

 TOMORROW'S TECHNOLOGY TODACOMPUING WMITHOU CLOCKS British diesienced asynchronous computer could change the world

Bufitd a flbre optic communications iflus fop Pas

Verscitile large character dispilay

Anclog viriual instrument interface for the Bul 80188 sing fis bocird computen

$0-1.5$

Designing and building swith regulators

- Making PCBs the franisfer way

Buffd a low cosi PIC programmer

- Using Pliss an procifal approach

Quickroute 3.0 for Windows 3.1 has been designed from the start to be as easy to use as possible, without sacrificing the power professional engineers need to get the job done. Quickroute is available with schematic capture, support for busses \& power rails, 1-8 layer auto-routing, SPICE file export, and our new extended library pack. Quickroute 3.0 PRO+ can also connect to the Windows simulation package SpiceAge using Windows DDE. Contact POWERware for more details!

DESIGNER
 $£ 99$

*Schematic \& PCB Drawing * $1 / 2$ layer auto-router *Supports Windows printers/plotters *Full set of libraries *Clipboard support *Designer Special (manual on disk) also available.

PRO £199

*Schematic \& PCB Design *Schematic Capture *Integrated Rats-Nest Generation *1-8 layer Auto-router (faster than Designer) *Net-List Export *Supports Windows printers/plotters *CAD-CAM outputs.

PRO+£299

As the PRO but also includes *Advanced Schematic Capture (Busses, Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries (СМOS,SMT,etc) *SPICE Export *SpiceAge DDE link.
*Prices exclude P+P and V.A.T. VISA/MasterCard Accepted *Network versions available.
POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.
Tel/Fax 01614497101 email info@powrware.demon.co.uk

Volume 24 No. 7

Computing Without Clocks

A revolutionary British designed clockless asynchronous processor chip could fundamentally change the way in which computers are constructed and used. Nick Hampshire looks at this world beating technology, and why it is considered to be the Holy Grail oi computer science

Large Scale Display Drive

6.

In the last part of Robin Abbott's ETI light gun project, he looks the general problem of driving large scale displays from a computer using a standard RS232 serial drive from any suitably equipped PC

80188 AOC Module

Another add-on module for the ETI 80188 single board computer by Richard Grodzik - an analog to digital converter module which provides a serial RS232 output at 9600 baud for an input voltage range of $0-5$ voits.

Simple Switcher Regulators

In part 2 of this article, Dave Bradshaw is putting them to work

Fibre Optic Transceiver

Linking computers and peripherals using fibre optics can help overcome many problems. Ken Ginn shows how it can be done

PIC
 Project

4
In Part 1 of this short tutorial series, Bart Trepak shows how he set about building a PIC based alarm clock

Stamp Project
 58

A look at how this little computer can be used to implement a wide range oi pulse measurement applications

PCBs

The Transfer Way 62
Terry Baibimie looks at a new, easy way to make PCBs

PIC
 Programmer

This project by Robin Abbott describes a low cost programmer for the PIC microcontroller. Suitable for home or other small scale use, it reads, programs, and verifies PIC $16 C 54,55,56,57,58,64,71,74,84$ and any other upcoming 18,28 , or 40 pin PIC devices

Regulars

- News and event diary 6Practically speaking 69
PCB Foils 70
Open Forum

Pico Releases PC

 PotentialPico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

'Virtual instrument' software.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Picolog Advanced data logging software.

Gall for your Guide on 'Virtual Instrumentation'.

New from Pico TC-08 Thermocouple to PC Converter

 8 channel Thermocouple Amplifier- Connects to your serial port - no power supply required.
- Supplied with PicoLog datalogging software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs (B, E, J, K, R, S and T types)
- Resolution and accuracy dependant on thermocouple type. For type K the resolution is better than $0.1^{\circ} \mathrm{C}$ and accurate to $\pm 0.1^{\circ} \mathrm{C}$ over $-270^{\circ} \mathrm{C}$ to $+1300^{\circ} \mathrm{C}$.

TC-08 £ 199

complete with PicoLog, software drivers and connecting cable: A range of thermocouple probes is available.

SLA-16 Logic Analyser

Pocket sized 16 channel Logic Analyser
ADC-100 Virtual Instrument
Dual Channel 12 bit resolution

Carriage UK free, Overseas $£ 9$

- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate (100 kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to a wide variety of signals. ADC-100 with PicoScope $£ 199$ with PicoScope \& PicoLog £209

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port. ADC-10 with PicoScope £49 PicoScope \& PicoLog $£ 59$

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

ENERGY BANK KT $1006^{\prime \prime} \times 6^{\prime \prime}$ ©V 100 mA panels, 100 diodes, connection details etc. $£ 69.95$ ref EF112. CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$. 30 grams. 12 V 100 mA auto electronic shutter, 3.6 mm F2 lens, CCAR. 512×492 pixels. video output is iv p-p (75 ohm). Works directy Into a
video input on a N or video. IR senstive. F 79.95 ref EF 137 . IR LAMP KT Suntable for the above camera enables the camera to be used in total darknessi $£ 5.99$ ref EF 138 .
PASTEL ACCOUNTS SOFTWARE does everything for all sizes of businesses, Indudes wordproces sor, report wilter, 200 page comprehenslive manual. 90 days free fechnical support 200 page comprehensive manual. 90 days free technical suppon
(0345-326009try before youbuy) Current retail price is $£ 129$. ours? just £29 ref EF134. SAVE £100III
MINIMICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq fust $£ 3.99$ each. Rel EF 199. C TOH PRINTERS 80 col, 9 pin matrix, senaulparailet, NLC/drat 3 mth warranty, good condition. £49 rel EF 133.
MICROSOFT TRACKBALL AND MOUSE COmbined unt with 4 buthons and tractoall. PS2 type connector. Complete with storage bracket Our price just $£ 11.99$ ret Ef 201
REUSEABLE HEAT PACKS. ideal for inshermen. outdoor enthustasts elderly or infim, warming food, drinks atc, defrosting pipes etc reuseable up to 10 times. lasts for up to 8 hours per go.
2. 000 wh energy. gets up to 90 degC. Price is $£ 12$ ref EF129. mp $£ 371$ 1.44 M B 3.6" DiSC DRNES Retums from a top PC manufactuer so they may need attention, bargain price $£ 8.50$ ea ref EF 203.
1.2 ${ }^{24 B} 6.26^{\prime \prime}$ OISC DRNES Again returns somay need attention. bargain pricels E 8.50 ret EF204 (1 oteach 1.241.44 E14.99 retel205 A4 DTP MON TTORS Brand new, 300 DPI . Complete with diagram but no Interfaoe detalis.(so you will have to work It outt) Bargain at just $£ 7.99$ each!ill Rof EF185 OPD MONTTORS 9^{9} mono montior, fuly cased complete with raster board. switched mode psu atc. CGATTL input (15 way D). IEC montor for OCTV use ete is $£ 21,99$ ref DEC24.
12 V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (indudes standard IEC socket) and 2 m lead with plug. 100 -240v IP. E8. 99 ref EF200. PC CONTROLLED 4 CHANNEL TMER Control (onvof times etc) up to 4 thems (88240 V each) with this kit. Complete with
Sonw Sonuare. relays. PCB etc. E225. 99 Ref 95/26
COMPLETEPC 300 WATT UPS SYSTEM TOD of the range UPS system providing protection for your computer system and valuable sonware against mains power fuctuatons and cuts New and boxed. UK mace Provides up to 5 mins running yme in the event of complete power failure to allow you
correcty. SALE PRICE Jus $£ 112.00$.
RACAL MODEM BONANZAI 1 Racal MPS $12231200 / 75$ modem, teiephone lead, mains lead. manual and comms sofware. the cheapest way onto the net all this for Just $£ 13$ ref $D E C 13$. HOW LOW ARE YOUR FLOPPIES? $3.5^{\circ}(1.44)$ unbranded. We have sold $100.000+$ so otd Pack of $50 £ 24.99$ rel DEC16 6 mw LASER POINTER. Supplied in kit fom. complete with power adiuster, 1.5 mw , and beam divergence achuster. Runs on 2 AAA battenes. Produces itin red Deam ideal for levels. gun sig
experiments etc. Cheapest in the UKI fust E 39.95 sef DECA9 SHOP WOBBLERSISmall assemblies designed to take D stze Datteries and 'wobble' signs about in shopsl $£ 3.99$ Red SEP4P2. RADIO PAGERSBrand new. UK made pocket pagers clearance price is fust $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with Dits) Rel SEP5. BULLTENS UNT Fully buit and tested TENS (Transcutaneous Electricai Nene Stimulation) unit. complete with electrodes and full instructions TENS is used for the relief of pain etcin up 10 70\% of sumferers. Drug tree pain reier. sale and easy to use can be used in conjunction with analgesics etc. $£ 49$ Ret TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units. (ike wyse 50 , s) $2 \times$ RS232. 20 funclion keys. 50 thro to 38,400 beud, menu driven porn. screen, cursor, and keyboard setup menus (18 menu's). E29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E6C2).Brand new controllers. adjustable from 0 deg \mathbf{C} to $+100 \mathrm{deg} \mathbf{C}$ using graduated dial. 2x accuracy, themocouple input, tong life retay perature, Normal trade £50+, ours E15 Ref ESC2
ELECTRIC MOTOR BONAMZA! $110 \times 60 \mathrm{~mm}$.Brand new precision, cap start (or spin to start). Wirtually shent and features a moving outer case that acts as a tiy wheel. Because of their unusual design we think that 2 of these in a tuoe with some homemade fan Dlades coud form the Dasis for a wind tunnel etc. Clearance pice Is Just $£ 4.99$ FOR A PAIRI (not
2400 ogeration Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$. Similar to the above motor but more suitabie for mounting vertically (ie turntable etc). Again you will have to wire 2 in senes for 240 use. Bargain price is fust EA 99 FOR A PAIRII Ret NOV3.
OMRON ELECTRONIC IMTERVAL TMERS. - 'NEW LOW PRICES TO CLEARII!

Minature adjustable timere, 4 pole c/o output 3A 240v, HY1230S, 12VDC adjustable from 0-30 secs $£ 4.99$ HY1210M. 12VDC adjustable from $0-10$ mins $£ 4.99$ HY1260M, 12VDC adjustable from $0-60$ mins. $£ 499$ HY $2460 \mathrm{M}, 24 \mathrm{VAC}$ adjustable from $0-60$ mins $£ 2.99$ HY241S, 24vAC adjustable from 0.1 secs. $£ 2.99$ HY2460S, 24VAC adjustable from $0-60$ secs. $£ 2.99$ HY243H, 24vAC adjustable from 0-3 hours. $£ 2.99$ HY2401S, 240 V adjustable from $0-1$ secs. $£ 4.99$ HY2405S, 240 V adjustable from 0.5 secs. $£ 4.99$ HY $24060 \mathrm{~m}, 240 \mathrm{~V}$ adjustable from $0-60$ mins. $£ 6.99$ PC PAL VGA TO TV CONVERTER COnverts a colour TV Imo a baste VGA screen Complete with built in psu, Lead and sware in ket form for nome assembly at $₹ 34$. 95 ref EF5A
DRIW KING BIRD Remember these? hook onto wine glass (sup. pliod) and they drink standup.dnnk. standup ETCI £4 each Ref EF1 EMERGENCY LIGITING UNTT Complete unt with 2 double
lead acid req". (secondhand) E4 ref MAGAP
GUIDED MISSILE WIRE. 4,200 metre reel of ultra Thin 4 core insulated cade. 2810 s breaking strain. less than 1 mm thick Ideal ASTEC SWTCHED MODE PSU BM4 1012 Gives t5 e 3.75 A
 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solier P 部el with diode and 3 metre iead \#tted with a clgar plug. 12v 2wate. E9 99 ea ref AUG1OP3. FLOPPY DISCS DSOD Top qualify 525° discs these have been wnuen to once and are unused Pack of 20 is $E 4$ rel AUG4P1 ECLATRON FLASH TUBE As used in police car fashing lights etc. full spec supplied. $60-100$ flashes a min. $£ 9.99$ ref APR10P5. 24v AC 96WATT Cased power supply. New. £ 1399 ret APR14. MILTARY SPECG EIGER COUNTERS Unu sed anstraightrom Her majesty's torces. E50 rer MAG 50 P3
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and a atomatcally swirches on a buit in lamp at dusk. Complete with sealed lead acar battory etc $£ 1999$ rof MAR2OP1
ALARM VERSION or above unt comes withbuitt in alam and pir to deter Intuders Good value al fust E24 99 ret MAR25P4
CARETAKER VOLUMETRIC Alam. will cover the whole of the ground floor against forcred entry. Indudes mains power supply and ground hoor agansif forced enify. induoes mains power supply and bell H req'd. Retail $£ 150^{\circ}$, ours? $£ 49.99$ ref MARSOP1.
TELEPHONE CABLE White 6 core 100 m reet complete with a pack of 100 dips ideal 'phone exths etc $\mathbf{E 7 . 9 9}$ rel MAR8P3
MICRODRNE STRIPPERS Small cased tape dives ideal for stripping. lots of useful goodies including a smart case, and lots of components. $£ 2$ each rel JUN2P3. Box of 10 fust 5999 rel EF207. SOLAR POWER LAB SPECLALYouget TWO $6^{\circ} \mathrm{x} 6^{\circ}$ 6v 130 mA solar cells 4 LED's, wire. buzzer. swikh plus 1 relay or motor. Supeto value kit Just Es. 99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice activated recordes. uses mirroc assette complete with headphones $\mathbf{5 2 8} 99$ retMAR29P1. ULTRAMINIBUG MIC $6 m m \times 3.5 m m$ made byAKG. $5-12$ velectret condenser. Cost $£ 12$ ea, Ours? fust four for E9.99 REF MAG10P2 RGB/CGAEGATTL COLOUR MONTORS $12^{2} \mathrm{in}$ good condition. Back anodised metal case. E79 each REF JUN79
ANSWER PHONES Refurns weth 2 faults, we give you the bits for 1 laut. you have to find the other yourself. BT Response 200 's $£ 18$ ea REF MAG 18P I. PSU E5 TE MACSP 12.
SWITCHED MODE PSU ex equip. $60 \mathrm{w}+5 \mathrm{~V}$ © ${ }^{5 \mathrm{FA}}$. -5 V ©. 5 AA , $+12 v(2 A$ - 12 ve $5 A 120220 v$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput sodket 6.99 REF MAG7P1

PLUG IN PSU $9 V 200 \mathrm{~mA}$ DC $£ 2.99$ each REF MAG3P9
PLUG IN ACORM PSU 19V AC 14w. 5299 REF MAG3P 10 POWER SUPPLY fuly cased with mains and op leads 17V DC 900 mA output. Bargain pnce $\mathrm{E5} 99$ ref MA G6P9
ACORN ARCH MEDES PSU $+5 N \notin 44 \mathrm{~A}$ onvor sw uncased selectable mains Input. $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P 2 9v DC POWER SUPPLY S tanderd plug in type 150 masv DC with lead and DC power plug. pnce for two is $£ 2.99$ ref AUG3P4.
AA NICAD PACK encapsulated pack of 8 AA nicad Datteries (tagged) ex equip. $55 \times 32 \times 32 \mathrm{~mm}$. E3 a pack REF MAG3P 11 13.8V 1.9A psu cased with leads Just E9.99 REF MAG10P3 PPC MODEM CAROS. These are high spec plugg in caros made for the Amstrad laptop computers 2400 baud dial up unit complete whh leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginallymade for il spoc satefitite equipment but perfect for all sorts of remoie control projects Our clearance price is just $£ 2$ REF: MAG2
200 WATT INVERTER COnverts 10.15 V DC into either 110 V or $240 \mathrm{~V} A C$. Fully cased $115 \times 3 \times 2156 \mathrm{~mm}$. complete with heavy duty power lead. cigar plug. AC oubet socket Auto overioad shutdown, auto stor cirant shu down auto input over votage shutdown, auto
input undervoltage shut down (with hufible alamm). auto temp control input undervoltage shut down (with hudible alamm), auto temp control.
unt shuts down I overheated end sounds audible alam. Fused unt shuts down overnealed and souncs audible alam. Fused
reversed polamy protected outpuf frequency within 2%, voltage within 10\%. A well buint unt at ankeen price Just $£ 6499$ rel AUCG65. UNNERSAL SPEED CONTROLLER KT Designed by usfor the C5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A neat sink may de required. $£ 17.00$ REF: MAG17
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, profects etc. 50 metres for $£ 1.99$ rel AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit comains 100 m of 6 core cable. 100 cable clips. 2 Ine divers with RS232 Interfaces of 6 core cable. 100 cable clips. 2 ine divers with RS 232 interfaces
and all connectors etc. Ideal low cosi methoo of communicating and alr conneclors etc. Ideal iow cosl meinod of com
between PC's over a long distance. Complete lot $£ .99$
ELECTRIC MOTOR KT Comprehensive educational kit inELECTRIC MOTOR KIT Comprehensive educational kit includes all you need to buid an ciectic moctor, £9.99 ret MAR10P4.
VIEWDATA SYST EM S made by Pnilips, complete with Intemal 120075 modem, keyocard. psu elc RGB and composite outputs. menu dnven, autodialler etc $£ 18$ each Re1 EF8s.
BOOMERANG High tech. patented poly propylene. 34 cm wing span. Get out and get some exeraise for $£ 499$ ref EF83
AIR RIFLES 22 As usedby the Chinese amy for training puposes. so there is lot lob it $£ 3995$ Rel EF78. 500 pellets $£ 4.50$ ref EFBO PLUG IN POWER SUPPLYS Plugs in to 13 A socket with output lead. three inpes avalable, gvic 150 mA \&2 rel EF58, 9vdC 200 mA E2.50 ref EF59. 6 . 5vac 500 MA E3 ref EF69.
VIDEO SENDER UNTT. Transmits both audio and video sIgnals from ether a video camera. video recorder. TV or Computer etc to any
standard TV set in 100 range (tune TV to a spare channel) $12 \mathrm{~V} O \mathrm{C}$

BULL ELECTRICAL
250 PORTEAND ROAD, IOYE, SESSEX HV3 SQT. (ESTAZLLSATED SO YEARS). AIH, ORDER TERMS: CASH, PO OR CNEOU WITH ORDHR PLUS 53 POST PIAKS YAT.

TEL: 01273203500
FAX 01273323077

Op. Pnce Is E15 REF: MAG15 12v PSU is $£ 5$ extra REF: MAG5P2 -FM CORDLESS MICROP HONE Small hand hetd Unit with a 500 rangel 2 transmit power tevels Reas PP3 ov battery. Tuneable to any FM recelver. Price is E15 REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units Low COST WALKIE TALKIES Pair of battery operated units with a range of about 200 . Ideat for garden use or as a
toy. Pnce is $£ 8$ a pair REF: MAG $8 P 12 \times P P 3$ redd

- MINATURE RADIO TRANSCENERSA pair of walke taikies with arange up to 2 km in open country. Units meas ure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces 2xPP3 reqd. £30.00 pr REF: MAG30 COMPOSTTE VIDEO $K \Pi$. Converts composte video into separate H sync, V sync, and videc. 12 V DC. $£ 8.00$ REF: MAGsP2 LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entre mechanical printer assemblies theluding printriead. stepper emotors etc etc in fact everything bar the case and electronics. a good stippen 55 REF: MAGSP3 or 2 for $£ 8$ REF: MAGBP3
LED PACK al 100 standard red 5 m leos E5 REF MAG5P4 UNIVERSAL PC POWER SUPPLY complete with Inyeads switch, fan etc. 200 w at E 20 REF: MAG $20 P 3$ ($265 \times 155 \times 125 \mathrm{~mm}$). GYROSCOPE ADout 3^{\prime} high and an excetent educational toy for all ages! Price with Instruction booktet E6 Rel EF15.
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dive connectors 1 mother ooard connector. 150watt. 12v fan, lec inlet and on/oll switch. $£\{2$ Rel EFG
VENUS FLY TRAP KIT Grow your own carnivorous plant with this simple bot E3 ret EF34.
PC POWER SUPPLIES (returns) These are $140 \times 150 \times 90 \mathrm{~mm}$. o ps are $+12,-12+5$ and $-5 v$, Built in $12 v$ fan. These are refurns so they ps are $+12 .-12+5$ and $-5 v$. Built in $12 v$ ran. Thes
may well need repaling! $£ 3.50$ each ref EF42.
may well need repairng! $£ 3.50$ each ref EF42.
-FM TRANSMM TTER.KIT housed in a standara wonang 13A adapterl the bug runs directy of the mains sotasts forevent why pay $£ 700$? or price is $£ 15$ REF: EF62 Transmits to any FM radio (this is in kh form wan full Instructions)
- FM BUG KTT New design with PCB embedded call for extra stabilty. Works to any FM radio gv battery req'd E5 REF: MACSP5 -FM BUG BUILT AND TESTED supenior design to kl Supplied to detective agencles $9 \times$ Dattery rec $' \mathrm{~d} . ~ £ 14$ REF: MAG14
TALKING COINBOX STRIPP ER onginally made to retail at£79 each. these units are destgned to convert an ordinary phone into a payp incne. The units iave melooks missing and someunes broken hinges How ever they can be adapted for their onginal use or used for TOP OUALTY SPEAKER
TOP QUA LITY SPEAKERS Made for HIFI teten sions these are 10 watt $4 R$ Jap made $4^{\text {4 }}$ round with large shielded magnets. Good
Quality. $£ 2$ each $R E F$: MAG2P4 or 4 for $E 6$ REF: MAG6P2 quality, $£ 2$ each REF: MAG2P4 or 4 for $E 6$ REF: MAG6P2
TWEETERS z diameter good quaility tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a smallmodio run on any AT. tbey work perfecty butyou will have to put up with 1 or 2 foreign keycaps Price $£ 6$ REF: MAGBP3 DOS PACKS Microsoft version 3.3 or ingher complete with all manuals or price fust $£ 5$ REF: MAGSPs Worth H just for the very comprehensive manuall 525° only.
GAS HOBS Brand new made by Optmus, basic three burner suitate for small hat etc bargain pnce fust £29.95 ret EF73. GAT AIR PISTOL PACK Complete with pistol, dants and pellets $£ 12.95$ Ref EF82 extra pellets (500) $£ 450$ rel EF80.
OOS PACK Microsoft version 6 with manual $£ 9993.5^{\circ}$ ref EF209 WINDOWS $3.13 .5^{\circ}$ with manual $£ 24.99$ ref EF210.
NOVELL NTEWARE LTTE (network sware) $\mathbf{Q 2}^{4.99 \text { ref EF211. }}$ PIR DETECTOR Made by famous UK alarm manulacurer these are hi spec. long range internal units. 12 v operation Slight makks on case and unboxed (although Drand new) \&B REF: MAG8P5
MOBILE CARP HON E $£ 6.99$ Well almostl compiete In car phone excluding the box of electronics normally hidden under seat. Can be made to iliuminate with 12 v also has buitin light sensor sodisplay only Illuminates when dark. Totally convinang! REF: MAG6P6 6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130mA. Bargain pnce just $£ 5.99$ ea REF MAG6P 12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P13 ideal for experimenters) $30 \mathrm{mfor} £ 1299$ ref MAG $13 P 1$ HEATSINKS (hnned) TO220. designed to mountvertically on a pco $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ret JUN1P 11
STROBE LIGHT KIT Adustabie from inz ight up to 60 rat (electronic asssembly wit with full instructions) $£ 16$ ref EF28 ROCK LIG HTS Unusual things these, two pleces of rock thet glow when rubbed togethert delived to cause rainiE3 a pair Ret EF29. AMSTRAD GX4000 gam
seen. Just E 2.99 ret EF 186
NEW HIGH POWER LASERS
15 mW . Hellum
$.63 \mathrm{~mm} .1 .15 \mathrm{um}, 3.39 \mathrm{um}$
(2 of them are infrared) $500: 1$ polarizer buit in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use phy. Supplied completie with mains power supply. 9 OX6
WE BUY SURPLUS STOCK FOR CASH
FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE £59

A Hand held personal Garmma and X Ray detec tor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measurling

Cut the Cost of PCBs

Tracks Cad Systems has announced the new Protomat series of PCB prototype milling machines for the production of one-off-and prototype PCBs.
These new systems extend the existing, proven range of machines and, with prices starting at $£ 7,950$, exclusive of VAT, make it possible for a whole range of new users to derive the benefits of making their own PCBs. The price of the new entry level Protomat 91s, is $£ 7,950$, and includes PCB design software - a package price which equals about half the cost of previous entry level systems. All you need is a suitable PC to run the software and connect the machine to. the new, Protomat series are ideal for independent operators, laboratories, small or occasional users, 'new businesses and educational establishments. The Protomat series offers a standard bed size of $420 \mathrm{~mm} \times 375 \mathrm{~mm}$ (Protomat 91s $340 \mathrm{~mm} \times 200 \mathrm{~mm}$) and all models perform to the same high standards of precision and accuracy as other professional systems in the LPKF range. Repetition accuracy and precision are measured at $+/-0.02 \mathrm{~mm}$. The machines can cut the full, standard range of PCB materials and are suitable for both single-sided and double-sided PCBs.

4 Port RS422 from

Brain Boxes

Especially useful where limited motherboard slots âre available is the new Quad RS422, providing 4 industry standard 422/485 ports. Each port is independentiy configurable, either as RS422 with or without handshaking, or RS485 with full and half duplex.

The RS422 standard provides higher speed and longer distance data transmission. The card provides reliable communication up to 1.2 kilometre ($4,000 \mathrm{ft}$).

On-board, fail-safe, open circuit detection prevents false start bits and bad data being detected, whilst failsafe closed circuit detection protects receivers and drivers. The on-board terminating resistors prevent echoes. IRQ's 2-7, 10-12 and 15 are provided, together with the addition of IRQ 14 for greater freedom.

A shared interrupt mechanism provides fast and flexible interrupt handling. Baud rates up to 115,200 and FIFO enhanced chip for Windows users completes this tidy package.

Designed and manufactured in the UK by an ISO9001 Registered Company, this new product is offered inclusive of full documentation, three-year warranty, and telephone technical support.

Fior furtherlinformation ${ }_{3}$ Contact Brain Boxes cm 01512202500.

New DX4 Single Slot

Designed and manufactured in the UK, Blue Chip Technology continues to expand their extremely successful range of single slot PC processors with the release of the $\mathrm{DX} 4 / 100 \mathrm{MHz}$ CPUlversion.
The latest high speed CPU takes advantage of the oriboard local bus GUl accelerated video with resolutions of up to 1280'1024. Together with the on-board 256 KBytes of level 2 cache, (ip to 64MBytes of DRAM), 2MBytes of Flash, 512 KBytes of SRAM, IDE and filoppy controllers, 2 serial ports, (both RS232 or RS485 software selectable), parailel, keyboard and PS/2 mouse ports, it is intended for use in mission critical applications where the power monitoring and watchdog features rassure integrity of operation. The processor card is already used extensively in a wide range of applications from network nodes/servers through to EPOS terminals.

Further information, contact Blue Chip Technology on 01244520222.

New Modules for Embedded PG Applications

The,PC-104 modules from IMS offer the banefil of the standard PC-Bus architecture but on a miniature form size, measuring only $3.6^{\prime \prime} \times 3.8^{\prime \prime}$ and with exceptionally low power consumption. PC-104 is therefore ldeal for embedded applications where PC architecture is desired, but current PC motherboard/plut-in cards technology is too bulky and power-hungry.

The current range offered by IMS includes a diverse mix of products, including such modules as CPUs, peripheral interlaces (hard/floppy disk). serial \& parallel I/O, SVGA\& flat panel display controllers, PCMCIA, ethemet network, RS422/485 communications, solid state disks, digital I/O and analogue A/D \& D/A.

The PC-104 modules can be used as 'Lego' style buliding blocks, by interconnecting them in a stack, enabling a wide variety of configurations to be implemented, thereby offering the versatility and flexibility required in many diverse embedded applications. Because of the miniature size, developers can now embed PC-based control in a variety of machines and equipment, retaining the development investment based on PC technology as well as benefiting from the enormous development support products available oh the PC.

For further information, contact Integrated Measurement Systems Litd ony 01703771143.

Compact Loudspeaker from Maplin

The new Compact Stage Monitor Is $\left\{\begin{array}{l}\text { high quality, low cost }\end{array}\right.$ loudspeaker which has been specially designed to allow musicians to hear themselves clearly in situations where bass and amplified instruments are being used. The unit contains a high quality $12 i n$. woofer, and a $13 / 8^{n \prime}$ titanium high frequency driver, which are driven through a specially designed crossover/equaliser network to give the best possible sound quality.
The substantial cabinelis covered in a hatiwearing matgrial to cope with the rigours of professional use.
contact Maplin on 01702554161.

Specification:

Frequency Response:
Crossover Frequency:
Nominal Impedance:
Sensitivity:
Power handling

Dimensions:

The stage monitor costs E189.99 (linc VAT). For further detalis contact Maplin 01702554161.

Maplin Spikes Mairas Supply

The new Spike Protector from Maplin Electronics is a 4-way mains socket strip that redirects transients and surges on the mains supply saiely to earth. The unit has a response time of less than ten nanoseconds.
A built-in neon glows brightly when three conditions are met: the protection unit is intact, the supply fuse is not ruptured and the correct earth is present. Any problems will cause the neon to glow, or if the earth is not present, the neon will glow with a reduced light output.

To help comply with BS 6396, the socket strip is provided with an external earth terminal to ground other desk-mounted electronic equipment. The socket strip can be mounted on a wall or desk and comes with two metres of mains cable and a BS plug fitted with a 13A fuse. The socket strip is fitted with an integral 7A fuse.

The Spike Protector costs £29.99 (linc. VAT]
For further details, contact Maplin on 01702554161.

Optical PG-Bus Extender

IMS has announced a new Optical PC-Bus extension kit enabling a standard PC-Bus (ISA) to be extended up to distances of 100 m . Code-named the PCX-797, this kit comprises two, half-size standard PC-bus plug in cards. A master card, which plugs into the maln PC and a slave card which plugs into the extended bus, joined by fibre optic cable up to 100 m away. A number of mutti slot extender backplanes (from 3 to 20 slots) as well as remote housing chassis are also available.

