

 ELECTRONICS

 ELECTRONICS TODAY INTERNATIONAL TODAY INTERNATIONAL
 50 Hz magnatic field sensor "Choppex" tremolo effect box
 PChased keyboard emulator

The Power in The

"extremely good value for money...

- $-\square \bar{x}$

Quickroute is available with 1-8 layer auto-rouling, copper fill, engineering change, and a range of import/export features.

Quickroute is available with multi-sheet schematic capture, support for power rails and busses, as well as 'one click' schematic capture!

.for such a comprehensive package"
Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows. With its multiple bution bars, 'tool tips' and partsbin you will find that Quickroute helps you to work quickly and efficiently.

Whichever version of Quickroute you choose, you can be sure of getting value for money! Quickroute is available with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of popular file import/export features allowing connection to simulators and other software packages (details on request). See the table for a selection of features.

Prices range from 568 to 5399 . Post and packing is $\$ 5$ (UK), $£ 8$ (Europe), $\$ 12$ (worldwide). VAT must be added to the total price.
*"CADCAM Recommended March 96

NEW Now wilh RouteASSIST

Tel/Fax 01614497101 _r ere

wwW: www.quickroute.co.uk EMail: info@quicksys.demon.co.uk Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K. NMARK 4533250017 GERMANY 49711627740 NORWAY 22167045 PORTUGAL 35181319758146230 SWEDEN 4687405500

Phone Now

 For Mare Imformation Prices and specilications subject to change without nolice. All trade marks are acknowledged \& respected.
Contents

Volume 25 No. 9

 - Features

Regulars

Wave Power

Douglas Clarkeson looks at the sites around the UK where different technologies are being used to harness the power locked into waves by the wind.

50 Hertz magnetic field detector

If magnetic fields generated by your mains wiring are stronger than they should be, Robert Penfold's detector will tell you.

Fool's Paradise
Keyboard and Keypad Emulator
Older equipment can be adapted using Tim Parker's PIC-controlled emulator interface, described here with a keyboard and a keypad.

8031/80535 Single Board Computer (Part 5)

In the final part of his single board computer project, Dr. Pei An describes how extra power can be added by using the 80C535 motherboard:

The 'Chopper' Tremolo

Robert Penfold responds to requests for a more extreme musical effect by 'chopping' the signal to give a synth-like sound.

Process Timer and Controller (Part 2)

Tim Parker's PIC16C54 process timer project comes to the power supply, which also provides an external I/O interface.

Pre-Hertzian Radio = the Needles and Fastnet System

In the 1890s an ingenious system was invented to bring radio telegraphy to lightships using the sea as part of the circuit. George Pickworth describes the system and an experiment to test it.

News
Practically Speaking
Terry Balburnie describes how to keep your connecting wires cool.
PCB foils
Round the Corner

OMP MOS-FET POWER AMPETFIERS

THOUSANDS PURCHASED BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) 畍XF900 (450W + 450W) .
evel proof Latest Mos-Fets for stress free power dellvery into virtually any load High slew rate \& Very low distortion $\begin{gathered}\text { Aluminium cases } \# \text { MXF600 \& MXF900 lan cooled with D.C. loudspeaker and thermal protection. }\end{gathered}$ USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W $19^{\prime \prime} \times H 3^{1 / 2} z^{\prime \prime}(2 U) \times D 1^{n \prime \prime}$
MXF600 W19** $5^{\prime \prime}{ }^{\prime \prime}$

PRICES:-MXF200 175.00 MXF400 233.85
MXF600 $\$ 329.00 \mathrm{MXF900} 5449.15$
SPECIALIST CARRIER DEL §12.50 EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER

Advanced 3-Way Stereo Active Cross-Over, housed in a 19" 1 1U wase. Each channel has three level controls: bass, mid \& top. The removable front lascia allows access 10 the programmable DIL switches to adjust the cross-over itequency: Bass-Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid-Top $1.8 / 3 / 5 \mathrm{KHz}$, all at 24 dB per octave. Bass invert s wilch
on each bass channel. Nominal 775 mV inpul/output. Fully compatible with OMP rack ampllier and modules.

Price E 117.44 + E5.00 P\&P

STEREO 0)Sco MIXERSoJ3400SE

STEREO DISCO MIXER with 2×7 band Li R graphic equalisers with bar graph
LED Vu meters. MANY OUTSTANDING FEATURES:- including Echo with repeat \& speed conirol, os mic with talk-over switch, 6 Channels with inctividual faders plus cross fade, Cue Headphone Monitor. 8 following inputss- 3 turntables of mics, 5 Line for CD, Tape, Video etc.
Price $144.99+25.00$ P\& P

PIFZO ELECTRIC TWEATERS - MOTOROLA

Join the Piezo revolution? The low ofynamic mass (no volce coll) of a Plezo tweeter produces an improved rranslent response with a lower distortion level than ordinary dynamic tweeters. As a crossover Is not required These units can be added to existing speaker syslems of up to 100 wat
EXPLANATORY LEAFLETS ARE SUPP LIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for 'bookshell and medium sized Hi-Fl apeakers. Price $£ 4.90+50$ P P\&P. TVPE 'B' (KSN1005A) 31/2" super horn for general purpose speakers, disco and P.A. systems etc. Price $\mathbf{£ 5 . 9 9 + 5 0 p \text { P\&P. }}$
TVPE 'C' (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi-Fi systems and quality discos elc. Price $\mathbf{£ 6 . 9 9 + 5 0 p \text { P\&P. }}$
TYPE 'D' (KSN1025A) 2" $\mathbf{x 6}$ " wide dispersion horn. Upper trequency response retained extending down to mid-range (2 KMz). Suilable for high quality Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P.
TVPE 'E' (KSN1038A) 3^{374} " hom tweeter with attractive silver finish trim. Suitable for HI-Fi monitor systems elc. Price $£ 5.99+50$ p P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, le wel control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50$ p P\&P.

BEFLLICHT CASEO LOUDSPEAKERS

A new range of quality loudspeakers, deslgned to take advantage of the latest 12" cast alumintum loudspeakure designs. Both models utilize studlo quality Constant directivity horns, extruded aluminium corner protection and stee ball corners, complimented with heavy duty black covering. The enclosures are fitted as standard with top hats for optional loudspeaker stands.
POWER RATINGS QUOTED IN WATTS AMS FOREACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ IDFC 12-100WATTS (1000B) PRICE $£ 159.00$ PER PAIR LBIFC 12-200WATTS (100dB) PAICE $£ 175.00$ PER PAIR SPECIALIST CARRIER DEL. \&12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR E49.00 Delivery $\mathbf{£} 6.00$ per pair

IN-GAR STEREO BOOSTER AMPS
 THREE SUPERB HIOH POWER

PRICES: 150 W C49.99 250W 999.90 400W E109.95 P\&P E2.00 EACH
 CAR STEREO BOOSTER AMFLIFIERS 150 WATTS $(75+75)$ Slereo, 150 W Bridged Mono 250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono 400 WatTS $(200+200)$ Stereo, 400 W Bridged Mono
ALL POWERS INTO 4 OHMS Features:
T Stareo, bridgable mono * Choice of high \& low level inputs $\# \&$ R level
controls $\#$ Remote on-oll $\#$ Speaker \& Conirois * Remote

OMP MOSFFET POWER AMPLIFIER MOOUIEG SUPPLIED READY BULLT AND TESTED. These modules now enjoy a world-wide reputation lor quallty, rellability and periormance at a realistic price. Four etc. When comparing prices, NOTE thal all models include loroidal power supply, integrai heat sinik. glass fibre P.C. 8 . an
and drive circuits to power a compaltbio Vu meter. All models are open and shori circult proot.

THOUSANDS OF MODULES PURCHASEO BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watt R.M.S. Into 4 ohms, irequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Senslifivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE ©40.85 + ¢3.50 P\&P
OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. Into 4 ohms, irequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mv , S.N.R. -110 dB. Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE E64.35 + E4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. Into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times .100 \mathrm{~mm}$
PRICE ©81.75 + ©5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.M.D. typical 0.001%, Input Sensittvity 500 mV , S.N.R. -110 dB, Fan Cooled, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$.
PRICE E132.85 + E5.00 P\&P
OMP/MF $\mathbf{1 0 0 0}$ Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate 75V/uS, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 12 \mathrm{Smm}$. PRICE $1259.00+$ ¢12.00 P\&P

NOTE: MOS-FET MODULES ARE AVALLABLE IN TWO VERSIONS
STANDAR-INPUT SENS SOOMV, BAND WETM TOOKHZ STANDARD INPYT SENS SOOMV, BAND WITHT YOOKKZ 775 mV , BAND WIOTH 50 KHz . ORDER STANDARO OR PEC.

LOUOSPEAKERG

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 P STAMPED) FOR COMPLETE LIST.

McKenzie and Fane Loudspeakers are also available.

GMINENCE- INSTRUMENTS P.A. DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE

8-100 WATT R.MA.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO. RES. FREO. 72 Hz , FREO. RESP. TO 4 KHz z SENS 97 TBB . 10 100 WATT R.M.S. ME $10-100$ GUITAR, VOCAL,
RES. FREO. 71 Hz , FREO. RESP. TO 7 KHZ, SENS97dB. RES. FREO. 71 Hz , FREO. RESP. TO 7 KHz , SENS97dB. YBOARD, DISCO, EXCELLENT MID. 10200 WATT R.M.S. WE $10-200$ GUITAR, KEYB'D, DISCO, VOCAL, EXCELLENT HIGH POWER MIP RES. FREO. 6 SHz , FREO. RESP. TO 3.5 KHz , SENS 99 dB . $12 " 100$ WATT R.M.S. ME $12-100$ LE GEN. PURPOSE, LEAD GUITAR, DISCO, STAGE MONITOR RES. FREO. 49Hz, FREQ. RESP. TO 6 KHz , SENS 1000 dB . 12" 100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A., VOCAL, STAGE MONITOR. RES. FREO 42 Hz , FREQ. RESP. TO 10 KHz , SENS 98 dB . $12 " 200$ WATT R.M.S. ME12-200 GEN. PURPOSE, GUITAR, DISCO, VOCAL EXCELLENT MID. RES. FREO. 58 Hz , FREO. RESP. TO 6 KHz , SENS $98 d B$. RES, FREO ATHZ, FREO. RESP TO 5 KHz SENS 103 A . 15 . 200 WATP MEO. RESP. TO 5 KHz, SENS 1030 B 15200 WATT R.M.S. ME $15-200$ GEN. PURPOSE. RES. FREO. 46Hz, FREQ. RESP. TO 5 KHz , SENS 99dB. 15 " 300 WATT R.W.S. UE15-300 HIGH POWER BASS, INCLUDING BASS GUITAR. RES. FREQ. 39 Hz , FREO. RESP. TO 3 KHz , SENS 103 dB .

FARIBNDEFS:- HI-FI, STUDIO, IN-CAR, EIC

B" 50 walt Ebs- 50 DUAL IMPE DENCE. TAPPED $4 / 8$ OHM BASS, MI-FI, IN-CA
RES. FREO. 4OHz, FREO. RESP. TO 7KHZ SENS 970B. 10' 50WAT EB10-50 DUAL IMPEDENCE, TAPPED A/8 OMM BASS, HI-FI, IN-CAR
RES. FREO. 40Hz, FREQ. RESP. TO 5KHz, SENS. 99dB.
RES. FREO. 35 Hz , FREO. RESP. TO 3 KHz , SENS 96 d B
12" 100WATEEB12-100 BASS STUDIO HLFI RES. FREO. 26 Hz , FREO. RESP. TO 3 KHz , SENS 93 dB .
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUMD
S. 60 WATT EB5-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC
 RES. FREO. 38 Hz , FREO. RESP. TO 20 KHz , SENS 94 dB . 8" 6OWATT EBB-GOTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCOETC. RES. FREO, 40Hz, FREQ. RESP. TO 18KHz, SENS 89 dB . RES. FREO. 35 Hz , FREQ. RESP. TO 12 KHz , SENS $98 d \mathrm{~A}$.

TRANSMTITER HOEEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS OMPLETE WITH CIRCUIT AND INSTRUCTIONS
OW TRAMSMITTER 8O-108MHZ, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES SIZE 38 x 123 mm . SUPPLY 12 V O O.SAMP

- miceo tans

ERY SENS FET MIC, RANGE $10 C$-300m, SIZE 56 x 46mm, SUPPLY GV BATTEAY. PKOTO: OW FM TRANSMITTER

MOONSHIN E BIBLE 270 page book covering the production of atchohol from potatoes，nice．grains etc Drawings of simple hame made stills right through to commercial systems．©15 rel MS NEW HIGH POWER 暗IWI BUG With a range of 800 metres o more and up to 100 hours use from a PP3 this will be popular！Bug measures less than 1＂squarel 228 Rel LOT 102
SINCLAIR C6 MOTORS We have a new ones available without gearboxes at C50 rel Lotrz
BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators Amed with inis publication and a good local scrap yard could make you self sufficient In electrictyl $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector，top quallty suitable for all 286 ／ $386 / 486$ etc $£ 10$ ref PCKB． 10 or $£ 65$.
TRACKING TRAN SMITTER range $1.5-5$ milles， 5,000 hours on AA battenes，also transmits into on car dilection and motioniWorks with any FM radio． 1.5^{5} square．$£ 65$ ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12v operated deadlock（keys included）£10 ref Lor99 GALLIUM ARS ENIDE FISHEYE PHOTO DIODES COmplete with suggested diccults for long range communicationsiswitching E12 complete
SURVEILLANCE TELESCOPE SUpert Russian 200 m telescope adjustable from 15x to 60xt complete with metal thipod （imposible to use without this on the higher settings） 66 mm lense． leather carrying case $£ 149$ rel BAR69
WIRELESS VIDEO BUG KTT Transmits video and audio signals from a minature CCTV camera（included）to any standard teevisionl All the components including a PP3 battery will in into a cigarette packet with the lens requiring a hole about 3 mm diameter． Supplied with teeiescopic aenial but a piece of wire about 4° long will still give a range of up to 100 metres A single PP3 will probably give less than 1 hours use $\mathbf{£ 9 9 \text { REF EP79．（probably not licensablel）}}$ CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams． 12 v 100 mA ．auto eiectronic shutler， 3.6 mm F2 lens，CCIR， 512×492 pixels．video output is $9 \mathrm{vp-p}(75 \mathrm{hm})$ ．Works directy into a scati or video input on a Nor video．IR sensitive，$£ 79,95$ ref EF 137
IR LARAP KTT Sutable for the above camera enables the camera
to be used in total darknessl $£ 5.99$ ref EF 138 ．
REMOTE COMTROLTAMDATA TD1400 MODEMI VIEWDATA Complete system comprising $1200 / 75$ modem，auto dialler，infra red remote keyooard．（could be adapted for PC use？） psu，UHF and RGB outpu，phone lead，RS232 outpu，composite

outbut Absolute barcain forparts alionellg9．95 rel BAR33．

9 WATT CHIEFTAN TANK LASERS
Double beam units designed to fi in the gun barrel of a tank，each unit has wo semi conductor la sers and motor drive units for alignement． 7 mile range，full drcuil diagrams，new price $£ 50,000$ ？us？£349． 3 watt， 900 nm wave gallum Arsenide injection lasers， 1×9 watt，IX also contain wavelength， $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency．The frins targets，ive or more unins E299 ea．E349 for one．Reil LOT4．

TWO WAY 腊IRROR KIT ind udes special achesive film to make two way mirror（s）up to $60^{\circ} 220^{\circ}$ ．（glass not included）includes full instructions．£12 ref TW 1
NEW LOW PRICED COMPUTERMORKSHOP／HLFIRCB UNTS Complete protection from fauly equipment for everybody！ inline unit tits in standard IEClead（extends itby 750 mm ），fittedinless Inine unit fits in standard IEClead（extends itby 750 mm ）．Kitledinless
than 10 seconds，resethesi button，10A raiting． E 6.99 each ref LOT5． Or a pack of 10 at £49 90 ref LOT6．If you want a box of 100 you can Or a pack of 10 al£
have one for $£ 250$ ！

RADIO CONTROLLED CARS FROM £6 EACHII！！All retums from famous manufacturer， 3 types available，single channel （left，right，forwards，backwards） 66 ref LOT1．Two channel with more features $£ 12$ ref LOT2

THOUSANDS AVAILABLE RIMG／FAX FOR DETAILSI \＃${ }^{\text {HigNETIC CARD READERS（Swipes）E9．95 Cased with }}$ fiyleads，designed to read standard credit cardsi they have 3 wires coming out of the head so they may write as well？complete with
conirol elctronics PCB．just $\mathrm{K9} 9.95$ ref BAR31 WANT TO MAKE SOME MONEY？STUCK FOR AN IDEA？We have collated 140 business manuals that give you information on serting up difterent businesses，you peruse these at your leisure using the lext editor on your PC．Also included is the cerificate enabling youto reproduce（and sell）the manuals as much as you likel $£ 14$ ref EP74
PANORA明IC CAMERA OFFER Takes double width photographs using standard 35 mm Kim．Use in horizontal or vertical photographs using standard $35 m m$ him．USe
mode．Complete with strap $£ 7.99$ rel BAR1
COIM OPERATED TMER KIT Complete with coinsiot mechanism，adjustable time delay，relay ouput，put a coinsiot on anything you likel TV．s．videos．Fidges．arnins cupDoards．HIFI．
 metal constructon，builh in ligm，shrimp farm，group viewing screen， lots d accessonies $£ 29$ rel ANAYLT．
AA NICAD PACK Pack ol 4 tagged AA nicads $£ 2.99$ rer BAR 34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$ ，no data hence $£ 4.99$ ref BAR87
WIGHTSIGHTS Moder TZS4 with infra red illuminator，views up to 75 metres in full darkness in infrared mode， 150 m range 45 mm lens， 13 deg angle of view，focussing range 1.5 m toinfinity． 2 AA battenes
 LIOUID CRYSTAL DISPLAYS Bargain prices， 16 character 2 line， $99 \times 24 \mathrm{~mm}$ E2．99 ref SM1623A 16 character 2 line， $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM 1623A
20 character 2 line， $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line， $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL－1 110 MM NEWTONLAN REFLECTOR TELESCOPE

WOU YERHAMPTON BPINCH

 NOW OPEN AT WORCESTER ST
details $£ 249$ ref TAL－
CENTRAL PONT PC TOOLS Aw ard winning sofware，1，300 virus checker，memory optimiser，disc optimiser，file compression， low level formatiing，backtp scheduler，disk defragmenter，undelete． 4 calculators，Dbase，disc editor，over 40 viewers，remote computing． password protection，enoryption，comprehensive manual supplied etc $£ 25$ ref lot 973.5° disks．
GOTAN EXPEN 8 NE BIKE？You need one of our bctue alams， they look like a standard water botte，but open the top，Insert a key to ctivate a motion sensor alarm buith ins camers，supplled with two keys SALE PRICE E7．89 REF SA32 GOTAN EXPENSNEANYTHING？You needone ofourcased vibration alams，keyswithch operated，fully cased just it in to
anything from videos to caravans．provides a years protection from PP3 battery，UK made．S．ALE PRICE 64.99 REF SA 33
DAMAGED ANSWER．PHONES These are probably beyond epair so just £4．99 each．BT response 200 machines REF SA30． COMPUTER DISC CLEAROUTWe are leflwith a lof of software packs that need cleaning so we are selling at disc value only 50 discs or $£ 4$ ，thats just 80 eachll（our choice of discs）$£ 4$ ref EP 66 IEA P32 MODEL 1502 CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply．$£ 9.95$ ref EP67 DELL PC POWER SUPPLIES 145 watt，$+5,5,+12,-12$ ， $150 \times 150 \times 85 \mathrm{~mm}$ complete with swith，flyeads and IEC socket． SALE PRICE $\mathbf{c} .99$ rel EP56
1．44 DISC DRIVES standard PC 3．5 drives but retums so they will need attention SALE PRICE $£ 4.99$ ref EP68
1．2 DISC DRNES standard 5.25° drives but retums so they will need attention SALE PRICE NOW ONLY $€ 3.50$ ref EPe9
PP3 NICADS Unused but some storage marks．£4．90 ref EP52 DELLPC POWER SUPPLIES（Customer retums）Standard PC su＇s complete with fly leads，case and fan，$+12 v,-12 v,+5 v,-5 v$ SALE PRICE E 1,99 EACH worth iffor the bits alone refDLI．TRADEPACK OF 20 E29．95 Ref DL2
GAS HOBS AND OVENS Brand new gas appliances，perfect for mall flats etc．Basic 3 bumer hob SALE PRICE E 24.98 ret EPT2 Basic small built in oven SALE PRJCE 179 ref EP73
RED EYE SECURITY PROTECTOR 1,000 wath outdoor PIR swith SALE PRTCE E6． 19 ref EP57
ENERGY BANK KIT $1006 \times 6^{\circ}$ 6y 100 mA paness． 100 diodes， connection details etc．E69．95 ref EF112．
PASTEL ACCOUNTS SOFTWARE，does everything for all sizes of businesses，Ind udes wordprocessor，reporl wnter，windowing． networkable up to 10 stations．multiple cash books et． 200 page omprehensive manual． 90 days free technical support（ 01342 － 26009 try beiore you buy）Current retall price E E129，SALE COMPLETE PC 200 WATT UP
COMPLETE PC 200 WATT UPS SYSTER Top of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts New of complete power failure to allow you to run your system down of complete power falure to allow you to run your system down
correcty LAST FEW TO CLEAR AT $£ 49$ SAVE $£ 30$ ref LOT 61 BIG BROTHERPSU Cased PSU，6v 2 A outut， 2 m oplead， 1.5 m input lead．UK made 22 cN ．SALE PRICE EA． 99 REF EP7

Check out our
WEB SITE
http：／／www．pavillon．00．uk／bull－eleotrloal RACALMODEM BONANZAI 1 Racal MPS $12231200 / 75$ modem， elephone lead，mains lead，manual and comms software，the cheapest way onto the nett all this for just $£ 13$ ref DEC13．

4．6mw LASER POIMTER BRAND WEW MODEL NOW IN STOCKI，supplied in fully buit form（looks like a nice pen）complete with handy pocket ollp（which also acts as the on／off s witoh．）About 60 metres rangel Runs on 2 AAA batteries．Produces thin red beam Ideal for levels，gun sights，experiments ete．Just $£ 39.96$ ref DEC49 TRADE PRKE \＆ 28 MIN 10 PIECES

BULL TENS UNIT Fully buith and tested TENS（Transcutaneous Electical Nerve Stimulation）unt，complete with electrodes and ful instructions TENS is used for the relief of pain etc in up to 70% of sufferers Drug free pain rellef，sate and easy to use，can be used in conjunction with analgesics etc．〔A9 Ref TEN／1
PC PAL VGA TO TV CONVERTER Converts a colour TV Into abasic VGA screen．Complete with builitin psu，lead and sware．Idea for laptops of a cheap upgrade．Supplied in kit form for home for laptops of a cheap upgrade．Supp
EMERGENCY LIGNTING UNT Complete unit with 2 double
－bone of our producte mat be unhicenbafle de the us
BULL ELECTRICAL
250 POLTLAND ROAB，HOYL，SUSESX
DN3 5OT．（ESTABUHSHCD 50 VEARS）． AAI，ORDER TRRNS：CUEH，PO OR CHBOLH

WHYU ORDER PLUS \＆Pas MLOS VAT

1 $\mathrm{DL}: 01273203500$
1AK 01273313077

bulb floodlight．Dultin charger and auto switch．Fully cased．6v 8AH read acid req＇e．（secondhand）£4 ref MAG4P1
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month．12v 15AH at£ 18 refLOT8 and 6 v 10AH （surable for emergency lights above）at just E6 ref LOI ELECTRIC CAR WINDOW DE－ICERS Complete with cable plug etc SAll PRICE JUST E4．99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug．12v 2watt $\mathbf{C 8} .99$ REF SA25．
榀ICRODRNE STRIPPERS Small cased tape dnves ideal for strifping lots of useful goodies including a smart case，and lots of components．SALE PRICE JUST €4．99 FOR FIVE REF SA26 SOLAR POWER LAB SPECUL You get TWO $6 \times 66 \mathrm{~V} 130 \mathrm{~mA}$ solar cells，4LEO＇s，wire buzzer，swith plus 1 relay or motor．Supert value tot SALE PRICE JUST $£ 4.98$ REF SA27
RGB／CGA／EGATTL COLOUR MONITORS
ondition．Back anodised metal case．SALE PRICE E49 REF SA 168 PLUG IN ADORN PSU 19v AC 14w，£2 99 REF MAG3P 10 13．8V 1．9A PSU cased with leads．Just $£ 9.99$ REF MAG 10P3 UNNERSAL SPEED CONTROLLER KIT Designed by us fo he C 5 motor but of for any 12 v motor up to 304 ．Complete with PCB etc．A heat sinik may be required．£17．00 REF：MAG 17
PHONE CMBLEAND COMPUTER COMMUMICATIONS PACK Kit centains 100 m of 6 core cable． 100 cable cllps， 2 line divers with RS232 interfaces and all connectors etc．Ideal iow cost method of communicating between PCs over a long distance utilizing the serial ports．Complete kit 88.99 ．Ref comp 1.
VIEWDATA．SYSTElif made by Phillips complete with intemal 1200775 mocern，keyboard，psu etc RGB and composite outputs， menu oriven，autodialler etc．SALE PRICE E12．99 REF SA 18
AIR RIFLES． 22 As used by the Chinese amny for training puposes so there is a lot aboutl $£ 3995$ Ref EF78． 500 pellets $£ 4.50$ ref EF80． PLUG IN POWER SUPPLY SALE FROM \＆1．60 Plugs in to 13A socket wth outp utlead．three types available， 9 vac 150 mA A 1.50 ef SA19，9vec 200mA E2．00 ref SA20，6．5vdc 500 mA ©2 ref SA21 VIDEO SENDER UNTT．Transmits both audio and video signals Irom either a tideocamera，video recorder，TV or Computer etc to any standard TV s．e．In a 100 range！（tune TV to a spare channel）12v DC op．Price Is $£ 25$ REF：MAG15 12 v psu is $£ 5$ extra REF：MAG5P2 －MIINATURE RADIO TRA MSCENERS A pair of walkie talkies with a range up to 2 kmin open country．Unts meas ure $22 \times 52 \times 155 \mathrm{~mm}$ ． nduding ca：es and earp＇ces 2xPP3 req＂©．E30．00 pr．REF：MAG 30 Fiti TRANSMITTER KIT housed in a standard working 13A dapterll the bug runs directly off the mains solasts foreverl whypa 700 ？or price is $£ 15$ REF：EF62（kit）Transmits to any FM radio． FM BUG BUILT ANDTESTED supenior design to kit．Supplied o detective agencies，9v barrery reqid．£14 REF：MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COINSLOT 1 ECHAN IS䬣S originally made to retail at£ 79 each． these units are designed lo convert an ordinary phone into a payphone．The units have the locks missing and sometimes broken nges However they can be adapted for theiroriginal use or used for something etse？？SALE PRICE JUST $巴 .50$ REF SAZ3
GAT AIR FISTOL PACK Complete with pistol，darts and pellets 12.95 Ref E．F828 extra pellets (500) C4．50 ref EF80．
＂$\times 12^{\prime \prime}$ AHORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 ma SALE PRICE E4．99 REF SA24．
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ el MAGSP 13 ideal for expenmentersl 30 mfor $£ 12.99$ ref MAG13P1

领DKED GOODIES BOX OF
日IXED COMPONENTS WEIGHING 2 KILOS
YOURS FOR JUST $£ 6.99$
4X28 TELESCOPIC SICHT3 Suitable for all air miles，ground lenses gooul light gathering properties $£ 19.95 \mathrm{ref} / \mathrm{R} /$
GYROSCOP ES Rememberthese？well we havefound a company that still manufactures these popular scientific toys．perfect git or for ocucational use etc．E6 rel EP70
HYPOTHERAIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised oil blanket，reflects more than 90% of body heat．Also suitable for the oil blanket，reflects more than 90% of body heat．Also suit
construction of two way mirrorsl $£ 3.99$ each ref ORO4
LENSTATIC RANGER COMPASS Oil filled capsule，strong metal case，large luminous points Sight line with magnitying viewer metal case，large luminous points Si ig
50 mm dia． 86 gm ．$£ 10.99$ rel OKK604．
RECHARCE ORDINARY BATTERIES UP TO 10 T $\begin{aligned} & \text { HIA }\end{aligned}$ With the Bantery Wizardl Uses the latest pulse wave charge system to．charge all popular brands of ordinary batteries AAA．AA．C，D，four ata imel Led system shows when battenes arecharged，automatically reqects unsultable cells，
Pilice is $£ 2195$ ref $E P 31$
TALKINGWATCH Yes，t actually tells you the time at the press of button．Also features a voice alarm that wakes you up and tels you hat the time is！Lithlum cell Induded．E7． 99 ref EP26

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LLCENCEI The new mutiband 2000 radar detector can prevent even the most responsible of divers from losing theirlicence Acfustable audible alarm with 8 flashing leds gives instant warning of radar zonee Detects X, K ，and Ka bands， 3 mile range，＇over the hill around bends＇and＇reartrap facilttes．micro size ju
3^{n} DISCS As used on older Amstrad machines．Spectrum plus3＇s 3^{n} DISCS As used on
eec E3 each rel BAR400．
STEREO 明ICROSOPES BACK IN STOCK Russian． $200 x$ omplete with microscope that would normally be around the $£ 700$ mark，our price
siust 2 geg（full monev beck ouarantee）full detalls in catalogue． WE BUY SURPLUS STOCK FOR CASH
BUYERS DIRECT LINE 0802660377 FREECATALOGUE
100 PAGE CATALOGUE NOW available，50P stamp or free ON REGUEST WITH ORDER．

Handheld meter measures capacitance

Two new handheld portable multimeters from viann Draper are good value at $£ 35$ and $£ 59$ each.

The MX450 ($£ 35$) has a large 3.E-d.git displey and includes an annunciator giving the range and the fricility currently in use. The facilities include AC and DC voliage and current with a basic accuracy of C. 6% with clat- hold: peak hold; capacitance measurement in 200 microlarads; resistance measurerient to 200 megohms; logí tes:; continuity buzzer and transistor range.

The MX620 (59) is particularly good value in that it has frequency measurement in addition to the othet facities and an increased set of annunciators.

Both meters have full overload protection anid double
 insulated safety jack sockets for the:protection it the equioment and the Lier. The siput impedance of both is 10 megolin minimising circuit loading. The meteis weigh 10.6 y each and come cempete with two safety probes, battery and a holster.

Vann'Draper of Leicestershire at Jritt 5, Premier Works, Carial St., Soutt W.gstor, Leicester LE18 2P..
Tel 01162771400 Fax 01162713945.

Sound and Vision Yearbook

The 1996/1997 Sound and Vision Ysarbook .s a handy sourcebook for elect onics nobbyists and collectors, especiall/ constructors and collectors interested in vintage wireless. Ey no means only for the bistoria-, however, the yearbcoo lists clubs, vublicatiors, suppliers and general useful centacts in amateur TV, salellite anc radic, n-car en:ertainment. CB, cinema ceessig ithis, computers, cult Th. ephemera, film and TV music, gramophones and phorcgrapns, he Internet, jukebcxes, magic lanterns, offshore and cirate radio, optical 'oys, photography, pop music, radar, scientific instruments, 'ormer state secrets, :elephones, vintage radio, weathe' satellites and x-ray apparatus - tis taka just a selectior $0^{\text {: }}$ samcles from the contents index.

The Sound anc Vision Yearbook, editec by Andrew Emmerson and published ty Jonathan Hill (author of Audio! Auciol, the guide to classic value amplifiers) costs $£ 3.50$ from Sunrise Press, 2-4 Brook Street, Bampton. Tivenon, Devon EX16 9LY. Tel 01398331532

MicroP Course in Manchester

The Manchester Metropolitan University is running a short introductory course to designing with microcontrollers, based on the Arizona PIC16C54 microcontroller. The course requires no previous knowledge of microprocessors, microcontrollers or assembly language, but some knowledge of logic gates is usefut. The course covers specification of the microcontroller, the instruction set, programming and building a circuit on a custom project board. The cost is $£ 125$, which includes a reprogrammable 16C54 and prototype board. Further courses based around other PICs are planned, and courses run year-round, including the summer.

For more details contact Course Tutor Dave Smith. Tel 01612475437 . Fax 0161247 6377. Email D.W.Smith (2) mmu.ac.uk at the Manchester Metropolitan University, Alsager Campus, Hassall Road, Alsager, Stoke on Trent ST7 2HL.

Multirouter is fast, cheap and smart

Multirouter is a fast, low-cost autorouter for Number One Systems popular Easy-PC Professicnal XM PCB CAD package. Multirouter aims to "get tracks through the design where of ere autorouters fail", using the latest fine-line routing technaxogies. Using gridless routing enables difficult components like D-connectors and surface mount packages to be included while naking the maximum use of available space. The routing algorithm used s shaoe-based, reterning to the chosen design zle clearances and track width limits as the only limitatons on its routing. As each net is routed, existing tracks are moved over, or "shoved asite" as Numper One Systems ngorously put it, to make more oom, and if all routes appear to be blocked, Multirouter will jerform a "rp up and re-try" in problem areas until a solution is found. Multrouter uses mutiple-passes to organise a route tnrough a dificait bcard allowing layout constraints tc te attered and adjusted according by the user quickly and tried again until 100% routing is achievec if ahis is physically possible. Manual routing and autorouting can je combinec, civing the user maximum control of the board design.. Crice the nets are routed, Multirputer performs smoothing passes to widen tracks wherever possible, mitre sorners to 45 degrees to minimise high frequency sional reflections, and eliminate unwanted track segments and vias. Via holes can be compeled to a grid for users who need a design capable a^{*} automatic testing, and routes can be specified to change troard sice only where there are component pins, to remove the need for plated vias where necessary. Multirouter handles surface nount shapes on bo-h sides of the koard, and repeltive memory arrays.

Number One Systems also offers lifetime support and free upgrades for six months. Multirouter ccsts $£ 295$, and works with EASY-PC Professional KM (£245). Prices are UK, ex cariage and VAT. USA prices are $£ 305$ (US\$575 including airmail) and $£ 25 E$ (US $\$ 475$ including airmail). For information contact Roger Wareham Tel OH480 461779 email rmw@umberone.com.

