\\ \title{
ELECTRONICS\\ \title{
ELECTRONICS TODAY INTERNATIONAL TODAY INTERNATIONAL \\ \\ TOMORROW'S \\ \\ TOMORROW'S \\ \\ TECHNOLOGY TODAY
} \\ \\ TECHNOLOGY TODAY
}

İ								

THE THETHDOMMCM BIETUNNID TENE ©OMHNLUNHEAHMONS REMRDHINTATM
$: 010 \cdot 1,18211=i$
 An Ell wind firstl

CHECK FOR

Quickroute 3.0 LITE

PCB \& SCHEMATICS DESIGN PROGRAM
FREE WHम OcTOBER 1994 SII
This program requires a $P C$ with $4 M B$ RAM \& WINDOWS 3.1 - Limited to 500 Nodes

OMP MOS－FET POWEBAMITITIERS
 THOUSANDS PURCHASED

 BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS：－MXF200（ $100 \mathrm{~W}+100 \mathrm{~W}$ ）MXF400（ $200 \mathrm{~W}+200 \mathrm{~W}$ ） MXF600（ $300 \mathrm{~W}+300 \mathrm{~W}$ ）MXF900（450W＋450W）
FEATURES：＊independent power supplles with two tororidal lranslormers＊Twin LE．．0．Yu melers＊

 USED THE WORLO OVER IN CLURS，PUBS，CINEMAS，OISCOS ETC．

PRICES：－MXF200 £175．00 MXF400 £233．85
MXF600 £329．00 MXF900 £449．15
SPECILILST CARRIIR DEL E12．50 EACH
OMP XOB STEREO 3－WAY ACTIVE CROSS－OVER

Advanced 3－Way Stereo Active Cross－Over，housed In a 19 ＂$\times 1 \mathbf{U}$ case．Each channel has three level controis： bass，mid a lop．The removable Iront tascia allows acccess to the programmable OIL swiches to adiust ithe
crous－over trequency．Bass－Mid $250 / 500800 \mathrm{~Hz}$ Mid－Top $1.8 / 3 / 5 \mathrm{KHz}$ ，all al 24 dB per octave．Bass invert swikhes cross－over trequency． 8 Bas－Mid $250 / 5001800 \mathrm{~Hz}$ ，Mid－Top $1.8 / 3 / 5 \mathrm{KHz}$ ，all al 24 dB per octave．Bass invort swith
on each bass channel．Nominal 775 mV inpul／oulput．Fully compatible with OMP rack amplitier and modules． Price £117．44＋£5．00 P\＆P STEREO DISCO MIXXZ SDJ3\＆00SE＊ECHO \＆SOUND EFFECTS＊ STEREO DISCO MIXER with 2×7 band
 FEATURES：－including Echo with repeat \＆ speed control，DV Mic with lalk－over switch， 8 Channels with individual taders plus cross fade，Cue Headphone Monitor， 8 Sound Effects．Useful combination of the
following inputs：－ 3 turntables（mag）， 3 mics， 5 Line for CD，Tape，Video etc．

Price £144．99＋£5．00 P\＆P

PIEZO ELECTRIC TWEETERS－MOTOFOLA

Join the Piezo revolution！The low dynamic mass（no voice coil）of a Plezo tweeter produces an improved transient response with a lower dislortion level than ordinary dynamic tweelers．As a crossover is not required These units can be added to existing speaker systems of up to 100 wa
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER．

TVPE＇A＇（KSN1036A） $3^{\prime \prime}$＇round with prolective wire mesh．Ideal for bookshelf and medium sized Hi － Fl apeakers．Price $£ 4.90+50 \mathrm{p} \& \mathrm{P}$ ， TYPE＇B＇（KSN1005A） $31 / 3^{\text {＂}}$ super horn for general purpose speakers， disco and P．A．systems etc．Price $\mathbf{\Sigma 5 . 9 9}$－ 50 p P\＆P．
TYPE＇C＇（KSN1016A） $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn lor quality Hi－Fi sys． tems and quality discos etc．Price $56.99+50 \mathrm{p}$ P\＆P．
TYPE＇D＇（KSN1025A） $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn．Upper frequency response relained extending down to mid－range $(2 \mathrm{KH} 2)$ ．Suitable for high quality Hi－Fi systems and quality discos．Price c9．99＋50p P\＆P．
 Suitable for Hi－Fi monilor systems etc．Price C5．99＋50p P\＆P． LEVEL CONTROL Combines，on a recessed mounting plate，level control and cabinet input jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $£ 4.10+50 p$ P\＆P．

क्TIFLIGHT CASED LOUDSPGAKEAS

A new range of quality toudspeakers．designed to take advantage of the latest speaker technology and enclosure designs．Both models utilize studio quality 12^{-}cast aluminium loudspeakers with tactory fitted grilles．wide dispersion conslant directivity horns，extruded aluminium corner protection and stee ball corners，complimented with heavy duty black covering The enclosure re fitted as slandard wilh top hats lor optional loudspeaker stands．

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
tbIFC 12 －100WATTS（ 100 dB ）PRICE $£ 159.00$ PER PAIR fbi FC 12 －200WATTS（100dB）PRICE $\mathbb{1} 175.00$ PER PAIR SPECIALIST CARRIER DEL．$£ 12.50$ PER PAIR
OPTIONAL STANDS PRICE PER PAIR E49．00
Dellvery $\mathbf{£ 6 . 0 0}$ per palr

THREE SUPERB HIGH POWER
CAR STEREO BOOSTER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS（75 Bridged Mono
250 WATTS 250 WATTS $(125+125)$ Stereo． 250 W Bridged Mono
400 WaTtS $(200+200)$ Stereo， 400 W Bridged Mono ALL POWERS INTO 4 OHMS Features：
\＃Sitreo，bridgable mono＊Choice of PRICES： 1 SOW C 49.99 250W C 99.99 400W £109．9S PAP £2．00 EACH

OMP MOS－FET POWER AMPLITIER MODULES SUPPLIED READY BULLT AND TESTED．

 THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

ONP MF 100 mosFet Output power 110 watts AMS 4 drequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 30 B ，Danging Factor >300 ．Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， TMO mpicer apor，ing Sensitivity 500 mV ，S．N．R -110 dB．Stae 3008123 a 60 mm
PRICEC40．S C2SOPEP
OMPTE 200 Be－Get Onput power 200 walts R．M．S．into \＆en response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ R．M．S．ito t en －3dB，Damping factor $>$ Som Rate $50 \mathrm{~V} / \mathrm{uS}$
T．M．D．typicat o oen -110 dB．Sure 300 s 155 －
PRICE E64．35 CA．00 \＃
OMP／MF 300 moe fot 0 nen 3000 veres
R．M．S．Into 4 onma，frex .3 dB ，Damping Factor >1 en eve yel T．H．D．typical 0.001% ，inget senome -110 dB ．Size $330 \times 175 \times 180 \mathrm{p}$
PRICE C81．75＋C5．00 PAP
OMP／MF 450 Mos－Fet Outpur power 450 wntin A．M．S．into 4 ohms，Irequency response ima -3 dB ，Damping Factor >300 ．Shen him TSVNA T．H．D．typical 0.001% ，Input Sensitivity spowk，sin 110 dB，Fan Cooled，D．C．Loudspeater Prococen Second Anti－Thump Delay．Size 385 玉 $210 \pm 105 \mathrm{~mm}$ PRICE \＆132．85＋£5．00 P\＆P

OMP／MF 1000 Mos－Fet Output power 1000 watts R．M．S．Into 2 ohms， 725 watts R．M．S．into 4 ohms frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz} \cdot 3 \mathrm{~dB}$ ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{S}^{2}$ ，T．M．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N．R．-110 dB ，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Antl－Thump Delay．Size $422 \times 300 \times 125 \mathrm{~mm}$ ．
PRICE £259．00＋£12．00 P\＆P
NOTE：MOS－FET WOOULES ARE AVATLAGLE IN TWO VERSIONS： STANOARO－INPUT SENS GOOMV，BANO WFDTH 100K HZ
PEC（PROFESSIONAL EOUIPMENT COMPATIBLE）－INPUT SEN 775 mV ，BAND WIOTH 50 KHz ，ORDEA STANDARD OR PEC．

LOUDSFEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITHINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HGH （60p STAMPED）FOR COMPLETE LIST．

McKenzie and Fane Loudspeakers are also available．

EMINENME：－INST：UMENTS，P．A．，DISCO，ETC

ALL EMINENCE UNITS B OHMS IMPEDANCE

8－ 100 WATT R．M．S．MES－100 GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，OISCO
RES．FREO． 72 Hz ．FREQ．RESP．TO 4 KHz ，SENS 97 TBE ． 10 ＂ 100 WATT R．M．S．ME10－100 GUITAR，VOC AL，KEYBOARD，DISCO，EXCELLENT MID RES．FREO． 71 Hz ，FAEQ．RESP．TO 7 KHz ，SENS97dB． $10^{\circ} 200$ WATT R．M．S．ME $10-200$ GUITAR，KEYB D，OISCO，VOCAL，EXCELLENT HIGH POWER MID RES．FREO． 65 Hz, FREO．AESP．TO 3．5KHz，SENS 99dB．
$12^{-} 100$ WATT R．M．S．ME $12-100 \mathrm{LE}$ GEN．PURPOSE，LEAD GUITAR，OISCO．STAGE MONITOR 12100 WAT R．M．S．ME 12－100 LE GEN．PURPOSE， 12^{*} 100 WATT R．M．S．ME12．100LT（TWIN CONE）WIDE RESPONSE，P．A．VOCAL STAGE MONITOR．RES．FREO 42 Hz ，FREO．RESP．TO 10 KHz ，SENS 986 B ．PRICE $£ 36.67+\Sigma 3.50$ P8 $12^{-2} 200$ WATT A．M．S．ME $12-200$ GEN．PURPOSE，GUITAR，DISCO，VOCAL．EXCELLENT MIO． RES．FREO． 58 Hz ，FREO．RESP．TO 6 KHz ，SENS 988B． $12^{\prime \prime} 300$ WATT R．M．S ME $12-300 \mathrm{GP}$ HIGH POWER BASS，LEAD GUITAR，KEYBOAAO DISCO STC RES．FREO． 47 Hz ，FREO．RESP，TO 5 KHz ，SENS 103 dB ． 15200 WATT R．M．S．ME15－200 GEN．PURPOSE
RES．FREO． 46 Hz ．FREO．RESP．TO 5 KHz ，SENS 99 dB ． RES．FREQ． 46 Hz ，FREO．RESP．TO 5 KHz ，SENS 99 dB ． RES．FREO． $39 H \mathrm{~Hz}$ ，FREO．RESP．TO 3 KHz ，SENS 103 dB ．

EAFIGDDEIS：－HI－FI，STUDIO，IN－CAR，EIC

ALL EARBENDER UNITS 8 OHAS（Except E88－50 EE10－50 which are dual impedance tapped fif 4 \＆ 8 ohm ） BASS，SINOLE CONE，HIGN COMPLIANCE，ROLLED SURROUND
$8^{*} 50$ watt EB8－50 DUAL IMPEDENCE，TAPPEO $4 / 8$ OHM BASS，HI－FI，IN－CAR．
RES．FREO． 40 Hz ，FREQ．RESP．TO 7 KHz SENS 97 dB ．
PRICE $8.90+\mathrm{c} 2.00 \mathrm{Pg} \mathrm{P}$ $10^{\prime \prime}$ SOWATT EB $10-50$ OUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS，HI－FI．IN－CAR． RES．FREQ． 40 Hz ，FREQ．RESP．TO 5 KHz ．SENS． 99 dB
10 IOOWATT EB10－100 BASS，HI－FI，STUDIO．
RES．FREQ． 35 Hz ．FREO．AESP．TO 3 KHz ，SENS 96 dB
12＂100WATT EB12－100 BASS．STUDIO．HI－FI，EXCELLENT DISCO．
RES．FREQ， 26 Hz ．FREQ．RESP．TO 3 KHz ，SENS 93 dB ． PRICE E13．65＋ع2．50 P发P FULL RANOE TWIN CONE，HIOM COMPLIANCE ROLLED SURROUMD 5 צ＂BOWAT HES 5 Val $_{4}$ OOWATT EB5－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC．
RES．FREC． 63 Hz ．FREO．RESP．TO 20KHz，SENS 92 dB ． RES．FREQ．38Hz，FREQ．RESP．TO 2OKHz．SENS 94dB．PRICE C10．99＋ 1.50 Ph． B＂GOWATT EB8－GOTC（TWIN CONE）HI－FI，MILTI－ARRAY OISCO ETC． RES．FREO． 40 Hz ，FREQ．RESP．TO 18 KHz ，SENS 89 dB ． 10 GOWATT ERIO－6OTC（TWIN CONE）HIFF，MULTI ARRAY OISCO ETC PRICE $212.99+$ C1．50 PAP RES．FREQ． 35 Hz ，FREO．RESP．TO 12 KHz ，SENS 98 dB ． TRANSM｜h由A MOEBY KITS
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIERE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
SW TRAN5MITTER EO－100MHZ VARICAP CONTROLLED PROFESSIONAL PERFORMANCE．RANGE UP TO 3 MILE5．SIZE $38 \times 123 \mathrm{~mm}$ ．SUPPLY 12 V ＠ 0.5 AMP PRICE［14．85 ，© 1.00 P\＆P
FM MICRO TRANSMITTER $100-108 \mathrm{MHz}_{2}$ ，VAAICAP TUNED，COMPLETE WITH VERY SENS FET MIC，RANGE $900-300 \mathrm{~m}, \mathrm{SIZE} 56 \times 46 \mathrm{~mm}$ ．SUPPLY 9V 8ATTERY．
E．K．＝LIECTRONICS
UNITS 1 \＆ 5 CQMET WAY，SQUTHEND－ロN－SEA， Tel． $0702-527572$ 5ax．：570－ 5 － 5 －

Contents

Volume 23 No. 10

The Information Superhighway

Around the world billions are being invested in fibre-optic cable based communications networks, an investment that looks set to generate a whole range of new products and services which utilise its high data transfer capacity. We

take a look at some of the technology behind these new products, and some of the applications.

The ETI Cover Disk

22This month ETI is giving away a free version of the widely used Quickroute PCB and schematics design programme, which will run on Windows 3.1 based PCs. We take a look at installing and using this useful programme.

Power On Self Test Card

Another Ell special project for PC owners, a plug-in card which can help you to track down faults in a PC even when the machine seems to be completely dead. A very powerful diagnostic aid that no PC owner should be without.

Swell Pedal

Raise the roof with Robert Penfold's latest electronic music project which is based around a Hall Effect device.

PC Clinic

Part 5 of the series which shows readers how to repair, maintain, upgrade, and build circuits for, personal computers. In this issue we look at the main data input devices, the keyboard, and mouse.

The ETI Transputer

This month we start the construction of what is probably the world's first practical project to build a single board computer system based around the famous Inmos Transputer chip. Can be used in a wide variety of applications from a graphics engine, to artificial intelligence, it could even be used to build a parallel super computer.

The Rugby Clock

Use the ETI Forth SBC project to control a radio capable of receiving the National Physical Laboratory 60Khz time transmission from Rugby

12V Lead-acid Battery Charger

Batteries can be very useful as a portable power source, Terry Balbimle shows how to build a handy constant-voltage charger for standard car batteries.

An Introduction to MIDI

In Part 5 of this series Robert Penfold continues his introduction to to the mysteries of MIDI - the now universally accepted standard for communications between electronic musical instruments.

A Touch of Magnetism

The third and final part of Keith Garwell's looks at the design and construction of sensitive instrumentation which can detect minute changes in the Earth's magnetic field.