The fibre optic link operates at very high transmission rates (96 Mbps) thereby eliminating bus timing problems usually associated with limited bandwidth cable based bus extension. The optical link also provides the benefit of interference-free communications allowing extension in electrically noisy environments, Multiple Master/Slave kits can be installed in a single PC allowing a star network of remote outstations to be implemented.

The PCX-797 is ideal for remote monitoring and control applications from a central controller, where the distances are too great for conventlonal cable-based extends, as well as for applications in hazardous areas.

For furlher information, contact fintegrated Measurement Systems Ltd on 01703771143.

Electronics Service Test Softwire

Polar Instruments has introduced a powerful new software capability for its analog signature analysis (ASA) test systems which eliminates a major cause of lost productivity in electronics service test and repair - invalid fault diagnosis. ASA is one of the most common electronics service techniques in use today, but logic ICs from different vendors - although functionally compatible - can exhibit marginal signature variances which appear as fautts. Polar's software, called AVR (Advanced Vendor Recognition), takes advantage of the digitised signature facilities in its PC-based T4000, T6000 and TDBO00 field service testers to detect these variances automatically, eliminating confusion for the user - and potentially unnecessary repairs. When the time to accomplish such repairs - and the necessary retest - is taken into account, AVR can double the throughput of test and repair operations.

For example, AVR can significantly improve for in-house maintainers of process control and automation equipment who may have difficulties building up a repair knowledge base due to low volumes of a particular board type. For these groups, ASA is a key maintenance technique and Polar's AVR can clarify the fault location process, resulting in fewer unnecessary repairs, reduced maintenance costs and increased overall efficiency. Similarily, in test and repair depots, AVR can cut the time necessary for a new service engineer to become effective in fault diagnosis.

Working without powering up a suspect PCB and without the need to circuit documentation, ASA provides a fast, diagnostics-oriented, type of testing which can quickly detect failures in digital and analog circuitry, and typically allows equipment to be retumed into service for the price of a simple component. PCBs are tested on a component-bycomponent basis by applying an AC signal - which is both voltage and current limited - to produce an impedance 'signature' that is characteristic of a node's in-circuit behaviour. Wrong, or failing, components present different characteristic signatures, making it very easy to identify faults.

The introduction of PC-based virtual instrument panel front-ends for this type of equipment automated the ASA application by providing powerful signature digitisation, storage and comparison facilities. Digitally-stored signatures are ideal for long-term system maintenance tasks and for service organisations adopting distributed repair strategies, because they eliminate the need for expert electronics knowledge of the circuit under test, and speed component-level fault diagnosis. However, logically equivalent ICs from different manufacturers - for example 74HC373s from Harris Serniconductor and Texas Instruments - produce marginally different signatures, creating confusion for the user which can result in invalid fault diagnosis. For example, one frequent cause of such signature deviations arises from the various methods used by different manufacturers to construct pin protection diodes. AVR's powerful correlation techniques identify where three or more pins of an IC fail in an identical manner and produces the message "probable vendor difference", eliminating both the confusion and the need for repair. Interestingly, AVR also highlights the common case in bus-based boards where different build standards may or may not contain pull-up resistors, making it extremely useful for experienced users servicing computer and peripheral boards.

For further information, contact Połar Insiruments Ifd on 0148163081.

POWER AMPLIFIER MODULES-TURNTABLES-DIMMERS-
 LOUDSPEAKERS-19 INCH STEREORACK AMPLIFIERS

SERVICE * LAROE $A A 1 S A E$ E, BOPSTAMPEDFDRCATALOGUE *
OMP MOS-FET POWER AMPLIFIERS THOUSANDS PURCHASED HIGH POWER. TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W) ALL POWER RATINGS R.M.S. INTO 4 OHMS, BOTH CHANNELS DRIVEN FEATURES: Independen power supphies with two loroidal translormers \$win L.E.D. Vu meters \# Level controls * Iliumingted on/ OHI switch XLA connectory Standard $7 T_{5}$ SV inguls Open and short circuh
 USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, OISCOS ETC.

PRICES;-MXF200 $£ 175.00$ MXF400 $£ 233.85$ MXF600 £329.00 MXF900£449.15 SPECLALIST CARAIER DEL. \&12.50 EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVEF

Advanced 3-Way Stereo Aclive Cros 8 -Over, housed in a 19" x 位 case. Each Channel has three level controis: dass, mid \& lop. The ramovabie tront lascia allows access to the programmable DIL switches 10 adjust the on esch bass channel. Nominal 775 mV inpulloulpul. Fully compatibie with OMP rack amplifier and modules. Price £117.44 + £5.00 P\&P
STEREO DISCO MIXER SDJ3400SE * ECHO \& SOUND EFFECTS
STEREO DISCO MIXER with 2×7 band L\& A A graphic equalisers with bar graph
LED Vu melers MAMy OUTSTAMDrMc LED Vu melers, MANY OUTSTANDIMG FEATURES:- inchuding Echo with ropest a
speed control, oi mic with speed control, OU Mic with talk-over
switch, 6 Channels with individual faders switch, 6 Channols with individual taders
plus cross tade, Cue Headphone Monitor, 8 pluz cross zode, Cue Headphone monnor, 8 following inputs:- 3 turntables (mag)

Price \&144.99 + E5.00 P\&P
 StZE: $482 \times 240 \times 120 \mathrm{~mm}$

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolutiont The low dynamic mass (no voice coll) of a Piezo tweeter produces an Improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 walts (more it two are pul in series. FREE
EXPLANATORY LEAFLETS ARE SUPPLIEO WITH EACH TWEETER.

TYPE ' A ' (KSN1036A) ${ }^{2}$, round with prolective wire mesh. Ideal for bookshelf and medium sized Hi -Fi apeakers. Price $\mathrm{E4} .90+50 \mathrm{p}$ PAP. TYPE 'B' (KSN 1005 A) $31 /{ }^{\text {" }}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50$ p P\&P.
TYPE 'C' (KSN1016A) $\mathbf{2}^{\text {" }} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi.FI systems and quality discos etc. Price $£ 6.99+50 \mathrm{p}$ P\&P.
TYPE ' 0 ' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mld-range (2 KHz). Suilable for high quality Hi-Fi systems and quality discos. Price $£ 9,99+50 \mathrm{p}$ P\&P. TYPE 'E' (KSN1038A) $3^{3 / 4}$ " horn tweeter with altractive silver finish trim. Suitable for Hi-Fi monitor systems etc. Price $\mathbf{E 5 . 9 9}+\mathbf{5 0 p}$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinel input jack sockel. $85 \times 85 \mathrm{~mm}$. Prlce $\mathbf{5} 4.10+50 \mathrm{p}$ P\&P.

FBIFLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers. designed to take advantage of the fatest speaker technology and enclosure designs. Both models uilise sludio quality constant directivity horns, extruded aluminium cornef protection and stee ball corners, complimented with heavy duty black covering. The enclosures
biter are fitted as standard with lop hats for optionai loudspeaker stands.
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE 4EHz - 20 KHz
thIFC 12-100WATTS (100 dB) PRICE E1 50.00 PER PAIR
thIFC $12-200$ WATTS (100dB) PRICE E 175.00 PER PAIR SPECIALIST CARAIER DEL. $\mathbf{t 1 2 . 5 0}$ PER PAIA
OPTIONAL STANDS PRICI PER PAIR C 49.00 Dellivery $£ 6.00$ per pair

IN-CAR STEREO BOOSTER AMPS

PRICES: 150 W C49.99 250W E99.99

THREE SUPERE HIOH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo, 150 W Bridged Mono 250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Slereo, 400 W Bridged Mono
ALL POWERS INTO 4 OHMS
Foatures:
high \& bridgable mono Choice of high \& low level inpuls L A levet
controls \& Remote on-of $\#$ Speaker \&

400W E109.9s P\&P E2.00 EACH
 very

OMP MOS-FET POWER AMPLIFIER MODULSS SUPPLIED READY BUILT ANO TESTEO.
 ce. When comparing prices NOTE that all models include foroidal power supply, mitegrai heat sinit, ol ese fitre PC Mi-Fi

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensltivity 500 mV , S.N.R. -110 dB . Slze $300 \times 123 \times 60 \mathrm{~mm}$
PRICE $\$ 40.85+\mathbf{5} .50 \mathrm{P} \& \mathrm{P}$

OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{us}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE 564.35 + 4.00 P\&P

OMP/MF 300 Mos-Fet Outpul power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damplng Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Senshivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE $881.75+$ E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 wattis R.M.S. Into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.001%, Input Sensltivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Antl-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE E132.85 + E5.00 PgP

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE E259.00 + 12.00 p\&P
MOTE: MOS-FET MODULES ARE AVALLABLE IN TWO VERBIONS STANDARD- HPPUT SENS 500 mV , BAND WIDTN tOOKME. STC (PROFESSHONAL EOUIFMENT COMPPATIBLEI) - INPU

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIOH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also available

GMINENCE:- INSTRUMENTS, P.A.. DISCO.ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
$8^{\prime \prime} 100$ WATT R.M.S. ME8-100 GEN. PURPOSE. LEAD GUTTAR. EXCELLENT MID, DISCO RES. FREQ. T2Hz, FREO. RESP. TO $4 K$ Hz, SENS $97 d B$. 10" 100 WATT R.M.S. MEI $10-100$ GUTTAR, VOCAL. KEYBOARO, DISCO, EXCELLENT MID. RES. FREO. 71 Hz . FREO. RESP. TO 7 KHz . SENS97dB. PRICE L33.74 + $82.50 \mathrm{P} \& \mathrm{P}$ 10200 WATT R.M.S. ME $10-200$ GUITAR. KEYB'D, DISCO, VOCAL. EXCELLENT HIGH POWER MID. RES. FREO. 65 Hz , FREQ. RESP. TO 3.5 KHz . SENS 990 B . $12^{\prime \prime} 100$ WATT R.M.S. ME $12-100$ LE GEN. PURPOSE, LEAD GUITAR, DIS RES. FREQ. 49 Hz , FREQ. RESP. TO 6 KHz . SENS 100 dB . 12" 100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE
MONITOR. RES. FREO 42Hz, FREG. RESP. TO 10 KHz , SENS 986 B , $12^{\prime \prime} 200$ WATT R M 5 . ME, FREQ. RESP. TO $10 \mathrm{H} H 2$, SENS $98 d \mathrm{GE}$, $12{ }^{2} 200$ WATT R.M.5. ME $12-200 \mathrm{GEN}$. PURPOSE, GUITAR, DISCO, V
RES. FREO. 58 Hz , FREO. RESP. TO 6 KHz , SENS 980 dB . RES. FREO. 58 Hz , FREO. RESP. TO 6 KHz , SENS 98 dB RES. FREO. 47 Mz , FREO. RESP. TO 5 KHz , SENS 103 dB . IS 200 WATT R.M.S. ME1 5-200 GEN. PURPOSE BA RES. FREQ. 46 Hz , FREO. RESP. TO 5 KHz , SENS 99 dB , $1 \mathrm{~B}^{\prime \prime} 300$ WATT R.M.S. ME15-300 HIGH POWER BASS,
RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB . RICE $\mathbf{5 4 3 . 4 7}+$ C2.50 P8 SCO, STAGE MONITOR. PRICE E35.64 + $\mathbf{~} 3.60$ P\&P PSE, P.A., VOCAL, STAGE CAL. EXCELLENT MIO PRICE EAS. $74+5350$ PRICE \&46.71 + E3.50 PAP , KEYBOARD, DISCO ETC. ASS GUITAR. RES. FREO. 46 Hz , FREO. RESP. TO 5 KHHz , SENS 99dB.
$1 \mathrm{~B}^{N} 300$ WATT R.M.S. MEE $5-300 \mathrm{HIGH}$ POWER BASS. INCLUDING BASS GUTTAR.
RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103dB.
EARBENDERS:- HI-F]. STUDIO. IN-CAR. EIC
ALL EARBENDER UNITS 8 OHMS (ExcepIE88-50 \& EB1G-50 -nich ore dua
EASS, SINGLE CON HIGH COMPLIANCE, ROLLED SUPHOUND 8^{-}BOwatt EB8-60 OUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR.
RES. FREQ. 40 Hz , FREO. RESP. TO 7 KHz SENS 97 dB .
$10^{\prime \prime}$ SOWATT EB $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HIRES. FREQ. 40 Hz , FREO. RESP. TO 5 KHz , SENS 99 dB
10" 100 WATT EB 10 -100 BASS, Kl-FI, STUDIO
RES. FREO. 35 Hz , FREO. RESP. TO 3 KHz , SENS 95 dB
12^{\prime} 100WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREO. RESP. TO 3 KHz , SENS 93 dB . FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SUAROUND $5 \%^{\prime \prime}$ 6OWATT EBS-GOTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC. RES. FPEO. 63 Hz , FREQ. RESP. TO 20 KHz , SENS 92 dB . B $1 / 2$ " GOWATT EB6-GOTC (TWIN CONE) HI-FI, MULTI-ARAAY DISCO ETC RES, FAEQ. 38 Hz . FREQ. RESP. TO 20 KHz , SENS $94 d B$. $8^{\text {B }}$ BOWATT EB8-GOTC (TWIN CONE) Mi-FI, MILTI-ARRAY OISCO ETC. AES. FREQ. 40 Hz . FREO. RESP. TO $1 / \mathrm{KHz}$, SENS 89 dB . RES. FREQ. 35 Hz . FREQ. AESP. TO 12 KHz . SENS 98 dB .

PRICE C73. $34+$ \& 4.00 PQ

CAR.

PRICE C8. $90+$ + 2.00 PR P PRICE C13.

PRICE E30.38 + $\mathbf{\text { C3. }} 50$ PRP
PRICE $842.12+\mathbf{3} .50$ Pap

PRICE C9.99 + C1.60 PAP

-

 $10.02+1.60 \mathrm{P} \mathrm{\&} \mathrm{P}$ PRICE $\mathbb{1 2} .90+\boldsymbol{\$ 1 . 5 0}$ PAP PRICE $£ 16.49+$ e2.00 PAP TRANSMTTIER HOBBY KTTSPROVEN TRANSMITTER DESIONS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS 3W TRANSMITTER $80 \cdot 100 \mathrm{MHz}$ VARKAP COHTROLLED PROFESSIOML

FIM MICRO TRAMSMITTER $\$ 00.108 \mathrm{MHZ}$ VAAICAP TUNED, COMPLETE WITH

VERY SENS FET MIC. AANGE $400-300 \mathrm{~m}$ SIZE SS I 46OM SUPPLY SV BATTERY

 Nund
 ESSEX. SS2 GTR Tel. 01702-527572 Fax: 01702420243

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit diagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance Including lline widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehenslve package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modification of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also available for DOS.

CADPAK FOR WINDOWS
CADPAK FOR DOS £ 79

- PROPAK for Windows

PROPAK has all of the features in CADPAK plus netiist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and $P C B$ design functionality for all but the most demanding applications.

PROPAK's schematlc drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical designs.
- Netlist link between modules guarentees consistency between schematic and PCB.
- Netlists are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full bill of materials.
- ASCll data import facility.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Mult-strategy autorouter gives high completion rates.
- Power plane generator creates ground planes with ease.
- PROPAK is also available for DOS.

PROPAK FOR WINDOWS $£ 495$ PROPAK FOR DOS £ 395

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Computing without
 $\$$

Abstract

A revolutionary British-desígned"clockless asynchronous processor chip could fundamentally change the way in which computers are constructed and used, Nick Hampshire looks at this world beating technology, and why it is considered to be the Holy Grail of computer science.,

When buying a new computer one of the first questions most of us will want to know is the system's clock speed. This is because the clock speed gives us some idea of the processing power of the system; it is a guide to how many instructions the system can periorm in a given period. It thus allows us to distinguish between systems which are otherwise identical. But a processor's clock is not there to simply give the user some idea about how powerful the system is. Indeed it has a far more important function. The main function of the processor clock is to synchronise the different operations of the processor. It ensures that all logic levels are steady at the same time, and that all logic levels which are about to change will change at the same time.

The function of the clock is, therefore, to synchronise all the diverse different operations of the processor and the system of which it is part. In other words, not only the CPU operations are symehronised by the clock but also memory, I/O, even disk drives and video displays. Such systems are thereiore described as synchronous processor systems.

Every digital computer which has been produced so far, except for some of the very earliest designs has been a synchronous clocked system. But although it has served computer designers - in particular microprocessor designers well in the past, it is a technique which is starting to come up against severe limitations as processors become both larger and faster. These limitations are already stretching designers' ingenuity and capabilities to the limit.

The limitations which are becoming a serious problem in designing larger and larger, and faster and faster microprocessors - and we are now looking at devices with ten million transistors running at clock rates of well over 100 MHz can be broadly grouped into four categories.

First of all there is the question of power usage. With all those transistors being switched at very high speed, such a processor needs a lot of power, and it dissipates that power in
the form of lots oi heat. Already, microprocessors which consume 20 or 30 watts are not unusual; indeed if current design trends continue we could be looking at a 0.1 um 5 V CMOS processor dissipating 2 kW by the year 2000. (This could of course be a design feature! every sysiem has a builtin central heating unit equivalent to a two bar electric fire.)

Power consumption is already a serious problem; even today's fairly moderate power usage requires special techniques to channet away the unwanted heal, as well as posing problems in the design of battery-powered portable systems. The DEC Alpha uses heat pipes to channel the heat away, whilst the SPARC uses Peltier Effeci devices to actively cool the chip, others use fans mounied directly on the processor chip or special heatsinks.

Power consumption is being kept down by several iechniques, such as the use of lower supply voltages (reduction to 3 V operation will reduce power consumption by a factor of 3 over 5 V operation). More significantly, the use of power management lechniques to switch off the clocks to some areas which are not currently being used but are still consuming power. Typical of this technique is the 'sleep mode' found on many low power microprocéssors, but such techniques are fairly crude and their granularity very course.

Secondly, designers are faced with physical limitations, the speed of light, on how far a pulse can be sent down a wire in a given period; as the period gets shorter so the distance gets shorter. In a nanosecond, light travels just 30 cms in a vacuum; an electron moving along a thin gold wire would probably only go a couple of centimetres. This essentially means that a very fast processor has to be bult on a single piece of silicon using as small a device geometry as possible. The supercomputers of today are

[^0]
Transifion Signalling and Miaropipelines

Fig.1. The timing diagram showing how the two event signalling lines are used

Much of the original theoretical work on designing an asynchronous computer was done by lvan Sutherland in the States. Sutherland, who is well known as the founding father of modern computer graphics, started looking at the problems involved indesigning an asynchronous system during the late 1970 s when he was at Caltech. This work formed the subject of his famous Turing Award lecture in 1989.

The publication of that lecture in the Communications of the ACM inspired researchers around the world to look again at the design of an asynchronous computer. Sutherland had proposed that the best design was what is known as a pipelined processor, a,computer architecture which can provide very high speed processing because the separate stages of the pipeline are able to work concurrently

Pipelines are widely used in modem highrspeed processors, such as graphics processors and DSPs; and are best understood by using an analogy with a manufacturing assembly tine. In an assembly line, a succession of objects, such as motor cars, passes down the line along which different people working concurrentiy perform small specialist operations. Productivity is increased because each individuallhas optimised the task that he or she does. The same goes for a computer plpellne since it uses concurrençy to maximise processing speed!

A pipeline processor therefore operates on data asit moves along the pipeline - in other words, down the assembly line. This implies of course that the pipeline both stores andiprocesses data, and not just one byle of data but a sequence of bytes of data, with storage

Fig.2a The transistor level implementation of à Muller C gate for use on an IC

Fig 2b Muller C gate implementation using AND gates elements altemating with processing elements. If we remove the processing elements of a pipeline then it becomes a sequence offorage elementsithrough which data can pass, much like either a shift register, of a FFO bulier-

The vifue of a plpeline is that it can be either clock driven or eventdriven, on all current processors the pipelines are of course clock driven, but for an asynchronous processor it will be event driven. The problem with many types of clocked plpeline is that they tend to be inelastic and, when stripped of the processing element, rather like a shift register. In such inelastic, pipelines, the amount of data in them is fixed andthe outpuifrom the pipeline exactly matches the input.

XOR provides the OR function for events
Muliser C-elements provide the AND function for everts
Toggte steers evants to its cutpuis alternately starting with the dot
SELECT steers events according to the Boolean value of its diamond input
All remembers which client. R1 or P2. called the procedure, A , and after the procedure is done, D . seturns a matching doner event on D1 or D2
ARBITER grants sarvice. G1 or G2. to only one input request. R1 or R2, ata time. delaying subsequent grants until after the matching done avent. D1 or D2

Fig.3. Other event driven logic modules required for constructing an asynchronous processor

Input and outpuî râtes, as well as storage capacity can only be made to vary when the pipeline is elastic. An elastic pipeline strippedl of its processing component is essentially a flow through first in first out memory, or FIFO. Sutherland realised that event driven elastic pipelines, with or without processing capability. were one of the keys to the design of an asynchronous computer system, and ihe referred to them as 'micropipelines'

The other main key was to move from using the thigh/low' voltage levels of a clocked system for defining logic true and false to a system where the absolute voltage levellis ignored and it is the transition between the two levels which specifies the 'event?. This he referred to as transition signalling, and has the potential of being twice as fast, and a lotimore energy efficient than clock based systems since information is transferred in both the rising and falling edges of a pulse, as opposed to the pulse itself

Transition signalling can be used to providethe event signalling which istessential for the proper operation of a micropipeline. The actual data is stil! stored as high andilow voltages representing true and false. Event signalling is the key component of an asynchronous system, and just as asynchronous communications ports use 'request' and 'acknowledgब? handshaking lines, so a micropipeline also uses 'request' and lacknowledge' event signalling lines.

The timing diagram (Fig. 1.) shows how these two event signalling lines are used. in phase 1, the sender places a value on the datalines and then sends an event on the request line. In phase 2 , the receiver accepts the data and responds with an event on the acknowledge line. Because the events use transition signalling, they can be either a rising or a falling edge.

Superficially, this resembles a common two phased clocked system, but it is actually rather simpler since sudfill systems have five events per cycle as opposed to two. But what makes it really different is the fact that, in the micropipelined system, the two phases can be of different and variable duration-this identifies (t) as being a true asynchronous system.

On a practical level, the problem is that transition signalling of events is something which cannoleasily be done using standard logic gates; these are all designed for level sensitive operation rather than transition based operation. To solve this problem Sutherland used a special circuit which contains a 1 tbit memory celliand if known as a Muller C gate after its inventor David Muller.

The Muller C gate is represented by an AND gate symbol with a C inside ift. It has two inputs, one of which if often inverted, and one output, and a reset line, Cdn (see Fig. 2 a which also shows the transistor level implementation for use on an IC; an implementation using AND gates is shown in Fig.2b.). In operation; the C gate will only output an event when both its inputs enter the same logic state after both have received an event. A range of other event driven logic modules required for constructing an asynchronous processor are shown in Figi3; most of these are constructed using C gates

One module which is not in that list is ithe event driven transparent latchishown in Fig.4a. The Muller C gate handles the event signalling on a micropipeline but to construct such a pipeline one also needs to give it storage capability, hence the need for the transparent latch, a sort of event driven version of the D-type filip-flop.

Each latch has two event driven inputs called PASS and CAPTURE. The PASS input is used to render the latch transparent - in other words, the state of the data input is directly transferred to the data output; the liatch essentially disappears. The CAPTURE event input latches, and thus stores, a 1 -bit data value, so that the logic values on the data input and the data output lines may well be different, depending on the value stored in the

microprocessors, the DEC Alpha - probably the most powertul micro currently in production - has a power equivalent to that of a Cray super-computer produced just three or four years ago.
.-Thirdly, there is the problem of accurately synchronising all the operations within a large chip operating at very high speed. Once again, the length oi data paths is a critical factor. If an operation is to be performed in several different areas of the chip concurrently, then the designer will have to build delays into some of the data paths to ensure this concurrency. This effectively means that the processor can only operate as fast as its slowest component, and a lot of silicon and design effort is usually devoted to making such rare worst case operations fast.

Fourthly, and finally, there is the problem of clock slew at high data rates. This is the tendency of the clock pulse to lose its sharp rising and falling edges and therefore become an inaccurate means of ensuring synchronisation. The only real way around this is to use brute force to drive the clock pulse and prevent it being slewed. Thus, on the DEC Alpha the clocking system is a major engineering achievement with the
drivers; essentially in the form of a 40 watt power transistor, occupying over 20\% of the silicon area. The designers of the Alpha have pushed the solution of this problem to the limits; there is little further scope for improvement.

Alt these limitations add up to the inescapable fact that the designers of conventional sequential microprocessors, both CISC and PISC versions, are starting to encounter technical limitations in their quesi to build ever faster and more powerfu! processors. These limitations may be uneconomical to solve in traditional processor designs, but might be easily soluble if we simply change the way in which we think about designing a compuler system or, for that matter, any highly complex high speed logic circuit.

Changing the design paradigm

The development of computer science has been one of a continuous search for ways of constructing machines which are more powerful. Because of some of the constrainis which have just been outlined, in particular the maximum distance that an electrical pulse can travel in a very short period, it is now widely accepted that very fast computers will have to be
latch. One can construct such a transparent event driven latch using three conventional latches and three standard inverters. The transparent event driven hatchelements can then be assembled to? build byte wide storage registers.

A simple micropipeline would consist of one register per pipeline stage, plus Muller C gates for the event driven control; a block diagram for such an event driven elastic FFO micropipelline is shown in Fig.5. The data passes through the latches from loft to right, and elasticity is ensured because empty latches are completely transparent; with the four stages shown it could have just one data element or four elements stored

Stability is ensured by the fact that
eachistage is a controt event loop which checks to see if the predecessor and successor stages are different. If they are, then it copies the predecessor's state. If mot; it holds the present state and goes back round the control loopsit is th s type of event controlloop which eliminates the meed for clock
synchronisation.
So far we have onlyllooked at micropipelines with storage capability
but no processing, and in fact
micropipelines coutd be used to. construat very fast and efficient memory systems. Adding processing to the micropipeline increases the circuit complexity but it does not destroy the fact that it no longer needs any clock synchronisation to function.

Fig.4b. Gate implementation of event driven latch

Fig.5a. An event driven elastic FIFO micropipeline
bult on a single plece of seriniconductor using very small component geometries.

This is fine so long as the processor design is very simple since, as we have seen, increasing device complexity brings with it other serious limitations, clock slew, synchronisation, and excessive power requirements. Device simplicity is the chue to one attempi at minimising some of these problems, hence the enormous interest in Reciuced Instruction Set Computers, or RISC processors.

With a RISC processor the complexity of the device is reduced by reducing the instruction set to the absolute minimum, and transferring the tesk of performing complex operations from the processor hardware to either the software or other specialist hardware such as a maths coprocessor. This is a technique which has proved very popular in applications, such as graphics processing, where a lot of simple repetitive instructions are used. In such applications, RISC processors can be made to perform at significantly higher processing rates than comparable conventional processors,

Another approach is to create a paralie! processor which is capable of breaking a complex task into a lot of simple tasks

and then performing these concurrently in order to achieve higher processing power. This is a very successiul technique. and some of the word's most powerful computers such as the Connection Machine, are parallel architecture systems.

The problem is that these and other similar approaches do not actually solve the problem, they simply delay the time at which they become serious, and indeed they may actually add furtiner problems. For example. RISC processors are excellent in certain applications but indifferent in others. This is because processor complexity is reduced at the expense of an increase in software complexity. Similarly parallel processors may be very fast but they are not particularly amenable to being scaled down so that a whole parallel system can fit on a single chip, once again designers are faced with the problem of wire length and signal speed.

These are all problems which have been exercising the minds of computer designers for many years, and there is one solution which has been proposed on several occasions during Ihis period and which should, if the theorists are right, eliminate, or substantially reduce, most of these limitations. Indeed, it should enable designers to go on producing ever faster and more complex processors on a single chip of serniconductor for many years. That is until new limitations caused by attempting to fabricate components from just a few atoms start to make their appearance.

This solution is the asynchronous computer, the clockless processor - a solution which has become the Holy Grail of many computer designers.

The asynchronous computer

In an asynchronous computer, the absence of a clock pulse means that there is no synchronisation between all the different components of the processor (a fact which immediately solves several problems, such as those of synchronisation with its requirements for a monolithic design. and clock slew with its need for massive clock drivers). Instead, each part of the processor operates using either its own clock or ait maximum speed.

Data and instructions are transferred between different parts of the processor using a handshaking technique which will be familiar to anyone who has worked with asynchronous communications ports on a computer. When one part of the processor has data or an instruction available for another part to use it sends a signal to that part telling it that it is ready to send this data or instruction, it will only do this upon receipt of an acknowledgement signal from the part that is to receive the data or instruction.

This means that each part of the processor can work at maximum speed whenever instructions and data are available; there is no need to slow the overall operational speed down to match that of some worst case operation. In other words, an asynchronous processor will operate at very high speeds when periorming simple commands and at a slower rate when performing more complex commands.

For readers farniliar with computer programming, the asynchronous computer is analogous to object oriented programming. Here the rigld structure of procedural languages, as with synchronous computer designs, has given way to the very flexible collection of self contained objects. Each object is a programme in its own right; there are no global variables or procedure calls, simply the communication of data.

Object oriented programming has largely developed from the programmer's need to produce ever larger and more complex pieces of code. It allows the programmer to do this
without the danger of the programme becoming untestable and so rigid in its structure as to be impossible to easily upgrade. By using the object oriented approach the individual component objects to be individually tested, verified, and updated with ease.

Similarly, with the asynchronous computer, it can be built from a large number of simple modules which can each be individually lested and verified with much greater ease than a large, rigidly structured processor. This means that an asynchronous system should be capable of being designed and tested very quickly. It also means that the system can equally easily be changed, updated or specially tailored ior a specific application. Remember that, with an asynchronous system, there is no rigid synchronisation built into the design, only simple communications links.