Memory book on CD-ROM

Hitechi hes updated its CO-ROM aroduct databook to incluce cata on at the company's miorocontroller and merrory products. The disc will allow froxible searching of all the data, as well as the speed. shipping and storage ach-artages of CJ-RaM. If a developer is concemed abcut specific parameters in a set of devices, the search facility will list all devicos that are sutahte, and print out datasheet if required. Infantation on the ROM is displayed as text, graphics anc piotos in a nybrid CC-ROPA fonmat readabla lay Macintosh and Windows users. Current CD.FOMS use Adoke's Portable Dcoument Format (PDF) which atlows.documerts to be rezal by Wirndov/s. DOS, Macinfosh and Unix systems, 8 ind used directly on the Woid Wide Web. The increasing move to C[i-FOH s part of Hitacti's programme to get the company's product information distribuled to as wide an audience as possible. Infommalion trod Vince Pitt. Hitachi Europe Lid., Whitebrook Park, Lower Sookham Rcad, Maiderhead, Berks SL6 8YA. Tel 01628585123 Exx 016285851 I0.

In Short

RADIO-TECH now has a World Wide Web site on the Internet at HTTP:/MW.W.RADIO-TEC -.Co.UK. You can look at new products and data sheets, enter competitions join in customer surveys, access their overseas distributors list and place crders by email. Tel 01813688277 for any other information. The 1996 National Vintage Conmunicatiors Fair is on at Wembley Conference Centre, London, on Sunday 1st December from 10.30am to 4 pm . Admission is $\sum 5$ (under-14s are free). About 300 dealers and collectors from Britain and Europe are currently expected to be exhibiting at the fair. For more information contact Jonathan Hill Tel 01398 331532. The Publis Domain and Shareware Library - Software Reference Guide issue 2 i supplement 1 costs £1.95 and lists hundreds of low-cost programs on disk or CD ROM.

The list includes technical drawing, spreadsheets, CAD, communications utilities and games, amonc others. Shareware is a good way o: building up a library of starter software at low cost. Winscome House, ,Beacon Road,

Crowborougr, Sussex TN6 1UL. Tel 01892663298 Fax $0189 \subset 667473$ BBS
(8n1) 01892 661149. The Bull Electrical Newsletter issue 961 is now out. Featuring unusual kits, fascinating devices anc some down-to-eerth practical items like batteries, air rifle shooting ard sighting equipment and surveillance telescopes, the newsletter is available from Bull Electrical Tel 01273 203500. See also advertisements in this issue of ETI.

William Hughes Ltd. of Dorset have brought out a new rance of gass bead test-poirts and PCB term nas ior the easy testing of prototype boards. The glass beads provide a colour-coding, and the choice of shapes gives a clcse it to the board without damaging plated through holes. This type of test point can also be used as a s.oldering base for hich-temperature and often-replaced componen's. There are three sizes and eight colours available. Tel: $01953363 \mathrm{G77}$.

Amateur bands worry

Radio amateurs in the USA are concerned because wavelengths within the 2 -metre ąnd $70-\mathrm{cm}$ bands hàve appeared on a Government report as possible frequency allocations for low earth orbit communications satellites.

Both the ARRL and the RSGB report that they are rot at present very worried that heavily=usod amateur bands will be lost in the USA or the UK. The ARRL, however, is concerned enough to have asked amateurs in the USA to make their voices heard in defence of the 2 m and 70 cm 7 bands, which are among the most widely-used. by amateurs. In Europe 433.92 MHz (in the 430 to 440 MHE amateur band) is allocated ta keyless entry systems for cars and industrial applications in some European countries. It has ceen reported that in soine cases when cars have been parked near repeater sites, it has been impcssibie to disarm the alarms or immobilisers.

The insistence of the authorities that the frequency allocation will not be revised has caused concern in the irdustry, as well as urgent receiver selectivity improvemant. Newspaper reports have blamed radic amateurs for the problems, though the choice of frequency allocation for keyless entry was not theirs. There is now increasing disquiet among amateurs at rumours of the possible curtailing or removal of allocations on 2 m and 70 cm in Britain and Europe.

MODS MODS MODS MODS

High Voltage Electrolytic Capacitor Reformer July 1996

On the circuit diagram: $\mathrm{P} 4=100 \mathrm{R}, 2.5 \mathrm{~W} \mathrm{D} 4=1 \mathrm{~N} 5374 \mathrm{~B} 75 \mathrm{~V}$ zener. Thie text below $M 1=$ "Vottage reading ${ }^{* 1} 0=$ output current (mA)."

Computer Game Headphone Adaptor July 1996.
On the circuit diagram, C201 should be connected between the +1 SV and the OV rails, and C 202 between the -13 V and the OV rails. On the circuit board layout (figure 2) move two tracks to the right: cathode D202/anode D201; cathode D204/anode D203; all the leads from the
transtormerigV/ov/9Y).
The article shows the sega Megadrive socket. The instructions are also for the SNES socket, shown below:

SUPER NINTENDO ENTERTAINMENT SYSTEM (SNES) OUTPUT SOCKET AUDIO CONNECTIONS

Overseas Readers

Tel To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits-44.

Valve radios restored

"Valve Radio Restoration" author Paul Stenning has compiled a list of suppliers to help radio restorers.

Dealers and services

- "Anode Electronics: 80D Hyde Park Road, Plymouth, PL3 4RQ. My usual supplier of valves, components, spares and related items - a vast range is available. Valve radios bought and sold. Manufacturer of the Stenode Battery Eliminator, for battery powered valve sets. Please write for details, enclosing. SAE.
- "S.W. Chaplin - 43 Lime Avenue, Leigh on Sea, Essex, SS9

3PA. Traditional Loudspeaker Cloth. A good range. Send $£ 1$ for samples.

- "Paul Stenning, 1 Chisel Close, Hereford, HR4 9XF. I do valve radio repair and restoration and valve testing. Some components available. No lists are produced, so please write with SAE.

Magazines (subscription only)

- "405 Alive - Magazine and enthusiasts group: Andrew Emmerson, 71 Falcutt Way, Northampton, NN2 8PH. Vintage television
- "British Vintage Wireless Society: c/o Alan P Carter, Lime Tree Cottage, Loxhill, Hascombe, Godalming, Surrey, GU8 4BQ.
- "Radio Bygones: Geoff Arnold, 9 Wetherby Close, Broadstone, Dorset, BH18 8JB. Vintage wireless magazine, covering mainly military and communications equipment.
- "Radiophile: Chas Miller, 'Larkhill', Newport Road,

Woodseaves, Staffs, ST20 ONP. Vintage wireless magazine, covering domestic sets. Technical and historical information, plus some lighthearted moments.

- "Radio Review: P.O. Box 46, Romford, RM1 2QE. Regular newsletter style publication covering modern broadcasters, pirate radio, listening figures, and related news and gossip.

Clubs and Groups

- "Sound \& Vision Yearbook: Sunrise Press, 2-4 Brook St., Bampton, Devon EX16 9LY. Tel 01398 331532. Hobby and heritage directory for collectors of sound and TV technology. Annual.
- "Vintage Radio Circle (Swindon area): c/o M Williams, 28 Barton Lane, Cirencester, Gloucestershire, GL7 2EB.
Museums
- "Vintage Wireless Museum, 23 Rosendale Road, London, SE21. Tel 0181670 3667. Visitors welcome by appointment only.
- "Lindfield Vintage Wireless Museum, Old Brewery, 53 High Street, Lindfield, West Sussex. Tel 01444 484552. Telephone for opening times.
- "On the Air: 42 Bridge Street Row, Chester. Sets bought, sold and repaired. Museum.

Woodcare products

- Colron: Sterling Roncraft, 15 Churchfield Court, Barnsley, S70 2LJ. Manufacturer of woodcare products for furniture restoration, available from most DIY stores. Write for details of full range.
Information correct at the time of writing. No liability is accepted for the outcome of any dealings.
Corrections and additions are welcomed.

The Life in the व CBN MANB

Douglas Clarkson describes how the world's undervalued wave resources are being investigated

While techniques of using wind power as both a means of ship propulsion and as a land based power source via windmills have a relatively long documented history, the era of obtaining power from ocean waves is only a few decades old. Also, while the technology challenges of solar photovoltaic and wind power are relatively well defined and appreciated, the intricacies of wave power have revealed a new and intriguing area of endeavour.

The field of wave power is already diverse and numerous designs have been dovised and tested at a computational or wave tank level though relatively fow designs have been built as demonstrational systems. It is not possible to cover all the lines of investigation being pursued though it is hoped that this article will give a flavour of the current initiatives.

All about waves

It can be said that the best way lo understand wave power is to
understand waves. Reviews of wave studies have given credit to Thomas Stevenson, the father of Robert Louis Stevenson, for pioneering work in the study of wave heights around the coasts of Britain. This was in many ways natural, since as a builder of lighthouses and harbour defences, it was appropriate for him to assess the worst sea conditions to which such structures could be subjected. Waves are, of course, principally derived from the wind and can also be considered as a means whereby wind energy becomes stored in another energy form. As the wind blows on the surface of water, it causes the surface layers to move. The exact mechanism of wave generation is unclear. The role of thin layers of chemical agents, niatural and man-made, is thought to have a significant effect in couping wind action into wave energy. The restoring force for wave motion is gravity. Suntace tension effects apply only to waves of much smaller ampli:ude. The raising of water above a mean level causes gravity to restore the water level and, as a result, the water level accuires a sinusoidal motion.

The size of waves produced depends on the 'fetch' or distance over which the waves are blown. The dimensions associated with a typicat wave are indicated in figure 1. Tre expression widely used in wave studies is 'significant wave height'. This is taken as the mean value of wave height of the highest $1 / 3$ of all waves present in a sample series. In this context, a wave height is the distance crest to trough.

Linked to this definition is the significant wave period, which is the mean period of the waves involved in the significant height definition. Wave data can be displayed in a variety of forms. For many conventional purposes, a display of wave height alone is adequate as indicated in figure 2 , where the significant and maximum wave heights are referenced. In this format, the percentage exeedance is the percentage of observing time during which the specific wave height is exceeded. Table 1 provides data relevant to wind speed, the 'fetch' or distance over which the wind blows and the corresponding wave height.

Table 1 (below left): Variation of significant wave height as a function of 'fetch' of wave and wind speed in metres per second and also corresponding Beaufort Scale value. (Conversion factors relevant are $1 \mathrm{knot}=0.5144 \mathrm{~m} / \mathrm{sec}$ and 1 nautical mile $=1.852 \mathrm{~km}$.)

For moderate :o high winds, most energy is picked up in the first 250 km of the 'fetch'. Over long values of 'fetch' this produces a lirriting wave height with a given wind speed. The wave climate, zherefore, is a complex interaction of wind speed, directicn and duration. Waves created by a storm can readily propagate out of the area of immediate adverse weather as 'swell' and influence sea conditions thousands of kilometres awey.

Typical date for waves in deep water is shown in table 2. Thus longer waves travel faster.

Period (I) seconds	1	2	4	8	16
Wavelength (m)	1.56	6.2	25.0	100	400
Wave speed $(m / s e c)$	1.56	3.1	6.2	12.5	25.0

Table 2: Characteristics of deep water waves.
At a location remote from a storm, it will tend to be the largest waves that will arrive, followed by waves of lesser size. Also, it tends to be the waves of shorter wavelength that are dispersed more readily as they dissipate their energy while propagating.

Waves of longer period, for example storm waves with period around 15 s which are generated in the Atlantic, have their energies diminished as they approach the shore due to the

Figure 3: Variation of wave power per metre of wavefront as a function of wave height for specific values of wave period.

period of the wave. Figure 3 shows the variation of power per meter of wavefront as a function of wave height for specific values of wave period. The actual distribution of wave amplitudes and periods, however, will tend to vary from one wave to the next. It will only be with a well-defined dominating swell or a continuous local wind-generated wave pattern that waves will be regular and 'well behaved'. Thus, very high waves from a distant storm will propagate with a characteristic velocity and wavelength with the amplitude slowly reducing with distance of propagation. This can be imagined in the graph as sliding down the contours from right to left for waves of a specific wavelength.

The energy reserve

Estimations of available energy from wave power have come from extensive analysis of wave data. Prior to the launch of satellites, wave data had been collected primarily by weather ships and specialist observing stations. In relatively shallow water; one simple method is to mount a pressure recorder on the sea bed and record the variations in pressure as waves of different heights pass over the observation site. In a more recent development, buoys tethered on the sea bed transmit their positional perturbations via radio link. A long-standing method for deep sea vessels was to combine an underwater pressure monitor with an accelerometer to obtain relative wave height. Satellites such as ERS-1 and ERS-2 have the ability to scan almost all of the world's oceans at regular intervals to provide much more extensive wave height data. Such global surveys provide insight into the global distribution of wave energy. The southern oceans have the highest mean significant
mechanism of seabed friction. A wave of 4 metres and period 15 s will be begin to disturb fine sediments on the sea bed at a depth of 140 metres. This is why there is specific interest in wave power technology in seeking to abstract power from ocean waves in deep water where wave energies are greater.

The power in the wave

Within a wave, energy is exchanged between potential energy of gravity and kinetic energy of motion. At the boundary of a wave on the sea floor, the motion of water is oscillating backwards and forwards. In higher sections of the wave, the motion of water particles is elliptical. Over recent years, the basic properties of waves has been rigorously investigated in order to determine the most efficient and effective means of abstracting the power that is present.
The power in a wave can be expressed as :-

$\mathrm{P}=0.55 \mathrm{H}^{2} \mathrm{TkW} / \mathrm{m}$

where H is the significant wave height T is the period of the wave in seconds.

Thus, the term varies as the square of the wave height and the
wave heights at around 4.75 m in winter and 4.5 m in summer. in the North Atlantic the corresponding figure for winter is 4.5 m and 2.0 m for summer.

The 50 year wave

All ventures that are at the mercy of the sea plan for the largest waves that might be expected. This is of crucial importance for ship design and off-shore oil and gas installations. This wave size is often referenced as the 50 year wave. In terms of probability, it is the largest wave that is likely to be produced in a storm that lasts 12 hours within a 50 year time period and corresponds to a relative probability of 0.0000274 . This value can readily be predicted from analysis of wave date of one or two years at a specific site. In the North Sea, values range between 15 and 25 metres. In the Atlantic west of the Outer Hebrides, the 50 year maximum wave height is estimated to be 35 m . Such freak waves, however, tend to exist not as a single entity but as the reinforcement in a moment of time of a multitude of individual waves of varying heights and wavelengths - after the fashion of constructive wave interference. Such apparently robust predictions, however, should be treated with caution. Recent studies, especially in Norway, indicate that storm frequencies have significantly
increased during the 1930s and thai, consequently, 50 year wave predictions may have to be increased.

Mapping the UK wave energy resource

A key aspect of any future utilisation of wave energy is to accurately evaluate the size of the resource. An 18 month project was initiated in 1989 to assess the near shore (around 20 m depth) and shoreline (5 to 10 m depth) of the UK's western seaboard. Assessment was carried out by the Queen's University of Belfast and chiefly used the Meteorological Office's windwave computer model in association with actual data from wave observational sites. The effect of sea depth was introduced by means of data from Admiralty Charts. While the annual power density of waves in the North Atlantic in more than 100 m of water is approximately $70 \mathrm{~kW} / \mathrm{m}$, the available energy decreases progressively with reducing water depth. This effect is principally due to sea bed friction.

Figure 4 indicates the wave power/depth profile for South Uist. In the favourable wave climate of the western side of the Outer Hebrides, the near-shore power density falls to around $20 \mathrm{~kW} / \mathrm{rr}$. The location os shoreline or near-shore installations needs to be carafully researched in order to lowat? sithemes at optimised sites.

The fil cc inactor's report is avalable from ETSU. The combinali ons of wave Jirection, topegrephy of sea and ocean bottom, aign nent of ciffis etc can irteract to produce socalled 'he- spots' or areas of heightened wave ectivty. Factors of two or hre can be introduced be this mechar ism

In coaztal ardscapes for example, the location of gullies tend to c-incide uith area of heightened wave actiity, with the shore line becoming eroded where it is subjoct ti higher

wave activity. Also, such areas tend to coincide with areas of active fisring.

How much is out there?

In estimasions of levels of wave power available, consideration is usually given to the good sites of wave energy off the North West of Scotland where energy densities in excess of 50 kW per metre of wavefront are estimated to be present. Assuming a total collection length of 400 km and an efficiency of 30%, then this coresponds to 6000 MW or about 10% of the UK's total current installed generation capacity.

Witt tre inclusion of other localities, such as west of Cornwall anc possible improvements in conversion efficiencies, values as hith as 25% of the UK's total current installed generation cacacity have been referenced.

There is aso, no doubt, the potential to collect significant amounts of energy of the West coast of Ireland. It is very clear, however, that the UK has the most significant reserves of wave energy n Ewrope and ence the most to gain from developing them. F.t \& cbbal level, the resource is estimated at 400 GW .

In terms ff recovering successfully such a large energy resource, it will tend to be technology and not environmental sensitivity (as with windfarms) that will be the limiting factor. Wavepower is therefore a vast engineering challenge. As device efficiencies improve, however, then the size of the avallable resource will increase also.

On-shore, near-shore and off-shore

With on-shore systems, such as the Oscil ating Water Column system, the generating unit and associated grid connection is land based. Access for construction and maintenance is relatively convenient. Near-shore systems would gererally be in water up to 40 m depth but reasonably accessible for maintenance and power take off. Off-shore systems, however, whie able to access potentially greater levels

PART	PRICE	PART	PRICE	PART	PRICE	PART	PRICE
BU105	80P	BU408D	75P	BUT18AF	80 P	MJ15024	400P
BU108	100P	BU409	85P	BUT30V	1700P	M 15025	700P
BU109	80 P	BU426A	70P	BUT56A	100P	M.JE13004	100P
BU110	90P	BU506DF	120P	IRF450	650 P	MJE13005	60P
BU111	100P	BU508APH	80P	IRF520	150P	M.JE13007	100P
BU124	60P	BU508AF	95P	IRF530	300 P	MJE13009	100P
BU125 BU126	100 P 65	BU508APH BU508D	80 P	IRF540	300P	MJE15028	200P
BU133	125P	BU508D	115P	IRF630	150P	MJE15029	200 P
BU137	150P	BU508DR	130 P	IRF640	400 P	MJE15030	250 P
BU180	100P	BU508V	110P	IRF730	175 P	MJE15031	400p
BU184	100 P 65	BU508VF	100P	IRF740 IRF820	400 P	MJE18004	125 P 350 P
BU204	70P	BU801	70 P	IRF820 \|RF830	225P	OC29	250 P
BU206	100P	BU806	70P	IRF840	200 P	OC35	350P
BU207	150P	BU2508A	130 P	IRF9530	400 P	OC36	250P
BU208	70 P		130 P	IRF9540	300 P	S2000A3	175P
BU208A	75 P	BU2508D	130P	IRF9610	200 P	S2000AF	175P
BU208AT BU208D	200P	BU2508DF	150P	IRF9620 \|RF9630	225P	S2055A	175P
BU209	90P	BU2520AF	225 P	IRF9640	375 P	S2055AF	200P
BU225	120 P	BU25200F	225 P	IRFBC30	200 P	2 N 3053	18 P
BU226	120P	BU2525AF	325P	IRFC40	400 P	2N3054	38 P
BU312	90P	BUH315	200P	MJ2501	100P	${ }^{2} \mathrm{2N3055}$ 2N3055	38 P
BU325	55P	BUH515	2075	MJ2955 MJ15003	250p	2N3440	45 P
BU3206	60 P	BUH715	425 P	MJ15004	300 P	2N3441	175P
BU406D	85 P	BUT11AF	55 P	MJ15015	250 P	2N3442	85 P
BU407	55P	BUT12	80 P	MJ15016	350 P	2N3771	85 P
BU407D	75P	BUT13	310 P	MJ15022	250 P	2N3772	90P
BU408	60 P	BUT 18	80 P	MJ15023	400 P	2N3773	100P

SATELLITE PSU REPAIR KITS

Experience shows that 50% of ail receiver power supplies 'bounce' unless the correct precautionary measures are taken when being serviced. A ki: of all the recommended parts is supplied for the most popular models, which when fitted
should overcome this.
MAKE \& MODELS

PACE PRD800, PRD900
PACE SS900, $9200,9010,9210,9020,9220$ AMSTRAD SRD510, SRD520
AMSTRAD SRD500
AMSTRAD SRX340, SRX345, SRX350 PACE D $100 / 150$
CHURCHILL D2MAC
PACE MSS 100
PACE MSS200/300 APPOLLO
PACE MSS500/1000
FERGUSON SRD4
ECHOSTAR SR5500
ECHOSTAR 6500/7700/8700
AMSTRAD SRD600
MIMTEC (Surensen)
AMSTRAD SRD700/SR950/SRX100/302
SRX501/502/1002/2001/SRD2000 SAT250

ORDER CODE	PRICE
SATPSU1	650 P
SATPSU2	650 P
SATPSU3	650 P
SATPSU4	650 P
SATPSU5	650 P
SATPSU6	650 P
SATPSU7	650 P
SATPSU8	730 P
SATSPU9	650 P
SATPSU10	1230 P
SATPSU11	835 P
SATPSU12	1735 P
SARPSU13	$3125 P$
SATPSU14	3125 P
SATPSU15	775 P
SATPSU16	$730 P$

PACE 9000 SWITCH MODE TRANSFORMER
ORDER CODE; PACE 9000 PRICE 800p
SERVICE AIDS

DESCRIPTION

VIDEO HEAD CLEANER
VIDEO HEAD CLEANER
SWITCH CL
SUPER 40
SUPER 40 GEASE
FREEZE IT
FOAM CLEANER
ANTI STATIC
AEROKLEANE
AERO DUSTER
AERO DUSTER
PLASTIC SEAL
GLASS CLEANER
EXCEL POLISH
EXCEL POLISH
ADHESIVE 120
LABEL REMOVER 130
REFURB 140
TUBE SILICON GREASE TUBE SILICON SEALANT WHITE TUBE SILICON SEALANT CLEAR TUBE HEAT SINK COMPOUND DRIVE CLEANER
SCREEN CLEANER
ANTI STATIC FOAM CLEANER
AIR DUSTER

VOLUME	CODE	PRICE
75 ML	SP01	140 P
200 ML	SP27	250 P
176 ML	SP02	150 P
400 ML	SP15	250 P
200 ML	SP03	170 P
170 ML	SP04	220 P
400 ML	SP16	550 P
400 ML	SP05	170 P
150 ML	SP06	170 P
200 ML	SP07	200 P
150 ML	SP08	220 P
400 ML	SP17	550 P
200 ML	SP09	200 P
250 ML	SP10	160 P
250 ML	SP13	200 P
250 ML	SP18	150 P
400 ML	SP19	190 P
200 ML	SP20	240 P
400 ML	SP21	240 P
50 GRAMMES	SP11	200 P
75 ML	SP22	280 P
75 ML	SP23	280 P
25 GRAMMES	SP12	150 p
200 ML	SP24	$150 p$
200 ML	SP25	150 P
400 ML	SP26	2100 P
400 ML	SP28	175 p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL
IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKAZE WILL BE CHARGED AS FOLLOWS: 300 p FOR 5 CANS 450 p FOR MORE THAN 5 CANS
GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE,

SOUTHWAY, WEMBLY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

FUSES				
	TIME LAG	(20mm)	QUICK BLOW	(20mm)
CURAENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75P	FUSE37	60 P
160 mA	FUSE01	75P	FUSE17	60 P
250 mA	FUSE02	75 P	FUSE18	
315 mA	FUSE 03	75 P	FUSE19	60 P
400mA	FUSE04	${ }_{75} 75$	FUSE20	60 p
500 mA	FUSE05	75P	FUSE21	60P
800 mA	FUSE07	60P	FUSE23	G0p
1 A	FUSE08	609	FUSE24	60 P
1.25A	FUSE09	${ }_{60 \mathrm{P}}$	FUSE25	60 P
1.6A	FUSE10	${ }_{50 \mathrm{P}}^{60}$	FUSE26	60 P
$2 A$ $2.5 A$	FUSE11	50P	FUSE27	60 P
2.5A 3.15 A	FUSE12	${ }_{55}{ }_{5} 5$	FUSE28	50P
3.15A 4 A	FUSE14	55P	FUSE30	50P
5 5	FUSE1E	60 P	FUSE31	50P
6.3A	FUSE1E	60 P	FUSE32	50P

CERANMC PLUG TOP

CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100 P
5A	FUSE34	100 P
13A	FUSE35	100 P

20 mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	PRICE
6.3 A	FUSE38	100 P
8 A	FUSE39	100 P
10 A	FUSE40	100 P
3.15 A	FUSE41	85 P
4A	FUSE42	85 P
5 A	FUSE43	85 P

32 mm CERAMIC SLOW BLOW

CURRENT RATING	ORDER CODE	PAICE
$8 A$	FUSE44	$185 P$
10A	FUSE45	185 P
15A	FUSEE66	185 P
20 A	FUSE47	210 P

38 mm CERAMIC TIME LAG

ALL THE ABOVE PRICES ARE ARE FOR PACKS OF 10 FUSES NB. ALL FUSES ARE MADE IV THE UK AND FULLY MEET BS 4265 \& BSi362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

SOLDERING ACCESORIES

ANTEX SOLDERING IRONS

DESCRIPTION	CODE	PRICE
25 WATT 240 VAC (XS25W 240V)	S101	900 P
15 WATT 240 VAC (XS 15W 240V)	S 102	900 P
25 WATT SPARE ELEMENT	S103	450 p
15 WATT SPARE ELEMENT	S104	450 p

SOLDERING STAND \& SPONGES		
DESCRIPTION	CODE	PRICE
SOLDERING STAND (MADE BY ANTEX)	S108	$350 p$
SPARE SPONGE	S109	$55 p$

SOLDER
DESCRIPTION
18 SWG E00 GRAMMES
20 SWG E00 GRAMMES
22 SWG 500 GRAMMES

CODE	PRICE
SI10	500 P
S 111	650 P
S 112	700 P

DESOLDERING AIDS
DESCRIPTION

SOLDER MOP $1.2 \mathrm{~mm} \times 10 \mathrm{METFE}$
DESOLDERING PUMP
SPARE NOZZLE

CODE	PRICE
SIO7	80 P
SI13	400 P
S105	320 P
SIO6	60 P

8 way PREPROCRAMMED

Universal remote Contro
A single remote control to yperate Televisions, Videos and Satellite Receivers. Plus Auxilary Cptions! Replaces up to 8 remotes with ofe Simple 4 digit setup routine - Controls 1000 's of models - Teletext tunctions with Fastext - Clear (large key) layout - Code Search Faclity

- Stylish and easy to operate - Replace broken or lost remotes - Original Remote not required

Order Code: 8 WAY Price: 1450 P + dAT
8 way PREPROGRAMMED
Universal remote Control The Optimum 8 way universal remote control preprogrammed to operate up to 8 other
remote controls for Televisions, Videos and Satelite Receivers. Plus Auxilary OptionsI! - Pre-programmed with leaming capability - Replaces up to 8 remotes with one Jog/Shutlle thumb control - Illuminated key pad

- Clear key layout

Easy access secondary keypad

- Teletext \& Fast text function
- Stylish and easy to operate
- Original Remote not required
- Freefone Helpline (UK Only) Order Code: OPTIMUM 8 Price: $2100 \mathrm{P}+$ VAT

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE

 HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LAREE QUANTITIESPlease send £1 P\&P and VAT at 17.5\%. Govt, Colleges, etc.
Orders accepted. Please allow \mathbf{T} days for delivery. Prices quoted are subject to stock avallability and may be changed without notice. TV and video parss sold are replacement parts.

Aczess \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

Figure 8: View of Wells turbine of Islay System during construction (Courtesy ETSU)

Continued from p. 12

wave activity, are more at the mercy of all vagaries of the weather. Some off-shore systems are designed to operate in a submersed mode and so are less vulnerable than surface floating constructions.

Environmental considerations

Studies of wave power systems have anticipated generally positive environmental impact. Coastal erosion would, for example, be reduced behind off-shore devices. Marine colonies could also find the relative shelter of off-shore structures a benefit. There would also be safer conditions for shipping and fishing.

Mechanisms of wave energy conversion

What is apparent in the field of wave energy is the range of energy conversion devices. It makes sense, however, to describe initially the most widely used device so far, the Oscillating Water Column (OWC) for on-shore and near-shore systems.

The Islay Oscillating Water Column

A device such as that shown in figure 5 represents a system currently operating on the Isle of Islay. The water level in the chamber rises and falls due to wave action and outgoing and in coming air is driven through a Wells turbine.

This design of turbine allows air with oscillating velocity to drive the turbine in a constant direction and was invented by Professor A. Wells of Queen's University, Belfast.

Construction of the Islay wave station was begun in 1987 with the unit being connected to the grid in early 1991. In good conditions, the station generates around 20 kW , though in better conditions around 50 kW can be produced. Figure 6 shows the system on the Islay shoreline and figure 7 the system as viewed from the adjacent shore. Figure 8 shows the Wells turbine during construction work.

It was the successful implementation of a similar wave power system in Norway during 1985 that rekindled interest in wave power within the UK context and subsequently also within a wider European framework.

Systems such as the one at Islay have not only to cope with the anticipated greatest wave heights, but it also has to cope with the tidal variations. Such Oscillating Water Columns would be simpler to build in areas with smaller tidal variations and, in fact, systems have been installed in islands in the Pacific - by Norwegian companies. Here, perhaps, is a clue to an underlying economic reality within the wave power scenario.

The efficiency of the Islay system has been less than anticipated. This, however, has been partly attributed to the roughness of the sides of the gully along which waves are propagated. Also, the tidal currents tend to reduce wave amplitude. The Islay system, however, has been built as a demonstration project and has provided extensive data to enhance efficiencies of future systems. In particular, it is now appreciated that the constructing of 'harbour walls' could enhance the efficiency of such systems by a factor of four as wave energy from a wider aperture is collected and converted.

ART Osprey

It is, of course, understood that there is more in the way of wave energy off-shore. One of the main difficulties to deep water implementation of OWCs is that the whole structure would tend to bob up and down with the waves and so efficiency would be significantly reduced. Also, exposed structures would be vulnerable to large seas.

A compromise system would be to develop a device that was seated on the sea bed in relatively shallow water and which could tap into the higher wave energy off-shore compared to an on-shore based device.

This was the concept behind the development of Osprey Ocean Swell Powered Renewable Energy. The final design of

DC TO DC CONVERTERS

DRM58 input $10-40 \mathrm{vdc}$ output $5 \mathrm{~V} 8 \mathrm{~A} £ 15$
DRM 128 input 17 － 4 Ovac output $12 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM 158 input $20-40 \mathrm{Vadc}$ output $15 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM248 Input 29－40vdc output $24 v$ VA $£ 40$ DRS 123 input $17-40 \mathrm{vdc}$ output 12v 3A £20 DRS153 in put 20－40vdc output 15v 3A $£ 20$ DRS243 input $29-40$ voc output $24 \mathrm{~V} 3 \mathrm{~A} £ 15$ SOLID STATE RELAYS
CMP－DC－200P 3－32vdc operation，0－200vac 1A £2．50 SMT $20000 / 3$ 3－24vdc operation， 28 －280vac 3 A $£ 4.50$ SMT 2000014 3－24vdc operabion， $28-280 \mathrm{vac} 4 \mathrm{~A} £ 5.00$ ZRA6025F 28－280va／ac operaton，28－280vac 25A 57.00 200 WATT IWVERTERS Nicely cased units $12 v$ input 240 OUput 150 att continuous， 200 max．£49 rel LOT62
6．89W W HELIUM NEON LASERS New Units．$£ 65$ ref LOT 33 COINSLOT TOKENS You may have a use for these？mixed bag

of 100 tokens $£ 10$ ref LOT 20

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to bulld a home X－ray machinel Enfective device，X－ray sealed assemblies can be used for experimental puposes Not a toy or for minorsi E6／set Rel FIXP1． TELEKINETIC ENHANCER PLANS Mystify and amaze your Intends by creating motion with no known apparent means or cause． Uses no electical or mechanical connedions，no specal gimmicks yetproducespositivemotion and effed Excellent for sciencepropeds．
magic shows，party demonstrations or serious research \＆ magic shows．party demonstrations or serious research
develiooment α this strange and amazing phyctic phenomenon． deveiopment d this
ELECTRONIC HYP NOSIS PLA 3 \＆DATA This data shows severai ways to put subjects under your controd．Induded is a full volume reference texd and several construction plans that when assembled can produce highty elfective stmuli．This mate nial must
be used cautously．It is for use as entertainmemt at parties etc only．

GRAVITY GENERATOR PLAMS This unlque plan demonstrates a simple electrical phenomena thatproduces an ans－ gravity effect．You can actually build a small mock spaceship out of
simple matefilis and without any visible means－cause it to lovitate． simple matertils and without any visible means－cause il to levitate． £10／set Ref F／GRA 1
WORLDS SMALLEST TESLA COILLIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge，experiment whth extraordinary HV effects，＇Plasma in a bischarge，expenmen melmo＇s fre．Corona，excellent science project or conversation jar．Stemo＇s fre，Corona，exce
piece．E5vset Ref F／BTC1／G5．
COPPER VAPOUR LASER PLAMS Produces 100 mw of COPPER VAPOUR LASER PLANS Produces 100 mw of
vistble green ligm．High conerency and spectral quality similar to visble green ligm．High colerency and sperial quality simiar
Argon laser but easier and less costly to build yef lar more effiont Argon laser but easier and less costly to build yef lar more efficient
This parit culardesignw as devetoped atthe Atomic Energy Commision Thisparicu ardesgnwas of NEEEV in Israel．ع10／set Rep F／CV
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into Indecipherable noise that cannot be understood without a second matching unit．Use on telepho
prevent third party listening and bugging E6／set Ref FNS9．
prevent third party listening and bugging E6／sed Rel
PULSED pulse fechniques that will completely disrupt TV picture and sound Woiks on FM 1001 DISCRETION ACNISED．£8／set Rel FTJJ． BOOYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies，wamn and holspds，heatieaks etc．Intended excercurny，iaw eniorcement
device or very interesting science project $£ 8 /$ set Ref F／BHTT BURNING，CUTTIMG CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting matenials over a considerable distance．This laser is one of the most efficient， a considerable distance．This laser is one of the most emcent，
converting tow inpurpower into useful output．Not only is 1Nis device
 is aiso a likely candidate as an effective directed energy beam
weapon against missiles．aircraft，ground－to－ground，etc．Partide weapon against missiles，aircraf，ground－to－ground，etc．Panide
beams may very well utilize a laser of this type to blast a channe In beams may very well ublize a laser of this type to blast a channel In
the atmosphere for a high energy stream of neutrons or other the atmosphere for a high energy siream of neutrons or other
particles．The device is easily applicable to burning and etching particles．The device is easily applicable to burning
wood，cutting，piastics，texties etc $£ 12$ set Rel $F / L C 7$ ．
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept Oojects fioat In air and move to the fouch．Defies gravity． concept oopects fioat In air and move to the touch．Uenes gravit，
amazing git conversation piece，magic thick or scienee project $E 6 /$ set Ref FIANTIK
ULTRASOMIC BLASTER PLANS Laboratory source of sonic shock waves．Blow holes in metal，produce＇cold＇steam，atomize
liquides Many cleaning uses for PC boards，jewlery，coins，small liquides Many deaning uses
parts etc．$£ .6 /$ set Ref F FNLB1．
ULTRAHIGH GAIN AMPISTET HOSCOPIC MIKEISOUND ANO VIBRATION DETECTOR PLANS UIIrasensifive device enables one to hear a whole new wond of sounds Listen through
walls，windows floors etc．Many applications shown，from law walls，windows，noors etc．Many applications shown，from law
enforcement，nature listening，medical heartoeat，to mechanical enforcement，nature listening，
devices $E 6 /$ set Rei $F / H G A 7$
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces ome variable puises of accoustical energy，that dogs cannot tolerate $\mathrm{EG} / \mathrm{set}$ Rel F DOG2
LASER BOUNCE LISTENER SYSTEAM PLANS AIIOWS you to hear sounds from a premises without ganing access．E12／sef Ref F／LLISTI
LASER LIGHT SHOW PLANS Doil yourself plans show three methods．E6 Ret F／LLS
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld，has large transducer and battery capacity with extemai controls．E6／set Ref F／PSP4
INFINTTY TRANSMITTER PLANS Telephone line grabber／ room monitor．The ulfmatein home／ofice security and safety simple to usel Call your home or office phone，push a secret tone on your tetephone to access either：A）On premises sound and voices or B）
Existing conversation with break－In capability for emergency Existing conversation with break
messages．$£ 7$ Ref $F T E L E G R A B$ ．
messages．£7 Ref FTELEGRAB．
BUG DETECTOR PLANS Is that someone getring the goods on you？Easy to construc device locates any hidden source of radio
energy＇Sniffs out and finds bugs and other sources of bothersome

WOLVLAPAMPKOMBRAMCI
 NOW OPRN AT MORCEATER ST WHAMEION TEL， 0100222039

inter 801.

