

Tomorrow's fiying trains

\square
FII Data Bus Monitor "Off You Go" Press-to-Time Switch Audio Squarewave Generator

Powerthe Signal Controller 0 Plorgest sofware Tcst Board

Practical Wireless July 96

NEW Library Packs Available!
Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows. With its multiple button bars, ' tool tips' , and ' parts bin' Quickroute helps you to get working quickly and efficiently

Quickroute is available in 4 different versions (see Table) all of which offer greal value for money. Quickroute is available with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of popular file import/export features allowing connection to simulators and other software packages (details on request). Prices are Personal ($£ 68$), Designer ($£ 149$), PRO ($£ 249$) and PRO+($£ 399$). Please add P\&P and V.A.T to total (see below").

$\sum_{i}^{2} 0$
 ROUTE

THE 32 BIT AUTO-ROUTER WITH FLEXIBILITY \& POWER

SMARTRoute 1.0 is a new 32 bit auto-router that offers amazing flexibility \& power at an affordable price! Compatible with Windows $3.1 / 95 / \mathrm{NT}$, SMARTRoute gives you total control over routing strategies including layers used, track \& via sizes, design rules, etc.

SMARTRoute is completely compatible with Quickroute 3.5 and offers improved completion rates compared with Quickroute' s built in autorouter (ask for details) SMARTRoute is available for £ 149 plus P\&P and V.A.T. Special bundle pricing for Quickroute and SMARTRoute when purchased together.

VISUALISATION, DATA ANALYSIS
\& APPLICATION DEVEIOPMENT \& APPLICATION DEVELOPMENT

MExpress is a powerful tool that can be used interactively to load, analyse and display data - or by using its powerful BASIC-like scripling language - you can create technical applications with buttons, menus, 2D \& 3D graphics, and powerful numerical methods (ask for details).
MExpress is available in Standard ($£ 99$) and Developers Editions ($£ 299$). Prices exclude P\&P and V.A.T (see below'). The Developers Edition includes tools for turning MExpress script files into C_{++}code. This can then be compiled by an MExpress compatible $\mathrm{C}_{+}+$compiler into a stand alone executable!
> ar
> QUICKROUTE
> QUICKROUTE

Tel/Fax 01614497101

Contents

Volume 25 No. 10

\bullet Features Projects

Regulars

Magnetic Levitation

Research continues in Japan, America and Europe into the "flying trains" that use controlled electro-magnetism to skim at high speeds over speciallydesigned guideways. Nick Hampshire reports on the state of the art, and adds an outline circuit for experimenters.

ETI "Camp Light"

Free this month with EII, a PCB to build. This novel approach to portable lighting incorporates a 12 V - 250V DC converter and uses a low-powerconsumption mains lamp.
"Squarer"
John Linsley Hood has designed a good quality square-wave generator that can be used with his low distortion oscillator to give quick, accurate audio test results.

Data Bus Monitor

This ETI data monitor checks and digitally displays all 8 bits of binary data on an output port in decimal or hexadecimal format. Add flexibility to your system, and save hasty arithmetic. By Tim Parker.

Simple Power Line Signal Controller

A straightforward circuit for device control through house wiring that can be expanded or not as you need it. By Bart Trepak.

Process Timer and Controller (Part 3)

Tim Parker continue his PIC16C54 process timer project this month with a useful board to enable programmers to test the code of their interface software without having to connect up the controller.

Off you go
A self-timing switch by Terry Balburnie, for lights, alarms, computer monitors or anything where you need a quick time-out.

Pre-Hertzian Radio - the Needles and Fastnet System - Part 2

George Pickworth undertakes his own lake experiment to find out more about the single-cable marine communications system once used by the Needles lighthouse.
News 6
PCB foils 70
Round the Corner

Subscribe \& Save

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W + 450W)
AL.
Level controls \& Independent power supplies with two torolidal Iranstormers \# Twin L.E.D. Vu meters * prool *Latest Mos-Fels for stress tree power dellivery into virtually any load \& High slew rate \& Very low distortion \# Aluminium cases \# MXF600 \& MXF900 lan cooled with D.C. loudspeaker and thermal protection. USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

MXF400 W19"xH5"4"(3U)xD12"
MXF600 W19"xH5\%"(3U)xD13"

PRICES:- MXF800 C175.00 MXF400 C233.85 MXF600 C329.00 MXF900 ¢449.15 SPECIALIST CARRIER DEL. $\$ 12.50$ EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVEF:

Advanced 3-Way Stereo Active Cross-Over, housed in a $19^{\prime \prime} \times 14$ case. Each channel has itree level controts bass, mid \& top. The removable front lascia aliows access to the programmable DIL switches to adjust the cross-over trequency: Bass-Mid $250 / 5001800 \mathrm{~Hz}$, Mid. Top $1.8 / 3 / 5 \mathrm{KHz}$, all at 24 dB per octave. Bass invert swit
on each bass channel. Nominal 775 mV inpuloutput. Fully compatible with OMP rach amplilifer and modules.

Price ع117.44 \pm £5.00 P\&P
STARIEO DISCO MIXERSDJ3400SE * ECHO \& SOUND EFFECTS* STEREO DISCO MIXER with 2×7 band L. ${ }^{\text {R }}$ graphtic equalisers with bar graph
LED Vu meters. MANY OUTSTANOING LED Vu meters. MANY OUTSTANDING
FEATURES:- including Echo with repeat an FEATURES:- including Echo with repeat \&
speed control, DJ Mic with talk-over speed contro, DJ. Mic with talk
switch, 8 Channels
with individual taders plus crost facte, Cue Headohone Monitor. 8 Sollowing Inputs:- 3 turniables (mag), 3 mice, 5 Lhe for CD, Tape, Video otc.
Price E144.99 + ©5.00 P\&P

PIz2O ELECTVIC TWEATERS - MOTOROLA
Join the Piezo revolution't The low dynamic mass (no voice coil) of a Plezo tweeter produces an improved transient reaponse with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if two are put in series. FREE
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) $3^{\text {" }}$ round with protective wire mesh. Ideal fo
bookshelf and medium sized Hi .Fi apeakers. Price $\mathbf{8 4 . 9 0}+50 \mathrm{p}$ P\&P.
TYPE 'B' (KSN 1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers,
disco and P.A. systems etc. Price $£ 5.99+50$ p P\&P. disco and P.A. systems etc. Price $£ 5.99+50$ p P\& P.
TYPE 'C' (KSN1016A) 2 " $x 5$ " wide dispersion horn for quality Hi-Fi sys tems and quality discos etc. Price $£ 6.99+50$ p P\&P.
TYPE ' D^{\prime} ' (KSN1025A) 2 " $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality HI-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P. TYPE 'E' (KSN1038A) 374" horn tweeter. with attractive silver finish trim Suitable for Hi-Fi monitor systems etc. Price $\mathbf{£ 5 . 9 9} \mathbf{+ 5 0 p} \mathbf{P \& P}$. LEVEL CONTROL Combines, on aTecessed mounting plate, level control and cabiñet Input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{E 4 . 1 0}+50$ p P\& P.

HDTFLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the latest speaker technology and enclosure designs. Both models utilize studio quality $12^{\prime \prime}$ cast aluminium loudspeakers with lactory fitted grilles, wide disperslon constant directivity horns, extruded aluminium corner protection and steel bati corners, complimented with heavy duty black covering. The enc

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Ibl FC 12-100WATTS (100 dB) PRICE E159.00 PER PAIR bt FC 12-200WATTS (100 dB) PRICE E175.00 PERPAIR SPECIALIST CARRIER DEL E12.50 PER PAIR
OPTIONAL STANDS PRICE PERPAIR \&49.00 Delivery $\mathbf{\Sigma} 6.00$ per pair

PRICES: 150W E49.99 250W E99.99 400 W E 109.95 P\&P £2.00 EACH

OMF MOSFFETROWER AMFLIFIFR MODULES SUPPLIED READY BUILT AND TESTED.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE C40.85 + E3.50 P\&P
OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$
-3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$,
T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE C64.35 + C4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE ع81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. Into 4 ohms, írequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection,
Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE C132.85 + E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. Into 2 ohms, 725 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE E259.00 + E12.00 P\&P
NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS STANOARO - INPUT SENS SOOmV, BAND WIOTH 10OKMZ.
PEC (PROFESSIONAL EOUIPMENT COMPATIGLE) - INPUT SENS 775 mV , BAND WIDTH SOKMZ. ORDER STAMDARD OR PEC.
LOUDSPEAKE:S LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGM FREOUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60p STAMPED) FOR COMPLETE LIST.

MeKenzie and Fane Loudspeakers are also avallable.

BMINENCE:- INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
8 100 WATT R.M.S. MEB-100 GEN, PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO
RES. FREQ. 72 Hz , FREO. RESP. TO 4 KHz , SENS 97 dB . PRICE C32.71 +
10" 100 WATT R.MA.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID. RES. FREQ. 71 Hz , FREQ. RESP. TO 7 KHz , SENS 97 AG . RES. FREO 65 Hz , FRED ME1 O-200 GUITAR, KE YB'D, $12^{\prime \prime} 100$ WATT R.M.S. ME $12-100 L E$ GEN. PURPOSE, RES.FREQ. 49 Hz , FREQ. RESP. TO 6 KHz, SENS 100 dB . $12^{\prime \prime} 100$. WATi R.M. SESP. TO 6 KHz , SENS 100dB, LEAD GUITAR, DI MONITOR. RES. FREQ 42 Hz, FREO. RESP. TO 10 KHz , SENS WIDE $12^{*} 200$ WATT R.M.S. ME 12 -200 GEN. PURPOSE, GUITAR, DISCO, VO RES. FREQ. 58 Hz , FREQ. RESP. TO 6 KHz , SENS $98 d B$, RES. FREO A7H FR.S ME 12 -300GP HIGN POWER B EXCELLENT MID RICEE33.74 + 22.50 PEP PRICE $£ 43.47+$ E2.50 PIP CO, STAGE MONITOR. PRICE E35.64 + E3.50 P\&P PSE, P.A., VOCAL, STAGE PRICE $\mathbb{C l} 6.67+\varepsilon 3.50$ PE BASS, LEAD GUITAR PRICE $£ 46.71+£ 3.50 \mathrm{P}$
 RES. FREQ. 46 Hz , FREO. RESP, TO 5 KHz . SENS OSE BASS, INCLUDING 8 ASS GUITAR.

EAR:ENDERS: HIFFI STUDIO, IN-CAR, ETC

ALL EARBENDER UNITS 8 OHMS (Exc*p1 EB8-50 A EB10-50 which ere due
BASS, SINGLE CONE, MIOH COMPLIANCE, ROLLED SURROUND $8^{\prime \prime} 50$ watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR. RES. FREQ, 40 Hz , FREQ. RESP. TO $7 K H z$ SENS 97 dB . RES. FREO. 40 Hz , FREQ. RESP. 105 KHz , SENS. 99 dB 10" 100 WATT EB10-100 BAS 5 , HI-FI, STUDIO. RES. FREO. 35 Hz , FREQ. RESP. 103 KHz , SENS 96 dB
$12^{\prime \prime}$ 100WATT EE12-100 BAS3, STUDIO, HI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz . SENS 93 dB . FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND SV" GOWATT EB5-60TC (TWiA CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREQ. 63 Hz , FREO. RESP. TO 20 KHz , SENS 92 d 8 . RES. FREO 38 Hz FREO RESP TO 20KHz SENS OLIB RES. FREQ. 38 Hz , FREQ. RE SP. TO 20KHz, SENS 94d日. CO FREO GOHZ FREO RESP TO 18KHz SENS B9d8 O" COWATT EB1O-6OTC (TWIH CONE) HI-FI, MULTI RES. FREQ. 35 Hz , FREQ. RESP. TD 12 KHz , SENS 98 dB .
 PRICE E13.65 + E2.50 P\&P PRICE E30.39 + 53.50 PR.p PRICE $\mathrm{E}_{42.12}+\mathbf{~ C 3 . 5 0 ~ P E P ~}$ TRANSMITVER ROB:Y KITS
PROVEN TRANSMITTER DESIGMS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER $80.108 M \mathrm{~Hz}$, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES, SIEE 38 I 123 mm , SUPPLY 12 V © $0.5 A M P$.
FM MICRO TRANSMITTER 100 100 +81.00 PaP VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$. SIZE 56 I 46 mm , SUPPLY SV BATERY.

MOONS HINE BIBLE 270 page book covening the production of alchohol from potatoes，nice，grains etc Drawings of simple ho
made stills night through to commercial systems． $\mathbf{£ 1 5}$ ret MS1 NEW HIGH POWER MINI BUG With a range of 800 metres more and up to 100 hours use from a PP3 this will be populart Bug measures less than 1＂squarel £28 Ret LOT 102
SINCLAIR C6 MOTORS We have a new ones available without gearboxes al £50 ref LOT 25
BUILD YOU OWN WINDFARM FROM SCRAP NEW publication gives step by step guide to bullding wind generators． Amed with ith＇s publication and a good local scrap yard could make you self sumfient in electricity！£ 12 ref LOT81
PC KEYBOARDS PS2 connector，top quality sultable for all 286 J 386／486 etc £ 10 ref PCKB． 10 for $£ 65$.
TRACKING TRANSMITTER range $1.5-5$ miles $, 5,000$ hours on AA batteries，also transmits info on car direction and motionlWorks with any FM radio． $1.5^{\prime \prime}$ square．$£ 65$ ref LOT 101
ELECTRIC DOOR LOCKS Complete lock with both Y ale lock and 12v operated deadlock（keys included）$£ 10$ ref LOT99 GALLIUM ARSENIDE FISHEYE PHOTO DIODES Complete whith suggested dircuits for long range communlcationstswitching E12 complete．
SURVEILLANCE TELESCOPE Superb Russian zoom telescope aldustable from $15 x$ to $60 x$ complete with metal tripod （mposible to use without this on the higher settings） 66 mm lense， leather carrying case $£ 149$ ref BAR69
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera（Included）to any standard teevision All the components including a PP3 battery will fit into a cigarette packet with the lens requiring a hoie about 3 mm diameter． Supplled with telescopic aerial but a piece of wire about 4^{\prime} long will stll give a range of up to 100 metres．A single PP3 will probably give ess than 1 hours use $£ 99$ REF EP79．（probably not licensablel） CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams， 12 V 100 mA ．auto electronic shutter， 3.6 mm F2 lens，CCIR， 512×492 pixels．video output is ivp－p $(75 \mathrm{ohm})$ ．Works directy into a scart or video Input on a tv or video．IR sensitive．$£ 79.95$ ref EF 137.
IR LAAAP KTT Suitable for the above camera enables the camera to be used In total darknessi $£ 5.99$ rel EF138
REMOTE CONTROLTANDATA TD 1400 甽ODEMI VIEWDATA Complete system comprising $1200 / 75$ modem，auto dialler，infra red remote keyboard，（could be adapted for PC use？） psu，UHF and RGB ouput，phone lead，RS232 oupuf，composite
outov．Absolute baroain for parts alonell\＆9 95 rel BAR33．
9 WATT CHIEFTAN TANK LASERS
Double bearn units designed to fit in the gun barrel of a tank，each unit has two semi conductor lasers and motor drive units for alignement． 7 mile range．full circutt diagrams．new price $£ 50,000$ ？us？$£ 349$ ． Each unit has two gallium Arsenide injection lasers． 1×9 watt， $1 \times$ 3 watt， 900 nm wavelength， $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency．The units also contain an electronic receiver to detect reffected signals from targets．five or more units $£ 299$ ea．£349 for one．Ref LOT4．

TWO WAY闌IRROR KTT Ind udes special adhesive fitm to make two way mirror（s）up to $60^{\circ} \times 20^{\circ}$ ．（glass not included）Includes full instructions．£12 rel TW1．
NEW LOWPRICED COMPUTERWORKSHOP／HLFIRCB UNTS Complete protection from faulty equipment for everybody！ Inline unit fitsin standard IEC lead（extends it by 750 mm ），fitted inless than 10 seconds，reselkest button，10A rating，$£ 6.99$ each ref LOT5． Or a pack of 10 at $£ 49.90$ ref LOT6．If you want a box of 100 you can have one for $£ 250$ ！

RADIO CONTROLLED CARS FROM $£ 6$ EACHIIII All returns from famous manufacturer，
types available，single channel （leff，right，forwards，backwards） 56 ref LOT1．Two channel with more features $£ 12$ ref LOT2

THOUSANDS AVAILABLE RING／FAX FOR DETAILSI MAGNETIC CARD READERS（Swipes）E9．95 Cased with nyleads，designed to read standard credit cardst they have 3 wires coming out of the head so they may wnte as well？complete with control elctronics PCB．Just £9．95 rel BAR31
WANT TO MAKE SOME MONEY？STUCK FOR AN IDEA？We have collated 140 business manuals that give you information on setfing up different businesses，you peruse these at your leisure using the text editor on your PC．Also incluced is the certincate enabling you to reproduce（and sell）the manuals as much as you tike！£14 re！EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film．Use in horizontal or vert cal photographs using standard 35 mm film．Use
mode．Complete with strap $£ 7.99$ ref BAR1
COIN OPERATED TIMER KT Complete with coinslo COIN OPERATED TIMER KT Complete with coinslot mechanism，adjustable time delay，relay output，put a coinsiot on
anything you likel TV，S，videos，fridges，onniks cupboards．HIFL anything you likel TV，s，videos，fridges，onniks cupboards．MiFL
takes 500°＇s and $\varepsilon 1$ coins DC operated price just $£ 799$ ref BAR27． takes 500° s and $£ 1$ coins．DC operated price just£7．99 ref BAR27．
ZENTH $900 \times$ MAGNIFICATION MICROSCOPE Z00m． metai construction，built in light，shrimp farm．group viewing screen ots of accessones £29 ref ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLAS彻A SCREENS $222 \times 310 \mathrm{~mm}$ ，no data nence E4．99 ref BAR67
NIG HTSIGHTS Model TZSA with infra red illuminator，views up to 75 metres in full darkness in infrared mode， 150 m range .45 mm lens 13 deg angle of view，focussing range 1.5 m to ininity． 2 AA Dattenes requred． 950 og weight．£199 ref BAR61．1 years warranty LIQUID CRYSTAL DISPLAYS Bargain prices， 16 character 2 line， $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line， $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line， $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL－1 110 ${ }^{\prime}$ HA NEWTONLAN REFLECTORTELESCOPE

WOLVERIAMPTON BRANCH NOW OPEN AT WORCESTER ST

details $£ 249$ rel TAL
CENTRAL POINT PC TOOLS Award winning sofware， 1,300 virus checker，memory optimiser，disc optimiser，file compression， low level formatuing，backup scheduler，disk defragmenter，undelete 4 caleulators，Dbase，disceditor，over 40 viewers，remote computing． password protection，encryption，comprehensive manual supplied
etc £25 ret lat 973.5° dsks etc E25 ref lat 973.5° dsks
GOT AN EXPENSIVE BIKE？You need one of our bottle alams， they look like a standard water botve，but op en the top，Insert a key to activate a motion sensor alarm built inside Fits all standard bote camers，supplied with two keys SALE PRICE $£ 7.98$ REF SA32． GOT AN EXP ENSNE ANYTHING？Younsed one of our cased vibration alarms，keyswitch operated，fully cased just fit it to anything from videos to caravans．provides a years protection fromi 1 PP3 battery，UK made．SALE PRCE 64.99 REF SA33．
DAMAGED ANSWER PHONES These are probably beyond repair so just E4，99 each．BT response 200 machines．REF SA30． COMPUTER DISC CLEAROUT We are lef．with a lot of software packs that need clearing so we are selfing at disc value onlyl 50 discs packs that need clearing so we are selling at disc value onlyl 50
for $£ A$ ，thats just $8 p$ eachll（our choice of dscs）E4 ref EP66 IEAM PS2 MODEL 1502 CASE AND FOWER SUPPL Complete whth fan etc and 200 watt power supply．$£ 9.95$ ref EP67 DELL PC POWER SUPPLIES $145 w$ att．$+5,-5,+12,-12$ ． $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch，flyleads and IEC socket． SALE PRICE E9．99 ref EP55
1．44 DISC DRIVES Standard PC 3.5° drives but retums so they will need attention SALE PRICE $\mathbf{E 4} .89$ rel EP6is
1．2 DISC DRNES Standard 5.25° drives but retums so they will need attention SALE PRICE NOW ONLY $£ 3.50$ ref EP69
PP3 NICADS Unused but some storage maiks．$£ 4.99$ ref EP52 DELL PC POWER SUPPLIES（Customer retums）Standard PC psu＇s complete with thy leads，case and fan．$+12 v_{0}-12 v,+5 v_{0}-5 v$ SALE PRICE E1．99 EACH worthitior the bits alonel ref OL1．TRADE PACK OF 20 E29．95 Ref DL． 2
GAS HOBS ANDOVENS Brand new gas appliances．perlect for small fats etc．Basic 3 burner hob SALE PRICE $£ 24.98$ rel EP72． Basic small buith in oven SALE PRJCE $£ 78$ ref EP73
RED EYE SECURTTY PROTECTOR 1,000 watt outdoor PIR switch SALE PRUCE E6．99 ref EP57
ENERGY BANK KIT $1006^{\circ} \times 6^{\circ}$ ©V 100 m A panels， 100 diodes． connection details etc．$£ 69,95$ ref EF 112.
PASTEL ACCOUNTS SOFTWARE，dees everything for all sizes of businesses，Ind udes wordprocessor，report writer，windowing， networkable up to 10 stations，multople cash books etc 200 page comprehensive manual． 90 days free technical support（01342 326009 try before you buyl）Current retall price is $£ 129$ ，SALE PRICE $£ 9.95$ rel SA12．SAVE £120！！
COMPLETE PC 200 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable sofware against mains power fucteations and cuts New and boxed，UK made Provides up to 5 mins running time in the event of complete power falure to allow you to run your system down correcty．LAST FEW TO CLEAR AT E49 SAVE E30 rel LOT61 BIG BROTHER PSUCased PSU，Ov 2A output， 2 m op lead， 1.5 m Input lead，UK made 220v．SALE PRTCE E4．99 REF EP7

Check out our WEB SITE

http：／／www．pavilion．co．uk／bull－eleotrical RACAL $⿴ 囗 十$ terephone lead，mains lead，manual and comms software．the cheapest way onto the nell all this for just $£ 13$ ref DEC13．
4.5 mw LASER POINTER．BRAND NEW \％ STOCKl，supplied in fully built form（looks like a nice pen）oomplete with handy pocket clip（which also acts as the ondolf swith．）About 60 metres rangel Runs on 2 AAA batteries．Produces thin red beam ideal for levels，gun sights，experiments eto．just £39．95 ref DEC49 TRADE PRICE $£ 28$ MIN 10 PIECES

BULL TENS UNTT Fully bullif and tested TENS（Transcutaneous Electrical Nerve Somulaton）unit，complete with electrodes and fill instructions TENS is used for the relief of pain etc in up to 70% or sufferers Drug free pain reliel，safe and easy to use can be used In conjunction with analgesics etc．EA9 Ree TEN／1
PC PAL VGA TO TV CONVERTER Convents a colour TV into abasic VGA screen．Complete withbuiltin psu，lead and shware．Ideal abasic VGAscreen．Completewith builtinpsu lead and shware．Ideal
for laptops or a cheap upgrade．Supplied in kit form for home ror laptops or a cheap upgraje．Supplie
assembly SALE PRICE E_{2}^{5} REF SA34
EXAERGENCY LIGHTING UNT Comptete Unit with 2 double
－some of our producte may be unlacengable in the ue
BULL ELECTRICAL
25 POKTLAND ROAD，HOVE SUSSEX BN3 5QT，（ESTAARLESNED） 50 YEARS）．
MAIL，ORDER TBRM：©ASH PO OR CHEOU WIIH ORDRH YUUSEBP？KLUS VAT

whicomb tacorss visa subtivachex
IAK 01273323077
L，maill ball © pavillon．co．ul
bulb Hloodlights，buift in charger and auto switch．Fully cased． 6 v 8 AH lead acid req＇d．（secondhand）E4 ref MAGAP1
YURSHA SEALED LEAD ACID BATTERIES Two sizes currently available this month．12V 15AH at 18 refLOTB and 6 v 10AH （sultable for emergency lights above）at just E6 ref LOT7．
ELECTRIC CAR WINDOW DE－ICERS Complete with cable plug etc SALE PRICE JUST E4．99 REF SAZ8
AUTO SUNCHARCER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead Attled with a cigar plug．12v 2wati E8．99 REF SA25．留ICRODRNE STRIPPERS Small cased tape dives ideal for stripwing，lots of useful goodies including a smart case，and lots components．SALE PRICE JUST E4．98 FOR FIVE REF SA26 SOLAR POWER LAB SP ECLAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells， 4 LED＇s，wlre，buzzer，switch plus 1 relay or motor．Supert value kit SALE PRICE JUST E4．99 REF SA27
RGB／CGA／EGNTTL COLOUR MONTTORS 12° in good condition．Back anodised metal case．SALE PRICE C49REF SA 168 PLUG IN ACORN PSU 19y AC 14w，£299 REF MAG3P 10 13．8V 1．9A PSU cased with leads Just $£ 9.99$ REF MAG10P3 UNNERSAL SPEED CONT ROLLER KTT Designed by us for the C．5 motor but ok for any 12 V motor up to 30 A ．Complete with PCB etc．A heat sink may be required．£17．00 REF：M AG 17
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable． 100 cable clips， 2 line drivers with R $\$ 232$ interfaces and all connectors etc．Ideal low cos mettrod of communicating between PC＇s over a long distance utilizing the serial ports Complete kit 8899 ．Ref comp1
VIENDATA SYSTEMS made by Phillips，complete with Intema 120475 modem，keyboard，psu etc RGB and composite outputs menu driven，autodialler etc．SALE PRICE E12．99 REF SA 18 AIR RIFLES． 22 As used by the Chinese army for training puposes． so there is a lot aboull $£ 39.95$ Rel EF78． 500 pellets $£ 4.50$ ref EF80 PLEG IN POWER SUPPLY SALE FROM E1．60 Plugs In to 13Asocket with outputlead．three types available，ev dc 150 mAE 1.50
 VIDEO SENDER UNTT．Transmits both audio and video signals from either a video camera，video recorder，TV or Computer etc to a ny standard TV set in a 100 rangel（tune TV to a spare channel） $12 v$ DC op．Pice Is $£ 25$ REF：MAG 1512 v psu is $£ 5$ extra REF：MAG5P2 －MINATURE RADIO TRANSCENERS A pair of walkie talkies w itha range up to $2 \mathrm{~km} / \mathrm{in}$ open country．Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Induting cases and eap＇ces．2xpP3 req＇d．£30．00 pr．REF：M AG30 －FTM TRANSMITTER KIT housed in a standard working 13A adaoterll the bug runs directly off the mains solasts forever！why pay £700？or price is £15 REF：EF62（kit）Transmits to any FM radio． －FM BUG BUILT ANDTESTED superior design to kit．Supplied to ctetective agencies． 9 v battery req＇d．£14 REF：MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COINSLOT M ECHANISMS originally made to retail at 79 each， theere units are designed to convert an ordinary phone into a payphone．The units have the locks missing and sometmes broken hinges However they can be adapted for their original use or used fo somiething else？？SALE PRICE JUST E2．50 REF SA23
G／rT AIR PISTOL PACK Complete with pistol，darts and pellets £12．95 Ret EF828 extra pellets（ 500 ）£4．50 ref EF80
6＂K12＂AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA ．SALE PRICE E4．99 REF SA24．
FIaRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP13ideal for experimenters！ 30 m for $£ 12.99$ ref MAG t3P1

> MDED GOODIES BOX OF
MIXED COMPONENTS WEIGHING 2 KILOS
YOURS FOR JUST $£ 5.99$

4）C2 TELESCOPIC SIGHTS Sutable for all air rifes，ground lenses，good light gathering properties．$£ 19.95$ rel R／7．
GYROSCOPES Rememberthese？well we have found acompany tha still manufactures these popula
educational use etc．$£ 6$ ref EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket，refects more than 90% of body heat．Also suitable for the fol blanket，refects more than 90% of body heat．Also suit
constuction of two way mimors $£ 3.99$ each re？O／LO41．
LENSTATIC RANGER COMPASS Oil filled capsule，strong metal case，large luminous points．Sight line with magnityng viewers 50 mm dia， 86 gm ．£ 10.99 rel OKK04
RECHARGE ORDINARY BATTERIES UP TO 10 TMES！ Wirh the Bathery Wizardl Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA．AA．C．D，four ata tmelled system shows when batteries arecharged，automatically refects unsultable cells．c
Pmet is E 21.95 ref EP31．
TALKING WATCH Yes．it actually tells you the ime at the press of a button．Also features a voice alam that wakes you up and tells you what the ome is！Lithium cell induded． $\mathbf{E 7 . 9 9}$ ref EP26．

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can pravent even the most responsible of drivers from losing their licence！ Ad ustable audible alarm with 8 fla shing leds gives instant warning of radar zones．Detects X, K ，and $K a$ bands． 3 mile range，＇over the hill＇ Cen pay for itself in jusi one day $£ 79.95$ rel EP3．
$3^{\text {e }}$ DISCS As used on alder Amstrad machines，Spectrum plus $3^{\prime \prime}$ s ete $£ 3$ each rel BAR400
STEREO MICROSOPES BACK IN STOCK Russian，200x complete with lenses．lights，filters etc eic very comprehensive
microscope that would nomally be around the $£ 700$ mark，our price

WE BUY SURPLUS STOCK

FOR CASH
BUYYERS DIRECT LINE 0802660377
FREECATALOGUE
100 PAGE CATALOGUE NOW
AVAILABLE，50P STAMP OR FREE
ON REGUEST WITH ORDER．

Flexible current chaser

A flexible ac current probe specially for irregular-shaped conductors with difficult access is available from all Professional Instrument Distributor Association (PIDA) members. The LEM-flex ac current probe is compatible with any digital multimeter, chart recorder or oscilloscope. The compact, portable probe has back-on-itself flexibility with two standard current ranges to each unit, a wide bandwidth, 1% accuracy and
 electrical isolation with rugged durability. Standard models are available in lengths of 61,91 and 122 cm , with dual rances of 0-30/30-300 , 0-300/30. 3000A and 0-60/600-6000A. Flexible air-core toraidal current transformers have overcome he limitztions of iron-core-curent transformers, particularly with regard to rigidity.

Apart from their ability to go around multiple ood-shaped conductors in tight positions, with ideal applicaticns are seid to be in large variable-speed drives, phase currents in motor drives and UPS systems, output check of MG sets in standby power supplied, power semiconductor failure, current measurement of diodes or SCRs in power rëctifiers en a test or permanərt basis, and as front-end probes for power monitoring, harmonic analysis and data logging.

For information Tel Fred Hutchinson at Quiswood Lid. 01756799737.

486 microcontroller

The compact, multi-function PCA-6144V CPU card in the photo is a fullyfeatured 486DX2/DX4 industry-grade CPU card with on-board VGA display capability.

The local bus VGA controller has a Windows accelerator and 1 mB of display memory. The card supports up to 64 MB of on-board dram with a secondary level cache of 128 K .

Other on-board features include an enhanced IDE hard disk interface, floppy disk controller, PC/104 interface bus connector allowing modular expansion of the board, two high speed i6C550 buffered serial ports (one RS232 and one RS-232/485), an enhanced bi-directional parallel port and a PS/2 mouse connector.

