\\ \title{
ELECTRONICS\\ \title{
ELECTRONICS TODAY INTERNATIONAL
} TODAY INTERNATIONAL
}

Fipe D] (SI
Alectronics Workbenctr for Windows Pc

1

Digital
Dharma

Using the pe

an 8031 sinele bocir compulen
Momine abciratis mehics diyplel

plus

S iestoring antique electionics
ر porfable audio mier
, Rechargeable pSU
THEN ASK YOUR NEWSAGENT

MAY $1996 £ 2.50$

Integrated PCB and Schematic Design System for Windows ${ }^{\text {M }}$

"..a very capable package which will be of interest to many electronic designers, especially because of its low price."
 * Review of Quickroute 3.5 PRO+, CADCAM March 96

"Ease of use: Accessible to complete novices" *
Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows With its multiple button bars, tool tips and parts-bin you will find that Quickroute helps you to work qu ckly and efficiently.
"Value for money: Very good" \#"
Whichever version of Quickroute you choose you can be sure of getting value fo- money! Quickroute is avallable with multi-sheet schematic capture, 1-8 laye- auto-routing, copper fill, engineering change, and a range of popular file import/export features allowing connection to simulators and other so tware packages. See the table for a selection of features.

Prices are Designer ($£ 149$), PRO ($£ 249$) and PRO+ ($£ 399$). Póst and packing is £5 (UK), $\partial 8$ (Europe), $£ 12$ (worldwide). VAT mLst be added to the total price.

		꽁	-
integrated PCB \& Schemolic Desion	V		\checkmark
Schematic Capture	W	V	\checkmark
Design Rule Checking (DRC)	V		V
Mull-sheet schematics			\checkmark
Exporl WMF $\frac{1}{}$ Tango		\checkmark	\checkmark
Aut rouler (1-8 loyers)		\checkmark	∇
Expon Gerber/Nc-Drill			\checkmark
Extended tibraies		V	\checkmark
Tango + Geiber Import			V
Update PCB from schematic			\checkmark
DXF \& SPICE Export			V
Copper fill			\checkmark

Tel/Fax 01614497101 ᄃ

WWW: www.quickroute.co.uk EMail: info@quicksys.demon.co.uk Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

Contents

Volume 25 No. 5

Electronics and the Web 10
Nick Hampshire takes a look at the Internet and the World Wide Web and how developments in the technology will affect all of us

Rechargeable PSU 20

Terry Balbirnie's handy bench power supply

ETI Games Port Tutorial 26

Stephen Smith looks at the unexplored world beneath the games port

Valve radio servicing and restoration

Paul Stenning continues his exploration of 'antique electronics'
Portable audio mixer part 2
Tony Sercombe concludes his portable audio mixer project
Matrix display message driver, Part 2

Dr Pei Ann continues the construction of the single board computer, starting with a look at the operation of the 8155

Regulars

News 7
Practically Speaking
Terry Balbirnie's regular look at workshop practice

PCB foils
Around the Corner 74
Nick Hampshire takes a look at the technology of tomorrow

Subscribe \& Save
Phone the hotline and take advantage of our special offer detailed on page 66

Pico Releases PC

 PotentialPico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Gall for your Guide on 'Virtual Instrumentation'.

S LA-16 \& S.LA-32 Logic Analysers

ADC-100 virtual Instrument
Pocket sized $16 / 32$ channel Logic Analysers

ADC-10
1 Channel 8 bit

- Lowest cost in the Pico range
- Up to 22 kHz sampling
- 0-5V input range
- Connects to PC serial port.
- Up to 50 MHz sampling.
- Internal and external clock modes.
- 8K Trace Buffer.

SLA-16 £ 219 SLA-32 £349 with software, power supply and cables

Carriage UK free, Overseas $£ 9$ Oscilloscope Probes $(x 1, x 10) ~ £ 10$

Dual Channel $\mathbf{1 2}$ bit resolution

- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate $(100 \mathrm{kHz})$ and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to a wide variety of signals. AOC-100 with PicoScope $£ 199$ with PicoScope \& PicoLog $£ 219$

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port. ADC-10 with PicoScope $£ 49$ PicoScope \& PicoLog £59

SURVEILLANCE TELESCOPE SuperD Russian zoom telescope adjustable from $15 \times$ to 60×1 complete with metal tipod (imposibie to use without this on the higher settings) 66 mm lense. leather carying case $£ 149$ rel BARE9
RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, ideal for remote monitoring, whole ouilaing coverage elc. Complele with delector, cable and sotware. WIRELESS VID
WIRELESS VIDEO BUG $\mathrm{K} \Pi$ Transmits video and audio signals from a minature CCTV camera (Included) to any standard teevision! All the componenis including a PP3 battery will fit into a cigarette packet with the lens requing a hole about 3 mm diameter. Supplied with telescopic aerial but a plece of wire about 4°. long will still give a range of up to 100 metres A single PP3 will probably give less than 1 hours use. 699 REF EP79. (probably not licensable) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams. 12 v 100 mA . auto electronic shutter, 3.6 mm F2 lens. CC1R, 512×492 pixels. video ouput is iv p-p (75 ohm). Works directy into a scant of pixels, video ouput is viv-p (75 ohm). Works directy info a
videc input on a N or video. RR sensitive. $£ 79.95$ ref $E F 137$.
IR LAMP KTT Sutable for the above camera enables the camera 10 be used in total darknessl $£ 5.99$ ref EF138
REMOTE CONTROLTANDATA TD1400 MODEM/ VIEWDATA Complete system comprising 1200075 modem, auto dialler, infra red remote keyooard, (couldide adapted tor PC use?
psu, UHF and RGB outut, phone lead, RS232 outu, composite output. Absolute bargain lor pants alonelic9. 95 rel BAR33.

9 WATT CHIEFTAN TANK LASERS Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for alignement, 7 mile range, full circult diagrams, new price $£ 50,000$? us? $£ 349$. Each unit has two gallium Arsenide injection lasers, 1×9 watt, $1 \times$ 3 w att. 900 nm wavelength. 28 vdc .600 hz pulse frequency. The units
also contain an electronic receiver to detect reflected signals from targets. five or more units E299 ea. £349 for one. Ref LOT4.

TWO WAY MIRRORKIT Ind udes speaal adhesive film to make two way mirrorss) up to $60^{\circ} \times 20^{\circ}$. (glass not included) includes full instructions. \& 12 ref TW1
NEW HIGH POWER RF TRANSMITTERS AMPLIFIERS Assembled $P C B$ transmitters, 4 types available 12.6 vgc 90 watt $1.5-30 \mathrm{mhz} 75 \mathrm{hm}$ in/out FM/AM £ 75 ref RF1 12.6 vdc 40 watt $50-200 \mathrm{mhz} 50 \mathrm{ohm}$ in/out FM/AM $£ 65$ ref RF2 $28 v d c 125$ watt $1.5-30 \mathrm{mhz} 750 \mathrm{hm}$ in/out FM/AM E85 ref RF3 28 vcc 100 watt $50-200 \mathrm{mhz} 50 \mathrm{omm}$ in/out FM/AM E75 ref RF4 A heat sink will be required, ring for price and availability. If you intend using these as audio transmitters you will need a aiso If you intend using these as audio rransmiters you will need COMPUTERNORKSHOP/HIFI RCB UNTTS Complete protection from faulty equipment for everybodyt Inline unit its in
standard IEC lead (extends it by 750 mm). fitted in less than 10 standard IEC lead (extends it by 750 mm). fitted in less
seconds. resethest bution, $10 A$ rating. $£ 9$ each Ref MM5.

RADIO CONTROLLED CARS FROM $£ 6$ EACHIII! All retums from famous manufacturer, 3 types available, single channel (left, right, forwards, backwards) £6 ref LOT1. Two chanel with more features $£ 12$ ref LOT2. Two channel proportional (plug in crystals etc) $£ 35$ ref LOT3.

THOUSANDS AVAILABLE RING/FAX FOR DETAILSI MAGNETIC CARD READERS (Swipes) E9.95 Cased with flyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. just E 9.95 ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you Information on setting up different businesses. you peruse these at
your leisure using the teat editor on your PC. Also inciuded is the your lessure using the tert editor on your PC. Also inciuded is the
certificate enabling you to reproduce (and sell) the manuals as much as you likel §14 rel EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or verbical mode. Complete with strap $£ 7.99$ red BAR
COIN OPERATED
COIN OPERATED TIMER KIT Complete with coinsiot mechanism, adjustable ime delay. relay output, put a coinslot on
anything you likel TV.s videos. indges, drinks cupboards. HIFI. anything you likel TV.s. videos. Indges, drinks cupboards. HIFI.
takes 500^{\prime} 's and $£ 1$ cons. DC operated. price just $£ 7.99$ ref BAR27. takes $50 p^{\prime}$ s and $£ 1$ cons. DC operated. price just $£ 7.99$ ref BAR27.
ZENIH $900 \times$ MAGNIFICATION MICROSCOPE Zoom, ZENTH $900 \times$ MAGNIFICATION MICROSCOPE Zoom,
metal construction, built in tight, shrmp larm, group viewing screen, metal constructon, bult in ingm, SMLT
lots of accessories $£ 29$ ret ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence $£ 4.99$ ref BAR67
NIG HTSIGHTS Model TZSA with infra fed illuminator, view S up to 75 metres in full darkness Ininfrared mode, 150 m range, 45 mm lens, 13 deg angle of view, focus sing range 1.5 m to infinity. 2 AA Dattenes required. 950 g weight. $£ 199$ ref BAR61. 1 years warranty
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A
20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm}$ £5.99 ref SMC1640A TAL- 1110 MM NEWTONLAN REFLECTOR ; ELESCOPE Russian. Supert astronomical 'scope, everything you need for some serlous star gazingl up to 169x magnification. Send or fax for further details 249 ref TAL-1
GOT AN EXP ENSIVE BIKE? You needone ofourbortle alarms they look like a standard water bottle, but open the top, insert a key to activate a motion sensor alarm builtinside Fits all standard botbe
cariers, supplied with two keys SALE PRICE 67.99 REF SA 32 camiers, supplied with two keys SALE PRICE 57.99 REF SA 32. GOT AN EXPENSIVE ANYTHING? You need one of our
cased vibration alams, keyswitch cperated. fully cased just th it to

WOLVERHAMPTON BRANCI NOW OPEN AT WORCESIER ST
 WUHAMPTON TAL 01902 22039

PP3 battery, UK made. SALE PRTCE EA. 98 REF SAC3.
DAMAGED ANSWER PHONES These are probably beyond repair so just $£ 4.99$ each. BT response 200 machines REF SA30. COMPUTER DISC CLEAROUT We are lef witha lot of sotmare packs that heed cleanng so we are selling al disc value oniy 50 discs lor E4, thats just 80 eachl! (our choice of discs) EA nef EP66
IBM PS2 MODEL $160 Z$ CASE AND POWER SUPPL Complete with fan etc and 200 wat power supply. 18.95 ref EP67 DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$ $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyleads and IEC socket SALE PRICE $\mathbf{E 9 . 9 9}$ rel EP56
1.44 DISC DRIVES Standard PC $3,5^{\circ}$ drves butretums so they will need attention SALE PRICE E4. 98 ref EP68
1.2 DISC DRNES standard 5.25° drives but returns so they will need attention SALE PRICE NOW ONLY E 3.50 rel EP69
PP3 NICADS Unused but some storage marks $£ 4.99$ ret EP52 DELL PC POWER SUPPLIES (Customerreturs) Standard PC psu's complete with fly leads, case and fan, $+12 \mathrm{v},-12 \mathrm{v},+5 \mathrm{v},-5 \mathrm{v}$ SALE PRICEE 1.99 EACH worth infor the bits alone refDL 1 TRADEPACK OF 20 E29.95 Ref DL2
GAS HOBS ANDOVENS Brand new gas appliances. perfect for small fats etc. Basic 3 burner hob-SALE PRICE $\mathbf{E 2 4 . 9 9}$ ref EP72 Basic small built In owen SALE PRICE E79 rel EP73
RED EYE SECURITY PROTECTOR 1,000 watt outdoor PIR switch SALE PRICE E8.98 rel EP57
ENERGY BANK KIT $1006^{\circ} \times 6^{\circ} 6 \mathrm{v} 100 \mathrm{~mA}$ panels, 100 diodes, connection details etc. £69.95 ref EF 112.
PASTEL ACCOUNTS SOFTWARE, does everyanng for all sL2 es of businesses, Indudes wordprocessor, report witter, windowing. networkable up to 10 stavions, multiple cash book etc. 200 page comprehensive manual. 90 days free technical suppori ($0345-326009$ try before you buyl) Current retail price is $£ 129$. SAL E PRICE $£ 9.95$ ret SA12 SAVE E12011
COMPLETE PC 200 WATT UPS SYSTEM TOp of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts New and boxed. UK made Provides up to 5 mins running tme in the event of complete power failure to allow you to run your system down correcty. LAST FEW TO CLEAR AT E49 SAVE E30 ref LOT61 BIG BROTHER PSU Cased PSU, 6v 2A output, 2m op lead, 1.5 m input lead, UK made, 220v 3ALE PRICE C4. 89 REF EP7

httpi//www.pavillon.00.uk/bull-eleotrical RACALMODEM BONANZA I Racal MPS 1223120075 modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the net! all this for just $£ 13$ rel DEC13.
4.6 mw LASER POINTER. BRAND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks Ilke a nice pen) complete with handy pocket olip (whioh also acts as the onjoff swithh.) About 60 metres ranjel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. just £39.96 ref DEC49 TRADE PRICE 28 MIN 10 PIECES

BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Sutmulation) Unit, complete with electrodes and full Electrical Nerve Sutmulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of sufferers. Drug free pain relied, safe and easy to use, can be used in
conjunction with analgesics etc. £A9 Ref TEN/1 RUSSIAM MONOCULARS Amazing RUSSLAN MONOCULARS Amazing 20 times magnincation, coated lenses, carrying case and shoulder strap $£ 2995$ REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TV Into a basic VGA screen Complete withbulh in psU, lead and s/ware.. Ideal for laptops or a cheap upgrade. Supplied in kit form for home assembiy. SALE PRICE E25 REF SA34
EHERGENCY LIGHTING UNTT Complete unit with 2 double bulb floodights builtIn charger and auto switch, Fully cased, 6v 8AH lead acid req'd. (secondhand) EA ref MAGAP11
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently avallablethe month. 12v15AH 1 E 18 rel LOT8 and 6v 104 (suitable for emergency lights above) at just £6 ref LOT7.
ELECTRIC CAR WINDOW DE-ICERS Complete with cable plug etc SALE PRICE JUST E4.99 REF SAz8 AUTOSUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpaner with diode and 3 metre tead ftted with a clgar plug. 12v 2watt E8.99 REF SA25. ECLAT RON FLASH TUBE As used in police car fashing ligh etc, full spec supplied, 60-100 flashes a min. E6.99 REF SA15B.

- Some or our pronucte mat be unlicensable in thi uk

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUEAKX
BN3. SOT, (ISTABLISMED SO WEARS. MAIL ORDER TERMS: CASIL, DO OR CHEQUE WITH ORDe plus as rev huis Var

 TLL: 01273203500 FAX 01273323077
E-mail ballopavilion.co.uk

24V AC 96WATT Cased power supply. New. E9.99 REF SA40
MICRODRNE STRIPPERS Small cased tape drives ideal fo stripping, iots of useful goodies including a smatt case, and lots of componerts SALE PRICE JUST CA. 99 FOR FIVE REF SA26 3OLAR POWER LAB SPECLAL You get TWO $6^{\circ} \times 6^{\circ}$ 6v 130 mA olar cells 4 LED's. wire. buzzer, switch plus 1 relay or motor. Supert alue kit SALE PRICE JUST CA. 99 REF SA27
RGB/CGA/EGATTL COLOUR MONTORS 12° in good condition. Back anodised metal case. SALE PRICE E49 REF SA 166 PLUG IN ACORN PSU 19v AC 14w , £299 REF MAG3P 10 13.8V 1.9A PSU cased with leads. Just $£ 9.99$ REF MAG10P3 UNNER3AL SPEED CONTROLLER KTT Designed by us fo he C 5 movor but on for any 12 v motor up to 30 A . Complete with PCB A near sink may be required, £17.00 REF: MAG17
PHONE CABLEAND COMPUTER COMMUNICATIONS ACK kit contains 100 m of 6 core cable, 100 cable clips. 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cos method of communicating between PC's over a long distance utilizing the serial ports Complete kit $£ 8.99$. Ref comp 1.
VIEWOATA SYSTE幍S made by Phillips, complete with intemal 120075 modem, keytoard, Psu etc RGB and composite outputs nenu driven, autodialler eic. SALE PRICE $£ 1299$ REF SA18
AIR RIFLES .22As used by the Chinese army for training puposes so there is a lot about! £39.95 Ref EF78. 500 pellets $£ 4.50$ ref EF80 PLUG IN POWER SUPPLY SALE FROM £1.60 Plugs \ln to 13A socker with outputlead. three types avalatle, 9 vocc 150mA£1.50 el SA19 Bvac 200 m A $£ 200$ re1 SA 206.5 vdc 500 mA E2 re1 SA21. VIDEO SENDER UNTT. Transmits both audio and video signals rom either a video camera, video recorder, TV or Computer eic to any tandard TV set in a 100^{\prime} rangel (tune TV to a spare channel) 12 VDC -MINATURE RADIO TRANSCENERS A pair of walkle talkies ith a range up to 2 kmin open country. Unts measure $22 \times 52 \times 155 \mathrm{~mm}$ nduding rases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 FR日 TRANSMATTER KIT housed In a standard working 13A adapterll the bug runs directy off the mains solasts foreven why pay £700? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio. -FM BUG BUILT ANDTESTED superior design to kit. Supplled to detective agencies. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COAPLETE WITH COINSLOT M ECHANISMS onginally made to retail at 19 each these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broke ainges How ever they can be adapted for therr original use or usedfo omething, else?? SALE PRICE JUST E2.50 REF SAZ3
GAT AIR PIBTOL PACK Complete with pistol, darts and pellets E12.95 Re EF82B extra pellets (500) CA. 50 ref EF80.
"X12" AMORPHOUS SOLAR PANEL 12v $155 \times 310 \mathrm{~mm}$ 130 mA S MLE PRICE C4.99 REF SA24
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5F 13 ideal for experimentersi 30 m for $£ 12.99$ ref MAG13P

MDXED GOODIES BOX OF
 MIXED COMPONENTS WEIGHIMG 2 KILOS
 YOURS FOR JUST E5.99

4×28 TELESCOPIC SIGHTS Sultable for all alr rines. ground lenses. good light gathering properties $£ 19.95$ rel R R.
RATTLE BACKS interesting things these, small piece of solid perspex lime material thatity you try to spin it on the desk it only spins ne wayl in fact ifyou spin n the 'wrong' way it stops of its own accord YROSCOPES R Way
GYROSCOPES Rememberthese? well we have found a company that still manufactures these popular scientific toys, perfect giti or for educational use etc. E6 rel EP70
HYPOTHERAIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foll blanket reflects more than 90% of body heat. Also sutable for the constuction of two way mirrors! $£ 3.99$ each rel Oh(04
LENSTATIC RANGER COMPASS Oil filled capsule, strong netal case large luminous pornts Sight line with magnifying viewer 50 mm dia, $86 \mathrm{gm}, £ 10.99$ ref OK604.
RECHARGE ORDINARY BATTERIES UP TO 10 TMESI with the Battery Wizard Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, O, fou at a imel Led systern shows when batteries are charged, automatically teects unsutiable cells. complete with mains adaptor. BS approved. Price is $£ 21.95$ ref EP31.
TALKING WATCH Yes, it actually tells you the ime at the press of button. Atso features a valce alam that wakes you up and tells you that the ime is! Uthium cell ind uded. $£ 799$ ref EP26

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new mulitiband 2000 radar detector can prevent even the mostresponsible of divers from losing thelr licencel Aqustable audible alarm with 8 fashing leds gives inslant warning of radar zones Detects X,K, and Ka bands. 3 mile range. "over the hill

Can pay for itsefi in just one dayl $£ 79.95$ ref EP3
SANYO NICAD PACKS $120 \mathrm{~mm} \times 14 \mathrm{~mm} 4.8 \mathrm{~V} 270 \mathrm{maH}$ sutable or cordess phones etc. Pack of 2 Jusi $£ 5$ ret EP78.
3" DISCS As used on older Amstrad machines. Spectrum plus3's etc $£ 3$ each ref BAR400
STEREC MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, fiters etc etc very comprehensive microscope that would normally be around the $£ 700$ mark our price is justE.
95 B00.
WE BUY SURPLUS STOCK FOR CASH
BUYERS DIRECT LINE 0860425692 FREECATALOGUE
100 PAGE CATALOGUE NOW AVAILABLE, 50P STAMP OR FREE ON REGUEST WITH ORDER.

200 WATT INVERTERS Nicely cased unts 12 V Inpul 240 V ouput 150 watt continuous, 200 max. $£ 49$ ref LOT 62
6.8NW HELIUM NEON LASERS New Units, 665 ref LOT 33 COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens $£ 10$ rel LOTz0.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Effective device, X-ray sealed assemblies, can be used for TELEKINETIC ENHANCER PLANS Mystity and amaze your finends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yetproducespositivemotionand effed. Excellent for science projects, magic shows, party demonstrations or serlous research \&
development of thls strange and amazing phychic phenomenon. development of thls
E4/set Ref F/TKE1
ELECT RONIC HYPMOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Induded is a ful votume reference text and several construction plans that when assembled can produce highly effective stmull. This material must be used cautiously. It is for use as entertainment at parties etc only. by those experienced in its use. $£ 15 / \mathrm{set}$. Ret F/EH2
GRAVITY GENERATOR PLANS This unlque plan demonstrates a simple electrical phenomena that produces an antigravity effect. You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate. WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, expenment with extraordinary HV ellects, 'Plasma in a ar, St Elmo's fire, Corona excell ent science prolect or conversation iece. $£ 5 /$ set Rel F/BTC1/ G5
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality sumilar to Argon laser but easier and less costly to build yet far more eflident. This particutardesignw as developed at the Atomic Ene rgy Commision of NEGEV In Israel. £10/set Ref F/CVLI
VOICE SCRAM BLER PLANS Minature solid state system turns speech sound into indecipherable nolse that cannot be understood without a second matching unit. Use on telephone prevent third party listening and bugging. £6/set Ret FNS9
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that will completely disrupt TV picture and sou BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development, etc. Excellent securti) BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and meirng materials over considerable distance. This laser is one of the most effident. converting 10\% input power Into useful output. Not only is this device a workhorse in welding. cutuing and heat processing materials but it is also a likely candidate as an effective directed energy beam
weapon against missiles, alrcrat, ground-to-ground, etc. Particle weapon against missiles. alrcraft, ground-to-ground, etc. Particle beams may very well utilize a laser of this type to blast a channel In the atmosphere for a high energy stream of neutrons or other
particles. The device is easily applicable to burning and etching particies. The device is easily applicable to burning
wood, cutting. plastics. texbiles etc £12/set Ret F/LC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float In air and move to the touch. Defies gravity amazing gift, conversation plece, magic trick or science profect $£ 6 /$ set Ret FIANTIK.
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize
liquides. Many cleaning uses for PC boards, jewllery, coins, sma! parts etc. £6/set Ref FNLB1.
ULTRA HIGHGAIN AMP/ST ETHOSCOPICMIKESOUND AND VIBRATIOM DETECTOR PLANS Ultrasensitive device enables one to hear a whole new wond of sounds Listen through enalls. windows, floors etc. Many applications shown, from law enforcement. nature listening.
devices $£ 6 /$ set Ref $F / H G A 7$
ANTI DOG FORCE FIELD PLANS Highry effective drcun produces tme variable pulses of accoustical energy that dogs
cannot tolerate $£ 6 / \mathrm{set}$ Ref $\mathrm{F} / \mathrm{DOG} 2$
LASER BOUNCE LISTENER SYSTEM PLANS Allows you
to hear sounds from a premises without gaining access. E12/set Rel
F/LLIST1
LASER LIGHT SHOW PLANS Do il yourself plans show three methods £6 Rel F/LLSi
PHASOR BLAST WAVE PISTOL SERIES PLANS PHASOR BLAST WAVE PISTOL SERIES PLANS
Handheld, has large transducer and battery capadity with extemal Handheid, has large transdu
controis. E6/set Ret F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabberl room monitor. The ultmate in home/office secuity and safetyl simple to usel Call your home or office phone, push a secret tone on your
teleohone to access either. A) On premises sound and volces or B) telephone to access either: A) On premises sound and volces or B)
Existing conversation with break-in capability for emergency Existing conversation with bre
messages. $£ 7$ Ref FTELEGRAB.
BUG DETECTOR PLANSIs that someone geting the goods on you? Easy to construct device locates any hidden source of radio energyl Sniffs out and finds bugs and other sources of bothersome interference Detects low, high and UHF frequencies. E5/set Ref F/ BD1.
ELECT ROMAGMETIC GUN PLA NS Projects a metal object a considerable distance-requires adult supervision i5 ref FfeML2.
ELECTRIC MAN PLANS, SHOCK PEOPLE NITH THE TOUCH OF YOUR HANDI £5/sef Ref F/EMAI PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get o hostle premises Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optional wireless link system. E8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATORPLANS

WOLVERHAMPTONBRKICH

 NOW OPEN AT WORCESTER ST WHAMPTON TEL 0190222039INFINTTY TRANSMITTERS The ultmate 'bug' fis to any phone or line, undetectable, listen to the conversations in the room
from anywhere In the wond! 24 hours a day 7 days a week! just call from anyw here In the wond! 24 hours a day 7 days a week! just call
the number and press a button on the mini controiler (supplied) and the number and press a button on the mini controiler (supplied) and
you can hear everythingl Monitor conversations for as long as you you can hear everythingl Monitor conversayons for as long as you choose $£ 249$ each, complete with leads and mini controlent Ref
LOT9. Undetectable with normal RF detectors. fitted In seconds, no batteries required, lasts foreven
SWITCHED MODE PSU'S 244 watt, $+532 A+126 A,-5$ a.2A 120.2A. There is also an optional 3.3 v 25 A rail available. $120 / 240 \mathrm{v} / \mathrm{l}$ P. Cased. $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Sulable for PC use $(6$ d/drive connectors 1 mfoard). £10 ref PSU1.
VIDEO PROCESSOR UNTST//6V 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certalniy make good stippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear, Inside $2 \times 6 v$ 10AH sealed lead acid batts, pct's and a $8 A$? i2v torroidiai transformer (mains in). Conditon not known, may ha RETRON NIGHT SIGHT Recognition of a standing man at 300 In $1 / 4$ moonlight, hematically sealed, runs on 2 AA batteries, 80 mm F1.5 lens. 20 mw Infrared laser included. £ 325 ref RETRON.
MINI FM TRA NSMITER KIT very high gain preamp, supplied complete whth FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover 63 - 130 Mnz . Works with a common 9v (PP3) battery. 0.2W RF $£ 7$ Ref 1001.
3-30V POWER SUPPLY KIT Varlable, stablized power supply for lab use Short circuit protected, suitable for profesional or amateur use 24v 3A transformer is needed to complete the kn. £14 Ref 1007. 1 WATT FM TRANSMITER KIT Supplied with plezo electric mic. 8-3Ovdc. At 25 -30r you will get neanly 2 wattsl $£ 12$ ref 1009. FM/AM SCAN NER KIT Well not quite, you have to turn the knob your self but you will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on Doth $A M$ and FM. Buitt in 5 watt amplifier, Inc speaker. £ 15 ret 1013
3 CHANMEL SOUNDTO LIGHT KT Wireless system, mains operated, separate sensitivity adjustment for each channet, 1.200 w power handling, microphone included. ©14 Ref 1014.
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. E20 Ref 1028.
STROBE LIGHT KIT Adustable from 1.60 hz (a lot faster than conventional strobes). Mains operated. £16 Ref 1037
LIQUID LEVEL DETECTOR KIT Usefulfortanks, ponds. baths. rain alam, leak detector etc. Will switch 2A mains. £5 Ref 1081. COMBINATION LOCK KT 9key, programmable complete with keypad, will swith 2A mains $9 v$ dc operation. $£ 10$ ref 1114 . PHONE BUG DETECTOR KIT This device will wam you if somebody is eavesdropping on your line. $£ 6$ rel 1130 .
ROBOT VOICE KIT Interesting circuit that distorts your vaicel adjustable, answer the phone with a different voicel 12vac $£ 9$ ref 1131 TELEPHONE BUG KIT Smali bug powered by the 'phone line, starts transmitting as soon as the phone is picked upl £8 Ref 1135. 3 CHANNEL LIGHT CHASER KIT 800 watts per channel speed and direction controlssupplied with 12 LEDS (you can fittiracs speed and direction controlssupplied with 12 LEDS (you can itt
instead to make kt mains, not supplied) $9-12 \mathrm{Vdc}$ £17 ref 1026. 12V FLOURESC ENT LAMP DRNER KIT Light up 4 foot tubes from your car battery gy a transfomer also required 4 ref 1069. VOXSWITCH KIT Sound activated switchideal for making bugging tape recorders etc, adjustable sensitivity. £8 rel 1073.