Regulars

News and event diary.- 6
Practically Speaking - 69
PCB Folls- 70

Open Forum- 74

Subscribe

 \& SavePhone the hotline and take advantage of our special offer detailed on page 43

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
 Tel: 0203650702 Fax: 0203650773 Mobile: 0860400683

(Premises situated close to Eastern-by-pass In Coventry with easy access to M1, M6, M40, M42, M45 and M69)
Black Star 1502-15MHz portable (in carrying case) £140
Gould OS $3000-30 \mathrm{MHz}$ Dual ch £250
Gould $4035-20 \mathrm{MHz}$ Digital storage $£ 600$
Gould $4050-35 \mathrm{MHz}$ Digital storage $£ 750$
$£ 950$
Gould OS 4000 OS4200, OS4020, OS245 from \&125
Hewlett Packard 1740A, 1741A, 17744A, 100MHz dual chfrom $£ 350$
Hewlett Packard 182C - 100 MHz 4 ch 350
Hewlett Packard 1707A, 1707B-75MHz 2ch from $£ 275$
Hitachi V.U22 - 40MHz Dual channel £300
Nicolet 3091 - LF D.S.O £1100
Nicolet 4094 - 4 channel low freg. D.S.O £500
Phllips PM 3315-60MHz - D.S.O £900
Tektronlx 2201 - 20 MHz D.S.O. dual ch £675
Tektronix 2213 - 60 MHz Dual Channel. $\varepsilon 425$
Tektronix $2230-100 \mathrm{MHz}$ Digital storage ع1650
Tektronix 2246 100MHz-4 channel (as new) $£ 995$
Tektronix 221560 MHz dual trace £450
Tektronlx 2235 Dual trace 100 MHz (portable 8750
Tektronix 2335 Dual trace 100 MHz (portable) ع750
Telktronix $2225-50 \mathrm{MHz}$ dual ch
from $£ 350$
from $£ 350$
Tektronix $465 / 465 \mathrm{~B}-100 \mathrm{MHz}$ dual ch
Tektronix $465 / 465 \mathrm{~B}-100 \mathrm{MHz}$ dual ch from $£ 300$
Tektronix $7704-250 \mathrm{MHz} 4 \mathrm{ch}$ from $£ 650$
Tektronix $7834 / 7844-400 \mathrm{MHz} 4 \mathrm{ch}$ from £750Tektronix $7904-500 \mathrm{MHz}$from £850Phillips $3206,3211,3212,3217,3226,3240$$3243,3244,3261,3262(2 \mathrm{ch}+4 \mathrm{ch})$from $£ 125$ to $£ 350$
Other scopes available too
Ailtech $727-20 \mathrm{GHz}$ £1500
Hewiett Packard $3580 \mathrm{~A}--5 \mathrm{~Hz}-50 \mathrm{KHz}$. £1250
Hewlett Packard $8590 \mathrm{~A}-10 \mathrm{KHz}-1.5 \mathrm{GHz}$ - (as new) £4500
Hewlett Packard 182T with 8559A ($10 \mathrm{MHz}-21 \mathrm{GHz}$) $\check{5750}$
Hewlett Packard 4953 Protocol analyser 2500
HP 3582A - 25 KHz Analyser, dual channel £2500
HP $8590 \mathrm{~B}-9 \mathrm{KHz}-1.8 \mathrm{GHz}$ $\$ 4750$
HP8754A - Network analyser $4-1300 \mathrm{MHz}$ £3500
Marconi $2370-110 \mathrm{MHz}$ £1250
Rohde \& Schwarz - SWOB 5 Polyskop $0.1-1300 \mathrm{MHz}$ £2750
Tektronix 492 - 21 GHz ع5,500
Tektronix 7 L 18 with 7603 main frame $1.5 \mathrm{GHZ}-18 \mathrm{GHZ}$ c3500
Texscan AL51A (4MHZ - 1GHZ) 1100

Hewlett Packard 7402 Recorder with 17401A $\times 2$ plug-ins................ $£ 300$
Hewlett Packard 8005B Pulse generator £250
Hewlett Packard 8011 A Pulse gen. $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$....................................... $£ 500$
Hewlett Packard 8013B Pulse gen. 1Hz-50MHz 8750
Hewlett Packard 8406A Frequency comb. generator £500
Hewlett Packard 8443A Tracking gen/counter with 1EEE £450
Hewlett Packard 8444A Tracking Generator
. $£ 750$
Hewlett Packard 8445B Automatic preselector... 8700
$\Sigma 750$

Hewlett Packard 938A Freq. doubler
$£ 400$
$£ 250$
Hewlett Packard $8654 \mathrm{~B} \quad 10-520 \mathrm{MHz}$ sig. gen
Hewlett Packard 3438A Digital multimeter... £650 200
Hewlett Packard 6181C D.C. current source
Hewlett Packard 59501B HP.1B isolated D/A power
supply programmer
ع150
Hewlett Packard 3403C True RMS voltmeter ... 250
Hewlett Packard 3711A/3712A/3791B/3793B Microwave Link Analyser
Hewlett Packard 1630G Logic Analyser.. 8850
Kelthley 19720 MHz with 1 EEE
Lyons PG73N/PG75/PG28/PG Pulse generator $£ 225$
Marconl 2019A $80 \mathrm{KHz}-1040 \mathrm{MHz}$ sig. gen .. 1850
Marconl 2432A 500MHz digital freq. meter ... $\mathbf{\Sigma 2 0 0}$
Marconl 2337A Automatic dist. meter.. $£ 200$
Marconl 2356 20MHz level oscillator ... 500

Marconi 2830 Multiplex tester... 1250
Marconl 2831 Channel access switch ... 500
Marconl 2440 - Microwave freq. counter 20GHz
Marconl 2442 - Microwave freq. counter 26.5GHz $£ 1950$
Phillps 5390 1GHz R/F Synthesised signal gen
Phillips PM 5167 10MHz function gen..
Philips PM 5519 Colour TV pattern gen
Philips PM 6672 1GHz timer/counter WF 1EEE
Phillps PM 8272 XYT Chatcorder
Photodyne 800 Fib Chan reconder
Projectina CH9345 Microscope.
Racal Dana 202 Logic analyser + 68000 disassembler $£ 250$
Racal Dana 9242 D Programmable PSU 25V-2A ...
Racal Dana 92465 Programmable PSU 25V-10A
Racal Dana 3100 40-130MHz synthesiser... 8750
Recal Dana 5002 Wideband evel meter.
Racal Dana 5003 Digital m/meter
Racal Dana 9000 Microprocessing timer/count 52 MHz 50
Racal Dana 9081 Synth sig gen 520 MHz
Racal Dana 9081
Racal Dana 9084 Synth. Sig. gen. 104 MHz
Racal Dana 9303 True RMSiRFevel meter
Racal Dana 9341 LCR databridge
Racal Dana 9917 UHF frequency meter 560 MHz 200
Racal 9301A - True RMS R/F Milivoltmeter
Racal 9921-3GHz Frequency Counter... 8450
Rohde \& Schwartz BN36711 Digital Q meter ... $£ 400$
Rohde \& Schwarz - ZPV Vector Analyser.. $£ 1500$
Rohde \& Schwarz - SMFP2 Mobile Tester ... $£ 4000$
Rohde \& Schwarz - Scud Radio Code Test Set........................ $£ 1500$
Rohde \& Schwarz - LFM 2 Sweep Generator 0.02-60MHz 11500
Rohde \& Schwarz SUF 2 Noise Generator ..£300
Solarton Schlumb 1170 Freq. response analyser . .250
Systems Video 1258 Waveform Analyser + 1255 Vector Monitor +1407 Differential Phase and Gain Module +1270 Remote Control Panel $\mathbf{\Sigma 2 2 5 0}$ Systems VIdeo 1205 Vector Monitor + 1202A Waveform Monitor.... $£ 650$ Systron Donner 1702 Synthesised Sig. Gen 1GHz
Telequipment CT71 Curve Tracer
Tektronix TM503, SG503, PG506, TG501 Scope calibrator250
5201 Scope calibrator £2000
TektronIx 834 Data comms analyser . .8500
Tektronix TM5003 + AFG5101 arbitrary function generator ..
Tektronlx 1411 PALNTSC/PAL-M Signal Generator with
SPG 12/TSG11/TSG13/TSG15/TSG16 and SP11 Plug-ins............. $£ 2000$ Tektronix 1480 Waveform Monitor
Tektronix 651 HR Monltor.
.POA
Tektronix AM503 Current Amplifier with TM501 and A6302 Curren Probe
£1150
Time 9811 Programmable Resistance ...
Time 9814 Voltage Calibrator........
W\&G SPM12 Level meter $200 \mathrm{~Hz} \cdot 6 \mathrm{MHz}$... 550
W\&G PS12 level generator $200 \mathrm{~Hz}-6 \mathrm{MHz}$.. 5500
W\&G SPM6 Level meter $6 \mathrm{KMz}-18.6 \mathrm{MHz}$.. $\mathbf{~} 250$
W\&G PCM 3-Auto Measuring Set for Telephone Channels $£ 1000$
W\&G MU3 Test Point Scanner.. 5500
Wavetek 157 Programmable waveform synthesiser .. $£ 300$
Wayne Kerr B424/N LCR Component meter set $£ 200$
Weller D801/D802 Desoldering station.
Wiltron 352 Low frec differential input phase meter
Hewlett Packard 8640B with OPT 001
EIP 331 - Frequency counter 18 GHz
825