BD1．
ELECTROMAGNETIC GUN PLANS Profects a metal object a
ELECTROMAGNETIC GUN PLANS Prolects a metal object a considerable distance requires adull supervision E 5 red $\mathrm{F} / \mathrm{MLL2}$
ELECTRIC MAN PLANS，SHOCK PEOPLE WTH THE TOUCH OF YOUR HANDI E5／SER Ret F／EMAI
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices，apen windows，sound sources in hard to get or hostile premises．Uses satellite techinology to gather distant sounds
 and focus them to our utra sensive etectronics
optional wifeless link system．$£ 8$ set ref F／PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AMD HIGH DC VOLTAGE，SOLID STATE TESLA COIL AND VARLABLE 100,000 VOC OUTPUT GENERATOR PLANS Operates ong－12vdc，many possible experiments £1a Ref FA－VMM7 TCL4．
INFINTTY TRANSMITTERS The ultimate＇Jug＇fits to any phone or line，undetectable，listen to the conversations in the room from anywhere in the worldi 24 hours a day 7 days a weekl just call the number and press a button on the mint comtroller ssupplied）and you can hear everythingl Monitor conversations for es long as you choose $£ 249$ each，complete with leads and mini controlert Ret
LOT9．Undetectabio wth nomal RF detectors，flled h seconds．no LOT9．Undetectablo w th nomal
batterles required，lasts forever！
SWITCHED MODE PSU＇S 244 watt，$+532 \mathrm{~A}+126 \mathrm{~A},-50.2 \mathrm{~A}$ ， 120.2 A ．There is also en optional 3.3 v 25 A rail available． $120 / 240 \mathrm{v}$ P．Cased， $175 \times 90 \times 14 \mathrm{~mm}$ ．IEC Inlet Sutable for PC use（ $6 \mathrm{~d} / \mathrm{d}$ 渞 connectors $1 \mathrm{~m} / \mathrm{ooaral}$ £ 10 rel PSU1．
VIDEO PROCESSOR UNTTST／6v 10AH BATTS／12V 8A TX Not too sure what the function of these units is bur they certainly make good strippersi Measures $390 \times 320 \times 120 \mathrm{~mm}$ ，on the fromt are controis for scan speed，scan delay，scanmode，loads jf connections on the rear．Inside $2 \times 6 \mathrm{v} 10 \mathrm{AH}$ sealed lead acid batts，pcb＇s and a $8 A$ ？ 12 v torroldial transforrer（mains in）．Condivon not known，may RET RON NIGHT 3 IGHT Recognition of a standing man at 300 m in $1 / 4$ moonlight，hermatically sealed，runs on 2 AA batteries， 80 mm F 1.5 iens． 20 m w infrawed laser induded．£325 ref RETRON
㢵INI FM TRANS剈ITTER KIT Very high gain preamp，supplied complete with FET eiectret microphone．Designed it cover 88－108 Mhz but easily changed to cover 63130 Mhz ．Works with a common 9v（PP3）battery．0．2W RF．£7 Ref 1001
3－30V POWER SUPPLY KTT Variable，stabilized power supply for lab use Snon circull protected，suitable for prolesianal or amateur use 24v 3A transformer is needed to complete the kit $£ 14$ Ref 1007. 1 WATT FM TRANSMITER KIT Supplied with plezo electric mic．8－30vdc．At $25-30 \mathrm{v}$ you will get nearly 2 wattsi $£ 12$ fef 1009. FMIA癿 SCANNER KIT Well not quite，you have to turn the knob your self but you will hear things on this radio that youwould not hear on an ordinary radio（even TV．Covers $50-160 \mathrm{mhz}$ on both AM and FM．Bult in 5 watt amplifier，Inc speaker．$£ 15$ ref $10 t$
3 CHANNEL SOUND TO LIGHT KTT Wireless system，mains operated，separate sensitivity adjusiment for each channel， 1.200 w power handiling．microphone included．$£ 14$ Ref 1014.
4 WATT F明 TRANSA日TTER KIT Small bu powerful FM transmitter， 3 RF stages．microphone and audio preamp included． E20 Ref 1028.
STROBE LIGNT KIT Adjustable from $1-60 \mathrm{hz}$（e lot faster than conventional strobes）．Mains operated．E16 Ref 1057.
COMBINATION LOCK KTT 9 key，programmable，complete with keypad，will switch 28 mains 9 v đc operavon．$£ 10$ ref 1114. keypad，will switch $2 \AA$ mains 9 N do operavion．£10 ref 1114 ．
PHONE BUG DETECTOR KIT This device＊ill warn somebody is eavesdropping on your line，$£ 6$ ref $11=0$ ．
ROBOT VOICE KTI Interesting circuit that distorts your voicel adjustable，answer the phone with a different voical 12 vdc $£ 9$ rel 1131 TELEPHONE BUG KTT Small bug powered by the phone line， starts transmitting as soon as the phone is picked usl £8 Ref 1135 ， 3 CHANNEL LIGHT CHASER KIT 800 wats per channel， speed and direction controissupplied with 12 LEDS Gou can fit tria
inslead to make hot mains，not supplied） 9 12vdc $£ 17$ ref 1026 ． 12V FLOURESC ENT LAMP DRNER KTTLigit up 4 foot tubes from your car battery 9v 2a transformer also requirsd．E8 ref 1069 ， VOXSWITCH KIT Sound activated swhenideal formaking bugging VOX SWITCM KII Sound actrated swhenideal formak
tape recorders ere，ajjustable sensitivity．$£ 8$ ref 1003 ．

Check out our WEB SITE

https／／www．pavilion．co．uk／bull－eleotrleal PREAMP MOXER KT 3 input mono mixer，sep bass and treble controls plus individLal leves controis．18vdc．input sens 100 mA ．E15 ref 1052.
－gome or our producte mat be unlicemarble in this uir
bullelectrical
450 Ponclutw ROAD，HOVE，y1385RX
BN3 SOT．（ 5 SHABLISHED 50 rwarts）
UII ONDER TRRME CASIK，PO OR CHRQQU

TEL：01273 203 510
FAX $01273 \mathbf{3 2 3 0 7 7}$
E－mail bell＠pavilionco．uk

SOUND EPFECTS G ENE RATOR KTT Produces sounds ranging from bird chips to sirens．Complete with speaker，add sound effects to your profects for just $£ 9$ ref 1045 ．
16 WATT FBA TRAMSMITTER（BUILT） 4 stage high power， proamp requlred $12-18 \mathrm{vac}$ ，can use ground plane，yagi or open dipole． K 69 nef 1021
HUMIOTN 部ETER KTT Bullds into a precision LCD numidity meter， 9 ic design，pcb，led display and all components Included $£ 29$ PC TMER KIT Four channel output controlled by your PC，will switch high surrent mains with relays（supplled）．Software supplied so you can frogram the channels to do what you want whenever you want．Minimum system configeration is 286 ，VGA， $4.1,640 \mathrm{k}$ ．serial port，hard dive with min 100k free $£ 24.99$
FM CORDLESSM ICROPHONE This unitis an FMbroadcasting stafion in mnature， 3 transistor transmitter with electret condenser moc + fet amf design resultin maximum sensit vity and broadfrequency response $50-105 \mathrm{mhz} .50-1500 \mathrm{hz}, 500$ foot range in open country！ P 33 battery required．$£ 15.00$ rel 15P42A
MAGNETC 盖ARBLES They have been around for a number of years but stl give rise to curiosity and amazement．A pack of 12 is just E3． 99 rel G／R20
NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts into showpleces in 3 hours！Will plate onlo
steed，Iron，bronze gunmetal，copper，welded，silver soldered or brazed stee，Iron，bronze gunmetal，copper，welded，silver solde red or brazed foints Kh includes enough to plate 1,000 sqinches You will also need a 12v supply，a container and $2 \mathbf{1 2 v}$ light bulbs $£ 39,99$ ref NIK 39 ． Minature adjustable timers， 4 pole clo output 3 A 240 v ， HY1230S，12VDC adjustable from 0－30 secs．£4．99 HY1260N，12VDC adjustable from $0-60$ mins．$£ 4,99$ HY2405S， 240 N adjustable from $0-5$ secs．$£ 4.99$ HY24060m， 240 V adjustable from 0.60 mins．$£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder uses microcassettecomplete with headphones $£ 28.99$ ref MAR29P1 POWER BUPPLY fuly cased with mains and op leads 17 v DC soomA outout．Bargain price $£ 5.99$ ref MA G6P9
IV DC PCWER SUPPLY Standard plug in type 150 ma 9 V DC with lead and DC power plug．price for two is $£ 2.99$ ref AUG3P4．
COMPOSTE VIDEO KT．Converts composite videc into sepa
rate H syns，V sync，and videc．12v DC．E8．00 REF：MAG8P2．
FUTUREPC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 dive cornectors 1 mother board connector．150watt． 12 V fan，lec Inlet and onfof swith．\＆12 Ref EF6．
VENUS FLYTRAP KT Grow your ow n camivorous plant with this simple wit E3 ref EF34
$6^{\text {n }} \times 12^{\text {＂}}$ AMORPHOUS SOLAR PANEL ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP13 ideal for experimenters1 30 m for $£ 12.99$ ref MAG13P1 ROCK LEHTS Unusual things these，two pleces of rock that giow when rubbed together bellied to cause rainli3 a palr Ref EF29． 3＇by 1^{\prime} AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA}$ bats，aluminium frame，screw terminals，£44．95 ret MAG45．
ELECT RONIC A CCUPUNCTURE KIT Bulds intoan electronic
version Instead of needlesl good to expermment with．$£ 7$ ref 7 P30 SHOCKNG COIL KTT Build this litte battery operated device into all sorts of things．also gets worms out of the groundl $£ 7$ rel 7P36． FLYING PARROTS Easily assembled kit that builds a parrot that actually fipps its wings and fies！ 50 m range $\mathrm{\Sigma 6}$ ref EF 2 ．
HIGH POWER CATAPULTS Hinged am brace for stability， lempered steet yoke，super strength latex power bands Departure speed of ammuniton is in excess of 200 miles per hour Range of ove 200 metres E 7.99 rel R／9．
BALLON MANUFACTURING KTT Bitish made，small blob olow into a large longlasting balloon，hours of funl£．3．99 refGI／E99R 9－0．9V 4A TRANSFORMERS，chassis mount $£ 7$ ref LOT19A 2．5 KILCWATT INVERTERS，Packed with batteries etc but as they woigh about 100kg CALLERS ONLYI £ 120溒EGA LED DISPLAYS Bulld your self a clock or something with these mega 7 seg displays 55 mm high， 38 mm wide 5 cn a pcb for just £4．99 ref LOT16 or a bumper pack of 50 displays for just £29 rel LOT17．

CLEARANCE SECTION，MINIMUM ORDER £15，NO TECHNICAL DETAILS AVAILABLE， NO RETURNS，TRADE WELCOME．

2000 REE ISTORS ON A REEL（SAME VALUE）99P REF BAR340 AT LEAST 200 CAPACTTORS（SAME VALUE 99P REF BAR 342 INFRA RID REMOTE CONTROLS JUST OAP REF BAR 333 CIRCUT 3REAKERS，OUR CHOICE TOCLEAR 98P REFBAR335 MICROWAVE CONTROL PANELS TO CLEAR 22 REF BAR 329 2 TUBES OF CHIPS（2 TYPES OUR CHOICE）SOP REF BAR305 LOTTERY PREDICTOR MACHINEII JUST E 1.50 REF BAR313 HELLAL ROVER ELECTRIC H／LAMP LEVELLERE2 REF BAR311 SINCLAR C5 $16^{\prime \prime}$ TMRES TO CLEAR AT JUST 7SP REF BAR318 LARGE IANS 新OTORS（NEW）TO CLEAR AT 75P REF BAR310 MODEMS ETC FOR STPIPPING E2．50 EACH REF BAR 324 110 V LAZGE MOTORS（NEW）TO CLEAR AT SOP REF EAR332 MOOULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323 GX4000 3AMES COSOLES JUST EA REF BAR320 SMART GASED MEMORY STORAGE DEVICE，LOADS OF BTTS INSIDE，PCB，MOTOR，CASE ETC．BUMPER PACK OF COMPLETE UNITS TO CLEAR AT E2 50（FOR 5）REF BAR 330. 2 CORE FAINS CABLE 2 M LENGTHSPACK OF 4 E 1 REF BAR33 PC USERBBASIC MANUALS，LOADS OF INFO．E1 REF BAR304 PCB STEIPPERS TO CLEAR AT 2 FOR 99P REF BAR341 3）3CORE MAINS CABLE AND 13A PLUG．60P REF BAR325 WE BUY SURPLUS STOCK

FOR CASH

BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 PAGE CATALOGUE NOW AVAILABLE，45P STAMPS．

Continued from p. 14

Osprey is shown in figure 9. The device is some 28 m high with mean sea level some 14 m high. Osprey could be described as a near-shore device. Wave energy is designed to be converted to electrical power as the rising and falling column of water in the collector body drives air in alternating directions through a series of Wells turbines. The Osprey has been a widely reported project since it was essentially the first one to leave the security of land. It has been developed as a demonstration project, however, in order to assess the viability of general design and obtain data based on power generation in an area with well documented wave data.

The planned deployment of Osprey in the Pentland Firth is, in part, due to the level of interest from the former Atomic Energy Authority at Dounreay, near Thurso. This group have made detailed studies of wave profiles and mapped the sea bed at the location where Osprey was to be commissioned. Also, an existing on-shore substation would have allowed power to have been conveniently fed to the National Grid.

The Osprey saga, however, is yet to be successfully completed. While the craft was being loaded with ballast in the Pentland Firth off Dounreay, a large three metre swell buckled the device and plans are afoot to build another structure hopefully for commissioning during 1997. One of the annoying features of the sequence of events is that if delays had not developed in towing the structure North due to problems with tugs, then Osprey would have been safely loaded with ballast and be quite likely contributing between 1 and 2 MW to the National Grid. The Osprey project has attracted the practical involvement and contribution from major industrial groups. GEC Alsthom, for example, is contributing induction generators that can generate constant frequency power from the variable energy source of Osprey's set of Wells turbines.

With a core of commercial backers for the project developed by Allan Thompson of Applied Research and Technology (ART)
of Inverness, the European Union contributed around £435,000 to the project under the umbrella of the Joule initiative. The long experience of ART of off-shore technology in North Sea oilfields, provided a core of experience in working in such conditions.

Figure 10 shows the ART Osprey during its launch on the 2 nd of August 1995 on the Clyde. One of the most dynamic references on the subject of wave power was provided by Allan Thompson's speech at this event.

The Salter Duck

While it is anticipated that on-shore and near-shore devices will be the first system to be developed, the Salter Duck is primarily designed as an open sea device designed to capture the higher power levels available in such conditions. From its initial conception during 1974, the system has undergone a process of continual refinement and development - especially in the energy conversion system. It is certainly the system

Continued on p. 18

Figure 11: Basic design of Salter Duck

EASY-PC Professional XM Schematic and PCB CAD

From Super Schematics

- Runs on:- PC/ 386/ 486 with VGA display
- Links to PULSAR (logic), ANALYSER III (analogue) \& LAYAN (electromagnetic) simulators.
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.
- Optional, powerful, 32 bit Multi-pass, Shape based, Shove Aside, Rip-up and Re-try Autorouter.

Simulation can even include the parasitic effects introduced by the Board Layout

LAYAN - Electro-magnetic Simulation ONLY £495

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From \$245	$\Sigma 145$
MultiRouter: 32bit Multi-pass Autorouter	\$475	$\Sigma 295$
LAYAN: Electro-Magnetic PCB Layout Simulator. Include the board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	£495
PULSAR: Digital Circuit Simulator	From \$175	298
ANALYSER III: Analogue Linear Circuit Simulator	From \$175	¢98
FILTECH: Active and Passive Filter Design program	From \$245	£145
STOCKIT: New comprehensive Stock control program for the small or medium sized business	\$245	£145
EASY-PC: Entry level PCB and Schematic CAD.	\$135	£75
Z-MATCH : Windows based Smith-Chart program for RF Engineers.	From \$245	£145

We operate a no penalty upgrade policy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Number One Systems

UKJEEC: Ref. ETI, Harding Way, St.Ives, Cambridgeshire., ENGLAND, PE17 4WR. Telephone UK: 01480461778 (7 lines) Fax: 01480494042 USA: Ref. ETI, 126 Smith Creek Drive, Los Gatos, CA 95030

Telephone/Fax: (415) 968-9306
e-mail: sales @ numberone.com International +44 1480461778

Figure 12: Diagram of the Evans cylinder

Continued from p. 16

which has undergone probably most external scrutiny and review. A detailed review of the system is available from Professor Salter's Department - Changing the 1981 Spine Based Ducks. A cross-sectlon of the Duck is shown in figure 11. In a large-scale implementation, the individual Ducks will pivot relative to a common spine, which will act as a rotational reference point. A novel means of storing energy within the Salter Duck was twin gyroscopes that spun in a vacuum environment to minimise energy losses. While this provided good smoothing of delivered power, an alternative lower cost design using high pressure pumps is currently used. The concept of a suitably tethered 'Solo Duck' is also now receiving consideration. Also, the use of thinner concrete and alternative joints between units and the re-use of concrete shuttering between modules has significantly reduced estimated costs. According to an independent reputable source, the cost per kWh of power from such structures has fallen from the value of $16 p$ of the 1992 Thorpe review to a figure more like between 4 to $5 p$. With further design and material developments, this figure will likely continue to fall.

The Canary IsIand Initiative

In recent years, the trans-Europe co-operation in Wave Power has come of age. An advanced Oscillating Water Column is currently nearing structural completion in the Canary Islands (which belong to Spain), with the contract work undertaken by ART in Scotland and a company in Lisbon, Portugal. The wave tank testing of the system was undertaken in Cork, Ireland, with aspects of advanced design of components being undertaken in Professor Salter's Department in Edinburgh, Scotland.

According to Professor Salter, the Oscillating Water Column design being developed is hoped to achieve significantly higher efficiency than standard designs using Wells turbines. New components of the system being developed in Edinburgh include a fast shutter that can close or open in $1 / 20$ th of a second and a variable pitch turbine that can have its blade angle adjusted to abstract a maximum amount of energy from individual waves. Initially, a standard turbine will be fitted, followed by the shutter mechanism and then finally the variable

The Evans Cylinder

pitch turbine. The use of the shutter allows 'latching' in order to abstract maximum energy from the oscillating columns of sea water and also by switching the column to the appropriate turbine for maximum energy extraction. The rated power of the system will be around 400 kW . The features for latching and variable pitch turbines should increase considerably the efficiency of power extraction of such OWC systems for both on-shore and nearshore locations.

In this design, shown in figure 12, the submerged cylinder is moved by wave action and alternately compresses hydraulic pumps attached to the cylinder. The mathematics of this design was initially extensively studied and subsequent tank tests have validated the theoretical basis. It is estimated that the typical movement or excursion of the cylinder would be around 4 metres.
Sea water compressed by the pumps on the unit would be used to rotate a large Pelton Wheel shared by other units. One advantage of this design is that it mostly would be submerged and would not be exposed to the worst sea activity.

Other designs

A range of other designs, principally of UK origin, have also manifested. These include the Air Bag of Professor Michael French of Lancaster University, the Circular Clam of Coventry University and the Lillypad. David Ross's book provides a useful account of these. An extensive wave tank study of a 'swirling' cylinder unit has recently been completed by Dr. Chris Retzler at the City University in London.

The Norwegian perspective

The energy balance of Norway is, however, completely different from that of the UK. Almost all of Norway's power is produced by hydroelectricity. Water from melting snow produces maximum output in the spring and summer and water is stored in reservoirs for the following winter.

In the Norwegian context, the additional interest in wave monitoring has revealed a dramatic increase in storm frequency in the years 1988 to 1993. Observations, however, reveal the significant variability of wave power even over relatively short time periods. The average for a winter month can be some five or ten times that of a summer month. The higher availability of energy, however, coincides with higher demand for power. Within Norway, companies and agencies have developed systems for analysis of wave climate. The Norwegian company OCEANOR can assess wave climate over any region of the world's oceans by abstracting data from a broad range of sources. Also, the company NORWAVE has developed software to compute levels of wave activity in coastal areas as a

Figure 13:

function of meteorological data and sea bed topography.

The Tapchan

Nature has given some clues about how some of the energy from the sea can be captured on shore. Natural blow holes, some distance inland from the coast, occur when wave action penetrates along gulleys and then breaks through layers of rock to the tops of cliffs.

The concept of the Tapchan was apparently initiated by physicists in Oslo who were working in general aspects of wave focusing. In normal optics, for example, waves are bent by changing their velocity by means of refractive components, such as glass lenses. Controlled alteration of the sea depths can also be used to focus waves towards a point of convergence. The original design of the Tapchan planned a system with a power capacity of 200 MW and, in one scheme, involved the construction of a lens some 10 km from the shore and a smaller one in-shore. The wave energy would be focused onto a single aperture some 200 metres wide. Water would be collected in a reservoir with a head of 12 m and with a maximum water flow of $2000 \mathrm{~m} / \mathrm{s}$ - quite a frothing inferno. Such a system would probably also have acted as an automatic fishing machine. It was decided, however, to build a demonstration system to verify the concepts as basic engineering techniques. The so-called Tapchan or 'tapered channel' as developed by Norwave in Norway, focuses waves over an entrance aperture or frontage of some 60 metres to rise up a tapered channel gaining in height until the wave breaks over the walls of the channel into a raised lagoon of area 8000 square metres. Water from the lagoon can then be released through a 350 kW Kaplan hydroelectric turbine to generate electricity across a 3 m head. Around 40% of the incident wave energy is converted to electric energy. This system has operated entirely satisfactorily since 1985. The system has been subsequently modified to verify that a significant reduction in channel length will not adversely affect

Figure 7: View of Islay OWC from adjacent shore (Courtesy ETSU)

the system efficiency. It is likely that Norway will capitalise on its pioneering Tapchan development and sell its technology to numerous sites around the world. Currently a 'Tapchan' wave power plant of power capacity 1.1 MW is being constructed by a Norwegian company on the south coast of Java.

Oscillating Water Column: demonstration system

An initial design study of a wave plant of 200 MW was undertaken by Kvaerner Brug of Oslo which involved OWC units of 8 MW each. It was subsequently shown that smaller units rated at 0.5 MW would be more economical. Initially the larger units would have been 160 m apart along the coast. An installation of total capacity 200 MW using 0.5 MW units and 125 metres apart would take up some 50 km of coast.

It was decided to build a demonstration system. The design of the original Kvaerner multi-resonant OWC is shown in figure 13 at Toftestallen, 40 km north west of Bergen. The base is constructed of concrete with a steel upper chamber. The unit was initlally completed during 1985. The power output of the system varied between 100 kW and 500 kW . The structure was, however, dislodged from its cliff position late in 1988 by two of the severest storm ever encountered in the region.

After the demise of the original structure in 1988, Kvaerner Brug planned to rebuild the structure in concrete with the power take off system securely on land. This, however, was not to be since, In 1990, Kvaerner Brug merged with Kvaerner Eureka and it was decided to shelve this wave power project.

Trondheim University Wave Group

While Norway has 'got its feet wet' in wave power, funding for basic research is still difficult to get. A key centre for wave development is the University of Trondheim, Norwegian Institute of Technology. In the Oscillating Water Column, the basic design involves one single column of water and one single Wells turbine. Part of the problem of efficiency matching with such systems is that the wave periods are often longer than the resonant frequency of the water columns in the OWC and this reduces the conversion efficiency. By having two chambers with valves that can be opened and closed independently by appropriate control, as indicated in figure 14, it has been predicted that significant additional efficiency can be achieved. The 'appropriate control' would be a microcomputer that could predict the best times to open and shut the control valves. Also, the turbine used need not be of the self-rectifying Wells type and so a more standard and economical unit can be utilised. Such a system has been extensively studied at one tenth scale in Norway. The costs of construction of the more complex unit would be somewhat larger than a single chamber though energy recovery would be greater.

Point absorbers

One of the refreshing things about research into wave power is the diversity of ideas that surface within separate national programmes. While Norway has achieved some notable firsts in Europe with on-shore devices such as the Tapchan and OWC at Toftestallen, a significant amount of research has been undertaken by the physics group at Trondheim University. Many of the current projects of this group were initiated by the late K. Budal. Currently, the principal researcher is Dr. Johannes Falnes. In particular, the Norwegian group has analysed in considerable detail the performance of so-called 'point absorbers'. In the early development of wave power, energy converter's tended to be considered as devices that
converted the energy of the waves over the linear distance of wave incidence upon them. Theoretical studies subsequently have shown, however, that a so-called 'point absorber' can abstract energy from a wider 'aperture' than just its physical dimension. In more formal terms, the maximum power that can be captured is equal to the incident wave transport associated with a wave front of width one wavelength divided by two times pi (value 6.28). Experiments have confirmed that 50 percent of incident energy can be absorbed under best conditions by such point absorbers. Results with one tenth scale model buoys have indicated that values around 43% for energy conversion can be achieved. Thus a long period wave with a wavelength of 100 m will be able to present a capture aperture of around 15 metres with a maximum recovery level of 50%. The model of available power is complex, however, and the collectible energy is very much a function of the incident wave spectra.

The advantage of the point absorber, however, is that such devices do not have to be as large as the cross-section of devices such as the Salter Duck to capture and convert the same amount of energy. Figure 15 indicates the typical design of a near shore oscillating buoy system. As the waves pass over the buoy position, the buoy takes up an oscillating motion. The buoy runs up and down the vertical support by means of rollers. Various modes of energy take off have been proposed. One of the simplest is to form a cylinder along the axis of the buoy with vertical movement of the buoy compressing air into a pressure reservoir from which a turbine can generate electricity.

Latching action

A key design feature of such a system, however, is the implementation of 'latching', a process referenced by various wave power researchers. In this process, the motion of the buoy is intelligently controlled so that it can derive the optimum output from the incident wave stream. Such control is principally achieved by periodically clamping the buoy to the vertical support structure so that its subsequent motion can abstract additional energy. The latching mechanism is crucial to the efficiency of such a wave converter design. In a wave tank study, the estimated average power production of a buoy unit was calculated to be 14.0 kW with latching control, and 5.3 kW without it. While extensive tests have been undertaken in test tanks and also in the sea with models, so far no commercial sponsor in Norway has provided resources for funding research into developing a demonstration sea-going buoy unit. In the 'small is beautiful' philosophy of Dr Falnes, a 200 MW near-shore wave converter system would best be implemented by an array of 2,000 such devices, each of rated capacity 0.1 MW. While Norwegian wave research is forward looking, there is the impression that research and development has not progressed to a stage which would give confidence to construct devices for deployment in real seas. On paper, the figures look good. What is needed is more commercial interest to resolve aspects of engineering design.

Summary

After the Energy Crisis of the early 1970's, Wave Energy in the UK soon was seen by various key figures in the Electricity Supply industry as a viable option as a sustainable resource for the future. Within ten years, however, Wave Power was out of favour - at a political level. It is regrettable that a considerable degree of academic effort from the UK Wave Power community had to be expended to counteract government commissioned reports on wave power of questionable scientific and economic correctness. Where funds have been spent by the UK

Figure 14: Design of two chamber OWC unit: on the left, arrows indicate air flow with rising water, and on the right, falling water

Figure 15: Design of oscillating buoy: $S=$ vertical column; C = buoy; $\mathrm{Q}=$ power take-off cable; $\mathrm{H}=$ mooring base; $\mathrm{J}=$ attachment point
government on 'Wave Research', this has tended to fund 'reports' of the status of developments and designs without acting to actively develop the effectiveness of such systems. Because of the large potential energy resource that wave power represents for the future, as well as its potential as a wealth creating industry, there is every justification for greater levels of investment than are being committed at present. Also, there seems a bizarre conflict of financial models where nuclear power stations are built at great cost initially and with the prospect of future crippling cost to decommission them and render their radioactive cores 'safe'. Is this even sensible within the confines of 'market forces'?

There does appear, however, to be a greater openness on the part of the UK government to accept the case that wave power has potential. The contribution of Tom Thorpe while at ETSU is widely acknowledged as regaining 'the respect of the entire wave community'. More and more, however, commercial players unfettered by political baggage are beginning to participate in wave power development. It is Europe, however, that is at present funding the significant element of current research in wave power in the UK. As the pendulum swings towards obtaining power from renewable,
non-polluting sources, wave power is well placed to play a significant part in helping to stabilise our existence within an increasingly fragile biosphere.

Further Information

The British Seas by J. Hardisty, Routledge, London and new York, 1990.
Research and Development in Ocean-Wave Energy in Norway, Dr. Johannes Falnes, in International Symposium on Ocean Energy Development, Muroran, Hokkaido Japan, 1993, pp 2739, ISBN 4-906457-01-0
Proceeding of European Wave Energy Symposium, Edinbưrgh 1993. Available from NEL, East Kilbride, Glasgow, G75 0QU. Proceeding of Second European Wave Power Conference, 810 November, Lisbon, 1995. Available from NEL, East Kilbride, Glasgow, G75 0QU.
The UK Wavepower R \& D Programme, The Open University Technology Policy Group, TPG Occasional paper 27, Dr. D.A Elliot
Power from the Waves, David Ross, Oxford University Press, 1995
Ruling Out the Waves, Network for Alternative Technology and Technology Assessment, Open University, Dave Elliot.
Speech by Allan Thompson, Managing Director of ART, 2nd of August, 1995.
Ocean Thermal Energy Conversion, Patrick Takahashi and
Andrew Trenka, UNESCO Energy Engineering Learning
Package.
World progress in Wave Energy - 1988, S.H. Salter,
International Journal of Ambient Energy, volume 10, Number 1, pp 3-24

Points of Contact

General Wave Research and JOULE Initiative Professor Stephen Salter,
Department of Mechanical Engineering,
The University of Edinburgh,
Kings's Buildings, Mayfield Road,
Edinburgh, EH9 3JL. tel 01316505703 fax 01316505702
Applied Research and Technology Ltd.,
50 Seafield Road, Longman Industrial Estate,
Inverness, IV1 1LZ. tel 01463238094 fax 0146323896
Islay project and JOULE Initiative
Professor T.J.T.Whittaker,
Department of Civil Engineering,
Queen's University of Belfast,
Belfast, BT7 1NN. tel 01232245133 fax 01232663754

JOULE Initiative

Dr. B. Holmes, Hydraulics \& Maritime Research Centre, University College Cork,
Cork, Ireland.
Technology Policy Group,
Faculty of Technology, Open University,
Walton Hall, Milton Keynes, MK7 6AA.
(For free literature and access to Contractors' Reports)
Reneweable Energy Enquiries Bureau,
ETSU, Harwell, Oxfordshire,
OX11 ORA. tel 01235432450

Runs on any PC running Windows 3.1, Windows 95 or Windows NT with a minimum 2MB RAM Will work vilh any Windows supported printer and monitor

For Windows 3.1, '95 or NT

Internet WWW site at www niche co uk for more information
Visit our WWW site at www.niche.co.uk for more information and a working demo. The demo is also available via anonymous FTP from fip.demon.co.uk in the dir /pub/ibmpc/win3/apps/pcbdemo/ as pcbdemo.zip. Internet e-mail pcb@niche.demon.co.uk.

Looking for the price?

It's just £49.00 all inclusive!
...no VAT...no postage... ...no additional charges for overseas orders.
Dealers and distributors wanted.

Niche Software (UK)
12 Short Hedges Close, Northleach, Cheltenham GL54 3PD Phone (01432) 355414
Available in South Africa from JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00

50Hz MAGNETIC FIELD SENSOR

Find magnetic field overloads with Robert Penfold's mains hum tracker

\square
The presence of magnetic fields in the modern environment was something that seemed to be taken for granted for many years, with no serious questioning of whether these fields had any harmful effects. This situation has changed in recent years, with numerous claims about potential problems due to various types of electromagnetic radiation. Even humble 50 Hertz mains hum from ordinary power cables, transformers, etc. has come under suspicion. Electro-magnetic fields have become a major news story, with substantial coverage in the national press. It remains a highly controversial subject, and seems likely to be so for some years to come.

This project is a sensitive but inexpensive 50 Hertz magnetic field detector. While it is not intended to act as a highly accurate scientific instrument, it does enable relatlve field strengths to be gauged reasonably accurately. It is interesting to check the field strengths around cables, transformers and so on, and results are often not what one would expect. If you have any "hot-spots" around the house, it should be easy to track them down using this unit. Due to the small size of its Hall effect sensor, the unit can be used to map out complex magnetic fields quite accurately. It can also act as a mains

Figure 1. A hall effect sensor is basically just a munite bar of silicon fitted with two electrodes

cable locator. The field strength is indicated via a moving coil panel meter, and there is also an output socket that can be used to drive a pair of medium impedance headphones.