Check out our WEB SITE

https//www.pavillon.co.uk/bull-eleotrical
PREAMP MIXER KIT 3 input mono mixer, seo bass and treble controls plus individual level controls. 18 vac , input sens 100 mA . 15 ref 1052.
METAL DETECTOR KTT Range $15-20 \mathrm{~cm}$, complete with case, gvac. £8 ref 1022
SOUND EFFECTS GENERATORKT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects to your proiects for Jusi $£ 9$ ret 1045 ,
16 WATT FM TRANSMTTER (BUILT) 4 stage high power. preamp required 12 -18vcc, can use ground plane, yagi of open dipole. $£ 69$ ref 1021
HUMIDTY METER KTT Bullas into a precision LCD humidity meter, 9 ic design. pcb. Icd display and all components included. E29 PC TMER KTT Four channel outut controlied by your PC, wili switch high current mains with reiays (supplied). Software supplied so you can program the channeis to do what you want whenever you -some or our producte mat be unlicensable in the us
BULL ELECTRICAI
50 PORTLANO ROAD, HOVE SUSSEX
BN3 SOT. (ESTABUMSHED 50 YRARA),
MAL ORDER TERME.CASE, PO OR CHEQUN

PFASR ALLOW 7 10 DAYS FOROELYERPHONA UROBRA TRL: 01273203.50 MAX 01273 323077
S-mailbull@pavalion.co.uk

DNINING RODS Expensive technology cannot challenge the foot proco artofwaterdivining, passed down from generation togeneraton. Seeng is believing. Use in the home. ga.
HUGE BUBBLE MAKING KT Youll be amazed at the the size of the bubbles you can acheive winh his bubble making kn. Once you of the bubbles you can acheve with hins bubble making kn. Once you
have got the knack tis possible to make bubbles of up io 40 feet long. K11.99 rel E9.
FM CORDLESS MICROPHONE This unitis an FM broadcasiling FM CORDLESS MICROPHONE This Unitis an FM Mroadcasting
station in minature. 3 transistor transmitter with electret condenser station in minature. 3 transistor transmitter why electret condenser
mict tet amp design resutin maximum sensivity andboad frequency mic+ fet amp design resutin maximum sensibvity andbroad frequency
response. $90-105 \mathrm{mnz}$, $50-1500 \mathrm{kz}$, 500 foot range in open country response 90 - $105 \mathrm{mhz}, 50-1500 \mathrm{hz}$, 500 to
PP3 battery required. $£ 15.00$ ret 15P42A.
MAG NETIC MARBLES They have been around for a number of years but stll give nse to curlosity and amazement. A pack of 12 is Just E3.99 ref GIIR20
STETHOSCOPES A fuly functioning stethoscope for all those intricate projects Enables you to listen to motors, pipes, hearteeats, walls. Insects etc. $£ 6$ rel MAR6P6.
NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts into showpieces in 3 hours! Will plate onto stee, Iron, bronze, gunmetal, copper, werded, siliver soldered orbrazed steet iron, bronze, gunmeata, copper, welded, isiver s.adereaorbrazed
joints. Kit includes enough to plate 1,000 sqinches. You will also need a 12 v supply, a container and 212 v light bulbs. $€ 39.99$ ref NIK 39 . Minature adjustable timers, 4 pole olo output 3 A 240 v , HY1230S, 12vDC adjustable from 0-30 secs. $£ 4.99$ HY1260M. 12 VOC adjustable from 0.60 mins. $£ 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240V adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Small voice activated recorder. uses micro cassette complete with headphones $£ 28.99$ refMAR29P 1.
POWER SUPPLY fully cased with mains and op leads $17 V$ DC 900 mA output Bargain price $£ 5.99$ ref MAG6P9
9 V DC POWER SUPP LY Standara plugin type 150 ma 9 V DC with read and DC power plug. price for two is $£ 2.99$ ret AUG3P4. COMPOSTTE VIDEO KIT. COnverts composite videointo separate H sync, V sync, and video. 12 DC . £8.00 REF: MAG8P2. FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dive connectors 1 mother board connector. 150 watt. 12 V fan, iec inlet and onforl switch $512 \operatorname{Ret}$ EF6
VENUS FLYTRAP KTT Grow your own carnivorous plantwith this simple bit $£ 3$ rel EF34.
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~N} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price Jusi E5 59 ea REF MAGGP 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MACSP 13 Ideai for experimenters) 30 m for $£ 1299$ ref MAG13P1 ROCK LIG HTS Unusual inngs these two pieces of rock that glow when rubbed togethen belived to cause rainl£3 a pair Ref EF29.
3' by 1 ' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 70 \mathrm{~m}$ A wats, aluminnum lrame screw teminals. $£ 44.95$ ret MAGA5 ELECT RONIC ACCUPUNCTURE KTB Buids intoan electro version Instead of needlesi good to experiment with. $£ 7$ ref 7 P30 SHOCKING COIL KT Buid this litve battery operated device Into all sorts of things, also gets worms out of the groundl £7 ref 7 P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and fies! 50 m range $£ 6$ ref EF2.
HIGH POWER CATAPULTS Hinged am brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunitionis in excess of 200 miles per hourl Range oiover 200 metres! $¢ 7.99$ ref R/9.
BALLON MANUFACTURING KIT Bntish made, small Dlod bows Into alarge longlasing balloon, hours of funl£3.99 ref GI/E99R 9-0-9V 4A TRAMSFORMERS, chassis mount £7 ref LOT19A. 2.6 KILOWATT INVERTERS, Packed with batteries etc but as they weigh about 100 kg CALLERS ONLY E120. MEGA LED DISP LAYS Build your self a ciock or something with these mega 7 seg dilsplays 55 mm high, 38 mm wide 5 on a pCb for just 4.99 ref LOT16 or a bumper pack of 50 displays for just $£ 29$ re

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.
2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340 AT LEAST 200 CAPACITORS (SAME VALUE 99P REF BAR 342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUTT BREAKERS, OUR CHOICE TOCLEAR S9P REFBAR335 MICROWAVE CONT ROL PANELS TO CLEAR E2 REF BAR $32{ }^{\circ}$ 2 TUBES OF CHIP S(2 TYPES OUR CHOICE) 90P REF BAR305 LOTTERY PREDICTOR MACHINEII JUST E1.50 REF BAR313 HELLA LROVERELECTRIC H/LAMP LEVELLERE2 REF BAR311 SINCLAIR CS $18^{\prime \prime}$ TYRES TO CLEAR AT JUST 75P REF BAR318 LARGE MAINS MOTORS (NEW) TO CLEAR AT 75P REF BAR310 MODEMS EIC FOR STRIPPING E2.50 EACH REF BAR324 110V LARGE MOTORS (NEW) TO CLEAR AT SOP REF BAR332 MODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323 GX4000 GAMES COSOLES JUST EA REF BAR 320
SMART CASED MEMORY STORAOE DEVICE, LOADS OF BITS INSIDE, PCB, MOTOR CASE ETC. BUMPER PACK OF 5 COMPLETE UNITS TO CLEAR AT E250(FOR 5) REF BAR 330. 2 CORE MAINS CABLE $2 M$ LENGTHS PACK OF 4 E1 REF BAR 337
PC USERIBASIC MANUALS, LOADS OF INFO E1 REF BAR 304 PCB STRIPPERS TO CLEAR AT 2 FOR $99 P$ REF BAR 341 3 限 3CORE MAINS CABLE AND $13 A$ PLUG. 60P REF BAR325

WE BUY SURPLUS STOCK FOR CASH

BUYERS DIRECT LINE 0860425692
FREE CATALOGUE
100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE ON REGUEST WITH ORDER.

Mitsubishi Launches High Performance Embedded Development Kit

Mitsubishi Electric, in conjunction with IAR Systems, has announced the introduction of the new DK16 embedded development kit for the M37700 family of 1Gbit microcontrollers. The new kit provides C source level debugging and costs $£ 549$ plus VAT. It comes complete with development board, IAR's Professional ROM Monitor Debugger and Macro Assembler. It is only available from Mitsubishi and IAR distributors Gothic Crellon and Micromark.

Mitsubishi's already successtul DK16 development kit has now been upgraded and personalised to function with the IAR Rom Monitor. The low cost system also includes free technical support for IAR's ROM Monitor and Assembler, together with a discount voucher for IAR's C Compiler for Mitsubishi M37700 microcontrollers. Also included are a 5 V power supply, 9-25 way adaptor and full documentation.

IAR's Assembler generates relocatable code and during the design process provides an extensive set of directives which allow total control of the code and data segmentation. Multiple modules are easily created within a file as are macro definitions and variable declarations. The Assembler also includes Xlink, the high speed memory based linker, locator and format generator, to produce 7700 prommable code.

IAR's Assembler is designed to interface fully with the company's 7700 C Compiler and also includes Xlib, the highly efficient and fast library manager.

In operation, IAR's Rom Monitor Debugger can be interfaced to provide source and command windows or alternatively user selectable windows. The source code execution lines are highlighted and break points can be, placed directly on the source line. Registers can display all the contents at any point in time and enable alterations to the contents to carried out using point and modify routines or specific commands.

The Monitor Debugger is designed to operate with IAR's Assembler and C Compiler and therefore enables full debugging of high and low level language. Its memory simulates the
device memory space. Multiple memory windows can be opened simultaneously and again contents alterations can be carried out using point and modify routines or specific commands. A Watchpoint displays the contents of the system variäbles and globals, locals, ştructures and arrays are all supported, with specific commands used for modifications,

A unique feature of the Monitor Debugger is the Terminal I/O which enables the monitor screen to act as the system output and the keyboard to act as the system input. The powerful command set contains mouse click or keyboard function key triggers for frequently used commands.

A built-in assembler disassembler is provided with the Monitor Debugger which also features a very high level of functionality to provide full symbolic debugging operations. Breakpoints and Watchpoints can be complex and unlimited. The IAR Linker generates Aubrof Formats providing the debugger with all the necessary information to perform register tracking of all dynamically allocated registers variables.

Notably the breakpoints are totally unlimited, whether they are the result of either complex conditions using macros or alternatively, simple line numbers.

For further information contact Mitsubishi Electric UK Ltd, Semiconductor Division, Hatfield. Tel: 01707-276 100.

Castle Sound Level Meters

Consisting of an Impulse SLM, an Integrating Leq meter and a Dosemeter, the range will enable companies who have been otherwise put off by cost or complexity to comply with the tealth \& Safety Regulations and meet their obligations to measure noise.
The new Castle Popular range employs the latest electronic technology and is micro-controller based providing powerful operation combined with long battery life. They are built to tha demanding IEC 651 Sound Level Meter Standards. Designed to cover three dimensions of industrial noise measurement there are three models, the GA208 for simple, instantaneous SPL and Peak measurements, the GA255 Noise Dosemeter and the GA214 Integrating meter with time we ghted averages (Leq) plus much more. Each model features a touch k.ypad for all major funciions and an 8 digit LCD. Their tough, lightweight todies are small enough to fit in any pocket for maximum portability, a real advantage for industrial users.
They comply with all the requirements of the European Noise at Work Regulations and come with comprehensive instructions and a complimentary book on noise measurement.
For further information contact: Castle Group Lid, Scarborough. Te:: 01723584250.

New Hitachi 16-bit microcontrollers

Mitsubishi Electric, in conjunction with IAR Systems, has announced the introduction of the new DK16 embedded development kit for the M37700 family of 1Gbit microcontrollers. The new kit provides C source level debugging and costs $£ 549$ plus VAT. It comes complete with development board, IAR's Professional ROM Monitor Debugger and Macro Assembler. It is only available from Mitsubishi and IAR distributors Gothic Crellon and Micromark.

Mitsubishi's already successful DK16 development kit has now been upgraded and personalised to function with the IAR Rom Monitor. The low cost system also includes free technical support for IAR's ROM Monitor and Assembler, together with a discount voucher for IAR's C Compiler for Mitsubishi M37700 microcontrollers. Also included are a 5 V power supply, 9-25 way adaptor and full documentation.

IAR's Assembler generates relocatable code and during the design process provides an extensive set of directives which allow total control of the code and data segmentation. Multiple modules are easily created within a file as are macro definitions and variable declarations. The Assembler also includes Xlink, the high speed memory based linker, locator and format generator, to produce 7700 prommable code.

IAR's Assembler is designed to interface fully with the company's 7700 C Compiler and also includes Xlib, the highly efficient and fast library manager.

In operation, IAR's Rom Monitor Debugger can be interfaced to provide source and command windows or alternatively user selectable windows. The source code execution lines are highlighted and break points can be placed directly on the source line. Registers can display all the contents at any point in time and enable alterations to the contents to carried out using point and modify routines or specific commands.

The Monitor Debugger is designed to operate with IAR's Assembler and C Compiler and therefore enables full debugging of high and low level language. Its memory; simulates the
device memory space. Multiple memory windows can be opened simultaneously and agaln contents alterations can
be carried out using point and modify routines or specific commands. A Watchpoint displays the contents of the system variables and globals, locals, structures and arrays are all supported, with specific commands used for modifications,

A unique feature of the Monitor Debugger is the Terminal I/O which enables the monitor screen to act as the system output and the keyboard to act as the system input. The powerful command set contains mouse click or keyboard function key triggers for frequently used commands.

A built-in assembler disassembler is provided with the Monitor Debugger which also features a very high level of functionality to provide full symbolic debugging operations. Breakpoints and Watchpoints can be complex and unlimited. The IAR Linker generates Aubrof Formats providing the debugger with all the necessary information to perform register tracking of all dynamically allocated registers variables.

Notably the breakpoints are totally unlimited, whether they are the result of either complex conditions using macros or alternatively simple line numbers.

For further nformation contact Mitsubishi Electric UK Ltd, Semiconducter Division, Hatfield. Tel: 01707-276 100.

Mitsubishi Fibre Optic Amplifier

Mitsubishi Electric has announced the introduction of the innovative FG-602S-T01 erbium dcped fibre amplifier which provides single mode direct amplification for optical filere signals for 1550 nm window applications. The amplifier is optimally designed to provide flat gain particularly over 1535 to 1565 nm and features alarm signal monitoring and automatic shutdown when transmissions cease.

Notably, the amplifier will amplify, all channels operating in the window and is designed to accommodate simultaneously a high number of crannels with very high data rates. The unit can amplify $60 \mathrm{Gbits} / \mathrm{s}$ in a single pass, making it ideal for amplifying traffic setween System X exchanges at large distances apart as well as for locel loops in fan-out applications and spur highways.

The advanced amplifier design comprises an erbium doped fibre optic coil to provide the gain, with the optical signals travelling through the amplifying erbium doped fibre, bi-directionally pumped by 1480 nr isolated laser diodes. Full temperature control for the pump lasers is electronically controled within the amplifier-housing and fibreoptic couplers combine the pumped sigrals into the doped optical fibre. The control circuitry generates TTL signals for pump bias and temperature alarms as well as for pump shutdown.

In cperation, both input and output optical interfaces provide sufficient isolation to prevent signal reflection kack to the system transmitter and to the internal laser oscillators. The amplifier is suppliec in a compact, static safe casing measuring $152 \times 122 \times 25 \mathrm{~mm}$, with heat sinl: mounting facilities and interface and monitor connector sockets.

Minimum large signal inputs of 25.5 dBm power are amplified by the unit to at least 15 cBm . Small signal irput power is 30 dBm and gain is a minimum 28 dBm , with a typical noise figure of 6 dB . The erb um doped amplifieoperates from maximum supplies of +6 V and -6 V . Typical
supply operation is from $+4.75-+5.2511$ at 3 A for the positive supply and $-5.4 \mathrm{E}--4.94$ at 3.6 A for the negative supply. Operating case temperature is zypically 250 C and 600 C maximum, with a storage tempe-ature range of -40 tc +70 C .

The optical interface is provided by two Coming MFD cladded, single mode 9/125um fibre optic links with AT\&T ST type-connectors. The electrical interface is via two 12 pin male connectors fcr power supplies, alarm and disable functions, with a 14 pin female connector for monitoring functions.

For further information contact Mitsubishi Electric L.K Ltd, Semiconductcr Division, Hatfield. Tel: 01707-276 100.

PC-104 for Embedded Control

IMS have expanded their range of PC-104 modules fcr embedded PC applications. The PC-104 modules offer the benefit of the standard PC-Bus architecture but on â miniature fom size, measuring only $3.6^{\prime \prime} \times 3.8^{n}$ and with exceptionally low power consumption. PC-104 is therefore ideal for enbedded applications where PC architecture is desired, but current PC Motherboa־d/Plug-in cards technology is too bulky and powerhungry.

The current range offered by IMS includes a diverse mix of products, including such modules as CPUs, Peripheral Interfaces (Hard/Floppy Disk), Serial \& Parallel VO. SVGA \& Flat Panel Display Controllers, l'CMCIA, Ethernet Network, RS422/485 Communications, Solic State Disks, Digtel I/O and Analogue AD \& D/A.

The PC-104 modules can be used as 'Lego' style building blocks, by interconnecting them in a stack, enabling a wide variety of configurations to be implemənted thereby offering the versatility and fexibility required in many diverse embedded applications. Because of the miniafure size, developers can now embed FC-Based control in a variety of machines and equipment, retaining the
development investinent based on PC technology as well as beneititing from the en:rmous development suppor: products available on the I'C.

Since its implementation in 1992 the PC-104 stancard has rapidly become an emerging interriational standard for modular miniaturised PC Architecture based technclogy, finding applications in a diversity of makets from med cal, communications, industrial, office equipment and mariy more.

For further information contact: IMS Ltd, Southampton Tel: (0703) 771143

Entering the WORLD W/JDE W/EB

We have all heard of the Internet and the World Wide Web, but are they of any real practical use to us in our working lives? Nick Hampshire takes a look at this question, as well as looking at how developments in the technology will affect all of us

To most people the terms 'Internet' and 'World Wide Web' simply imply something to do with computers and telephones. Something that is faintly subversive and the realm of obsessive technofreaks who pass the time untill the wee hours of the morning 'surfing the net'. But is it something that 'serious' professional people such as engineers, scientists and business people will find useful, or as the popular press would have us beleive is it totally given over to the weird and the wacky?

It is rather amusing that the popular image of both the Internet and the World Wide Web should be so firmly linked to such an image since both technologies were born from decidedly serious applications. The Internet arose from the US Department of Defence's need to create a global computer network to link supercomputers with defence establishments, defence contractors and universities. The World Wide Web was developed at the CERN atomic research establishment in Switzerland as a means of transferring research documents over the internet.

So both the Internet and the World Wide Web were developed with very serious applications in mind, and they are still very widely used for serious applications. It is just a pity that in the mind of the general populus, and the media in particular, they have become firmly associated with an alternative youth culture. An image projection which has undoubtedly led to neither being taken that seriously by Government, business and the professions.

However, such people are ignoring the development of these two technologies at their peril. They are undoubtedly the basis of a future information transfer and communication technology based revolution which within a decade will sweep the entire world, through both the developed and underdeveloped nations. It will sweep aside many established concepts and ideas, will topple whole areas of industry, and create whole new areas. It is a revolution waiting in the wings.

To understand why this revolution will have such an impact we only need to look at some of the trends which are already developing in a technology which is still very much in its infancy. We also need to look at some of the technologies
which are being incorporated into it.

What is the Internet?

The proper starting place for our examination of these technologies will develop is to examine exactly what they are, and what form they take today. Since the Web is reliant upon the Internet it is proper that we start there.

The Internet is, in very simple terms, a very large loosely structured computer network which extends across the entire surface of the globe and connects together an estimated 30 to 40 million computers. The connections between these computers being composed of a wide range of different links, from conventional copper wire voice telephone lines, to dedicated very high capacity optical fibre links, and even in some cases radio links.

Indeed the primary reason for the success of the Internet is that it uses existing communication links, this has allowed it to expand very rapidly without a great deal of costly capital expenditure. The Internet as a public communications system relies upon a combination of commercial phone lines and a few very high capacity, long distance data links that have been built for military, commercial or academic applications.

Because of the way in which it is designed the Internet can make use of the 'spare' capacity on these lines thus permitting communications between computers on the other side of the world to each other but with only local or short distance phone charges. It can do this because the data that is being transferred between the two systems is transferred in small 'packets'.

Each data packet has added to it the address of both the system it is going to and that from which it has come. Since the packet is small it can easily be slotted into very small periods when a line is not being used. The origin and destination addresses then allow the packet to be independently routed in the best way as it is passed from one computer system to another. This accounts for the frequently very noticeable delay in response which will be familiar to any user of either the Internet or the Web.

This packaging of data into small addressed packets and its transmission through the network relies upon the development and use of a common communications protocol known as TCP/IP (this stands in fact for two protocols, the Transmission Control Protocol and the Internet Protocol). These protocols are designed to run on any type of hardware with any type of operating system. It is the TCP part which controis the data transport and ensures that the data reaches its proper destination.

All the computers that are permanently attached to the Internet are differentiated by giving them unique names, the IP address. These addresses are in the form of a sequence of four numbers separated by periods, and are translated into the more familar address, such as -
www.emags.com
by the Domain Name System, or DNS. It should be noted that most users will not have either a domain name or an address since they will be accessing the system on a casual basis via an Internet Service Provider or ISP. However, the ISP's computer will have a domain name and address.

This means that with the TCP/IP protocols and the combination of Internet addresses and domain names it is possible to send data from any computer of any type attached to the Internet to any other computer of the same or different type attached to the Internet. The basic form in which such data is transmitted is the e-mail message.

We can thus say that the Intemet is primarily a global computer network which allows the transmission between named computers of data in the form of e-mail messages

The birth of the Web

Based upon the existing Internet network the World Wide Web was first proposed in 1989 by physicists at CERN in
Switzerland as a means of allowing scientists anywhere in the world to share text and graphical information. To do this they developed another protocol on top of TCP/IP, this protocol is known as the HyperText Transfer Protocol, or HTTP. This allowed users to remotely access documents stored on other systems, basically in the form of e-mail messages, and then display them on their own computer.

The information is accessed from named computer systems using the standard Internet domain name system. However, the Web naming system has been extended to allow the accessing of specific files stored in specific directories on the target computer system. This location is done with an address known as an Uniform Resource Locator, or URL.

The URL incorporates the domain name, plus the appropriate path and file name in a standard format which is recognised by any piece of software which accesses and displays Web information (such programmes are known as browsers, and for PC users the best known are Netscape and Mosaic). Thus for E-Mags Technology Reporter starting page the URL is:

http://www.emags.com/epr.htm

Note that the starting HTTP defines the transfer format, which is then separated from the domain name by :// the domain name is then separated from the path or file name by another / in this example the file is stored in the system root directory. The file name for any Web file, or page as they are usually refered to, has an extension of HTM or HTML, this

indicates that it is a HyperText Mark-up Language file which can be interpreted and displayed by the browser software.

With the internet, the Web and the HTTP protocol, you can use an URL to access a file stored on another computer. perhaps located on the other side of the world, and display the graphical or text contents of that file on your own system, very much as if it were stored on your own hard disk. The Web has thus converted the Internet into an extremely powerful data storage and retrieval system.

However, the Web designers were inspired originally by Ted Nelson's pioneering work on linked Hypertext documents for structuring and using information stored on computer. The use of HyperText links, in the form of URL.s, is an extremely powerful feature of the Web since it allows large numbers of pages, perhaps stored on different computers, to be pulled together into a single document with a coherent logical structure that is a highly efficient way of communicating information.

Entering the Web

In 1991 there were just 300 pages stored on the World Wide Web, today, less than five years later, there are an estimated 30 million pages that are accessable over the Web, a figure that could easily double over the next twelve months. This is an awful lot of information, most of it fairly low grade, but scattered amongst it some real gems.

Perhaps the best way of thinking about the Web is to compare it to a conventional library, a library which at the
moment has the equivalent of about a quarter of a million books. That is a pretty big library by any standards. It would occupy about fifteen to twenty thousand feet of shelf space, and even for a fast reader that is a few lifetimes' worth of reading.

With so much information, there is a very serious problem associated with finding the specific information that you are looking for. In a conventional library this is, to a degree, solved by the use of a s:andard cataloging and classification system. This means that all the books are divided and physically grouped into categories and sub categories in accordance with the main subject matter. Each title is then given a code according to its category which can be crossreferenced in card or computer indexes of titles, authors, etc.-

Web pages are grouped in clusters, or 'web sites' around a 'home page' on individual computer servers, and to this extent the home pages can be viewed, and classified, in the same way as book titles. It is therefore not surprising that there are now a number of classified catalogues of web site home pages which make it somewhat easier for the Web user to find the necessary information.

Probably the most widely used catalogue of web sites, or as they are sometimes referred to - metasite - is Yahoo which now indexes several hundred thousand web sites around the world covering a whole range of different subjects. In addition there are a large number of specialist metasites, thus E-Mag's Technology Reparter incorporates à comprehensive classified index of web sites in each of its technology areas, in particular
electronics and computing.
Such classification systems are fine when dealing with books, and Web site home pages. However, information stored on the Web is not as easily classified as books, since it is in the form of millions of individual pages. Indeed with the increasingly extensive use of hypertext links we can almost regard the entire Web as comprising a single volume with thirty million pages.

