic membranes. The successful development of this technology could allow the reformer to be incorporated into the SPFC stack directly. In a separate project, studies have been undertaken of a compact steam reformer for the SPFC in order to provide improved performance and flexibility in operation.

Assessment of MCFC stacks include determination of performance of a 10 kW stack system with direct internal reforming. This work is being undertaken in association with the Dutch company ECN and with EC support from the JOULE programme. Studies of this technology include vital factors such as stability of catalyst, methods of preventing deactivation

Figure 17: The Daimler-Benz NEWCAR-II with a maximum speed of $110 \mathrm{~km} / \mathrm{hr}$, a range of around 250 km and using two compact fuel cell stacks from
Ballard Power.

Figure 18: Schematic diagram of the NEWCAR-II design showing hydrogen storage in roof space, fuel cell and compressor in the vehicle rear and motor, transmission and control electronics between the front wheels.
of soil erosion, contamination from herbicides and fertiliser and loss of biological diversity?

Figure 15 summarises the total pollution emissions of petrol (gasoline), electric batteries with grid recharge connection and methanol fuel cells. The pollutants for battery cars are identified principally with the pollutants originating from power stations supplying the power grid. In the case of the methanol fuel cell, there is zero sulphur dioxide emission.

Even then when the evaluations and comparisons are made on the 'cost' of a petrol engine against the 'cost' of a fuel cell one, a key factor missed out is the cost of pollution in all its diverse forms but which includes ozone, carbon monoxide, sulphur dioxide, oxides of nitrogen and hydrocarbon particulates.

The car of the future

Studies undertaken by Allson Gas Turbines has evaluated the cost of mass production of PEM 60 kW fuel cell engine running on methanol and including fuet processing
and methods of regenerating the catalyst. A separate study involves general improvement of heat management in MCFC systems.

A key part of the work at Britlsh Gas has been the development of a model to simulate the cell characteristics of MCFC units at elevated temperatures and over ranges of pressures. Figure 14 indicates data from cells at 4 bar and 10 bar. Over low/medium loads, higher pressure systems generate more power.

A range of studies also include work with SOFC systems. One EC funded project led by British Gas involves a consortium of collaborative partners and relates to the investigation of low cost SOFC stacks. A separate project relates to investigation of internal reforming on SOFC stack anodes. Work is also in progress in developing a test facility for SOFC systems in order to evaluate new SOFC designs as they become available for assessment.

British Gas is therefore quite active in fuel cell technology. The emphasis appears to be on high temperature systems with direct internal reforming facility.

The Norway connection

Norway is very mindful of the significant reserves of untapped natural gas reserves under its continental shelf. Current estimates indicate a resource in the region of 3,000 billion cubic metres. In particular, there is increasing attention within Norway of the possibility of generating electric power directly from this resource using high temperature fuel cell technology.

The former Norwegian NorCell project appears to have run its course and is now actively seeking foreign capital. Most effort now seems to be focused on the Mjolner Project which seeks to develop solid oxide cells. The apparent lack of investment for such new developments does seem to be a recurrent theme within Norway.

How green is my fuel cell?

The problem of technology links also to environmental issues. is it more green to use solar and wind power to split water to hydrogen and oxygen than to grow biomass to produce methanol with the process of cultivation giving rise to problems
equipment. This was estimated to be $\$ 46$ per kW.or $\$ 3000$ per engine. This would indicate that the mass production fuel cell car could rapidly steal a march on its tried and tested but inefficient and polluting internal combustion engine. This new sense of urgency among US vehicle manufacturers broke around March 1994 and has done much to alter the complacency of the US auto industry which had not really committed itself to the battery car.

The fuel cell power unit will have almost no moving parts. There will be no fuel injection, no pistons, no valves, no crank shaft, no distributor, no timing belt, no starter motor, no alternator. Coming up to the beginning of a new millennium, however, the public are more likely to accept a more radical change. Somehow, the conventional advertising slant showing a petrol car as the car of the new millennium with an outbreak of whales over the North American desert no longer seems credible.

Also is there an employment angle? Will fuel cell cars employ less people to make and service? No studies have apparently been published.

The Californian Air Resources board is widely known for its stand on zero emission vehicles (REVs). There has recently been developments in the USA relating to this topic. While there is still a commitment to retaining the 2003 mandate for 10% of vehicles to be ZEVs, between 1998 and 2003 it is considered that the mandate should be voluntary.

One of the more significant changes is the formation of an action group of twelve Northeastern states including Massachusetts and - yes - New York to adopt the Californian standards in their region. Thls has done marvels to focus the mind of the US automobile industry on the new types of car they may have to design and build and at the same time given companies like Ballard a tremendous boost.

Even in the wake of good marketing stunts by the major car maker General Motors in 1990 with the launch of its innovative impact car, there are doubts that battery technology will be sufficiently popular. The increasing interest in fuel cell technology, however, is seen by many analysts as the way forward to meeting ZEV targets. General Motors, for example, is now working on a methanol powered PEM unit supplled by

Transform your PC into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
Hardware and software are supplied together as a package - no more worries about incompatibility and no programming required. Pico Technology specialises only in the development of PC based data acquisition instrumentation. We have the product range and experience to help solve your test and measurement problem.

The ADC-10 supplied with Call for your guide on 'Virtual Instrumentation'. We are here to help you.

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display ahd record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog data logging software for advanced temperature processing, \min / \max detection and alarm.
- 8 Thermocouple inputs
- No power supply required.

TC-08 £199 TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.
ADC-100 Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADC-100 £199 ADC-100 with PicoLog £219
AOC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or DOS environment
- $\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
- Multimeter
- 20 MSPS also available

ADC 200-20 £359.00 ADC 200-50 £499.00
Both units are supplied with cables, power supply and manuals.

Post \& Packing UK $£ 3.50$, Export customers add $£ 9$ for carriage \& insurance.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (0)1954 211880 E-mail: post@picotech.co.uk Web site: http://www. picotech.co.uk/

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

Ballard Power Systems Inc with battery supplementation by 1996.

It is strange, however, that in the continent of Europe incidentally where the car was invented, our major cities are increasingly polluted by vehicles, there is no comparable ZEV mandate - even on the horizon. In Paris, the solution at present is to restrict the number of cars entering the city on days of high air pollution. In Athens, there is an acute problem of respiratory disease - especially among children caused by alr pollution caused by vehicles. For all the advertisements on the TV for cars there are none that show an x-ray image of the lungs of an inner city child whose lung volume has been reduced by exposure to ozone and clogged by fine hydrocarbon particulates.

The most contentious issue at present relates to the type of fuel used - hydrogen or methanol. Hydrogen can be stored in a variety of forms including, a compressed gas, a metal hydride, a cryogenic liquid, a liquid hydride, a cryoadsorbed gas or a cooled and compressed gas.

In the use of methanol, the cost of storage is minimal - the same as that of petrol/diesel. Where methanol is used, however, a reformer stage to process the fuel to hydrogen is required.

An analysis of this problem of fuel cell fuel is shown in figure 16 where the various weights of fuel to complete a 750 km range are Indicated. There appears to be a consensus that methanol will be the fuel of choice for fuel cell vehicles of the future.

There should always, however, be an element of caution when trying to forecast vehicle technology. It could be that a cocktail of technologies make a contribution. Watch out for the Ulitra Capacitor as an energy storage device which is being considered by Ford.

Enter Daimler-Benz

During 1996 Daimler-Benz announced their NECAR-II a vehicle, shown in figure 17 , with a maximum speed of $110 \mathrm{~km} / \mathrm{hr}$, a range of around 250 km and using two compact fuel cell stacks of 150 individual elements from Ballard Power. Hydrogen is stored in carbon fibre high pressure tanks in the vehicle roof space. The 50 kW fuel cell with air compressor is sited in the rear of the vehicle while the motor, transmission and control electronics are located in a more conventional front compartment between the front wheels.

The schematic design of the vehicle, based on the new V class vehicle and which can hold up to six passengers is shown in figure 18. In the two years since the initial fuet cell vehicle was demonstrated, the weight ratio of the cells has increased by a factor of five and the power generation by a factor of three.

Work is aready in hand in developing a fuel cell system utilising methanol as the fuel. What is surprising, however, is the tremendous pace in development from the initial van that had no space for any load to the present NEWCAR II. Things do seem, at last, to be moving remarkably rapidly. Only a year ago, car industry experts would have considered the fuel cell car was still 25 years away. Within a short time this figure has fallen to between 10 to 15 years.

The next three years will represent a development phase at the end of which could come the decision to enter into volume production of fuel cell powered vehicles. Daimier-Benz is also aware of the significant additional markets that its developments could bring in non-vehicular products and also aware of the key economic importance to Germany's industrial base to maintain momentum in this field. The impression gained from the deliberations of Daimler-Benz is that this initiative has come from the very highest levels in the company.

Free at last?

The news from Ballard is encouraging. There is a danger, however, in leaving such developments to the 'free' market. At the least, the cross over to greener echnologies is considerably delayed and what is possibly more alarming, the technologies used initially by the developing world tend to be the worst of those of the industrialised nations. In particular, the full industrialisation of China to current levels of fossil fuel based technology could have dire environmental consequences for us all.

In the rush to privatise utilities in the UK there has not been made available the investment cash available to structure the migration to less polluting technologies. In this, however, the UK is no more guilty than the other main industrialised countries of the world. With the Non Fossil Fuel Obligation charged, essentially, to pay for decommissioning nuclear power stations (and, incidentally, building new ones), why has not even a modest levy been introduced to develop the technology to ensure clearer skies and healthier lungs of tomorrow?

Summary

As a late developer, fuel cell technology seems now able to carry itself across to commercialisation where the dawn of a new market beckons. The significance of fuel cells, however, is in how they can act as potential power sources in almost every industrial and commercial activity.

As ever with a technology that is set to challenge conventional but more polluting systems of power generation, the dramatic fall in cost that comes with the gearing up of mass production as demand increases will be the real indication that the technology has arrived.

Perhaps it is time to astonish your local car dealers. Ask when they expect delivery of the first fuel cell car.

Points of Contact

Ballard Power Systems Inc.,
9000 Glenlyon Parkway, Burnaby, BC,
Canada V5J 5.J.
Tel 0016044540900
Fax 0016044124700
M-C Power Corporation, Inc, 8040 S. Madison Street, Burr Ridge,
Illnois, 60521-5808
Tel 0017089868040
Fax 0017089868153
British Gas Research Centre, Asnby Road,
Loughborough,
LE11 3QU.
Tel 01509282818
Fax 01509283144
Daimier-Benz AG,
Corporate Communications (KOM), Eppelstrasse 225,
D-70546 Stuttgart-Mohringen, Germany.
Tel 010497111793271
Fax 010497111794365
Internet: Search under 'fuel cell' with a search engine and you will get hundreds of relevant references. Most of these will be of a strong 'marketing' nature.
Drive a Daimler-Benz vehicle at
http:/wnw1.dbresearchberlin.de:8001

Abstract

NEW SPECIAL OFFERS New mint waterproot TV camera $40 \times 40 \times 15 \mathrm{~mm}$ requires 10 to 20 wots at 120 mA with composite video output (10 feed into a video or a TV with a SCART plugi) in has a hight resotution of 450 TV lines Vertical and 300 TV fines horzontal. electronic auto tris for nearty clark (1 LUX) to bright sunlight operation and a panhoue hens with a 92 degree held of new, n hocuses down to a tew CM II is fited witt 3 wire lead (122 n gnd and video outt or $10+58932+$ VAT $=£ 104.95$ High quality stepping motor kits (as including stepping motort) Comstey independent confrol of 2 stepping notors by PC (software. Sorware sugo 587.00 ready bull $£ 99.00$ power interface 4 A kil Stepper kit 4 (manual Sepper kit 4 (manual control) includes 200 step Hand herd transistor analyser it tells you which sead is the pase, the coliector and emither and if it is NPN or PNP or tautly $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$........................ elliow yellow able ves 1p each 25.95 per 49.50 … per 10,000

AA (HP7) 500 mAH . A soomah with soider tags AA 700 mar C 2AH with solder lags 0 (HP2) $12 A M$ $\mathrm{O}(\mathrm{HPC})$ 1.2AH O 4 AH with solder D4AH with sodder tags PP3 8.4 V 110 mAH .. 1/2AA with solder tags Sub C with solder lags AAA (HP16) 180 mAH $1 / 3$ AA with lags (phitos CTM 4Cs or De in $12-14$ houms $+1 \times P P_{3}(1,2,3$ or 4 colls may be charged at atime). may bo charged at a time). Os in 5 hours AAs Cs and Ds must be charged in 2 s Os Nickel Metal thydryds AA cetts high capacty with no memory. It charged al 100 ma and discharged at 250 ma or less 1100 mAH capecity (lower capecity to high discharge rates). Special offers please check tor avariabithy stick of 4.42 x 16 mm nicad ballenes 171 mm 16 mm dia with red \& black leads 4.8 V 55.95 5 button cell 6 V 280 mAh battery with wires JVara $5 \times 2500 \mathrm{~K}$). Shaded poty motor $240 \mathrm{Vac} 5 \mathrm{smm} \times 20 \mathrm{~mm}$ shall 80 $60 \times 55 \mathrm{~mm}$ excluding the shat $\{4.95$ each 115 V ac 80 V dc moto $4 \mathrm{~mm} \times 22 \mathrm{~mm}$ shat 50 mm dia: 60 long oody (excluding the shati) I has replacable thermal fuse and brushes.. $£ 4.95$ cach $£ 3.95100+$ thermal fuse and brushes.. i4.95 cach $£ 3.951004$ 7 segment conmon anode ied display 12 mm .co. 45 7 seement conmmon anode ied dispiay 12 mm \&1.95 LM337k T03 caso varistle reguiator.....is GaAs FET bow eakage curron S8B73 \& 12.95 each BS250 P chamel mosle \&0 $45.9510 \pm \$ 7.98100$ \ldots …..................... E 3.95 per 100 $74 \mathrm{LS05}$ nex invertor 810.00 per 100^{20}, used $\mathrm{E1.00}$ Nicrocontroller $\mathrm{E3.50}$ SL952 UHF Limting amplitier LC 16 surface mounting

package with data sheet C -DC convertor Rehabitity modei vi2ps 12 v in 5 s 200 ma out 300 v input to output isclation with dat 4.95 each or pack of 10 E39.50 Hour counter used 7 digit 240 v ac 50 Hz 1 . 4
OWERTY keyboard 58 key good qually swiches new Hraax AB2903-C Large 27 hm 68 mm dia booy 63 mm shaf 88.95 or C 200.00 Poryester capaciors box type 22.5 mm lead pitch 0 gut 250wde 18p each $14 \mathrm{p} 100+$ op 1000 . luf 250 vdc 20 p each, 15 p 100 . 100 each 7.5 p 100 0.22 d 250 v poryputyr axias leads $15 p$ eech 7.5 p 1004 Polypropylene 1 ut 400 vdc (Wima MKP10) 27.5 mm pitch $322.20 \times 17 \mathrm{~mm}$ case 75 p each $60 \mathrm{p} 100+$ 33ul 10.82 .2 s 140 p each. 25 p 100 .
 $15 p 1000+$
Multitayer AvX ceramic capactors all 5 mm pitch 100 v 1000 . 3.5 p p $1000+$
500 i comoression trimmer \qquad
40 370vac motor stant capactior (disiectroi type containing no pcbs) 55.95 or $£ 49.50$ for 10
Solid carton restions very low inductance idead for RF circuits
$270 h \mathrm{~m}$
$2 \mathrm{~W}, 6$
27 ohm 2 W , 68 ohm 2 W 25 p each 15 p each $100+$ we have a range di 0.25 W 0 . 0 fol P.C. 400 W PSU (Imel pant 201035-001) with standard momerboerd and 5 dist dive connectiors, fan and mains inievoutiat connectors on back and swich
the side (lop for fower case) dims $212 \times 49 \times 149 \mathrm{~mm}$ exdudith s witch $£ 28.00$ each E138.00 for 6 MX 180 Digital multhmeter 17 ranges 1000 vace 750 vac
2 Mchm 200 mA transistor He ity and $1 / 5 \mathrm{~V}$ Dattery lest . . 99.95 AMD $27256-3$ Eproms $£ 2.00$ each, $£ 1.25100+$
DIP switch 3 PCD 12 pin (ERG SDC $3-023$) 60 peach 40p 1004 . Oisk drive boxes ior 5.25 diak divo wiver or 149.50 or 10
Hand hetd ultrasonic remote control
CV24e6 gas relay $30 \times 10 \mathrm{~mm}$ dia with 3 wire CV2486 gas relay $30 \times 10 \mathrm{~mm}$ dia with 3 wire
terminels will also work as a neon light 20p each or 87.50 per 100
Varbstim R30CNH Siveamer tape commonly used on no machines and prinung presses out of the top E.4.95 each (23.75 100+)
Heasinin compound tube95p
 Mput 8 pin DiL package E3. 49 each (1604
A products adverised as new and unused uniess
otmenwise stated Wide range of CMOS ThL 74 HC , 74 F timear Transistors kits. rechargeable batteries capmochors toots etc. Ahways in stock
Please add $£ 1.95$ towards. P8P. vat inc. in all prices

JPG ELECTRONICS

En 2. Che Chatsworm Road.
Accass Y=a Orders (01246) 211202 lax 550959
Calters Wetcome $9.30 a m-5$ 30pm INonday-Saiurday

The Winter 96/97 Edition brings you:

\Rightarrow Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices
\rightarrow WIN! a $\mathbf{2 8 , 8 0 0}$ Fax Modem in our easy to enter competition

- 100's of new products including; Books, Connectors, Entertainment, Test Equipment and Tools.
- New Speakers, Mixers and In-Car Amplifiers in the Entertainment section.
$>£ 25$ worth discount vouchers.
- 248 Page main Catalogue, plus 32 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.

Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.

Get your copy today!

Cirkit Distribution Ltd

Park Lane. Broxbourne . Hertfordshire EN10 7NQ Tel: 01992448899 . Fax: 01992471314 Email:mailorder@cirkit.co.uk

CADPAK is especially sulted to educational. hobby and small scale schematic and PCB design. CADPAK includes both schematic drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit dlagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modification of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other appllications via the clipboard.
- CADPAK is also available for DOS.

CADPAK FOR WINDOWS
CADPAK FOR DOS

PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionallity for all but the most demanding applications.

PROPAK's schematic drawing editor ISIS ILLUSTRATOR+ Includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical designs.
- Netlist llink between modules guarentees consistency between schematic and PCB.
- Netlists are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full bill of materials.
- ASCII data import faclity.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Multi-strategy autorouter gives high completion rates.
- Power plane generotor creates ground planes with ease.
- PROPAK is also avallable for DOS

PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS £ 395

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Prices exclude postage ($£ 5$ for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged.

53-55 Main St. Grassington, N. Yorks. BD23 5AA Tel: 01756753440 Fax: 01756752857

Improved
 Noise Masker

If noise from outside rouses you to fury, maybe Robert Penfold's natural sound generator will bring some peace into your environment

Noise pollution seems to be a problem that is here to stay, and it is one that seems to get steadily worse. There are methods of electronically combating noise, and the most simple of these is to use a masking technique. This is basically just a matter of using an electronically generated noise at a somewhat higher volume than the noise pollution. The human hearing mechanism is very sensitive and sophisticated, but it has a shortcoming in that it is not good at detecting weak sounds if slightly louder sounds are present. This flaw is exploited in noise masking, and in audio noise reduction systems such as Dolby B.
it is actually a slight oversimplification to say that loud sounds mask quieter ones. The masking of weaker sounds is dependent on the louder sound having a similar frequency content. For example, a low frequency sound will mask another low frequency sound quite effectively, but it will be inefficient at masking middle frequency sounds, and probably totally ineffective against high frequency sounds.

A noise masker was featured in the December 1995 issue of ETI, and this was basically just a "pink" noise generator for use with a hi-fi system for any audio amplifier and loudspeaker
capable of providing reasonable volume levels). You can simply use a television set, radio, etc. to generate masking sounds, but this is not a particularly satisfactory method. The frequency content of the signal from your sound source may not be a good match for the signal you are trying to mask. Also, you may wish to relax without any distractions.

A "pink" noise signal is basically just the standard and familiar background "hiss" sound of audio systems, but with a small amount of lowpass filtering used to give a slightly deeper and less ferocious sound. "Pink" noise is often likened to the sound of gentle rain falling. This type of noise signal contains significant output levels at all audio frequencies, and it will therefore mask any type of sound quite effectively without having to resort to very high volume levels. Of course, sound masking is a technique that is only usable on low to medium soundwaves, as an excessive volume level would be needed in order to mask high sound levels.

Getting the wind up

The original noise masker is quite effective, but it does have a drawback, which is simply the unchanging nature of the sound it produces. Although "pink" noise is a fairly relaxing kind of
sound, after several hours it can become a bit monotonous. There is a risk that the masking sound will eventually become a source of irritation!

There is a way around this, which is to make the masking sôund vary in some way. This is not as straightforward as it might seem, as the variation could easily make the sound more irksome rather than less. The obvious way of varying the sound is simply to mythmically vary the volume or pitch. This gives a repetitive and predictable sound, which can rapidly become irritating. One of the most annoying types of noise pollution is the "thump-thump-thump" of a mega-bass stereo system. It is important that the masking sound does not have any of the characteristics that make this "thump-thump-thump" sound so vexatious.

Natural sounds, such as rain and the wind in the tress, are easily ignored by most people. Even when quite loud, natural sounds generally cause no loss of sleep, and one reason for this is the random nature of these sounds. With the "thump-thump- thump" sound of a neighbour's stereo system, you tend to anticipate and wait for each "thump" sound. This makes it difficult to ignore the sound, even if it is actually quite
quiet. Sounds of thls type seem to cause a level of annoyance that is totally out of proportion to their volume level.

This "improved" sound masker uses "hiss" type noise as the masking signal, but the pitch of the noise is varied in a pseudo-random fashion. This gives wind in the trees type sounds which are good at masking a wide range of sounds, and do not become tiring even after many hours.

