Shape changing robots
science fiction or reality?
Noise masker for a quieter life
Switching off on time for safety
Stop thief cycle alarm

Plus
- The ETI Basic microcontroller
- The PIC tutorial
- Electronics Workbench a review
quickroute 3.5

Multiple button bars give you instant access to virtually all the powerful editing and placement tools. Tool hints remind you what each button does.

"Moving from schematic to layout could not be easier" review of Quickroute 3.0 in Electronics World & Wireless World Jan 95

Contact Quickroute Systems for a free demonstration pack & brochure. Prices quoted exclude post & packing, and V.A.T.

quickroute SYSTEMS Limited
14 Ley Lane, Marple Bridge, Stockport, SK6 5DD. UK.
Tel/Fax 0161 449 7101
email info@quicksys.demon.co.uk

Personal

£68

The Personal Edition gets you started with schematic & PCB drafting for just £68.00. The full set of editing & placement tools are included, with support for 2 copper layers & 1 silk screen layer. You can also create your own custom symbols. Note that the manual is provided on disk.

Designer

£149

The Designer Edition of QR 3.5 includes schematic capture & automatic generation of a PCB 'rats-nest'. Routes can then be manually routed, and checked against the schematic. The full manual is also included.

PRO

£249

The PRO Edition is our base professional product with support for 8 copper layers. It includes schematic capture, automatic PCB rats-nest generation, an auto-router and support for a range of CAD-CAM outputs. Also included is our extended library pack (CMOS, Surface mount PCB symbols, etc).

PRO+

£399

PRO+ is our full professional product. It supports advanced schematic capture (global nets), copper fill, enhanced auto-routing, and a range of export and import capabilities including GERBER import, and SPICE & SpiceAge support.
Contents

Shape changing robots
science fiction or reality?
Noise masker for a quieter life
Switching off on time for safety
Stop thief cycle alarm

Projects
Shape changing robots
A look at the potentially revolutionary work of a British inventor which could have an enormous impact on the lives of all of us

Bar-code reader
Dr Pei An has developed a system which allows a PC to read any bar-code, even the one on the front cover of ETI!

Features

Electronic Cycle Alarm
Worried about having your bike stolen? Then Simon Brown's cycle alarm may be the solution to your worries

Noise Masker
Robert Penfold devises an electronic solution to the increasingly pervasive problem of noise pollution

Electronic Workbench
In this new series, Paul Stenning takes a look at Electronics Workbench, an electronic circuit simulation package

The Electronics Engineer's PC
In this new series, Paul Stenning takes a look at Electronics Workbench, an electronic circuit simulation package

Timed Isolator
A useful device which will automatically switch off mains equipment after a specified period

Electronics Today International

Noise Masker
Robert Penfold devises an electronic solution to the increasingly pervasive problem of noise pollution

Electronic Cycle Alarm
Worried about having your bike stolen? Then Simon Brown's cycle alarm may be the solution to your worries

Noise Masker
Robert Penfold devises an electronic solution to the increasingly pervasive problem of noise pollution

Electronic Cycle Alarm
Worried about having your bike stolen? Then Simon Brown's cycle alarm may be the solution to your worries

Electronic Workbench
In this new series, Paul Stenning takes a look at Electronics Workbench, an electronic circuit simulation package

The Electronics Engineer's PC
In this new series, Paul Stenning takes a look at Electronics Workbench, an electronic circuit simulation package

Timed Isolator
A useful device which will automatically switch off mains equipment after a specified period

The ETI Basic microcontroller
In part 3 of this premier project, Robin Abbott looks at some other versions of the ETI PIC based controller module, which offer the user a range of additional options

Designing a PIC microcontroller based project
In Part 6 of this short tutorial series, Bart Trepak concludes his look at the circuit and design of a PIC based alarm clock

News
PCB foils
Roundup

Subscribe & Save
Phone the hotline and take advantage of our special offer detailed on page 66

Volume 24 No.12

Features

Projects

Regulars

News
PCB foils
Roundup

Subscriptions & Back Issues Hotline:
01688 435344
01688 435322
Lines Open
9.11-6.30pm

Subscribe & Save
Phone the hotline and take advantage of our special offer detailed on page 66
Pico Releases PC Potential

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Call for your Guide on 'Virtual Instrumentation'.

NEW from Pico TC-08 Thermocouple to PC Converter

8 channel Thermocouple Interface
- Connects to your serial port - no power supply required.
- Supplied with PicoLog datalogging software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs (B,E,J,K,N,R,S and T types)
- Resolution and accuracy dependent on thermocouple type.
 For type K the resolution is better than 0.1°C

TC-08 £ 199
TC-08 + Calibration Certificate £ 224

complete with PicoLog, software drivers and connecting cable.
A range of thermocouple probes is available.

SLA-16 & SLA-32 Logic Analysers
Pocket sized 16/32 channel Logic Analysers
- Connects to PC serial port.
- Up to 50MHz sampling.
- Internal and external clock modes.
- 8K Trace Buffer.

SLA-16 £ 219
SLA-32 £ 349
with software, power supply and cables

ADC-100 Virtual Instrument
Dual Channel 12 bit resolution
- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate (100kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges (±200mV to ±20V) allows the unit to connect directly to a wide variety of signals.

ADC-100 with PicoScope £199
with PicoScope & PicoLog £219

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port.

ADC-10 with PicoScope £49
PicoScope & PicoLog £59

Carriage UK free, Overseas £9 Oscilloscope Probes (x1, x10) £10

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ
Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: 100073.2365 @compuserve.com

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT
PORTABLE X-RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine. Effective device. X-ray sealed assemblies, can be used for examining the human body or for research purposes. Includes all necessary information for the construction of an X-ray machine. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

TELEKINETIC ENHANCER PLANS Mystery and amaze your neighbors and impress your friends with these plans. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

CHEMICAL ENHANCER PLANS Chemists and hobbyists can use these plans to create a chemical enhancer. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

ELECTRONIC HYPOXIS PLANS & DATA This data shows several ways to put subjects under your control. Included in a full version of this project are instructions to build a device that uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

WORLD'S SMALLEST TELEVISION PLANS Develop your own portable television! This plan uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

COPPER VAPOUR LASER PLANS Produces 100mw of %0 laser light, high efficiency, and a powerful laser beam. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

VOICE SCRAMBLER PLANS Simple voice scrambler system. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

ULTRASONIC STRAIN GAUGE PLANS Use this kit to build your own ultrasonic strain gauge. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

MAGNETIC MARBLES They have been around for a number of years but still giverise to curiosity and amazement. A pack of 12 costs £3.99.

ELECTRONIC INTEGRATION TIMERS.

MINI FM TRANSMITTER KIT High gain pre-amplifier, supplied complete with a white emission microphone. Designed to cover 65-108 MHz broadcast frequencies, with a sensitive input circuit for AM, FM, and SW bands. Includes all necessary information for the construction of an FM transmitter kit. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

3.3V POWER SUPPLY KIT Variable, stabilized power supply for use in electronic circuits. Suitable for use in professional or amateur use. Includes 24v-36v and 12v-18v options. Includes all necessary information for the construction of a power supply kit. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

WOMEN’S LETTERS PLANS This plan uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

ROBOT VOICE KIT Interesting circuit that distorts your voice! Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

COMBINATION LOCK KIT 9 key, programmable, complete with instructions. This design was developed at the Atomic Energy Commission. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

STROBE LIGHT KIT Adjustable from 1-60 hz (a lot faster than the atmosphere for a high energy stream of neutrons or other energetic particles). This device is a high-speed light source for scientific research and other applications. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

FLYING PARROTS Easily assembled kit that builds a parrot that can fly. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

THE LAZARUS EFFECT This plan uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

STATION IN MINIATURE, 3 transistors, homemade crystal. Can be used for various experiments. Includes all necessary information for the construction of a station in miniature. Uses after electrical or mechanical connections, no special knowledge is required. Excellent for science projects and research laboratories. The high-quality construction of the unit ensures years of trouble-free operation.

NEW LOW PRICES TO CLEAR!!!

FREE CATALOGUE
Halfsize Industrial Single Board PC

The AMC-350A comes equipped with an 80386SX-40 or 80486SLC-33 CPU. Also included are two serial RS-232 ports, a bidirectional parallel port, an IDE hard disk drive interface (which controls up to two hard disk drives), and a watchdog timer. The watchdog timer ensures that the CPU will be reset if it stops due to a program or EMI problem, allowing the AMC-350A to be used in standalone systems or unmanned environments. With its industrial grade reliability, the AMC-350A can operate continuously at up to 140°F (60°C) temperatures.

The AMC-350A is specifically designed as a compact all-in-one CPU card which incorporates a PC/104 connector into its design, making non-passive backplane applications possible. The 4-layer CPU card turns any system into a 16-bit 386 compatible computer. Its highly compact form and numerous features make it an ideal cost/performance solution for high-end commercial and industrial applications where CPU speed and mean-time-to-repair are critical. In addition, its all-in-one configuration frees up valuable expansion slots. Built using CMOS technology, the AMC-350A consumes very little power.

The AMC-350A provides 4 SIMM (Single In-Line Memory Module) sockets for its on-board system DRAM. Each socket accepts one 256KB, 1MB or 4MB SIMM. Total on-board memory can be configured from 1MB up to 16MB.

Car Battery Booster Charger

The latest in car products from Maplin Electronics is the Car Battery Booster/Charger. Costing £39.99, it is a high quality, powerful battery charger which supplies a useful 15A charge and is also capable of providing a short boost charge or even starting a car.

The compact charger will prove a useful tool to anyone who uses machinery, such as the building and farming industries, or the motor trade. It will also prove valuable to most car owners in winter when engines and batteries are cold and indifferent towards starting - thanks to its ability to supply a healthy 12V 100A boost for up to 5 seconds.

The charger is housed in a robust case with a built-in handle and can be wall-mounted. Two sturdy leads, terminating in heavy-duty crocodile clips, carry the charge to the battery. Built-in overload protection is provided and reset with a push switch.

For further information, telephone (01702) 552911.

Gang Programming for Microcontrollers & SIMM Modules

MQP Electronics has announced support for many more devices in their range of production devices programming equipment.

Support is now available for the full range of microcontrollers from several leading manufacturers. The microcontrollers can typically be programmed 8 at a time, at very high speeds. Manufacturers supported include Motorola with their 68HC705 and 68HC711 series and NEC with the popular 75P and 78P series. A gang module is also available for the SGS-Thomson ST6 family.

Another recent addition to the S2000 gang programming system is a single site universal programming module. This makes the system arguably the most versatile production programming system available.

MQP Electronics provides programming solutions for both development and high volume production. All MQP programmers offer comprehensive PC software support, with batch controlled modes to automatically deal with the special programming options required by users and converters are available to deal with all package variants.

For further details, contact MQP on 01666 825146.
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a miniature CCTV camera (included) to any standard television! All the components including the PS3 battery will fit into a paperback! Includes PS3 battery, camera, 50mm antenna, software and full instructions. Supplied with telescopic aerial but a piece of wire about 4' long will suffice. Although this kit is marketed as a toy it could be used legally for 1 hour operating time +1% REF EP512. GOTT AN EXPENSIVE BIKE? You need one of our battery adaptors. It is simple and easy to fit, will increase the performance of anything from video cameras, provides a year's protection from battery, UK made. SAA battery, 4.99 each. sail price £4.99 ref. SA33.

DAMAGED ANSWER PHONES These are probably beyond repair so they are just £4.99 each. Mainly response to 200 machines.

COMMODE GAMES CONSOLES Just a few of the latest to be released at £5 each. Condition unknown. Correctness of games not tested.

COMPUTER TERMINALS𝒰 Royale made in Taiwan software included all in one reading device + one disc + software £15 inc VAT

PC PAL VGA TO TV CONVERTER Converts a colour TV into an RGB & composite VHS monitor. Plug and play. £12.99 inc VAT

DIAGNOSIS MICROSCOPES A Quality range of binoculars & monoculars. Collection only please.

MULTI-UNIT 2.4GHz digital receiver £55 inc VAT

PLUG IN ACORN PSU 19V 14w. £2.99 inc VAT.

FOOTBALL PIECES 2400 bits, £2.99 inc VAT.

HYPOTHERMIA SPACE BLANKET 215x 150cm aluminised, £4.99 inc VAT.

ENERGY BANK KR 100 6"x6" 6v 100mAh panels, 100 diodes, 150x150x85mm complete with switch 11yeads and IEC socket £11.99 inc VAT.

IBM P52 MODEL 162 CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. SAA battery, £39.99 inc VAT.

DELL PC POWER SUPPLIES £49.99 inc VAT. 1.44 DISC DRIVES Standard 5.25" drives but returns so they will need attention. £4.99 inc VAT.

POWER ADJUSTERS t-3msE, and beam divergence adjustor. £15 inc VAT.

BULL ELECTRICAL 250 PORTLAND ROAD, Hove, Sussex. BN3 9ST. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER F1.50 POST PLUS VAT. Send 1.49 inc VAT. ALLOWANCE WELCOME. ODDONE. YESSATI, SWITZERLAND, AMERICAN EXPRESS.

BULL ELECTRICAL 250 PORTLAND ROAD, Hove, Sussex. BN3 9ST. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER F1.50 POST PLUS VAT. Send 1.49 inc VAT. ALLOWANCE WELCOME. ODDONE. YESSATI, SWITZERLAND, AMERICAN EXPRESS.

BULL ELECTRICAL 250 PORTLAND ROAD, Hove, Sussex. BN3 9ST. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER F1.50 POST PLUS VAT. Send 1.49 inc VAT. ALLOWANCE WELCOME. ODDONE. YESSATI, SWITZERLAND, AMERICAN EXPRESS.

BULL ELECTRICAL 250 PORTLAND ROAD, Hove, Sussex. BN3 9ST. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER F1.50 POST PLUS VAT. Send 1.49 inc VAT. ALLOWANCE WELCOME. ODDONE. YESSATI, SWITZERLAND, AMERICAN EXPRESS.

BULL ELECTRICAL 250 PORTLAND ROAD, Hove, Sussex. BN3 9ST. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER F1.50 POST PLUS VAT. Send 1.49 inc VAT. ALLOWANCE WELCOME. ODDONE. YESSATI, SWITZERLAND, AMERICAN EXPRESS.
8 BIT, 250 MSPS A/D Card

- **World’s Fastest A/D Cards**
 - 12 bit, 60 MSPS A/D
 - 8 bit, 250 MSPS A/D
- **Up to 16 meg memory**
- **Up to 32 inputs**
- Low Noise
- LabVIEW Driver
- C & BASIC Drivers
- Free Software Support
- New PCI Version.

Ultra-Fast D/A Cards
- CSLITE: 8 bit/40 MSPS/16k - £495
- CS250: 8 bit/100 MSPS/32k - £2500
- CS2125: 8 bit/250 MSPS/256k - £3600
- CS1612: 12 bit/20 MSPS/128k - £4995
- CS5612: 12 bit/80 MSPS/512k - £6400
- CS8612/PCI: 12 bit/60 MSPS/512k - £6400

Scope Emulation Software Included!!

Tel: 01734 795950
Fax: 01734 795951

Turn Your PC into a Powerful Real-Time Spectrum Analyzer

- **Features**
 - Dual channel FFT Analyzer
 - Narrow-band and 1/3 Octave
 - Real-Time, Record, Playback, or Post Process
 - Time Series, Spectrum, Phase, 256 Color Spectrogram and 3-D Surface plots
 - FFT sizes through 16,384 pts
 - Digital Filtering
 - Signal Generation
 - Decimation and Triggering
 - Overlap Processing
- **Applications**
 - Acoustic Research
 - Distortion Measurements
 - Noise Analysis
 - Frequency Response Testing
 - Vibration Measurements
 - Transfer Function Measurements

System Requirements
- 386/486/Pentium and Windows 3.1
- Windows compatible sound card
- 4 MB RAM minimum
- Mouse and Math coprocessor
- 256 Color VGA (for spectrogram)

Software included
- **Software only** £295
- **Software plus pro quality sound card** £595

Call now for Free Demo Disk!

Tel: 01734 795950
Fax: 01734 795951

DEVELOPMENT AND PRODUCTION SOLUTIONS

- **Gang Programmers**
- **Development Programmers**
- **Universal Cross Assembler**
- **Package Converters**
- **Development Tools**
- **Emulator Pods + Adapters**

GANG PROGRAMMES
- NEC 78/75PXXX
- MOTOROLA 68HC
- HITACHI H8, PICS
- SGS AND INTEL MICROs

mqp ELECTRONICS Ltd

Park Road Centre, Malmesbury, Wiltshire SN16 0BX UK

Tel: 01 666 825146
Fax: 01 666 825141

E-mail: 130447.1124@compuserve.com

ELECTRONICS TODAY INTERNATIONAL
or the past 17 years, a North London electrical engineer and computer programmer, Joe Michael, has had a dream - a dream which started when he was still a student, a dream to design and build the world's first shape-changing robot.

The shape-changing robot idea was initially conceived as some way of moving atoms and molecules to create new types of matter, but as a student of biochemistry he quickly realised that such a technique was either impossible or, at best, extremely difficult to implement. It was then that he hit on the idea of using a fractal-like system of small interlocking cubes that can slide over each other and, in so doing, form any desired shape.

In pursuit of this idea, he studied electrical engineering and computing, spending most of his time and money working on the idea and developing it to a stage where he could demonstrate its practicality. After years of work, and the expenditure of over £35,000 in securing world-wide patents, his dream will become a reality when the first prototype units are completed in early 1996.

The concept developed by Joe Michael is already attracting considerable interest from a variety of disciplines from all around the world. Indeed, at a recent nuclear industry exhibition in Lyons, France, his modest stand was visited by over 150 leading engineers, most of whom were highly impressed, and now eagerly await the first practical demonstration.
The concept
Most people are now familiar with fractals, a mathematical concept which many mathematicians now agree lies behind the structure of many living organisms, rocks, crystals, etc. In fact, crystals are a very good way of initially thinking about Joe Michael's shape-changing robots; how crystalline structures can grow and change shape as a result of new crystals growing onto the surface of existing ones.

In a similar way, a fractal shape-changing robot is capable of changing shape and, in so doing, mimicking any machines or physical structure. This is because at any size, from nano technology dimensions to thousands of cubic metres, the basic cubic units from which such robots are built can be made to form any desired shape and, with the addition of special tool/sensor units, any functionality.

Fractal robots are thus built out of identical copies of motorised robotic cubes. These can move relative to each other under computer control to implement shape-changing functions. Cubes are interlinked by electrical and data contacts to route electric power and data signals from neighbouring robotic cubes (any one or more of which may contain a power source and/or the source of the computer signals and/or a connection to the outside world).

Their unique symmetrical internal mechanisms allow any cube to pick up any other cube, move it around (without separating while moving) and lock them together to erect semi-permanent structures. As well as locking, the symmetrical mechanism can detach cubes allowing faulty cubes to be removed. Such cubes would be moved out of the structure by another functioning robotic cube and then be replaced by an identical mass-produced robotic cube to affect self-repair in seconds, no matter how bad the damage.

The robotic cubes can also pick up and move other objects such as palettes, steel girders and machine tools provided they have simple compatible 45 degree slots cut into them. With electrical contacts inside the slots allowing an interface between the robotic cubes, tools can be remotely controlled.
Thus, not only can the robotic cubes move objects and tools around a structure but also use them locally to make dynamically re-configuring robotic machines.

The shape-changing properties of the robot can be used to erect new structures in minutes along with all necessary heavy production tools and interconnecting cables. The shape-changing properties of the robot can be used to pick up pre-terminated electric, hydraulic and pneumatic cables along their mid sections and transport them around in complex paths to automatically connect two or more points together.

This type of system allows pre-packaged, automatic, self-repairing factories to be built with no human intervention. Large robotic cubes perform heavy tasks while smaller cm-sized cubes perform more intricate tasks with greater local access. By simple changes of software and production tools, different factories can be synthesised allowing huge diversity to be achieved with relatively few standard pieces of equipment. Indeed, shape-changing robots are, in theory, flexible enough to assemble their own factories and build more of themselves!

Technical concepts
As a starting point in our examination of this technology, we need to define what we mean by a shape-changing robot. The following is a brief definition:

A shape-changing robot is a finite resolution electromechanical device that acquires dynamically programmed geometric shapes though the use of a computer or computers, these shapes being limited only by the minimum resolution of the electromechanical mechanism and/or the software running on the computer(s).

As we have already seen, Michael's shape-changing robot is built out of a collection of cube-shaped robotic cubes. These have electromechanical locks that connect with neighbouring cubes and also enable them to slide with respect to each other without detaching. The locks carry power and data between the robotic cubes. There are electronic controllers in each robotic cube and each such cube has a unique address. The robotic cubes attach or detach from each other under computer control. Computers located internally inside the robotic cubes issue control instructions to the controllers, or relay instructions from an external control computer.

From this outline we can produce a set of specifications for a standard robotic cube; they are as follows:

1. A robotic cube must be able to receive power from any of the six faces.
2. Power received on one face can be directed to any number of faces. Power drains caused by short circuits are limited and/or isolated from the rest of the supply. There should be no leakage (such as earth leakage). Power is switched between faces under computer control. Instructions for power management are calculated locally within a cube or received externally through the network.
3. Robotic cubes talk to their neighbours using networking ports. The networking port can be either serial or parallel. Parallel methods allow greater bandwidth but cost more in terms of wiring and hence serial methods are preferred.
4. The robotic cubes route network signals from one face to another under computer control. Short circuits and earth leakages are detected and the network cables isolated to avoid damaging electronic devices.
5. There must be a minimum of one master computer holding and issuing control messages to robotic cubes. The remaining robotic cubes are slaves implemented using a minimal controller for receiving and executing movement instructions received through the networking ports. The computer can sit inside a robotic cube or reside externally and be linked with wires or by telemetry. The computer should be able to interrogate the status of each robotic cube's controller. Multiple computers can be present in a structure and these should co-operate and share the loading of the computational task by localising sub-tasks. Tasks that are inherently parallel should be carried out by separate computing centres within the same structure. A collection of autonomous robotic cubes must have at least one computer with sufficient capabilities to turn into a control centre for local control and task execution. For large structures there should be many such computers to take local control.
6. Robotic cubes with less than six active faces for power,
networking and other features may be present but the operating system for the software must be notified of these facts so that software can cater to these special conditions. Robotic cubes with less than six active faces for power, networking and any other conditions described below may be present due to defects or other reasons but so long as they inform the operating system of the status of each face, the software should cater for a vast number of such special cases where they are introduced deliberately or through fault conditions.