The card also has on-board power management to the "green function" standard, accessed via the BIOS, which provides three power-save modes: doze, sleep and suspend.

There is a 63-level on-board watchdog timer for fault-critical applications, allowing automatic reset in the event of a software failure. The board operates from a single 5 V supply and is designed to run reliably between 0 and 60 degrees C.

The PCA-6144V is available from Integrated Measurement Systems (IMS), 305-308 Solent Business Centre, Millbrook Road West, Southampton SO15 OHW. Tel 01703771143 Fax 017703704301.

Tinner is lead-free

Intertronics have a lead-free soldering-iron tip-tinner in two sizes.

Modern self-cleaning solder does not entirely remove the problem of oxide deposits clogging the soldering bit and lowering its efficiency. IC lead-free tip tinner is designed to prolong bit-life and increase soldering efficiency, and being lead free helps to keep polluting by-products of soldering to a minimum.

The Tip Tinner is packages in an ESD-safe metal contained with an adhesive pad for fixing to the workbench.

The two packages are priced at $£ 5.88$ and $£ 10.41$ Information from Intertronics, Unit 9, Station Field Industrial Estate, Banbury Road, Kidlington, Oxon OXE 1JD Tel 01865842842 Fax 01865842172

National Microelectronics Institute

Nine major semiconductor companies have banded together to found the National Microelectronics Institute (NMI) in the UK. Motorola, NEC, National Semiconductor (UK), Seagate Microelectronics, Siemens Microelectronics, Fujitsu, Newport Wafer Fab, Philips Semiconductors and GECPlessey will own the Institute, based on the campus of the Heriot-Watt University, collectively and will be working in partnership with the Department of Trade and Industry, the Scottish and Welsh Offices, and the Government Office for the North East.

The NMI will aims to provide a focus for coordinating the training, supply and research infrastructure for the semiconductor manufacturing industry in the UK. An important initial priority will be to focus on the availability of skilled technicians and engineers for the industry.

Launching the new Institute on July 8th, lan Lang, President of the Board of Trade in the UK, said:
"Semiconductors are a key enabling technology for the creation of the Information Society, providing the means for the processing and storage of vast quantities of data

The growth rates in this sector during 1995 were amongst the most remarkable on record for a major industry during peacetime. I am glad to say that the UK has secured a significant share of this expanding industry.
"This is an industry that requires evercloser links with educational institutions and local agencies, and with its suppliers."

For information contact Sam McEwan Tel 01412282299

Modern transformers for ancient valves

A range of transformers specially designed to meet the needs of the regrowth in the valve market has been launched, aimed especially at electronics and amate.ır radio enthusiasts. The new VTM ragne is made by Variable Voltage Technology to traditional requirements bu tusing modern methods and materials. includiing high grade annealed copper wire and high quality grain-oriented lamination. VTM transformers have been de'signed to give ε low flux density to ensure reduced magnetic fields. The meet the requirements of the EMC and low voltage directives. CE making is available where appropriate. The transformers can be specified for either frame or vertical mounting, and are designed particularly for

- mains transformers *or HT circuits with or without filament windings
- flament transformerz
- mains smoothing crokes
- cutput transformers with triode or pentode connections, or for use in ultralinear mode. EL34 and EL84 valve types are catered for, and various loudspeaker impedanze tappings are available.
- grid coupling transformers, fully screened, single ended or push/pull.

WT is a specialist transformer designer and manufacturer that can customise its standard range transformers to meet non-stancard requirements. Variable Voltage Technology Ltd., Unit: 24, Samual Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Tョl 01983280592 Fax 01983280593.

LOW COST PC's			
SPECIAL BUY AT 286 40 Mb HD + 3Mb Ram MTTED QUANTITY only of these 12 Mhz HI GRADE 286 systems de in the USA to an industrial specification, the system wasard, PSU and EGA video card with single $5 / 4.2 \mathrm{Mb}$ floppy disk integral 40 Mb hard disk drive to the front. Real time clock ndition complete with enhanced keyboard, $640 \mathrm{~K}+2 \mathrm{Mb}$ RAM, der as HIGRADE 286 ONLY E129.00 (E)	6,000,000 items EX STOCK VIDEO MONITOR SPECIALS	Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Optima Enclosures Ltd. Units feature	
	One of the highest specification Aonitors you will ever see - A Mitsubishi FA3415ETKL 14" SVGA Multisync colour monitor with fine ARCHiMEDES and APPLE. Many features: Elched faceplate, text swithing and LOW RADUATION MPR		
LOW COST 486DX-33 SYSTEM inearation uide 	VGA Cabet tor IBM PC inculued Enly	32U - High Quality - All steel RakCab	
	As New - Used on film set for 1 week onlytI $15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilt etc. Full 90 day guarantee. $£ 145.00$ (E)		
FLOPPY DISK DRIVES 31/2"		enable status indicators to be seen through	
		(c)	
	KME 10° 15M10009 high definition colour source, win RGB analog and composite sync 11". Good used condition. Only £125 (E)	A superb buy at only $£ 195.00$	
		Over 1000 racks - 19" $22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 44 U high. Available from stock !! Call with your requirements.	
D DISK DRIVES			
	20 " 22 " and $26^{\prime \prime}$ AV SPECIALS Superby made UK manulacure. PLallall solid stalat colour moniors, 	The ultimate in 'Touch Screen Technology' made by the experts MicroTouch - but sold at a price below cost II System consists ofa flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$	
	SPECIAL INTEREST		
		(e)	
THE			
	HP16508 Logic Analyser \& HP3782A Eroor Delector 		
VIDEO TUNER		ST RAM \& CPU	
CROYTEC ATARI SANYO SO			
		men	
	 Kaithley 590 CV capacinor Volvage analyser		
	MOtorola VME Bus Boards 8 Components Listst SAE/CALL ε \&POA Fultsu M3041R 6000 LPM band printer Fulisu M30410 600 LPM printer with network interlace		
		MTSUBISHMMF-08C120M BOXBXx25 mm 12 VDC	
	Perkin Elmer 2998 Infraed spectrophotomenter 		
DC POWER SUPP			
irtually every typeot po or power suppligs Ex			

Issae 13 of Display News now available - send large SAE - PACKED with bargains!

Attention all old Keithley instruments!

TO celebrate its 50th anniversary, Keithley Instruments is sponsoring a conest to find the "oldest Keithley instrument" still in working order. A new Keithley Model 2000 digital multimeter will be awarded as first prize to the organisation (or, presumably, to individual owners, if there are such) that can locate the oldest working Keithley instrument. The winner must be able to demonstrate that the instrument can still collect data as it was originally designed to do. Keithley Instruments was founded in 1946 by Jospeh F Keithley in Cleveland, Ohio, USA and the company's first product was the Phantom Repeater. This was an amplifier with hing input impedance and low output impedance, used to boost signals from low-level transducers and circuits so that they could be measured by the oscilloscopes and voltmeters available at the time.

In the 1950s, the Phantom Repeater was followed by electrometers, piooammeters and DC voltmeters that used many of the vital design features of the Phantom. Today, Keithley products, hardware and software, are used all over the world for electronic test and measurement, data acquisition and semiconductor characterisation. Anyone who works in an industrial research laboratory, engineering development department, quality control area, university or production line should start looking to see if they are using or simply storing a vintage Keithley instrument that is still working as it was designed to do. "They are second to none in providing highly accurate and relaible data related to the electrical, temperature and periodic phenomena they test and measure", say Keithley of their instruments, and some were second to none in getting there first, too. If you know one of these instruments, send details of the model and serial number with a photograph of the working unit to Mr. Nick Challacombe, MD, Keithley Instruments Ltd., The Minster, 58 Portman Road, Reading, Berks RG30 1EA, UK, before 15th October 1996. We gather that the winner will be treated to a winner's welcome sometime in November.

Adapt to 73 kHz

Following the Radiocommunications Agency's proclamation of a new amateur radio frequency 871.6 to 74.4 kHz), Cambridge Kits have put together the information to enable constructors to adapt the Cambridge 60 kHz Receiver for 73 kHz . Adding a variable capacitor (which can be re-used from an old broadcast receiver) to the superheterodyne receiver and retuning it enebles it to tune to 70 to 75 kHz . The internal antenna can receive time signals from HBG in Switzerland on 75 kHz . The receiver also has provision for an external antenna. The 60 kHz receiver (which is also part of Cambridge Kits' MSF clock kit) is $£ 35.30$ including case, decoding details, Besic listings, modification details and P\&P. The new amateur band was issued by the Radiocommunications agency in response to requests from amateurs who wish to experiment with propagation through the ground by transmitting from underground caves, and is available for transmiting to ' A ' licence holders investigating LF propagation. Transmitting on the band needs a licence variation, and app ications should be made to the LF Allocation, The Chaiman, RSGB HF Committee, Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE Receiving authorised public signals needs no licence.

For information on the 60 kHz receiver and modifications, Tel Cambridge Kits 01223860150.

Shorts

The following statement about the Trafficmate navigation system on 433.92 MHz has been issued by the Radiocommunications Agency: "Trafficmaster are operating the Trafficmate system on 433.92 MHz at present and the system is required to comply with the spectrum management parameters of MPT 1340. This is a temporary frequency allocation and an alternative frequency has now been found for the Trafficmaster network. All Trafficmaster transmitters and receivers will be required to operate on the new alternative frequency after the 31 st December 1998. "The Radio Society of Great Britaln has been in discussion about the overlap of certain new allocations in the traffic area with amateur radio bands (in this case in the 70 cm band) for much of the last year. The
Radiocommunications Agency has also launched a new scheme to simplify application for a foreign radio licence for UK radio amateurs who wish to operate abroad for more than three months. Countries that have implemented the appropriate CEPT Recommendation will issue on request mutually recognised HARECs to those who have passed a relevant national exam. In the UK, Class B HARECs will be issued to anyone who has passed the RAE, and Class A HARECs to anyone who has passed the RAE and the RSGB's 12 wpm Morse test. Any individual who currently holds or has ever held a full UK licence will be eligible to apply, whatever their original qualifications. Requests for a HAREC should be addressed to the RA accompanied by a current UK licence or proof of an RAE pass (and Morse test pass where approprlate). Foreign or British citizens who have equivalent foreign qualifications can obtaln a full UK licence on presenting a HAREC issued by another recognised CEPT administration. Enquiries to RA general enquiry point 01712110211 or your national radio organisation. CEPT Recommendation T/R 61-01 will continue for stays under three months, where amateurs can operate under the authority of their UK licence.

MODS MODS MODS MODS

ET| August 1996 Simple Distribution Amp:
The component layout on page 33 shows D1, D2, D3 and D4 reversed. The circuit diagram on page 32 is correct

Overseas Readers

Tel To call UK telechone numbers, replace the initiak, 0 with your local overseas access code plus the digits 44 .

40
 LTD STEVENAGE

Professlonal Sub-Contract Manufacturing \& Suppliers to the Electronics Indust y
Do you have a requirement for any of the following services: PCB Assembr, (Contentional and Surface Mount
Wave \& Hand Solderng
Complete Equipment Manufacture
Device Programming from hand written shts or PC $3 / \mathrm{c}^{\prime \prime}$ disc Cable Harness Assembly/loom Manufacture
Card Cage and Module Wiring Full Inspection Full Procurement Service PCB Test \& "Burn in" Facillties Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales Refurbishment a speciality Top Quality Work at Reasonable Rates

Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, Crcmer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

TELNET

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
 Tel: 01203650702
 Fax: 01203650773
 Mobile: 0860400683

(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

OSCILLOSCOPES	
Gould OS 255.15 MHz Dual Channel	
Gould $5110-100 \mathrm{MHz}$ Intelligent oscilloscope	
Gould $1602-20 \mathrm{MHz} \mathrm{D.S.O}$ with printer (curs	
Hameg - 203/203-4/203-5/203-6-20 MHz Dual Channel	
Hewlett Packard 54501A - 100 MHz - Digit	
Hewlett Packard 541000-1GHz Digitizing	
Hewlett Packard 182C - 4 channel - 100 N	
Hitachl V650F - 60 MHz Duai Channei.	
lwatsu SS $5121-100 \mathrm{MHz}$ Dual Channel.	
Kikusul $\operatorname{COS} 6100-100 \mathrm{MHz}$, 5 Channel, 12 TraceKikusui	
Kikusul OSS $6522 \cdot 100 \mathrm{MHz}$ Dual Cha	
Meguro - MSO 1270A - 20 MHz Digital Sto	
Nicolet 3091 - LF D.S.O.............	
Panasonic VP5741A $=100 \mathrm{MHz}$ D.S.O. with Digital reado	al Anal
Function - G.P.I.B	
Phillips 3211, 321 3262 (2ch +4 ch).	
Philips $3219-50 \mathrm{MHz}$ with analogue storag	
Phillips PM 3295A - 400MHz Dual Channe	
Phillps PM 3295-350MHz Dual Charinel	
Phillps PM 3315-60MHz-D.	
Philips 3263-100 MHz Dual Channel with Microproces	
Tektronix 2335 Dual trace 100 MHz (portable). Tektronix 2445150 MHz - 4 Channel	
Tektronix 24454 - 150 MHz - 4 Channel.	
Tektronix $455-50 \mathrm{MHz}$ Dual Channel .. 535	
Tektronix $4754754-200 \mathrm{MHz/250MHz}$ Dual Channel	
Tektronix $7313,7603,7613,7623,7633,100 \mathrm{MHz} 4 \mathrm{ch}$ from Tektronix $7704-250 \mathrm{MHz} 4$ ch.$\qquad$$\qquad$ trom C 65	
Tektronix 7934500 MHZ with storage Telequipment D83-50MHz Dual Channel	
Other scopes avallable too	
SPECIAL OFFER HITACHI V $212-20 \mathrm{MHZ}$ DUAL TRACE HITACHI V222-20 MHZ DUAL TRACE + ALTERNATE MAGNIFY $£ 180$	

AVO RM215-L/2 - AC/DC Breakdown, Leakage + Ionisation Tester ...
Anritsu MG642A Pulse Pattern Genera Analyser
Calltornia 751 TC . AC variable Penerator...
Datalab DL 1080 Programmable Transient Recorder
Dyanpert TP20 Intelliplace - Tape peel Tester - immacualte condition_....................................
EIP 331 - Frequency Counter (26.5 GHz)
EIP
Farnell APrequency counter 18GHZ Power Supply ($0-70 \mathrm{~V} / 30 \mathrm{~A}$) Auto Aanging
Farnell SSG-520 Signal Generator (520 MH)
Farnell SSG-520 Signal Generator (520 MHZ)
Farnell TSV 70 Mkll Power Supply ($70 \mathrm{~V} \cdot 5 \mathrm{~A}$ or 35 V -10A).
Flure 5100A - Calibrator
Flure 51018. Calibrator with Tape Deck

Hewlett Packard 3456A Syiel voltmeter
Hewlett Packard 3438A Digital voltmeler

Hewlett Packard 3776A - PCM Terminal Test Set.
Hewlett Packard 3325A - 21MHz Synthesiser/Function Gen
Hewlett Packard 3488A - HP. 1B Swith control unit
(various Plug-ins available)
Hewlett Packard 334A-Distortion Analyser
Hewlett Packard 339A. Distotion Measurin
Hewlett Packard 339A. Distortion Measuring Set
Hewlett Packard 3581A Wave Analyseri)
Hewlett Packard 3455A $61 / 2$ Diglt M/Meter (Autocai)
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3779 A/C - Primary Multiplex Analyser Hewlett Packard 3779A/3779C - Primary Mux Analyser
Hewlett Packard 4275A - LCA Meler (Mult-Frequency) Hewlett Packard 4275A - LCR Mele
Hewlett Packard 4342A - Q' Meter.

E125

Phillps PM 3315-60MHz-D.S.O
Pulps 3540 Logic Scope (2)
Tektronix $454-150 \mathrm{MHz}$,
Tektronix $468-100 \mathrm{MHz}$ - D.S. .
Tektronix $2213-60 \mathrm{MHz}$ Dual Channel

Tektronix 2335 Dual trace 100 MHz (portable).
Tektronix $2445150 \mathrm{MHz}-4$ Channel...........
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ Channel
Tekronix $2225-50 \mathrm{MHz}$ dual $\mathrm{Ch} . .$.
Tektronix $455-50 \mathrm{MHz}$ Dual Channe
Tektronlx $464 / 466-100 \mathrm{MHZ}$ An storage
Tektronix $465 / 465 \mathrm{~B}-100 \mathrm{MHz}$ dual ch .

Hewlett Packard 4953A - Protocol Analyse
Hewlett Packard 432A - Power Meter (with 478A Sensor
Hewlett Packard 435A or B power Meter (with 8481 AB484A)
ewlett Packard 4948A. "(CiN
Hewlett Packard 4261A - L.C.R. Meter (Digital).
Hewlett Packard 42718 - L.C.R. Meter (Digital).
Hewlett Packard 5420A Dighal Signal Analyser
Hewlett Packard 5335A.
Hewlett Packard 5335A - 200MHZ High Pertormance Systems Counter
Hewlett Packkrd 5342A - Frequency Counter 18 GHZ
Hewlett Packard 5342A - Microwave Frequency Counter (18 GHz)
Hewlett Packard 5314A . (NEW) 100 MHZ Universal Counter.
Hewlett Packard 5183 - Waveform Recorder...
Hewlett Packard 5238A Frequency Counter
Hewlett Packard 5238A Frequency Counter 100MHz
Hewlett Packard 5370A . 100 MHz Universal Timer
Hewlett Packard 5370A - 100MHz Universal Timer/Counter
Hewlett Packard 5385A Frequency Counter - 1 GHz - (HP1B)
Hewlett Packard 5385A Frequency Counter - 1GHz - (HP 1B)
with OPTS 001/003/004/005....................

Hewlett Packard 6623A Triple output system power s
Hewlett Packard 652 A . System P.S.U. 20v.25a
lewlett Packard 6253A Power Supply 20V-3A Twin
Hewlett Packard 6181C D.C. current source
Hewlett Packard 6266 BB Power Supply $40 \mathrm{~V}-5 \mathrm{~A}$
Hewlett Packard 6271 B Power Supply $60 \mathrm{~V}-3 \mathrm{~A}$
Hewlett Packard 6271B Power Supply 60V-3A
Hewlett Packard 6002 A - Autoranging P.S.U. 50 V - 10 A
Hewlett Packard 6002A - Autoranging P.S.U. 50V - 10A
Hewlett Packard 6034 A - O.60V-10A System P.S.U....

HEWLETT PACKARD 6261B

MANY MORE ITEMS AVAILABLE

SEND LARGE S.A.E. FOR LIST OF EQUIPMENT
ALL EOUIPMENT IS USED
WITH 30 DAYS GUARANTEE.
PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING - CARRIAGE \&. VAT TO BEADDED
$\Sigma 2995$

$\Sigma 2750$
 rom $£ 750$
Hewlett Packard 8403A - Modulator Sig Gen 10 KHZ-2.6 Ghz
Hewlett Packard 86600 - Synthesised
Hewlett Packard 9444A - Tracking Generator
Hewlett Packard 8620C Sweep oscillator maintram
Hewlet Packard 8750A Storage normaliser
Hewlett Packard 8684A 5.4GHz to 12.5 GHz Sig-Gen
Hewlett Packard 8620C Sweep oscillator maintrame
Hewlett Packard 8620C Sweep oscillator maintrame

Hewiet Packard 853A with 8559A - (0.01-21GHZ).
Hewlett Packard 8565A - $0.01-22 \mathrm{GHz})$
Hewlett Packard 8684 A 5.4 GHz to 12.5 GHz Sig -Gen
Hewlett Packard 8903A - Audio Analyser (20Hz -
Hewlen Packard 8958A - Cellular Radio Intertace
Hewlett Packard 8901A - Modulation Analyser.
Hewlet Packard P382A Variable Attenuator
Hewlett Packard 117298 - Carrier Noise Test Set
Krohn-Hite 2200 Lin/Log Sweep Generato
Krohn-Hite 4024A Oscillator.
Krohn-Hite 6500 Phase Meter
Marconl 2432A 500 MHz digital freq. meter
Marconl - 2019A - 80 KHz - 1040 MHz - Synthesised Signal Generator
Marconi 2871 Data Comms Analyser
Marconi 6960 ($\$ 6910$ Head) - Microwave Power Meter
Marconi $2018-80 \mathrm{KHz}-520 \mathrm{MHz}$ SynthesisedAM/FM Signal Generato
Philips PM 516710 MHz function gen...
Phillips 5190 L.F. Synthesiser (G.P. I.B.
hillips 5390 Programmable RVF Signal Gen (1020 MHZ
Philips (5518-TX) - TV Pattern Generator
Racal Dana 9242 D Programmable PSU 25V-2A
Racal Dana 9246 S Programmable PSU 25
Racal Dana $310040-130 \mathrm{MHz}$ synthesiser.
Racal Dana 9081 Synth. sig. gen. 520 MH
Racal Dana 9084 Synth. sig, gen. 104 MHz
Racal Dana 9303 R/F Level Meter \& Head........
Racal Dana 9917 UHF frequency meter 560MHz
Racal Dana 9302A R/F millivoltmeter (new version)
Racal Dana 9082 Synthesised am/m sig gen (520 MHz)
Racal 9035 Low Distortion Oscillator
Racal 9301A - True RMS R/F Millivoltmete
Racal $9921-3 \mathrm{GHz}$ Frequency Counter
Rohde \& Schwarz AMF 2 - TV Demodulator
Rohde \& Schwarz LFM 2-60 Mhz Group Delay Sweep Gen
Rohde \& Schwarz UPSF 2 - Video Noise Meter
Rohde \& Schwarz - Scud Radio Code Test Set
Rohde \& Schwarz SUF 2 Noise Generato
Schafiner NSG 203A Line Voltage Variation Simulator
Schaffner NSG 222 Interferance Simulator
Schaffiner NSG 223 Interferance Generator
Schlumberger S.l, 4040 Stabilock - High accuracy 1 GHz Radio Test Sel
Schlumberger $4031-1 \mathrm{GHz}$ Radio Corms Test Set
Schlumberger 27201250 MHz Frequency Counter..............
and arbitrary wavelorm generator.........................
Systron Donner 6030 - Microwave Frequency Counter (26.5 GHz)
Tektronix TM5003 + AFG 5101 Arbitrary Function Gen
Tektronix 1240 Logic Analyser
Tektronix 651 HR Monitor.
Tektronix DAS9100 - Series Logic Analyser
$\begin{array}{r}.2250 \\ -5250 \\ \hline\end{array}$
.2450
§995
$\varepsilon 1500$
$\varepsilon 1950$
$£ 1950$
1950
$£ 200$
ع150
ع200
$\begin{array}{r}2220 \\ \mathbf{C 2 2 5} \\ \hline\end{array}$
Hewlett Packard 7550A - 8 Pen Plotter A3/A4

Power Supply 20v-50A £450 Discount for. Quantities

1

Figure 1: superconducting magnet levitation

We have probably all had those dreams where one floats effortlessly across the surface of the earth. Some mystics even claim to be able to do it, although no-one has actually seen them floating through the countryside, and their techniques seem to rely more upon the effects of excessive ascetic zeal or drug taking than on science. But then we all know that gravity ensures that, barring the use of a great deal of energy, or of helium-filled balloons, or various aerodynamic effects, we will always be firmly placed upon the earth's surface. And, as we all know from painful experience of falling down, gravity is a force to be reckoned with. Anti-gravity devices may be beloved of science fiction writers and film makers, but they are totally outside the range of our current knowledge. So how is it that at various experimental sites across the world there are devices weighing many tons that can float a few centimetres above the ground without the aid of jet engines, helium, or aerodynamic surfaces? The answer lies in the use of magnetic fields to generate repulsive forces to create levitation. It is the well known effect that we discovered as kids playing with a couple of magnets, the fact that like poles repel

Figure 2: superconducting magnet based guidence

Figure 3: superconducting magnet based propulsion

and opposite poles attract. The force of this repulsion and attraction is sometimes so strong that it is virtually impossible to push two like poles together.

Floating on magnets

The forces of repulsion and attraction between two magnets or between a magnet and a piece of iron can be enormous, capable of lifting many times the weight of the magnet itself. We only have to think of the electromagnetic grabs used in scrap yards to lift and move tons of scrap iron. In a reverse manner it is therefore reasonable to think of using magnetic repulsive force to lif. or, in other words, float quite heavy objects. You can prove this in a simple experiment: if you place two bar magnets wth like poles together in a tube of sufficiently small dimensions to keep their ends in alignment the top magnet will 'float' above the bottom magnet. You can then add a considerable weight to the top magnet before the 'float' gap is closed completely.

This type of observation goes back hundreds of years, long before electricity was discovered, and it is not surprising therefore that the cencept of using magnetic repulsion in some form of transport system is equally old. However, any attempts to put these ideas irto practice using conventional permanent magnets were doomed because of the inherent instability of magnetic fields. Note that in the above experiment we had to keep the two magnets in alignment using a tube (see Box 1 for an explanation of the instability problem). This means that without severely constraining movement it is impossible to build, say a "maglev" - the term used by magnetic levitation researchers all over the world for many years now - train, using conventional permarent magnets.

With the discovery of electromagnetism there was renewed interest in the concept, but all attempts were again doomed to failure by the same froblems of instability. Nevertheless, at the same time, engineers and scientists managed to harness the forces of magnetic repulsion/attraction in the electric motor. Here, a number of electromagnets built into the rotor are alternately switched in polarity using a commutator, so that the rotor electromagnets alternately repel and attract the poles of a fixed permanent magnet, the resultant forces generating a rotation of the rotor. In an electric motor the instability problem does not arise because the entire structure is fixed in position using bearings on the rotor shaft.

The development of electronics meant that the mechanical assembly of commutator and brushes used in conventional electric motors could be replaced by electronic switching techniques. An example of this is the stepper motor. But, for

Figures 5a \& 5b: construction of a magnetic levitation frack using multiple levitator
the developers of maglev transport systems, this also meant that it was possible to use the electric motor principle to generate linear motion. Linear motion
 systems were developed in the early 1960 s (primarily in the UK) by simply opening out the electromagnetic coils in a motor to produce a linear sequence of magnets, forming what was called a linear motor. By electronically switching these coils in the same type of sequence used in an electric motor it was possible to move a magnetic object along the line of coils, floating just above them. Reverse the sequence and the object would move in the
other direction. This was the first practical step towards a maglev train, it demonstrated all the key requirements for such a system: levitation above a track, and motion along the track with controllable direction and speed.

The Japanese approach

The British pioneered the technology in the 60 s and early 70 s, but all funding was cut off in an ill-judged bout of Government cost-autting during the early 70s. But, despite this setback, there has been ongoing research in both Japan and Germany for the last 30 years as we said before (see Table 1 for a history of Japanese maglev development). Of these two countries Japan has made by far the biggest commitment to research and development of a full commercial maglev train.

Japanese engineers working on this project at RTRI have developed a system which uses a combination of superconducting magnets and the old British developed linear motor technology. Using this combination they have built and designed a series of prototype maglev vehicles that fulfil the designers' aims of super high-speed, high safety factors, high reliability, low environmental impact and minimum maintenance.

The research and development program for Maglev (the name given to the project which combines superconducting technology and linear motors) has been underway at RTRI since 1970. The first few years were spent on laboratory tests to verify the feasibility of running such a train at speeds of up to $500 \mathrm{~km} / \mathrm{h}$. The success of these early tests led in 1975 to commencement of the construction of a $7-\mathrm{km}$ test track. This facility was opened in April 1977 and has subsequently enabled
the engineers to test full sized prototypes. The Miyazaki test track is located in Miyazaki Prefecture. It has a length of 7 km and minimum radius curvature of $10,000 \mathrm{~m}$. On this test track in 1979, an early prototype model, the ML-500, attained $517 \mathrm{~km} / \mathrm{h}$ using an inverted-T shape guideway. The guideway was modified to U shape in the next year. A manned two-car vehicle, the MLU001, first ran in November 1981, and registered a speed of $400.8 \mathrm{~km} / \mathrm{h}$ in 1987.

The latest vehicle, the MLU002N, was unveiled in 1993 and is running on the Miyazaki test track today. It reached a speed of $431 \mathrm{~km} / \mathrm{h}$ last January. One of the main aims behind the current development work being conducted by RTRI is enhancement of the reliability and durability of the superconducting magnet (SCM). The SCM suffers from external magnetic disturbances caused by the presence of the ground coils and from mechanical vibrations generated by vehicle dynamics. These disturbances cause quenching troubles, or the sudden disappearance of magnetomotive force of the SCM. RTRI's engineers have been studying these problems with a comprehensive range of test studies, and have, as a result, developed countermeasures such as stiffening the SCM and decreasing the total current density of superconducting coils. Besides the problems associated with the SCM the designers are also working on a whole range of developments, such as aerodynamic brakes that use the aerodynamic drag of panels on the car roof; disc brakes for high-speed running; ground coils which consist of sidewall levitation coils and double-layer propulsion coils; a high-power supply system for pulse width modulation (PWM) inverters using gate turn-off (GTO) thyristors, and turnouts for high- or low-speed passing.

The success of the Maglev project prompted the Japanese Government to increase funding in 1990, and at the same time authorise the construction of a new test line which should allow the designers to take development right up to the final design of the first Maglev systems for public use. The new test line named Yamanashi Maglev Test Line is now under construction. The Yamanashi test line is being built in the Yamanashi Prefecture and It is expected that the first test run will start in spring, 1997. Two trains will be able to run at a speed of about $500 \mathrm{~km} / \mathrm{h}$ (the target speed is over $550 \mathrm{~km} / \mathrm{h}$) on the Yamanashi test line which has a curve section (minimum radius curvature of $8,000 \mathrm{~m}$), a steep-slope section (maximum gradient of 4\%), a tunnel section, and double-track section (5.8 m between track centres). In addition, the track site will incorporate a planned facility for performing operational simulation tests that involve vehicles, power conversion stations, train control systems, guideways, and environmental considerations.

How does a Superconducting Maglev actually work?

The current Japanese development work on a maglev train is based upon the use of both linear motor technology and superconducting magnet technology. These are combined into a very complex system which has some components mounted in the track and others in the moving train. Mounted in the train bogie units are the superconducting magnets, and in the walls of the U-shaped track is a sequence of figure eight shaped electromagnetic coils that are linked under the track, or guideway, as it is more commonly called.

We can divide the operation of the system into three distinct areas: magnetic levitation, lateral guidance and propulsion. The levitation height is about 10 cms , with similar gaps between the
train and the guideway side walls, and as we have already seen the design speed for the system is up to $550 \mathrm{Km} / \mathrm{hr}$. These are design tolerances and speeds that have pushed the technology to the limit (we will be looking at some of these design problems later on in this article).

Magnetic levitation (figure 1) depends upon the interaction of the coils mounted on the guideway walls and the bogie mounted superconducting magnets. The figure-eight shaped levitation coils are installed on both the side walls of the guideway in a position so that when the on-board superconducting magnets pass at high-speed they are several centimetres under the axes of these coils. The result of having a superconducting magnet passing each pair of coils is that an electric current is induced within the coils, which then temporarily act as electromagnets.