System operation

The block diagram of figure 1 shows the general make-up of the improved noise masker. The noise generator produces a standard white noise "hiss" sound, but only provides a low output level. An amplifier is therefore used to boost the signal before it is applied to the v.c.f. (voltage controlled filter). The filter is a simple form of state-variable filter, which can provide both bandpass a lowpass filtering. To my ears at any rate, the lowpass filtering provides the best effect, with the bandpass filtering giving rather too much high frequency output.
However, the higher pitched output might be better at masking some types of noise, and bandpass filtering can be used if preferred. A buffer amplifier at the output of the v.c.f. provides a low output impedance signal to the output socket.

The v.c.f. must be swept up and down in frequency at a slow, and ever changing rate, to give a truly random or pseudo- random change in the pitch of the noise. There are several possible approaches, such as using a v.c.o. (voltage controlled oscillator) with a low frequency noise generator to provide the control voltage. The genuinely random approach is certainly possible, but it seems to be difficult to get this type of circuit to work really well in practice. One problem seems to be that true 'randomness' is a little too random, giving relatively little change for much of the time, with excessive changes occurring

Figure 1: the improved noise masker block diagram

Figure 3: the circuit diagram of the $\mathbf{1 2}$ volt mains power supply unit
periodically. A pseudo-random control voltage gives good results, and by its nature is more reliable.

Several methods of pseudo-random modulation were tried, and the simplest that worked well was to simply mix the output from three low frequency oscillators operating on different frequencies. This gives a complex output waveform that will eventually repeat itself, but over such a long period of time that the repetition is not apparent to the listener. The changes produced are faster at some times than at others, but the modulation never ceases for long periods, or goes slightly berserk.

Circuit operation

The main circuit diagram for the improved noise masker appears in figure2, with the mains power supply circuit shown separately in figure3. TR1 acts as the noise generator, or to be more precise, its reverse biased base-emitter junction acts as the noise generator. No connection is made to the collector terminal of TR1. The 12 volt supply voltage is significantly higher than the reverse breakdown potential of TR1, which results in it "avalanching", rather like a zener diode. Also like a zener diode, it produces a substantial amount of noise. A reverse biased base-emitter junction is preferable to a zener diode in this application because it produces a much higher noise level over the audio range.

The amplifier stage uses IC1 as a standard non- inverting mode amplifier. R4 and R5 are the negative feedback resistors, and these set the closed-loop voltage gain of IC1 at just over 250 times. The output of IC1 is direct coupled to the input of the v.c.f., which is based on dual transconductance amplifier IC2. A transconductance amplifier is substantially different to an ordinary operational amplifier. The primary difference is that it is current operated, whereas a standard operational amplifier voltage operated. In practical circuits, including this one, transconductance amplifiers usually have input series resistors and output load resistors that effectively convert them to voltage operated devices.

Another important difference between ordinary operational amplifiers and transconductance amplifiers is that the latter have an additional input. The output current is a factor of the differential input current and the bias current fed to this additional input. The gain of the amplifier can therefore be . controlled via the bias current, and is proportional to it. This makes transconductance amplifiers a good basis for voltage controlled amplifiers and filters.

R7, R8, and C4 provide a central supply bias voltage for both sections of IC2. The inputs of the two amplifiers are biased via R9, R10, R15, and R16. R6 couples the output from IC1 to the noninverting input of IC2a, and R14 provides coupling between the two sections of IC2. The amplifier bias inputs of IC2 are driven via a common series resistor (R11). C5 and C7 are the filter capacitors at the outputs of the transconductance amplifiers. Each section of IC2 has a built-in emitter follower output stage which provides a low output impedance. R13 and R19 are the discrete load resistors for the output amplifiers.

There are feedback paths through R12, R18, and R12 VR1 which produce bandpass filtering at the output of IC2a, and lowpass filtering at the output of IC 2 b . With VR1 set at minimum resistance the filter has a low Q value, which gives a broad response at the bandpass output. Setting VR1 higher in value gives a higher Q value, which produces a narrower response from the bandpass filter. It also produces a peak in the response of the lowpass filter, just below the cutoff frequency. In terms of wind sounds, a low Q produces a relatively gentle "wind through the trees" sound, whereas a higher Q provides something closer to a "howling gale" sound. VR1 is effectively a wind speed contro!!

The oscillators are based on IC3 to IC5, and are identical apart from the values of the timing components. They operate at approximate output frequencies of one cycle per five seconds, 10 seconds, and 20 seconds respectively. The circuit configuration used is the conventional triangular/squarewave type, but in this application it is only the triangular output signals that are of interest. These are combined in a

Figure 4: the component overlay for the PCB
conventional summing mode mixer circuit based on IC6. The oscillator signals are also mixed with the variable output voltage from VR2, which can be used to shift the general frequency range of the filter up and down.

IC6 drives the control input of the v.c.f. via VR3. If VR3 is set at a low value the filter will be swept over a wide frequency range. Using a higher value gives a reduced frequency range. It also moves the frequency range lower, but this can be counteracted by adjusting VR2. The three potentiometers give quite good control over the final sound, enabling it to be adjusted to give effective masking of the noise, hopefully also giving a sound that the user is quite happy to live with for long periods of time if necessary.

A conventional stabilised mains power supply circuit is used to power the circuit, which consumes about 20 milliamps or so. T1 provides a voltage stepdown and also provides isolation from the mains supply. D1 to D4 form a full-wave bridge rectifier, and C12 provides smoothing. IC7 is a small monolithic voltage regulator which gives a highly stable 12 volt output having a low noise and ripple content.

Construction

Figure 4 shows the component overlay for the printed clrcuit board. None of the integrated circuits are MOS types, and no special handling precautions are required. It is still advisable to fit all six d.i.l. devices in holders. IC1 is specified as being an LM13700N, which is the device now sold by most component retailers. However, the circuit will work just as well using an LM13600N, which seems to be virtually identical.

Make quite sure that D1 to D4 are all fitted with the right polarity, since there could be dire consequences if errors are made here. Fuse FS1 is mounted on the board via a pair of fuse-clips, and the board is designed to take Maplin "type 1" fuseclips, or an exact equivalent. Use plenty of solder when connecting the fuse-clips, so that they are securely fixed to the board. The polyester capacitors should be types which have a lead spacing of 7.5 millimetres, apart from C11 which should have 10 millimetre lead spacing. At this stage only fit singlesided solder pins to the board at the points where connections to $T 1$, the controls, and output sockets will eventually be made.

As this project is mains powered it must be

Figure 5: details of the hard-wiring
housed in a metal case which must be reliably earthed to the mains earth lead. The case must be a type which has a screw fitting lid, and not a clip-on, clip-off type which gives easy access to the dangerous mains supply. A metal instrument case which measures about 203 by 127 by 52 millimetres is a good choice. The three potentiometers and output socket(s) are mounted on the left hand section of the front panel, and St is mounted well towards the right hand end of the panel. If the bandpass output is not required, omit SK1 and C6. It is only worth while including this output if the unit will be used to mask noise that contains a substantial high frequency content.

The printed circuit board is mounted on the base panel of the case, as far to the left as possible. This should leave ample space for T1 on the right hand section of the base panel. The circuit board must be mounted using plastic stand-offs, or mounting bolts and spacers, that hold the board about 12 millimetres or so clear of the case. This ensures that the board is held clear of the left hand fixing screw for the outer casing. Be careful to position T1 where it will not be damaged by the other fixing screw for the outer casing. A solder tag must be fitted to the case to provide a connection point for the mains earth lead, and this can conveniently be fitted on one of T1's mounting bolts.

The hard wiring is shown in figure5, which should be used in conjunction with figure4. For example, point " A " in figure4 connects to point " A " in figure5. The point-to-point wiring is very straightforward, and there is no need to use any screened cables. Obviously extra care should be taken when completing the wiring to T 1 and S 1 , as mistakes here could be dangerous. A mains transformer having a single 12 volt secondary rated at 100 milliamps is required. Such a component is unlikely to be available, but a transformer having a 6-0-6 volt 100 milliamp is suitable if the centre-tap is ignored. It is assumed in figure5 that T1 is a $6-0-6$ volt type. Most small mains transformers have flying leads, and the unused 0 volt lead should be trimmed short so that there is no risk of it accidentally coming into electrical contact with circuit board or case.

In use

The unit connects to the amplifier via an ordinary screened audio lead. If you wish to drive both channels of a stereo amplifier, the outputs of the noise masker should have no difficulty in driving both channels. Finding the best settings for VR1 to VR3 is just a matter of resorting to some experimentation. In most cases there will be a wide range of settings that give good masking of the noise, and it is a matter of using the effect that you find most pleasing. The unit can produce quite realistic wind sounds for what is quite a simple analogue design, but remember that its purpose is to produce naturalistic sounds to mask noise, rather than to produce the ultimate in natural wind sounds.

The minimum volume needed to mask a sound is to a significant degree dependent on how well you match the masking signal to the noise. If the noise is predominantly at low frequencles (as it often is), then it makes sense to set the masker to produce low pitched sounds. Avoid having the filter swept very low in frequency, as thls will result in the output signal virtually ceasing from time to time. This would obviously give no noise masking during these quiet periods. For higher pitched sounds such as alarms, a predominantly high pitched output signal will give the most effective masking. Remember that any tone controls on the amplifier can be used to "shape" the sound to give good masking without having to resort to high volume levels.

Resistors

(all 0.25 watt 5% carbon film)

R1,2,3,41	100k (4 off)
R 4	1M
R5,7,8	3k9 (3 off)

R6 47k
R9,10,15,16 $470 R$ (4 off)
R11,17 22k (2 off)
R12 15k
R13,19 $\quad 4 k 7$ (2 off)
R14,39,40 10k (3 off)
R18 18k

R20,21,26,27,32,33	15k (6 off)
R20,34	330 k (2 off)

R23,29,35
R24
33k (3 off)
4M7
56 k (3 off)
270k
10M (2 off)
150k
Potentiometers

VR1	220k lin rotary carbon
VR2	22k lin rotary carbon
VR3	470k lin rotary carbon

Capacitors

C1
C2
C3
$C 4$
$C 5,7$
$C 6,8$
$C 9,10$
$C 11$
$C 12$
$C 13,14$
100 u 16 V radial elect 1 u 50 V radial elect 4 u 750 V radial elect 470 u 10 V radial elect 2 n 2 polyester (2 off) 10 u 25 V radial elect (2 off) 470 n polyester (2 off) 1 u polyester 1000 u 25 V radial elect 100 n ceramic (2 off)

Semiconductors

IC1 TLO71CP

C2

LM13700N or LM13600N
TLO72CP (3 off)
CA3140E
UA78L12 12V 100mA
IC7
BC549
TR1
1N4002 100V 1A rect (4 off)

Miscellameous

SK1,2
S1 Rotary mains switch
T1 Standard mains primary, 12 volt 100 mA secondary (or $6-0-6$ volt 100 mA secondary) FS1 20 mm 100 mA quick-blow Metal instrument case about $203 \times 127 \times 52 \mathrm{~mm}$, printed circuit board, control knob (4 off), 8 -pin di.i.L holder (5 off), 16 -pin d.i.l. holder, 20 mm fuse-clips (pair), mains lead and plug, wire, solder, etc.

TELNET

The ETI
 Barry Porter designs a professionalstandard stereo microphone amplifier that can feed the line inputs of a mixing console or suitable recorder for improved recording quality

Figure 1: The block diagram of the Microamp.

0ver the years, I have wondered why manufacturers of tape recorders - reel-to-reel, cassette or DAT waste their time and their customers' money by providing microphone input amplifiers that often consist of a couple of transistors or an op-amp of questionable performance. They are normally unbalanced, with no provision for gain adjustment, filtering or input loading. The universal omission of phantom power ensures that high quality capacitor microphones cannot be used, so it becomes impossible to obtain adequate recording quality without resorting to external equipment.

If you have a mixing console, in theory your problems are solved - but are they? Very few consoles, including some of those tennis-court-sized ones beloved by some studios, have microphone input stages that don't leave a great deal to be desired. Cost is the usual constraint. One well known console manufacturer with an advertising and marketing budget that would keep me in Ferraris for life allows its designer around $£ 1$ for a microphone amplifier - including the gain potentiometer!)

So, even if you have a mixer, there is every chance that your recording quality can be improved by bypassing the inbuilt microphone amplifiers and using separate, dedicated units. Preferably, these should be placed close to the microphones to keep low level cable runs as short as possible, returning high level signals to the line inputs of the console.

The MicroAmp is designed to provide this kind of unit, and will be described in three parts: the general principles and first two stages in this part, the next three stages with the PCB layout for the twin channels and construction and test details
for the whole unit in the second part, and the power supply section (alternative all-singing and budget designs) with its own PCB layouts and parts list, in the third part. But first, let us consider what we are looking for.

Ideal features

What features should a remote microphone amplifier possess? The input stage must be extremely quiet, with sufficient gain adjustment to allow any type of microphone to be used. Traditionally, a transformer has been used to give a balanced input with total ground isolation, but good quality microphone transformers are very expensive unless you buy them in large quantities (up to $£ 80$ each.), while lesser ones tend to suffer from shortcomings such as phase shift, distortion, low frequency overload, uneven frequency response, poor screening from external fields etc.

An electronically balanced low noise input stage is the obvious alternative, although its design is not quite as straightforward as it may initially appear. In order to operate with professional capacitor microphones, the input socket must be supplied with +48 V phantom power through matched 6 688 resistors, which makes capacitive coupling necessary, although when a dynamic (moving coil.) microphone is in use, the +48 V may be switched off and the inputs directly coupled.

Steps must be taken to eliminate any radio frequencies from the input amplifier, and it may be advantageous with some types of microphone to be able to change the amplifier input impedance.

The gain of the overall unit needs to be variable from

Figure 2: The circuit of the microphone input stage.

approximately 10 dB to 60 dB , and ideally this should be selected by a multi-position switch in discrete steps, with a rotary trim control to allow any gain to be chosen. Although a single rotary control can be used to cover the complete gain range, its calibration can only be approximate, which makes it virtually impossible to set two inputs to the same gain, as would normally be required for crossed pair recording. The additional cost of a rotary switch and its associated resistor network is therefore felt to be justified.

Microphones are not perfect, especially with regard to frequency response, so some form of filtering or equalisation is beneficial. This need not be too elaborate as, if extreme correction is required, the console equaliser can be used, or a separate unit can be inserted into the signal path - therefore provision should be made for this immediately following the input stage.

It is more cost-effective to build microphone amplifiers in stereo pairs, which allows a certain amount of stereo processing to be incorporated. One useful feature is likely to be an M-S decoding matrix, giving normal left and right outputs when M-S microphone techniques are used. (More about this later.)

The outputs of the unit needs to be balanced (we are dealing with professional standards here) and it should be possible to apply phase reversal independently to each output. Individual muting facilities should also be provided.

Although choice of enclosure, connectors etc. will be governed by individual requirements, it is most likely that the unit will be housed in a 19-in rack mounting cabinet, with 3 pin XLR signal connectors. Although not absolutely necessary, the power supply unit should be in a separate enclosure to keep hum to a minimum.

That just about sums up the basic requirements, which are illustrated by the system block diagram (figure 1).

The input stage

One input stage is shown in figure 2. Essentially, the circuit is an elaboration of a standard instrumentation amplifier which uses two buffer stages in front of a differential amplifier.

Two separate input connectors are used for each channel. This can be useful for location recording, where duplicate microphones can be set up in case of a failure. It also allows rapid comparison between two microphones, as switching can be controlled remotely by grounding the respective control pin of the remote connector.

From the selected input socket, the signal is buffered by low noise transistors, Q1 and Q2. The input impedance is adjustable by switching resistors R3 and R4 in parallel with R2. Allowing for R7 and R8, the impedance will be 10 k 6 when switches S2 and S3 are open, 1k31 with S2 closed, 1k96 with S3 closed and 849R when both are closed. This range should be adequate for most high quality microphones, most of which are designed to operate when loaded by approximately 1 k 3. Some modem capacitor microphones, particularly those with electronically balanced output stages, will be happy with virtualiy any loading, but any transfer loss will be reduced by using a higher than normal input impedance.

Moving coil and some older capacitor types are more critical of loading, and if the manufacturers information is not specific on this point, a degree of experimenting is called for. If in doubt, use 1 k 3 as a starting point, and listen for changes in the high frequency response when making any changes.
Again, the switch functions may be remotely operated, making comparisons easy.

Capacitor microphones require power to operate their internal electronics. Some electret types have a built-in battery, but high quality professional models rely on "phantom power". This is a positive voltage, fed to the microphone along the signal cables. Obviously, any noise introduced by the phantom power is liable to be amplified by the microphone amplifier unless steps are taken to avoid this.

Conventional phantom power is +48 V which is fed equally to the balanced microphone cable by two 6 k 8 resistors. The actual value of these resistors is not critical - what is important is that they must be equal in value, and must remain so over a wide temperature range. The resistance matching should be to at least 0.1%, with a temperature coefficient of better than $25 \mathrm{ppm} /$ degrees C over a range of 0 degrees to +50 degrees.

As a typical capacitor microphone draws 5 or 6 mA from the phantom power, the dc voltage on the signal cables will be in the region of 36 V , but due to the accuracy of the 6k8 resistors, it will be precisely the same on both conductors. Any noise introduced by the phantom supply will therefore be of a common mode nature, and will be cancelled by the common mode rejection ratio (CMRR) of the input amplifier.

This scheme falls down if the microphone does not draw equal current along the two conductors, as the voltage drops across the 6k8 resistors will differ, and the resulting noise will not be totally cancelled. Happily, most good microphones do not cause this problem, but the required precision isn't cheap. If you object to paying hundreds of pounds for a high quality capacitor microphone, and use one which is noisy, the cause may be nothing more than unbalanced power loading on the connecting cables, and can sometimes be improved by a slight change to the value of one of the 6 k 8 resistors. If this is successful, though, remember that you now have an input that is dedicated to a single microphone, so mark the input socket accordingly!

The phantom power voltage must be kept away from the amplifier inputs, hence electrolytic capacitors C 2 and C 3 . These could be left in circuit at all times, and the incoming 48 V switched on or off, but I felt it preferable to remove them when phantom power is not required. The reason is not, as audiophiles may think, that electrolytics mess up the sound, but that It allows the capacitors to have a permanent polarising voltage applied to them, which experience has shown will help extend their lives. In the past I have found that electrolytics used where no polarising voltage is present can become extremely leaky, in some cases appearing as a short circuit within a year or two.

Needless to say, the phantom power voltage must be extremely smooth and free from spurious noise. Primarily, this is a function of the power supply unit, but to ensure that the injection point - the junction of R5 and R6 - is as quiet as possible, the incoming 48 V is locally decoupled by R1 and C1. As the phantom power switching takes place at the most sensitive part of the circuit, sealed relay contacts are used, as these are less likely to introduce noise and distortion than a normal switch. The use of relays for the switching functions also allows control from a remote position, as already discussed, so the additional cost was felt to be justified.

Before the signal reaches the input amplifier, it passes through an RF fiter comprising inductors L1 and L2 and capacitors C4 and C5. This network is 3 dB down at approximately 2.3 MHz , and should remove any danger of incoming RF causing problems, but if a lower turnover frequency is required, C4 and C5 may be increased to 100 pF . Note that these capacitors must be close tolerance types in

SETUP 日

Figure 3: Input common mode adjustment: see text.

Figure 4: The insertion point jack wiring.
order that their effect on the high frequency common mode rejection is kept to a minimum.

Although the SSM2220 input devices have internal baseemitter diodes, it has been found worthwhile to add additional protection in the form of resistors R9 and R10 and zener diodes D1-4.

Noise

The choice of input transistors was relatively simple. After comparing various circuit configurations using the usual recipe for low noise inputs - loads of transistors connected in parallel - with similar circuits using LM394 dual NPN devices, the LM394 or equivalent SSM2210 was not only marginally quieter ${ }_{\text {w }}$ but the noise that was present sounded smoother and less objectionable. I would have used this device, had not a number of SSM2220 PNP dual matched transistors come my way as free sample. Free transistors always sound better than ones that have been paid for, I find, so I built an upside-down circuit and had a listen. Although the effect was subtle, the PNP device certainly sounded better than the NPN ver'sion, and as a consequence was chosen for the final design.

The SSM2220 has a specified noise voltage density of $0.7 \mathrm{nV} / \mathrm{VHz}$, which has been reduced by $\sqrt{ } 2$ (3 dB) by using both transistors in each package in parallel. The relatively high collector current (2 mA) reduces Schottky noise, the associated increase in current noise being relatively unimportant when the source Impedance is low.

The original aim was to achieve an input amplifier noise figure of 1 dB or less when operated with a 200R source impedance. To explain further, the Johnson noise of a resistive component is given by:

$$
\mathrm{En}=\sqrt{ } 4 \mathrm{k} T \mathrm{TBR}
$$

Where $k=$ Boltzmanns Constant $=1.381 \times 10^{-23}$
$T=$ Temperature in Degrees Kelvin = degreesC+273
$\mathrm{B}=$ Bandwidth in Hz
$R=$ Resistance in ohms
A 200R resistor therefore will contribute 0.2566 uV just by being there. Translating this into a more familiar term, dBu , this becomes

$$
20 \log (0.775 \mathrm{En})=-129.6 \mathrm{dBu}
$$

If we now put a well screened 200R resistor across the input terminals of a perfectly noiseless amplifier with 50 dB gain, the noise of the resistor at the amplifier output will measure $-129.6+50=-79.6 \mathrm{dBu}$. If instead of this, we measure -78.6 dBu , the amplifier is adding 1 dB of noise, and is said to have a noise figure of 1 dB .

Take it from me, there are not many microphone amplifiers around that consistently achieve a 1 dB noise figure, even though it's quoted by most manufacturers. If the circuit of Figure 2 is carefully constructed, using the recommended components, it will have a noise figure of 1 dB , or even slightly less.

Gain

Some things fall naturally into pairs - bacon \& eggs, Astaire \& Rogers, input stage gain \& overload margin.

In an ideal world, all input stages would take whatever signal level was thrown at them, but as they don't, we have to accept that there is always the danger of the signal being clipped by overdriven circuitry.

When run from $+\%-15 \mathrm{~V}$ rails, most op-amps will have an output swing of about 8 V or +20 dBu , but it is now usual for professional equipment to have overload margins of between 20 and 30 dB . As the microphone amplifier is more likely to be overloaded than later stages in the signal path, (quickly pulling down a fader won't save your day) I have aimed at a 30dB margin. This can easily be increased, but at the expense of a rise in output noise; however, for certain types of unrepeatable live recording, it may be safer to accept the noise, and increase the overload margin to 36 dB or even more.