This modularity of design using building blocks and ease of system testing and verification are both very important factors in a commercial world where getting a product on the market quickly is all important. It allows designers to construct a working implementation and then gradually refine the design in small increments as opposed to major design revisions.

In another similarity an object will only be activated when specific data is available either from other objects or from some extemal source. In an asynchronous computer. the only parts of the system that will be functioning are those parts which are actually processing data or instructions; any other circuitry is quiescent. This is in contrast to a synchronous systern where every part is operating irrespective oi whether it has any data or instructions to process.

This factor is an important thing in lavour of asynchronous systerns, since if such a system is iabricated in CMOS, there will be a substantial power saving. This is because, in such a circuit, power is only used when the circuit is actually switching data; in the quiescent state power requirements are infinitesimally small.

This close relationship between power use and the amount of processing to be done by the sysiem means that an asynchronous computer will immediately change its power requirements in response to changes in processing requirement. At full processing capacity, the asynchronous
processor will use as much power as a conventional clocked processor, but at lower processing capacity it will use less and less power, whereas the clocked processor will still be using the same power as it did at full capacity.

Of course, some modem processors do attempt to save power by shutting down unused sections of the processor. an extreme version of which is sleep mode. But the granularity of such control systems is very course and can not compare to the very smooth and automatic reduction in power use by an asynchronous processor, which will of course automatically go to 'sleep' when there is no processing to be done, and equally automatically will 'wake up' when processing is needed.

All of this means that since most processors spend a very large proportion of their time doing nothing, an asynchronous processor could be a very low power processor, making it ideal for the multitude of battery powered portable, hand-held devices which are being developed.

We can thus summarise a few of the advantages of an asynchronous design as:
(1) no problems with clock slew

- no need for large clock drivers
- no need for rigid synchronised designs
- highly flexible modular design
- easy updating of designs
- easier testing of designs
- maximised cperation speed
- very low power censumption
- no problem with signal propagation delays

From this small list it can easily be seen why the design of an asynchronous computer has been considered by many to be the Holy Grail of computing.

But there is one negative; it has nothing to do with the lechnology, but rather with the people who will use it. The problem is that the concept of synchronous clocked computers has become so ingrained into the psyche of designers, computer scientists and users that it may be very difficult to get people to switch to clockless designs, despite the obvious advantages of such designs.

AMULET The Asynchronous ARM

The ARM microprocessor was originally developed overic
 Computers Ltd (well known for their BBC Micro of which over 1.5 milliön werasold worldwide). The ARM is a RISC (Reduced Instruction Set Computer) processor and was designed as a powerful versatile replacement to the 8 -bit 6502 usedin the BBC machine. It is now produced lby a separate company part owned by Acom and Apple.

The ARM is a 32-bit processor and the worldis first: commercial implementation of the pioneering RISC designs developedrat Stanford and Berkiey Universities in Califomia. The first suersions of the chip were fabricated using 3um CMOS with test samples being delivered in April 1985. Successive generations of the ARM have become faster and iare fabricated using smaller geometries, ihe current ARM7 being fabricated in 0.8umit CMOS with an 8 K fully associative cache, and capable of

Fig.6. Top level interface of the AMULET;

A similar problem faced programmers attempting to move from procedural languages to object oriented languages. It required an enormous, and extremely difficult intellectual change in the way that the programmer looked at problems and attempted to solve them. It took many programmers years to make this change; some never made it. A similar change will be demanded of electronics engineers and computer designers - they will have to learn to live without a clock, and that may prove very difficult.

Is the future clockless?

There are currently four maisor teams around the wortd. besides Proiessor Furber's at Manchester University, who are working on asynchronous computer systems. In the USA, work is boing carried out at Caltech under Alain Martin on a 16 -bit processor, whilst at SUN, Ivan Sutherland is working on an asynchronous implementation of the well known SPARC processor. In Holland, researchers at Philips Research under Kees van Berkel are working on asynchronous systems ior use in audio electronics. Whilst in Japan a team at the Tokyo Institute oi Technology under Professor Takashi Nanya are working on an asynchronous RISC processor

So far the Manchester team look like having a considerable lead over the others since they are the only ones to have actually produced a working asynchronous processor that reimplements a commercial device. Neither of the American teams have yet come up with a working device, whilst the team at Phillips have produced working asynchronous devices but are not working on an asynchronous processor.

This leaves the team in Tokyo who have just produced a very smail 8 -bit asynchronous processor. They are currentiy working on a larger version which will closely resemble the AMULET 1, and they expect to have a prototype avaifable in 1997. This gives ARM about a two year lead on the other teams. This should be enough time to permit them to
capitalise on this very important work and stant to build a world leadership in this technology.

The work of all these researchers is being closely monitored by the big computer, telecommunications and semiconductor manufacturers, all of whom see enormous potential advantages in the use of asynchronous technology, particularly in the areas of low power systems and modular design.

Hand-held devices such as digital phones, the soon to be released hand-held satellite phone, personal digital assistants and global positioning systems now all incorporate increasing levels oi intelligence. There is an enormous potential demand for powerful processors which can operate for a long time on battery power. Asynchronous devices with their smooth instantaneous decrease in power requirements as data throughput decreases are ideal, since in most such applications peak processing power is only required for a very short period, most of the time the processor will be doing nothing.

Similarly, the rapid increase in the number of applications is creating an increased need for highly integrated special purpose chips which incorporate intelligence; the boom in licensing agreements by ARM is evidence of this. The need to get such products on to the market quickly means that the rapid modular design potential of asynchronous systems will be enormously appealing. Indeed some of the first commercial applications for asynchronous systems will probably be as components within a more conventionally designed chip. For example, the consumer electronics products being designed by Phillips.

However, in the longer term, probably within the next five years, asynchronous processor technology is likely to become a major factor in the world computer market. And it is a fairly good bet that just as object oniented languages have swept into and now dominate computer programming, so clockless computers will sweep in and dominate the computer harciware of the future.

Fig.7. The functional units of the execution pipeline
operating at 33 MHz .
When deciding to developraworking asynchronous processow Professor Steve Fuibeirantilhisicam gh Manchester University, in association with Advanced RISC Machines, decided to producęila deevice which was the equivaient of a standard commercial processor. This dęcision tyuld enablethem lo use a!llithe development software already available for the existing synchronous processof. The processor they chose was the ARM6, a device which has bee ome the world stam wif IRIS arciilecture for llow-cost Iow power applications.

The ARM is buill using what is known as a load/storegrchitecture with 16 visible registers availableg the programiner: In addition to these general purpose fegisters, there is a Current Programme Statusi Register available in every mode, and a Saved Programme Status Register for each non-userimode. In common with other RISC processors: ARM separates those instructions which perform data processing functions from those which move data betweenlifegisters and memory.

This architecture is re-implemented on the AMULET 1 using a fully asynchronous design based upon micropipelines, and has resulted in a device which exactly copies the functionality of the ARMG omitting only the coprocessor instructions and suppor for thes26-bit address space modes which the ARM6 has purely for backward compatibility with earlier versions; The processonused howeyer, a micropipellined interface betweenthe chip and its environment.

This was done sathat future versions could include a cachamemory; and micropipeline Ihterface a natural way tognnect such memory to the processor core: (this choice $\overline{\text { af }}$ micropipelited interface made initial testing of the AMULET AVEry dificulf, bul on the AMULET 2 the interface circuitry will be placedion chip and so should not cause any problems) the toplevel interface of the AMULET 1 is shown in Fig. 6 . It shows how the AMULET is connected to the MMU and standard memory

The functional units of the execution pipeline are shown in Fig.7. This diagram shows how the operands first pass through a multiplier. This unit either passes them on straighemay ror replaces them with partial product and partial carry outputs from a cary/save multiplicationimit. One of the operands is then modified by a barrell shifter before placing both into a pipeline latch. The operands are then combinedlin the ALU which fasizi datandependent delay and a latch to allow a dynamic structure to operate with static extemal behaviou; The resultlatch then passes the output to it next destination,

The instruction decode and execution pipe control logic arealso shown in Fig.7. Here the pipeline shaded to highlight the structure Prefetchedlinstructions are queued before being passed to the prititind decode logic which produces multiple pipeline bubbles for the more complex instructions, sendse appropriate read/write addresses to the register bankfor eachibubble and passes finformation onilo the secondary and tertiary decode logic

The complete fully asynchronous pipelined structurg of The AMULET 11 is shown in Fig. 8. It was completely designedlusing computer aided designtiools and tested Giorougfly at component lievelusitg sophisticated computer simulations before committing the design to silicon. Despite some initial problems with the interface circuitry, the chip worked accoriling to specifications with only a couple of very minor designtiaws discovered so far in an extensive testing programme.

Fabrication of the chip was done at two sites using two different CMOS fabrication technologies, A 1um process was used by ES2Efid a 0.7um process by GEC Plessey Semiconductors The performance of these two versions and of a standard ARM6.ire shown th the following table?

Table 1
AMULET \& ARM performance figures

	AMULLET 1-ES2	AMUSET - GPS	ARM6
Process	1 um	0.74 m	1 um
Area (mm)	5.5×4.1	3.9×2.9	4.1×2.7
Transistors	58,374	58,374	33,494
Performance	20.5k Dhrystones	40kDtirystones	31 kDrhystones
Multiplier	5.3 ns/bil	3nsfit	25 nshoit
Conditions	5V,20C	$5 \mathrm{~V}, 20 \mathrm{C}$	$5 \mathrm{~V}, 20 \mathrm{NHz}$
Power	152 mW	N/A	148 mW
MIPSNW	77	N/A	120

Steve Furber's teagq at Manchester University; and Advanced AISC Machines have demonstrated with the AMULET 1 the wortlis first working asynchronous implementation of airealjprocessor. In so doing; they have overcome many/design hurdles and proved many of the conjectureszabout asynchron ouss systems; these all point to a very importantuture for such designs. They areirlow working on an enhanced version, AMULET 2, which will incorporate all the enhancements which they have developed assaresylt of working withthe earlier version. The neygyersion should be in silicon by ithe end of this yeal?

Mega Download Internet

Bulletín Board

 0891516126
No Subscriptions

Full Download Access on your First Call

All Speeds to 28,800

> Zmodem, Ymodem, Xmodem, Kermit, Sealink \& others

New Files Daily

0891516126

Over 13,000 files for immediate download

Thousands of GIF files

> Your own Internet email address for contact with the rest of the world

Science \& Technical Programs

Super, full Colouk ANSI Graphics

Meaa Download
 0891516126

Advanced RISC Machines

Te ARM RISC processor was first designed and produced by Acom Computer Group PLC exactly ten years ago. Itiwas one of the ffist commercial $/$ RISC to be produced in the world and has since becomie one of the world's leading standard devices for use in high volume computing, communications and consumer electronics products. The ARM processor and its family of derivative products is now designed and marketed by a three year old company called Advanced RISC Machines Ltd, or ARM Ltd. FAcom still own 42.78% of ARM, with an equally large shareholding being held by Apple Computer, with smaller 7% shareholdings by VLSI Technology, and Nippon investment and Finance.
ARM Ltd do not manufacture the ARM chiplinstead they design, develop and market the product at their Cambidge headquarters. The result lls that ARM in ense a wide range of the woridis feading semiconductor companies to o oduceltooth stand-alone ARM processors and other chip designs bult around the ARM processor. The licensees who produce ARM based products include such as Texas instruments, Samsung\} Sharp, IBM, Digita||Equipment Corporation, GEC/Plessey Cifrus, VLSI, and AKM of Japan.
Thin strategy means that countless milliबīs of ARM jprocessors are being produced and used allaround themworid asypart of some of the most sophisticated electronics products from the woild's lleading companies, with ARM getting royalty [payments fof each one produced It is a strategy which has enabled the company to grow very rapidly and to become a leadingforce in the RISC technology worid. Indeed, one will find ARM processors all over the place, not just infthe highly successful Acorn Archimedes range of computers. It is the processing heart of Apple's Newton andisimilar products produced by Sharp and Motorola. Schlumbergeriuse the ARM lin their daxia acquisition systems, and Spyrus and AT\&T use it in their data scrambling systems. The ARM is also the main processor and controller in the highly acclaimed 3DO multimedia entertainment system produced by $3 \mathrm{DO}_{4}$ Panasonic ${ }_{2}$ Sanyo, Goldstar, and Creative Labs, whilst IBM use an ARM core embedded thto its SSA interface chips. There are also a host of other applications whichare stilf on the drawing board or fin ple: production stages.
The success of ARM as a company can be demonstrated by the almost meteoric rise in its revenues, up from just £M1.2 in 1992 to \&M7.2 in
1994, in the same period profits movedifrom a (bss of $£ 34,000$ tola profit of EM3, and cash in the bank moved from EM1.3 to EM4.2. In the current year, the 9994 figures are expected to double. All of this has made ARMls parent company, Acom, aidarling ofthe City with a very bouyant share price.
With patents to revolutionary world-bealling technology like the asynchronous ARM in their pocket, the company llook set to takesthe world by storm. They have the technology, they have the right partners, and they have the City financiers behindithem. Let's hopezthat they can show the world that British high technology ou mbanies are a force to be reckoned/with!

Acknowledgements.

I would like to thank Professor Steve Furber of Manchester University for giving his time to explain a complex subject, and also the staff at Advanced RISC Machines in Cambridge for their assistance.

8

A minl FM transmitter, very high galn preamp ruppiled complete with FET eleciret microphane. Desgmed to cover \$-108 Mhz but it is easy to change tt to cover 61 130Mhz Works with acoms moing 9 (PP3) LEtery. 0.2 W RF. 88.22 Kk no 1001.

Electronic stren kth with an itmpressive 5 watt power ourpur. Ideal for car/blke alarms etc. 6 12 vdc , max current 1 A , tone frequency 1.2 khz 87.05 Ki no 1003.

3-30v Power supply, variable, stabllized power supply for labor atary use. Sbortcircult protected, sultable for profescional or amateur applications. 24v 3 A transiormer is al so needed to complete the kl . $\mathbf{5 1 6 . 4 5 \mathrm { Kkt }} 1007$.

Powerful 1 watt FM irmmitter supplied com plete with plezoelectric microphone. 8-30vdk. At 25.30 v you will get pearly 2 watty 14.10 Kl no 1069
 the knob your welf but you will hear thingion this radio (even TV) that you would not hear on an ordinary ratio!. Recetver covers $50-160 \mathrm{Mhx}$ both AM and FM. Bulft in 5 watt amplifier, $\{17.62 \mathrm{KI}$ no 1013.

Morquito repeller, mosern way to keep midges at bay! Rums for about a month on a 1.5 sv battery. 58.22 KHt no 1015.

3 channel wreless sound to light system, mains operated xeparzle senatitivity adjuy ment for each Chansel 1,200 walt power banding. Microphone locluded. $\mathbf{5 1 6 . 2 5 \text { Kil no } 1 0 1 4 .}$

Motorbikecgace trembler alarm adlux athe sen sitvity, preet alarm ume auto reset. Could be

a. 5 minute timer, adjust ab if from 0 to 5 mins will sutcth up to 2 A mains Perfect for alarms phioto. kraphlclaboratorlesetc. $\mathbf{1 2 \mathrm { vdc } .} \mathbf{8 8 . 2 2 \mathrm { Ktt } \text { no } 1 0 2 0 .}$

25 with PM trasemitier 4 RF stagen, preamp required (our vit 1068 it suitebie). Dee to the complerity of the trammitter it it supplied to buitt up form oely. 192.82 Xit so 1031.

Strobe Hight, adjustabie frequency from 1- to 60 Hix (a lot faser thon conventional arobes) mains operated. $£ 18.80 \mathrm{KH}$ no 1037.

Ultrasonic radar ideal as a movement detertor wth ar ange of about 10 metres automztey your cat flap! 12v operation soideal for cars, caravans etc. E16.45 K\& 1049.

Liquald level detector useful for detecting fiuld levelsinfanks, fishponds bathsor as a raln or leak alarm. Will swttch 2 A mains $\mathbf{6 5 . 8 7 \mathrm { KH } \text { no } 1 0 8 1 . ~}$

Combination lock, key, easity programmable. will switcb 2A malme Complete with kerpad. 9v operation. E1L.75 Kht 1114.

Phone bug detector, thus device will warn you if somebody ls eavesdropping on your phone line 87.05 Ktr no 1130 .

Robot volce, interenting circult that distorts your volce! adjuifable, answer the phode wth a different volce! $12 \mathrm{vdc} \$ 10.57 \mathrm{KH}$ no 1131.

Telephone bug mall bug powerred by the felephone fine, tartis transmitting as soon as the bandset is plelied uo! ets 40 KIt no 1135 .

function eener ator, produces minusoldal saw tooth and square wwes adjustable from $20 \mathrm{hz}-20 \mathrm{khz}$ separite level controls for each shape. Will pro duce all $\mathbf{3}$ together, 24vac $£ 17.62 \mathrm{KK}$ ne 1008.

3 Channet light chaser, 800 watis per channel speed and direction controls supplied with 12 leds and mainstriacs, so you can use mains Hight bulb tf you want. 2-15vde $£ 12.97 \mathrm{KH}$ no 1026 .

12v fourescent. A useful kt that will enable gou to light \&' flourescent tubet from your car battery! Gou will also need a 92 A transformer, not supplled) 89.40 Kt no 1069.

VOX switch sound artivated switt ch ldead for tharn log tape recorders on and off when sounds are heard. Makes the tipe last a lot ionger! adjustable senativity, built in delay. $\mathbf{8 9 . 4 0 \mathrm { KF } \text { 1073 } . ~}$

Incar sound to light, Put so me atmo sphere in your car whth this minl 3 channel sound to light. Each channel has 6 ledsa elli. 75 KK no 1086.

7 watt inf fl power amplifier useful, powerful ideal for Intercomma audio systems, caw use etc. $12-18 v d e 500 \mathrm{~mA}$. 88.22 Kif No 1025 .

Phone call relay, useful device that operates arelay When ever the 'phone rings could be usied to operate more bells or agnalling lights etc. Wu. swttcb malns at $\mathbf{2 A}$. $\mathbf{6 1 1 . 7 5 ~ K i t ~ n o ~} 1122$.

lead add charger, two automitic charging ratei virual indication of batiery arate, Ideal for alarn syitems, energerncy lighring efc. 100 mA 12 vdc c14.10 KH no 1095

Car alarm system works on voltage drop andor vibration entry and extr delays plus adjustathe alarm duration Good for cart car avansetc. E14.10 Kir no 1019.

Portible alarm ay mem based on a mercary switch The alarm continuen to sound until the unli is disabled by the owner. Buzzer included. $\mathbf{£ 1 2 . 9 2}$ Kh no 1150 .

Preamp mixer, 3 input mono mixer, sep arate bas and treble controls plus independent level controls 18vdc, Input sens $\mathbf{1 5 0 m v}$. 100 mA . $£ 17.62$ Ktr no 1052.

Mini metal delector, rulrabie for locating plpes in walls etc, range $15-20 \mathrm{~cm}$, complete with case. on operathon. 89.40 KH no $\mathbf{1 0 2 2}$

300 watt ingle channel sound to Hight kth, malns operated, add rhythmto your party for only $\$ 9.40$

Sound effects generator, produce soundir miging from bled chips to sirens, complete wth mpeaker, add sound effects to your projects for just 810.57 Ktt no 1045.

Gutt ar preamp with tone controles small enough to fit inside any gultar, based on TL 082 1C, $\mathbf{~ - ~} \mathbf{1 2 v d c}$ 50 mA .59 .40 Kit no 1091.

15 watt FM tranmitter, 4 ala high power preamp required. 12-18vdc. Can ue dither ground plane, open dipoke. or Yagi. Supplled lin bullt form only ax 281.07 KH 1021.

Telephode amplifter, Very menstive amplifier which uses a'phone plekup coll (supplied) will let you follow a conversation whithout holding the phone. $\mathbf{E 1 2 . 9 2 \mathrm { KH } \text { no } 1 0 9 9}$
TOP 10 BEST SELLING KITS CORNER 1. Variable speed conlrolkt for 12 V DC: motors up to 30A! (you may need a he at sink for 30A) $\$ 19.97$. 2. Composte videokit converts comporte signali into separate H sync, Vsyne and video E9.40. 3. Gelger counter kith contalns evergthing you need to butld a worktng counter $\mathbf{2 2 2 . 3 2}$. 4. Solar energy kth, contalns a solar paneh, motor, buzzer and cable for experiments $£ 5.87$. 5. Electronlc accupuncture latt, may help with milgrane, poor circulation, backache etc. $\mathbf{8 8 . 2 2 .}$ 6. Elecirifying appar atus lit, produces a weal adjusiable hlgh tension of $80-300 \mathrm{v}$ from a 9 v bat tery, ideal for catching worms etc! © $\mathbf{4} .40$. 7. Adapter bug lat, coatalins every fintug jou beed to build a professional bug bulti inside a standard 13A mains adaptert the bug is mains powered so It oper ates all the time the adapter Is pluseed in Price is 516.45 for the complete lett including adepter. Himd tools and qlue required. 8. Nicad charger ldt automatic charger for eells from 1.2 v to $15 \mathrm{v}, 7$ settings 50600 mA , ir ansformer required $18-20 \mathrm{~V} 600 \mathrm{~mA} . ~ \$ 9.40$.
\$E10. Inveriee kis, produce istwac from a I2vic supply, two ver wons are avallable a 15 w one at

$\mathbf{8 1 4 . 1 0}$, and an $80 w$ version at $£ 23.50$.
 EXPRESS
 COMPONENTS

how to order......
Remember to add $£ 1.50$ p\&p. By phone with a credit card. By post with either a cheque, postal order or credit card details By fax with credit card details. EXPRESS COMPONENTS, PO BOX 517 HOVE SUSSEX BN3 5QZ. DEPTETI

TEL 01273771156
FAX 01273206875
Overseas orders please add $£ 3.50$ post and packing.
 project with a large character score display

his is the last part of the light gun project, but is of more general use as it addresses the general problem of driving large scale displays from a computer. It offers the iollowing features: standard RS232 serial drive from any suitably equipped PC. computer or from the light gun central, driven on a 3 wire link (Power, Ground, and serial drive); it will drive four common anode or common cathode 7 sezmeni displays driving up to $50 \mathrm{~mA} /$ segment at up to $24 \mathrm{v} /$ segment; modules are stackable so that up to 16 digits can be driven from one serial port; stylised display of the entire ASCII character set; automatic scroll; command driven controf of flash, dim, power up messages, display test, lower power mode. The prototype used $3^{\prime \prime}$ displays which are easily visible from a considerable distance, but any displays can be driven including the Velieman 8 " high 7 -segment display kits

Circuit Diagram and operation

The circuit diagram of the main circuit board is shown in figure 1. This project is based on the PICi6C84 which has on board EEPROM. The PIC uses a commonly available 3.58 MHz colour crystal needed for accuracy on reception of serial data. The EEPROM is used to hold power up messages and the address of the module when modules are stacked. The PIC holds the code for a 7 -segment image of the entire ASCII character set, an RS232 receiver and command decoder, and the display multiplexer.

The seriat input signal is shaped and inverted by R1, TR15 and R2. The serial signal drives the internupt input of the PIC. incoming serial bytes are received and processed entirely on an interrupt routine. The multiplex driving routine is capable of executing entirely within the stop bit of a received character so that received serial data has no visible effect on the display. The

module has an optional sleep mode which will tum of the display, reducing consumption to less than 5 mA when no serial data has been received for four minutes, or immediately if commanded. In sleep mode, the majority of the power consumption is in IC2 (ihe power regulator); if IC2 is replaced by a 6 v supply direct to the board then consumption will drop to around 40 uA - the standard PIC sleep consumption. The PIC program supports watchdog operation which increases reliablity in briei power supply interruptions (which may not trigger the PIC reset circuitry); however if this is enabled (at program time) then the sleep mode will not be supported.

The displays are driven by a high going signal for both the segment and digit drivers. The segment drive for common cathode displays consists oi an NPN and PNP transistor combination switching the positive supply rail, and a Darlington transistor switching the ground rail to the digits. Rs is the segment resistor which limits the current drive. The value of Rs is calculated as $\mathrm{Rs}=(\mathrm{Vs}-\mathrm{V}) / \mathrm{l}$, where Vs is the power supply to the module, V is the voliage drop across the LEDs and I is the required drive current per segment N and I in volts and amps respectively). In the prototype. Rs was chosen as 160 ohms. For driving common anode displays, then the digit and segment drive circuits can be exchanged. In this case there will be seven Darington iransistors and four PNP/NPN pairs The segment drive resistors should be placed in series with the collectors of the Darlington transistors.

The displays are connected in parallet for the muttiplexed drive to reduce the requirement for output drivers. The circuit diagram for the displays is shown in figure 2. Note that digit 1 is the least significant digit, on the extreme right.

The displays are driven on a 4 mS multiplex cycle from the PIC. In dim mode, the displays are only driven for half the time, and in flash mode the displays are turned off for 250 mS in every 500 mS . When display modules are stacked, there is a power output socket and a serial output socket which are connected in parallel with'the inpui power and serial data signals. The operation and addressing of stacked modules is described below.

Power supply to the PIC is from IC2, a 78L05. Power supply to the module can be from 10 Vdc to 25 Vdc dependant on the voltage requirement of the displays. At the higher levels, then the voltage rating of C3 should be increased. Power consumption of the prototype was 6 mA when all displays were off, nsing to 75 mA when all segments were lumed on in dim mode and 145 mA with all segments turned on in bright mode. This was with Rs set to drive about 10 mA per segment.

Construction

The FCS overlay for the main board is shown in figure 3. This is for the common cathode version. Use an IC socket for ICt and an IC socket for display board Interiace cable. Construction is straightfonvard; there is only one wire link between ICt and IC2. Fit this first, followed by resistors, diodes, transistors. capacitors, IC sockets and crystal.

The PIC should be programmed with the Intel Hex16 code shown in figure 4. This should be entered using a standard edthor and saved as "LEDS. HEX" which can be read by any standard PIC programmer. The code includes checksums so that it should be impossible to enter incorrectly. Alternatively, the author is prepared to program PICs - see the end of the article for details. li your programmer is capable of programming EEPROM data area then the address can $b \in$ programmed into EEPROM data location 00 H , and the start up message into data locations 10 H to 13 H for digits 1 to 4 respectively. However, both these ilems may be programmed

Figure 2. Circuit diagram - display
from the serial link as detailed below. If programming the device yourself, note that the WDT can be enabled or disabled at program time. If enabled, then the module will be more reliable at power up (crocodile clips on a battery seemed to upset the PIC power up reset circuitry spectacularly); however the sleep mode will not then be available

There is no PCB design shown for the display board as the module is expected to drive many different display types. The displays can be wired up on veroboard using hookup wire under the displays. PL6 should be mounted on the underside of the display board. If the Velleman $8^{\prime \prime}$ displays are used then use the common cathode version. Connect the input cathode signal on D1 of the display board to the positive on the display board with a 10 K resistor, and orive the cathode pin with the digit drive. The segment drives can be connected directly to the module main board.

The link between the displays and the main board is a 16 way IDC cable with a 16 pin DIL header at each end which plugs inio PL3 in the main board and into PL6 on the display board. In the prototype, the cable was soldered directly to the main disptay board connector pins and PL6 was not used.

The case used was Verobox type 201 painted black. The display board is mounted on the front face oi the case and PL6 protrudes through a hole in the case. However, the case must be chosen to fit the displays used. The cable used to connect the module is 6 m oi coiled 3 way cable. Screen is ground, oneconductor is for the serial link, and one conductor is for the power supply. As the prototype is iniended for use with the light gun project, the serial data plug is intended to fil the central; pin 3 is the serial data output from the central. The power plug is wired into the coiled cable and connected inside the serial data plug. See figure 7 . If the module is intended to be used for stacking, then PL4 and PL5 should be fitted into the case and wired to the input serial data and power supply connections.

For use with the light gun, the display module was intended for use in the field; it is fixed to a $2^{\prime \prime}$ belt with a clip for fixing to the nearest convenient tree.

Testing

Check the main module carefully, especially the segment drives - displays of the size used in the module are too expensive to blow too often!

Do not fit ICt. Connect the power supply and the display to the main board. Check that there is +5 Vdc on pins 5 and 14 of the socket for IC1. Consult figure 1. Take a pair oi stripped wires and short the digit drive pins of the socket one by one to +5 V . Check that when the segment drive pins are shorted to +5 V in tum, each of the segments on all of the displays illuminaie and that there are no short circuits.

Remove power and insert IC1. Connect power and the display should lmmediately show 8888 for about 1 second before blanking; this is the power up diagnostic. Now wire the module to a computer. if you are not sure of the pin out of the serial porf on your computer then measure the voltage on pins 2 and 3 of the serial port; the pin which has a voltage of around -8 to - 12 Va

Computer connection

The module can be connected to a standard RS232 serial poin using a three wire link (gnd, power and data); this should be connected to the module. Use a communications package on your computer. set to 9600 bits per second, no parity, one stop bit, no hardware flow control, no XON/XOFF signatling (the terminal program supplied free with Windows 3.1 is suitable on a PC). Check that characters typed on the PC are shown correctly on the display. The module runs at 9600 bits per second, and has not RTS/CTS (hardware) signalling. The module will operate with (but ignore) XON/XOFF

Commands

If characters from ASCII codes 32 to 127 are sent to the module, they will be displayed on the next digit as shown in figure 8. Text messages are stylised, but can be recognised faitly easily - avoid messages with X's and V's! When the module is powered up, the display position is set to digit 4 ; the next four characters received will be printed to digits 4, 3, 2 and 1 respectively. Aiter this, the display is scrolied to the left and characters are printed to digit 1.

Figure 3. PCB overlay

Figure 9 shows the commands which can be sent to the module. Commands have ASCII numbers from 1 to 25 . To send code 1 then the control and ' A ' keys are pressed together; to send code 2 then control and ' B ' are pressed eic. These control keys are shown in figure 9.

The following commands are oi note. Command 10 (Ctri+J) clears the display and sets the print position to digit 4.