7. Instructions calculated locally or received through the network allow a robotic cube to lock any of its faces to any of its six neighbours. The locks should be strong to give rigidity to the structures erected.

8. Robotic cubes sliding past each other under computer control should do so without rubbing harshly between faces and without separating when they are sliding (separation should take place only if requested by the controlling computer). Robotic cubes should be able to travel upside down as well as scale walls made of other cubes. The sliding mechanism should be of a low friction type in the direction of the slide. However, it should not be slack to avoid vibrations and wobble when being moved.

9. Robotic cubes should be powered whilst being moved. This avoids having to use batteries within the cubes to move them and/or having to use sliding electrical contacts that supply power to move the cubes. The configuration details prior to power off should be retained with non-volatile memory or by the operating system. The controllers on board each robotic cube (if fitted) should power up into on-line status within milliseconds after power is applied. The robotic cube electronics should be resilient to frequent loss of power and surges on the power line.

10. Robotic cubes should sense other cubes attached to its face and interrogate it using the networking system. Fault conditions detected are communicated through interrogation and networking.

11. It should be possible to move a deeply buried robotic cube within a structure without having to move the remaining robotic cubes.

12. Robotic cubes should be switched off in the locked position if their sole function is to give structural strength whether temporary or permanent to save power and avoid overheating.

13. Robotic cube computers and other related equipment should ideally run cool. That is, they should not require extensive ventilation. (Facilities to erect ventilator ducts should be available in software for large and complex structures.)

14. Robotic cube electronics and electrical circuits must not be prone to moisture damage, vibration and radio frequency interference. Electrical connector pads should be designed to mate in a gas tight join to minimise corrosion defect rates.

15. Robotic cubes should be able to synchronise their activities using a single electrical wire that can be networked (that is routed from one cube face to another). This routeable synchronising line is vital for large collections of robotic cubes to synchronise their collective activities.

16. The locking mechanism locks cubes together. The locking mechanism should also be able to lock to dead cubes and to robotic cubes which have tools attached or to objects that have only the minimum of necessary grooves cut into it.

17. Robotic cube controllers and/or their computers should audit their recent movements so as to enable the operating system to recover from simple faults.

18. Large and small robotic cubes should be allowed in a structure to form fractal mechanical structures. This facility should be made available as an interface on at least one of the larger robotic cubes which is compatible with the smaller scale. The computer software should make no distinctions in the functions and facilities available and the transition between the smaller and larger excepting the physical characteristics such as dimension, weight, strength etc.

19. Robotic cubes should be able to pick up tools with a minimal interface between itself and the tool.

20. Tool manufacturers should be able to write driver software to control the tool under full automation and integrate it with the operating systems running the robotic cubes using an open and clearly documented set of interfaces.

The robotic cubes can be thought of as optimal space filling atoms that can be instructed to move from one place to another under computer control. It is the total computer control of shape and geometry that allows shape-changing robots to be built. The two basic mechanisms for changing geometry are known as the normal streamer and the L-streamer and these provide the necessary movements to synthesise all known shapes.

All the cubes can be identical, in other words uni-cellular, thus making the manufacturing operation relatively straightforward and cheap. Symmetrical uni-cellular cubes with the above listed desirable properties, together with the two algorithms for moving cubes around, present the smallest possible set of atomic concepts that allows a fully functional shape-changing robot to be built.

Of course there have been several kinds of cellular robotics systems proposed over the years, including hexagonal designs, cellular linkage robots and multi-cellular designs but, by and large, these are inefficient systems, since they involve more than one kind of cellular robotic component.

Internal mechanisms

The internal mechanisms of a robotic cube are extremely simple in both construction and operation. Cubes start life as a cubic frame to which plates are attached that contain the mechanisms. If the cubic frame has one or more active plates attached, then it becomes a proper robotic cube. The
The robotic cube can be hollow and in some respects the need for a frame is unnecessary if a sufficient number of the plates can be bolted together without reducing mechanical integrity. Frames can also be fitted with passive plates which have no mechanisms. Or they can be fitted with plates that have tools attached and, by fitting plates to just five sides, one can make it into a hollow bucket to carry materials such as parts in a robotic assembly line.

Each active plate has electromechanical mechanisms to push out wedges at a 45 degree angle from its surface. These wedges are always operated in opposing pairs using an electric motor. Thus the left and right pair of wedges extend and retract by the same amount at all times. There are electrical contact pads on the wedges for connecting electrical signals between one face plate and another. The wedges also act as the locking mechanism if all four wedges are inserted simultaneously.

A pair of wedges can insert itself into the face of a neighboring robotic cube for which a perfectly fitting slot has been machined at a 45 degree angle. This neighboring cube, with its totally symmetrical and identical mechanism, must have its wedge pair retracted in order for this to be possible. The slot is machined with a taper to allow the wedges to enter without jamming. The slot is carefully machined so that it has a ledge on which the wedge can sit. The engineering is such that when the wedges are sitting in the slot, there is a separation distance between the two faces. This prevents the faces from rubbing when they are sliding under computer control.

To slide a robotic cube under computer control, the wedges have serrated edges which engage gear wheels in the neighboring robotic cube. This forms a rack and pinion mechanism which allows heavy objects to be moved. To increase lifting capability, the gear wheel can be replaced by a helical screw to give a better rack and pinion mechanism.

The serrated edges engage the helical screw and, with each turn, move the neighbouring robotic cube by one thread length which gives enormous power amplification. Furthermore, since the serrations rest on the length of the helical screw, a very good weight distribution is achieved across the length of the screw. The centre of a robotic cube is mostly empty and that could be used to house a very powerful motor for heavy lifting. Note that the cube that is being moved does not need any power; it is the opposing cube that is moving it through its rack and pinion mechanism.

A robotic cube on the move has only one pair of wedges in contact with the helical screw. This means that all four helical screws can be connected together to turn at the same time using a single motor. This means that, in theory, only three motors would be needed per face, of which only one has to be powerful enough to operate the helical screws. This is referred to as the primary motor.

Motor control could be cut by installing clutch mechanisms etc. and by making the robotic cubes with multiple faces into a more compact single mechanism - but that approach would only increase engineering complexity and increase field reliability problems. The preferred motors for use in these robotic cubes are stepper motors or, failing that, brushless motors. This increases field reliability as it reduces the possibility of brush components failing in use.

Apart from micro switches to detect positioning, there are no other mechanisms in a robotic cube. This means that the mechanical construction of a single robotic cube is far simpler than any conventional robot.

The only other component is a printed circuit board with a microcontroller with about 1K RAM and 10K ROM; the main function of this is to listen to the data signals coming down the contacts on the wedges. The power also comes from the wedge and so there are power conditioning circuits in the printed circuit board.

Instructions that the robotic cube receives are very simple. In a minimal instance, the messages can be 'are you there?' which then responds with its unique hard coded address, 'operate wedges', 'operate primary motor' and 'route power and data wires from one face to another'. (By default, power and data are not routed from one face to another to avoid short circuits dissipating the power and signals and to minimise environmental leaks. If leakage is detected, then power is shut down straight away from a face, regardless.)

Of course, a microprocessor could be used with much larger RAM, ROM and other computing functionality. This would be an overkill for most applications, but it does raise the possibility of using a shape-changing robot to create a self-repairing, auto-configuring, and potentially very powerful parallel computer - given, of course, an operating system which could handle such a dynamic parallel architecture.

Robotic cube movement

There are two forms of movement, the normal streamer and the L-streamer. Streamers are thin rods similar to tentacles that grow out of the surface of a shape-changing robot body.

The normal streamer is a rod-like protrusion which can grow out of a surface at right angles to that surface; it is normal to the surface. It is extended, one cube at a time, by attaching a cube at the rear of the rod and pushing it out. The L-streamers derive their name from the L shape that characterises the tip of the streamer. It grows by attaching cubes, one at a time, to the front of the streamer. The steps for growing both types of streamer can, of course, be reversed to shrink a streamer with as much ease as to grow it.

L-streamers can be grown in any direction and the direction of growth can be changed. Once a streamer is erected, the rest of the shape-changing robot can travel over this streamer with little or no difficulty to re-assemble itself at the other end. This is how the shape-changing robot can squeeze through narrow entrances to re-assemble itself at the other end.

Instead of moving individual robotic cubes, groups of robotic cubes can be clumped together and use the same algorithms to achieve the same desired effect. Grouping is an important software tool in minimising the flow of instructions in a structure. Grouping simply involves, of course, the use of fractally larger robotic cubes.

Normal streamers are used to erect pylons. However, any movement in one direction which may get supplemented with a filling operation at the base is classified as a normal streamer. Reversing the steps will reverse the growth of the streamer. These mechanisms can also work with integer multiple collections and fractally larger robotic cubes.

Streaming is a very important attribute of shape-changing robots since it essentially allows the robot 'body' to move by flowing like a liquid. This means that like a liquid it can be made to flow through small apertures the size of which is limited only by the dimensions of individual cubes. This would, for example, allow large shape-changing robots to be put in a dangerous environment, such as a nuclear reactor containment vessel, with only a minimal opening into that dangerous environment.
Robotic pick-up mechanisms

By using L-streamers and N-streamers, any structure can be erected in an orderly manner with the aid of multiple collections and fractally larger robotic cubes. However, that in itself is not enough to create large structures or machines. Such structures also need the means to move objects which are not robotic cubes, as well as having the means to interact with the world with the aid of tools sensors etc.

The robotic cubes can be used to move other objects around if they had protruding wedges, as illustrated for a palette with the aid of tools sensors etc. cubes, as well as having the means to interact with the world also need the means to move objects which are not robotic enough to create large structures or machines. Such structures and fractally larger robotic cubes. However, that in itself is not erected in an orderly manner with the aid of multiple collections

using plates that have been cut with slots. Or a system of girders with slots cut into them that act as structural supports when erecting large and complex structures. These girders can be used as supports when travelling up and down structures without stressing the structure.

An important type of special handling tool is the turntable, used to re-orient cubes in different directions. This is important because, using normal movements, a robot cube cannot change its relative orientation with respect to another robotic cube without the aid of a turntable to rotate it. In an ideal situation, there are three separate turntables available to turn the robotic cube in any of the three rotational axes.

Rotation can also be used to switch in different tools attached to different faces of a robotic cube. Tools and sensors for special purpose applications are fitted with electrical contacts identical in specification to that of the wedges so that they are compatible with the robotic cubes and their controlling software.

A shape-changing robot can grip a cable all along its mid sections and carry it through complex contours by deforming around the obstacles. This cable could be hydraulic, pneumatic, electrical or fibre optic. If the cables are pre-terminated, or if there are terminating tools available then potentially all machinery to be found in a factory floor can be rearranged and re-cabled using shape-changing robots.

Shape-changing robots can also cope with situations where cables have to run into a progressively narrowing pipe, or the pipe divides into two. Since they are fractal in nature, the shape-changing robot simply switches to using smaller cubes, or divides into multiple robots using streamers and, if necessary, into totally detached walking/crawling machines connected by telemetry.

We have just stated how shape-changing robots can be used to move tools around to make a factory. The shape-changing robots can also be used to take tools to the work in situations where conventional robots cannot possibly operate. For example, conventional robots when assembling cars can only get so far within the car before they are impeded by the doors, the engine etc. But shape-changing robots can switch to smaller cubes and enter the work piece using a streamer to, for example, tighten up nuts and bolts, tuck in carpeting, connect up wiring, test vibrations etc.

Manufacturing

Robotic cubes measuring one to three centimetres are adequate for the vast majority of operations requiring high dexterity to be found in manufacturing. Bearing in mind that shape-changing robots are self-repairing, these robotic assembly lines would work day and night without stopping, producing indisputably high quality products.

Another advantage of shape-changing robots in production assembly work is that they require far less energy to operate. Instead of moving a large robotic arm and its entire mass, for small movements perhaps only one robotic cube and the attached work piece to needs to be moved. For more delicate work, even less power is required since smaller fractal robots with smaller mass and power consumption can be used.

Of course the most intriguing attribute of the shape-changing robot is that it is capable of making copies of itself in a factory made up of itself, in other words it could become self-replicating. Alternatively, shape-changing robots can take the next step in their own evolution by using smaller fractal cubes.

The smallest components of sub millimetre sized robotic cubes could be manufactured using the photo lithographic techniques that are being employed at the moment to build micro mechanical structures such as electric motors that are smaller than a pin head. It is then possible that the shape-changing robots can build/maintain and repair these very same photo lithography machines (which are large in comparison to the small robotic cubes) to make a truly self-sustaining machine system that can manufacture, repair and renew all its components including itself. This process could be applied even to the electronics - after all, they too are produced using photo lithography; all that is needed is a source of raw materials.

The shape-changing robot acts as the glue between all the different kinds of tools to be found on the factory floor. The configuration of any machine is thus defined by software rather than by hardware; this means that increasing production, changing the product being made or to making a copy of the machine tool or factory, becomes a matter of giving the system the correct sequence of commands.

In the future, not only will the factories that produce shape-changing robots and other goods be fully automated, but the factory to produce factories of all descriptions would also be automated.

Fault recovery

In large complex structures, it is not always possible to ensure that all cubes are functioning. However, unlike normal machines, cubes can repair themselves from almost any kind of isolated fault. Any cube that becomes faulty is simply picked up by a functioning cube and deposited elsewhere in the structure, or ejected altogether.

When more than one cube becomes faulty in a clump, the functioning cubes that are attached to these clumps can detach from the faulty part of the structure or, if the clump is small enough, move them elsewhere in the structure as before. Because cubes are clones, repairs are effected by substituting other cubes from a reservoir of spare cubes held elsewhere in
the structure.

This means that to critically damage or destroy a shape-changing robot one would have to damage a very high percentage of the cubes and/or destroy all the central computers and power sources connected to the robotic cubes. Since multiple copies of the computers and power sources can be carried in a large structure, the possibility of destroying such a machine in one blow is therefore remote.

Applications

The potential applications for shape-changing robot technology, especially for robots with a very small fractal dimension, is enormous. Indeed, it would be fair to say that there is not a single area of human activity which would not be affected by the use of such systems. In the rest of this article we will look at just a few of the potential applications which have already attracted considerable interest.

One area that has already attracted a lot of interest is the use of shape-changing robots to both contain, limit and then clear up accidents involving nuclear material, such as the disaster at Chernobyl. Intense radiation from a nuclear accident can prevent any kind of repair work which involves human operators from being undertaken. This means that the machinery involved in such operations has to be operated remotely, but the problem here is that standard remote control equipment, such as robotic rovers, either cannot operate in high radiation environments (due to the effect of radiation on electronic equipment and signal transmission), in confined spaces or on undefined terrain. Shape-changing robots, on the other hand, could in theory be built to overcome all these difficulties.

In a typical nuclear installation, the reactor is never directly accessible for servicing or repairs because it is contained in a reinforced concrete containment dome. This, in turn, is surrounded by installation specific buildings that can make access difficult after an accident. Indeed, access constraints pose one of the main problems in clearing up catastrophic reactor failures. One area that has already attracted considerable interest is the most significant development that will push space-related applications. It is that hurdle which holds back the robotic cube from many potential applications.

In a typical nuclear installation, the reactor is never directly accessible for servicing or repairs because it is contained in a reinforced concrete containment dome. This, in turn, is surrounded by installation specific buildings that can make access difficult after an accident. Indeed, access constraints pose one of the main problems in clearing up catastrophic reactor failures. One area that has already attracted considerable interest is the most significant development that will push space-related applications. It is that hurdle which holds back the robotic cube from many potential applications.

In the case of a chemical and/or pressure explosion that makes the dome off the reactor and destroys other parts of the installation, not only is the reactor damaged but so are buildings within the installation. There is debris everywhere and the general terrain of the installation remains undefined at all times during the emergency. A remotely operated robot has to negotiate this terrain, a legged robot could become trapped in the debris, and small robots with caterpillar tracks would be of little use. Furthermore large robots would not be able to enter the building and, even if they did, could cause further damage.

However, if the installation is fitted with shape-changing robots, they can start working seconds after an accident and because any system built using robotic cubes is self-repairing it will work even if some are damaged by the accident. It is envisaged that there would normally be shape-changing robots inside the reactor complex which could be moved into danger areas under operator control to very quickly erect protective walls and seal off radioactive areas.

Shape-changing robots can help in a number of ways inside a damaged installation. For example, they could squeeze through small holes as streamers and take with them cameras, lighting and any other special equipment that can be squeezed through the hole. Under operator control, the shape-changing robots then install the lighting and cameras for initial monitoring of the accident. The robotic cubes can then be used as structural supports to prevent further collapse.

Conventional equipment can malfunction in a highly radioactive environment if sensitive electronic components are used. That possibility can be avoided with lead shielding. However, specialised robotic cubes could be constructed that have no electronics and instead have a mechanical or fluidic computer inside it, in many ways not dissimilar to an old fashioned washing machine controller. This is possible because the instruction set for the robotic cube is very simple. Shape-changing robots could also be utilised to minimise the effect of other potentially disastrous accidents. Even in this modern day and age, there are no safety systems for ocean-going liners, ferries, super-tankers, aircraft carriers and nuclear-powered ships that can prevent a ship from sinking once it starts to take in water. Suppose a nuclear power pack is damaged in a nuclear-powered ship. To contain leaks, it is vital that some kinds of systems are still in operation that is, to its best abilities, self-repairing and able to contain the leaks regardless of the damage. Shape-changing robots are just that - technology that can erect new walls, floors, supports and shielding while actively repairing itself against damage as an incident develops.

A similar kind of situation applies when an oil tanker spills its load due to ship damage or running aground. The shape-changing robots are far cheaper than the repair bill of around a billion dollars for a catastrophic oil spill. Shape-changing robots with inflatable buoyancy bags can be deployed to encircle the oil that has leaked and, significantly, hold it back from drifting so that it can be dealt with by emergency measures. This, of course, would only happen if the oil leak in the first place could not be plugged in time by the shape-changing robots fitted to such super tankers.

Space applications

Space offers perhaps the biggest range of potential application for shape-changing robots. The ability to change shape and synthesise physical structures reliably, cheaply with self-repair and without human intervention is the most important demand made by space-related applications. It is that hurdle which holds up a vast majority of projects. Shape-changing robots for space are the most significant development that will push space research into the next century. To see how all this will come about we can look at existing problems and see how shape-
changing robots will overcome these.

Space structures built with shape-changing robots can be sent from Earth in the form of loose cubes and then be made to deform into the desired structures when delivered to their desired orbit or planetary location. The launch phase to deploy a shape-changing robotic vehicle follows normal procedure. Shape-changing robots are packed into every available nook and cranny to deliver the maximum payload into space. On deployment of the payload, the initial phase of changing shape is the erection of the solar panels to supply the necessary energy.

Shape-changing robot applications go beyond simple satellite technology. Exploration probes and landers can be built. Complex satellites can be assembled in space using simpler docking mechanisms built of more shape-changing robots. They can be used in the construction of space stations without taking expensive space walks. Absence of gravity allows complex and exotic structures to be built very quickly. Each shuttle payload can be self-unloaded and left in docking orbits and then all the shape-changing robots can be brought together to quickly make the desired structure.

Such robots can make space travel much safer by repairing damaged and faulty systems on the way. They could be programmed to crawl about all sorts of nooks and crannies that even on a manned mission are not easily accessible and ensure that any damaged and faulty systems are repaired for the best possible mission outcome.

Shape-changing robots are ideal for sending to moons and planets where their reconfigurability and self-repair capabilities would be particularly useful. Indeed, if their first task on landing was to form an automatic assembly system to make more cubes using locally available materials then it might be possible for a bee to be built prior to any manned landing without the necessity of sending very heavy payloads from Earth.

Making the cubes smaller

Further miniaturisation using photolithography could conceivably shrink the robotic cubes to micron or even sub-micron dimensions. At this size they would still function in an identical manner to their larger equivalents, but by being so small would open up a whole range of new applications.

These micron scale cubes would still use the same computer software as the larger scales because each cube has a minimal controller that obeys the basic instructions to move left, right, forward, backward, up, down, attach, detach and return "what's your address"? Anything else that it does not understand is ignored or passed on to any tools that may be attached.

One of the potential applications for such ultra-small shape-changing robots would be in medicine. Using cubes of 1 mm size and below would allow them to be directly injected into the patient and then under control of an external computer perform otherwise complicated surgery to remove cancers, cysts, blood clots etc.

Surgical shape-changing robots could squeeze through tiny holes no bigger than the largest cube and spread out once it has reached the other side which means that it can be used to perform pinhole surgery where the robot cuts its way into the patient and spreads out inside the body to perform the required operation around the affected area.

Another application area would be in the construction of wafer scale electronics where, instead of splitting a silicon wafer into large numbers of individual components, they could all be left on the same wafer and a miniature shape-changing robot employed to configure or reconfigure the interconnection between all the components.

Ultra-small dimension shape-changing robots could also be used to build smart materials that could repair themselves in case of damage, react in different ways to the external environment, change colour, texture, or shape on demand. Indeed, as with most aspects of shape-changing robot technology the potential range of applications seems limitless.

Conclusion

Without a doubt, Joe Michael's development of the concept of a shape-changing robot based upon fractal mechanics is both intriguing and potentially very useful. However, despite the years that the inventor has spent upon the project it is still only in the conceptual, wooden block and computer modelling stage and, like most engineering projects, there are doubtless an enormous number of problems still to be ironed out.

Many of these problems will doubtless come to light when the inventor has completed construction of the first working prototype cubes in the next few months. Hopefully, he will then be able to give practical demonstrations of how the system will work, and now that he has secured world-wide patents, use these demonstrations to gain further funding for continued development.

We at ETI think that this is a great idea and wish Joe Michael good luck in his pursuit of a dream that could easily change the way that we do a great many things. We look forward to seeing the prototype and even more eagerly await the arrival of the first commercial shape-changing robots. Let's hope we will not have to wait too long!
Bar codes are in use everywhere, even on the cover of ETI. Here Dr Pei An presents a project which, when attached to a computer, will allow users to read any printed bar code.

Bar coding was first developed for use in retail application to assist with automatic supermarket checkout. Nowadays it is used for many other applications, such as the card key entry, automatic library checkout, stock logging, video recorder settings etc.