Creating an index for thirty million, soon to be forty, fifty, sixty million, pages of constantly changing information is virtually impossible, but engineers have come up with another solution, the intelligent agent. This is still a very new concept but is one which will ensure that the Web remains a practical information source. In essence an intelligent agent is a small piece of software that is designed to search through all the web sites looking for pages which match certain search criteria which it has been given.

Intelligent agents are very much a feature of the Webs future development. For the moment the best way to find useful information stored on the Web is via one of the metasites, in particular one of the specialist metasites.

What is on the Web?

It is estimated that there are at the moment over a milion different Web sites, a great many consisting of just a single page, a few consisting of thousands of pages. Some sites have been created and run on large corporate budgets, others on a shoestring by private individuals. As for subject matter, there are now Web sites covering every subject that mankind has ever thought of, and fortunately for us over 98% of all sites
are in English.
Broadly, however, we can divide Web sites into three distinct categories, the fairly large corporate sites, the academic and government sites, and the sites run by private individuals. For the businessman, scientist or engineer the main sources of useful information will be found almost exclusively in the first two categories of site. Indeed the vast majority of useful information stored on the Web is contained in fewer than ten thousand sites.

The first Web users were of course the academic and government Web sttes, primarily US but increasingly from other parts of the world. These are probably the most information rich sites since they are primarily being used to disseminate information about particular research projects to other individuals working in similar areas.

Typical examples are the sites maintained by some of the big US government research establishments such as Sandia Labs, the Oak Ridge Labs, and of course the biggest of them all, NASA. The range and scope of research carried out at these labs is enormous and certainly not confined to military, atomic energy, and aerospace related subjects. They are a very good source of information about future trends in the development of technology and are well worth a visit.

An increasing number of companies, primarily in the USA, now run Web sites as a valuable aid to their sales, marketing, and product support departments. They are using their Web sites to give customers and potential customers information about the company and its products. They are also being used to disseminate product support information, such as software bug fixes, or new applications data. Some are even putting

their entire catalogues and technical data sheets onto their Web sites.

The information contained in these corporate sites is obviously of more immediate use than that from government and academic research labs. However, many large companies with their own research facilities, such as IBM, AT\&T, etc., also maintain special Web sites for these labs; these too are well worth visiting.

Scientists and engineers can thus use the Web to find out information about new developments from both commercial and academic/government sources. In addition there are sites with more general information, such as those maintained by the Times/Sunday Times, FT, Telegraph and Guardian, the New Scientist, and a host of other magazines and information providers on both sides of the Atlantic.

The Web can also be used to locate information about otherwise unknown companies and products, in fact it is an ideal way of locating the specialist products and services that are often provided by small companies whose existance can be very hard to discover. Finding them may require quite a lot of Web searching but this is made much easier with the aid of a metasite or a site with a specialist catalog, such as the Technology Reporter site.

Another source of information offered by sites such as EMag's Technology Reporter is the publication of press releases, the raw material which technical journalists rely upon to keep themselves up to date, and as a source of news and new product reports. These can provide a lot of information about
new products, new services, and the latest technical developments, from companies big and small.

The Web of tomorrow

Not only is the World Wide Web expanding at an enormous rate, the technology on which it is based is also developing very rapidly. Text based Web browsers have given way to graphics based browsers, the Web page description language HTML is now under assault from a new more interactive system called Java. Neither does it stop here, for two dimensional graphics are now being replaced by 3-D VRML virtual reality graphics, and the user base is set for rapid expansion with the iminent launch of several low cost, high power, hardware systems developed exclusively for Internet users.

All these, and many other, developments underline several important trends in the development of both the Internet and the World Wide Web. The first is that we can expect to see an enormous expansion in the number of users around the world, indeed some experts are estimating that there will be as many as 1 billion users connected to the Internet and Web by the year 2000 .

Secondly as data transmission speeds increase thanks to optical cables and high speed modems we can expect to see the Internet increasingly becoming a real time, high quality, multimedia data transmission system. People are already using Internet phones to make low cost long distance calls. A handful-of radio stations are already broadcasting over the

Looking for information on the Web

toaking for specific information on the Web is nct really that רard. The first stop is to access one of the big metasites such as Yahoo, or a specialist technology inder: site such as Technology Reporter.
the URL for Technology Reporter: -
http:1//www.emags.com/epr.htm
If you use Technology Reporter you will find that the nome page gives you a selection of icons relating to different categories of information. Simply use the mouse -o clisk on the desired icon, and a menu page fo that sub.ect will be displayed. This menu allows you to look at press releases stored in that'section, or look at the

Internet, and there are even a few experimental net based TV broadcasts.

In lact it is very much on the cards that Internet based broadcasting of sound and 2-D/3-D video will be the next explosive development to hit us all. Once again experts are predicting the demise of much of wireless based broadcasting and its replacement with an 'on demand' system delivered by optical fibre networks.

A more highly developed version of the internet could also make the much touted concept of telecommuting a lol more viable, and will certainly revolutionise education. For a start there is no reason why all the books in the greatest libraries of the world should not be accessible to anyone with a computer
various indexes of press releases. It also allows you to go to a hierarchically organised index of Web sites.

With a hierarchically o-ganised index it is possible to narrow down a search for information to narrow down the search for particular information to a handful of sites rather than the tens of thousands that are stored on the system. Finding your way around the hierarchical index is simply a matter of using the indexes and navigation icons to go up and down the branches of the hierarchical index.

Technology Reporter also has a collection of company profiles and associated with many of these are lists of web site entry points, and the latest press releases from the company. All of which can be a veritable mine of useful information about the company and its products.
attached to the network. Similarly it should be possible for everyone to have access to the finest teachers in the world.

The fact that robots can be remotely controlled over the Internet using virtual reality systems is opening up yet more avenues of development. People operating remotely located machines from an office thousands of miles away, surgeons operating on a patient living on the other side of the world, and virtual reality tourists visiting the deep oceans or driving across the surface of the moon.

Without a doubt internet based technology is not the preserve of the computer freak, and the wacky proponent of alternative lifestyles, it is a key component of the future for all of us.

Doing business on the Web

The Web started of as an academic network, and quickly acquired a lot of ingividual users who were attracted by the anarchic strusture of the system. Trere is no orgarisation which contro.s the Web, just the do nain riaming conmittees, so individuals found themselves free to sa\% what ther wanted to say without let or hindrance. Hence the current iniage of Internet and WeJ Lsers as wacky oudd-bal characters

These individuals have helped to pioneer the Internet and Web, they further ceveloped the technologies and experimented wth what was possicle and in so dcing pushed the technology boundaries to where they are toda;: But the use of the Web as an alternative lifestyle network vass bound to be limited, fo- as soon as it reachec a cer ain size t pegan to attract the at:en-ion of businesses around the world.

The first businesses to use the Web were either in computer technology, especially Web reated technology, or in businesses which sold to the kind of indiwiduals who pioneered the use of the Web. These were music companies, alternative lifestyle and pop culture macaznes, and companies like Coca-Sola.

High technology companies, primarily in the US, also started to use the V / eb to provide initially customer support information, then sales suppot, and more recently irvestor support. These arge high tec nology companies rave been followed by a host of smaller companies, rostly in technology, who see the Web as a mears of aovertising their products and services on a globa basis (unfortunately LK comparies seem remarkably slow in investigating this oportinity for mdening sales).

Advertising on the Web is something which has only started to appear over the last six months, and is still primarily confined to a few metasites such as Yahoo. This is probably because most sompanies see having a Web site of their own or rentinc a page from one of the companies which offer such a service as being the better option. After all a page can be rented for a year on a.cite like the Technology Zeporter for just $£ 50$, compared with $\$ 5000$ for a small banner on one o' the metasites.

Nct surprisincly one area of Web development which has been the subject of a lot of work, and will continue to be for some time, is the technology for doing jusiness over the Web. This basically means making the Web secure enough so that users can confidently use it to transfer money to or from another Web user, business, or Web based bank.

The initial developers of b :3th the Internet and the Web were not trwing to hide anything, ir.deed the exact oposite, so no consideration was given to methods of preventing anyone from 'listenng in' to the data that was being transmitted. However financial information needs to be kept private which means that if users are to be able to pay for goods and services ordered over the net then that information has to be encrypted in sucn a way that nobody else can intercept it

First generation secure server systems have now been developed which means thal we will start to see the rise of orgarisations selling information, and entertainment over the Web. In fact this year should see the start of the Web's use as a proper commercial tool, and will mark a departure from the current main feature of the Web, the faot that the information son it is free.

ELECTRONICS TODAY INTERNATIONAL

M.G.C. ELECTRONICS

PHONE 01973853768

. 4 watt FM broadcast quality transmitters $88-108 \mathrm{MHz}, 13.5$ volt bulttested/aligned 000.00 - 15 watt FM broadcast quality transmitters $88-108 \mathrm{MHz}, 134.5$ volt tuned to your specification boxed/builtaligned

- 30 watt FM broadcast quality transmitters as above, 13.5 volt boxed/bult/aligned $\$ 185.00$ All transmitters are highly stable and can be used elther with a DI-POLE or YAGI aenal and intended for prolessional broadcast quality sound.
- 100 watt linearr amp designed to have an input from ? $7 ? 30$ watt transmitter above 13.8 V good load/mismatch handling + cool running. ???? air-cooled
- Stereo encoder intended for all above kits to produce stereo sound. V. good channel seperation
Prices include VAT. With orders less than $£ 10.00$ please add $£ 1.00$ p $\$$ p. Orders over $£ 10.00$ please add $£ 2.50 \mathrm{p} \& \mathrm{p}$. Send SAE for full colour catalogue contalning lasers, surveillance devices, kits, elc + much more!

Cheques/Postal Orders payable to
M.C.C. Electronlica, Sulte 501, International House, 223 Regent Streot, London 4DR 80D. Phone: 01973853768.

$\star \star$ FOR SALE $\star \star$

DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALITY SURPLUS MANY SPECIALS. WE STOCK 1000 + ITEMS \& IF WE DON'T STOCK IT WE MAY BE ABLE TO GET IT FOR YOU PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS
MAYFLOWER ELECTRONICS 48 BRENDON ROAD, WATCHET, SOMERSET, TA23 OHT TEL (01984) 631825 FAX 634245

IIIPC Application Projects
Master your computer - Release its power Projects use PRINTER or SERLAL ports - No need to open your PC

N. R. BARDWELL LTD (ETI)

75	ctifier Diodes 1N4001	
50	Rectifier Diodes 1N4007	\$1.00
10	W02 Bridge Rectifiers	\$1.00
	NE555 Timer I.C.s	\$1.00
50	Asstd. Zener Diodes	. 51.00
30	BC2121 Transistors	E1.00
30	BC2134 Transistors	. $\$ 1.00$
30	BC214C Transistors	£1.00
30	8C237 Transistors	. 81.00
20	BC327 Transistors	\$1.00
30	BC328 Transistors	$£ 1.00$
30	BC337 Transistors	. 81.00
30	BC478 Transistors	£1.00
30	BC546 Transistors	\$1.00
30	BC547 Transistors	£1.00
30	BC548 Transistors	¢1.00
30	BC549 Transistors	. Et .00
25	BC557 Transistors	. 81.00
30	BC558 Transistors	. 51.00
30	BC559 Transistors	. 81.00
25	BC640 Transistors	. 81.00
30	MPSA42 Transistors̄	E1.00
30	MPSA92 Transistors	E1.00
20	2N3702 Transistors	E1.00
20	2N3904 Transistors	£1.00
	$78 \mathrm{~L} 12 \mathrm{12V} 100 \mathrm{~mA}$ Po	E1.00
0	$79 \mathrm{M08} 8 \mathrm{~V} 500 \mathrm{~mA} \mathrm{Neg}$	

 Electronics Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Surface Mount
Wave \& Hand Soldering Complete Equipment Manufacture
Device Programming from hand written shts or PC $31 / 2^{10}$ disc Cable Hamess Assembly/loom Manufacture
Card Cage and Module Wiring Full Inspection Product Design/Consultation Full Procurement Service PCB Test \& "Bum in" Facilitles Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales Refurbishment a speciality Refurbishment a speciality
Top Quality Work at Reasonable Rates
Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

HIGH OUALITY LOW COST C.C.T.V. CAMERA

EXTREMELY LOW LIGHT LEVEL
AUTO ELECTRONIC SHUTTER.
COMPOSITE MDEO OUT VIA BNC PLUG.
SMALL DISCRETE SIZE.
CAN BE USED WITH PC DIGITISER.

nected into your existing TV or videe using the AV channel and can be used for fiscrete surveillance or observing your propeny extemally using a suitable weatherproof hous ing. Can accommodate lighting levels ranging from daylight to street lighting using its built-in electronic shutter. Excellent when using with an infra red source. Built-in wide angle fixed focus lens, the camera has a resolution of 380 TVL. Can be housed inside an empty floodlight case, (exira). Camera size only $45 \mathrm{~mm} \times 45 \mathrm{~mm}$.
Special offer price of only: $\mathbf{£ 7 9 . 9 5}$ plus VAT (P\&P £3.00)
For full range of CCTV products send SAE to:
DIRECT CCTV LTD., DEPT ETI, UNIT 6,
CARRICK COURT, FORREST GROVE BUSINESS PARK, MIDDLESBROUGH TS2 1QE

SERVICE MANUALS \& Technical Books

Available for most equipment, any make, age or model. Return the coupon for your FREE catalogue MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY. Tel.:- 01844-351694. Fax.:- 01844352554.
Plcase forward your latest catalogue for which I enclose 2×1 st Class Stamps or $£ 3.50$ for the complete Service Manuals Index on PC Disc plus catalogue. NAME
ADDRESS

* 1995/96 CATALOGUE NOW AVAILABLE Price $£ 2.00$ *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00
 These modulas now enjoy a world-wide repuration tor quality, rellability and performance at a reallstic price. Four
models are avallable to suit the needs of the prolessional and hobby martel l.e. Indusiry, Lelsure, Insirumental and Mi-fi elc. When comparing prices, NOTE Ihat all models include foroldal power supply, integrai t
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R 110 dB . Slze $300 \times 123 \times 60 \mathrm{~mm}$ PRICE E40.85 + E3.50 P\&P

OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. Into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damping Factor >300, Slew Rate SOV/uS T.H.D. typical 0.001%, Input Senshivity 500 mV , S.N.R 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE 864.35 + E4.00 PAP
OMP/IMF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$.3dB, Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE C81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Ouiput power 450 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. 110 dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE 132.85 + E5.00 PAP

OMP/MF 1000 Mos-Fet Outpul power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity $500 \mathrm{mV}, \mathrm{S} . \mathrm{N} . \mathrm{R},-110 \mathrm{~dB}$, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE E259.00 + E12.00 P\&P
OTE: MOS-FET MODULES ARE AVAILNGLE IN TWO VERSION
STANDARO - IN PUT SENS 500 mV , BAND WIDTM 1OOM Hz.
PEC (PROFESSIONAL EOUIPMENT COMPATIBLE) . INPU
LOUOSPEAKERS
LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. ($60 p$ STAMPED) FOR COMPLETE LIST
McKenzie and Fane Loudspeakers are also available:

EMINENCE:- INSTAUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
8" 100 WATT R.M.S. MEE- 100 GEN. PURPOSE. LEAD GUITAR, EXCELLENT MID, DISCO.
 $10^{\prime \prime} 100$ WATT R.M.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID
 $10^{\prime \prime} 200$ WATT R.M.S. AAE $10-200$ GUITAR, KEYB'D, DISCO, VOCAL. EXCELLENT HIGH POWER MID. RES. FREC. 6SHz, FRE . RESP. TO 3.5KHz, SENS 99dE RES. FREQ. 49 Hz , FREO. RESP. TO 6 KHz , SENS 100 dB $12^{\prime \prime} 100$ WATT R.M.S. ME $12.100 L T$ (TWIN CONE) WIOE RESPO MONITOR. RES. FREO 42 Hz FREO. RESP. TO 10 KMz , SENS 98 dB COL STAGE MONITO RESPONSE, P.A., VOCAL, STAGE 12 200 WATT R.M.S. ME12-200 GEN. PURPOSE, GUITAR, DISCO, vOCAREE E36.67 + ז3.50 P RES. FREO. 58 Hz , FREQ. RESP. TO 6 KHz , SENS 98 AdB . 12 " 300 WATT R.M.S ME 2 -300GP HIGH POWER BASS, LEAD GUITAR PRICE $£ 46.71+$ ¢3.50 PA RES. FREO. 47 Hz, FREQ. RESP. TO 5 KHz , SENS 103d8. 0 GEN PURPOSE 8 RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99 dB $15^{\prime \prime} 300$ WATT R.M.S. ME1 5-300 HIGH POWER BASS, RES. FREO. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB . INCLUDING BASS GUITAR

EAABEENDERS:- HI-FI, STUDIO, IN-CAR, EIC

ALL EARBENDER UNITS 8 OHMS (Except EB8-50 \& EBIO-50 which ere du BASS, SINGLE CONE, HIOH COMPLIANCE, ROLLED SURROUND 8 S 50 watt EE8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, MIFI, IN-CAR 10" 50 WATT EB $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-C RES. FREO. 40 Hz , FREQ. RESP. TO $5 K H z$, SENS. 99 dB . OES, FREO 35 Hz FREO 100 BASS, HI-FI, STUDIO. RE. FREW. JSH, F EO. AESP. TO 3KH, SENS 96d RES. FREQ. 26 Hz , FREO. RESP. TO 3 KHz , SENS 93 dB . FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUMD 5 \%. BOWATT EB5-6OTC (TWIN CONE) HI-FI, MULTIARPAY DISCO ETC RES. FREO. 63 Hz , FREQ. RESP. TO 20 KHz , SENS 92 dB . 6% \% 6 OWATT EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO E RES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB .
8" 6OWATT EBB-6OTC (TWIN CONE) HI-FI, MILTH-ARRAY DISCO ETC RES. FREO. 40 Hz , FREQ. RESP. TO $18 K \mathrm{~Hz}$, SENS B9dB. 10 BOWATT EB1O-8OTC (TWIN CONE) HENF MULB. ARRAY DISCO ET
RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98dB.

TRANSMITUER HOEBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS W TRANSMITER WH WUM AND NSTRUCTIONS PERFOPMANE PERFORMANCE, RANGE UPICE $¢ 14.85-\$ 1.00$ PAP
FM MICRO TRANSMITTER $100 \cdot$ - 108 MHz , VARICAP TUMED, COMPLETE WITH

VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$. SUPPLY OV BATTERY. PRICE 63,80 . 61.00 PAP .
 PHOTO: 3 W FM TRANSMITTER

PRICES: 150 W C49.99 250W 599.99
400W C109.95 P\&P C2.00 EACH

THREE SUPERE HIGH POWER 150 WATTS 75 OOSTER AMPLIFIERS Bridged Mono Bridged Mono 125 Bridged Mono
400 WATTS $(200+200)$ Stereo, 400 W ALL POW ERS INTO 4 OHMS Features:
high \& low level Inputs L \& R leve controls * Remote on-oth \star Speaker \&


```
Z.K. =1, =0TRONICE
    UNITS 1 \& 5 COMET WAV. SOUTHEND-ON-SEA
                                    6TR
    Tal. H1702 527572 Fax. 01702-420243
```


OUT OF THIS WORLD!

SPACE CRAFT KITS
Realisuc laser-cut space craft kits from bonded foil card stock- no colouring required Voyager, Galleo, Hubble Magellan and Keck Telescope Superb detall Each pack includes full mission detalls. Approx 30 cm when assembled. 14.95 each
NASA-JPL Space videos:- 10 uiles to choose from $\{19.95$ each

A range of good quality seif-assembly Robot Kits each illustrating different electronic and robotic principles. Leam how Robots work and have fun at the same time. Extensive build manual. £29.95-£44.95 each

MUSCLE WIRES

Fascinatng wires that contract when electrically heated producing a useful amount of force (Up to 0.9 kgf for 250um wire)
Detailed Data and Project Book (128 pages) - £14.95
Book and Deluxe Wire kit suitable for 13 projects (inc BORIS) - $£ 49.95$

Prices include VAT - Shipping $£ 3.50$ per order
MILFORD INSTRUMENTS
Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

WINTER 1995/6 CATALOGIE

The new winter '95/96 edition has 280 pages packed with over 4000 products.

- New editions to our computer section further extending our range of PC components and accessories at unbeatable prices
- Free competition with a chance of winning a Hameg 30MHz oscilloscope
100's of new products including Books, Component Packs, Connectors, Switches, Test Equipment and Tools.
- New range of oscilloscopes from Hameg and extended range of mobile phone batteries and accessories
- Latest PIC Microcontroller IC's and programmer
- New 70 cms mobile transceiver for the novice radio amateur enthusiast

D 280 pages, 26 sections and over 4000 products from some of the worlds finest suppliers
Available at most newsagents or direct from Cirkit

- Out 26th October 1995

Send for your copy today!

Rechargcable

Terry Ealbirnie's handy bench power supply

This device differs from the usual type of amateur powe supply unit because it is battery operated. This allows total ireedom of use and completely safe operation. P intained from a set of nickel cadmiurn cells and recharging is effected by plugging the unit into a car cigar lighter socket. The output is switchable from 3 V to 12 V in 1 V steps and the current output limited to about 800 mA . There is also an audible warning when the batteries need to be changed.

The prototype unit used standard (500 mAh) "AA" size batteries and these were found to be adequate for most purposes. Using this type of cell keeps the size and cost down. Most "hobby" purposes need only a small current - 100 mA or less. When drawing $100 \mathrm{~mA}, 5$ hours' service will be obtained before the need to re-charge. It is suggested that, in normal use, no more than 500 mA is used and this will provide about 1 hour of operation. At a higher current, it may be difficult obtaining a full 12 V output. Also, the period of service becomes rather short.

It would be a simple (but more expensive) matter to use high capacity "AA" cells. The 850 mAh version would provide a 70% increase in capacity - that is, 8 hours' service at 100 mA . It would also be possible to use physically larger cells such as " C " size with a corresponding increase in capacity. Charging standard "AA" batteries from "flat" takes 15 hours although the unit may be left connected for longer than that without harm. Higher capacity batteries will, of course, take correspondingly greater times. While charging, the total requirement of the circuit is 125 mA approximately and this will impose negligible drain on a wellcharged car battery.

Left in charge

Having a 12 V output available poses a problem when charging the batteries from the 12 V car system. This is because the source needs- to rave a higher voltage than the batteries being charged. The problem is overcome by dividing the cells into two groups of six. This gives sets having a voltage of about 7.5 V each (regarding the nominal voltage of a single cell as 1.25 V). The halfsets are then charged individually and since the voltage of each is less than 12 V , the car battery is sufficient. When the supply is in use, the half-sets are connected in series to provide a nominal 15 V output which is then regulated to the voltage required. When the cells are freshit-charged, the voltage of the pack will be about 17 V . When almost discharged, it will fall below 14.5 V and the "recharge" buzzer wil sound - quietly at first then more urgently.

The unit is controlled by two rotary switches on the front panel. The first (selector switch) has three positions: "off", "charge" and "operate". The other (output switch) has ten positions and selects a voltage from 3 V to 12 V as required. There are output terminals and LED indicators on the front and a socket on the back to which the charging lead is connected. When the switch is set to "charge", a red LED operates. While operating, a green one lights.

How it works

The complete circuit diagram for the Re-chargeable PSU is shown in figure 1. SW1 is the selector switch shown in the "charge" position. This switch consists of four independent sections (poles) labelled "SW1a", "SW1b" and "SW1c" (pole d is not used). The numbers correspond with those marked on the switch itself and it may be helpful to refer to these during

construction. Pole c directs current from the +12 V car feed to the rest of the circuit. Red "charging" indicator, LED1, lights with current limited by resistor, R7. Poles a and b send current to the twin circuits based on transistors Q1 and Q2 which are responsible for charging the cell half-sets, B 1 and B 2 respectively.

Nickel cadmium cells must be charged from a constant current source. This is provided in the following way. It is only necessary to consider the charging of one set - say, B1 - since the other operates in identical manner. Current flows through resistor R1 and the two diodes, D1 and D2, in series. Since a silicon diode develops 0.7 V approximately between its ends while conducting (i.e. in forward bias), there will be about 1.4 V across the pair. Current enters transistor Q1 base via R1 and collector current flows through the cells so charging them. There will be about 0.7 V developed between base and emitter (since this junction is equivalent to a forward-biased silicon diode). It follows that 0.7 V approximately will exist across the emitter resistor network, R2, R3 and RV1. Virtually the same current as that in the collector will flow through this network (ignoring the very small contribution made by the base current). Also, as stated above, the voltage across it will be 0.7 V . By choosing the appropriate emitter resistance, the charging current may therefore be controlled. A value of 50 mA is recommended for charging " AA " cells. The emitter resistance needed to achieve this may be calculated using Ohm's Law thus:
$R=V \Lambda=0.7 / 0.05=14 \mathrm{~W}$
The voltage between Q1 collector and emitter adjusts automatically to maintain the charging current as set. This happens as the battery voltage rises in the course of charging. The purpose of RV1 is to adjust the charging current since the 0.7 V levels mentioned above are not exact. Ideally, a value of about 30 ohms would be necessary but these are not available. To overcome the problem, a 100 ohm preset is used with a 47 ohm fixed resistor connected between its outer tags. This provides an adjustment between zero and about 33 ohms.

The response is no longer linear but this does not matter. Resistor R2 limits the current if RV1 were to be adjusted to zero.

Discharge

Suppose switch SW1 is now set to "operate". Pole c disconnects the car supply (in case the unit has been left plugged in), Pole a connects the positive terminal of battery half-set B1 to the negative terminal of half-set B2 so they now appear in series. Pole b connects the positive terminal of what is now a nominal 15 V supply to regulator IC2 input, pin 1 . The negative terminal of the set is connected direct to the OV ("negative") output line. Green "operate" indicator, LED2, lights with current limited by resistor, R10. Ignore the section of the circuit centred on IC1 for the moment.

The regulator accepts the basic input and delivers a controlled voltage output. Its value will depend on resistors, R11 and Rx. R11 is fixed in value but Rx (referred to as the chain) is selected by rotary switch, SW2 (shown in figure 3 but not in figure 1) to provide the required voltages. Table 1 shows the resistors needed. The current limit is set by resistor R12 connected between pins 1 and 5 according to the formula:
$I=0.45 / R$.
With a value of 0.47 ohms as specified the current will, in theory, be limited to about 950 mA . Due to additional stray resistance, it is likely to be less than this - 830 mA in the prototype.

The regulator can only function correctly if the input voltage is at least 1.5 V to 2 V higher than the output. When 12 V is selected, the batteries must therefore be capable of supplying at least 14 V . The difference between supply and output voltages appears across the device. In the "worst" case, the input voltage will be 17 V and the output 3 V . If 800 mA is drawn, there will be a power dissipation of over 11 W . A heat sink is therefore needed and this is provided by the metal case.

Fig.3. Rechargeable PSU - wiring diagram showing batteries, and voltage selection switch.