Figure 8.7-segment display diagram

Command $14(\mathrm{Ctrl} \div \mathrm{N})$ sends the modute to sleep，turning the display off．However，if the watchdog timer is enabled，then this will not operate．Any character received will enable the display and wake up the module．Command 23 and 24 （Ctrl＋W／X）will enable or disable flashing and dim mode respectively．Follow the command with the numbers 0 or 1 （ASCll code 48 or 49）： 0 will disable the mode， 1 will enable it．

You can send any＇pattern you like to the display．Send commands 1 to 4 （Ctrl＋A to D）for digits 1 to 4 respectively and follow ihe comrnand with a data byte．The data byte should have a＇ 1 ＇set in each bit position to tum on a segment where bit 0 is segment＇A＇，and bit 6 is segment＇G＇．So，to tum on segment＇G＇of digit 4，send the ASCII codes 4 then 64．（Ciri＋D． followed by by＇e⿴囗＇）．It is possible to set a message to be displayed automatically after the power up display．To do this， set up the display to show the message displayed after power up using characters or the bit commands Ctr A to Ctrl D ．Then send command $25(\mathrm{Ctrl}+Y)$ This will write the bit pattern to EEPROM and it will be displayed after the power up display diagnostic．Note that this is the one command which causes the display to flicker momentarily as the program suspends execution whilst writing to EEPROM；incoming commands are also ignored for a maximum time of 40 ms ．

Multiple displays

In normal operation with one module．there is no need to worry about module addresses．The module powers up，responding to all commands and text．To use stacked modules，it is
possible to operate in one of two modes．In the first mode，all commands are actioned by all stacked modules，in the second mode only one of the stacked modules will respond to commands．

To set the address of the module the command 5 （Ctri＋E）is used，followed by the address which is to be programmed into EEPROM．This address will now be held through a power down．The address can be any number irom 1 to 255 ．Each module which is stacked should be set to a dififerent address， and the address should be set with only one module connected to the PC（otherwise all connected modules will respond and set themselves to the same address！）

To select a specific module the command $6(\mathrm{Ctr}+\mathrm{F})$ is used， followed by the address of the module to be selected．Now only that module will respond to any commands sent．The one command which will still be actioned by all modules is command 6，thus different modules can be selected．If module address 0 is selecied then all modules will respond to all commands until a specific module is selected again．

As an example，if modules 1 and 2 are stacked then to set module 1 to display 1234，and module 2 to display 4567，the following bytes should be sent to the
modules：6，1，49，50，51，52，6，2，53，54，55，56

Example control program

Fig 10 shows a simple example program which may be used to control one or more modules．It is not very sopnisticated，but demonstrates the techniques used to communicate with the

PIC 16C84 Code for Large Display

：0400000028280200A7

 ：080008008C008C0E030ERD002C － 0800100008309800212029208 E ：08001800031006180314970CF5 －08002000980B08282F1P922200 ：080028002F1318089C00FE30A1 ：080030009605061C1928F830A2 ：0800380088050D0E83000COE78 08004000090008300000000074 ：0800 $8009900990825282 F 1166$ ：0800500008001A302429850184 0800580086018316640082306 A 08006000810000308500013031 ：0800680086008312AF01013094 ：080070009200FF308E008F00AA ：0800780090009100AF159A0100 ：080080008101950196012F1585 08008800023098009C00000106 ：08009000CC22A100A001903078 ：080098008B00AF1E5628AF12C9 ：0800A000850186012F17630022 ：0800A800031E5328811F5C2890 ：08008000AF1C5E20AF144D28C7 ：08008800AF104D226400950F04 ： 0800 C 0006828960 A 0319852047 ：0800C800AF1D6828AF11882069 ：0800D00086010310920D0F30B0 ：0800D800גF1BFF309205120876 ：0800E0000319013092000F39F1 ：0800E800850005180E0885188B ：0800F0000F0805191008851910 ：0800580011089300130D2P1cem9 ： 080100012832816180800860090 ：0801080008002F1D0B009C0BFP ：080110000800～F1608002030122 ： 08011800 CC 228 E 000 E 0203192 F ：08012000522A890ACD2285004A ：08012800890ACD229000890A2 06013000 CD 229100562 AC 908040000213422342434263497 0804080028347 F347A342134DA 08041000213433345234383436 $0804180021345634583421341 C$ ：08042000543421342134213447 ： 0804280044344 B 3466346 E 3499 08043000743485342134213489 ： 08043800213421342134213468 ：08044000820008000E30292：999 \％080448000F30292A1030292A87 ：0804500011309D002F162E3023 ：080458009E0008001D0884004D ：080460001708800008009A0350 ：080468009A1F08009A014B2ABB ： 0804700004301 ． 020319422 AAC ：080478001A0B003C113EB4004B ：080480009AOA08000E30840006 ：08048800100891000F0890001C ：080490000E0R8F0008000 F0820 ：080498008E0010088F0011080E ：0804R000900008008E018P019B 0804A800900191019301080086 ：0804R000AF1608005E309R0048 ：0804888002F1602001708980035 ＝0804C0002F15003C031D08008C ： 0804 C 8002 F 3108006 A 309 ROOAC ：0804D0002F160800170803397C ：0804D8009A0008007030672A49 ：0804E0002F1017182F1408005E ：0804E8007630672RAF131718E ：080 AF000AF1708007C30672AF9 ：0804F8001708A0000800813084 ：08050000672A1708A100890112 ：08050800BD2A103089000E0825 ：08051000RD22890A0F08BD227B ：08051800890A1008BD22890AㄹE ：080520001108ED2AA00903190F ：050528009P2A2F1AR12～0630B8 08053000170203199F2A20089D
：080538002102031D08002F1E23 ：08054000～62A2F1202308A00E6 080548001 E08B200203017029A 08055000031 BAF2A02308A0023 0805580017082022820038225 E ：08056000971320309702031CEI ：080568000800B8228000080021 ．0805700003308A0017088038EF ：080578008200880083160812五E ：08058000081555308900AA306E ：08058800890088146：00882842 ©08059000C62A0811831208002D ： 08059800890083160814831288 ：04052000080008003F ：08070000003406342234633．496 ：080708006D3452347D3420348D ：0807100039340F345234463431 ：0807180004344034083452346 ：080720003F3406345B344F3412 ：0807280066346D347D34073422 ：080730007F346F3410340A34ES ： 08073800583448344 C345334AR ：080740006F3477347C34393446 ： $080748005 E 34793471343$ D345 ：08075000763 $106341 E 347234 \mathrm{C} 5$ ：080758003834553437343P34CE ： 930760007334673431346 D 3449 ：0807680078343E3462346R3437 ： 08077.00064346 E 345 B 3439344 E ：0807780064340F34233408340E ： 0607800020345 F 347 C 3458344 E ：080788005E347B3471346F34EO ：08079000743404340E34723499 ： 080798003034553454345 C 3454 ：OBO7A0007334673450346D34EA ：0807A80078341C3462346A3419 ： $0807 \mathrm{B0} 0064346 \mathrm{E} 345 \mathrm{E} 3439340 \mathrm{E}$ ：0807B80064340F3400340Q34F6 ：00000001FF
module．It is written in QBASIC which is supplied with DOS－On PCs（OBASIC is similar to other BASIC languages）．It only supports ports COM1 or COM2．The program allows messages to be displayed，dim and fiash modes to be toggled，and the start up message and module address can be programmed．It also supports message scrolling－long messages will be scrolled across the display repeatediy until commanded to stop． Note the line which reads：

$$
\text { FOR } I=0 \text { to 3000: NEXT } 1
$$

This is a very crude time delay chosen for a 486／33，increase or decrease the value 3000 to match the scroling speed with faster or slower PCs respectively．

Use with the Light Gun Central

The light gun central is set up to use this external display directly．Simply plug the display into the serial and power sockets in the rear of the central．The display must be enabled with the configuration menu option．（Press＇ C ＇at the copyright prompl，enter the password＇1986＇and then reply＇Yes＇to the external display prompt）．

PIC programming

The author is prepared to program and test PICs with the code for this project．Send a PIC16C84，retum packaging with postage，and a cheque for $£ 4.00$ to Robin Abbott， 37 Plantation Drive，Christchurch，Dorset．BH23 5SG．Please state whether the watchdog timer is to be enabled or disabled．

Programme 1

$\ln s=\operatorname{CHRS}(10):$ mdim $=48:$ Elash $=48$
COLOR 15， 1

```
CLS : PRINT 1nS. "Enter COM Port Number (1 or
2).
DO: a\S = INREY$: LOOश UNTIL a$ = "2* OR à$ =
-2"
OPEN "com" + as +
*:9600,n,8,1,bin,cd0,cs0,ds0,op0,rs" FOR
OUTPUT AS #l
CLS
DO
    CLS
    PKINT
    PRINT . EXTTRRNAL DISPLA`Y NOLULE -
OPTIONS*
    PRINT .
```



```
    PRINT . "M - Scroll Message"
    PaINT , D - Toggle Dim"
    PRINT , "F - Toggle Flash*
    PRINT , "C - Clear module"
    PRIHT , "H - Choose roanle*
    PRINT
    PRINT , "S - Set current display as start up
message*
    PRINT, "Á - SEE MOdule Adäress inco EEFROM*
    PRINT
    PRINT, "Q- Exit*
    DO: aS = INREYS: LOOP UNTIL a$ <> **
```

 CLS : PRINT
 SELECT CȦSE UCZSES (a§)
 CASE "M": HNE INPUT = Hessage to Ecroll \(3>\)
 - ms
PRINT 立1, 1nS: MIDS (ms\$, 1, 4);
IF (LEN (mss) > 4) THEN
CLS
PRINT 1n\$; - Scrolling": InS, ">";
ntiss: "z"
stop"
PRINT int \div - Press key to
mss $=\mathrm{mss}+\infty \cdot$
ppos $=5$
WHILE (INKEYS = - -)

PRIJT 曲1，MTDS（mss，ppos．1）：
ppos $=$ ppos $+1: \dot{L} \vec{F}($ ppos $>$
LEN（mSS））THEN DPOS＝ 1
FOR i $=0$ TO 3000：NEXT i WEND

END IF

 CHRS（24）；CHRS（main）：
CASE PF：Elash＝Elash XOR I：ERINT 篗，
CHRS（23）：CHRS（flash）：
C2SE C＂：FRINT E1，ins；
CASE－S＂：PRIN 01．CHRS（25）：
CaSE＂K＂：MPUT＊Choose Module to address（0 for $\equiv 111$ ？＞\quad m

PRINT A1．CHRS（6）；CHRS（min）；
Case＂s＂：INPUT－Set Module Adidt＝ss ？$>$＂
mn：PRIFTE 1 ．CHRS（5）：CHRS（tme）；
CASE＂R＂：EXIT DO
END SELECT
LOOP UNTIL 0

Table of
 Mimitiple LED Display Commands

ASCII codes 1-31-These are control codes with the following meanings:

Code	Ctrl +	Extra bytes	Meaning
1.	A	t	The following byte is printed directly as data to digit 1 . Segment A is bit 0 (LSB), and segment G bit 6 (MSB). E.G. to send the numeral 2 to digit 1 then send the bytes 01H,5BH
27	B	9	As code 1 for digit 2
3	c	1	As code 1 for digit 3
4	D	1	As code 1 for digit 4
5)	E	1	Set module address to the following byte (any number but 0 may be used). This address is written into EEPROM and is read every time the module powers up.
6	f	1	The following byte is the address of the only modute which will respond to any following commands or text. The only command actioned by a module which does not have the specified address is this command - command 6 . If the following byte is 0 then all stacked modules will respond to all following commands and text.
7	G	0	Not Used
8	H	0	Not Used
9	7	0	Move print position left one digit, if already at digit 4 then scroil right
10	J	0	Clear display, set print position to digit 4
11	K	0	Move print position right one digit, if at digit 1 then scroll left
42	1.	0	Nōt Used
18	M	0	Set print position to digit 4
14	N	0	Send module to sleep - tum of display and enter PIC sleep made, consumption, wake up and tum on display on receipt of next character. No effect if watch dog is enabled
15	0	0	Null - will not be used in future versions of the software, useful to wake up display
16	P	1	Set sleep time in units of about 2.5 minutes -if parameter is 0 then never go to sleep, if parameter is greater than 0 then send module to sleep after this time if no input occurs. E.g. time $=2$ will sleep after about 5 minutes.
17	Q	0	Not Used \quad ASSCll codes 32-127
18	ह	0	Not Used Characters which have codes fro
19	S	0	Not Used starts at digit 4 and moves acros
20	T	0	Scroll display left one character - leave print position 1 at which point further character printed at digit 1 and this display
21	U	0	Scroll display right one character - leave print position scrolled left. $^{\text {S }}$
22	vi	1	Set print position to following number, 0 is digit 4,3 is digit 1 etc.
23	W	1.	Flash Mode, if following byte is even then turn llash mode off, if the byte is odd then tum flash mode on
24	x	1	Dim Mode, if following byte is even then turn dim mode off, if the byte is odd then tum dim mode on
26	γ	0	Write the information currently displayed to EEPROM for use as the start up message on power up.
26	z	0	NotUsed

Is your PCB design package not

 quite as "professional" as you thought? Substantial trade-in discounts still available.
Board Capture

Schematic Capture Design Tool

* Direct netlisi-link to BoardMaker2
- Eorward annotation with part values
- Full undoiredo lacility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
* (trtelligont wires (aqtomatic junctions)
- Dynamic cunneclivity information
- Automatic on-line annotation
- Integrated on-the fly library edttor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

BoardMakerl - Entry level

- $P C B$ and schematic drafting
- Easy and inturive to use
- Surface mount and metric sumport
- 90, 45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMiaker2 - Advanced level

- All the features of BoardMaker1 OrCad, Schema, Tango, CadStar
- Full Design Rule Checking
both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane suppon with full DRC

Board Roater

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostSeripi
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 6UT

Tel 01354695959
Fax 01354695957

tsien

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Moblle: 0860400683

(Premises situated close to Eastern-by-pass In Coventry with easy access to M1, M6, M40, M42, M45 and M69)

MISCELLANEOUS
Anrltsu MG642A Pulse Pattem Generator .. $\mathbf{\Sigma 1 5 0 0}$
Avo VCM 163 Valve Characteristic Meter ... $£ 400$

Data I/O Model 298 (with 12 fixtures) + Logic pack...
Datalab DL 1080 Programmable Transient Recorder
Dyanpert TP20 Intelliplace - Tape peel Tester - Immacualte condition乏1950
Farnell RB 1030-35 Electronic load $1 \mathrm{Kw} . ~ \$ 450 ~$
Farnell 2081 R/F Power meter ...
Farnell TSV 70 Mkll Power Supply (70V-5A or 35V-10A) 200
Ferrograph RTS-2 Audio Test Set with ATU 1 .. 500
Fluke 8010A/8012A/8050A Digital multimeters - from $£ 125$
Fluke 5101A AC/DC Calibrator .. $£ 3500$
Fluke 5101B AC/DC Calibrator .. 86500

Fluke 720A Kelvin-Varley Voltage Divider .. 850
Fluke 720A Keivin-Variey Voltage Divider ..
Fluke 750A Reference Divider
Fiuke 750A Reterence Divider ... 800
Gould TA 600 - Thermal Array Recorder ..
Gould K100D - 100 MHz Logic Analyser with Pods
Gould K100D - 100MHz Logic Analyser with Pods ... 5550
Heiden 1107-30V-10A Programmable Power Supply (IEEE............
Hewlett Packard 334A - Distortion Analyser
Hewlett Packard 436A Power meter +8481A sensor ... 8950
Hewlett Packard 3437A System voltmeter .. 8350
Hewlett Packard 3456A Dightal voltmeter.. 850
Hewlett Packard 3760/3761 Data gen + error detector.....................each \&300
Hewlett Packard 3762/3763 Data gen + error detector.......................each £350
Hewlett Packard $5762 / 3763$ Data gen + error detector
each $£ 350$
Hewlett Packard 5423A Structural Dynamics Analyser .. $£ 350$
Hewlett Packard 54470B Digital Fitter...
Hewlett Packard 54410A Analogue/Digital Converter..
Hewlett Packard 7402 Recorder with 17401A x 2 plug-ins ..
Hewlett Packard 8011A Pulse gen. 0.1Hz-20MHz... 5500
Hewlett Packard 8406A Frequency comb. generator
. $£ 500$
Hewlett Packard 8443A Tracklng gen/counter with 1EEE ..
Hewiett Packard 8620C Sweep oscillator mainframe $£ 400$
Hewlett Packard 8750A Storage normaliser ... 875

Hewlett Packard $8640 B$ - AM/FM Signal Gen (512MHz)
Hewlett Packard 5340A - 18GHz Frequency Counter
Hewlett Packard 5356A - 18GHz Frequency Converter head. .885

Hewlett Packard 432A - Power Meter (with 478A Sensor) . 275
Hewlett Packard 432A - Power Meter (with 478A Sensor)

Hewlett Packard 435A or B Power Meter (with 8481AN8484A) $£ 2750$ | Hewlett Packard 435A or B Power Meter (with 8481A |
| :--- |
| Hewlett Packard 3438A Digital multimeter...................................... $£ 200$ | Hewlett Packard 6181C D.C. current source . 150 Hewlett Packard 59501B HP. $1 B$ isolated D/A power

supply programmer........312A/3791B/3793B Microwave Link .. $£ 150$ Analyser.
Analyser 5316A Universal Counter HP1B
Hewlett Packard 5316B Universal Counter HP1B
Hewlett Packard 5385A Frequency Counter - 1GHz - (HP1B)
with OPTS 001/003/004/005. \qquad
Hewlett Packard 8657 B 2060 MHz synthesised signal generator
(as new) $£ 7250$
Hewlett Packard 3779C Primary Multiplex Analyser ...
Hewlett Packard 6623A Triple output system power supply $£ 1950$
Hewlett Packard 6453A Power supply 15v-200A................................... $\mathbf{\Sigma 1 2 5 0}$
Hewlett Packard 3764A (Opt 002) Digital Transmission Analyser£3500
Hewlett Packard 3586A Selective ievel meter.
.81750
Hewlett Packard 3488A HP - 1 B switch control
. .5500
Hewlett Packard 3325A - 21MHz Synthesiser/Function Gen....................... 1500
Hewlett Packard 8152A - Optical Average Power Meter $£ 1250$
Hewlett Packard 8158B - Optical Attenuator (OPTS $002+011$) $£ 1100$

HEWLETT PACKARD 6261B

Power Supply 20v-50A £500 Discount for Quantities
International Light - IL 1700 Research Radiometer with Erythermal Sensor Head
Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 4024A Oscillator
Krohn-Hite 6500 Phase Meter
Leader LCR 745G LCR Meter 25
.........................(as new) £1150
Myorcol 243A 500MHz ipG Pulse generator...................................... $£ 225$
Marconi 2432A 500MHz digital freq. meter ... $£ 200$
Marconi 2337A Automatic dist. meter .$\varepsilon 150$
Marconi 2356 20MHz level oscillator .. 8450
Marconi 2306 Programmable intertace ... 1000
Marconi 2830 Multiplex tester
Marconi 2830 Muttiplex tester
Marconl 2831 Channel access switch.
. $£ 400$
Marconi 2019 - AM/FM Signal generaior - 1040 MHZ................................. $\Sigma 1800$
Multicore "Vapourette" Bench Top Vapour Phase SMD Soldering Machine
(New + Unused).

Phillps PM 5167 10MHz function gen ...
Phoenlx 5500A - Telecomms Analyser with various Intertace Options ...£3750
Racal Dana 9242D Programmable PSU 25V-2A $£ 300$
Racal Dana 9246S Programmable PSU 25V-10A $£ 400$
Racal Dana 3100 40-130MHz synthesiser.. 5750
Racal Dana 3100 40-130MHz synthesiser...
Racal Dana 5002 Wideband evel meter
Racal Dana 5002 Wideband өvel meter..
Racal Dana 5003 Digital m/meter
Racal Dana 5003 Digital mmeter ..itmer/count. 520 MHz 8550
Racal Dana 9000 Microprocessing tmor
Racal Dana 9081 Synth. sig. gen. 520 MHz .. 5550
Racal Dana 9084 Synth. sig. gen. 104MHz .. $£ 450$
Racal Dana 9303 True RMS/RFevel meter... 5650
Racal Dana 9341 LCR databridge
Racal Dana 9500 Universal timer/counter 100 MHz
£250
Racal Dana 9917 UHF frequency meter 560 MHz ...
Racal Dana 9302A R/F millivoltmeter (new version) 175
Racal Dana 9082 Synthesised am/m sig gen (520MHz)............................. $£ 500$
Racal 9301A - True RMS R/F Millivoltmeter .. $£ 300$
Racal 9921-3GHz Frequency Counter .. 8450
Racal 921 - 3GHz F
$\varepsilon 400$
Rohde \& Schwartz BN36711 Digital Q meter. ع995
Rohde \& Schwarz - Scud Radio Code Test Set... 595
Rohde \& Schwarz - LFM 2 Sweep Generator $0.02-60 \mathrm{MHz}$ £300
Rohde \& Schwarz SUF 2 Noise Generator wi.......................
Rotek 3980A AC/DC Precision Calibrator with Rotek 350 Aigh
Current Adaptor
Schlumberger S.l. 4040 Stabilock - High accuracy
1 GHz Radio Test Set
. $£$ POA

c7000
$ع 1500$
Solarton Ser 2721250 MHz Frequency Counter
$£ 500$
Systems VId 1258 W Freq. response analyser 250
Differentiai Phase and Gain Module +1270 Remote Control Panel......... $£ 2250$
Systron Donner 1702 Synthesised Sig. Gen 1GHz $£ 99$
Systron Donner 6054 B or D 18 GHz or 24 GHz Freq. Counterfrom£ 800
Telequipment CT/1 Curve Tracer ${ }_{\text {t.in... } 250}$
Telequipment CT/1 Curve Tracer
Tektronix 1480 Waveform
Tektronix 651 HR Monitor........................
Tektronix DAS9100 - Series Logic Analyse
Tektronlx 577 - Curve Tracer with Fixtures..
POA
POA
Tektronlx 577 - Curve Tracer with Fixtures... 595
Tektronix - Plug-ins - many available such as SC504, SW503, SG502
PG508, FG504, FG503, TG501, TR503 + many more.
Tlme 9811 Programmable Resistance
Time 9814 Voltage Calibrator
Wayne Kerr B424/N LCR Component Meter Set
W\&G SPM 12 Level Meter $(200 \mathrm{~Hz}-6 \mathrm{MHz})$
W\&G PS12 Level Oscillator ($200 \mathrm{~Hz}-6 \mathrm{MHz}$)
Weller D801/D802 Desoldering station
Wiltron 560 Scalar Network Analyser
Wiltron 352 Low Frequency Differential Input Phase Meter
EIP 331 - Frequency counter 18GHz .. 8700
MANY MORE ITEMS AVAILABLE - SEND LARGE
S.A.E. FOR LIST OF EQUIPMENT

ALL EQUIPMENT IS USED - WITH 30 DAYS
GUARANTEE.
PLEASE CHECK FOR AVAILABILITY BEFORE
ORDERING - CARRIAGE \& VAT TO BE ADDED TO

Serial ADC for

Another add-on module for the ETI 80188 single board computer by Richard Grodzik

This analog to digital converter module, only two inches square, plugs ciirectly onto the module connector pins of the 80188 embedided controller board. If provides a serial RS232 output at 9600 baud for an input voltage range of $0-5$ volts. The raw RS232 data $(00-\mathrm{FFH})$, sent to the serial port (COM1) of a PC, represents an analogue input voltage with a resolution of 20 mV /bit; (FFH) 255 decimal representing a full scale voltage of 5000 mV . In order to produce a meaningful representation of this data. a virtuat instrumentation program is available which runs on any MSDOS machine.

What is Virtual Instrumentation? Well, it is a means of graphically representing, on a PC's screen, a measuring instrument such as a multimeter. In this case, a visual image of an analogue meter and pointer is presented to the viewer. as well as a precise digital indication. This combination of analogue and digital readouts is a real-time mimic of actual hardware meters which, of course do not exist, except on the PC's screen. Moreover, this is all achieved in software, so that the possibilities of facia appearance, size, colour, legend, scales and ergonomic considerations are infinitely variable, requiring only modifications in software. The need for standalone instruments is negated, since they can all be represented in pictorial 'mimic' form on the PC's screen.

Module Concept

The 80188 embedded controller board was designed to accommodate plug-in modules. For this purpose a dual row of 0.1 inch piich connectors (10×10), is provided alongside the parallel port - the 'MODULE AREA'. These pins are connected to VO lines as follows:

Ov	Ov
Timer out 7	Timer out 0
Timer in 1	Timer in 0
$+5 \mathrm{v}$	$+5 \mathrm{v}$
PC3	PC4
PB7	PB6
PB5	PB4
PB3	PB2
PB1	PB0
OV	OV

A mating socket (double row top entry $10+10$), available from Farnell Electronics 148-526 or Rapid Electronics, is soldered to the module PCB, allowing easy interchange of modules. Note that the pin connections are 'mirrored' because the

Fig.1. Circuit diagram for ADC module

Fig.3. Flow chart of ADC code
Fig.4. Component overiay and connector for ADC module

Fig.5. Data flow diagram

Fig.6. Rotating vectors
module board sits in the module socket in an inverted position l.e. copper side up.

Description

The A to D converter module is based on the TLC549 8 bit resolution 8 pin DIL IC with a serial output. A potential divider resistor network of two 100 K resistors across the analogue input prodice a voltage on pin 2 of halt the input voltage. A reference diode REF25Z provides a 2.5 volt reference for the converter, giving a maximurn input voltage of 5 volts. The reference voliage is sufficiently stable for mosi purposes and slight variations are easily offset in software.

Interfacing of the ADC chip consists of three lines: CS (chip select) - active low to enable the intermal circuitry and allow conversion to take place; CLK \mathbb{N} (clock input)-eight clock cycles applied to this input shift out the eight bits of the conversion, the most significant bit (D7) being clocked out first. with least significant bits following; DATA OUT-The 8 bit serial data stream representing the converted analogue value
(11111111 B) ior a maximum input voltage of 5 volts is fed to port line PB7 of the 8155 PIO .

There is a problem, however - how to convert the serial information to a parallel data byte which can then be easily manipulated and written to a memory location or register. Diagram ADC2 shows how this is achieved. Use is made of a 16 bit register (BX) by the 80188 . As each data bit is clocked out oi the TLC549, it is received by bit 7 of port B. This bit is copied to the BL register and a left shift operation is performed, pushing the bit into the BH reglster. This process is repeated eight times until the BH register is filled.

Note that when reading port B, all eight bits of port B are loaded into the BL register. However only the most significant bit (the serial bit) Bit 7 is valid and bits 0 to 6 are lost. Once the BH register if full, a conversion is completed, and the constructed byte is then sent via the 8251 UART to the serial port of the PC. No calibration is necessary, since again, all scaling and conversion is performed by the virtual instrumentation software (ADC_3.EXE).

Operation

Once the PCB has been populated and soldered, it is simply plugged onto the module pins - these should be phosphor bronze type since turned pins will break off easily. The source code (ADC.ASM) is assernbled producing an object file (ADC.BIN) which is then sent to the EFROM emulator. Meanwhile, the MSDOS file (ADC_3.exe) is installed on the $\overline{P C}$ and run by typing ADC_3 <ENTER>. Connect the serial lead from the 80188 controller's serial socket to COM1 port of the $P C$. Applying an input voltage (d.c) to the $A D C$ module will result in digital and analogue voltage being displayed on the monitor.

Programme 1

: ADC ROETINE
; CONVERT INPUT VOLTAGE (RANGE 0-5V)
; AND SEND VIA RS232 LINE NT 9600 EADD TO PC

CODE SEGMENT

ASSUME CS:CODE
GRG 0
ORE 0400R
MOV S‥OFFH
NOV DK, OFFA2H ;LMCS B155 CHTP SELECT
NOV $\mathrm{HX}, 03 \mathrm{BL}$
OUT DX, AX

MOV DX, OFFA4:
;PCSO 9251 CHIP SELECT
MOV $\mathrm{AX}, 0 \mathrm{OF} 8 \mathrm{H}$
OUT DX. AO:
MOV DX, OPFASH
KOV AX, 081B8H
OUT DX,AX

CAL USART
CALL TREREORTS

CYCLE:
Hov EH, 0
NOV DI, 0103突
HoV AL, 08H
MOV [DI],AL
CALLL DET.AY
yovi CX. 9
COHVERT:
YOV Dr, 0103H
SOV AL, 010 H
MOV [DI].iL
CALL DELAY
HOV SI. 0102 H
HOV BL, [SI]
SHE $3 \mathrm{ZX}, 1$

SOV AL. 0
MOV TDIJ.AL
call delay

LOOP CONVERT
Hov al, 08h
mov [di], el
Covili TRANSTIT

GNITLIUISE UART TO TRAMSMIT
OINTTEALISE PORTS AND TIMER
;CLEAR DARA REGISTER
; FORT C
;STOP ADC,CS HIGH
:LOOP COMNTER = 8

Fogt c
-CLOCK HIGH

GEAD PORT E
; SHTFT DATA ETT LEET

CLOCK LOH

```
                            CYCIES
;stop conversion
;CS HIGH
TTRHSNIT EYTE FROM
```

CAL: TDELAY
JMP CYCLE ;REPE:T FOREVER
DELAY PROC NEMR
FUSH CX
HOV CX, 10 EEC: ECOPR EOC
POP CX
RET DELAY ENDP
TDEEAY PROC NEAR
MOV CX, OFFFH EOCP: LOOP EOCP
REF TDELAY ENDP
TRANSMIT EROC HEAK

MOV DK,OCOOH :USKRT DATA EUFFER
KOV AK, EH
JREGISTER BH CONTATNS DATA EYTE
OUT DZ, AL ; TKANSMIT

POL: MOV DX, OCOI:
IN AL. DX
ANㅠㅇ $\mathrm{AE}, 1$
CMP AL, 1
JNZ FOLL
RET
TRANSMTT ENDP
USART PROC NEAR :CONFIGURE RS232 PROTOCOL
MOV AL, 0ヶFH
MOV DX, OCD14
OUT DX, ML
sov AL. 3
OUT DX,AL
RET USART ENDP
TIWERPORTS PROC NEAR
:CONFIGURE 8155 PORTS
MOV DI, 01051
NOV AL,040H
HOV IDII, AL
MOV DI, 0108:
NOV AL, 9
MOV [BI]. AL
40V DI, 01004
MOV AL, OCDH
HOV [DE]. AI

RET
TIMERPORTS ENDP
ORG 07FOH

ORG 0800H
CODE ENDS

```
;8155 TINER DIVISOR FOR
    USRET CLOCK
```

```
:FORT COMNGMD 
    OUTPUT
; PC3=CE
                                    FC4=CLOCK
```

 SE7=DATA EIT
 480188 Reset vector
FFEFOR JNP
OEFCOH:0000
; FILE SIZE=2048 12
Kละพัes)

A floppy disk (MSDOS $3 \cdot 1 / 2 \mathrm{in}$.), containing all the source code,object code and printable PCB files for the 80188 embedded controller and add-on modules, is available from: R.Grodzik (MICROS), 53 Chelmsiord Road, Bradíord BD3 8QN. Price $£ 12.50$ P\&P inc.