SPECIAL OFFERS - Phoenix 5500A Telecoms analyser, ex. demo. as new with 12 months calibration +12 months guarantee fitted with V24 interface. A variety of interface options available - Ring/Fax for details Navtel 9440 Protocol analyser, ex. demo. as new £8000 new - cost now £3500. Navtel 9410 PCB based protocol analyser ex. demo. as new $£ 3000$ new - cost now $£ 1500$

PC PAL VGA TO TV CONVERTER Converts a colour TV Invo a basic VGA screen Complete whth buill in psu. lead and s/ware. -4995. Ideal for laptops or a cheap upgrade.
EM ERGENCY LIGHTING UNTT Complete unt whth 2 double buth loodirghts, buith in charger and auto swith. Fulfy cased 6 V 8 AH lead acid recid. (secondhand) 44 ref MAGAP11.
GUIDED MISSILE WIRE. 4.200 metre reel of ultrat thin 4 core insulated cable. 28ibs breaiding strain, less than imm thick ldeal alains, intercoms, fishing. dalis house's etc. £14.99 ref MAG 15 P5 SINCLAIR CS 13^{*} WHEELS Complete with centre bearing (cycle type). tye and inner tube. $£ 6$ ea ref MAG 6P10. Ideal go kart 300 v PANEL METER $70 \times 60 \times 50 \mathrm{MM}, ~ A C$, 90 degree scale, Good quaity meter. 55.99 ref MAG 6P 14 ideal for monitonng mains etc. ASTEC SWITCHED MODE PSU BM41012 Gives +5 \& 3.75A. +1281.5A-12e 4A. 2301110. cased. BM41012 £5. 99 ref AUG6P3. TORRODIAL TX $30-30480 \mathrm{Va}$. Perfect for Mosfet amplifers etc. 120 mm dia 55 mm thick. E 1899 /el APR 19.
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metrelead fithed with a cigarplug. 12v 2wat. 1999 ea ret AUG10P3. FLOPPY DISCS OSDD Top quality 525° discs, these have been witten to once and are unused. Pack of 20 ls EA rel AUGAP4. MOD WIRE Perfect for repainng PCB's. wire wrap etc. Thin insulated wire on 500 m reers. Our pnce just £ 999 ret APR 10P8
12v MOVING LIGHT Controller. Made by Hella. 6 channels rated at 90 w atts each. Speed control. cased. £34 99 rel APR35. ECLATRON FLASH TUBE As used in police car flashing fights etc. full spec supplied, $60-100$ flashes a min. $£ 9.99$ ref APR10P5. 24v AC 96WATT Cased power supply. New. £13 99 ref APR 14 MILTTARY SPEC GEIGER COUNTERS Unused and stralght from Her majesty's forces $£ 50$ rof MAG 50P3
STETHOSCOP E Fully functioning stethoscope. Ideal for listening to nearts, pipes. motors ete. $£ 6$ rol MAR6P6.
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a bult in lamp at dusk; Complete with seales lead add battery etc.E19.99 ref MAR20P1. A LARM VERSION Of acove unit comes withbuit in al arm an to deter Intruders Good value at just E. 24.99 ref MAR25P4. CLOCKMAKER KTH Hours of fun making your own clock, co
plete instuctons and everything you need, $£ 7.99$ ref MAR8P? plete instructons and everything you need, $£ 7.99$ ref MAR8P2
CARETAKER VOLUM ETRIC Avam, will cover the whole of the ground loor against forcred entry. Includes mains power supply and integral battery back Lp. Powerful internal sounder, will take extemal bell II req'd. Retail $£ 150+$, ours? $£ 49.99$ ref MAR50P1
TELEPHONE CABLE white 6 core 100 m reel complete with a pack of 100 dips ideal phone extns etc $\mathrm{E7} .99$ rel MARBP3. IBM PC CASE AND PSU ldeal base for bullding your own PC Ex equipment but OK. £9.99 each REF: JUN10P2.
MICRODRIVE STRIPPER Small cased tape difves ideal for stnpping. lots of useful goodies including a smart case, and lots of stnpping. lots of useful goodes ind
components. £2 each ref JUN2P3.
SOLAR POWER LAB SPECUL You get TWO $6^{\circ} \times 6^{\circ}$ EV 130 mA solar cells, 4 LED's. wire, buzzer, switch plus 1 relay or motor. Supet value kit just 55.99 REF: MAG6P8
SOLID STATE RELAYS WIII switch 25A mains Input 3.5-26v DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAGAP 10 300DPIA DTP MONTTOR Brand new but shop soiled so hence bargain pificelTTLEC. inputs, 15° lendscape. 1200×1664 pixet complete with circuit diag to help you Interface with your projects. JUMplete win circuir diag to
MULTICORE CABLE 300 metre reel of grey 8 core cable ideal for 'phones. Intercomms. computers. alerms etc. Comes in specaatdispensing container to avoid tangles f 45 ret AUG45. BUGGING TAPE RECORDER Small vorce actvated recorder, uses micro cassette complete with headp hones E28. 99 ref MAR29P 1 ULTRAM INIBUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG. 5 - 12 v electre condenser. Cost $£ 12$ oa. Our? four for $£ 9.99$ REF MAG10P2
RGE/CGAVEGATTL COLOUR MONTTORS 12 in good condifion. Back anodised metal case £79 each REF JUN79 GX4000 GAMES M ACHINES returns so ok for spares or repair E9 each (no games). REF MAG9P
CEA COMPUTERS Retums, so ek for spares etc $巨 9$ ref MAG9P2 FUSELAGE LIGHT3 3 foot by 4° paned $1 / 8^{4}$ thick with 3 panels that gow green when a voltage is applied. Good for night lights, fron panels, signs, disco etc $50-100 \mathrm{~V}$ per stip. $£ 25$ ret MAG25P2
ANSWER PHON ES Returns with 2 faults, we give you the bits for
1 faut, you have to find the other yourseff. BT Response 200's £18 ea REF MAG18P1. PSU \&5 rer MAGSP 12.
SWITCHED MODE PSU ex equip, 60w +5v e5A. -5ve. 5A +12 VQ2A-12ve5A $120 / 220 \mathrm{~V}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECInput socket E6 99 REF MAG7P1
PLUG N PSU 9V 200 mA DC E2 99 each REF MAG3P9
PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads $17 \mathrm{~V} D C$ 900 mA output Bargain pnce E5. 99 ret MAG6P9
ACORN ARCH MEDES PSU +5v e 4.4A onfof sw uncased. selectable mains input, $145 \times 100 \times 45 \mathrm{~mm} £ 7$ REF MAGTP2 GEIGER COUNTER KIT Low cost professiona twin tube, comslete with PCB and components. Now only E19 REF AUG19. Iv DC POWER SUPPLY standard plug in type 150 ma 9 INC -ith lead and DC power plug. pnce for two is $\mathbb{E 2} .99$ ret $A \cup G 3 P 4$. AA NICAD PACK encapsulated pack of 8 AA nicad batteries (agged) ex equip. $55 \times 32 \times 32 \mathrm{~mm}$. $£ 3$ a pack. REF MAG3P 1
13.8V 1.9A psu cased with leads Jusi 99.99 REF MAGiop3 360 K 6.26 brand new hat height floppy drives IBMcompetiole industry standard. Just $\mathbf{E 6}$.99 REF MAG7P3
PPC MODEM CARDS. These are high specplug in cards made for the Amstrad laptop computers. 2400 baud dias up unit complete with lesos Clearance price is \&5 REF: WAG5P1
INFRA RED REMOTE CONT ROLLERS Onginally made for W spec sstelife equipment but perfect for all sorts of remote control Wisec sstelifte equipment but perfect for all sorts of
propects Our dearance price is just 62 REF: MAG2
propecs our dearance price is just $£ 2$ REF: MAG2 usefur book for finding equivalent transistors, leadouts. specs etc 20 REF: MAG20P1
SINCLAIR C6 MOTORS Wo nave a few lef without geaboxes