The coils thus generate two magnetic forces which act at the same time, on the one hand pushing the superconducting magnets upwards, and on the other hand pulling them upwards, thereby levitating the maglev bogie. With such a small gap between the guideway side walls and the maglev vehicle lateral guidance is extremely important. At very high speeds even a slight scraping of the vehicle against one wall due to, say, the pressure of a side wind, could be catastrophic. This means that it is important that the control system is as foolproof, simple, and completely automatic as possible. The technique which the Japanese team have employed certainly meets these criteria. What the designers have done is to connect the two levitation coils facing each other (figure 2), forming a circuit loop. When a maglev vehicle with its superconducting magnets is displaced laterally, an electric current is induced in this loop, with the result that a repulsive force acts on the levitation coil near the bogie and an attractive force acts on the other levitation coil that is farther apart from the bogie. The two forces thus automatically pull the train back towards the centre of the track.

Forward or reverse propulsion of a maglev train is achieved by using the linear motor technique (figure 3). This means that a repulsive force and an attractive force induced between the bogie mounted superconducting magnets are used to propel the vehicle in the desired direction. To provide the required magnetic repulsion and attraction the propulsion coils located on the guideway side walls are energised by the three-phase alternating current from a trackside substation.

These propulsion coils create a shifting pattern of magnetic fields on the guideway, the control of which can determine not only direction but speed. Faced with this shifting pattern of magnetic fields, the bogie mounted superconducting magnets are both attracted and pushed by the shifting field, thus propelling the maglev train.

Design considerations for a commercial maglev system - Aerodynamic Issues

High-speed $(500 \mathrm{Km} / \mathrm{h})$ trains using magnetic levitation have a whole host of unique design problems which must be overcome prior to the development and use of commercial systems. One of the most important of these is the aerodynamics of the vehicle.

The technological success of high speed maglev vehicles, like most aerospace systems, hinges upon a good aerodynamic design - a very large part of the design process is influenced by aerodynamic considerations: Such considerations have a major role in determining propulsion techniques, structural design, and control system

Continued on P. 16

DC TO DC CONVERTERS
DRM58 input 10－40vdc output $5 \mathrm{~V} 8 \mathrm{~A} £ 15$
ORM 128 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM 158 input $20-40$ vadc output 15 V 8 A $£ 50$ DRM248 input 29－40vdc output 24V 8 A §40 DRS123 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS 153 input $20-40 \mathrm{Vdc}$ output $15 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS243 input $29-40 \mathrm{Vdc}$ output $24 \mathrm{~V} 3 \mathrm{~A} £ 15$ SOLID STATE RELAYS
CMP－DC－200P 3－32vac operation，0－200vad 1 A $£ 250$ SMT20000 3 3－24vdc operation， $28-280$ vac 3 A $£ 4.50$ SMT 20000／4 3 －24vdc operation，28－280vac 4A $£ 5.00$ ZRA6025F 28－280vd／ac operation，28－280vac 25A 57.00 200 WATT INVERTERS Nicely cased unts 12 V Input 240 V output 150 wat continuous， 200 max．EA9 ref LOT62．
6．89W HELIUM NEON LASERS New Units，$£ 65$ fef LOT 33 COINSLOT TOKENS You may have a use for these？mixed bag of 100 tokens $£ 10$ rell LOT 20 ．
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X－ray machine！ Eflective device，X－ray sealed assemblies．can be used for expertmental puposes Not a toy or for minorsi $£ 6 /$／sel．Rel FIXP1． TELEKINETIC ENHANCER PLANS Mysity and amaze your indends by creating motion with no know apparent means or cause， Uses no electrical of mechanical connedions，no spedial gimmicks yetproducesp ostive motion and effect Excelient for scienceprogects． magic shows，party demonstrations or serious researeh development od this strange and amazing phyctic phenomenon． E4／set Re1 FTKE1．
ELECTRONIC HYPNOSIS PLA NS \＆DATA This data shows several ways to put subjects under your control．Induded is a ful volume reference text and several construdion plans that when
assembled can produce highly efrecaive stimuli．This material must assembled can produce highly erfective stimuli．This materal must
be used cautiously．It is for use as entertainment at parties etc only． be used cautously．It is for use as entertainment at pa
by those expenienced in its use．$£ 15 /$ set．Rei FIEH 2
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti－ gravity effect．You can actually build a small mock spaceship out of simple matentials and without any visible means－cause th to levilate
E10／set Ref FIGRA1． WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge，expenmem with extraordinary HV elfects，＇Plasma in a jar．St Elmo＇s fire，Corona，excellent science project or conversation piece．£5／set Rel F／BTC1／G5．
COPPER VAPOUR LASER PLANS Produces 100 mm of visible green light．High coherency and spectral quality similar to Argon laser but easier and less costly to build yef far more efficient

VOICE SCRAMBLER PLANS Minature solld state system turns speech sound into indecipherable noise that cannot be understood without a second matching unt．Use on telephone to prevent third party listening and bugging．E6／set Ref FNS9
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that will completely disrupt TV picture and soun
works on FM tool DISCRETON ADVISED，E8／set Ret FTJ5．
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies，warm and hot spdts，heatieaks etc．Imtended for secunty，law enforcement，research and deveiopment，etc．Excellent secu
device or very Interesting science proiect．EB／set Ref $F / B H T 1$ ． device of very Interesting science project EB／set Rel F／BHTT， BURNING，CUTTING CO2 LASER PLANS Projects an Invisible beam of heat capable of burning and melting maternals over a considerable distance．This laser is one of the most efridemt． a considerabte distance．This laser is one of the most er der
converting 10% input power Into useful output．Not only isthis device a workhorse in welding．curting and heat processing matenals butit is also a likely candidate as an effective dlrected energy beam weapon against misslies．aircratt，ground－to－ground，etc．Partide weapon against missies．arcraty groun the to blast a channel In the atmosphere for a high energy stream of neutrons of other
paricices The device is easily applicable to burning and etching wood，cutting，plastics．textiles etc $£ 12$ set Ret F／LC7．
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept Objects float in air and move to the touch．Deffes gravity， amazing gif，conversation plece，magic tick or science profect $£ 6$／ set Ret FIANTIK
ULTRASONIC BLASTER PLANS Laboratory source of sonlc shock waves Blow holes in metal，produce＇cold＇steam，atomize liquides．Many cleaning uses for PC boards，jewllery，coins，small
ULTRA HIGH GAIN AMPIST ETHOSCOPICMIKEISOUND AND VIBRATION DETECTOR PLANS UItrasensitive device enables one to hear a whole new word of sounds Listen through walls，windows，foors，etc．Many applicatoons shown，from law
enforcement，nature listening，medical heantbeat．to mechanical entorcement，nature listening．
devices $E 6 /$ set Rel $F / H G A 7$
ANTI DOG FORCE FIELD PLANS Mighly effective crcuit produces tme variable puises of accoustical energy that dogs cannol tolerate $\subset 6 /$／set Ref FIDOG2
LASER BOUNCE LISTENER SYSTEMA PLANS Allows you to hear sounds from a premises without gaining access．$£ 12 /$ sen Ref F／LLIST1
LASER LIGHT SHOW PLANS Dolt yourself plans show three methods．$£ 6$ Rel F／LLS
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld，has large transducer and battery capacity with extemal controls．E6／set Ref F／PSP4
INFIMTY TRANSMITTER PLANS Teiephone ine grabberf room monitior．The ultbmatein home／oflice secuity and saifety＇simple to usel Call your home or ofice phone，push a secret tone on your telephone to access either A）On premlses sound and voices or B） Existing conversation with break－In capability for emergency messages £ \ddagger Rei FTELEGRAB．
BUG DETECTOR PLANS Is that someone getring the goods on you？Easy to construct device locates any hidden source of radio energy！Sniffs out and finds bugs and other sources of bothersome

WOS VRMITMIPTON BRAMCI NOW OREN AT WORCEATERST WIIAMIION TML． 0190222039

Interference．Detects low，high and UHF trequencies E5／set Ret Ft BD1．
ELECTROMAGNETIC GUN PLANS Projects a metal doject a considerable distance requires adult supevision $£ 5$ tef FEML2
ELECTRIC MAN PLANS，SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND：£5／set Rer FIEMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and volces．open windows．sound souices in＇hard to get or sounds and voces．open windows．sound sources in hard io get or
hostile premises．Uses satelifie technology to gather distam sounds hostile premises．Uses sateliite technology lo gatmer distami sounds
and focus them to our uttra sensitive electronics．Plans also show an and focus them to our ultra sensilive electionics．
ootional wireiess link system．EB／set ref FIPM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VCLTAGE，SOLID STATE TESLA COIL AND VARIABLE 100.000 VDC OUTPUT GEMERATOR PLANS Operates on 9 －12vdc，many possible experiments $£ 10$ Rei FA－VMM TCL4
INFINTTY TRANSMITTERS The ultumate＇bug＇nits to any phone or line，undelectable，ilisten to the conversations in the room Trom anywhere in the wortdil 24 hours a day 7 days a weekj just call the number and press a button on the mini comfroller（supplied）and you can hear everything！Monitor conversatons or as long as you
choose $£ 249$ each，complete with leads and mini controllent Ret choose $\mathbf{2 2 4 9}$ each，complete win leads and mini controlien Ref
LOT9．Undetectable with noma RF detectors，Atied in seconds．no LOT9．Undetectable with normal
 120.2 A ．There is also an opyonal 3.3 V 25 A ral available $120 / 240 \mathrm{~V} \mathrm{~V}$ P．Cased，175ㅍ90 $\times 145 \mathrm{~mm}$ ．IEC iniet Suitable for PC use（ 6 d／drive connectiors $1 \mathrm{~m} / \mathrm{oa}$ ard）．E10 ref PSU1．
VIDEO PROCESSOR UNTTST／6V 10AH BATTS／12V 8A TX Not too sure what the function of these units is but they certairy make good strippers！Measures $390 \times 320 \times 120 \mathrm{~mm}$ ，on the front are controls for scan speed，scan delay，scanmode，loads of connections on the rear．Inside 2×6 V 10 Af sealed lead acid batts，pct＇s and a 8 A？ 12v torroidial transtorner（mains in）．Condition not known，may hat
one or wo broken knoos due to poor storage $£ 1750$ rel vP2
RETRON NIEHT SIGHT Recognition of a standing man at 300 RETRON NIGHT SIGHT Recogniblon of a standing man at 300m
in $1 / 4$ moonlight，hermatically sealed，runs on 2 AA battenes， 80 mm F1．5 lens．20riw infrared laser induded．$£ 325$ ref RETRON．
MINI FM TRANSMITER KTT Very high gain preamp，supplied complete with FET electret mictophone Designed to cover 88－11）8 Mhz but easily changed to cover 63.130 Mhz ．Works with a common 9v（PP3）battery．O．2W RF．£7 Ref 1001.
3－30V POWER SUPPLY KTT Variable，stabilized power supply for lab use．Shon circuitp protected，suitable for protesional or amateur use 24v 3 A transformer is needed to complete the kn $£ 14$ Ref 1007. 1 WATT FM TRA NSMITTER KTT Supplied with plezo electic mic．\＆－30vdc．At $25-30$ you will get nearly 2 watts $£ 12$ ret 1009. FM／AM SCANMER KT Well not quite，you have to turn the knob your self but you will hear things on this radio that you would not hear your sel fout you will hear things on this radio that you would not hear
on an ordinary radio（even TV．Covers $50-160 \mathrm{mhz}$ on both AM and on an ond inary racio（even TV．Covers $50-160 \mathrm{mhz}$ on
FM．Bullit 5 watt amplifier，inc speaker．$£ 15$ ret 1013 ．
FM．Bull in 5 wath amplifier，inc speaker．£15 rer 1013 ．
3 CHANNEL SOUND TO LIG KTI KTT Wiretess system，mains operated，sefarate sensitivity adjustmem for each channel， $1,200 \mathrm{w}$ power handling．microphone Included．£14 Ref 1014.
4 WATT FM TRANSMITER KIT Small but powerful FM ransmitter， 3 RF stages．mierophone and audio preamp included． £20 Ref 1028.
STROBE LIGHT KTT Adfustable from 1 －60 hz（a lot laster than conventional strobes）．Mains operated．$£ 16$ Ref 1037.
COAB BINATION LOCK KT 9 key，programmable complete with keypad，will switch $2 A$ mains Sv dc operation．£10 ret 1114
PHONE BUG DETECTOR KIT This device will warn you if somebody is eavesdropping on your line．$£ 5$ rel 1130 ．
somebody is eavesdropping on your line． EE tel 1130
ROBOT VOICE KIT Imeresting draut that distorts your valcet adjustable．answer the phone with a diferentvoloel 12 vdc $£ 9$ rel 1131 TELEPHONE BUG KTT Smal bug powered by the phone ine， starts transmitting as soon as the phone is picked upl $£ 8$ Rel 1 1 35 ． 3 CHANNEL LIGHT CHASER KT 800 watts per channel， speed and direction controlssupplled with 12 LEDS（you can it triacs instead to make het mains，not suppliee） $9-12 v 0 c$ £ 17 ret 1026. 12 V FLOURESCENT LAMP ORNERKTTLight up 4 foottubes from your car batteryl ov 2a transiomer also required．©8 ref 1069. VOXSWITCH KIT Sound actvated swith hiceal lor making bugging rape fecorders etc，adustable sensifivity．E8 fet 1073.

Check out our WER SITE
https／／www．pavillon．oo．uk／bull－eleotrleal
PREAMP MDXER KTT 3 Input mono mixer，sep bass and treble conirols plus individual level controls．18voc，input sens 100 mA ．£15 ref 1052.
－SOME OP OUR PRODUCTE MAY BE UNLICENSABLE IN TYE US
BULL ELECTRICAL
250 PORTL AND ROAD REVV，SH8SEX
 WHI ONDRR TERMSH CANH，PO OR CMISQU

WTTHORDER PLUE \＆P\＆P RLUSVAT
 WhiAhium wheres vis switch AMERHCAN EXCFES5

ZXI： 01273263500
IAN 01273323077
E－mail bull＠pavilion，co．uk

SOUNDEFFECTS GENERATORKTT Produces sounds ranging
from dird chips to sirens Complete with speaker，add sound effects from drd chips to sirens Complete
to your projects for just E9 ref 1045
16 VATT FM TRANS＊inTER（BUILT） 4 stage high power preanp required 12 －18vdc．can use ground plane．yagi or open dipole．£69 ref 1021
HUNIDTY METER KTT Builds into a precision LCD humidity meter， 9 ic design．pcb，icd display and all components Included．$£ 29$ PC TMER KTT Four channet output controlled by your PC，will switan high current mains with relays（supplied）．Software supplied so ysu can program the channets to do what you want whenever you want Minimum system configeration is 29
FM CORDLESS㱕ICROPHONEThis unitis an FM broadcasting staton In minature． 3 transistor transmitter with electuet condenser mic－fet amp desgn resutin maxmum sensitivity and broadirequency response．90－105mhz $50-1500 \mathrm{hz}, 500$ foot range in open countryl PP3 battery required．£ 15.00 ref 15P42A
MASNETIC MARBLES They have been around for a number of yeam but stil give itse to curiosity and amaz ement．A pack of 12 is just
E3． 9 rel GIR20
NICKEL PLATING KIT Proffesional electroplating kit that will transtom rusting parts into showpieces in 3 hours！Will plate onto
stee tron，bronzo，gunmetal conper welded siversadderedorbazed stee ，tron，bronze，gunmetal．copper，welded，siver soddered orb bazed joints．Kttincludes enough to plate 1,000 sqlinches．You will also need a 12 v supply，a container and 2 12v light bulbs．£39．99 ref NiK39．
Minature adjustable timers， 4 pole e／o output 3A 240 v HY1230S， 12 VDC adjustable from 0－30 secs．£4．99 HY1260M， 12 VDC adjustable from $0-60$ mins．$£ 4.99$ HY2405S， 240 v adjustable from $0-5$ secs．$£ 4.99$ HY24060m， 240 V adjustable from 0.60 mins ．$£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder uses micro ca ssette complete with headphones $£ 28.99$ ref MAR290 PCWER SUPPLY fuly cased win mains and op leads 17v DC 90 mA output．Bargain price $£ 5.99$ rel MA C6P9
9v DC POWER SUP PLY Standard plugin type $150 \mathrm{ma} 9 v \mathrm{DC}$ with lead and $D C$ power plug．price for two is $£ 2.99$ ret AUG $3 P 4$ ． CCMPOSTTE VIDEO KTT ．Converts composite video into sepa ratu H sync．V sync，and videc． 12 V DC．$£ 8,00$ REF：MAG8P2． FUTURE PG POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ ， 4 arve connectors 1 mother board connector．150watt，12v fan，lec inver and onforl switch．$£ 12$ Ref EF6．
VENUSFLYTRAPK
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310$ 130mA．Bargain price just $£ 5.99$ ea REF MAG6P 12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for 54.99 refMAC6P13 ideal for expenimenters 30 m for $£ 1299$ rel MAG13P ROCK LIGHTS Unusual things these．twopleces of rock that glow when rubbed togethen bellved to cause rainlE3 a pair Rel EF29 3＇by 1＇Aliorphous 3OLAR PANELS $14.5 v, 700 \mathrm{~mA} 10$ waths，aluminium frame，screw lemminals．£44．95 ret MAG45．
ELECTRONIC ACCUPUNCTURE KTT Bulldsintoan electronic version Instead of neediles！good to expenment with． $\mathbb{\Sigma} 7$ ref 7 P30 SHOCKING COIL KIT Bulld this lithe batlery operated deviceInto all sorts of things，also gets worms out of the groundl $£ 7$ rel 7 P36 FLYING PARROTS Easily assembled kit that builds a parrot that adually flaps its wings and fiesi 50 m range $£ 6$ re1 EF2．
HIGH POWER CATAPULTS Hinged amn brace for stability tempered steel yoke，super strength latex power bands．Departure speed of ammunitionis in excess of 200 miles per hourl Range of over 200 metres $£ 7.99$ ret R／9
BALLON MAMUFACTURING KTT Bettish made small bloo blows into a large，longlasting balloon，hours of funi£3．99 ref GIEE99R 9．0－9V 4A TRANSFOR明ERS，chassis mount $£ 7$ rel LOT19A． 2.6 KILOWATT INVERTERS，Packed with batteries eto but as they weigh about 100kg CALLERS ONLYI £120 N EGA LED DISP LAYS Build your seffa clock or something with thesemega 7 seg displays 55 mm high． 38 mm wide 5 on a pct for just E4．99 ref LOT16 or a bumper pack of 50 displays for Just $£ 29$ ref LOT17．

CLEARANCE SECTION，MINIMUM ORDER £15，NO TECHNICAL DETAILS AVAILABLE， WO RETURNS，TRADE WELCOME

2000 RESISTORS ON A REEL（SAME VALUE）99P REF BAR340 at least 200 CApactors（SAME VALUE b9P ref bar 342 INFRA RED REMOTE CONTROLS JUST B9P REF BAR333 CIRCUTH BREAKERS，OUR CHOICE TOCLEAR G日P REF BAR335 MICROWAVE CONTROL PANELS TO CLEAR E2 REF BAR 320 a TUBES OF CHIPS（2 TYPES OUR CHOICE）SOP REF BAR305 IOTTE RY PREDICTOR MACHINEII JUST E1．50 REF BAR313 WELLALUROVERELECTRIC H／LAMP LEVELLERE2 REF BAR3 SINCLAIR C5 $16^{\prime \prime}$ TYRES TO CLEAR AT JUST 7SP REF BAR31B LARGE MAINS MOTORS（NEW）TO CLEAR AT 75P REF BAR310 MODEMS ETC FOR STRIPPING E2．50 EACH REF BAR324 110 V LARGE MOTORS（NEW）TO CLEAR AT 50P REF BAR33 aODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323 OX4000 GAMES COSOLES JUST E4 REF BAR 320 SMART CASED MEMORY STORAGE DEVICE，LOADS OF BITS INSIDE，PCB，MOTOR，CASE ETC．BUMPER PACK OF COMPLETE UNTTS TO CLEAR AT E250 FOR 5）REF BAR 330 2 CORE MAINS CABLE 2MLENGTHS PACK OF 4E1 REFBAR337 ${ }^{\circ} \mathrm{PC}$ USERIBASIC MANUALS，LOADS OF INFO．E1 REF BAR 304 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR34
3 3 ${ }^{\text {m }}$ 3CORE MAINS CABLE AND 13 PLUG．BOP REFF BAR 325
WE BUY SURPLUS STOCK

FOR CASH

BUYERS DIRECT LINE 0802660377

FREE CATALOGUE
100 PAGE CATALOGUE NOW AVALLABLE，45P STAMPS．

Continued from P. 14
requirements, not to mention the manufacture of the vehicle, its unit cost, and its life cycle cost. The aerodynamic problems involved in the design of maglev vehicles differ greatly from that of aircraft and conventional trains. The most important of these problems is the need to minimise the aerodynamic drag. At proposed speeds of $500 \mathrm{Km} / \mathrm{hr}$ or more, which in aircraft terms is the same as 0.4 times the speed of sound (Mach 0.4) aerodynamic drag will be the largest component of drag. At lower speeds it is magnetic drag which is predominant. Of course aerodynamic drag on a maglev vehicle will not affect vehicle range (as is the case for aircraft) since power is derived through the guideway. However, lower drag will means less energy expended and therefore lower operating cost.

Unlike an aircraft, the suspension and control on a maglev vehicle is performed using magnetic and not aerodynamic forces. This means that at cruise conditions the vehicle weight is primarily supported by magnetic lift. From the design point of view this means that there is no need to try and maximise the value for aerodynamic lift. Instead, the aerodynamic design must ensure that ground effect forces do NOT create any conditions which will degrade system performance. Ground effect is a very important force in high speed vehicles travelling on, or very close to the ground.

It can produce a suction force (negative lift) due to the higher velocity underbody airflow. On Formula 1 racing cars, for example, maximisation of this suction force is one of the aerodynamic design goals, as it gives them greater stability. However, ground effect will degrade the performance of a maglev system because it will decrease the levitation effect of the magnetic field and increase the levitation requirements, and the energy used.

The reverse type of aerodynamic force is the positive lift that is used by aircraft to achieve flight. This could be used to augment the magnetic levitation system, but at just a few centimetres above the ground it is too unreliable.

The designers of maglev transport systems are therefore aiming to counterbalance lift and ground effect to create a vehicle with zero lift. A zero lift design will minimise induced drag and therefore ease magnetic propulsion requirements. On aircraft, aerodynamic moments are used to reorient the lift vector thereby manoeuvring the plane, however, maglev vehicles simply follow their guideway. This means that on maglev vehicles aerodynamic moments will need to be counteracted with magnetic coupling forces and minimised in order to lessen magnetic control requirements. As far as aerodynamic shape is concerned it is very important that maglev vehicles are insensitive to crosswinds. It should be remembered that a 30 m long vehicle with 5 cm lateral guideway clearance can sustain only a 0.2 degree yawing angle with the guideway before making contact. Since yawing moment diverges with side slip angle, crosswinds will make the maglev vehicle highly susceptible to excessive lateral displacements. A good aerodynamic design will minimise this sensitivity, and thus reduce the cost for lateral directional control.

Design considerations for a commercial maglev system - The environment

The fact that the guideway used by maglev vehicles will be on average no more than 10 m above the ground brings with it additional aerodynamic design problems. Along most of the guideway's length the vehicle will be travelling at $500 \mathrm{Km} / \mathrm{hr}$, with the guideway going through urban and residential areas. This means that the vehicle must also be designed to minimise its aerodynamic disturbance on the surroundings. A maglev train travelling at high speed has the potential to generate a lot of noise.

Noise is derived from strong vortices and pressure waves produced by the airflow over the vehicle and through the vehicle/guideway clearance gap. This means that poor aerodynamic design could cause maglev to be an unwelcome environmental intrusion in many locations.

Noise also becomes an issue as a result of the close proximity to the ground. Aerodynamic noise is generatec from the vehicle's turbulent boundary layer, trailing vortices, and wake. In the US a noise limit of 73 dB at 15 meters from the vehicle centreline was set by the US Federal Railroad Administration. In addition to this, the design must avoid pooling of rain water, dirt, and debris in undesirable areas such as the air intake for the ventilation system. The shape of the vehicle and, to a greater degree, that of the track and tre region of interaction, must be laid out to avoid susceptibility to snow accumulation.

Design considerations for a commercial maglev system - Manufacture and economics

Because of the high technology involved, the enormous importance of aerodynamics, and the necessary tight manufacturing tolerances, maglev transportation systems are increasingly being viewed as a good business opportunity by aerospace companies looking to broaden their activities into other areas of commercial transportation, a factor which will undoubtedly give the newly revitalised US work on maglev a considerable advantage. Only the aerospace companies have the capability to handle the requirements for complex aerodynamic surfaces with their curvature continuity ard smooth transitions, surfaces which tend to be very difficult to manufacture.

The expertise of such companies in the use of diffe-ent manufacturing processes ranging from riveted aluminium to advanced composite materials will be very important. These requirements will affect the cost of production. More expensive materials will be needed, and surface smoothness and tighter tolerances will be more difficult to produce, and therefore also increase costs. However, high unit costs should be counterbalanced by low running costs and by the efficiency exhibited by such systems in moving people and goods rapidly over long distances.

Is there a future for maglev?

The great advantage of using magnetic levitation to 'float' something, such as a train, is that it virtually eliminates all the problems arising from friction in any system where sufaces are in contact with each other, like wheels on a track. This means much higher speeds, at lower energy consumption, lower mechanical wear, and fewer problems with heat derived from friction - indeed the virtual elimination of most moving parts.

In theory, a maglev train which has no physical contact with the ground should be capable of very high speeds, speeds which rival those of aircraft. Indeed, aerodynamics ane a very important consideration in the design of maglev transport systems. Current developments in Japan, now the norld's leaders in maglev research, have demonstrated speeds of up to $500 \mathrm{~km} / \mathrm{hr}$ with a full sized prototype. Besides a capability to travel at high speed, a maglev train should be extremely energy efficient since losses due to friction, heating etc are minimised.

With research currently concentrating on the use of superconducting magnets the efficiency should be even greater. Furthermore, compared with aircraft there will be no consumption of energy in order to climb to a cruising altitude. The operational efficiency and economic potential o- maglev transportation systems in an era of impending energy shortage and concern about the environment has meant that the technology has started to attract a lot of attention in the last year or so.

The British may have pioneered the technolocy in the 63s and early 70 s, however, the newest entrants, and probabl; the most important are the Americans. With the backing of the US Dept of Defence, the involvement of MASA, ard some of the other heavyweight US research organisations, we can look: forward to some interes ing developments before the end of the century. Who <nows, in a decade or two pernaps we will all be able to float across the countryside on a macnetic cushion.

Why not use a permanemt magnet suspension system?

The difficultles involved in achieving stable st spension olevilation are de ived form en inverse square law that relates force and distance.

This was firs: examined oy the Vistorian scentist Will am Earnshaw in his classic paper published in 1812, he shows methematically that it is impossible for a pole placed in a static field of force to have a position of stakle equilibrium when an inverse square law operates. This findamenta caculation is known as Earnshaw's theorer.

In the late 1930s the German scientist Braunbeck performed a similar a aalysis on unvarying megnetic anc electric fields, and deduced that suspensior or levitation is orly possible when materials have a relative permeability, mı_r <1 or epsilon_re1.
(To prove this, suspension has been acheved using diamagnetic materials, and as a result of the sffect of currents in the suspended objects.)

It thus follows from botn Earnshaw's theormm and B-aunbeck's a alysic, that stable suspensich or levitation is
impossible with a system of permanent magnets (or fixed current electromagnets) unless, of course, part of the system contains either a diamagnetic material (mu_r <1) or a superconductor (mu_r=0). It also follows that it is completely impossible to achieve levilation in electrostatic fields since there äre no known materials with epsilon_r<1.

For more information on the theory behind maglev systerns see: "Electromagnetic Levitation and Suspension Systems", B.V. Jayawant, Publishers: Edward Arnold, London, 1981.

Magnetic levitation circuitry - of the DIY type

The problem, from an amateur experimenter's point of view, with superconductivity projects is the requirement for buckets of liquid hellum. Pretty nasty stuff, and not that easy to obtain, not to mention the fact that it evaporates faster than you can use it. So, by and large,
supercenductivity experiments are a no-go area until we can all get cheap samples of high temperature superconductors that only need cooling in liquid nitrogen. This means, of course, that constructing a superconductivity maglev train in your back garden is out of the question.

However, do not despair, for there is a way in which we can achieve this type of levitation effect without superconductivity. It involves the use of an ingenious feedback system to create an electromagnetic system that behaves in much the same way as a superconducting magnet, a magnet that will repel BOTH ends of any bar magnet and can thus be used to 'float' such a magnet.

Such a device is actually quite simple to build, and it works at room temperature. The main component is an electromagnet. You could use a surplus one, but it is generally far easier to make your own. For the core use some 0.25 -inch iron rod (a bolt will do) at least an inch long. To make the coil you need to first of all construct a suitable former around the iron core and of sufficient dimensions to hold the wire coil in place. Use two 1 in diameter discs of thick cardboard with a 0.25 -in hole in the middle as the former ends, and some thin card wrapped into a tube around the rod as the centrepiece of the former.

Glue it all firmly in place before winding the coil. For this size of electromagnet the coil needs about 300 turns of 30 swg wire equse good quality enamelled copper wire, or even coated wife-wrap wire). Such an electromagnet will generate a fairly strong magnetic field given a supply voltage of around 9 to 12 V .

For a circuit (see figure 4 for example) you will need two power supplies, one with +9 V and GND, and the other with -9 V and GND. Both share a common ground (batteries could be used if operated for very short periods). The two power sucplies are needed to generate the polarity reversal within the electromagnet. The electronics are fairly straightforward, though make sure that the transistors and diodes are capable of handling the voltage as well as the current through the coil.

The Hal effect switch is the sort that is widely used in alarm systems (they are available from Maplin). The Hall effect swith is not mounted with the rest of the components but is positioned on one end of the electromagnet's core (hold it in position with some tape or: Blu-Tak).

When the unit has been assembled and the power applied, the end of the iron core on which the Hall effect
switch is mounted should repel any bar magnet, irrespective of polarity, that is brought close to it - the basis of any magnetic levitation system. Instability means that a single unit cannot be used to levitate a bar magnet. To do that you will probably need about six units mounted with their core ends (and attached Hall effect switches) at about 45 degrees to the horizontal and pointing towards each other, creating a magnetic 'trough' in which the bar magnet can 'float'. Two parallel rows of these colls and circuits will act as a simple maglev railroad track allowing a bar magnet to float along above them if it is gently pushed between the rows (figure 5). A circuit of this type aperates in the following manner: when power is applied' to the circuit the Hall switch is on and voltage is applied to the coil in a particular direction so that the tip of the coil's iron core 10 which the Hall switch is attached beccmes a north pole. However, the Hall switch is positioned on the core so that this polarity of magnetic field turns the switch off. When the switch is off, the direction of voltage is reversed. This means that the tip of the core becomes a south pole, and as a result the Hall switch turns back on. Of course this results in polarity switching back again. The result is that when this circuit is running the Hall switch turns on and off very rapidly, and the magnetic field rapidly switches back and forth.