Construction

A metal case must be used for this project since it is used as a heat sink for the regulator. The cigar lighter plug must be of the fused type carrying a 1A fuse. Construction is based on a single-sided printed circuit board (PCB) and the component overlay is shown in figure 2. Solder IC1 socket in position as well as all resistors (including presets) and capacitors. Follow with transistors, diodes, buzzer and regulator. Note that these latter components are polaritysensitive so take care over their

When the battery charge is nearly exhausted, the terminal voltage will fall quickly - especially under load - and will fail to operate the regulator. This will first happen when 12 V is selected but will quickly follow at lower voltages. This is the point at which the buzzer will sound. The section of the circuit which does this operates in the following way. IC1 is a voltage detector chip. When a voltage less than a reference of 1.15 V is applied to the input (pin 3) the output (pin 4) becomes low. This sinks current through buzzer, BUZ1, from the positive supply rail, so sounding it. Fixed resistors, R8 and R9, in conjunction with preset potentiometer RV3 form a potential divider connected across the supply. RV3 will be adjusted at the end of construction to apply 1.15 V to pin 3 when the supply is just falling below 14.5 V or for best effect.
orientation. Solder pieces of connecting wire to the points labelled "SW1 abc", "SW1a", "SK1 -", "SW1b", "+ output", "SW2" (2 off) and "- output". Solder the negative wire of one of the battery connectors to the pad marked "B1-". Solder four wires to the "LED1" and "LED2" pads. Adjust RV1 and RV2 fully anti-clockwise and RV3 fully clockwise (as viewed from the regulator end of the PCB). In view of the large number of connecting wires, it would be wise to use different colours to reduce the chance of making a mistake.

Getting engaged

Adjust swifch SW2 end stop so that it has only 10 positions. This is done by removing the brass nut and tab washer beneath. It will

be seen that there is a ring of holes and the tab may be engaged into any one of these to provide the number of positions required. Rotate the spindle fully anti-clockwise and locate the tab in the tenth hole. Replace the brass nut and check that the switch operates correctly with the required ten positions.

Refer to Table 1 and solder the chain resistors around SW2 tags as shown in figure 3. These are used cumulatively - the values add up as the switch is rotated. Note that the first member - 68 ohms - is mounted with one end connected to tag 12. This is permissible because the moving contact never reaches this position - it is simply used as a take-off point. The other resistors should, in theory, all have a value of 296 ohms. Since this is not a standard value, 300 ohms is used. This would result in a slightly high voltage output. The single 270 ohm resistor almost entirely corrects this and the theoretical off-load voltages all lie within 1%. The actual voltages will depend on the tolerance of the resistors used - 1% is advised. Output switch, SW2, must be of the "make before break" type. This will result in the voltages rising regularly as the spindle is rotated. However, selector switch, SW1, should be of the usual "break before make" type.

Nice kit

Prepare the box by drilling the three holes in the base to correspond with those in the PCB. Drill the holes in the front panel for the rotary switches, LED indicators and output terminals. Drill the hole in the rear for the socket to which the input lead will be connected. Mount the circuit panel on short stand-off insulators
and mark the position of the hole in the regulator tab on the rear panel. Remove the PCB again and drill this hole. Re-mount the PCB attaching the regulator using a mounting kit (which consists of a thin mica washer and a plastic bush) to electrically isolate it from the metalwork. Check using a multitester set to "ohms" with one probe touched on the metal tab and the other on the box. Infinite resistance should be indicated.

Refer to figure 3, mount all remaining components and complete the wiring, shortening any wires as necessary. Use a red terminal for the positive output and a black one for the negative. The "power-in" connector used for the input must have its outer (sleeve) terminal wired as the negative one. Observe the polarity of the LED indicators or they will not work - the shorter lead is the negative one. This connects to the large "land" area on the PCB in each case. With the specified box, the battery holders will be held tightly by the lid when this is in position and no further support is needed. A bracket may be made if a different box is used. Check that there are no protruding metal parts such as rivets on the battery holders (which could cause short-circuits to the case) and provide insulation if necessary.

Prepare a piece of twin wire for the input lead by soldering the cigar lighter plug to one end and the "power-in" plug to the other. The outer connection in each case is the negative one. Fit a 1 A fuse in the plug. Make sure that the positive supply wire will end up connected to SW1 pole c. Check that the cigar lighter socket is live with the ignition key removed. If not, it will need to be re-wired so that it is.

Out of the way

It is now necessary to adjust the charging current and to check the voltage output. Insert the cells in their holders taking care to observe the orientation of each. Push on one terminal of each PP3-type connector swivelling the other connection out of the way. With the selector switch off, connect the supply then switch to "charge". The red LED should light. Set the multitester to a current range covering 100 mA and clip a probe on one of the unconnected battery snap terminals and the other on the battery. The charging current will then flow through the meter. This is likely to be in the region of 20 mA . Adjust the corresponding preset so that 50 mA flows - within 2 mA is acceptable. Do not leave it drawing a much higher current than this for a long time or the transistor will become hot. Repeat with the other battery. Connect the battery snaps correctly and leave the cells to charge. If they were completely "flat" to begin with, this will take 15 hours. During this process, the transistors will become warm.

When the batteries are charged, switch the unit to "operate". The green LED should come on. Turn the output switch spindle fully anti-clockwise - i.e. to 3 V . Adjust the multitester to a voltage range covering 12 V d.c. and connect the probes to the terminals. The meter should give a reading very close to 3 V - say, within 5%. Proceed through the other voltages checking each one. If there is anything amiss here, suspect the soldering at one of SW2 tags. With the unit set to 12 V , connect a 12 V 5 W lamp (car sidelight bulb) to the output terminals. This draws 420 mA approximately and the supply should maintain this for more than 1 hour using standard "AA" cells. Measure the output voltage - under load it will have fallen a little. Measure it again every 10 minutes. It will be clear when it begins to fall more rapidly to, say, 11 V indicating that the regulator is unable to maintain the supply. Adjust RV3 at this point so that the buzzer just begins to sound. It may be necessary to re-adjust it slightly over a few days of trial to achieve the best effect.

If all is well, assemble the case checking for trapped wires and short-circuits. Drill a few holes in the top section above BUZ1 position to allow the sound to emerge if it proves to be too quiet. Attach self-adhesive plastic feet to the bottom of the case. It now only remains to label the switches and put the unit into service.

Final points

Note that the switching current of SW1 is only 150 mA although it can carry 5 A . It is, therefore, important not to switch the unit on or off using SW1 when a higher load than this is connected. This precaution does not apply to SW2 which carries only a small current. When a large current is drawn and a low voltage is selected, the case will become warm in use this is normal. Also, at a high current, there may be difficulty maintaining a 12 V supply. The red LED is not a signal that the batteries are actually charging - only that the switch is in the "charge" position. Do not leave it like that with no supply connected or the LED will drain the batteries.

TABLE 1

Voltage (alms)	Resistor value
3	68
4	300
6	300
6	300
7	300
8	270
9	300
10	300
17	300
12	300

```
Resistors
MT 2f ll
```

Capacitors

Semiconductors

BF 51

rcl.s? reatio wioge detector L200CV volathe axil cument mignibitor Rod LED tilicias: Green fill icisurar

Miscellaneous

 reqied. SWI 7 -fole 2 way ratior swit -tuak before mele axtin.
 scitin. Evil CB motsiting burar- i2N de Sins opera*on 4 rain. temminal pasts - 1 rad, sui klack 25 5ine "perwer-in ${ }^{\pi}$ pucg and sach MCD hountrg it for ogulack FPS ratuey eonnerfors (2 rece ied Fusidy zoat hhar pugg and iftuse of Control lyous Ahtar un case ($15 \% \times 114 \times \cdot 12$ nn $\times 1$

Buy Lines

Most of ha components tor the Recharsisule PSU ane fuck wolizke. Greck the prisis of "A A" netral cadirium cati with theral mat onter waptiers - velishcult not pay
 bumye sintrus. enticsure, elof
hobby and small scale schematic and $P C B$ design. CADPAK includes both schematic drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit diagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletlon or modification of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also avallable for DOS.

CADPAK FOR WINDOWS £ 149 CADPAK FOR DOS $£ 79$

-

PROPAK for Windows
PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functlonality for all but the most demanding applications.

PROPAK's schematic drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical designs.
- Netlist link between modules guarentees consistency between schematlc and PCB.
- Netllsts are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full blll of materials.
- ASCII data Import facility.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Multi-strategy autorouter gives high completlon rates.
- Power plane generator creates ground planes with ease.
- PROPAK is also available for DOS.

> PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS $£ 395$

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Prices exclude postage ($£ 5$ for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged.

Stephen Smith looks at the unexplored world beneath the games port

hobbyist.
When you look at the input/output available on a standard PC , you see a parallel printer port (see making use of the PC parallel port, ETI, June '95) two COM ports (standard RS232 ports) and a games port. The games port may seem a strange addition to a primarily business computer, but the cost it adds to the highly integrated multi-1/O controller is so small that many computers have them, essentially, for free. Using this port to interface your
own projects to your PC is easy and, potentially, very powerful. To use the games port for other tasks, you first need to understand its intended use.
The PC games port is designed to interface to two analogue joysticks, each with two buttons. These analogue joysticks consist of two

If you are anything like myself, the first thing you do when you get a new computer is play games. Lost in this twilight world, we never usually give a second thought to the games port; its only obvious use is to plug in the joystick. But beneath the innocent exterior of the games port lurks an unexplored world to the
potentiometers at right angles (the x and y axis) that are linked to the joystick, so that the amount of movement in either direction is converted into a resistance across the potentiometer. The games port allows the PC to evaluate this resistance to assess the joysticks' position.

The 10 nF capacitor charges via the 2K2 resistor and the resistance being measured. Once the threshold voltage of ${ }^{2} / 3 \mathrm{VCc}$ has been reached, the output of the 555 rises and the software counter can stop.
You can use the BIOS INT 15Hex, sub-function 84Hex to read the joystick in all PCs except the very early ones. To read the buttons set $\mathrm{DX}=0$ and the status of the buttons will be returned in bits 4-7 of $A L$. To read the position set $D X=1$ and the positions of the joysticks will be returned in AX, BX, CX and DX (corresponding to bits 0-3 of the games port). For the people that use high level languages QBasic has two functions for reading joysticks.

A conventional method of reading such an analogue joystick is to put a constant DC voltage across the potentiometers and measure the voltage at the wipers of the potentiometers. This involves using an ADC to measure this value (as used in the BBC Micro). ADCs cost money and people want cheap games ports, so IBM designed a much simpler method of assessing the joystick's position. If a capacitor is placed in series with the potentiometer's resistance to be measured, the RC time constant can be used to read the joystick's position.

The IBM joystick port is located at I/O address 201Hex; writing anything to this location triggers a set of four one-shots that are used to measure the x and y positions of the two joysticks supported. Table 1 shows the bit allocations of the games port. Once the one-shots have been triggered the games port is continuously read until all of the one-shots have decayed. The number of times the location is read before the one-shots have decayed is counted by the controlling software and interpreted as a joystick position. The time of the one-shot is given by:

$24.2+(0.011$ * resistance) micro-seconds

but stray capacitance and lead resistance can, in practice, make this equation useless. When reading a joystick, however, it is the movement thus variation in this time that matters, so the absolute time and resistance does not matter. Using a software counter to time the one-shots does, however, make the process more complex as the original 4.77 MHz PC counts a lot slower than your modern 486. This means that calibration of the joystick is essential. Measuring the joystick's readings at top left and bottom right allows the full travel of a joystick to be known.

Figure 1 shows a circuit diagram for a typical games port. The buttons pull the appropriate inputs to the buffer to ground whereas the position inputs are fed to a 555 configured as a monostable. The 2 K 2 input resistor allows any resistance to be measured, even down to a short circuit. The time of a 555 oneshot is given by 1.1 RC ; here the time equals:

$$
1.1\left(2 K 2+R_{P O O}\right) 10^{\circ}
$$

Fig. 3: Geometry of a Pantograph

STICK to read the position and STRIG to read the status of the buttons. (Look at listing 2 and in the on-line help if you want more assistance.) Listing 1 gives an example Turbo C program to read the position and button status of a joystick. This code counts the length of the one-shot for each joystick potentiometer until all time out or the counter reaches MAXINT. (This is in case only one joystick is attached.) Reading the status of the buttons is a simple case of masking the appropriate bits.

Table 2 gives the pinout of the 15 way D type that is used for the games port. The potentiometers go between +5 V and the appropriate pin goes to the wiper. The buttons simply pull the appropriate pin down to ground. This is simply illustrated in figure 2. The +5 V from the games port is usually unfused and, as such, great care should be taken when using it. The obvious uses for the games port include sensing any switches or resistances that vary up to 150 K . These could include temperature measurement using a thermistor or even a pantograph. A pantograph is a mechanical instrument for copying drawings made up of a series of jointed beams that is fixed at one point, has a pen at another and has a pointer to trace the original drawing. When I was a child I had a pantograph that could copy drawings at a scale of $1: 1,2: 1$ or $1: 2$ depending upon the configuration of the pointer, pen and fixed base. ヨectronic versions of the pantograph allow drawings to be digitised by simply tracing the outline of the drawing. A geometric representation of an electronic pantograph is shown in figure 3. Two beams of length R are jointed with a pair of potentiometers. Therefore the angles that the joints make are represented by the resistance of the linear potentiometers. From these two values and a known beam length, the coordinates of the pointer can be found. To convert the joystick positions from the games port into an angle for the trigonometric equations, the system needs to be calibrated. Defining each angle to be zero by placing the pointer at the origin and having the beams horizontal to the left and at maximum when the beams are fully extended harizontally to the right, allows the coefficients for calibration to be calculated. (i.e. the zeroed figures are the offsets to be removed by the software and the fully extended readings correspond to 1800 or p radians.)

Figure 4 shows a very simple ADC based upon the PC games port. The op-amp buffers the input signal into a current mirror. The current being defined by the output voltage of the op-amp and the 20 K resistor. Thus the capacitor in the one-shot is charged by a constant current defined by the input voltage. The pulse generated by the one-shot has a duration of $\frac{2}{3(4.3-\mathrm{Vm})} \mathrm{mS}$. Unfortunately, this time is inversely proportional to the input voltage which means that the resolution at low input voltages is very poor, so try and keep the input voltage between 2.5 V and 3.5 V to improve the accurac:y (although the circuit will work on input voltages as low as 1 V , they are acquired with a very poor accuracy).

Listing 2 gives a short QBasic program to read in a voltage from such a converter. The diagram shows only one channel; four such channels can be implemented on the four position inputs of the games port, using the four op-amps in the LM324. This ADC is very crude, giving only about 6 bits resolution, but as the component cost is less than $£ 2$ for four inputs you cannot really complain. Replacing the 20 K resistor with a larger value, such as 200 K , gives a greater resolution but cannot be read by the STICK QBasic command. If the position inputs of the games port are driven by a logic level (0 V or 5 V) these inputs could be used to read in a digital signal. If OV is present at an input the capacitor in the one-shot will not charge and the games port will read this as a logic 0 . If 5 V is present at an input the one-shot will run just off the 2 K 2 inherent resistance, which will create a pulse of approximately $24,2 u S$. Therefore, to read a logic level input the port needs to be left for a time greater than this after being triggered, before a valid reading is possible. Thus all the inputs of the games port are essentially digital and they could be used to input 8 bits of digital data.

WARNING

The +5 V supply available on the games port is usually; directly connected to the PC's main +5 V supply. This supply is capable of delivering up to 20A that can blow a fuse on the games port, if you are lucky, or vaporise tracks on the games port's PCB. Either form of destruction leads to a dead games port or computer. Also, do not connect any externally powered circuit to your games port unless you have checked and double checked your work. It is important to note that modern PCs have their games ports on the same small piece of silicon as the serial ports, printer port, floppy and hard disk controllers. So, electrically, the games port is very close to expensive parts of your system, like the motherboard and hard disk. Damage to the games port puts these expensive parts in danger of devastation. Please do not let this deter you, just be careful.

The circuits and systems presented here are not intended to be full projects and as such no PCB or other support is available. These have been devised only as examples anc ideas to inform you and invoke your imagination. The games port is an easy way of getting data into your PC, so have fun experimenting.

[^0]
Table 1. Games Port Register Bit Allocation.

```
Pin Use
Joystick a, 5V
Joystick a, Button1
Joystick a, x axis
Ground
Ground
Joystick a, y axis
Joystick a, Button 2
No Cornection*
Joystick b, 5V
Joystick: b, Button 2
Joystick b, x axis
No Connection
Joystick: b, y axis
Joystick b, Button }
No Connection *
```

- The pins identfied as 'No Connection' may be used by some cards for other functions, e.g. a MIDI interface on a Sound Blaster card.

Table 2. Games Port Pin Allocations

```
/* Listing1
    Joystick reading example program.
*/
#include stajo.h
#include values.h
#include dos.h
    const int MASKXA=1;
    const int MASKYA=2;
    const int MASKXB=4;
    const int MASKYB=8;
    const int GAMES_PORT=0\times201;
void joy(int *xa, int *ya,int *xb, int *yb)
{
    int State,Count ;
    outportb(GMMES_PORT,0); /* Dummy Write to
Trigger one-shots */
    State=inportb(GMMES_PORT);
    for(Count=0; (State&0x0f) :=0 && (Count 999
MAXINT) ; Count++1
    if ((State & MASKXA) != 0) *xa=Count:
    if ((State & MASKYA) i= 0) *ya=Count;
    if ((State & MASKXB) != 0) *xb=Count;
    if ((State & MASKYB) }=0)\mathrm{ *yb=Count;
    State=inportb (GAMES_PORT) ;
}:
main()
    int xa,ya,xb,yb;
    for(:;)
    joy(&xa,&ya,&xb, &yb);
    printf("The Joysticks read:
    8d, %d, 8d, &d\n", xa,ya,xb,yb);
    j;
    return(0):
    j;
PEM Listing2
CLS
Start:
    V1 = 4.5-100/STICK (0)
    v2 =4.5-100 / STICK(1
    v3 = 4.5 - 100/ STICK(2)
    V4=4.5-100/STICK(3)
LOCATE 10, 5, 0
PRINT v1, v2, v3, V4
GOTO Start
```


EASY-PC, Schematic and PCB CAD

Over 19,000 Installations

 in 80 Countries World-wide!

- Runs on:- PC/XT/AT/ 286/ 386/ 486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill. - Tech Support - free.
- Superbly easy to use.

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Active and Passive Filter

 Design - FILTECH -

From only £145!

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From $\$ 275$	$\varepsilon 145$
MultiRouter: 32bit Multi-pass Autorouter	3578	E295
LAYAN: Electro-Magnetic layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$850	E496
PULSAR: Digital Circuit Simulator	From \$196	$¢ 98$
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	$¢ 98$
FILTECH: Active and Passive Filter Design program	From \$275	¢146
STOCKIT: Comprehensive Stock control program for the small or medium sized business	\$275	¢146
EASY-PC: Entry level PCB and Schematic CAD.	\$145	$\underline{6}$
Z-MATCH : Windows based Smith-Chart program for RF Engineers	From \$275	$£ 146$
We operate a no penalty upgrade pollcy. USS prices Include Post and Packing Sterling Prices exclude P\&P and VAT.		

- TECHNICAL SUPPORT FREE FOR LIFE - PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Number One Systems

UKIEEC: Ref. ETI, Harding Way, St.Ives, Cambridgeshire, UK PE17 4WR.
Telephone UK: 01480461778 (7 lines) Fax: 01480494042 International +441480461778
USA: Ref. ETI, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249
VISA

The Dianamic MPLCIO00 is an industrial specification Programmable Logic Controller with both ANALOGUE \& DIGITAL I/O capability, at an affordable price.

-APPLICATIONS LIMITED ONLY BY YOUR IMAGINATION
Yeasuring just $68 \mathrm{~mm} \times 72 \mathrm{~mm}$. The MPLC is a stand alone micro computer, programmable in BASIC. An on board EEPROM stores your compiled programme and 16 channels of I/O interface to the real world. But that's not all -Despite the small footprint, the 16 channels of $I / 0$ can be configured as digital inputs, digital outputs, analogue inputs, or pulse counters or any combination thereof. If that is still not enough, the MPLCIO00 has on board timers and can drive LCD displays directly. It can talk to external devices using the $I^{2} C$ protocol and also possesses an onboard 9600 baud RS232 interface. You might be forgiven for thinking that this type of performance comes at a price. Simply put, it doesn't. One of our main design aims was to produce the lowest cost analogue capable MPLC in the world. .

Call NM: Marketing on Tel: 0171-731-8199
London House, 100 New Kings Road, London SW6 4LX. Fax: 0171-731-8312

PIC EEZE

This is the easiest way to start using PC microcontrollers PICEEZE is amodular system that allows a cheap entry evel which builds into a powerful and versatile development platform.
All systems have quality Z I.F socket to accept PIC's and 37 way expansion port for further devices/upgrades.
PIC EEZE-1 Supports 16C61/64/71/74/84 and Serial EEPROMS PIC EEZE-2 As above plus supports 16C54/55/56/57/58
£44.95 $E 52.95$
$£ 72.95$
LPACK - Offers an introduction to PIC programming. This board Plugs into the PIC EEZE $1 / 2 / 3$ exjansion port and has 7 segments, Led's, buttons and switches which can be controlled via software from your PC to show simple PIC programming methods £28.00
O PACK - Demo boards fo PICs (18 and 28 pin). A board with on board Regulation and oscillator ard will accept a PIC supplied with modified L PACK board which it will interface with or can be used in protatyping The system can be upgraced when ready. PIC EEZE-1 to PIC EEZE-2 £9.95 or 2 PIC EEZE-3 E29.95. PIC EEZE-2 to PIC EEZE-3 E22.95. The system comes supplied with Microchips own assembler and simulator and our own programming software. The unit is designed to be software upgradeable for new pic versions. All software is Free so it wont cost you to keep up.
For further details of our range of Products/Prices PLease add £2.00 P $+P$ and makes cheques/P.J's payable to: LENNARO RESEARCH
and send to: 29 LAVENOER GAROENS, JESMOND,
NEWCASTLE UPON TYNE NE2 300 or TELEPHONE (0191) 2818050

HADGER GABARDS

80 Clarence Road, Erdington,Birmingham B23 6AR Don't call us, call talking pages. it's free on:- 0800600900 Mobile 0378-296 356
Printed circuit boards from Schematic to finished design Boards available from H.R.T. -
Radcom - Practical Wireless Short Wave Magazine : Elektor - ETI - HiFi World and more. Prototype One Off PCBs. Kits Projects \& Built units. Schools, Colleges and Industry Catered for. Club Talks.
Shop now open within half a mile of Spaghetti Junction M6.

Radio Bygones

PERRYBEE (UK) LTD

We offer a comprehensive service designed to assist the OEM in the procurement of components and the search for new export markets.

* With our own office in Germany, we offer access to all types of German products.
\star Component sourcing for actives and passives.
\star Market research service
\star Export documentation and consolidation service.
\star Prompt and professional response guaranteed.

Perrybee (UK) Ltd,
Maple House, 8 Keveral Gardens, Seaton, Torpoint, Cornwall PL11 3JH
Tel: 01503250354 Fax:01503 250657

Last month we took a general look at the restoration and repair of 'antique electronics', in particular old valve radio sets. This month we delve further into the practical aspects starting with a look at the circuit diagrams of two receivers. Circuit 1 is the Ekco U245. This is a small transportable bakelite set made in 1955. It is designed for use on AC or DC mains, and covers the MW and LW wavebands only. The circuitry is reasonably

standard, apart from the biasing of the output stage. Circuit 2 is the Bush VHF61. This is a larger bakelite table set made in 1956. It is designed for use on AC mains only, and covers MW, LW and VHF. The circuit is fairly typical of a higher quality receiver, and features a tone control, gramophone input, 'Piano Key' waveband selection switches, and a 'Magic Eye' tuning indicator. These circuit diagrams were kindly sulpplied by Anode Electronics.

Applying a Test HT supply

Before the set is connected to the mains, apply a test supply to the HT rall: This will show up some leaky capacitors, and will hopefully reform the electrolytics. It is not necessary to fit the valves at this stage. My High Voltage Capacitor Reformer unit is ideal for this purpose. Switch it to the 240 V setting and connect a meter to the appropriate terminals to monitor the current.

Connect the negative lead to a convenient point on the chassis and the positive lead to the positive terminal of the electrolytic capacitor that is connected directly to the cathode of the rectifier valve. This is often the red tag on the main smoothing can. On our example circuits, this is the positive terminal of C32 on the Ekco and the positive terminal of C58 on the Bush.

Switch the HT supply on, and watch the current reading. It will probably start high (maybe 30 mA), and will hopefully drop after a few seconds as the smoothing capacitors charge up. If you are lucky it will drop to maybe 1 mA , which is acceptable leakage for the electrolytics. However it is more likely to remain at a higher level, and there can be several reasons for this.

Check for potential divider circuits across the HT supply. Most sets do not have one, but our example Ekco does - R15 and R16. For this test to be meaningful the lower one (R16 in this case) should be temporarily disconnected.

If the current reading is still over 1 mA once the potential dividers have been accounted for, we need to establish where it is going. The most likely explanation is leaky capacitors.

Leaky capacitors

Elderly electrolytics often have high leakage currents. These will

sometimes improve if they are left powered by the capacitor reformer for a few hours.

I prefer to remove the electrolytics from the chassis for reforming if it is likely to take more than a few minutes. This allows each section of a can to be reformed separately, without the effects of other components. If the leakage is fairly bad the electrolytic could get warm after a while, in which case switch off the power and allow it to cool down again. The maximum acceptable leakage current is about 1 mA for each 30uF.

Look for signs of resistors or capacitors getting warm (such as molten wax). But don't poke your fingers into the chassis with the power onl Any capacitors that are getting warm will need to be replaced. If a resistor is getting warm, work out which capacitor(s) It is supplying. Thus on our sample Ekco, if R9 was getting warm, C24 would be suspect.

Even if nothing is getting warm we can use the same logic to establish the cause of the current consumption. Measure the voltage drop across any resistor (or resistive component such as a transformer winding) that is feeding one or more capacitors. If the capacitor is OK there will be no voltage drop.

You can also check other poteritially leaky capacitors by this method. In particular I would urge you to check the coupling capacitor to the grid of the output valve. Measure the voltage between the grid and the chassis. If it is even slightly positive, change the coupling capacitor (C27 on the Ekco).

If there are several leaky capacitors in a set, the chances are that other components of the same type will be in a similar state. In this case I would change all of that type, to save problems later.

Capacitor types

The capacitors in question here are those values from about 0.001 uF (1 nF) to 0.47 uF (470 nF). The smaller value capacitors do not seem to
give any trouble. There are various types of capacitor used, and some are worse than others.

Probably the most common - and the most trouble - are the wax coated paper types. These are tubular components, with a distinctive sticky yellow wax coating. Most of these capacitors will be found to be leaky, and I usually replace them all as a matter of course. Many later sets use Hunts Moldseal capacitors. These are small brown or black tubular plastic components which are fairly unreliable. If the case is cracked or fractured it should be replaced, otherwise it may be OK.

Many Philips sets use black capacitors coated with pitch. These are usually fairly reliable, but when they do fail they tend to go short circuit.

Some later sets use small tubular capacitors, which have the appearance of a piece of thin tube with two wires wrapped around it. From my experience these are reliable.

Replacement capacitors

Any replacement must be of similar shape and size as the original, and must have a suitable voltage rating. Valve component suppliers such as Anode electronics stock suitable capacitors, often at favorable prices. You may be able to obtain a mixed pack of 50 or 100 components, containing the more useful values.