A practical bar code reading system consists of four elements:

1. It is, of course, no good having a bar code reader without a suitable bar code label to read; this consists of white and dark bars.
2. An optical bar code reader converts the printed bar code pattern into electronic signals.
3. An amplification/decoding circuit which interprets the signals into numbers (from 0 to 9) or characters (from A to Z).
4. An I/O circuit for interfacing to a computer. A complete bar code reader system is illustrated in Figure 1.

Bar code readers

Bar code readers we see in everyday life have many shapes. The most common ones are the hand-held bar code pens (also referred to as 'the wand'), the hand-held bar code guns and bar code readers built inside the counter. Although their shapes vary, their working principle is the same for most of them. Bar code optical readers emit a beam of light which creates a tiny light spot on the bar code label. The diameter of the spot is smaller than the thinnest bars on the bar code (Figure 2). The light reflected from the bar code is detected by...
a photo detector. Because light reflected from a white area is different in intensity than that from a dark area, the photo detector will respond differently. Therefore, as the bar code reader scans across the bar code label, a signal in sympathy with the pattern of the bar code is produced (Figure 2). The relative movement between the bar code label and the light spot is produced either by keeping the bar code label stationary while moving the light spot, or by keeping the spot stationary while moving the bar code label.

The bar code pen
The pen is held by hand and the tip of the pen runs over the surface of the bar code label. The optics of this type of reader varies slightly from one design to another. Figure 3 shows the structures of three types. The light emitted by LEDs (Figures 3a and 3b) or light emitted from an optic fibre (Figure 3c) is focused on the bar code label by a small sapphire sphere mounted at the tip of the pen. Light on the bar code label is reflected back through the sphere into the pen and received by a photo detector. The signal generated by the photo detector is amplified and decoded into numerical or alphabetical digits by electronic circuits.

Bar code gun
There are two types of bar code guns. The first one utilizes a laser light source and a rotating mirror system while the other uses a charge coupled device (CCD) light sensor. In the first case, a narrow laser beam is intercepted by a rotating mirror, which causes the laser beam to scan across the bar code label. The light reflected by the bar code is detected by photo detectors (Figure 4a). The other type utilizes a CCD device. The bar code is illuminated by a LED array. The image of the bar code is focused on to the CCD sensor by a lens. The CCD device contains several hundred light sensitive cells in a small area (or in a row). The voltage output from a single CCD cell depends on the intensity of light on it. Therefore, the pattern of voltage level from the CCD sensors indicates the pattern of the bar code label (Figure 4b).

Bar code reader built in the counter
There are two types of bar code readers. The first one has a fixed light beam and the other has a scanning beam. For the first type, the light beam emitted by a laser source travels through a transparent window to the bar code label. The label has to be moved over the window to allow the light beam to scan the bar code (see Figure 5a). The light reflected back from the label is detected by photo detectors. The other type incorporates a rotating mirror system to make the laser beam to scan across the window in a fraction of a second. As a result, it does not matter whether the bar code label moves or not. The moving beam scans so rapidly that the label appears to be standing still even through it is being moved (Figure 5b).

The bar code
Several bar code standards are available nowadays. They are based on an encoded pattern of wide and narrow dark/white bars to represent alphabetical or numeric characters. The Universal Product Coding (UPC) was created in the United States of America in 1973. In this scheme, a unique number is allocated to a particular manufacturer who can then add a number that is specific to a product. In 1977 European Article Number (EAN) standard came into being. Most bar code labels on articles in supermarkets, books or newsstand magazines in the UK have an EAN code on it.
The format of the EAN bar code

Have a look of the bar code label printed on the front page of this magazine. The section on the left is a standard EAN label. The small one on the right has nothing to do with the EAN, so we can ignore it. The EAN label has two areas with one area above the other. The upper area consists of bar strips and the lower consists of 13 numerical digits, arranged into three sections. The first section contains only one digit, '9'. The second section (the left hand section) contains 6 digits '770142' and the third one (the right hand section) contains 6 digits '722092'. These sections are separated by two thin bars, which are known as the guard. Another guard also appears at the end of the bar code.

These 13 digits are split into four functional parts, a prefix, a manufacturer number, an item reference number and a check digit. The prefix has 2 digits; the manufacturer number has 5 digits; the item reference has 5 digits and the check digit has 1 digit. The bar code for ETI magazine is '9770142722092'. '97' is the prefix; '70142' is the manufacturer; '722092' is the product number. In fact, the prefix '97' indicates a publication. The number '7' indicates a magazine. '014272209' is the ISSN number and '2' is the check digit.

Table 1 lists the bar encoding for digits 0 to 9. Figure 6b shows samples of the bar codes. Not again that '0' represents a white bar and '1' represent a dark bar.

The use of Left Hand A and B in the left hand side codes enables the 13th digits (the first digit) to be encoded. This is why there are no bars for the first digit in the label. The relationship between the digit and the pattern of the usage of Left Hand A and B is shown in table 2.

In application, a calculation using the first 12 digits is performed after each bar code reading to generate a checksum value for detecting errors occurred during the reading. On the basis of what has been explained, can readers work out the bar code label on ETI magazine now?

Building a computer-based bar code reader

Using commonly available materials, it is possible to design and construct a simple pen type bar code reader. It is connected to the Centronic port of a pc and the computer can read the bar code and display the waveform generated by the
The bar code system consists of a bar code reader pen and a box which contains the amplification and Interfacing circuits. The complete system is shown in Figure 1.

The electronics of the bar code reader

Figure 7 gives the circuit block diagram of the bar code reader. It consists of 6 units, namely, the optical reader unit, the input stage, the amplification unit, the A/D converter unit, the pc interfacing unit and the power supply unit. The optical reader unit generates the voltage patterns when it travels over the bar code label. The input stage is used to interface with the photo diode. The signal from this is amplified by the amplification unit and is then converted into digital form by the A/D conversion unit. The interface unit enables the computer to read the digitized signals via the printer port. The circuit diagram is shown in Figure 8.

The optical reader unit and the input stage

The photo detector is a BPW34 which is a 7 mm2 planar silicon PIN photodiode and is highly sensitive to red light. It is housed in a two pin epoxy package. The signal from the photodiode is amplified by a FET op-amp which is configured as a standard differential amplifier. The capacitors around the op-amp are used for reducing ripples from AC lighting and controlling the response time.

The amplification unit

The signal from the input stage is amplified further by an op-amp which is configured as a standard non-inverting amplifier. The gain of the amplifier is set by R6 and R7 and is calculated by \(\frac{R6}{R7} \). R6 is 200K and R7 1K. This gives an amplification of about 200. Resistors R4 and R5 are used to set the quiescent voltage to about 0.012V. The output from the amplifier is a signal with an amplitude between 0V and 2.5V.

The A/D converter unit

The A/D converter is a ADC0804 CMOS successive-approximation A/D converter. Only a timing resistor (connected between Pins 19 and 4) and a capacitor are used for generating the clock signal and an external band-gap voltage reference is used to set the voltage reference for the converter. The power supply is 5V with a typical current consumption of about 1 mA. The maximum data conversion rate is about 8700 Hz. In most cases, the analogue ground (Pin 9), the digital ground (Pin 10) and Vin(-) (Pin 7) are connected together as a single ground.

- CS (Pin 1) is the chip select. To enable the converter, this pin must be held low. At the low-going edge of the -WR (Pin 3), the A/D converter starts the A/D conversion. During a conversion, -INTR (Pin 5) is at logic high. When a conversion is completed, -INTR goes low. When -RD (Pin 2) is taken low, the converted data will appear on the output lines D6 to D0 (Pins 18 through to 11); otherwise these lines are in high impedance state. In the present circuit, the converter is configured in a free-running mode by connecting the -INTR and -WR together and the -RD input is held low all the time.
The PC interfacing unit and the Centronic port

The Centronic port of PCs consists of three separate I/O ports: the Data port, the Control port and the Status port. The Data port is an 8-bit output port, which sends data to the printer. The Control port is a 4-bit output port, which issues commands to the printer. The Status port is a five-bit input port which reads the information from the printer into the PC. For the LPT1 Centronic port, which is allocated on the motherboard of the computer (not on the expansion card), these ports correspond to three I/O addresses: 888, 890 and 889, respectively. Because the Centronic port only has 5 input lines, in order to read an 8-bit data generated by the A/D converter a suitable Interface has to be used.

A 74LS241 tri-state octal buffer IC is used in the interfacing unit. It has two sets of tri-state buffers, each containing four buffers. Each set has an enable input, Pin 1 for the first set and Pin 19 for the second. When Pin 1 is taken low, the first set of buffers works (i.e. the outputs will follow the status of the inputs). When pin 19 goes high, the second set of buffers works. Pin 1 and 19 are connected together to form a Data Selection Line (DSL). By putting the line low and then high, the computer can read the 4 bits connected to the first set of buffers (DB0, DB1, DB2 and DB3) and the other 4 bits connected to the other set of buffers (DB4, DB5, DB6 and DB7) in turns. Operating in such a manner, the 8-bit data from the A/D converter can be read into the computer in two halves. By manipulating the bits of the two readings, an 8-bit data can be formed.

The power supply unit

The power supply unit incorporates a 7805 5V voltage regulator for supplying the 5V DC to the circuit. A 9-15V DC external power supply is required.

Construction

The electronics are mounted on a single-sided PCB board (see section at end of magazine). The component layout is shown in Figure 10. The circuit board is mounted in a plastic box. A suggested arrangement is illustrated in Figure 12 and shown in the photos.

Fig. 11 shows the detail of the construction of the bar code pen. The optics of the pen are similar to the one shown in Figure 2(1). An LED and a photo detector are mounted side by side on a small piece of strip board with their active areas facing in the same direction. The board is fixed inside a tiny plastic box. A hole was drilled on the side wall of the box and a plastic tube glued over the hole. The inside of the tube is painted black. A conical plastic tube was mounted on the other end of the tube with a tiny glass bead (2-3 mm in diameter) installed on the tip. The bar code pen is connected to the control box by two pairs of wires. The first pair supply the power to the LED and the other transfers the signal.
generated by the photo diode to the control box. The small box for the optical reader can be purchased from Maplin Electronics. The tube is made using the casing of a biro.

If readers encounter any difficulty in obtaining the glass beads, please contact Dr. Pei An at 58 Lamport Court, Lamport Close, Manchester M1 7EG, U.K. Tel. 0161-272-8279.

Programming
The control program of the data logging system is written in Turbo Pascal 6. The program is based on the LPT1 port. The following is the list of the demonstration program.

Program list of the demo software

Program Barcoder_reader;
uses crt, graph;
var bytel, byte2, truebyte : byte;
bitweight, bit : array [1..8] of byte;
P_address, i, j, k, dummy : integer;
V : array [1..1000] of
Fig. 11. Construction of the bar code pen

GLASS BALL (3mm DIAMETER)
PLASTIC TUBE (INSIDE PAINTED BLACK)
COMICAL CAP
GLUED JUNCTIONS
10
10mm
DIN TYPE 5 PIN CONNECTOR
CIRCUIT BOARD POSITIONED IN THE BOX
SCREENED 4 CORE CABLE
PLASTIC BOX (30x20x15) (PAINTED BLACK INSIDE AND COVERED BY A BLACK LID)

Fig. 12. Suggested arrangement of the bar code reader controller

Fig. 13. Voltage signal output from the bar code reader

integer;
sum, average: real;
datafile: text;
(Variables: byte1=4 high bits, byte2=4 low bits, truebyte=8 bit byte from the A/D converter)

Procedure initial_bit;
(Initialize binary bit weight and bit)
begin
for i:=1 to 8 do begin bitweight[i]:=1;
bit[i]:=0; end;
for j:=1 to 8 do begin
for i:=1 to j do
begin
bitweight[j]:=bitweight[j]*2;
end;
end;

Procedure Input_printer_address;
(Input the address of the printer)
begin
writeln('Configure the address of the
')

Function voltage: real;
(_logging data into pc)
var
sum: real;
i: integer;
begin
initial_bit;
PORT[P_address+2]=0;
repeat
begin
byte1:=PORT[P_address+1];
byte2:=PORT[P_address+2];
until byte16666128;
line is inverted in the PC)
end;
begin
(note: BUSY
read the high 4 bits)
execute
byte2:=PORT[P_address+2];
the 4 low bits)
of byte1 and byte2
end;
...h000 (high 4 bits)
...11110 (low 4 bits)
care, h=1=data
...h000 = 0000h000
byte1:=byte1 shr 1;
byte2:=byte2 and 120;
byte2:=byte2 shr 3;
truebyte:=byte1 or byte2;
Voltage:=(truebyte);
end;
Procedure delay_time:
var kk: integer;
begin
for kk:=1 to 300 do dummy:=10;
end;

Procedure read_barcode:
begin
for k:=1 to 500 do begin
V(k):=round(voltage);delay_time; end;
end;
Procedure print_barcode:
begin
for k:=1 to 500 do writeln(V(k):5);
end;
Procedure read_data:
begin
readln;
assign(datafile,'c:barcode.dat');
rewrite(datafile);
for i:=1 to 500 do writeln(datafile,i,'V[i]);
close(datafile);
end;
Procedure initialization:
(show initial data on the screen)
begin
write;
writeln('IBMPC 8 input 8 bit
analog to digital converter program');
writeln('');
writeln('');
procedure display_results:
begin
gotoxy(40,7);write(Voltage:7:3); (show
results on crt)
end;
Procedure plot_barcode:
var
Gd, Gm : integer;
begin
Gd := Detect; InitGraph(Gd, Gm, "")
if GraphResult 66669999 grOk then Halt(1);
move(1,1)
for k:=2 to 800 do begin lineto(k,120)
(V[k]);end
CloseGraph;
end;
Procedure Scan:
(barcoder scan procedure)
begin
repeat
write('Please use your barcode reader pen');
sum:=0;
for k:=1 to 50 do sum:=sum+voltage;
average:=sum/50;
until (voltage6666round(average6));
end;

Procedure Analysis_barcode:
begin
end;
 clrscr;
input_printer_address;
crt_initialization;
scan;
keypressed;
end;
Procedure main:
begin
clscr;
input_printer_address;
crt_initialization;
scan;
gotoxy(10,19)write('Thank you for running
this program');
keypressed;
end.
Decoding the bar code
Figure 13 shows the voltage signal of a bar code sample read
into the computer. To write a software to decode the bar code
signal into numerical digit is certainly a challenge. It is also a
difficult task.
EASY-PC, Schematic and PCB CAD

Over 19,000 Installations in 80 Countries World-wide!

- Runs on:- PC/XT/AT/ 286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo plotter and N.C. Drill.
- Tech Support - free.
- Superbly easy to use.

Options:- 500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?

Integrated Electronics CAD

- Schematic Capture
- Analogue & Digital Simulation
- And PCB Design

Affordable Electronics CAD

<table>
<thead>
<tr>
<th>Program</th>
<th>UK£</th>
<th>US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAYAN: New Electro-Magnetic layout Simulator</td>
<td>960</td>
<td>496</td>
</tr>
<tr>
<td>EASY-PC Professional: Schematic Capture and PCB CAD</td>
<td>From 376</td>
<td>£196</td>
</tr>
<tr>
<td>PULSAR: Digital Circuit Simulator</td>
<td>From 196</td>
<td>£88</td>
</tr>
<tr>
<td>ANALYSER III: Analogue Linear Circuit Simulator</td>
<td>From 196</td>
<td>£88</td>
</tr>
<tr>
<td>FILTECH: Active and Passive Filter Design Program</td>
<td>From 276</td>
<td>£145</td>
</tr>
<tr>
<td>STOCKIT: New comprehensive Stock control program for the small or medium sized business</td>
<td>£275</td>
<td>£145</td>
</tr>
<tr>
<td>EASY-PC: Entry level PCB and Schematic CAD</td>
<td>£195</td>
<td>£98</td>
</tr>
<tr>
<td>Z-MATCH for Windows: Windows based Smith-Chart program for RF Engineers</td>
<td>£475</td>
<td>£245</td>
</tr>
</tbody>
</table>

We operate a no penalty upgrade policy.
US$ prices include Post and Packing
Sterling Prices exclude P&P and VAT.

For full information, please write, phone or fax:-

Number One Systems
UK/EEC: Ref: ETI, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 01480 461778 (7 lines) Fax: 01480 494042
USA: Ref: ETI, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Email: sales@numberone.com
International: +44 1480 461778
<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anritsu MG642A Pulse Pattern Generator</td>
<td>£1750</td>
</tr>
<tr>
<td>Hewlett Packard 33250A +21GHz Function Generator</td>
<td>£2500</td>
</tr>
<tr>
<td>Hewlett Packard 8512A - Optical Average Power Meter</td>
<td>£1750</td>
</tr>
<tr>
<td>Hewlett Packard 8512B + Optical Compensator</td>
<td>£1750</td>
</tr>
<tr>
<td>Hewlett Packard 3466A + HP - 11 Switch control unit</td>
<td>£2500</td>
</tr>
<tr>
<td>Hewlett Packard 3468A + Digital Voltmeter</td>
<td>£3500</td>
</tr>
<tr>
<td>Hewlett Packard 3469A + Selective Voltmeter</td>
<td>£3500</td>
</tr>
<tr>
<td>Hewlett Packard 3710A - Noise & Interference Test Set</td>
<td>£3500</td>
</tr>
<tr>
<td>Hewlett Packard 4199A - L.F. Frequency Analyser (5Hz -12KHz)</td>
<td>£3500</td>
</tr>
<tr>
<td>Hewlett Packard 4261A - L.C.R. Meter (Digital)</td>
<td>£5000</td>
</tr>
<tr>
<td>Hewlett Packard 4271B - L.C.R. Meter (Digital)</td>
<td>£3500</td>
</tr>
<tr>
<td>HEWLETT PACKARD 6251B Power Supply</td>
<td></td>
</tr>
<tr>
<td>Power Supply 20-30A £500 Discount for Quantities</td>
<td></td>
</tr>
<tr>
<td>TELENET</td>
<td></td>
</tr>
<tr>
<td>8 CAVANS WAY, BILNEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF</td>
<td></td>
</tr>
<tr>
<td>Tel: 01203 650702, Fax: 01203 650773, Mobile: 0860 400683</td>
<td></td>
</tr>
</tbody>
</table>

(Promises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M44, M45 and M66)
Paul Stenning takes a look at a software package which lets you design circuits on your PC.

Tend to regard myself as a practical electronics engineer. Most of my designs are based on experiment and I do not normally calculate much if I can avoid it. I studied electronics at college some years ago and have a reasonable understanding of the theory. However, I normally find that designing circuits by calculation takes longer than hooking together a few components and making some measurements.

I have tried conventional analysis (SPICE) software in the past, but I normally found this to be difficult to use. This usually involves manually creating a netlist from the circuit and keying it in - a time-consuming and error-prone procedure. In theory, it should have been possible to create netlists from schematic capture software, but I had little success getting this to work properly. The numerical results were often difficult to interpret - which made me wonder if it was worth all the effort!

Electronics Workbench

"Electronics Workbench" offers a different and much more logical approach to circuit simulation. The circuit diagram is first drawn on the screen, using components supplied. Test instruments are then connected, and the setup is "switched on". The results are displayed on the instruments in a similar manner to real instruments.

Previous versions of Electronics Workbench have had separate programs for analogue and digital circuits, with no facilities to readily mix the two. Version 4 is a true mixed-mode simulator, allowing analogue and digital circuitry to be combined in one design.

So we have the ability to analyse analogue, digital and mixed signal circuits, in what appears to be close to real-life situations, for just £199 + VAT. But how does it stand up in practice?

Installation

Electronics Workbench Version 4 is available in versions for Microsoft Windows, MS-DOS and the Apple Macintosh. I reviewed the Windows version on a 486SX computer with 4MB of RAM, running MS-DOS 5.00 and Windows for Workgroups 3.11.

The software is supplied on two 720K 3.5" disks. When installed, it takes up about 3.5MB of hard disk.

Installation was uneventful, except for one question about whether I wished to use North American ANSI or European DIN component symbols. There is no mention of this in the installation guide or the other manuals. Both variants are shown in the Quick Reference Card, but I didn't find this until after installation!

I chose the default ANSI standard because it is the one I am most familiar with and the one used in this magazine. In the DIN standard, logic gates and many other components are represented by rectangles containing characters - most confusing!
Copy protection
From reading the Installation Card, I was initially worried that I was about to encounter some horrendous disk-based copy protection system that would not allow normal backup operations (I have lost software in the past due to this, when a hard drive failed). I understand that some previous versions of Electronics Workbench had this affliction, but this current version seems to be more polite. I was able to copy the original disks for safety and then install the software from the copies.

During installation, the product serial number and the user's name is requested and written to the floppy disk. When the software is started for the first time only, it requests the entry of a specified word in the User's Manual - a simple and effective scheme that makes pirate copies useless!

The first time I tried this, it did not work, probably due to a minor discrepancy between the software and the manual, but the second time it was fine.

A single Hidden System file is written to the hard disk and the software will not work if this is missing. Having successfully installed the software, I deleted it manually from the hard disk and then tried to install it again. This was also successful, confirming that the copy protection is not too restrictive and that an accidentally lost installation can be replaced.

Screen layout
The screen layout is tidy and uncluttered. The top section contains the usual windows title and menu bars and, below this, are the buttons to select different component libraries and the test equipment icons. The contents of the current library is displayed in the 'Parts Bin' down the left side of the screen, leaving a large area (referred to as 'The Workbench') for drawing the circuit.

I started by working my way through the Getting Started and Tutorial sections in the User's Guide. This is clearly written and guides new users gently through the software. It obviously does not try to teach the user about electronics, but the circuits used to illustrate the tutorial are straightforward and probably readily understood by most people with at least a little electronics knowledge.

Components
A good selection of common components are included with the software; however, there is an American bias to the devices offered. For example, the Zener diodes all have 1N type numbers, rather than the BZX79 style numbers commonly used in the UK. Also, the AC voltage source defaults to 120V 60Hz. Additional components can be created and the defaults modified, but this requires some understanding of SPICE models. Perhaps the UK distributors might consider including an additional disk of European components within the price of the software.

I found a couple of minor errors in the component models. For example, the for/yard voltage drop of the LEDs was set at 0.75V, whereas in reality it should have been about 2V. This is easy enough to correct, but how could a silly error like this remain, in a standard component, in Version 4 of the software?