This means that effectively each pole of the electromagnet exhibits an average zero magnetic polarity. But if we bring another magnet close to the Hall sensor then the situation changes, with feedback tyying to keep the zero polarity. This means that when no magnet is near the coil, the coil's average polarity is zero, but when a magnet is placed near the sensor the Hall switch adjusts the magnetic field to keep the sensor at zero polarity. This is exactly what happens in a superconductive magnet: it creates zero magnetic field inside itself and thus repels either pole of a permanent magnet. In other words our circuit is replicating the behaviour of a superconducting magnet, and not a drop of liquid helium in sight! In this circuit the coil-assemblies will. therefore repel a bar magnet regardless of whether it is an N or an S pole. When an N pole approaches the Hall sensor, the circuit will send a current through the coil more in one direction than the other, which makes the coil's pole become " N " rather than zero, and it repels the magnet. The two opposing magnetic fields thus cancel each ither to zero between the magnet and the coil, the position of the Hall effect switch. Unfortunately the circuit exhibits slightly negative stability. This means that small movements in the suspended bar magnet trigger the compensating magnetic field after a small time delay, which in turn will trigger slightly larger movements. The resulting oscillations will magnify and eventually get so severe that they will throw the maghet out of the device after a few seconds The only way to stop this problem is to make sure that the magnet is not moving initially. Oscillations will then build up very slowly or not at all.

Oscillations in the magnet can also be damped down by putting a thick copper bar just below the bar magnet. The induced current and electrical resistance of the bar will generate a small amount of mechanical damping to the changing magnetic fietds. The result is a dampening of the magnet's motion, and the oscillations should deccline in magnitude. However, the only real way to overcome the problems of instability and oscillation is to use a more complex form of feedback circuitry which will eliminate the loop delay which causes the oscillation.

Continued on P. 20

Continued from P. 18

This can be done by using an analogue Hall sensor connected to an amplifier, and the signal from the Hall sensor can then be used to generate the required damping.

The US starts to take an interest

The Federal Railroad Administration (FRA) and the US Air Force (USAF) have announced an agreement to develop magnetic levitation technologies for use in missile defence warhead testing as well as high-speed ground transportation. The Federal Rairoad Administrator Jolene M Molitons said: "We are excited about the prospect of working with the Air Force on the development of multipurpose applications of this new technology. This partnership is an excellent example of the Clinton Administration's commitment to develop high technology projects that will yield maximum benefits, with both milltary and civilian applications. Magnetic levitation (maglev) trains have the real potential to help relieve congestion along our nation's already overcrowded highways and airways.
"A maglev passenger train could cut the travel time from downtewn Los Angeles to downtown San Francisco to about 1 hour and 30 minutes - today, it takes nearly 10 hours travelling by traditional rail service", she added.

Maj. Gen. Stewart E. Cranston, commander of the USAF Development Test Center, said: "Magnetic levitation technology will give the Department of Defence a capability to concuct realistic, hypersonic testing of warhead lethality and prcpulsion systems at an affordable price. We are pleased to work with the Federal Railroad Administration to develop commercial applications for this technology."

The FRA's Deputy Administrator Donald M. Itzkoff has met with USAF officials at Holloman Air Force Base in New Mexico to discuss the construction of a maglev upgrade to the exis ing Holloman High-Speed Test Track. "By working with the Air Force to develop very high-speed maglev vehicle control capabilities, we believe we will also derive technolagy benefits applicable to future high-speed passenger train service", Itzkoff added. Maglev is part of the Department of Transportation's forthcoming assessment of high-speed ground transportation commercial feasibility. A demonsitration of electromagnetic propulsion capability will also be developed and tested.

The USAF will use the track's guideway to test the effects of high-speed payload velocities and the FRA will determire potential satety and performance applications for high-speed trains. The project, as funded by the USAF, will test superconducting magnet design and fabrication, verification of computer codes which predict dynamic magnetic fields, effects of track irregularities and aerodynamic impact of velocities up to 300 mph on test vehicles. Maglev technology uses magnetic forces to levitate the vehicle and to either attract or repel for propuision, for both suspension and guidance.

Maglev trains have the potential to travel at speeds in excess of 250 mph . Currently, Congress has provided the FRA with limited funding for maglev safety-related work. The FRA was. however, the lead agency in an interagency cooperative effort in 1991 with the Department of Energy and the US Army Corps of Engineers, concerning the viability of a US maglev transportation system. The results were published in the National Maglev Initiative (NMI) report. The NMI and the FRA's expertise in maglev will be utilised by the USAF as a resource as they further develop their research.

History of maglev R\&D in Japan

1962 - Research for linear motor propulsion and noncontact run started

1970 - Study on electrodynamic levitation system using superconducting magnet started formally

1972 - LSM-propulsion experimental superconducting maglev test vehicle (LSM200) succeeded in levitated run and LIM-propulsion experimental(ML100) succeeded in levitated run

1975 - LSM-propulsion experimental superconducting magnet test vehicle(ML100A) succeeded in perfect noncontact run

1977 April - Miyazaki Maglev Test Center opened 1977 July - Test run of ML-500 inverted-T guideway started at Miyazaki Test Track 1979 Jan. Simulated tunnel run tested

1979 May - Run with helium refrigerator on board tested(ML-500R)
1979 December - $517 \mathrm{~km} / \mathrm{h}$ run attained
1980 November - Test run of MLU001 on U-type guideway started on Miyazaki Maglev Test Track

1981 November - 2-car unit test run started
1982 September - Manned 2-car unit test run started 1986 December - 3 -car unit registered $352.4 \mathrm{~km} / \mathrm{h}$ run 1987 January - Unmanned 2-car unit attained $405.3 \mathrm{~km} / \mathrm{h}$
1987 February - $400.8 \mathrm{~km} / \mathrm{h}$ run of manned 2 -car unit . attained

1987 April - Railway Technical Research Institute reorganised as a foundation, taking over the R\&D work so far pursued by JNR
1987 May - Test run of MLU002 started
1988 December - Substation cross-over test carried out
1989 March - Aerodynamic brake system tested(MLU001)
1989 November - $394 \mathrm{~km} / \mathrm{h}$ run attained(MLU002)
1990 March - Test on traverser type turn out started
1990 November - Start of initial phase in construction of the Yamanashi Maglev Test Line celebrated
1991 June - Test run on sidewall levitation system started
1991 June - Test run energized by inverts started
1993 January - Test run of MLU002N started
1994 February - MLU002N attained $431 \mathrm{~km} / \mathrm{h}$ run

Note:
LSM: - Linear Synchronous Motor
LIM: - Linear Induction Motor

Pictures courtesy of RTRI, Japan

HEAD OFFICE:
Unit 3 ,
Central Trading Estate,
Staines, Middlesex. TW18 4UX
Tel: 01784442253 Fax: 01784460320

Electrol/alue

Buying Guide 1996

SHOP:
680 Burnage Lane
Burnage, Manchester. M19
1NA
Tel: 01614324945
Fax: 01614324127

Transform your PC into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
Hardware and software are supplied together as a package - no more worries about incompatibility and no programming required.

Pico Technology specialises only in the development of PC based data acquisition instrumentation. We have the product range and experience
 to help solve your test and measurement problem.
he ADC-10 supplied with PicoScope gives your computer a single channel of analog input. ADC-10£49 with PicoLog £59

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog data logging software for advanced temperature processing, $\mathrm{min} / \mathrm{max}$ detection and alarm.
- 8 Thermocouple inputs
- No power supply required.

TC-08 £199 TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.
AOC-100 Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADE-100 £199 ADC-100 with Picolog £219
AOC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or

DOS environment

- $\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
- Multimeter
- 20 MSPS also available

ADC 200-20 £359.00 ADC 200-50 £499.00
Both units are supplied with cables, power supply and manuals.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (0)1954 211880 E-mail: post@ picotech.co.uk Web site: http://www. picotech.co.uk/

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

You can build this circuit on our free PCB on the cover of this issue of
 \qquad

Andrew Armstrong has developed a portable power 250-volt DC generator that he uses to power a low-consumption mains-voltage fluorescent lamp from a 12V car battery.

On a summer camping trip, I was given to reflect that my trusted 12 V fluorescent light of many years' service was not only somewhat battered and lacking a cover, but also that it didn't distribute the light where I wanted it. In its earlier days it had been clipped to the ridgepole of a small tent and was fine but now, in a larger tent with a vestibule, a light more like a lantern seemed to be called-for.

I normally work under a 3500 K colour temperature low consumption lamp of the type intended to replace a conventional domestic lightbulb. The 18 W model I use is specified to give out slightly more light than a 100 W incandescent lamp. The colour temperature, being higher than most, gives a light with enough blue in the spectrum to tell, for instance, the difference between red and purple on a resistor colour code easily. It also make most things look a little brighter - in short, it is ideal for a situation in which there never seems to be enough light because there are no walls and ceiling to reflect it back to you. An interesting fact about the low consumption lamps intended for use with this project is that they contain all the necessary electronics to drive a fluorescent lamp, but they are designed to work on 240 V AC. However, what they do is to rectify the mains when it is first fed in, so they can run just as happily on DC. All that is needed is a DC supply of the average level on the capacitor which follows the rectifier in the fluorescent lamps. I found that 250 V works well on a range of lamps, so this project is to provide a nominally 250 V DC supply to run a low consumption mains lamp.

Many of you will have seen designs for 12 V to fluorescent tube converters. Normally these use a blocking oscillator driving a transformer made on a ferrite pot core. This transformer steps the 12 V supply up to a high enough level to run a fluorescent tube. However, low consumption lamps operate differently because of the higher supply voltage.

A normal mains fluorescent luminaire employs a choke in series with the fluorescent tube to limit the cursent once it has struck. When a fluorescent tube is conducting, the voltage

The schematic

 Instead of rectified mains as shown in figure 1, we use a DC supply generated by the circuit shown in figure 2. This design employs a Linear Technology switched mode converter chip, the LT1170, in

Figure 3: switching waveform on ICI pin 4
across it does not rise significantly as current increases, so without an external limiting component the current would rise to a destructive level and the lamp would be useless.

The choke contains a substantial iron core, and is inconveniently large and heavy.

Low consumption lamps use the same principle, but use a much smaller choke in conjunction with a higher frequency to give the required current (because the impedance of an inductor is $2 \times$ pi $\times f \times L$ where L is the inductance and f is the frequency). What they do is to switch a $D C$ supply at a high frequency and use the result to drive the fluorescent lamp. The principle, omitting the control circuitry, is shown in figure 1.

a voltage-boosted flyback converter configuration.
Flyback converters operate by storing energy in a magnetic field, usually contained in a defined airgap in a magnetic component, and then discharging that energy into a load at a different voltage from that at which it was fed in. The maximum power output available from a given flyback converter is limited by how much magnetic energy can be stored in the magnetic component before it saturates, and how rapidly the energy can be stored and transferred. This circuit works at 100 kHz , which is a respectable though not technologically difficult frequency for a flyback converter. The frequency is set

Figure 4: the switching waveform expanded to show a switching spike
by the on-chip oscillator of the LT1170.
The energy storage is provided by a ferrite E-core transformer with a gap in the centre limb. The component chosen is an EFD20, which is a 20 mm -square "easy flat design" transformer using a ferrite suitable for frequencies of several hundred kilohertz.

At room temperature the 15 mm -square transformer, which can store about half the energy of the 20 mm -square one, is adequate for the job. However, allowance has to be made for the fact that the transformer core material is ferrite. The mechanism of magnetisation of ferrite is different from that of iron, with pairs of opposed magnetic moments of unbalanced strength, so that the difference between the two allows for a net magnetisation. The practical upshot of this is that ferrite saturates at lower flux densities than iron, its Curie point (the temperature at which is ceases to be magnetic) is lower, and

Figure 5: the switching waveform on IC1 pin 4 but without the ferrite bead
its saturation flux density decreases as it warms up.
To allow for heat dissipation in the unit and still permit correct operation, the EFD20 is the smallest suitable transformer.

The structure of the circuit is largely conventional. Starting at the power input, $\mathrm{J1}$, there is a filter to stop interference getting out down the input wire, and a diode to protect against reverse battery connection. C2 provides local decoupling. A specially low esr (equivalent series resistance) capacitor is used to minimise noise and maximise efficiency.

IC1 contains all the active electronics including the switching device. R1 and C3 provide a fairly low frequency

Figure 6: voltage across C 2
pole for the feedback loop, aiming more for absolute stability than for rapid response to step changes of load (which are not expected to occur). In this type of converter the switching device will inevitably be subjected to some degree of switching spike caused by the leakage reactance of the transformer. To protect the chip from damage caused by such spikes, the maximum voltage is clamped by zener diode D1, with D2 being provided to prevent D1 from conducting when the switching device is on. The switching waveform is shown in figure 3 , with the spike being very apparent. As can be seen, under the load conditions for which this trace was taken (21watt lamp load) the switch is on for just over 4 microseconds, and then the transformer transfers energy to C5 for approximately 3 microseconds. After that there is approximately 3 microseconds when both D3 and the switching device are not conducting. Figure 4 shows an oscilloscope printout of the detail of the spike on IC1 pin 4. In this trace it can be seen that the first ring has a flattened top, where D1 conducts and limits the size of the spike. In the absence of the zener diode, the spike would go to approximately twice this voltage. One item not always seen in flyback converters is the ferrite bead L2. This is necessary to limit the rise of switch current during the first few tens of nanoseconds if the switching device turns on at or near the peak of one of the oscillatory cycles that occurs in the transformer once it has finished discharging energy into C5. To illustrate the effect of the ferrite bead, the waveform at the junction between L2 and T1 is shown in figure 5. Here, there is $\mathrm{a}-4 \mathrm{~V}$ spike at the point of switch-on. With a slightly different amount of load, so that the switch-on occurs at the peak of the cycle rather than, as here, more than half way down, the spike can exceed 10 V . In practice, what happens without $L 2$ is that at some specific levels of load the control chip switches on for only about 100 nanoseconds on some cycles, when it switches at the peak of a ring. This alters the phase of the switching so that the next cycle can usually switch successfully. The switching jitters, and the efficiency drops. You will note that there is a significant period where the transformer is ringing and not either being charged or discharged with magnetic energy. This is necessary for two reasons: the control law is different if the converter operates in continuous mode, i.e. when either the switching device or the diode are conducting at all times. The second reason is that, if the switching device turns on while the diode is still conducting, then there is a significant switching loss in the diode which reduces the efficiency. Therefore, T 1 has been designed so

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Coptere

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker
BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuidive to use
- Surface mount and metric support
- 90, 45 ard cunved track corners
- Ground alane fill
- Copper highligtt anc cleärance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 $\mathbf{Y B O}^{3}$ OrCad. Schema Tango, CadStar
- Full Design Ruie Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generatcr- Database ASCII, BOM
- Thermal power plane support with full DRC

B 0 R 101015

Gridless re-entrant autorouter

- Simultaneous muli-layer outing
- SMD and enaiocule suppot
$E 200$
- Full interrupt, resume, pan and zoom while routing

Output drivers - Includied as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserje: and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotter's - All Gerber 3X00 and 4X00
- Excellon NG Drilt and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 6UT Tel 01354695959 Fax 01354695957
E-mail Sales@tsien.demon.co.uk

tsien

Fiigure 7: interference on the input terminals
that the converter will not run into continuous mode at any rate of load. By the way, the effectiveness of the input filter is illustrated by the waveforms of figures 6 and 7 . Figure 6 shows the interference waveform on the top of C2 at 1V per centimetre, while figure 7 shows the interference on J 1 at 200 mv per centimetre. The peak interference voltage is reduced to approximately one-fifth by the addition of L1 and C1.

Building the transformer

In order to make this project work well, the transformer must be built just as shown. Any variation from the designs shown here may result in unreliability. For example, one more turn on the primary could send the system into continuous mode conduction at higher load levels, which might cause the failure of D3.
First of all, one of the 40-turn secondaries must be wound (it does not matter which one). It must be connected between the two pins as shown in figure 8, the transformer pin diagram.

It is vital that all the windings are done in the same direction, so that if you have sfarted winding, say, clockwise at one side of the transformer, all subsequent windings must start at the same edge and go in the same direction.

After the first winding has been put on, a layer of tape should be placed over it. Ideally, thin Mylar tape should be used, but if this is not available, any thin non-conducting tape may be used. The enamel insulation on the wire is supposed to be adequate for the voltages in use, but the slightest scratch in assembly can impair this quality, so a layer of tape is very desirable as an extra protection.

The next layer to be wound is the 8-turn primary. To keep the windings as flat as possible, the same wire thickness is used for the primary as for the secondaries, but, because of the increased current in the primary, two wires are wound side by side to make this winding. A length of wire at least twice as long as required to go round the bobbin 8 times should be folded in half and the folded end looped over one of the pins to which the primary is connected. If necessary, because two wires join this pin, a little of the insulation at the point in contact with the pin should be scraped off to enable extra heat to get through to the self-fluxing insulation.

A single twist should be put in the wire to hold it tightly onto the pin, and then the paired wire should be wound carefully 8 times round the bobbin in the same direction as the winding already put on. It is preferable to space the turns roughly evenly over the length of the bobbin. When 8 turns have been applied, terminate the pairs of wires at the other
primary connection pin. It is desirable to scrape a little of the insulation off both wires at this point to make sure that solder contacts them both and to avoid the possibility that only one of the two wires may end up properly connected.

Then apply a further layer of tape, and wind the final 40-turn secondary, again making sure to do it in the same
 direction as the other two windings. Then solder the wires to the pins, making sure that the solder contacts the wire through the self-fluxing insulation. A hotter-than-normal soldering iron temperature is desirable for this process. In

Figure 9: the layers of winding and insulation tape on the core bobbin

case of problems, carefully abrade the self-fluxing insulation on the wire where it contacts the pin.

The layering of the tape and windings is illustrated by the cross-sectional view in figure 9.

When the winding has been done and its conductivity checked with a meter, assemble the cores and clips as shown in figure 10. The transformer is now made and is symmetrical, so it can fit into the board either way round.

Assembly of the board

If the specified components are used, they should all fit on the pcb with no difficulty. Do NOT fit IC1 until you have read the sections on assembly. See the component overlay in figure 11

The printed circuit board will be mounted, with only a moderate clearance, to the inside-lid of the metal case, so it is important that the component legs are cut fairly short and are soldered neatly (figure 12, shown board-up with the lid upturned).

When clipping the resistor legs, be sure to keep one to thread. through the ferrite bead that forms L2, and a second

one as a marker for use in the assembly process.
Mounting IC1
The IC is mounted on a heat-spreader plate (figures 13 and 14) which has captive bolts that will be located through the side of the case from inside and have the nuts put on from outside (see the box assembly diagram, figure 15). This is quite a fiddly process and, in the prototype, several of the legs broke off the essential IC1 after the lid had been taken on and off about a dozen times. I then clipped the legs of the IC somewhat shorter and connected them up with flexible wires that have shown no tendency to break. You may choose to do it either way, depending on whether you anticipate having to remove the lid often once the unit has been built. It is useful to figure out which way you prefer to connect the IC before carrying out the testing in the next section.

To test the equipment, IC1 needs to be connected up with its heatsink mounted, to prevent it from getting too hot too
fast. The heatsink is the heat-spreader plate that will also be part of the mounting for the pcb in the case, therefore it is best to cut the heat-spreader plate, to drill it and the casework accurately at this stage, and fit the captive bolts into the spreader plate, so that once it is mounted on IC1, it does not have to be removed again for assembly.

A piece of aluminium 2 mm thick by 20 mm wide by 70 mm long is suitable as a heat-spreader plate with the case used here. When the plate has been cut, clamp it to the inner side of the case, so that it is also located against the base (NOT the lip) of the case, and drill through it and the case two fixing holes, one towards each end of the spreader plate (this is just to keep the bolt-holes clear of IC1, which will be bolted separately to the centre part of the spreader plate). These holes should be drilled with a 2.5 mm drill, then the plate should be unclamped from the case, and the holes in the case 'should be drilled out to 3.5 mm diameter, which will allow an M3 bolt to pass through easily.

The heat-spreader plate needs captive bolts (bolts which do not drop out when the nut is removed), so you must file out the 2.5 mm holes in the plate until they are just large enough to permit an M3 bolt to be forced into the plate with a screwdriver, cutting its own thread as it goes. When the bolt is almost screwed home, a tiny drop of Superglue should be placed on the inside of the head (do NOT get glue on the remainder of the thread, which will be needed later) and then it should be tightened down thoroughly. Once the Superglue has set, the bolts will in effect be part of the spreader plate.

Now that the position of the heat spreader plate is known, it is necessary to get an accurate measurement of where the hole for the IC should be drilled in the plate. The next step, therefore, is to mount the pcb onto the lid of the box, temporarily, but using the correct bolts and spacers. Mark and drill four holes to match the mounting holes in the pcb. Drill these to a diameter of 3 mm and countersink. Then bolt the board into place using two of the bolts, diagonally placed, with their spacing washers.

Temporarily hook a piece of clipped component leg into the middle hole of the pcb where IC1 is to fit. Align the side of the lid with the side of the box, and carefully mark the rim of the box against where the component leg is. This marks the centre of IC1 when mounted, and is the vertical line on which the hole for IC1 needs to be drilled in the heat spreader plate. Locate the heat spreader plate into its mounting-holes on the box, and mark onto it a vertical line matching the position-mark on the rim of the box.

Figure 11: the component overlay

Figure 15: layout of the pcb in the lid, and assembly into the box. Note that the pcb lies upside-down in the box. Either tubular or flat grommets are suitable, so long as they protect the wires from fraying

Testing and final assembly

First of all test the item using a dummy load resistor - 3.3k 20 watt would be ideal, but working on the principle that if it works properly at a low power it would normally be safe to try it on its normal load, a 47k 2-watt resistor would serve. Connect the load resistor,
connect a voltmeter to the output, and connect a 12 V supply, capable of giving at least 4 amps without hitting current limit, to the input. The unit should give approximately 250 V DC output and show no signs of distress. If all is well so far, connect a lamp-holder and plug in a low-consumption fluorescent bulb of the electronic variety at a rating of up to 23 watts. The lamp should light within about 1 second.

Please note that lamps containing a mains-frequency ballast choke, such as the Thorn 2D lamps, will not work with this, and may be damaged by it. This unit can only just fit the aluminium case chosen for it, but it is a neat and tidy case and the next size up is clumsy and unnecessarily large.

The real problem is the height, but the cases in the catalogues with a greater height also have about twice the area. To make use of every millimetre of height, but pcb is mounted on 3 mm spacers in the lid. If it were to be mounted in the main part of the box, the tab of IC1 would stick up too far and prevent the lid from fitting. When the unit has been tested, the wires with which it will be used should be fitted to the screw terminals, and suitable holes should be drilled in the ends of the case for the wires to pass through. It is important to fit grommets in these holes, otherwise the wires will inevitably wear through and short-circuit after a period of use.

First of all, mount the pcb onto the lid of the case using all four countersunk bolts and the 3 mm spacers. Then, thread the wires through the grommets leaving only a small amount of slack. Then position the lid so that the bolts from the heat spreader plate locate through the holes in the case.

Be careful, as the weight of the heat spreader plate inevitably places some strain on the legs of IC1 at this stage. Screw the nuts a few turns onto the bolts so that they do not pull out again, then bolt the lid onto the case with its cornerscrews. Then tighten up the nuts on the heat-spreader plate bolts. Needless to say, if you want to open the unit again, remember to remove the nuts that secure the spreader plate to the case BEFORE before trying to remove the lid, or all the hinging force will be borne by IC1. For safety reasons, it is desirable to fit an in-line fuse in the positive connection to the unit. The unit may be turned on and off by clipping and unclipping the wire to the battery terminals, but if it is preferred to use a switch, elther an in-line switch rated up to 3 amps may be used or alternatively a switch may be mounted on the case and attached in series with the positive connection. This may necessitate the use of an in-line screw connector inside the case. Clearly, it is not sensible to put a switch in the 250 V output connection to the lamp, so just connect the lampholder securely to the end of wire.

Please not that this unit has been very carefully designed to use the parts specified and is expected to work dependably if built exactly to the design. However, this sort of design places unusual demands on the components in use, and the use of substitute components may cause failure, and destruction of other parts of the circuitry.

In use

The unit generates a certain amount of heat in running, and the box may be expected to get warm but not too hot to touch. The electronics of the low-consumption lamp also generates a certain amount of heat, but again this should not reach a dangerous level.

Do be aware however that the wiring to the lowconsumption lamp should be regarded as mains wiring, and treated with the caution accorded to any mains appliance wiring. This unit, and particularly any low-consumption lamp
that may be used with it should not be operated if it has been subjected to significant amounts of rain or other source of damp. Low consumption mains lamps are meant for use indoors, and may therefore not be waterproof.

Suppliers of specified parts:

Electrovalue Ltd., Unit 3, Central Trading Estate, Staines TW18 4UX. Tel 01784442253.
Electromail (part of RS Components) P O Box 33, Corby, Northants NN17 9EL Tel 01536204555
Cirkit Distribution Ltd. Park Lane, Broxbourne, Hertfordshire EN10 7NQ Tel 01992471314
Maplin Electronics P O Box 3, Rayleigh, Essex SS6 8LR 01702554161

SUBSCRIBE FOR ONLY

 812.40
AND RECEIVE TWO EXTRA ISSUES

マRゴ

DON＇T MISS THIS SPECIAL OFFER TO ENJOY ELECTRONICS TODAY INTERNATIONAL ON SUBSCRIPTION FOR JUST £12．40 FOR 6 MONTHS－WITH TWO EXTRA ISSUES

Simply complete your details below．

Direct Debit Instructions

This card instructs your bank or building society to make payments direct from your account．Please fill in parts 1，2，3，4，\＆ 6 and then send to us at the address below．Banks and Building Societies may not accept direct debit instructions for some types of account．

1．Please write the full postal address of your Bank or Building Society branch．

To：The Bank Manager

Bank／Building Society
Address

Post Code

2．Name（s）of account holder：
3．Branch Sort Code

4．BankBuild．Soc．Account No． \square
5．Ref．No
（Office use only）
6．Instruction to your Bank or Building Society．Please pay Nexus Media Ltd． Direct Debits from the account detailed on this instruction subject to safeguards by the Direct Debit Guarantee．Originators Identification： 800132

Signature（s） \qquad Date：
Code 0125．This exdusive offer must close on： 410196
Please post this entire coupon to：
Nexus Subscription Dept，Tower House，Sovereign Park，Lathkill Street， Market Harborough，Leicestershire．LE16 9EF．
Please tick this box if you do not wish to receive information from any other companies which may be of interest to you \square Direct Dosth Guarantee

－Offer applies to U．K．subscriptions only．Free issues with your first payment only

SquarerCircuit

An add-on squarer circuit for the low d/t oscillator by John Linsley Hood

circuit for a very low distortion oscillator based on a two-lag loop was shown in the January 1996 issue of EII. The major attractions of this design are its very low distortion - rather less than 0.001% at 1 KHz - and its abifly to switch from one frequency to another without any amplitude 'bounce'. (This amplitude unsteadiness is an unwanted characteristic of most low distortion signal generators, and it can be milating if it is wanted to carly out tests over a range of frequencies.)

However, for the oscillator to be reaily useful in an electronics workshop invoived, for example, in audio amplifier design, it is desirable that the instrument should akso offer a good quality square-wave output, with a raoic, overshoot-free rise and fall time and a flat, dro00-free, plateau betwsen the high and low level transitions, of the kind shown in Fig 1 a.

The value of such a test wavoform in audio work is that, used in conjunction with an oscilloscope, preferably DC coupled, it can give a wery rapid indication of the periomance of the circuit under test, in that, for example, the waveform shoven in Fig. 1b, would suggest a rolatively poor degree of stability in an amplifier using kop negative feadbeck - a condition which could be explored using a selection of alternative output loads.

A more easily overlooked fault of the same kind is shown in Fig. 1c, and could be due to capacitative feodback between input and output wining in an amplifier with a wide frequency response bandwidth. Whether such wide bandwidths are a good thing is debatable, but if the circuit permits them, it is equally necessary that they don't leave the circuit prone to RF instability, which could burn out expensive LS 'tweeter' units, the square wave generator circuit should provide an output waveform which is droop-free between the rise and fall transitions, so that waveforms of the type showr in Figs. 1d and le - indicating respectively poor LF and poor HF response - can be properly interpreted. Fortunately, this is quite an easy requiement to meet.

Square-wave generator design

Quite a range of circuits exists which will convert an input sinewave into a flat-toppeof square-wave output, such as a CD4066 quad bilateral switch, actuated by a squared off input waveform, and used to switch an output between, say, a pair of +5 V and -5 V supply rails. Altematively, a fast voltage comparator could be used, effectively acting as an amplifier which is driven into overload by its input signal, though such an arrangement would not necessarily

Continued on P. 35

Woodworking \& Furniture Exhibition

Sandown Park, Esher, Surrey

Centre of Excellence'

for all woodworkers.

Expert advice
 Stunning competition displays Top quality trade stands Demonstrations and Lectures

FREE car parking

NEW FEATURES FOR 1996

Kitchen Build - a complete kitchen built as you watch!

Question Box Live - experts answering all your questions and demonstrating techniques.

Computers for Woodworkers - experience for yourself the latest CAD technology.

Sandown Exhibition Centre, Sandown Parb Racecourse, Esher, Surrey (10 min drive from M25) 26th - 29th September 1996 Opening Times: 9.30am - 5pm daily Entrance Prices: Adults $£ 7.50$ ($£ 6$ advance), Senior Citizens \& Children $£ 5.50$ ($£ 4$ advance)

RADIO DATA MODULES SYSTEMS \& ACCESSORIES

UK, E.E.C; Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia. Wherever you are, we have a module on the right frequency for you I FoM Transmitter \& Receiver Starter Kits

- Construct quality F.M remote controls, data links, wine-free alarms *
*Range up to 200 M with dipole, 5KM with RX Yagi *
*Avallable on UK 418 MHz to MPT1340. Export $433.92 \mathrm{MHz}, 403 \mathrm{~Hz}$. *
- SILRX- Recelver includes, audlo, digital data, carrier detect o/p *
* RXM- as SILRX + signal strength RSSI, tamper and jamming det *
* Kit Prices inclusive of VAT and UK 1st Class Postage: "
*TXM-418-A + SIL-418-A + Data/Application Sheets: Only £29.95 *
TXM-418-A + RXM-418-A + Data/Application Sheets: Only £34.95
* Decoder Board for RXM or SIL c/w HT-12-D: Only £15.00 *

TXM-418-AF Transmiter

SILRX-418-AF Receiver

RXM-418-A Receiver

NEW : High Data Rate (-F) $20,000 \mathrm{bps}, 3 \mathrm{~V}$ Version:

- Same o/p Power but twice as fast as the - A version, up to 20,000 bps *
- Drives directly from PIC port, reducing component count \& size *
* TXM-418-F + SILRX-418-F + Manual: Only £29.95 *

TXR-4XX-DTR100 פata Transceiver: Starter Kit E299.95

* 458MHz MPT 1329 for UK Operation * * 433.92 MHz for European I-ETS-300-220 *
* 472 MHz for Australia and NZ *
* $462-465 \mathrm{MHz}$ for North America * - Up to 500 M range with Internal Antenna * *Up to 5 KM range with External Dlpole * Prices $1+£ \uparrow 79.9510+£ 149.95100+£ 115.00$
Long Range VHF Modules for the UK, Australla and Beyond !
UK, 173 MHz to MPT 1344 \& MPT 1328 Licence Exempt ${ }^{\circ}$ Australia and South Africa Licence Exempt ${ }^{\circ}$
F.M Operation: with $1 \mathrm{~mW}, 10 \mathrm{~mW}$ or 20 mW Versions ${ }^{\circ}$ Range up to 1 to 5 Km line-of-site *
Low Cost or Migh Performance versions ${ }^{\text {. }}$
- Transmitters, Receivers and Transceivers ${ }^{\circ}$
- Starter Kits From £59.00 to £199.00 *

2.45GHz Spread Spectrum with RS485 Interface

100 mW Spread Spectrum Transceiver Operates on the globally accepled 2.45 GHz band Complete with antenna diversity switch and RS485 serial interface. With a data rate of between 250 K bps to 1 M bps we challenge you to find a faster and more secure wire free solution I
Starter kit: comprising 2 of TXR-2450-100M transceivers and 22.45 GHz dipole antenna. Save nearly 20% on MLP at only: 799.95 per pair.