NEW BULL ELECTRONICS STORE IN

WOLVERHAMPTON
55A WORCESTER ST TEL 090222039

Spec is 12 v DC 3.300 mpm £25 ret MAG25.

NEW PRODUCT

200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into

 either 110 V or 240 V AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead, cigar plug, AC outtet socket.Auto overload shutdown, auto short circuitshut down, auto input over voltage shutdown, auto input under voltage shutdown (with audible alarm), auto temp control, unit shuts down ifoverheated and sound s audible alarm. Fused reversed polarity protected. output frequency within 2%, voltage within 10%. A extremely well bullt unit at a very advantageous price!!!Price is $£ 64.99$ ref AUG65.UNNERSAL SPEED CONTROLLER KTT DEsigned by us for the C5 motorbut ok for any 12 v motor up to 30A Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17 MAINSCABLE Precut Dlack 2 core 2 metre lengths ideal for repars, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable dips. 2 ine divers with RS 232 interfaces and all connectors etc. Ideal iow cost method of communicating and all connectors etc. Ideal low cost method of communicating
between PC sover a long distance Completekn E15.99 Ref MAR16P2 MINICYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ nuns on PP3 battery complete MINICYCLOPS PIR $52 x 62 \times 40 \mathrm{~mm}$ nuns on PP3 battery completer
with shafl sounder, Cheap protection at only $£ 5.99$ ref MAR6P4. With Shrill Sounder. Cheap protection at only E 5.99 rer Mar6P4.
ELECTRLC MOTOR KT Comprehensive educational it in. cludes all you need to buld an eectric motor. $\mathfrak{m} 99$ ref MAR tOP4. VIDEO SENDER UNTT. Transmits both aucio and video signais from either a video camera. Wideo recorrer, TV or Computer etc to any standard TV set in a 100 rengel (tune TV to a spare channel) 12 V OC OD. Pice is E15 REF: MAG15 12 VPSU is E5 extra REF: MAGSP2 -FM CORDLESS MICROPHONE Smal hand held Unt mith a 500 rangel 2 transmit power levels. Reqs PP3 gv battery. Tuneable 500 rangel 2 transmit power levels. Reas PP3 gr Dat
to any FM receiver. Price is E 15 REF: MAGG 159
LOW COST WALKIE TALKIES Pair of battery operated units LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200 . Ideal for garden use or as an
toy. Pnce is $E 8$ a $\mathrm{p} \pm \mathrm{REF}$ RE: MAG $\mathrm{BP}\{2 \times$ PP3 req'd.

- MINATURE RADIO TRA NSCENER3 A pair of wallive talkies with a range of up to 2 kilometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases and earpioces $2 \times P \mathrm{PP} 3$ reqid. $\$ 3000$ pair REF: MAG30.
COMPOSTE VIDEO KTT. COnverts composite video into separate H sync. V sync, and videc. 12v DC. 88.00 REF: MAG8P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entre mechanical pinter assembltes mauding pinthead, stepper enire mechanical phnter assembires hauding pinnthead, slepper
motors etc etc in foct everytring bar the case and electronics, a good motioper E5 REF: MASP3 or 2 tor E8 REF: MAGBP3
8P EAKER WIRE Brown 2 core 100 toot hank E2 REF: MAG2P1 LED PACK of 100 standard red 5 m leds E5 REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with fiyeass,
 - FW TRA NSM ITTER housecth a standard worting 13A adaptert the bug nans directy off he malns so lasts forever! why pay 8700 or price is 526 REF: MAG26 Transmits to any FM radio
-FM BUG KTT New design with PCB embedded call for extra stabilify. Works to any FM radio of battery req di E5 REF: MAGSP5 stabirity. Works to any FM radio gr oatery read des REF: MAGJPS
-FM BUG BUILT AND TESTED supenior design io to detective agencies. $9 v$ battery req'd. $£ 14$ REF: MAG14
TALKING COIN EOX STRPPER ongnatly made to retail atE79 eaich, these units are designed to comvert and ordinary phone into a payphone The units have the locks missing and sometmes broken hinges. However they can be adapted for their onginal use or used for something eise? Price is just \&3 REF: MAG3P1
100 WATT MOSFET PAIR Same spec as 2 SK 343 and $2 S J 413$ ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{~m}$) 1 N chennel 1 P channel, $\mathrm{E3}$ a pair REF: MAG3P2 TOP QUALITY SPEAKERS Made for HIFI televisions these are 40 wall $4 R$ Jap made 4^{4} round with large shieded magnets Good

TWEETERS Z diameter good quility tweoter 140R (ak with the above speaker) 2 for $£$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Mace by Apncot these quality keypoards need just a small mod torun on any AT, they work perfectyy but you will have to put up with 1 or 2 foreign keycaps1 Price E6 REF: MAGBP3 PC CASES Again mixedtypes so you take a chance next one off the plie $£ 12$ REF:MAG $120 r$ two the same for $£ 20$ REF: MAG20P4 HEADPHONES EXVIrgin Atantc. 8 pairs for 22 REF: MAG2P8 PROXMTTY SENSORS These are small PC8's with what look fike a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with fy leads Pack of 5£3 REF: MAG: 3PS or 20 for E8 REF: MAGAP4

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 SQT

MAIL ORDER TERMS: CASH PO OR CHEQUE WTTH ORDER PLUS £3.00 POST PLUS VAT

PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
TEL: 0273203500
FAX: 0273323077

SNOOPERS EAR? Original made to clip over the earplece of telephone to ampilfy the sound-H also works quite well on the cable running along the wall Price is $£ 5$ REF: MAGSP7
DOS PACKS Microsoft version 3.3 or nigher complete with all manuals or price just \&S REF: MAGSP日 Worth it just for the very comprehensive manual 5.25^{\prime} onty.
DOS PACK Microsoff version 5 Onginal sofware but no manuals hence only E3 REF: MAG3PE 5.25° ony
PIR DETECTOR Made by famous UK atem manufacurer these are N spec, long range internal units 12 V operation. Slight marks on case and unboxed (although brand new) 58 REF: MAGBP5
WINDUP SOLAR POWERED RADIO AMFM rado complete with hand charger and solar panell £14 REF: MAG14P 1
MOBILE CARPHON E $£ 6.99$ Well almost complete in car phone exduding the box of electronics normally hidden under seat Cen be made to illuminate with 12 V also has buik in k ght sensor so display only ifluminates when dark. Totaily convincingl REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. 12N operation. Just connect up and it fashes regulaity) $£ 5$ REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no informasion sate price 7.99 REF: MAG8P6
REMOT ECONTROL PCB These are receiverboards for garage door opening systems. Another use? EA ea REF: MAGAP5 $6^{\prime \prime} \times 11^{2}$ AMORPHOUS SOLAR PANEL 12 $158 \times 3 t 0 \mathrm{~mm}$ 130mA. Bargain price just $£ 5.99$ ea REF MAG6P 12. FIBRE OPTIC CABLE BUMPERPACK 10 metres for $£ 4.99$ ref MAG5P 13 ideal for experimenters 30 m for $£ 12.99$ ref MAG13P1 LOPTX Line output transiormers believed to be for IBM M res colour monitors but useful for geting high voltages from low onesl 52 each REF: MAG2P12 bumper pack of 10 tor E12REF: MAG12Ps. HEATSINK3 (finned) TO220. designed to mount vertically on a pcb $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN IP 11 WATERPROOF JUNCTION BOX 65 mm dia 33 mm deep. Four cabte entry exit points (adjustable for any size cable) snap fit lid. Ideai for TV, satelite use. £2 ea ref APR2 or 6 for $£ 10$ ref APR10P