Approximately 350 different components are included with the software as standard. An additional 2100 are available in four add-on libraries which are available at extra cost.

As well as actual components, "ideal" components are included. These are useful for comparing the performance of real components with ideal parts and for proving whether a non-working circuit is due to the peculiarities of a specific component.

Connections
Connections are made by simply dragging a wire from one component terminal to another - the wires being routed tidily automatically. Wires can also be connected from components to other wires, whereupon connector dots will
appear automatically.

I sometimes wished for a method of routing the connections manually, as things can get somewhat untidy if one is not careful. However, the purpose of the schematic drawing is for entering circuits for analysis; the software is not really intended for circuit diagram illustration.

A PCB export package is available as an optional add-on module, for those who want to use Electronics Workbench as a schematic capture front-end. I personally wouldn’t bother with this sort of thing though. I find trying to get two unrelated programs to communicate successfully is a superb way of wasting time! It is much easier and more productive to use a PCB design package that includes schematic editing and capture as standard.

Test Equipment

Having drawn the circuit, the next stage is to add the appropriate test equipment. A selection of instruments are included, including a Multimeter, Logic Analyser and Function Generator.

The Oscilloscope has just two channels, in common with most bench units. I would have preferred a couple of extra channels. I sometimes wanted to monitor the input and output of a circuit, as well as a couple of intermediate points. Two channels can be limiting at times and I think four would be more realistic.

A Bode Plotter allows frequency responses to be measured and displayed. The Word Generator and the Logic Convertor allow digital circuits to be tested and analysed. One feature I appreciate is the ability of the Logic Convertor to produce a logic circuit from a truth table. I have spent hours working this sort of thing out on paper in the past!

Only one of each of these instruments can be used in a circuit. The instruments can be displayed by double-clicking on them and can then be set up as required.

Ammeters and Voltmeters are included in the Parts Bin, and can be used in any quantity. On AC, these read in RMS terms. The manual does not state whether they will read on a fluctuating DC signal - it appears to be some sort of average value.

Circuit analysis

Once everything is connected up, the analysis is started by clicking on the On switch at the top right corner of the screen. The software will analyse the behaviour of the circuit from the switch-on time until a steady state is reached. The displays on the test equipment update as the analysis continues and can normally be adjusted as necessary without restarting the analysis.

The time taken for analysis obviously depends on the complexity of the circuit, the analysis settings and the speed of the computer. The software will use a maths co-processor if one is fitted and I imagine this would make a significant difference. The process can seem slow if you are watching it but, if you consider the level of calculations involved, it is quite impressive.

The software does not take into account the maximum current, voltage and power ratings of the components. The fuse and lamp components will blow if over-run, but the other components just continue working. I appreciate that this is a small calculation would slow the analysis, so it could be a selectable option.

For example, I created a circuit where a 1N4001 diode (rated at 50V and 1A) was half wave rectifying a 1000V AC supply and carrying a continuous current of over 5A! A real diode would never survive this. The diode model does have an entry for reverse breakdown voltage (set in this case to 49.9V) but this seems to have little effect. It is possible to work around the current limits by adding fuses, but this sort of thing should not be necessary.

It would also be useful (sometimes) to know the power being dissipated by a resistor. This can be established by the insertion of suitable ammeters and voltmeters, and multiplying...
the readings manually but I would have expected to be able to get the results automatically.

I feel that the interface between the analogue and digital circuits may need some more work in places. For example, the input protection diodes on logic gates are not simulated and diodes would have to be added externally if a logic input was presented with an analogue input.

Other Circuits

I have entered some of my own experimental circuits, which I know from experience had various problems. I was impressed to see that the software reproduced most of these - including an amplifier that worked fine with sine waves but was prone to ringing with square waves. This sort of thing can be difficult to prove in practice, even with the appropriate test equipment.

I could not simulate a transf circuit that was prone to erratic behavior. This is probably due to the lamp model being purely resistive and not having the low cold resistance (and high initial current) that real lamps have.

Obviously the software cannot allow for layout problems and external noise, so some circuits will still need to be proved on the bench. Indeed, it would be foolish to commit to a design without proving it in practice, but with most of the design work already carried out using Electronics Workbench, the time involved in proving the circuit can be considerably reduced.

Documentation

Electronics Workbench is supplied with two main manuals. The User's Guide contains the tutorial, menu reference and general information needed for running the software. I would recommend reading most of this manual and working through the examples to appreciate the power and flexibility of the software. The Technical Reference manual contains useful detailed information on the test equipment and components and also describes the SPICE models used. Both manuals are clearly written and produced to a very high standard. I liked the idea of spreading the documentation over two manageable manuals, rather than having one bulky publication.

System Requirements

MS-DOS version
- 386 or higher processor, 4MB of RAM, 5MB hard disk space, VGA display, Microsoft or compatible mouse and installed driver, MS-DOS 3.0 or greater. Supports math co-processor if available (recommended).

Windows version
As MS-DOS version above, with Microsoft Windows version 3.1 or greater.

Macintosh version
Apple Mac with 68020 processor or higher, 4MB RAM (2MB available), System 6.0.5 or System 7. Does not support Macintosh Plus, SE, Classic, and PowerBook 100.

The same manuals are provided with the DOS and Windows versions of the software. There are some sections for DOS users only, but the emphasis is definitely towards Windows users, which may give DOS users the impression that they have been left behind.

Conclusion

Overall, I am very impressed with Electronics Workbench. I will certainly be using my copy for many of my future designs - the software has convinced me of the value of circuit analysis! I particularly like the way the software gives the feel of real components and instruments, rather than abstract netlists and charts of results. As a 'practical' engineer, it suits my way of thinking and working.

Supplier Details

Product Title - Electronics Workbench version 4
Publisher - Interactive Image Technologies Ltd, 111 Peter St., Suite 801, Toronto, Ontario, Canada, MSV 2H1. Tel (from UK) 001 416 977 5550. Fax 001 416 977 1819.

UK Distributor - Robinson Marshall (Europe) Plc, Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire, CV3 2TF. Tel 01203 233216. Fax 01203 233210.

Price: £199, plus £5.99 postage, plus VAT (total £240.86). 30 day money-back guarantee.

Four additional component libraries are available, price £29.95 each or £99.00 for set of four. PCB Export add-on module £49.95. All prices are subject to postage and VAT and are correct at the time of writing.
Radio - Tech Limited
A Leading Name in the Supply of Licence Exempt Radio Data Modules

Applications:
- Remote control systems
- Data transfer and networks
- Wire free PC-PC modems
- Wire free security alarms

Our 173.225MHz, 173.250MHz and 418MHz modules are DTI Type Approved and Licence Exempt within the UK.

Transmitters:

<table>
<thead>
<tr>
<th>PART No</th>
<th>MPT</th>
<th>Freq MHz</th>
<th>Data Rate</th>
<th>ERP mW</th>
<th>Power (Vs)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXM-418-A</td>
<td>1340</td>
<td>418</td>
<td>10000</td>
<td>0.25</td>
<td>6 - 9</td>
<td>£14.00</td>
</tr>
<tr>
<td>TXM-418-F</td>
<td>1340</td>
<td>418</td>
<td>20000</td>
<td>0.25</td>
<td>2.7 - 3.6</td>
<td>£14.75</td>
</tr>
<tr>
<td>TXM-433-A</td>
<td>N/A</td>
<td>433.92</td>
<td></td>
<td>0.25</td>
<td>6 - 9</td>
<td>£14.75</td>
</tr>
<tr>
<td>TXM-433-F</td>
<td>N/A</td>
<td>433.92</td>
<td>20000</td>
<td>0.25</td>
<td>2.7 - 3.6</td>
<td>£14.75</td>
</tr>
<tr>
<td>TXM-4689-UK-00</td>
<td>1328</td>
<td>173.250</td>
<td>1000</td>
<td>1.0</td>
<td>3.0</td>
<td>£22.48</td>
</tr>
<tr>
<td>TXM-4689-UK-03</td>
<td>1328</td>
<td>173.250</td>
<td>1000</td>
<td>1.0</td>
<td>5.0</td>
<td>£24.50</td>
</tr>
</tbody>
</table>

Receivers:

<table>
<thead>
<tr>
<th>PART No</th>
<th>Freq MHz</th>
<th>RSSI</th>
<th>CD</th>
<th>Data Rate</th>
<th>Power (V)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXM-418-A</td>
<td>418</td>
<td>✓</td>
<td>✓</td>
<td>10000</td>
<td>5.0</td>
<td>29.05</td>
</tr>
<tr>
<td>RXM-433-A</td>
<td>433.92</td>
<td>✓</td>
<td>✓</td>
<td>10000</td>
<td>5.0</td>
<td>29.95</td>
</tr>
<tr>
<td>SILRX-418-A</td>
<td>418</td>
<td>x</td>
<td>✓</td>
<td>5000</td>
<td>4.5 - 9</td>
<td>22.50</td>
</tr>
<tr>
<td>SILRX-433-A</td>
<td>433.92</td>
<td>x</td>
<td>✓</td>
<td>5000</td>
<td>4.5 - 9</td>
<td>23.95</td>
</tr>
<tr>
<td>RXM-4666-60</td>
<td>173.225</td>
<td>✓</td>
<td>✓</td>
<td>1000</td>
<td>5.0</td>
<td>31.62</td>
</tr>
</tbody>
</table>

The BIM High Speed Transceiver:

<table>
<thead>
<tr>
<th>Part No</th>
<th>MPT</th>
<th>Freq MHz</th>
<th>Date Rate</th>
<th>Power (V)</th>
<th>ERP mW</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM-418-F</td>
<td>1340</td>
<td>418</td>
<td>40000</td>
<td>5.0</td>
<td>0.25</td>
<td>49.95</td>
</tr>
<tr>
<td>BIM-433-F</td>
<td>ETS</td>
<td>433.92</td>
<td>40000</td>
<td>5.0</td>
<td>1.0</td>
<td>49.95</td>
</tr>
</tbody>
</table>

WANTED

we urgently require sales representatives in countries outside the EEC

Generous Quantity Discounts Available. We will beat any published price!

The BIM Engineering Kit.

To assist new customers unfamiliar with the BIM, we are offering an engineering kit comprising: Two PCB's each containing a BIM-418 or 433 transceiver, status LED's, bit error rate LED bar graph, PIC microcontroller with test firmware, antenna and batteries. Using the kit you will be able to simulate data transfer at up to 40000bps, conduct range tests, evaluate various data protocols and finally transmit your own data. BIM-418-DEV.

The BIM Remote Packet Controller Board

Cut your development timescales by half! You can avoid developing your own RF protocol for the BIM. The RPC makes the BIM as simple to use as an IC. Just load in a parallel nibble/s and receive it the other end! The RPC board comes complete with a BIM on 418 or 433MHz, a PIC micro with user EEPROM, 4-bit parallel interface with control lines and antenna.

Only £ 79.95

Only £ 149.95

Delivery: Most items are available from stock. Antenna & Screening cans now available.

Orders: Prices exclude carriage and VAT. Radio - Tech Limited, Overbridge House, 41 Weald Hall Lane, Thornwood Common, Epping, CM16 6NB. T/Sales 0181-368-8277 Fax 0181-361-3434, Admin 01992 - 576107 Fax 01992 - 561994
Hierarchical or flat schematic linked to artwork.
Unlimited design size, 1 micron resolution
Any shaped pad, definable outline library
Pin, gate & outline swapping - auto back annotation
Split power planes, switchable on - line DRC

RANGER2 UTILITIES £250

COOPER & CHYAN SPECCTRA auto-router (SPI)
Gerber-in viewer, AutoCAD DXF in & out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

TRADE IN YOUR EXISTING PACKAGE TODAY
Seetrax CAE, Hinton Daubney House, Broadway Lane, Lovedean, Hants, PO8 OSG
Call 01705 591037 or Fax 01705 599036 + VAT & PP

FIELD ELECTRIC LTD
TEL: 01438 355781 FAX: 01438 359397
MOBILE: 0836 640328
UNIT 2, WILLOWS LINK, STEVENAGE, HERTS SG2 8AB

110 KEY IBM COMPATIBLE KEYBOARD TERMINATED TO 6 PIN MINI DIN TYPE PS2 PLUG
0.99 c/p 3.75
USB A-M/F 6PIN USB A-F 6 PIN USB A-M/F 10 OFF
7.96 c/p 4.90
PS/2 A-M/F 6PIN MINI DIN TYPE PS2 PLUG
19.96 c/p 11.90
SONY 9" COLOUR RUB TRIFOLIO VIEW (no connection supplied)
5.00 c/p 5.00
DES 0.5MM "D" SHAPE 17" COLOUR HD SVHS B & W 100 OFF
5.99 c/p 4.99
DES 0.5MM "D" SHAPE 17" COLOUR HD SVHS B & W 50 OFF
20.99 c/p 16.99
COOL B \\ E DEARER SHAPE HIGH & LOW BAND RESISTORS
50.00 c/p 6.00
KRYSTAL SMD 04026 3 A 018-A5 4 A 018 4 A 011 NEW BOXED
8.90 c/p 2.00
24V TO 110V 5 A AUTO TRANSFORMER NEW
7.99 c/p 3.00
SMD 04026 (SUBSTITUTE ALL CASE DASHED)
24V TO 110V 5 A AUTO TRANSFORMER NEW
7.99 c/p 3.00
LASER DRIVER 390 MAGIC LASER NEW INPUT 8V-18V OUTPUT DC 12V
100.00 c/p 12.50
SMD 04026 USB A-M/F 6PIN MINI DIN TYPE PS2 PLUG
19.99 c/p 19.99
COOL B \\ E DEARER SHAPE HIGH & LOW BAND RESISTORS
50.00 c/p 6.00
KRYSTAL SMD 04026 3 A 018-A5 4 A 018 4 A 011 NEW BOXED
8.90 c/p 2.00
HP 1037A 275 MB STORAGE, DISK/LAPTOP
49.99 c/p 4.00

PLEASE ADD 17.5% VAT TO ORDER. RING FOR CP PRICES NOT SHOWN. OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME.

Create your own Mobile Robot v2
CONTROLLED BY COMPUTERS VIA PRINTER PORT EXPENDABLE TO RADIO CONTROLS

Electronics Today International 33
Robert Penfold devises an electronic solution to the increasingly pervasive problem of noise pollution.

The problem of noise pollution is one that seems to have steadily grown over the past twenty years or so. The generally accepted reason for this escalation is an increase in the range of electrical and electronic gadgets that can generate high enough sound level to cause annoyance to others. The average home is now equipped with hi-fi equipment, power tools, "ghetto blasters" etc and it is virtually certain that one of these devices will cause annoyance to someone before too long.

A certain amount of noise pollution is probably something that has to be accepted as a fact of modern life, but are there ways of counteracting the noise if you find yourself at the

Fig.1. The sound masker block diagram

Fig.2. Full circuit diagram for the sound masker

ELECTRONICS TODAY INTERNATIONAL

34
receiving end rather too often? There are actually several mechanical and electronic means of countering noise.

Probably the most effective method (and the least comfortable) is to use ear defenders or earplugs. The RS/Electromail catalogue lists a fair range of devices to block sounds, such as the "Tracer Earplug" (662-485). With my ears, at any rate, earplugs such as these are very effective at combatting the "thump-thump-thump" from neighbours’ Hi-fi systems etc. The problem with devices such as these is that they tend to give you a sort of "shut off from the rest of the world" feeling that many people find unacceptable. Wearing them can also become a little uncomfortable after an hour or so.

Masking

There are a few electronic means of countering noise. The most simple method, but one that can be quite effective, is to use electronically generated sounds to mask the offending noise. At its most basic, this just entails using your own Hi-fi system, television set or whatever to produce sounds that cover up the noise from your neighbours. In practice, this basic method tends to be unsatisfactory. One reason for this is that you may simply want to "put your brain into neutral" and relax without any background music or other distractions. Another problem is that most programme sources are intermittent in nature and the noise from your neighbours during the quiet bits can be more irritating than continuous noise.

There is a third problem, which is simply that your sounds might not be good at masking the noise from your neighbours. Sounds tend to mask similar sounds very well, but are ineffective at blocking disparate sounds. It seems to be the frequency content that is of prime importance here. For instance, low frequency sounds are good at masking other low frequency sounds, but middle and high frequency sounds tend to stand out clearly above them.

There is an electronic solution to these problems in the form of a noise generator. "Hiss" type noise covers the full audio range and is therefore reasonably effective at masking any noise, regardless of its frequency content. It is continuous, with
no gaps for the neighbours' noise to sneak through. Most people do not find "hiss" type noise too distracting. In fact, it can be quite relaxing, particularly if a normal "white" noise source is filtered to provide so-called "pink" noise.

"Pink" noise gives what is still a "hiss" type sound, but with greatly reduced high frequency content. The sound of "pink" noise is generally perceived as being less aggressive than that of "white" noise and it is often likened to the sound of gentle rainfall. This is possibly the reason that many people find the sound of "pink" noise quite relaxing. Compared to "white" noise, the "pink" variety is less effective at masking high frequency sounds, due to its lower high frequency content. This is not normally of any major importance, since low frequency sounds travel better through walls and windows than high frequency sounds. In fact, it means that "pink" noise will usually be well matched to the noises that you are trying to mask.

The device featured here is a "pink" noise generator that has built-in tone controls which provide the usual bass and treble boost and cut. This enables the sound to be adjusted to give what is deemed to be the most relaxing effect and also enables, say, extra bass content to be produced if the offending noise is predominantly at low frequencies. The noise generator can directly drive earphones or headphones, or its output can be connected to a hi-fi system if loudspeaker operation is required.

How It Works

The block diagram of Fig.1 shows the general make-up of the noise masker. The first stage is the basic noise generator circuit, which produces a normal "white" noise signal.

Generating electrical noise is not difficult, since it is produced by all electronic components. The problem in this case is generating a strong signal using components that are designed to produce as little noise as possible. Noise can be produced digitally, or using noise analogue components. After a few experiments with various noise sources, an opto-isolator was used as the basis of the noise generator in this circuit. This method is inexpensive and seems to provide consistently high noise levels. The noise output is still somewhat weaker than we require in this application, but a modest amount of amplification is all that is needed in order to bring the noise signal to a satisfactory level.

"White" noise contains all frequencies at equal levels. "Pink" noise also contains all frequencies, but there is the same signal level in any single octave band. For example, the noise is at the same level from 20Hz to 40Hz as it is from 20kHz to 40kHz. Clearly there is a much wider frequency span from 20kHz to 40kHz than there is from 20Hz to 40Hz, but there is only the same signal level in each band. In order to convert "white"
noise to "pink" noise it is merely necessary to use some low-
filtering to provide a 3dB per octave roll-off right across
the audio range. In this case, the lowpass filter is a passive
type and it is therefore followed by an amplifier which
compensates for the overall signal loss through the filter.
The "pink" noise signal is then processed by a standard
bass and treble tone control circuit which, if necessary, enables
the sound of the noise to be contoured. For example, if the
noise to be masked is predominantly at low frequencies, some
bass boost should enable it to be masked effectively without
having to resort to very high volume levels. The tone control
circuit is only needed if the noise generator will be used as a
stand-alone unit driving earphones or headphones. If the unit
is used in conjunction with a hi-fi amplifier, the tone control
circuit is not really necessary, because the hi-fi system will
presumably have either built-in tone controls or a graphic
equaliser.

Fig.2 shows the full circuit diagram for the noise masker. IC1 is the opto-isolator used in the "white" noise generator. On the input side, R1 is used to provide a small current to the LED. On the output side, R2 acts as the collector load resistor for the transistor. No connection is made to the base terminal of the transistor (pin 6), but a collector current flows due to the leakage induced by the infra-red "light" from the LED. Although there is no obvious reason why this arrangement should provide a relatively high noise level, it is a fact that a normal opto-isolator is quite noisy and does produce plenty of noise when used in this way.

On the prototype, a 4N27 is used for IC1, but any "bog
standard" opto-isolator (TIL111 etc) seems to provide similar
results. However, the opto-isolator must be a type which has
the standard 6 pin DIL encapsulation and pinout arrangement
and it must also be a type which has a transistor at the output
(not a Darlington pair, photo-diode plus a transistor, etc). High
speed or otherwise "improved" devices might not work as well
and would be more expensive, so it is better to use a low
cost type.

IC2 is used as the basis of the first amplifier stage and
this is a conventional non-inverting mode circuit. R5 and R6
are the negative feedback circuit and they set the closed-
loop voltage gain of the circuit at about 100 times (40dB).
R3 and R4 bias the non-inverting input of IC2 and set the
input impedance of the amplifier at 50k.
The output of IC2 is direct coupled to the passive lowpass
filter. The required roll-off rate of 3dB per octave is an awkward
one, since the ultimate roll-off rate of a single pole C - R filter is
double this at 6dB per octave. An approximation of a 3DB per
octave roll-off is obtained by using a four stage filter with a
resistor in series with all but one of the filter capacitors. The
basic idea is that as the attenuation provided by one of the
capacitors starts to go above 3dB per octave, its series
resistor limits its effect and prevents the full 6dB per octave
rate from being achieved.

Above a certain frequency, the series resistor prevents its
capacitor from having any further effect, but the next resistor
and capacitor in the filter then take over and continue to
provide a roll-off at approximately 3dB per octave. C7 has no
series resistor, but the fact that the attenuation rate reaches
6dB per octave at the frequencies above the audio range is
of no practical significance. The filter only provides an
approximation of a 3dB per octave roll-off, but its accuracy is
perfectly adequate for the present application and quite a good
"pink" noise sound is obtained.

The output from the lowpass filter is coupled to volume
control VR1 and then to the second amplifier stage. This is
another non-inverting circuit, this time based on IC3. R13 and
R14 form the negative feedback network and they set the
closed loop voltage gain of IC3 at about 22 times (22dB).
The value of VR1 and the input impedance of the amplifier (110k)
are made relatively high so that they do not place excessive
loading on the lowpass filter.

IC4 is used as the basis of the active tone control circuit,
which is a conventional inverting mode type. VR3 is the treble
circuit and it operates in conjunction with C12 and C15 as a
negative feedback network. The basic principle of operation is
very straightforward and is dependent on the fact that C12 and
C15 have a relatively low impedance at high audio frequencies.
The closed loop voltage gain of the circuit is therefore largely
controlled by the setting of VR3. With its wiper towards the
C15 end of its track, the amount of negative feedback is large,
and the voltage gain is less than unity. Taking the wiper to the
C12 end of the track gives a small amount of feedback and considerably more than unity gain. At middle and low frequencies, the impedance of C12 and C15 is large in relation to the value of VR3, effectively swamping it and giving approximately unity voltage gain at any setting. VR3 therefore controls the gain of IC4, but only at treble frequencies.