It should be clear that with a maximum output of +20 dBu , a 30 dB overload margin requires that the nominal signal level must be -10 dBu , so for example, when the input level control indicates -50 , the input amplifier will have a gain of 40 dB . Most microphones have output voltages in the range of 1 mV to 250 mV , so an input sensitivity -60 to -10 dBu would appear to be about right.

This is a convenient range, as it allows a standard 11 position switch to be calibrated in 5 dB steps. If the following trim control has $+/-6 \mathrm{~dB}$ adjustment, the input sensitivity may be set anywhere between -4 dBu and -66 dBu .

The stage gain is set by feedback resistors R28 and R30 (R f) in conjunction with switched shunt resistors R13 to R23 (Rs), the gain being given by: $20 \log ((2 \mathrm{Rf} \div \mathrm{Rs})+1)$

It is essential that gain changes can be made without introducing switching clicks, as it may be necessary to make an adjustment during a "take". The emitters of Q1 and Q2 will be at +0.6 V , and will be virtually identical, but any, difference

Archimedes World
THE MAGAZINE for your machine, dealing clearly and concisely with new developments on software. Colourful reviews and technical info will help you get the best from your Acorn RISC OS.

GEARED TO all ham enthusiasts, it is full of advice on new products, construction ideas, pocket radio, club news and much more.

		With 6 extra issues you SAVE*
UK	$£ 25.20$	$£ 12.60$
Euro	$£ 32.00$	$£ 16.00$
ROW	$£ 34.00$	$£ 17.00$
ROWAir	$\$ 74.25$	$\$ 37.12$

To order by credit card phone: 01858435344 -Saving based upon the price of buying 18 issues tom your newsagent.
SUBSCRIPTION ORDER FORM
I would like to subscribe and receive 18 issues for the price of 12 -Please \downarrow your chosen magazine(s) below:

All new subscriptions will commence from the first available issue. If renewing/extending please quote subscription number: \qquad Name: Mr/Mrs/Miss. Initiai \qquad Surname I enclose my Cheque/P.O. for $£$ \qquad made payable to NEXUS Address: \qquad or please debit my Access/Visa account:
\square
\qquad

Signature \qquad Expiry \qquad Postcode: \qquad Tel No.

Please complete and return this coupon to:
Nexus Subscription Services, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Lelcestershire, LE16 9EF.
Photocopies of this page are acceptable. Not to be used in conjunction with any other offer.
Please tick this box if you would prefer not to receive mail from other companies which may be of interest to you \square \square

Figure 5: The circuit of the equaliser stage.

that does exist will certainly rule out noise-free switching unless the switch is isolated from the emitters by capacitors. Unfortunately, these need to be somewhat on the large side; so large in fact, that if you are prepared only to change the input gain during breaks in recording when the monitors can be turned down, you could consider replacing C6 and C7 with pieces of wire.
"Why do they need to be so large?" you ask. It's all to do with frequency response at the lower end of the audio spectrum. In effect, C6 and C7 are in series, which halves their value. You presumably know what happens when a capacitor in series with a signal is loaded by a resistor to ground? Yes, it becomes a high pass filter, and for a given capacitor, the lower the resistance the more it rolls off low frequencies. Now, look at the value of R23-10R, which is the load for the series combination of C6 and C7 when the input gain is set to 60 dBu .

As a starting point, to maintain a reasonable LF response, let us see what capacitors will give a -3 dB point of 1 Hz .
$C=1(2$ pifR $)=16000 u F$
therefore C6 and C7 each need to be 32000uF!
To increase R23 would entail increasing the value of R28 and R3O, and would incur a noise penalty. So now let's try a compromise. If C6 and C7 are each made 10000uF, the response at 20 Hz will be given by:

$$
\begin{aligned}
& \left.20 \log \left((2 \text { pifRC }) \div(\sqrt{2} \text { pifRC })^{2}+1\right)\right)=-0.108 \mathrm{~dB} \\
& \text { Where } f=20, R=10, C=5000 \mu F
\end{aligned}
$$

The resulting phase shift will be:

$$
90-\operatorname{Tan}^{-1}(2 \text { pifRC })=+9.04 \text { degrees }
$$

Considering that these figures will only apply at the most sensitive setting, and will improve as the gain is reduced, they are just about acceptable. (At the 55 dB setting, the 20 Hz response has improved to -0.033 dB with phase shift at +5.05 degrees.)

Following the input gain stages, the signal is unbalanced by differential amplifier IC3. The input common mode rejection is controlled by this stage, and may be adjusted at low and high frequencies by VR1 and VC1 respectively (refer to figure 3).

The method of doing this is as follows: 1) using Setup A, with the MicroAmp gain set to -50 dB apply a 100 Hz signal at about -20 dBu and adjust for an output level of +20 dBu (7.75V). 2) Change to Setup B and adjust VR1 for minimum output (less than -40 dBu). 3) Set oscillator frequency to 10 kHz and adjust VC1 for minimum output (less than -30dBu). 4) Repeat steps 2 and 3 until lowest reading is arrived at. 5) Apply locking compound to VR1 and VC1.

Trim stage

The final part of the input amplifier is the gain trim stage, IC4, an inverting amplifier with variable feedback. Ideally, the trim control should be a high quallity wirewound potentiometer, or as a minimum one with a conductive plastic track and multifinger wiper, as contact problems between the wiper and track will introduce noise of a particularly nasty variety.

The output of IC4 feeds the insertion jack, and is therefore ac-coupled by capacitor C18. Ideally this should be a nonpolarised electrolytic, as the only dc voltage present is a few millivolts caused by the output offset of IC4, and a normal, polarised capacitor used under these conditions will soon
suffer from increased leakage, and may do its best to imitate a plece of wire - without gain!

Series resistor R39 has been added as a precaution, as IC4 may show a tendency to oscillate if the insertion output becomes shorted to ground for any reason.

Insertion point

Each channel insertion point consists of two stereo jack sockets - one termed "Send" and one "Return". The sockets used should be fitted with switches on their tip and ring contacts, and must be capable of being mounted without the sleeve contact shorting to the panel. They are connected in a manner known as "normalling", which is illustrated in figure 4.

Although the signal is unbalanced at the insertion point, and mono jacks may be used, it is advisable to use stereo ones to maintain compatibility with external equipment which may have balanced inputs and outputs.

These connectors are intended to allow the introduction of external equipment such as equalisers or limiters into the signal path, but if you intend to adopt the purist approach, you will have very little use for such devices and may decide not to include the insertion points.

Equalisation and filters

Even the best microphones do not have a perfectly flat frequency response. Some are better than others, and to aim at obtaining a flat response can be the first step towards bankruptcy. Microphone performance is affected by external factors - source distance, room acoustics, absorption and reflections from room boundaries etc. The sensitivity pattern of a microphone affects its response, particularly at the low frequency end, where omni-directional types generally have greater extension.

The main recording tool for correcting microphones is the equaliser - a type of glorified tone control - which is part of every input channel of a mixing console. A typical channel equaliser ($E Q$) is a complicated affair, consisting of three or four separate frequency bands, controlling over amplitude, frequency, " Q " and curve shape. Variable high and low pass fiters are usually incorporated.

In practice, only small amounts of equalisation are usually applied it is being used for a particular effect, and experience has shown that for microphone correction, the most used controls are the high pass filter and the high frequency shelving section. The filter is usually used to counteract the "proximity effect" which increases the microphone's low frequency output when placed close to the sound source. This is most evident on vocals, and LF (low frequency) roll-off in the $50-100 \mathrm{~Hz}$ region is often required. In the high frequency zone, it is sometimes necessary to apply a gentle up or down shelving response to correct for absorption or reflection in the recording, venue.

An equaliser section with both high and low frequency capability has been incorporated - more drastic effects being better applied by a separate unit plugged into the insertion points, or by using the channel equalisers of a mixing console.

The high pass filter

The equaliser section is shown in figure 5 . The return signal from the insertion point is buffered by unity gain stage IC5 then passes to the high pass filter operating around IC6. The filter has six switch selected frequencies covering 20 Hz to 200 Hz in approximately equal logarithmic steps. It would be possible to have a continuously variable frequency control, but the cost of
suitably ratioed potentiometers would be a great deal more than the cost of the recommended switches, and the repeatability from one channel to another would not be accurate enough without selecting the potentiometer sections, as these would need to be reverse logarithmic, and therefore very difficult to manufacture with the required degree of accuracy.

There is a further advantage to using a switch for frequency selection - namely that the operating frequency and filter characteristics can be determined by the choice of a few resistors.

Table 1 gives values for both Butterworth (maximally flat) and Bessel (minimum phase shift) characteristics, together with the formula for calculating other operating frequencies. The filter slope was set at 12 dB per octave, as experience has shown this to be audibly the best compromise between ultimate slope and excessive phase shift.

Table 1 High pass filter variations.

Resistor Bessel	Frequency	Butterw	
R51	25k5	20 Hz	12k
R52	15k8	32 Hz	7 k 5
R53	10k2	50 Hz	4k75
R54	6k34	80 Hz	3k
R55	4k02	125 Hz	1k91
R56	2k55	200 Hz	1k2
R57	34k	20 Hz	24k
R58	21k	32 Hz	15k
R59	13k7	50 Hz	$9 k 53$
R60	8k45	80 Hz	6k04
R61	5k36	125 Hz	3k83
R63	200 Hz	2k4	3k4
Butterworth characteristic:$\because(2 \text { pifC })$		$R 51-R 56=(\div 2)^{-}$	
R57-R62 $=(\div 2) \div(2 \mathrm{pifC})$			
Bessel characteristic:		$\mathrm{R} 51-\mathrm{R} 56=1.498 \div(2 \mathrm{pifC})$	
$R 57-\mathrm{R} 62=1.998 \div(2 \mathrm{pifC})$			

The high frequency equaliser

The shelving response is obtained by feeding the output of a single pole high pass filter, IC9, via the amplitude control, VR3, to the inverting input of either IC7 or IC8.

When directed to IC7, the signal acts as additional negative feedback, reducing the high frequency gain of IC7, thereby
causing the overall response to shelve downwards to an amount decided by series resistor R70. In the Lift setting of VR3, the output of IC9 is fed forward around R68 to the inverting input of $I C 8$, giving high frequency lift.

The maximum amount of lift and cut has been set at approximately 6 dB which has proved in practice to be more than enough to cope with virtually any circumstance. If greater degrees of correction are thought necessary, R70 may be reduced in value to a minimum of 680R.

When not required, the equaliser section may be totally bypassed by relay RL5, operated by switch S7.

In the next part, we will finish describing the circuit and describe construction of the main part of the MicroAmp.

RADIO DATA MODULES SYSTEMS \& ACCESSORIES

UK, E.E.C, Scandinavia, Eastem Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia. Wherever you are, we have a module on the right frequency for you! F.M Transmitter \& Receiver Starter Kits

- Construct quality F.M remote controls, data links, wire-free alarms *
-Range up to 200M with dipole, 5KM with RX Yagi *
- Available on UK 418 MHz to MPT1340. Export $433.92 \mathrm{MHz}, 403 \mathrm{~Hz}$. *
*SILRX- Recelver includes, audio, digital data, carter detect o/p *
* RXM- as SILRX + signal strength RSSI, tamper and jamming det *
* Kit Prices inclusive of VAT and UK 1st Class Postage: *
TXM-418-A + SIL-418-A + Data/Application Sheets: Only £29.95
*TXM-418-A + RXM-418-A + Data/Application Sheets: Only £34.95 *
* Decoder Board for RXM or SIL c/w HT-12-D: Only £15.00 *

TXM-418-AF Transmiter

SILRX-418-AF Receiver

RXM-418-A Receiver

NEW I High Data Rate (-F) $\mathbf{2 0 , 0 0 0} \mathrm{bps}, 3 \mathrm{~V}$ Version:

- Same o/p Power but twice as fast as the - A version, up to 20,000 bps *
* Drives directly from PIC port, reducing component count \& size *
* TXM-418-F + SILRX-418-F + Manual: Only £29.95 *

TXR-4XX-DTR100 Data Transceiver: Starter Kit £299.95

* 458MHz MPT1329 for UK Operation *
* 433.92 MHz for European I-ETS-300-220 * * 472 MHz for Australia and NZ * - 462 - 465 MHz for North America *
*Up to 500 M range with Internal Antenna * - Up to 5 KM range with External Dipole *

Prices $1+£ 179.9510+£ 149.95100+£ 115.00$
Long Range VHF Modules for the UK, Australia and Beyond !

- UK, 173 MHz to MPT1344 \& MPTi328 Licence Exempt
- Australia and South Africa Licence Exempt *
-F.M Operation: With $1 \mathrm{~mW}, 10 \mathrm{~mW}$ or 20 mW Versions *
- Range up to 1 to 5 Km line-of-site ${ }^{*}$
- Low Cost or High Performance versions -
-Transmitters, Receivers and Transceivers "
- Starter Kits From $\mathbf{E} 99.00$ to $£ 199.00^{\circ}$

PCB mounting or D-Type interfaced Options

2.45 GHz Spread Spectrum with RS485 Interface

100 mW Spread Spectrum Transcelver
Operates on the globally accepted 2.45 GHz band. Complete with antenna diversity switch and RS485 serial interface. With a data rate of between 250 K bps to 1 M bps we challenge you to find a faster and more secure wire free solution I
Starter kit: comprising 2 of TXR-2450-100M transceivers and $2 \mathbf{2} .45 \mathrm{GHz}$ dipole antenna. Save nearly 20% on MLP at only: 799.95 per pair

Data Module Prices, Inclusive of UK Postage !

PHONEY PHONE

By Terry Balbirnie

Sounds like a phone - isn't a phone!

This circuit simulates the ringing of a modern pushbutton telephone providing the same double beat as used in the UK. Since this ringing pattern is also used in Australia, New Zealand, the Irish Republic and several other countries, the device should be found useful for readers in places other than Britain.

But why?

The Phoney Phone circuit was originally designed for an amateur stage production and was hidden on-stage next to a real phone. For this purpose, the on-off switch was situated remotely. However, there are a number of other reasons why someone would wish to construct such a circuit. It could be used to give a professional touch to home communications projects. It could be built into a child's toy phone to give extra realism. Another use would be to provide an excuse for ending a lengthy call due to the "other phone" ringing.

However, some readers will construct the circuit simply for practical joking. If it is left hidden in an office, it is entertaining to watch people picking up phones trying to find the one which is ringing. It is also amusing to switch it on at a large railway station and observe people reaching for their mobiles! Although many cellular-phorfes ring in the continental way - in single beats - some may be adjusted to ring with the fixed-line BT pattern.

Figure 1: the signal of the UK phone ringing pattern
0.4 second bursts separated by a 0.2 second space. There follows a two-second pause then the cycle repeats. The high operating voltage allows a small current to be used and this results in a lower loss of power through the resistance of the wire than would otherwise be the case.

Tradtional telephones use a twin electromagnet assembly having a hinged armature with a small hammer on the end. As current flows through the coils, the armature is attracted to each electromagnet in turn - one on the first ac half cycle and the other on the second one. The hammer strikes two small bells in turn. These are tuned to different notes so the sounds blend to give a characteristic chord. This effect is difficult to produce electronically with any degree of realism. In practice, the only way to make a sound like an old phone is to ring an old phone! Most people will have watched a stage production where a telephone was simulated by ringing an ordinary electric bell off-stage. Not only is the sound not right but
invariably the ringing pattern is not matched accurately by the person pressing the switch. Commercial bell-ringing circuits are available and these provide an ac signal with the correct frequency, rhythm and voltage to ring a real phone. A similar home-made device would be difficult to construct since a stepup transformer would be needed to increase the voltage to a level sufficient to operate the phone.

The old type of dial telephone, although still to be seen, is becoming something of a rarity. Most phones today use an electronic circuit which operates in conjunction with a small loudspeaker or piezo buzzer to produce the ring. Because these respond to the ac signal sent along the line they give a characteristic warbling tone. It is straightforward to construct a circuit which will sound like a modern phone since only a lowvoltage battery supply is needed. Obviously, such a device would be inappropriate to use in, say, a 1950s stage play where traditional methods would still need to be used.

Figure 3: the circuit of the Phoney Phone
Since there are now many different types of
 sounder used inside phones, any loud device of the type specified will be suitable. Although people are now very tolerant to the sound of the ring itself, any significant deviation from the correct rhythm will sound unrealistic. Also, the warbling effect is crucial in providing a convincing effect.

How it works

The circuit for the Phoney Phone project is illustrated as a block diagram in figure 2. There are two astable circuits, one giving a train of pulses at a frequency of 5 Hz (5 pulses per second) and the other at 25 Hz . The counting and logic circuitry allows two of the pulses from the first astable to pass through and blend into a single 0.4 second pulse. There is then a space of one pulse (0.2 second) followed by a further two blended pulses and a 2 second gap. The cycle then repeats. The pulses passing through the

Figure 4: the component layout

counter and logic section are combined with the output of the 25 Hz astable to provide a warbling effect in the piezo buzzer.

The circuit is shown in detail in figure 3. The two astables are based on IC1a and IC1b respectively. These are, in fact, both parts of the same timer integrated circuit, IC1. Consider IC1a first. The frequency depends on the values of fixed resistors R1, R2 and R3, preset potentiometer, RV1, and capacitor, C1. However, for most of the time, R1 will be bypassed so the timing depends only on the other components. The purpose of R1 and how this is switched in and out of the circuit will be explained presently.

At the end of construction, RV1 will be adjusted to provide a 5 Hz signal from IC1a output, pin 5 . Diode, D1, modifies the waveform to give short on states and long off ones - that is, brief pulses which are most effective at operating the rest of the circuit.

Taking turns

The pulses derived from IC1a are applied to IC2 clock input, pin 14. This device is a decade counter integrated circuit. Thus, as pulses are received, the circuit counts them and outputs $0,1,2,3$ etc. up to 9 (pins 3, 2, 4, 7, 10, 1,5, 6, 9 and 11) go high in turn. Capacitor C 3 removes the effect of any random noise picked up on the PCB track between IC1 pin 5 and IC2 pin 14 which could cause false operation. When the last pulse has been received, the device resets and begins
again. Each output therefore goes high for 0.2 seconds with the whole cycle lasting for 2 seconds. Outputs 1, 2, 4 and 5 (pins 2, 4, 10 and 1 respectively) are selected and OR gated together using diodes D4 to D7. If any of these outputs are high, base current will flow into transistor, Q2, via currentlimiting resistor, R7. However, the transistor will only turn on if the collector is high. The significance of this will be explained presently. With outputs 1 and 2, base current will flow for 0.4 s (that is, for two pulses). Following that will be a space of 0.2 seconds (while unconnected output 3 goes high) and a further 0.4 second pulse when outputs 4 and 5 go high. There will then be a long pause while unconnected outputs 6 onwards go high.

A little problem

Providing the delay of 2 seconds is a problem. IC2 outputs 6 , $7,8,9$ and 0 would normally provide a delay of only 1 second (that is, 5×0.2 seconds). To solve this difficulty, outputs 6 and 7 (pins 5 and 6 respectively)-are OR gated together using diodes D2 and D3. The result is applied to the base of transistor Q1. While IC2 is counting up to 5 , neither of these diodes will be conducting and will therefore have no effect. Q1 collector will then be made low through resistor, R4. Since this is a pnp transistor (as distinct from the more familiar npn type), this low state keeps is on. The emitter/collector becomes a virtual short-circuit and bypasses R1 as mentioned previously. The period of IC1a will then be 0.2 seconds with RV1 correctly adjusted. On counts 5 and 6, Q1 base is made high via the appropriate diode and it switches off. The collector/emitter is now open circuit and R1 appears in series with the other resistors in the chain. This extends the time period. On a count of 7 onwards, Q1 turns on again with pulses returning to 0.2 seconds duration. The effect is that the total period is lengthened to about 3 seconds as required. Adjustment to RV1 will provide a compromise whereby the pulse repetition frequency and two-second gap are both reasonably correct.

As mentioned earlier, transistor Q2 can only allow collector/emitter current to flow and hence operate the buzzer when its collector is high. This is the case when the output of the 25 Hz astable, IC1b pin 9 , is high. The frequency of operation of this astable depends on the values of resistors R5 and $R 6$ in conjunction with capacitor, C5. No adjustment is provided since the exact frequency is not important. As IC1b output, pin 9, pulses high, collector current will flow through the buzzer during the times when the base is also high. Since the base is fed by signals arriving with the appropriate ringing mythm, the buzzer will warble in the familiar telephone way.

Construction

Construction is based on a single-sided printed circuit board (PCB) and the component overlay is shown in figure 4. Begin by soldering the two ic sockets and the link wire in position. Follow with all resistors (including RV1) and capacitors. Note that there are two types of capacitor having the same value (100 nF). The disc ceramic units are soldered in positions C3 and C 4 while the metalised polyester ones are used for C 1 and C5. Take care over the polarity of electrolytic capacitor C2 - the negative end is connected to the track leading to the OV line. Solder all seven dlodes in place taking care over their orientation. In the case of D1, the cathode is connected to IC1 pin 2. In the case of the groups D4, 5 and 6 and D2 and D3, the cathode ends are those which are connected together at the left-hand side. With D7 it is connected to the upper pad. Solder the two transistors in position by first bending their pins

be sufficient clearance below it for the other circuit components when it is in position. Also, if attaching the sounder in this way use plastic spacers on the bolt shanks otherwise the mounting lugs on the device will be excessively strained when the nuts are tightened. On no account should the mounting nuts touch any ic pins or uninsulated component end leads. Refer to figure 5 and complete the wiring. The circuit panel may be secured using an adhesive fixing pad or a small hole may be drilled in a free part and a small nut and bolt used. The battery may be attached using an adhesive fixing pad or a small bracket. If the switch needs to be situated remotely, any reasonable length of light-duty twin wire may be used.

Choice of RV1

If the specified value (4 M 7) is not available,
sufficiently to match the layout of holes in the PCB. Take particular care over the orientation. Note that although the transistors appear identical, they are of different types (as marked on the body). It will be seen that pnp transistor Q1 has its emitter connected direct to the positive line. This will seem strange to those used to working with the npn variety.