Data Module Prices, Inclusive of UK Postage !

Transmitters (1 + Price) TXM-418-A $0.25 \mathrm{~mW} \quad . \quad £ 12.50$ TXM-433-A 0.25 mW $£ 12.75$ TXM-418-F $0.25 \mathrm{~mW} \quad £ 12.75$ TXM-433-F 0.25 mW . \quad £12.75 TXM-403-A $0.25 \mathrm{~mW} \ldots \quad$ ⑫.75 TXM-173-4689 1mW.....E22.50
 TXM-184-4689 10 mW W... £29.95 - Proces unless otherwise stated exclude VAT. Camirage free on all accounk mainlanc UK orders
 Technical Support +44 (0) 1992576114

ORDERING INFORMATION - Carriage $£ 1.25+$ Vat, Prices Exclude Vat ($171 / 2 \%$), Add Carriage \& Vat to all orders. Payment with Order. PO/Cheques
payable to ESR Electronic Components. AlL Credit Card Orders Accepted. NO Credit Card Surcharges. Trade discount for Schools \& Colleges.

Continued from P. 32
provide the desirable glitch-free rise and fall characteristics desired. Since the "high level" output of the oscillator is 5 V RMS, which is quite adequate to drive CMOS logic elements fed from $+/-5 \mathrm{~V}$ rails, the simplest, and most economical system would be to use a CMOS Hex Schmitt Trigger, such as the CD40106 (74C14) for which the circuitry and associated sine/square waveform switching is shown in Fig. 2. Since the internal circuitry of the Schmitt trigger causes it to 'latch' on one or the other of two states, in which its output is either logic ' 1 ' $(+5 \mathrm{~V}$) or logic ' 0 ' $(-5 \mathrm{~V})$, the requirement for a droop-free plateau between the rise and fall transitions is met, while the internal circuitry of the device generates rise and fall times which are typucally 50 nS in duration - which is less than 0.1% of the duration of the on- and off-times of a 10 KHz square-wave. The input diodes, D1 and D2, and the input resistor R2, are included to protect the IC chip from an excessive input voltage swing, and the input bias resistor, R3, serves both to ensure that the input of the 1 C is clamped to the logic ' 0 ' $(-5 \mathrm{~V})$ level when the circuit is switched out of use, and also to equalise the output 'mark to space' ratio. A pair of low power IC voltage regulators is used to provide low imperdance voltage reference levels, and the last two gates of the CD40106 are also paralleled to reduce its output impedance.

Output attenuator

This is a three step section of a constant impedance attenuator, having a characteristic impedance, as seen at any point, of 600 ohms and an attenuation at each step (apart from the first which is a divide-by-five) of ten times, to give outputs either of $0-5 \mathrm{~V}$, on the high-level output socket, or a choice of four switched output

$100 \mathrm{KH} \geq$ measurement bandwidth - i.e. about -60dB, with respect to 1 mb - and this should be allowed for in low signal level noise measu'ements.

Range switching resistors and capacitors.

These are assembled, for convenience, between the tags of the respective 3 - and 4 -way switches.

Power supply unit

This is a conventional design with its output $+/-15 \mathrm{~V}$ lines
stabilised by 7815 and 7915 IC voltage regulators, as shown in Fig. 3. The stabilised $+1-5$ volt lines for the squarser circuit are proviced by a pair of 78L05 and 79L05 ICs mcunted on the squarer unit PCR.

PCB layouts

These are shown in Figs. 4 and 5 and the completed instrument enclesed for good screening in a $222 \mathrm{~mm} \times 14 \mathrm{Emm} \times 55 \mathrm{~mm}$ diecest box (Deltron type 459-0070), is shown in Fig. 6.

Runs on any PC running Windows 3.1. Windows 95 or WIndows NT with a minimum 2MB RAM Will work with any Windows supported printer and monitor $\begin{aligned} &-2|x| \\ &=|9| x \mid\end{aligned}$

For Windows 3.1, '95 or NT

Looking for the price?
It's just $£ 49.00$ all inclusive! ...no VAT...no postage... ...no additional charges for overseas orders.

Dealers and distributors wanted.
 - pcbdemo.zip. Internet e-mail pcb@niche.demon.co.uk.

OY: 0.300

Niche Software (UK)

12 Short Hedges Close, Northleach, Cheltenham GL54 3PD Phone (01432) 355414
Available in South Africa from JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00

EASY-PC Professional XM Schematic and PCB CAD

From Super Schematics

See us at:Wembley Exhibition 8-10 October

- Runs on:- PC/ 386/ 486 with VGA display
- Links to PULSAR (logic), ANALYSER III (analogue) \& LAYAN (electromagnetic) simulators.
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.
- Optional, powerful, 32 bit Multi-pass, Shape based, Shove Aside, Rip-up and Re-try Autorouter.

Automatically links to Analog, Digital and Electromagnetic Simulators

PULSAR - Digital Circuit Simulation - from only £98

- Simulate Directly from EASY-PC Pro' Schematic.
- Check out designs quickly prior to prototyping.
- Glitches and Race Hazards highlighted automatically.
- Could easily pay for itself the first time it is used!

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From \$245	£145
MultiRouter: 32bit Multi-pass Autorouter	\$475	$£ 295$
LAYAN: Electro-Magnetic PCB Layout Simulator. Include the board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	$¢ 495$
PULSAR: Digital Circuit Simulator	From $\$ 175$	$\underline{598}$
ANALYSER III: Analogue Linear Circuit Simulator	From \$175	$\check{498}$
FILTECH: Active and Passive Filter Design program	From $\$ 245$	$£ 145$
STOCKIT: New comprehensive Stock control program for the small or medium sized business	\$245	$\varepsilon 145$
EASY-PC: Entry level PCB and Schematic CAD.	\$135	$E 75$
Z-MATCH : Windows based Smith-Chart program for RF Engineers.	From \$245	£145
We operate a no penalty upgrade policy. USS prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

For full information, please write, phone, fax or email:-

Number One Systems

UK/EEC: Ref. ETI, Harding Way, St.Ives, Cambridgeshire., ENGLAND, PE17 4WR.
USA: Ref. ETI, 126 Smith Creek Drive 01480461778 (7 lines) Fax: 01480494042
Ref. ETI, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (415) 968-9306

Data Bus Monitor

Tim Parker's monitor displays 8-bit binary data in decimal as well as hexadecimal formats

Low many times have you tried to check the bit states of an 8-bit output port using either a multimeter, oscilloscope or even an LED soldered on two lengths of wire, and then had to work out the value, adding them up something like
$1+2+4+8 \ldots$.etc.?
Here's a project which should help to overcome all of these 'pains in the neck' for you, by displaying digitally the whole 8 bits in decimal or hexadecimal format. There are some display driving ICs available which accept BCD (binary coded decimal) inputs and convert this to seven segment outputs. These are fine if you only want to display a single number from 0 to 9 , but how often is that? There was even an IC available some years ago which accepted 4 bit binary data and displayed this in hexadecimal, so you could always have used two of these, but these were expensive, and I don't know if they're still available. Even so, if they are, you would still be limited to hexadecimal readout only. What is strange is that, even from the beginnings of digital computers, no manufacturer has produced a readily available IC which will accept and convert 8 bit binary data, and certainly not one which gives a decimal readout as well.
but only one is accessed at any time. The digit data for each display is applied in turn 10 port C , and then the strobe line for the currently selected display - RA1 to RA3 - is pulled low for a predetermined length of time to light it up.

The display is then turned off again and the sequence is repeated for the two remaining ones. A point to bear in mind is that each display must be turned off at the end of the light-up period before moving on to the next digit, otherwise display 'ghosting' will occur. This is a most irritating effect where the previous digft data appears superimposed very dimly on the currently active one. The unwanted data is only present for as many clock cycles that it takes to set up the next digit data on port C, but because the displays are refreshed so rapidly, and continuously, the 'ghosting' appears to be occurring constantly, even thought it isn't. The jumper link JP1 and momentary switch SW1 can be closed to signal to the program to display the data on port B in decimal format, rather than the default hexadecimal. The switch can be pressed or released at any time, for switching briefly between display formats, ideal for quick conversion references and educational uses.

For educational purposes this format is a must for demonstrating the differences between the two codes. The circuit diagram of figure 1 shows how simply this can be achieved using the PIC16C55 microcontroller. Because speed is not an important factor in this design, the lower priced RC version of the PIC is used, and the oscillator frequency is set by the values of R1 and C1, which can be altered if you wish, but to stay within the manufacturers recommendations, don't reduce C1 much below 20pF or R1 below 2K2.

As is usual with designs of this nature, there is little to explain about the circuit diagram, since all of the work is carried out by the program within the microcontroller itself. The binary code is applied to port B (which is programmed for input only) and is converted to seven segment display codes. All of the corresponding segment connections of the three displays are paralleled together,

Figure 1: The circuit diagram of the Data Bus Monitor: simple, but practical.

* WE HAVE A HUGE RANGE, MOST MAKES ALWAYS IN STOCK, RNG US FOR YOUR RECUIREMENTS Whanal

Whritivivorks, 34 whleño

PORTABLEPROGRAMMER \& EMULATOR
PROGRAMS
EPROMS/FLASH TO 40
PINS WITHOUT ADAPTORS EMULATES 8 \& 16 BIT SYSTEMS

PIC EEZE

This is the easiest way to stan using PIC microcontrollers. PIC EEZE is a powerful and versatile development system that allows you to start at the level you like and upgrade if needed whenever your ready. AB systems have ZIF sockets, high quality PCBs (unlike similar priced systems). Fully featured Assembler/Simulator \& Programming environment, designed to be software upgraced (All software upgrades are FREE).

Programs/ Features	PPC EEZE 1	PIC EEZE 2	PIC EEZE 3
$16 C 54 / 55 / 56 / 57 / 58$	-	YES	YES
$16 C 61 / 62 / 63 / 64 / 65$	YES	YES	YES
$16 C 71 / 73 / 74$	YES	YES	YES
simple, just			
order the			
required			
system			
firmware and			
pay the			
difference			

IN CIRCUIT EMULATION Target probe can be taken trom the expansion port to application circuit. Your program can then be stepped/run etc. with results on screen and at probe.
BASIC COMPILER Allows you to make your own BASIC PICs and evaluate your program with Real Time Emulation through target probe (Please write/call for details/availability).
LPAK plugs into the expansion por and has coloured LEDs, 7 segs,
buttons and switches aad minicore cmulator to show PIC prograrnming methods (includes examples). £28.00.
DRAK stand alone demos boards (2). One is like LPAK and the other will accept $18 / 28$ pin PIC, has oscillator and power sections ready buitt. Can be used with breadboards or you own circuit etc. £28.00.
SUPPORT We will give continuing support to our users and products. Future expansion planned - 17CNX Programmer - smart card readerfwriter and more.

Please write or telephone for further information if required.

ㄹППच \square Please add $£ 2.00 \mathrm{P} \mathrm{\& P}$ and make cheques payable to LENNARD RESEARCH

29 Lavender Gardens, Jesmond, Newcastle upon Tyme, NE2 3DD. Telephone (0191) 2818050.

Figure 2: The components layout and pin connections to each of the LED displays.

have a forward voltage drop across each segment of about 2 Volts, so the displays should be of the High Efficiency (HE) type, otherwise they are not going to be very bright.

Construction

The PCB component layout is shown in figure 2. Construction is easy and fairly straight forward, and there aren't any special handling precautions required. To enable you to swap and change programs of your own, use an IC socket for IC1. Obviously, if the board is to be a fixed item, then IC1 can be soldered directly to it. The LED displays will only fit in one orientation, so there's no chance of getting them the wrong way round, unlike some other types which can easily be inserted upside down by mistake. Be careful when soldering the displays in place. There is only a fine gap between the pads and the copper tracks which run in between them. If,

Continued from P. 39

The jumper link, on the other hand, when fitted, provides long term viewing in decimal format only, thereby removing the need to keep the switch pressed all the time. You will see from the circuit diagram that the decimal point (dp) has been connected to RCO on IC1. This has been done for completeness of connections to the LED displays, although these segments are not driven by the listed software, but that's not to say they cannot be. In fact, these types of displays have pin connections to both left and right hand decimal points, but it's the right hand one that has been used here. Although the connections to port B are labelled 'Binary Input/Output', in our application they are only used for input. The reason for such labelling is because the port could be programmed for output, and the program modified slightly to output binary codes at timed intervals on this port which correspond to the digital displays, which is very useful for educational purposes.

And due to the way the program has been written, these modifications do not require a complete re-write of the software, just so long as you have a basic understanding of PIC assembler. This educational aspect was also the reason for using the larger 0.8" LED displays, as opposed to the more usual $0.5^{\prime \prime}$ or $0.56^{\prime \prime}$ versions. It must be stressed though, these
when you power up the board, you get strange digits displayed - particularly if they appear in all three of the displays - then the chances are that you've got an unintentional solder bridge across two or more adjacent tracks.

Don't forget the single wire link at the top of IC1, and take care with the direction of the SIL resistor network RN1, as these are very easy to solder the wrong way round. The pin 1 marker dot points towards the top of the board. A regulated +5 V power supply can be applied to the board either via the twoway terminal block, or via the binary input/output pin header. Whichever you use, make sure it's connected in the correct polarity. If the board is to be used in educational establishments - schools and colleges etc. - it might be a good idea to apply power only to the terminal block, and to remove the top pin from the pin header so as to prevent the possibility of shorting out the power supply connections. Don't remove the bottom (OV) pins, as this will be required for a ground reference to any other equipment to which the board is linked, and also for shorting to the other binary code input pins to alter the input code. Once you're satisfied with the construction, insert a programmed PIC16C55RC/P into the IC socket (pin 1 upwards) and power up the board. With no inputs connected and with JP1 removed, the value 'FFH' will appear in the display. The two left hand digits are the value being read from the input port in hexadecimal. The right hand digit will always display the letter 'H' when hexadecimal display format is selected, in just the same way it is written on paper to clarify that the value is in hex. This might seem unnecessary at first, especially since decimal readouts don't contain letters anyway. But it would not be so clear if the two hexadecimal digits happened to be numbers.

Press and hold down SW1 to display the value in decimal format. The display now changes to '255'.

This is the decimal equivalent to FF in hexadecimal. Releasing SW1 will return once more to displaying the value in hexadecimal format. Now try shorting some of the input lines D0 to D7 - to OV. The display will adjust according to the changing values being read. In decimal mode, leading zero blanking is used to remove any unwanted ' 0 's in the left hand displays. This means the value of (say) four is displayed as ' 4 ' (with two leading blanks), rather than '004', which is the way it would be written. In hexadecimal mode, the zero's are not suppressed at all, and even the value of nought (usually pronounced like 'zero zero hex') is displayed as ' $\mathrm{O} \mathrm{OH}^{\prime}$ ', which, again is the way it would normally be written to prevent confusion.

Software

The listing as presented is the complete program, as blown into the pre-programmed PIC16C55RC/P available for this project. From the size of it you will realise there is more than enough program memory remaining to include further routines of your own.

LIST $\mathrm{P}=16 \mathrm{C} 55, \mathrm{~N}=38, \mathrm{C}=132, \mathrm{R}=\mathrm{DEC}$
TITLE "ETI DATA BUS MONITOR"

;* DATA BUS MONITOR

* Copyright 1996 DTE MICRO SYSTEMS
* For use on the dTE DATA BUS MONITOR board
; WARNING. THIS PROGRAM MAY NOT BE SOLD,
;* TRANSMITTED OR COPIED IN ANY WAY (INCLUDING
* PROGRAMMING INTO EPROM) WITHOUT THE EXPRESS
* PERMISSION OF THE COPYRIGHT HOLDER DTE MICRO SYSTEMS.
;* ALL RIGHTS RESERVED. IT IS SUPPLIED SOLELY FOR USE BY
;* PRIVATE INDIVIDUALS FOR THEIR OWN PURPOSES AND
;* WILL NOT BE USED FOR ANY FORM OF FINANCIAL GAIN ;* Whatsoever. violation of these conditions is ;* AN INFRINGEMENT OF COPYRIGHT LAW, AND MAY RESULT
;* IN PROSECUTION OF THE OFFENDER BY THE COPYRIGHT ;* HOLDER.
; Define the general registers and I/O port
addresses
RTCC EQU 01 ; Real Time Clock/Counter register address
PC EQU 02 ; Program Counter address

STATUS EQU 03 ; Status register address FSR EQU 04 ; File Select Register address
PORTA EQU 05 ; I/O Port A (lower 4
bits only available)
PORTB EQU 06
I/O Port B (all 8 bits
available)
I/O Port C (not fitted
on PIC16C54/56)
; Assign labels to programming constants used in PIC assembly language.
W EQU 0
becomes 'W' (acc.)

F EQU 1 Destination register
becomes 'F' (Eile)

becomes ' F ' (Eile)
Assign labels to the various bit values of the STATUS register (03h)

CARRY	EQU 0 ; carry bit
DCARRY	EQU 1 ; digit carry bit
ZERO	EQU 2 ; Zero bit
PDOWN	EQU 3 ; power-down bit
WATDOG	EQU 4 ; watchdog time-out

EQU 4 ; watchdog time-out
; Assign basic pin labels to the bit numbers for I/O port A.

- Assign basic pin labels to the bit numbers for I/O port B.

; Assign basic pin labels to the bit numbers for I/O port C.

Assign labels to the various (RAM) data file registers used

ORG 08 ; Set base address for RAM

COUNT1
counter
DECIM1
for 1 s digit
DECIM2
for 10 s digit
DECIM3
EOr 100 s digit
DIGIT1
display data
DIGIT2
display data
DIGIT3
display data
HEXLO
middle digit (LSB)

RES 1 ; General purpose
RES 1 ; Decimal store
RES 1 : Decimal store
RES 1 ; Decimal store
RES 1 ; Store for right
RES 1 ; Store for middle
RES 1 ; Store for left
RES 1 ; Hex store for

10\% DISCOUNT TO ALL ETI READERS
1 . $0.11^{\prime \prime}(300 \mathrm{~mm})$ Digital LCD Calipers $£ 99.95$ inc
$0-6^{\prime \prime}(150 \mathrm{~mm})$ Digital LCD Calipers $£ 49.95$ inc - AUTO TURN OFF MEASURE INSIDE, OUTSIDE AND DEPTF. ZERO ANYWHERE ON THE SCALE, CONVERTS METRIC TO IMPERIAL AND VICE VERSA BOTH THESE CALIPERS MEASURE TO A RESOLUTION AND REPEATABLITY OF $0.01 \mathrm{~mm} / 0.0005^{\prime \prime}$ AND ARE POWERED BY ONE STANDARD 1.5 V SILVER OXIDE 3A TERY
THE PRICES INCLUDE A FOAM LINED CARRY CASE, VAT, POST AND PRCFIING (IF YOU ARE NJT COMP LEEELY SATISFIED WITH YOUA PUACHASE SIMPYY RETURN TT TO US WTHN 3 D DAY

From: KPL, 226 WHITEHORSE ROAD, CROYOON, SURREY, CRO 2LB
OR CALL:
TO OROER 01816651041 FOR MORE OSTAILS ANB OTHER SPECIAL OFFERS
 KEVWARD PRONUCTS \angle MATED

$\star \star$ FOR SALE

DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALITY SURPLUS MANY SPECIALS. WE STOCK 1000 + ITEMS \& IF WE DON'T STOCK IT WE MAY BE ABLE TO GET IT FOR YOU PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS
MAYFLOWER ELECTRONICS 48 BRENDON ROAD, WATCHET, SOMERSET, TA23 OHT TEL (01984) 631825 FAX 634245

HIGH QUALITY LOW COST
C.C.T.V. CAMERA

EXTREMELY LOW LIGHT LEVEL AUTO ELECTRONIC ShUTTER. COMPOSITE VIDEO OUT VIA BNC PLUG SMALI DISCRETE SIZE. CAN BE USED WITH PC DIGITISER.
This super quality CCD camera can be connected into your existing TV or video using
 the AV channel and can be used for discrete surveillance or observing your property externally using a suitable weatherproof housing. Can accommodate lighting levels ranging from daylight to street lighting using is built-in electronic shutter. Excellent when using with an infra red source. Built-in wide angle fixed focus lens, the camera has a resolution of 380 TVL. Can be housed inside an empty floodlight case, (extra). Camera size only $45 \mathrm{~mm} \times 45 \mathrm{~mm}$.
Special offer price of only: $\mathbf{£ 7 9 . 9 5}$ plus VAT (P\&P £3.00) For full range of CCTV products send SAE to: DIRECT CCTV LIMITED, DIRECT HOUSE, FLORENCE STREET, MIDDLESBROUGH, CLEVELAND TS2 1DR

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 01316672611
The supplier to use if you're looking for -
\star A WIDE RANGE OF COMPONENTS AIMED AT
THE HOBBYIST *
\& COMPETTTIVE VAT INCLUSIVE PRICES *
\star MAIL ORDER - generally by RETURN OF POST *

* FRIENDLY SERVICE *
* 1995/96 CATALOGUE NOW AVAILABLE Price £2.00 *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

The National

Woodwonking

 Exhibitio NEC BIRMINGHAM 4th - 6th October 1996

Your opportunity to talk to the experts, learn from the demonstrations, join clubs and societies and marvel at the magnificent competition entries, covering all aspects of woodworking.

The latest equipment and materials are available from the wide range of traders, with many opportunities to compare and try before you buy.
plus
Unique turning demonstrations and lectures.
Speciallst turning clubs and socletles.
The UK's hest turning dlisplays.
The Najional Woodworking and Turning Exhibition.
Hall 10, National Exhibition Centre, Birmingham
4th - 6th October 1996
Opening Times: $9.30 \mathrm{am}-5 \mathrm{pm}$ daily Entrance Prices: Adults $£ 7.50$ ($£ 6$ advance), Senior Citizens \& Children $£ 5.50$ ($£ 4$ advance)

MOVF DECIM3.W
; GET LEFT DIGIT DECIMĂL
DATA
BTFSS STATUS. ZERO ; BLANK IT OUT IF ZERO - '0' GOTO DISP4 ; NOT ZERO - LEAVE IT
ALONE
CLRF DIGIT
; CLEAR ALL BITS IN LEFT
DIGIT
MOVF DECIM2,W
DECIMAL DATA
BTFSC STATUS, ZERO ZERO
CLRF DIGIT2 ; OTHERWISE BLANK IT OUT GOTO DISP4 ; LEAVE RIGHT DIGIT ALONE ANYWAY
; Display data in Hexadecimal format

DISP3		
MOVF	HEXH_, W	; GET MSB OF HEX VALUE
CALL	GETCHAR	; CONVERT TO DISPLAY IODE
MOVWF	DIGIF3	; PUT IT IN LEFT DIGIT
MOVF	HEXLO,W	; GET LSB OF HEX VALUE
CALL	GETCHAR	CONVERT TO DISPLAY CODE
MOVWF	DIGIT2	; PUT IT IN MIDDLE DIGIT
MOVLW B'O1111100,		
MOVWF	DIGIT1 ; PUT 'H' IN RIGHT DIGIT - "DIGIT1"	

; "DIGIT"s sontain the required display
; codes, now light up the displays
DISP4

MOVF DIGIT3, W	; GET LEFT DIGIT DATA
MOVWF PORTC	; PUT IT ON PORT C
BCF PORTR, RA3	; LIGHT UP THE DISPLAY
CALL DELAY	; WAIT FOR LIGHT-UP PERIOD
BSF PORTA, RA3	; AND TURN IT OFF AGAIN
MOVF DIGIT2,W	; GET MIDDLE DIGIT DATA
MOVWF PORTC	; PUT IT ON PORT C
BCF PORTA, RA2	; LIGHT UP THE DISPLAY
CALL DELAY	; WAIT FOR LIGHT-UP
PERIOD	
BSF PORTA, RA2	; AND TURN IT OFF AGAIN
MOVF DIGIT1,W	; GET RIGHT DIGIT DATA
MOVWF PORTC	P PUT IT ON PORT C
BCF PORTA, RA1	; LIGHT UP THE DISPLAY
CALL DELAY	WAIT FOR LIGHT-UP
PERIOD	
BSF PORTA,RA1	AND TURN IT OFF AGAIN

; The program now falls through
; back to the 'START' routine

PCB

The DTE 'Data Bus Monitor' printed circuit board can be purchased separately for $£ 4.50$.

A complete kit of parts for this project, which INCLUDES the PCB, a pre-programmd PIC16C55RC/P and everything else listed above, is available from the author by mail order only from:

DTE MICRO SYSTEMS
112 SHOBNALL ROAD BURTON ON TRENT STAFFORDSHIRE DE14 2BB

Complete kit of components as listed:
$£ 22.00$ (includes PCB and PIC16C56RC/P)

Pre-Prog-ammed PIC16C5ERC/P only:
DTE Printed Circuit Board only
£4.50

Prices are inclusive. Please add $£ 1.50$ to the TOTAL order value to zover carriage \& hendling.

Cheques and money orders etc. should be made payable to 'DTE MICRO SYSTEMS', and must be in pounds sterling (£) and drawn on a British bank.

Goods will normally be dispatched within five working days from receipt of order (subject to availability and cheque clearance), but please allow up to 28 days for delivery.

Resistors	
R1, R1010K	(20ti)
R2 - R9 220R	(8 off)
RN1	$47 \mathrm{~K} \times 8$ SIL Network
Capacitors	
C1	100uF/16V Radial Electrolytic
C2	22pF Ceramic
C3	100 nF Ceramic or Polyester 0
Displays	
L01-L03	0.8" High Efficiency (HE) Red 7 -Segment LED Display (3 off)
Semiconductors	
	PIC16C55RC/P (programmed) (can be purchased separately for £10.00)
Miscellaneous	
SW 6 mm PCB Tactlle Switch Socket	
28 pin IC Socket Connectors	
2 -way PCB Pin Header	
0.1 "Jumper Link to suit	
10-Way PCB Pin Header	
2-Way PCB Terminal Block	

A SIMPLE POWERLINE SIGNAL REMOTE CONTROL PART 1

By Bart Trepak

TThe advantages of being able to switch appliances on and off anywhere in the house from a central controller or computer are many and apart from the convenience can be used to improve energy usage and security. In the past, the obvious way to do this would have been to lay contro: cables from the central controller to each appliance, but the thought of running cables around the house to the various units with the prospect of chasing out walls, re-plastering, lifting carpets and floorboards etc. was enough to put anyone off the idea of the computer controlled home.

Of the systems now available for remote control, infra-red and ultrasonic controls are unsuitable as their range is limited to the confines of a single room.

This leaves only radio and direct wiring. Of these, radio is of course far more flexible allowing the positioning and repositioning of appliances anywhere in the building but suffers from complexity of receivers and the necessity to use certain frequencies usually in the UHF band which makes setting up or fault finding extremely difficult without sophisticated (and expensive) test equipment. On top of this, approval and a licence is required for this form of communications as there is the difficulty of restricting the transmission to a single flat, house or building.

This leaves only the direct wiring method with all the disadvantages mentioned above. To overcome these, many designers have devised systems for utilising the existing mains wiring for sending the control signals and since most appliances will need to be mains powered and therefore sited reasonably close to a mains outlet, thls would not seriously impair the flexibility of the system.

With all systems of this sort, there is always the temptation on the part of the designer to add more and more "features" as he thinks of them and a basically simple project grows and grows until the cost and effort in building it and getting it to work, let alone in teaching your granny how to use it almost rivals the upheaval of the installation of separate control wires to each appliance. With personal identification numbers, the ability to control 32 different appliances, security codes in case

Mrs Jones in Ma da Vale has a similar system which may interfere with the smooth running of your computerised house and programming switches to identify each appliance, each receiver now consists of five or six ICs which, together with the power supply and coding switches, occupy a box about the size of a toaster and almost certainly surpassing it in complexity. As if this were not enough, an infra-red remote control is often also incorporated into the system to remotely control the remote controller!

All this may be necessary if one were designing a system to run a factory or hotel complex but in the home most people would be hard pressed to find half a dozen appliances which they needed to centrol remotely let alone 32 or more.

There is little point, for example, in being able to switch the TV on and off from another room (unless you just want to annoy the other members of your family) or to control the lighting in four or five rooms in the house independently to give the impression that the house is occupied when one or perhaps two lights would be enough.

This reasoning, together with many requests from people who simply wanted say, to only switch an electric blanket on early without having to go upstairs especially to do this, or have the morning coffee ready when they come downstairs, prompted this design. The circuit is however, easily modified to provide a limited number of other extra "channels" if required.

Coding

The mains wiring is not a particularly good medium for the transmission of signals. As well as having a 230 V 50 Hz sine wave on it, there are also all sorts of pulses and transients, caused by equipment being switched on and off, superimposed on it. As well as this, any signals which are transmitted along it tend to be attenuated to a greater or lesser degree by the various appliances which are connected to it. To enable the control signals to be distinguished from these much larger amplitude signals, it is necessary to transmit them on a relatively high frequency carrier (compared to 50 Hz) but not so high that losses due to capacitance of the cables or other appliances cause a severe attenuation of the signal.

The best frequencies to use seem to be between about 80 and 150 kHz and this system runs at approximately 100 kHz . The normal domestic supply consists of three wires: Line (or Live), Neutral and Earth. In theory, the signals could be sent between any two of these.

Neutral and Earth would appear to be the most attractive since the voltage between them is not usually very large and certainly not the 230 V ac which exists between L and N and the reason for this is that the Neutral is earthed at the substation and sometimes at the point at which the supply enters the house. This can effectively "short out" the signal, limiting its range and glving highly variable results. For this reason, the signal in this system is connected between the Live and Neutral. Obviously, any system with more than one channel needs to be coded so that each receiver can be switched on and off without affecting the status of the others.

In this circuit this is achieved by modulating the 100 kHz carrier with a tone or, more simply, by switching it on and off at a lower frequency.

This makes both the transmitter and receiver very simple as no fancy digital encoders and decoders are required. The use of a tone sensitive integrated circult in the receiver simplifies the design considerably and removes the need for any adjustments which makes the circuit particularly attractive to the hobbyist who may not have access to an oscilloscope or frequency meter.

The small number of parts also make it possible to make the neceiver unit very small enabling it in many cases to be built
into the appliance which you want to control. Alternatively, it could be fitted into a "plug box" of the type used for calculator power supplies so that the unit can also function as the mains plug with the added advantage that it can be removed and reconnected to other appliances as required.

Operation

The operation of the system is probably best understood by referring to the block diagram. We will consider first the receiver and in particular the operation of the tone decoder IC used in this circuit as this is central to the system operation and defines to a large extent the kinds of signals required and hence the circuits used to produce them at the transmitter.

The tone decoder ic is almost purpose made for this application (although it was originally designed as a whistle switch for use in those "answer back" key fobs which were so popular a few years ago) and contains an amplifier, tone decoder and an output bistable stage.