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

INFRARED LASER NIGHT SCOPES
Second generation image intensifier complete with hand grip attachment with built in adjustable laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount and normal eye piece. 1.6 kg , uses 1xPP3,3xAA's (all supplied) $£ 245+$ Vat NEW HIGH POWER LASERS
15 mW . Hellum neon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER QUALIFIED GUIDANCE. $£ 349+$ Vat. \&efefeewe buy Surplus stockefeffe

TURN YOUR SURPLUS STOCK INTO CASH. IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE:

1994 CATALOGUE.

 $14.5 \mathrm{v} / 700 \mathrm{~mA}$ £33.95

TOP QUALITY AMORPHOUS SALCON CELLS HAVE ALMOST A TIMELESS LIFE SPAN WTH AN INFINTIE NUMBER OF POSSBBLE AP pllcations. SOME of which may be car battery charg. ING. FOR USE ON BOATS OR CARAVANS, OR ANWWHERE A PORTABLE L2V SUPPIY IS REQUIRED. REF: MAG3A

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and X Ray detec or. This unit contains two Geiger Tubes, has a digit LCD display with a Piezo speaker, giving an audio visual indication. The unit-detects high energy electromagnetic quanta with an energy rom 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h of $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.Ref MA G50.

New Low Voltage 4-bit Microcontroller.

NEC has added an LCD option to its new 4-bit 75XL low voltage microcontroller range. The uPD753108 has an integral 24×4 bit LCD driver and the low price and performance enable it to be used in many traditional 8 -bit applications, such as automotive and industrial controls.

The ultra-low power chip has guarenteed operation from 1.8 V to 6.0 V , the lower voltage enabling it to be driven from the 'dead' voltage of two lithium cells. This allows the construction of systems that are lighter and more compact than ever before. At 1.8 V it has an instruction cycle time of 0.95 uS rising to 0.67 uS at 4.5 V and above.

The UPD753108 has 8Kbytes of ROM memory with 512 nibbles of RAM and there is an OTP version for initial prototyping work. The products are fabricated using 1.0 um CMOS, and come in a 64pin QFP package.

For further details contact NEC on 0908691133

Handheld TV Test Pattern Generator

A new plece of test equipment to help TV engineers has been launched by Ozan, of Poole, Dorset. It is the TELETEST handheld TV test pattern generator. This battery-powered unit can be used to generate a wide range of different test patterns as well as a test audio signal. The patterns produced include standard colour bars, grey scale bars, and crosshatch. Output is via either a RF co-axial socket, a vidio line output from a standard phono socket, and an audio line output also from a phono socket. All test patterns are synchronised in accordance with CCIR PAL specification: 625 lines, 50 Hz field rate fully interlaced, $15,625 \mathrm{~Hz}$ line
 frequency with all broadcast specified sync pulses and blanking intervals. For more details contact Ozan on 0202 877270

Fast Memory for DSP

Loughborough Sound Images have introduced a new memory rnodule for DSP systems, the MDC40ED. This module packs 12MBytes of nearSRAM performance EDRAM onto a board measuring just $107 \times 64 \mathrm{~mm}$.

The EDRAM used combines standard DRAM with SRAM cache in a single package. The combination allows zero wait state performance to
be achieved at 50 MHz within the same memory page. Available in 8 MByte and 12MByte variants, the module is designed so that 35 ICs can be mounted on a single width TIM 40 module.
The combination of high speed and capacity makes the MDC40ED an invaluable element of C40 DSP systems for data intensive applications such as image processing, simulation, radar and sonar.
The MDC40ED includes a TMS320C40 global bus connector, on board crystal oscillator, and PEROM containing module identification code for full TMM40 standard compliance. For further details contact LSI on 0509231843.

World's Longest Lasting Battery.

Everready have launched a new addition to their Energizer range of batteries, the Energizer Hi Energy Lithium, which they claim is the world's longest lasting battery and the first AA sized battery to use advanced lithium technology. It has a life around three times longer than all alkaline equivalents - and in some instances very much more - and is particularly recommended for all ligh drain appliances. Thus, in a flash gun it will give about 550 flashes compared to 85 from a standard alkaline battery.
Lithium batteries were first developed for professional photographic equipment and have been around for some time. but not until now has this technology been available as an AA battery, the size which accounts for over 60\% of all batteries used. A pack of two Hi Energy Lithium batteries has a recomended retail price of $£ 5.99$, and they are available from most photographic outlets.

New 16-bit DAC with MPU Interface

Burr-Brown have just introduced a new 16 -bit DAC with a fast 16 bit bus interface, precision temperature compensated reference, and a $+/-10 \mathrm{~V}$ output amplifier. The fast digital interface on the DAC712 is double buffered, allowing simultaneous updating of multiple DACs. Gain and offset adjustments are arranged so that they can be easily trimmed by external dacs as well as by potentiometers. The output amplifier swings + /10 V with supply rails as low as 11.4 V ; the output can be set to bipolar zero using the clear input. Key DC specifications include 14bit linearity, 14bit monotonocity over temperature and 600 mW max. power dissipation. Key AC specificatlons Include 60us settling time for 20V full scale step, -86dB THD + noise and 87 dB SINAD.
For further details about the low cost 28pin DIP packaged DAC contact Burr-Brown on 0923233837

Resettable Circuit Protection Devices.

Raychem are launching a new line of resettable Polyswitch overcurrent protection devices which are smaller and slimmer than comparable components ,yet offer higher current ratings with lower resistance. The Polyswitch RUE family offer designers a reliable lestable and resettable circuit protection for a variety of general electronics applications, from fire and security systems to computers.
The devices are radial-leaded, encapsulated positive temperature coefficient (PTC) resistors. Unlike fuses, which must be replaced when blown, the Polyswitch RUE device automatically resets once the fault current is removed. This can result in eliminating warranty costs
 associated with blowing fuses. Compared to ceramic PTCs, the polymer-based Polyswitch devices trip faster, offer lower resistance under normal current conditions, and come in smaller slimmer packages.
Current ratings are available ranging from .9A to 9A, with minimum trip currents ranging from 1.8 A to 18 A , with resistance rating as low as .020 hm , maximum voltage rating is 30V. For more information contact Raychem on 0793528171

Economy Trimmers
Variable capacitor specialists Jackson Brothers of Croydon have just launched a new range of low-cost air spaced trimmer capacitors. The C824 series are designed to reduce costs without compromising perfor:mance in amateur radio and professional applications which do not involve high RF power levels.
The C824 trimmers which are typically less than half the price of comparable components, are available with maximum capacities from 10 pF to 100 pF . The minimum capacity for all types is 5 pF , and all components in the range have a maximum working voltage of 350 V DC. The units are constructed around a low-loss composition front panel, and-feature aluminium rotor-and stator vanes. For further information contact Jackson Brothers on 081 6812754.