VR2 is the bass control and its operation is also dependent on the fact that two capacitors have a relatively low impedance at high audio frequencies. In this case, the capacitors are C13 and C14 and, at high audio frequencies, they effectively short circuit VR2, making its setting irrelevant. R15 and R18 form the negative feedback network and set the voltage gain of the circuit at unity. At bass frequencies, the impedance of C13 and C14 is high in relation to the track resistance of VR2 and VR2 can then exercise considerable control over the closed-loop gain of IC4. Taking VR2's wiper to the R15 end of the track gives increased gain - taking it to the R18 end of the track produces lower gain. R16 and R17 form a simple mixer which integrates the two tone controls and ensures minimal interaction between them.

The tone controls provide up to about 15dB of boost and cut at the extremes of the audio range, or around 12dB at most frequencies within their respective frequency bands. Fig.3 shows the approximate frequency responses of the tone controls in the prototype noise masker. The upper response is with both controls set for maximum boost and the lower response is with both set for maximum cut.

The current consumption of the circuit is about 4 milliamps and the unit can therefore be powered from a small (PP3 size) 9 volt battery. However, if it is likely to be used for long periods of time, it would be more economical to use a higher capacity battery, such as six HP7 size cells in a holder.

Construction

Figs 4 and 5 respectively show the component layout and underside view of the stripboard component panel. This has 62 holes by 20 strips and it can conveniently be a piece cut from a standard 160 x 100mm board. Start by drilling the two 3.3mm diameter mounting holes and then make the 37 breaks in the copper strips. These can be made using the special tool or a hand-held twist drill bit of about 4.5 to 5mm in diameter. Make sure that all the breaks cover the full width of the board, but do not cut so deeply into the board that it becomes seriously weakened.

Next, the components are added, working methodically across the board. Although none of the integrated circuits are MOS types, it is still a good idea to fit them in holders. A six-pin holder for IC1 might be difficult to obtain, but they are available from some component retailers. Alternatively, it is not difficult to trim an eight-pin holder down to size.

The non-electrolytic capacitors will fit neatly into this component layout provided they are miniature printed circuit mounting types having 7.5mm (0.3 inch) lead spacing. Fitting other types of capacitor into this layout would almost certainly be problematic.
THE RENOWNED MXF SERIES OF POWER AMPLIFIERS

FOUR MODELS: MXF2000 (100W + 100W) MXF4000 (200W + 200W)
MXF600 (300W + 300W) MXF9000 (450W + 450W)

FEATURES:
- Independent power supplies with large toroidal transformers
- Twin LED. Yu meters
- Level controls
- Illuminated on/off switch
- KLR connectors
- Standard 75mm inputs
- Open and short circuit protection
- Latest Mos-Fet technology for ultra-low power delivery into virtually any load

SOUND EFFECTS. Useful combination of the
FEATURES, including Echo with repeat 6
on each bass channel. Nominal 775mV Input/output. Fully compatible with OMP rack amplifier and nodule.

THE OMP X03 STEREO 3-WAY ACTIVE CROSS-OVER

PRICE £117.44 + £5.00 P&P

PRICES: 150W £9.99

MXF 300 POWER AMPLIFIER

TYPE '6' (KSN 100 5A) 3'/
suitable for Hi-Fi monitor systems etc. Price £5.99 + 50p P& P.

TYPE '8' (KSN 100 5N) 3'/,
suitable for Hi-Fi stereo, 250W £9.99

WWW.LUMBERJACKUK.CO.UK

THOUSANDS PURCHASED BY PROFESSIONAL USERS

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

SUPPLIED READY BUILT AND TESTED.

THese modules now enjoy a worldwide reputation for quality, reliability and value for money. They are suitable for all professional and home applications requiring 50V/40W, 100V/75W, 200V/100W, stereo, mono, bridged mono, or single channel constant voltage feeds. All modules are available in parts or complete kits complete with switches, trimmers, levers, connectors and all necessary wiring and connections required. No soldering or assembly is required.

DELIVERY £6.00 per pale

DELIVERY £4.00 per pale

CHARGES PER ORDER £1.00 MINIMUM. OFFICIAL EMBLEMS ARE REQUIRED FOR COMPLIANCE WITH UK POST, PHONE OR FAX.

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £35.19 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

WHEATSTONE BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £30.39 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

STUDIO BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £25.59 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £20.79 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £16.99 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £13.19 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
- 50W preaching Isolation, Tapped 4/8/16Ohm, H.F., in Car

PRICE £9.99 + £3.50 P& P

RES. FREQ. 45Hz, FREQ. RESP. TO 7KHz, SENS. 99dB.
Worried about having your bike stolen? Then Simon Brown’s cycle alarm may be the solution to your worries.

The alarm works by recording the position of any item to which it is attached and monitoring it for change. Should change be detected, then a piezo sounder will emit an ear-piercing sound. This principle was designed to protect cycles that are often parked in various positions, from horizontal to vertical. The position is recorded by the electronic alarm as the normal position and then distinguished from any other position that would indicate unwanted attention. This is achieved by the use of four mercury tilt switches configured into what I believe to be a unique electronic solution to movement detection. The four tilt switches are mounted at different angles so whatever position the cycle is left, some switches will be closed and some will be open, or all the switches closed or all the switches open.

The state of each individual switch is recorded in an electronic memory circuit and then constantly monitored for a change of state which would indicate that the cycle was receiving unwanted attention. Any change of state in the switch pattern will result in the alarm being sounded. In this way, the cycle could be parked at any desired angle prior to setting the alarm and locking the switch pattern into memory. Once the alarm has been set, any change in the switch pattern will result in the alarm being activated. Setting is achieved by a simple key switch operation and a flashing LED indicates that the unit is armed.

Electronic circuitry

At the heart of the electronic system is an array of mercury tilt switches. These consist of two contacts which are mounted in a sealed tube along with a small quantity of mercury. If the tube is held vertically, the mercury will run to the bottom and bridge the gap between the contacts, thus completing an electrical circuit. If the tube is inverted, or even laid horizontally, the mercury will run away from the contacts and open the electrical circuit.

To make the alarm sensitive, four of these switches were used and mounted at different angles. No matter how the bicycle is parked, either all the switches will be open circuit, all closed circuit or a mixture of some open circuit and some closed circuit. This pattern needs to be memorised when the alarm is activated, and then monitored, should it change the
alarm needs to be sounded.

The circuitry is constructed from CMOS logic. CMOS was chosen because it works over a very wide range of supply voltages and uses zero power when the signal inputs are not changing and very little when they are, making it ideal for battery operation. The four mercury tilt switches are connected between the D input and ground of four D type latches (IC2). The D input is also pulled up to Vcc via a 6k8 resistor. In this way, if the switch is closed, a logic 0 is presented to the D input and, if the switch is open, a logic 1 is presented to the D input. This logic state is stored by the latch when commanded by the (clock) input. This input is activated by a transition of a logic 0 changing to a logic 1 (pulse). This pulse is generated at switch on by the reset generator.

The reset generator is constructed from two logic gates - a single capacitor and a resistor. When the alarm is switched on, the capacitor is in a discharged state and soon charges via the resistor (electrolytic capacitors are very poor at holding a charge in the absence of power). The values shown take about one second for the capacitor to charge - the resulting waveform can best be described as a ramp. This ramp is converted into a pulse and inverted by the first logic gate (inverter) and further sharpened by the second logic gate and inverted back to the same direction as the ramp only with sharp edges. The CMOS inverters will ignore the ramp until it reaches half the supply rail and then they will change state very quickly. Thus, the reset command is generated about one second after the alarm is switched on and the tilt switch states are then locked into the D latches.

The latched logic and the logic produced by the tilt switches is then monitored for change in IC3 (magnitude comparator). This chip has eight inputs arranged as four A inputs and four B inputs. It can compare them and detect if they are equal or not. The chip is designed to compare two four bit binary numbers and indicate if A is greater than B, if B is greater than A or if they are equal; hence its name, magnitude comparator. The A greater than B and B greater than A outputs are not used in this design. The A=B output connects pin 3 A\equiv B input to A=B output when A=B. This should always be the state if
the alarm has been set, the latches loaded with the switch pattern and the bicycle not moved. If the bicycle is moved, then the switch pattern will change and not equal the pattern latched in the D types. A will not equal B on the magnitude comparator and a logic 0 will be presented for our circuit configuration i.e. pin 3 at Vcc. This logic is inverted by the Logic gate and will turn on the SCR which will sink current and develop a potential difference across the sounder. This will produce a high pitched 103 dB (decibels) of sound.

The SCR was necessary so as to latch the alarm. The alternative would have been a switching transistor, but this would enable the alarm to be silenced if the cycle was moved to such a position that the original switch pattern was restored. Once the SCR is switched on by the logic, it will function as a transistor and sound the alarm, but it will not switch off, no matter what logic state is presented to its gate, even if the original switch pattern is restored. D1 is necessary to stop the SCR from being activated when the alarm is switched on, because the switch pattern is not latched until the reset pulse. During this time, the D types are set to random states that may or may not match the switches so the alarm would sound until C1 charges and latches the switch pattern. D1 stops the input to the SCR going to Logic 1 until the reset pulse has occurred. This is because it conducts when the reset generator is producing a logic 0, and therefore stops the SCR gate going to logic 1, when the reset generator is producing a logic 1 (i.e. after the latches have been loaded D1 is biased to open circuit).

C2 delays this pulse because the D latches and the magnitude comparator response is not instant. This is called propagation delay and is very small and is measured in nanoseconds.

Construction
The ICs were installed using sockets but this is not necessary. The switches are wire-mounted devices that can be bent into their final position. It is important that all the positions are different to get the best performance out of the alarm - some experimenting with the final positions is inevitable. Any flux left on the PCB after soldering in the components should be cleaned off with flux remover as CMOS logic works at very high impedances and can easily be upset by any residue on the PCB. The on/off switch was the key operated kind for obvious reasons as the alarm would be less than useless if an ordinary toggle switch was used, enabling the thief to disarm the alarm.

Battery life
This depends upon a number of things; in particular, how often the alarm is sounded and the quality of battery used. If long periods of duty are required, use an Alkaline battery. The battery life can be extended by omitting the LED. Further battery economies can also be made by increasing the value of the tilt switch pullup resistors R2, R3, R4, and R7. Values approaching 100k should still provide a logic 1 when the tilt switch is open.
Issue 13 of Display News now available - send large SAE - PACKED with your local listings.

LOW COST RAM's - ALL COMPATIBLE

Name of the component

Price

- **At 286**
 - 30mb 32bit 25mm 120pin AT Megabyte £20.95 (A)
 - 30mb 32bit 25mm 150pin AT Megabyte £20.95 (A)
 - 2mb 32bit 25mm 120pin AT Megabyte £4.95 (B)
 - 2mb 32bit 25mm 150pin AT Megabyte £4.95 (B)
 - 4mb 32bit 25mm 120pin AT Megabyte £9.95 (C)
 - 4mb 32bit 25mm 150pin AT Megabyte £9.95 (C)
 - 3mb 32bit 25mm 120pin AT Megabyte £9.95 (C)
 - 3mb 32bit 25mm 150pin AT Megabyte £9.95 (C)
 - 512k £38.95 (A1)
 - 512k SIMM £22.50 (G)
 - 512k 3 chip 80ns SIMM £35.95 (D)
 - 1mb 32bit 25mm 120pin AT Megabyte £31.95 (D)
 - 1mb 32bit 25mm 170pin AT Megabyte £31.95 (D)
 - 1mb 32bit 25mm 150pin AT Megabyte £31.95 (D)
 - 1mb 32bit 25mm 200pin AT Megabyte £31.95 (D)
 - 1mb 32bit 25mm 250pin AT Megabyte £31.95 (D)
 - 2mb 32bit 25mm 120pin AT Megabyte £63.95 (E)
 - 2mb 32bit 25mm 170pin AT Megabyte £63.95 (E)
 - 2mb 32bit 25mm 150pin AT Megabyte £63.95 (E)
 - 2mb 32bit 25mm 200pin AT Megabyte £63.95 (E)
 - 2mb 32bit 25mm 250pin AT Megabyte £63.95 (E)
 - 3mb 32bit 25mm 120pin AT Megabyte £95.95 (F)
 - 3mb 32bit 25mm 170pin AT Megabyte £95.95 (F)
 - 3mb 32bit 25mm 150pin AT Megabyte £95.95 (F)
 - 3mb 32bit 25mm 200pin AT Megabyte £95.95 (F)
 - 3mb 32bit 25mm 250pin AT Megabyte £95.95 (F)
 - 5mb 32bit 25mm 170pin AT Megabyte £139.00 (G)
 - 5mb 32bit 25mm 200pin AT Megabyte £139.00 (G)

DC POWER SUPPLIES

Virtually every type of power supply you can imagine.

- Over 10,000 Power Supplies in Stock

SPECIAL INTEREST

- DE1950-100 4 pin dip £10.95
- DE1950-200 4 pin dip £19.95
- DE1950-300 4 pin dip £29.95
- DE1950-400 4 pin dip £39.95
- DE1950-500 4 pin dip £49.95
- DE1950-600 4 pin dip £59.95
- DE1950-700 4 pin dip £69.95
- DE1950-800 4 pin dip £79.95
- DE1950-900 4 pin dip £89.95
- DE1950-1000 4 pin dip £99.95

FANS & BLOWERS

- MITSUBISHI NMB-DGD11LD 6 x 25 mm 12V DC £4.95 (D)
- MITSUBISHI NMB-DGD12LD 6 x 25 mm 12V DC £4.95 (D)
- PANGAS 12-92-18 16 mm 12V DC £7.95 (F)
- EK 30 x 30 mm DC fan £2.95 (E)
- EK 40 x 40 mm DC fan £3.95 (E)
- EK 50 x 50 mm DC fan £4.95 (E)

IC's & TRANSISTORS - DIODES

- OBSOLETE - SHORT SUPPLY - BULK

- 5,000,000 Items EX STOCK

For Major Savings - SAE or CALL FOR LATEST LIST

19" RACK CABINETS

Super quality 6ft 40U Virtually New, Ultra Smart

Less than Half Price!

Top Quality 19" Racks made in the UK by Optimus Enclosures Ltd. Units feature a 6ft 40U cabinet, single or double door, front and back doors, double height top plate, 6 foot 40U cabinet, adjustable height, bolted to cabinet chassis, fully retractable shelves, ready for any equipment. Allows for easy and quick installation. Fully mounted 4 way lock with removable side panels. Available from stock! Ready mounted integral 2 way 10A socket. Shipped to order Min order £50

- 4" Racks £99.99
- 6" Racks £129.99
- 8" Racks £149.99

NO BREAK UNINTERRUPPTIBLE PSU's

EMERSON ACCUPOWER UPS, brand new 6ft half height PC compatible card for IBM XT/AT compatibles. Provides DC to AC power conversion and above memory. Full Data and data center supplied. In good use for 8088/8086/80286 systems. Designed for use with Windows compatible. Order as A5 11.95 (A) Balanced 6 Watt AC transformer and above memory either 255 or 512 kRAM in steps. May also be used to fit in RAM. Order as: XR UPMG UB, 255k or 512k £38.95 (A)

OPTICAL RACKS

- 3RU Rack, 2RU side panels £225.00 (G)

Surplus always wanted for cash!
This unit was designed by David Geary to provide automatic safety isolation of an appliance after a preset period.
In my own case, I have a tumble dryer in my garage to which my two year old son can, on occasion, get access. Although the switched socket outlet feeding it is too high for him to reach, it is often left plugged in and switched on - therefore my son could operate the dryer. Before now he has managed to put one of our cats in the machine but thankfully has not then switched it on!

We also have a washing machine in the kitchen where similar risks are apparent. Electrical isolation rendering the appliance inoperative would mean (in our case) the door could not even be opened.

A secondary risk is that garages (particularly wooden ones such as mine) and similar outbuildings can suffer from leaks, flooding floors, and other sources of moisture.

The purpose of the design outlined here is to provide power to the appliance for just the necessary amount of time. Isolation is double-pole, i.e. both live and neutral. Maximum loads with the standard design are limited by the relay, around 5A resistive. Use of a contactor extends capability to a full 13A.
load with an inductive content, e.g. the aforementioned tumble dryer, or a washing machine.

An added benefit is that the three controlling pushbuttons are also isolated from the mains, operating at low voltage (12v). An advantage is to allow another use in a kitchen where, for example, a dishwasher or washing machine is installed next to the sink. The IEE Regulations state that it must be impossible to both have a hand in the sink area and on a socket outlet at the same time. The isolator unit could be mounted under the sink with the ring main outlet and a remote control box or panel with the pushbuttons and optional countdown LEDs mounted in any convenient position.

Continuing the theme of isolation, in the quiescent state the transformer primary is double-pole isolated from the mains by a relay. An alkaline battery is used to provide power for the "ON" pushbutton and the relay coil while the transformer is isolated, thereby allowing the timing cycle to be initiated. However, a double-pole mains-rated (override) pushbutton can also be provided on the main unit to short circuit the isolator, thereby starting the timer if necessary without the battery.

This article shows the timed isolator made up as two units, the main unit and the remote control. There is no reason why these cannot be combined; the LEDs are optional as are the "Reset" and "Off" controls.

Delay is set by a DIL switch on the PCB, in multiples of 15 minutes or 30 minutes depending on the wiring of the PCB, giving maximum delays of 4 or 8 hours. The delay period is determined by counting mains cycles and is therefore quite accurate and predictable, helping to eliminate the risk of power being removed until, for example, the washing machine has completed its cycle.

Changing the delay time means opening the case and changing the DIL switch setting to a calculated value or consulting a reference table (given later). This feature is quite deliberate and improves the tamperproof qualities of the system. However, there is no reason why four small toggle switches or similar could not be used, if desired.

The project also presents an opportunity to provide MCB (Miniature Circuit Breaker) or better still RCD (Residual Current Device) protection to the appliance, more on which later.

How It Works

In the quiescent state, relay contacts RLAI isolate the mains transformer and the load from the supply. Pressing pushbutton PB2 connects battery BI to the relay coil via D5. The relay contacts then energise T1 and the load. D5 is included to prevent reverse current through B1, a potentially explosive situation in the case of an alkaline battery.

C4 and R13 provide a reset pulse to IC2 and IC5, and a preset enable pulse to IC4 to load data from SW1. Mains waveform pulses are fed to TRI via potential divider R1, R2 and diode D2. TRI is wired as a collector follower with R3, forming a high gain amplifier. The effect is to limit both polarity and amplitude to within the bounds of the power supply. IC1, CI, and C2 form a 12v regulated supply.

Pulses from TR1 of either 50Hz or 100Hz are counted by IC2. The 100Hz frequency is produced by BR1 full wave rectifying the 50Hz sinewave from T1. On reaching a count of 10000, IC2 is reset by the AND-gate network built around IC3. Diode OR-gate D6, D7, R6 is necessary as the reset pin is shared by the "on-reset" configuration C4, R13. This reset pulse on 10000 is also fed to IC4 which is wired as a down counter. IC4 therefore counts down on every 10000 pulses from TR1 until reaching zero, having been preset to "n" (set by SW1) on power-up. At this point R8, C3,
R7, D9 produces a pulse from the "CARRY-OUT" pin of IC4, presetting IC4 to repeat the cycle and clocking IC5. In this way IC4 is connected as a modulo-n divider depending on the binary number set up on SW1.

IC5 counts from 0 to 9, outputs 0 to 8 are connected to an LED moving-dot display formed from LED1 to LED 9. When the "9" output goes high, it takes the clock inhibit pin of IC5 high to prevent further counting. TR2 has been kept turned hard on by the path to ground via R5 and IC5. When IC5 pin 11 goes high at the count of "9", TR2 turns off, releasing the relay contacts. Power is therefore withdrawn from the circuit. As smoothing capacitors C1 and C5 discharge, the fact that the clock inhibit pin of IC5 is kept high by the "9" output as the supply voltage falls helps prevent any nuisance retriggering of the circuit.

At any time during the counting cycle, pressing PB3 pulls the reset/preset line high by shorting C4. The count on all chips therefore starts again and a new timing cycle is initiated. Pressing PB1 interrupts the ground path from TR2's base via R5, ending circuit operation immediately. R4 is included to stop TR2's base floating.

TR2 is a small signal, high gain transistor which would not normally be used to switch such a large load as RL1. However, it is always on or completely off, and therefore power dissipation is minimised. D1, D4, and D5 are specified as 1N4001 where the current requirement is approaching the power dissipation. D1, D4, and D5 are specified as 1N4001 where the current requirement is approaching the power dissipation and is therefore the RCD will trip, isolating the supply. There are various types, some combining over-current protection device. The 5916s (16A), 5910s (10A), or even 5906s (5A) could be included here depending on your application.

Alternatively, you could install a Residual Current Device (RCD), which monitors current flow in both Live and Neutral supply lines. A difference between Live Current and Neutral Current indicates a current to earth, the only other path available. A fault condition is likely to exist under these circumstances, and therefore the RCD will trip, isolating the supply. There are various types, some combining over-current with residual current protection, often known as an "RCBO". These only break the live side of the supply, and therefore do not provide full isolation. A double-pole type, with a sensitivity of 30mA or better still, 10mA, is recommended. Examples are the Mk 6316s and Mk 5716s. My preference for double-pole isolation is based upon the possibility that Live and Neutral connections can be reversed. This could be due to an error by the constructor or whoever installed the house wiring. How many of us have checked?

You are recommended to consult a qualified electrician if you have the slightest doubt.

Construction

There are two PCBs which are very straightforward to construct. Following the usual rules of orientation, etc, I tend to use PCB connectors (as listed in the Parts List) as they make for a very neat job and easy removal of the PCB if necessary. However, when constructing the remote PCB, P1, P2, and P3 are best connected to pushbuttons directly with flexible wire due to lack of space. Remember that D1, D4, D5, BR1 and RL1 require larger overcurrent protection device. The 5916s (16A), 5910s (10A), or even 5906s (5A) could be included here depending on your application.
holes than most components, as do all of the PCB connectors. It is much easier to drill out an “empty” PCB.