Next Month...

Next month we look at how to generate the virtuallinstrumentation display

Last month, Dave Bradshaw looked ąt the design and construction of some simple switch regulators. Here, he looks at 6.3 V and 25 V versions, along with variable voltage regulators

In the last issue of ETl we looked at the design and construction of a simple switcher voltage regulator. Such regulators can for the basis of many efficient and versatile power supply systems. This month we look at the construction of 6.3 V and 25 V versions, as well as a variable switch voltage regulator. Continuing on from last month Figure 8 shows the slightly different circuits for these versions, and Figure 9 the required PCB layout. Tables 4 and 5 give the values for C1 and L1, and Table 6 gives the resistor values.

Since there are no fixed-voltage versions of the regulator IC for 6.3 or 25 V , the circuit uses the LM2575-ADJ (1A max) or LM2576-ADJ adjustable voltage version with a fixed attenuator (R1-3) between the output voltage at C 4 and the feedback input. The attenualor reduces the feedback voltage io 1.23 V , which is equal to the IC's own reference voltage, generated by an internal band-ggap diode. The attenuator uses three resistors to get the attenuation as close as possible to the value required.

If all the component values are spot on, the output voltages will be 6.27 and 25.01 volts (using 2400 hm for R3 makes the first voltage 6.29 V . However, the resistors have a finite tolerance (nowadays, 1\% is usual) and the IC's intemal reference voftage also has a tolerance of around 3%. The output voltages should therefore be within 5% of the targel voltages; if this is not sufficiently accurate. an 'trimable' variable voltage version of the supply can be used.

Trimable and variable voltage regulators

The LM2576-ADJ will supply voltages as low as 1.23 V and up to 37 V . depending on the unregulated input and the other values used. The main difference is in the feedback, which replaces R2 with a variable resistor, RV1, so making the attenuator adjustable.
There are two ways of using this circuit:
'as a fixed but 'trimable' supply; in other words a supply that can be accurately adjusted to make up for

Table 1
C1 and $L 1$ values for $5 y$

Iransformer voitage	9	12	15	18	22.	25, 28, 30
C1 for 1A (uF)	4,700	1,000	470	330	220	220
G1 for 2A (uF)	10,000	2,200	680	680	470	220
C1 for 3A (uF)	12,000	3,300	1,500	1.000	470	330
Li for 1A (uh)	220	220	330	330	330	330
L1 for 2 A (uH)	100	100	150	150	150	150
L1 for 3 A (UH)	68	100	100	100	100	100

Trable 2
C1 and Li values for 12 V

Transformer voltage	15	18	22	25	28,30
Ct for 1A (uF)	3,300	1,000	470	330	220
C1 for 2A (u)	6,800	2,200	1.000	680	470
C1 for 3A (uF)	10,000	3,300	1,500	1,000	680
L1 for $1 A$ (uH)	330	330	470	680	680
L1 for 2A (uH)	150	220	220	330	470
L1 ior 3A (uH)	100	150	150	220	220

Table 3
C1 and Li values for 15 V

Transformer voltage	$\mathbf{1 8}$	22	25	28,30
C1 for 1A (uF)	2,200	7,000	470	330
C1 for 2A (uF)	4,700	2,200	1,000	680
C1 for 3A (uF)	6,800	2,200	1,500	1,000
L1 for AA (uH)	330	470	680	680
L1 for 2A (uH)	220	330	330	330
L1 for 3A $(u H)$	150	220	220	

component tolerances
 *as a wide output range supply, e.g. for a bench power.

The circuit for these two applications is quite similar, but the balance between the component values is very different.

Starting with the trimable supplies, Table 7 shows the values of RV1 and R1 for the different output voltages already. R3 is 1 k 2 for all the trimable versions, and all other component values are the same as for the fixed versions. Using the values shown, the potentiometer has a range of at least $\pm 4 \%$, and in some cases rather more.

The fully variable version uses a different value for R3 and no (or rather, short-circuited) R1. RV1 is 22k, and all the other component values are as the 25 V fixed version. On paper, these values give an output range of 1.23 V to around 28 V . Of course, whether or not the top of the output range can be realised depends on the input to the regulator. If the input is up to it, you could try: for the absolute maximum output with $\mathrm{R} 1=1 \mathrm{k} 5$ and RV1 $=47 \mathrm{k}$.

Regulators

This design is astraighi-forNard application of National Semiconductor's Simple Switcher TM series of step-down vollage regulators. At the expense ofia few extra components, these regulators give higher output currents and less heat dissipation than the ubiquitous 78 series of linear regulators. NatSemi's regulators can supply fixed and varialle voliagesiatimaximum currents of $0.5,1$ and 3 amps; this design sults the LM2575 (1A) and LM2576 (3A) series. The LM2574 series (0.5 A) have a different package and jpin-out, but are otherwise very similar.
Volfage step-down is by no means the only way of using switching regulators. The LM2574/5/6 slep-down regulators can be configured to gencrate negative oulpuls from positive inputs, allhough the available current is restricted. There is also a step-up version, the LM25y/? These will bothe subject of a future anticle.

Table 4
Ci and $L 1$ values for 6.3 V

Transformer voltage	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{2 5}$	$\mathbf{2 8 , 3 0}$
C1 for AA (uF)	2,200	470	470	470	220	220
C1 for 2A (uF)	3,300	1,000	1,000	1,000	470	470
C1 for 3 A (uF)	4,700	1,500	1,000	1,000	470	470
L1 for 1 A (uH)	220	330	330	330	330	470
L1 for $2 A(u H)$	150	150	150	220	220	220
L1 for $3 A(u H)$	100	100	100	150	150	150

Table 5
C1 and 11 values for 25 V

Transformer voltage	25	28	30
C1 for $1 A(u F)$	3,300	2,200	1,000
C1 for $2 A(u F)$	6,800	4,700	2,200
C1 for $3 A(u F)$	10,000	4,700	3,300
L1 for $1 A(u H)$	470	680	680
L1 for $2 A(u H)$	220	330	330
L1 for $3 A(u H-H)$	220	220	220

Table 6 Resistor values 6.3 and 25 V versions			Table 8 Component values for 6.3 V DC from 6.3 V AC	
Output voltage	6.3	25	C1	100uF
R1	4 k 7	22k	C2	1,000uF
R2	240R	1 k 2	C3,4	4,700uF
A3	1k2	1k2	L1	100 uH

Table 7
Resistor values *~variable versions

Trimable verslons Output voitage	5	6.3	12	15	25	Fully variable
R1	3 K 3	4 k 7	10k	12k	22k	SC
R2	Not					
R3	1k2	tk2	1k2	. 1 k 2	1 k 2	Tko
RV1	1k	470R	1k	2 k 2	2k2	22k

Table 8
Th choice, LMP575/6T-?

Output voltage	5	6.3	12	15	25
Fixed version	5	$A D J$	12	15	$A D J$
Trimable or variable	$A D J$				

Fig 10. The switcher with a voltage doubler unregulated supply, so that it can use a lower voltage transformer. Note that C3 is still needed, but can be reduced in size to 10 OSYMBOL 109 \f "Symbol"\}F, and that D3 and 4 are not needed. This version can be fixed or variable. Note that the potential of the AC input is affected by this circuit, and this could cause problems if the same $A C$ input is connected to other items

Fig 11. PCB layout for the voltage doubler option. Note the position of C3 and C4. C3 is oriented at 90 degrees to that of $\mathbf{C 1}$ in the conventional version.

Transformer voltage too low?

All is not lost! There is a voltage-doubling version shown in Figure 10, using only two rectivier diodes (D1 and 2) and two additional smoothing capacitors (C3,4). Capacitor C1 may seem redundant, but has to be retained for correci action of the IC; however, it is reduced to 100 uF . The PCB overlay is ${ }^{\circ}$ given in Figure 11.

The circuit effectively doubles the transformer secondary voltage. To find the sizes of capacitors C3 and C4, double the value quoted for Cl in the conventional circuit and then use the n ext size up. Except for C 1 which is 100 uF regardless, all the other component values are the same.

For example, suppose I have a 9V 2A Iransformer and I want a 12 V 1 A regulated output. Table 2 lists 3300 uF as the value for

C 1 for 3A. so I could use 1,100uF. To find the right size for C 3 and 4 . I double this to 2,200 uF and choose the next size up: either 3,300 or $4,700 \mathrm{uF}$, depending on what is available. C3 and 4 will have to take a peak voltage of $9 \times 1.4=12.6 \mathrm{~V}$, so 15 or 16 V types will be fine. According to the table, I will need a 330 uH 1A inductor for L1. Both Maplin and RS/Electrovalue have 330 uH 2.8A inductors, and Maplin also has a 1 A inductor for around the same price. All things being equal, I'll go for the higher current capability because one day I may need a little extra.

This circuit can be used with transformer secondaries up to 14 V ; unfortunately. I cannot recommend use with a 15 V secondary unless the circuit is going to be under load full-time (for the same reason that 30 V secondaries are not advisable with the conventional version). Voltages higher than this will
definitely damage the IC unless the 'HV' version is used.
Finally, Table 8 shows the values for the version that started the whole thing off. This is for 6.3V DC from a 6.3 V heater transformer. Using a heater winding rated at 1.5 A , this circuit' delivers up to 1.2 A at 6.3 V . Ideally, there shouldn't be any other valve heaters directly connected to the same transformer heater winding, but if they are, the floating voltage, the heaters will be around +7 V on average but with ripple of 7 V peak-to-peak - not good for low-noise valves!

Construction and testing

The PCB is designed for all the options described above. Whatever option you choose, there will be some holes that are not used. Also notice that the placement and orientation of capacitors changes between the conventional and doubled versions of the circuit.

The first stage, as ever, is to check the components you are using fit the PCB and widen any holes as necessary. You may need to widen the fixing holes, and the hole for a non-magnetic bolt to go through the middle of a bobbin-type L 1 ; this is only really necessary if the finished item is going to be portable. Fit the PCB pins, if you are using them for off-board connections.

Assemble the unregulated supply first. The mains side of the circuit isn't included on the PCB, so this will have to be done point-to-point. Include a switch and a fuse, if there isn't one already. I also like to add a mains neon directly across the mains input at the earliest possible point, as a warning that some part of the circuit is live () remove the neon when the circuit is finished and fully tested).

Double, triple and quadruple check that the capacitor and diode polarities are right, Ihen apply power. Check that the unregulated supply is giving the voltage you'd expect (around 1.4 times the transformer secondary voltage (and often a bit more because the transformer is designed to be under load). Then disconnect the mains and discharge the capacitors through a resistor.

Build the regulator circuit and attach a test load - say one that ought to draw around 100 mA . Again, obsessively check that the diode and capacitors are the right way round, then apply power and check that the output voltage is as expected.

If you have access to an oscilloscope, check that the output does not have an excessive amount of 52 kHz signal in it. If is has, consider replacing C2 with a superior type.

Attach the circuit to the load it is intended to supply, and check again the output voltage. If this is lower than you would expect by more than 250 mV , there is probably ripple breakthrough on the output - check for this with an oscilloscope. The most likely reason for this is the transformer secondary having quite a high resistance. Try increasing the values oi capacitor C 1 (or C 3 and 4 in the doubled version), but this may not work. If all else fails, reduce the current requirements or increase the voltage or current available from the transformer.

Component choices and sources

The Simple Switcher ICs are gradually getting more widely available. Maplin and RS/छectrovalue both carry a range. For a smail charge, Maplin will also supply copies of the data sheets for the ICs.

The inductor L 1 is a critical component. It is vital that it is rated for switched mode usage and for continuous usage at the fuil current being drawn. Again, Maplin and RS/Electrovalue carry suitable types. The PCB will accommodate Newport Components high-current bobbin-type inductors of

100uH/5.4A, 220/3.5 and 330/2.8 (Maplin codes AH21X, AH22Y and AH23A), a very similar series from RS/Dectrovalue (same values, codes 228-416, 228-422 and 228-438, and a 470uH/2.3A type code 228-444), and the lower current Newport vertically mounted toroids of $100 \mathrm{uH} / 2.2 \mathrm{~A}, 220 / 1.2$ and $330 / 1.0$ (Maplin codes BU55K, BU56L and BU57M). Maplin also have a couple of unmounted high-current toroids, one $150 \mathrm{uH} / 3 \mathrm{~A}$ (code JL72P) and the other $300 \mathrm{uH} / 5 \mathrm{~A}$ (code JL73Q). In theory, there's no reason why you shouldn't make your own inductor. Personally, though. this is not something l'd risk.

The choice of capacitors is straightforward with one exception: C 2 . This can be a good quality conventional capacitor, but a special-purpose capacitor for switched mode supplies will give lower 52 kHz ripple on the output. These have lower internal resistances, so attenuate ripple better, howẹver. they are expensive and if your application will tolerate a little ripple, then you probably do not need one.

Capacitor voltages in general are common sense: at least 1.4 times the primary voltage for $\mathrm{C1}$ (double this in voltage doubler circuits), C3 and C4 (if used). However, C2 needs to be rated at 1.5 times the maximum output voltage of the regulator.

For D5 be sure to use the device specified, or any Schottky or fast recover device rated at least 1.2 times the maximum load current with a peak inverse voltage of 1.25 times the peak input voltage on capacitor C1.

I have taken the precaution of using a heat-sink on IC 1 ; ior many applications, it does not need it, but there's no harm done in keeping it cool. The tab on the IC is at the same potential as the middle pin, the negative connection.

- David Bradshaw 1993

EASY-PC, Schematic and PCB CAD

Over 18,000 Installations in 80 Countries World-wide!

- Runs on:- PC/XT/AT/ 286/ 386/ 486 with Hercules, CGA, EGA or VGA display and many DOS emulations
- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill. - Tech Support - free. - Superbly easy to use.

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?

NEW: Electro-magnetic Simulation - ONLY £495

For full information, please write, phone or fax:-

Affordable Electronics CAD
LAYAN: NEW, Electro-magnetic Layout Simulator. Includes the effects of the PCB LAYOUT into your simulation. Links to EASY-PC Professional XM and ANALYSER III Professional.
STOCKIT: NEW, Comprehensive Stock
Control program for the small or medium
sized business

EASY- PC Professional: Schematic Capture and PCB CAD. Links to ANALYSER III and PULSAR.	From £195.00
PULSAR / PULSAR Professional: Digital Circuit Simulators	From
ANAL.YSER III / ANALYSER III Professional: LInear Analogue Circuit Simulators	From
Z-MATCH for Windows: Smith Chart based problem solving program for R.F. Engineers	$£ 245.00$
FILTECH/ FILTECH Professional: Active and Passive Filter design programs.	From £145.00
EASY-PC:	$£ 98.00$

Entry level PCB and Schematic CAD
Prices exclude P\&P and VAT.

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Number One Systems

UKIEEC: Ref. ETI, HARDING WAY ST.IVES, CAMBS. ENGLAND, PE17 4WR

Linking computers and peripherals using
fibre optics can help overcome manỳ
problems, Ken Ginn shows how it
can be done

AIl over the country, contractors are digging up the roads and installing fibre optic cable for cable TV systems. In this case. fibe optic cabling is used because of its high data transfer capability, bul there are other reasons why fibre optic cables are used, and one of them is the cable's immunity to 'noise'. Trying to link computers together in an environment such as a machine shop filled with powerful electric motors emitting large amounts of electromagnetic noise can be
extremely difficult. Well shielded coaxial cable is one answer, but a far better solution is to use fibre optic cable.

This project describes the construction and use of an interface which can be attached to an RS232 serial data port of a DTE (Data Terminal Equipment, e.g. computer) or DCE (Data Communicating Equipment, e.g. modem) and used to communicate at a speed of 19200 baud over a 20 metre optical fibre cable run. Communication between two computers for example, a serial printer connection, prito a

Fig.1. Optical transceiver circuit diagrám

Fig.4. PCB component placements

Start with Two enclosures

Fig.5. Construction of case

Fig.7. Optical transčeiver link details

Fig.8. Case modifications
modem are possible. The original Idea was to provide a suitable transceiver unit which is powered by an external power supply at each end of the fibre optic link. The unit itselit. accommodated in a small enclosure, is simply configured accordingly before use and plugged into an RS2̃32 serial port.

Power Supply

Power is supplied to the unit by either a commercially available pug-in power supply, or a PC's intemal power supply. These
extemal power supplies are avalable from suppliers such as Maplin. The power supply unit itself supplies sufficient current to the transceiver circuitry. The supply could alternatively be tapped off a PC to power the unit; in either case it should be abte to provide 12 volts DC at 80 mA under the maxinum load conotions.

D2 is used as a series zener diode, reverse biased to protect the five volt regulator unit from being stressed when high currents are being drawn, i.e. when transmitted data from the serial TXD path enables the optical transmitter. This
reduces the supply voltage to the regulator to about 9.3 volts hence, the power dissipation in the regulator is reduced.

REG1 is a three terminal regulator which supplies the unit with the regulated five volt supply. D1 indicates power being supplied to the unit. IC1 contains its own power supply unit to provide the positive and negative power supplies needed for the RS232 data paths.

Transmit signal path

In this example, the transmitted data through the transceiver is presented at pin 13 of IC1 via the link LK-3 (more about that later). The signal is processed through the MAX232CBE which is inverted and presented at TTL levels at pin 12 of IC1. Should DTR on the DTE (e.g. computer) be used, then this signal line is picked off and processed through the MAX232CBE in the same way as the transmitted data and thus enables the transmit signal path to the transmit optical transmitter D5. The ouiput of IC2b passes data when both inputs are at a logic " 0° and drives the optical transmitter driver transistor TR3 on, which provides current to drive the optical transmitter D5. The drive current is limited by R7 to approximately 60 mA . The TXD (transmitted data) LED D4 will illuminate to indicate a logic "1" being presented at IC1 pin 13, thus giving indication of transmitted data being launched from the unit down the optical fibre.

Receive slgnal path

Received signal in the form of light is received by the optical receiver D6. There follows a high gain, low-noise preamplifier stage. The output of TR1 (emitter) feeds IC2a which in lum drives current to D4, (RXD, received data), in the presence of a signal being received from the fibre optics. This indicates received data. The signal path splits from this pre-amp stage feeding both the LED driver IC2c, and also feeds iCl pin 11, which is presented with TLL logic levels, and converts this to RS232 levels at pin 14 of IC1. The RS232 signal is then sent through LK-1 and then on to pin 3 of the 25 way d-type SO-1.

Construction

The whole circuit is built on a single-sided PCB measuring approximately 2.0 by 1.5 inches. The majority of the components are mounted on the topside of the board, with the exception of ICI, IC2 and C8 (100n), which are all surface mount types. This saves an immense amount oi space taken up by two of the principle components, IC1 and IC2.

Soldering the two surface mount components to the board may be the best choice with which to start construction, but thereafter careful consideration to the handling of the board would have to be observed with static sensitive devices already in place. When soldering the surface mount components onto the track side oi the board, it would be wise to fabricate a simple device to hold the board steady and a way of applying pressure to the device holding both the board and component in position whilst being soldered onto the PCB. A fine tipped soldering iron designed ior suriace mount devices would be the best.

All of the remaining capacitors are PCB mounting types and are mounted onto the top side of the board. All the resistors are mounted vertically keeping their height above the board to a minimum. This will ensure that the assembled circuit will fit into the enclosure.

The transistors are mounted close to the board with lead lengths no more than 3 mm . D 2 is mounted In.the same manner to all of the resistors, i.e. vertical. The tallest

components on the completed board should be the LEDs, which should be no more than 12 mm or hali an inch above the surface of the PCB.

Note the mounting of the three LFDs, the LFD for TXD (red) is pointing the opposite way to the RXD. Figure 3 illustrates this; the middle LED being D1, indicating power.

The links LK-1, 2, 3, 4, 5 and 6 can either be made as simple wire links on the board, or can be made from removable links as shown in the prototype. The latter is the preferred as this will enable the unit to have its configuration easily altered if the unit's application is later changed.

The prototype is shown having a 25 way d-type solder bucket socket with short lengths of tinned copper wire bent at right angles and soldered to the board. Should a 25 way plug be required, a plug-plug gender changer can be employed to provide a plug connection to other equipment.

Once the board has been assembled, it is best to check the soldering for dry joints and solder bridges, in particular the surface mounted integrated circuits. Clean the track surface with a cleaning agent such as Isopropanol. This will make the inspection of the board much easier.

Testing

Initially connect the circuit to a variable regulated power supply where the current can be monitored as the supply voltage is brought slowly up to 12 volts. Under quiescent conditions a single unit should not take more than 40 mA - typically 35 to 38 mA . Switch off the power supply if the current is higher and check the component placements and the soldering on the track side of the board.

Check the voltage at the five volt regulator. The power LED D1 should be illuminated.

For the initial testing, connigure the links as shown below:

$$
\begin{aligned}
& \text { LK-1 } \\
& \text { LK-3 } \\
& \text { LK-6 }
\end{aligned}
$$

This will enable a transmitted signal path at pin 2 of the 25 way d-type on the unit, the receive path will retum at pin 3. Insialling LK-6 will enable the DTR line.

Connect pin 2 of the 25 way d-type to a positive ten volts supply via a 1 KO resistor. This will enable the optical transmitter and can be seen illuminated through the aperture for the fibre cable (as will D4, TXD). The total current drawn from the supply should be no greater than 80 mA in this state. Connect this input to a negative ten volt supply, zero volts and the optical transmitter will extinguish, as will D4. This has proved the transmitter path is working under static conditions.

Repeat the tests with a short length of fibre optic cable connected from the optical transmitter to the optical receiver, D5 and D6. This time, monitor the output of the RS232 line driver, i.e. pin 3 of the 25 way d-type connector. D4 will illuminate to indicate received data, l.e. logic " 1 ". Whatever logic voltage is presented at the input to pin 2 will be echoed at pin 3. This test provides a simple optical loop and can be repeated with a computer connected to the unit, using suitable communications software to drive the unit.

Note that during the static loopback tests, both the TX̛́f and PXD LEDs should illuminate together.

Confirmation of the optical loop test can be carried out at speeds to 19200 baud. Proof of the test can be checked by disconnecting the optical fibre, and ensuring that the echo disappears.

Case Construction

The construction of a suitable enclosure can be fabricated out of two identical cases available from Maplin, stock no. JW56L. Figure 5 illustrates this. The case extension is stuck with superglue to form the completed case.

Apertures are made as shown in the photos which allow access to the links and the LEDs giving power indication and status of the signal lines.

Dressing the Fibre

When finally installing the units in situ, careful attention has to be paid to the fibre/transducer (optical transmitter or receiver) interface. Using the cheaper polymer cable has certain disadvantages over the more conventional glass fibre, which is more usually supplied with connectors terminated at each end of the cable, and this simplifies connection.

Take care when cutting the polymer cables and try to get a clean square cut at the transducer interface. This vill ensure a good degree of coupiling between fibre and transducer. A hot, sharp knife is recommended.

Using the Unit

To use the unit is simplicity itself. The links within the unit are configured to suit the need of the unit. If it is to be connected at DTE or DCE the intemal links are configured accordingly.

To keep the unit common at either end of the fibre optical link, a 25 way gender changer is used to give the facility of a socket connection to a unit.

Links

Considering the connection of the unit to a DTE (i.e. a computer), data transmitted from the RS232 port is presented to pin 2 on the 25 way d-type. The optical transceiver unit will interface with the computer direct, and plug straight to the computer's serial port. (i.e. 25 way d-type plug). Here, the links for data to follow the path to the optical transmitter will need to be in position, i.e. LK-3.
For DCE connection, pin 3 of SO-1 takes the transmit signal path and LK-2 is installed in place of LK-3.

Considering the receive data from the optical receiver in the unit, the received data follows a path to pin 3 of the 25 way dtype; again, the linking of the RS232 signal at this point has to be routed. LK-1 is put in position.

For DCE connection, pin 2 of SO-1 now takes the received signal path and LK-4 is installed.

Should the computer use DTR signalling, this can be enabled by putting LK-5 into position. To continually enable the unit, the link can be positioned to LK-6. This depends upon the computer using DTR in the software or not.

See figure 2. ior linkage details.

Conclusion

These units have proved useful, linking two computers together enabiling the much smaller and easier to install fibre optic cables to be laid, One of the miajor advantages of running fibre optic cables is theiifmmunity to induced electrical interference and higheir speeds over an équivalenticable runto conventional copper cables.

SEETRAX CAE RANGER PCB DESIGN

 FITH COOPER \& CHYAN AUTOROUTER
RANGER2 + SPECCTRA £400.00

\square

RANGER2 £150

RANQER \& SPECCTR AUTOROUTTER

 Together giving the most cost effective PCB design system on the market TODAY! SEETRAX'S ease of use combined with COOPER \& CHYANTS renowned gridless autorouter, at an outstanding price.R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber, NC Drill, AutgCAD DXF Demo Disk available at $£ 5.00$ +VAT

In part two of this project, Robin Abbott explains how to build an inexpensive PIC programmer

Fig.1. PIC programmer circuit

LLast month we took an overall look at trie design and operation of a programmer for the popular Microsystems PIC microcontroller chips． The programmer is connected to a PC and can be used with the PIC assembler and simulator included in the cover disk given away with February 1995 ETI． This month we conclude the project with a look at constructing and using the programmer．

The programmer is constructed on a fibreglass PCB with four rubber feet which prevent the PCB from scratching any suriace on which it is used．

The PCB overiay is shown in figure 7．Construction is not complicated，insert all the jumpers and horizontally mounted components first，IC1 and IC2 should be socketed．Insert the capacitors，crystal，IC3 and PL1 last．Note the resistor network RN1．RN1 can be made up from one 9 way SIL resistor network and one 3 way SIL network．However as these appear to be unobtainable then RN1 can be made up from 12 individual vertically mounted resistors．

SKT1，SKT2，and SKT3 are the device programming sockets．Zero insertion Force（ZIF）sockets can be used here． Howeve，r they are expensive and can be replaced with stacked DIL sockets．If this is to be the case，then ensure that the device programmed is inserted into a DIL socket，and that the board has at least two stacked sockets．This will ensure that sockets with bent pins can be replaced without unsoldering from the PCB． 18 pin ZIF sockets are hard to find， and the prototype used a 20 pin socket for SKT2．If ZIF sockets are used then they should be either long pin devices， or should be mounted on two stacked DIL sockets to raise them above the board and components．

A serial cable needs to be constructed，or a standard serial cable can be used．As there are a variety oi serial ports connectors available then it is likely that different host PCs will need different connectors．If you choose to make up a cable for the hos！PC then follow the connections shown in figure $9_{\text {：}}$

The power supply is constructed in a small case with an integral mains plug．There are only three components in the power supply apart from the transformer．These are mounted on a small piece of veruboard．Ensure that the transformer and power supply board are bolted firmly into the case．In the prototype，the exposed mains pins were liberally smeared with silicone rubber sealant to insulate them．

Code

Figure 8 shows the code for the prototype in INTEL hex formai．This is checksummed which should reduce the chance of programming a device in error．The author is prepared to program PIC devices which will guarantee the latest code version－see the end of this article for details．
Please note that this code is copyright，and although it may be used by individuals for personal experimentation it may not be used commercialify．

Testing

Consult figure 1 and check that the PCB matches the circuit diagram and that there are no short circuits．Without inserting IC1 or IC2 check that with the power connected the supply pins on IC1，SKT1， 2 and 3 are at +5 V ．Check that the voltage on the emitter of TR2 is at $14 \mathrm{~V}+/-0.2 \mathrm{~V}$ ．Power down．

Insert IC2 and short pins 24 and 25 of the socket for IC1 and power up．Use a terminal emulator program on the host PC．Windows terminal is suitable for a PC．Set the emulator communications parameters to 9600 BPS， 8 bits，one stop bit， no parity，no flow control．In Windows terminal this is the menu． option under＂Settings－Communications＂．Check that characters typed on the terminal emulator are echoed back to the PC．This ensures that the serial link is working before trying any programmer functionality．

Power down，remove the link on IC1 socket，insert IC1 and power up．Now at the emulator enter＇D＇it is important that capitals are used）．The programmer should respond with a ＇K＇，this is the standard ＂are you there＂ diagnostic．Short pins 12 and 14 of SKT2 and enter a＇B＇the programmer should respond with a large number of＇大冖⿱日大弓＇ characters followed by a

[^1]"K". This is the programmer "read PIC" command and the link has forced the programmer to read bytes with the value 40 Hex which is the '@' character. Remove the link. This completes testing of the serial interface.

Enter an 'F' character and LED 1 should illuminate, check that the voltage on pin 28 of SKT 1, pin 4 of SKT 2, and pin 1 of SKT 3 is about 13.25 V . Check all the other pins of SKT 1 to 3 are at +5 or 0 V , and that there are no other pins with a greater voltage on them. Enter " K ' and LED 1 should go out, now check that except for the power supply $\mathrm{A} \amalg$ pins of SKT1, 2 and 3 are at 0 V .

Finally use the host PC programmer software to check that real PIC devices are successfully read and programmed. Please use erasable devices for the initial tests!