Bargraph DMM

Lascar Electronics of Salistoury, Wiltshire, have just launched a large digit bargraph multimeter, the DMM977 This has a $31 / 2$ digit display which can be clearly seen up to 10 metres away, even in low light levels, by using the LED backlighting. Connection is by an IDC type connector. suiting low or high volume applications. A robust, low profile mounting bezel is also. supplied. Standard features include auto polarity, bar graph, range and display hold. The very low current consumption of the DMM977 results in long battery life, and makes it especially suitable for portable applications. For more details contact Lascar on 0794884567

Nickel-metal Hydride Battery.

General Motors Corp has joined Ovonic Battery Co of Troy, Michigan, to develop, manufacture, and commercialise a nickelmetaihydride battery for electric vehicles. Unlike lead acid and nickel-cadmium batteries, currently the most advanced EV battery designs, the proprietary nickel-metal-hydride design is equipped with a negative electrode made up of a mixture of several materials.According to Ovonic, the composite structure consists of varying quantities of vanadium, nickel, titanium, zirconium, chromium, cobalt, manganese, aluminium, and iron. This type of electrode is highly resistant to the fatigue generated by the continuous charge and discharge cycles that occur within an operating battery. the battery is designed to operate for more than 120,000 miles before replacement. In addition to its long life span, the design displays high energy and high power densities, among other high performance features.

Compact Reflective Switches.

Quality Technologies Corporation have developed a range of reliable, solid state, reflective optical switches which are ideal for high speed applications, and other noncontact sensing requirements where the need to sense an object moving in physically cramped areas is only possible in reflective mode.

These highly sensitive switches consist of an infra-red-emitting diode and an NPN silicon phototransistor, mounted side by side on a converging optical axis, and encapsulated in a black plastic housing. For more information contact Quality Technologies on 0296394499.

Submersible Transducers

RDP Electrosenese of Pottstown, Pennsylvania, have developed a submersible SS series transducer for underwater settings such as dam construction, offshore drilling platforms and the control and monitoring of underwater vehicles. It can also be used in land-based nuclear power plants and waste treatment facilities.
The SS series transducers are built of corrosion-resistant 316 stainless steel. All metal parts have been electron welded to prevent water entering the units. They are equipped with a 0.4 -in diameter free armature that is mechanically connected to the moving part or structure being measured and travels in a through hole in the centre of the trans
ducer body. This armature facilitates malntenance and helps minimize the problems of marine growth fouling the unit.
Displacement of the part of the structure being measured causes the armature to move to and fro. The electronics within the SS transducer convert that movement into voltage of 4-20 milliamp current that can be displayed as a direct readout on digital conditioners such as RDP's own microprocessor based Cypher. RDP engineers designed a special electrical connector fitted to the transducer body. When the connection is mated by being screwed into the transducer, water is forced out of the contact area making a watertight seal. The connector can be
attached or disconnected while the displacement transducer is submerged. This allows simplified unit maintenance because the transducer itself can be installed or removed without removing bulky cabling.
Transducers have been incorporated on the ploughs that lay cable on the seabed, controlling and monitoring various mechanical positions and angles, tension and digging depths. The devices also monitor changes in dams and drilling platforms, such as cracks and structural integrity and changes during seismic activity.
The transducers are designed to withstand submersion depths to 2300 metres.

Event Diary.

27-29 June 5th Satellite Systems for Mobile Communications \& Navigation Conference, Institute of Electrical Engineers. London. Tel: 0712401871
4-7 July MF Radio Systems and Techniques Conference, Institute of Electrical Engineers, University of York. Tel: 0712401871
5 JulyTalk on propagation. Sudbury and District Radio Amateurs. Tel: 0787313212.
14 July Special Event Station in Woodhall School, Sudbury and District Radio Amateurs. Tel: 0787313212
16 July Annual Outing. Crystal Palace and District Radio Club, All Saints Parish Church Rooms, Beulah Hill, Tel: 0816995732.

19-21 July 6th Electronic Engineering in Oceanography Conference, Institute of Electrical Engineers. Churchill College Cambridge. Tel: 0712401871
20-24 July Electrotech 94. National Exhibition Centre, Birmingham. Tel: 0712401871.
13 Nov. Midland Amateur Radio Society rally at Stockland Green Leisure Centre, Slade Road, Erdington, Birmingham. Doors open at 10am, admission £1. For further details ring 0214229787 or 0214431189 (evenings only).

If you are organising an event which you would like to have included in this section, please send full details to ETI, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST, clearly marking your envelope Event Diary.

EXPRESS COMPONENTS

MAINS IONIZER KIT. Very useful kit that increases the flow of negative ions, helps clear cigarette snioke, dust, pollen etc. Helps reduce stress and respiratory problems. [15. kit, £20 built.

COMBINATION I,OCK. Electronic

 9 key combination lock suitable for alarms, cars, houses etc, easily programmable. Includes mains 2Arelay o/p. 9v operation. $£ 10 \mathrm{kit}, £ 14$ built.VARIABIE POWER SUPPLY. Stabiized, short circuit protected. Gives $3-30 \mathrm{v}$ DC at 2.5 A , ideal for workshop or laboratory. 144 kit, $£ 18$ built. 24VAC required.
LEAD ACID CHARGER. Two automatic charging rates(fast and slow), visual indication of battery state. Ideal for alarm systems,emergency lighting, battery projects etc. 112 kit, $£ 16$ buist. PHONE LINE RECORDER.Device that connects to the 'phone line and activates a cassette recorder when the handset is lifted. Ideal for recording 'phone conversations etc!. $£ 8 \mathrm{kit}, \mathrm{£} 12$ built.
ROBOT VOICE. Tums your voice into a robot voicel answer the phone with a different voice!. 59 kit, $£ 13$ built.
PIIONE BUG DETECTOR. This device will warn you if somebody is eavesdropping on your 'phone line. $£ 6$ kit $£ 9$ built.
PHONE BIIG. Small bug powered by thetelephone line. Only transmits when the phone is used. Popular surveillatee product $£ 8$ kit, $£ 12$ built.

STROBE LIGIIT. Bright strobe light with an adjustable frequency of $1-60 \mathrm{hz}$. (a tot faster than conventional strobes!) $516 \mathrm{kit}, \mathbf{E} 20$ built.
4W FMTRANSMITTER 3RFstages, audio preamp. $12-18 \mathrm{vDC}$. Medium powered bug $£ 20 \mathrm{kit}$ £ 28 built.
3 CHANNEL LIGIIT CIIASER. $3 x$ 800 w output, speed and direction controls, can be used with 12 led's (supplied) or TRIACS for mains lights (also supplied). $9-15 v$ DC. $£ 17 \mathrm{kit}, ~ £ 23$ built 25W FM TRANSMITTER. 4 stage, a preamp will be required. (Our preamp below is suitable) $£ 79$ built. (no kits). SOUND EFFECTS GENERATOR Produces any thing from bird chips to sirens! add sounds to all sorts of things £9 kit $£ 13$ built.
FM/AM SCANNER. Well no quite, you have to turn the knob yourself but you will hear things on this radio (even TV) that you would not hear on an ordinary radiol A receiver that covers $50-160 \mathrm{MHZ}$ both AM and FM. Built in 5 w amplifier. $£ 15 \mathrm{kit}$, 120 built. CAR ALARM SYSTEM. Works on vibration and/or vollage drop from door etc being opened. Entry and exit delays plus adjustable alarm duration. Low cost protection! $£ 12$ kit, $£ 16$ built.
15W FM TRANSMITTER 4 stage, high power bug. You will need a preamp for this (see our preamp below which is ok) 169 built. (no kits).
1W FM TRANSMITTER. 2 stage including preamp and mic. Good general purpose bug. 8-30VDC. $£ 12$ kit, 216 builı.
$50 \mathrm{I} / \mathrm{C}^{\prime} \mathrm{s}$ for $£ 1.50$
Nice mix of chips at a bargain price!