Solder the negative (black) PP3 battery connector to the point labelled "OV". Solder a 10 cm piece of stranded connecting wire to the point labelled " +9 V ". Solder the buzzer wires to the points marked " A " and " B ". The red (positive) wire must connect to point A. Adjust RV1 to approximately midtrack position.

Complete construction of the circuit panel by inserting the ics into their sockets taking care over the orientation. Since these are CMOS devices, it is possible for them to be damaged by static charge on the body, so touch something which is earthed - such as a water tap - before handling the pins.

Testing

For testing purposes, twist the " +9 V " wire from the circuit panel to the red battery snap wire and connect the battery. The buzzer will begin operating. There should be a warbling sound and pulses should be given in a double-beat pattern (although the timing will probably be too fast or too slow to sound realistic).

Adjust RV1 for best operation - clockwise rotation of the sliding contact (as viewed from the edge of the PCB) will increase the timing. The double bleep should be made to last for 1 second followed by a pause of two seconds. Listening to the one-second ticks from a quartz clock will help Make adjustments until both of these timings are as close as possible to their correct values.

Boxing up

Any plastic box large enough to accommodate the circuit panel, sounder, PP3 battery and on-off switch may be used. For maximum volume, the buzzer should be mounted so that its top surface is close to the lid where there should be a hole a little larger than that in the sounder for the sound to pass through (see photograph). If a small box is being used, plan the positions of the internal components carefully. If the sounder is mounted on the lid as in the prototype, ensure that there will
use a value of 2 M 2 instead. If the timing cannot be made long enough, increase the value of R3 and vice versa.

WE HAVE A HUGE RANGE, MOST MAKES ALWAYS IN STOCK, RING US FOR YOUR REQUIREMENTS (1)

PORTABLEPROGRAMMER \& EMULATOR
PROGRAMS
EPROMS/FLASH TO 40 PINS WITHOUT ADAPTORS EMULATES $8 \& 16$ BIT SYSTEMS

PROCESS TIMER

 and
CONTROLLAR

This latest instalment of Tim Parker's "Process Timer/Controller" project Is a highly versatile multi-function expansion bus interface card to allow access to the outside world

Part 4

In line with all the previous boards in this project, this one too is selfcontained and, though simple in its basic design, it provides a wealth of features which will enable you to make full use of the expansion bus on the main controller for a wide range of 'real world' applications.

Who would have thought that from the humble beginning of this series of articles, it would be possible to exploit the low-end PIC16C54 microcontroller to this degree? The Process Timer/Controller of part 1, together with this Expansion Bus Interface Card, demonstrates that you don't have to 'move up' to a PIC device with more available V/O pins simply because the initial appearance of the PIC16C54 leads you to think that no more than twelve external devices can be connected to it. The Process Controller main board alone proves this wrong (incidentally, because topics have moved on from the original darkroom timer aspect of part 1, we will now refer to the main unit as the Process Controller, rather than the Process Timer. OK?), with four 7-segment LED displays, eight on-board pushbuttons and a piezo transducer. In all, 37 I/O port lines would be required to control each bit individually. By adding this 14-channel interface card to the expansion bus, the number increases to $51 \mathrm{I} / \mathrm{O}$ port lines. It is also a false belief that, without a built-in timer interupt, the PIC16C54 cannot be used to achieve accurate timing periods, since this too has already been disproved in previous articles.

In part 3 of this series we presented a software development board, and some applications software for an automatic gate controller. Later in this article we will look at implementing the software on this interface card to produce a scaled down model of a working version, together with the connections required (which,

Figure 1: connections for LDRs, switches and thermistors. Note that $\mathbf{C H n}=$ any one of the 7 input channels
by the way, differ slightly from those shown last month). More details later.

Outputs

The expansion bus output port on the Process Controller connects to the inputs of two Darlington driver ics - IC1 and IC2 - on the
interface card. The outputs of IC1 are used to drive the seven single pole changeover (SPCO) relays, each of which can be disabled via their respective jumper links JP1 to JP7 if not required. There are reasons why you may want to disable some relays, Which will be made apparent shortly.

Each relay has an LED indicator connected across it to show its state. Past experience has proved that these indicators are a necessity when trying to establish which one is switching under software controt, because when you have a PCB with numerous relays on board, and your software isn't doing what it should, it's very hard to feel which one is actually switching by placing your finger on each one in turn, since the mechanical vibration through the board means that they all 'feel' the same. At least with the LEDs across them you can see which one is (or should be) energised.

Athough the Darlington driver ics have protection diodes fitted internally to each of their outputs, diodes D1 to D7 have been

Figure 2: the basic components of the Automatic Gate Controller
included on the board to protect against the back emf generated if any of the jumper links are removed while that particular relay is energised. In this situation the internal protection diodes of IC1 will have no effect.

The second Dariington driver, IC2, is connected in parallei with IC1, and is used to provide open collector outputs from the interface card. Because both of these ics are connected in parallel, as each relay is energised by the outputs of IC1 going low, so too is each 'O/C' output pulled to ground by IC2, which allows this ic to act as a slave for IC 1 without burdening the load already seen by the outputs of IC1.

Here lie the reasons for the jumper links mentioned previously. While the relays provide voltage-free contact outputs, their operation can only be very slow due to their mechanical aspects. If, for your particular application, you require some high speed outputs together with some relay outputs, then the jumper links for the relays connected to your high speed outputs can be removed. This will prevent the intiating and undesirable relay "buzzing' due to the rapid tum-on and -off time periods.

The use of relay contacts and open collector outputs is not limited to a choice between slow relay outputs or high speed open collector outputs. They can be used simutaneously at the slower relay switching speeds to give operation of one and the other if required, which facilitates the connection of additionai devices to each output channel. Or they can be used simply to provide remote indicator lamps for the states of the relays, without having to use the relay contacts themselves. This is very useful if you have two devices to control which operate at different voltages, since one of them can be connected to the relay contacts and the other to the corresponding open collector output.

Inputs

Rather than restricting the use of the inputs to the more usual (and mundane) digital TIL signal levels, it was decided beneficial to

Figure 3: connections between the interface between the interface devices. (For reasons of clarity, the supply connections and interface cables to the card are not shown here.)

Figure 4: Power supply input, 7 .channel relay and open collector outputs.
provide the facilities to accept input signals from a wide range of sources on each of the seven channels. To this end, each channel will directly accept TTL signal levels, switch contacts, AC or DC voltage inputs up to 50 V , thermistors for temperature sensing and light dependent resistors (LDRs) for lux (brightness) level sensing, to name but a few. These should satisfy the general needs of quite a few, if not most, applications.

The expansion bus input port on the Process Controller is driven from the outputs of IC4 in the interface card. This device ULN2003 - is the same type Darington driver as used for the output port, except that it is connected in the reverse manner, that is, the open collector outputs of ICA are fed to the expansion bus.

Since all seven input channels are identical, the following explanation of how they work will make reference to the components based around channel 1 , but apply equally and respectively to the remaining six channels.

Voltage inputs

The two position jumper link JP8 selects the input signal source; 'S' for switch or sensor inputs, V ' for voltage signal inputs. With JP8 set to the 'V' position, voltages ranging from TIL levels up to about 50 V (AC or DC) may be applied to the input terminal. This voltage is fed, via R15 to the input of IC4. R15 and zener diode ZD1 ensure that if the input voltage is above about 10 volts, only the zener voltage is used to drive the inputs to ICA, since without current limiting, the highest low-impedance voitage these can accept is around 7 volts. That's not to say the voltage cannot be higher than this, because it can, as long as the input current is reduced to a safe level, which it is via R15. The zener diode only comes into operation with voltages above its clamping voltage (10); and only then if the input current is sufficient to actually get it conducting, which requires about 5 mA itself. With a 50 V input
signa, the maximum current seen by the zener diode will be 50 mA once its been through R15, and that's without taking the voltage drop of the zener diode into account.

Because JP8 is set to the 'V' position, the output of IC5a will be low, so resistor R8 and diode D8 are used to protect the IC from damage due to the positive voltage present at the input to IC4. R8 further reduces the current from R15 to a safe level for D8.

Sensor and switch inputs

To select the sensor or switch input source, JP8 should be placed in the ' S ' position. With the jumper link in this position the incoming signal is applied to the input of buffer IC5a. This device is actually an octal bi-directional transmit/receive buffer, and contains 16 cross-coupled Schmitt input buffers, but only one half of it is used. You will see from the inset in the circuit diagram that each buffer has a second one connected to the same pins, but in reverse to those used by the input channels. Pin 1 of IC5 is the data direction control, when this pin is low, data is transferred from pin 11 to pin 9. When pin 1 is high, as is the case here, since it is pulled up to +5 V via R29, data is transferred in the opposite direction, from pin 9 to pin 11.

The reasons for this apparent waste of device use are two-fold. First and foremost, we require Schmitt triggering in order to connect sensors such as thermistors and LDRs to the signal inputs, because standard TTL buffers will go into oscillation at very high frequencies when the inputs get close to their switching threshold, as would be the case when the sensor connected to the input begins adjusting its characteristics corresponding to the temperature or light changes. Secondly, the pinout of the devics is ideal, and it's cheap enough to use in this manner, yet still 'waste' half of it. The device must also be of the 'HC' or "HCT' variety to allow the use of relatively high (compared to standard 'LS' TIL

light level increases. So, as the temperature or light level respectively rises, so too will the voltage on pin 9 of IC5a, caused by the potential difference of the sensor, R22 and VR1. It follows then, that VR1 can be used to adjust this voltage, thereby setting the point at which you wish to detect a preset temperature or light level.

The inputs are not restricted to just LDRs and thermistors; these are detailed simply because they are two of the most common devices used. In fact, almost any sensor which exhibits resistance change (including potentiometers) can be connected, just so long as those characteristics are within the adjustment range of presets VR1 to VR7.

Low level logic

A point to bear in mind here is that as the inputs signals go high, no matter whether they're from a sensor, switch contact, TL level or a fixed voltage, the Process Controller will 'see' a low level logic input signal on the expansion bus, and vice versa. In other words, the level seen by the Process Controller is the inverse of that appearing at the channel input terminals which triggered the buffer to change its state. This is done purposely to allow software routines to assume there is nothing connected to an expansion bus input port bit if that particular bit is left unconnected, since it would then be pulled up to +5 V via resistor network RN2 fitted on the main Process Controller.
current, maybe not a lot, but it could just be enough to push the power supply over the edge. And don't forget, on top of all this, you are powering the main Process Controller too.

With supply currents below about 300 mA for both the interface card and Process Controller there is always the possibility of the supply voltage collapsing - albeit very briefly - if all of the relays are energised simultaneously, due to the initial high current surge. Diode D15 is used to protect IC3 from damage during this surge, by preventing its input terminal being pulled below the +5 V voltage on the output terminal. It also reduces the possibility of the programmed PIC microcontroller 'crashing', by blocking off this negative surge to the Process Controller board via the ribbon cable. When these surges occur (and they do), they are usually so brief -

Supply input

The interface card has its own on-board +5 V regulator, based around IC3 and associated components $\mathrm{C1}$ to C 6 and D15. This is used not only to power the on-board ics, but also the Process Controller itself, through the ribbon cable which connects the two boards together. The inclusion of bridge rectifier BR1 enables everything to be powered from either $A C$ or $D C$ supplies of around 9 volts. It also means that if $D C$ power is applied, it can be connected either way round to the power input terminals.

The unregulated supply is used to power the relay coils, IC1, IC2 and to provide an auxiliary DC output via D16 for powering extemal devices. The function of D16 is to protect against accidental or incidental high voltages being fed back onto the power rails of the board via the auxiliary DC OUT terminals.

The amount of current required from the power supply at the power input terminals will depend, to a large extent, on what you intend connecting to the output terminals, which will obviously increase if you are utilising both the relay and open collector outputs simultaneously, and also whether you have the software development board fitted to the ribbon cable, each of which consumes a little more

Figure 6 the component layout. The PCB is double-sided. However, as connections between the top and bottom sides are made via component legs, plated-through-holes are not needed

The Low Cost Controller That's Easy fo Use

Features
The K-307 Module provides the features required for most embedded applications

Analogue

- 4 Channels in 1 Channel out

Digitol - 36 Digital in or out \& Timers
Serial - RS-232 or RS-485 plus I2C
Display - LCD both text and graphics
Keyboard

- Upto 8×8 matrix keyboard

Memory

- >2 Mbytes available on board

Low Power

- Many modes to choose from

Development

The PC Starter Pack provides the quickest method to get your application up \& running
Operating System - Real Time Multi Tasking

lenguages

- 'C', Modula-2 and Assembler

Expansion

- Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface
Cambridge Microprocessor Systems Limited

> 也氙

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

KEENEELEGTRONTCS Quality Video erorticts
 Universal RF modulator
 Allows easy connection of any camcorder to a TV via the standard RF (aerial) socket. It can also be used with video processors or computers that have a suitable AV output.
 Specification: Output level 74 dBuV ; Video
 modulation AM; Power supply 4-19V DC © 25 mA .
 Camcorder User 'Goid Award'
 June 1996
 $£ 29.99$

Niewneg $\rightarrow \Rightarrow$

video signal inverter
Viewneg For inverting video signals from camcorder or VCR. Complete with mains power adaptor $£ 49.99$
With viewneg, your camcorder and a slide to video copier... view photographic
negatives direct on TV as video positives. It's a great way to show your photos. Record them on tape, too, for use later!
Viewneg kie 1 Buy this if you want to view
negatives and you've already got a slide-to-video copier. Comprises Viewneg, mains power adaptor, negative strip carrier, blue colour correction gel and lead £69.99
Viewneg kit 2 For starting from scratch. Comprises Viewneg kit 1 as above, plus slide-to video copier. $£ 114.9$ Also available from JESSOP. Also available from JESSOP,
ITECNO and other leading video

Check out our Web site http: //www. keene.co. uk for new products. special offers \& more

> KEENE

ELECTRONICS

LASERS

Argon ion / Helium Neon / Diode / Carbon Dioxide Colours include red, yellow, green,turquoise, blue and infro-red. Output powers range from 0.2 mW to over 20 Watts. Applicotions include research, light shows, image projection, medical or industriol. New and Second hand. Pictured here is a 50 mW cyan/blue argon ion oir cooled laser head ond a miniture 1 mW red HeNe laser tube only 147 mm long Second hand blue $(488 \mathrm{~nm})$ argon ion lasers start from only $£ 100+$ VAT.

LASERTECH

Mill Road, Great Barton, Bury St. Edmunds, Suffolk, IP31 2RU Telephone 01284788108 Fax 01284788135

$\star \star$ FOR SALE $\star \star$

DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALTTY SURPLUS MANY SPECIALS. WE STOCK $1000+$ ITEMS \& IF WE DON'T STOCK IT WE MAY BE ABLE TO GET IT FOR YOU
PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS

MAYFLOWER ELECTRONICS

 48 BRENDON ROAD, WATCHET, SOMERSET, TA23 OHT TEL (01984) 631825 FAX 634245in the order of only a few milliseconds - the capacitance on the Process Controller should be sufficient to uphold its own +5 V supply long enough for the main supply to recover.

Construction

The PCB is a fairly large conventional (non PTH) double-sided board. As with all PCB construction, begin with the lowest profile components first - resistors and diodes etc., building up to the highest one, which in this case is IC3 with its heatsink.

There are 8 via or 'feed thru' holes on the board, each of which must have a short length of wire inserted, and soldered to the top and bottom sides of the board. These points are marked on the topside copper track pattern with a heavy 'dot' symbol.

The construction process is pretty straight-forward. Basically, where a component has a pad on both sides of the board, then it must be soidered both sides of the board. Ensure all diodes (including BR1), electrolytic capacitors and ics are fitted in the correct onientation, as once they are soldered top and bottom, they can be very difficult to remove without lifting the copper pads and tracks on the topside of the board.

Three of the dil ics - 1,2 and 4 - cannot be fitted in sockets, and must be soldered directly to the board, since they all have certain pads which must be soldered both top and bottom. IC5 has been purposely allowed to fit into an ic socket, and you are strongly recommended to do so. Why? Because this is the most likely chip to be destroyed if you accidentally apply a high voltage to one of the input channel terminals when that channel's input source select jumper link is fitted in the ' S ' position. Fitting a socket allows IC5 to be replaced easily and repeatedly. This is the voice of experience!

Purchasing relays in this quantity can be a little expensive, particularly if you don't initially have a use for all of them. If you wish to reduce the cost, you can fit only the number of relays required for your application, but remember, ALL of the components which have top and bottom pads MUST be soldered to the board, even the relay protection diodes in the positions where you do not have a relay fitted. This is because these components are used to transfer tracks from the top to the bottom of the board, and leaving them out will result in incomplete continuity.

Don't worry about soldering the presets VR1 to VR7 to the topside ground plane, it is not necessary. Neither are the topside connections to the heatsink mounting pins, although it would be better if you could get a good amount of solder to them, because this will increase the rigidity of the heatsink tremendously.

As always, make a thorough check of the completed board for possible incorrect component orientation. With a repetitive board such as this, it's easy to insert a diode the wrong way round. Fortunately, they're also very easy to spot too. Check also that there are no dry joints or solder bridges, especially in between the ic pins which are soldered to the topside of the board.

In use

Connect the interface card to one of the expansion bus ribbon cable connectors as normal. The interface card is intended to provide power not only for itself, but also the main Process Controller, so disconnect any supply lines you may already have connected to the Process Controller. If sufficient current is available, these may now be connected to the interface card instead.

For the time being, set the input source select links to the right hand 'S' position. Insert the "Darkroom Timer"
programmed PIC into the Process Controller and connect a suitable 9V-12V AC or DC power supply either way round to the power input terminals. There may be a very brief click from each of the relays as the PIC microcontroller initialises itself, but they should all be in the de-energised (off) state once it's running and 00:00 shows in the displays. If not, turn off immediately and check for faults on the interface card, then try again.

If you like, the software development board can be plugged into the ribbon cable together with the interface card, but make sure that all DIP switches on it are open.

The built-in test routine of the darkroom timer program (mentioned last month) can be used to test the correct operation of the interface, only this time the input signals can be simulated by linking the +5 V terminal to any of the channel inputs, and the relays will activate in response to them. Note that the /OE control signal is permanently asserted by the interface card, so it makes no difference in which position the link is fitted on the Process Controller.

Using the software

We will now look at implementing the Automatic Gate Controller program described last month on the interface card (the software can be obtained from the author. Also, if there is sufficient demand, ETI will print it next month). The drawing below shows the basic components and the connections required by an automatic gate controller. You will notice from the drawing that the connections are slightly different from those given last month, in that the common connection to the input devices (limit switches, loop detector etc.) is taken to the +5 V supply rail, rather than the OV line. This is because the demonstration had to be performed with the software development board fitted, not the interface card.

No changes are required to the software for this application, as it can be applied directly to the interface card. For those who do not have a ground loop detector and security keypad to hand (which accounts for most of us), these input signals can be simulated either on the software development board (if fitted), or by substituting these units with further normally open (N/O) switches on the interface card, just like the limit switches.

The full explanation of how the Automatic Gate Controller works was given last month, so it will not be repeated here. Suffice it to say that the same procedure is required here as was described previously. The main difference is that you can now connect a small (cassette player type), non speed regulated DC motor to the relay outputs, which was not possible before. The motor's rotational direction will depend on which way round it is connected, and the polarity of the connections to the auxiliary power terminals on the interface card, either of which can be reversed if required.

After the successful testing of the board, power down, remove the "Darkroom Timer" program from the Process Controiler, install the "Automatic Gate Controller" program, connect all of the external devices as shown in the diagram, and power back up.

During normal operation, the normally-open contacts of two right hand relays (6 and 7) will reflect the status - open or closed - of the gate open and gate closed limit switches, which could be used for remote signalling. If these are not required, or if they simply get annoying, they can be disabled by removing their respective relay enable jumper links JP6 and/or JP7. If you require some slave outputs, remember that the open collector outputs are being pulled low in sympathy with the relay outputs, even if some relays have been disabled, so these are still available for use in this way.

Because in this application the +5 V supply is returned to the input channels, the jumper links are set to the 'S' position. If, in other applications, you intend returning a higher voltage, maybe because it's being generated by some other external device, and cannot be overridden, then set the respective jumper links to the ' V ' position, otherwise you will almost certainly destroy IC5 on the interface card, so be ready with another.

- The versatility of the PIC microcontroller, coupled with the main Process Controller, removes the ties normally associated with dedicated control systems, and the interface card will serve you well for numerous tasks. All you need to do is write your own software to control it. When you come upon another task, there is no need to purchase an entirely different system, simply change the program and off you go again.

Caution

Our apologies for ending on a serious note, but it is well justified. Although only low voltages have been used in the examples, undoubtedly some of the more adventurous constructors among you are going to want to control some form of mains powered device - lighting being possibly the most common example. While there is no reason this cannot be done, it must be stressed that extreme care must be exercised when doing so, and only attempted by persons fully competent in this area.

For these purposes, the interface card MUST be fitted securely inside a suitable enclosure, and all metal parts of that enclosure must be earthed for safety. Do not take any risks with mains voltage electricity, it is lethal, and can be fatal.