The replacement capacitors may not be available in the same capacitance values as the original components. This is not normally a problem, simply fit the closest available. For example a new 0.047 uF component could be used to replace a faulty 0.04 uF or 0.05 uF capacitor.

Electrolytic capacitors

The cans are not readily available now, although valve radio dealers often stock something suitable. The usual approach is to fit a replacement modern axial capacitor below the chassis and leave the

can, disconnected, on the chassis so it looks correct. Some restorers remove the innards from the original cans and fit the modern replacement capacitors inside.

Anode Electronics stock a range of 450 V axial electrolytics ín values from 1uF to 47uF which should cover most eventualities.

Fitting replacement components

Any replacement components must follow (as close as possible) the path and position of the originals. In particular this applies to those close to the chassis and those In the RF stages. Connections to the chassis should be made to the original point if possible. The original layout would have been planned and optimised to avoid instability, so it is best not to deviate from this.

Any lead that is close to another component or the chassis should be sleeved with PVC sleeving (or a bit or wire insulation) to avoid any risk of short circuits.

Preparing to apply the mains

The mains flex must be replaced with modern cable. The onty exception to this is if the cable contains ballast resistance (this cable is thicker than normal).

If the set is an AC/DC type, one side of the mains will be connected directly to the chassis, or via a low resistance (as in our example Ekco). This should be connected to neutral (blue wire) for safety.

Check that the mains on/off switch works. If is a single pole type it should ideally be replaced with a double pole switch. Failing that, make sure it is switching the live side of the mains, and rewire it if necessary.

Make. sure the dial lamps are the correct types and functional. Check the mains voltage setting matches the supply voltage in your area.

Reconnect the output transformer and speaker. Make sure any speaker switching arrangements are set so that the internal speaker is
connected. Finally fit the valves, making sure they are in the correct positions.

Applying the mains

Connect a test meter between the positive terminal of the main HT smoothing capacitor and the chassis. Set this to a DC voltage range of at least 300 V .

Arrange some sort of safe mains connection that you can switch on and off easily. Always keep your finger near the mains switch when the set is on - so it can be switched off quickly.

Switch the power on for just a few seconds. Hopefully all the valve heaters will start to glow, and the dial lamps should illuminate. If any valves heaters do not glow, or some are brighter than others, the reason should be investigated. Valves are fairly robust, but the heaters must not be overrun for any period of time or the cathode will be damaged.

If all the heaters seem OK, leave the set on for a little longer and watch the HT voltage reading. After maybe five to ten seconds this should start to rise, and will reach a maximum of perhaps 250 V to 300 V after a further five or ten seconds. The voltage will then begin to drop again, by between ten and forty volts, as the output valve warms up.

Check the service information for the correct voltage on the cathode of the rectifier valve. In the case of our sample Ekco it is 190 V , and on the Bush it is 252 V . The actual voltage can vary by perhaps 15 V either way, but greater discrepancies should be investigated.

If you have a digital meter with a high input impedance you should measure the voltage directly across the control grid resistor of the output valve. It should be virtually zero. If there is a positive voltage here, the coupling capacitor is leaky.

Quick Checks

If the set does not show signs of life, all is not lost. A few simple tests and observations may help to narrow down the faulty section.

Listen closely to the speaker for signs of life. If you can hear some sort of hum or noise the power supply and amplifier are probably doing something. If it is completely silent, check the connections between the output transformer and speaker, in particular the switch or whatever is used to disable the internal speaker: The primary of the output transformer may be open-circuit.

Turn the volume up and touch your finger on the centre tag of the volume control pot. If the amplifier is working you will hear a loud buzzing from the speaker. This would confirm that the amplifier and power supply are alive.

With the volume turned up, operate the wavechange switch. If there are healthy crackles from the speaker, the IF and detector sections are probably alive.

If the IF seems OK, try connecting an aerial or a length of wire to the control grid of the mixer-oscillator valve (pin 2 of V 2 on the Bush). If this produces some sort of noise or even stations, the connections and components between the valve and the aerial socket or ferrite rod aerial may be suspect.

Confirm that the set is dead on all wavebands. If some wavebands are working, the fault is narrowed down to those components or circuits that are used only on the faulty bands,

Detailed circuit operation

The following descriptions only cover the more common arrangements. I have not attempted to explain the operation of the circuit, except where valve techniques differ widely from transistor arrangements.

Power supply circuit arrangements

There are two basic arrangements, depending on whether the set is designed for use on AC and DC mains, or AC mains only.

The Bush is an AC only set. The transformer T2 supplies the valve

heaters, which are connected in parallel, from a low voltage (in this case $6.3 V$) winding. On some sets the rectifier heater is powered from a separate transformer winding to reduce the stress on the heatercathode insulation. The dial lamps are powered from the main heater winding.

The mains transformer often has two or more tappings on the primary, for different mains supply voltages. To avold damaging the valves, it is important to check that the setting is correct for the local supply voltage in your area.

A separate centre-tapped secondary winding, typically 250-0-250V, is used for the HT supply. This is full wave rectified by V8 (EZ80). If the HT supply is absent, check that the AC supply is reaching both anodes of the rectifier valve. Mains transformers occàsionally fail, but this is often caused by a fault elsewhere.

A few specialist companies offer a transformer rewinding service, but this can be expensive. RS stock a modern HT transformer (196072) for $£ 24.85$, which may be a suitable replacement in some cases. Anode Electronics and a few other dealers may have a suitable second hand component which would be somewhat cheaper and more in keeping with the age of the set. If the requirements are unusual, the best approach may be one of the transformer winding kits. A 50VA kit is normally suitable, and costs about $£ 11$.

If the $A C$ is present but the DC HT supply is absent, the rectifier valve is probably faulty. Check first that the heater is being driven.

If there is sparking and fireworks inside the rectifier valve, there is probably a short circuit or heavy current demand on the HT supply. This is probably due to a faulty smoothing capacitor or maybe a fault in the output stage. Do not leave the set in this state for any time as the risk of destroying the mains transformer is very high. You will definitely need a new rectifier valve, even if the transformer survives. Sparking inside the rectifier valve can also be caused by the valve itself being faulty, but this is less common.

AC/DC sets

The main drawback of AC only sets, as far as manufacturers were concerned, was the cost and weight of the mains transformers. This could explain the popularity of AC/DC sets in the 50's, even though DC mains wàs becoming less common.

In AC/DC sets (such as the Ekco) the valve heaters are connected in series. The current ratings are the same (often 100 mA) and the voltages differ. If one valve heater should become open circuit, the circuit will be broken and none of the heaters will glow.

The total voltage of the heater chain is normally lower than the mains supply voltage, and the remainder is dropped by a resistor. In the Ekco R21 is the dropper resistor, which drops about 93 V and dissipates 9.3 Watts. Sometimes the dropper resistor is replaced or supplemented by a thermistor to keep the heater current more constant.

Mains supply voltage selection is arranged by addilional series resistors. In the Ekco, R22 is included in the circuit when the voltage is set to the 225-250V position.

If one valve does not glow it has probably lost its vacuum. If some valves do not glow and others are excessively bright, one of the valves may have a heater to cathode short circuit.

If you need to check the heater current, the easiest method is to measure the voltage across one of the valve heaters and compare this to the value in the valve data book. Alternatively measure the voltage across the dropper resistor and calculate the current using ohms law. If the difference is greater than about 5% either way, the reason should be investigated.

Dial lamps

Dial lights are sometimes connected into the heater chain. There may be a thermistor or resistor in parallel with them, to enable the set to keep working if one of the lamps fails. The dial lamps may alternatively
be in series with the supply to the whole set, possibly shunted by a resistor or thermistor.

The dial lamps will probably not be running at maximum brightness when the set is warmed up and working normally. During the Initial warming up process the lamps will vary in brightness, and may be very dim or very bright depending on the circuit arrangement.

Dropper resistor

The dropper resistor and voltage selection resistor are often contained in one component. This is often a green (or sometimes grey) tubular component with several tags, mounted on the top of the chassis. These high power resistors run very hot, and often fail by going open circuit.

You may be able to obtain a suitable second-hand component from a valve component dealer. Failing that, the normal solution is to bridge the faulty section with a new resistor of suitable power rating. The resistors often have odd vaiues, in the Ekco the main section is 930R. A suitable replacement would be a 1 KO 11 W ceramic resistor.

AC/DC HT supply arrangements

The mains is half-wave rectified, to produce the HT supply. This is carried out by V5 (UY41) in the Ekco set. R20 is a surge limiting component. If the HT supply is missing, check that the AC supply is reaching the anode of the rectifier. The surge limiting resistor is prone to failure, resulting in no HT. If the AC is present but the HT supply is absent the rectifier valve is probably faulty.

C34 in the Ekco is a suppression component, which prevents modulation buzz when the set is tuned to a strong signal. This capacitor often fails by blowing itself to pieces. The replacement MUST be suitable for direct connection across the mains.

Faulty valve holders

A fairly common problem, particularly on cheaper sets, is pcor contact between the valve and the valve holder. This is not limited to the power supply, and can occur anywhere in the set.

The problem is often caused by the contacts in the holder losing some of their spring tension. They can often be tightened by pushing a small jewelers screwdriver between the contact and the body to close the contact slightly. This must be done with great care to avoid breaking the contact or body. Sometimes the valve holder contacts will be broken, or weakened by corrosion. There are various "techniques" used by service engineers for overcoming valve holder problems, but these are more appropriate to quick repairs than serious restoration.

With some types of valve holder it is possible to extract the contacts from above once the connections have been desoldered and the tags straightened.

It is often easier to replace the defective contacts with these from another valve holder, than to replace the complete holder.

Before disconnecting anything, make a note of the connections. The solder should be removed from the lags with a desoldering tool. If the existing solder does not melt and flow very well, apply some new solder before removing the lot with the desoldering tool.

Valve holders are often fixed to the chassis by rivets, which need to be drilled out. The new holder can be fixed in place with small screws and nuts.

Smoothing circuits

On earlier sets chokes were often used for decoupling, with comparatively low value electrolytic smoothing capacitors (8uF or 16uF). As higher value capacitors became available (32 uF to 50uF), the chokes were replaced with power resistors which were much cheaper and less bulky. Some earlier sets use an energised speaker, the field winding being used as a smoothing choke.

Other power supply arrangements

Some AC/DC sets have the dropper resistor incorporated in the line cord. This can be Identified by the mains cable being thicker than normal. The length affects the resistance, so it must never be shortened. If you suspect it has been, check with the service sheet or measure the heater current as described previously.

This line cord is no longer available so you may have no choice but to fit a suitable resistor inside the case of the set, but this could cause problems with heat dissipation. Some imported sets from countries with lower mains supplies (such as the USA) were fitted with long line cord resistors to drop the excess voltage.

Some continental AC/DC sets are designed for use on either 220 V or 117 V supplies. The heater chain is divided into two sections with their own dropper resistors. On the lower voltage setting they are connected in parallel, and on the higher voltage setting they are in series.

A few sets use a combination of $A C$ and $A C / D C$ circuit techniques. I have seen a Bush set using a series heater chain driven by the mains transformer. I have also seen a Ferranti set that uses a small transformer to drive the 6.3 V heaters, the HT being derived by rectifying the mains.

The HT rectifier may be a metal or selenium rectifier. Either of these could be replaced with a 1 N5404 silicon rectifier diode in the event of failure. If there is no surge limiting resistor or thermistor in series with the original rectifier, add a 120R 2.5 W resistor in series with the silicon replacement.

Foreign sets

Continental 220 V sets can be modified by adding a resistor in series with the supply to the set to drop about 25 V . A 18R 5W resistor is often suitable, and can be pasitioned inside the set (it will dissipate about 3.5 W).

1 1 O V sets from the USA are more of a problem. Many of these will have been modified by adding a large dropper resistor internally, to drop the extra 130 V .

Some American AC/DC sets use a 300 mA heater chain, so the total mains current consumption is about 350 mA . The dropper resistor would be about 370R and would dissipate some 45 Watts, causing serious overheating. The best approach with 110 V sets is to use an external 240 V -110V transformer.

Battery valve sets

Batteries for battery sets are no longer available. The normal supply required is 90 V at about 20 mA for the HT and 1.5 V at about 300 mA for the LT (Heaters).

The HT could be abtained from ten 9V PP3 batteries in series, but this would be rather expensive and would not last for long.

A single alkaline 1.5 V D cell would suffice for the LT , but again it would not last long.

The best approach is some sort of mains power supply. This could be built in a case that will fit in the space previously occupied by the batteries. A unit designed jointly by myself and Nigel Rogerson will be available from Anode Electronics in early 1996. When ardering please state the HT and LT voltages required.

Next Month

In the next part of this series we will continue our detailed look at the circuit configurations and likety problems.

Circuit digram of the Ekco U245. A.G.C. delay bias and grid bias for V4 is developed across R13 and R14. Valve base
connections, as seen from the underside of the chassis, are inset on the right of the main part of the diagram.

CHRCUT 1-EKCO U245 - COMPONENT LIST							
Valves		$\begin{aligned} & \mathrm{C} 15 \\ & \mathrm{C} 16 \end{aligned}$	$\begin{aligned} & 200 \mathrm{pF} \\ & 421 \mathrm{pF} \end{aligned}$	Resistors		R21 930R R22 200R	
v1	UCH42			R1	22K		
V2	UF41	C17	0.001 uF	R2	470K	Coils *	
V3	UBC41	C18	100pF	R3	680K		
V4	UL41	C19	100pF	R4	47K	L1	1.4
V5	UY41	C20	50pF	R5	47K	L2	3.5
		C21	0.14 F	R6	47K	L3	11.5
Capacitors		C22	50 pF	R7	500K	L4	11.5
C1	0.01 uF	C23	0.01uF	R8	10M	$L 5$	6.3
C2	2600pF	C24	0.1uF	R9	1K	16	3.4
C3	47pF	C25	15pF	R10	220K	$L 7$	3.2
C5	-	C25	15pF	R11	1M	L8	1.5
C6	-	C26	2uF	R12	1M	$L 9$	11.5
C7	300pF	C27	0.002 uF	R13	39R	L10	11.5
C8	100pF	C28	0.002uF	R14	47R	111	2.5
C9	100pF	C29	0.002 uF	R15	10K	Oth	
C10	100pF	C30	0.02uF	R16	33K	Cor	onen
C11	-	C31	0.05 uF	R17	1M	T1a	430
C12	-	C32	50 uF	R18	1 M	T1b	-
C13	345pF	C33	50 uF	R19	470R	S1-S	-
C14	- 40pF	C34	0.05uF	R20	160R	S4,S5	-

* approximate DC resistance in Ohms

VOLTAGES AND CURRENTS						
Valve		Anode.		Screen		Cath. M
		\checkmark	mA	v	mA	
V1	UCH42	$\left\{\begin{array}{ll}170 & 1.7 \\ \text { Oscillator } \\ 55 & 2.3\end{array}\right\}$		72	2.9	-
V2	UF41	165	3.8	72	1.1	-
V3	UBC41	78	0.4	-	-	-
V4	UL41	157	27.0	72	3.7	-
V5	UY41	205	-	-	-	190^{2}

[^1]Above: The Ekco U245. One of our example circuits.

The Bush DAC10. This set covers MW preset tuning. It was released in 1950

BELOW: An internal view of the Bush VHF61 (one of our example sets). The VHF tuner assembly is visible at the left of the chassis, next to the tuning capacitor. The mains transformer and voltage selector are on the right side. Below this on the rear of the chassis is the internal speaker switching screw and external speaker sockets. The tuning indicator is just visible on the speaker board to the left. Note that the output transformer (centre) is the RS replacement type suggested in the text. The tetrode solves the capacitance problem allowing operation at high frequencies. If it were connected directly to OV it would act as another control grid and greatly reduce the anode current. It is therefore often connected to the HT rail via a resistor to drop some voltage, and decoupled to 0 V with a suitable capacitor

CIRCUIT 2 - BUSH VHF61 - COMPONENT LIST

Valves	R26	15M	C16	90pF	C52	470pF
V1 ECC85	R27	180K	C17	270pF	C53 5u	F 50V
V2 ECH81	R28	100K	C1B	0.01uF	C54 0.0	.005uF
V3 EF89	R29	1K 6W	C19	0.02 uF	C55 20uF	F 350V
V4 EF89	R30	470K	C20	68pF	C56 0	0.01uF
V5 EABC80	R31	22K	C21	515pF	C57	0.01 uF
V6 EM81	R32	4.7K	C22	450pF	C58 40uF	F 350V
V7 EL84	R33	120K	C23	110pF	C59	0.1uF
V8 EZ80	R34	470K	C24	110pF	C 60	0.03uF
	R35	1K 6W	C25	0.01uF	C61 0	0.02uF
Resistors	R36	10K	C26	47pF	C62 0.0	.001uF
R1 150R	R37	47K	C27	47pF	TC1 3	3-15pF
R2 2.2K	R38	30R 0.5W	C28	0.04uF	TC2 3	3-15pF
R3 100K	VR1	1M	C29	0.04 uF	TC3 3	3-40pF
R4 6.8K	VR2	1 M	C30	0.01uF	TC4 3	$3-40 \mathrm{pF}$
R5 10K	All resistors 0.25W		C31	0.02uF	TC5 3	3-40pF
R6 680K			C32	110pF	TC6 '3	3-40pF
R7 150R	unless otherwise		C33	110pF	VC1	528pF
R8 47K	stated.		C34	0.01uF	VC2	528pF
R9 22K			C35	47pF	Inductors	
R10 10K 0.5 W	Capacitors		C36	47pF		
R11 2.2K	C1	47pF	C37	0.04uF	lapproximate	
R12 12K	C2	560pF	C38	0.04uF	resistances)	
R13 150R	C3	10pF	C39	110pF		
R14 1M	C4	560 pF	C40	110pF	L8	13R
R15 22K	C5	560pF	C41	0.01 u	L9	4R
R16 1K	C6	560pF	C42	10pF	L10	1R
R17 10K	C7	47pF	C43	47 pF	IFT2 pri	14R
R18 150R	C8	22pF	C44	0.02uF	IFT2sec	14R
R19 1M	C9	22pF	C45	0.01uF	IFT4 pri	14R
R20 1K	C10	5.6pF	C46	100pF	IFT4sec	14R
R21 330K	C11	560pF	C47	uF 350 V	IFT6 pri	14R
R22 47K	C12	47pF	C.48	0.01 uF	IFT6sec	14R
R23 100R	C13	10pF	C49	270pF	T1 pri	380R
R24 470R	C14	0.01uF	C50	270pF	T2 pri	20R
R25 1K	C15	0.0975uF	C51	470pF	T2sec	220R

VOLTAGES AND CURRENTS					
				\checkmark	mA
V1A	ECC85	150	-	1	6.7
V1B	ECC85	127	-	-	6.3
V2A	ECH81	105	85	1.7	11.3
V3	EF89	168	85	1.3	8.7
V4	EF89	165	135	2.3	15.3
V5	EABC80	70	-	-	-
V6	EM81	170	-	-	-
V7	EL84	245	210	6.5	36
V8	EZ80	-	-	252	-
All readings except, those for V 1 , obtained with receiver swatched to medium wave, usunf Model 7 Avometer. Limited variations may occur without imparing the performance of the receiver					

Testing and Use

When construction of the board is complete, it is a fairly easy matter to test the individual amplifiers. This is best done before the controls are connected and the major part before fitting into the case. Although a DVM will suffice, the availability of an oscilloscope and AF generator is very useful.

First, check the printed side of the board for whiskers of solder, accidental bridges etc. Then apply voltage and check it is correct before fitting the ICs into their sockets, taking the measurements at the actual socket pins. Insert one input IC at first. Always disconnect the supply when fitting or removing ICs. Now check the signal out for gain and, if possible, look at the waveform in case of any distortion. Insert the TLE 2027 IC and repeat, feeding the signal from the input as before. The LF roll-off checks are best left until the switches are fitted; in any

Tony Sercombe concludes his portable audlo mixer project

case listening through a microphone is a good subjective check if no "scope is available. Do the same thing with the two virtual earth amps and the compressor IC. I normally use test links made up from 6 to 8 inches of connecting wire, terminated at each end with a crocodile clip. Use one of these to supply an earth link so that the IC has a flat response in terms of compressing or limiting. If more links are supplied for the channel level and the output master control, this test may be carried right through from input 1 to output. Check the overall response and the noise level, which will be rather 'hissy' at full gain with no input connected, but at position 1 and 2 , it should be undetectable. In my case, I found an inherently noisy SSM 2017. Now go to the other channels and repeat the same thing. This time, it is simply the two channels' ICs that are being checked. Since the output amplifiers drive at 5 ohms, a

standard level. At this point the other output may be checked, and it should lie within a few millivolts of the first one, allowing for component tolerances.
The next task is to align the VU meters. Normally, the point ' 4 ' on a PPM is set at 1 Mw or 0.775 volt in 60 ohms. In this circuit, it is necessary to compromise somewhat. I chose -7 on the VU scale to represent 0.775 volt output, since there is no ' 8 ', with ' 0 ' or 100% representing absolute peak. On a PPM this would be shown as ' 6 ' on the scale. So, with the master control as before and the output at 0.775 volt, adjust both VU presets to read -7.
To set up the compressor/limiter, back off the threshold fully, and connect the circuit board links to the 'compress'
headset can be connected directly to the output. Now connect up the other side of the stereo channel with the links, from the second virtual earth amplifier and test as before. The same can be said of all the amplifier's checking gain, response and distortion. So far as possible, make certain the oscillator works by connecting a link to ground from the oscillator ground point. If it does not at first, adjust the value of the 2 K 7 resistor. Hook up a couple of LEDs to the battery indicator and, if possible, reduce both sides of the supply in tandem, and note the changeover point. This should be at, or just before, 6-0-6 volts. When you are generally satisfied that everything is working correctly, the board may be fitted into the case. It is best to fit the top panel controls and VU meters first. The side plugs and sockets etc may be left until later. If veropins have been used at the off-board connection point - and I suggest this is the best method - it is an easy matter to connect up the circuit points with the appropriate controls. Ordinary, light connecting wire may be used for this purpose, except that a screened balanced cable should be used to connect the inputs. I used three-pin XLR chassis mounting sockets for the input. The pin numbers as shown are standard, and a chassis mounting male for the auxiliary headphone output, the main operator output being the standard stereo jack socket. The mixer output can be contained within a multiway chassis mounting socket, and cable mounted plug to suit (the other end of the cable having connectors to suit).

When the circuit board has been fitted into the case, and the connections to the controls made, it is time for the final setting up.

Start with the oscillator. With the master control at $2 / 3$ rotation, and the compressor/limiter switched off, connect a DVM or AC millivoltmeter to one of the mixer outputs, with its range setting to 1 volt or more. Switch the oscillator on. If an oscilloscope is available, connect this across the oscillator output (across the master fader). First check the waveform shape - visual inspection is quite adequate. At this point, if frequency can be measured, this too can be checked. Otherwise, a fair check may be made aurally, with a headset connected across the output. But, remember to remove the headset for the next check, if it is connected across the same output. Now adjust the output level of the oscillator so that the output from the mixer is 0.775 volt. This is the

External supply.

Millivoltmeter PCB component overlay.

External supply PCB
component overlay.

ST		19" R	
	6,000,000 items EX STOCK VIDEO MONITOR SPECIALS		Half Price!
40 Mb HD + 3Mb Ram LIMITED QUANTITY only of thase 12 Mhz HI GRADE 286 systams designed for Lotal reliabily, The compact case houses ine mother drive \& Integral 40 Mb harc dilsk drive to the tront. Real ime ciok condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM DOS 4.01 and 90 DAY full Guarantee. Read to fun Order as HIGRADE 286 ONLYE/29.OO (E)	monitors you will ever see At this price - Don't miss it!!		
LOW COST 486DX-33 SYSTEM 		32U - High Quality - All steel RakCab	
	VGA cable for 1 BM PC included.		
	5000 Monltors from stock III HERCULES, EGA, CGA, VGA, SVGA-6 10 26" + Many special Items - CALL with your needs !		
FLOPPY DISK DRIVES 31/2" - $8^{\prime \prime}$			
$51 / 4$ " or $3^{1 / 2}$ " from only $£ 18.95$! Massive purchases of standarart 55° and $3 \mathrm{~m}^{2}$. drives enaties us 10 ment and are fully tested, aligned and shipped to you with a 90 day size. All are IBM-PC compatible (if $3 \%^{\prime \prime}$ supported on your PC).			
3 3/: Panasonic dus			
		Sold at LESS than a third of makers price !!	
		Over 1000 racks - 19" 22" \& 24" wide 3 to 44 U high. Available from stock !! Call with your requirements.	
HARD DISK DRIVES			
		TOUCH SCREEN SYSTEM	
End ol line purchase scoopl Brand new NEC D2246 $8^{\circ} 85$ Mbyte 	Only $£ 125$ (E) $20^{\prime \prime} 22^{\prime \prime}$ and 26 " AV SPECIALS 	a thal transucucom glass laminated panel measuring $29.5 \times 2.5 .5 \mathrm{~cm}$	
Complete with full manual. Only $\mathbf{E 2 9 9 . 0 0}$ or 2 for E 525.00 (E) 34/ FUUJFKK-309-26 20mb MFM IF RFE E59.95/C			
		simple senial data coniainng posithonal $X \& Y$ coordinates as io 	
	SPECIAL INTEREST ITEMS		
IAZING TELEBOX			
		$\mathbf{\Sigma 1 4 5 . 0 0}$ (8)	
		LOW COST RAM \& CPU'S	
	HP6 621 A Dual Programmable GPIB PSU 0.7 V 160 waths $E 1880$ 		
	Roken $80-250200$ single phase llow soldder machine		
	 	\qquad	

Issue 13 of Display News now available - send large SAE - PACKED with bargains!

ALL B ENQUIRIES
11
FAX 01816791927

E1 BARGAIN PACKS - List 5

If you would like to receive the other four $£ 1$ lists and a lot of other lists, request these when you order or send SAE.
TEST PRODS FOR MULTIMETERS with 4 mm sockets. Good length very fiexible lead, Ret: D86.
8 OHM PM SPEAKERS, size $8^{n} x$
8 OHM PM SPEAKERS, size $8^{n} \times 4^{4}$, pack of two. These may be
lightly rusty and that is why they are so cheap pill lightly rusty and that is why they are so cheap but are
electrically OK, Ret.D102. PAXOLIN PANELS, size $6^{\circ} \times 6^{n}$, approximately ${ }^{1 / 166^{\prime}}$ thick, pack of two, Ref: D103.
13 A SOCKET, Virtually unbreakable, ideal for trailing lead, Ret: 095.
PIEZO BUZZER with electronic sounder circuit. 3 V to 9 V D.C. operated, Ret: D76.
Ditro but withour internal electronics, pack of two, Ret:D75. LUMINOUS ROCKER SWITCH, approximately 30 mm sq. pack of two, Ref: D64.
ROTARY SWITCH, 9 -pole 6 -way, s.nall size and $1 / 4^{"}$ spincle,
pack of Wo, Ret: 054 . pack of two, Ret: D54.
FERRITE RODS
FERRITE RODS, 7 with coils for Long and Medium waves, pack
of two, Ref: D52. of lwo, Ref: D52.
IITTO but without the coils, pack of three, Rel D:52
SLIDE SWITCHES, SPDT, pack of 20, Ret: D50,
MAINS DP ROTARY SWITCH with $1 / 4^{4}$ control spindle, pack of tive, Ret. D49.
ELECTROLYTIC CAP, 800 F at 6.4 V , pack of 20 , Ret:D48. Ref: 047.
MINI RELAY with 5 V coil, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times 1 \mathrm{~mm}$, has two sets of changeover contacts, Ret: 042
MAINS SUPRESSOR CAPS $0.1 \mu f 250 \mathrm{~V}$ A. ., pack of 10 , Ret: 1050.