Start by soldering the IC sockets in place, followed by resistors, capacitors (except C1), connectors and then semiconductors. Fit C1 and R1A1 last as they make the board unwieldy if installed at an early stage.

Don’t forget the link from R1 to either T1 or BR1 depending on your chosen clock frequency/time delay. There is only one other link in the project, connecting to the “south” side of R3.

 Beware of P4 and P11; although they connect together the order of connections is mirror image.

If you mount the remote PCB in a separate enclosure, use a six-pin DIN plug and socket with some six-core “signal” cable to make the interconnection. The following table is based upon the colours in the Maplin cable as per the components list. References for P4 and P11 are counting from 1 to 6, starting from the top.

The DIN socket is not numbered at the back. Pin 6 is the centre pin. If you look at the socket with the chassis connection nearest, count anticlockwise from bottom right as pin 1.

The project can be used in a number of different ways so the choice of case and final layout will depend on the intended use. I have not included a fuse (other than F1 to protect T1 and R1A1) as it is anticipated that the unit will be connected to the mains supply via a fused plug. If this is not the case, you must include a fuse to suit the total load at the mains input. My layout is shown in Figure 5, and allows for the optional contactor.

If you follow my example and purchase a 9 x 6 x 3 black enamel “Adaptable Box” for the main unit from an electrical wholesaler you will find you have a box of remarkable quality for a relatively small outlay. Prices vary, so shop around. The wholesaler you will find you have a box of remarkable quality enamel finishes, the latter being cheaper. They are also available “plain” or “knockouts”. I use the knockout type as they have 20mm holes available all around, and are the same price. When buying your box ask for a Pirelli 251 cable gland, or an equivalent “stuffing gland”, and make sure you get a locknut or locking for it. You can then press out one of the knockouts using a blunt tool in the centre of the knockout and a hammer, install your gland through it, and secure your incoming flex cable very neatly.

The remote unit, if built in the specified case, is an exercise in small, neat construction! The PCB as been designed to just fit. With the height of the LED’s there is no need to secure the board in the case. There are knockouts in the side of the case where the lid can trap the cable once fitted. Two holes are provided in the base for screw fixing, but remember to stick some insulating tape or other material over the screw heads to prevent a short circuit with the bottom of the PCB. You will

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cçolour</th>
<th>P11</th>
<th>6-pin DIN</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV</td>
<td>Black</td>
<td>5</td>
<td>Pin 6 (centre)</td>
<td>1</td>
</tr>
<tr>
<td>Start</td>
<td>Blue</td>
<td>5</td>
<td>Pin 1</td>
<td>2</td>
</tr>
<tr>
<td>Out</td>
<td>Green</td>
<td>4</td>
<td>Pin 2</td>
<td>3</td>
</tr>
<tr>
<td>Clock</td>
<td>White</td>
<td>3</td>
<td>Pin 3</td>
<td>4</td>
</tr>
<tr>
<td>Reset</td>
<td>Yellow</td>
<td>2</td>
<td>Pin 4</td>
<td>5</td>
</tr>
<tr>
<td>+ve</td>
<td>Red</td>
<td>1</td>
<td>Pin 5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIL Switch Setting Minutes</th>
<th>Total Delay (Hrs:Min)</th>
<th>LED count every Seconds</th>
<th>(Min:Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0000)</td>
<td>15</td>
<td>(0:15)</td>
<td>100</td>
</tr>
<tr>
<td>1 (0001)</td>
<td>30</td>
<td>(0:30)</td>
<td>200</td>
</tr>
<tr>
<td>2 (0010)</td>
<td>45</td>
<td>(0:45)</td>
<td>300</td>
</tr>
<tr>
<td>3 (0011)</td>
<td>60</td>
<td>(1:00)</td>
<td>400</td>
</tr>
<tr>
<td>4 (0100)</td>
<td>75</td>
<td>(1:15)</td>
<td>500</td>
</tr>
<tr>
<td>5 (0101)</td>
<td>90</td>
<td>(1:30)</td>
<td>600</td>
</tr>
<tr>
<td>6 (0110)</td>
<td>105</td>
<td>(1:45)</td>
<td>700</td>
</tr>
<tr>
<td>7 (0111)</td>
<td>120</td>
<td>(2:00)</td>
<td>800</td>
</tr>
<tr>
<td>8 (1000)</td>
<td>135</td>
<td>(2:15)</td>
<td>900</td>
</tr>
<tr>
<td>9 (1001)</td>
<td>150</td>
<td>(2:30)</td>
<td>1000</td>
</tr>
<tr>
<td>10 (1010)</td>
<td>165</td>
<td>(2:45)</td>
<td>1100</td>
</tr>
<tr>
<td>11 (1011)</td>
<td>180</td>
<td>(3:00)</td>
<td>1200</td>
</tr>
<tr>
<td>12 (1000)</td>
<td>195</td>
<td>(3:15)</td>
<td>1300</td>
</tr>
<tr>
<td>13 (1010)</td>
<td>210</td>
<td>(3:30)</td>
<td>1400</td>
</tr>
<tr>
<td>14 (1100)</td>
<td>225</td>
<td>(3:45)</td>
<td>1500</td>
</tr>
<tr>
<td>15 (1111)</td>
<td>240</td>
<td>(4:00)</td>
<td>1600</td>
</tr>
</tbody>
</table>
Table 3
50Hz clock (solid link on Overlay)

<table>
<thead>
<tr>
<th>DIL Switch Setting</th>
<th>Total Delay Minutes</th>
<th>LED count every (Hrs:Min)</th>
<th>Seconds (Min:Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0000)</td>
<td>30</td>
<td>(0:30)</td>
</tr>
<tr>
<td>1</td>
<td>(0001)</td>
<td>60</td>
<td>(1:00)</td>
</tr>
<tr>
<td>2</td>
<td>(0010)</td>
<td>90</td>
<td>(1:30)</td>
</tr>
<tr>
<td>3</td>
<td>(0011)</td>
<td>120</td>
<td>(2:00)</td>
</tr>
<tr>
<td>4</td>
<td>(0100)</td>
<td>150</td>
<td>(2:30)</td>
</tr>
<tr>
<td>5</td>
<td>(0101)</td>
<td>180</td>
<td>(3:00)</td>
</tr>
<tr>
<td>6</td>
<td>(0110)</td>
<td>210</td>
<td>(3:30)</td>
</tr>
<tr>
<td>7</td>
<td>(0111)</td>
<td>240</td>
<td>(4:00)</td>
</tr>
<tr>
<td>8</td>
<td>(1000)</td>
<td>270</td>
<td>(4:30)</td>
</tr>
<tr>
<td>9</td>
<td>(1001)</td>
<td>300</td>
<td>(5:00)</td>
</tr>
<tr>
<td>10</td>
<td>(1010)</td>
<td>330</td>
<td>(5:30)</td>
</tr>
<tr>
<td>11</td>
<td>(1011)</td>
<td>360</td>
<td>(6:00)</td>
</tr>
<tr>
<td>12</td>
<td>(1100)</td>
<td>390</td>
<td>(6:30)</td>
</tr>
<tr>
<td>13</td>
<td>(1101)</td>
<td>420</td>
<td>(7:00)</td>
</tr>
<tr>
<td>14</td>
<td>(1110)</td>
<td>450</td>
<td>(7:30)</td>
</tr>
<tr>
<td>15</td>
<td>(1111)</td>
<td>480</td>
<td>(8:00)</td>
</tr>
</tbody>
</table>

need to bend the connections to the pushbuttons at right angles to the body to make them fit. The location of the controls on the lid is only critical in as much as taking care not to foul components on the PCB. Figure 4 provides a scale template for the relative position of holes for the prototypes. Take a photocopy if you want to avoid damaging this magazine, but please check that it matches with your PCB, etc., before using it! It should be possible to replace the “on” and “reset” pushbuttons with a subminiature toggle switch, DPDT, centre off, momentary action. I have not tested this idea but it would save space.

Pressing the START button PB2 will close the relay contacts, energising the load or contactor if used. The first LED will light (About the 11 o'clock position with the remote board upright). The LEDs will count anticlockwise, at the end of the count the unit and load will turn off.

Setting the delay depends on the clock frequency chosen at time of construction and the number set on DIL switch SW1. The table below gives the various combinations. Pressing PB1 at any time will turn the load and the unit off prematurely. Pressing PB3 resets the count for a fresh time delay without interrupting the supply to the appliance.

Note that if you turn the unit off with PB1 and wish to turn it on again almost immediately, press PB3 (Reset) and then PB2 (Start) as C3 and C5 take 30 seconds or so to discharge.

My cat now sleeps soundly in the knowledge he will not wake to see the world revolving at an alarming rate on what appears to be a very warm day.
The new winter '95/96 edition has 280 pages packed with over 4000 products.

- New editions to our computer section further extending our range of PC components and accessories at unbeatable prices
- Free competition with a chance of winning a Hameg 30MHz oscilloscope
- 100's of new products including; Books, Component Packs, Connectors, Switches, Test Equipment and Tools.
- New range of oscilloscopes from Hameg and extended range of mobile phone batteries and accessories
- Latest PIC Microcontroller IC's and programmer
- New 70cms mobile transceiver for the novice radio amateur enthusiast
- 280 pages, 26 sections and over 4000 products from some of the worlds finest suppliers
- Available at most newsagents or direct from Cirkit
- Out 26th October 1995
- Send for your copy today!

Cirkit Distribution Ltd
Park Lane • Broxbourne • Hertfordshire • EN10 7NQ
Telephone: 01992 448899 • Fax: 01992 471314

Electronics Today International
We offer below a selection of our CVC PREMIUM range of audio valves. These CVC BRAND valves are from selected world wide sources, processed in our special facility to provide low noise/hum/microphony PRE-AMP valves and POWER VALVES burnt-in for improved stability and reliability. Use this sheet as your order form. If you require matched pairs, quads or octects etc. Please allow £1.00 extra per valve for this service and mark alongside the valve type number 'M2, M4, M8' etc as required.

<table>
<thead>
<tr>
<th>PRE-AMP VALVES</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC81/12AT77WA</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC82/12AU77WA</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC83/12AX77WA</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC85</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC88</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECF82</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECL86</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF86</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E60F (GOLD PIN)</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB1CC (GOLD PIN)</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB2CC (GOLD PIN)</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB3CC (GOLD PIN)</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB8CC (GOLD PIN)</td>
<td>7.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L7/117</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6517GT</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6SN7GT</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6H12</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7025</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER VALVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL34/6CA7</td>
<td>7.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL34 (Large Dia)</td>
<td>8.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL84/6BO5</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E841/189A</td>
<td>5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT60</td>
<td>9.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT66</td>
<td>12.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT88</td>
<td>12.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT88 (Gold Special)</td>
<td>19.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A3 (Same 4 Pin or Octal)</td>
<td>14.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A7</td>
<td>22.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300B</td>
<td>50.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6C3CC/B</td>
<td>27.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6GC</td>
<td>6.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6GWC/5881</td>
<td>8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6V6GT</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B80</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6/58/6</td>
<td>10.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6326A</td>
<td>46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550A</td>
<td>11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550WAL5</td>
<td>13.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550WB</td>
<td>13.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7S81A</td>
<td>11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>807</td>
<td>8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>811A</td>
<td>10.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>812A</td>
<td>34.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECTIFIERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ80</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ81</td>
<td>4.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ82</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ32</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ33</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ34</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ37</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5URG</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5V4GT</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Y4GT</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Z4GT</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECTIFIERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCKETS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9A (from sources on PCB)</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9A (Gold Plated from Chasis) or PCB)</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCTAL (from Chasis or PCB)</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCTAL (Gold Plated from Chasis or PCB)</td>
<td>4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PIN (for 2A3, 300B etc)</td>
<td>3.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PIN (JUMBO, for 211 etc)</td>
<td>11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PIN (JUMBO, Gold Plated for 311 etc)</td>
<td>15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 PIN (for 2A3)</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PIN (frm 2A3)</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Pin Connectors (for 2A3)</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode Connectors (for 2A3)</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retainers for 6L6GWC etc</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATCHING CHARGES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POST & PACKING (UK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL EXC. VAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAT @17 1/2% (UK & EEC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL TO PAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valve amplifiers sound better still with CVC PREMIUM valves!

Please make CHEQUES payable to 'CHELMER VALVE COMPANY' or pay by ACCESS/MASTERCARD/ VISA, give details

<table>
<thead>
<tr>
<th>Signature</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Post Code</td>
<td></td>
</tr>
</tbody>
</table>

130 New London Road, Chelmsford, Essex CM2 ORG, England. Telephone 01245 355296/265865 or FAX. 01245 49006.
The developer of this unique project, Robin Abbott, looks at some other versions of the ETI PIC based controller module. These offer the user a range of additional options which make them ideal for specific applications.

This month we will look at the versions of PIC Controller BASIC which operate on the 16C5x series of processors. In the original article, it was stated that there would be a version of PIC Controller BASIC which would operate on the 16C56. However, it has very little RAM and the extra program requirements of the paged memory system used on the 16C5x series meant that the version which was eventually produced was too limited in capability for serious use.

The 16C57 and 16C58 processors, however, have the advantage of 70 bytes of RAM each and 2K of EPROM. This means that versions of PIC Controller BASIC for these processors allow extensions to the BASIC language which are described in this article. The 16C57 is provided in a 28-pin package which supports three I/O ports and so, for the BASIC application (which uses 4 bits of port A), there are 16 I/O pins and one input for the real time counter. The 16C58 is provided in an 18-pin package, and uses the same circuit and board layout as that shown in last month's article for the 16C84 device.

The 16C57 and 16C58 processors are a better processor than the 16C84 for the BASIC project in every respect with the exception of interrupt support and upgrading. Although it is possible to upgrade the 16C84 device to the latest version of PIC Controller BASIC, it is only possible to do this with the '57 and '58 versions by using the more expensive erasable devices. However, One Time Programmable (OTP) versions of the '57 and '58 are available at a very reasonable cost.

Circuit description
Figure 1 shows the circuit diagram for the 16C57 version of PIC Controller BASIC. The essential circuit is identical to the 18-pin version shown in the October issue of ETI. The serial port is a low-cost interface which relies on the voltage on the incoming data line to provide the negative supply on the outgoing data line. The oscillator can be a crystal or ceramic resonator. I/O on this module type is provided on a 20-way IDC connector which allows connection to application circuits through 20-way cable. The voltage regulator is optional, the circuit will work up to 6V but, if greater voltages than this are to be used, then a regulator must be provided. For application circuits which will use less than 90mA then a 78L05 may be used; for greater current consumption, use a 78M05 (500mA) or 7805 (1A) device.

IC2 is the EEPROM device; either 24LC16 or 24LC65 devices may be used. However, a different program is used in the PIC for each device.

The brown out protection circuit is based around TR1 which ensures that the PIC is reset if the power supply falls below 4V. Interestingly, Microchip has recognised that brown out protection should be provided on the chip and the latest devices (the 16C2X series) all have a brown out protection circuit and an enable bit in the configuration fuses.

The 16C58 version uses the circuit shown in the October issue of ETI. However, the component references are identical to those shown in Fig. 1 and it is possible to build the circuit from Fig. 1. The I/O connector for 18-pin versions of BASIC is a 16-pin DIL IC socket.

Versions of the '57 and '58 devices are available for 4MHz, 10MHz and 20MHz clock frequencies. The clock frequency is hard programmed into the code to save on program space.

Construction and testing
Construction is straightforward. Use sockets for IC1 and IC2. The circuit board overlay is shown in Fig. 2 for the 16C57 version and the overlay for the 16C58 is shown again in Fig. 3; this is the board which was given away with the October issue of ETI. The 16C57 version has three wire links. Use thin single core hook up wire as the links must not interfere with PL3. Insert wire links and IC sockets first, then resistors, capacitors, voltage regulator and transistors. Finally, insert PL1 and PL2.

Testing is very straightforward. Without IC1 or IC2 in circuit, connect the power supply and check that the socket for IC1
has +5 between pins 2 and 4. Power down, insert IC1 and IC2 and connect to the host PC. Start the PICBASDE program and check that the module is detected. There are a number of test programs provided with PICBASDE. Provided that they don’t use interrupts, any of these may be downloaded to the module to test it. It is recommended that a program which uses no external devices is used.

The use of PICBASDE is fully explained in the November issue of ETI.

Extended BASIC

The BASIC language provided for the '57 and '58 is extended to level 1. This provides new program constructs and various commands to drive external hardware.

The new commands and facilities in level 1 PIC Controller BASIC are as follows:

- **LED driving.** A new command provides for the M4540 device which allows 4 digit, 7 segment LED displays, or up to 36 external devices to be driven from 2 output pins on the BASIC module.

- **LCD driving.** New commands provide a simple 4 bit interface to those LCD modules (the majority) which use the Hitachi chip set.

- **Infrared transmission and reception is supported to send 8 bit numbers between two PIC BASIC modules, which may be separated by up to 10m.**

- **A fast data protocol is provided to send information on a clocked data line between two PIC BASIC modules.**

- **The width command measures pulse width of either polarity on an input pin.**

- **The clocks command sends any number of clocks of either polarity on an output pin.**

- **The wait command pauses program execution for any time between 1mS and 30S.**

- **Shift left and shift right operators provide fast multiplication and division by 2.**

Some of these new commands and constructs are detailed in the rest of this article.

Parameter passing to functions and local variables

The extended RAM which is available in the '57 and '58 devices allows PIC Controller BASIC to make use of the stack to provide parameters in functions, recursive functions and local variables in functions.

Function parameters allow numbers to be passed to functions and subroutines. These are set up in the same way as normal functions and subroutines using the TYPESUB and TYPEFUNC keywords. For example, the following program calculates the Centigrade equivalent of Fahrenheit temperatures from 0 to 100 in 10 Fahrenheit steps and puts them in the array temps, which can be read in the debugging window on the host PC.

```
typefunc ftoc(temp)
dim temps[111] as float
for i=0 to 100 step 10
    temps[i/10]=ftoc(i)
```

ELECTRONICS TODAY INTERNATIONAL
next
monitor()
func ftoc(x)
return ((x-32)*5)/9
end

Local variables are variables which are declared in a function or subroutine. They may then only be used in that function. If the same variable is declared in the main program and in a function or subroutine, then the local variable takes precedence in the function or subroutine, but is invisible outside it. Local variables may only be of 8 or 16 bits in length and should be declared using the DIM statement. Local variables must be declared at the top of the function or subroutine.

For example, the following version of the function ftoc works exactly the same as that shown above, but uses a local variable. It is less efficient of RAM usage and is only shown here as an example. Local variables do not appear in the debugging window.

func ftoc(x)
dim i.8
i=((x-32)*5)/9
return i
end

The final advantage that local variables and parameter passing gives is that recursive functions may be used. To consider a typical use for recursive functions, consider the factorial function. The factorial of a number X is defined as \(X! = X(X-1)(X-2)\ldots(1) \). Thus, the factorial of 4 is \(4! = 4 \times 3 \times 2 \times 1 \) which is 24. The alternative definition of factorial of X is to say that factorial(1) is 1, and if \(x > 1 \) then factorial(x) is x * factorial(x-1). This latter definition is used in the recursive function factorial shown below:

type func factorial(x)
; program here
func factorial(x)
if (x=1) then return 1
return factorial(x-1)
end

Recursive functions can often be a very neat method of calculating results, or performing complex operations. However, they consume stack memory very rapidly and a simple test program based on the factorial function shown only worked up to factorial(8) (which exceeds the range of 16 bit numbers). factorial(9) caused the stack to overwrite the system variables and BASIC crashed.

Device driving commands

Most of the commands in the following sections allow the user to define any pin on the I/O ports of the PIC to be used for peripheral device connections. These pins are defined using the port definition form. This is the form used for the serout, seroutstring and serin commands which were shown in the November issue of ETI. Consider the width command. The width command looks at the current state of an input pin, looks for a pulse of the opposite state and measures its width. Thus, if the pin is high, then the width command waits until the pin becomes low, then measures the time before it goes high again. The width command needs one parameter which is the pin on which a pulse is to be measured. The pin is defined as the address of the port+16-bit number. Thus, bit number 4 on port A is defined as ADDPORTA+16'4. The following example program shows how to measure the width of a pulse on port B, bit 5; the result can be read in the debugging window.

const portpin=ADDPORTB+16'5
dim x.16
x=width(portpin)
monitor()

The result returned depends on the processor frequency. For example, with a 4MHz clock, the result is in units of 10uS; with a 20MHz clock the result will be in units of 2uS. Thus, the above program will measure a 1KHz square wave as \(x=100 \) with a 4MHz clock, and \(x=500 \) with a 20MHz clock.

Next Month...

Next month we’ll take a look at the 16C64 version of PIC BASIC, which offers further extensions to the language.
NEWS FROM THE NEXUS PHOTOSTAT SERVICE. EFFECTIVE FROM 1ST NOVEMBER 1995

The Nexus Photocopying Service can provide you with all those interesting features and valuable projects that have been published in your favourite magazine. The new costs of our photocopying service are as follows:

First article: £2.75 inc of VAT. Please note that projects published over several issues must be ordered as a series of individual articles, each for £2.00. A £2.75 search fee is required if full information is not supplied. Please note delivery could be up to 28 working days.

Please supply photocopies of the following articles from:

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

I enclose a cheque/postal order made out to Nexus Special Interests to the value of:

<table>
<thead>
<tr>
<th>P&P £1.00 (UK only) 20% Overseas</th>
</tr>
</thead>
</table>

Total remittance £

Name:

Address:

Post Code:

Send the completed form and remittance to:

Photocopy Service, Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead, Hertfordshire. HP2 7ST

BASIC Stamp

- Stamp sized Computer runs BASIC

The BASIC Stamp by PARALLAX measures only 40x60mm yet is a true microcomputer that runs BASIC programmes written on your PC. Its size, ease of use and extensive I/O features make it an ideal tool for both educational and industrial applications as well as for the serious hobbyist.

Writing programmes for the Stamp is easy. A 3-pin cable connects the Stamp to your PC printer port. One piece of software is used to enter, debug and download your programme. Features include 8 I/O lines, non-volatile memory, serial comms, pulse measurement and PWM, all achieved with a minimum of external components.

Typical Application

The BASIC Stamp Development Kit is £99 includes: 1 BASIC Stamp, instruction manual, PC cable, software and extensive application notes. Further Stamps are available from £29.

Muscle Wires

-wires that contract when heated!