Hall effect

The magnetic field is detected using a UGN3503U linear Hall effect sensor. The Hall effect was discovered by E.H.Hall in 1879, but it is only relatively recently that Hall effect devices

Figure 3. The 50 Hz magnetic filed sensor circuit.

have become widely available. This effect is very simple in essence, and figure 1 helps to explain the way in which a Hall effect sensor functions. The sensor is basically just a minute bar of silicon with electrodes fitted on opposite faces. A current is
passed through the piece of silicon, producing a potential gradient. In other words, the potential varies from 0 volts at the bottom of the silicon chip to the full applied voltage at the top. The electrodes are about halfway up the bar of silicon, and about half the applied voltage is present at each electrode.

The important point to note here is that the same potential is present at each electrode, giving a differential output voltage of zero. This all assumes that there is no magnetic field applied to the sensor, giving a uniform flow of current through the piece of silicon, as in figure 1(a). If a magnetic field is applied at one side of the silicon bar, the current carriers are deflected, giving increased current flow through one side of the bar and decreased current flow through the other. This is often likened to the beam of a cathode ray tube (crt) being deflected by a magnetic field.

Figure 1 (b) represents the distorted current flow caused by the application of a magnetic field. This very simple setup can act as a magnetic sensor because the deflected current flow causes a distortion of the potential gradient. This in turn results in a higher voltage at one electrode, and a lower voltage at the other. This produces a small voltage difference across the electrodes. The output voltage is proportional to the strength of the magnetic field, and its polarity is dependent on the polarity of the magnetic field.

It is important to realise that the sensor will only detect a magnetic field applied to one side or the other of the silicon bar. A field applied to the top, bottom, front, or rear (as viewed in figure 1) will affect the current flow, but not in a manner that will cause an imbalance in the potentials at the electrodes. In practice this means that the orientation of the sensor must be adjusted to produce maximum reading from the unit if meaningful results are to be produced. Practical Hall effect sensors invariably include some on-chip signal processing, such as an amplifier or some form of switching circuit. In this application it is a linear device having a built-in amplifier that is required. Some linear Hall effect sensors have differential outputs, while others have a single-ended output stage. Differential outputs are not needed in the present application, and a simple three terminal sensor is perfectly adequate.

This unit is based on the UGN3503U Hall effect sensor, which is inexpensive but offers good sensitivity. It is a small three-terminal device which looks very much like a transistor in an "E-line" flat plastic encapsulation. The UGN3503U is very simple to use, with the supply being connected to two of its terminals, and the output signal being taken from the third. The output terminal is at half the supply voltage under quiescent conditions. The supply voltage should be within the range 4.5 to 6 volts.

System operation

The block diagram (figure 2) shows the general arrangement used in the magnetic field sensor. The integral amplifier of the sensor gives a useful boost in sensitivity, but the raw output of the sensor is still far too low to drive the meter circuit.

Figure 2. The block diagram for the 50 Hz magnetic field sensor

A low noise preamplifier stage is therefore used to boost the output of the sensor by more than 200 times. The sensor has a fairly wide bandwidth, with its actual operating range being from dc to 23 kHz . The output from the preamplifier contains a large amount of noise across this frequency range. This gives a high output level from the preamplifier even under standby conditions, and any weak 50 Hertz hum will obviously be lost in the background noise.

As we are only interested in 50 Hertz mains hum in this application, a bandpass filter can be used to restrict the bandwidth of the unit, removing much of the noise in the process. Obviously the unit would be more versatile if it was left with its full 23 kHz bandwidth, but only a relatively low sensitivity could then be used. Restricting the unit to 50 Hertz mains hum enables much higher gain to be used, and really weak magnetic fields to be detected. Presumably most users will only be interested in detecting 50 Hertz fields anyway. A certain amount of amplification is provided by the bandpass filter, and an amplifier stage then provides a further boost to the signal. However, this amplifier has a voltage gain of just two times, and its main purpose is to provide buffering at the output of the filter. It enables the output of the unit to be monitored via headphones, and it also drives the moving coil panel meter via a rectifier and smoothing circuit.

Circuit operation

Figure 3 shows the full circuit diagram for the 50 Hertz magnetic field sensor. IC1 is the Hall effect sensor, and this is powered from the 9 volt battery supply via R1 and decoupling capacitor C2. These provide IC1 with a supply potential of about 5 volts. The output of IC1 is coupled by C3 to the input of the low noise preamplifier, which is an inverting mode circuit based on IC2. In normal use S1 is set to the open position, and the closed-loop voltage gain of the circuit is then set at about 250

The block diagram for the 50 Hz magetic field sensor.

times by R2 and R5. The sensitivity of the circuit may sometimes be too high, and S1 is then closed. This shunts R6 across R5, giving a roughly tenfold reduction in the closed-loop voltage gain of IC2. C5 provides a certain amount of high frequency attenuation, and this helps to reduce noise problems. The bandpass filter is a conventional operational amplifier circuit based on IC3. The operating frequency of the filter is determined by the values of C6, C7, R7, R10, and VR1. The latter effectively operates as a tuning control, enabling the filter to be set for optimum results with a 50 Hz input signal. The value of $R 7$ is low in comparison to the series resistance of R10 and VR1, which provides the filter with a high Q value and a moderate amount of voltage gain. IC4 is used as the output amplifier and buffer stage. This is a non-inverting mode circuit which has its closed-loop voltage gain set at two times by R11 and R12. C10 couples the output of IC4 to the headphone socket via R13. The headphones should be a medium impedance stereo type, as sold as replacements for use with personal stereo units. JK1 is connected so that the two phones are driven in series. R13 provides some attenuation at the output, and also reduces the load impedance on IC4 to a more suitable figure. C11 couples the output of IC4 to a simple half-wave rectifier circuit which uses D1 and D2 in a standard configuration. Using germanium diodes for D1 and D2 minimises problems with non-linearity due to the forward voltage drop through the diodes, but it does not give truly linear scaling. This does not really matter since the unit is intended only to permit relative field strengths to be gauged, rather than to permit precise measurements to be made. A small amount of non- linearity in what is really arbitrary scaling is therefore of no consequence. It would be possible to use a
precision rectifier circuit and to give the unit an accurate scale, but this is only practical in the unlikely event that you have some means of accurately calibrating the unit. The current consumption of the circuit is approximately 15 milliamps. This can be provided by a PP3 size battery, but it is advisable to use one of the "high power" versions. If the unit is likely to receive a great deal of use it would probably be more economic to use a higher capacity battery, such as six HP7 size cells in a plastic holder.

Construction

Figure 4 provides details of the stripboard componert layout and the hard wiring. The underside of the component panel is shown in figure 5 . The board has 50 holes by 21 copper strips, and this can conveniently be a strip cut from a standard five inch (127 millimetre) wide piece of stripboard. The two mounting holes in the board should be about 3.2 to 3.3 millimetres in diameter, and they will accept 6BA or metric M3 mounting bolts. The breaks in the copper strips can be made using the special tool, but a hand-held twist drill bit of about 5 millimetres in diameter seems to do the job quite well. Make sure that the copper strips are cut across their full widths, but be careful not to cut so deeply that the board becomes seriously weakened. Although none of the integrated circuits are static-sensitive, it is still advisable to use holders for the three 8 -pin dil types. D1 and D2 are germanium diodes, and not silicon devices. They are relatively easily damaged by heat, and extra care should therefore be taken when fitting these components. Make sure that both diodes are fitted with the correct polarity.

IC1 is shown as being mounted on the circuit bcard, but the unit will be easier to use if it is mounted off-board and
connected to the board via a twin screened cable about half a metre or so in length. The connection to the 0 volt supply is carried by the outer braiding, with the two inner conductors carrying the positive supply and output connections.

The UGN3503U is a slightly awkward device which has what appears to be a symmetrical encapsulation. The only way to identify the leadout wires is to use the face which carries the type number as the notional front of the device (figure 6). If IC1 is mounted direct on the board, the side having the type number faces away from C2.

The circuit board is obviously sensitive to stray pick-up of 50 Hertz mains hum, and there is some advantage in using a metal case which will screen the board. However, results seem to be perfectly satisfactory if the unit is housed in an inexpensive plastic box. The exact layout used is not critical, but choose one that enables the leads to S1 to be kept reasonably short

Fitting the meter onto the front panel may be awkward, since a very large round cutout is required. For most meters a cutout of diameter of 38 millimetres is required, but it would be prudent to check the barrel size of your meter before making the cutout. It can be made with a fretsaw or an "Abrafile", but a tank cutter (also sold simply as a "hole cutter") is probably the best tool for the job. Once the large cutout has been made, the meter itself can be used as a template to locate the positions of the 3.3 millimetre diameter holes for the meter's built-in mounting screws. It is acceptable to use an inexpensive "tuning" meter in an application such as this, where accurate scaling is not involved. Any meter with a full scale sensitivity of about 100 to 250 microamps should give good results. Details of the small amount of hard wiring are included in figure 3. The only unusual aspect of this wiring is that no connection is made to the earth tag of JK1. The connections are made to the two non-earth tags, so that the headiphones are used in series. The jack socket used on the prototype has a pair of switch contacts, but these are not needed in this application and are left unconnected. Stereo 3.5 millimetre jack sockets vary significantly in style, but the retailer's catalogue should provide connection details if you are using a socket which is different from the one fitted on the prototype.

In use

Start with the wiper of VR1 at a middle setting. When the unit is switched on there will probably be a very small deflection of ME1's pointer. This is caused by internally generated noise and the inevitable background hum level. The sensitivity of the unit is very high with S1 open, and the prototype can readily detect the magnetic field generated around the mains cable of a 15 watt soldering iron. The field generated by such a low current is very weak, but it can still be detected at a range of about 10 to 20 millimetres. With a higher current appliance, such as a two kilowatt electric fire, the field can be detected at much greater distances. With some mains hum detected, adjust VR1 for maximum meter reading. Remember that IC1 is directional, and that it must be oriented so that the magnetic field is applied to one of the large surfaces. Holding the top end of IC1 (that is the end opposite the leadout wires) against a mains lead will give little or no deflection of the meter's pointer. Aiming one of the large surfaces towards the lead should provide much better results. When searching for mains leads in walls, remember that the lead can only be detected if it actually passing a current. The greater the current flow, the more easily the lead can be detected. In my typical "sixties semi" the 50 Hertz field levels seem to be very low in general.

Any appliance which is switched on and contains a mains transformer can be expected to produce a strong field, as will any mains cable that is carrying a heavy current.

However, the field strength reduces rapidly with increased distance from the source. Even as little as one metre from a strong source the field strength seems to be at the normal
background level.
This would seem to suggest that prolonged exposure to high field strengths is unlikely in the average home environment, and is easily avoided once you have identified the sources of strong 50 Hertz fields

Figure 6. Pinout details for the UGN3503U

Resistors	
R1,4	10 KW (2 off)
R2	4K7
R3	22KW
Capacitors	
C1,3,4	100 nF Ceramic or Polyester (3 off)
C2,5	$10 \mathrm{mF} / 25 \mathrm{~V}$ Radial Electrolytic (2 off)
C6	$2200 \mathrm{mF} / 25 \mathrm{~V}$ Radial Electrolytic
Semiconductors	
BR1	100V / 1.9A Bridge Rectifier
D1	1 N 4001
IC1	$7805+5 \mathrm{~V}$ Voltage Regulator
TR1,2	BC547 NPN Transistor (2 off)
TR3	BFY51 NPN Transistor
Miscellaneous	
F1	500 mA 20 mm Fuse
JP1	0.1" Jumper Link
MOV1,2275V	metal oxide varistor (2 off) *
RLA1	12 V SPCO PCB Relay
T1	0-6-0-6 / 6VA PCB transformer
Fuseholder	20 mm PCB fuseholder
Fuseholder Cover Plastic Cover To Suit Above	
Heatsink	Shallow Heatsink for IC1
Sensor	ORP12 Light Dependant Resistor (LDR)
Terminals	3-Way 10 mm pitch PCB Terminal Block (2 off)
Connector	2-Way PCB Pin Header - 2.54 mm pitch (2 off)
Connector	2-Way PCB Pin Header - 5.08 mm pitch
Case	Enclosure to suit *
Hardware	General Fixing Hardware *
Cable	3-Core Mains Flex *
PCB	DTE Process Timer PSU / Interface
*These parts not included in the kit	

The schematic drawing module of CADPAK, ISIS IIlustrator, enables you to create circult diagrams the the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route ediling allows deletion or modlfication of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also avallable for DOS.

CADPAK FOR WINDOWS £ 149
CADPAK FOR DOS

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

PROPAK's schematlc drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Mult-sheet and hlerarchical deslgns.
- Netlist IInk between modules guarentees consistency between schematic and PCB.
- Netlists are also compatible with SPICE-AGE and most other electronlcs CAD packages.
- Generates a full bill of materials.
- ASCII data import facliity.
- Electrical rules and connecthity checkers.
- Ratsnest display with automatic update during placement and routing.
during placement and routing. completion rates.
- Power plane generator creates ground planes with ease.
- PROPAK is also available for DOS.

PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK Includes enough schematlc capture and PCB design functionality for all but the most demanding applications.

WE HAVE A HUGE RANGE, MOST MAKES ALWAYS IN STOCK, RING US FOR YOUR REQUIREMENTS

The National

Woodworking \& Turning Exhibition

NEC BIRMINGHAM 4th - 6th October 1996

Your opportunity to talk to the experts, learn from the demonstrations, join clubs and societies and marvel at the magnificent competition entries, covering all aspects of woodworking.

The latest equipment and materials are available from the wide range of traders, with many opportunities to compare and try before you buy.
plus
Unlque turning demonstrations and lectures. speciallst turning clubs and soclotles. The UK's best turninis displays.

The National Woodworking and Turning Exhibition. Hall 10, National Exhibition Centre, Birmingham 4th - 6th October 1996 Opening Times: 9.30am -5 pm daily Entrance Prices: Adults $£ 7.50$ ($£ 6$ advance), Senior Citizens \& Children $£ 5.50$ ($£ 4$ advance)

FOOL'S PARADISE KEYPAD ENCODER/ EMULATOR

Or How To Use a PIC Microcontroller to "fool" existing equipment by emulating old or obsolete devices. By Tim Parker

Uere is an aspect about the introduction and widespread use of the PIC microcontroller that seems, in general, to have been overlooked; its ability to be programmed to emulate the functions of some other devices.
As a sign that times are rapidly changing - perhaps more so now than ever before - the most impressive aspect is that it is now cheaper to buy a PIC microcontroller, and program it for a specific integrated task, than to actually purchase some of the dedicated counterpart devices for which it can replace.
To demonstrate this, I have chosen not one, but two devices which could be replaced by the same PIC16C55RC
Microcontroller. Obviously the replacement cannot be a direct pin-for-pin substitute, but by building a small interface board which re-configures the signals from the PIC to those expected by the equipment, a jumper lead can be plugged between the two boards so that the equipment is 'fooled' into thinking that
it is looking at the original device.
This is ideal for users or installers of older equipment, who do not have the facilities - or funds for that matter - to re-design a particular aspect of that equipment if it goes wrong, and the damaged part is no longer available. So, you might not have to write off equipment that has proved itself to be reliable for many years (and why should you?), just because one of the parts has now become obsolete.
The two devices concerned (and it must be stressed that no bias or malice is intended or implied. Many other devices could have been the subject of this article, and the two used here are just examples) are the 74C922 and the 74C923, both of which are keypad encoders that are used to scan an XY keypad matrix, and produce a binary output corresponding to the current button being pressed. The single main difference between the two devices is that the ' 922 is a 4×4 matrix encoder, and the " 923 is a 5×4 matrix encoder. Although

Figures 1a and 1b: The old way: different devices had to be used for 4×4 matrix keypads and 5×4 matrix keypads

Figure 2 : The new way: one PIC 16C55 is more powerful and programmable, and it can emulate either of the old devices.

on the other hand requires a 5th binary output to cater for the additional 4 buttons, but only codes from 00h to 13 h are used, which means that the remaining 12 codes that are available on 5 bits - 14h to 1 Fh - are wasted because there aren't any further scan lines available for a larger keypad. But, as you will see shortly, we can overcome this restriction with our emulator version.

A new idea

Figure 2 shows how, with an appropriately programmed PIC16C55, both 4×4 and 5 $\times 4$ matrix keypads can be accommodated. In fact, due to the programmability, it is possible to encode any size keypad from 1×1 (pointless!) up to a maximum of an 8×4 matrix. There is no need to make full use of all available matrix lines, only utilise the
these devices may not be quite so well known among the analogue oriented enthusiasts, they will certainly be recognised by the digital fraternity, not only for the fact that they were once widely used for decoding data entry keypads on early microprocessor systems (in fact some of the very early ones were primarily stamped with an 8080 series MPU interface device number), but more possibly for the fact that they started life as expensive devices, came down in price very slightly (but not much), and then rocketed back up again to the point where now the price is now about $£ 14$ and $£ 16$ respectively, and can be very difficult to obtain due to their age and the usual lack of supply and demand aspect.

The old way

Figures 1a and 1b show the basic connections to the 74C922 and 74 C 923 respectively. Although the connections to each look very similar, neither device can be used as a direct replacement for the other, since one is an 18 pin device and the other a 20 pin, and the connections are made to different pins anyway. The operational side of things, however, is identical. When a button is pressed on the keypad the Data Available (DA) line goes high for the duration of that button press, returning to a low state once it is released, and the binary code representing the button is latched onto the A-D (or A-E in the case of the '923) outputs. If the Output Enable (OE) line is low, the data can be read from the output pins. When the OE line is high, the A-D or A-E outputs are tri-stated or 'floating'. Even if the button is released and the DA line goes low, the code for the last button press remains available as long as the OE line is low, and can be read again if required.

The binary codes generated do not necessarily correspond to the codes written on the buttons. This depends on the wiring configuration of the keypad itself, and how those wires are connected to the ' 922 or ' 923 , which more than likely will not be the same as shown in the diagrams.

Because the ' 922 scans 16 buttons, all 4 bits of the binary output are used to produce codes from 00h to OFh. The '923
ones you need for your own purposes. There is also no need to change in any way the hardware configuration, because generating only the codes you require is achieved entirely through software alterations, just ensure the keypad is connected correctly across the X and Y axis input terminals, but not in any particular order. That is, don't connect two adjacent X or Y co-ordinates of the keypad to one X and one Y connection of the emulator board. No damage will result if you do, it simply won't work properly.

How it works

To scan the keypad matrix, four inputs - RAO to RA3 - and eight outputs - RC0 thru RC7 are used. Each output line of the RC port is pulled low in turn, and the input data bit pattern is read from the RA port. Since the RA port consists of only the lower 4 bits, the upper 4 bits (the top nibble) are masked off, and always read as zero's. If the resulting data is OFh then none of the four buttons is pressed in the column coninected to the currently active output bit, so the next column is scanned, and so on, until either a button press is detected, or all of the columns have been scanned.

Pressing any button will return a value less than OFh, the exact value will depend on which, and how many of the buttons in that column are pressed. The table below shows the values returned for all combinations of button presses in the right hand column. The same values apply to any other single column of the keypad matrix, but a distinction is made between each one by the fact that different RB output lines are used to enable them.

By manipulating the RA port input data and RB port output code, or by incrementing a counter each time a check is made for a different button, it is possible to use the result as an offset into a look-up table of binary codes to output on port lines RCO to RC4.

Table 1

List of codes returned for all combinations of button presses in

Table 1: The list of codes retuend for all combinations of button presses in any one signle column (the right-hand column is an example. All other columns produce the same codes.)

BUTTONS PRESSED				BINARY		Max	DECIMAL
3	7	동	F	0000	1111	OF	15
3	7	8	F	0000	1110	OE	14
3	7	E8	F	0000	1101	OD	13
3	7	8	F	0000	1100	OC	12
3	7	B	F	0000	1011	OB	11
3	7	8	F	0000	1010	OA	10
3	7	B	F	0000	1001	09	9
3	7	B	F	0000	1000	08	8
3	7	B	F	0000	0111	07	7
3	7	B	F	0000	0110	06	6
3	7	B	F	0000	0101	05	5
3	7	8	F	0000	0100	04	4
3]	7	B	F	0000	0011	03	3
3	7	8	F	0000	0010	02	2
3	7	B	F	0000	0001	01	i
3	7	B	F	0000	0000	00	0

Table 2: The pin re-configurations needed for emulating the two devices.

PIN RE-CONFIGURATION R			REQUIRED	R EMULATING EACH		H DEVICE
PIC16C55		74 C922	SIG	PIC16C55		74 C923
PIN 18	to	PIN 17	A	PIN 18	to	PIN 19
PIN 19	10	PIN 16	B	PIN 19	10	PIN $: 8$
PIN 20	10	PIN 15	c	PIN 20	to	PIN 17
PIN 21	to	PIN 14	0	PIN 21	10	PIN 16
PIN 22	to	NONE	E	PIN 22	to	PIN 15
PIN 23	to	PIN 13	OE	PIN 23	to	PIN 14
PIN 24	to	PIN 12	DA	PIN 24	to	PIN 13

THESE ARE ALL ACCOMMODATED ON THE PRINTED CIRCUIT BOARO LAYOUT
any one single column (Right hand column used as example. All other columns produce the same codes)

$$
\begin{aligned}
& \text { BUTTONS PRESSEDBINARYHEXDECIMAL - - - } 0000 \$ 111 \\
& \text { OF } 15 \text { — - F0000 } 1110 \text { OE } 14 \text { — B }-00001101 \text { OD } \\
& 13 \text { - - B F0000 } 1100 \text { OC } 12 \text { - } 7 \text { - -0000 } 1011 \text { OB } 11 \\
& \text { - } 7 \text { - F0000 } 1010 \text { 0A } 10-7 \text { B -0000 } 1001099-7 \text { B } \\
& \text { F0000 } 10000883 \text { - - } 000001110773 \text { - F0000 } \\
& 01100663 \text { - B }-000001010553 \text { - B F0000 } 0100044 \\
& 37-0000001103337-F 0000001002237 \mathrm{~B}- \\
& 0000000101137 \text { B F0000 } 0000000
\end{aligned}
$$

PIN RE-CONFIGURATION REQUIRED FOR EMULATING EACH DEVICE

PIC16C55 74C922 SIG PIC16C55 74C923

PIN 18toPIN 17A PIN 18toPIN 19PIN 19toPIN 16B PIN $19 t o P I N 18$ PIN 20 toPIN 15 C PIN 20toPIN 17PIN 21 toP N 14 D PIN 21toPIN 16PIN 22to NONE E PIN 22toPIN 15PIN 23toPIN 13 OE PIN 23toPIN 14PIN 24toPIN 12 DA PIN 24toPIN 13

THESE ARE ALL ACCOMMODATED ON THE PRINTEC CIRCUIT BOARD LAYOUT

Once all of the necessary signals required for emulation purposes have been catered for, there is a spare port line RC7 - available on the PIC16C55 (figure 2). This can be freely programmed for input or output and used for external control purposes. As an input, you could, for example, detect a low
signal on this pin and invert the binary output code to the RC port. This is useful for existing applications which expect to read negative (as opposed to positive) binary codes from (say) a thumbiwheel switch.

As an output, you could utilise this pin as a complimentary DA signal, which would go low when the original DA line - RC5 - goes high, and vice versa. This could have a current limited LED connected to it so as to indicate when a button is being pressed. You could even modify the software such that it functions as a self-contained security keypad, with a preprogrammed user code stored as part of the program. This spare output could then be used as an 'unlock' output to signal to an external device- that the correct security code has been entered.

These are just some examples. No doubt you can think of, or maybe you already have, other purposes to suit your own needs. In our application, this bit is programmed as an input, but has no function assigned to it, and is not checked by the software.

Figure 3 shows the PCB layout. The keypad connections are in a logical order down the left hand side, with up to four ' X ' rows at the top, and up to eight ' Y ' columns below them. It doesn't matter how you connect the keypad, just so long as the X-to- X and the Y-to- Y connections are made in some form or other, because the binary output codes can be altered in software to sult your needs.

You may have difficulties locating a source for the 4-way (5 pin) SIL resistor networks. Athough they are a standard item, they are not stocked by many suppliers. However, you can purchase the 7 or 8 way versions, and either cut off the unused pins, or actually cut the whole resistor network to the required length - 5 pins - but don't cut it from the wrong end, the 5 pins must include the one with the pin 1 marker dot, otherwise you're going to end up with a 2-way or 3-way version, which will prove to be of little use for anything.

Connection

The 18 pin and 20 pin IC sockets to the right of the IC1 (notice these face the opposite direction to IC1) can be connected to the '922 or '923 positions respectively on the target system via a DIL header

jumper lead.

Assuming the target system is powered from +5 V , this, together with the OV line, will be transferred via the ribbon cable, and can be used to power the emulator board. Alternatively, if you wish to use the board as a stand alone keypad encoder unit, you can orrit the IC sockets and fit a pir header to the left hand set of holes of the 20 jin socket, and take your signals from this, but remember you

Figure 3: The component layout for the PCB

Figures 5: Pin for pin connections between the two
boards (see also figures 2 and 4)

Figure 4: Emulation modes and connection details

are going to need the +5 V and OV connecting via the optional power input terminals at the top left of the board. See figure 4 for full details.

Software

There are usually two main reasons why designers make use of readily available keypad encoders, of any sort, not just the two mentioned here. Either they haven't got sufficient I/O lines available on their system to connect all the X and Y terminations, or, if they have got enough, they simply don't know how to actually scan the keypad, and to then convert the data in such a way to produce a usable binary output code. Well the software listing as presented will give you at least one idea of how to do it.
; These are used by all instructions which have a choice of destination
: register for the result of their operation, where 'd' can be 1 or 0 .
; Doing this makes program listings more logical and easier to read.

WEQUO; Destination register becomes ' W ' (acc.
$F E Q U 1$; Destination register becomes ' F ' (file)
; Assign labels to the various bit numbers of the STATUS register (03h)

CARRYEQUO; CarTy bit
DCARRY EQU1; digit carry bit
ZERO EQU2; Zero bit
PDOWNEQU3; power-down bit
WATDOG EQU4; watchđog time-out bit
: Assign basic pin labels to the bit numbers for I/O port A.

RAOEQU00 ; Port A $1 / 0$ bit 0
RA1EQU01 ; Port A I / O bit 1
RA2EQU02 ; Port A I/O bit 2
RA3EQU03 ; Port A I/O bit 3
; Assign basic pin labels to the bit numbers for I/O port B.

RBOEQUOO ; Port B IMO bit 0
RB1EQU01 ; Port B $1 / 0$ bit 1
RB2EQUO2 ; Port B I/O bit 2
RB3EQU03 ; Port B I $\$ 0$ bit 3
RB4EQU04 ; Port B IMO bit 4
RB5EQU05 ; Port B I/O bit 5
RB6EQU06 ; Port B I/O bit 6
RB7EQU07 ; Port B I/O bit 7

""Fools Paradise' Keypad Encoder/Emulator"

; Define the general registers and I/O port addresses

RTCC EQU01 ; Real Time Clock/Counter register address
PC EQU02 ; Program Counter address STATUS EQU03 ; Status register address FSREQU04; File Select Register address PORTAEQU05 ; I/O Port A (lower 4 bits only available)
PORTBEQU06 : I/O PORt B (all 8 bits available)
PORTCEQU07 ; I/O POIt C (all 8 bits available)
; Assign labels to programming constants used in PIC assembly language.

Figure 6: The overlay for the keypad PCB

£1 BARGAIN PACKS

List 3

1,000 items appear in our Bargain Packs List - request one when you next order. One liem only per pack unless otherwise stated.

SOLAR CELL, will give 100 mA of free electricity. Order Rel: 631.

PLASTIC FAN BLADES, 3 " diameter, push on spindle,
PC GAMES in cases for remaking, pack of six. Order Ref
PIEZO NOISE MAKERS, standard size, pack of two. Order Ref: 647.
DITTO but mini, only 23 mm across, pack of two. Order Ret: 648.

COVERS, suit Piezo sounders, elc., need 22 mm hole, pack of six. Order Ref: 65I.
OA MICROSWITCHES with screw termminals, mains volage, pack of two. Order Ref; 662
PCB MOUNTED RELAY, $5 / 6 \mathrm{~V}$ coll, two changeover 5A CONTROLIED 4-ROCKE
CONTROLLED 4-ROCKER SWITCH, three switches cannot be on untess the first master is on, sult 3 kW blow
0.33 F I000V CAPS, ideal to put in series with 115 V 2-4W motors, pack of four. Order Rel: 672.
COPPER CLAD PANEL, size $12^{n} \times 9^{n}$ approximately, make your own PCB or its strong enought to act as a chassis. Order Ref: 683.
100 M COIL OF CONNECTING WIRE, Order Ret: 685
12 V MOTOR, extra efficient, will worth with solar cells.
Order Rel: 687
SUB MIN PUSH SWITCHES, pack of two. Order Ref: 688 CERAMIC BEADS, ideal Insulation where heat or flame pack of loo. Order Rel
"LENGTHS OF $1 / 4$ " DIAMETER PAX TUBING, make useful test prods, etc., pack of three. Order Rel: 691 PCB PANEL, part of micro TV, has EHT generator circuit. Order Ret: 692.
1920 VINTAGE RESISTORS, you've probably never seen any quite like these, pack of two. Order Rel: 695.
440 V A.C. CAP 4 F aluminlum cased. Order Ref: 702
POWER SUPPLY UNIT, output 9 V 100mA D.C. Order Re 733.
FOLD

FOLD-OVER TYPE TELESCOPIC AERIAL. Order Ref:
AM/FM TUNING CAPACITOR, air spaced with $V 4^{\prime \prime}$ spindie. Order Ref: 743
IULTI-VOLTAGE TRANSFORMER, gives $10 \mathrm{~V}, 9 \mathrm{~V}, 8 \mathrm{~V}, 7 \mathrm{~V}$ II2V or IV. Order Ref: 744
D.P. D.T. ROCKER SWITCH pack of four. Order Rer: 746
LIGHTEST TOUCH CHANGEOVER MICROSWITCHES
mains voltage pack of two. Order Ret; 748
PAIR PORCELAIN INSULATORS, pack of four, suitable
cabin aerials, etc. Order Ref: 749.
CASED PSU, A.C. output, 15 V 150 mA and $9-8 \mathrm{~V} 60 \mathrm{~mA}$ Order REt. 751
3-CHANGEOVER CONTACT RELAY with coll, sultable for 2V A.C. or 6V D.C. Order Ref: 753
LEVER-OPERATED MICROSWITCHES, ex-equipment
batch tested, any faulty would be replaced, pack of ten.
Order Ref: 755 .
its lid is a metal heatsink. Order REt: 759
EX-BT INSTRUMENT in plastic case with carrying handle.
has many useful parts. Order REf: 760.
PICK-UP ARM with diamond stylus, new and unused
Order Ref: 764.
RUBBER FEET, fit corners of square chassis, pack of 20. Order Rel: 769.
$24 V$ BAKELITE ENCASED A.C. OR D.C. BUZZER. Order Ref: 774.
COMPONENT MOUNTING TAG STRIP, 14 tags each side Order Ret: 779
12 MEG POTS each fitted double-pole switch, pack of two Order REF 780
TIO MICROSWITCHES spindle through side, pack of two. Order REt: 786 MULTI-TAG MAINS PANEL, has i2 tags to take $V / 4^{\prime \prime}$ pushon connectors. Order Ref: 792.
REEDSWITCH, flat instead of round so many more can be stacked in a small area. Order Ret: 796.
VERY THIN DRILLS $(0.3 \mathrm{~mm})$ pack of 12 . Order Ref: 797 ; ROCKER SWITCHES, spring loaded with changeover IOA 230 V contacts, pack of two. Order Ref: 800 .
MAINS CIRCUIT BREAKER, 7A , pushbutton operated Order Ret: 802.
IN-LINE SWITCH intended for electric blanket to give variable heat but obviously has other uses. Order Rel: 805 intemal fuse, pack of two. Order Ref: 809.
MAINS TRANSFORMER I2V-OV-12V, 6 W . Order Ref: 81 IOM OF MAINS VOLTAGE FLEX with screen and outer PVC insulation. Order Ref: 815 .
COMPUTER GRADE CAPACITOR, 10.000 F 15 v . Order Ref: 816.
13A ADAPTORS to each take 2 plugs, pack of two. Order Ret:820.
MAINS ISOLATION TRANSFORMER IOW. Order Rel 821 $0.01 \mu \mathrm{~F} 250 \mathrm{~V}$ MAINS WORKING SUPPRESSOR, pack of five. Order Ref: 836.
ING MAIN JUNCTION BOXES, I3A, 230 V , pack of three Order Ref:BDI.
FLUSH PLATE
(IGHT SWITCHES, 5A white, pack of two
octal valve bases, Paxolin, pack of four, Order Ref: 12.
GER

GERMANIUM TRANSISTORS, ref. OCP45, pack of two.
Order Ref:I5. two. Order Ref: 14
LOUDSPEAKER CROSSOVER, for tweeter, mld range and Wooler. Order Ret: 23

Smart Kit Eloctronics

HIGH QUALITY ELECTRONIC KITS

All kits are complete with PCB and other components in a blister pack. We feel that most readers will know these kits, but if you want more information about them, then we have copies of the illustrated Smart catalogue, this gives full details and circuit diagrams of each kit, price is $£ 1$, deductable if you order kits to the value of $£ 20$.