TELESCOPIC AERLAL, chrome plated, extendable and tolds over for improved F,M, reception, Rel 1051
MES LAMP HOLDERS, side
MES LAMP HOLDERS, slide on to $1 / 4^{\circ}$ tag, pack of 10 , Ref: ${ }^{1054 .}$
lengths, Ret
lengths, Ref: 1056.
20A TOGGLE SWITCHES, centre off, part spring controlled will stay on when pushed up but will spring back when pushed down, pack of two, Rel: 1043
HALL EFFECT DVICES, mounted on small heatsink, pack of two, Ret. 1022 .
12V POiARISE
12 P POLARISED RELAY, two changeover contacts, Ret: 1032. PAXOLIA PANEL, $12^{\prime \prime} \times 12^{-1 / 1 / 16^{\circ}}$ thick, Ret: 1033 .
MINI POTTED TRANSFORMER, only $1.5 \mathrm{VA} 15 \mathrm{~V}-\mathrm{OV}-15 \mathrm{~V}$ or 30 V , Ret: 964.
ELECTROLYTIC CAP, $32 \mu \mathrm{~F}$ at 350 V and $50 \mu \mathrm{~F}$ section at 25 V , in aluminium can for upright mounting, pack of two, Ret 995
PRE-SET POTS, one megohm, pack of five, Rei: 998
PRE-SET POTS, one megohm, pack of five, Ret: 998.
size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted, Rel. 1006 6 V SOLENOID, good strong pull but quite small, pack oftwo. Ret: 1012.

FIGURE-8 MAINS FLEX, also makes good speaker lead, 15 m , Ref: 1014.
HIGH CURRENT RELAY, $24 V$ A.C. or 12 V D.C., three changeover contacts, Ret: 1016.
LOUDSPEAKER, 8 ohm 5W, 3.7 round, Rel: 962
NEON PILOT LIGHTS, oblong for tront panel mounting, with intemal resistor for normal mains operation, pack of four, 5 MM .
3.5MM JACK PLUGS, pack of 10 , Ref: 975.

PSU, mains operated, two outputs, one 9.5 V at 550 mA and the other 15 V at 150 m A , Ref: 988.
ANOTHER PSU, malins operated, output 15 V A.C. at 320 mA . Ref: 989 .
PHOTOCELLS, silicon chip type, pack of lour, Ret: 939 .
LOUDSPEAKER, 54 Ohm 5 W rating, Rel:946.
230 V ROD ELEMENTS, 500 W lemminal-ended, 10° long, pack of two Ret 943 ,
LOUDSPEAKER, $T \times 5^{\circ} 4$ Ohm 5W, Ret: 949.
LOUDSPEAKER, $4^{" *}$ crrcular 6 Ohm 3W, pack of 2, Rel:951. FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching pair, Rel: $901{ }^{\circ}$ PAXOLIN PANEL, $8^{1 / 2^{\circ}} \times 3^{1 / 2^{\circ}}$ with electrolytics $250 \mu \mathrm{~F}$
PA and100 FF , Rel: 905 ,
CAR SOCKET PLUG with P.C.B. compartment, Ret: 917
FOUR-CORE FLEX sultable for telephone extensions, 10 m , Ret 918.
VERO OFF-CUTS, approximately 30 square inches of use-ful sizes. Ref: 927.
PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lid, held by four screws. pack of two, Ret: 876 .
SOLENOIDS, 12 V to 24 V , will push or pull, pack of two, Rel: 877. 2M MAINS LEAD, 3 -core with instrument plug moulded on, Ret: 879 .
EELESCOPIC AERIAL, chrome plated, extendable, pack of two, Rel: 884 .
MICROPHONE, dynamic with normal body for hand hold-ing. Ret: 885 .
CROCODILE CLIPS, supenor quallity tlex, can be allached with. out soldering, ivive each red and black, Ret:886.
BATTERY CONNECTOR FOR TP3, superior quality, pack of four, Ret 88
LIGHTWEIGHT STEREO HEADPHONES, Ref: 898
PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pack of 10, Ref: 849 .
THERMOSTAT for ovens with $1 / 4^{*}$ spindle to take control knob,
Ret: 857 .
12V-JV.12V IOW MAINS TRANSFORMER, RE: 811
18V-OV-18V 10W MAINS TRANSFORMER Ret: 813
AIR SPAC
Rel: 1818.
AMPLIFIER, 9 V or 12 V operated Mullard 1153 Rel: 823
2 CIRCUIT MICROSWITCHES, licon, pack of 4 , Ret 82
LARGE SIZE MICROSWITCHES ($20 \mathrm{~mm} \times 6 \mathrm{~mm} \times 10 \mathrm{~mm}$) changeover conlacts, pack of wo, ret: 826 .
MAINS VOLTAGE PUSHSWITCH with white dolly, through panel mounting by hexagonal nut, Ret: 829 .
POINTER KNOB for spindle which is just under $1 / 4^{\circ}$, like most
thermostats, pack of four, ret: 833 .

MAINTENANCE FREE BATTERIES

The YUASA batteries are sealed lead-acid types and they can be used in any position and are virtually maintenance free. We have two popular ones in stock at bargain prices, the 12 V 15AH will cost you only 10 if you collect or £12.50 including carriage if we have to send Order Ref: 12.5P2. This battery would also stand in as a car battery in an emergency.
The other one we have is much smaller, it is a 12 V 2.3 AH , regualr price $£ 14$, yours for $£ 5$, Order Ref: 5P258. These batteries are in tip top condi tion, virtually unused and fully guaranteed.
DRY BATTERIES All high wattage, heavy duty type. Four popular types in stock:-
$11 / 2 \vee \mathrm{HP7}$, sometimes known as the penlight bat tery, four for 60p. Order Ref: GT 10 .
$11 / 2 V$ HP2, sometimes known as the big torch battery, two for 60p. Order ref: GT11
$11 / 2 \mathrm{~V}$ HP11, also a popular torch battery, two for 50p, Order 'Ref: GT12.
9 V , ever popular PP3, 2 for $£ 1$, Order Rel: GT13 35 mm PANORAMIC CAMERA. Has super wide ens, Ideal for holiday viewing, is focus free and has an extra bright and clear view finder. Brand new and guaranteed, individually boxed, $\mathbf{£ 6 . 5 0}$, Order Ref: 6.5P2
OV-20V D.C. PANEL METER. This is a nice size 65 mm sq. It is ideal if you are making a voltage variable instrument or battery charger. price $£ 3$, variable instrumen
FLASHING BEACON. Ideal for putting on a van, tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Seperate fixing base is included so unit can be put away it desirable. Price $£ 7.50$. Order Ref: 7.5 P13.

BIG BUYER

Please note if you order 10 of an item you may deduct 10%. If you order 25 , then deduct 25% but add VAT. If you need 100 or more, you can usually deduct 40% but please ring to confirm.

12V 2A TRANSFORMER, £2, Order Ret: 2 P337. 12 V -OV-12V TRANSFORMER, 35VA, $£ 2.50$ Order Ret: 2.5P13.
HIGH RESOLUTION MONTTOR. $9^{\prime \prime}$ by Phillips, in metal frame for easy mounting. Brand new, offered at less than the price of the tube alone, £15,Order Ref: 15P1
15W $8^{\prime \prime}$ OHM SPEAKER AND $3^{\prime \prime}$ TWEETER Amstrad, made for their high quality music centre, £4 per pair, Order Ref: 4P57.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enables you to read Insulation directly in Megohms. The multimeter has four ranges: A.C./D.C. volts; 3 ranges milliamps; 3 ranges resistance and 5 amp range. Ex-British Telecom, tested and guaranteed OK, yours for only $\mathbf{£ 7 . 5 0}$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P4.
We have some of the above testers not working on all ranges, should be repairable, we supply diagram £3, Order Ref: 3P176.
LCD 31/2 DIGIT PANEL METER. This is a multirange volt meter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet. Special snip price of $£ 11.50$ Order Ref: 11.5P2
MINI BLOW HEATER. IKW, IDEAL FOR UNDER DESK OR AIRING CUPBOARD, ETC Needs only a simple mounting frame, $\mathbf{E 5}$, Order Ref: 5P23.
MEDICINE CUPBOARD ALARM. Or it could be used to warn when any cupboard door is opened. the light shining on the unit makes the bell ring Completely built and neatly cased, requires only a battery, £3. Order Ref: 3P155.
DON'T LET IT OVERFLOWI Be it bath, sink celar, sump or any other thing that could flood This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, $\mathbf{\Sigma 3}$. Order Ref: 3P156.

E1.50 BARGAIN PACKS

NICad BATTERY 3.6 V with P.C.B. mounting prongs, Order Ret: 1.5P2
6-DIGIT COUNTER 12V, Order Ref: 1.5P3
PAIR OF ULTRASONIC MODULES, one sender, one recener, Order Ret: 1.5P4 KEY SWITCHBLE, any length, Order Ref: 1.5P6 per metre. KEY SWITCH, two-position, complete with two Yale type keys. Order Ret. 1.5 P 12. 80 OHM MOTOR, 9 V brushless, Order Rer. 1.5P14 1.5P14 COAX TV CABLE, extra thin, 10 m , Order Ref: WATERPROOF SPEAKER, $3^{1} / 2^{\prime \prime}$ round, 8 ohm 11 W , Order Ret: $1.5 P_{2} 27$.
SV IA ENCASED POWER SUPPPLY with input and output leads, Order Rel: 1.5 P 22
FLUORESCENT CHOKE for 60W tube, Order REt: 1.5P23. $3^{\text {n }}$ TWEETER 8 Ohms 15 W , Order Ret: $1.5 P 28$.
13A SWITCH SOCKET, white, Order Ref: $1.5 P 29$.
RELAY, flash-proof, 12 V coil, SPCO Order ret 1.5 F 31 RELAY, flash-proot, 12 V coil, SPCO, Order reft $1.5 P 31$.
ENCASED PSU, twin Outputs, 15 V 850mA and 9 V 550 mA . ENCASED PSU, twin outputs, 15 V 8
both A.C. output, Order Ret: 1.5 P 32.
12 V MOTOR, mini but quite powertul, 32 mm diameter, 25 mm long, Order Ret: 1.5 P 33 .

22 BARGAIN PACKS

20W TWEETER $4^{4 *} \times 4^{4} 8$ Onm by Goodmans, Order Ref $2 P^{2} 403$ MOVING COIL CHARGER METER, 0-3A, Order Re: ${ }_{2}^{2 P 366 .}$ LIGHT-OPERATED SWITCH, kit of pants, Order Ret $2 P 369$
W-SHAPED 3OW FLUORESCENT TUBE by Phillps. Ideal name plate illuminator, Order Ret: $2 P 372$.
DIMMER SWITCH, standard size plate, colours - red, yellow, green, blue. Order Ref: 2P380.
TOROIDAL TRANSFORMER TV 5A, Order Ret 2P390 TELEPHONE EXTENSION LEAD, flat plug one end, socket the other, 12 m , Order Ref: 2 P 338 .
INTERNAL TELEPHONE EXTENSION, 4 -core cable, 25 m , Order Ret: 2 P339.
FIGURE-8 FLEX, mains voltage, 50 m , Order Ret: 2 P345. INFRA-RED RECEIVER, has fitted TV receiver, Order Ret:2P304.
LCD CLOCK MODULE with details on other uses, Order Ret $2 P 307$
Order Rel: $2 P 308$
12 V 200 mA PSU on 13 A base. Order Ret: 2 P313. 2A MAINS FLTER AND PEAK SUPPRESSOR, Order Ret: 2 2P315.
45 ADP 250 V SWITCH on $6^{\prime \prime} \times 3^{\prime \prime}$ gold plate, Order Ret: 2 P316. D.C. VOLT REDUCER, $12 \mathrm{~V}-6 \mathrm{~V}$, fíts into car lighter socket, Order Ref: 2P318.
SOLAR CELL 3V, five of these in series would make you a 12 V battery charger, $£ 1$ each, Order Ret: 2P374
PERMANENT MAGNET SOLENOID, opposite action, core is released when voltage is applied, Order REt: 2 P
HEATER PAD, not waterproot, Order Ret: 2 P329
OSK DRIVE, complete less stepper motor, has all the elec15 V 3320 mA A,C, POWER SUPPLY, in case with ideal for bell or chime controller. Order Ret: 2 P281 POWERFUL MAINS MOTOR with 4" spindle, Order Ref: $2 P 262$ 20 M 80 OHM TV COAX, Order Ret: 2 P270.
LOCTITE METAL ADHESIVE, tube and some accessories. Order Ref: 2 P215.
6-DIGIT COUNTER, mains operated, Order Ref: $2 P 235$
2-GANG 0.00 OD TUNING CAPACITOR, standard size, made by Jacksons, Order Ret: 2P240.
13A ADAPTORS, takes two 13A plugs, pack of $5-£ 2$. Order Ref: 2P187
3-CORE 5A PVC FLEX, 15m, Order Ret: 2P189 MAINS TRANSFORMER, 15 V 1A. Order Ret. 2 P198.
FLIP-OVER CLOCK, mains operated, only requires a simple case, Order ret: 2P205.
THERMOSTAT with calibrated knob, oven temperatures, Order Ref $2 P 158$.
7.SEGMENT NEON DISPLAYS, pack of 8, Order Ret. $2 P 126$. MODERN TELEPHONE HANDSET, ideal office extensio Order Ret: 2 P94.
500 STAPLES, hardened pin, suif burglar alarm or telephone wire, Order Ret: 2 2P99.
PAD SWITCH for under carpets, Order Ref: $2 P 119$
61/2 FAN AND MAINS MOTOR, Order Rel: 2P64
24V STEREO POWER SUPPLY, Mullard, Order Ref: 2PBO UP TO 90 MIN 25A SWITCH, clockwork, Order Ret: 2P90, Order Ref: 2 P55.
POWER SUPPLY FOR MODELS, 6 V to 12 V variable and reversible, Order Ret: $2 P 3$.
MAINS TO 115 V AUTO TRANSFORMER 100 W , ex-GPO, Order Ret: $2 P 6$.
MAINS TME AND SET SWITCH 25A, up to nine hours delay, Order Ret: $2 P 9$
MOTORISED SIX MICROSWITCHES but motor 50 V A.C., Order Ret. 2P19.
TWIN EXTENSIO
TWIN EXTENSION LEAD, Ideal lead lamp, Black \& Decker tools, etc, 20m. Order ref: 2P20

COUNTER, resertable, 3 digit Orcer Ret: 2026
Prices include VAT and carriage cost it order over E25 otherwise add £3. Send cash, uncrossed postal orders,
cheque or quote credit card number
J \& N FACTORS
Pilgrim Works (Dept. ETI)
Stairbridge Lane, Bolney,
Sussex RH17 5PA
Telephone: 01444881965

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Moblle: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

Gould OS3000/ADVANCE 3000-30MHz Dual ch... 8200	
	2850
	11
	¢250
Hameg - 203/203-4/203-5/203-6-20 MHz Dual Channelfrom £175	
Hewlett Packard 1740A, 1741A, 177	£350
Hewlett Packard 1707A, 1707B - 75MHz 2chfrom £275	
Hewlett Packard 1980B-100MHz, 2 Ch	$\Sigma 750$
Hewlett Packard 54201A - 300MHz Digitizing .. $£ 1750$	
Hewlett Packard 54501A - 100MHz - Digitizing 4 channel $£ 1950$	
Hewlett Packard 54100D - 1GHz Digitizing .. 84500	
Hewlett Packard 180D-4	£300
Hewlett Packard 182C - 4 channel - 100 MHz .. 5350	
	E350
Hitachl VC6265 - 100 MHz Digital Storage (AS NEW) GPIB£2250	
Intron 2020 - 20 MHz Digital Sto	$¢ 900$
Kikusui COS $6100-100 \mathrm{MHz}, 5$ Channel, 12 Trace..................................... 1475	
Lecroy $140-100 \mathrm{MHz}$ - D.S.O. 4 Chann	$\underline{2750}$
Meguro - MSO 1270A - 20 MHz Digital Storage (NEW) $¢ 900$	
Nicolet 3091 - LF D.S.O	
Phillips 3211, 3217, 3240, 3243, 3244, 3261,	
3262 (2ch + 4ch) ..from E125 to £350	
Phillps 3219-50MHz with analogue sto	£400
Philips 3302-20MHz - Digital Storage .. 4745	
	£1950
Phillps PM 3295-350MHz Dual Channel ... $£ 1500$	
Tektronlx 2213 - 60 MHz Dual Channel .. $\mathbf{5} 425$	
Tektronlx 221560 MHz dual trace .. $\mathbf{\Sigma 4 5 0}$	
Tektronlx 2235 Dual trace 100 MHz (portable) ... 8000	
Tektronix $2225-50 \mathrm{MHz}$ dual ch	¢ 450
Tektronix 455 - 50MHz Dual Channel .. 350	
Tektronlx 475 - 200Mhz Dual Channel.. $£ 475$	
Tektronix $7313,7603,7613,7623,7633,100 \mathrm{MHz}$	from $£ 300$
Tektronix $7904-500 \mathrm{MHz}$Telequlpment D83-50MHz Dual Channel	

SPECTRUM ANALYSERS	
Advantest $4133 \mathrm{~A}-100 \mathrm{KHz}-20 \mathrm{GHz}$	26995
Eaton/Ailtech $757-10 \mathrm{KHz}-22 \mathrm{GHz}$	$£ 2750$
Hewlett Packard 3580A $-\mathbf{5 H z - 5 0 K H z}$	¢995
Hewlett Packard 3709B - Constellation Analyser with 15709A Hig	
Interface (As New)	. $£ 6750$
Hewlett Packard 182T with 8559A (10MHz - 21GHz)	.. $£ 3750$
HP 3582A - 25 KHz Analyser, dual channel	£2500
Hewlett Packard 35601A - Spectrum Analyser Interface	$\Sigma 1000$
Hewlett Packard 8754A - Network Analyser $4-1300 \mathrm{MHz}$	£2950
Hewlett Packard 853A with 8559A - (0.01-21GHz)	£4250
Hewlett Packard 8565A - (0.01-22GHz)	$£ 4000$
Hewlett Packard 141T +8552B + 8555A - (10MHz - 18GHz	$£ 1600$
Hewlett Packard 8505A - Network Analyser ($500 \mathrm{KHz}-1.3 \mathrm{GHz}$)	§4000
Hewlett Packard 3562A Dual Channel Dynamic Sig. Analyser	¢7500
Hewlett Packard 8590A $1510 \mathrm{KHz-1.5} \mathrm{GH}$.. $£ 4250$
Marconi $2370-110 \mathrm{MHz}$	$\underline{595}$
Marconi 2371 - $30 \mathrm{KHz} \cdot 200 \mathrm{MHz}$. $£ 1250$
Meguro MSA 4901-1-300 GHz (AS NEW)	. $£ 1995$
Meguro MSA 4912-1-1 GHz (AS NEW) ...	£3000
Polrad 641-1-10MHz - 18GHz.	. $£ 1500$
Rohde \& Schwarz - SWOB 5 Polyskop 0.1-1300MHz	. $£ 2500$
Schlumberger 1250 - Frequency Response Analyser	£2500
Tektronix $27109 \mathrm{Khz}-1.8 \mathrm{GHz} \ldots \ldots$.	£4250
Tektronix 496P - 9KHz - 1.8 GHz (Programmable)	£4500

MANY MCRE ITEMS AVAILABLE
SEND LARGE S A.E. FOR LIST OF EQUIPMENT ALL EOUIPMENT IS USED WITH 30 DAYS GUARANTEE PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING - CARRIAGE \& VAT TO BE ADDED ORDERING - CARRIAGE \& VAT
TO ALL GOODS

Fig.8. Connecting a complete system.

CHARACTER DISPLAY CONTROLLER
CHARACTER DISPLAY CONTROLLER

PART 2

display message driver

In last month's article we looked at the circuit diagrams and the operation of the matrix LED display message system. In this article Robin Abbott takes a look at the construction, testing and operation of the system

As we saw last month there are three PCBs in the message display system, the master controller module, the character display controller card, and the display board. An oscilloscope is not essential for testing, but is useful particularly if the system cannot be made to work.

Master control card

This card is straightforward to construct. There are two links to install first, followed in order with the IC sockets, resistors, capacitors transistors and remaining components. The position for IC3 is drilled for a 78L05, or a 7805. If a large number of display controller cards are to be driven then a 7805 should be used. However, a heat sink is probably unnecessary even in this case. Make sure none of the ICs are inserted. Connect the board to a power supply of greater than 9 V , and check the voltage on the power supply pins of IC1 and IC2. Now connect to a PC using a serial cable made up as shown in figure 7 and short out pins 25 and 26 of IC1. Connect to a terminal emulator and check that characters are echoed back to the PC. If not, check out the serial circuitry.

Now power down and insert IC1 and IC2. Install the PC control software. Use a terminal emulator on the PC, (such as Winterm.exe) and set the emulator to 9600 BPS, 1 stop bit, no parity and XON/XOFF signalling. Now check that when power is applied then a ' Z ' is displayed on the terminal emulator (the OK diagnostic). Download the file called "send8c.txt" which is
supplied with the PC control software to the module. This may be done in Winterm.exe by using the Transfer I Send Text file menu option. This file commands the master module to enter a diagnostic mode where all received characters are looped back to the PC. Use the same technique to send any text file on the PC to the module and check that it is successfully received without error. This confirms operation of the 16C74, the serial circuitry (and XON/XOFF system) and the interrupt routines.

Now power the module down and up again and start the main control program, chardisp.exe. Use the Module I Communications menu option to set up the serial port to be used at 9600 bps . The control program will check that the module is present and report on the result. The first action that must be undertaken is to download the font to the module without which no operations can take place. Use the Module I Download Font menu option, and select the font "normal.fon". The font will be downloaded, but this may take a few seconds. If all is well the program will report that the font has been verified OK.

Finally if you have an oscilloscope then check that the reset signal goes high for approximately 1 second after power up, and that the change and row drive signals look correct as shown in figure 3 of the first article. For almost all oscilloscope testing it is useful to connect channel 1 to row 1 drive, and trigger from this row. All other signals can then be referenced to row 1 . The left and right communications signals should also
show transmissions in some rows. However, with no connections to display controller modules with pull up resistors, the location of these signals in rows may not be defined.

Display board and IDC cables

The display board has 21 links which were necessary to achieve a single sided PCB. These should be inserted first. The PCB may be modified according to the pitch of the display block pins. However, the basic layout should remain the same as most of the devices I have seen have the same pinout. The displays should be socketed to raise them off the board, and to allow easy replacement in case of LED failure. Use SIL sockets for this. The IDC connectors are soldered in last.

The IDC cables for the display boards and for the headers used between display controller cards are chosen for their ease of construction. Some amateur constructors are put off by the high price of special IDC connector insertion systems. However, in practice, a small vice or a mole wrench may be used to gently squeeze the connector halves onto the cable For the Bib headers a 14 pin DIL socket should be soldered into a piece of scarp veroboard. The header should be plugged into this socket, and the top half of the header connector squeezed on with the vice (bearing on the top of the connector and the bottom of the veroboard).

Display controller card

Insert all the links first - there are eight of these including one long link from underneath IC1 to underneath IC2. Next insert all the resistors. It is easiest to solder in the 30 vertically mounted base resistors in groups of 10 at a time. The four SIL resistors can be soldered next. However, if you are using very high drive currents (greater than 30 mA), then it is recommended to use 9 pin SIL sockets, and to start with higher value resistors, and insert the correct values when operation is confirmed. This is because if the multiplexing circuitry fails (due, for instance, to a short) then the LEDs will certainly be blown if the drive current is set to 80 mAl In the prototype, discrete resistors were used instead of SIL networks. Follow up with the IC sockets and finally the other components. IC3 will almost certainly need a heatsink if it is used to power the displays.

There are two veropins in the middle of the transistors for each PIC. These are used to supply the LEDs with power. If drive currents of 30 mA or less are to be used then these veropins can be connected together and soldered to any component connected to +5 V near the regulator, one end of Resistors R1, 2 or 3 is suitable. If drive currents of more than 30 mA are to be used then the veropins must be connected to an external power supply of 5 V of sufficient drive current. DO NOT be tempted to use a higher supply voltage with greater emitter resistor values, as the transistors will be turned on permanently by the static protection diodes to Vdd on the PIC 46 C57 devices. A supply based on the SGS-Thomson L4975A can provide up to 5 A at 5 V . Maplin sell this device and can supply data sheets with example circuits.

To test the module build the display board as detailed above and connect it to the controller card using 20 way IDC cable. Do not insert IC1 or IC2 yet. It is possible to test all the connections at this stage, although this is laborious, and alternatively there is a lamp test function provided in the message control program. Check the power supply to 1C1 and IC2, and then short the row drives on pins 1 to 7 of PL3 to Vdd (short each turn), and for each row connect the column drives on the port B and C pins of IC1 and IC2 to ground, one

Fig.6. PCB overlay Display Board.
at a time; it is possible to check out every LED in this fashion. In case of failure check the signal path from the pin in error through the drive resistor, transistor, SIL resistor and IDC connectors. In the prototype three column drivers and one row driver had failures on initial checkout.

Power down, insert IC1 and IC2 and power up. At this stage IC1 and IC2 will be held in the reset state by the pull up resistor R5. Check that all column drive outputs are at +5 V , and that the oscillator is operating on pin 26 of each PIC at 4 MHz using a scope, or a frequency meter (with a voltmeter pin 26 will show about $2.5 \mathrm{~V}+/-1 \mathrm{~V}$ if the oscillator is operating).

Fig.5. BCB Controller Module.

There is little more testing that can be performed at this stage, the next action is to wire the boards together and check out the system as a whole.

Assembling and testing the system

Having tested out the individual boards, it is now possible to check the complete system. Figure 8 shows how to wire together the modules. Although figure 8 shows two display controllers it is advisable to check out the system with one display controller at a time, and only wire the whole lot together when they are all proven. The cables between the display controllers should be as short as possible; the cables between the display controllers and the display board can be as long as convenient (within reason).

Connect PL3 of the master module to PL3 of the display controller board, and the controller board to the display board. Wire the bottom pin of PL4 on the master module to the left hand pin of PL5 on the controller board. Connect to the PC, start the terminal emulator, and (provided that a font has been downloaded), then as characters are typed they should scroll across the display. If this is OK, then quit the emulator and start the character display controller application. The lamp test menu option will turn on all LEDS for one second to test the display and its connections. Now send the file test.txt (supplied with the controller) to the module by using the Module I Send File menu option. This will demonstrate variable speed scrolling, display dimming, flashing, inverse effects and scroll directions.