Kits and blts

A complete kit of parts for the Interface Card, which includes the PCB and all of the components in the parts list, is available from the author by mail order only, at the following address:
DTE Micro Systems
112 Shobnall Road
Burton On Trent Staffordshire DE14 2BB

KT: Expansion Bus Interface Card (PCB included) $\quad £ 39.00$
 PCB: Expansion Bus Interface Card (PCB onty)
 $£ 15.00$

PARTS FROM EARLIER ISSUES

Part 3

KT: Software Development Board (PCB included) $£ 11.00$
PCB: Software Development Board (PCB only) $£ 5.50$
PIC: 16C54 Programmed for Automatic Gate Controller
£ 9.00

Part 2

KT: Process Timer PSU / Interface (PCB included) E21.50
PCB: Process Timer PSU / Interface (PCB onty) $\quad 7.80$
CASE: Suitable (undrilled) ABS plastic enclosure for PSU $£ 3.75$

Part 1

KI: Process Timer / Controller Main Controller $£ 29.50$ (kit includes D/S PCB and Programmed PIC16C54)
PCB: Process Timer / Controller (D/S PCB only) $\quad 9.00$
PIC: $\quad 16 \mathrm{C} 54$ Programmed for Darkroom Timer Project $£ 8.50$
CASE: A smart (undrilled) sloping front enclosure £8.00 (The PCB was designed to fit this case)
CABLE: 1-metre pre-assembled 34-way expansion bus cable fitted with three 34-way bus connectors: $£ 4.00$

Software

PIC source code listings for the Process/Darkroom Timer? Expansion Bus test routine and Automatic Gate Controller. Fully documented source code listings on 3.5 inch disk $£ 8.50$ Fully documented source code listings - printed copy $£ 8.50$

All prices are inclusive, but please add $£ 2.50$ (UK) or $£ 4.00$ (elsewhere) to the total order value to cover carriage and handling charges. If ordering from overseas, payment must be in pounds Sterling ($£$). Cheques, bank drafts or money orders etc. must be drawn on a British bank.
Goods will normally be dispatched within five working days from receipt or order, subject to availability and cheque clearance, but please allow up to 28 days for delivery.

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Coptere

Schematic Capture Design Tool

- Direct netist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo tacility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

BoardMakert - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1
- Full netlist support- BoardCapture, OrCad. Schema, Tango, CadStar
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane support with full DRC

Board Rocter

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support

E 200

- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix. HPLaserjet and PosiScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 GUT

Tel 01354695959 Fax 01354695957 E-mail Sales@tsien.demon.co.uk

tsien

SIMPLE POWERLINE SIGNAL CONTROLLER

In last month's article Bart Trepak described the construction of a simple receiver for a mains carrler remote control system for switching one or two appliances on or off independently. In this concluding article the companion transmitter is described

IIn keeping with the philosophy of keeping this design simple, the clrcuit of the transmitter consists basically of two oscillators and power supply. The full circuit diagram is shown in figure 5, and closely follows the block diagram shown last month. The circuit again uses a capacitor to drop the malns voltage down to 15 volts for the rest of the circuit. This is cheaper than using a transformer as the supply current requirements for the circuit are quite small and isolation from the mains is not required; indeed it is undesirable in this case, provided, of course the user is suitably and properly isolated from the circuit, which can easily be achieved by mounting the finished unit in a plastic box. C1 provides this mains dropping function with R1 serving to discharge this capacitor when power is removed, and R2 preventing the injected carrier signal from being "shorted out" by the zener diode D2. D2 clamps the voltage to 15 volts and this is rectified to provide a -15 V dc supply by D1 and C3. There is no particular reason for having a negative supply, it just made the PCB layout slightly easier.

The transmitter

The heart of the circuit is TR1 which is connected as a Hartley oscillator. The frequency of oscillation is determined by the inductance of the transformer (a similar unit to that used in the receiver) and capacitor C 5 , and will be approximately 100 kHz with the components specified. This can be adjusted over a small range as can the corresponding coil in the receiver to enable both circuits to be tuned to the same frequency. The signal is coupled to the mains via the secondary of the transformer and C2. (A word of warning, incidentally, about C1 and C2. These capacitors should be rated for 250 V ac operation and preferably be self healing types, as failure of

R5 (or R6)	1 kHz	$10 f \mathrm{kHz}$	$15 f \mathrm{kHz}$
$15 k$	2.27	22.7	34.1
$18 k$	1.89	18.9	28.4
$22 k$	1.56	15.6	23.4
27 k	1.23 k	12.8	19.2
$33 k$	1.04	10.4	15.6
$39 k$	0.86	8.6	12.9
47 k	0.76	7.6	11.4
$56 k$	0.66	6.6	9.9
$68 k$	0.53	5.3	7.9
$82 k$	0.45	4.5	6.8
$100 k$	0.37	3.7	5.6

Table 1
these components could cause severe damage to the rest of the circuit. This also applies to the capacitors C1 and C7 in the receiver).

Transistor TR1 only receives base current via R4 when the outputs of IC1d or IC2d are low (ie at -15 V) and since these outputs are normally high (ie at OV), it is therefore normally off and not oscillating. The coding for each channel is performed by a single CMOS 4001 (quad NOR gate) IC. The first two gates are connected as a monostable, which produces a pulse of about 0.4 seconds each time the push button is pressed and enables the oscillator based on the other two gates in the package. To generate two tones to control two appliances, two such circuits are required and both ICs operate in the same

R4	$F_{\text {osc }} \mathrm{kHz}$
2M7	4.9
2M2	6.0
1M8	7.2
1M5	9.0
1M2	10.8
1M0	13.0
820k	15.5
680k	18.3
560 k	22.3
470k	28.3
390 k	30.6
330 k	37.6

Table 2
way except that the two oscillator frequencies set by R5 and R6 are different. The oscillator outputs are used to gate the 100 kHz oscillator built around TR1 via the OR gate formed by diodes D3 and D4, so that this transistor produces a burst of 100 kHz oscillation each time the output of the tone oscillator goes low to -15 V .

If more than two receivers are to be controlled, further circuits similar to that constructed around 1 C 1 should be built but with different values of R5 and each connected to R4 via a diode. If the resulting frequency is such that more than 512 cycles are produced each time the push button is pressed, then R9 which controls the monostable time constant will also need to be modified.

A single monostable/oscillator circuit using one IC could have been built and the frequency selected by means of a single pole multi-way rotary switch which would switch in different values of R5. A double pole switch would be required if R9 also needed to be varied. Since a 4001 and the associated components cost much less than a rotary switch two individual circuits were used but for more channels, the economics may be different.

Construction

The transmitter circuit is best constructed on a printed circuit board and a suitable layout is shown in figure 6. As usual, pay particular attention to diode and electrolytic capacitors to ensure that these are inserted into the circuit the correct way around. The ICs are CMOS devices and should be handled carefully to minimise the risk of damage due to static. Sockets for these devices are therefore recommended.

Note that capacitors C1 and C3 are mounted flat on the pcb. This is done to allow clearance for the two push button switches S1 and S2 which would otherwise not protrude through the holes in the box. Note also the orientation of the switches. If different style push switches are used which are taller, it may not be necessary to lay the capacitors down. Alternatively, panel-mounted push switches could be used and wired to the circuit board. Different switches may have different connections and it should be remembered that the ones specified have four terminals. In the case of the switch adjacent to the terminal block, two of the connections are used

Figure 4: Connecting your receiver to a load
as a jumper link across the tracks and this connection should be made by a wire link if the switch used does not make this connection.

> REMEMBER THAT BOTH THESE CIRCUITS OPERATE DIRECTLY FROM THE MAINS AND HIGH VOLTAGES ARE PRESENT. DISCONNECT THE CIRCUIT FROM THE SUPPLY BEFORE ATTEMPTING ANY SOLDERING. DO NOT TOUCH OR EARTH ANY PART OF THE CIRCUIT. MAKE ANY ADJUSTMENTS ONLY WITH A PLASTIC TRIMMING TOOL. USING A METAL SCREWDRIVER OR TOUCHING LIVE PARTS COULD RESULT IN "FRIED CHIPS" OR WORSE - FATAL DAMAGE TO YOU.

Testing

Testing the units must of necessity be carried out when the circuits are out of their boxes so that great care must be exercised. It is perhaps best to secure the circuit board to a board so that there is no tendency for the circuit to fall off the bench when leads are connected. Note that the circuit must not be earthed at any point as damage will occur and for this reason an oscilloscope or any other earthed test equipment should not be used unless you are sure that the inputs to such equipment are floating and not at earth potential. A 60 W light bulb temporarily connected in series with the live terminal will prevent any disconcerting bangs and blown fuses and pcb tracks in the event of a mistake in connecting the units to the malns but may not prevent damage to low voltage
components.
When assembly of the transmitter is complete, connect a piece of two core mains flex to the terminal block on the transmitter board and connect the unit to the mains via a plug fitted with a 2A fuse. Note that the earth pin of the plug is not used. Switch on and with a multimeter set to 20 V dc check that a voltage of about 15 V dc is present between pins 7 and 14 of both IC holders (pin 7 negative). The same test should be carried out on the receiver(s), with the same precautions, except that here the voltage across C 8 should be around 12 volts and that at pins 7 and 8 of the IC about 4.5 volts (pin 7 negative). If this is the case, switch off, disconnect the units from the mains supply and plug in IC1 in the receiver(s) and ICs 1 and 2 into the transmitter.

Next solder a piece of insulated wire between pins 6 and 14 of either IC1 or IC2 on the transmitter and switch on the supply. This will enable the oscillator TR1 and cause it to generate a 100 kHz signal continuously. The voltage across TR2 in each receiver should be monitored on a dc voltmeter and set to a minimum value by adjusting the tuning of the transformer T1 in each receiver. This agaln should be done with a plastic tool as a metal screwdriver, as well as being potentially dangerous, could alter the tuning or break the fragile ferrite material. When this has been done, the transmitter should be removed to a distant location (electrically) such as a mains outlet in another room which is not on the same circuit as the one where the receivers are plugged In and the test repeated to ensure that all transmitters and the receiver are adjusted to the same carrier frequency.

When this has been done, the link on the transmitter should be removed and the transmitter returned to the bench. The voltage across TR2 should be monitored and should read about 4 or 5 volts falling to a lower value when a push button is pressed. While keeping the button depressed, note that the voltage returns to its original value after a short time which

Figure 5: The power line signal transmitter

Figure 6: The PCB layout and component overlay for the transmitter

Figure 7: Connecting your transmitter to the mains
shows that the monostable part of the transmitter circult is also working. The relay in the corresponding receiver should also switch on and then off on a subsequent .operation of the push button.

Because the value of R4 is not very critical, the values

Table 3
suggested in the parts list should work without modification. If other channels are also required, the proposed value of R5 (or R6) in the transmitter should first be tested to ensure that no other receivers are activated with this value. A preset may then be connected in place of R4 in the receiver and its value adjusted until the relay in the receiver responds. The preset setting should be varied in both directions (up and down in value) until the relay stops responding before being adjusted to the mid point between these settings. The value of resistance may then be measured and the preset replaced by the nearest preferred value of fixed resistor.

The relatively large tolerance in the frequency to which the receiver will respond will limit the number of different channels which can be implemented, but it should be possible to make at least six using the above method. To make the resistor selection easier table 1 gives measured values of the tone frequency " f " obtained from the transmitter prototype with various values of R5 together with calculated values of $10 f$ and $15 f$ which are the limits within which the frequency of the oscillator in the receiver will need to be set. Table 2 shows the frequency "Fosc" obtained at pin 2 of IC1 in the receiver for various values of R4. Note that these are measured values and make no allowances for component tolerances but they give a rough idea of the values required to obtain correct operation.

TRANSISTORS							
PART	PRICE	PART	PRICE	PART	PRICE	PART	PRICE
BU105	80P	BU408D	75P	BUT18AF	80 P	MJ15024	400P
BU108	100P	BU409	85P	BUT30V	1700P	MJ15025	700P
BU109	80 P	BU426A	70P	BUT56A	100P	MJE13004	100P
BU110	90P	BU506DF	120P	IRF450	650P	MJE13005	60P
BU191	100P	BU508APH	80 P	IRF520	150P	MJE13007	100p
BU124	60 P	BU508AF	95P	IRF530	300 P	MJE13009	100 P
BU125	100 P	BU508APH	80 P	IRF540	300 P	MWE15028	200 P
BU126	65P	BU508D	90P	IRF610	150P	MJE15029	200 P
BU133	125P	BU5080F	115P	IRF630	150P	MJE15030	250P
BU137	150 P	BU508DR	130 P	IRF640	400P	MJE 15031	400 P
BU180	100 P	BU508V	110P	IRF730	175P	MUE18004	125 P
BU184	100P	BU508VF	100P	IRF740	400P	MUE18004	125P
BU204	65 P	BU801	70 P	1RF820	150P	OC28	350 P
BU205	70 P	BU806	70 P	1RF830	225P	OC29	250P
BU206	100P	BU807	60 P	IRF840	200P	OC35	350P
BU207	150P	BU2508A	$130{ }^{\circ}$	IRF9530	400 P	OC36	250P
BU208	70P	BU2508AAF	130 P	IRF9540	300 P	S2000A3	175P
BU208A	75P	BU25080	130 P	IRF9610	200 P	S2000AF	175P
BU208AT	200P	$\begin{aligned} & \text { BU25080 } \\ & \text { BU25080F } \end{aligned}$	130P	IRF9620	225P	S2055A	175P
BU208D	130P	BU2520AF	225P	IRF9630	325P	S2055AF	200P
BU209	90P	BU25200F	225P	IRF9640	375 P	2N3053	18P
BU225	120 P	BU2525AF	325 P	IRFC40	400P	2N3054	40 P
BU312	90P	BUH315	200P	MU2501	100 P	2N3055	38P
BU325	55P	BUH515	200P	MJ2955	55P	2 N 3055 H	50P
BU326A	75P	BUH517	275P	MJ15003	2508	2N3440	45P
BU406	60P	BUH715	425P	M. 15004	300 P	2N3441	175P
BU406D	85 P	BUT11AF	55P	MJ15015	250P	2N3442	85P
BU407	55P	BUT12	80P	M. 15016	350P	2N3771	85P
BU4070	75P	BUT13	310 P	MJ15022	250P	2N3772	90 P
BU408	60 P	BUT18	80P	MJ15023	400 P	2N3773	100P

Experience shows that 50% of all receiver powar supplies 'bounce' unless the correct precautionary measures are taken when being serviced. A kit of all the recommended parts is supplied for the most popular models, which when fitted should overcome this

MAKE \& MODELS

PACE PRD800, PRD900
PACE SS900, 9200, 9010,9210, 9020, 9220 AMSTRAD SAD510, SRD520
AMSTRAD SRD510,
AMSTRAD SRD500
AMSTRAD SRX340, SRX345, SRX350
PACE D100/150
CHURCHILL D2MAC
PACE MSS100
PACE MSS200/300 APPOLLO
PACE MSS500/1000
FERGUSON SRD4
ECHOSTAR SR5500
ECHOSTAR 6500/7700/6700
AMSTRAD SRD600
MIMTEC (Surensen)
AMSTRAD SRD700/SR950/SRX100/302
SRX501/502/1002/2001/SRD2000 SAT250

ORDER CODE	PRICE
SATPSU1	650 P
SATPSU2	650 P
SATPSU3	650 P
SATPSU4	650 P
SATPSU5	650 P
SATPSU6	650 P
SATPSU7	650 P
SATPSU8	730 P
SATSPU9	650 P
SATPSU10	1230 P
SATPSU11	835 P
SATPSU12	1735 P
SARPSU13	3125 P
SATPSU14	3125 P
SATPSU15	775 P
SATPSU16	

PACE 9000 SWITCH MODE TRANSFORMER
ORDER CODE; PACE9000 PRICE 800p

SERVICE AIDS

DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75 ML	SP01	160 P
VIDEO HEAD CLEANER	200 ML .	SP27	250P
SWITCH CLEANER	176 ML	SP02	170P
SUPER 40	400 ML	SP15,	250P
SILICONE GEASE	200 ML	SP03	210P
FREEZE IT	170 ML	SP04	300P
FREETE IT	400 ML	SP16	600 P
FOAM CLEANER	400 ML	SP05	180P
ANTI STATIC	150 ML	SP06	190P
AEROKLEANE	200 ML .	SP07	220P
AERO DUSTER	150 ML	SP08	310 P
AERO DUSTER	400 ML	SP17	550 P
PLASTIC SEAL	200 ML	SP09	250P
GLASS CLEANER	250 ML	SP10	160P
COLDKLENE	250 ML	SP13	230 P
EXCEL POLISH 80	250 ML	SP18	150P
ADHESIVE 120	400 ML	SP19	190P
LABEL REMOVER 130	200 ML .	SP20	240 P
REFURE 140	400ML	SP21	240P
TUBE SILICON GREASE	50 GRAMMES	SP11	220P
TUBE SILICON SEALANT WHITE	75 ML	SP22	280P
TUBE SHLICON SEALANT CLEAR	75 ML	SP23	280P
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
DRIVE CLEANER	200 ML	SP24	150p
SCREEN CLEANER	200 ML	SP25	150P
COMPUTER CARE KIT		SP26	2100P
ANTI STATIC FOAM CLEANER	400 ML	SP28	$175 p$
AIR DUSTER	400 ML	SP29	450P

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL IF YOU PUACHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKAGE WILL BE

CHAR
450p FOR MORE THAN 5 CANS
GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE,

SOUTHWAY, WEMBLY, MIDDLESEX, ENGLAND HA9 OHB
Telephone: 0181-900 2329 Fax: 0181-903 6126
OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

FUSES				
	TIME LAG	(20mm)	QUICK BLOW	(20mm)
CURRENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75P	FUSE37	60P
160 mA	FUSE01	75P	FUSE17	60 P
250 mA	FUSE02	75P	FUSE18	60 P
315 mA	FUSE 03	75P	FUSE19	60P
400 mA	FUSE04	75P	FUSE20	60 P
500 mA	FUSEOS	75P	FUSE21	60 P
630 mA	FUSE06	75P	FUSE22	60 P
800 mA	FUSE07	60 P	FUSE23	60 P
1 A	FUSE08	60P	FUSE24	60P
1.25A	FUSE09	60 P	FUSE25	60 P
1.6A	FUSE10	60 P	FUSE26	60P
2A	FUSE11	50 P	-FUSE27	60P
2.5A	FUSE 12	50P	FUSE28	60P
3.15A	FUSE13	55 P	FUSE29	50P
4A	FUSE14	55 P	FUSE30	50 P
5A	FUSE15	60 P	FUSE31	50P
6.3A	FUSE16	60 P	FUSE32	50P

CERAMIC PLUG TOP

CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100 P
5A	FUSE34	100 P
13A	FUSE35	100 P

20 mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	PRICE	CURRENT RATING	ORDER CODE	PRICE
			8A	FUSE44	185P
6.3A	FUSE38	100 P	10A	FUSE45	185P
8A	FUSE39	100 P	15A	FUSE46	185P
10A	FUSE4O	100 P	20 A	FUSE47	210 P
3.15A	FUSE41	85 P			
4A	FUSE42	${ }^{85} \mathrm{P}$			
5A	FUSE43	85P			

38 mm CERAMIC TIME LAG

ALL THE ABOVE PRICES ARE ARE FOR PACKS OF 10 FUSES
NB. ALL FUSES ARE MADE IN THE UK AND FULLY MEET 8S4265 \& BS1362 SAFETY NTANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

SOLDERING ACCESORIES

ANTEX SOLDERING IRONS

DESCRIPTION	CODE	PRICE
25 WATT 240 VAC (XS25W 240V)	S101	900 P
15 WATT 240 VAC (XS 15W 240V)	S102	900 P
25 WATT SPARE ELEMENT	S103	450 p
15 WATT SPARE ELEMENT	S104	450 p

SOLDERING STAND \& SPONGES
SOLDERING STAND \& SPONGES

DESCRIPTION	CODE	PRICE
SOLDERING STAND (MADE BY ANTEX)	S108	350 p
SPARE SPONGE	S109	55 p

SOLDER

DESCRIPTION	CODE	PRICE
18 SWG 500 GRAMMES	SI10	500 P
20 SWG 500 GRAMMES	SI11	650 P
22 SWG 500 GRAMMES	SI12	700 P

DESOLDERING AIDS
DESCRIPTION
SOLDER MOP $1.2 \mathrm{~mm} \times 10$ METRE
DESOLDERING PUMP
SPARE NOZZLE

CODE	PRICE
SIO7	80 P
S113	400 P
S105	320 P
SIO6	60 P

8 way PREPROGRAMMED

Universal remote Control
A single remote control to operate Televisions, Videos and Satellite Receivers. Plus Auxilary Optionsll
Receivers. Plus Auxiary Optionsif

- Replaces up to 8 remotes Simple 4 digit setup routine
- Simple 4 digit setup routine
- Controls 1000's of models
- Clear (large key) layout
* Code Search Facility

Stylish and easy to operate

* Replace broken or lost remotes
- Original Remote not required

8 way PREPROGRAMMED

Universal remote Control The Optimum 8 way universal remote control preprogrammed to operate up to 8 other remote controls for Televisions, Videos and Satellite Recelvers. Plus Auxilary Optionsil - Pre-programmed with leaming capability - Replaces up to 8 remotes with one - Jog'Shutte thumb control

- Clear key layou pad
- Easy accoss secondary keypad - Teletext \& Fast text function - Stylish and easy to operate * Replace broken or lost remotes - Original Remote not required - Freetone Helpline (UK Only) Order Code: OPTIMUM 8 Price: 2100P + VAT
PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send £1 P\&P and VAT at 17.5\%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for dellvery. Prices quoted are subject to stock availability and may be changed without notice. TV and video paris soid are repiacement paris.

Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

As an example of how to use these, suppose that you choose a value of 56 k for R5 in the transmitter. From table 1 this should result in a frequency of 658 Hz which corresponds to an Fosc of 6.58 to 9.87 kHz . The ideal frequency to generate at the receiver would therefore be around 8.2 kHz which would correspond to the middle of this band. From table 2, the value of resistor required to produce a frequency nearest to this would be 1.5 Mohm which should give around 8.9 kHz . A value of 1.8 Mohm would also work as the frequency obtained with this $(7.2 \mathrm{kHz})$ would also fall within the above band. If a 1.5 Mohm resistor is chosen, then from table 1 it is clear that another transmitter with a resistor value of 47 k or 39 k for R5 could not be used as these would generate frequencles of between 7.5 and 12.3 kHz to which a receiver with a 1.5 M resistor $(8.9 \mathrm{kHz})$ would also respond and a value of 33 k would be indicated. Table 3 gives suitable values for R5 (or R6) and R4 (in the receiver) which have been found to work with no overlap but this takes no account of component tolerances and you should therefore be prepared to change some of the values should one frequency be found to operate two receivers. Resistor values below 15 k and above 100 k for R5 could also be used provided corresponding values are used for R4 in the receivers although this has not been tried.