The centre frequency is not set by the usual resistor capacitor network or a tuned circuit but by a single resistor which in fact sets the frequency of an internal clock oscillator. The circuit then responds to input frequencies of between $1 / 10$ and $1 / 15$ of this clock signal and produces an output by changing the state of the bistable latch each time it receives 256 cycles of a signal in the required frequency range.

The receiver therefore consists of a 100 kHz input filter to recover the carrier signal from the much larger amplitude 50 Hz

Continued on P. 49

PROFESSIONAL CIRCUIT AND PCB DESIGN AIDS FOR WINDOWS

CADPAK for Windows

CADPAK is especially suited to educational, hobby and small scale schematic and PCB design. CADPAK includes both schematlc drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit dlagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of WIndows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modification of any section of track.
- Gerber. Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber vlewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK Is also available for DOS

CADPAK FOR WINDOWS
CADPAK FOR DOS

PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionality for all but the most demanding applications.

PROPAK's schematic drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical deslgns.
- Netlist tink between modules guarentees consistency between schematlc and $P C B$.
- Netlists are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full bill of materials.
- ASCII data import facility.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Multi-strategy autorouter gives high completion rates.
- Power plane generator creates ground planes with ease.
- PROPAK is also available for DOS.

PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS £ 395

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Prices exclude postage ($£ 5$ for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged.

53-55 Main St. Grassington, N. Yorks. BD23 5AA Tel: 01756753440 Fax: 01756752857

Continued from P. 47^{*}

mains boltage followed by an amplifier and demodulator to reproduce the transmitted tone. This is fed to the tone decoder - bistable ic - and is followed by an output stage which drives a relay. A dc power suppl; block to provide a low voltage supply to the circuit from the mains voltage completes the requirements for the receiver. On the transmitter side we clearly require an oscillato- to produce the 100 kHz carrier signal which is coupled tce the mains. Since the carrier is to be switched on and of, the ascillator is controlled, via an OR gate, by two further oscillators which produce the two tones

Normally, these wo oscillators would be connected directly to the push button switcres which would enable the relevant oscillator causing it to swtch the carrier oscillator on and off at the required frequency.

If this were done in this case, the final state of the receiver would depend on how loing the transmission lasted. If the carrier oscillator was switched on and off less than 256 times, the receiver would not switch at all, while if the transmission lasted for more then 512 cycles, the receiver would change state and then swich back again giving effectively the same end result.

One way around this would be to count the oscillator cycles at the transmitter and disable it after 256 cycles had been completed. In practice this did not prove to be necessary and a simpler approach of using a monostable was chosen. This is arranjed to enable the ascillator for a period long enough to produce $256+$ cycles but less than 512 cycles irrespective of how ong the push button is pressed.

The block diagram fer the transmitter which is also shown in fig ure 1 therefoe consists of a 100 kHz oscillator together with two low frequency tone generators which are enabled by monostables triggered by two push button switches. A simple mains supply completes the requirements for the transmitter.

The receiver

The complete circuit for a receiver is shown in figure 2, and as can be seen it is quite a simple affair and the various stages shown in the block diagram can easily be identified. The high frequency signal from the transmitter is passed via C1 to the transformer T1 which ras its secondary tuned to the 100 kHz carrer by C 2 and forms the input filter.

The circuit is arranged so that transistor TR3 is normally turred on by base current flowing via R1 which ensures that TRé is turned of and so its collector remains at the supply voltage which is about 5 Volts.

As soon as a signa is received at the base of TR3, this tranisistor will be turned off and since the signal consists of bursts of 100 kHz , TR ξ switches on and off at 100 kHz during these bursts and remeins on when the burst stops.

This causes TR2 to switch on and off during each burst quickly disharging C4 and as this capacitor can only charge up relatively slowly via R ?, the voltage at the collector of TR2 remains "low" for the बfuration of the burst

When the 100 kHz signal stops at the end of the burst, the colector voltage rises again to the supply rail resulting in the orizinal modulazing waveform being reproduced at the collector of TR2 while the 100 kHz carrier is removed. This signal is then fed via C5 to IC1

IC1 is the frequency selective circuit which switches the output on and off alternately each time 256 cycles of a signal of between $f / 10$ and $f / 15$ are received where f is the oscillator frequency set by resistor R4. Since this is quite a wide frequency rance no special tuning of the receiver or transmitter

Figure 3: The receiver PCB and component Jayout
is required althougr it does mean that the number of possible channels is limited. The output of IC1 is used to switch the relay RL1 via transistor TR1 with D2 protecting the transistor against possible damage due to the back emf generated by the relay when it is switched off. The power for the circuit is obtained by the low loss "dropper" C7 with resistor R7 being included to prevent the capacitor from shorting the high frequency carrier signal.

R8 discharges C7 when the plug is removed from the mains socket to prevent any charge stored from giving anyone a shocking experience! The ac voltage is rectified by the diode bridge, limited to 12 V by zener diode D3 and smoothed by C6 to provide a dc supply for the relay. IC1 and the amplifier require a 5 Volt supply and this is provided by R5 and the zener diode D1.

Construction

With so few components, construction should not cause any problems provided reasonable care is taken. The use of a printed circuit board is recommended as it will make the construction easier, safer and the finished unit smaller. A suitable layout is given in figure 3.

Remember that the circuit operates at mains voltage, so make sure that components do not touch each other and that there are no solder splashes between track which could cause a lot of damage to the circuit when power is applied.

The ic is a MOS device and therefore sensitive to static. Touching the pins should therefore be avoided and the device mounted in a socket if possible. Take care also to insert the diodes correctly especially the zeners which tend to have very small markings to identify their voltage.

Testing the finished unit will obviously have to wait until the transmitter has been constructed and this will be dealt with next month.

For the sake of completeness, the mains connections to the assembly are shown in figure 4.

The L and N are interchangeable as far as the circuit is concerned although it is more usual to switch the L line (as shown), with the load connected on the N side. If the unit is to be mounted in a plug box, a separate in-line fuse should be fitted in the L line as shown but if the receiver is mounted in a separate box with a socket for plugging the appliance into, the fuse could be that fitted in the mains plug used with the device. The final assembly of the circuit into its box should be postponed until the complete system has been tested.

If required, two receivers could be built with different value resistors fitted in position R4. These should be chosen so that the frequency of the receivers does not overlap, which could result in both units switching together. If more channels are required, further receivers with different R4 values can be built but the transmitter would also need to be modified to enable more tones to be generated.

In this case, R4 is best replaced by a preset and the value determined by trial and error. Once this has been done, the preset may be replaced by the nearest value fixed resistor.

Suitabie alternative values for other frequencies will be given nexi month. Next month's article will deal with the construction of the thansmitter and the testing of the complete sys:em.

Prices nclude UK postage. Please add £2 for overseas orders. Serd Fostal Order or Cheque to:
B. Trep $=k$

20 The Avenue
Loniton W13 8PH
Mail Drder Only. Overseas Orders must include payment in pounds Sterling with bankers' draft drawn on a British bank.

Resistors

R1	$2 M 2$
R2	$47 k$
R3	$33 k$
R4	$1 M 5$ or 2M2 (SEE TEXT)
R5	$1 k$
R6	$10 k$
R7	$47 R$
R8	$820 k$

Capacitors

C1
C2
C3
C4
C5
C6 470uF/16V
27
38

Displays

RD7 transformer 3V9/400mW zener 1N4148 diode 12V/400mW zener 1N4148 diode 2N3903 NPN transistor BC548 NPN transistor

Semiconductors

IC1*
UM3763 tone decoder IC
R_Y1 12V/400R coil contacts to suit load, PCB, 3-way terminal block, 8 pin ic Socket

[^0]
£1 BARGAIN PACKS

- List 5

If you would like to receive the other four $£ 1$ lists and a lot EST PRODS FOR MULTIMETERS with 4 mm sockets Good length very flexible lead. Ret: D86
80 HM PM SPEAKER, size $8^{\circ} \times 4^{\prime \prime}$, pack of two. These may be lightly rusty and that is why they are so cheap but are electrically OK. Ret: D102.
PAXOLIN PANELS, size $6^{\prime \prime} \times 6^{n \prime}$, approximately ${ }^{1} / 16^{\prime \prime}$ thick, pack of two. Ref: D103.
13A SOCKET, virtually unbreakable, ideal for tralling lead, Ref: D95.
PIEZO BUZZER with electronic sounder circuit, 3 V to 9 V
D.C. operated, Ref: D76

Ditro but without internal electronics, pack of two, Ref:
LUMINOUS ROCKER SWITCH, approximately 30 mm sq pack of two Rel: D64
ROTARY SWITCH, 9-pole 6-way, small size and $1 / 4$
spindle, pack of two, Ret: D54.
FERRITE RODS, $7^{7 \prime}$ with coils for long and medium waves
ack of two, Ret: D52.
DITTO but without the colls, pack of three, Ref: D52 SLIDE SWITCHES, SPDT, pack of 20, Ret: D50
MAINS DP ROTARY SWITCH with $1 / 4^{10}$ control spindle,
pack of five, Ref: D49. ELECTROLYTIC CAP, $100 \mu \mathrm{~F}+100 \mu \mathrm{~F} 12 \mathrm{~V}$, pack of 10 . ref:
MINI REI AY with 5 V coil, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times 1 \mathrm{~mm}$ has two sets of changeover contacts, Ret: D42
MAINS SUPPRESSOR CAPS 0.1μ F 250 V A.C. . pack of 10 , Ref: 1050.
TELESCOPIC AERIAL, chrome plated, extendable and tolds over for improved F.M. reception, Ref 1051
MES LAMP HOLDERS, slide on to $1 / 4^{\prime \prime}$ tag, pack of 10 , Ref:
PAXOLIN TUBING, $1 / 4^{m}$ Internal diameter, pack of two, 12^{*} lengths, Ref: 1056
ULTRA THIN DRILLS, 0.4 mm pack of 10, Ref: 1042 20A TOGGLE SWITCHES, centre off, part spring controlled, will slay on when pushed up but will spring back when pushed down, pack of two, Ref: 1043
HALL EFFECT DEVICES, mounted on small heatsink, pack of two, Rel: 1022.
12 V POLARISED RELAY, two chageover contacts, Ref

1032.

PAXOLIN PANEL, $12^{\prime \prime} \times 12^{\prime \prime}{ }^{1} / 16^{*}$ thick, Ref, 1033
MINI POTTED TRANSFORMER, ONLY 1.5 VA 15 V -OV-15V
OR 30V. Rel: 964
ELECTROLYTIC CAP, $32 \mu \mathrm{~F}$ al 350 V and $50 \mu \mathrm{~F}$ section at 25 V , in afuminlum can for upright mounting, pack of two, ref:

PRE-SET POTS, one megohm, pack of five. Ref: 998 WHITE PROJECT BOX with rocker switch in top left-han side, size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted. Ret: 1006 6 V SOLENOID, good strong pull but quite small, pack of two, Ref: 1012 .
FIGURE-8 MAINS FLEX, also makes good speaker lead. 15m, Ret: 1014
HIGH CURRENT RELAY, 12 V A.C. or 12 V D.C..., three LOUOSPEAKEP
NEON PILOTER, 8 Ohm $5 \mathrm{~W}, 3.7^{7 \prime}$ round, Ret! 962 with intemal resistor for normal mains operation, pack of four, Ref: 970.
3.5MM JACK PLUGS, pack of 10, Ref: 975

WANDER PLUGS, pack of 10, Ref: 986
PSU, mains operated, two outputs, one 9.5 V at 550 mA and the other 15 V at 150 mA .. Ret: 988
ANOTHER PSU, mains operated, output 15 V A.C. at
320mA, Ref: 989
PHOUSPELS, silicon chip type, pack of four, Ret: 939 LOUDSPEAKER, $5^{5} 4$ Ohm 5W raling, Ret: 946 pack of two, Rel: 943.

LOUDSPEAKER, $4^{\prime \prime}$ circular 6 Ohm 3 W , pack of 2 , Ret
FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching FERAITE PO
pair, Ref: 901 .
PAXOLIN PANEL, $8^{1 / 2^{-1}} \times 3^{1 / 22^{2}}$ with electrolytics $250 \mu \mathrm{~F}$ and 100 mF . Rel: 905.
CAR SOCKET PLUG with P.C.B. compartment, Ret, 917. FOUR.CORE FLEX sultable for telephone extensions, 10m, Ref: 918.
VERO OFF-CUTS, approxImately 30 square inches of useful sizes, Ret: 927.
PROJECT BASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lid, held by four screws, pack of two. Ref: 876
SOLENOIOS, 12 V to 24 V , will push or pull, pack of two Ref: 877.
Ref: a7ns LEAD, 3-core with instrument plug moulded on Ref: 879.

\section*{two. Ref: 884}
 MICROPHONE, dynamic with normal body for hand

$$
\text { holding, Ref; } 885
$$

holding, Rel: 885 .
CROCODILE CLIPS, superior quality flex, can be attached without soldering, five each red and black, RefF 886 . BATTERY CONNECTOR FOR PP3, superior qually, pack of tour,. Rel: 887.
PIGE WEIGHT STEREO HEAOPHONES, Ref: 898 PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pack of 10 , Ref: 849 . ${ }^{1} / \mathrm{m}^{n}$ spindle to take control
THERMOSTAT for ovens with knob, Ref: 857.
$12 \mathrm{~V}-\mathrm{V}-12 \mathrm{~V} 10 \mathrm{~W}$ MAINS TRANSFORMER, Ret: 811 $18 \mathrm{~V}-0 \mathrm{~V}-18 \mathrm{~V} 10 \mathrm{~W}$ MAINS TRANSFORMER, Ret 813. AIR-SPACED TRIMMER CAPS, 2 pF to20pF, pack of two Ref; 818.
AMPLIFIER, 9 V or 12 V operated Mullard 1153, ref: 823 2 CIRCUIT MICROSWITCHES, licon, pack of 4, ref: 825. change SIZE MICROSWI of two, Ret: 826 . MAINS VOLTAGE PUSHSWITCH with white dolly, through panel mounting by hexagonal nut, Ref: 829. POINTER KNOB for spindle which is just under ${ }^{1} / 4^{*}$, like most thermostats, pack of four, Ref: 833.

AIR SPACED TUNING CAPACITORS

With the renowed interest in valve equipment, particularly valve radios, we are offering some very well made tuning capacitors. All have $1 / 4^{\prime \prime}$ spindles:
Order Ref 3P214 is a 500pf +500 pf direct drive with approximately 1 " spindle, price $£ 3$. Order ref 2P422 has a 250pf front section and a 350pl back section, approximately 1 $1 / 2^{n}$ of spindle with slow motion drive, price $\varepsilon 2$.
Order Rel 3P215 is a section all with trimmers.. Front section is 150 pf , second section 250pf, then an FM section of 50pf, fourth section is 190pf and the final FM section is 50pf. Complete with drum drive and $1^{\prime \prime}$ spindle, price $£ 3$
Order Ref 2P425 is a 2 gang $50 \mu \mathrm{f}$, very wide spaced for transmitter tuning, about $1^{1 / 2 "}$ spindle price £2.

MULTITESTER

PT160

Superior pocket slze multite:ster, 2000 ohm per volt and mirrored scale. 14 ranges, $A C$ and $D C$ volts up to 500 , current up to $250 \mathrm{~mA}, 2$ ohm ranges and 2 very useful battery test positians. Complete with prods and booklet, price £6.95, Order Ref: 7P23.
INSULATION TESTER WITH MULTIMETER. Intemally generates voltages which enables you to read insulation directly in Megonms. The multimeter has four ranges: A.C./D.C. volts; 3 ranges resistance and 5 amp range. Ex-British telecom, tested and guaranteed OK, yours for only $\mathbf{\$ 7 . 5 0}$ with leads, camying case $£ 2$ extra, Order Ref: 7.5P4
We have some of the above testers not working on all ranges, should be repairable, we supply diagram, £3, Order Ref: 3P176.

SMART HIGH QUALITY ELECTRONIC KITS

All kits are complete with PCB and other components in a blister pack. We feel that most readers will know these kits, but if you want more information about them, then we have copies of the illustrated Smart catalogue, this gives full details and circuit diagrams of each kit, price is $£ 1$, deductable if you order kits to the value of $£ 20$.

CAT.	DESCRIPTION		CAT.	DESCRIPTION P	PRICE
PRICE			No.		Σ
No.		Σ	1062	5 V 0.5 A Stabilized Supply for TTL	2.30
1002	VU Meter, with I.e.d. display	4.60	1063	12V 2A Power Supply	2.30
1003	5W Electronic Siren	2.53	1064	+12V 0.5A Stabilized Supply	3.22
1004	Light Switch	3.22	1067	Stereo VU Meter, with I.e.d.s	9.20
1005	Touch Switch	2.87	1068	I8V 0.5A Stabilized Power Supply	2.53
1007	Stablized Power Supply:		1070	HiFi Pre-amplifier	7.47
	3 V to 30V at 2.5A	6.90	1071	4 -input Selector	6.90
1008	SF Function Generator	6.90	1074	Drill Speed Controller	2.76
1010	5 -input Stereo Mixer, with monitor		1077	IOOW HiFl Amplifie	12.50
	output	19.31	1080	Liqid Level Sensor - Rain Alarm	2.30
1011	Motorbike Alam	3.20	1082	Car Voltmeter, with l.e.d.s	7.36
1012	Reverberation Unit	5.52	1083	Video Signal Amplifier	2.76
1016	Loudspeaker Protection Unit	3.22	1084	TV Line Amplifier	1.84
1023	Dynamic head preamp	2.50	1085	DC Converter, 12 V to 6 V or 7.5 V or 9 V	
1024	Microphone preamp	2.20	2.53		
1025	7W HiFl Power Amplifier	2.53	1085	Music to light for your car	4.60
1026	Running Lights	4.60	1087	Thyristor/Triac Tester	2.76
1027	Nicad Battery Charger	3.91	1083	Kitt Scanner	10.12
1029	4 sound electronic siren	3.00	1089	LED Flasher/555 Tester	1.61
1030	Light Dimmer	2.53	1090	Stress Meter	3.22
1032	Stereo Tone Control	4.14	1093	Windscreen Wiper Controller	3.68
1033	60W HiFi Power Amplifier	7.82	1094	Home Alarm System	12.42
1034	Car Battery Checker	1.61	1096	2V-30V 5A Stabilized Variable PSU	11.04
1035	Space Sound Effects	2.30	1098	Digital Termometer, with I.c.d. displa	ay 11.50
1038	AM/FM Aerial Amplifier	1.61	1100	$2 \times 18 W$ Integrated Amplifier	18.39
1039	Stereo VU Meter	4.60	1103	LED Power Meter	1.84
1040	IOW HiFi Power Amplifier	2.76	1105	Thermometer, with l.c.d. display	6.90
104\|	25W HiFi Power Amplifier	4.60	1107	Electronics to help win the pools	3.68
1042	AF Generator, $250 \mathrm{~Hz}-16 \mathrm{kHz}$	1.70	1109	40W HiFi Amplifier	7.36
1043	Loudness Stero Unit	3.22	1112	Loudspeaker protection, with delay	4.60 5.98
1047	Sound Switch	5.29	1113	$2 \times$ I8W Power Amplifier	5.98
1048	Electronic Thermostat	3.68	1115	Courtesy Light Delay	2.07
1050	3-input HIFi Stereo Pre-amplifier	12.42	1118	Time Switch with tria 0-10mins	4.14
1051	Touch Dimmer, with memory	4.60	1123	Morse Code Generator	1.84
1052	3 -input Mono Mixer	6.21	1124	Electronic Bell	2.76
1053	Electronic Metronome	3.22	1125	Telephone Lock	3.68
1054	4 -input instrument Mixer	2.76	1126	Microphone Pre-amplifier	4.60
1056	8V-20V 9A Stabilized Power Supply	12.42	1127	Microphone Tone Control	4.60
1057	Cassette Head Pre-amplifier	3.22	1128 a	Power Flaster I2V d.c.	2.53
1058	Electronic Car Ignition	7.82	1130	Telephone Bug Detector	3.20
1059	Telephone Amplifier	4.60	1133	Stereo Sound-to-Light	5.26
1060	+40V 8A Power Supply	8.28			

You Save £40

THE JAP MADE 12 V I5AH SEALED LEAD ACID BATTERY from regular suppliers COSts $£ 50$, you can have one from us for only $£ 10$ including VAT if you collect or $£ 12.50$ it we have to send. Being seated it can be used in any position and is seamtenance free All in tip top condition and fully mamtenance fee. All in 10 P guaranteed, Order REE; 12.5 PA . Or if you want a yours for only 55 , Order REf: 5 Ṕ258.

Prices include VAT and carriage if order over £25 otherwise add £3. Send cash, uncrossed postal orders, cheque or quote credit card number.

I \& N FACTORS
 PILGRIM WORKS (DEPT ETI), STAIRBRIDGE IRNE, BOLNEY, SUSSEX, R:11 5PA Telephone: 01444881965 (Also Fax but phone first)

The new Summer '96 edition has 280 pages packed with over 4000 products.

D Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.

D WIN! £250 Voucher to spend on any Cirkit product of your choice in our easy to enter competition.

- 100's of new products including; Books, Connectors, Inductors, Switches, Test Equipment and Tools.
\triangle New Multimedia CD ROM Titles.
D New Radio Amateur Equipment.
- PIC Microcontroller Projects and Modules.

D 280 Pages, 25 Sections and Over 4000 Products from some of the Worlds Finest Manufactures.
\triangle Available at WH Smith, John Menzies and most large newsagents, from 25th April, or directly from Cirkit.
Δ Get your copy today!

NEW SPECIAL OFFERS

New minil waterproof T/ camera $40 \times 40 \times 15 \mathrm{~mm}$ requires (10 oto 20 volts a 120mA with composlle video
oulpu) (10 fed into a video of a TV with a SCART plug) It has a high resoluticn of at 450 TV lines Vertical
and 380 TV lines honzontal electronic aut and 380 TV lines honzontal, electronic auto ins for pinhole lens with a 92 degrse field of view, it locuses down to a tew CM. H is fitted with a 3 wire lead (12 V in gnd and video out).
(93 $57+V A T=£ 109.95$ High quality stepping motor kits (all Inciuding stepping, notors) Comstep. independent control of 2 stepping notors by PC (Via the paralel port) with 2 molors and
Kit
Soltware suppor 567.00 ready built
power interface $4 \mathrm{~A} k \mathrm{kh}$

| package with data sheet |
| :--- | :--- |
| $D C D C$ convenor Reliablity model vi2ps i2v in 5 v |
| 1.95 | OC-DC convenor Reliability model V12P5 12 V in 5 v

200 ma out 300 v houl to output Isolation with data £4.95 each or pack of to 539.50 Hour counter used 7 digini 240 v ac 50 Hz OWERTY keyboard 58 key good quality switches new Airpax A82903-G large slepping molor $1457{ }^{5}$ sie 27 him 68 mm diab body 6.3 mm shatt $\varepsilon 8.95$ or $£ 200.00$ for a box of 30
Polyester capacitors box type 22.5 mm lead prich lut 250 vdc 20 p each. $15 \mathrm{p} 100 *$. 10 p 100 p lu't 50 bipolar electryytic axial leads 15 p each, 7.5 p 100 0.22 ut 250 v polyester axal leads 15 p each. 7.5 p . $100+$ Polypropylene pith $32 \times 29 \times 17 \mathrm{~mm}$ case 750 eama MKP10) 27.5 mm pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p each 60 p phot 3301 tov \& 2.20140 p each, $25 \mathrm{p} 100+$
Philips 108 series long life 22 ut 63 v axial 30p each 15p 1000
1000 100 pf . $150 \mathrm{pl}, 220$
$100+, 3.5 \mathrm{p} 1000+$
5000f compression trimmer 40 ut 370 vac motor star capacitor (diaiectrol 60 p containing no pcbs) $\mathbf{\Sigma 5 . 9 5}$ or $£ 49.50$ for 10 Solid carbon resistors very low inductance ideal for RF cilcuits
$27 \mathrm{hmm} 2 \mathrm{~W}, 680 \mathrm{hm} 2 \mathrm{~W} 25$ p each 15 p each $100 *$ w have a range of 0.25 w 0.5 w 1 w and 2 w solid carbo resistors please send SAE for list
P.C. 400 W PSU P.C. 400W PSU (Imiel part $201035-001$) with slandard
motherboard and 5 disk dive conneclors, fan and motherobard and 5 disk dnve conneclors, fan and
mains trlet/outlet connectors on back and swich on the side (top lor tower case) dims
$212 \times 49 x / 49 \mathrm{~mm}$ excluding switch $£ 26.00$ each $212 \times 49 \times 149 \mathrm{~mm}$ excluding switch $£ 26.00$ each
$\$ 138.00$ or 6 MX180 Digital multimeter 17 ranges 1000 vdc 750 vac
2Mohm 200mA transistor Hife 9 v and $1 / 5 \mathrm{v}$ battery tes AMD 27256-3 DIP swich 3PCO 12 pin (ERG SDC- $-3-023$) 60 p eac 40 DiP swich
 Mand held ultrasonic remote control CV2486 gas relay $30 \times 10 \mathrm{~mm}$ dia with 3 wire eminals will also work as a neon light 20 p each or varmatim R300NH Streamer tape commonly used on nc machunes and printing presses eic. it looks like a normal cassette with a slot cut out of the top $£ 4.9$ each ($53.75100+$)
Heas-2405-E5pound tube $5-24 \mathrm{v} 50 \mathrm{~mA}$ regulator ic is-264vach input 8 pin DIL package $\mathbb{C 3}, 49$ gach $(100+\mathbf{2 2 . 2 5})$ M 55 limer ic 16p. 8 Pin DIL socket 6p
All products advertised as new and unused unless
otherwise stated Wide range of CMOS TL 74 HC 74F Linear Transistors kits, rechargeable batteries capacitors loots etc. always in stock
Piease add $£ 1.95$ towards $P \&$ d.

JPG ELECTRONICS

ET1 276-278 Chatsworth Road
Chesterield $\mathrm{S40} 2 \mathrm{BH}$
Accoss Visa Orders (01246) 211202 fax 550959
Callers Welcome $9.30 a m-5.30 \mathrm{pm}$ Monday Saturday
BC547A transisior25 per $£ 1.00$ Microcontroiler E 3.50
SL952 UHF Umitling amplitier LC 16 surface mounting

MUSCLE WIRES
arcincuing wires that CONIRACI WHEN ELECTRICALLY HEATED producing a useful amount of force (Up.to 0.9 kg f for 250 um wire). Require $0.3 \mathrm{~V} / \mathrm{cm}$ and cursents from 100 ma to 1 Amp Choose from four gauges of wire (50.100 .150 and 250 um dia) Detailed Data and Project Book (128 pages) also avalable separately and with Delux Wire kit

SERVO - IR - LCD CONTROLLERS

Arange of low cost controller kits: R/C servos \{up 108 servos per board- simple RS232 com CD in your $P C$ hold servo in position until updated etc).
LCD display drivers |Al| standard Hitachu controller types up to 4×20 characters- RS232 input) \mathbb{R} programmable receivers 17 output channels - accept any ${ }^{\text {V/V/Hifi controller- up to }} 25 \mathrm{~mA}$ output per channet programmable toggle/momentary switching actions

Please call to receive further details on any of the above products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

PROCESS TIMIER

 and
CONIROLLER

WITH EXTERNAL I/O INTERFACE

By Tim Parker

PART 3A
 Software Development Board

\squareaving presented the main Process Timer/Controller and its associated power supply, we continue this month with a small but useful board, which enables programmers who are writing their own interface software for the main board to test out their code without having to connect the controller to their proposed target interface.

When writing programs for microcontrollers which will eventually have control over a particular interface, whether it be for automotive applications, light and motor control, or, dare we say, the proverbial central heating controller (oh dear, how those words have been worn thin over the yearsl), the resulting code must be perfect in its operation if the microcontroller is to perform the designated tasks correctly.

There's nothing worse than discovering that something's wrong once the main controller is connected to the target interface and powered up, and all manner of inexplicable things start happening.

The art of programming is to write, test and debug small sections of the program at a time, but as our confidence in writing software grows, it's easy to get so engrossed in what we're doing that we get "on a roll", and decide to carry on regardless, writing more and more code, almost instinctively believing that the program will work, and that we know exactly what will happen once the controller is connected to the interface.

But it doesn't, and it's frustrating enough that the outputs alone might not do what you thought you had programmed them to do, but this becomes doubly frustrating when these
outputs are interacting with various input conditions which themselves, when applied, inaugurate further irrational behaviour in perhaps both the controller board and the programmer.

This is obviously no use at all if the interface is already connected to various output devices, which by now each seem to have a mind of their own, doing things that you didn't even expect them to, let alone what you want them to. Even worse, no matter which buttons you press, or what input signals you try to simulate, you cannot override or significantly influence the actions of the controller, and things usually go from bad to worse. The most commonly used button in these situations is marked ON/OFF.

Experienced programmers will know that all of this could be the result of just one single incorrect instruction in the program code - but which?

Perhaps not so strangely, at this point we return to the program, split it up into 'chunks' and start testing the code in sections to find out where it's going wrong, as we should have done in the first place. In these situations it's useful to have some means of testing the code prior to connecting the devices you intend to control.Basically, all that is needed is something that will visually indicate the state of each output bit, and provide the means to simulate the required (or expected) input signals. This is just the intention of the project presented here.

The circuit

This must be one of the most simple circuit diagrams there is,

LEDs connected to its outputs. These provide high/low status indicator lights for the expansion bus output port. When an LED is lit the corresponding output bit is high, and when an LED is off the output bit is low. Rather than connecting the LEDs directly to the outputs of the 74LS574 (IC3) on the main controller, they are powered from the regulated +5 V supply, and IC1 is used to minimise the load on the expansion bus.

This allows the Software Development Board to remain in place while other interface boards are also connected to the expansion bus, which is extremely useful if your desired interface isn't doing what it should, because you can see what signals are being sent to it.An additional LED provides a power on indicator (LED8) and resistors R1 to R8 limit the current through each LED. The expansion bus input port is connected to two sets of switches.

The first set is formed by seven of the 8 -way DIP switch SW1, the second set is made up of miniature PCB pushbutton switches PB1 to PB7.By using both types it is possible to use the
but the usefulness of the board just goes to show how some of the simplest designs can also be some of the best, and it could get more use than some of your final interface designs themselves. The seven bits available on the Process Timer expanșion bus output port are fed to the inputs of a 7 -stage Darlington driver, IC1, which in turn is used to drive the seven
pushbuttons for simulating momentary input signals, whilst the DIP switches provides long term or permanent input signals. When a switch is closed or pressed, the corresponding input bit on the expansion bus is pulled low to OV. When a switch is open or released, the input bit is pulled high to +5 V by the resistor network RN2 on the main controller board.

Figure 2: simplified flowchart for the automatic gate controller program. The main objective is to keep the gate closed at all times when it is not required to be open, but priority is given to vehicles exiting the driveway, even if the gate has started on the closing phase, but not yet shut

The eighth
pushbutton and DIP switch position provides control of the Output Enable
(OE) line of the expansion bus.In most cases this will not be needed but has been included on this board for completeness of signal access. The OE signal was explained in part 1 of this series of projects, so a full explanation will not be repeated here, but basically, if you want to demonstrate the switches related to this signal (DIP switch 8 and PB8), together with their effect on the output status LEDs, then

you must place the jumper link JP1 on the main controller in the EXT (right hand) position. With the switch closed or pressed the LED indicators are enabled. When the switch is open or released the LEDs are disabled.