If the system does not work then there are a number of
areas to investigate. Check that the reset signal, and the change signals are correct at the PIC16C57's. The fundamental communications link is the global transmission link. from the master module. If the lamp test works then this link is OK, and the next link to investigate is the link to PL5 from the master module which is the left output from the master.

Once it is operating successfully the system can be mounted into a suitable case. Construction details are not given here, as the mechanical construction will depend on application, the power supply, and the number of display boards used in the system. When mounting the master module then link 1 should be connected to an external reset button.

Using the PC controller software

The PC controller software runs under Windows 3.1, 3.11, or Windows ' 95 . It is installed by running the program
INSTALL.EXE on the disk, and running the program using the icon CHARDISP.EXE. The software is very straightforward to use, and is not essential for the use of the controller. The serial link protocol is described below to enable further applications to be developed.

The application contains a simple text editor, and the controls to enable messages to be sent to the module, to loop on the module, and also enables messages to be downloaded to the module to enable it to operate autonomously.
Autonomous operation allows messages to be looped, and so to regain control it is necessary to undertake a special procedure. Connect the PC, power the system down, press the reset button (shorting the link on the master module), and
power up, keep the reset button pressed for at least 2 seconds after power up. Now the character display controller application can be used to disable the message using the Module I Clear Message menu option. Finally reset the module using the Module I Reset Module menu option to regain control.

Simple text files are sent to the module "as is". As a default all messages are sent at maximum brightness, with no flashing, no inverse text, and are scrolled from right to left. Line breaks are ignored. To control the messages and to provide effects a simple control system is employed. To use this, then a \# character is embedded followed by a control character. Thus to clear the display then use \#C, and to pause for about 1 second then use \#P150. Figure 9 shows all the contrcl codes that can be embedded together with their effects. The example file test.txt included with the software derionstrates all the control codes. The control codes work fine in messages downloaded into EEPROM store. If the message is to loop forever then place the code \#A followed by a space at the end of the message file.

The following example will send the message "Display module" to the display, then cause it to flash for 2 seconds, and finally will scroll it slowly upwards off the top of the display. If it is downloaded to EEPROM then the message will loop forever.
\#CDisplay Module
\#F1 \#P300 \#F0 \#DU \#Z20
SSSSSSS
\#DL \#Z4 \#A
The S characters are not displayed because the scroll direction has been set to upwards, and a scroll upwards (or downwards) clears the display. Each S character simply causes one scroll.

Serial protocol operation

For those who wish to develop their own software, details of

the serial protocol and the operation of the EEPROM is given in this section. A knowledge of these protocols is not essential for construction and use of the project.

At the lowest level the module operates using the XON/XOFF protocol, and any application software must provide support for this - probably using interrupt driven software. Windows provides direct support for this protocol. To send the codes for XON (11H), XOFF (13H), and ESCAPE (1BH) then send an escape character followed by the code with bit 7 set. Thus to send XOFF, then send the bytes 1 BH followed by 93 H . The master module operates the same protocol. The serial buffer sizes for the application software should be set to be of comparable size to the master module (the PC control software uses 64 bytes), this prevents large amounts of information being sent even though a transfer has been cancelled.

To send an ASCII character then simply send the code for that character to the master module. There are a number of control codes concerned with setting scroll direction, display clearing and programming the EEPROM; these are shown in figure 10. All of these codes have bit 7 of the byte set. Note that all commands return a ' Z ' character to the PC when they have been successfully executed. Where a 2 byte parameter is provided then the low byte of the parameter should be sent first, followed by the high byte. Commands can be stored in EEPROM and will have the same effect as if sent from the PC. The only commands which cannot be executed from EEPROM are the EEPROM read and write commands (for obvious reasons).

The final information which may be required by an application program is the use of the EEPROM. To write information to the EEPROM the write command is used as shown in figure 10. This is followed by a 2 byte address, and the byte to be written. Thus to write the byte 67 H to address 1234 H , then the bytes $89 \mathrm{H}, 34 \mathrm{H}, 12 \mathrm{H}$ and 67 H should be sent to the master module, When the byte has been written (which takes about 10 ms) then the master module will return the ' Z ' character. To read the EEPROM (for verification purposes) then the command 8A\# is sent which returns the byte at address 0 , subsequent bytes can be read by giving the 8BH command.

The address map of the EEPROM is as follows:
$00 \mathrm{H}-01 \mathrm{H}$ Start address of message
$02 \mathrm{H} \quad$ Magic number 1, B 6 H
$03 \mathrm{H} \quad$ Magic number $2,49 \mathrm{H}$
04H Width of character font
020H Start of font Followed by the message

The font holds 128 characters for each ASCII code from OOH to 7 FH . Each character occupies a number of bytes in the EEPROM. The default font is normal.fon, and this holds 5 bytes per character, so the size of the font is 5×128, or 640 bytes. To find the start of character number 33, then multiply 33 by 5 , and add 20 H , this gives address 197 (in decimal). Each character is formed by up to five bytes which contain the character pattern in bits 6 to bit 0 (bit O is the top row of the display). The last byte in the character has bit 7 set, and this informs the master module that it must send a space between the characters. As the characters can have less than 5 bytes in width then the font can be proportional character 'I' takes less width on the display than 'W' for example. The font width must be written to address 04 H in the EEPROM. Details on creation of fonts are included with the application software.

Following the font, the message can be written. If a message is in EEPROM, then the first two bytes of EEPROM should give the message address. Then address 02 H should contain the byte B 6 H , and address 03 H should contain byte 49 H . These "magic" numbers cause the master module to start reading data and commands from EEPROM when it is reset. To stop the master module doing this when it is reset then the bytes at address 02 H and 03 H can be set to O.

Following the message then the end of the message must be indicated to the master module. This can be achieved with command byte 94 H which returns control to the serial port, or command byte 95 H which causes the master module to start reading from the start of the message again.

Obtaining components and software

All of the components are fairly standard with the exception of
the 16C74 which is available from Farnell on 0113-263-6311. The displays for the prototype were obtained as surplus from Greenweld, but other compatible displays are widely available. The 24LC65 is available from Maplin on 01702554161.
The PC software and a programming service is available from Forest Electronic 'Developments, 10 Holmhurst Avenue, Christchurch, Dorset, BH23 5PQ. (01425) 275962. Send a blank 16C74, and as many blank 16C57XT/P devices as you would like programmed together with a cheque for $£ 20.00$. They will be programmed and returned with the PC software. Alternatively the 16 C 74 can be supplied for $£ 9.50$, and 16 C 57 devices for $£ 5.50$ in addition to the programming charge. (All VAT inclusive). The PC software is only available for Windows $3.1,3.11$, or Windows ' 95 on 3.5 " disk.

Figure 7 - serial interface wiring

Master module				
Serial Skt	9 way Female	9 way Male	25 way Female	25 way Male
2	3	2	3	2
3	2	3	2	3
5	5	5	7	7

Figure 9, embedded control characters in text files

Control codes	Effect
\#A	Only has an effect in messages which have been downloaded to EEPROM. It should be placed at the end of the message and causes the message to loop back to the start
\#Bn	Set brightness of display to n. If n is O then display is maximum brightness, if n is from 1 to 3 then display is dimmed ($n=3$ is the dimmest)
\#C	Clear the display - turn off all LED's
\#Dd	Set scroll direction. d is L,R,U or D for left, right, up, or down. Thus \#DL sets the scroll direction to Left.
\#Fn	Set flash mode. If n is O then flashing is turned off, if n is 1 then flashing is turned on
\#n	Set inverse mode. If n is O then text is printed normally, if n is 1 then all text is printed in reverse
\#M	Returns to the monitor in messages downloaded to the EEPROM. This is not required normally, but is used to
	return control to the PC whilst developing messages, and removed when they operate correctly.
\#Pnnn	This causes the message to pause. nnn is a number from 1 to 30000. if nnn is 150 then the message will pause for about 1 second, so for example to pause for 10 seconds then use \#P1500
\#R	Return the copyright message and software date
\#S	Turn on all the LED's in the system
\#Znn	Set speed of display shifting to nn. If n is 2 then the shift speed is maximum. The default speed is 4, a
	reasonable speed for scrolling messages up and down off the display is 20

Figure 10 - Control codes used for the master module

Command bytes from PC	Parameters	Description
80 H	None	Return module count (not currently implemented)
81 H	None	Clear complete display
82 H	2 byte count, Lo-Hi format	Pause for count multiplexing cycles. Each multiplexing cycle is 7.168 mS , so there are 140 cycles per second
83H	None	Forces the module to return a ' Z ' character to confirm that it is present
84H	None	Set scroll direction to Left
85H	None	Set scroll direction to Right
86 H	None	Set scroll direction to Up
87M	None	Set scroll direction to Down
88H	None	Set all outputs to on -lamp test function
89 H	2 byte address in Lo-Hi format followed by a data byte	Write the data byte to the supplied address in EEPROM. On completion return a 'Z' character (takes around 10 mS)
8AH	None	Read byte at address 0 and return it, follow with a 'Z' character
8BH	None	Read the byte from the next address in EEPROM, follow it with a ' Z ' character
8CH	None	Loopround test. Transmit all characters received from the serial port straight back to the port. Stop when an escape character (1BH) is received.
8DH	None	Reset the system, start the PIC16(=74 program at address 0
8EH	1 byte speed	Set shift speed to supplied number, 2 is faster, FFH is slowest
8FH	None	Set flash mode to ON
90 H	None	Set flash mode to OFF
91 H	1 byte brightness	Set brightness of the display to the following 1 byte number, this should be 0 for maximum brightness, and 4 for minimum brightness (higher numbers will be dimmer on a static display, but will cause unpleasant flickering effects when the display shifts)
92 H	None	Set inverse mode to ON
93 H	None	Set inverse mode to OFF
94 H	None	Stop reading characters from EEPROM, and return to reading information from the senial port
95 H	None	When read from EEPROM this causes the master module to start reading the message from its start

"Your low cost route to embedded 8051"

MICRO-PRO 51

"Hardware/software upgradeable programmer for the 8051 family"

- Accepts up to 40 pin DIL directly via Aries ZIF socket

ONLY £125

Programmeng support for the following devices: Genenc 8751/8752 microcomitoliers from Intei \& Prilips Atmel 8951/8952 FLASH replacements for the
8751/8752 -mel 1051
Atmet 1051/2051 20-pin FLASH 8051 microcontroller Serial EEPR

- Surface mount and PLCC package adaptors available as optional extras
- Atmel 8951/8952 \&o 1051/2051 ICE cables available as optional extras
- Field programmable hardware to allow future upgradeability
- Fast PC parallel port based design

KEIL C51 PK LITE

"The complete Ansi-C development environment for the 8051"

- Optimising Ansi-C compiler
- dscope-51-8051 software simulator

ONLY or source level debugger
£110 •uVision-Integrated Windows based C51 project management system
(Restricted to 2 K tolal prorram code, SMALL model only)

- Support for most 8051 derivatives eg. Atmel, Intel, Siemens etc.
- Numerous microcontroller language extensions for the fastest, tightest code

Embedded C51 Starter Systems for the 8051 family

Atmel 8051 FLASH Microcontrolier Range

	8951	8952	1051	2051
FLASH code ROM	4 K	8 K	1 K	2 K
RAM	128	256	64	128
$\mathrm{~V} / 0$	32	32	15	15
Timer/Counter (16 bit)	2	3	1	2
Serial Port	YES	YES	NO	YES
Interupt Sources	5	8	3	5
Pias (DIL/PLCC)	$40 / 4$	$40 / 44$	20	20
Speclal fealures		Timer 2	Comparator	Comparalor

895X-ST (ONLY £215)

Comes complete with samples of Atmel 8951 and 895240 pin microconirollers X051-ST (ONLY £199)
Comes complete with samples of Atmel 1051 and 205120 pin microcontrollers
Equinox Technologies, 229 Greenmount Lane Botton BL1 5JB. Lancashire. ENGLAND Tel: (01204) 492010 Fax: (01204) 494883 int. diailing code (UK +441204) E-mail: sales@equintec.demon.co.uk Web Page: www.demon.co.ukequintec All prices exclusive of VAT and carriage.

PCB Designer

Runs on any PC running Windows 3.1, Windows 95 or Windows NT with a minimum 2 MB RAM Will work with any Windows supported printer and monitor

For Windows 3.1, '95 or NT

Looking for the price? It's just $£ 49.00$ all inclusive!
...no VAT...no postage... ...no additional charges for overseas orders.

Dealers and distributors wanted.

Niche Software (UK)

Visit our WWW site at www.niche.co.uk for more information and a working demo. The demo is also available via anonymous FTP from ftp.demon.co.uk in the dir /pub/ibmpc/win3/apps/pcbdemo/ as pcbdemo.zip. Internet e-mail pcb@niche.demon.co.uk.

22 Tavistock Drive, Belmont, Hereford, HR2 7XN. Phone (01432) 355414
Available in South Africa from JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00

Get into PIC Programming with Forest Electronic Developments !

PIC Programmer and Development equipment

 Programmer kit $£ 35.00$, Pre-built $£ 45.00$This programmer programs the 16C54/55/56/57/58, 16C62ox, 16C64, 16C71/74, 16C84. Operates over a serial link to a PC running Windows or DOS software. ZIF sockets not included (not essential and may be added as necessary). The programmer now includes
PIC DE - the PIC development environment.
Running under Windows 3.1. PICDE is a PIC assembler devetopment environment which is MPASM compatible, offering on-line heip, project management, multiple editing windows, error tracking, programmer and MPSIM support etc. Supplied Free of Charge with our programmers, or separately $\mathbf{£ 5 . 0 0}$ inc $\mathbf{P \& P}$.

NEWI PIC Simulator

PIC DE plus a fully integrated Windows Simulator, the next step in the PIC development environment.

- Integrates with our PIC Programmer.
- Single step, skip over and run
- Conditional breakpoints, watch variables, graphical ïnterface
- Up to 50 times faster than MPSIM
- Trace any number of variables and display like a logic analyser
- Wide range of simulator stimuli including asynch serial data
$£ 30.00$ inc P\&P, $£ 25.00$ when ordered with the PIC programmer.
Serial Cable for Programmer or BASIC modules $\mathbf{£ 7 . 5 0}$
Kits \& Modules are supplied with instructions, all components and connectors, fibreglass PCB, and a programmed PIC microcontroller.

Forest Electronic Developments
10 Holmhurst Avenue, Christchurch, Dorset. BH23 5PQ.
Telephone : 01425-275962, Technical 01425-274068

PIC BASIC - Modules for 16C57 and 16C74 16C57 module $£ 27.00,16 \mathrm{C} 74$ module $£ 35.00$
Now avallable for the 16C74, our advanced module includes the following features - all supported in BASIC

- 8K byte EEPROM - up to 2000 lines of BASIC 1
- 8 Channel A / D inputs and PWM D/A output
- 27 lines of programmable I/O
- 3 timers and interrupt support in BASIC
- Interrupt driven serial RS232 Interface
- Available in 4 MHz and 20 MHz versions
- Peripheral I2C bus interface, optional external 12C static RAM

The 16 C 57 version offers 16 lines of programmable I/O a serial interface and a 4 MHz clock.
16C57 module kit (2K EEPROM) - $£ 27.00$, Pre-built Module $£ 33.00$ 16 C57 module kit (8K EEPROM) - £30.00, Pre-built Module $£ 36.00$ 16C74 module kit (8K EEPROM, 4 MHz) - £35.00, Pre-built $£ 42.00$ 16 C 74 module kit (8K EEPROM, 20MHz) - £40.00, Pre-built $£ 46.00$
Kits and modules are supplied with fully featured host software for a PC running under Windows 3.1, 3.11 or '95

Blank PIC16C74, and other Microchip devices

PIC16C74/JW - Erasable version, $20 \mathrm{MHz}, £ 24.00$
PIC16C74-04P - OTP 4MHz verslon, $\mathbf{£ 8 . 0 0}$
PIC16C57-04P - OTP 4MHz verslon, $\mathbf{£ 5} .00$
24LC16, $2 \mathrm{~K} \times 8$ serial EEPROM, $£ 2.00$ (suitable for PIC BASIC)
24LC65, 8 Kx 8 serial EEPROM, $\mathbf{£} 5.00$ (suitable for PIC BASIC)
Prices are inclusive, add $£ 3.00$ for P\&P and Handling to each order. All orders in stock returned by 1 st Class Post. Send cheque/PO payable to Forest Electronic Developments. We also accept Visa and Access.

Visit our Web page at
http://www/ibmpcug.co.uk/~gmwarner/fed.htm

(a) Pin-out of 74LS573

INPUTS			OUTPUTS
OOC	G	D	O
L	H	H	H
L	H	L	L
L	L	X	QO
H	X	X	Z

There are 4 registers associated with $1 / \mathrm{O}$ operations of the 8155 chip. They are the C/S (command/status) register, Port A register, Port B register and Port C register. It also includes a 14-bit timer. These registers are selected by address lines A0, A1 and A2. A4 to A7 are
ignored. The addresses are shown in the following table. Note that only when $1 \mathrm{O} /-$ M is held high (to enable I/O operation) can the registers be accessed.

Figure 8. 8155 internal registers

Address A2	A1	A0	Register
0	0	0	internal comnnand/status register (CIS)
0	0	1	Port A register
0	1	0	Port B register
0	1	1	Port C register
1	0	0	Low 8 bils of the timer 1
0	1	High 6 bits, and two bits of function controls	

C / S register has an address of 000 B .
When writing data into the register, it becomes a control register. When reading data from it, it acts as

(a) Pin-out of 74LS138

INPUTS					OUTPUTS							
ENABLE		SELECT										
G1	G2	C	B	A	Yo	Y1	Y2		Y4	Y5	Y6	$Y 7$
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{G} 2=\mathrm{G} 2 \mathrm{~A}+\mathrm{G} 2 \mathrm{~B}$

Figure 9 Bit functions of the control register

B7 B6	B5	B4	B3	B2	B1	B0
TM2 TM1	IEB	IEA	PC2	PC1	PB	PA
Timer mode:	Port B	Port A	$00=$ MODE1		Port B	Port A
$00=$ NOP	interrupt	interrupt	01=MODE2		$1=$ outpert	1 =output
$01=$ Stop			$10=$ MODE3		0 -input	$0=$ input
10= Stop after			$11=$ MODE 4			
the present						
operation. 11= Start,						
after loading modes						
and counts						

Bit functions of the status register

B7	B6	B5	B4	B3	B2	B1	BO
TIME R	INTE B	B BF	INTR B	INTR A	ABF	INTRA A	
Counter	Port B	Port B	Port B	Port A	Port B	Port A	
interrupt	interrupt enable	buffer full empty	interrupt request	interrupt enable	buffer emll empty	interrupt request	

a status register. The bit functions of the control register are shown in Table 8.

The bit function of the status register is shown in Table 9. Port A and Port B can be configured as input or output ports by setting bits 0 and 1 in the C / S register. Port C has 6 bits. The port can be configured as an input or an output by bits 2 and 3 of the C / S register.

The 6 bits can be also configured as handshake lines for Ports A and B. In this case, PC0 to PC2 lines will be allocated for Port A and PC3 to PC5 for Port B. The 4 modes of the Port C is shown in the following table:
@B1:The timer is a 14-bit count-down counter. For every pulse at the timer input (TIME IN), the content in the timer/counter will be decreased by 1 . After the content becomes zero, a signal is given at the timer output pin (TIME OUT). This signal may be a single square pulse or a series of pulses depending on the configured operation mode. To program the timer, write to bit 0 to bit 13 of the timer registers (total number of bits is 14 . The value to be written is in the range from 0002 H to 3 FFFH). Bits 14 and 15 select the timeout output modes:

Figure 11. 8155 timer/counter registers (upper and lower registers)

(Upper register)							
D7	D6	D5	D4	D3	D2	D1	
M2	M1	T13	T12	T11	T10	T9	T8
high lits of the timer counts							
(Lower register)							
D7	D6	D5	D4	D3	D2	D1	D0
77	T6	T5	T4	T3	T2	T1	T0
low bits of the timer counts							
(Bit 14 and 15 of the counter register)							
M2	M1	Tlme-cut signal shape					
0	0	Single square (High-low-then-high)					
0	1	Each time-out changes the voltage status of the sutput (Continuous square wave)					
1	0	Single narrow low-going pulse					
1	1	Continuous narrow low-going pulses					

Figure 10 Modes of PCO, PC1, PC2 and PC3

Bit	Mode 1	Mode 2	Mode 3	Mode 4
PCO	Input	Output	Port A INTR	Port A INTR
PC1	Input	Output	Port A buffer full IA BF)	Port A buffer full (A BF)
PC2	Input	Output	Port A strobe (A - STB)	Port A strobe (A -STB)
PC3	Input	Output	Output	Port B INTR
PC4	Input	Output	Output	Port B buffer full (B BF)
PC5	Input	Output	Output	Port B strobe (B -STB)

New values can be written to the timer register even if the timer is counting. However, to use the new value, a start command must be issued to the C / S register.

that four resistors are used for pulling up the lines to +5 V). If there is a key pressed and the column corresponding the key is also at low state, the row line is at low state. Knowing the column and row numbers, the position of the pressed key can be obtained (Figure 14). There are two keyboard scanning schemes. The first one utilizes polling. The microcontroller scans the keyboard when it is free of doing other things. This method makes the better use of the CPU; however, the scanning interval is not regular. The other utilizes CPU

How the 8155 is used in the present SBC

The circuit showing how the 8155 is used in the SBC is given in Figure 3b. ADO-AD7 of the 8155 is connected to Port 0 of 8031. -RD, -WR, ALE are all connected to the corresponding pins of 8031 . $10 /-\mathrm{M}$ is connected to A 9 of 8031 . If A 9 is low, internal memory of 8155 can be accessed. If it is high, $1 / O$ registers can be accessed. Chip enable (-CE) is connected to Y0 of the second 74LS138 (IC6) decoder. The enables of IC6, -G2A and -G2B are connected to Y3 of the first 74LS138 (IC3). This combination allocates a 256 byte address range from 6000 H to 60 FFH to the internal RAM of the 8155 . This RAM is reserved by the monitor program of the SBC. Users should not access this memory area, if the SBC operates under the control of the monitor program. Locations from 6100 H to 6105 H are the addresses for C / S register, PA, PB, PC and timer registers.

The ports of the 8155 can be used as general purpose input/output ports. In the present SBC, they are specially used for driving the LED display, keyboards and a piezo-electric sounder. When it is used with the display and keyboard, Ports A and B are both configured as outputs. Port C is configured as an input port. If the display and keyboard is not used, Port C can be configured as an output port, which will be used to drive the sounder.

Keyboard, display and others

The keyboard is an important device in this SBC. It allows users to input the program code (machine code) directly into the SBC. There are, in total, 32 key functions on the keyboard, which are supported by the keyboard monitor software. The first 16 functions are for digits input (0 to F) and the others are for controls. From the circuit diagram, it can be seen that those 32 functions are detected by an 8×4 scanning key matrix circuit. The 8 columns (Column-1 to Column-8), which supply the scan signal, are connected to Port A of the 8155. The 4 rows (Row-1 to Row-8), which receive the signal from the keyboard are wired to the lower four bits of Port C , which is configured as an input port. The four rows are pulled to +5 V by four pull-up resistors.

A schematic of the principle of a scanning matrix keyboard is shown in Figure 14. The 8 scan lines in the column are normally high. Each of the column lines is brought low for a short period of time in turns. When one of the lines is in low state, the status of the four rows are monitored by the 8031. If there is not a key pressed, these four lines will be high (note
interrupt. For every fixed time interval (20 ms , for instance) an interrupt is generated which causes the microcontroller to respond to the interrupt - to scan the keyboard.

In this SBC, the 32 key functions are accomplished by a 16-key keypad plus a numerical/function selection key (selection key, in short). When the selection key is not pressed, the keypad is for inputting numerical digits. When it is pressed, the keypad is for inputting functions. This arrangement is achieved using a simple circuit as shown in Figure 3c. The two rows from the keypad are connected to the inputs of four tristate buffers of a 74LS241 IC (see Figure 3c). Enable pins of the buffers are connected together to form a selection line. It is normally high because of the pull-up resistor. It can be pulled down to GND if the selection key is pressed. When the selection line is high, the lefthand side buffers 1 and 2 are enabled. When it is low, the buffers 3 and 4 are enabled. This allows the two rows of the keypad to be connected to PC0 and PC1, which are for numerical inputs, if the key is not pressed and the two rows are connected to PC2 and PC3, which are for function inputs, if the key is pressed. A selection of numerical digits and functions is therefore achieved.

7-segment display circuit

7 -segment LED displays are used in this SBC. The pin-out, functions and types of the display is shown in Figures 15a to d. There are two types of displays. One is the common-anode type in which the anodes of the 7 LEDs are connected together (Figure 15c). In use, the common is connected to +5 V of the power supply. An LED lights when its corresponding pin is brought to low state. The other type is the common-cathode type. In this case, the cathode of LEDs are connected together (Figure 15b). In use, the common is connected to GND of the power and an LED is enabled by pulling its anode to high state. Special code has to be sent to the display in order to display certain numerical digits or characters. The relation between some display symbols and their binary codes is shown in the following table:

In a microcontroller system, there are two common ways of using 7 -segment displays. The first one involves hardware decoder and driver circuits. The advantage is that the CPU is required only when sending data to the circuit. It is obvious that this method needs extra hardware circuits. The other method is known as software display drive. The SBC employs this method and it is described in detail as follows. There are six common cathode 7 -segment LED displays. In operation, they are lit one after another in turns. At a time, there is only one display which lights. However, due to the effect of residual vision of our eyes, we see as if all displays are showing messages in the same time. The electronic circuit achieving such a display sequence is shown in Figure 3c. It can be seen that display data is output from Port B of the 8155. This data is supplied to the 7 -segment LED via a 74LS245 (IC1) driver to boost the output current. The common cathode of the six LED displays, which are connected to Port A of the 8155 via TTL drivers of the 7806, are normally high and all the LED are unlit. By pulling one of the common cathode to GND, that 7 -segment LED display will light, showing the display data.

Next month, the details of the construction of the SBC will be described.

Programming Solutions

 Universal Programmer

 Universal Programmer
 - Uses standard pc printer port
 \section*{ONLY}

Multi-Device Programmer

- EPROMs, E2PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACH, \& WSI PSDs
Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pe printer port.
- Simple full colour software.
- No expensive adapters.

Prices exclude VAT \& Delivery works with notebook and handbook pc's

- Pin driver expansion can drive up to 256 pins.
$£ 595$
- Supports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc...
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and 8748/51 micros.
Fast programming algorithms. Simple colour menu operation.

> EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS PROGRAMMERS • 80518085 Z8 6802077 C82 80C552 $320 C 2568 H C 116301650287 C 75165816 ~ Z 806809$ PIC 7720 MIPS etc.