Fascinating, highly processed Shape Memory Alloy wires that actually contract when electrically heated producing a useful amount of force.

Low cost linear actuators at last!

Their lightweight makes them excellent for use in models, robots and many other types of projects. Low voltage and power allows simple control by computer or electronics (eg the BASIC Stamp). Detailed Data and Project Book (128 pages) plus Muscle Wire Kit suitable for 13 projects including BORIS the walking, six-legged robot; only £44.95.

All prices exclude VAT and £3 postage per order. For further details of the Stamp, Muscle Wires and other products please call for our NEW colour catalogue.

MILFORD INSTRUMENTS

24hr Answerphone 01977 683665, Fax 01977 681465
Milkford House, 120 High Street, South Milford LEEDS LS25 5AQ

PCB Designer

For Windows 3.1

Looking for the price?
It's just £49.00 all inclusive!
...no VAT...no postage...
...no additional charges for overseas orders.

Dealers and distributors wanted.

- Produce Single or Double sided PCBs.
- Print out to any Windows supported printer.
- Toolbar for rapid access to commonly used components.
- Helpful prompts on screen as you work.
- Pad, track & IC sizes fully customisable.
- No charges for technical support.
- Snap-to-grid sizes 0.1", 0.05" 0.025" and unrestricted.
- SMT pads and other pad shapes.
- Prints at the resolution of your printer - much higher than the screen shot shown here.

Internet

A working demo is available via anonymous FTP from ftp.demon.co.uk as /pub/bmpc/windows/pcbdemo/pcbdemo.zip

e-mail enquiries can be addressed to orders@niche.demon.co.uk

Niche Software (UK)
22 Tavistock Drive, Belmont, Hereford. HR2 7XN.

Phone (01432) 355 414

Bart Trepak concludes his construction of a PIC based alarm clock

As discussed earlier in this series, five switches will be required to set our clock (plus the pressure mat) and these have been connected as a 6x1 matrix as shown in Fig 5. During the KEYBD routine, the digit drives are switched off and port line B6 is redefined as an input while the rest of port B remains programmed as outputs. Each output port is then switched high in turn using the BSF instruction and the line B6 read using the BTFSS instruction.

The PRESSURE MAT input is a bit of a problem because, unlike the other keys, it does not have a momentary action and could be on for long periods of time (if you are in bed) and especially during periods when the other keys may have to be read. You may, for example, want to set the alarm time when you are already in bed and the mat "switch" is closed and you will almost certainly want to operate the snooze button next morning when this is the case. During the time that the other keys were being scanned, the output B5 would be at 0 Volts which would have the effect of placing a 1k resistor in parallel with the 10k pull down resistor if the mat switch were closed. This would prevent the voltage at B6, resulting from a possible closure of another switch, from rising above half the supply rail which may not be enough to register as a switch closure. The solution to this is to programme the line B5 as an input (high impedance) during the time when the mat status is not required. This means that even if it is closed it will not affect the voltage at B6 and will not interfere with the operation of the rest of the keyboard. Because the reverse would also be true, with operation of other switches preventing the mat status to be read, the lines B0-B4 will also be defined as inputs during the period when the mat switch is read which occurs only during the alarm routine.

The Key scanning flowchart is shown in Fig. 21a and like the CONVRT routine it returns with a number in the W register which depends on the key pressed. If no key is pressed, the routine returns with 00h in the W register. This is written as a subroutine called KEYBD in the final programme and is called from the main routine after the DISPLY routine. The value returned is further processed in the routine marked KEY.
FIG. 21, where it is compared with the LKP register (Last Key Pressed register defined as 14h) and if it is different, the new value is stored in LKP and the programme goes back to the beginning to display digits and continue counting which takes 10ms and forms the keyboard debounce delay.

If the key currently pressed matches that already stored in the LKP register from the previous scan, bit 0 in a FLAG register (defined as 13h and shown in FIG. 21b) is tested and if it is clear, it is set to one and the function of the key is performed. The next time the subroutine is called, the chances are that the same key will still be pressed so that the LKP register will match the number returned by the KEYBD routine. This time however, bit 0 of the FLAG register will already be set so that the function of the key will be ignored. Only when a 00h is returned when the key is released will bit 0 be cleared enabling a new function (or the same one) to be performed when a key is pressed.

Each key will therefore operate only the first time that it is pressed so that to set 11:15 PM from a display of 12:00 AM, the mode button will have to be pressed until the SET TIME mode is reached (i.e. colon on but not flashing) and the SET HOURS button pressed and released 23 times and the SET MINUTES button 15 times. Although this may seem very time-consuming, it does not take that long and is perhaps not as annoying as the fast set button on some clocks which runs the clock at a faster rate. Here the required setting is invariably missed and the procedure of going through the whole 24 hour sequence has to be repeated. For those interested, the setting method could be converted to this by altering the value loaded into the HSREG and/or TBREG to make the clock count faster and the key processing routine changed to continuously increment the hours or minutes as long as the relevant key were held down. It would make an interesting exercise to gain experience in programming the PIC micro-controller.

The function of each key and the order in which they are scanned is determined by the programme and this could easily be changed to make the controls more logical or easier to lay out on the front panel. Here the switches are numbered S1 to S5 reading from top to bottom of the printed circuit board and the functions assigned to them are SNOOZE, ALARM ON/OFF, MODE SELECT, SET HOURS and SET MINUTES respectively. Initially the programme can be developed with only one function implemented, say SET MINUTES to check that the KEYBD routine is working correctly before the logic for the other switches is worked out.

The switch functions are perhaps best understood with the aid of the flowcharts shown in Fig. 22. The corresponding code for this can again be found in the final programme listing under labels S1 to S5. The set hours and set minutes (S4 and S5) are not shown because they consist simply of calling the subroutines INCRH and INCR and since the appropriate register for the current mode will already have been loaded into the FSR, the correct register for that mode will be incremented. The MODE SELECT function (S3) is shown and is basically also an increment instruction operating on MDREG, but since there are only three modes this register must be reset to zero if a count of three is reached so that only modes 0, 1 and 2 (corresponding to RUN, SET ALARM TIME and SET TIME) are possible. This could easily be changed so that a fourth, fifth or greater mode were possible for setting alternate alarm times or switch off times if required. Note that it is most important that this register is cleared to zero during the initial power-up routine otherwise it could start with an initial value greater than three which would be most confusing - not only to the
The ALARM ON/OFF switch (S2) should only be allowed to operate if the alarm is not already on to prevent the alarm being switched off by pressing this once it has sounded. The alarm output (PORT B7) cannot be used to check this because the alarm may not actually be sounding when the clock is in the alarm mode as it could have been cancelled temporarily by the snooze button or indeed by the occupant getting out of bed. Instead, bit 1 of the FLAG register is set when the alarm time is reached and this is tested instead. Only if this test is passed is the alarm LED (bit 2 in the INDFLG register) toggled. The logic for the SNOOZE switch (S1) is slightly more complicated because it is only allowed to operate once after the alarm has sounded. Another bit in the FLAG register (bit 2) is used to remember if the snooze switch has been pressed by setting it if it is. The effect of pressing the SNOOZE button is to increase the number stored in the TMTMR register by ten but to understand the logic behind this it is first necessary to consider the alarm sounding routine. The flowchart for this function is shown in Fig. 23.

Don’t be alarmed
The software development for the clock is now nearing its end and it only remains to design the logic required to actually sound the alarm when required. This is done in the ALRM subroutine, but before we develop the flowchart, it would be best to recap on what is required.

The first step to take before deciding if the alarm is to be sounded is, of course, to see if the current time (as stored in the HRCTR and MINCTR) has reached that stored in the alarm time registers and, indeed, if the alarm has been set in the first place. This can be easily done using the XOR function as discussed before - not only on the hours and minutes counters but also on the INDFLG register which contains AM/PM and alarm ON/OFF information. Because the alarm is to be maintained, if necessary, for more than a minute, a successful initial comparison should be noted after which the registers need no longer be compared.

Since the alarm is to remain active for ten minutes, a separate counter (TMTMR or Ten Minute TiMeR designated 15h and loaded with 10 when the above registers match) is decremented at the same time as the MINCTR is incremented, and this is used to time the alarm interval. This has not been shown on the flowchart as it belongs more properly to the INCR (increment counters) subroutine. The code for this has been added to the beginning of the INCR subroutine shown in Fig. 24. Operating the SNOOZE switch postpones the alarm for a period of ten minutes by adding another ten to the above counter when this switch is pressed using the "addwf TMTMR" instruction. The alarm is then potentially activated only if the count remaining in this timer is less than ten minutes, but made inactive if it is greater than this which would be the case if the SNOOZE button had been pressed. Since only one operation of the SNOOZE button is allowed during each alarm period, more than ten cannot be added by repeatedly pressing this switch.

Assuming that the time remaining in the TMTMR register is less than ten minutes, the alarm would still only be required if the occupant were still in bed so the mat switch would need to be tested at this point. The alarm would only be cancelled when the count in the TMTMR reached zero which would take ten minutes so that before this happened, any return to bed would immediately restart the alarm. By this time, it is hoped, the owner would be well and truly awake.

Finally, because a pulsed alarm is more effective than a continuous tone at waking people from their slumber, the alarm may not actually be sounding when the clock is in operation of the SNOOZE button is allowed during each alarm period, more than ten cannot be added by repeatedly pressing this switch.

Fig. 22
Switch functions flowchart
13) the value returned from the CONVRT routine was simply written to port B to switch the appropriate display segments on. Since bit 7 in the CONVRT table is always zero as it does not drive any segment, it would be reset as soon as the DISPLY routine was called. One way around this would be to have two look-up tables with one having bit 7 set and the other cleared. Then choose which table to use depending on whether the alarm was to sound or not. The solution adopted here is to “inclusive or” the data from the look-up table with port B using the IORWF PORTB, same instruction which loads the seven segment data into the port while leaving B7 unchanged, instead of the original MOVWF instruction. For this to work, however, the other bits in port B must first be reset; otherwise, data from the last digit displayed would be mixed with the new data. All outputs except B7 are therefore cleared using an ANDLW instruction before the digit is displayed which accounts for the slightly longer DISPLY routine in the final version of the programme compared with that originally shown.

Around and around

This ends our series as far as the “Digital Clock for the Unemployed” is concerned and it only remains to programme a chip and plug it into the socket on the board to complete it. The software has been fully described and many other techniques mentioned so it should be an easy matter to modify the design to, say, take week-ends and even public holidays into account or to allow two (or more?) snooze operations before the alarm sounds constantly. Many of the routines could be used as they are or slightly modified for other projects where, say, a keyboard and/or a display is required. In some cases, even the printed circuit board may remain the same!

Fig. 23
Alarm subroutine flowchart

PIC and mix

This series of articles has only scratched the surface of the possibilities opened up by designing with micro-controllers. The PIC16C5X series has many other features which have not been used in the clock project but which can be useful in other applications.
All the devices in the series have, for example, a Watch Dog Timer (WDT) which runs independently of the main clock and will reset the processor every 18µs or so. This time can be extended by assigning the prescaler to the WDT, although not if it is already being used by the RTCC register. In use, the CLRWDTP (Clear Watch Dog Timer) instruction is inserted into the programme so that this instruction will normally be executed before the WDT times out, ensuring that the processor is not reset. If due to noise, or other malfunction, the contents of a memory location get corrupted or for some other reason the programme crashes, the WDT will time out because the CLRWDTP instruction will no longer be executed regularly or at all and the processor will be reset allowing it to restart the programme correctly. By reading certain bits in the STATUS register, the programme can differentiate between a reset caused by the WDT and the reset which occurs when power first applied. This means that overwriting any previously stored conditions by the normal initialisation routine can be avoided. This feature is useful in electrically noisy environments such as cars or applications where a programme malfunction could have bad or even dangerous consequences.

If this function is not used, the WDT must be disabled by suitably programming the Configuration EPROM. This is not part of the main EPROM used for programme storage and consists of four bits. Two are used to select the clock type (i.e. RC, crystal etc.) one disables the WDT when set to zero while the fourth bit, when set to zero, prevents the contents of the programme memory being read out in a meaningful way - thus preventing someone from copying your design. To help with identifying programmed and code protected chips, there is also another 16 bit EPROM which can be programmed with a user identification code.

Another useful feature is the ability to put the circuit to sleep by executing the SLEEP instruction. This switches off the clock and shuts down the circuit so that current consumption falls to only a few micro-amps making it very useful in battery powered applications and eliminating the need for an on/off switch. In this condition, the output pins remain in their previously set conditions as inputs or outputs driving high or low and the WDT (if it is enabled) keeps running. The circuit may be awakened by a WDT time out or a reset pulse to the MCLR pin. Again, bits in the STATUS register can be read to determine what caused the device to wake up and the programme executed accordingly. This feature can be used in remote control transmitters for example where the circuit needs to be switched on when a key is pressed and switched off automatically when the transmission is finished.

Perhaps the best thing about the PIC series is the fact that the EPROM versions are also available at greatly reduced prices in a plastic package without the window. This, of course, means that the device can only be programmed once (One Time Programmable or OTP) and cannot be erased so it is not suitable for developing new programmes but is ideal for use in a finished project enabling the EPROM part to be used again to develop a new application. The only limitation is that the oscillator type is not programmable in the OTP device so that the required type must be purchased but even this is about to change.

We should at least mention two other members of the PIC16CXX family which share all of the features of the PIC16C5X. These include virtually the same instruction set but also have more advanced features such as interrupts and a deeper stack enabling more subroutines to be nested i.e. called from within subroutines. They also have some hardware features which will make them useful in more advanced applications.

The first of these is the PIC16C71 which has a built in A/D converter and a four way input multiplexer. This could be used, for example, to measure and display temperature at four different locations. The obvious application which springs to mind is to measure and display the house temperature and use this to control the heating while the other channels could measure the freezer, greenhouse and hot water temperatures and sound an alarm if the temperature moves outside the preset levels.

The other device is the PIC16C64 which has an EEPROM programme memory instead of the EPROM of the 16C5X series. This enables the device to be reprogrammed electrically without first erasing it with UV light which can make the whole process of developing programmes a lot faster. As well as this, the PIC16C64 has a small EEPROM memory which can be written to during programme execution. This enables the device to retain data even when the circuit is switched off. This can be extremely useful in some applications (e.g. milimeters, digital clocks - or keeping a running total of grass cut to date in that all-singing, all-dancing lawn mower perhaps?) and removes the need for back-up batteries when non-volatile storage of data is required.

Both of these devices are available in 18 pin DIL packages and use the same mnemonics (and to a large extent the same architecture) as the PIC16C54 micro-controller described together with one or two new instructions to support the new functions. This makes it very easy to "upgrade" to these or convert programmes from one device to another. The PICSTART programmer and software can also be used to develop programmes and programme these devices, despite the fact that they have a 14-bit wide programme memory instead of the 12-bit one of the earlier device making the PICSTART-16B even better value for money. The down side is, of course, that they cost more but still not as much as an equivalent CMOS design would cost - even if you could build it.

The trouble with technology is that it always seems to create as many problems as it solves. With all these micro-controllers at my disposal, I find that far from not being able to get up in the morning, I now am not able to sleep thinking about my project! The Alarm Clock has fallen into disuse (by me, at any rate) and as for watching soap operas, I find myself still looking at a screen all day but the programmes on mine are rather different compared to those on the other screen in the corner of the lounge.

FIG 24 - COMPLETE PROGRAMME FOR AN ALARM CLOCK

MREG equ 08h ; Mode REGISTER
RUN=0, SET ALARM=1, SET TIME=2
MINCTR equ 09h ; Minute Display
HRCTR equ 0Ah ; Hour Display
SEND equ 0eh ; INDEX Register holds
status of AM/PM, COLON & ALARM
DYCTR1 equ 0ch ; Delay Count Register
DYCTR2 equ 0dh ; Delay Count Register
MCCTR equ 0eh ; Half Second Counter
TBCTR equ 0fh ; Time Base Counter
counts 120 half seconds
AMNREG equ 10h ; Alarm Minute Register
ARHREG equ 11h ; Alarm Hour Register
AINREG equ 12h ; Alarm INDEX Register

MIREG equ 08h ; Mode REGISTER
MINT=0, SET ALARM=1, SET TIME=2
MHRCTR equ 09h ; Minute Display
MSEND equ 0eh ; INDEX Register holds
status of AM/PM, COLON & ALARM
MDYCTR1 equ 0ch ; Delay Count Register
MDYCTR2 equ 0dh ; Delay Count Register
MNCTR equ 0eh ; Half Second Counter
MTBCTR equ 0fh ; Time Base Counter
counts 120 half seconds
MANREG equ 10h ; Alarm Minute Register
ARNREG equ 11h ; Alarm Hour Register
AINREG equ 12h ; Alarm INDEX Register

ELECTRONICS TODAY INTERNATIONAL
LIST P=16C54 ; f=inhxl16
INCLUDE "PIC.H"

goto START ;

**********LED DISPLAY SUBROUTINE**********

; load tens of mins into w
movlw 00h
swapf 0,w

; mask MSDs by ANDing with 0000 1111
call CONVRT

; no - decode segments
iorwf PORTB

; switch on segment drive
bsf PORTA,0

; switch on digit drive
call DLY

; delay for
bcf PORTA,0

; switch off digit drive
movlw 80h
ie 1000 0000
andwf PORTB,same

; clear PORTB except B7

; load units of mins into w
movf 0,w

; select units of mins for display
call CONVRT

; decode segments
iorwf PORTB

; switch on segment drive
bsf PORTA,0

; switch on digit drive
call DLY

; delay for
bcf PORTA,0

; switch off digit drive
movlw 80h
ie 1000 0000
andwf PORTB,same

; clear PORTB except B7

; increment FSR to point to Hours
incf FSR,same

; add colon (to be modified later)
decf FSR,same

; reset pointer
iorwf PORTB

; switch on segment drive
bsf PORTA,3

; switch on digit drive
call DLY

; delay for
bcf PORTA,3

; switch off digit drive
movlw 80h
ie 1000 0000
andwf PORTB,same

; clear PORTB except B7

; load counter pointed to by FSR
andlw 0Fh

; select units of hours for display
call CONVRT

; decode segments
iorwf PORTB

; switch on segment drive
bsf PORTA,2

; switch on digit drive
call DLY

; delay for
bcf PORTA,2

; switch off digit drive
movlw 80h
ie 1000 0000
andwf PORTB,same

; clear PORTB except B7

; return from subroutine
RETURN FROM SUBROUTINE if DYCTR1 is zero

INCREMENT COUNTERS SUBROUTINE

movf TMR1, same
btfsc STATUS, 2
is TMR1 .0
?
goto INCR1
TMR1 is zero - cancel alarm
decf TMR1, same
not zero - decrement

BCF 1 FLAG,1
clear Alarm time reached

BCF 2 FLAG,1
clear SNOOZE key pressed flag

INCRR
inff 0, same
INCREMENT MINUTES - POINTED TO BY FSR
andlw 0Fh
and with 0000 1111 to mask MS bits
xorlw 0Ah
compare with Ah (10 decimal)

movf STATUS, 2
retlw 00
not = 10

movf 06h
equal to 10

addf 0, same
add 6 to file pointed to by FSR

movf W, same
place in W register
xorlw 60h
btfs STATUS, 2
retlw 00
no

clopen 0
clre 0

movf MDREG, same
btfs STATUS, 2
retlw 00
no - do not change hours

INCRH
inff FSR, same
change pointer to hour

INCREMENT HOURS
inff 0, same
movf 0,w
andlw 0Fh

movf STATUS, 2
retlw 00
not = 10

movf 06h
mvf MSREG, same
btfs STATUS, 2
retlw 00
no - do not change hours

CHECK2
movf 0,w
COUNTER EQUALS 13?
xorlw 13h
btfs STATUS, 2
retlw 00

no

movlw 01h
yes
movlw 0

set hours register to 01
retlw 00

KEYBD

movlw 60h
****** KEY READIN ROUTINE **************

tris PORTB
make B0 - B4 & B7 o/ps and B5 & B6 inputs
andlw 0Fh
ie 1000 0000
andwf PORTB, same

clear bits 0-6 B7 does not change

bsf PORTB, 0
set B0 high

nop

btsc PORTB, 6
B6 high?

retlw 01h

S1 pressed
bcf PORTB, 0

no - clear B0

bsf PORTB, 1
set B1 high

nop

btsc PORTB, 6
B6 high?

retlw 02h

S2 pressed
bcf PORTB, 1

no - clear B1

bsf PORTB, 2
set B2 high

nop

btsc PORTB, 6
B6 high?

retlw 04h

S3 pressed
bcf PORTB, 2

no - clear B2

bsf PORTB, 3
set B3 high

nop

btsc PORTB, 6
B6 high?

retlw 08h

S4 pressed
bcf PORTB, 3

no - clear B3

bsf PORTB, 4
set B4 high

nop

btsc PORTB, 6
B6 high?

retlw 10h

S5 pressed
bcf PORTB, 4

no - clear B4

bsf PORTB, 0
no keys pressed

retlw 00

ALARM SUBROUTINE

ALRM

```assembly
; has alarm time been reached?  
    movf AINDFG,W         ; check if TMTMR is zero 
        btfsc STATUS,2  
        goto NOALRM         ; no
    xorwf AINDFG,W   ; compare INDFLG with AINDFG 
        btfss STATUS,2  
        goto NOALRM         ; same
    movf HRCTR,W       ; compare hours 
        xorwf AHREG,W    ; moved 
        btfss STATUS,2  
        goto NOALRM         ; not the same
    movf MINCTR,W       ; compare minutes 
        xorwf AMNREG,W    ; moved
        btfss STATUS,2  
        goto NOALRM         ; not the same
    movlw .10           ; same - alarm time reached  
        movwf TMTMR      ; load Ten minute timer with 10
        bsf STATUS,1     ; set ALARM TIME flag
CHKTMR       ; set carry bit
    movlw 10           ; check if TMTMR is less than 10
        subwf TMTMR,W   ; moved 
        btfss STATUS,0  
        goto NOALRM         ; no
    movlw 5Fh           ; yes - snooze is over  
        movwf PORTB,6    ; check mat
        bsf PORTB,5      ; make 85 and B7 o/p all others i/p
    btfss PORT/3,6    ; test B6
        goto NOALRM         ; mat not closed 
    btfss INDFLG,0     ; - no alarm
        goto NOALRM         ; is colon one
    ; no - makes alarm switch off for 0.5sec
        bsf PORTB,7      ; switch on alarm
    retlw 00
    NOALRM         ; switch off alarm (B7)
        retlw 00
;*******************************************************************************
;*******************************************************************************
;*******INITIALISE ROUTINE***************
INITLSE       ; set carry bit
    movlw 00h          ; movf PORTA
        tris PORTA   ; make PORTA o/p
    movwf PORTA      ; make PORTA 0000
    ; make PORTB i/p except B4
        movlw 07h      ; ie 0000 0111
        OPTION
```