CAT.	DESCRIPTION	PRICE	DESCRIPTION		Price
No.		ε			E
1002	VU Meter, with l.e.d. display	4.60	1062	5V 0.5A Stabilized Supply for TTL	2.30
1003	5w Electronic Siren	2.53	1063	I2V 2A Power Supply	2.30
1004	Light Switch	3.22	1064	+I2V 0.5A Stabilized Supply	3.22
1005	Touch Switch	2.87	1067	Stereo VU Meter, with l.e.d.s	9.20
1007	Stablized Power Supply:		1068	I8V 0.5A Stabilized Power Supply	2.53
	3 V to 30V at 2.5A	6.90	1070	HIFI Pre-amplifier	7.47
1008	SF Function Generator	6.90	1071	4 -input Selector	6.90
1010	5-Input Stereo Mixer, with monltor cutput	19.31	1074 1077	Drill Speed Controller 100W HiFi Ampllfie	2.76 12.50
1011	Motortike Alam	3.20	1080	Liqid Level Sensor - Rain Alarm	2.30
1012	Reverberation Unit	5.52	108:	Car Voltmeter, with l.e.d.s	7.36
1016	Loudspeaker Protection Unit	3.22	1083	Video Signal Amplifier	2.76
1023	Dynamic head preamp	2.50	1084	TV Line Amplifier	1.84
1024	Microphone preamp	2.20	1085	DC Converter, 12 V to 6 V or 7.5 V or 9 V	2.53
1025	7W HIFI Power Amplifier	2.53	1086	Music to light for your car	4.60
1026	Running Lights	4.60	1087	Thyristor/Triac Tester	2.76
1027	Nicad Battery Charger	3.91	1083	Kitt Scanner	10.12
1029	4 sound electronic siren	3.00	1089	LED Flasher/555 Tester	1.61
1030	Light Dimmer	2.53	1090	Stress Meter	3.22
1032	Stereo Tone Control	4.14	1093	Windscreen Wiper Controller	3.68
1033	60W HiFi Power Amplifier	7.82	1094	Home Alarm System	12.42
1034	Car Battery Checker	1.61	1095	2V-30V 5A Stabilized Variable PSU	11.04
1035	Space Sound Effects	2.30	1098	Digital Termometer, with I.c.d. display	11.50
1038	AM/FM Aerial Amplifier	1.61	1100	$2 \times 18 \mathrm{~W}$ Integrated Amplifier	18.39
1039	Stereo VU Meter	4.60	1103	LED Power Meter	1.84
1040	Iow hifi Power Amplifier	2.76	lioc	Thermometer, with I.c.d. display	6.90
1041	25W HiFi Power Amplitier	4.60	1107	Electronics to help win the pools	3.68
1042	AF Generator, $250 \mathrm{~Hz}-16 \mathrm{kHz}$	1.70	1109	40W HiFi Amplifier	7.36
1043	Loudness Stero Unit	3.22	112	Loudspeaker protection, with delay	4.60
1047	Sound Switch	5.29	1113	$2 \times 18 \mathrm{~W}$ Power Amplifier	5.98
1048	Electronic Thermostat	3.68	III5	Courtesy Light Delay	2.07
1050	3 -input HIFI Stereo Pre-amplifier	12.42	1118	Time Switch with tria $0-10 \mathrm{mins}$	4.14
1051	Touch Dimmer, with memory	4.60	1123	Morse Code Generator	1.84
1052	3 -input Mono Mixer	6.21	1124	Electronic Bell	2.76
1053	Electronic Metronome	3.22	1125	Telephone Lock	3.68
1054	4 -input Instrument Mixer	2.76	1126	Microphone Pre-amplifier	4.60
1056	8V-20V 9A Stabilized Power Supply	12.42	112%	Microphone Tone Control	4.60
1057	Cassette Head Pre-amplifier	3.22	1128 a	Power Flaster I2V d.c.	2.53
1058	Electronic Car Ignition	7.82	1130	Telephone Bug Detector	3.20
1059	Telephone Amplifier	4.60	1133	Stereo Sound-to-Light	5.26
1060	+40V 8A Power Supply	8.28			

You Save £40

THE JAP MADE I2V I5AH SEALED LEAD ACID BATTERY from regular suppliers costs £50, you can have one from us for only $£ 10$ including VAT if you collect or $£$ I2.50 if we have to send. Being sealed it can be used in any position and is maintenance free. All in tip top condition and fully guaranteed, Order REt; 12.5P2 Or li you want a smaller one we have 12 V 2.3 AH , regular price $£ 14$, yours for only $£ 5$, Order REf: 5P258

LASER AND LASER BITS

2Mw LASER, Helium Neon by Philips, full spec. £30. Order REf:30PI
POWER SUPPLY for this in kit form with case is £15, Order Ref: 15P16, or In larger case to house tube as well, $£ 18.00$, Order Ref: I8P2. The larger unit, made up, tested and ready to use, complete with laser tube, £69, Order REt: 69 PI.

LCD 31/2 DIGIT PANEL METER

This is a multi-range voltmeter/ammeter using the A-D converter ship 7106 to provide five range:s each of volts and amps. Supplied with full data sheet. Special snip price of $£ 12$, Order Ref: I2P19.

£4 BARGAIN PACKS

MOTORISTS LEAD LAMP, hand grip plastic body, glass lamp cover and heavy duty wire shield with glass lamp cover and heavy dury wire shield with
hanging bracket. Order Reft:AP31. I2eW TRANSFORMER 40 V at 3 a output. Order Ref 4 P15.
IOOW TRANSFORMER, main winding 28 V at $31 / 2 \mathrm{~A}$ secondary winding 20V-OV-20V at IA. Order Ref: 4P34 7.5 V -OV-7.5V 6A MAINS TRANSFORMERS, uprigh mounting with fixing feet. Order Ref; 4P98. PANEL METER $0-100 \mathrm{~A}, 100 \mathrm{~mm} \times 100 \mathrm{~mm}$, complete with glass front but less scale. Order Ref: 4 P32
DITTO but 100-0-100 A. Order Rel: 4P32A.
8OW TRANSFORMER $20 \mathrm{~V}-0 \mathrm{~V}-20 \mathrm{~V}$ with one winding tape at I8V. Order Ret: 4P36.
AmSTRAD 8" L5W speaker with matching tweeter. 8 Ohm. Order Ref: 4P57.
FAN 12 V or lower for reduced speed, made by Jap Nipon, body size $93 \mathrm{~mm} \times 93 \mathrm{~mm}$. Order Ref: 4P65 SIRIPPER BOARD with lots of IV's, all plug-in, ex Sentinal phone control unit. Order Ref; 4P67.
Am/FM RADIO, nicely cased with clip for attaching to cycle. Order Ref: 4P72.
VENNER TIME SWITCH, 24hr, day length controller, ex-electricity board. Order Ref; 4P7
Enll 2-SPEED MOTOR 100
Enl $2-S P E E D$ MOTOR 100
reversible. Order Ref:4P80.
LARGE PANEL METER, scaled 20-0-40A but needs a shunt. Order Ret; 4P91.
2-PART METAL CASE, ideal car battery charger, etc Order REf: 4P89
JAPANESE PRECISION MADE MOTOR, reversible I5bOrpm. Order Ret: 4 P94.

Prices include VAT and carriage cost If order ove $£ 25$ otherwise add $£ 3$. Send cash, uncrossed pestal orders, cheque or quote credit card number.

J \& N FACTOTR

PIIGRIM WORKS, STAIRBRIDGE LANE, BOLNEY, SUSSEX, RIR17 5PA Tel: 01444881965

Continued from p. 32

Assign basic pin labels to the bit numbers for I/O port C.
RCOEQU00 ; Port C I/O bit 0
RC1EQU01 ; Port C I/O bit 1
RC2EQU02 ; Port C I/O bit 2
RC3EQU03 ; Port C I/O bit 3
RC4EQU04; Port C I/O bit 4
RC5EQU05 ; Port C I/O bit 5
RC6EQU06 ; Port C I/O bit 6
RC7EQU07 ; Port C I/O bit 7
; Assign labels to the various (RAM) data file registers used

ORG08 ; Set base address for RAM
COUNT1 RES1; General purpose counter
IPBUFF RES1; Input buffer status byte
LASKEY RESI; Previous offset into lcok-up table OFFSET RES1; Current offset into look-up table OPBUFF RES1; Binary output code for RCO to RC4 STROBE RESI; COlumn strobe line value
; END OF EQUATES SECTION
; Start of program memory area (ROM)
ORGOOOO : SET ORIGIN ADDRESS

; Scan the Keypad and put the data in "IPBUFF".
; If a button is pressed, copy "OFFSET" to
"LASKEY"
; To protect against possible 'glitches' causing the DDRs to change states,
; the DDRs for port A and port B are constantly updated by this routine.

SCANKP

CLRF OPBUFF ; START WITH "OPBUFF" ENPTY
CLRF OFFSET : RESET OFFSET COUNTER TO ZミRO MOVLWB'11111111
TRIS PORTA; SET PORT A FOR INPUT
TRIS PORTB; INITIALLY SET PORT B FCR IN?OT
MOVWFPORTB; PRESET ALL PORT B LINES HIGH MOVLWB' 11111110°
MOVWFSTROBE ; PREPARE COLUMN STROBE LINE
SCAN2
MOVF STROBE,W : GET CURRENT STROBE VALUE IN 'W
MOVWFPORTB; PREPARE THE PORT LINES FIRS!
TRIS PORTB; NOW ENABLE THE OUTPUTS
NOP
NOP ; ALLOW I/O LINES TO STABILISE
NOP
MOVF PORTA,W; GET BUTTON PRESSED COLUMN JATA MOVWFIPBUFF ; SAVE IT IN "IPBUFF"
; Now, starting fron the top row of the column we have just sampled,
; check each button in turn to see if any of them was pressed. After
; each test, increment the "OßFSET" value to adjust the offset into
; the look-up table of binary output codes - used later.

BTFSSIPBUFF,RAO ; SKIP IF NOT THE TOP ROP GOTO SCAN4; OTHERWISE SORT IT OUT INCF OFFSET ; ADD 1 TO LOOK-UP TABLE OFFSE BTFSSIPBUFF, RA1 ; SKIP IF NOT THE 2nd ROF GOTO SCAN4; OTHERWISE SORT IT OUT
INCF OFFSET : ADD 1 TO LOOK-UP TABLE OFFSET BTFSSIPBUFF, RA2 ; SKIP IF NOT THE $3 r$ R ROF GOTO SCAN4; OTHERWISE SORT IT OUT

INCF OFFSET : ADD 1 TO LOOK-UP TABLE OFFSET BTFSSIPBUFF, RA3 ; SKIP IF NOT THE BOTTOE ROW GOTO SCANA: OTHERWISE SORT IT OUT
INCF OFFSET , ADD 1 TO LOOK-UP TABLE OFFSET
; No buttons were pressed in this particular column, but we need to
; check any remaining columns that have not yet been scanned.

SCAN 3
BSFSTATUS, CAPRY ; SET THE CARRY FLAG
RLFSTROBE ; PREPARE STROBE LINE FOR NEXT COZUMEN BTFSCSTATUS,CARRY ; SKIP IF ALL COLUMNS COMPLEFED GOTO SCAN2: ELSE GO BACK FOR THE NEXT COLUMN
; All columns have been scanned, no buttons were found to be pressed

In this situation the "OFFSET" location contains 20h (32 decimal)
; and cannot be converted, so exit with "LASKEY"
intact from last time.
GOTO CONVERT; EXIT WITHOUT UPDATING "LASKEY"
; A button is pressed, and "OFFSET" holds the unique offset value for it
; (after keypad prioritisation, of course, i.e lowest column/row address)
: Set the Data Available 'DA' line high, and copy the value into "LASKEY".

SCAN4

BSFOPBUFF, RCG ; PREPARE 'DA' LINE HIGH IN "OPBUFF"
MOVF OFFSET, W : GET CURRENT "OEFSET" VALUE MOVWFLASKEY : AND UPDATE "LASKEY" WITH IT

```
****************************
```

; Convert the value in "LASKEY" into a binary code for output on port C.
; These codes can be modified to suit your own needs. The characters on
; the right ccrrespond to the keypad laycut shown in Figure 2 of the text.

CONVERT

BCFSTATUS,CARRY ; CLEAR THE CARRY FLAS
MOVF LASKEY, K ; GET OFFSET VALEE IN 'N ADDWFPC, F ; \ddagger DD IT TO THE PROGRAM COUNTER RETLWH' 00^{\prime}; CODE FOR ' F ' BUTTON - RAO tC RBO RETLWH'01'; CODE FOR 'B' BUTTON - RA1 tC FB0 RETLWH'02'; CODE FOR '7' BUTTON - RA2 TC EBO RETLWH'03': CODE FOR '3' BUTTON - RA3 tE F.BO RETLWH'04'; CODE FOR 'E' BUTTON - RA0 tE FB1 RETLWH' 05^{\prime}; CODE FOR 'A' BUTTON - RA1 tC FB1 RETLWH'06': CODE FOR '6' BUTTON - RA2 te FB1 RETLWH'07': CODE FOR '2' BUTTON - RA3 tc FB1 RETLWH'O8'; CODE FOR 'D' BUTTON - RAO te FB2 RETLWH'09'; CODE FOR '9' BUTTON - RA1 tC FB2 RETLWH'OA' ; CODE FOR '5' BUTTON - RA2 tC FB2 RETLWH'OB': CODE FOR ' 1 ' BUTTON - RA3 tC FB2 RETLWH $O C$ '; CDDE FOR ' C ' BUTTON - RAO tC RB3 RETLWH OD' ; CDDE FOR ' 8 ' BUTTON - RA1 tc RB3 RETLWH'OE'; $\triangle D E$ FOR '4' BUTTON - RA2 tC RB3 RETLWH'OF'; CDDE FOR 'O BUTTON - RA3 te RB3 RETLWH' 10'; CODE FOR ' X ' BUTTON - RAO tC RB4 RETLWH'11'; $\triangle D E F F O R$ ' T ' BUTTON - RA1 LC RB4 RETLWH'12'; CODE FOR 'P' BUTTON - RA2 tc RB4 RETLWH'13': CODE FOR 'K' BUTTON - RA3 tC RB4 RETLWH'14'; CODE FOR 'W' BUTTON - RA0 tC RB5 RETLWH' 15'; CODE FOR ' S ' BUTTON - RA1 tC RB5 RETLWH' 16 '; CJDE FOR ' N ' BUTTON - RA2 tC RB5 RETLWH'17'; CJDE FOR 'J' BUTTON - RA3 tC RB5 RETLWH'18'; CJDE FOR 'V' BUTTON - RAO tC RB6 RETLWH'19'; CJDE FOR 'R' BUTTON - RA1 tc RB6 RETLWH' $1 A$ '; CJDE FOR ' M ' BUTTON - RA2 tc RB6 RETLWH'1B'; CJDE FOR 'H' BUTTON - RA3 tC RB6

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Capterre

Schematic Capture Design Tool

- Jirect netlist link io BcardMaker2
- Eonvard annotation with part values
- Full undo/redo facility (50 operations)
- Single-shee:, multi-paged and hierarchical designs
- Smooth scrolling
- Inte ligent wies (auiomatic junctions)
- Dynamic connectivity information
- Automatic co-line an otation
- Integrated on-tha-fly library Editor
- Context sensitive eciting
- Extensive componert-basəd power control
- Back annotation from Board/Gaker2

BoardMaker

BoardMaker1 - Entry level

- PCB and schematic crafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fili
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BcardMaker1
- Full netlist support- BoardCapture,
 OrCad, Schema, Tango, CadStar
- Full Design Rule Checkirg both mechanical and electrical
- Top down modilication from the schemattic
- Component renumber with back annotation
- Report generatcr- Database ASCII, BOM
- Thermal power plane sufpor with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support

E200

- Full interupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Orill and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 6UT Tel 01354695959 Fax 01354695957 E-mail Sales@tsien.demon.co.uk

tsien

Continued from p. 34

RETLWH'1C'; CODE FOR 'U' BUTTON - RA0 to RB7
RETLWH'1D'; CODE FOR ' Q ' BUTTON - RA1 to RB7
RETLWH'1E'; CODE FOR 'L' BUTTON - RA2 to RB7
RETLWH'1F'; CODE FOR ' G ' BUTTON - RA3 to RB7
; Sort out the I/O signals and binary output code required on port C
; Location "OPBUFF" holds the binary code for keypad data, plus the 'DA'
; bit status for RC6. Port lines RC0 to RC4 must only be set for output
; if the OE input on RC5 is low, otherwise they must be set as inputs.

OUTPUT

MOVF OPBUFF, W ; GET BINARY OUTPUT VAZUE
MOVWFPORTC; PREPARE PORT C BEFORE ENABLING IT MOVLWB'10111111': INITIALLY SET JUST RC6 FOR OUTPUT
BTFSSPORTC,RC5; SKIP IF 'RC5' IS HIGH
MOVLWB'10100000'; ELSE USE KEYPAD CODE TOO TRIS PORTC; ENABLE THE OUTPUTS
; Add a short switch debounce period to the whole process. This
; will compensate for any worn or 'iffy" contacts on the keypad.

DBOUNC
DECFSZ COUNT1 ; WAIT
GOTO DBOUNC
RETLWO; TIME UP - RETURN

; Beginning of the main program (PROGRAM ENTRY POINT)

START

MOVLWB' 00000000^{\prime}
MOVWFPORTC; PREPARE ALL PORT C LINES LOW MOVLWB'10111111'
TRIS PORTC; INITIALLY SET JUST RC6 FOR OUTPUT MOVLWH ${ }^{\prime} 20^{\prime}$
CLRF COUNT1 ; CLEAR KEYPAD DEBOUNCE TIMER
CLRF LASKEY ; SET "LASKEY" TO ZERO

COMMAND

CALL SCANKP ; SCAN THE KEYPAD MATRIX
BCFSTATUS,CARRY ; CLEAR THE CARRY FLAG
ADDWFOPBUFF,F ; ADD CONVERTED CODE TO "OPBUFF" CALL OUTPUT ; SORT OUT THE OUTPUT CODE GOTO COMMAND; DO IT FOREVER

; Set up the reset vector for the type of processor used.
; This varies between devices but is at $1 F F h$ on the 16 C 55

ORGH' 1 FF '
GOTO START
ZZZ; END OF PROGRAM MARKER
END
A complete kit of the above parts, which includes the PCB and a pre-programmed
PIC16C55RC/P, is available for $£ 14.50$ from the author at the following address
DTE MICRO SYSTEMS

112 SHOBNALL ROAD
BURTON ON TRENT

STAFFORDSHIRE

DE14 2BB
The PCB and/or a programmed PIC16C55RC/P can be purchased separately;
Programmed PIC16C55RC/P; $£ 10.00$
Printed Circuit Board alone; £3. 50
Alternatively, the author is prepared to program your own PICs for $£ 3.50$ each.
Just supply the quantity of PIC16C55RC/P devices you require programming, with a cheque to cover $£ 3.50$ for each one (+ £1. $50 \mathrm{P} \& \mathrm{P}$ to the total order value).
Please package them carefully. Where possible, these will be returned to you the next working day.
Cheques should be made payable to 'DTE MICRO SYSTEMS', and must be in pounds sterling (£) and drawn on a British Bank.
All item prices are inclusive. Please add $£ 1.50$ to the TOTAL order value to cover carriage and handling. Goods will normally be despatched within 5 working days, but please allow up to 28 days for delivery.

Resistors

RN1, RN2 $4 \times 22 \mathrm{~K}$ SIL Network (2 off)

Capacitors

C1 2apF Ceramic C2 1CuF/16V Radial Electrolytic

Semiconductors

IC1PIC16C55RC/P (programmed)
Available separately; $£ 10.00$

Miscellaneous

IC Sockets; 18 Pin IC Socket
20 Pin IC Socket
28 Pin IC Socket
Connectors; 2 - Way PCB Terminal Block 12 - Way Single Row Pin Header PCBDTE Keypad Encoder / Emulator Available separately; £3. 50

HIGH QUALITY LOW COST
 C.C.T.V CAMERA extremeiv low light level aUTO ELECTRONIC SHUTTER. COMPOSITE VDe out via BNC PLUG.
 SMALL DISCRETE SIZE.
 CAN BE USED WTTH PC DIGTIISER.

This super quality $C C D$ camera can be connected into your existing TV or video using the AV channel and can be used for discrete
surveillance or observing your property externally using a suitable weatherproof housing. Can accommodate lighting levels ranging from daylight to street lighting using its buil-in electronic shutter. Excellent when using with an infra red source. Built-in wide angle fixed focus lens, the camera has a resolution of 380 TVL . Can be housed inside an empty floodlight case, (extra). Camera size only $45 \mathrm{~mm} \times 45 \mathrm{~mm}$.
Special offer price of only: $\mathbf{f 7 9 . 9 5}$ plus VAT (P\&P £3.00)
For full range of CCTV products send SAE to:
DIRECT CCTV LIMITED, DIRECT HOUSE,
FLORENCE STREET, MIDDLESBROUGH, CLEVELAND TS2 1DR

Dr. Pei An concludes this project by adding extra power with the 80C35 motherboard.

Figure 1 Pin out and logic symbol of the 80 C 535

(a) Pin out of the $80 C 535$

(b) Logic symbol of the 80C535

$80 C 535$ single chip microcontroller

The 80C535 architecture is based on the MCS-51 microcontroller family and the instruction set is fully compatible with MCS-51. The $80 C 535$ has 68 pins and a PLCC-68 package. The pin-out of the $80 C 535$ is shown in figure 1a. Figure 1 b gives the logic symbol. Some of the pins are fully compatible with those of the 8031 microcontroller. They include:

Port 0 ($\mathrm{P}, 0-\mathrm{O}$ - P0,7, Pins 52 to 59) Port 2 (P2,0-P2,7, Pins 41 to 48) Port 3 (P3,0-P3,7, Pins 21 to 28)

ALE/PROG	(Pin 50) -PSEN
	(Pin 49) -EANpp
	(Pin 51)
XTAL1, XTAL2	(Pins 40 and 39)
RESET	(Pin 10);
VSS	(Pin 38)
VCC	(Pin 37 and 68)

Please refer to Part I of this project for the description of the pin functions. Pins that are special to the 80 C 535 are described below:
Port 1 (P1,0-P1,7, Pins 36 to 29): If this port is used as a general purpose 8 -bit $1 / O$ port, it is the same as the one for the 8031 microcontroller. Each pin has a secondary function which is different from those on the 8031 .

Figure 3 A detail of the
80C memory structures

Port $1,0 / \mathrm{CCO} /-$ INT3:

Port 1,1/CC1/-INT4:
Port 1,2/CC2/-INT5:
Port 1,3/CC3/-INT6:
Port 1,4/-INT2:
Port 1,5/T2EX:
Port 1,6/CLOCKOUT:
Port 1,7/T2: general purpose 8 -bit bidirectional I/O port. It can be configured as an input or output port by software.
Port 5 (P5,0-P5,7, Pins 67 to 60): This port is a general purpose 8-bit bidirectional I/O port.
It can be configured as an input or an output port by software. Port 6 (P6,0-P6,7, Pins 13 to 20):

This is an 8 -bit unidirectional input port for eight multiplexed analogue inputs of the ADD converter. It can be also used for digital input if voltage levels meet the specification for digital voltages.

Va ref (Pin 11): The reference voltage for the A/D converter.
Va gnd (Pin 12): The reference ground for the ADD converter.
-PE (Pin 4): The enable pin for power saving mode.

$80 C 535$ internal structure

The internal block diagram of the 80C535 is given in figure 2. The following blocks are fully compatible with the MCS-51 microcontrollers.

Port 0 and Port 2 which form the external memory expansion interface
Serial port
Timer/Counter 0 and 1
Port 3 which prevides alternate functions
The lower 128 bytes of internal ram
21 of the specia function registers
The functions of these internal units were described in Part I of this article. Additionally, the 80 C 535 contains an extra 128 bytes of internal RAM area which results in a total of 256 bytes of internal RAM. It has a new 16 -bit timer/counter with a 2:1 pre-scaler, reload mode, compare and capture capability. It also contains a 16 -bit watchdog timer and an 8 -channel 8 -cit converter with a programmable reference voltage. It has two additional bidirectional ports (Ports 4 and 5). Furthermore, it has a powerful interrupt structure with 12 vectors and 4 programmable priority levels.

$80 C 535$ memory organisation

Identical to the 8031 memory structure, the 800535 microcontroller has two memory portions, the program memory and data memory. Figure 3 shows the complete memory structure for 80C535.

Program memory (Code ROM)

$80 C 535$ has no internal program ROM. The program memory can be expanded externally up to 64 kbyte.
This requires -EA pin to be tied low to enable the external rom.

Data memory

The data memory space consists of an internal and external memory space. The internal data memory is divided into three separate blocks: a lower 128 bytes of RAM, an upper 128 bytes of RAM and an 128 byte special function register (SRF)

Figure 4 The internal ram of the 80 C 535 microcontroller

Figure 5 The special function register area

Port 5 (P5) F8H

Register B(B) FOH
Port 4 register (P4) E8H

Register $A(A) E O H$
Port 6 input data register (P8) DBH AD converter program register (DAPA) DAH AD converter data register (ADDAT) DOH

AD converter control register (ADCON) D8H

Time 2, low byte (TL2) CCH
Compare/reload/eapture register, high byte (CRCH) CBH Compare/reload/capture register, low byte (CRCL) CAH

Timer 2 control register (T2CON) C8H
Compare/capture register 3 , high byte (CCH 3) $\mathrm{C7H}$ Compare/capture register 3, fow byte (CCL3) C®H Compara/capture register 2, high byte (CCH2) C 5 H Compare/capture register 2, low byte (CCL2) C4H Compare/capture register 1 , high byte $(\mathrm{CCH} 1) \mathrm{C3H}$ Compare/capture register 1, low byte (CCL1) C 2 H Compare/capture enable register (CCEN) C1H Interrupt request control register (1RCON) COH

Interrupt priority register 1 (IP1) B9H Interupt enable regitser 1 (IEN1) B8H

Port 3 register (P3) BOH
interrupt priority $\mathrm{O}(\mathrm{PPO}) \mathrm{A9H}$
Interrupt enable 0 (IENO) A8H

Port 2 register (P_{2}) AOH
Serial I/O butfer (SBUP) 99H Serial port control (SCON) 88 H

Port 1 register (P1) 90H
Timer 1, high byte (TH1) 8DH Timer 0 , high byte (THO) $\quad 8 \mathrm{CH}$ Timer 1, low byte (TL1) 8BH Timer O, low byte (TLO) 8AH

Timer mode (TMOD) 89H
Timer/counter (TCON) 88h
Power control (PCON) 87H Data pointer high byte (DPH) 83 H Data pointer low byto (DPL) 82H

Stack pointer (SP) 81H
Port 0 register (PO) 80 H

$\begin{aligned} & \text { D7 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { FD } \end{aligned}$	$\begin{aligned} & \mathrm{D4} \\ & \mathrm{FC} \end{aligned}$	$\begin{aligned} & \mathrm{DS} \\ & \text { FB } \end{aligned}$	$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{FA} \end{aligned}$	$\begin{aligned} & \text { D1 } \\ & \text { F9 } \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { FB } \end{aligned}$
$\begin{aligned} & \text { D7 } \\ & \text { F7 } \end{aligned}$	$\begin{aligned} & \mathrm{DB} \\ & \mathrm{FB} \end{aligned}$	$\begin{aligned} & \text { D5 } \\ & \text { F5 } \end{aligned}$	$\begin{aligned} & \text { D4 } \\ & \text { F4 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{~F} 2 \end{aligned}$	$\begin{aligned} & \mathrm{D}_{1} \\ & \text { F1 } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { FO } \end{aligned}$
$\begin{gathered} \mathrm{D7} \\ \mathrm{EF} \end{gathered}$	$\begin{aligned} & D 8 \\ & E E \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { D5 } \\ \hline \end{array}$	$\begin{aligned} & \text { DA } \\ & \text { EC } \end{aligned}$	$\begin{gathered} \mathrm{DS} \\ \mathrm{~EB} \end{gathered}$	$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{EA} \end{aligned}$	$\begin{aligned} & \text { D1 } \\ & \text { E9 } \end{aligned}$	$\begin{aligned} & \text { DO } \\ & \text { E8 } \end{aligned}$
$\begin{aligned} & \text { D7 } \\ & \text { E7 } \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { E6 } \end{aligned}$	D5	$\begin{aligned} & \text { D4 } \\ & \text { E4 } \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \text { E3 } \end{aligned}$	$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{E} 2 \end{aligned}$	$\begin{aligned} & \text { D1 } \\ & \text { E1 } \end{aligned}$	$\begin{aligned} & \text { DO } \\ & \text { EO } \end{aligned}$
byte accessible oniy							
byte accessible oniy							
byte accessible only							
$\begin{array}{\|c} B D \\ D F \end{array}$	$\begin{gathered} C L K \\ D E \end{gathered}$	DD	$\begin{array}{\|c\|} \hline \text { BSY } \\ \text { DC } \end{array}$	ADM DB	$\begin{gathered} \mathrm{MX2} \\ \mathrm{DA} \end{gathered}$	$\begin{gathered} \mathrm{MX1} \\ \mathrm{D} 日 \end{gathered}$	$\begin{gathered} \text { MXO } \\ \text { D8 } \end{gathered}$
$\begin{aligned} & \mathrm{CY} \\ & \mathrm{D7} \end{aligned}$	$\begin{aligned} & A C \\ & D B \end{aligned}$	$\begin{aligned} & \text { F0 } \\ & \text { D5 } \end{aligned}$	$\begin{aligned} & \text { RS } 1 \\ & \text { D4 } \end{aligned}$	$\begin{aligned} & \text { RSO } \\ & \text { D3 } \end{aligned}$	$0 \begin{aligned} & \mathrm{OV} \\ & \mathrm{D} 2 \end{aligned}$	$\begin{aligned} & \text { F1 } \\ & \text { D1 } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{D} \end{aligned}$
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
$\begin{gathered} \text { T2PS } \\ \mathrm{CF} \end{gathered}$	$\begin{array}{\|c} 13 F R \\ C E \end{array}$	$\left.\begin{array}{\|c\|} \hline 12 F \mathrm{~F} \\ \mathrm{CD} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \text { T2R } \\ C C \\ \hline \end{array}$	$\begin{array}{\|r} \hline \text { T2RO } \\ \hline \mathrm{CB} \end{array}$	$\begin{gathered} \mathrm{TrCm} \\ \mathrm{CA} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{T} 21 \\ \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T} 210 \\ \mathrm{CB} \end{gathered}$
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
$\left\lvert\, \begin{gathered} \text { Exfa } \\ C 7 \end{gathered}\right.$	$\begin{aligned} & \mathbb{T F 2} \\ & \mathrm{CB} \end{aligned}$	$\begin{gathered} \text { IEX6 } \\ \text { C5 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { IEX5 } \\ C 4 \\ \hline \end{array}$	$\begin{gathered} 1 E \times 4 \\ C_{3} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { IEx3 } \\ C 2 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} I E C \\ C 1 \end{gathered}\right.$	$\begin{gathered} 1 A D C \\ C O \end{gathered}$
byte accessible only							
$\begin{array}{\|c\|c\|} E X 2 \\ B F \\ \hline \end{array}$	$\begin{aligned} & \text { swor } \\ & B E \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{EX} \\ \mathrm{BD} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { EX5 } \\ \hline B C \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{EX4} \\ \mathrm{BB} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline E \times 3 \\ B A \\ \hline \end{array}$	EX2 $B 8$	$\begin{array}{\|c\|} \hline \text { EADO } \\ \mathrm{BB} \\ \hline \end{array}$
$\begin{aligned} & \text { P37 } \\ & \text { B7 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P38 } \\ \text { B6 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { P35 } \\ \text { B5 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { P34 } \\ 84 \\ \hline \end{array}$	$\begin{aligned} & \text { P33 } \\ & \text { B3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P38 } \\ \text { B2 } \\ \hline \end{array}$	$\begin{aligned} & \text { P31 } \\ & \text { B1 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P30 } \\ \text { BO } \\ \hline \end{array}$
byte accessible only							
$\begin{array}{\|l} \hline \mathrm{EA} \\ \mathrm{AF} \end{array}$	$\begin{aligned} & \text { WDT } \\ & A E \end{aligned}$	$\begin{aligned} & E T 2 \\ & A D \end{aligned}$	ES	$\begin{aligned} & E T 1 \\ & A B \end{aligned}$	$\begin{aligned} & \mathrm{EX}, \\ & \mathrm{AA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ETO } \\ & \text { AO } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { EXO } \\ \text { AB } \\ \hline \end{array}$
$\begin{aligned} & P_{27} \\ & A 7 \end{aligned}$	$\begin{aligned} & \text { P28 } \\ & A B \end{aligned}$	$\begin{aligned} & \mathrm{P} 25 \\ & \mathrm{~A} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P24 } \\ & \text { A4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P23 } \\ & \text { A3 } \end{aligned}$	$\begin{aligned} & P 22 \\ & A 2 \end{aligned}$	$\begin{aligned} & P_{21} \\ & A_{1} \end{aligned}$	$\begin{aligned} & P 20 \\ & A O \end{aligned}$
byte accessible only							
$\begin{aligned} & \text { SNC } \\ & \text { QF } \end{aligned}$	$\begin{aligned} & \text { SN1 } \\ & 8 E \end{aligned}$	$\begin{gathered} \hline \text { SN2 } \\ 9 D \end{gathered}$	$\begin{aligned} & \text { REN } \\ & 9 \mathrm{OC} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 788 \\ \hline 98 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { RBE } \\ \hline 9 A \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Tl} \\ & 8 \theta \end{aligned}$	$\begin{aligned} & \text { RJ } \\ & 98 \end{aligned}$
$\begin{aligned} & \text { P17 } \\ & 87 \end{aligned}$	$\begin{array}{\|l\|} \hline 218 \\ 88 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { P15 } \\ 85 \\ \hline \end{array}$	$\begin{aligned} & \text { P14 } \\ & 94 \end{aligned}$	$\begin{aligned} & \text { P13 } \\ & 93 \\ & \hline \end{aligned}$	$\begin{aligned} & P_{12} \\ & 82 \end{aligned}$	$\begin{aligned} & \text { P1 } 1 \\ & 81 \end{aligned}$	$\begin{aligned} & P_{10} \\ & 90 \end{aligned}$
byte accessible only							
byte accessible only							
byte accessible only							
byte accessible only							
gat	Cr	N1	No	GAT	C / T	M1	Mo
$\begin{array}{\|l\|} \hline \text { TF1 } \\ \text { BF } \end{array}$	$\begin{array}{\|l\|} \hline \text { TR1 } \\ \hline E E \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { TFO } \\ \hline \text { BD } \\ \hline \end{array}$	$\begin{array}{l\|} \hline \text { TRO } \\ 8 C \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 E 1 \\ 88 \\ \hline \end{array}$	$\begin{aligned} & 1 T 1 \\ & 8 A \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IEO } \\ 89 \\ \hline \end{array}$	$\begin{aligned} & \text { TC } \\ & 88 \\ & \hline \end{aligned}$
SM				GF1	GFO	PD	IDL
byte accessibie only							
byte accessible only							
byte accessible only							
$\begin{gathered} P 07 \\ 87 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline P 58 \\ \hline 88 \\ \hline \end{array}$	$\begin{gathered} \mathrm{P} 05 \\ 85 \end{gathered}$	$\begin{array}{\|c\|} \hline P 04 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & P 08 \\ & 83 \end{aligned}$	$\begin{aligned} & P \infty 8 \\ & 82 \end{aligned}$	$\begin{array}{r} P 01 \\ 81 \end{array}$	$\begin{aligned} & P 00 \\ & 80 \end{aligned}$

The upper 128 bytes RAM can only be accessed through register indirect addressing (MOV A, @RO; RO stores a RAM address ranging from 129 to 255). The special function registers are accessed through direct addressing.