Final assembly

When testing is complete, the finished assemblies can be mounted in suitable boxes. As mentioned, the receivers can be built into either a "plug" type box or a more conventional plastic box fitted with a socket into which the appliance to be controlled can be plugged in. Alternatively, if space allows, it may be possible to mount the circuit inside the appliance which it is intended to switch although this will limit the flexibility of the system. The transmitter is best mounted in a small hand held box and connected to the mains via a two core mains cable. A suitable box would be the type sold for "remote control" hand-sets although in this case, the battery compartment (if any) would not be required.

Whatever type of box is used will determine how the circuit is secured within the box and in the case of the transmitter depending on the push buttons used. It should be remembered however, that all of these circuits operate at umains potential so plastic boxes are preferred and care should be taken to ensure that fingers or screwdrivers cannot be pushed into the box to touch any of the live parts. All exposed metal parts such as screws supporting or securing any circuit board should also be earthed and from this point of view, it is probably best to avoid these and use self adhesive plastic pcb supports if possible. Remember also to ensure that the mains cable enters the box through a suitable grommet and is well secured within the box so that it cannot be pulled out. Do not rely on the terminal blocks on the board for this.

The range of the finished units will depend on a number of factors such as the wiring layout of the house and the number and types of appliance which are connected to it. In some circumstances, appliances plugged into adjacent sockets can attenuate the signal considerably and if this is the case, some repositioning may be required. It is also possible for some appliances which generate a large amount of interference to swamp the available signal and make the system fail to operate correctly. The range beyond the confines of the house has also not been tested but should not be a problem. If you find that your neighbours system is switching on your morning coffee at bed time or your electric blanket on in the morning just after you have got up, it is an easy matter to change the
frequency of the carrier in one of the systems by re-tuning the transformers T 1 or in extreme cases changing the value of the transformer tuning capacitors.

The range should be sufficient however, to cover most reasonable sized houses unless you happen to live in a house the size of a palace in which case this circuit is probably not for you. Still, if this is your situation, you could always ask your valet or butler to nip around to the other wing and switch on your electric blanket before you decide to retire and forget about using electronics to do this!

Pa Parts List

R1,R7,R8	820 k
R2	47 R
R3	100 R
R4	180 k
R5	47 k (see text)
R6	68 k (see text)
R9,R10 10M	
R11 to R14	10 k
C1	$470 \mathrm{nF} / 400 \mathrm{~V}$
C2	$10 \mathrm{n} / 250 \mathrm{~V}$ ac
C3	$470 \mathrm{uF} / 16 \mathrm{~V}$
C4	100 n
C5	$4 \mathrm{n7}$
C6	2 n 2
C7,C8,C11,C12	10 n
C9-C10	100 n

T1* RD7 Transformer
D1,D3,D4 1N4148 diode
D2 3 V9/400mW zener
TR1
BC548 NPN transistor
IC1-IC2
CD4001 quad NOR gate (CMOS)
S1-S2 push switches, PCB, 2-way terminal block, 2×14 pin IC socket, box.
*These items are available from the author at the following prices:

RD7 Transformer $£ 0.50$ UM3763 IC $£ 4.50$

Pack containing $2 \times$ UM3763 plus $3 \times$ RD7 transformers $£ 10.00$
Prices include UK postage. Please add $\varepsilon 2$ for overseas orders. Send postal order or cheque to: B Trepack, 20 The Avenue, London W 143 8PH Mail order only. Overseas orders must include payment in Pounds Sterling with bankers draft drawn on a British bank.

£1 BARGAIN PACKS

List 5

If you would like to receive the other four $£ 1$ lists and a 101 if you would ine io recerve me oner four 1 or send SAE.

TEST PRODS FOR MULTIMETERS whith
Good iength very flexible lead. Ref: D86.
8 OHM PM SPEAKER, size 8×4, pack of two. These may be lightly rusty and that is why they are so cheap but are electncally OK. Rer: D102.
PAXOLIN PANELS, size $6^{n} \times 6^{n}$, approximately ${ }^{1} / 16^{n}$ thick pack of two. Ref: D103.
13A SOCKET, virtually unbreakable, ideal for trailing lead Ref. D95.
PIEZO BUZZER with electronic sounder circuit, 3 V to 9 V D.C. operated, Ret: D76.

DITTO but without internal electronics, pack of two, Ret: D75.
LUMINOUS ROCKER SWITCH, approximately 30 mm sq pack of two. Ref: D64.
ROTARY SWITCH, 9-pole 6 -way. small size and ${ }^{1 / 44^{\circ}}$ spindle, pack of two, Ref: D54
FERRITE ROOS, T whth coils for long and medium waves
pack of two, Ret: D52
Difio but without the coils, pack of three, Ref: D52
SLIOE SWITCHES. SPDT, pack of 20, Ret: D50.
MAINS DP ROTARY SWITCH with $1 / 4^{\circ}$ control spindie pack of five, Ret: D49.
ELECTROL YTIC CAP, $800 \mu \mathrm{~F}$ at 6.4 V , pack of 20 , Ref: D48 ELECTROLYTIC CAP, $100 \mu \mathrm{~F}+100 \mu \mathrm{~F} 12 \mathrm{~V}$, pack of 10 , ref: D47.
MINI RELAY with 5 V coil, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times 1 \mathrm{~mm}$ has two sets of changeover contacts, Rel: D42.
MAINS SUPPRESSOR CAPS $0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ A.C., pack of 10, Ret: 1050
TELESCOPIC AERIAL, chrome plated, extendable and foids over for improved F.M. reception. Ref: 1051.
MES LAMP HOLDERS, slide on to $1 / 4^{\prime \prime}$ tag, pack of 10
Ref: 1054.
PAXOLIN TUBING
lengths, Ref: 1056.
ULTRA THIN DRILLS, 0.4 mm pack of 10, Ref. 1042
20A TOGGLE SWITCHES, centre off, part spring when pushed down. pack of two, Ref: 1043.
HALL EFFECT DEVICES, mounted on small heatsink, pack of two, Ref: 1022.
12V POLARISED RELAY, two chageover contacts. Ret:
1032 . PAXOLIN PANEL. ${ }^{+2} \times 12^{-} 1 / 16^{\circ}$ thick. Ref: 1033 MINI POTTED TRANSFORMER. ONLY 15 VA 15 V -OV-15V OR 30V. Ret. 964.
PRE-SET POTS, one megohm, pack of five. Ref: 998 WHITE PROJECT BOX with rocker swlich in top left-hand side, size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$. Unpnnied. Ref: 1006 6 V SOLENOID, good strong pull but quite small, pack of two, Ref: 1012
FIGURE-8 MAINS FLEX, also makes good speaker lead, 15 m , Ref: 1014
HIGH CURRENT RELAY, 12V A.C. or 12 V D.C... three changeover contacts, Ref: 1016.
NEON PILOT LGGTS 8 Ohm 5 , 3.7 round, Ret: 962 with internal resistor for normal mains paneration, pack of
four, Ref: 970
3.5MM JACK PLUGS, pack of 10, Ret: 975.

WANDER PLUGS, pack of 10, Ref: 986
PSU, malns operated. two outputs, one 9.5 V at 550 mA and the other 15 V at 150 mA . Ref: 988 .
ANOTHER PSU, mains operated, output 15 V A.C. at 320mA, Ref: 989.
PHOTOCELLS, silicon chlp type, pack of tour. Ref: 939
LOUDSPEAKER, $5^{\pi} 4$ Ohm 5W rating, Ref: 946.
230 V ROD ELEMENTS. 750 w terminal-ended, 10° long, pack of two Ref: 943.
LOUDSPEAKER, 7×54 Ohm 5W, Ref: 949
LOUDSPEAKER, $4^{\prime \prime}$ circular 6 Ohm 3 W. pack of 2. Ref: 951.

FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching pair. Rof: 901.
PAXOLIN PANEL, $81 / 2 \times 3^{1 / 2 m}$ with electrolytics $250 \mu \mathrm{~F}$ and 100 mF . Ref: 905.
COUR-CORE FLEX suitable for teleptione extensions, 10 m , Ret: 918.
VERO OFF-CUTS, approximately 30 square inches of useful sizes, Ref: 927.
PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lid, held by four screws, pack of two, Ref: 876. SOLENOIDS, 12 V to 24 V , will push or pull, pack of two. Ret: 877 .
2 M MAINS LEAD, 3-core with instrument plug moulded on. Ref: 879.
TELESCOPIC AERIAL, chrome plated, extendable, pack of two. Ret: 884.
MICROPHONE, dynamic with normal body for hand holding, Ref: 885.
CROCODILE CLIPS, superior quality flex, can be attached without soldering, five each red and black, Relf 886. BATTERY CONNECTOR FOR PP3, superior quality, pack of four. Ref: 887 .
 PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pack of 10, Ref: 849.
THERMOSTAT for ovens with $1 / 4^{*}$ spindle to take control knob, Ret 857.
12V-OV-12V 10W MAINS TRANSFORMER, Ret: 811. $18 \mathrm{~V}-0 \mathrm{~V}-18 \mathrm{~V}$ 10W MAINS TRANSFORMER, Ret: 813. AIR-SPACED TRIMMER CAPS, 2 pF to 20 pF , pack of two, Ret: 818.
AMPLIFIER, 9 V or 12 V operated Mullard 1153, ret: 823. 2 CIRCUIT MICROSWITCHES, licon, pack of 4, ref: 825 LARGE SIZE MICROSWITCHES ($20 \mathrm{~mm} \times 6 \mathrm{~mm} \times 10 \mathrm{~mm}$) changeover contacts, pack of two, Ref: 826 . MAINS VOLTAGE PUSHSWITCH with white dolly, through panel mounting by hexagonal nut, Ref: 829. POiNTER KNi most thermostats, pack of four, Ref: 833

AIR SPACED TUNING CAPACITORS

With the renewed interest in valve equipment, particularly valve radios, we are offering some very well made tuning capacitors. All have ${ }^{1} / 4^{n}$ spindles:
Order Ref 3P214 is a $500 \mathrm{pf}+500 \mathrm{pf}$ direct drive with approximately $1^{\prime \prime}$ spindle, price $£ 3$. Order ref 2P422 has a 250 pt front section and a 350 pf back section, approximately 1 $1 / 2^{\prime \prime}$ of spindle with slow motion drive, price £2.
Order Ref 3P215 is a section all with trimmers. Front section is 150 pf , second section 250 pf, then an FM section of 50 pf , fourth section is 190 pf and the final FM section is 50 pf . Complete with drum drive and $1^{\prime \prime}$ spindle, price £3.
Order Ref 2P425 is a 2 gang $50 \mu f$, very wide spaced for transmitter tuning, about $1^{1 / 2 m}$ spindle price $£ 2$.

MULTITESTER

PT160

Superior pocket size multitester, 2000 ohm per volt and mirrored scale. 14 ranges, $A C$ and $D C$ volts up to 500, current up to $250 \mathrm{~mA}, 2$ ohm ranges and 2 very useful battery test positions. Complete with prods and booklet, price £6.95, Order Ref: 7P23. INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enables you to read insulation direclly in Megohms. The multimeter has four ranges: A.C.ID.C. volts; 3 ranges resistance and 5 amp range. Ex-British telecom, tested and guaranteed OK. yours for telecom, tested and guaranteed OK. yours for Only £7.50 with
We have some of the above testers not working on all ranges, should be repairable, we supply diagram, £3, Order Ref: 3P176.

SMART HIGH QUALITY ELECTRONIC KITS

All kits are complete with PCB and other components in a blister pack.
We feel that most readers will know these kits, but if you want more information about them, then we have copies of the illustrated Smart catalogue, this gives full details and circuit diagrams of each kit, price is $\Sigma 1$, deductable if you order kits to the value of $£ 20$.
CAT. DESCRIPTION
PRICE
No
1002 VU Meter with l.e.d. display
1003
100
100
100
1007
100
1008 SF Function Generator
$1010 \quad 5$-input Stereo Mixer, with monitor output
10il Motorbike Alam
1012 Reverberation Unit
1016 Loudspeaker Protection Unit Dynamic head preamp Microphone preamp 7W Hifi Power Amplifier
Funning Lights
1027 Nicad Battery Charger
10294 sound electronic siren
1030 Light Dimmer
1032 Stereo Tone Control
1035 Space Sound Effects
1038 AM/FM Aerial Amplfier 1039 Stereo VU Meter
4.60 No. £

5W Electronic Siren 2.53

1062
5V 0.5A Stabilized Supply for TTL 2.30 Light Switch
3.22

1064
1067
+12V 0.5A Stabilized Supply $\quad 3.22$
Stereo VU Meter, with l.e.d.s $\quad 9.20$
1068 I8V 0.5A Stabilized Power Supply 2.53
070 HiFi Pre-amplifier 7.47
$071 \quad 4$-input Selector 6.90
1074 Drill Speed Controller 2.76
1077100 W HiFi Amplifie $\quad 12.50$
1080 Liqid Level Sensor - Raln Alarm 2.30
1082 Car Vohmeter, with I.e.d.s 7.36
1083 Video Signal Amplifier 2.76
1084 TV Line Amplifier 1.84
1085 DC Converter, 12 V to 6 V or 7.5 V or 9 V
1086 Music to light for your car $\quad 4.53$
087 ThyristorfTriac Tester 2.76

1089 LED Flasher/555 Tester I.61
1090 Stress Meter 3.22
1093 Windscreen Wiper Controller 3.68
1094 Home Alarm System 12.42
1098 Dightal Termometer, with I.c.d. display II. 50
$1100 \quad 2 \times 18 \mathrm{~W}$ Integrated Amplifier $\quad 18.39$

1040 IOW Hilif Power Amplifier 25W HiFl Power Amplifier 1042 AF Generator, $250 \mathrm{~Hz}-16 \mathrm{kHz}$ 1043 Loudness Stero Unit

Sound Switch

1048 Electronic Thermostat
1050 3-input HIFI Stereo Pre-amplifier
1051 Touch Dimmer, with memory
1052 3-input Mono Mixer
Electronic Meironome
1054 4-input Instrument Mixer
8V-20V 9A Slabilized Power Supply 12.42
1057 Cassette Head Pre-amplifier
1058 Electronic Car Ignition
1059 Telephone Amplifier
$1060+40$ V 8A Power Supply
103 LED Power Meter
Thermometer, with l.c.d. display
40W HIFI Amplifier
$\begin{array}{ll}\text { 40W HIFI Amplifier } & 7.36 \\ \text { Loudspeaker protection, with delay } & 4.60\end{array}$
$2 \times$ I8W Power Amplifier 5.98
Courtesy Light Delay 2.07
Time Switch with tria 0-IOmins $\quad 4.14$
Morse Code Generator 1.84
Electronic Bell
2.76

Telephone Lock 3.68
Mlcrophone Pro-amplifier $\quad 4.60$
Microphone Tone Control $\quad 4.60$
Power Flaster I2V d.c.
Telephone Bug Detector
3.53

Stereo Sound-lo-Light
5.26

You Save $£ 40$

Prices include VAT and carriage if order over $£ 25$ otherwise add $£ 3$. Send cash, uncrossed postal orders cheque or quote credit card number.

J \& N FACTORS
 PILGRIM WORIKS (DEPT ETI),
 STAIRBRIDGE LANE, BOLNEY, SUSSEX, RHIT 5PA
 Telephone: 01444881965
 (Also Fax but phone fixst)

THE JAP MADE I2V I5AH SEALED LEAD ACID BATTERY from regular suppliers costs $£ 50$, you can have one from us for only $£ 10$ including VAT if you collect or $£ 12.50$ if we have to send. Being sealed it can be used in any position and is maintenance free. All in tip top condition and fully guaranteed, Order REf; 12.5P2. Or if you want a smaller one we have 12 V 2.3 AH , regular price £14, yours for only £5, Order Ref: 5P258.

RF
 S
 Is somebody listening to you? With the help of Raymond Haigh's bug-detector, you could catch them out first

 SnifferCompetition is fierce and pressures to succeed have never been more intense. Espionage is becoming a very real threat in businesses or professions which depend on information and ideas. And the threat is not confined to the workplace: marriage partners concerned that they might have an erring spouse are making increasing use of microtransmitter style bugs to confirm or ease their suspicions.

These bugging devices are inexpensive and readily available. They can easily be concealed in telephone power outlets, and a thousand and one other places around the home or office.

The 'Sniffer' unit described here is sensitive to RF radiation over a wide spectrum, from around 100 kHz through VHF to 450 or 500 MHz , and it will help detect and locate low-power spy transmitters. Most constructors will have the parts in their spares box (and if they have to be purchased, they are not expensive) and the unit can be assembled in an evening.

So, why not check out your office or home and dispel those nagging fears?

The circuit

The circuit diagram of the unit is given in figure 1 .
RE signals picked up by a short telescopic aerial are rectified in a voltage-doubling circuit formed by diodes, DI and D 2 , and Cl The resulting dc is applied to the non-inverting input of operational amplifier, Cl . RF choke, L2. and the low value capacitor, C 1 , act as a simple high-pass filter to prevent the unit responding to low-frequency ac fields. A lower nductance RF choke, L1 can be switched into circuit to bypass low, medium, and some of the higher radio frequencies, and further restrict the response of the unit. C2 shunts residual RF to ground,' and R1 acts as a load for the voltage doubler. The gain of the amplifier is fixed by R4 and R5, which determine the level of feedback to the inverting input of the device.

Resistor combination R2 and R3 null out off-set currents so that the meter pointer can be set at zero under no-signal conditions.

Qutput from the first op-amp is connected to the noninverting input of 1 C 2 . Potentiometer R7 varies the level of feedback across this second amplifier, and enables the sensitivity of the unit to be adjusted. R9 sets the meter to read around $3 V$ FSD, and also prevents damage to the movement

Figure 1: the circuit of the RF Sniffer

in the event of the second IC being driven into saturation. C3 smooths out any random fluctuations in the output. The dual $9 \mathrm{~V}-0-9 \mathrm{~V}$ battery supply is switched into circuit by S2A and S2B.

Components

Point-contact germanium diodes should be used for DI and D2 in order to maximise the frequency response and sensitivity of the unit (they conduct at lower forward voltages than silicon diodes). Suitable miniature RF chokes are listed in the Cirkit catalogue, but L1 can be formed by winding 30 tums of 34 or 36 SWG enamelled copper wire on the body of a 0.25 -watt 1 megohm resistor. An inexpensive signal strength or 'VU' meter will be suitable as an indicator. These instruments usually have a sensitivity of around 200 uA , and will require shunting, or an
increase in the value of R9, to give the required $3-4 \mathrm{~V}$ full scale deflection. Meter sensitivity is not critical, and al or 2 mA instrument will be satisfactory for this application with the value of $\mathrm{R9}$ as shown.

Construction

Most of the components are mounted on a small printed circuit board. Figure 2 shows the component side of the board and figure 3 the copper track side. The low inductance choke L1 is wired between the telescopic aerial and S1; and the additional resistor, $R X$, is mounted on the tags of the set-zero potentiometer, R3. Provision is made on the board for either an axial or radial lead version of electrolytic capacitor C3.

The use of ic holders makes it easy to check the op-amps by substitution, if necessary, and Vero pins inserted at the lead-
out points aid off-board wiring. The meter, telescopic aerial, PCB, potentiometers, etc., can be wired up on the bench for testing and setting up before being mounted in a small plastic case.

Setting-up and testing

If clear glass components have been used for DI and D2, they must be shielded from light before undertaking the setting-up procedure. The photovoltaic effect of the diode junctions is sufficient to swing the meter pointer hard over when the unit is set to high sensitivity).

Make the usual checks for bridged copper tracks and bad soldered joints on the PCB, and check the orientation of the diodes, op-amps and C3. Temporarily connect the 4K7 preset in the R3 position (ie to R2 and pin 5 of ICl , with the slider to pin 4 of the IC) and set it to mid-travel. Then, with the meter disconnected, switch on the power supply. Current drain from each battery should be around 2.5 mA .

Connect a test meter in place of the 1 mA meter movement, and switch it to read 5 or 10 mA FSD. Adjust the 4 K 7 pre-set to bring the pointer to zero. It is likely that the slider of the pre-set will be well off-centre. Note whether the higher resistance leg of the potentiometer goes to R2 or pin 5 of the ic.

Connect the 1 K potentiometer (which is to be the actual set-zero control) in the R3 position, and wire the pre-set in series with what needs to be its high resistance leg. Set the 1 K potentiometer to mid-travel, then adjust the pre-set to bring the meter pointer to zero again. Remove the test meter and connect up the 1 mA movement to be used in the Sniffer. Check that its pointer can be brought to zero with the sensitivity control set at maximum and the slider of the I K setzero control at centre travel, making any necessary
 adjustments to the pre-set.

Measure the resistance of the pre-set and substitute a fixed resistor, RX, of the closest standard value.

A number of 741 op-amps were tried in the ICl position, and offset nulling was always obtained with the 4K7 resistor, R2, connected to pin 1 of the ic. In the remote eventuality of the meter refusing to zero, connect the 4 K 7 pre-set directly to pin 1 of the ic (ie, short out R2). If a null is obtained with this arrangement, R2 should be connected between the potentiometer and pin 5.

This setting-up procedure takes longer to describe than it does to carry out. Two amplifiers in cascade have a high gain, and the usual 10 K nulling potentiometer, wired across pins 1 and 5 , is impossibly critical to adjust. By making only a small portion of the potentiometer variable, the action of the nulling or set-zero control is made much more gentle.

A high-quality instrumentation type op-amp with a very low input offset current could have been used for IC1, but these devices are comparatively expensive (and less likely to be found in spares boxes), and the arrangement described above works well when the setting-up procedure has been carried out.

Switch out \amalg and test the Sniffer by bringing it close to a source of RF radiation. (A computer VDU or a TV receiver should drive the pointer hard over.)

Using the Sniffer

A measure of skill and experience is needed to use the Instrument and interpret the comparative scale readings, and it is a good idea to try out the unit at home before embarking on a 'search-and-destroy' mission.

This is not the place to describe the circuitry of eavesdropping bugs. Sufficient to say that simple versions of these micro-transmitters operate within, or close to, the VHF FM broadcast band and radiate about as much RF power as a single bipolar transistor, eg a BCIO8, wired as an LC tuned
oscillator, and connected to a short aerial. A bug of this kind will drive the indicator pointer hard over at distances of three or four metres. More exotic bugs tend to operate at higher frequencies (450 mHz and above) where the Sniffer is less sensitive. Nevertheless, the unit will give a clear indication of the radiation when its aerial is in reasonably close proximity to the transmitter.