RTCC - gives 10mS with 3.2768Mhz xtal

```assembly
        movlw 12h       ; load HCCTR with 12
        movwf AHREG       ; movlw 00h
        movlw 04h      ; movsw MINTCR
        movlw 04h      ; movsw AMNREG
        movlw 04h      ; movsw AINDFG
        movlw 04h      ; movsw MINCTR
        movlw 04h      ; movsw HRCTR
        movlw 50h      ; movlw 50
        movwf HSCTR
    ; load HSCTR with 50 dec to count halfsec
    ; load TBCTR with 2 (temporary) so that
    ; clock runs faster (change to 120 later)
    ; INDFLG = am, colon and alarm off
    ; clrf MDRG
    ; clrf TMTMR
    BEGIN         ; movf RTCC, w
        btfss STATUS,2  
        test if w (RTCC) = 0  
        goto BEGIN         ; w (RTCC) not zero
    movlw .224       ; if RTCC=0 move
        movwf RTCC
    ; MODE
        movf MDREG,w      ; places MDREG into w
        btfsc STATUS,2  
        test if MDREG=0  
        goto RUN         ; yes
    xorlw 01h         ; no - XOR MDREG (w) with 01h
        btfsc STATUS,2  
        test if MDREG=1  
    ; MODE
        movf MDRG,w     ; if zero re-load with 50 dec
        ; set alarm routine
        movwf PORTA      ; set pointer to time registers
        btfsw INDFLG,0   ; bsf INDFLG
    ; switch colon on
    ; set alarm routine
        goto PROG
SETTIM         ; set pointer routine
    movlw 09h       ; movlw FSR
        set pointer to time registers
        bsf INDFLG,0
    ; switch colon on
    ; set alarm routine
        goto PROG
RUN            ; movlw 09h
    ; RUN ROUTINE
        movlw FSR
        load address of MINCTR into FSR
        ; decfsz HSCTR,same
    ; if HSCTR not zero go to RUNEND
        movlw 01h      ; movlw .50
        movsw HSCTR
        movlw 09h      ; movlw 09
        ; set pointer to Alarm registers
        goto PROG
```

OPTION

```assembly
```
xorwf INDFLG, same
; toggle bit 0 (colon) of INDFLG
; decfsz TBCTR, same
; goto RUNEND
if TBCTR is not zero
movlw .120
; reload TBCTR with 2 (change to 120
; movf TBCTR
; if TBCTR is not zero
movlw .04h
; call INCN
; movf MDREG, w
; btfsc STATUS, 2
; yes - clear MDREG
; goto MODE
set TBCTR = 0
call INCN
; movf MDREG, w
; btfsc STATUS, 2
; yes - clear MDREG
; goto MODE
; load address of MINCTR into FSR
; call ALRM
; PROG
; call DISPLY
; call KEYED
; RETURNS WITH VALUE OF KEY IN W
xorwf LKP, same
; compare returned value
btfss STATUS, 2
; not the same
movlw LKP
; same - place W into LKP
movf LKP, same
; check if LKP = 0 ie. no key pressed
btfss STATUS, 2
; key pressed
bcf FLAG, 0
; no key pressed - clear key actioned flag
goto BEGIN
KEY
btfsc LKP, 0
; has key already been actioned?
go to BEGIN
flag 0 set - yes
btfsc LKP, 0 and action
btsc LKP, 0
goto S1
S1 pressed
btsc LKP, 1
; is alarm on?
go to BEGIN
yes - no other keys valid
btsc LKP, 1
; no - test other keys
goto S2
S2 pressed
btsc LKP, 2
goto S3
S3 pressed
movf MDREG, same
btsc STATUS, 2
MDREG = 0? ie RUN mode
; yes - do not set hours/minutes
btsc LKP, 3
; no
goto S4
S4 pressed
goto S5
S5 pressed
S1
btfss LKP, 1
; SNOOZE - is alarm on?
go to BEGIN
no - goto BEGIN
btsc LKP, 2
; yes - set snooze flag clearly
goto BEGIN
no - snooze already operated
btsc FLAG, 2
org 1Ffh
end

Eletronics Today International

Everybody's talking about the PIC these days - the hottest microcontroller on the hobbyist market. It's cheap, robust, easy to interface to the outside world, and a breeze to program. Now's your chance to build a kit featuring one of these chips. MadLab at the Edinburgh International Science Festival has developed an exciting range of PIC kits which allow you to explore the capabilities of this powerful device.

All MadLab kits include a professional PCB and full instructions.

MadMusic Machine £12.00 - our simplest kit and an excellent introduction to the PIC. Pre-programmed with 4 tunes (vocal Scottish, Soaps or Kids mixes). You can also play your own tunes over 4 octaves.

Lotterymania £13.00 - could win you a fortune in the National Lottery. And much more. Also simulates the rolling of dice, a 1 or 2 player reaction game, and a tracker game which tests how quick thinking you are.

Razzle Dazzler £13.50 - a stylish piece of electronic jewellery. A ring of superbright LEDs around a circular PCB displays an ever-changing pattern of light. Wear it as a badge or pendant and get noticed.

SpaceFlag £15.00 - our most advanced kit. When the SpaceFlag is waved in front of your eyes a scrolling message magically appears in space. Any message (up to 24 characters) can easily be programmed using the on-board pushbuttons. As featured in New Scientist.

All kits require a PP3 battery (€1) except the Razzle Dazzler which needs a miniature 12V battery (75p). All prices are inclusive. P&P is €1.50 (UK).

Please make cheques and POs payable to MadLab Ltd. Send your order to MadLab (Dept. ETI), 149 Rose Street, Edinburgh EH2 4JS. No callers please. Allow 28 days for delivery. Please send a SAE for further details on MadLab kits, including our range of educational electronic kits.
Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Capture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

Board Maker

BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1
- Full netlist support- BoardCapture, Orcad, Schema, Tango, CadStar
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane support with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
- Penplotters - HP, Graphtec & Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

For further information contact
Tsien (UK) Limited
Aylesby House
Wenny Road, Chatteris
Cambridge, PE16 6UT
Tel 01354 695959
Fax 01354 695957
E-mail Sales@tsien.demon.co.uk
Seasonal Savings

Subscribe today and take your pick from Britain’s favourite hobby magazines.
This may be the toughest decision you will make this Christmas... Should you ensure your special friends don’t miss out on super subscriptions to their favourite magazines? OR spoil yourself with a gift you deserve at a price that won’t bite? With these irresistible offers plus price frozen rates you can probably afford to do both.

The more you spend the more you save!!!

It's Your Choice
Super savings.

Save Once
Subscribe now and receive up to 5 extra issues free!

Save Twice
What's more, subscribe to more than one magazine and we'll give you a fantastic free binder! What could be better?

Save Three Times!
In addition, for this offer only, we’ve kept the Summer 1995 prices so you’ll beat any future price rises until 1998 with a two year subscription.

FREE
WORTH £6.95
BINDER

The Best Gets Better!
The Perfect Gift
For Everyone, Including You!!

Don't Delay, Fill out our priority order form on the next page TODAY

Our binders hold up to 12 issues of your favourite magazine and keep them looking fresh and tidy. Now you'll know just where to look for a new idea or project.
Order now - From the comfort of your armchair

Five Simple Steps to a Good Read....

- Just tick ✓ the relevant box for a 1 or 2 year subscription.
- Then tick ✓ the magazines you wish to subscribe to.
- Remember to tick ✓ the box for a gift subscription or for yourself.
- If you have ordered more than one subscription don't forget to tell us which binder you require.
- Fill in the coupon with all your details and send this page with your payment to the address below. Then sit back and look forward to a good read.

Your Exclusive Christmas Subscription Order Form

ONE YEAR

<table>
<thead>
<tr>
<th>Gift Subscription</th>
<th>Magazine</th>
<th>U.K.</th>
<th>Europe & Euro</th>
<th>Sterling</th>
<th>U.S.$</th>
<th>Extra issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW15</td>
<td>Archimedes World</td>
<td>£45.00</td>
<td>£50.00</td>
<td>£58.00</td>
<td>£104.00</td>
<td>12 + 2 extra issues</td>
</tr>
<tr>
<td>ET12</td>
<td>Electronics Today Int.</td>
<td>£25.80</td>
<td>£30.00</td>
<td>£35.00</td>
<td>£65.00</td>
<td>12 + 2 extra issues</td>
</tr>
<tr>
<td>HR13</td>
<td>Ham Radio Today</td>
<td>£21.50</td>
<td>£26.00</td>
<td>£32.00</td>
<td>£58.00</td>
<td>12 + 2 extra issues</td>
</tr>
<tr>
<td>CB13</td>
<td>Citizens’ Band</td>
<td>£21.50</td>
<td>£26.00</td>
<td>£32.00</td>
<td>£58.00</td>
<td>12 + 2 extra issues</td>
</tr>
</tbody>
</table>

TWO YEARS

<table>
<thead>
<tr>
<th>Gift Subscription</th>
<th>Magazine</th>
<th>U.K.</th>
<th>Europe & Euro</th>
<th>Sterling</th>
<th>U.S.$</th>
<th>Extra issues</th>
<th>Saving per issue on today's cover price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW16</td>
<td>Archimedes World</td>
<td>£90.00</td>
<td>£100.00</td>
<td>£116.00</td>
<td>£208.00</td>
<td>24 + 5 extra issues</td>
<td>65p</td>
</tr>
<tr>
<td>ET13</td>
<td>Electronics Today Int.</td>
<td>£51.60</td>
<td>£60.00</td>
<td>£72.00</td>
<td>£108.00</td>
<td>24 + 5 extra issues</td>
<td>45p</td>
</tr>
<tr>
<td>HR14</td>
<td>Ham Radio Today</td>
<td>£43.20</td>
<td>£50.00</td>
<td>£60.00</td>
<td>£96.00</td>
<td>24 + 5 extra issues</td>
<td>47p</td>
</tr>
<tr>
<td>CB14</td>
<td>Citizens’ Band</td>
<td>£43.20</td>
<td>£50.00</td>
<td>£60.00</td>
<td>£96.00</td>
<td>24 + 5 extra issues</td>
<td>47p</td>
</tr>
</tbody>
</table>

Claim for your free binder here. ONLY if you have subscribed to more than one magazine.
Please state which binder you would prefer:

- 027 Archimedes World
- 028 Electronics Today Int.
- 029 Ham Radio Today
- 030 Citizens’ Band

Please commence my subscription(s) from the next available issue.
If renewing/extend please quote subscription number.

I enclose my Cheque/P.O. for £ made payable to Nexus or please debit my Access/Visa account:

Expiry: Signature:
Name: Mr/Mrs/Miss Initial Surname
Address:
Post Code:

Gift Subscription Name: Mr/Mrs/Miss Initial Surname
Address:
Post Code:

Photocopies of this page are acceptable. Not to be used in conjunction with any other offer.
This offer is open to all readers - until 1st February 1996.
Please post this coupon to: Nexus Subscription Services, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Leicestershire LE16 9EF.
Please tick this box if you would prefer not to receive mail from other companies which may be of interest to you.

ORDER HOTLINE
01858 435344
Basic for the PIC microcontroller

Bar code reader
CADPAK for Windows

CADPAK is especially suited to educational, hobby and small scale schematic and PCB design. CADPAK includes both schematic drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit diagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing & dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modification of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also available for DOS.

CADPAK FOR WINDOWS ...£149
CADPAK FOR DOS £79

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

PROPAK for Windows

PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionality for all but the most demanding applications.

PROPAK’s schematic drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK’s 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical designs.
- Netlist link between modules guarantees consistency between schematic and PCB.
- Netlists are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full bill of materials.
- ASCII data import facility.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Multi-strategy autorouter gives high completion rates.
- Power plane generator creates ground planes with ease.

PROPAK FOR WINDOWS £495
PROPAK FOR DOS £395

Prices exclude postage (£5 for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged.
ETI Book of Electronics

An introduction to electronics that clearly explains the theory and principles involved. Each chapter includes a project to make. Projects include a loudspeaker divider, continuity tester, mini-amplifier, a burglar alarm, and more!

ADVERTISERS INDEX

BK Electronics

Bull Electrical

Chelmer Valve

Cirkit Distribution

Classified Section

Cricklewood Electronics

Direct CCTV

Display Electronics

EOT

Field Electric

Innovative Interfaces

JJ Components

JPG Electronics

Komputer Knowledge

Labcentre Electronics

MacLab

Maplin

Mayflower Electronics

Megadownload

Milford Instruments

MOP Electronics

Niche Software

Number One Systems

Ormid Electronics

Pico Technology

Quick Route Systems (powerware)

Radio Tech

Robinson Marshall

Seeltrax CAE

Stewarts of Reading

Telet

Tsiens (UK)
PC SCIENTIFIC & TECHNICAL PROGRAM LIBRARY

We have the largest selection and technical software in existence. Our good quality programs, that work.

APOLLO

APOLOGY by R Grodzik to NJD Limited

In the June edition of Electronics Today International I contributed an article (beginning on page 46) entitled "4-channel touch-switch interface".

The source for the circuit described in this article was in fact a circuit which was developed and manufactured by NJD Limited of 10 Ascot Industrial Estate, Sandiacre, Nottingham, NG10 5JD, United Kingdom. (Manufacturers of professional Lighting and Lighting Control Equipment). NJD Limited manufacture and use such circuits in their products, notably the LOGIC T12, TS10R and LOGIC S12, all touch sensitive switch panels and the "SAVER" touch sensitive panel for the handicapped.

I would like to apologise to NJD Limited completely and unreservedly for any misleading impression which I may have given to the effect that the circuit was developed by me as indeed this was not the case and acknowledge the copyright held by NJD Limited on their designs of this and any of their other circuits.

TO ADVERTISE IN THE NEXT ISSUE OF ETI PHONE JIM ON 01442 66551

SOFTWARE

PRINTED CIRCUIT

PC'S, PROTOTYPES AND PRODUCTION, Artwork copied or raised from your draft designs or schematics. Quoteline 01232 476353 or write to P. Agar, 36 Woodcot Avenue, Belfast, BT5 5JA.

PC.B. Artwork Layout, Product Design, Schematic, Surface mount component design. Supply and much more.... Contact ALPH BETA Tel: 01708 379054 Fax: 01708 379404.

FAX YOUR ADVERT ON 01442 66998

KITS

FM MICRO BUG TRANSMITTER 88-108MHZ 500 METRE RANGE KIT 9.99

FM BURS AROUND 1000 METER RANGE KIT 4.49 BUILT

FM UTRA SMALL BUG 15MM X 20MM X 15MM 88-108MHZ 100 METRE RANGE KIT/BOXED £9.99

4.5W FM HOUSING IN PRIMARY PHONE SOCKET 88-108MHZ 500 METRE RANGE KIT £15.00

FM TELEPHONE TAP AND RECEIVER 148MHZ 2KM RANGE FOR TRACKING OF VEHICLES, PEOPLE, ANIMALS ETC £20.00

BUG CONSTRUCTORS MANUAL - A BOOK CONTAINING DOZENS OF VHF, CRYSTAL CONTROLLED BUGS, TELEPHONE TAPS, INFINITY TRANSMITTERS ETC. £6.00

2 WATT FM BROADCAST QUALITY TRANSMITTERS 88-108MHZ KIT £4.00

FM BROADCAST QUALITY TRANSMITTERS 88-108MHZ TUNED TO YOUR SPECIFICATION BOXED/BUILT/ALIGNED £10.00.

5 WATT FM BROADCAST QUALITY TRANSMITTERS AS ABOVE BUILT/TESTED/ALIGNED £16.50

IR INFRARED CAMERA SIZE 40mm x 40mm x 40mm (SEE IN THE DARK CAPABILITY) £15.00

Laser Diodes 3mW 670NM Red £7.50

Laser Diodes 5mW 670NM Red £9.50

Laser Diode 3.5W 630NM RED OVER 10 TIMES VISIBLE BRIGHTER THAN THE 670NM LASERS, EQUIVALENT TO THE HE NE LASERS £25.00

250 Watt 12V DC TO MAINS AUTOMATIC TRANSFORMER FOR RUNNING A TV, FREDGE, STEREO ETC WHEN ON THE MOVE IN YOUR CAR OR WHEN CAMPING/CARAVANNING FROM THE CAR BATTERY £14.00

AA SOLAR POWERED BATTERY CHARGER £9.99

MATCH AS YOU BUILT RADIO RECEIVER KIT WHICH INCLUDES STEP BY STEP CONSTRUCTION GUIDE ON A VHS TAPE AND ALL COMPONENTS TO BUILD THE RADIO £22.00

PC WAVE COMPUTER KIT ENDED TO CONTROL ROBOTICS, PROCESS CONTROL HOME AUTOMATION, LAMPS ETC. PROGRAMS ON 3.5 OR 5.25 INCH DISKS PLEASE STATE WHEN ORDERING £43.00

ALL KITS SUPPLIED WITH HIGH QUALITY PCB AND COMPONENTS. PRICES INCLUDE VAT WITH ORDERS LESS THAN £10.00 PLEASE ADD £1.00 P & P ORDERS OVER £10.00 PLEASE ADD £2.50 P & P SEND SAE FOR FULL CATALOGUE INCLUDING TRAINING FUSES, RF TRANSISTORS, CAPS, RESISTORS, DISPLAYS, TRIACS, AMPS, LASERS, FIBRE OPTIC LINKS, KITS ETC AND MUCH MORE CHEQUE/POSTAL ORDERS PAYABLE TO: M.G.C. ELECTRONICS, THE Firs, MAIN ROAD, LONG BENNINGTON, NEAR NEWARK, NOTTINGHAMSHIRE NG23 5JD. TEL: (0378) 958252

Name

Tech & C&G 2710

Radio Amateur Licence C&G

Micro-processor

Introduction to Television

Radio & Telecommunications Correspondence School

12 Moor View Drive, Teignmouth, Devon TQ14 9UN

ELECTRONICS TODAY INTERNATIONAL

ETI (12/95)

Name

Daytime Tel. No.

Address

Name

ETI CLASSIFIED ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSHEAD HP2 7ST

Rates: Lineage 75p per word + VAT minimum 15 words. Semi-display £10.50 per single column cm plus VAT. No reimbursements for cancellations.

All ads must be pre-paid.

Name

Address

Daytime Tel. No.

Signature

Date

PLEASE DEBIT MY ACCESS/BARCLAYCARD No.

Expiry Date

COMPONENTS PLANS OTHER - PLEASE STATE

ETI PHONE JIM ON 01442 66551

73
Next Month...

In the January 1996 issue of Electronics Today International we will be continuing our premier autumn project, the ETI Basic programmable micro controller.

Dr Pei An shows how to build a heartbeat monitor and, from Terry Balbinie, there is an electronic guard dog project which will bark at any unwelcome visitors. Meanwhile, if you blow a fuse and are plunged into the dark, Bob Noye's torch pad will allow you to find the torch that will help you mend the fuse. There is a 16-channel MIDI-controlled audio mixer project from Tom Scarff and Bart Trepak concludes his practical look at designing a project around the PIC micro controller.

The main feature article will be looking at the Ulysses solar mission and we will also be reviewing some more PC software of interest to readers.

The development of 3-D imaging systems has also attracted the interest of civilian air traffic controllers for whom it would offer an excellent way of looking at and controlling aircraft movements. But judging by recent announcements from America's Federal Aviation Authority, the whole concept of air traffic control is about to change, thanks to another bit of military technology - the satellite-based global positioning system (GPS).

It is understood that all aircraft are being fitted with GPS systems which can accurately determine the aircraft's position and height to within a few metres. This data would then be relayed by satellite to a system of ground-based computers that would maintain a safety area around each aircraft and automatically order a shift in course if the safety zones of two aircraft overlapped.

This essentially means the end of the human air traffic controller, but because there is no longer any need to stick to predefined air corridors it should be possible to increase considerably the number of aircraft in the air at any one time and theoretically improve punctuality with flights being up to 20% shorter.

In Britain, the CAA are also examining this so-called 'free flight' technology but, understandably, severe reservations are being expressed by both existing air traffic controllers and by many pilots. The pilots are particularly concerned about how reliable the system actually is, a legitimate concern since there will be no human backup.

The main feature article will be looking at the Ulysses solar mission and we will also be reviewing some more PC software of interest to readers.

The main feature article will be looking at the Ulysses solar mission and we will also be reviewing some more PC software of interest to readers.
MIXED-MODE SIMULATION.
THE POWER OF VERSION 4.

Analog, Digital & Mixed Circuits
Electronics Workbench Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!
Electronics Workbench’s simple, direct interface helps you build circuits in a fraction of the time. Try what if scenarios and fine tune your designs painlessly.

Incredibly Powerful. Incredibly Affordable.
If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

With over 20,000 users worldwide, Electronics Workbench has already been tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Order Now! Just £199*
44-(0)1203-233-216

Nadella Building, Progress Close,
Leofric Business Park,
Coventry, Warwickshire CV3 2TF
Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk

Shipping charges UK £5.99. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada. *30 Day money-back guarantee.

New Version 4

More Power
Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts
Multiple parts bins contain over twice the components of Version 3.

More Models
Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.
With over 14,000 products the new Maplin Catalogue is now bigger than ever

THE EIFFEL TOWER
Built in 1889 by Alexandre Gustave Eiffel, the Eiffel Tower is 984 feet high and gives an unrivalled view of the whole of Paris.

THE NEW MAPLIN CATALOGUE
Built for 1996 by Maplin, the new catalogue is almost 1,200 pages long and gives an unrivalled view of the whole world of electronics.

Now Only £2.95

Get your copy now from WH SMITH, John Menzies and Maplin stores nationwide
Or order direct NOW on 01702 554161

Catalogue Mail order Price £3.45 (inc p&p). Prices refer to the 1996 Maplin Catalogue and are inclusive of VAT.
All items are subject to availability. E&OE. Maplin Electronics, PO. Box 3, Rayleigh, Essex, England SS6 8LR.