Construction

This is very easy, very straightforward. No static sensitive devices, no special handling precautions required. Make sure IC1 faces the right way, and don't forget the five wire links. The DIP switch can be fitted either way around, depending on whether you want the switches to close on the downward or upward stroke, but generally these types of switches are numbered 1 to 8 , and the PCB is designed to use these numbers to correspond to the bit numbers of the input port, so for this they should read left-to-right as normal.

Connection and testing

In common with all other boards in this series, this one plugs directly into one of the board edge connectors of the expansion bus ribbon cable.

If you are using non-polarised connectors on your ribbon cable then ensure the board is plugged in the right way around. Testing the board is simply a case of plugging it in and writing some software to tum the LEDs on and off, and to read the state of the pushbuttons or DIP switches.

The followingshort routine, while not doing anything practical, will test the individual operation of each switch and LED. The operation of the software is very simple; close a DIP switch or press a button and the corresponding LED for that bit will light up.

Remember though, if any of the DIP switches are closed (ON) then its equivalent pushbuttons will have no effect.

Listing 1

A simple test routine for the software development board

```
|***************************************************
*****************
;* SOFTWARE FOR USE ON THE DTE PROCESS
TIMER/CONTROLLER BGARD, *
;* (C) 1996TIM PARKER / DTE MICRO SYSTEMS. *
; * TEST ROUTINE FOR THE SOFTWARE DEVELOPMENT BOARD
*
*****************
LIST P=16C54, R=DEC
ORG 0000 ; SET ORIGIN ADDRESS
MOVLW B'00001000'
TRIS 05 ; SET RAO TO RA2 AS
OUTPUTS
TESTBUS
MOVLW B'11111111'; SET PORT B AS ALL
TRIS OG ; SET PORT B AS ALL
INPUTS
MOVLW 04 ; GET IC4 STROBE
LINE
MOVWF 05 ; AND PULL IT LOW
MOVF 06,00 ; GET DATA ON PORT B
IN 'W'
MOVWF 07 : AND STORE IT IN £7
REGISTER
MOVLW 07 ; GET 'ALL OFF' CODE
MOVWF 05 ; SET ALL STROBE
LINES HIGH
MOVLW B'00000001'
TRIS C6 ; SET UP RE1 TO RB7
AS OUTPUTS
```

; NOW LIGHT UP THE APPROPRIATE LEDS.
; BECAUSE THE PUSHBUTTONS AND DIP SWITCHES
; ARE ACTIVE LOW, AND THE LEDS ARE
; ACTIVE HIGH, THEN REGISTER £7 MUST BE
; INVERTED BEFORE WRITING IT TO THE
; OUTPUT PORT

Built-in test routine

Here's a well kept secret (up until now, that is). The programmed (darkroom timer) PIC16C54 available for this project has a built-in test routine of it's own, which is far more comprehensive than the above listing. Not only does it provide pushbutton, LED and OE line testing, but also makes use of all four display digits to show what value is being read from the expansion bus input port, and what value is being written to the expansion bus output port.

To enter this test mode, first start with no power to the board, all DIP switches open, all pushbuttons released and the OE jumper on the process timer set to the EXT (external) position. Now hold down the bottom left hand RESET button on the process timer whilst powering up the board.

EUTTON	DISPLAY READINGS		LED STATUS INDICATORS$1=O N$						
	HEX	DEC EQVT.	1	2	3	4	5	6	7
NONE	FF : 00	255:0	0	0	0	0	0	0	0
PB1	Fd: 02	253:2	1	0	0	0	0	0	0
PB2	Fb : 04	251:4	0	1	0	0	0	0	0
PB3	F7:08	247:8	0	0	1	0	0	0	0
PB4	EF : 10	239:16	0	0	0	1	0	0	0
PB5	dF : 20	223 : 32	0	0	0	0	1	0	0
PB6	bF : 40	191:64	0	0	0	0	0	1	0
PB7	7f: 80	127:128	0	0	0	0	0	0	1

NOTE: DIP SWITCH 8 OR PUSHBUTTON PB8 MUST BE CLOSED IN ORDER FOR LED INDICATORS TO LIGHT

Table 1: single pushbutton results

There will be none of the usual 'bleeps' associated with the normal operation of the board; instead, it will start up silently with FF:00 shown in the display.If not, then you've got something wrong, so power down and check the boards for faults or incorrect switch settings.

The RESET button can now be released, since the board will remain in test mode until power is removed; none of the pushbuttons on the process timer are operative once the builtin test mode has been initiated.

The two left hand (minutes) digits show in HEX the value being read in from the expansion bus input port, and the two right hand (seconds) digits show the value being sent out to the expansion bus output port - again in HEX format. Pressing the pushbuttons will alter these readings accordingly, but at the moment will not result in the status LEDs lighting up. To enable these, close DIP switch 8 or hold down PB8 whilst pressing the other buttons. The LEDs should now light up in sympathy with the corresponding button presses, which confirms the correct operation of the expansion bus OE line (explained in part 1).

Table 1 below shows what values should appear in the displays and the state of the LEDs on the development board when any one (and only one) of the pushbuttons is pressed. Although only the codes corresponding to individual button presses are listed in the table, all of the available input values between 01h and FFh will be displayed when multiple combinations of the pushbuttons are held down simultaneously.

The built-in test routine software actually reads all 8 bits of the RB port on the PIC16C54, but the code 00h cannot be obtained from the input port because RBO is not connected to the expansion bus. This bit always reads as 1 due to pull up resistor R10 on the process timer board. Equally, all 8 bits are written to the output port, but again RBO has no effect on the expansion bus, although this bit on the PIC device is still turned on and off accordingly.

A word of caution here. Whenever 7 -segment displays are used to display hexadecimal values, because of the limited availability of typographical characters it's important not to confuse the number ' 6 ' with the hex letter ' b ', since they look very similar. The ' 6 ' makes use of display segment ' a ' (the very top horizontal segment), whereas the letter ' b ' has this segment left blank (off), and if you're not used to viewing hexadecimal digits in this way it's very easy to mistakenly read it as ' 6 '. So if you think your readings are wrong, then just check the display again, it might just be that you have misinterpreted the digit.

The development board together with the built-in test routine could double up as an educational demonstration of different types of code formats, since the pushbuttons produce inverse binary codes, the status LEDs are driven using positive binary codes and the digital displays on the Process Timer show both these codes in hexadecimal format, which is one of the most preferred types used by programmers in general.

Application

There is no pre-defined application for this board, since it will serve the purpose of developing and checking the operation of almost any interface software for just about any application. However, for demonstration purposes an application is presented herefor an automatic gate controller, where vehicular entry into (say) a private drive is restricted via a coded keypad or card reader, but the exit is unrestricted via a ground Joop detector which automatically signals the gate to open as you approach.It is not the intention of this article to explain how to actually construct a complete automatic gate controller, but merely how to control it given the bare essentials required by it.

For the time being these operations will be controlled by, and visible on the software development board, but could be transferred for operation on the expansion bus interface board to be described next month.

At first sight, the function of an automatic gate (or barrier for that matter) controller seems pretty straightforward; restriction on entry, but with free exit. But these are far more complex in operation than you think, particularly on a commercial basis where a vast number of operational and public safety considerations must be taken into account. The absolute bare essentials together with some basic connections are shown in figure 1.

The software for this is complete in its functionality, but is very basic and by no means exhaustive. In the real world there are an awful lot of' what if ' questions that must be answered before you could even consider the final design for a working version. For instance: what if the vehicle broke down within the gate's path of swing? What if the limit switches fail? What if the power failed? What if a person gets trapped under or behind the gate? What if the emergency services have to force their way in, etc? These are just a few of the questions, the list could be endless. Fortunately, these and more have all been taken into account by the manufacturers and professional installers of this type of control equipment, where safety is considered of paramount importance.

Nevertheless, this software could be put to practical use on a scaled down model basis, and if you're mechanically minded, or already employed in this line of work, could even form the basis of a portable working demonstration unit for the real thing. The flowchart in figure 2 shows how the software must operate, so as to take account of some of the most basic situations that could arise. Priority is given to the entry keypad and exit ground loop to ensure that even if the gate is on its closing phase, it will stop, wait a couple of seconds and then reverse the motor to open the gate. The motor must be stopped before changing its direction of travel, otherwise too much strain is put on the bolts and bearings, not to mention the sudden power surge. In a real application the actuator could have a gate weighing upwards of 100 kg bolted to it, albeit the actuator for these would, more than likely, consist of an electric pump driving a hydraulic arm, but the principle is the same.

Continued on P. 58

Comprehensive PIC solutions from FED:

PICDESIM

PICDESIM is a fully integrated Windows PIC Simulator, to use with our Development Environment. It features
Single step, skip over, and run, Conditional breakpoints, watch variables, trace any number of variables, graphical interfaces. Up to 50 times faster than MPSIM. Wide range of stimuli including asynch serial data. Integrates with our PIC Programmer
£30.00, $£ 25.00$ if purchased with our PIC Programmer

PIC Programmer

Program 16C54/55/56/57/58, 16C62xx, 16C64, 16C71/73/74 16C84. Uses serial link to a PC. Windows and DOS software provided. Includes PICDE, the Windows based PIC
Development Environment with on-line help, project management, editing, assembler.

Kit $£ 40.00$, Ready Built $£ 50.00$
PIC16C74/JW Erasable 20MHz $£ 24.00$
PIC $16 \mathrm{C} 74-04$ OTP $4 \mathrm{MHz} £ 8.00,20 \mathrm{MHz} £ 11.00$
PIC 16C57XT/P OTP 4MHz $£ 5.00$
PIC16C84-04P EEPROM erasable $4 \mathrm{MHz} £ 6.00$ 24LC65 8kx8 serial EEPROM $£ 5.00$

PIC BASIC

Easy to learn BASIC in a Windows Development Environment. No need for assembler or a UV eraser to program PICs. Modules operate from a serial link to your PC. The 16C74 module has these features: $8 k$ EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 A/D inputs, Interrupt deriven serial RS232 interface, Peripheral I2C bus interface, optional external ram.

16C57 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz}$) $£ 30.00$, Pre-built $£ 36.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz}$) $£ 35.00$, Pre-built $£ 42.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 20 \mathrm{MHz}$) $£ 40.00$, Pre-built $£ 46.00$

PIC BASIC Compiler

New! A PIC BASIC compiler for the 16C74. it produces a hex code to program your 16C74 directly. Compatible with the EEPROM versions of PIC 16C74 BASIC modules.
Compiler $£ 50.00$
Serial Cable for Programmer or BASIC Modules $£ 7.50$

FForest Electronic Developments 10 Holmhurst Avenue, Christchurch, Dorset, BH23 5PQ

Prices are inclusive, please add $£ 3.00$ for P\&P and handling to each order Cheques/POs payable to Forest Electronic

AN5521	1.35
AN5732	1.40
AN6327	9.85
AN6677	8. 50
BA5114	1.55
BA6218	1.85
BA6219	1.20
HA11423	1.65
HA13119	2.50
KAS210	4.99
LA3220	0.60
LA4183	1.35
LA4445	1.90
LA4495	1.40
LA4588	2.55
LA7835	2.35
LB1415	2.25
LM301	0.25
LM317T	1.50
M491BBI	4.75
M49881	6.75
M51393	5.95
M 58655	3.30
M83730	1.70
M 33756	8.00
STK078	6.00
STK435	4.00
STK461	6.00
STK2250	7.45
STK4121/2	7.00
STK4141/2	5.50
STK4142/2	6.50
STK4162/2	6.25
STK4171/2	8.10
STK4191/2	8.50
STK4352	${ }^{6} .20$
STK4372	5.65
STK4803	7.05
STK4843	7.05
STK5315	5.85
STK5332	1.80
STK5338	3.25
STK5361	4.15
STK5372	2.85
STK5372H	4.15
STK5412	3.75 3.85
STK6732	14.00
STK7226	7.50
STK7308	4.05
STK7308	4.05
STK7348	4.05
STK7356	4.75
STK7004	6.50 515
STK73410	5.15

STK73410/2	5.95	TDA5660P	2.5
STK73605	4.50	TDA7072	3.9
STR441	14.75	TDA8370	14.0
STR451	25.00	TDA8405	8.00
STR3125	5.50	TDA8732	5.95
STR4211	5.50	TEA2018A	1.50
STR4090	11.15	TEA2026C	4.50
STR20005	5.00	TEA5170	1.40
STR40090	4.00	TUA2000-4	4.25
STR50103A	3.85	U8848	2.35
STR54041	3.75	U4606B	5.50
STR58041	3.75	UAA1008	3.00
STR80001	6.00	UPC1178	1.05
\$TR1706	4.75	UPC1182	5.15
STRD1806	4.50	UPC1278	2.20
STRD60	10.00	UPC1420	4.50
TA227	1.85	UPD1937	3.00
TA7271	2.50	25 A814	0.71
TA7280	2.25	25A839	1.40
TA7281	2.20	25 A1062	1.00
TA7698	5.00 3.50	ELECT	
TA8200	3.50	CAPA	
TA8214	3.00 3.00	250V Working	
TA8215	3.00	1UF (5/pack)	. 0
TA8205	3.95	4.7UF (5/pack)	
TA8659	13.00	10UF (S.pack)	
TA75339		$33 \cup \mathrm{~F}$ each)	0.56
TDA1908A	2.00	47UF (each)	0.6
TDA2170	3.00	100 UF (each)	
TDA2270	2.50		
TDA3500	4.99	1UF (5/pack)	
TDA3562A-TFK	3.25	4.7UF (5/pack)	
TDA3562A-PAILL	3.25	10UF (each)	0.70
TDA3562A-SSSG	3.00	22 OF (each)	0.75
TDA3645	8.00	4.7UF (each)	
TDA3850	18.99	CERAMIC	TERS
TDA4400	1.75	5.5MHZ SFE	ck) 2.
TDA4500	3.50	6.0MHZ SFE	c) 2.40
TDA4505A	4.10	6.5MHZ SFE (5)	k) 2.4
TDA4505B	4.10	10.7MHZ SFE	ack)2.40
TDA4505M	5.25	5.5MHz CDA	ck) 2.4
TDA45	6.15	6.0MHZ CDA	k) 2.
TDA4660	4.50	6.5MHZ CDA ${ }^{\text {(5 }}$	ck) 2.
TDA4950	1.4	10 MHZ CDA	k)
Please phone us for the fypes not listed. Please add 60p pos packing and then add 17.5% VAT to the total. Callers by appointment only.			
I.J. COMPONENTS			
$\rightarrow 63$ THE CHASE, EDGEWARE,			
	X. HAB	SDN, ENGLAND	
Hothnes No 081381 1700/081 9524641			
ee Fax order Line only: 0800318498			

Figure 4: the component layout for the software test board

Continued from P. 56

With programs that are very short, or at least with very simple specific tasks, there is usually no need for a flowchart. But with more ambitious designs it's almost a necessity as the starting point to writing a reasonably structured program, to ensure you don't take up valuable memory space by writing masses of repeated code which perform the same function. The program presented performs a power-up test of the piezo transducer, the 7 -segment displays and the two LFDs (6 and 7) used to indicate the status of the limit switches. Plus, it carries out all of the tasks in the flowchart, AND shows messages in the displays of the Process Timer board relating to the status of the gate at any time

When assembled, the whole program takes up a fraction more than just half of the available program memory of a PIC16C54-264 bytes to be precise, so there's plenty of room left for adding your own modifications.

In order to drive the gate motor, detect the limit switches, ground loop and keypad operations, 4 inputs and 2 outputs of the expansion bus are used by the program.

The brackets below show which LEDs are used to indicate the outputs, and which pushbuttons to press to simulate the inputs, they are:

O/P1 (LED1)Output for driving the gate opening relay. Turn on this relay to connect the $+V$ power rail to the gate actuator motor, at the same time, turn off the gate closing relay to connect the power GND rail to the opposite motor pole.

O/P2 (LED2)Output for driving the gate closing relay. Turn on this relay to connect the $+V$ power rail to the gate actuator motor, at the same time, turn off the gate opening relay to connect the power GND rail to the opposite motor pole.

I/P1 (PB1)Normally Open (N/O) limit switch input for gate open. This input goes low when the gate reaches the full travel of its open limit.

I/P2 (PB2)Normally Open (N/O) limit switch input for gate closed. This input goes low when the gate reaches the full travel of its closed limit.

1/P3 (PB3)Normally Open (N/O) keypad relay output. This input receives brief, low going pulses each time the code or card swipe is accepted.

The duration of the pulse is usually programmable at the keypad by the installer, and could be anything between 10 milliseconds and 20 seconds.

I/P4 (PB4)Normally Open (N/O) ground loop detector relay output.For our purposes we will assume that this input is low at any time there is a vehicle within the detection range of the ground loop, but, as with the keypad, this is usually programmable at the detector for different configurations by the installer.

If both $\mathrm{O} / \mathrm{P} 1$ and $\mathrm{O} / \mathrm{P} 2$ are in the same state - high or low the motor will not be driven, since the same voltage will be present on both poles of the motor.

No damage will result to the motor, but it is always best to keep the poles held to GND when no movement is required, such would be the case in a power-fail situation when both of the motor driving relays would de-energise and drop out.

With permanent magnet motors this actually has a strong braking effect, because the magnetically induced current acts upon the low resistance of the armature winding and feeds the current back onto itself.

This, however, only works with motors which do not have a pre-armature speed control, so most of the small cassette player motors used these days won't be suitable, since they generally have an adjustable speed control fitted inside the motor housing, which renders them non-reversible. If you want to use this type of motor you will have to dismantle it, remove the speed control section and connect the supply wires directly to the connectors of the armature brushes.

Method of operation

Obviously the Process Timer expansion bus cannot be connected directly to relays and motors etc. without adding a suitable interface board (see next part), but the explanation of how it operates remains the same, and the functions do work correctly when you simulate the various input conditions via the pushbuttons or DIP switches on the software development board.

The default objective of the program is to keep the gate closed until such times that it is required to open. When a low signal is detected from the keypad or ground loop detector, caused by the correct code being entered or a vehicle entering the detection range of the ground loop respectively, the gate will open fully.

Once open, it is held there for a minimum of 10 seconds to allow the vehicle to pass through the gateway.

As long as the ground loop is clear after the 10 second hold time, the gate will attempt to close again. However, as a safety measure, if the ground loop is still active after this period, the gate will remain open and the Process Timer will emit a few bleeps every second, until the vehicle moves out of the detection range.

If the keypad or ground loop are activated during the gate's closing phase, the gate will stop for 2 seconds, and then reverse the motor to the opening phase. Once the gate has begun opening, it must be allowed to open fully, until it hits the open limit switch There is no way to override it in the same way as the closing phase. The meanings of the various messages which will appear in the displays are as follows:

SHUt The gate closed limit switch is made, so the gate is assumed to be shut.
runO The gate motor is running in the Open direction (the gate is opening).
runC The gate motor is running in the Close direction (the gate is closing).

StOP The gate was closing but either the ground loop detector or keypad input was activated, signalling the gate to jpen, so to prevent excess strain or damage the gate moto* 7as been stopped for 2 seconds prior to reversing its direction.

HOLdThe gate open limit switch is made, so the gate is assumed to be open, and is now on hold. In order for the vehicle to pass through the gateway it is now held open for at least 10 seconds before any attempt is made to close it.

LOOPThe gate is attempting to close after being on HO_d, but there is something on the ground loop preventing it from doing so.

The gate will be held open until the obstruction is removed, after which the gate will begin to close immediately.

When displayed, the LOOP message flashes every second, and is accompanied by a two-tone bleep sound from the transducer.

Using the program

With the software development board plugged into the ribjon cable, set all DIP switches to the off position, the OE jumper link on the Process Timer to INT (left hand), and power up. There will be a few bleeps, followed by $88: 88$ in the displays and the two right hand LEDs lit on the software developrrent board. This is the start up piezo, display and LED test rouline.

From now on there is no need to touch the Process Timer, as everything is controlled from the software development board. After a couple of seconds runC will appear in the displays, and O/P2 LED will light. Because the processor receives a high signal from the gate closed limit switch it assumes the gate is open and is now trying to close it by turning on the gate close relay output bit.

Simulate the action of the gate closed limit switch by holding down pushbutton PB2. From the low input signal the processor assumes the gate has now closed, so the relay output bits are turned off, the limit switch indicator LED7 lights and the message SHUt appears in the displays.Releasing PB2 will simply reinstate stage 1 once more.

Simulate a keypad entry or ground loop detector signal by pressing PB3 or PB4 respectively.If PB2 is still held down (gate shut), the message runO is displayed and O/P1 LED lights. If not, then the message StOP appears for 2 seconds prior to runO being displayed.

The gate open limit switch input is high and the processor turns on the gate open relay output bit to open the gate.At this point you can release PB2, because the processor is now only looking for the gate open limit switch.

Press PB1 to simulate the action of the gate open limit switch. The gate is now put on hold for 10 seconds to allow the vehicle to pass through the gateway, and HOLd appears in the display during this period.

Release all buttons and the gate will close after 10 seconds. If, after the 10 second hold period, you still have PB4 pressed (loop active) the gate will remain open and LOOP flashes in the display, together with bleep sounds from the piezo. As soon as you release PB4 the gate will close and the whole process starts again.

The 5-page listing will appear next month if there is sufficent demand; otherwise, this listing, together with the simple Expansion Bus test routine and the main Darkroom Timer program of part 1 is on the software disk for this project, which is available from the author.

Still to come...

As we mentioned in fart 1 of this series, the Process Timer/ Controller djes not have to be restricted to just timing applications. The ability to interface it via the expansion bus makes it sutable for a whole range of projects, and, as you may now realise is not limited to small or simple designs just because it uses the low-end P.C16C54 device.

The next part of the project is a full blown I/O interface board which prov des the means to connect the Process Timer expansion ous to the outside world.

On-boa-d features will include changeover relays, cpen collector outputs and adjustatle sensor inputs capable of handling up 50 V on each input channel.

Some software examples will be supplied, and we will look at implementing a model of the automatic gate controller program on the board.

Kits and bits available

A comple-e kit of components for the Process Timer Software Develorrrent Board, which includes everything in the parts list, is available from the author ty mail order only at the following address:

DTE Mcro Systems
112 Stobnall Road
Burton 07 Trent
Stafforalshire DE14 2BB
Completa kit for the Software Development Board $£ 11.00$
(All components - incuuding the PCB)
The PCB can be purchased separately if required
The programmed PIC16C54 is available separately at
Fully documented source code text on 3.5 inch disk
$£ 8.50$
(The complete source code + various other files)
All prices are inclusive, but please add $£ 2.50$ to the total order value to cover carriage and handling charges. If ordering from overseas, payment must be in pounds Sterling (£). Cheques, bank drafts or money orders etc. must be drawn on a British bank. Goods will normally be dispatched within five working days from receipt or order (subject to cheque clearance and availability), but please allow up to 28 days for delivery.

Resistors
R1 - R8 470R (8 off)

Capacitors

C1 1007F Ceramic or Polyester

Semiconductors

LED1-8 5 mm high efficiency red LED (8 off)
IC1 ULN2003-7 Stage Darlington driver
Miscellaneous
SW1 8-way SPST DIP Switch PB1-8 $6 \times 6 \mathrm{~mm}$ miniature PCB switch (8 off) Links $\quad 1 / 0.6$ tinned copper wire ($6^{\prime \prime}$) PCE DTE Process Timer Software Development Board

OFF YOU GO!

Terry Balbirnie's automatic shut-down switch

■
o you ever leave your computer switched on all day so that you can return to it at odd times? Do the children forget to switch it off after having used it to play games? If the answer to either of these questions is yes, then this project could be useful to you.

Worthwhile savings

It may be inconvenient to shut down the computer itself especially when several programs are running. However, there would be no such problem if only the monitor were to be switched off at the end of a session. Doing this would represent a worthwhile saving. A typical monitor is rated at about 120 watts. If it was left switched on for 8 hours, it would consume almost 1 kWh or electricity. Most people would not bother to switch off the monitor themselves. The Off you gol circuit has
therefore been designed to cut off its supply automatically when there is no user present. It does this by interrupting the mains feed after a preset time between 10 and 40 minutes unless a push-button reset switch has been operated. Whenever the button is pressed, the timing begins again. Towards the end of the cycle, a buzzer beings to bleep. The button must now be pressed within a few minutes or the supply will be disconnected.

Dozing off

This circuit should not be used to switch off the computer itself. However it could be used to switch off the TV in a child's bedroom or elsewhere. It could also be connected to a bedside reading light or radio. This would be handy for anyone who regularly goes to sleep with appliances left switched on. Note that it should not be used where any memory would be lost due to total disconnection of an appliance from the mains. Certain TVs "lose" the stations and need to be re-tuned if they are disconnected for more than a few hours. The maximum load is 2A corresponding to about 500 W on 240 V mains. The circuit will therefore accommodate a wide variety of low-power appliances. The unit may be left plugged into the mains continuously. This is because at the end of the timing period, the supply to the circuit

Figure 2: The circuit of the shut-down switch

itself is switched off so there is no current drain. The Off you go! circuit is housed in a metal enclosure. There is the push-button reset switch referred to above and a further mains on pushbutton switch on the front panel. (see photograph). A flashing LED indicator, also on the front, shows when the circuit is operating. On the back there is a pair of 3 -pin mains connectors. The lead which would normally carry the supply to the monitor is connected to one of these. A new lead is then taken from the other one to the monitor.

How it works

A block diagram of the system is shown in figure 1. The circuit comprises four sections in addition to the power supply: a fast astable (pulse generator), a binary counter, a system of logic gates and a relay which switches the mains supply to the load (e.g. a computer monitor). A detailed circuit diagram is shown in figure 2. The astable section consists of integrated circuit timer, IC1, and associated components. Assuming a supply exists, a continuous stream of pulses will be provided at the output, pin 3. The pulse repetition trequency is determined by the values of fixed resistors R1 and R2, preset potentiometer RV1 and capacitor C1. With the values specified, the preset may be used to adjust the frequency between 2.5 and 10 Hz . approximately (that is, 2.5 to 10 pulses per second).

The pulses from the astable are applied to the clock input, pin 10, of binary counter, IC2. Thus, as successive pulses are registered, the outputs ('twos', 'fours', 'eights', ‘sixteens' and so on) go high in various combinations to provide the binary count. Most of the outputs are unconnected but the highest three ('1024s', '2048s' and '4096s') plus the ' 8 s ' are used. The final two ('2048s' and '4096s' at pins 2 and 3 respectively) are connected to IC3 pins 4 and 5. IC3 is a triple 3-input NAND gate (that is, there are three separate 3 -input gates in one package) and pins 4 and 5 are two of the inputs to one of the sections (IC3a). The third input (pin 3) receives a signal direct from IC1 output. Most readers will be familiar with a two-input NAND gate. The characteristics of the 3 -input variant are simply an extension of this. Here, there will be a high output (in this case, pin 6) unless all three inputs are high, whereupon it will be low (figure 3 shows the truth table with the inputs labelled A, B and C and the output labelled X).

Not there yet

Towards the beginning of the cycle, IC3 pins 4 and 5 will be low because counting has not progressed sufficiently far. The output of ICЗa will therefore be high irrespective of the state of pin 3 . Pins 4 and 5 will both go high when the count has progressed sufficiently for the '2048s' and '4096s' outputs to be high simultaneously - that is after counting $4096+2048$ or 6144 pulses. Suppose the astable is set to its lowest rate of 2.5 Hz . To reach a count of 6144 would take about 40 minutes. At the highest frequency of 10 Hz it would take some 10 minutes. When these pulses have been counted, the output of IC3a, pin 6, will pulse high at the clock frequency reflecting the behaviour of pin 3. This is because as pin 3 becomes high, all three inputs will be high so the output will be low. As pin 3 becomes low, the output will be high. The output from IC3a is inverted by IC3c which is a further 3-input NAND gate. To understand how this comes about, refer once again to the truth table. Since two of the inputs - pins 11 and 12 - are connected together, they must have the same logic state. Meanwhile, the other input (pin 13) is made permanently high by connecting it direct to the positive supply line.

It will be seen that if the output from IC3a is low, pins 11 and

12 will also be low. The output of $\operatorname{IC} 3 \mathrm{C}$ - pin 10 - will then be high (shown by line 2). If IC3a output is high, pin 10 will be low (shown by line 8). The pulses obtained from IC3c pin 10 then operate buzzer، BUZ1. At the lower clock speed there will be a rapid bleeping. At the higher one the pulsing will be so fast that the buzzer will produce a warbling tone.

Relay energised

Now look at the remaining 3 -input NAND gate, IC3b. While any of its inputs are low, the output (pin 9) will be high. At the beginning of the timing sequence, Darlington transistor Q1 will therefore receive base current via resistor R5. Consequently, current will fow in the collector circuit and relay, RLA/1, will be energised. The normally-open ('make') contacts will be closed and the monitor and transformer, T1, will receive current. Diode D1 bypasses the high voltage pulse which appears across the relay coil when it switches off. Without it, semiconductor components in the circuit could be destroyed. Note that the high output state at IC3b pin 9 enables IC1 by making pin 4 (reset input) high.

IC3b output, pin 9, will remain high until all three inputs (pins 1,2 and 8) go high simultaneously and this will occur when IC2 outputs '4096s', '2048s' and '1024s' are all high. This corresponds to a count of $4096+2048+1024$ which is 7168 pulses (or 1024 pulses more than was needed for the buzzer to sound). At the slowest clock speed this will take about 48 minutes and at the highest one, 12 minutes. When this happens, the current flowing into the base of the Darlington transistor is interrupted and there will no longer be any current in the relay coil. The 'make' contacts will open and the appliance and
transformer will be switched off. Additionally, IC1 pin 4 is made low and the astable disabled.

To summarise, at the slowest clock speed the buzzer will begin to bleep after 40 minutes and the mains will be disconnected after 48 minutes. At the highest clock frequency, the buzzer will being to bleep after 10 minutes and the supply will switch off after 12 minutes. Any time before the supply is cut off, the sequence may be re-started by making IC2 reset input, pin 11, high for an instant. This is the purpose of push-to-make switch, SW1. Normally, pin 11 is maintained in a low state through resistor R3 and this prevents false resetting due to possible pick-up of random signals along the wiring. Capacitor C2 holds pin 11 high for an instant on powering-up the circuit and this ensures that the counter is reset (that is, begins from zero). To show that the circuit is operating, IC2 ' 8 's' output (pin 7) operates light-emitting diode, LED1 via current-limiting resistor, R4. The LED will flash at one-eighth of the clock frequency and this will be useful when checking the circuit since these pulses are sufficiently slow to be counted.

Power supply

The power supply is derived from the mains using a conventional arrangement of transformer T1 having a centre-tapped secondary, twin rectifier diodes, D2 and D3 and smoothing capacitor C3. No stabilisation is required because the astable frequency does not depend on the input voltage to any great extent. Also small changes in frequency, and therefore in the timing period, are not thought to be important .

When the circuit has timed out, the relay 'make' contacts will be left open. To activate the circuit, push-to-make switch SW2 is
operated for an instant. This allows current to flow to the transformer primary which establishes a supply to the circuit. IC2 then begins counting and the relay is immediately energised. The 'make' contacts now take over in maintaining the supply and SW2 may be released. Note that since this switch also directs current to the load until the relay contacts "make", it is important for it to be suitable for mains use and have an adequate current rating (see components list).