Using the programmer

It is highly recommended that the software developed for the prototype is used with the programmer which is available from the author (see the end of the article for detalls). This software has been fully tested and offers a number of advanced features. However, for those who do not own PCs with Windows software, or who own non-IBM compatible computers, a full programming specification is given below.

Windows host software

The programmer software runs under Windows 3.1 or 3.11 . The software is generally self explanatory and has help facillites, however some of the features are explained here.

The program ofiers the following features:

- Reads, verifies, checksums PIC devices.
- Allows user to set configuration fuses and user programmable areas.
- Allows examination and programming of EEPROM data areas in devices which have them.
- Supports Program Readable ID's (PRID's) see below,
- Displays programs read from PIC, or from files produced by the assembler.
(3) Blank checks devices
- Bulk erases EEPROM devices.
- Supports PC serial communication ports 1 to 4.
- Saves configuration information defined for a project so that configuration only needs to be defined once for each project.

Figure 10 shows a screenshot of the programmer showing a loaded file. The programmer main screen always shows the buifer. The buffer can be loaded from a flle or read from a PIC device in the programmer. The buffer can then be used to program a PIC, or can be saved. The buffer can be navigated using the up and down arrow and page keys.

At the top of the screen is the display showing the use of PRID's and user values; these are fully descriced below. The checksum is also shown. The checksum is a 16 bit value which is calculated by combining all the words in the buffer and the configuration fuse value. The user values are not included.

The screen also shows the currently set oscillator type, and the values of the configuration fuses. The oscillator type may be set as LP. HS, XT and RC, these types are low power crystal oscillator (e.g. 32KHz), High Speed crystal ($>4 \mathrm{MHz}$), normal crystal ($1-4 \mathrm{MHz}$) and resistor/capacitor oscillator types
respectively. The user values, and configuration fuses may be programmed independently of the main buffer.

Configuration fuses

All the PIC devices of configuration füses which set the mode of operation of the device - the type of oscillator and whether the watch dog timer, power up time, and code protection features are enabled. These are fully described in the PIC databooks; however, the use of the code protect fuse bears further examination.

The code protect fuse prevents any copying of the PIC. It does this by preventing programming of most of the PIC (including the code protect bit). Reading the PIC results in reading the value of the upper bits of the PIC XOR'd with the lower bits (exactly how this is done depends on the PIC type), and blanking the upper bits. Thus it is impossible to reconstruct the program, however each PiC program will read differently. Thus. to verify a code protected PIC, then the PIC should be programmed, and then read. The code protected file should then be saved. Now any PIC which needs verifying can be compared to the code protected file.

Erasing a device will reset the code protect fuse. The programmer will not allow any attempt to program a code protected device, although it will automatically bulk erase EEPROM devices beiore programming them.

User Words

The user words are an area of EPROM which is readable and programmable by the user, but is not accessible to the program running on the PIC. User words are not available on the latest devices - the PIC16C64 or the PIC16C74, suggesting that they may not be available on future devices. Difierent PIC device types have different sizes of user EPROM; however the programmer limits use of these words to entering a single 16 bit value as recommended by the Microchip programming reference. This is because the way that the 16 bit value is stored permits it to be read even in a code protected device.

The programmer permits the user words to be set to the following options:

1. User detined. With this option the user can enter a 16 bit value in hex which is used to program the user ID.
2. Program sequence. With this option the ID is set automatically to the number of times that a particular file has been used to program a PIC. Thus the user ID can be used to indicate the number of PIC's produced for a particular project. The file used must have the same directory and file name each time that a PIC is programmed for this feature to operate.
3. Use device sequence. This can only be used with EEPROM devices, and is a count of the total number of times that the device being programmed has ever been programmed regardless of the file used to program it.
4. Use PRID. In this case the user ID is set to the same value at the lower 16 bits of the PRID - see below for a description of PRID's.
5. Use Checksum. In this case the user ID is set automatically to the checksum of the buffer.

Program Readable ID's (PRID's)

Program readable ID's (PRID's) are used to set an ID which is readable by the program running on the PIC. PRID's are useful for serialising projects or for setting values such as code words in alarm systems such that each PIC programmed will use a different value. PRID's are available on all the PIC devices. A

PIC Programmer-16cet

File PIC Options Help

PRID:: No PRID
USER:: 7FEG, using checksum
OSC :: LP. Checksum: 7FE6
FUSES: : Code Protect: N, Watch Dog: Ye Power Up Timer: N
C: XPIC\LITEGUN\LITEGUN

0000	: 2839	0023	3FFF	3FFF	0099	UE99	0 O 03	099A		
0008	OA9 0	0810	39 ¢F	1903	16AE	13AE	19AD	2833		
0010	: 1806	2817	18AF	2819	15AE	14AF	281C	10 AF		1.1
0018	: 281A	14AF	1E 66	17AE	1C2E	2822	0805	3A 03		
0020	: 0985	2833	1CAE	282C	0810	3903	1D 03	2833		
0028	: 0805	3A 02	0085	2833	1FAD	2833	1C10	2833		
0030	0805	3A 〕B	0085	3 @F 8	058B	0E1A	0083	0E19		
0038	0009	3004	008C	301F	0085	0186	0189	1683		
0040	1408	3007	0081	30 F	0085	301B	0086	1283		
0348	0808	009D	0 0889	1683	1498	1283	0808	061D		
0050	: 3E91	1903	2855	3008	009D	01AF	2 0CE	0181		
0058	: 019C	132E	1806	285F	172E	1185	2860	1085		
0060	: 3 0f0	008B	1086	293E	1AAE	$20 F 2$	192E	2862		
0068	: 1BAE	2927	19AE	286D	2862	019C	11AE	0820		
5070	: 3930	1903	2875	1F2D	2862	0806	0091	1786		
0978	1506	15AD	0805	0093	39F5	0085	3003	0995		

Fig.10. Sample,Pogrammer Screen

PRID may be from 1 to 4 bytes in length. To use a PRID then the program must use an array of RETLW instructions at a location defined by the user. It is suggested that these are somewhere obvious 胧e at address 100 Hex . The programmer will insert the values for the PRID Into these instructions before programming each PIC. For example if the value 127 is to be inserted then the programmer will replace the current RETLW instruction with a "RETLW 127" instruction. If the user has defined a PRID area which does not contain RETLW instructions then the programmer will not proceed: The following types of PAID may be used:

1. No PRID - the default. It is suggested that even if a program will use a PRID, then the PRID is not enabled untii the program is fully debugged and devices are to be programmed ior use. 2. User defined. With this option the user can enter a value of up to 8 hex cigits, the user is prompted to enter this value each time that a PIC is programmed.
2. Program sequence. With this option the PRID is set automatically to the number of times that a parricular file has been used to program a FIC - this guarantees that each PIC has a different ID, but ID's will be sequential. The île used must have the same directory and file name each time that a PIC is programmed for this feature to operate.
3. Random. With this option, the PRID is set to a random value. This option is best used for security systems when a 4 byte value is recommended.

Data EEPROM

The EEPROM PIC devices have an EEPROM data area which may be read or written from the program. The programmer can also read or write this area. In practice this is most useful for setting up device configuration in advance, or ior debugging to check that the EEPROM data has been correctly written by an application program. Data may be read from, or written to, any of the standard file types.

This area is considered to be mapped at address 0 , and information read from Intel hex format files is read to this area. This is slightly different from the Microchip programming specification which places the EEPROM data at logical address 2100 H . The reason for the difference is lo allow for any future expansion in EEPROM or program sizes.

Adding new PIC types

It is possible to add new PIC device types to the programmer software. New device types should have the same type of programming specification as an existing device type. That is, programming voltage should be on the MCL.R pin, and for serial devices the clock and data should be entered on RB6 and RB7 respectively. For serial devices, the command numbers should match the 16C6XX or 16C7XX devices. Please feel free to consult the author in case of uncertainty.

New devices are entered into the file "PROCTYPE.INI" which is in the directory used to run the programmer. A new

FIGUAE 9 Serial Cable from programmer to host Ris				
Programmer	PC connector type:			
PL1	9 way female	9 way Male	25 way Female	25way Male
2	8	2	2	3
3	2	-3	3	2
5	5	5	7	,

device should be added by putting the line "NAME=TRUE" where NAME is the device type in the section at the top, and then adding a definition section. An example definition section is shown for the PIC16C71 in figure $11 \cdot$ note the information shown after a ' \because ' on each line describes the entry and should not be entered into the file. Please examine the supplied file for other examples as the definition may change as the software is enhanced. After entering new devices into PROCTYPE.IN they will then be available for selection in the programmer nost software.

Programming Specification

For those users who wish to produce their own host soitware for the programmer this section describes the senial interiace to the programmer.

Communication to the programmer refies on a command/acknowledgement protocol driven by the host machine. Commands are given as a letter from ' A ' to ' Q ', and any bytes required by the command follow the command letter. The programmer responds with any bytes to be sent as a resuit of the command followed by an acknowiedgement byte. The acknowledgement byte is either a ' K ' or an ' F '. ' K ' indicates the command was successiully obeyed, ' F ' indicates
that an error occurred such as a checksum failure on data sent to the programmer. Commands may take up to 100 ms beiore the acknowledgement byte is retumed, and if this time expires then an error may assume to have occurred, the time-out in the prototype was set to is.

To initialise the programmer from any state, this sequence should be followed : Send 'D' 18 times, wait 15 and discard any bytes returned from the programmer. Send ' K ' and wait for the acknowledgement - ' K ', the programmer is now guaranteed to be in a waiting state. This sequence needs to be followed only at the beginning of an application program.

Figure 12 shows the list of commands which can be sent to the programmer, and the expected responses. The following paragraphs describe commands in more detail.

The Set mode command ('A') and the Size command (' 1 '), should be sent before any other command is sent to the programmer. These set the type of PIC and the size of the program area. The Set mode command (' A ') is followed by a single byte. Bit 0 of this byte is set for serial mode devices, bit 1 is set if the device is manufactured In EEPROM technology. For example, the PIC16C84 has the mode command deinition value 3, the PIC16C57 has the value 0, and the PIC16C71 has the value 1 .

All data words written to the programmer for programming (commands ' E ', ' G ', and ' L ') are in PIC parallel format sent as the low byte followed by the high byte. This format has the upper 8 bits of the word in the upper byte, and the lower 4 or 6 bits in the lower byte which should be padded with O's. Thus the hex word "1EC7" for a 14 bit device is written to the programmer as the byte " 07 " followed by the byte " 7 B ". Regardless of the number of words written to the programmer they are always followed by a single byte checksum which is the 8 bit sum of the data words. If the checksum fails then the programmer will return ' F '.

All data read from the programmer in response to the ' B ', ' C ' or ' J ' commands is in the PIC paraliel format as for data written, but there is no checksum. All other 8 bit data is returned as a single byte. 16 bit data is returned in the normal low byte followied by high byte format.

Fig.7. PCB component overlay

Fig．8－16C57 Gode for PIC Programmer

：08000000010065006600420CDE ： 08000800270068006900020 CEA ：080010002A00000C0200FFOCA5 ：0800180005000600800C070042 ：080020004E0c1509E804160958 ： 08002800340 A้IDOBOC02E20846 ：080030000E0C2E00EE021A0A6C ：0800380000000008190C000093 ：080040000000190A44085708EA $: 080048005 \mathrm{~B} 084708610850083 \mathrm{D}$ ：080050006308590849085F0824 ：08005800550865086708500802 ：0800600069086E086R0822001C ：08006800520C88000306410A53 ： 08007000410 CABOOEE 06410 A54 ：08007800220CRB010B02330910 ：080080002200460C1509120ACA ： 0800880016090 BO 228004 BOCC 5 ：08009000420조 160908022900 C 7 ：0800980016090B022A00470AB9 ：0800A00008068в090807．．609C8 ： 0800 A 800470 AAB 09470 AR 30552 ：08008000480AA305800AA30519 ：0800B8002F0AR305EOOAA305C0 ：0800C000010AC305240AC3056F ：0800CR00030AC305000AB10997 －0800D000470AC305．280ヶA305B5 ：0800D800C305200AA305C305BE ：08005000000A020C740A1C0C5R ：0800E8003B00FB027502000851 ：0800F0000D0C3C007E00FE023E ：0800F3007E0AFC027E0A0008F0 ： 08010000080694044000050006 ：0801080006000D0225000E02A5 ：0801100026006704730967056E ：08011800PF0C0500060071094F 08012000670484096705000838 ：08012800020CD4098F09080C08 ：080130000409280678097309RF －080138000E0C2807D409ED0AA2 ：08014000030CD4098F09080CEF ：08014800b409780A670573096B ： 08015000490 C 270000084 A 0 CCD ：080158002700FF0C06006704FC ：0801600000080806D302．470558 ：0801620005020F0E2F00060234 08017000310047040008660090 ：080178003F0C0600A60A4D032E ：08018000390079030 033 A 0077 ： $0801880039031904 \bar{F} A 04100 \mathrm{CFC}$ $2080 \div 90003700 \mathrm{E} 6043$ A033903CD $080198000306 E 605 C 605 C 604 D 6$ ：0801A000ㅋ702C90A0008060C71 ：0801～8003700060C3800E604EA ： 0801800037030306 E 605 C 6054 E 08018800C604F802D704000892 0801C000FF0C2D002E00800091 ：0801C800D409BF09070C39003E ：0801D0000309F902B80A050C4D ：0801D800EE0A040CD409BF0C6F ：0801E00006000F0C24Q0070CBF ：0801E800J092F032F033F0C40 ：0801F0006F01110c2400080C42 ：0801PR002709C605C6043F0CFF ：08020000060000083800C605E5 ：08020800C6040304E606030529 ：080210002003F802030B0008B3 ：08021800E706160A080C2D0090 ： 0802200018091 E 090000030487 ：08022800E70603052R03EDO2BC ：08023000110B0B0287071A0BBA ： 0802380000082 C 00090 C 2 D 0048 ：0802400003040307C704030621 ：08024800C7051E092C03ED029D ：08025000210BC7051E0900087E ：08040000240B08061C0AA3045A ：08040800C304A6090902330038 080410000 A 0234003302430725
$0804180084024304 \mathrm{C3} 04 \mathrm{B3} 09 \mathrm{FC}$ ：08042000A304C304B309A30502 ：08042800E302100AF402100AAD 08043000040 C 3300 B 4025 A 0 A 67 $08043800 \mathrm{~A} 304 \mathrm{C} 30: 1 \mathrm{BB} 09 \mathrm{FF} 0 \mathrm{C} 7 \mathrm{P}$ ᄃ080440002D002E004000A30472 ：08044800C304D409．4304C3049A $08045000 \mathrm{EF} 09040 \mathrm{C} 33007: 0025$ ：080458002402月305650A0806B7 $080460003 \mathrm{E0A4} 304 \mathrm{C} 304 \mathrm{~A} 6092 \mathrm{~F}$ ：08046800A304C30483096300FF ¢ 08047000050215091102150924 $08047 \mathrm{B00A} 305670$ AA 04 C 30455 ：08048000RE09A304e304E00959 ：0804880063000F0215091102C7 ：080490001509A305670A090222 ：0804980033000月023400330234 ：08Q4A0004307E40208066C0ADO ：0B04A800A304C3042609A30488 ：0804E000C304B309A304C30453 OR048800E30963000F0215098F $0804 \mathrm{C} 00011021509 \mathrm{~A} 305 \% 30266$ ；0804C8005A0AF4 025A0AS304C7 \％0804D000C304动096300470A男5 －0804D800A304C304EB09A30443 ；0804E000C304ED0963000F02E3 ：0804E80015091102150930416 ：08045000C304D309A305F302C ：0804F8006F0AF4026：0．A670AA3 ： 0805000007500760009023300 CA \＆ 080508000 A0234000806ADOAEG ：080510008302330243078402F9 ． 08051800 A 304 C304A609A30417 ： 08052000 C 304 P 309 A 305 C 304 EL ：08052800DE090F02F5020306D4 ：08053000日6021102F601A30359 ：08053800F3028F0AF4028F0A95 ：08054000A304C304AB0915027 ；08054800A304C30द150916020\％ ：08055000A304C3042509630084 ：08055800470A33024307840215 ：08056000\％304C3048809R304RA ：08056800C304ED098305C3045F ：08057000DE090F02F50103068C ：08057800860211028601A30412 ：08058000C304D309A305F30233 ：08058800B30AF402B30AA30454
 ：080598007809月304C304EB09A8 ：0805A000A304C304E009A30554 10805R800C304DE090F02F50196 08058000030656021102F60178 ：08058800．305A00A．6F036F0305 ：0805C000020C0806E60R゙6F03B5 ：0805C8006F03040C3200030470 ：0805 000031032 F 03 F 202 E 70 ADR ：080508000008090233000A02C9 0805E000340033024307日\＆02AA ．0805E8000806110BA304C30473 0805F000．A609A304C304B3092A 0805F800A304C304B309A30529 08060000000943070 COBP 30293 -08060800 FCOAF402FCOAM30441 ：＇08061000C304AE096300470AB3 08061800A304C304AB09630055 ： 02062000410 AA 304 C 304 BB 0955 ：08062800A304C304ED09A305BE ： $08063000000943070 \mathrm{COBA304B}$ ：08063800C304D309A305F3027． ．08064000140BF402140B070B6C ：08064800C00C0807F00C2F01A3 ：08065000ムF0243070008B102EC ：02065800000898
08080000E805020C250～0806B ．．0808R800170A090233008302D4 ；08081000020234003302430721 ：080818008402A304C304B309F8 ：08082000e305F3020D0AF40206
：080828000D0A080C250AFFOC63 ：080830002D002E004000A3047E ：08083800C304DA09A304C304．A6 ：08084000BF09C305080C250ADD ：08084800100C2F003300030423 ：080850003303300C24006C009E ：08085800A304C3041609C30543 ：080860000802EC012000A402DO ：08086800EF022C0Aラ304C304F3 ： 080870001609 C3050』02AC00E0 ： 0808780043076 E0AER068E0931 ：080880006400300C3200750029 ：08088800010C340012022400BF ：0808900000022D00R 02000289 －080898002E006400B202B2025 ：0808A000A304C3048009C30591 ：080BA800F806630A0DO2AF002F ：0808E0p043065D0AE8066E0A2A ：0808B800630A0E0281004306C1 ：080BC000740AE8066E0A28061E ：0808C8006COAB402640CE8079D ：0808D0001m0C94004307500AC2 ：0808D800E806560A4000A304E3 ：0808EOOOC30415096300410A7D ：0808E8001402F5012806820A42 ：0808F000E806820ADS01F401EC ：0808F800A304C3048009C30539 ：08090000P4027C0RA304C30405 ：08090800B109C305F302440A22 ： 080910001502 A 304 C 30415093 C ： 0809180063004704080700080 C ：08092000300C240000022D0040 ：08092800A40200022E0064008D ：080930004000A304C304040934 ：080938008304C304BF09070C6E ：080940003200A304C304D3093 ： 08094800 C 305 f゚202A10A000838 2 ：0809500040002807DF0A080738 ：08095800DF0Ai 304C3048B097C ：0809600067040A0CA304C304A0 ：08096800D409C3053F0C250072 ： 0809700026004000050006000 z ：08097B00EC09EF0CEC09EFOCB7 ：08093000EC09070C3200060C23 ：08098800280067056704E6057F ：08099000F202C30A010CEC099C ：08099800070CEC09020CEC094C ：0809A000FF0CECO9BFOCEC098： ：0809A800080CEC09A304C304DO ：080980007809C305010CEC09F4 ：0809B800070CEC09010C3200F0 ：0809C00065006600A304C304F6 ：0809C800AB09FF0C0500630000 ：0809D000320243064104470A06 ：0809D800260067056704E6052F ：0209E000．00080D
：080C0000090233000A0234006E ： $080 C 080033024307 \mathrm{B4} 02 \mathrm{~A} 30408$ $: 080 \mathrm{C} 1000 \mathrm{C} 304 \mathrm{BB} 09 \mathrm{~A} 304 \mathrm{C} 304 \mathrm{E3}$ ：080C1800EB0963000F0215094E $: 080 C 200011021509 \mathrm{~A} 304 \mathrm{C} 3042 \mathrm{D}$ ：O80C2800D309A305C305F30283 ：050C300002．0AF4020A0AA304F7 ：080C3800C304A8096300470A85 ：080C4000100C2F00080C33001A ：080c4800300c24008C00830431 ：050C5000C3041609A305C30546 ：080C58000802EC012000A402D4 ： $680 \mathrm{C} 6000 \mathrm{EF} 02270 . \mathrm{A} 30 \mathrm{sC} 304 \mathrm{FC}$ ： 080 C 6800 P 609 A 305 C 3050902 E 8 ：080C7000AC004307540A6：00C4 ： $080 \mathrm{C7} 800300 \mathrm{C} 3200120$ ：2400CE ：080C800000022D00A402000295 ：080C88002E0064008202B2026A ：080C9000A304C304A009A30498 ～0BOC9800C304B109A305C30563 ：080CA000F3023E0．6300470Å5B ：040CA800630041029ㅈ․
：O20FFE00010AE6
：00000001FF

To program data locations the Enter Program command (' F ') is given. This sets the program counter to address 0 . Now 8 words can be programmed at a time using the Program Data command ('E'). Each command returns the overprogram count (a single byte) followed by the acknowledgement. The overprogram count is the total number of pulses required to initially program the 8 words. Thus, if the first seven words all required one pulse to initially program the word, and the eighth word required 2 initial pulses, then the overprogram count returned will be 9 . After each word is programmed the interna! counter is incremented ready to write the next 8 words. After the entire program area is written then the End Programming command ('K') is given. Note for paralle! programmed devices then when the data locations are to be programmed the initial 'F command must be folloved by a single ' M ' command. This increments the program counter past the configuration word in these devices.

In similar fashion the user words may be programmed by sending the Enter Program ('F') command followed by the Program ID locations command (' G '), followed by the End Programming command (' K ').

The User configuration fuses are programmed by sending the Enter Program ('F') command followed by the Program configuration fuse command ('L'), followed by the End Programming command ('K'). Note if the Code Protect fuse is set to 0 (entering protect mode) then the program command may fail due to the inability to read back the correctly programmed value. Fuses must always be programmed after the program and user words.

Data EEPROM is written in the same way as program EEPROM, using the F. Q and K commands. Note that data sent for data EEPROM is still be sent and received as 8 words in PIC parallel format even though only 8 bit bytes are being sent. Thus the byte "FF" is sent as the byte "3F" folloved by the byte " 03 ". Note for reading and programming data EEPROM the size command must be used to send the size of the EEPROM data area, and not the program area. Also there is no check of EEPROM data after it has been written - use the read command to verity it.

File Formats

The host software accepts the following file types:

Intel Hex

This format is the standard Iniel hex form consisting of data records with checksums followed by an end record command and is produced by the Microchip MPASM assembler. There are two types of Intel hex file supporied by the programmer. The first is merged 8 bit format described by Microchip as NNHX8M format (.HEX extension). This is a single file containing words in low high format. All addresses are doubled. The INHX8S iormat consists of two files, a file with a .HXL extension and a file with a HXH extension. The first file consists of the lower 8 bits of each word to be written to program memory, the second file contains the upper 4 or 6 bits of each word. The old 16 bit hex format used for the proprietary Microchip PICPRO programmer is not supported.

Hex Text

The Hex Text format is mosi useful for producing data files for the EEPROM data memory. Hex Text format files can be created with a standard text editor. The records consist of a single word written on each line of the file which has a ".TXT" extension. Thus the file consisting of the four bytes, 05, 6B, 1A

Resistors

| - R1,4 | 4K7 |
| :--- | :--- | :--- |
| - R2 | $1 K$ |
| R3 | 10 K |
| - R5 | $15 R$ |
| - RG | 560 R |
| - RN1 | $12 \times 10 \mathrm{~K}$ (see texi) |

Capacitors

- C1
- C2,3,4,6
- $\mathbf{C 5}$
- $\mathbf{C 7 , 8}$
- C9 22uF 25V Electrolytic
- C10,11,12,13 22uF 16 V Electrolytic

Semiconducors

IC1	PIC16C57/XT
IC2	MAX232
IC3	7805
IC4	78 L 12
TR1,3	BC548
TR2	BC557
D1	1N4001
D2,3,4,6,1N4148	
LD1	Red LED, 5mm
LD1	5.6 V Zener diode

Miscellaneous

- XL1 $\quad 3.579545 \mathrm{MHz}$ ciystå or ceramic resonator
- PCB
- PL. 1 9-pin D socket
- PL2 2.1 mm PCB mounted'power
socket
iC sockets
- SKT1,2,3 28, 18,40 pin sockets (see texty)

4 mm high rubber feet

Mains Supply

Capacitors

```
- C101 100uF, 25VElectrolytic
```


Semiconductors

- D101, 102 1N4001

Miscellaneous

(1) TRANSH Veroboard
15-0.15V 250mA transforme

- Case with Integral mains plug
- 3m two core cable
21m power plug
- Fixing hardware

Figure 12
Table of commands and responses used by the programmer

Command Letter	Function	Input data	Returned data.
A	Setmode	Single byte mode data see text	Acknowledgement byte
B	Read entire PIC	None	Size' words + Acknowledgement byte
C	Read configuration word	None	Configuration word + Acknowledgement byte
B	Check programmer	None	Acknowledgement byte
E	Program 8 words at the current focation, move the current location onward 8 words	8 words + single byte checksum	Single byte count of overprogram pulses for all 8 words + Acknowledgement byte
F	Enter programming mode, set current location to 0	None	Acknowledgement byte
C1	- Program user words	4 words + singte byte checksum	Acknowledgement byte
渚	Checksum entire PIC and configuration word, excludes user words	None	16 bit checksum in low -high format + Acknowledgement byte
T.	Set PIC program size	Size of program area in low - high format	Acknowledgernent byte
d	Read User words	None	4 user words + Acknowledgement byte
1	Leave programming mode	None	Acknowledgement byte
1	Program configuration fuses	Single configuration word + single byto checksum	Acknowledgernent byie
14	Increment program location fonly reeded to step past configuration in parallel devices when programming daia - see text)	None	Acknowledgement byte
N	Blank check PIC	None	Retum ' K ' if the PIC is blank, ' F ' if it is not blank.
(0) P	Bulk erase EEPROM device program and data Read EEPROM data	None None	Acknowledgernent byte Size* words + Acknowledgement byte
©	Program 8 bytes at the current EFPROM data location, move the current location onward 8 bytes	8 bytes sent as words in PIC paralle format, followed by a single byte checksum	Acknowledgement byto

[^2]and A7 is written as follows:
05
68
1A
A7

Binary

Blnary information files are stored as bytes. Where words of more then 8 bits are written then the lower byte is written followed by the higher byte. The file extension is ".BIN".

Developing with PICs

It is recommended that all development projects should use the erasable (/JW) versions of the PIC series. There have been recommendations that the simulator (MPSIM) is sufficient to fully evaluate code prior to blowing a PIC. However in practice it is difficult to use MPSIM to exacily simulate external devices

- particularly those driven using serial protocols.

The PIC16C84 EEPROM device is much cheaper than the erasable versions of the 18 pin 16C5XX devices and offers a code superset of these devices. It also erases in less than one second and is recommended for development of programs on 18 pin devices.

Programmer Software

The author is prepared to program PiCs as well as to supply host software. Send a blank PIC16C57/XT or PIC16C57/JW which will be returned together with the host software. The host software is supplied on $3.5^{\text {" }}$ High Density floppy disk suitable for use with Microsort Windows version 3.1 or 3.11 the soitware will probably operate with Windows 3.0, but has not been tested. Send the PIC together with an SAE and a cheque for $£ 20.00$ to Robin Abbott, 37 Plantation Drive, Christchurch, Dorset, BH23 5SG. The author is also happy to answer any queries on the use of the programmer.