The lower 128 bytes RAM has the same structure as that in the 8031 microcontroller (see figure 4). The extemal data memory can be expanded up to 64 kbytes. There are 42 special function registers in the SRF area (there are 21 special function registers on the 8031). All the registers in 8031 are in the $80 C 535$ and they are located at the same address.

The extra registers, 21 in total, are used to control the expanded facilities such as the $1 / O$ ports, A/D converter and timers, etc. These registers are summarised in figure 5.

I/O ports

Ports 3, 4 and 5 can be used as three 8-bit programmable V/O ports (Port 3 also has secondary functions). Their associated registers have the following addresses: $\mathrm{BOH}, \mathrm{E} 8 \mathrm{H}$ and F 8 H , respectively. Each bit can be programmed either as an input or as an output.

When the CPU issue a write command, the data from the internal bus is latched into the output and appears at the pin. Outputting a byte to a port is achieved by writing a byte to the corresponding special function register. When the CPU issues a read command, the data at the port pin (read-pin mode) or at the port latch (read-latch mode) can be read into the CPU.

Reading is achieved by reading a byte from the port SRF. To configure a port bit as an input, 1 must be written to that port first. A pull-up resistor pulls the pin to high state, but the external circuit can pull the pin to low state.

Because of this, this type of port is called 'quasi-bidirectional' port. The details of the hardware and operation can be found in the
area. The upper 128 bytes of RAM and the 128 byte SRFs share the same address locations, but they are accessed through different addressing modes.

The lower 128 bytes of RAM are accessed through direct addressing (for example MOV A, direct; direct is an address ranging from 0 to 128) or register indirect addressing (MOV A, @RO; register R0 stores a RAM address ranging from 0 to 128).
user's manual of the components.

Serial interface

The serial port enables a full-duplex serial communication between the microcontroller and external components and it is compatible to that of the 8031 . The serial interface can work in any of the four operation modes.

There are four special function registers associated with the serial interface: the SCON $(98 \mathrm{H})$ for configuring the serial port, SBUF $(99 H)$ for buffering the transmitted or received data, PCON $(87 \mathrm{H})$ selecting the baud rate, and ADCON (D8H) being the o-her register for selecting the baud rate for Modes 1 and 3. Th 3 details of the hardware and operation of the RS2 22 interface can be found in the user's manual.

Timers

80 C 35 has three timers, timers 0,1 and 2. Timer 0 and 1 are compatible to that for 8031.

Trey can be configured as timers or counters. In timefuncton, the counter register is incremented every machine cycle Therefore the count rate is $1 / 12$ of the oscillator frequᄏncy. In counter function, the counter register is incremented in response to a 1 -to-0 at the external input pin, T0 or T1.

Each timer/counter has four modes. Timer 2 is a powerful perip eral unit of the 80C535. It combines the functions of compare, capture and reload and is used for applications such

Figure 7 The component layout of the 80C535 motherboard

as digital signal generation (i.e. pulse generation and pulse width modulation) and event capturing (i.e. pulse width measurement).

On-board A/D converter

The 80C535 provides an AD converter with the fcllowing features.

The A/D converter is of a successive approximation type ard has an 8-bit conversior accuracy. It is equipped with eight multiplexed input chaาnels.

The internal reference voltage (both the reference voltage and ground) can be programmed. An ADD conversion requires 13 machine cycles. There are three special functions register associated with it.

They are the ADCDN register (A/D conversion control register), ADDAT (A/C converter data register) and DAPAR (A/D converter program rezister). A write-to-DAPR starts a new conversion cycle.

The conversion begins with the next mactine cycle and a busy status (BSY) in ADCON becomes 1.

After 12 machine sycles, the conversion is conpleted, the result is written to the ADDAT register and BSY goəs to 0 . In continucus mode, a new conversion is triggered after a sonversion is completed.

ADCOM register is allocated at D8H and is used for choosing single or continuous conversion made for each analog channel. Bit functiors of the ADCOM regis:er are shown as follows:

Table 2 Bit functions and bit addresses of the ADCON register

Bit address DFH DEH JDH DCH DBH DAH D9H D8H function //BD// //CLK// t/// BSY ADM MX2 MX1 MX0

In this table, MXO, MX1 and MX2 select one of the 8 input znalogue input channels (00 J for ANO, 111 for AN7 эtc). If $4 D M=1$, a continuous $A D$ conversion is performed If $A D M=0$, the conversion stops after one conversion.

BSY becomes high whe7 the converter is busy. After a sonversion it goes lo:v. BD and CLK are not used "or the ADD zonverter. The special function register ADDAT is ocated at D 9 H . It holds the corversion result. The data remains in the register until it is overwnitten by the next converted data. Register DAPR has an address of DAH and it has two functions

Firsty, writing a data to -his register starts the A/D conversion. Secondly; it cortrols the internal progranmable voltage reference. Its bit function is shown below:

Table 3 Bit functions of the DAPR register

DB7 to DB4: Programmirg of V int AREF DB3 to DB0: Programming of V int AGND

The internal reference voltage can be programned in 16 steps by the DB7 to DB4 of the register.

The internal reference ground is programmed in 16 steps by the DB3 to DBO.

The following eqlation is used for obtaining the internal reference voltage and ground:

It is required that the voltage between $V_{\text {int AREF }}$ and $V_{\text {int }}$ AGND should be not less than V .

$80 C 535$ motherboard

The circuit diagram of the 80C535 motherboard is shown in figure 6.

It consists of an 80C535 microcontroller (IC1), a RS232 line driver (TC232, IC2) and a 6 MHz clock generator built around $74 \mathrm{LSO4}$ (IC3). It has a +5 V 1 A voltage regulator (7805, IC4) and requires an external 8-15V DC power supply. An on/off switch, a 1 A fuse, a LED indicator and a reset button are also contained on the board.

The MCS-51 bus (including data, address and control lines) is available from two 26 -pin IDC connectors (J3 and J4). From there the memory and I/O expansion board and other I/O cards are connected. Digital I/O port, Port 1, is available from a 10way IDC connector (J5).

Other two digital I/O ports, Port 4 and 5, are available from a 20-way IDC connector (J6).

Port 6 which is the analogue input port and a digital input port is available from another 10 -way IDC connector (J 2). J 1 is the connector for the RS232 serial cable.

The pin functions of all connectors are shown in figure 7.
The board is also designed for use with other 80535 series microcontrollers, such as 80 C 515 which has an 8 kbyte onboard ROM. To enable the on-board ROM or the external ROM, a jumper switch $(\mathrm{J} 7)$ is used.

If the microcontroller fetches data fROM an external ROM, Pins 1 and 2 of J 7 should be connected using jumpers.

If it fetches data from the internal ROM (for 80C515 only), Pins 3 and 2 should be connected.

Construction

The motherboard is constructed on a single-sided PCB board. The component layout is shown in figure 7 and the completed board is shown in photograph 1

General guidelines in constructing the board were given in 'Construction Notes' in Part 3 of this series.

As the complete SBC system consumes about 0.5 A , a heat sink must be installed on the voltage regulator to prevent it from overheating.

The board is simple to construct and there is no adjustment needed. Hence, it should work straight away once it is properly constructed.

Further references

For further information about the hardware and instruction set of the MCS-51 series and 80535 microcontrollers, please refer to the following books.

1. User's manual of MCS-51 microcontroller families. Siemens semiconductors
2. User's manual of SAB 80515/SAB 80C515 family 8-bit single-chip microcontrollers. Siemens semiconductors

Technical support

The complete 8031 single board computer is available in kit and assembled form from the author at a price of $£ 97$ including P\&P.

The 80C535 motherboard costs $£ 36$.
Please direct your enquiries to
Dr. Pei An, 58 Lamport court, Manchester M1 7EG, U.K. Tel/Answer/Fax: +44-(0)161-272-8279.

RADIO DATA MODULES SYSTEMS \& ACCESSORIES

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia. Wherever you are, we have a module on the right frequency for you! F.M Transmitter \& Receiver Starter Kits

- Construct quality F.M remote controls, data links, wire-free alarms *
*Range up to 200 M with dipole, 5 KM with RX Yagi * *Available on UK 418 MHz to MPT1340. Export $433.92 \mathrm{MHz}, 403 \mathrm{~Hz}$. * *SILRX- Receiver Includes, audio, digital data, carrier detect o/p * *RXM- as SILRX + signal strength RSSI, tamper and jamming det *
* Kit Prices inclusive of VAT and Postage: * *TXM-418-A + SIL-418-A + Data/Application Sheets: Only £29.95 * - TXM-418-A + RXM-418-A + Data/Application Sheets: Only £34.95
* Decoder Board for RXM or SIL c/w HT-12-D: Only $£ 15.00$ *

TXM-418-AF Transmilter

SILRX-418-A/F Receiver

RXM-418-A Receiver

NEW I High Data Rate (-F) $\mathbf{2 0 , 0 0 0} \mathrm{bps}, 3 \mathrm{~V}$ Version:

- Same o/p Power but twice as fast as the - A version, up to $20,000 \mathrm{bps}$
* Drives directly from PIC port, reducing component count \& slize *
* TXM-418-F + SILRX-418-F + Manual: Only £29.95 *

Add Wire-Free Panic to Your Existing Wired Burglar Alarm

- Suitable for Home of Industry, Over 10,000 Sold •
- Hand Held Transmiteer Permits Operation Anywhere * - $>100 \mathrm{M}$ range Meets BS6799 Class II Specification* UK Manufactured, Avallable on 418,433 or 403 MHz .
Complete KIt Comprising : Assembled and Tested F.M Pendant Transmitter and Alarm Receiver Board, Transmitter Battery and Instruction Manual: Only E49.95.
Long Range VHF Modules for the UK, Australia and Beyond
- UK, 173 MHz to MPT1344 \& MPT1328 Licence Exempt *
- F.M Operation: With $3 V 1 \mathrm{~mW}$ and 5 V 10 mW Versions * - Range up to 1 or 3 Km line-of-site *

VHF Starter Kits Incluslve of VAT and Carriage :
1mW TXM-173-(1) + RXM-173 + Manual: Onily £54.95
10mW TXM-173-(10) + RXM-173 + Manual: Only £59.95
40,000bps Modem Transceivers + RS232 Interface
Excluslive: The wond leading BIM high speed transceiver is now avallable with a RS232 interface and integral 2 -wire RS232 controller board. The BIM-RS232 automatically takes care of tasks such as flow control permitting the construction of a simple but reliable radio modems capable of operation over ranges of up to 200 M , EMC approvals of finished prod ucts are simplified by the totally screened RF design and ESD ucts are simplified by the totally Screened RF design and ESD prolected RS232 port. Ideal for PC-PC networks and EPOS
applications. Available on 418 MHz and 433.92 MHz . Prices $1+$ applications. Available on 418 MHz and 433.92 MHz . Prices $1+$
$£ 79.95$ each. Combined 2 M Interface \& Power Cable $£ 6.95$ each. New High Power 433.92MHz Transmitter

BIM-XXX-RS232

* Offering $>10 \mathrm{~mW}$ ofp into 50 Ohms *
* Operates with Extisting Receivers *
* 6-9V Operation, Range up to 1 Km *
* Intended for Export Markets *

* Prices $1+£ 16.50 .100+£ 8.25$ *

TXM-433-HP
Data Module Prices, Inclusive of UK Postage

Transmitters (1 \$ Price) TXM-418-A 0.25mW DXM 133 - 0.25 mW . $\mathbf{1 2 . 5 0}$ TXM- $418-\mathrm{F} 0.25 \mathrm{~mW} \ldots . \quad .12 .75$ TXM-433-F 0.25 mW £ 12.75 TXM-403-A 0.25mW $\quad £ 12.75$ TXM-173-4689 1 mW $£ 22.50$ TXM-173-4689 $10 \mathrm{~mW} . . \mathrm{E} 24.50$ TXM-184-4689 10 mW .. 29.95 - Pnces unless otherwise stated exclude VAT. Carnage free on all nonaccount mainland UK orders. Insurance available at aoditional cost Receivers (1+ price) SILRX-418-A... $£ 22.50$ RXM-418-A $£ 29.05$ $\begin{array}{ll}\text { SILRX-433-A } & \ldots 23.95 \\ \text { SIIRX-403-A } & 923.95\end{array}$ SILRX-403-A... $£ 23.95$ RXM-403-A £29.05 SILRX-418-F ... $£ 23.95$ SILRX-433-F E..e23.95 RXM-173-60......31.62 RXM-184-60_...€31.62 Credit Card Payments Welcome. $2 / 4$ day dellivery by DHL Service Available. All prices in Pounds Sterting
Corporate Wab Site http://Inww.redio-tech. co. uk
Rädio - Tech Limited, Overbridge House, Weald Hâll Lane Thornwood Common, Epping, Essex CM16 6NB.
Sales +44 (0), 1813688277 Fax +44 (0) 1813613434 International +44 (0) 1992576107 Fax +44 (0). 199256199

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773 Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

SPECTRUM ANALYSERS	
Advantest $4133 \mathrm{~A}-100 \mathrm{KHz}-20 \mathrm{GHz}$. 86995
Eaton/Ailtech $757-10 \mathrm{KHz}-22 \mathrm{GHz}$	¢2750
Hewlett Packard 3580A $-5 \mathrm{~Hz}-50 \mathrm{KHz}$	c995
Hewlett Packard 37098 - Constellation Analyser with 15709A Hi	
Interface (As New)	$\underline{5750}$
Hewlett Packard 182T with 8559A ($10 \mathrm{MHz}-21 \mathrm{GHz}$)	¢3750
HP 3582A - 25 KHz Analy ser, dual channel	$¢ 2500$
Hewlett Packard 35601A - Spectrum Analyser Interiace.	£1000
Hewlett Packard 141T $+8552 \mathrm{~B}+8555 \mathrm{~A}-(10 \mathrm{MHz}-18 \mathrm{GHz})$	E1600
Hewlett Packard 8505A - Network Analyser (500 KHz - 1.3GHz)	£4000
Hewlett Packard 3562A Dual Channel Dynamic Sig. Analyser	$¢ 7500$
Hewlett Packard 8590A $1510 \mathrm{KHz-1.5} \mathrm{GHZ}$	84250
Marconi $2370-110 \mathrm{MHz}$.	$¢ 995$
Marconl 2371 - $30 \mathrm{KHz}-200 \mathrm{MHz}$	81250
Meguro MSA 4901-1-300 GHz (AS NEW)	$\Sigma 1995$
Meguro MSA 4912-1-1 GHz (ASNEW)	¢3000
Polrad $641.1-10 \mathrm{MHz}-18 \mathrm{GHz} \ldots$	$\underline{1500}$
Rohde \& Schwarz - SWOB 5 Polyskop $0.1-1300 \mathrm{MHz}$	$\underline{2500}$
Tektronix $27109 \mathrm{Khz}-1.8 \mathrm{GHz}$	$\underline{4250}$
Tektronix 7218 with mainframe (1.5-60GHZ with external mixers)	C2000

AVO RM215 - L/2 - AC/DC Breakdown, Leakage + lonlsation Tester $\mathbf{\Sigma} 400$
ANRITSU ME 4628 DF/3 Transmission Analyser $£ 3000$
Anritsu MG642A Pulse Pattern Generator....
Datalab DL 1080 Programmable Transient Recorder
Dyanpert TP20 Intelliplace - Tape peel Tester - immacualte condition -............... 1350
E.I.P. 548 A - Frequency Counter (26.5 GHz).

EIP 331 - Frequency counter 18 GHz
Farnell AP70-30 Power Supply ($0-70 \mathrm{v} / 30 \mathrm{~A}$) Auto Ranging
Farnell SSG-520 Signal Generator (520 MHZ)
Farnell TSV 70 Mkli Power Supply ($70 \mathrm{~V}-5 \mathrm{~A}$ or $35 \mathrm{~V}-10 \mathrm{~A}$)
Heiden 1107-30V-10A Programmable Power Supply (EEE)
Hewlett Packard 3437A System voltmeter
Hewlett Packard 3456A Digital voltmeter.

Hewlett Packard 371154 1 3Hz Synthesiser/Function Gen Analyser.................... 81500
Hewlett Packard 3325A-21MHz Synthesiser/Function Gen
(various Plug-ins available)

Hewlett Packard 334A - Distortion Analyser

Hewlett Packard 339A . Distortion Measu

Hewlett Packard 3581A Wave Analyser
Hewlett Packard 3455A 61/2 Digit M/Meter (Autocal)
ewiett Packard 3776A . PCM Terminal Test Set...
Hewlett Packard 3779 A/C - Primar
Hewlett Packard 4342 A. 'C' Meter
Hewlett Packard 4954A - Protocol Analyser
Hewlett Packard 4953A - Protocol Analyser
Hewlett Packard 432A - Power Meter (with 478A Sensor)
Hewlett Packard 435A or B Power Meter (with 8481A/8484A)

Hewlett Packard 4948
Hewlett Packard 47298
(TIMS) Transmission impairment M/Set
£2000

Hewlett Packard 5420A Digital Signai Analyser ...
Hewlett Packard 5342A - Frequency Counter 18 GHZ $£ 1500$
Hewlett Packard 5314A - (NEW) 100MHZ Universal Counter $£ 250$

Hewlett Packard 5385A Frequency Counter $-1 \mathrm{GHz}-(\mathrm{HP} 1 \mathrm{~B})$
with OPTS 001/003/004/005
$\begin{array}{r}. \\ . \\ \hline 995 \\ \hline 1950\end{array}$
Hewlett Packard 6623A Triple output system power supply ... $\mathbf{\Sigma 1 9 5 0}$
Hewlett Packard 6253A Power Supply 20V-3A Twin ... $£ 150$
Hewlett Packard 6181C D.C. current source
Hewlett Packard 6255A Power Suppty 40V - 1.5A Twin
Hewlett Packard 6266 P Power Supty $40 \mathrm{~V}-5 \mathrm{~A}$
Hewlett Packard 6271 B Power Suppty 40 V - 5 AA
Hewlett Packard 6002A - Autoranging P.S.U. 50V - 10A
5200

….........................1500

HEWLETT PACKARD 6261B
Power Supply 20v-50A £450 Discount for Quantities
Hewlett Packard 8403A - Modulator .. 8500
Hewlett Peckard 86600 - Synthesised Sig Gen 10.KHZ-2.6 Ghz £4500 Hewletf Packard 8349B - Microwave Broadband 'Amplifier' (as new) 2-20GHz £4250 Hewlett Packard 8165A - 50 MHZ Programmable Signal Source 1650
Hewlett Packard 8350 B - Sweep Oscillator Mainframe (vanous Plug-Ins available) extra . £2650 Hewlett Packard 8656 A - Synthesised Signal Gen (100KHz -990MHz) $£ 1750$
 Hewlett Packard 8901B - Modulation Analyser (150 KHz - 1300MHz) $\mathbf{\Sigma 1 2 5 0}$ Hewlett Packard 8152A - Optical Average Power Meter
Hewlett Packard 81588 . Optical Attenuator (OPTS $002+011$).
Hewlett Packard B3554A. Wave Scurce Module 26.5 to 40 GHz
Hewlett Packard 8444A - Tracking Generator
Hewlett Packard 8011A Pulse gen. $\mathbf{0 . 1} \mathrm{Hz}-20 \mathrm{MHz}$
Hewlett Packard 8620C Sweep osciltator mainframe
Hewlett Packard 8750A Siorage normaliser
Hewlett Packard 8684A 5.4GHz to 12.5 GHz Sig-Gen.
Hewlett Packard 8011A Pulse gen. C.1Hz-20MHz ...
Hewlett Packard 8620 C Sweep oscillator mainframe
Hewlett Packard 8620C Sweep oscillator mainfr
Hewlett Packard 8750A Storage normallser......
newiett Packar 254 wh 0559 - 0 .
Hewlett Packard 853A wi (0.01 - 22 GHz) 21 GHz)
Hewlett Packard 8684A 5.4 GHz to 12.5 GHz Sig-Gen
…... $£ 3500$
Hewlett Packard 8903A : Audio Analyser (20 Hz - 100 KHz) ... $£ 4000$
Hewlett Packard P382A Variable Attenuator ...
Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 4024 A Oscillator.
Marconl 2432A 500 MHz digital freq. meter
Marconl - 2019A - 80KHz - 1040MHz - Synthesised Signal Generator 1950 Marconi 2871 Data Comms Analyset.
Marconi 6500 Automatic Amplitude Analyser
Marconi 2018 - $80 \mathrm{KHz}-520 \mathrm{MHz}$ SynthesisedAM/FM Signal Generator. .i........ $£ 1750$
Philips PM 5167 10MHz function gen
Phillips 5190 L.F. Synthesiser (G.P.I.B.
Phillips 5390 . 6 .
Prema 4000-6 1/2 Digit Multimeter (NEW) ..
Racal Dana 9242D Programmable PSU 25V-2A
Racal Dana $310040-130 \mathrm{MHz}$ synthesiser.
Racal 1992-1.3GHz Frequency Counter...
Racal Dana 9081 Synth. sig. gen. 580 MHz
Racal Dana 9084 Synth. sig. gen. 104 MHz
Racal Dama 9917 UHF frequency meter 560 MHz
Racal Dama 9302A R/F millivoltmeter (new version
Racal Dana 9082 Synthesised am/fm sig gen (520 MHz)
Racal 9085 Low Distortion Oscillator
Racal 9301 A - True RMS R/F Millivolimeter
Racal 9921 - 3GHz Frequency Counier.
Rohde \& Schwarz AMF 2 " TV Demodulator
Rohde \& Schwarz LFM 2-60 Mhz Group Delay Sweep Gen
Ronde a Schwarz UPSF 2 . d deo Noise Mete
Rohde \& Schwarz - Scud Radio Code Test
Rohde \& Schwarz SUF 2 Noise Generator.................
Schaffiner NSG 222A Interferance Simulator
Schaffiner NSG 223 Interterance Generato
Schlumberger 4021/4022 Radio Test Sets
Schlumberger 40214022 Radio Sest Sets............. 4040 Stabilock - High accuracy 1 Hz Radio Test Set
Schlumberger 4923 Radlo Code Test Set
Schlumberger 27201250 MHz Frequency Counter
Stanford Research DS 340.15 MH H Syntesized Function (NEW) and arbitrary waveform generator
Systron Donner 6030 - Microwave frequency Counter (26.5 GHz).
Telequipment CT71 Curve Tracer
Tektronix TM5003 + AFG 5101 Arbitrary Function Gen
Tektronlx 1240 Logic Analyser
Tektronix DAS9100 - Series Logic Analyser
Tektronix - Plug-ins - many available such as SC504, SW503, SG502
PG508, FG504, FG503, TG501, TR503 + many more
Tektronix 577 Curve Tracer6302. Current Probe Amplifier
Tektronix PG506 + TG501 + SG503 + TM503 - Oscilloscope Calibrator
Tektronle CG5001 - Programmable Oscilloscope Calibrator Generator
Time 9811 Programmable Resistance
Time 9814 Voltage Callbrator
Wavetek 172B Programmable Sig Source ($0.0001 \mathrm{HZ}-13 \mathrm{MHZ}$) ...A.

MANY MORE ITEMS AVAILABLE
SEND LARGE S.A.E. FOR LIST OF EQUIPMENT
ALL EOUIPMENT IS USED
WITH 30 DAYS GUARANTEE.
PLEASE CHECK FOR AVAILABILITY BEFORE
ORDERING - CARRIAGE \& VAT TO BE ADDED
TO ALL GOOOS

"CHOPPER" TREMOLO EFFECT

A more extreme musical effects unit from Robert Penfold.

ne of the advantages of the do-it-yourself approach to musical effects units is that you are not restricted to the "standard" effects. You are free to experiment with other effects, and they can be as mild or extreme as you desire.
Feedback from readers suggests that most peefer do-ityourself effects units tha: enable them to go beyond the limits of commercial units with somə very extreme affects being proce ced. This effects unit was produced as a result of a few requests for a trenolo unit that would produca a more vclent effect than the rornal type, wo of produces one of the mildes: of musical effects.

Rise and fall

The semolo effect is sroduced by amplifude mod lating the inpur signal with the outcut frem an lifo (bw trequercy oscifator). The latter usually operstes in the renge 0.1 to "0 Hertz. Conventionaly, the output ivaveform of the lfo is ore whic? has a low harmonic corton-, and gives smooth variations in volume In fractice this generally, means a sinewave signal of a triangular typ \exists. This gives a mill effact, and z final result which argely ratains the characterstics of the original sound. =gure1 helps 10 ミxplain the nodulation process, which reelly jus: uses the low frequeาcy ๗)cillator to
control the volume of the output signal. The waveform in (a) is the cutput of the Ifo, which in this case is a triangular waveform. Fig. 1 (b) shows the output signal obtained with an input signal at a constant amplitude. When the modulation signal is at its peak negative leval, the amplitude of the output signal is very low: Most tremolo units never actually cut oft the output signal corr fletaly, and the maximum atenuation would
 the sgral woud be rejuced by a factor of beween ten and 100. As the ampitud \exists of the modulation sigral falls back tovards zero, the amklitude of the output signal steadily inceases. The lever 0° the output signal continues to increase as the emplitude of the modulation signal rises in a positive direction. Once the modulation signal reaches its peak pocsitive value, the process s reversed, with the outpu signal beng steadily reduced in lewal until the modulation waveform reaches its Jeak negatife Jalue once agan. This process continues indefrityly, with the valume of the output sigral being varied at a rate controlled by the modulation signal from the lfo This gives quite a rild effegt, with a sort or rhythrric "throbbirg" sound being introsuced to the processed signal. Manuall; operatirg a swol Jedal at a rate of a few Herz would ac-_ally give exectly the same effect (bu: would not be a very prastical way of generatny $i-!$). A more intense effect can be obtaired

Figure 1: Waveforms for a conventional tremolo unit (a and b), and the chopper effects unit (c and d)

beginning of a half cycle, which gives glitch-free results. The
simply by using a modulation waveform that has a high harmonic content, such as a squarewave or pulse signal, and by using greater modulation depth.

This results in the signal being switched on and off, or "chopped" as this type of thing is sometimes termed. The waveforms of Fig. 1 (a) and (b) show a squarewave modulation signal and the resultant output signal. Although the two output waveforms of figure1 may look similar, the actual sounds produced are very different indeed.

The conventional tremolo effect leaves the original sound largely intact, but the "chopping" effect tends to dominate the sound of the final output. A guitar plus tremolo gives a sound that is still unmistakably that of a guitar, but a guitar plus chopping gives a sound that is more into the realms of the synthesiser. This is either good or bad, depending on your musical tastes and preferences. One problem with chopping a signal is that it tends to produce switching "clicks". In the waveform of figure $1(d)$ the signal is always switched on at the
signal is switched off at its peak negative or positive level, which gives the worst possible glitch. The signal is instantly switched from its peak level to zero volts. In practice the degree of glitching on each transition is purely random, and can be anything from one of these extremes to the other. it is possible to use various means of reducing the glitching, or it can simply be accepted as part of what will always be a rather extreme effect.

System operation

The block diagram of figure 2 helps to explain the way in which the "chopper" effects unit functions. The main signal path is through the amplifier at the input, the electronic switch, and the buffer amplifier.

The input amplifier simply acts as a buffer stage when the unit is used with a high output guitar pickup, or another high level signal source. It can be used to provide voltage

Figure 3: The full circuit diagram for the chopper effect

amplification if the unit is used with a low output guitar pickup. This ensures that the electronic switch handles a high signal level, and that any breakthrough of the switching signal is kept down to a relatively low level.

The electronic switch is controlled via a side-chain of four stages. One of these stages is the low frequency oscillator. On the face of it, this is the only additional stage that is required. In practice there is a slight problem if the lfo is simply allowed to run freely. When the initial note of a piece is played, the signal might be cut off, and it could remain cut off for what, in musical terms, is a long period of time.

With this extreme form of tremolo it is best to avoid very low modulation frequencies, but even with a middling modulation frequency of 2 Hz it is possible for a delay of up to 250 milliseconds to occur before the music would start! The additional stages are used to ensure that the signal is always switched on when the first note of a piece is played.

The first stage in the side-chain is an amplifier, and this is followed by a rectifier and smoothing circuit. The output from the smoothing circuit is a positive de signal that is roughly proportional to the strength of the input signal.

This drives a simple trigger circuit, which produces a high output level if the signal from the smoothing circuit is much more than about 0.8 volts or so. It will be below this figure under standby conditions, but it will be above this voltage while the guitar is being played.

Under standby conditions the output of the trigger stage is low, and the lfo is turned off. The output of the lfo is low, and the electronic switch is also turned off. The output of the trigger stage goes high as soon as the first note is played on the guitar, and the Ifo is then activated. The design of the lfo is such that once activated it always starts on a half cycle with the output high.

The input signal is therefore coupled through to the output initially, and there is no embarrassing silence when the first note is played!

The smoothing circuit has a decay time of a second or so, and only a modest input level is sufficient to keep the lif activated. However, once the playing has ceased and the input signal has fallen to a very low level, the lfo and the output signal will be cut off. This gives the unit built-in noise gating.

The circuit

The full circuit diagram for the "chopper" effects unit appears in
figure 3. IC3 is an operational amplifier which is used as the basis of the input amplifier. It operates in the non-inverting mode, and provides an input impedance of 47 k . This provides a good match for any normal type of guitar pickup. IC1 has its closed-loop voltage gain set at 11 times by feedback resistors R4 and R5.

The output levels of guitar pickups vary enormously. A voltage gain of about eleven times should give good results with low output pickups, although with the lowest output types it might be better to raise the value of R4 slightly in order to obtain higher gain. With high output pickups it is likely that no amplification will be required. R5 and C4 can then be omitted, and R4 should be replaced with a link-wire.

IC2 is a CMOS 4016BE quad spst analogue switch. In this case only one of the switches is actually utilised, and no connections are made to the other three.

The 4066BE analogue switch is pin-for-pin compatible with the 4016BE, and in some respects has a superior specification. However, the 4066BE is not recommended for use in audio circuits, where it can produce switching "clicks". Therefore, only a 4016BE should be used in this circuit.

R1 and R2 provide a centre-tap on the supply lines which is used to bias the input amplifier. It is also used to hold the output of the electronic switch at half the supply voltage when the switch is in the "off" state.

The coupling to the bias circuit is provided by R6. If preferred, a sample and hold action can be obtained by using a 10 n capacitor in place of R6. When the electronic switch turns off, the voltage at its output will then be held at whatever voltage happened to be present at the instant the switch opened. In practice there seems to be little difference between the effect obtained using these two methods. IC3 is used as a simple voltage follower that provides the output buffering. IC4 is driven from the output of $I C 1$, and it boosts the input signal to a level that is adequate to drive the rectifier and smoothing circuit. It is another non-inverting mode circuit, and its voltage gain can be adjusted by means of VR1.

The closed loop gain varies from roughly three times with VR1 at minimum resistance, to about 24 times with VR1 at maximum resistance.

The voltage gain setting has to be something of a compromise. It must not be set too low, which would result in the output being cut off while the input signal was still at a fairly high level. On the other hand, it must not be made so high that

VR2 enables the frequency of the

any background noise is sufficient to hold the circuit with the oscillator switched on. The rectifier and smocthing circuit is a simple half-wave type based on D1, D2, and C8. The output impedance of IC4 circuit is quite low, which gives the smoothing circuit a suitably fast attack time.

TR1 and TR2 form a simple trigger circuit which is driven from the output of the smoothing circuit. R12 provides a certain amount of hysteresis, and this helps to avoid prcblems with "jittery" operation of the oscillator when the trigger is operating close to the switch-over points.

IC5 is used in a stendard 555 astable (oscillator) circuit. It is advisable to use a low power version of the 555 as this gives the circuit greatly reducヨd current consumption

Also, the standard 555 has ε tendency to "crowbar' the supply ines, which would almost certainly introduce strons switching "glitches" onto the output signal.

The reset input of $1 C 5$ (pin 4) is driven from the output of the trigger arcuit, and is held low inder standby conditions.

This results in the oscallator teing held in the off state, with C9 discharged, and the output of IC5 (p in 3) held low.

This results in the electronic switch being furned off, and the output signa being suppressed under standby conditions.

When the output cf the trigger circuit takes pin 4 righ, C9 starts to charge and the output at pin 3 goes high.

This results in the mlectronic switch closing immediately when the first note is slayed.

When the input sicna has la gely decayed and the output of the trigcer "eturns to the low state, IC5 is taken back to the reset condition, with C9 being held discharged and the output set low.

This turns off the electronic switch and provides a noise gate action. F18 and C10 provide scme lowpass filtering at the o.tput al IC5.

This sightly slows ur the transitions of the electronic switch, and g ves more click-free operation.

C10 can be omitted if a faster switching action and a slightly harsher effect are preferred.

Figure 4: The component layout for the stripboard, which has 50 holes by 30 strips.

W COST PC		" RACK CABINET
SPECIAL BUY 'AT 286 $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram uITED QUANTTTY only of these 12MHz HI GRADE 286 systems ade in the USA to an industrlal specification, the system was h batery backup is provided as slandard. Supplied in good Used nolition complete with ennanaced keyboard. $640 \mathrm{k}+2$ 2Mb RAM, der as HIGAADE 286 ONLY £129.OO (E)	6,000,000 items EX STOCK OrMAJOR savncs. call for semconouctor hoп VIDEO	Superb quality 6 foot Virtually New, Ultra S Less than Half Pri Top quality $19{ }^{\text {r rack }}$ cabinets MadeOptima \in nclosures Lid. Unit designer, smoked acrylic lockable and louvered removable side pan for any configuration of equipment plus ready mounted integral 12 wasocket switched mains distribution these racks some of the most ver have ever sold. Racks may be stacked side by side Overall dimensions are: $77 \mathrm{y}^{\circ} \mathrm{H} \times 32 \mathrm{H}^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order
	One of the highest specification monitors you will ever see At this price - Don't miss it!!	
00 Ethernet (thick, thin or twisted) network		
LOW COST 486DX-33 SYSTEM intar 	VGA cabib tot IBMPC inclutad Extemal cabies tor Other types O compneres CAL	32U - High Quality - All steel RakCab
	As New - Used on film set for 1 week only!! $15^{\circ} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& filt etc. Full 90 day guarantee. $£ 145.00$ (E)	
FLOPPY DISK DRIVES $31 / 2$ - 8	Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condifion - from £299-CALL for info PHILIPS HCS35 (same style as CM8833) attractively styled 14"	${ }^{\circ}$
$51 / 4$ " or $31 / 2^{\prime \prime}$ from only $£ 18.95$! 		
	Semem	Mase
	(e)	
	Plith. Superb clarity and modern slyyling. Operates from any 15.625 khz symc RGE video source, with AGB analog and composite sync	Over 1000 racks - 19" 22" \& 24" wide to 44 U high. Available from stock !! Call with your requirements.
HARD DISK DRIVES	such as Atari, Commodore Amiga: Acorn 11: Good used condthion. Only $£ 125$ (E)	
End of line purchase scoopl Brand new NEC D2246 8. 85 Mbyle equivalent model. Full manual. Only $£ 299.00$ or 2 for $£ 525.00$ (E)		
	$20 " 22$ "and $26^{\prime \prime}$ AV SPECIALS Superby made UK manutature. PLL Ial solid slate colour monitors. 	
		Tele
	$20 " £ 135 \quad 22 " £ 155 \quad 26^{\prime \prime}185_{(f)}$ SPECIAL INTEREST ITEMS	a standord serfal AS232 or THL oulput which continuously gives
		ns including
THE AMAZING TELEBOX		
THE AMAZNG TELEBOX		
	All 501 Low idisinion silliar 	
VIDEO TUNER CABLE Compatible	 HP6621A Dual Programmable GPIB PSU 0.7 V 150 watt	LOW COST RAM \& CPU'S
		LOW COST RAM \& CPU'S INTEL 'ABOVE' Memory Expanslon Board. Fulhlength PC-XT
	Fickers	
		FANS \& BLOWERS

Issue 13 of $\mathcal{D i s p l a y}$ News now available - send large SAE - PACKED with bargains!