Construction

Construction is based on a single-sided printed circuit board (PCB) and the component overlay is shown in figure 4. First drill the four mounting holes (one is in the large copper area below C3 position). Mount the ic sockets and the two sections of screw terminal block, TB1 and TB2, as indicated. Add the five link wires and follow with the resistors (including preset, RV1) and capacitors taking care over the polarity of C3.

Solder the three diodes, the Darlington transistor and the buzzer in position taking care over the polarity of these components. The diodes have a grey band round the body to denote the cathode (marked " k " in each case). The polarity of the buzzer is also marked on the body. Solder the relay in place. Adjust RV1 fully anti-clockwise as viewed from IC1 position. This will provide minimum timings which will be convenient for testing purposes. Solder 15 cm pieces of light-duty stranded connecting wire to the free pads labelled "SW1" and "LED1".

Testing

The circuit panel should now be tested using a battery before the mains power supply is constructed. In this way, basic checks and setting-up may be carried out safely,

Attach the positive (red) PP9 connector to one of the terminals labelled "ac" (it does not matter which) and the negative (black) one to the terminal labelled "gnd". Insert the ics into their sockets observing the orientation. Since these are static-sensitive devices they could be damaged by charge which might exist on the body. It would therefore be wise to touch something which is earthed (such as a water tap) before handling the pins. Carefully twist the "LED" wires to the LED indicator observing the polarity. Alternatively, use a plain LED. The slightly shorter lead is the cathode (negative) one. Make sure that these wires and those for SW1 are not left touching

Connect the battery. The relay will be heard to click and the LED should begin to flash at about once per second. After 10 minutes, the buzzer should begin to give a warbling sound and after a further 2 minutes the relay should click off and the LED go out. These timings are approximate but will act as a guide. Touch the "SW1" wires together momentarily to reset the circuit. Allow timing to proceed until the buzzer begins to sound. Touch the wires together again. The buzzer should be silenced and the timing should start again. Adjust RV1 for the required period (although this will not be known exactly until after a few days of use). I suggest that a short time is used for most purposes.

Getting prepared

If all is well, attention may be given to the enclosure and power supply. Prepare the case by making holes in the rear panel for the input plug, output socket and transformer (see photographs). It is vital to understand that the mains output (monitor feed) appears at the socket so that it is impossible to touch the pins.

Drill holes for the two push-button switches and LED indicator (or a mounting clip for a plain LED) in the front panel. SW1 should be chosen to have a very light action. Hold the circuit panel in position, mark the mounting holes on the base of
the box and drill them. Also drill the hole for the fuseholder and attach it. Mount the transformer including a solder tag on its upper fixing. Attach the mains plug and socket. Note that the output socket should be mounted to the left of the input plug (as viewed from inside the case) - see figure 5 . The neutral pins will then be adjacent to one another. Attach the circuit panel using 10 mm long plastic stand-off insulators on the bolt shanks. Check that the underside copper tracks and joints on the PCB remain several millimetres clear of the base of the box. Check especially that the relay contact connections cannot, under any circumstances, touch the metalwork. Provide additional insulation as necessary. Attach the LED indicator. Refer to figure 5 and complete the internal wiring. All mains connections (shown in bold type) must be made with mains type wire of 5A rating minimum. Note the earth connection which is made to the solder tag. This grounds the case and transformer and is an essential safety requirement. The connections to the plug and socket should be made using insulated spade receptacles. Do not solder wires direct to the tags because the plastic body easily melts. Note also that SW2 connections must be insulated using heat shrinkable sleeving or an insulating boot. The transformer secondary leads (blue in the prototype) are connected to the terminals labelled "ac in". The centre tap (black) lead is connected to the terminal labelled "gnd" via fuse FS1. Small cable ties were used in the prototype to keep the wiring tidy. If the plug on the mains input lead is of the 13A UK pattern, fit a 2A or 3A fuse. If the plug is not fused, a separate one must be included in the live (L) mains feed inside the case. Assemble the case and stick self-adhesive feet on the base to protect the work surface. Make up a lead for the monitor and connect it up. Plug the unit into the mains and check the circuit under working conditions. Note that when the mains supply cuts off, capacitor C 3 keeps the timing circuit operating for a few minutes until it discharges. To avoid any problems with the circuit failing to trigger, make a habit of pressing SW1 (reset) before operating the mains on switch when the unit has timed out.

Safety precaution:

If the timing needs to be re-adjusted, unplug the unit from the mains before removing the lid of the case. RV1 should then be turned a little at a time and the lid replaced before plugcing in. This procedure will avoid any possibility of touching live mains connections.

Figure 3: truth table for the 3-input NAND gate

Inputs		Output
A B C	\times	
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1

Buylines

The buzzer must be loud enough for the purpose. The unit used in the prototype was obtained from Maplin order code: KU56L. The box and relay were also obtained from Maplin order codes: XY43W and JM17T respectively. Other components are freely available.

Figure 4: The component layout of the shutdown switch

Resistors

R1, R5 10k
R2 220k
R3 47k
R4 1k

RV1 1M sub miniature vertical preset

All 0.6W 1\% metal film.

Capacitors

C1 220 n min . metallised polyester 5 mm pin spacing
C2 $\quad 10 \mathrm{n} \mathrm{min}$. metallised polyester 5 mm pin spacing
C3 $\quad 470 \mathrm{~m}$ radial electrolytic 16 V

Semiconductors

IC1 ICM7555
IC2 4020
IC3 4023
Q1 MPSA14
D1, D2, D31N4001
LED1 Red LED indicator (or plain LED and mounting clip)

Miscellaneous

FS1 20 mm chassis fuseholder and 200 mA fuse to fit.
BUZ1 3 V to 24 V dc buzzer -90 dB at 12 V .
SW1 Push to make switch - see text.
SW2 Push to make switch with 3A mains rated contacts.
RLA Relay with 6V 100 W coil and 5A mains-
rated contacts.
PLI/SK1 IEC (Euro-style) 3-pin chassis plug and socket
T1 Miniature mains transformer with 6-0-6V centre tapped secondary rated at 250 mA (3VA) 2-way PCB mounting screw terminal block - 5 mm pin spacing 3-way PCB mounting screw terminal block - 5 mm pin spacing
Eircuit panel. 8-pin dil socket, 14-pin dil socket, 16zin dil socket. Plastic stand-off insulators, small Mirts and bolts, heat shrinkable sleeving, solder tag. pog battery and connectors (for testing). Metal box Vcr project.

Figure 5: wiring up the unit

Pre-Hertzian Wireless:

The Needles and Fastnet Lighthouse System PART 2

George Pickworth sets up an experiment to measure the success of Willoughby
Smith's cable-less telegraphy system of a hundred years ago

Following Willoughby Smith's small scale trials with a rowing boat on a lake as described in the first part of this article, and the granting of a patent for the single cable system, the Telegraph Construction Company accepted the invitation from Trinity House to go ahead with the Needles project in 1892.

According to the writer J.J Fahie, the submarine cable entered the sea at Alum Bay, but there is some evidence that it elventually entered the sea near the pier at Totland, and that the complementary electrode was attached below low water mark to the legs of the pier; this would be logical (see figure 8a). The cable terminated at a mushroom shaped copper electrode lying on the sea bed 60 yards from the rock. The electrode also served as an anchor for the cable.

The secondary electrodes, aligned radially with the distant primary electrode, were securely anchored below low water mark on opposite sides of the rock, as in figures 8 b and 9 .

However, my experiments showed that if iron-shea-hed submarine cable was used, the sheathing would have to be insulated from the water, or else it would provide a low resistance return path to the complementary electrode and virtually short-circuit the system. More about this later.

Two-way communication

Despite the great difference in the spacing of the primary and secondary electrodes, the system was used for two-way communication. Operation proved entirely satisfactory and for the first time reliable communication with the lighthouse was maintained under all weather conditions. The lighthouse equipment was essentially the same as that used on land (see figure 10).

Interestingly, the original sender chopped DC into high frequency pulses that produced a tone in the distant receiver's earpiece. The advantage of the tone system was that it was almost immune to galvanic currents generated by the action of sea water on the electrodes.

However, the lighthousemen, accustomed to signalling with flags, preferred a mirror type galvanometer which deflected a beam of light across a screen (speaking galvanometer). This

Figure 9: the Needles lighthouse system, showing the distant primary electrode and secondary electrodes.
where it came ashore. Poor visibility frequently prevented signalling with lamps or flags, often at those times when communication was most urgent, so, in 1892, the Needles system was adopted. According to Fahie, the shore end of the cable came ashore near Galley Cove, a few miles from Crookhaven Post Office, while the distant end terminated at a 500 -pound mushroom-shaped copper electrode lying under 11 fathoms of water 100 feet from the rock.

The cable had a copper conductor weighing 107 pounds per nautical mile and was covered with 150 pounds of gutta percha per nautical mile. Its complementary electrode was placed in the haven itself, as in figure 11a. The alignment of the secondary electrodes is shown in figure 11b. Because heavy seas periodically swept over the rock, the wires leading from the electrodes to the lighthouse were placed in deep grooves chased into the rock and filled with Porland cement.

The secondary electrodes consisted of a number of copper rods inserted into 2.5 -inch diameter sloping holes drilled through the rock so as to emerge into the water 20 feet below low water mark where they were not subjected to wave motion, as in figure 12. Installation was a difficult and costly operation. The signalling equipment was essentially the same as that used at the Needles lighthouse (figure 10). However, according to Fahie, ten large Leclanche cells $\left(15 \mathrm{~V}^{* * *}\right)$ were used on the rock, and the current in the secondary circult when sending signals was 1.5 A , while the galvanomter at the shore end of the primary circuit registered 150 microamps.

Iron sheathing

The iron sheathing round the cable was dispensed with for the
final 100 feet and replaced by a thick covering of rubber sheathed with copper wire and covered with more rubber. The whole assembly was protected by glass rings. Fahie said that these drastic measures were to prevent Galvanic effects between the iron sheathing and the copper electrode, but I believe the main reason was to avoid a low resistance path to the complementary electrode.

Willoughby Smith's lake experiment

The four electrodes in use each consisted of aluminium tubes 20 mm in diameter and 1.25 m long. Plastic-covered automotive cable was used as the submersible cable to the distant primary electrode, which was placed on the lake bed in 2 metres of water 150 metres from the bank

The electrode was kept in a vertical position by means of-a weight and a plastic bottle. The vertical position of the primary electrode corresponded with the secondary electrodes; the plastic bottle served as a marker showing its precise position (see figure 13). The complementary primary electrode was laid in shailow water near the bank. The primary circuit was energised with 6 voits, and the current was measured at 125 mA . The secondary electrodes were suspended in the water from the bow and the stern of a 2.5 m GRP (fibreglass) dinghy and were connected to a microammeter with a resistance of 1500 ohms .

Bamboo cane

To enable the distance separating the primary and secondary electrodes to be maintained within close limits over 360 degrees, a bamboo cane with a plum-bob attached to the far

Figure 10: the Needles telegraphy equipment. The
same type cf equipment was
used on the rock and on shore. MIRROR 'SPEAKING'

Figure 11ax the Fastnet system, showing the position

end wes extended from the bow of the dinghy. During measurements, the dinghy was manoeuvred so that the plum-Loob was directly over the bottle marking the position of the primary electrcde.

When the distance separatng the primary and secondary elect-ades was 1.5 m , the meter registered 130 to 150 microamps as the dinghy swlng around the prmary electrode (figure 14). However, the current fell rapicly as the dinghry was incrementally moved away from the primary electrode ard was neglicible at 10 metres.

Figure 12: A sketch of Fastnet, showing how the electrodes were attached to the rock.

High
 resistance

Because the meter had a fairly high resistance it behaved as a voltmeter and therefore indicated a potential across the secondary electrodes A high resistance valve-voltmeter would have been more appropriate, but \mid used the microammeter to simulate a galvanometer. Similar results were obtained when the secondary circuit was energised and the meter connected to the lake-side end of the primary circuit; this demonstrated that the system could be used for two way communication

The meter reading fell dramatically when a length of galvanised iron wire, to simulate the eifect of iron sheathing of a submarine cable, was laid alongside the insulated wire leading to the distant electrode; this substantiated my belief that the cable's sheathing would either have to be removed or be insulated from the water.

I wish to record my thanks to the proprietors of the Mill Marina, Thrapston, Northants, for allowing me to conduct these experiments on their lake.

Figure 13: Willoughby Smith's lake experiment reproduced by the author

The Low Cost Controller That's Easy to Use

Features

The K-307 Module provides the features required for most embedded applications Anologue - 4 Channels in 1 Channel out
Digitol - 36 Digital in or out \& Timers
Serial - RS-232 or RS-485 plus I2C
Display

- LCD both text and graphics

Keyboard

- Upto 8×8 matrix keyboard

Memory - $>2 \mathrm{M}$ bytes available on board

Low Power

- Many modes to choose from

Development
The PC Starter Pack provides the quickest method to get your application up \& running
Operating System - Real Time Multi Tasking
Languages - 'C', Modula-2 and Assembler
Expansion - Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface
Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

Figure 14: A plan view of the lake experiment, showing microamps generated through the secondary circuit with electrodes aligned at $90,180,270$ and 360 degrees to the base-line

0
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243542457 CATALOGUE AVAILABLE

\square

OPERATING \& SERVICE MANUALS

CONTĀCT

Cooke Intermational

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 OEB U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243542457 catalogue avamlable

ADVERTISERS INDEX
ADVANCED MANAGEMENT SYSTEMS
BK ELECTRONICS
BULL ELECTRICAL
CIRKIT DISTAIBUTION
COOKE INTERNATIONAL
COLES HARDIN + CO
CMS
DIRECT CCTV
DISPLAY ELECTRONICS
ELECTRO-VALVE
EPSILON ELECTRONICS
ERT.
ESR COMPONENTS
FOREST ELECTROMICS
GRANDATA
IJ. COMPONENTS
JOHNS RADIO
JPG ELECTRONICS
J + N FACTORS
KEENE ELECTRONICS
KPL
LEN COOKE ENTERPRISES
LENNARD RESEARCH
LLOYD RESEARCH
MAURITON
MAPLIN
MAYFLOWER ELECTRICAL
MCJ DESIGN
MENDASCOPE
MICRO 2000
MILFORD INSTRUMENTS
NICHE SOFTWARE
No 1 SYSTEMS
OMNI ELECTRONICS
P. AGAR

PARTRIDGE ELECTRONICS
PLANCENTRE
PROGRESSIVE RADIO
PUBLIC DOMAIN SOFTWARE LIBRARY
PICO TECHNOLOGY
QUICK ROUTE SYSTEMS LTD (POWERWARE)
RADIO \& TELECOMMUNICATIONS
RADIO TECH
SERVICE TRADING CO
SCI-WIRE
STEWART OF READING
S \& S SYSTEMS
TELNET
SIEN
VARIABLE VOLTAGE TECHNOLOGY LTD
VERONON VAVES
WILSON VALVES

ELECTRONICS TODAY INTERNATIONAL

TOMORROW'S TECHNOLOGY TODAY
TOMOROWS TEHNOLOGY TODAY

Fols Fois His issul
 FOLS FOR IHS SSUI
 FOILS FOR IHIS ISSUE
 \square

SOFTWARE DEVELOPMENT BOARD (PT/C PT. 3)

SQUARER (1)

SQUARER (2)

POWERLINE SIGNAL GENERATOR

CAMPLIGHT

Dre Findy Forder 0144266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House,
Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 75 p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) $£ 10.50$ + VAT per single column centimetre
Ring for information on series bookings/discounts. All advertisements in this section must be pre-pald Adventisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

VARIABLE VOLTAGE

 TRANSFORMERS INPUT 220I240V AC 50/60 OUTPUT 0.260 V\qquad 1KVA 5 amp max 2KVA 10 amp max 3KVA 15 amp max 5KVA 25 amp max \qquad | ع P31.90 | P8.P |
| :--- | ---: |
| 8600 | | ($£ 44.53$ inc VAT) $\$ 41.15$ ¢7.00 59.40 (£56.58 inc VAT) (979.78 Inc VAT) 58.65 ¢8.50 ع139.15 (Plus Carriage) (Plus Carriage) Buy direc from the Importers. Keenest pnces in COMPRE NSFORMERS-LT-ISOLATION \& AUTO (110-240V Auto transier erthe: cased with Amencan sockel an mans ead er open yor Avalant or immectare delver WIDE RANGE OF XENON FLASHTUBES Write/Phone your enquires ULTAA VIOLET BLACK LIGHT It 40 wat $£ 14.00$ (callers ontly)

2th 20 walt $£ 9.00$ (callers onty) 12 in 8 watt $£ 4.80+75 \mathrm{p} P 8 \mathrm{P}$
 ($£ 16.45$ inc VAT)
(10.58 inc VAT
(86.52 inc VAT) For either Gin Sin BALLAST KIT (E5.24 inc VAT)
(E5.24 inc VAT) The above Tubes p p ($£ 8.75$ inc VAT) - Tubes are sultable lor Forged Other Wave Lengths of UVIV. TUBEKing avacitable tephone your enquiries.
 160 WATT SELF BALLASTED B

2V D.C. Bilge pumps

 Also now avalatle $24 \mathrm{VD.C}$. . $7750 \mathrm{GPH} 15 \mathrm{H} / \mathrm{he}$ 5 amb $£ 35.55$. Al designed to be used
submerged PRICES INCLUOE PAP \& VAT
SUPER HY-LIGHT STROBE KIT Desiged for Disco. Thestrical uses etc. Case and reflector $£ 24.00+\mathbb{5 3 . 0 0}$ p Case and reflector
SAE Ior further
dustral Strobe Kits

RADIO + TELECOMMUNICATIONS CORRESPONDENCE SCHOOL
 12 MOOR VIEW DRIVE, TEIGNMOUTH, DEVON, TQ14 9UN

START training NOW with the SPECIALISTS for the following courses, Radio Amateur Licence $\mathbf{C}+\mathbf{G}$, Micro Processor, Telecomms, Tech C+G and Introduction to Television.

For our FREE Brochures Call 01626779398

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 0151236098201512360154
47 Whitechapel Tel: 01512365489 Liverpool 2
'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. e also welcome the opportunity to quole for complete factory clearance Contact:

> COLES-HARDING \& CO

Unit 58, Queens Road, Wisbech CORS Cambs PE13 7 P ESTABLISHED OVER INVENTORY ESTABLISHED OVER 20 YEARS
 WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114

How to bulld a PCl Expansion Board 3.5 inch Disc contains dimensions, pin outs, signal descriptions, information on cheap programmable logics and a full description of a simple prototype with circuit diagrams, FPGA programming list and C++ and assembler driving
software. $£ 20$ inc of VAT
ADVANCED MANAGEMENT
SYSTEMS LTD
TEL: 0181-689-3434

£50 BT INSTRUMENT

 FOR ONLY £7.50We reier to the BI insulation lester and multimeler with which you con read inulation directly in megohms. AC valts up lo 230, 4 ranges of OC volts up to 500,3 ranges of milliomps and one SA range ond 3 ranges of resistance. These ore in pertect randition hove had very liftle use, if amy, lested ond fulty guvaranteed. Complete with leods and prods 57.50 , Order Rer 5P4. Corrying usse which will toke smoll look os well $โ 2$ extro. Postoge $\{3$ onless you orcer is $\{25$ ond ovet. I N Factors Dept Etl, Pilgrim Works, Stairbridge Lane, Bolney, Sussex, RH175PA
Telephone: $(01444) 881965$

LEN COOKE
ENTERPRISES
For the best value in Used
Electronic Test Instruments
We buy, sell and service oscilloscopes, signal
generators, frequency counters, spectrum
Analysers, Power meters, logic testers, etc.
Spare parts availabbe for most Textronic
scopes.
Tel: $0181-813-9946$
Fax: 0181-574-9339
Mobile: 0802 177752
Mail order address: Unit 5, Southail
Enterprise Centre, Bridge Road,
Southall, Mlddx. UB2 441
We engineer what we buy, we support
what we sell.

SOFTWARE

Fistre ASTRA Desk Top Accounting

 5 EPGHofesional
 sas Systems Itd, Bretton Court, Manor Road Waleo
 Tel; ((01909) 773399 - Fax: (01909) 773645

plans

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

PIC-MICRO
 CONTBOLOLER

STAND ALONE PIC->PIC

COPIERS AND BUSTERS
Copy/Deprolect PIC Smart Cards (D2mac adull etc) with the MAC2MAC copier. NO PC REQ. 569 PIC2PIC Copier $(84,67,71)$ NO PC REQ. $£ 67$ Multi PIC programmer (16cxx) £37
MCJ DESIGN
Tel: 01202770121
Fax: 01202770121
E-MAIL:MCJDESIGN@AOL.COM

ELECTRONIC VALVES

1.) Wilson valves b
(PROP JIM FISH G4MH) , Over 50,000 valves stocked, 2000 different types, vintage, military, audio, etc. Fast service. Send SAE for list
VALVES WANTED FOR CASH

> | CHELMER VALVE |
| :---: |
| COMPANY |
| 130 NEW LONDON ROAD, |
| CHELMSFORD |
| ESSEX CM2 ORG |
| Tel: 01245355296 |
| Fax: 01245490064 |
| For high quality audio valves |

TELECOMMUNIGATIONS

DO YOU WISH TO LEGALLY TRANSMIT AUDIO SIGNALS OVER BRITISH TELECOM CIRCUITS!

Manufacturers of approved Interface
Equipment for use on public
switched telephone network, for
narrow or wide band private
circuits, also manufacturers of
telecom line safety barriers.

PARTRIDGE ELECTRONICS

56 Fleet Road, Benfleet, Essex SS7 5JN, England.
Tel: 01268793256 Fax: 01268565759

TRANSFORMERS

VVVariable Voltage Technology Ltd
valves are back!
Mains transformers for HT circuits Filament transformers Smoothing chokes Output transformers
Unit 24, Sarruel Whites Estate, Medina Road, Cowes, Isle of Wight FO31 TIF Tel 01983280592 Fax 01983280593

SMART CARDS

SMART CARD PROOUCTS
Smartcards, Readers/Encoders, Evaluation \& Development Kits. http:/www.goid.net/users/ct96iepsilon.htm E-MAIL: epsilon powenech.no
EPSILON ELECTRONICS Brynsengvn. 1 A 0667 Osio, Norway TEL/FAX +4722640810

PRINTED CIRCUTT BOARDS

PRINTED CIRCUIT BOARDS manufactured from your schematics or layouts. No minimum quantity. Phone 01232-473533 anytime or post details to P. Agar, 36 Woodcot Avenue, Belfast BT5 5JA.

MENDA SCOPE

*MENDASCOPE

REPAIR \& RECALIBRATE OSCILLOSCOPES ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERY FREE ESTIMATES Llangollen, Clwyd, N. Wales LL20 7PB PHONE: 01691718597 ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST.

Rates: Linage 75p per word + VAT minimum 15 words.
Semi-display $£ 10.50$ per single column cm plus VAT. No reimburseppents for cancellations. All ads must be pre-paid.

Name.
Ȧddress
Daytime Tel. No

Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD NO.
Expiry Date
FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

Gorrinel

There is a growing disparity between what the electronics hobbyist can do and what the professional can manage. There is always some difference between facilities available to professionals and amateurs in any field, but in electronics in recent years it has been growing faster than most.
Of course, I can still wire a few components together to make a simple, useful circuit - a simple preamplifier, for example, for my sound card so that I don't have to get so close to the microphone to generate voicemail. This is a minimalist project, but not sometning you can buy easily or cheaply, and the ability to assemble it rapidly as needed is a great advantage.

But - look at it from another angle: how many amateur projects use surface mount components? The few which do normally use only the largest resistors and capacitors (1206), while in industry, a straw poll shows that half to three quarters of pcbs now use smds (surface mount devices) and that 0805 components are beginning to give way to 0603 (which are 1.6 mm by 0.8 mm).

The designations refer to the size in inches - 0805 is 0.08 in by 0.05 in. I find 0603 difficult but far from impossible to use for prototypes - but these prototypes are on a hot air levelled pcb with solder resist. But I suspect that 0402 may prove a stumbling block, while 0201, which is
already a reality in Japan, will only ever be machine assembled.

There are compensations, though. For instance, PIC programming is now well within the reach of amateurs. It has reached a stage when anything that need not run too fast, and uses more than a few standard logic devices, can be done conveniently in a PIC. Board size is reduced, and revisions do not normally need cut tracks and wire links, but just a few code changes. Perhaps PALs (programmable array logic) and even MACHs (an array of four PALs with extra I/O) will soon be accessible to amateurs as well.

But to return to traditional components: even these can present problems. I could only find the magnetic components for this month's cover project with Farnell Electronic Services, who have a minimum order of £25. Even small production runs face problems because, unless a distributor carries an item as permanent stock, you can get hold of two samples from Japan in three weeks, or multiples of 20,000 on order, but nothing in between. Even for a pot-core-half costing 20p in quantity this is a snag.

Luckily a supplier was found for the transformer core, and if you look far enough there is often a source for a suitable component, although it is quite frequently not the one you would, ideally, have preferred.

The Challenge - things that electronics hasn't fixed yet

"Despite everything that loudspeaker developers have done" says our Hifi enthusiast "We still do not have Hifi that delivers the same sound to the ear that we hear in the concert hall or jazz club, even allowing for atmosphere." Are we still trying to find the most pleasing failed approach to true hifi? What in your opinion is the best we can do, and what do you expect it to deliver?

Send your suggestions to the Editor at the address on the right.

Next Month

In the November 1996 issue of Electronics Today International we continue Tim Parker's Process Timer and Controller. Terry Balbirnie's sound-effects circuit imitates the sound of a telephone ringing, and can be put to a number of uses from drama to discouraging intruders. If you are suffering from a noisy neighbourhood, Robert Penfold has developed a variable-effect background sound generator to help fade traffic noises and so on into the background. We have the second and final part of Bart Trepak's mains signal controller.

We are working on a bench PSU specially designed for valve equipment, and a PIC-controlled data logger. We have some news about software for electronics students and designers, and Douglas Clarkeson continues his series on altemative energy source with Fuel Cells, another underexploited area which is gaining pace.

ELECTRONICS
TODAY INTERNATIONAL

BDTT@RIAL

Editor Helen Armstrong Sub Editor Eamonn Percival Editorial Assistant Lynn Bugden Consultant Andrew Armstrong

GREATIVE
Designer Andrew Poliard Technical Illustration John Puczynski Photography Gary Sinfield

ADVIRTHISEMENTS SALES
Advertisement Manager Andrew Forder Advertisement Copy Control Marie Quilter

MAANAGEMENT
Divisional Director
John Bridges
Production Manager Mike Burns
Production Administrator Theresa Davis
Business Manager
Claire Jenkinson
Marketing Manager Jason Doran Copy Sales Manager David Pagendam

$$
\underset{\text { CONSUMEE PRESS }}{\text { ABC }}
$$

ETI ks rormally published on the first Friday hithe month preceding the cover dateThe contents of this publication inciuding all articles, plans, drawings and programs and all copynight and all other intellectual property nohts therein bolong to Nexus Special Interests. All nghts conferred by the Law of Cofynght and other intellectual
properity nights and by viriue of mitemational copynight conventions are specifically properity nights and by viriue of hitemational copynght conventions are specticcally
reserved to Nexus Special Interests and reproduction requires the pror writen reserved to Nexus Special Interests and reproduction requires the pror written consent of the company c 1996 Nexus Special interests. Alf reasonable care it taken In the preparation of the magazine contants, but the publishers cannot be held
leggally responsibte for errors. Where mistakes do occur, a correction will normally legally responsible for errors. Where mistakes do occur, a correction will normally published as spon as possibhe atherwards. All phices and dala contained in
advertisements are accepted by us in good faith as correct at the time of going to adverisements are accepted by us in good faith as correct at the lime of going to press. Neither the advertisers nor tie publehers can be held responsible, however,
for any variations affecting price or aveitability which may occur atter the for any variations affiecting pri
publication has closed for press.
Subscnption rates-UK £25 80 Europe $£ 34,70$ Sterfing Ouarseas $£ 38.20$ US Dollars Oversoas $\$ 54.00$
Published by Nexus Special interests, Mexus House, Boundary Way. Henvel Hempstead MP2 7ST. Telephone (01442) 68551. UK newsitrade distribution by Comag Magazine Marketing, Tavistocin Road, West Drayton, Midalesex, U877OE. Comag Magazine Menxeing, Tavstock Road, West Crayon, Midalesox, UB770E. Boundary Way, Hemel Hempstead. HP2 75T. Telephone (O1442) 66551 . Facsimito (01442) 66998 . Subscriptions by Nexus Subscription Depp, Tower House, Soverign Park, Lathkill Street, Market Marborough, Larcestershire, LE 189 EF. US subscriotions by Wise Owt Worldwide Publications. 4314 West 23eth Streot, Torance CA90505 USA. For Visa/Mastercerd orders im USA - Telephone (310) 375 6258 Fax (310) 3750548 . Pacific Time 9 am-9om Weekdays 10 am- 6 pm Weekends. Typesetting and ongination by Ebony, Liskard, Comwall. Printed by Witshir Lidi. Bistol.

Get the best Universal Diagnosits fool kit on the market

United Kingdom	Netherlands \& France	Germany	Spain
Tel +44(0)1462 483483	Tel +31 (0)20 6384433	Tel +49 (0)69 4208278	Open June/July
Fax +44(0)1462 481484	Fax +31 (0)20 6203437	Fax +49 (0)69 4208270	Call UK for details.

The new Maplin MPS catalogue is the essential electronic buyers' guide. Featuring everything from cables, tools and test equipment to capacitors, switches and optoelectronic components. And now combining the entire Maplin and MPS product range under one cover, with volume price breaks, for the first time ever. With over 2,000 new products to choose from you won't want to miss our new catalogue. Reserve your copy now.

Who said science hagit per dull? Not us! the new combined Maplin-MPS catalogue is bursting with exciting ideas - from a huge fange of electronics kits, cycle-computers and navigation systems, to personal hifif, disco gear and home video editors. All at our best prices and with discounts for larger orders. Give your spare time a boost - reserve your copy of the new Maplin MPS catalogue now.

The new Maplin MPS catalogue is out September 1996, reserve your copy now
 only $£ 3.45$ (free post \& packing when you reserve your copy by 31 August)

Phone 01702554161

 or visit your local Maplin store.Also availab!s inom September at WH Smith and John Menzies.

MAPLINMAPLIN ELECTRONICS ple, PO Box 3, Rayleigh, Essex SS6 8LR

MAPLIN - 35 locations throughout the UK
Barnsley (Wombwell), Belfast, Birmingham, Bradford, Brighton, Bristol, Cardiff, Chatham, Coventry, Dudley, Edinburgh, Glasgow, Leeds, Leicester, Liverpool, London (Edgware), London (Forest Hill), London (Hammersmith), London (llford), Manchester (Cheetham Hill), Manchester (Oxford Road), Middlesborough, Milton Keynes, Newcastle-Upon-Tyne, Northampton, Nottingham, Portsmouth, Preston, Reading, Sheffield, Slough, Southampton, Southend, Stockport, Stoke-on-Trent

[^0]: * These items are available from the author at the following prices:

 | RD7 Transformer | |
 | :--- | :--- |
 | Un 3763 IC | $£ 0.50$ |
 | 4.50 | |

 Pazk containing $2 x$ UM3763 plus $3 \times$ RD7 transformers
 £10.00