Figure 11Example Processor definition in eprociyperml"	
[16c7f]	
bitength $=14$; Number of bits in program word
eeprom=0	; Set to 1 if device uses EEPROM technology
serial $=1$; Set to 1 if device uses serial programming
proglength $=1024$: Size of program in device
put=1	: Set to 1 if the device has a power up timer
$\mathrm{rc}=3$; value of fuse bits for Resistor/Capacitor oscillator
$\mathrm{hs}=2$: value of fuse bits for High speed crystal oscillator
$x t=1$; value of fuse bits for Medium speed crystal oscillator
$1 p=0$; value of fuse bits for Low power crystal oscillator
wdibit=4	; value of iuse bit for watch dog enable
putbit=8	; value oif fuse bit
for power up tim	
cpbit=16	; value of fuse bit for code protect feature
cfmask $=16352$; Mask for unused bits in fuse area
udosc=1	; Set to indicate all devices can have oscillator type programmed
retlw $=13312$	- Value of 'RETLW O' insiruction
eedatasize=0	: Size of EEPROMı catā ārea

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 01316672611
The supplier to use if you're looking for -
\star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST *

* COMPETITIVE VAT INCLUSIVE PRICES *
* MAIL ORDER - generally by RETURN OF POST * FRIENDLY SERVICE *
* 1995/96 CATALOGUE NOW AVAILABLE Price $£ 2.00$ *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

$=0$$L T D$ Stevenage
Professlonal Sub-Contract Manufacturing \& Suppliers to the Electronlcs Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Product Design/Consuhation Surface Prount) Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand writen shts or PC $3^{\top} / z^{\prime \prime}$ disc
Cable Hamess Assembly/loom Manutacture
Card Cage and Module Wiring Full Inspection

Full Procurement Service PCB Test \& "Eum in" Faclities Enciosute Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Frofessionally Kit Procurement \& Supply Component Sales
Refurtishment a speciality Top Ouality Work at Reasonable Rates

Phone Angela on (01438) 360406 or tax detalls of your requlrements to us on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVEHAGE, HERTS, SGí2DF

High qualiny stepping motor xits (alli including stepping motors) 'Comstep Indeopendem control of it stepoping
motors by PC (Vis the paralle porn) will 2 motors and soltware PC (Vis the parallet Porn)
kive

ع99.00
 ع27.00 Steoper kntace 4 A kr 84.00 steppor kn motor and control cricuin 23.00 We are now stocking a range of stepping motors and
kits to dive them please ask 10 the stoppong motor kits so dive them piesse ast tor the stopDemg motor
data sheel tor full itormation inverior tororidal transtommers 225VA 10.5-0-10.5 primary 0.280-285 secondan 529.95 LEDt 3 mm or 5 mm red or green..........7p each cabive tivs. 1p pacich 55.85 per 1000
E49. 50 High quaility photo resist boards

6×12 nches
12×12 inche
$\varepsilon 1.09$
$\varepsilon 6.75$
$\varepsilon 6.20$
Rachargaacte Batlenes

A 700 maH

C 2 AH wit solder togs
D AH with woider tog:
1 12AA with soldor tors
AA SOOMAH with solder tig

C (HP11) 1.8 AA
0
O
(HP2)
1.2 AH

PP3 8.9 V 110 m AH
Sub C with solder logi
$1 / 3$ M with tags (philo
St
Sinclair fight gun terminated mith a lack pug and PPS cilig gives a signa men poimied at 5 Ohz fickernig fight With output wave fom char
 E4.95 each or pack or 10 E39.50
 Aimax Aszoso3-C larre
 for a box of 30
Polyester capactiors box type 22.5 mm lead phich 1ut 250 urac 30 p sech, $20 \mathrm{p} 100+.10 \mathrm{p} 1000+$ 3.30110000 c 30 p each. 20p $100+15 \mathrm{p} 1000$. 1 1ut 50 V blpolase efectrolytic axial leads 15 p each, 7.5 p

 27.5 mm pitch

 ${ }^{15 p} 10004$
 $100+3.5 \mathrm{p} 1000+$
500 p compression trinmmer 60 p containng no pcos) E5.95 or 849.50 for 10 Solid cariton resistors very low inductance idoal tor

27phm 2 W. 68ohm 2 W 25 p each 15 p each $100+$ we resistors pobese send SAE for list
P. . 40 OW PS P.C. 400 W PSU (Inte9 pent $201035-001$) with standiard mothertboard and 5 disk dive combectors. tan and
manis thew outhe commetorv on back and switch on
 $212 x 49 \times 149 \mathrm{~mm}$
$\varepsilon 138.001006$
MX 180 Dipitai multimeter 17 ranges 1000 vde 750 vac
 AMD 2T256-3 Eproms m. 00 ®act $\varepsilon 1.25100$ OIP swich 3PCO 12 ph (ERG SDC 3-023) 60p each
$400100-1$ $40 \mathrm{P} 100+$
Oisk drve boxes for 5.25 disk divive with room for a
power suppyy hodl

Hand hotd ultrasomic remote controlc3.95 CV24e6 gas rehay $30 \times 10 \mathrm{~mm}$ $E 750$ per 100
All products acverised ar new and unused unless ${ }_{7}$ Otherwise stated Wirde range of CMOS TLI 74 HC

val inctuded 1 ail pricoss

JPG ELECTRONICS

74 LS05 hex in spasiug urf initiong am
 $100+6 p 1000+$

SUMMER 1995 CATALOCUE

 componcnts res cquipment mitsThe Summer '95 edition has 280 pages packed with over 4000 products and now with news and features including a full construction project.

The computer section is greatly increased with new ranges of equipment and accessories for PCs including:

Mother boards, CPUs and SIMMs CD ROM drives and hard drives Sound cards, I/O cards, disc drive cards and video cards Mice, trackerballs and joysticks Power supplies and cases

- Feature project for an EPROM emulator
- New 20 MHz 'scope from Leader, training systems from Flight and an extended range of mobile phone batteries and accessories from Uniross
Latest addition from Velleman kits including a video digitiser card
- 280 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and suppliers
- Available at most large newsagents, from 13th April, or directly from Cirkit

- Send for your copy today!

STAMPROJECT

 he BASIC Stamp's pulsin command measures the width of a pulse, or the interval between two pulses. Left at that, it might seem to have a limited range of obscure uses. However, pulsin is the key to many kinds of real-world interfacing using simple, reliable sensors. Some possibilities include:

- tachometer
- speed trap
- physics demonstrator
- capacitance checker
- duty cycle meter
- \log input analog-to-digital convertes

Pulsin works like a stopwatch that keeps time in units of 10 microseconds ($\mu \mathrm{s}$). To use it, you must specify which pin to monitor, when to trigger on (which implies when to trigger off), and where to put the resutting 16 -bit time measurement. The symax is as follows:
pulsin pin, trigger condition, variable
Pin is a BASIC Stamp input/output pin (0 to 7). Trigger condition is a variable or constant (0 or 1) that specifies the direction of the transition that will start the pulsin timer. If trigger is 0 , pulsin will start measuring when a high-lo-low
transition occurs, because 0 is the edge's destination. Variable can be either a byte or word variable to hold the timing measurement. In most cases, a word varable is called for, because pulsin produces 16-bit results.

Figure 1 shows how pulsin works. The waveform represents an input at pin 7 that varies between ground and +5 volts (M .

A smart feature of pulsin is its ability to recognise a nopulse or out-of-range condition. If the specified transition doesn't occur within 0.65535 seconds (s), or it the pulse to be measured is longer than 0.65535 s , pulsin will give up and retum a 0 in the variable. This prevents the program from hanging up when there's no input or out-of-range input.

Let's look at some sample applications for pulsin, starting with one inspired by the digital readout on an exercise bicycle: pulsin as a tachometer.

Tachometer

The most obvious way io measure the speed of a wheed or shaft in revolutions per minute (rom) is to count the number of revolutions that occur during 1 minute. The trouble is, the user probably wouldn't want to wait a whole minute for the answer.

For a continuously updated display, we can use pulsin to measure the time the whecl takes to make one complete revolution. By dividing this time into 60 seconds, we gel a

quick estimaie of the rpm. Listing 1 is a tachometer program that works just this way. Figure 2 is the circuit that provides input pulses for the program. A pencil-eraser-sized magnet attached to the wheel causes a Hall-effect switch to generate a pulse every rotation.

We could use the Hall switch output directly, by measuring the interval between positive pulses, but we would be measuring the period of rotation minus the pulses. That would cause small errors that would be most significant at high speeds. The flip-flop, wired to toggle with each pulse, eliminates the error by converting the pulses into a train of square waves. Measuring either the high or low interval will give you the period of rotation.

Note that listing 1 splits the job of dividing the period into 60 seconds into iwo parts. This is because 60 seconds expressed in $10-\mu$ s units is 6 million, which exceeds the range of the Stamp's 16 -bit calculations. You will see this trick, and others that work around the limits of 16 -bil math, throughout the listings.

Using the flip-flop's set/reset inputs, this circuit and program could easily be modified to create a variety of speedtrap instruments. A steel ball rolling down a track would encounter two pairs of contacts to set and reset the flip-flop. Pulsin would measure the interval and compute the speed for a physics demonstration (acceleration). Nore challenging setups would be required to time baseballs, remote-control cars or aircraft, bullets, or model rockets.

The circuit could also serve as a rudimentary frequency meter. Just divide the period into 1 second instead of 1 minute.

Duty cycle meter

Малу electronic devices vary the power they deliver to a load by changing the duty cycle of a waveform; the proportion oi time that the boad is switched fully on to the time it is fully oif. This approach, found in light dimmers, power supplies, motor controls and amplifiers, is efficient and relatively easy to implement with digital components.

Listing 2 measures the duty cycle of a repetitive pulse train by computing the ratio of two pulsin readings and presenting them as a percentage. A reading approaching 100 percent means that the input is mostly on or high. The output of figure 2 's fip-flop is 50 percent. The output of the Hall switch in figure 2 was less than 10 percent when the device was monitoring a benchtop dill press.

Capacltor checker

The simple circuit in figure 3 charges a capacitor, and then discharges it across a resistance when the bution is pushed. This produces a brief pulse for pulsin to measure. Since the time constant of the pulse is determined by resistance (R) times capacitance (C), and R is fixed at $10 k$, the width of the pulse tells us C. With the resistance values listed, the circuit operates over a range of . 001 to $2.2 \mu \mathrm{~F}$. You may substitute other resistors for other ranges of capacitance; just be sure that the charging resistor (100 k in this case) is about 10 times the value of the discharge resistor. This ensures that the voltage at the junction of the two resistors when the switch is held down is a definite low (0) input to the Stamp.

Log-input analog-to-digital converter (ADC)

Many sensors have convenieni linear outputs, If you know that an input of to units (degrees, pounds, percent humidity, or whatever) produces an output of 1 voll, then 20 units will

Figure 3. Schematic for listing 3, cap.bas.

Figure 4. Schematic for listing 4, vco.bas:

Figure 5. Log response curve of the VCO.
produce 2 volts. Others, such as thermistors and audio-taper potentiometers, produce logarithmic outputs. A Radio Shack thermistor (271-110) has a resistance of 18 k at $10^{\circ} \mathrm{C}$ and 12 k at $20^{\circ} \mathrm{C}$. Not linear, and not even the worst cases

While it's possible to straighten out a log curve in software, it's often easier to deal with it in hardware. That's where figure 4 comes in. The voltage-controlled oscillator of the 4046 phase-locked loop chip, when wired as shown, has a log response curve. If you play this curve against a log input, you can effectively straighten the curve. Figure 5 is a plot of the output of the circuit as measured by the pulsin program in Asting 4. It shows the characteristic log curve.

The plot points out another advantage of using a voltagecontrolled oscillator as an ADC; namely, increased resolution.

Most inexpensive ADCs provide eight bits of resolution (0 to 255), while the VCO provides the equivalent of 10 bits (0 to 1024+). Admittedly, a true ADC would provide much better accuracy, but you can't touch one for anywhere near the 4046's sub-£1 price.

The 4046 isn't the only game in town, sither. Devices that can
convert analog values, such as voltage or resistance, to frequency or pulse width include timers (such as the 555) and true voltage-to-frequency converters (such as the 9400). For sensors that convert some physical property such as humidity of proximity into a variable capacitance or inductance, pulsin is a natural candidate for sampling their output via ån oscillator or timer.

```
Program listlngs
    Listing 1: TaCH:aAS
    The BASIC Stamp serves as a tachometer: It accepts pulse tmput through
    pin 7, and outputs rpm measurements att 2400 baud thirough pin 0.
        input 7
        output 0
Tach! pulgin 7.1,w2 - Read positive-going pulses on pill t.
        let *2=w2/100 w2/100 divided into 60,000 equals
```



```
    Trans位 data followed by carriage retum and lineteed.
        serout 0,N2400,.4#w2,0 rpm*,10,13)
        pause 1000 - wait 1 second between readings
        goto Tach
- Migting 2: DUTY.BAS
- The basIC Stamp calculates the guty cycle of a repetitive pulise tratr.
```



```
    input 7
    output 0
Duty: pulsin 7.1.w2 STake positive puise sample.
```



```
    pulsin 7,0,W3 T Take negative pulse sample.
    lets w3=*2+w3
    let w3 = w3/10 - Distribuce multiplication by 10 into two
    let w2 = w2.10 parts to avold an overtlow.
    Het w2 = w2/w3 . Calculate percentage.
    serout 0,N2400. (#w2." gercent",10,13)
    pause 1000 4. Tpdate once a seconid
    goto puly
```

 ghande overflows by skipping calculations and relling the tiver.
 Bher: aerout $0, \mathrm{~N} 2400$, (tout of range $, 10,131$
pause 1000
goto DuLy

- Listing 3: lcap Ras
- The BASTC Stamp estimates the value of a capacitor by the time required
- for it to discharge through a known resistance.
input?
output 0
Cap 4 pulsin 7.1,w1
सif $W 1=0$ then Cap s If Ho pulse, ExY again.
if $w 1>6553$ then Ber , Avoid averflows.
let $w 1=$ wil 110
let $w 1=w 1 / 14 \quad$ Apply calibration value.
话 Wl > 999 then $u F$. Use UF for jarger caps.
serout $0, N 2400$, (1) $\mathrm{Kl},=$ NF", 10,131
goto Cap
He. let b4 = w1/1000 Fr value left of decipat polet
let $\mathrm{b} 6=\mathrm{w} / / 11000$, Value right of decimail point.

goto Cas

goto Cap

Note about the Program Listings

All of the listings outpul results as serial datal To receive it connect Stamp pin 0 to your PC; serial inputy and Stamp ground to signal ground! On 9 piniconnectorsy pin 2 is seriâtiln and pini 5 is signal ground on 25 - pin connectors, pin 3 is serial in and pht 7 is signal groundl Set terminal software folisictia bits, no parity, is stop bit.

```
Lfstoing 4: vCO. ERS
The EASIC Strame uses imput from the vCo of a 40g6 phage-lockea loop
as a logarithmic A-to-D conyertover Input on pin 7,02400-baud serial
autput on pin 0.
    input }
    output 0
veds. pulsin 7,1,w2 "Put the width of pulse on pin 7 into w2.
    let w2 = *2-45 , fitiow a near-mero min value wibhour undegifaw.
    serout 0,N2400, (#w2,10.13)
```



```
    goto vco.
```


BASIC Stamp -Stamp sized Computer runs BASIC

Abstract

The Bosic Stamp by PARALLAX measures only $40 x 60 \mathrm{~mm}$ yel is a true microcom puter that runs BASIC programmes writhen on your PC. Its size, ease of use and extensive 1/O features make it an ideol fool for both educotional and industrial applications as well as for the serious hobbyist.

Writing programmes for the Stomp is easy. A 3-pin cable connects the Stamp to your PC prinler port. One piece of solfware is used to enter, debug ond download your programme. Features include $8 \mathrm{I} / \mathrm{O}$ lines, nan-volatile momory, serial comms, pulse measurement and PWM: all ochieved with a minlmum of externol components.

The BASIC Stamp Development Kit at $£ 99$ includes; 1 BASIC Stamp, instruction manual, PC coble, soffware and extensive application notes. Further Stomps are available from £29.

Muscle Wires -wies hat contract when hected!

Fascinating, highly processed Shope Memory Alloy wires hat actually controct when ofectrically
Low cest linear actuators af last! Their lightweight makes them excellent for use in models, robots and many other rypes of project. Low voltage and power allows simple control by computer or electronics leg The BASIC Stampl.
Detailed Dato and Project Book (128 pages) plus Muscle Wire kit suitoble for 13 projects including 8ORIS the walking, six-legged robot: only £44.95.
Alf prices excl VAT and $£ 3$ postoge per order. For further details of the Stamp, Muscle Wires and other products please coll for our NEW colour cotalogue.

MILFORD INSTRUMENTS

24hr Answerphone 01977683665 , Fox 01977681465 Milford House 120 High Sireet, South Millord LEEDS IS25 SAQ

m
 TRANSIITTERS

AT LAST. A comprehensive, easy to follow guide to building short range transmitters and survelllance devices. Packed with useful information and circuits.
\star Only $£ 3.95$ inc p\&p.
(Some of the circuits included cannot be used legally in the UK)
All kits come with pre-drilled PCBs and high spec. components.
MICRO FM TRANSMITTER (a). 1 km range, $80-100 \mathrm{MHz}$ preset inc. mic., very small ($2 \times 3 \mathrm{~cm}$)
 MICRO FM TRANSMITTER (b). Varlable mic. sens., tunable $90-110 \mathrm{Mriz}$. 1 km range
FM TRACKER. Transmits an audio tone for directlon finding, tracking etc.
80.110 MHz
ULTRA MINIATURE FM TRANSMITTER. Runs off watch battery (inc), on
$1 \times 2 \mathrm{~cm}, 200 \mathrm{mtrs}$ range. $80-100 \mathrm{MHz}$
FM RECEIVER (a). Tiny high quality FM radlo. Will drive headphones

AUDIO KITS

 40 WATT High General purpose upgrade 150 WATT Rugged and powertul MOSFET design. PA/sound systems522.95

PREAMPS ETC

GENERAL PURPOSE PREAMP. Variable gain 9-25V 40 mV max in
ULTRA LOW NOISE. For high quality mixers, mics eic 9-25V
ACTIVE TONE. 12dB c/b bass and treble with variable gain
7 BAND EQ. $150 \mathrm{~Hz}-18 \mathrm{kHz}$ for EO units and tone control.
inctudes on-board preamp and pots. Variable gain
NOISE GATE. Dynamic noise reduction system. Variable input and cut off level. Will accept instruments, tape decks etc

C15.95
MUSIC KITS. Full range of on-board units for guitars and other instruments. Tone boosters, active circuits, delay lines, fransducers. Send for list.
Prices include P\&P. Mail Order Only. Make cheques and postal orders payable to:

JCG」LL

PO Box HP79. Woodhouse Street, Leeds LS6 $3 \times \mathrm{N}$

CRICKLEWOODElectronics Very Interesting CATALOGUE

ASTRONOMICAL RANGE AT DOWN TO EARTH PRICES

- TRANSISTORS+ICs+SEMICONDUCTORS
- RESISTORS+CAPACITORS+INDUCTORS
- SURVEILLANCE+SECRECY+SECURITY
- PLUGS+SOCKETS+LEADS+CONNECTS
- TV \& VIDEO SPARES (inc Video Heads)
- HIFI+DISCO+HIFI GADGETS+SPEAKERS
- AUDIOPHILE COMPONENTS (inc Capacitors)
- IN CAR AUDIO+SPEAKERS (inc Bass tubes)
- COMPUTER ACCESSORIES+BOARDS
- TOOLS+TEST EQUIPMENT+BENCHWARE \& much much much more (over 10,000 lines). SEND TODAY FOR THE VERY INTERESTING CATALOGUE Pay by PO, Cheque, Credit Card or tape Coins to Paper
Please send mecopies of the 1995 Cricklewood Catalogue. I enclose $£ 2.50$ per copy (UK \& Europe). $£ 5.00$ overseas Name..
Address.
\qquad
\qquad

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway London NW2 SET Tel 01814500995 Fax 01812081441

\checkmark Produce Single or Double sided PCBs
\checkmark Print out to any Windows supported printer
\checkmark Toolbar for rapid access to commonly used components.
\checkmark Helpful prompts on screen as you work.
\checkmark Pads sizes fully customisable.
\checkmark No charges for technical support.
\checkmark Snap-to grid sizes $0.1^{\prime \prime}, 0.05^{\prime \prime} 0.025^{\prime \prime}$ and unrestricted.
\checkmark SMT pads and other pad shapes.
\checkmark Positive reviews by Robert Penfold and Paul Stenning, copies available on request.

Phone (01432) 355414 (Access and Visa welcome)

Niche Software

22 Tavistock Drive, Belmont, Hereford, HR2 7XN Please Note Since PCB designer is so easy to use, and to keep costs down, PCB Dexigner has an On-line manual. in Windows Help format A FREE nutorial is also supplied

Terry Balbirnie looks at a new, easy way to make PCBs

When I was given the opportunity to revlew TEC200 Film, I was eager to try it out. Thismaterial promises to be a real help for the hobbyist wishing to make the occasional printed circuit board (PCB). TEC200 simplifies the procedure by eliminating the need for an ultra-violet exposure box, sensitized board and developer. Instead, plain copperclad board is used in an iron-on process.

Modern trends

It was once common for magazine projectis to specify stripboard as their means of construction. Although designs still appear in this form from time to time, the trend Is now towards proper PCBs. By using a PCB, there is much less chance of error. Readers will note foils for this issue reproduced near the back of EII.

Many constuctors have a problem in transferring the master foil pattem on to copper-clad board. This must be in a form which can be etched to produce the pads and iracks. It is possible to copy the artwork direct on to plain board using an etch resist pen or rub-down transiers. However, this is very time-consumbing and is not approprizte to anything but simple designs. The conventional ultra-violet process involves making a transparent acetate copy and using this in conjunction with ultra-violet sensitive board and special developer. Exposing the board to ultra-violet involves the use of a U.V. light box and this, logether with the developer and sensitized board, is fairly expensive. The cost is therefore not justified for occasional work.

TEC200 provides a short cut. Here, an image is made direct on the special film using a photocopier or laser prinier. This image is subsequently transferred to copper clad board using the heat of a domestic iron. The resulting image tums out to be an effective resist so that conventional etching, material may be used on it.

A good image

If a photocopier is used, this must be of the "dry" type where the toner is heat-fused on to the material. This method will be useful to the many readers wishing to work from the master folls reproduced in a magazine. I found that not all copiers are suitable - mine, for example. My best results were obtained by using the services of a photocopy shop. They only charged

10p to copy on to my own material. You need to explain that the film is made to run through the machine and that ordinary acetate will not do. They are understandably very sensitive about damaging their equipment.

Unfortunately, it is not possible simply to make a photocopy from the magazine in one step. This is because the image is the correct way round - that is, as the board will finally appear. This would produce a similar (correct way round) irnage on the surface of the film. If this image were to be transferred to the board, it would be reversed - that is, a mirror image would be produced.

To overcome the problem, a conventional transparent (acetate) copy is first made. This is then furned over and recopied on to the TEC200 film. This will produce a mirror image of the design on its surface and,. when this is ironed on to the copper-clad board, it will be the correct way round. Since the image goes through two processes, it is even more important to maintain a good image quality. The photocopy shop charged 50 p to make the acetate intermediate copy

The CAD

Some constructors create their owri PCB artwork using CAD software. This may be printed direct on to the TEC200 film using a laser printer. The software will provide the necessary mirror image. Note that other types of printer such as bubblejet and matrix varieties are not suitable.

My NEC laser printer did not produce a satisfactory image. Even darkening it to maximum did not help much. The problem appeared to be in the toner material itself. Some laser printers will work well, others will not and readers wishing io use this approach will need to experiment.

Assuming a good image has been formed on the film, it is now necessary to transfer it to the copper-clad boand. The board must be periectly clean for successiul transfer to take place. The best way to clean it is to use a non-metallic domestic cleaning pad. This should be followed by washing with a little liquid detergent and warm water, rinsing and drying. From this point, the toard should be handled by the edges only to avoid finger marks.

The iron (an ordinary domestic type) is adjusted to about 140 degrees C (cotton or linen setting). The TEC200 film, image side down. is then placed on top of the copper clad board and heated with the iron. The toner melts and adheres

ON TRIAL

to the board. This seemed fiddly to do and I preferred an altemative method. This involves placing the hot iron on the board until the copper surface reaches the correct temperature. The film, image side down, is then applied to the board and rolled with a rubber roller. A firm, even pressure is required and it is essential to keep the film still while doing it or the image will smear. When cool, the film is peeled away and the board examined for blemishes. If any are seen, they should be touched-in with a fine etch resist pen. Note that the transferred image is easily rubbed off so the board should be etched straight away. This is done in a conventional etchant bath such as ferric chloride solution.

Obtaining a really good transferred image was not successful on my first few attempts. I would advise readers to buy several extra sheets of TEC200 to start with because a fittle practice is needed to get the technique right. frons vary in their lemperature settings and it will be necessary to do a few tests (using small pleces of film) to find the best one. Too cold and the image will not transfer properly. Too hot and the film curts.

The film should be left completely clear after the transier. If the inage fails to transfer completely on the next try wipe the surface of the film and/or the board with alcohol. I did not find this necessary.

I found TEC200 a very satisfactory product especially for readers wishing to use published designs. My most important advice is to use a photocopier which produces a really good image. The black parts should be opaque and free from blemishes. It may be best to use a photocopy shop - the Sharp machine used in mine gave excellent results but others will, presumably, be just as good. Those using CAD design software must bear in mind that not all laser printers are the same - some work much better than others. Femember, during the ironing-on process that "practice makes periect".

The bottom line

TEC200 film is supplied in A4 sheeis at 75p each (up to 20). There is also a postage and packing charge (75 p for 10 sheets, for example). The unit price reduces as the number increases - 100 sheets cost $42 p$ each. A rubber roller costs $\sum 5$. Acetate shects for the intermediate copy are supplied at 25p although a photocopy shop will provide them. The total cost per PCB will be a little more than $£ 1$ plus, of course, the cost of the copper-clad board and etching chemicals.

Materials

All the above materials (including the rolie t are supplied by:
PSS Services
$2{ }^{2}{ }^{2}$
Cheltenhamer
Gloucester.
CLL52 3ES
Tel: 01242254108

In Part 1 of this short tutorial series Bart Trepak shows how he set about building a PIC based alarm clock

During the last economic recovery - the one where the first green shoots of recession were just becoming visible by the light from the end of the turnel - the author - alorg with many other efectronics engineers, programmers, accountants and even one or two politicians - found himself in the situation which actors euphemistically call "resting between jobs".

One of the problems when one is (to use that well known DSS phrase) "actively seeking employment", is that apart from not having any money, the routine imposed by simply having a job is missing. There is no need to get up at a certain time to get to work so the day tends to get shifted with late mornings following ever later nights. Before long one can find apathy and then depression setting in.

One way out of this dilemma is to set your alarm clock the night before when you are still full of good intentions, to wake you at the usual time early in the moming. Unfortunately, when morning comes and the alarm goes off, you realise that you don't really need to get up so early, so you reach for the snooze button. This cancels the alarm and gives you another ten minutes or so before the buzzer goes off again. You may do this a few times but eventually, unless you have a strong will, you will probably switch the alarm off altogether, roll over and go back to sleep, particularly if you went to bed late the night before. When you finally wake up at 11.30 am , you may grab a quick breakiast (or is that lunch?), peruse the papers for any job (you still have hope) and then as there is not much else to do, settie down to watching afternoon TV with endless antipodean soap operas and re-runs of old black and white firms - and what could be more depressing than that?

But even in the depths of this gloom, electronics can provide the answer. An alarm clock that allows you to snooze - just once (you are allowed some luxuries even when you are unemployed but after this it continues to sound the alarm. disabling the atarm cancel and snooze buttons until you actually get up.

The clock has an input which can be connected to a pressure mat of the type used in burglar alarms which is
placed under the mattress and is used to sense the presence of your body in the bed. To foil any clever attempts io fool the clock by jumping out of bed, cancelling the alarm and then getting back in again, the alarm remains potentially active for a further ten minutes, during which time it will sound again if you do decide to get back into bed.

By this time you should be wide awake and ready to face the new day. Of course you could fool the clock by setting the alarm for 11.30 am in the first place, but the answer to that problem is beyond the scope of this article.

Although designed originally for nlyself, this device has since found a use for other members of the family - namely the children, whose sense of responsibility is even less well developed than thai of their father, and who find getting up for school, especially on Monday mornings, extremely difficult.

Another digital clock!

You could be forgiven for wondering why ETI is publishing yet another digital clock project when so many have been published before and it is quite possible nowadays, to buy a periectly good clock for a few pounds albeit without the useful additional feature described above. The real reason is to introduce readers to designing circuils using micro-controllers which are destined to virtually replace conventional logic in many applications and have already featured in many designs pubilished in electronics magazines.

Fig.1.PIC timing circuit

This series of articles will deal with designing a project from scraich and a digital alarm clock was chosen because it is an item with which everyone is familiar and we will not need to spend too much time on describing in detail what the finished circuit is required to do, but rather how it does it. As well as this, a digital clock needs a display, a keyboard and a buzzer and therefore provides a good vehicle for describing how these devices which are often used in other projects, and the software routines to drive them, can be used in a microprocessor based design.

The series will deal with the hardware design and, pernaps more importantly, with how the sofware is developed and programmed into the device. No previous familiarity with any other processor is assumed but the reader should have a basic knowledge of electronics and how a computer works.

At the end of the series you shoutd be able to at least modify the design to meet some real or imaginary extra requirement (such as would be caused by getting a job for example if you would like a lie-in at weekends) and from this it is but a short step to designing your own project - an all singing all dancing temperature/lighting controller to keep your pet reptiles in the style to which they are accustomed . - or perhaps an automatic lawnmower/sprinkler system with a digital display showing the time, amount of grass cut, average rainfall, distance walked and the date at which the lawn was last cut at the touch oi a button - the choices are limited only. by your imagination!

The circuit will be developed with specific reference to the PIC16C54 microcontroller which is available for under $£ 4$ in some versions (and that includes the Chancellor's piece of the action) so many circuits and applications which would otherwise not be viable because of cost or complexity are now perfectly feasible. Because this device has some unusual features compared to more conventional microprocessors, the series will start by examining the chips themselves but for fuller information the data sheets for the devices should be consulted.

Take your pic

The PIC contains all the basic elements normally associated with a micro-computer system: an Arithmeticlogic Unit (ALU), which executes the various instructions, a Read Only Memory
(ROM or in this case an EPROM) to store the programme; a Random Access Memory (RAM) to store the resuits of the various operations as well as programmable Input/Output (/O) lines for connecting the micro-controller to extemal devices. As well as this, it also contains other elements such as a clock oscillator, a counter/timer and watchdog timer and the only difference is that, unlike the computer on your desk, all of this is contained in one chip.

The PIC16C5X series of micro-controliers consists of four basic types (the PiC16C54, C55, C56 and C57) which dififer only in the number of input/output (//O) lines and EPROM and RAM size. These are available in the UV erasable versions and come in an 18 or 28 pin ceramic package. The cheaper windowless plastic versions of these iour devices are identical to their EPROM counterparts except that once programmed they cannot be erased and are available with the suffixes R'C, XT. HS and LP. These determine the type of oscillator used and the frequency range which, of course, determine the speed of operation.

The RC versions use a simple resistor - capacitor network to define the clock frequency giving a frequency range of $D C$ to 4 MHz and are useful where the execution time of instructions is not critical but the cost is. Where this timing is of importance, such as in our clock project where the oscillator is used as a time base for example, the XT, HS or LP versions should be used. The XT will run with a 100 kHz to 4 MHz and the HS with a 4 to 20 MHz crystal or resonator, while the LP version is a lower power device for use with a low frequency crystal such as the popular 32 kHz watch crystal.

The OSC1 and OSC2 pins are connected to the crystal of resonator and in the case of the RC oscillator mode only OSC1 is used with OSC2 functioning as a clock-output producing a squarewave with a frequency of Fosc/4 where Fosc is the oscillator frequency measured at OSC1. In this mode, although the circuit will operate with no external capacitor, one of at least 20 pF is recommended for noise and stability reasons. The value of the external resistor should be between 5 and 100 kOhm . The ceramic "windowed" versions can be programmed and re-programmed to operate in any of these modes so that only one device needs to be purchased for development

The other features common to all devices include 12-20

STATUS REGISTER t3

Fig,2. Pictorial
representation of data mempry in PIC
fully programmable VO lines which can easily drive seven segment LED displays even without driver transistors, an 8-bit real time clock/counter (RTCC), an 8 -bit programmable prescaler, a power on reset circuit, a watchdog timer (WDT) and a security EPROM fuse which when blown prevents anyone from reading the contents of your EPROM and copying your programme.