With the low inductance RF choke LI switched out of circuit, the unit will respond to frequencles down to 100 kHz or 50 , and the meter pointer will be deflected by signals radiated from broadcast transmitters operating in the Long and Medium wave bands. These broadcast RF fields are intensified by house wiring and metal objects (eg bed springs and the silvering on mirrors), and the sensitivity control on the Sniffer has to be turned down so that any low frequency transmissions within the building can be identified. Adjusting the set zero control to cancel out steady background radiation can also be of assistance.

Micro-transmitters used for eavesdropping invariably radiate at VHF and above, and the Sniffer should normaily be operated with \amalg switched into circuit to make it insensitive to troublesome lower frequencies. Notwithstanding this, personal computers, VDUs and TV receivers are best disconnected from the mains supply while carrying out a search.

Some bugs are designed to be activated for a set period by a telephone call to the room or office. Put a call through from a neighbouring room, or otherwise arrange for the phone to ring, before commencing the search. Similarly, bugs can be installed to transmit only when a telephone call is being received, and a connection should be made to the 'speaking clock' during the course of the survey.

Sweep the Sniffer aerial over light fittings, suspended ceilings, desks and other furniture, pictures, wall clocks and the like. Try and imagine where you would conceal a bug if you were putting the room under surveillance. Chances are, great minds think alike.

Here's hoping you were being paranoid after alll

How it works

The RF voltage developed across one or both of the input inductors is converted to dc and doubled by the action of Cl , DI and D2. The charge developed across C1 when the RF voltage swings negative is added to the positive voltage swing.

Operational amplifiers IC1 and 1C2, are both connected in the non-inverting, closed-loop mode, with feedback applied to their inverting inputs. The negative feedback is derived from a potential divider across the output of each device. With this arrangement, the gain of IC1 is given by R4+ R5 / R5, and is approximately 214.

Inserting potentiometer R7 into the lower leg of IC2's feedback network enables the gain of this stage to be varied between 21 and 304 . The overall gain of the unit ranges, therefore, between approximately 4500 and 65000 times.

Op-amps are not perfect, and there is inevitably a slight imbalance within the differential input circuitry under quiescent (no signal) conditlons. When this small offset current is amplified to the extent possible with this circuit, it will drive the output stage into saturation, and provision has to be made for cancelling it out. Potentiometer R3 connected to the nulling circuitry within ICI, performs this function. With the gain available, the adjustment of the offset nulling or setzero control is extremely critical. Resistors are accordingly
placed in series with the potentiometer to reduce the control voltage across its track. By this means its action is limited to the critical nulling region, and the meter pointer can be brought to zero without difficulty.

Offset nulling is not required for 1 C 2 . The nulling provisions centred on ICl balance the entire circuit by placing the necessary compensating voltage on the input pin of 1 C 2 .

Series resistor R9 sets the meter to read around 3V FSD. The output impedance of the 741 is very low in this circuit, and the ic can accordingly supply sufficient current to damage a sensitive meter movement. Increase R9 or fit a shunt if a meter with a tower ESD than 1 mA is used).

Inexpensive meters are not likely to have much electromagnetic damping, and high-value capacitor C 3 is wired across the meter to prevent sudden output changes causing wild pointer swings.

Reslstors 0.25 watt, 5% tolerance or better

RII	100k
R2	4k7
R3	4 k 7 setting-up pre-set and 1k linear
	potentiometer for the actual set-zero control
	(see text).
R4	100k
R5	470
R6	100k
R7	4k7 Inear potentiometer
R8	330
R9	2k7
RX	See text.

Capacitors: all 16 V working or greater

C1 47pF ceramic
C2 100 nF (0.1uF) ceramic
C3 1000uF electrolytic, axial lead

Inductors

$4 \quad 4.7 \mathrm{uH}$ (see text)
1.22 .2 mH

Semiconductors

D1	OA 90
D2	OA90
IC1	741
IC2	741

Switches and meter

Si single pole toggle switch

S2 double pole toggle switch
M1 moving coil panel meter with a 1 mA full scale deflection

Miscellaneous

PCB making materials, ic holders, Vero pins, hook-up wire, control knobs, battery connectors, PP3 batteries, telescopic aerial and small plastic case.THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS

LOW COST PC's

SPECIAL BUY

'AT 286

40 Mb HD +3 Mb Ram
LuITED QUANTITY only of these 12 Mnz HI GRADE 286 systems

LOW COST 486DX-33 SYSTEM Fully featured with standard simm connectors $30 \& 72$ pin. Supplied
whth keyboard, 4 Mb of RAM. SVGA monitor output. 256 K cache and
utegral 120 Mb IDE drive with single $1.44 \mathrm{Mb} 3.5^{\circ}$ floppy disk drive. full yestea and suaranieeod Fully expanarabie

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ " or 3112 " from only $£ 18.95$!

meni and are tuly yested aforned and shipeod to you with a 9 doay
 33° " Panasonic
 £24.95(8)
 $3 y^{\prime}$ " Mitsublsh M $3 y^{\prime}$ Mitsubishi M

 $g^{\prime \prime}$ Shugart $800 / 8018^{\circ}$ SS relurbished $8^{\prime \prime}$ Shugart 8108° SS HH Brand New
 0^{-}Shugart $85 t 8^{\prime \prime}$ double sided refurbished \& tested
 Mits ubishi M2896-63-02U $8^{\prime \prime}$ DS slimline NEW
 HARD DISK DRIVES
 drve with industry standard SMD intertace, replaces Fuititsu
 $3 \%^{\circ}$ FUNI FK- $\mathbf{3 0 9}-2620 \mathrm{mb}$ MFM I/F RFE $3 \%^{\circ}$ CONNER CP 302420 mb IDE I/F (or equiv IRFE 34° CONNER CP 304440 mb IDE I/F (or equiv.) IFE
 WESTERN DIGITAL 850 mb IDE $1 / \mathrm{F}$ Brand Now
 SEAGATE ST-238R 30 mb RLL I/F Refurb.
 $5 \%^{\circ}$ HP 9754 B 850 Mb SCSI RFE tested $5 \%^{\circ}$ HP C3010 2 Gbyte SCSI differentlal RFE tested

THE AMAZING TELEBOX

TV SOUND \& VIDEO TUNER Cable companile.

The TELEBOX is an atrractive fuly cased mains powered unt. conmade by makers such as MICROVITEC, ATARI, SANYO, SONY,
COMMODORE, PHILPS, TATUNG, AMSTRAD etc. The composite noleo output will also plug directly into most video recorders, aliowing
reception of TV channels not normally recelvabie on most television recalvers' (TELEBOX M8). Push button controls on the front
panel allow fecention of 8 tully y uneable 'ott air' UHF colour television channels. TELEBOX MB covers virtually all television Irequencies TV aperat
tor divect
video sys out sound. an integrat 4 watt audio
zutfo output are provided as standard.
TELEBOX ST tor Composit vide in.
TELEBOX ST for composite video input type monitors
TELEBOX STL as ST but fitled with integral speaker
TELEBOX MB Multband VHF/UHF/Cabie/Hyperband tuner
£36.95
£39.50

DC POWER SUPPLIES

suppo

IC'S -TRANSISTORS - DIODES

6,000,000 items EX STOCK

One of the highest specification (monitors you will ever see At this price - Don't miss it!!
Mitsubishi FA3415ETKL $14^{\prime \prime}$ SVGA Multisync colour monitor whth in
 0.28 dot pich tube and resclution of 1024×768. A ers houding $\mathbb{B M}$ PCG in CGA EGA VGA \& S SGG
modes. BEC, COMMODORE (naluding Amiga 1200 ARCHiMEDES and APPLE. Many teatures: Etched
taopppate, vex swthing and LOW RADUATON MPP UENT utine usad condition. VGA cable for IBM PC included Only $£ 119$ (日) MTS-SVGA External cables for other fypes of computers CALI

As New - Used on film set for 1 week only!!
$15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monttors.
Swivel \& tilt efc. Full 90 dey guarantee. 145.00 (\mathbf{E})

PHILIPS HCS35 (same style as CM8833) attractively styled 14 Khz video Inputs via SCART socket and separate phono jacks. integral audio power amp and speaker for all audlo vlsual uses.
Will connect direct to Amiga and Atari BBC computers. Ideal for all video monitoring / securlty applications with direct connectlon to most colour cameras. High guality with many features such as
front concealed flap controls, VCR correction button etc. Good
used condition - fully fested -guaranteed Only f95 Dimensions: W14" \times H12 $\%^{\circ} \times 151_{2}{ }^{\prime \prime} \mathrm{D}$.
PHILIPS HCS31 Uitra compact $9^{\prime \prime}$ colour video monitor with stanPHILIPS HCS31 Uitra compact 9° colour video monitor with stan-
dard composite 15.625 Khz vIdeo input via SCART socket. Ideal for all monitoring / securlty applications. High quality, ex-equipment

Only £125 (E)

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors,

 teak style case. Perfect for Schools, Shops, Disco. Clubs, etc.in
20".....£135 22".....£155 26"....£185 (

SPECIAL INTEREST ITEMS

MITS. 2 FA3445ETKKL 14° Industrial spec SVGA monit
2 kW to 400 kW .400 Hk 3 phase power sources e ex stock IBM 8230 Type 1, Token ring base unit driver IBM 8230 Type 1, Token ring base unt driver
IBM 53F5S01 Token Fing ICS 20 port lobe modules IBM MAU Token ring distribution panel 8228-23-5050N Trend DSA 274 Data Analyser with G703(2M) 64 Vo
Marconl 6310 Programmable 2 to 22 GHz sweep generat HP1650B Logic Analyser
HP3781A Pattem generator \& HP3782A Error Detector HP APOLLO RX700 system units
HP6621A Dual Programmable GPIB PSU O-7 V 160 watts
HP3081A Industrila workstalion clw Barcode swipe reader HP6264 Rack mount variable 0-20V - 20A metered PSU HP6264 Rack mount variable 0-20V - 20A met
HP54121A DC to 22 GHz four channel test set HP7580A A1 8 pen HPGL hlgh spaed dsum plotte
EG + G Brookdeal 95035 C Precision lock in amp Viow Eng. Mod 1200 computerised inspection system Computer controlled $1056 \times 560 \mathrm{~mm} \times \mathrm{Y}$ table \& controlle Keithley 590 CV capacitor / voltage analyser
Racal ICR40 dual 40 channel voice recorder system Fiskers 45KVA 3 ph On Line UPS - New batis Dec. 1995 ICl R5030UV34 Cleanline ultrasonic cleaning system
Mann Tally MT645 High speed line printer Intel SBC 486/133SE Multibus 486 system. 8 Mb Ram Nikon HFX. 11 (Ephiphot) exposure control unit Motorola VME Bus Boards a Components List. SAE / CA
Trio 0-18 voc linear, metered 30 amp be
Fultsu M3041R 600 LPM band printer
Fultsu M3041R 600 LPM band printer
Perkin Elmer 2998 Infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3.1 m Satellite Dish + mount (For Voyage
Sekonic SD 150 H
18 channel digital Hybrid chart recorder Sekonic SD 150H 18 channel digital Hybrid chatt
TAYLOR HOBSON Tallysuri amplifier $/$ recorder
System Lab-2 mtr square quietised acoustic test cabinets

19" RACK CABINETS

 Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality ${ }^{19}$ rack cabinets made in UK byOptIma nclosures Lic. Unitis feature designer, height lockable half louvered back dooi
fund louvered removable side panels. Fully adjustable internal fixing struts, ready punched plus ready mounted integrai 12 way 13 amp socket switched mains distribution strip make have ever sold Poks may stacked side by side and therefore require only two side panels to stand singly or in multiple bay
\qquad

32U - High Quality - All steel RakCab
 The uttimate in 'Touch Screen Technology' made by the experts conneranslucent glass laminated panel measur gontroler produces a standard merial RS232 or TTL output which continuously gives simple serial data containing positional X a Y co-ordinates as to where a finger is instantly changes. The X \& Y information is given at an incredible matrix resolution of 1024×1024 poshions over the entire screen size II A host of available translation sottware enables direct concomputer un-trained etc etc. Imagine using your finger with Windows', instead of a mouse il (a driver is indeed availabie !) Tou Imaginationll Complete system including Controller, Power Supply and Data suppled at an incredible price of onl
$£ 145.00^{\text {(B) }}$

LOW COST RAM \& CPU'S

and PCAT 'ABOVE Memory Expansion Board. Fulinength PC-A Card is fully selectable for Expanded or Extended (236 processo Fully tested and guaranteed. Windows compatible. $259.95(\mathrm{~A} 1)$ Half length 8 bli memory upgrade cards for PC AT XT expands memory ehther 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data

SIMM SPECIALS
$1 \mathrm{MB} \times 9$ SIMM 9 chip 120 ns
$1 \mathrm{MB} \times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 19.50$
1 MB $\times 9$ SIMM 9 chip 80 ns $£ 21.50$

FANS \& BLOWERS

$\begin{array}{ll}\text { EPSON DO412 } 40 \times 40 \times 20 \mathrm{~mm} 12 v D C & £ 7.9510 / £ 65 \\ \text { PAPST TYPE } 61260 \times 60 \times 25 \mathrm{~mm} 12 v D C & £ 8.9510 / £ 75\end{array}$
PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm} 12 v$ OC
MTSUUSISHI MMFD6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 v$ DC
MTSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm}$ 12v DC $£ 4.9510 / £ 4$ MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm}$ 12v DC $£ 5.2510 /$ / 49
MITSUBISHI MMF-09812DH $92 \times 92 \times 25 \mathrm{~mm}$ 12v DC $\mathrm{E5.95} 10 /$ / 53 MITSUBISH
EX-EQUIP AC fans. ALL TESTED $120 \times 120 \times 38$
or 240 v E8.95. $80 \times 80 \times 38 \mathrm{~mm}$ - specity 110 or 240 y IMHOF 8261900 rack mnt $3 U \times 19^{\circ}$ Biower $110 / 240 \mathrm{~N}$ NEW E 79.95
Shipping on all fans (A). Biowers (B). 50,000 Fans Ex Stock

Issue 13 of $\operatorname{Display~News~now~avallable~-~send~Iarge~SAE~-~PACKED~with~bargalns!~}$

 वef.inALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept ET. 32 Blggin Way ept. 32 Blggin Way
Upper Norrood
LONDON SE19 3XF
LONDON SHOP Opan Mon Sat 9:00. $5: 3$
215 Whith
Sorss Lane White horse Lan

DISTEL®
The Original FREE On line Database
mio on $20,000+$ stock kitms!
moon $20,000+$ Fsick hiems!
RETURNING SOON!

ALL ET ENQUIRIES

Comprehensive PIC solutions from FED

PICDESIM

PICDESIM is a fully integrated Windows PIC Simulator, to use with our Development Environment. It features:
Single step, skip over, and run, Conditional breakpoints, watch variables, trace any number of variables, graphical interfaces. Up to 50 times faster than MPSIM. Wide range of stimuli including asynch serial data. Integrates with our PIC
Programmer
$£ 30.00, £ 25.00$ if purchased with our PIC Programmer

PIC Programmer

Program 16C54/55/56/57/58, 16C62xx, 16C64, 16C71/73/74, 16C84. Uses serial link to a PC. Windows and DOS software provided. Includes PICDE, the Windows based PIC Development Environment with on-line help, project management, editing, assembler.

Kit $£ 40.00$, Ready Built $£ 50.00$
PIC16C74/JW Erasable 20MHz $£ 24.00$
PIC $16 \mathrm{C} 74-04$ OTP $4 \mathrm{MHz} £ 8.00,20 \mathrm{MHz} £ 11.00$
PIC 16C57XT/P OTP 4MHz $£ 5.00$
PIC16C84-04P EEPROM erasable $4 \mathrm{MHz} £ 6.00$
24LC65 8kx8 serial EEPROM £5.00

PIC BASIC

Easy to learn BASIC in a Windows Development Environment. No need for assembler or a UV eraser to program PICs. Modules operate from a serial link to your PC. The 16C74 module has these features:
8 k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 AVD inputs, Interrupt deriven serial RS232 interface, Peripheral I2C bus interface, optional external ram.

16C57 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz}$) $£ 30.00$, Pre-built $£ 36.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz}$) $£ 35.00$, Pre-built $£ 42.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 20 \mathrm{MHz}$) $£ 40.00$, Pre-built $£ 46.00$

PIC BASIC Compiler

New! A PIC BASIC compiler for the 16C74. It produces a hex code to program your 16C74 directly. Compatible with the EEPROM versions of PIC 16C74 BASIC modules.
Compiler $£ 50.00$
Serial Cable for Programmer or BASIC Modules $£ 7.50$

Prices are inclusive, please add $£ 3.00$ for P\&P and handling to each order. Cheques/POs payable to Forest Electronic
 Developments.

NEXUS BOOKS PUBLISHING FOR THE SPECIALIST

47 TWe Foatersont of modre

THE FULL
 RANGE OF
 NEXUS BOOKS

 are available from all book and hobby shops or contact Nexus Books direct for a complete list.Complete List Nexus Books, Nexus House,
Boundary Way, Hemel Hempstead, Herts. HP2 7ST

or Phone

0144266551

NEWS FROM THE NEXUS PHOTOSTAT SERVICE. EFFECTIVE FROM 1ST NOVEMBER 1995

NEXUS

The Nexus Photocopying Service can provide you with all those interesting features and valuable projects that have been published in your favourite magazine. The new costs of our photocopying service are as follows:-
First article: $£ 2.75$ inc of VAT. Please note that projects published over several issues must be ordered as a series of individual articles, each for $£ 2.00$.
A $£ 2.75$ search fee is required if full information is not supplied. Please note delivery could be up to 28 working days.

Please supply photo-copies of the following articles from (Complete in BLOCK CAPTALS)

Month
Year
Poge (if known)
IIIE
Month
TITLE
Month
TIUE.
I enclase o cheque/postol order made out to Nexus Special Interests to the value of.
£....................P\&P.\&1.00 (UK only) 20% Overseas
Total remittance $\{$

Name:
Address:

Post Code:

Send the completed form and remittance to
Photocopy Service, Nexus Speciol Interests, Nexus House, Boundary Way, Hemet Hempstead, Herffordshire. HP2 7ST

PCB Designer
 VDA
 Amex/Access/Delta/Visa

For Windows 3.1, '95 or NT

Internet WWW site at www, niche.co.uk for more information and a working demo. The demo is also available via anonymous FTP from ftp.demon.co. uk in the dir/pub/ibmpc/win3/apps/pcbdemo/ as pcbdemo.zip. Internet e-mail pcb@niche.demon.co.uk.
Looking for the price? It's just $£ 49.00$ all inclusive!
...no VAT...no postage.. ...no additional charges for overseas orders.

Dealers and distributors wanted.

Niche Software (UK)

12 Short Hedges Close, Northleach, Cheltenham GL54 3PD Phone (01432) 355414
Available in South Africa from JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00

Why not make your own PCBs the easy way? TEC 200 IMAGE FILM

for the Professional (ideal for one-off prototyping) Amateur and Hobbyist

For brochure and price list - SAE or phone:

217 Prestbury Road, Cheltenham, Glos, GL52 3ES Phone/Fax 01242254108 ($\mathrm{Int}^{\prime} \mathrm{l}+441242$ 254108)

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 01316672611
The supplier to use if you're looking for -

* A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST *
* COMPETITIVE VAT INCLUSIVE PRICES *
\star MAIL ORDER - generally by RETURN OF POST *
* FRIENDLY SERVICE *
* 1995/96 CATALOGUE NOW AVAILABLE Price £2.00 *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

Used Equipment
Used Equipment . Guaranteed Manuals supolied M poselb This is a VERY SMALL SAMPLE OF STOCK. SAE or letephone for liets. Please check availability before

STEWART OF READING

Δ
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Tel: 01734268041 Fax: 01734351696 calles macomen sam los s30pm waw fal

PTCF PROCESS TIMER PART 2

ROBOTIC ARM Kit five axus motion with gripper Convol from any senal port Uses R/C servos for good repeataluity and accuracy, kit indudes pre-cui arm components, electronks ooard. PC somware (inc source listing) and detailed construction marxual $40 \times 30 \times 20 \mathrm{c}$

STAMP BUG

"STAMP' qased insect kit illustrates basic walking mecharisms. Twin feeters detect objects causing back-up andfium Preprogrammed but wath the option to re-programme fneeds Stamp programming pack). Powerfut 3 servo construction carries pay/oads up to 250 gms and up to 3 nours motion from the on-poaro NCads. $20 \times 15 \times 5 \mathrm{~cm}$

MUSCLE WIRES

Fascinaong wres that CONTRACT WHEN ELECTRKALLY HEATED producing a uselul amount of force fup to 0.9 kg for 250 mm wrel. Require $0.3 \mathrm{~V} / \mathrm{om}$ and currents from 100 m to 1 Arpp . Choose from four gauges of whe $\{50,100,150$ and 250 um dia)
Detaled Data and Project Book (128 pages) also avatabte separately and with Detux Wire ist sulable for 13 projects

SERVO - IR - LCD CONTROLLERS

A range o: low cost conuoher kis. R/C servos fup to 8 sevios per buard- simple R 232 commands from your PC hold servo in posivon unol updated etc).
LCD display drivers ;All standard Hiachi contulier types up to 4×20 characters- 10232 inpual IR programmable recetvers $\$ 7$ output channe's accept any $\mathrm{V} / \mathrm{H} / \mathrm{HF}$ controller- up to 25 mA output per channet programmable toggle/momentary switching action)

Please call to receve further details on any of the above products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

SERVICE MANUALS \& Technical Bookis

Available for most equipment, any make, age or model.
Return the coupon for your FREE catalogue
MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY. Tel:- 01844-351694. Fex:- 01844352554.
Please forward your latest catalogue for which 1 enclose 2×1 st Class Stamps or $£ 3.50$ for the complete Service Manuals Index on PC Disc plus catalogue NAME
ADDRESS \qquad

POSTCODE
photocopy this coupon if you do not math to cot the magnaxime

FIELD ELECTRIC LTD

Sony new 1-44md 3-5" d/drive's Sony 9° super fine pitch Trinitron RGB VDU AT keytoards for IBM compatibles $9^{1}+12^{-2}$ colour SVGA 800×600 NEC Marconi Inst-2830 Multiplex Tester
Marconi Inst-Data Comms Tester
Marconi Inst-Digital Line Monitor
Marconi Inst-Digital Analyser
Famell PSU 0.70V 0.5AO-30V 0.10A
Tektronix DAS 9100 Digital Analysis Systeḿ
Tektronix 7CT 1N Curve Trace
Tektronix 7A 14A AMP
Tektronix 7511 DIFF-COMP.
Tektronix 7A13
Wandell \& Gotterman PMP20 Level Meter
12 VAC 200 watt Transtormer
27 VAC 130A Transtormer NEW
7 VAC 130A Transtormer NEW
Field Electric Limited, Unit 2 Willows Link, Stevenage, Herts SG2 8 AB Tel: 01438353781 Fax: 01438359397

PTCF PROCESS TIMER PART 2

0

 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

VKI

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457 CATALOGUE AVAILABLE

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243542457 CATALOGUE AVATLABLE

Practically Speaking

BY TERRY BALBIRNIE

Abstract

Last month we looked at the choice of connecting wire from the point of view of current rating. It is essential to use wire of sufficient thickness to prevent overheating, melting insulation and possible fire

Itis important to realize that a wire which is just able to carry a given current in free air will overneat if it is coiled up. This is because the heat produced deep in the mass of the material finds it difficult reaching the surface to escape. A familiar example is a mains extension lead of the type wound on a plastic reel. Commercial leads are given two ratings - one for the wire completely unwound and another flower) one for when it is wound on its reel. These ratings will be clearly marked on it (see photograph). Typically, a 13 A extension lead can only cary GA if wound up. To find the maximum power (wattage) of the appliance which may be connected multiply the maximum current by the vollage of the supply. In a fuse, the overneating of a piece of wire due to a current flowing through it is put to good use. A fuse consists of a short piece of wire, thinner than that used anywhere else in the crcuit. This provides protection against possible fire damage by outting off the supply if an excessive cument flows. It works because a cument exceeding the rating of the wire will cause it to overheat and mett. Gone are the days when fuses were simply pieces of unprotected wire. The fuse wire is generally run inside an insulating tube so that red hot pieces of motten material cannot cause burns or fire.