ALL MAIL \& OFFICES
Open MOn-Fri 9.00-5:30
Dept ET. 32 日iggin Way
Upper Norwood
ONDON SE19 3XF

Figure 6: Details of the hard-wiring

Continued from p. 49

The current consumption of the circuit is about eight milliamps, and a PP3 battery is just about adequate to provide this. However, if the unit is likely to receive a lot of use it would be more economic to opt for a higher capacity battery, such as six HP7 size cells in a plastic holder.

Construction

Details of the stripboard panel are provided in figure 4 (component side) and figure 5 (copper side). The board has 50 holes by 30 strips, and it is cut from one of the standard sizes in which the board is sold using a hacksaw. The two mounting holes are drilled next, and these should be 3.2 or 3.3 millimetres in diameter. They will accept either 6BA or metric M3 mounting bolts.

The numerous breaks in the copper strips are then made, taking due care to get each one in exactly the right place. A special tool is available, but a hand held twist drill bit of about 5 millimetres in diameter does the job quite well.

Make sure that each copper strip is cut across its full width, but avoid cutting so deeply into the board that it becomes seriously weakened.

The board is then ready for the link-wires and components to be added. It is probably best to start with the link-wires, solder-pins, and integrated circuit holders, and then add the components. In both cases work methodically across the board as this reduces the risk of omissions and placement errors. The link wires are made from pieces of 24 swg tinned copper wire.

Although some of the wires are quite long it is not essential to use sleeving over any of them.

However, they must be quite taut so that there is no danger of them coming into contact with any of the component leads or solder pins.

Fitting the components is largely straightforward, but bear in mind that the 4016BE used for IC2 is a CMOS device, and that it therefore requires the standard anti-static handling precautions. Note that IC5 has the opposite orientation to the other integrated circuits, and that it will probably be destroyed If it is fitted the wrong way round.

D1 and D2 are germanium diodes, and are more vulnerable to heat damage than normal silicon semiconductors.

Take extra care when fitting these components, and make sure that each soldered joint is completed reasonably swiftly. C9 can be an electrolytic capacitor (with the positive lead connected to pins 2 and 6 of (C5), but the tolerances and leakage levels of electrolytic capacitors are both relatively high.

This could give an Ifo frequency range which is substantially displaced from the correct range.

Although a polyester capacitor having the appropriate value is relatively expensive, the additional cost is probably Justified in this case.

A diecast aluminium case is a popular choice for guitar effects units. Cases of this type have good screening properties, and are extremely tough. Unfortunately, diecast aluminium boxes are relatively expensive.

Plestic cases are not really suitable as they provide no screening against mains "hum" and other electrical noise. Also, many plastic cases are quite brittle and are not suitable for a project that is likely to (literally) be kicked around.

Probably the best budget choice is a folded aluminium case. These are reasonably tough and have good screening properties. The general layout of the unit is not critical, but S1 must be mounted on the top panel of the case so that it can be operated by foot.

The usual choice for this type of thing is a heavy-duty pushbutton switch of the successive operation variety. In other words, a switch that is pressed once to switch in the effect, pressed again to switch it out, and so on.

There is a slight problem with switches of this type in that they are often quite noisy in operation (acoustically noisy that is, rather than electrically noisy).

They can be slightly awkward to operate, which makes it difficult to rapidly and accurately switch the effect in and out. You may prefer to use a large pushbutton switch of the press-to-break type.

With a switch of this type the effect is normally switched off, but is activated while the pushbutton switch is operated. Details of the hard wiring are provided in Figure 6.

This diagram should be used in conjunction with Fig. 4 (e.g. point " A " in figure 4 is connected to point " A " in figure 6).

The wiring is very straightforward and should present no difficulties. There is no need to use screened leads to make the connections from the board to the jack sockets.

The latter are shown as insulated (plastic bodied) sockets in figure 6, but open style sockets are equally suitable. Insulated jack sockets normally have a couple of extra tags which connect to switch contacts.

These are of no consequence in the present application, and they are simply ignored.

In use

The guitar connects to JK1 using standard screened jack lead. JK2 is connected to the input of the guitar amplifier, and a
screened lead should also be used here. Start with VR1 at a roughly central setting. This is definitely not a subtle effect, and with S1 set to activate the unit the effect on the output signal should be very obvious at any setting of VR2. The best setting for VR1 can be found by trial and error.

If it is set too far in a counter-clockwise direction the output signal will be cut off while the input signal is still at quite a high level. Setting it too far in a clockwise direction could result in the unit having a reluctance to cut off when the input signal has fully decayed.

There should be a reasonable range of in-between settings that give good results, and the adjustment of VR1 is not critical. Bear in mind that some of the best sounds can be obtained by using two effects units in series.

It is well worthwhile trying this effect in conjunction with any form of distortion effects unit.

The new Summer '96 edition has 280 pages packed with over $\mathbf{4 0 0 0}$ products.

Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.

W/N! £250 Voucher to spend on any Cirkit product of your choice in our easy to enter competition.

100's of new products including; Books, Connectors, Inductors, Switches, Test Equipment and Tools.

New Multimedia CD ROM Titles.
New Radio Amateur Equipment.

PIC Microcontroller Projects and Modules.

280 Pages, 25 Sections and Over 4000 Products from some of the Worlds Finest Manufactures.
D Available at WH Smith, John Menzies and most large newsagents, from 25th April, or directly from Cirkit.

Get your copy today!

 dosto
PICDESIM

PIC DE SIM is a fully integrated Windows PIC Simulator, to use with our Development Environment. It features: Single step, skip over, and run

- cen Conditional breakpoints, watch variables, graphical interfaces
; rap Up to 50 times faster than MPSIM
quiks Trace any number of variables and display like a logic analyser
Wide range of simulator stimuli including asynch serial data Integrates with our PIC Programmer
quike
£30.00 including P\&P and Handling, £25.00 if purchased with our PIC Programmer.

goto quikci

PIC Programmer

;// Program 16C54/55/56/57/58, 16C62xx, 16C64, 16C71/73/74, 16C84.
PTY Uses a serial link to a PC running Windows or DOS software provided :// Includes PIC DE, the Windows based PIC Development Environment. ; An-line help, project management, editing, assembler.

Kit $£ 40.00$, Ready Built $£ 50.00$
Serial Cable for Programmer or BASIC Modules $£ 7.50$

PIC BASIC

Easy to Learn BASIC in a Windows development Environment. No need for assembler or a UV eraser to
ilg get programming PICs. Modules operate from a serial link from your PC. The 16C74 module has these features: $8 k$ byte EEPROM - up to 2000 lines of BASIC 27 lines of programmable I/O, 8 A D inputs PWM D/A outpul. 3 timers and interrupt support Interrupt driven serial RS232 interface Peripheral I2C bus interface, optional external I2C static RAM.

16 C 57 Module Kit ($2 \mathrm{k}, 4 \mathrm{MHz}$) $£ 27.00$, Pre-built $£ 33.00$ 16 C 57 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz}$) $£ 30.00$, Pre-built $£ 36.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 4 \mathrm{MHz} £ 35.00$, Pre-built $£ 42.00$ 16 C 74 Module Kit ($8 \mathrm{k}, 20 \mathrm{MHz} £ 40.00$, Pre-built $£ 46.00$

Run Simulation
x

Blank Chips

PIC16C74/JW Erasable 20MHz $£ 24.00$ PIC16C74-04P OTP 4MHz £8.00 PIC16C57-04P OTP 4MHz $£ 5.00$ PIC16C84-04P EEProm Erasable $4 \mathrm{MHz} £ 6.00$ 24LC16 $2 K \times 8$ serial EEPROM £2.00 24LC65 8kx8 serial EEPROM $£ 5.00$

Prices are inclusive, please add $£ 3.00$ for P\&P and Handling to each order. All orders in stock
retumed by 1 st Class Post. Cheques/POs payable to Forest Electronic Developments

PROCESS TIMER

and

CONTROLLER

WITH EXTERNAL I/O INTERFACE

A PIC16C54 Microcontroller Application by Tim Parker

PART 2 Power Supply Interface

IIn part 1 of this project in last month's ETI, we presented the main controller board for the Process Timer which, as explained in the article, is designed to perform the task of a darkroom timer. Here, in the second part of the project, we present the accompanying power supply as outlined previously. This not only allows the main Process Timer board to be powered via its expansion bus connector, but also provides a single channel input and single channel output interface. The programmed

PIC16C54 for the main controller includes software routines to make use of both the input and output channels in ways that will be explained shortly.

Simplicity of connection between the various boards for this project was high on the list of priorities during the design stage. To this end, all the interface boards are self-contained (as far as they can be), all have the same size of expansion bus connector with standardised terminations, and they can all be connected together using a single 34 -way ribbon cable fitted

Figure 1. The circuit of the power supply and single-channel I/O interface.

Figure 2. Connection details to the PCB

provides the main +5 V supply output on the expansion bus connector (terminal 1) to power the main Process Timer and any interface boards that are connected to it. Capacitors C2 to C5 are placed close to IC1 so as to reduce high frequency noise on the supply lines, and stabilise IC1 against the possibility of oscillation.

Input and output channel

The I/O interface of the power supply makes use of the O/P1 and I/P1 port lines of the Process Timer expansion bus. O/P1 - on terminal 19 - is the output signal for TR2 and TR3, which themselves form a Darlington transistor and are used to switch the output relay RLA1. The jumper link JP1 allows the relay to be disabled if not required, for instance, when a different interface is connected to the expansion bus during software development for other purposes, where the operation of RLA1 might become a nuisance. Resistor R3 ensures that the relay remains in the off (deenergised) state when the power supply is disconnected from any form of interface - including the Process Timer. Darlington drivers have a terrific amount of gain compared to a single bipolar transistor, and leaving the base floating will result in the relay 'chattering' due to stray noise pickup.
The contacts of the relay have a single pole changeover (SPCO) configuration, and are rated to carry the mains load of the exposure lamp which is connected to them. The two metal oxlde varistors MOV1 and MOV2 provide a degree of contact suppression in order to reduce the amount of arcing when the relay contacts are opened with a live load connected. These are not essential in a lot of cases, but should prolong the life of the contacts if an inductive load is used. Obviously, if only an ON/OFF action is required then a single pole normally open (SPNO) relay can be substituted, and MOV1 omitted from the board.
For the input to the Process Timer, I/P1 - on terminal 15 - is used as a light sensor input. Connected to this is the open collector of transistor TR1, which forms part of the sensor input circuit based around R1, R2, C1 and TRy itself on the power supply board. The component
with multiple board edge connectors. If you wish to add a further board to the expansion bus, it's simply a matter of adding another board edge connector to the ribbon cable. This gives us the ability to 'plug and play' with the Process Timer at will. The power supply is no exception to this, apart from the fact that only one power supply can be connected to the expansion bus at any time.

Only the regulated +5 V supply is brought out to the expansion bus connector, which is adequate for most interface purposes. Should you require a higher voltage to that available on the expansion bus, then there is a connector made available on the Power Supply board to 'tap off' the input to the regulator, which provides a smoothed, but unregulated offload output voltage of about 10-12V DC.

The circuit

The basics of the power supply are pretty straightforward. The 6 V AC from the transformer T1 is passed through a full wave bridge rectifier BR1 and smoothed by C6, which results in a DC voltage across C6 of around 12 V with no load connected. This is applied to the input of regulator IC1, which in tum produces a stable, regulated +5 V DC on its output. This
values shown for R1 and R2 allow an ORP12 or other light dependent resistor (LDR) with similar characteristics to be connected directly to the power supply board via a 2-pin connector. The value of R1 can be altered if needed, to suit varying light level outputs produced by different types of exposure lamps. If anything, the value of R1 might need increasing (up) to 100 KW to compensate for ambient light. It should go without saying that the LDR must be positioned such that a definite change of light level occurs between the lamp's on and off state, otherwise the Process Timer will continue timing even when the lamp is off, because sufficient ambient light will be hitting the LDR. If the light sensing feature is not required then a jumper link can be fitted to the board where the LDR would normally connect. This will keep TR1 permanently turned on, and so produce the necessary (low) 'light on' signal required.
In order to produce accurate exposure times, it is necessary to time the exposure only when the lamp is actually lit. This is not usually a problem with normal incandescent (filament) lamps, since they light as soon as power is applied (assuming the bulb hasn't blown, of course). But this darkroom timer application was designed with another purpose in mind as well: that of

Figure 3. The component layout for the power supply
timing the exposure of photosensitive copper-clad laminate, used by constructors to produce their own PCBs. The exposure units used for these purposes are almost invariably fitted with ultraviolet (UV) fluorescent tubes, and an integral igniter circuit, which needs time to 'strike' before the tubes will' light. Anyone who has used these units - particularly the small, low volume production verslons - will know that when the tubes and starters begin to age a little, it takes more and more time from the moment the switch is 'thrown' to when the lamps actually come on. So, starting the time period from the moment the unit is turned on results in ever-reducing exposure times, and consequently produces under-exposed boards. Unfortunately, this will not be discovered until the laminate gets to the development stage, when you realise that the photo resist is not going to come off properly. At this point you are left with three options. The first is to give up and scrap the board for use at a later date. The second is to start again with a new board, and the third is to attempt to realign the transparency over the sections of pattern that are visible, and expose the board once more. But again, people who have done this know that under these conditions the exposure time becomes very critical, and generally this option is not very successful either. Nevertheless, we still try. Don't we?
This is where the light sensor comes in. Drilling a suitable hole in (say) the end of the exposure unit and fitting the ORP12 in it
provides feedback to the Process Timer, which won't begin or continue timing until the exposure unit is lit. Furthermore, this input is monitored continuously throughout the timing process, so if the lamp goes out half way through the exposure time, the Process Timer will pause what it's doing, and only continue timing when the lamp re-lights. Note that the lamp output will remain turned ON , even if the lamp itself goes out for any reason during the timing sequence, and for safety reasons no attempt is made by the software to restart the lamp by turning it off then on again. If the failed lamp condition remains indefinitely, the reset button can be pressed on the Process Timer to turn off the lamp output bit and abort the timing sequence. By the way, this is the only button which has any affect under these conditions.

Construction

WARNING! This is a mains powered project board carrying potentially lethal voltages, which are accessible at various points. The board MUST be fitted safely and securely into a suitable enclosure to remove any possible risk of electrical shock. It is not intended to be constructed by novice enthusiasts or persons with no experience of this type of project. If you are unsure about any aspect of the construction whatsoever then ask a competent person for help - DO NOT be tempted to build it yourself.

Ensure that all soldered joints are good, clean and free from solder bridges. It's important to exercise care when constructing any PCB, but even more so with mains powered boards such as these, where nothing less than perfection will do. There aren't any awkward components on the board, and everything is pretty well spaced. The most difficult component to solder will probably be the transformer T 1 , since PCB mounting versions usually have varnished or enamel coated terminals, which will either require scraping off before soldering, or burning off extremely well during soldering. Personally, l'd opt for the first method because this reduces the amount of time the molten solder is applied to the copper pads, where excessive time spent soldering may 'unglue' the copper from the board.

For safety reasons the transformer T1, relay RLAt and the varistors (if fitted) MOV1 \& MOV2 must be soldered as close to the board as you can possibly get them, with no excess bare lead showing, and the fuse F1 and fuse-holder MUST be fitted with a protective insulating cover. By doing this there should be no easily accessible point on the topside of the board which has mains voltages on it that could be touched with the fingers. But this by no means implies that it is still safe to do so.

When fitting the board into a suitable enclosure, the safety aspect which must be observed will dictate how the board is to be mounted. It should be bolted to the enclosure using all four mounting points, and nylon stand-offs used to raise the board to a suitable height to enable the attachment of a 34way board edge connector. There are two possibilities for the positioning of the board within the case. It can either be totally enclosed inside the case, with the board edge connector touching the inside of one end, and then a rectangular hole cut out of the case to accept the whole board edge connector. Or, the case could have a slot cut into one end to allow just the edge connector part of the board to be made accessibly externally.

The second method is better from a safety point of view, because if the first method is used then an insulating barrier made from strips of plastic or nylon - must be firmly fitted

Figure 4. Two methods of mounting the PCB

internally above and below (so as to be in contact with the full width of) the board to stop anyone from dropping screwdrivers, knives, forks, spoons, bits of wire or ANY metal object which could cause a short circuit to the mains section of the board. We are not trying to make light of any aspect of this project, it is a very serious matter that must have your full attention paid to safety.

Don't forget this bit

In part 1 of this project you may remember that you were required to bridge together pins 9 \& 10 of IC4 on the main controller board, so that the Process Timer would function correctly without the power supply/interface connected. This solder bridge should now be removed before connecting the two projects together. As mentioned earlier, if you don't want to use the light sensing facility of the power supply, simply fit a jumper link across the two sensor input pins on the power supply PCB. A point to bear in mind with this, is that if you are experimenting with your own software on the main controller and a further interface is connected to the expansion bus, this jumper link will need removing if you are to use I/P1 as an input signal from elsewhere. Leaving the jumper link in place will pull I/P1 low at all times. While on the subject of jumper links, don't forget to fit one of these to JP1, so as to enable the operation of the relay. If you are developing your own software for the main controller that makes use of the input and output ports of the expansion bus, and you do not require the use of RLA1, but still need the power supply connected via the expansion bus, then remove this jumper link to disable the relay.

In use

If you are currently using a different power supply, and powering the main controller via the +Vin and OV terminals, then remove it before connecting this power supply to the expansion bus. Failure to do so could result in damage to the regulator circuits on one or other of the power supply units, not to mention the main controller itself.

The Power Supply connects to the Process Timer via a 34way ribbon cable fitted with board edge connectors at various points along its length. If you are making up your own ribbon cable make sure that all of the connectors are fitted in the same orientation, that is, pin 1 on all of them connected to the same ribbon cable strand; be careful not to get any of them back-to-front - it's very easily done.

Programming

The following software examples demonstrate how to turn the relay on and off, and also how to read the state of all 7 inputs. The documented program listing available for this project has labels defined for all constants and variables used, and is also more structured, but here the software takes a more direct approach. The PIC16C54 does not have port C available, but its address in memory is available as a general purpose file register (in RAM), so this address is used to store the current value on the expansion bus input port.
: @pr: ********************************
; SOFTWARE FOR USE ON THE DTE PROCESS
TIMER/CONTROLLER BOARD.
; (c) 1996 TIM PARKER / DTE MICRO SYSTEMS.
; SUBROUTINE TO TURN THE RELAY ON
RLYON
MOVLW E'. 00000000^{\prime}
TRIS 06 ; SET PORT B AS ALL outputs
MOVLW 01 ; SET BIT 1 HIGE MOVWF 06 ; PUT IT ON PORT B MOVLW 05 ; GET IC3 STROBE LINE MOVWF 05 ; AND PULL IT EOW MOVLW 07 ; GET 'ALL OFF' CODE MOVWF 05 ; SET ALL STROBE LINES HIGH RETLW 00 ; AND RETURN FROM SUBROUTINE
; SUBROUTINE TO TURN THE RELAY OFF
RLYOFF
MOVLW B'00000000.
TRIS 06 : SET PORT B AS ALL OUTPUTS
MOVLW 00 ; SET BIT 1 LOW
MOVWF 06 ; PUT IT ON PORT B
MOVLW 05 ; GET IC3 STROBE LINE
MOVWF 05 ; AND PULI IT LOW
MOVLW 07 ; GET 'ALL OFF' CODE MOVWF 05 ; SET ALL STROBE LINES HIGH
RETLW 00 ; AND RETURN FROM
SUBROUTINE
; SUBROUTINE TO READ THE EXPANSION BUS INPUT PORT. ; ON EXIT, FILE REGISTER E7 CONTAINS THE 8-BIT RESULT

READBUS
MOVLW B'11111111'
TRIS 06 ; SET PORT B AS ALL
INPUTS
MOVLW 04 ; GET IC4 STROBE LINE
MOVWF 05 ; AND PULL IT LOW
MOVF O6, O6 GET DATA ON

MOVWF 07
MOVLW 07
; AND STORE IT IN f7
MOVWF 05 ; GET 'ALL OFF' CODE ; SET ALL STROBE LINES
HIGH
MOVLW B'00000001*
TRIS
06 ; AND RESTORE RBO
FOR INPUT
RETLW 00 RETURN FROM SUBROUTINE

Other uses

The standard operation of the Process Timer as a darkroom timer only uses I/P1 for light sensing. However, by changing the software it is possible to make the program respond in an entirely different way. For example, you could connect a footswitch across the sensor input pins on the power supply, and alter the software so that this acts as a second focus button during the 'Command' mode, and as a 'pause' input during the 'Run' mode.

The flexibility provided by software - as opposed to hardware - modifications gives you far more control over these types of projects than ever before. You may, for instance, want the lamp to remain on during the 'pause' time, or you might prefer the lamp to go off but leave the timer running as normal, You might even want to pause the entire process. The use of microcontrollers makes these modifications very easy to implement.

Another use for the input - based on PCB production could be to detect whether or not the lid of the UV exposure unit is closed before actually turning on the light and starting the timing sequence.

This could be achieved by the operation of a microswitch fitted to the outside of the unit, and activated via a simple actuator arrangement. In both these examples it doesn't matter whether the switch you use is normally open (N.O.) or normally closed (N.C.), since this can be detected in software and responded to accordingly.

Whatever your preference, this, and more, can all be accommodated by re-programming the PIC. And don't forget that you are not limited to just one input.

The power supply only makes use of I/P1, so there are another 6 available for you to play with, or all 7 if you leave the sensor terminals on the power supply unconnected (open circuit). Next month we will present a further board to complement this project. This will be a software development board for programmers wishing to use the main controller for their own interface purposes, and allows software to be tested out without connecting the Process Timer to any proposed target interface.

KITS and BITS available

A complete kit of components for the Process Timer PSU/Interface, which includes everything in the parts list except items marked *, is available from the author by mail order only at the following address:

DTE MICRO SYSTEMS

112 SHOBNALL ROAD
BURTON ON TRENT
STAFFORDSHIRE
DE14 2BB

Component kit for the Process Timer PSU/Interface: $£ 21.50$ (Kit includes the PCB and all other necessary items)
The PCB can be purchased separately if required for:£7.80

A suitable (undrilled) ABS plastic enclosure: £3.90
Parts available from Part 1 of this project. Please note although we printed samples, the complete listing is too long to print out in full in the magazine:
Component Kit for the process timer main controller: £29.50
(Kit includes D/S PCB and programmed PIC16C54)
The double sided PCB is available separately at: $£ 9.00$
A programmed PIC16C54 is available separately: $£ 8.50$
Fully documented Source Code text on 3.5 inch disk: $£ 8.50$
(The complete Source Code + various other files)
Fully documented Source Code listing - printed copy: £8.50.
(The complete Source Code printed out on paper)
A suitable smart (undrilled) sloping front enclosure: $\mathbb{£ 8 . 0 0}$. (The PCB was designed specifically to fit this case)
1 metre pre-assembled 34 -way expansion bus cable: $£ 4.00$ (fitted with three 34-way expansion bus connectors) All prices are inclusive, but please add £2.50 to the total order value to cover carriage and handling charges. If ordering from overseas, payment must be in pounds Sterling ($£$) and cheques/bank drafts/money orders etc. must be drawn on a British bank. Goods will normally be dispatched within five working days from receipt or order, but please allow up to 28 days for delivery.

TELFORD ELICTRONICS

OLD OFFICERS MESS, HOO FARM, HUMBERS LANE HORTON, TELFORD, SHROPSHIRE, ENGLAND. TF6 6DJ

PHONE: 01952605451 FAX: 01952677978

The Needles and Fastnet Lighthouse System PART 1

As we approach the end of the 1990s, George Pickworth recreates an experiment in cable-free telegraphy created over a century ago for remote communications with lighthouses.

IIn Europe in the sate 1800s it was usuall, possible to route telegraph lines inland so as to avoid Eving :o cross wide river estuaries. That meant that there was no need to dэvelop wireless systeme like toose that were a vital part of the telegrapt system in parts of the Empire such as Ind a. Nevertheless, in the UK there was a real neec for a reliable wireless telegraph link to reach lighthouses on remote islands, particularly the Needles and Fastnet Rook, where rcugl: seas and the rock, landfal madi it impractica to tring sutmarine cables up onto the shere.

Electromagnetic induction systems were reected "o tris use because the small surface area of the Neecles a 2 l Fastnet Rock could not accommodate the widely spaced deatroces needed thy the Preece system that was used expermentally on Flatholme Island in the Severn Estuary. The wares wh ch periodically swept over the islands also preclunded the inssallation of tre type of large-diameter inductors LSej with the Stevenson system (intended for, but never actualy instal ed on Muckle Fugga ir the Shetland Islands).

Water

The chosən solution nas to employ the sea wacer itsef as the conductor over the final stretch to the islands, trus evoiding the need to trirg a cable ashore. The original plan equired a pair of submaine cables extending from shore in the form of 3 " V " tc embrace the island. However, cecause of what I have called the "3E0-degrees plenomenon", it was found to be possibe to disjense with one of these cabes. As a result, 3 single-cable system evolved. The single cable system was adoptec for the Nezdles and Fastnet, where it proved to be highiv slcosssful, and ye: this rerrarkable and seemingly uniq 」e "ssireless" system is row almost forgotten. So this study looks at he priksophy and evolution of this urusual and ingenious sys em.

The "V" system

The "V" system was conceived by Willoughby Snith as a means of extending electric telegraphy to woocen ligntships anchored offshore, where the use of contiruols cables was out of the question. During small scale trials, $V /$ llougr by Smith extended a pair of cables insulated with gutta zercha irom a lakeside in the form of ϵ " V ". The cables terminated in a pair of copper electrodes placed on the lake bed so ε s to $¥ r r b r a c e ~ a ~$ rowing boat. Electrodes were attached to the boat's bow and

stern under its waterline, and these were connected to a galvanometer, as in figure 1.

The submarine cables and electrodes are refered to in this study as the "primary circuit". The electrodes on the bcat or island, together with their connecting wires, are referred to as the "secondary circuit". The same applies to the single wire systern.

The philosophy of the "V" system was that when the primary circuit was energised, the secondan; circuit would provide a lower resistance path between the two prirr ary electrodes than the intervening water, and the galvanometer would indicate a current. However, because the resistance of the galvanometer was higher than the intervening water it merely indicated a potential difference.

Willoughby Smith found that the galvanometer indizated a current only when the boat was aligned with the primary electrodes. The current fell to zero when the boat was rotated through 90 degrees. This prevented its use with lightships which swing around their anchors.

Nonetheless, the "V" system potentially provided e ectric telegraphy to lighthouses on rocky islands, so long as the secondary electrodes could be aligned with the primay electrodes. Unfortunately this was not always feasible

The single cable system

However, as already mentioned, the 360-degree phenomenon made it possible to dispense with one of the two submarine cables of the " V " system. The complementary electrode could be placed in the sea near the shore, as in figure 2. The single

cable not only significantly reduced the cost of the system but, far more significantly, the secondary electrodes could be aligned radially at any angle with the distant primary electrode, so avoiding the problems inherent in the " V " system.

If the distant electrode was placed on the sea bed adjacent to a lightship's anchor, signalling could continue as the ship swung around its anchor, as it figure 3. Although the single cable system was proposed for use with lightships, I have no record of it actually being used; presumably this was because wooden lightships were rapidly being replaced with steel ships.

On the other hand, the single cable system seemed inherently suited for communication with lighthouses on rocky islands where problems had been experienced in bringing cables ashore. See figure 4.

360-degree conduction

The 360-degree phenomenon was observed by Trowbridge in the USA around 1880. He found that a potential difference occurred across a pair of fairly closely spaced probes inserted into the soil radially to the earthing rod of the earth return circuit of a telegraph-land-line The potential across the probes remained fairly constant at various radial positions to the earthing rod, as in figure 5, a result which was surprising at the time.

The fact that a potential developed across probes even when they were inserted when on the "far" side of the earthing rods caused Trowbridge to dismiss the concept of current flowing through the earth from one rod to the other; Trowbridge reasoned that if this was the case, a potential would develop across the probes only when they were aligned between the two earthing rods.

Instead, Trowbridge visualised the earth as a massive capacitor, where, during charging or discharging, the current converged or dispersed radially over the earth's surface. Incidentally, the pioneers were puzzled as to how the current found its way from one earthing rod to the other; the capacitor concept offered some explanation.

Stelnheil

Remarkably, Steinheil had already shown that current does indeed flow from one earthing rod to the other, but rather than take the short, direct route it spreads out in a pattern similar to
the magnetic field lines of a bar magnet. See figure 6. In modern terms, the explanation for this is that the current is proportioned among all the possible paths according to their relative conductivity, l.e. each path may be regarded as a separate resistor, and the current which flows in it can be calculated by Ohm's law.

The electrical characteristics of the earth can be roughly modelled as a vast grid arrangement of resistors.

Theoretically, the current flow lines extend to infinity, and this phenomenon was studied by Steinheil and others as a possible medium for a wireless telegraph system. Indeed, a wireless system based on current flow lines was actually employed for extending the telegraph system in India across rivers too wide to be spanned by overhead cables. Nonetheless, it can be seen in figure 6 that the current flow lines extend from earthing rods over 360 degrees and this created the effect observed by Trowbridge. However, this phenomenon only reaches an easily measurable level when the distance separating the earthing rods is much greater that that of the probes. Also, one of the probes must be close to one of the earthing rods. There is clearly more current flow to be measured in the direct line between the electrodes than in other directions, with the least being measured in a direction directly away from the other electrode. If the measurement electrodes are close together, and the excitation electrodes far apart, the currents are almost the same, while moving the excitation electrodes closer together increases the differences in measured current.

In the bath

To determine whether the 360-degree phenomenon occurred in water, Willoughby Smith conducted small scale trials with electrodes and probes in a wooden trough. I reproduced his experiments in a domestic bath, and the following notes illustrates the principles of Willoughby Smith's single cable system. The bath was partly filled with water and the primary electrodes, consisting of 1 p coins (which also have the advantage of being cheap) were spaced along its length as shown in figure 7a. The connecting leads were pressed against the coins by means of plastic clothes pegs.

WARNING: because of the danger of combining electricity with water, experiments of this type should only be attempted using a low-voltace battery, such as a PP3, as a power source and NEVER a mains power source of any kind, as this could be lethal. THINK ELECTRICAL SAFETY AT ALL TIMES.

A pair of probes, representing the secondary electrodes on a wooden ship or rocky island, were made up from bare

copper wire 1.0 mm in diameter and 50 mm long, attached to a piece of plastic. See figure 7a.

Once the electrodes were energised with 6 volts, a potential developed across the probes when they were aligned radially at any angle with an electrode, demonstrating the 360-degree phenomenon occurring in water, as in figure 7b.

It is interesting that the probes also allowed me to trace the current flow lines as first visualised by Steinheil (see figure 6).

In the lake.

Impressed by the resluts of his wooden trough experiment, Willoughby Smith moved his experiments to a lake. One electrode was placed on the lake bed some distance from the bank, and the complementary electrode was placed in the water close to the bank.

The secondary electrodes were attached to the boat in the same way as for the "V" system. As with the wooden trough experiment, the spacing of the primary electrodes was many times greater than that for the secondary electrodes. At that time, many telegraph signals were read by observing the swing of a galvanometer needle, and the lake trials apparently indicated that in a practical system the potential across the secondary electrodes would be sufficient to give consistent galvanometer readings. Furthermore, the swing of the needle would be large enough to allow reliable signalling when the secondary electrodes were aligned radially at any angle to the primary electrode.

Patent

The outcome from the lake trials was that in 1887, Willoughby Smith and W P Granville (of the Telegraph Construction

Figure 6: Current flow lines as visualised by Sheinheil. Theoretically these extend to infinity

Company) secured a patent for their system. This was followed in 1982 by the Trinity Board placing the Needles lighthouse at the disposal of the Telegraph Construction Company so that the practicability of the single cable system could be proved.

As the decision to go ahead with the Needles system was based on the lake trials, I decided to reproduce these trials to gain a greater insight into the operation of the system.

The Needles and Fastnet system, together with some notes on the reproduction of the Willoughby Smith lake trials, will be described in the second part of this article.

Practical applications

The author has carried out an experiment to show the 360degree phenomenon in bathwater. The phenomenon is of particular interest because the flow of current in a uniform resistive medium exhibits the same patterns as magnetic fields in free space. Indeed, working with magnetism has often been likened to working with electricity in a weak salt solution with no insulating materials available. Few people understand magnetism well enough to design equipment in which fields in air are of importance, and this experiment is one way to gain some understanding of the subject. This principle could be used to build a ground current communicator - perhaps to be used as an intercom between outbuildings with (say) a metal fence wire as the single wire.

Transform your

 PC into an Oscilloscope.Never before has it been so easy to capture information about a signal. The ADC 200 simply plugs into the parallel port of your portable or desktop PC, no complicated setting up - just run the software and start measuring. With the advanced PicoScope Software, your computer can be used as a high speed 50 MSPS Dual channel Digital Storage Oscilloscope (DSO), 25 MHz Spectrum Analyser, Frequency Meter or Voltmeter.