The pinouts for the dual in line version of the PIC16C54 is shown in Fig 1. Vdd and Vss are the positive and negative supply rails and can be anything from 3.0 to 5.5 Volts making the device eminently suitable for battery operation. The current consumption is less than 3.3 mA (except for the HS version when operated at 20 MHz) and this can be further reduced to less than 15uA by executing a SL FEP instruction which disables the clock and halts operation until the device is "woken up" either by the watchdog timer timing out or by a reset pulse.

The MCLR pin is connected to Vdd $(+5 \mathrm{~V})$ for nomal operation and doing so will RESET the microcontroller when the device is powered up. If it is required to reset the device at any other time during operation, this pin should be connected to Vdd via a resistor and the pin taken momentarily to OV. In some cases, especially with certain crystals which take longer to stabilise, a resistor and capacitor may be connected to this pin to ensure a longer reset period when the device is first switched on. On reset, all l/O lines are set to input mode and certain registers preset to various values. In particular the programme counter is set to 1FF (HEX) and since this is the highest EPROM address it overtiows to 000 h and executes the instruction stored there. For reasons which will become clear later, this is usually a GOTO instruction causing the programme to jump to the beginning of the programme which normally starts at a higher address.

The RTCC pin is the extemal input to the RTCC registerwhich will be described later and can be used to enable the device to count external events such as mains cycles for example. If this input is not used, the pin should be connected to one or other of the supply rails to prevent unintended entering oi test modes.

The $\mathbf{2 8}$ pin device has three I/O ports; PORT A, PORT B and PORT C while the 18 pin device has only two (A and B). These are 8 bits wide except for PORT A which has only 4 bits and each pin can source 20 mA or sink 25 mA so that LEDs can easily be driven although care should be taken to ensure that the maximum power dissipation is not exceeded. After a RESET, all ports are in the input mode and must be programmed to output if they are required to drive external devices.

Since this can be done under program control, a pin may be used as an input in one part of the program and as an output in another as long as the external circuit can hancle this. Remember that an output should never be driven high or low by another output or an external device such as a logic gate or a switch.

Internal architecture

The PIC16C series of microcontrollers are unusual in that they use the so called Harvard Architecture which features a separate programme memory (which holds the instructions or programme for the computer to carry out and is usually stored in EPROM) and data memory which holds the results of these operations (and is nomally RAM) together with separate connections or busses to transfer the data between the two memones and the arithmetic logic unit (ALU) which carries out the instructions.

Contrast this to most other microprocessors which use the Von Neumann architecture where the EPROM and RAM share
the same address and data bus and form a continuous memory space within the range that the processor can address. This enables the PIC to execute one instruction while it is fetching the next one with a resulting faster execution of instructions. Because this architecture also permits a different width of bus to be used for both memories (the EPROM is 12 bits wide in the PIC16C5X series for example while the data memory is only 8 bits) this enables all instructions to be carned out in one cycle except branch instructions which require two. This makes it easy to work out how much time a section of programme will take to execute because a single cycle is simply the oscillator period multiplied by four. A 4 MHz clock will thereiore execute instructions at 1 MHz so that each instruction will take 1 uS while branch instructions such as GOTO or CALL will take $2 u S$.

Fig 2 shows a pictorial representation of the data memory of the PIC series microcontrollers. The RAM is organised as a series of 8 -bit file registers numbered from 00 to 1 F (hex) giving 32 registers for the basic devices with further 3 banks of 16 registers (i.e. 48 registers) for the PIC16C57. (These registers are selecied by the FIIF SEIFCT REGISTER or FSR which is register 04 but as this chip will not be used this will not be discussed further and the user is referred to the data sheet for more iniormation on this.)

All the registers can be loaded, read and operated on in various ways by the program and are in this respect all identical. Some of them have fewer than 8 -bits actually implemented and these are shown dotied. In these, the state of the missing bits as far as read operations are concerned are shown. Any write operation carried out on these registers will, of course, not atter the status of these bits. Some of the registers have special functions and cannot therefore be used as general purpose registers by the programmer and these are described below together with their file addresses:

Indirect register - $\mathbf{0 0}$

This regisier is not in fact implemented on the chip but is used in indirect addressing. By specifying this register in an instruction, the computer will use the register "pointed to" by the FSR (see later) to execute the instruction. Thus if the FSR contains 1Fh (hex) then the instruction will use register 1 F .

RTCC - 01

This register is the REAL TMME CLOCK/COUNTER register which can be incremented by etther the internal instruction cycle clock or by an external signal edge applied to the RTCC pin mentioned earlier. In addition, an 8 -bit programmable prescater counter can be assigned to the RTCC by setting various bits in the OPTION register (see later). As long as clock pulses are applied to the RTCC register (from the internal or external source, with or without the prescaler) the register will increment and will simply roll over to 00 hex when the value reaches FF hex. Since the PIC does not handle interrupts as do other processors which have built-in counter/timers, the RTCㄷ register must be read periodically to see if it has reached zero if this function is required in the programme. To ensure that the count is not affected during this process, it is recommended that the MOVF RTCC.w instruction is used (see later).

PROGRAM COUNTER = 02

This register is 3ctually 9 bits wide (10 and 11 bits in the PICi6C56 and " 57 respectively) and keeps track of the next instuction to be executed. At reset, it is set to all i's so that program execution for the PIC16C54/55 wil start at address 1FF hex.

STATUS REGISTER = 03

This register is a collection of bits which are used to indicate the results of some of the instructions which the processor executes (see FIG 2A).

Bit 0 is the carry bit which goes to a logic 1 if an addition or subtraction operation results in an overflow i.e. if two numbers are added and the result is greater than 255 (FF hex) this will not fit into the 8 bits of a register so a carry is generated. Bit 1 has a similar function except that this bit is set if there is a carry from the 4th bit. This is useful in operations on BCD numbers but will not be dealt with here.

Bit 2 is the zero bit and is very important because this bit is set if the result of an operation is zero. This can be used to "test" a register to see if it contains zero and has many applications in programming.

The other bits in the STATUS register will not be used in our project and the reader is referred to the data sheet for more information on their function.

FILE SELECT REGISTER (FSR) - 04

Bits 0-4 of this register are used in selecting one of the 32 registers in the indirect addressing mode by specifying register f00 (INDIRECT register) in any of the instructions. These bits then act as a pointer to the register which is the object of the given instruction. If no indirect addressing is used in the
programme, the FSR may be used as a general purpose 5 -bit register. Bits 5-7 are read only and are always set to 1 . In the PICi6C57, these three bits are also available and are used to select memory banks 1, 2 or 3 (see data sheet).

I/O REGISTERS - 05, 06 and 07

These registers are connected to the output port pins PORT A, B and (if it exists) C and may be read or written to just like any other register in the file. If the port is defined as an output, writing a " 1 " will cause the corresponding pin to go to + Vdd while a "0" will result in the pin going to 0 Volts. Read instructions however will result in the status of the pin being read irrespective of whether the pin has been defined as an input or cutput.

Note that since PORT A is only 4 bits wide, the high ofder bits of f05 (bits 4-7) do not exist and will be read as "zeros". In the 18 pin device there is no PORT C so register f07 can be used as a general purpose register and writing to it will, of course, not affect any of the l/O pins.

All the other registers are general purpose 8 -bit registers for use in programmes to store the results of various operations. These have addresses ranging from 08 h to 1 Fh in the basic types (and to 7Fh in the PIC16C57 See data). As well as these there are a number of other registers which have special functions.

Fig.3. I/O registers

W (or WORKING) REGISTER

This register holds the second operand in two operand instructions and supports internal data transier. It can also hold the result of an operation. TRISA, TRISB (and TRISC) are the V/O control registers for the corresponding ports and are used to define whether the pin in a port is an output or an input. This is done by loading a " 1 " into the corresponding bit of the register where an input is required and a zero for an output. Thus if port B pins 0,1,2,3 and bit 5 were to be inputs and the other pins outputs, TRISB register would be loaded with the value 00101111 or 2 F in hex.
Note that since PORT A is only 4 bits wide, only bits 0 to 3 are avallable in the register TRISA so loading 2Fh into this register would result in only the "F" being moved so port A would become an input. The TRIS registers are write only and cannot be read.

OPTION REGISTER

This register determines the prescaler division ratio as well as defining the RTCC signal source (RTCC pin or internal instruction clock), the signal edge (positive or negative transition) and prescaler assignment (RTCC or watch dog timer). In our project this will be loaded with 07h which means that
the division ratio will be 1:256 with the prescaler assigned to the RTCC register with the intemal instruction clock as the signal source. For more details on this register refer to FIG. 2A and the data sheet.

STACK1, STACK2

Very often in a programme it is necessary for the processor to execute a series of instructions to do a specific job such as display the contents of a register on an LED display or read a keyboard. Since these functions are likely to be required a number of times in a programme, it makes sense to store them in a part of the memory only once and "call" them up as they are required. Indeed, whole programmes may be written by simply calling various subroutines as they are required which makes the programme easier to write and to understand as each subroutine periorms a separate function.

Such subroutines are normally given a name such as DISPLAY or KEYBOARD and in the course of a programme a CALL DISPLAY or CALL KEYBOARD instruction is inserted when this is required. The processor then replaces the current address in the programme counter with the start address of the subroutine and executes it. When it has done this it needs to retum to the point in the programme from which the subroutine was called to continue the operation and this retum address is stored in a special register called the STACK register when the routine is called. As there are two STACKs in the PIC, it follows that a programme can contain a CALL instruction and the subroutine called can itself contain another CALL instruction enabling another subroutine to be executed (or nested) from within the first subroutine and both retum addresses would be stored correctly. If another subroutine were to be called before the second one had been finished however, the programme would fail as the processor would "lose its way".

For those readers familiar with other micro-processors, the absence of any internupt handling capability may seem to be a serious omission as once the programme is running, it would seem that the processor cannot be interrupted to cope with external events such as a pin going high or low and would therefore be unable to respond to them. This is not really a problem and simply means that the programmer must be careiul to remember to read an input as often as necessary if its status is relevant to the operation of the programme. The speed with which programmes are executed usually means that inputs from extemal devices such as keyboards or other sensors can be read many times per second and the maximum delay before the system responds even assuming it "just missed" the actual input on the first pass would nomally be insignificant.
if the input is a regular event such as a 50 Hz mains input which is required for timing and which therefore cannot be missed, the programme must be written in such a way that it waits until the input occurs, does what needs to be done and then retums to wait ior the next input, ensuring that all inputs are counted.

Next Month...

we will look at the instruction set of the PIC16C5X series and design of the hardware fol: the clock project.

> $\star \star$ FOR SALE $\star \star$
> DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALITY SURPLUS MANY SPECIALS. WE STOCK $1000+$ ITEMS \& IF WE DON'T STOCK IT WE MAY BE ABLE TO GET IT FOR YOU PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS MAYFLOWER ELECTRONICS 48 BRENDON ROAD, WATCHET, SOMERSET, TA23 0HT TEL (01984) 631825 FAX 634245

The unwary or weak-wiled electronfics enthusiast will always become the general dogsbody. Every non-working electrical appliance irom kettie or iron to car radio or CD player will be brought along with a hurried: You know aboui electronics, don't you? Have a quick look at this!

To these people, "knowing about" electronics is an unskilled craft where a dab with the soldering iron will always put matters right. Not only are they prepared to put you down by implying that they could do the job themselves if they had the time but they don't want to pay the proper rate. If I had charged the commercial price for all the repairs I have had a "quick look at" over the years I would probably be a mlllionaire. The "quick look" has a habit of turning into the long slog. Even finding out how to part the plastic case of a ghetto blaster can take half an hour or more.

Of course, it is a different matter if you are helping out a member of the family, a charity organisation or a friend and there will be many repair jobs which the hobbyist will wish to carry out in the workshop. Sometimes a quick soldering job to repair a detached connection is, indeed, all that is required. Even so, if you are wanting to impress your partner/boss/friend by repairing a cassette player or fixing the PC - if you want to beseen as the electronics expert - you must have a selection stralegy. This should enable you to attempt only those jobs which you are likely to tackle successtully, safely and quickly. You may get a little praise if you succeed but you will pick up a great deal of scorn if you fall. Also, you can easily make matters worse so that the eventual professional repair becomes much more expensive. You could even end up in trouble with the law if a botched repair to a piece of mains equipment resulted in injury.

Good sign

You need to assess what is being asked of you. If it is simply a matter of replacing a PP3 battery snap, this would seem a safe repair job to tackle. If the fault is not obvious, do you have any knowledge of this type of equipment? Have you conne a similar job before? Do you have the time?

It is often a good sign if the equipment does not work-at all. This often indicates a power supply problem such as a broken or detached wire, blown fuse or faulty switch. Wiggling controls. and wires sometimes gives a spurt of life and a clue to the
problern. Strange symptoms such as unusual noises from an amplifier often indicate a more deeply-seated problem and may require expert knowledge and access to the service manual. If tentative tests lead you to suspect that you may get out of your depth or that the job is likely to take too long - refuse straight away. Simply say that without a circuit diagram to follow or special test gear, it is impossible for you to repair it. You will not then lose face.

Extensive dismantling

I vas once handed a car radio cassette player on the "quick look* basis. The fault tumed out to be the on-off switch which was bult into the volume control potentiometer - a common arrangement. Because it was a slereo pot it had six zag connections plus two for the switch. The whole assembly was extremely small and mounted on a miniature PCB of its own. Getting down to this PCB involved much dismanting and took two hours. Because I did not know the job, I dismantied more than was actually necessary but this was only clear in retrospect. Uprooting the PCB took another half hour including drawing a diagram with the colours of the various connecting wires on it.

Because the pot was a "special" component, it had to be ordered from the manufacturer and proved to be very expensive. There was an additional "small order" charge plus carriage. It was not supplied with a new PCB and the old pot had to be removed so that the original PCB could be re-used. This caused damage to the tracks which had to be virtually remade using soldered bridge wires.

After re-assembly, the radio/cassette worked periectly and the owner was delighted. Being realistic though, my labour would have cost more than a new unit. The agent's repair department could have done the job in a fraction of the time because they would be familiar with the model.

Next Month...

we shall look at some of the special problems in tackling-or refusing-repairs tomains-operated equipment.

Light Gun

Switch Regulator

± 1

C James Gale 0144266551

Send your requirements to:
ETI Classifled Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 70p per word (+ VAT) (minimum 15 words) Semi display: (minlmum 2.5 cms) £9.50 + VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-pald. Advertisements are accepted subject to the ferms and conditions printed on the advertisement rate card (available on request).

FOR SALE

VARIABLE VOLTAGE TRANSFORMERS INPUT 220/240V AC 50/60 OUTPUT O-260V
0.5 KVA 25 amp max \quad Price E 1.90 P8P
IKVA 5 amp max $\quad \$ 41.15$
2KVA 10 amp max \quad E59.40.58 inc VAT 3KVA 15 amp max E78.65 E8.50
E139.15 1.40 inc VAT)
By orect trom the imponters. Keenest pices ta the country COMPREHENSIVE RANGE OF RANSFORMERS-LTISOLATION 8 AUTO
(I)-2.2N Mino transter ember caseo win Anencen socier and WIDE RANGE OF XENON FLASHTUBES Write/Phone your enquires ULTRA VIOLET BLACK LIGHT
 inn 8 wall $£ 396$ - 500 pro (E10.50 he Var) (88.52 me VAT
(25.54 me VAT) For owher 6 230V SAC BALLAST KT
For hn, Mon or 12 in lubos 28.

+ E1.40 The above Tubes are sintabio for forg
 400 WATT UV LAMP
 Available wish $E C$ OX ES fitting. Price inc VAT Avalabio math EC or ES
8 p 8 p and VAT $¥ 25.55$
12 V D.C. BILGE PUMPS
 Aso now avalatome 24 V O.C. 1750 GPW 151 the 5 mon E36 55 . Al songnes to bo used
SUPER NY-LIGHT STMOEE KTT

SERVICE TRADING CO
57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB
FAX 0181-995 05490181 -995 1560
Showroom qoen
Mordayffintay
ACCOUNT CUSTOMERS MIN, ORDER £10

SUrplus PNIQUE OFFER

 Surplus Precision Medical Unit, internally in precise controlleble amount of fluid from a medicat syringe (latter not supplied). Containg the Processor Boards and EPROMS Escap Prectzion 12 V OC Motor with 300:1 Gear Box and oplical encoder coupled to a prectsion throaded drive mechanimm. Mains supply with 6 £ $\mathbf{8 . 5 V}$ Ni-CadA.A. colls back-up. L.C.D. Oigital read-out 17 mm high with legends. Audible warning. These are sold tor the dismanting of the exceptional Ruaity components, regrer no Circunts avaltabice (E28.20 lncl VAT)

SKVA ISOLADON TRANSFORMER Supprossion, Ulfo Iscilaton Transformen with forminal covers and Knock-ou cabie entrios Prmery 120240 V Soconcary 120240 V 5080162.005 of Cmpactence. Size
 ex warohoues. Caringe on mque 240 V AC CENTAIFUGAL BLOWER Now Manut, Surplus Sketelon Blower stitable for Overall size $130 \times 110 x 95 \mathrm{~mm}$ autlet $80 \times 35 \mathrm{~mm}$ impellor 60 mm dxa $\times 60 \mathrm{~mm}$ long. $\mathbf{\Sigma 1 4 . 1 0 \text { incl.P\&P \& VAT }}$ SEand new 22024 MG MACHINE MOTOR Motor. Size L $100 \mathrm{~mm} \times 1 \mathrm{H} .70 \mathrm{~mm} \times W .55 \mathrm{~mm}$. Spindie $1 / 4 \mathrm{in}$, dia $\times 1 \mathrm{in}$. long. $£ 14.10 \mathrm{incl}$. P\&P \& VAT GEARED MOTORS 71 APM 2010 inch torque roversable 115 V AC input


```
SOLID STATE EKT UNIT
Input 230240 V AC,
```

Input 230240 DVAC , Oulput approx 45 KV . Easily modilied for 20 sec .30 sec to continuour Designed for doitor ijprition. Dozens of uses in the fietd of physics and electronics, es supplying neon
or argon tubes eic. Price less case $\varepsilon 8.50+£ 2.40$ Ot argon (12.81 ine VAT) NMS

EPRId your own EPROM ERASURE KTT Drice of a own EPROM ERASURE Ior a traction of the 12 m 8 wath 2537 Anget Tube Batlas! unn, pair ol Di-pin eads, neon indicator. onvoll switch, satery microswith (E19.98 inc VAT) WASHING MACHINE WATER PUMP
 \& VAT. E 11.20 eech or 2 for $£ 20.50$ inclugive.
MICROS WITCH
Pye 15 amp changeover lever microswich, type S171.

*MENDASCOPE

 ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERYFREE ESTIMATES
Llangollen, Clwyd, N. Wales LL20 7PB PHONE: 01691718597

REPAIR \& RECALIBRATE OSCILLOSCOPES

718597

COOKE INTERNATIONAL

SUPPLIER OF OUALITY USED TEST INSTRUMENTS.

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS.
GENERATORS, OSCILLOSCOPES, POWER METERS. ETC ALWAYS AVAILABLE
ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAIIABLE
EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGE S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS (50 p) PRICES EXCLUDE VAT AND CARRIAG DISCOUNT FOR BULK ORDERS SIIIPPING ARRANGED OPEN MONDAY TO FRIDAY 9AM - 5PM COOKE INTERNATIONAL
ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB Tel (+44) $01243545111 / 2$ Fax $(+44) 01243542457$

WANTED TEST EQUIPMENT \& MANUALS TO PURCHASE

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 05123609820512360154
47 Whitechapel
Tel: 0512365489
Liverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

LEN COOKE
 ENTERPRISES

For the best value in Used Electronic Test Instruments We buy, sell and service oscilloscopes, signal generators, frequency counters, spectrum Soare parts ave meters, logic testers. elc
scopes.

Tel: 081-813-9946
Fex: 081-574-2339
Mobile: 0374 759984
order address: Untt 5 ,
Mail order address: Unit 5, Southal
Emterprise Centre, Bridge Road
Southall, Middx. UB2 4A!
We engineer what we buy, we support
what wo sell.

> SWC SCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1 HW FAX 0815591114

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. We also welcome the opportunity to quote for complete factory ciearance Contact:
COLES-HARDING \& CO Unit 58, Queens Road, Wisbech, Cambs PE13 7PO
BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 20 YEARS Tel: 01945584188 Fax: 01945475216

OSCILLOSCOPE PHILLIPS PM3055 50Mhz dual time base triple trace, with manual - £500 and also Logic Analyser Thurlby LA160 with manual and full set of pokes £500. Tel: 01932783722.

> READERS
> PLEASE NOTE that some telephone dialling codes may recently have changed. If you experience any difficulty in contacting advertisers, ring our-advertising department on 0144266551.

EPROMS PLDs + MICRO CONTROLLERS copied or programmed. We supply devices/convert discrete logic to PLDs. PLDs for ETI PC Post Card supplied at £10/P.C.B. £12. PO Box 1561, Bath 0225444467.

PRINTED CIRCUIT

 BOARDSPCB's, PROTOTYPES AND PRODUCTION, Artwork copied or raised from your draft designs or schematics. Quoteline 01232 473533 or write to P Agar, 36 Woodcot Avenue, Belfast, BT5 5JA

PRINTED CIRCUIT SERVICES

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Whart Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

SOFTWARE

SCIENTTPTC SHARLWARE

 Al xefuree te be porided on Foppy dixe of CD ROM. Al seftweze te be poonided on Foppy dixc a CD ROM.

 PDSL, Winscantiv

ASTRA Desk Top Accounting Overture mimas. ina nummen venes vit, er

Sis Sysuems Lid Breton Cour, Manor Ruad. Tites Sheffiedd, $531 \mathrm{BPD}, \mathrm{UK}$ sodicre divituman ad apple actess)

COURSES

Start tralning now with the specialists for
the following courses. Send for our
brochure - without obligation or
Telephone us on 01626779398

Radio \& Telecommunicatlons Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 9UN

PANELS

PANELS

ALUMINIUM OR STEEL
Cut to size
SAE to P.M.S.
320C High Road, Benfleet
Essex SS7 5HB
Tel: 0268793381

FOR DETAILS OF OUR COST EFFECTIVE ADVERTISING CALL JAMES ON 0144266551

TO ADVERTISE FILL IN THE COUPON BELOW. IF YOU DO NOT WISH TO CUT YOUR MAGAZINE PLEASE SEND A PHOTOCOPY

ETIELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 70 p per word + VAT minimum 15 words.
Semi-display $£ 9.50$ per single column cm plus VAT. No reimbursements for cancellations.
All ads must be pre-paid.
Name
Address
Daytime Tel. No:
Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square Expiry Date

FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

Open Forum

According to figures just released by the Central Statistical Office, the economic recovery in Britain is being led by manufacturing industry rather than by a consumer or property price boom as in previous recovery periods. The figures show that the fastest growing areas of the economy are exports of high technology electrical and electronic engineering equipment, news that should giadden all of us who are involved in electronics.

Some of this growth is accounted for by booming sales for UK made personal computers, and allied equipment, areas where the UK is especially strong in Europe. But a lot of the growth comes from the new electronics based technology companies which have sprung up all over the country during the last ten years.

Robert Madge's Madge Networks. founded with very little financial backing in 1986 is now a major player in the world market for Token Ring networks, and wresting market share firom IBM amongst others. With a current tumover of nearty E150milion per year, and profits of over £30million, the company is a major UK success story.

Another example is Advanced RISC Machines, the creators of the asynchronous computer featured in this issue of Ell. In the last four years, this company has become a world leader in RISC processor clesign and has seen turnover, profits, number of employees, and cash in hand roughly double every year over the last three or four years.

These are the new high technology companies which are revitalising the UK manufacturing industry and providing the impetus behind the current economic recovery - a recovery which is inñitely more sound and potentially durable than any based on retail sales or house price increases, for it is a recovery which with generate real wealth and real employment.

These are companies which are using the intellectual talent that exists within this country rather than relying on cheap labour and large govemment grants. They are companies which are looking towards the construction of true global markets for their products and which are investing heavily in research and development to ensure that their position can not be challenged.

At Madge Networks the company have just opened a new UK based research centre employing 200 computer scientists and electronic engineers, At ARM they now employ over 110 people, well over half of whom are development engineers, plus they are funding basic long-term research at Manchester University.

A lot of forecasters say that the rapid expansion of such companies will be restricted in the long term as a resuit of a shortage of skilled personnet. In the very long term, they may be right, and we as a country do desperately need to educate more engineers, but what is noticeable about such companies is that they regard talent as being international.

The thing is that the people who run such companies realise that you need the best brains working for you in order to succeed in the cut-throat world market for high lechnology. They know that they must recruit the best, and to keep them they must pay them well and, if necessary, give them stock options. The wealth generated by these new high technology companies must be shared with those whose skills have been used to generate that wealth.

Only if we can encourage this attitude will this country succeed in high technology incustry. For tomorrow's success stories will be companies created by the employees of today's success stories. It is a self-perpetuating system that is fuelled by recognising talent and remunerating it well, and in so doing allowing that talent the freedom to recognise new opporiunities and create new weath.

Next Month...

Th the August 1995 Issue of Eiectrontes Today Intemalional wo mill be starting, an interestingirange of new projects. One of thess is the stant of a new computer construction propect, an 8088 iniervipt based control computer fromitichard Grodzij. Dr Pei An showshow to build a computerised radio digital transmissidnt system and Robert Pentoldioffers an analogue shutter timer project

In Parker describes how to build a pocketrined multipuppose testep that willibe a handy addilion to any test bench. Continuing on from his Raydor project in Ell a fewmonths age Pat Alley describes a lew add-on teatures, including a remoterradio controller. Continuing this pracical approach to destigning with the PIC milopocontroller Bart Trepak continues his quest for the perfect alarm clock's

The two faature articles in next month's EIl are a detailed look by Dave Clarkeion at DC and electrically commutated electic motors, and an investigation into the fulure of digital interactive television - fullitit bring the information supetitghway into evaryone's homes? Will we becomerination of old movie addicts, home shoppers; andicleworkers?

In
ELECTRONICS TODAY INTERNATIONAL

EDITORIAL
Editor Nick Hampshire Sub Editor Eamonn Percival Editorial Assistant Wendy Butter

CREATME Designer Nadia Ahdout Technical Illustration John Puczynski Photograplyy Manny Cefal

ADVERTISEMENT SALES Display Sales James Gale Advertisement Copy Control Marie Qullter
MANAGEMENT
Managing Director
Terry Pattisson Circulation \& Promotions Manager Debra Stupple Production Manager Tony Dowdeswell Group Editor Stuart Cooke Group Advertisement Manager Clalre Jenkinson

ABCl 3842-7220

 prowis n the bin orraert ct the eo weeknen

 petwivo at man a

 tas choust to
 Orersess 8.00

 Ls4. Brmed

Oat inio Bast Universal Diagnasies Toolhit on wie narkey

Featuring these two top-rated, award-winning diagnostic tools

 from MICRO 2000, Inc:drives, video cards, etc. BATCH CONTROL - All tests, even destructive, may be selected for testing. - ERROR LOGGING - Automatically inputs errors during testing to an error log. AUTOMAPPING - Automatically bad sector maps errors found on hard disks. - IRQ DISPLAY - Show bits enabled in IRQ chip for finding cards that are software driven. (Network, Tape Backup, etc.) IRQ CHECK Talks directly to hardware and shows $1 / 0$ address and IRQ of devices that respond. MEMORY EXAMINE - Displays any physical bit of memory under 1 Meg. Very useful for determining memory conflicts. Very useful for determining available memory space. SECTOR EDITOR - Allows the editing of any sector of floppy or hard disk media (even track 0). AND MUCH MORE...We don't have enough space here for everything this software can do!

The only Power-on Seli-Test card you need to debuy any "dead" PC...
" T his is the only card that will function in every 1 system on the market. The documentation is extensive, and not only covers the expected POST Codes for different BIOS versions, but also includes a detailed reference to the bus signals monitored
by the card." -Scott Mueller from his globally recognized book, 'Upgrading \& Repairing PC'S, Second Edition'

- Includes pads for voltmeter to attach for actual voltage testing under load. 4 LEDs monitor +5 vdc $-5 v d c+12$ vdc -12 vdc. Monitors Hi \& Lo clock and OSC cycles to distinguish between clock chip or crystal failure. Monitors I/O Write and I/O Read to distinguish between write and read errors. Monitors memory write/ read to distinguish between address line failures and memory chip failures. Monitors ALE for proper CPU/DMA operation. Monitors Reset to determine if reset is occurring during POST, indicating short. Monitors progress of POST without POST codes. Reads POST codes from any IBM or compatible that emits POST codes. ISA/EISA/MCA. Compatible with Micro Channel computers. Dip switch allows easy selection of $1 / 0$ ports to read. Includes tristate LOGIC PROBE to determine actual chip failures. Manual includes chip layouts and detailed POST procedures for all major BIOS's. © AND MUCH MORE.
Also ask about our other Universal Products-Micro-Scope CLIENT: The practical answer to remote diagnostics (no modem required).
The COMPUTER CONSULTANT: 100\% accurate realtime benchmarking tool Micro-Scope CENSUS: Inventory software to see and record what's inside all of your PCs.

Call Now for Special Pricing: Tel. + 44 (0) 1462483483 or Fax + 44 (0) 1462481484

MICRO 2000 FUROPl:: P.O. Box 20100, Letchwórth, Herts, S(G6 1UT, Eingland, United Kingdom

Sept 1994-Aug 1995

[^0]: 5

[^1]: ELECTRONICS TODAY INTERNATIONAL

[^2]: *Size is programmed by the Setsize command ('I')