Is your PCB design package not

 quite as "professional" as you thought? Substantial trade-in discounts still available.
Board Copture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values

- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-ine annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

BoardMakert- - Entry level

- $P C B$ and sciematic drafting
- Easy and inuitive to use

505

- Surface mount and motic support
- 90, 45 and surved track corners
- Ground plane fill
- Copper high ight and clearance chectong

BoardMaker2 - Advanced level

- All the features of BoardMaker1, Full neflist support- Boald Capture, 35 OrCad, Schema, Tango CadStar
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber wih back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane s.pport with full ORC

B) an@

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue sucport
$E 200$
- Full interrup?, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphiec \& Housten
- Photoplotters - All Gerber 3×00 and 4×00
- Excellan NC Drill and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 6UT

Tel 01354695959
Fax 01354695957

tsien

Practically
 Speaking

BY TERRY BALBIRNIE

This month we shall continue looking at construction technique. This follows from my observations of GCSE examination projects over several years. It should help amateur constructors or those preparing for technology and electronics
examinations.
Many circuits work even though they have been constructed badly. However, faults are more likely to deveiop and it sometimes happens that these only appear after a period of use. Poor construction often results in intermittent operation where the circuit might work when shaken or the circuit panel bent slightly. Another result of poor construction is that faults, once developed, are more difficult to find.

Any old iron

Poor soldering technique probably accounts for most circuits failing to work or for working intermittently. Soldering is an art which is only developod by practice and beginners should use scrap materials to make joints until they are satisfied with the result. Many examination candidates have had too little practice.

Amateur soldering irons often become so bad that even an expert would find difficulty making a good joint using them. After a short period of use, burnt flux collects on the bit and this must be regularly removed, using a damp sponge. After a long period of use, pitting tends to occur. Small pits do not matter but large ones make for difficult work. Plain copper bits may be filed to re-shape them and to remove the pitting.
However, iron clad bits should be renewed. Note that soldering technique was looked at in detail in Practically Speaking December 1994 and January 1995.

When attaching wires to off-board components, it helps to make a mechanical connection before soldering - hooking wires around component tags or through any hole which might exist. The photograph shows a rotary switch with a wire hooked through the tag before soldering. This will stand up to vibration or pulling beller than a joint made direct to the tag. Of course, for experimental work it is better to solder the wire without hooking it so that it is easier to remove again.

Cor, blimey

Constructors often give little thought as to the choice of connecting wire they use. It's often the case that they grab whatever happens to be lying around on the bench. If the mains supply is involved, it is essential to use the correct type of mains-rated wire and it is extremely dangerous to do otherwise. However, beginners' projects and school-type circuits will be battery-operated or powered from a commercial mains supply unit.

For point-to-point wiring, there are two types of wire commonly used - sirigle (solid) core and stranded core. These are described in catalogues as "XY" where X is the number of
strands and Y the diameter of each strand in millimetres. For example, general-purpose single core wire nay be listed as " $1 / / 0,6$ " i. θ. one core of diameter 0.6 mm . A general-purpose stranded wire would be described as "7/0.2" - a core consisting of 7 conductors, each 0.2 mm diameter. The total cross-section arsa of the copper core determines the maximum current it can carry and this point will be looked at in a later Practically Speaking column.

Under straln

Single-core wire should never be used where it will be subjected to repeated bending since it will soon break. Suppose a switch is mounted on the lid of the case so that its connecting wires bend each time the lid is removed. Singlecore wire should not be used for this purpose. This type of wire should be used where its ability to stay bent in one position means that it produces a neat layout. Stranded core wire will withstand bending much better and so must be used wherever repeated movement takes place. There is an extra-flexible wire (55/0.1) which will withstand this type of treaiment for a long time. It is used for meter probes and similar purposes. Candidates rarely think ahead and mount switches and potentiometers on the same section of the box as the circuit panel so that, when the lid is removed, the wiring is not put under any strain.

The end of the tale

Wires may be neatly grouped using cable ties. These are placed around the wires, one end pushed into the other and the tail pulled tighty. This locks it in position. The excess tail is then cut off. Where many wires of similar type are connected to a component such as a rotary switch, it will help if they are colour-coded. This will avoid wiring errors, "Rainbow" ribbon cable is excellent for this purpose.

PORTABLEPROGRAMMER \& EMULATOR

PROGRAMS EPROMS/FLASH TO 40 PINS WITHOUT ADAPTORS PINS WITHOUT ADAPT SYSTEMS

RADIO DATA MODULES MODEM TRANSCEIVERS

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far. East or Australia. Wherever you are, we have a module on the right frequency for you!

New !: TXR-XXX-DTR100
*Efficient 5V operation *

Only $55 \times 23 \times 15 \mathrm{~mm}$ 400 to 500 MHz Versions *
*Range up to 5 Km *
*Compact Size ideal for Hand Helds - UK, North American, Australian * * MPT, I-ETS \& FCC Approval * * Up or 64 selectable channels * - $100+$ Price Only 115.00 * 20\% Discount On Evaluation Pairs UK, US, EEC or Australian Models Low Voltage Transmitters Simplify linterfacing!

* Reduce Component Count, Cost, Size \& Power Drain * * Drives directly from a PIC Port II! * * Faster than -A version up to 20,000 bps * *Avallable UK Approved MPT1340 418MHz *
* Export I-ETS-300-220, 433.92MHz * manufacture and strict use of manufacturers algorithms guarantees reliable programming.

Lloyd Research Ltd.

7 \& 7a Brook Lane, Warsash, Southampton, Hampshire SO31 9FH, England.
Tel: +44 (0)1489574040.
Fax: +44 (0)1489 885853.
2M ram, expanjable to 8 M - avoids Tultiple downloads anc programming in blccks. Set programming \& emulation for 16 bit systems. Tactile membrane with individual keys for all major fu rctions. Supports sectr protect/ unprotect feature on 29F210/040. Fast downloac. 15 seconds for 1 M bit Intel file.

Everybody's talking about the PIC these days - the hottest microcontroller on the hobbyist market. It's cheap. robust, easy to interface to the outside world, and a breeze to program. Now's your chance to build a kit featuring one of these chips. MadLab ${ }^{\oplus}$ at the Edinburgh International Science Festival has developed an exciting range of PIC kits which allow you to explore the capabilities of this powerful device.
All MadLab kits include a professional pcb and full instructions.
MAD MUSIC MACHINE £ 12.00 - our simplest kit and an excellent introduction to the PIC. Pre-programmed with 4 tunes (state Scottish. Soaps or Kids mixes). You can also play your own tunes over 4 octaves.
LOTTOMANEA £ 13.00 - could win you a fortune in the National Lottery. And much more. Also simulates the rolling of dice, a 1 or 2 -player reaction game, and a tracker game which tests how quick thinking you are.
RAZ工LE DAZZLER £ 13.50 - a stylish piece of electronic jewellery. A ring of superbright LEDs around a circular pcb displays an ever-changing pattern of light. Wear it as a badge or pendant and get noticed.
SPYCATCMER £1.4.00-a sophisticated security alarm with multiple sensors, silent mode and security code. The infra-red sensor triggers the piezo alarm when a light beam is interrupted. Also includes a magnetic switch which can be attached to a door or window. In fact most of the features of a professional burglar alarm for a fraction of the cost!
SPACEfLAG $£ 15.00$ - our most advanced kit. When the SpaceFlag is waved in front of your eyes a scrolling message magically appears in space. Any message (up to 24 characters) can easily be programmed using the onboard pushbutions. As featured in New' Scientist.
All kits require a PP3 battery ($£ 1$) except the Razzle Dazzler which needs a miniature 12 V battery (75 p). All prices are inclusive. $\mathrm{P} \& \mathrm{P}$ is $£ 1.50$ (UK). Please make cheques and PO's payable to MadLab Lid. Send your arder to:

MadLab (Dept. ETI), 149 Rose Street, Edinburgh EH2 4 LS No callers please. Allow 28 days for delivery. Please send a SAE for further details on MadLab kits, including our range of educational electronic kils.

* Special 40\% Off Introductory Offer * * Only 29.95 per pair Inc VAT *

Exclusive : South African Modules on 403 MHz

* TXM-403-A, SILRX-404-A RXM-403-A *
* High Quality FM system > 120M Range *
*Evaluation Kits Available *
* No Price Surcharge *
*Eg : 1000 + TXM's Only 5.95 Each *

World Leading BIM Transceiver @ 84.95 per pair !

World leading in price, performance and size the BIM high speed transceiver has already found a home around the World in many wire free products form computer networks, hand held terminals to EPOS. Available on 418 and 433.92 MHz

* 5V Operation, PIC Compatible *
* Exclusive RS232 Version 79.95 *
* Packet Controller Board 79.95 *
* Evaluation Kit + 2 BIM's 149.95 *
* Sold Separately From 1 - 1000 pcs *

BIM-433-RPC

Check our Prices, Now with Free Postage !

Transmitters

TXM-418-A 0.25 m

TXM-433-A 0.25 mW TXM-4 $\uparrow 8-F 0.25 \mathrm{~mW}$ TXM-433-F 0.25 mW . TXM-403-A 0.25 mW . TXM-173-4689 1 mW TXM-173-4689 10mW....24.50 TXM-184-4689 10mW... 29.95

Prices unless otherwise stated exclude Var. Carriage free on all nonaccount mainland UK orders. Insurance available at adoitional

Recolvers SILRX-418-A 22.50 RXM-498-A 29.05 SILRX-433-A...23.95 SILRX-403-A . 23.95 RXM-403-A $\quad 29.05$ SILRX-418-F_.. 23.95 SILRX-433-F ..23.95 SILRX-A33-F...23.95
RXM $173-60 \ldots 31.62$ RXM-184-60_..31.62 Creot Card Payments Welcome. Exports $2 / 4$ day delivery by OHL UPS or Air Express Avallable. All
prices in Pounds Stering

Radio - Tech Limited, Overbridge House, Weald Hall Lane, Thornwood Common, Epping, Essex CM16 6NB.
Sales +44 (0) 181,3688277 Fax +44 (0) 1813613434 Accounts +44 (0) 1992 57 6107 Fax +44 (0) 1992454994

\square
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44)01243545111/2 Fax: (+44)01243542457

S

OPERATING \& SERVICE MANUALS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243 545111/2 Fax: (+44)01243542457

SL.952 UHF Limilling amplifier LC 16 surlace mountling package with data sheel $100100+$ CD4007UB 10 p $100+, 6 p 1000 *$
Sinclair light gun terminated with a lack pl.vg and PP3 Sinclair light gun terminated with a lack pl..g and PP3
clip gives a signal when pointed at 50 hz flickenng light clip gives a signal when pointed ar sonn
with output wave form chart .a.3.95 Whe oulput wave converor Reliability model V12Ps i2v in 5 V
200 ma out 300 v input to output Isolation with data £4.95 each or pack of 10 £39.50
Hour counter used 7 digitit 240 V ac 50 Hz Hour counter used 7 digit 240 v ac 50 HzE1.45
OWERTY keyboard 58 key good qualify swnches new Airpax A82903-C large stepping moior $14 \mathrm{~V} 7.5^{5}$ step for a box of 30
Polyester capacitors box type 22.5 mm leasd pitch 0.9 ut 250 vdc 18 p each $14 p \mathrm{p} 100+9$ p $1000+$
1uf 250 vdc 20 p each, $15 \mathrm{p} 100+10 \mathrm{p} 1000+$
 $022 u$ 250v polyester axal leads 15 p each. 7.5 p 100 . Polypropylene tuf 400 vdc (Wima MKP10) 27.5 mm
pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p each $60 \mathrm{p} 100+$ pitch $32 \times 29 \times 17 \mathrm{~mm}$ case 75 p each 60 p 100+ $33 \mathrm{ut} 100822 \mathrm{u}^{t} 40 \mathrm{p}$ each, 25p $100+$
Philips 108 senes long life 22 ul 63 v axial 30 p each
$1501000+$ 15 p 1000
Mutilayer
Mutilayer Avx ceramic capachors all 5 mm pitch 100 v
100 pt . $150 \mathrm{pt}, 220 \mathrm{pl}, 10.000 \mathrm{pl}$ (10 n) 10 p each, 5 p $100+3.5 \mathrm{p} 1000+$
500 pi compression trimmer
40 ut 370 vac motor start \qquad .60 p
type containing no pcbs) 85.95 or $£ 49.50$ for 10
con Soltid cartion resisfors very low inductance ldeal for
AF circuls RF circuils
$270 h m 2 W$ 270hm 2 W , 680hm 2W 25p each 15 p each $100+$ we have a range of 0.25 ww 0.5 w 1 w and
resistors please send SAE for list P.C. 400W PSU (Intel part 201035-001) with standard motherboard and 5 disk dive connectors. lan and
mains mievoutlet connectors on back and swich on the side (100 for tower case) dims
$212 \times 49 \times 149 \mathrm{~m}$
E 138.00 for 6
MX180 Dighal mutimeter 17 ranges 100 c voc 750 vac
MMohm 2 Mohm 200 mA transistor Hfe gv and $1 / 5 \mathrm{v}$ battery les AMD 27256-3 Eproms $£ 2.00$ each, $£ 1.251004$ Inmac delux anti-giare static control panal window

size $228 \times 161 \mathrm{~mm}$ overall size $264 \times 200 \mathrm{~mm}$ held to the | monitor with hook 8 toop tape pads \quad s. 95 each |
| :--- |
| DIP swith $3 P C O ~$ | $40 \mathrm{p} 100+$ Disk drive boxes for 5.25 disk dnve with room for a power supply light grey plastic $67 \times 268 \times 247 \mathrm{~mm} £ 7.9$

or $£ 49.50$ for 10 Hand heitd ultrason | Hand heid ultrasonic remote control |
| :--- |
| CV 2486 gas relay $30 \times 10 \mathrm{~mm}$ dia with 3 wire | terminals will also work as a neon light with 20 p each or $E 7.50$ per 100

All products advertised ar new and unused unless 74 F Linear Translstors kits rechargeable batienes capacilors toots etc. always in stock.
Please add $£ 1,95$ towards $P \& P$. vat inc in all prices
JPG ELECTRONICS
ETI 276.278 Chatsworth Road
Access Visa Orders (01246) 211202

ADVERTISERS INDEX

BADGER BOARDS
B.K. ELECTRONICS BOARDS R US
BULL ELECTRICAL
CHELMER VALVE
CIRKIT DISTRIBUTION
COLES MARDINS \& CO
COOKE INTERNATIONAL
DIRECT CCTV
DISPLAY ELECTRONICS
EPSILON ELECTRONICS
EQT LTD
EQUINOX TECHNOLOGIES
FIELD ELECTRIC LTD FOREST ELECTRONICS

HANDDI LTD
INNOVATIVE INTERFACES
JJ COMPONENTS
JPG
J\&N FACTORS
ABCENTRE LEN COOKE ENTERPRISES .72
LENNARD RESEARCH
LLOYD RESEACH LTD LOGITRON LTD

MAPLIN
MADLABS
MANCHESTER UNIVERSITY 73

\square
 ELECTRONICS TODAY INTERNATIONAL

 FOILS FORTHIS ISSU

TOMORROW'S TECHNOLOGY TODAY

MIXER FOILS

PSU

MATRIX

MATRIX FOILS

Send your requirements to:
ETI Classified Department, Nexus, Nexus House
Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 75p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) $£ 10.50$ + VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

SERVICE T	
BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB FAX 0181-995 0549 0181-995 1560 ACCOUNT CUSTOMERS MIN, ORDER $£ 10$	

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. e also welcome the opportunity to quote for complete factory clearance Contact:
COLES-HARDING \& CO
Unit 58, Queens Aoad, Wisbech,
UYERS Cambs PE13 7 PO
BUYERS OF SURPLUS INVENTORY
Tel: 01945584188 Fax: 0194547521

SMART CARD PRODUCTS

Smartcards, Readers/Writers,
OEM couplers, Evaluation kits and more.

EPSILON ELECTRONICS

Brynsengvn. 1A, 0667 Oslo, Norway TEL/FAX +4722640810

LEN COOKE

ENTERPRISES

For the best value in Used
Electronic Test Instruments We buy, sell and service oscilloscopes, signal generators, frequency counters, specirum Analysers, Power meters, logic testers, etc. Spare parts avallable for most Textronic

Tet: 0181-813-9946

Fax: 0181-574-2339 Mobile: $080217 / 752$ Mail order address: Unit 5, Southal Enterprise Centre, Bridge Road, Southall, MIddx. UB2 4AI We engineer what we buy, we support

SM/ SCIENTIFIC WIRE COMPANY

 ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114
£50 BT INSTRUMENT FOR ONLY £7.50

We refer to the BT insulation iester and multh-meter with which you can sead insulation ditenty in megohms, AC rotss up to 230, 4 ronges of Df valts up to 500,3 ranges of miliames and one
SA ronge and 3 ronges of resistance These ore in perfeat condition, hove had very little use if ony, lested ond fulty
guaronteed. Complete with leaos aad proos 57.50, Order Ref
7.5P4. Corrving cose which will toke matll look os well 52 extro

Postage $£ 3$ unters your order is $£ 25$ and over.
18 N foclors
Dep1 IT1, Pilgrim Works, Stoirbridge Lone, Bolney,
Sussex, RHII SPA
Telephone: (01444) 881965

PCB Design Program. Seatrax Ranger 2. Version 2.51. Original discs and manuals. $£ 100.00$ 0136473909 Devon.

Audio, Computer, Communications, Test \& Professional Video Hardware purchased/sold. Stock list available. Please ring Qty = Discounts; Overseas enquiries welcome. 9^{n} VGA Mono Monitor 240 vac cased, tesled, may have bums $£ 14.00 \mathrm{c} / \mathrm{p}$ $£ 7.00+$ vat
 Field Electric LImited, Unit 2 Willows Link, Stevenage, Herts SG2 8 AB Tel: 01438353781 Fax: 01438359397

ELECTRONIC VALVES

CHELMER VALVE COMPANY

130 NEW LONDON ROAD, CHELMSFORD ESSEX CM2 ORG
Tel: 01245355296 Fax: 01245490064

For high quality audio valves

LIVERPOOL

PROGRÉSSIVE RADIO
$87 / 93$ Dale Stree Tel: 0151236098201512360154 47 Whttechapel Tel: 01512365489 Liverpool 2 'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

ives rohotiks, notor speeds, stepper molons mpac. relays ete. using its $8 x 200 / 2 \mathrm{~A}$ outputs. ty sold already for succeenful Model Railway Il contmi...FULL INSTRUCTIONS supplied!

Cheap Microcontroller System 8Mhz Z80. Program from IBM, no EPROM needed. 32k RAM battery backed. 8 digital inputs. 32 analogue inputs. 24 digital outputs. Can run standalone. Software = TextEditor/Simulator/Compiler/Du mper/Reader/Z80 Subs/Help.Min XT/AT \& EGAVGA. Software + circuit $£ 29.95$ (Components not included; cost 30). Send cheque for £29.95 to: N. Moxham, 23 Arizona Tce, Glenalta SA 5052 AUSTRALIA.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS

ADVERTISE NOW BY PHONING JIM ON 0144266551

PRINTED CIRCUTT BOARDS

Printed Circuit Boards manufactured from your schematics or layouts. No minimum quantity. Phone 01232-473533 anytime or post details to P. Agar, 36 Woodcot Avenue, Belfast BT5 5JA.

SMART CARD PCB'S

Blanks for adult/D2mac etc Season/eurocrypt int, pcb's D2MAC 14 ch cards $£ 25$ ea Or made from your design. Boards-r-us 0121-321 2436

Start training now with the specialists for the following courses. Send for our brochure - without obligation or

Telephone us on 01626779398

Name	Telecomms Tech C\&G 2710 Radio Amateur Licence C\&G
\square	Micro- processor proces
ntroduction to Television	
Radio \& Telecommunications Correspondence School	
12 Moor View Drive, Teignmouth, Devon TQ14 9UN	

counses

PC Electronic, Technical and Scientiflc Programs low cost specialist library. Descriptive catalogue available priced at £2.50. Comes with $£ 2.00$ off money voucher to place against your first order. Phone/Fax for your catalogue from PDSL, Winsocombe House, Beacon Road, Crowborough Sussex TN6 1UL Tel: 01892663298 Fax: 01892 667473.

PIC MICROCONTROLLER COURSE

 at theAlsager Campus
of The Manchester Metropolitan University
Dates: Priday 17 May 19\%6, Wedinesday 13 June 1996, Thursdary 11 July 199
The one day course is designed around the Arizona Microchip PIC16C54.
The cost of the course is $£ 125$ which includes lunch, course notes, a protorype board, a 16 CSA reprogramable device, assembler software to convert text to machine code and sample prolect software.

For further details and a booking form contact the Course Tutor, Dave Smith on 01612475437 at the Alsager Campus. The Manchester Merropolitan Universiry, COMMITED TO EXCELIENCE N TFACHING, SCHOLARSHIP AND RESEARCH

SCIENTIFIC

High Voltage DC-DC Converters, PCB Mounting, $12 / 24$ volt input. Fully encapsulated, ideal for GEIGER PHOTOMULTIPLIER and ION MOTOR experiments. 2 kV Unit $£ 19.00$ each or 10 kV Unit £49.00 each. Quantity discounts available direct from manufacturer. S.A.E. for further information to:P.P.S., 33B Rowlands Road, Worthing, W. Sussex, BN11 3JJ. 01903214100.

BY READING THIS YOU ARE PROVING THAT THIS PAGE WORKS!! TO ADVERTISE IN THIS SPACE FAX JAMES GALE ON 0144266998

SITUATIONS VACANT

1.T. PERSON Person with DTP experience for a growing electronics company. You should have some experience in electronics components and programming in Dbase IV. You will be assisting in the production of a corporate catalogue. The position is full time. Salary: £12k-15k
Please send your C.V's to Personnel Dept. Logitron Limlted The Hogarth Centre Hogarth Lane
London W4 2QN

ETIELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST.

Rates: Linage 75p per word + VAT minimum 15 words.
Semi-display $£ 10.50$ per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-paid.

Around the

 0)surgeons to perform operations in hazardous areas, such as battlefields. The human surgeons' use of virtual reality systems means that they get all the sensory feedback and interaction that they would get if they were physically in the same room as the patient, instead of being perhaps a few thousand miles away. Robot surgical technology can also be used to allow a specialist to perform an operation in another part of the world without either patient or doctor having to travel. Technology that can be used by a doctor to remotely perform a delicate operation can also be applied to any other activity that requires physical interaction with the remote environment. It will make it possible to work in hazardous, or unpleasant environments, such as the bottom of the sea, or in space. However, the greatest impact of this type of technology will be in more mundane activities: It will, for example, make it far easier to manufacture products near to the source of demand for those products even though certain skills may not be present in the local workforce. Instead of shipping in expensive skilled labour, enter virtual manufacturing systems. This technology could open up new concepts in manufacturing where small general-purpose factories fitted with remote control robotic equipment could be used to manufacture a very wide range of products for the local market. By almost manufacturing to demand products that are tailored to local needs, a company could both increase its sales as well as decreasing transportation and stock holding costs. A move which could be bad news for shipping companies and airlines. Airlines, and the traditional tourist industry could also be hit if this sort of technology was applied to the leisure industry. Imagine being able to go to an entertainment complex which could offer you the choice of visiting the Moon or Mars, swimming with sharks off the Barrier Reef, walking to the North Pole, or through the Amazon jungle. Experiences which, thanks to that combination of communications, virtual reality and robotics, would seem completely real and totally unique, not a theme park scripted experience. An experience where you were interacting with the real world, just as if you were physically there. This type of virtual tourism is being planned right now, and is probably just a few years away from being commercially available. Without a doubt communications is the key to the future.

Next Month......
hen the history of technology development in the latter half of the twentieth century comes to be written probably one of the most significant developments, and certainly one with potentially enormous impact on the future of everyone, is the development of optical fibre data communications. Very high speed data communications is a key component of virtually every technological advance that is being made today, and will probably assume even greater importance in the future. @B:Already we can start to see the results, the fax, and θ mail have started to supplant conventional letters in business communications, and are now starting to replace the letter in private communications. The Internet and World Wide Web are starting to become the primary source of information on a wide range of subjects, and are thus replacing books, magazines, libraries and newspapers. Radio broadcasts from all over the world can now be received over the Internet, and will soon be joined by TV broadcasts. The natural conclusion about these developments is that physical newspapers, and magazines, as well as radio and TV sets, all with rather restricted local coverage, are on their way out. They will be replaced by a global information network that uses optical fibre communications technology to bring the world to everyone's doorstep. The availability of high capacity data communications will not only affect the media, information, and entertainment industries; it will affect every industry, every human activity, and even the structure of society and the culture and attitudes of society. What is so revolutionary about it is that data communications have shrunk the world in a way that transportation systems could never do. Today, and in the future, every part of the world is, at most, just a few seconds away from every other part of the world. This means that if we couple high speed data communications with virtual reality and robotic technology it will be possible for any individual to be instantly 'transported' to any other part of the world. Not just in a visual/auditory way but with full tactie/sensory feedback and interactivity with the physical world at the location to which he has been 'transported' The first steps along this path are already being taken with the development by the US military of remote surgery technology which will use 'robot surgeons' controlled directly by human

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{\text { }}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

 Electronics Workbench's simple, direct interface helps you buikd circuits in a fraction of the time. Try 'what if scenarios and fine tune your designs painlessly.
Electronics Workbench The electronics lab in a computer

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real world analog and digital moclels are included free with Electronics Workbench And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulsecocle modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench ${ }^{\text {TM }}$

The electronics lab in a computer ${ }^{\text {TM }}$

Order Now! Just £199* 44-(0)1203-233-216 RG Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK 55.99 . All prices are plus Vat All tracle marks are the property of their respective owners Electronics Workbench is a trademark of Interactive Image Technologies Lid., Toronto, Canada.

- 30 Day money-back guarantee

Allsinging All dancing

That's the CDJ 2600 from Soundlab! It's the twin CD for DJ's that does just about everything you could possibly ever need.

It comes as two 2 U rack-mount units, finished in black enamel with clear legends and large, user-friendly controls, which are easy to find and use, even in the lowest light conditions.

The green LCD displays both track number and elapsed time to frame accuracy. It even gives a visual reminder should you leave one of the CD trays open.

gives shuttle search, while the inner portion allows Jog Search Once found, a cue point can be memorised then used
instantly with a single
'cue' button.
An innovative joy-
stick gives you total control over the comprehensive loop facilities: simply pushing the stick upwards memorises the loop start point and pulling it downwards marks the end point, giving a single repeat. Should you then pull When you're looking for a cue point, you can choose between two methods offered by a single concentric wheel. The outer ring the joystick down during the loop, it will repeat continuously.

Left / right movements of the joystick allow pitch bend. And the CDJ2600 is as tough as it is talented.

The robust twin transport has been designed to survive life on
the road, while damped mechanisms offer a very high degree of mechanical isolation to maximise playability in any conditions. High quality sound reproduction is ensured by 16 bit, $8 x$ over-sampling DAC technology, and ease of set-up is guaranteed by the unit's intelligent design

All these features for only
£499.99

Order Code 51253 For more information call 01702554161

[^0]: Bit Use
 0 Joystick a, x axis
 1 Joystick a, y axis
 2 Joystick b, x axis
 3 Joystick b, y axis
 4 Joystick a, button 1
 5 Joystick a, button 2
 6 Joystick b, button 1
 7 Joystick b, button 2
 The axis bits are 1 when the one-shot is active.
 The buttons are 0 when pressed

[^1]: AC Reading
 ${ }^{2}$ Cathode Current 45 mA