The ADC 200 breaks the price/ performance barrier for DSO products, for less than half the price of the cheapest benchtop instruments you get a fully featured scope with FFT spactrum analysis and unlinited slorageforinting = hommally orly

The 50 MSPS unit is priced at $£ 499.00$ and the 20 MSPS unit is $\mathbf{8 3 5 9 . 0 0}$.
Both unils are supplied with cables, power supply and manuals. Carriage UK \& 3.50 Overseas $£ 9.00$
Call for free demo disk and catalogue on 01954211716.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (C) 1954211880
E-mail: post@picotech.co.uk Web: http://www. picotech.co.uk/
Phone or FAX for sales, ordering information, data sheets. technical support. All prices exclusive of VAT

[^0]
STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Tel: 01734268041 Fax: 01734351696 callers mexome sam lo 5.300 m now.fal

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 01316672611
The supplier to use if you're looking for -

* A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST *
* COMPETITIVE VAT INCLUSIVE PRICES *
* MAIL ORDER - generally by RETURN OF POST *
* FRIENDLY SERVICE *
* 1995/96 CATALOGUE NOW AVAILABLE Price £2.00 *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

BADGER G: BDARDS

80 Clarence Road, Erdington,Birmingham B23 6AR Don't call us, call talking pages. it's free on:- 0800600900 Mobile 0378-296 356
Printed circuit boards from Schematic to finished design Boards available from H.R.T. -
Radcom - Practical Wireless Short Wave Magazine Elektor - ETI - HiFi World and more. Prototype One Off PCBs. Kits Projects \& Built units. Schools, Colleges and Industry Catered for. Club Talks.

Shop now open within half a mile of Spaghetti Junction M6.

SUBSCRIBE FOR ONLY

 812.40
AND RECEIVE TWO EXTRA ISSUES

DON'T MISS THIS SPECIAL OFFER TO ENJOY ELECTRONICS TODAY INTERNATIONAL ON SUBSCRIPTION FOR JUST £12.40 FOR 6 MONTHS - WITH TWO EXTRA ISSUES ?

Simply complete your details below.

Direct Debit Offer

(1)

Yes, please start my subscription to ELECTRONICS TODAY INT. I will pay $£ 12.40$ every 6 months (6 issues) by Direct Debit from my bank. Please remember to fill in the direct debit instruction betow. Plus 2 FREE issues with your first payment.
\square Please commence my subscription from the next available issue. Please quote subscription number if renewing/extending.

Your Details

Name (Mr/Mrs/Miss) Initial Surname
Address.
\qquad
Telephone:

Direct Debit Instructions

This card instructs your bank or building society to make payments direct from your account. Please fill in parts $1,2,3,4, \& 6$ and then send to us at the address below. Banks and Building Societies may not accept direct debit instructions for some types of account.

1. Please write the full postal address of your Bank or Building Society branch.
To: The Bank Manager
Bank/Building Society
Address
\qquad
2. Name(s) of account holder
3. Branch Sort Code

4. Bank/Build. Soc. Account No.

5. Ref. No \qquad (Ofice use only)
6. Instruction to your Bank or Building Society. Please pay Nexus Media Ltd. Direct Debits from the account detailed on this instruction subject to safeguards by the Direct Debit Guarantee. Originators Identification: 800132

Signature(s) Date:
Code 0125. This exdusive ofter must close on: 0600996

Please post this entire coupon to:

Nexus Subscription Dept, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Leicestershire. LE16 9EF
Please tick this box if you do not wish to receive information from any other companies which may be of interest to you \square
Ohrect Onbil Gurranies

Spreaticily

BY TERRY BALBIRNIE

ver the next few months, we shall look at the topic of choosing the right connecting wire for the job in more detail. It is assumed that this is of the copper-core type. Resistance wire (using materials other than copper) will be looked at later. Also, the confusing subject of standard wire gauge will be discussed at a later time. A length of copper wire has a certain resistance even though this is likely to be low. For example, a 100 cm length of wire with a diameter of 0.5 mm will have a resistance of some 0.09 ohm . A longer piece of similar wire will have a proportionally greater resistance so 200 cm would have a resistance of about 0.18 ohm and so on.

A bit thick

For a given length, a thicker wire has a lower resistance than a thinner one. This may be pictured as water finding it easier to flow through a wide hose pipe than a narrow one. Mathematicians will tell you that doubling the diameter of a circle will give four times the area. In simple situations, current is carried throughout the whole cross-section area of the copper. Since wire usually has a circular cross-section, it may be expected that a cerlain length of wire having a diameter 0.5 mm will have four times the resistance of one having a diameter of 1 mm . There is also a temperature effect - the resistance of a given piece of wire increases with temperature. Between zero and 100 degrees C it rises by about 40%. For this reason, figures are often quoted for 20 degrees C which is about room temperature. When current flows through the resistance of a wire, heat is produced and the temperature will rise. The heat is given off (dissipated) from the surface and passed to the air. Although a long wire of given diameter will have a higher resistance than a short one, the greater length provides a proportionally greater surface area over which the heat can be dissipated. This will usually present a smaller problem than wire which is too thin for the purpose. This will overheat, burn the insulation and possibly cause a fire (see photograph).

Check it out

Although 100 cm of wire having a diameter of 1 mm will have one-quarter the resistance of the same length of some having a diameter of 0.5 mm , this is not to say that it can carry four times the current. This is because, although the cross-section area is four times greater, the surface area from which the heat escapes is only double. Readers with mathematical ability could check this point by regarding the wire as a cylinder. The maximum current which may be carried by a piece of wire will therefore depend on its diameter in a non-linear way. For example, a wire of diameter 0.5 mm would need a current of more than 2A, to raise it to a temperature of 100 degrees C in free air. A wire of 1 mm diameter would need only 5A for the same temperature rise - not 8 A as might have been expected. An important point to note is that the current rating of a wire
will need to be reduced if it is routed in a confined space, or where it is grouped with other wires. A bundle of wires will have a smaller effective surface area than the wires taken individually. The heat will therefore find it more difficult to escape. The rating will also be less for connecling wire where the heat must pass through plastic insulation which is a poor conductor of heat. It is usually unwise to work to the limit of a wire's current carrying capacity.

Keeping cool

To give some practical examples. The popular type of insulated single-strand connecting wire described as " $1 / 0.6$ " has a single 0.6 mm diameter core. The cross section area is 0.28 mm and the current carrying capacity is quoted as 1.6A. This is the current at which it will still remain cool. If it was used in a restricted space, or bundled with other wires, it would be wise to re-rate it to, say, 0.8A.

The insulated wire described as " $7 / 0.2^{n}$ - i.e. seven strands each having a diameter of 0.2 mm has a slightly smaller cross section area than " $1 / 0.6$ " at 0.22 mm and is rated 1.4 A . In certain pieces of equipment such as battery chargers, a large current is often encountered. Suppose the maximum current is 3A. The type of wire known as "32/0.2" (i.e. 32 strands each of 0.2 mm diameten and having a cross section area of 1 mm would be a good choice. This is rated at 6A.

NEW SPECIAL OFFERS New mini waterprool TV camera $40 \times 40 \times 15 \mathrm{~mm}$ requires 10 to 20 volts at 120 mA with composhe video
output (to teed into a video or a plug) h has a high resolution of 450 TV lines Vertical and 380 TV lines horizontal, electrontc auto lris lor nearly dark (1 LUX) to bright sunilight operation and a
pinhole lens with a 92 degree field of view in tocuse down to a tew CM. It is fifed with a 3 wire lead (12v
 High quality stepping motor kits (all including stepping
motors) Comstep independent control of 2 stepping molors) Comstep independent control of 2 stepping
motors by PC (Via the parallel port) with 2 molors and
sottware. . E67.00 ready bull
Kit
Software suppon and 4 dighal lhp Sotware suppon and
power interface 4 Akh
kit مower interface 8 A kit $£ 36.00$ stepping motor and control circult. 200 slep $\mathrm{c23.00}$ Mand held transistor analyser it tells you which lead is
the base, the collector and emitter and if it Is NPN or PNP or taully …................... $\mathbf{\Sigma 3 3 . 4 5}$ LEDs 3 mm or 5 mm red or green 7 p each yellow tie. ip each 15.95 per.11p each 1000
cable Cabie the..... per 10,000
Rechargeable Bathenes Rechargeable Batteries
AA (MP7) 500 mAH AA (MP7) 500 mAH AA 700 mA ${ }^{2}$
$\mathrm{C}(\mathrm{HP}$ 11) 1.2 AH
C 2 AH w
C 2 AH with solder tags
0 (HPZ) $12 A H . .$.
D AAH with solder lags
PP3 8 . AV 110mAH
1/2AA with solder tags
Sub C whith solder tags
AAA (HP16) 180 mAH

1/3 AA with tags (philps CTV) Standard charger charges 4 AA cell in $5 . .$| 1.95 |
| :---: |
| 1.75 | may be charged at a time) High power charger as above but charges ithe Cs and Ds in 5 hours AAs Cs and Ds must be charged in 2 s

or 4 s Nickel Metal Hydryde AA cells high capacity with no memory. II charged at 100 ma and discharged at 250 ma or less 1100 mAH capacity (lower capacity for high discharge rates).
Special offirs piease stick of $442 \times 16 \mathrm{~mm}$ nucad batteries 171 mmx 16 mm dia with red \& black leads 4.8 V . $\mathrm{E5.95}$
5 button cell 6 V 280 mAh battery with wires Varta
 Shaded pole motor $240 \mathrm{Vac} 5 \mathrm{~mm} \times 20 \mathrm{~mm}$ shatt $80 \times$ $60 \times 55 \mathrm{~mm}$ excluding the shath.
115 v ac 80 v dc motor $4 \mathrm{~mm} \times 22 \mathrm{~m}$ 22 mm shal 50 mm dia $115 v$ ac 80 v oc molor $6 \mathrm{~mm} \times 2 \mathrm{~mm}$ shan 50 mm dia x
60 long body (excluding the shatt) it has replacable thermal tuse and brushes. $£ 4.95$ each $£ 3.951004$ 7 segment common anode led display 12 mm co $\mathbf{~ c o s}$ GaAs FET low leakage current SB873 ¢12.95 each BS250 P channel mostel $\frac{.59 .45,9510+£ 7.95100}{}$ BC547A transistor 20 for $\mathbf{5 1 . 0 0}$ 7 74LSO5 hex invertor cio.00 per 100, used 8748 Microcontrolier 23.50
SL.952 UHF Limiting am

package with data sheel 1.95 | 200 ma out 300 v input to outpul Isolation with data 10 in 5 v |
| :--- | 4.95 each or pack of 10 £39.50 Hour counter used 7 digit 240 v ac 50 Hz Alrpay Ab2903-C large stepping molor 14 V 7.5 step for a box of 30 a or a box of 30

Polyester capacli
0.94 A 250 vdc 18 p each $14 \mathrm{p} 100+9 \mathrm{p} 1000+$ iul 250 vod 20 p each, $15 \mathrm{p} 100+10 \mathrm{p}$ 1000* lut 50 v bipolar alecrithic axial leads 15 p each, $7.5 \mathrm{p} 100+$
0.22 ut 250 v polyester axtal leads 15 p ach, 7.5 p
 pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p each 60 p to0 + Phiips 123 series solid aluminium axia
33 uf 10 o \& 2.2 ut 40 p each, $25 \mathrm{p} 100+$ $33 u 10 \mathrm{v} \& 2.2 \mathrm{ut} 40 \mathrm{p}$ each, $25 \mathrm{p} 100+$
Philips 108 series long lite 22ut 63 v axial 30 p each $15 \mathrm{p} 1000+$
Multalayer AVX ceramic capachors all 5 mm pitch 100 v 100 pt . 150 pf . $2220 \mathrm{pf}, 10,000 \mathrm{pl}$ (10n) 1解 each, 5 p
$100+3.5 \mathrm{p} 1000+$
500 pl compression trimmer
capacilor (dod
60 p
rot type containing no pctss) $£ 5.95$ or $£ 49.50$ for 10 Solid cartion resistors very low inductance ideal for RF circuits
27 hhm 2 W , 68 chm 2 W 25 p each 15 p each $100+$ we have a sange of 0.25 w 0.5 w 1w and 2 w solid carbon resistors please send SAE for liss
P.C. 400 W PSU (intel part 201035.001) with standard moineroward and 5 disk difive connectors, tan and malns inleVoutlet connectors on back and switch on $212 x 49 \times 149 \mathrm{~mm}$ excluding switch $£ 25.00$ each $212 \times 49 \times 149 \mathrm{~mm}$
8138.00 for 6
$M \times 180$ Digital
MX180 Digital multimeter 17 ranges 1000 vdc 750 vac
AMD 27250 . $10 .{ }^{2} 95$
DIP swich 3 PCO 12 pin (ERG SOC $-3-023$) 60 .
$40 \mathrm{p} 100 \%$
Disk drive boxes for 5.25 disk drive with room for a
power supply light grey plastic $67 \times 268 \times 247 \mathrm{~mm}$ E7.95
of $£ 49.50$ lor 10 Hand held ultrasonic remote controle3.95 Hand held uitrasonic remote control with 3 wire
CV2486 gas relay $30 \times 10 \mathrm{~mm}$ dian wink
terminals will also work as a neon light 20 p each or terminals will also work as a neon light 20 p each or $£ 7.50$ per 100
Varbatim A 300 NH
Varbatim R300NH Streamer tape commonly used on nc machines and proting presses etc. It looks like a
normal cassette with a slot cut out of the too $£ 4.95$
each (53.75 100+) each (c3.75 $100+$)
 HV3-2405-E5 5 -24V 50 mA regulator ic $18-264 \mathrm{vac}$
hput 8 pin DIL package 33.49 each ($100+\Sigma 2.25$) M 555 timer ic 16p, 8 pin DIL sockel 6 p
All products advertised as new and unused unless
otherwise stated. Wide range of CMOS TTL 74 HC Otherwise stated Wide range of CMOS TML 74 HC ,
74 F Lhear Thanstiflors kits. rechargeatile batteries 74 F Lhear Transtslors kits, rechargeable bat
capactiors tools tic always in stock.

> JPC ETEONLONTOS ETI $276 \cdot 278$ Chatsworth Road. Chesterfield S40 $28 H$ Access visa Orders (O1246) 211202 fax 550959 Callers Weicome $9.30 a m-5.30 p m$ Monday-Saluday

FIELD ELECTRIC LTD

Sony new $1-44 \mathrm{md} 3-5^{n}$ d/drive's
Sony $9^{\prime \prime}$ super fine pitch Trinitron RGB VDU AT keyboards for IBM compatibles $9^{\prime \prime}+12^{\prime \prime}$ colour SVGA 800×600 NEC Marconi Inst-2830 Multiplex Tester Marconi Inst-Data Comms Tester Marconi Inst-Digital Line Monitor Marconi inst-Digital Analyser Marconi inst-Digital Analyser
Famell PSU $0-70 \mathrm{~V} 0-5 \mathrm{~A} 0-30 \mathrm{~V} 0.10 \mathrm{~A}$
Famell PSU 0-70V 0-5A0-30V 0.10A
Tektronix DAS 9100 Digital Analysis System Tektronix DAS 9100 Digital Analy
Tektronix 7CT 1 N Curve Tracer Tektronix 7A 14A AMP Tektronix 7511 DIFF-COMPTektronix 7A13
Wandell \& Golterman PMP20 Level Meter 12 VAC 200 watt Transformer 12 VAC 200 watt Transformer
27 VAC 130A Transformer NEW 27 VAC 130A Transformer NEW
£14.50 c/p £2.50 £35.00 c/p $£ 12.50$ £7.00 c/p $£ 3.50$
from $£ 45.95 \mathrm{c} / \mathrm{p} £ 14.00$ §300.00
§385.00
§350.00 $£ 375.00$ £245.00 $£ 245.00$

$\mathbf{1} 75.00$ $£ 175.00$
$£ 295.00$ $£ 295.00$
$£ 150.00$ $\$ 100.00$ £140.00 $\lceil 90.00$

Field Electric Limited, Unit 2 Willows Link, Stevenage, Herts SG2 8 AB Tel: 01438353781 Fax: 01438359397

$\star \star$ FOR SALE $\star \star$

DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALITY SURPLUS MANY SPECIALS. WE STOCK 1000 + ITEMS \& IF WE DON'T STOCK IT WE MAY BE ABLE TO GET IT FOR YOU PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS
MAYFLOWER ELECTRONICS 48 BRENDON ROAD,
WATCHET, SOMERSET, TA23 OHT TEL (01984) 631825 FAX 634245

The National
 Wo mother
 \& Furniture Exhibition
 Sandown Park, Esher, Surrey

The

'Centre of Excellence'
for all woodworkers.
Expert advice
Stunning competition displays Top quality trade stands

Demonstrations and Lectures

FREE car parking

NEW FEATURES FOR 1996
Kitchen Build - a complete kitchen built as you watch!

Question Box Live - experts answering all your questions and demonstrating techniques.

Computers for Woodworkers - experience for yourself the latest CAD technology.

Sandown Exhibition Centre, Sandown Park Racecourse, Esher, Surrey (10 min drive from M25) 26th - 29th September 1996
Opening Times: $9.30 \mathrm{am}-5 \mathrm{pm}$ daily Entrance Prices: Adults $£ 7.50$ ($£ 6$ advance), Senior Citizens \& Children $£ 5.50$ ($£ 4$ advance)

```
DISCOUNT ADYANCE TICKET
HOGEINE O1442-244321
```


PROCESS TIMER PT. 2

50 Hz MAGNETIC FIELD SENSOR

FOOL'S PARADISE 1

SBC PT. 5

0

 VGA
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 OEB U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CATALOGUE AVAILABLE

Fascinating wres that CONTRACT WHEN ELECTRICALLY HEATED producing a useful amount of force (Up to 0.9 kgf for 250 um wire). Require $0.3 \mathrm{~V} / \mathrm{cm}$ and currents from 100 ma to 1 Amp . Choose from four gauges of wire (50, 100,150 and 250 um dia)
Detailed Data and Project Book (128 pages) also available separately and with Delux Wire kit

SERVO - IR - LCD CONTROLLERS

mands from your PC hold servo in position until updated eIC)
LCD display drivers |All standard Hitachi controtler types up to 4×20-characters. RS 232 input IR programmable receivers $\langle 7$ output channels - accept any $T V /-1 / F I$ controller- up to 25 mA output per channef- programmable toggle/momentary switchingtaction)

Please call to receive further details on any of the above products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

ROBOTIC ARM list five axds motion with gripper. Control from any seriat port. Uses R/C servos for good repeatabiity and accuracy. Kitinck des pre-cut arm components, eiectronics
'stamp' based insect kit illustrates basic walking
mechanisms. Twin feelers detect objects causing back-up and furn. Preprogrammed but with the option to re-programme Ineeds Stamp programming pack|.
Powerful 3 servo construction carries payloads up to Powertul 3 servo construction carries payloads up to 250 gms and up to 3 hours motion from the on-board NiCads. $20 \times 15 \times 5 \mathrm{~cm}$

MUSCLE WIRES

 ooard. PC software linc source listingl and detailed construction manual $40 \times 30 \times 200$

STAMP BUG

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457 CATALOGUE AVALLABLE

ADVERTISERS INDEX

BOARDS •R - US .73
.4

BULL ELECTRICAL
B BAMBER .37
CIRKIT DISTRIBUTION
COOKE INTERNATIONAL
COLES MARDIN + CO
DIRECT CCTV
EPSILON ELECTRONICS
EQT
EQUINOX TECHNOLOGY
FIELD ELECTRONICS
FOREST ELECTRONICS
GRANDATA
JOHNS RADIO
JPG ELECTRONICS

+ N FACTOR
LEN COOKE ENTERPRISES
MAURITON
MAYFLOWER ELECTRICAL
MICRO-POWER MEASUREMENTS
MILFORD INSTRUMENTS
No1 SYSTEMS
OMNI ELECTRONICS
P. AGAR

PROGRESSIVE RADIO
PICO TECHNOLOGY
QUICK ROUTE SYSTEMS LTD (POWERWARE)
RADIO TECH
ROBINSON MARSHALL
SERVICE TRADING CO
SCI-WIRE
TFIFORD FI
TELNET
ULTRATECH
3R CARDWARE

FOOL'S PARADISE 2

CHOPPER TREMOLO

SERVICE MANUALS \& Technical Books

Available for most equipment, any make, age or model. Return the coupon for your FREE catalogue MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road, Chinnor, Oxan, OX9 4QY. Tel- OI844-351694. Fax:- 01844352554.
Please forward your litest catalogue for which I enclose 2×1 ist Class Stamps. or $£ 3.50$ for the complete Service Manuals Index on PC. Dise plus cazulogue. NAME
ADDRESS \qquad

$\square \sqrt{4}^{\square}$ HTD
 STEVENAGE

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $31 / 2$ "disc
Cable Hamess Assembly/loom
Manufacture
Card Cage and Module Wiring Full Inspection

Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

\pm

 Andy ForderSend your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 75 p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) $£ 10.50$ + VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

VARIABLE VOLTAGE OUTPUT 0 -260		
		-
Wome		
4, mome		
		mos
		-
		\% inmoneme
共		,
4.		
		$\underset{\text { OON W4 SEB }}{\text { GSA }}$
-		PRDER $\mathrm{E10}$

> SWC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 0151236098201512360154
47 Whitechapel
Tel: 01512365489 Liverpool 2
'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. We also welcome the opportunity to quote for complete factory clearance

COLES-HARDING \& CO
Unit 58, Queens Road, Wisbech,
BUYERS OF SURPLUS
BUYERS OF SURPLUS INVENTORY Tel: 01945584188 Fax: 0194547521

ELECTRONIC VALVES

CHELMER VALVE

 COMPANY130 NEW LONDON ROAD CHELMSFORD ESSEX CM2 ORG Tel: 01245355296 Fax: 01245490064 For high quality audio valves

£50 BT INSTRUMENT FOR ONLY $£ 7.50$

We refer to the BT insubtion tester ond muth-meter with which you con read insuletion diverty in megorms, A C volts up to 230 , 4 ranges of DC rotts up to 500,3 ranges of milliamps and one 5A ronge ond 3 ronges of resistance. These are in perfect condition, have hod very litte use, if any, tested ond fulty guerontieed Complete with leods ond prook 57.50 , Order Ref 15P4. Corrying rose which will toke small toot os well, $\{2$ extro. Pastoge $£\}$ unless your arder is $£ 25$ and over. I\& N Factors Dept ETt, Pilgrim Works, Stairbridge Lone, Boiney, Susser, RH17 SPA Telephone: (01444) 881965

LEN COOKE
ENTERPRISES
For the best value In Used
Electronic Test Instruments
We buy, sell and service oscilloscopes, signal
generators, frequency counters, spectrum
Analysers, Power meters, logic testers, etc.
Spare parts available for most Textronic
scopes.
Tel: $01811-813.9946$
Fax: $0181-574-2339$
Mobile: 080217752
Mall order address: Unit 5 , Southall
Enterprise Centre, Bridge Road,
Southall, Midox. UB2 4AI
We engineer what we buy, we support
what we sell.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2 HS .

MEASUREMENTS

Miera Power Measurements

High-resolution Virtual Instrument System
 WE PRESENT

STAND-ALONE ANALOGUE PORT FOR THE PC WHICH offers a unique blend of Buld Quality, Resolution, and Price. The MPM 22 BIt (AT 15sps) ADC has PROGRAMMABLE SAMPLE RATE AND GAIN, 2 input channels, self calibration, easy parallel port interfacing, PROTECTED DIGITAL I/O, A PROPER WINDOWS CONTROL ENVIRONMENT WITH EXPERIMENT aUTOMATION AND DATA LOGGING, A RUGGED EXtruded CASE ETC.. OUR SYSTEM COSTS E295 bUILT AND CALIBRATED WITH SOFTWARE AND PSU, OR YOU CAN BUY THE BOARD FOR OEM USE. FOR DETAILS, PHONE O1642 701786 OR 342266.

AND SCIENTIFIC PROGRAMS Low Cost specialist library descriptive catalogue available PRICED AT £2.50. COMES WITH £2.00 OFF MONEY VOUCHER TO PLACE AGAINST YOUR FIRST ORDER. PHONEFAX FOR YOUR CATALOGUE FROM PDSL. WINSCOMBE HOUSE, BEACON ROAD, CROWBOROUGH, SUSSEX TN6 IUL TEL. 01992 66329, FAX 01892667473

KINDLY MENTION

 ETI WHEN REPLYING TO ADVERTSSMART CARD PRODUCTS Smartcards, Readers/Encoders, Evaluation \& Development Kits. mpt//www.gold.net/users/ctS6/epsilon,htm E-MAIL: epsilon@powertech.no EPSILON ELECTRONICS Brynsengvn. 1 A , 0667 Oslo, Norway TELFAX +4722640810

FOR SALE
$2 \times$ Dataman S4
Brand New
£395 each + VAT or both for $£ 645$ + VAT
Tel: 01503250354

SMART CARD PCB'S Blanks for adult/D2mac etc Season/eurocrypt int, pcb's D2MAC 14 ch cards £25 ea Or made from your design. Boards-r-us 0121-321 2436

PRINTED CIRCUIT BOARDS manufactured from your schematics or layouts. No minimum quantity. Phone 01232-473533 anytime or post details to P. Agar, 36 Woodcot Avenue, Belfast BT5 5JA.

PCB SCHEMATIC AND ARTWORK LAYOUT, customised product design, surface-mount component sourcing and much more... contact ULTRA-TECH Tel/Fax: 0181-472 8213 MOBJLE: 0850973555

> To Advertise in the next issue of ETI please write to ETI Classified advertising department, Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead, Herts, HP2 7ST, or Phone on 0144266551

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST.

Rates: Linage 75 p per word + VAT minimum 15 words.
Semi-display $£ 10.50$ per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-paid.

Name
Address
Daytime Tel. No:

Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No.
Expiry Date
FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

WAround the orner
hat were we talking about before the break? Hobbies ... and how the hobby of electronics is going to grow in the future. As well as "how", perhaps we should get back to basics and ask "why?" or, more exactly, "what for?" Most people who voluntarily spend their spare time and money on electronics do it because they enjoy it. I hope so, anyway, because electronics is a demanding pastime, which gives back much more in retum for greater commitment. And there is a lot to enjoy, which is often overlooked by people who are not doing it. Not may years ago, a boffin in the Humanities undertook a careful analysis of the nature of happiness, partly based upon his experiences of Scottish country dancing. Happiness, he concluded, had a great dealto do with participating in something senous, which is aiso a game - something to do for pleasure, but that also needs a certain level of personal effort and commitment. He aiso thought that the most rewarding "serious games" seemed to involve music, exercise, and meeting people. You can see how the Scottish country dancing might fit in, although strangely, it does not seem to be everyone's idea of greatest happiness.

But where does electronics come into this equation? The popular idea of an "electronics hobbyist" is an earnest, probably bearded individual, crouched over a workbench littered with unidentifiable odds and ends, buming things with a soldering iron; or over a computer in the depth of the night, typing messages to unknown people on the other side of the world; or the old stereotype of the radio amateur forever tuning around his shortwave receiver just in case there is a ship in trouble in the Channel and he is needed to call out the Coastguard

Oddly, my earliest experience of electronics hobbyists is not quite like this. Admittedly, they were serious (mostly planning careers in the field) and they did spend hours patiently soldering things together, or persuading one of the earlier microprocessors to accept a simple program in primitive assembler. But they were also the only
department with its own bar, and they usually seemed to be making something that flashed on and off and could be used at parties. Or helping to fix some ailing piece of hi-fi, or generally bossing their friends into letting them make their radios or guitar amplifiers work a bit better. The engineering bar also attracted psychology students. Now, if this was some sort of case study, tt's been a very long one, because they still phone up and say "my fax won't work..." and "my computer doesn't..." and then suggest a dinner or a barbecue. I think that then, as now, they were looking for company, beer, and a bit of help with their experiments. Because somebody has to know how the machinery works.

Most of those erstwhile hobbyists are still in the business, working on projects that travel all over the world. They still meet people while making themselves useful and sharing a beer, and they still run up and down flights of stairs carrying heavy pieces of test equipment. And they all began in electronics for the love of it, and are still motivated by its diversity. There were two kinds of engineering students even in those days: the ones who were absorbed by maths, and the ones who were absorbed by making things work. Both lots went either straight into practical electronics or straight into management, bringing their electronics knowledge to the organisation of high-tech businesses like BT and the erstwhile British Rail, The best thing about making electronics into a career is that you spend more time working with electronics. The worst thing is that you get less time to experiment with areas outside your speciality. But however much you know, there is always more to find out (often the hard way) and always more to get out of it - astronomy, communications, microcontrollers, interfacing, analogue signal sensing, position-finding, hi-fi, battery and power supply technology, timers, doorbells, a better car alarm... It all starts with the tinkering, persistence and insatiable curiosity of electronics hobbyists. Things change and the cutting edge seems ever harder to keep up with, but wasn't that what it was all about? I don't think that electronics hobbyists will die out, someone, somewhere, has to know how things work.

The Challenge - things that electronics hasn't fixed yet

A vital typing-finger has been damaged, removing a slice of skin with a sharp knife, leaving a raw area that is slow to heal and painful to use. How can electronics help to repair the finger, or compensate for it? Send your suggestions to the Editor at the address on the right.

Next Month

In the October 1996 issue of Electronics Today International we continue with the third part of Tim Parker's Process Timer and Controller, in which he adds a test board to allow programmers writing their own software to test their code, with sample control software. John Linsley Hood has designed a Squarer circuit to add a good quality squarewave to his Low Distortion Oscillator to show amplifier faults quickly and graphically.
From Terry Balbinie is the "off you go" push-to-go timed shutdown switch from anything from computer monitors to reading lights. Tim Parker uses the PIC16C55 to control a Databus Monitor that displays the state of an 8 -bit output port in decimal or hexadecimal an unusual and informative application. Bart Trepak has devised a Powerline Signal Remote Control for sending signals around the mains so that you don't have to run new cables. Douglas Clarkeson is looking at the future uses of fuel cells as a substitute for fossil fuels in the future

ELECTRONICS TODAY INTERNATIONAL

EDCHORTAR
Editor Helen Armstrong Sub Editor Eamonn Percival Editorial Assistant Lynn Bugden Consultant Andrew Armstrong

GREATIVE

Designer Andrew Pollard Technical lllustration John Puczynski Photography Gary Sinfield

ADVERUSEMENT SALES

Advertisement Manager

 Andrew Forder Advertisement Copy Control Marie QuilterMANAGEMENT
Divisional Director John Bridges
Production Manager
Mike Burns
Production Administrator
Theresa Davis
Business Manager
Claire Jenkinson
Marketing Manager Jason Doran
Copy Sales Manager
David Pagendam

ISSN ${ }_{0142-7229}$

ETl is normelly published on the first Friday in the month preceding the cover date. The conterts of this pubtication lncluding ail articles, plans, drawings and programs and all copynght and all other intellectual property nights therein belong to Nexus Special literests. All rights conterred by the Law of Copyright and other intellectual property nghts and by virtue of intemational copynght conventions are specifically reserved to Nexus Special Interests and reproduction requires the pror written consent of the company cis96 Nexus Special Interests. All reasonabie care th taken in the preparation of the magazine contents, bur the publishers cannot be held legally responstobe tor enors. Where mîstakes do occur, a correction will normally be pubilshed as soon as possible afferwards. Al prices and data ccotained in adverisements are accepted by us in grood faith as correct at the time of going to press. Netther the advertisers nor the pubbishers can be hedd respon sibte, however ${ }_{\text {a }}$ for any variations affecting price or avalability which may occur ather the publication has crosed for pross
Subscription rates-UK £25.80 Eurode £34.70 Stering Overseas £38.20 US Dollars Overseas $\$ 54.00$
Published by Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead MP2 7ST. Telephone (01442) 66551. UK newstrade distribution by Comag Megazine Marketing. Tavistock Road, West Drayton, Middlesex, UB77OE. Overseas and non-newstrade sales by Magazine Sales Department. Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST. Telephone (01442) 66551. Facsimile (01442) 66998. Subscriptions by Nexus Subscription Dept, Tower House, Soverign Park, Lathkill Street, Market Hartorough, Leicestershire, LE 16 PEF
US subscriptions by Wise Owl Worrdwiche Publications. 4314 West 238th Street, Torrance. CA90505 USA. For Visa/Mastercard orders in USA - Telephone (310) 375 6258 Fax (310) 3750548 . Pacific Time: 9 am-9pm Weekdays. 10 anl-6pm Weekends. Luc. Bristot.

Electronics Workbench

Design and Verify Circuits Faster
 Join over 40,000 customers using the affordable mixed-signal simulator

Design faster with Electronics Workbench. Mix the analog and digital components and ICs in any combination. And with a click of the mouse, try 'what if' scenarios and fine tune your designs. The built-in SPICE simulator gives you real-world waveforms.

All without programming or netlist syntax errors.

And in minutes. Not hours or days.
You'll be up and running sooner. And create better designs faster with Electronics Workbench. We guarantee it!

RG Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Fax: 44 (0) 1203233210
Shipping charges UK 56.99 All prices are plus VAT.
All trade marks are the property of their respective owners.
Electronics Workbench ia a trademark of Interactive Image Technologies Ltd.
Toronto, Canada.

Electronics Workbench:
£199

- Click \& drag schematic capture
- Mixed analog/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analog components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions
- Free unlimited technical support
- 30-day money-back guarantee

Engineer's Pack:

£399

- Electronics Workbench
- 2,450 models
- Import/Export SPICE netlists
- Export to PCB packages

To discover more about the affordable mixed-signal simulator, call us today at:

44-(0)-1203-233216
VISA

Fax: 44(0)-1203-233210

The new Maplin MPS catalogue is out September 1996, reserve your copy now
only $£ 3.45$ (ree post \& packing when you reserve your copy by 31 August)
Phone 01702554161
Also available from September at WH Smith and John Menzies.

MAPLIN ELECTRONICS pIc,
PO Box 3, Rayleigh, Essex SS6 8LR

MAPLIN - $\mathbf{3 5}$ locations throughout the UK
Barnsley (Wombwell), Belfast, Birmingham, Bradford, Brighton, Bristol, Cardiff, Chatham, Coventry, Dudley, Edinburgh, Glasgow, Leeds, Leicester, Liverpool, London (Edgware), London (Forest Hill), London (Hammersmith), London (IIford), Manchester (Cheetham Hill), Manchester (Oxford Road), Middlesborough, Milton Keynes, Newcastle-Upon-Tyne, Northampton, Nottingham, Portsmouth, Preston, Reading, Shetfield, Slough, Southampton, Southend, Stockport, Stoke-on-Trent

MAPLIN MONDO SUPERSTORE now open at 3 Regent Street, LEEDS. Look out for new stores opening in your area soon!

[^0]: Used Equipment - Guaranteed. Manuals supplied it possibie dering. CARRIAGE all units E^{16}. VAT to be added to Total of Goods and Carriage.