Blow it

Fuses are marked with the current rating in amps or milliamps. This may range from 50 mA to perhaps $16 A$ in commercial fuses. industria ones can go much higher. As well as the current rating, fuses are also classified as "FF" (very quick acting used for protecting semiconductors), "F" (standard fast blow) and "T" which is a time lag variety (often called slow-blow or anti-surge). The latter type is useful in circuits containing motors, transformers, largo value capacitors filment lamps and other devices. When thepower supply is connected, these allow a higher current than normal to flow for a short time. It quickly settles down but could blow a fast acting-tuse.

A time delay fuse will typically withstand ten times the rated current for 20 ms and this will usually be sufficient. It is essential to replace a blown fuse not only with one of the same current rating but also of the same type.

One practical point which is not generally understood is that fuses used in mains winng should be of a special type - not enclosed in a glass tube. When a short-circuit occurs in mains wiing, an enormous can flow (possibly several thousand amps) and this will continue for the time taken for the fuse wire to melt.

The violence of this process would cause the tube to shatter and this could cause problems in its own right. Mains fuses are contained in sand-îlled ceramic tubes and are known as HBC (high breaking capacity) types. The disadvantage of these is that they are opaque and th is impossible to tell whether the fuse has blown of not by visual inspection. Fuses used in UK plugs are of this type and are able to withstand breaking a current of some 6000 A . By contrast, a glass fuse will only withstand ten times its nominal current rating without the possibility of it shattering violently. HRC fuses are available in the popular 20 mm size but not from all suppliers: Sometimes amateurs use ordinary glass fuses instead with potentially dangerous consequences.

Temperature rising.

Do not conluse the standard type of fuse with a themmal fuse. This device is also connected in series with a piece of equipment and will also mett and break the circuit if it overheats. The difference is that the overheating is caused by some extemal means and not due to the current flowing through it. Thermal fuses are often used in such appliances as efectric irons.

If the iron overheats due to some fautt, the materia inside the fuse will mett and break the circurt. These fuses are not a substitute for a standard fuse. one of these must be fifted as well. Thermal fuses are bought, not by the current rating (they will typically carry 10A), but by the temperature they will withstand before melting. Typical temperature ratings range from $72^{\circ} \mathrm{C}$ to $248^{\circ} \mathrm{C}$. One practical point is that, when a thermal fuse blows, the new one must not be soldered in place. The heat from the soldering iron would possibly blow it! A secure mechanical fixing, such as screw terminals or a crimped connector. should be used.

Coil-up mains extension wires should have their mains ratings extended and wound clearly marked, as in this example.

Cin Andy Forder 0144266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST
lineage: $75 p$ per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) $\mathrm{E} 10.50+$ VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

SERVICE TRADING CO
 57 BRIDGMAN ROAD, CHISWICK, LONDON W4 $58 B$ TEL 0181-995 1560 FAX 0181-995 0549 ACCOUNT CUSTOMERS MIN. ORDER £10

E120.00 + VAT
an iequart
Type 3TH8Oez OB $2 \times$ NO and 2 a NC 230V AC 10A contacts Screw or Din Ravl froing: Size H $120 \times$ W 45 0.75 mm . Brand New Price 87.63 ind. PAP and VAT.

240V AC WESTOOL SOLENIOOS T2 Mod 1 hat. 1 MAx stroke $1 / 4$ in. Base mounting $1 / 2 \mathrm{in}$. suroke 5ibs pull approx. TT6 Mod 1 Rat 2 Mar stroke 1/8 151 forn mounting $1 / 2 \mathrm{in}$. From mounting $1 / 2 \mathrm{in}$. stroke 25Ibs pull approx Price ind. pdp \& VAT. TT2 £5.86, TTE E6.81. SERIES 400 ع7.84.

AXIAL COOLING FAN
230 V AC 120 mm square $\times 38 \mathrm{~mm} 3$ Diade 10 watr Low
 enquines
instrument case
Brand now Manut by Imhot L31 × M18 $\times 19 \mathrm{~cm}$ deep Removeabie tromt and rear panel tor easy assembly of PRICE $£ 18.45 \mathrm{INCL}$ P\& P :VAT 2 oft case leet. SEWING MACHHNE MOTOA
Brand new 220/240v ACIDC SEW-TRIC 2 lesd Bush $1 / 4 \mathrm{in}$. dia x ind. long E 14.10 Incl . PAP VAT
71. RPM GEARED MOTORS
including capacior and revanalormer for 240 V AC operation
Price ine VAT \& P\& D £27.73
SOLIO STATE ENT UNTT Inout 230240 V AC, Outpet approx 15 KV . Protucing 0 mm
spark. Builith 10 me timer, Easty moditiod for 2asec. 30 sec 10 comtimuous. Dosigned for boiter iprition. Dozens of uses in the field of physics and wictionica. og supplying [8.50 + E2.40 pfip (E12.81 inc VA) NMS
EPROM ERASURE KIT Build your own EPROM ERASURE for fraction of the price of a madern
8 watt 2537 Angst Tube Balast unth pair of ot-pin leands neon indicator. onlof swach, sately microswitch and circuit $£ 15.00$ - E2.00 p\&p ($£ 19.98 \mathrm{me}$ VAT)

WASHING MACHINE WATER PUMP Brand new 240 VAC . lan cooled Can de used for a vanery of purposess. miot 1 sim . outtet 1 in . dia. Proce noudes pap \&

ACCOUNT CUSTOMERS MIN, ORDER $£ 10$ Ample

LIVERPOOL

PROGRESSIVE RADIO

87/93 Dale Street
Tel: 0151236098201512360154

47 Whitechape
 Tel: 01512365489

 Liverpool 2'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

£50 BT INSTRUMENT FOR ONLY $£ 7.50$

 yos con rood inatation dreethy ì megohmss A (vatis up to 250 4 ranges of $D($ ratix up to 500,3 ranges of miliomer and one

51 range ad 3 ranges of resistrace. These ore in pertur condition hove hod very tuthe use, if any tested ond fuly guaronteed Complete with leats and prods $\mathbf{~ V} .50$, Ordew Ret
 Postrge $\{3$ untes your orto is 535 and over JiN foctors
Dept Ent, Pilgrim Worts, Storibridge lane, Bobmey. Susser, RHI7 SPA

TURN YOUR SURPLUS

TRANSISTORS, ICS ETC INTC CASH immediate settement.
We also welcome the opportunity to quote for complete factory clearance Contact:
COLES-HARDING \& CO Unit 58, Queens Road, Wisbech, BUYERS OF SUPPIUS INV ESTABLISHED OVER NVENTOR ESTABLISHED OVER 20 YEARS
Tøl: 01945584188 Fax: 01945475216

SWC WIRE COMPANY

 ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114
LEN COOKE

ENTERPRISES

For the best value in Used
Electronic Test instruments We buy, sell and service oscilloscopes, signa generators, frequency counters, spectrum Analysers. Power meters, togic testers, etc. Spare parts available for most Textronic

1. scopes.

Tel: 0181-853-9946
Fax: 0181-574-2339
Mail order address: Unit 5, Southall
Enterpise Centre, Brldge Road,
Southail, Middx. UB2 4AI
We engineer what we buy, we suppor
what we sell.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 $2 H S$

Veronica
FM
VNVIVFM VTRANSMITTERS
Full range of transmitter Kits from under £10. Wide range Mono, Stereo and Surveillance. Also professional FM broadcasting transmitters.

18 Victoria St. Oueensbury, BRADFORD, BD13 TAR Tel 01274816200 Email yeronicaa@legend.co.uk

CIRCUIT

BOARD
PRODUCTION AND DESIGN,
Artwork produced in any format, Boards etched from artwork Phone Nick at I.D. 01709512101

THERMOELECTRIC COOLERS stabilise temperature by heatingcooling IC's, crystals. $£ 6.00$ each SAE datasheet. FST, 19 Cowper St, Ipswich, IP4 5JB.

SURFACE

MOUNT
COMPONENTS, any quantity, large range, S.A.E. Lists. White. 1 South Street, Lydd, Kent TN29 900 .

DATA OVER VOICE EQUIPMENT, plus 3 large $19^{\prime \prime}$ racks, mostly new. First reasonable offer secures. Need space. Tel: 01438798234

ELECTRONICS TODAY INTERNATIONAL

counses

RADIO + TELECOMMUNICATIONS CORRESPONDENCE SCHOOL
 12 MOOR VIEW DRIVE, TEIGNMOUTH, DEVON, TQ14 9UN

START training NOW with the SPECIALISTS for the following courses, Radio Amateur Licence C+G, Micro Processor, Telecomms, Tech C+G and Introduction to Television.

For our FREE Brochures Call 01626779398

TELECOMMUNICATIONS

DO YOU WISH TO LEGALLY TRANSMIT AUDIO SIGNALS OVER BRITISH TELECOM CIRCUITS!

Manufacturers of approved Interface Equipment for use on public switched telephone network, for narrow or wide band private circuits, also manufacturers of telecom line safety barriers.

PARTRIDGE ELECTRONICS

56 Fleet Road, Benfleet, Essex SS7 5JN, England.
Tel: 01268793256 Fax: 01268565759

TRANSFORMERS

VVI
Variable Voltage Technology Ltd

TRANSFORMERS

For valve and transistor circuits HT Filament chokes high \& low voltage Standard and custom design large and small quantlities Unit 24E. Samuel Whites Estate, Medina Road, Cowes. Iste of Wight PO31 7LP Tel 01983280592 Fax 01983280593

PIC-MICRO CONTROLOLER

STAND ALONE PIC->PIC
COPIERS AND BUSTERS. Copy/Deprotect PIC Sman Cards (D2mac adult etc) with the MAC2MAC copier. NO PC REO. £69 PIC2PIC Copier (84, 67. 71) NO PC REO. £67 Mutli PIC programmer (16cxx) 837 MCJ DESIGN
Tel: 01202770121
Fax: 01202770121 E-MAIL:MCJDESIGN@AOL.COM

MENDA SCOPE

> *MENDASCOPE
> REPAIR \& RECALIBRATE OSCILLOSCOPES ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERY FREE ESTIMATES Llangollen, Clwyd, N. Wales LL20 7PB PHONE: 01691718597

ELECTRONIC VALVES

CHELMER VALVE COMPANY
130 NEW LONDON ROAD, CHELMSFORD
ESSEX CM2 ORG
Tel: 01245355296
Fax: 01245490064
For high quality audio valves

SOFTWARE

PC ELECTRONIC, TECHNICAL AND SCIENTIFIC PROGRAMS bow cost sptclalist libraky
descriptive catalogue available PRICED AT E2SO. COMES WTTI 22.00 OFP MONEY VOUCHER RO PLACE AGAINST YOUR FIRST ORDER
phoneffax for your catalogile from PDSL, WINSCOMBE HOLSSE, HEACON ROAD. CROWBOROUGR. SUSEEX TNG 141.
ASTRA Desk Top Accounting

SAS Systems Lad. Bretion Court, Manor Road, Wides Sheficici, 531 8PD, UR | Tel: (01909) 773399 - Faxx (01909) 773645

FOR SALE

POWER/SUPPLY/IC'S/ NATIONALSEMICONDUCTOR/ NEW IN STATIC TUBES LM2587T,LM2587S-versions: ADJ $+12,+5.0,+3.3$ Price $£ 4.00$ each. LP2953, LP2951, LP2957 and LP2954 (5.0V to 220) price £3.00 each. plus p\&p. Tel: Cliff 01159522646.

SMART CARD PRODUCTS

Smartcards, Readers/Encoders,
Evaluation \& Development Kits..
http:/wwn.gold.nelusers/ct96/epsilon.htm
E-MAIL: epsilon@powertech.no EPSILON ELECTRONICS Brynsengvn. 1 A .
0667 Oslo, Norway
TELFAX +4722640810

PRINTED CIRCUTT

 BOARDSPRINTED CIRCUIT BOARDS
Designed \& Manufactured

- Protorype of Production Quantitió

PCBe Dotigned trom chervil diegrams

- Almost aill computer filos nccepoted

Essy PC / Anos / VuTrax / Cindstar Gerbor MPGL / IDraw and many others

- Fast infornational service - Contract Assembyy 8 rest sveitabr
TELEPHONE 01232473533 INTERNATIONAL +44 1232473533
H1: agar fax.01232 473533 : 36 WOODCOT AVENUE, BELFAST BTS SVA

TO ADVERTISE IN THE NEXT ISSUE

 OF ETI CALL ANDY ON 01442 66551today with your advert

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Linage 75p per word + VAT minimum 15 words. Semi-display $£ 10.50$ per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-pald.

Name
Address.

Daytime Tel. No

Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No.
प111111111111ロ

Expiry Date
FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

Around the

$=2$ontinuing from last month's Round the Comer, a topic which has made many people ponder: whither electronics hobbyists from here? On the face of it, business has the lion's share of electronics development. A product on the market can represent many man-years of design and development, and even sometimes of basic research. Levels of complexity beyond most people's ability to keep track of are handled relatively easily by computer-aided design (CAD) tools, some of which will automatically take a design change from schematic through layout to purchasing lists with little human intervention.
Where hobbyists score is with projects which industry inds hard to produce at a reasonably low prow which ate 400 specialised for the large electronics manufacturers to be interested - where we want a device for a specific task that does not lend itself to mass-production, for example. And there arise from time to time areas which are too new for the mass market, and then the hobbyist can push forward the uses of the new technology. Then there are all the projects that are built for the sake of curiosity, interest, and the satisfaction of knowing exactly how the gadget works and of being able to repair or modify it at short notice.

In the days when all cars used a contact breaker in the distributor for spark generation, if you added an electronic ignition and it failed you could very often repair it on the spot. At worst you could link round it and use the standard, if less efficient, ignition system. Nowadays, if your automobile engine control computer fails, your sole option is to have a new one fitted, often after a tow to the garage and a further delay while the part is ordered

and delivered.

Personally, given the choice I prefer to be able to fix anything 1 at goes wrong.

Electronics in its.farly days was largely advanced by enthus asts, and there were few professionals. There are still areas which are underexploited or undervalued by industry, and amateurs can design and build novel gadgets.

Finally, where do tomorrow's designers come from? It,seems as if more of today's graduates ve not been electronics hobbyists ofore studying electronics. They leam the academic approach - and, of courie, mathematical modelling and simulation can spell the difference between a reliable design which works well and one which works on a good day if all the components are in the centre of their tolerances.

On simulators, the story runs that the help desk of a major American semiconductor manufacturer received a phone call complaining that their unity gain stable amplifier oscillated in an effectively unity gain circuit in which it should have worked. Eventually the question "How did the breadboard model perform?" was asked. "No, this is not the breadboard, this is a simulation", came the reply. "The breadboard model worked OK". The semiconductor company demurred that it was responsible for the semiconductor device, not the simulator, and the user had to agree.

On the other hand, a "feel" for what electronics can do when you push it can spell the difference between a "by the book" design which will do the job, and an innovative one which does something that competitors in the industry said could not be done at all.

Then you begin to learn about patents .

The Challenge - things that electronics hasn't fixed yet

PIR-controlled security floodlights that switch on at inopportune times. A major cause is that a sensitivity setting that will just trigger on a large human in summer, when the background is warm, will also trigger on a small feline in winter when the background is cold. How do you compensate for background temperature with a minimal component cost? See if the PIR controlled garden light planned for next year has an answer, or if your suggested answer is incorporated in it.
Send your suggestions to the Editor at the address on the right.

Next Month

In the December 1996 issue of Electronics Today International we look to valve enthusiasts with a bench PSU designed by Peter Kenyon specially for use with valve equipment. For the playful we have a model train controller from Robert Penfold and the game of Digital Dice from Bart Trepak. Barry Porter continues his MicroAmp with part 2, and Richard Grodzik presents a PIC16C54-controlled Remote Data Logger ... and more. And Nick Hampshire reports on MIT's work on ultra-small robotics.

IE C) TiORTHAL
Editor Helen Armstrong Sub Editor Eamonn Percival Editorial Assistant Lynn Bugden Consultant Andrew Armstrong
(CRIEATHME
Designer Jeff Hamblin Technical Illustration John Puczynski Photography Gary Sinfield

AOVERTIISEM ЗNT SALEBS
Advertisement Manager
Andrew Forder
Advertisement Copy Control Marie Quilter

MAN/AGBMENTS
Divisional Director
John Bridges
Production Manager Mike Burns
Production Administrator
Theresa Davis
Business Manager Stuart Cook
Marketing Manager Jason Doran
Copy Sales Manager
David Pagendam
ABC
ISSN01 42-7229
Corswalnas

EII is nomally publishod on the first Friday in the month preceding the cover date. The cortents of this puelication including all articles. plans. drewings end programs and at copyngtr and ell other inteleccual property
nights theroin belong to Nexus Special interests. All rights conterred by the Law of Copyright and other intelloctual property rights and by virtue of international copyright conventions are specifically reserved to Nexus Special Interests and reproduction requires the pritor written consent of the company c1996 Noxus Special interests. All reasonable care le taken in the preparation of the magazine contents, but the publishers cannol be held legally rosponsitolo for orrors. Where mistakes do occur, a correction will normally be published as soon as possibie aherwards. All prices and data contained in advertisemenls are accepted by us in good farth as correct at the time of going to press. Nerther the advortiturs nor the publiahers can be which may occur ater the pubtication has closed for press.

Subscription rates-UK $£ 25.80$ Europe $£ 34.70$ Stering Overseas $£ 36.20$ US Dollars Overseas $\$ 54.00$

Published by Nexus Speciai Interests, Nexus House, Boundary Way, Hemel Hempstead MP2 7ST. Telephone (01442) 66551. UK newstrade distribution by Cornag Magazine Marketing. Tavistock Road. West Drayton, Middlesex, UB77OE. Overseas and non-newstrade sales by Magazine Salos Department. Nexus House, Boundary Way, Homel Hempstead, MP2 7ST, Telephono (01442) 66551 . Facsimuie (01 442) 6699 Subscnptions by Nexus Subscription Dept, Jower House, Sove
Harborough, Loicestersthe, LE $169 E F$.
US subscriptions by Wise Owl Worldvide Publications, 4314 West 238th Streel. Torrance. CAgO505 USA. For VieMMastercard orders in USA. Tetephone (310) 3756258 Fax (1310) 375 0548. Pacific Trme: 9arn-9pm Wookdays $10 \mathrm{am}-6 \mathrm{pm}$ Weekends Typesetting and origination by Ebony, Liskeard. Cormwall Primed by Witshire Ltd. Bristol.

Get the hest Universal Diagnosstic tool kit on the market

SOFTWARE

 \& HARDWARE THAT REALY WORIS!
Filero-scere 6d

Fully O/S independent diagnostic software

Use this Power-On-Self-test card to debug any "dead" PC that won't boot

Our servicing turnaround time has been reduced by an average of 32%. Of all the diagnostic packages tried this is the first to live up to its advertising.

Solsaft SW
We have been using Microscope and Postprobe for two months with great success. It really is as good as you have said in your publicity.

Cartiin Wales
Airport
I have spoken to our engineers about the Micro 2000
software/hartware package and received favourable reports. They say the best atvantage Micoo 2000 has over other packages is the fact that it is operating system independent.

To be truthful we ata Catalyst use Micro-Scope on every machine when it "walks" in or out of the door of the office.
Catalyst Computer Systems

Lets you keep track of hundreds or even thousand of computers

NEW RELEASES Call about our Tutorial and Troubleshooting Series on video cassettes! A weath of technical help at your fingertips.
 Diagnostics Tool

Tel +441462483483 Fax +44 1462481484

Tel (+31) 0206384433
Fax (+31) 0206203437

Germany
Tel (+49) 0694208278
Fax $(+49)(0694208270$

OPEN JUNEJULY Call UK for details.

MAPLIN PROFESSIONAL

Call in for your copy at WH SMLTH, John Menzies and Maplin stores nationwide, or order direct by mall-arder on 01702554000 - Only $£ 3.45$, (pors sop packaging)

PLEASE QUOTE REF: MAOO\& WHEN ORDERING.
BRITANSS BETTSELING ELETTRONICSCATALOGUE