CERAMIC CAPACITOR PACK

Good mixed pack of 100 capacitors for just $£ 1.00$

ELECTROLYTIC PACK 1
100 small mixed electrolytic capacitors just $£ 1.00$ ELECTROLYTIC PACK 2 50 larger electrolytic mixed capacitors

RESISTOR PACK NO 1

250 low wattage resistors, ideal for most projects etc. Just $£ 1.00$

RESISTOR PACK NO 2

Hi wattage pack, good selection of mixed wattages and values 50 in all, bargain price just $£ 1.00$

PRESET PACK

Nice selection of 25 inixed preset pols for just another 511

RELAY PACK NO 1

6 mixed relays for $£ 1$, thats just 17p each.

CONNECTOR PACK
 10 different connectors, again for $\& 1$

FUSE PACK NO 2
30 mixed $1.25^{n \prime}$ fuses again ideal for spares etc. Just $£ 1.00$

WIRE PACK

25 Metres of insulated wire for just £1.00, good for projects etc.

SLEEVING PACK

100 assorted pieces of sleeving for connectors elc. Yours for just $£ 1.00$

DIODE PACK
100 assorted diodes for just $£ 1.00$

LED PACK

20 light emitting diodes for $£ 1.00$
TRANSISTOR PACK
50 mixed transistors, another bargain at $£ 1.00$

BUZZER PACK
10 things that make a noise for just \&1.00!

POT PACK

10 pots for $£ 1$, (5 diffuent types) a snip at $£ 1.00$

DISPLAYS

10 seven segment displays for $£ 1.00$

ORDER 10 PACKS OR MORE AND CHOOSE ONE FREE

 PACK!40 mixed 20 mm fuses, ideal for repairs etc, or just to stock up the

FREE COMPONENT CATA- LOGUE WITH EVERY ORDER!!

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. £15 kit, 519 built.
TREMBLER ALARM. Designed for bikes etc, adjustable sensitivity, preset alarm time, auto reset. Could be adapted for all sorts of "borrowable" things $£ 12$ kit, $£ 16$ built.
UI.TRASONIC RADAR. A project that can be used as a movement detector in an enclosed space. Range about 10 metres, 12 vDC . Good basis for car, shed,caravan alami ctc. $£ 14$ kit, 119 built.
PHONE CALL RELAY, Very useful kit that incorporates a relay that operates when the phone rings. Can be used to operate more bells, signalling lights etc. Good for noisy enviroments or if you have your headphones on! $£ 10 \mathrm{kit}$. £14 built.
PORTABLE ALARM SYSTEM. Small 9v alam system based on a mercury switch. The alam contitues to sound until disabled by the owner. Buzzer included. 111 kit 15 built. 800W MUSIC TO IIGIIT EFFECT. Add rhythm to your music with this simplesound to light kit . $\mathrm{E} 8 \mathrm{kit}, \mathrm{C} 12$ built.
MOSQUITO REPELLER. Modern
way to keep the midges away! Runs for
about a month on one
1.5 v battery. Frequency is
set to drive away mosquitos etc. $\mathbf{5 7} \mathbf{k i t}$, E11 buile.
3 CIIANNEL SOUND TO LIGIIT Can be used any where as no connection is made to hi fi. Separale sensitivity controls for each chamnel, 1,200 Wpowerhandling. Microphone included. $£ 14$ kit, $£ 19$ built.
MINI METAL DETECTOR Detects pipes, wires etc up to 20 cm deep. Useful before you drill those holes! 18 kit, \&12 built.
0-5 MINUTE TIMER. Simple time switch adjustable from 0-S mins, will switch 2 A mains load. 12 v op. Ideal for laboralory, photographic projects etc. £7 kit, 111 built.
7 WATT III FI AMPI,IFIER. Usefut, powerful amplifier $20 \mathrm{lzz}-15 \mathrm{hz}, 12$ 18 vdc . Good for intercoms, audio systems, car etc. $£ 7$ kit 111 built.
INCAR SOUND TO LIGIIT. Put some almosphere in your car with this kit. Each channel has 6 led's that create a beautiful lighting effect! $£ 10 \mathrm{kil}, £ 14$ built.
VOX SWITCII. This is a sound activated switch, ideal for use on transmitters, CB's, tape recorders etc. Adjustable sensitivity, built in delay. Mic input. $£ 7$ kit, $£ 11$ built.

LIQUD LEVEL DETECTOR. Useful item, can be used to detect fluid levels in watertanks, baths, ponds fishtanksetc. Could also be used as rain alarm with an easily constructed scrnsor. $£ 5$ kit, $£ 9$ built.
FM TRANSMITTER. Mini FM transmitter 2 transistor, comes with FET minature mic and is tureable from 63 to 130 MHZ . $\& 7 \mathrm{kit}$, fll built.
FUNCTION GENERATOR. Generales sinusoidal, saw tooth and square waveforms from 20 hz up to 20 khz . Separate level controls for each waveform. 24 vac . $115 \mathrm{kit}, 220$ built.
5 WATT SIREN. Powerful siren kit with an impressive 5 watts out put. Ideal for alarms etc. $£_{6} \mathrm{kit} £ 10$ built. TELEPHONE AMPI.IFIER. Very sensitive amplifier which using a 'phone pickup coil (supplied) will let you fol-
low a telephone conversation without holding the handset to your earl \&1I kit \&15 built.

SWITCH PACK
10 switches for just $£ 1.00$

12v FLOURESCENT. A usefiul kit that willenable you to light large flourescent tubes from your car battery etc. 9 v nuains transformer required. $£ 8$ kit, $£ 12$ built.

KNOB PACK

10 knobs for just $£ 1.00$

REMEMBER! YOUR FREE COPY OF OUR CUT PRICE COMPONENTS CATALOGUE SENT
WITH EVERY ORDERI!

How to place your order........

By phone.......... 0273771156
By FAX........... 0273206875
By Post... PO box 517 Hove Sussex BN3 5QZ Payment by access, VISA, CIIEQUE OR POSTAL ORDER.
Cheques and postal orders should be payable to Express Components. ALL PRICESARE SUBIECT TO99p POST AND VAT. Some of our products may be unlicensable for use in the UK (particularly the FM transmitters.)

Multitest with your NOTEBOOK/DESKTOP p.c.

Oscilloscopes - Spectrum Analyser - Multimeter - Data Logger BEST PERFORMANCE: HANDYSCOPE VERY HIGH SPEED: TP208

The HANDYSCOPE is connected to the parallel printer port. This makes it possible to carry out measurements with a laptop or notebook PC. Because of its high resolution (12 bits), the HANDYSCOPE is a very accurate instrument. The measuring rate is 100,000 samples $/ \mathrm{sec}$. Either of the two channels can be set independently over a range of $0.5-20 \mathrm{~V}$ (with a $1: 10$ probe up 10200 V). The advanced software enables many measurements to be carried out. Two probes (switchable 1:1-1:10) are provided. The HANDYSCOPE is constructed as a small table model with two BNC connectors.
The length of the cable linking the PC and the HANDYSCOPE is 1.8 m , which can be extended to 3.8 m .

The TP208 is an interface card with a measuring speed of 2×20 Megasamples/sec (8 bits). Phenomena shorter than one millionth of a second can still be measured well. The completely digitized triggering ensures very stable triggering with many trigger possibilities. The TP208 has an input range of $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ in 12 steps and an auto calibration function. Since both channels may be sampled simultaneously, phase differences can be measured very accurately. Even single phenomena can be measured since each channel has a 32 KByte memory. Comprehensive software is provided.

28 Stephenson Road, Industrial Estate,

Tel. 0480460028 Fax. 0480460340

Price exd VAT p^{k}. p

Quickroute 3.0

PCB \& Schematic Design System for Windows 3.1

Announcing a new range of affordable, powerful WIndows based PCB and schematic design packages from POWERware.

DESIGNER £99*

PCB and schematic design with all the new 'Easy-Edit' features and an Auto router!

DESIGNER +
 E149*

For larger PCB and schematic designs, adds Gerber and NC-Drill support.

PRO £199*

Schematic capture, with Integrated rats-nest generation and auto-router. Export net-lists for design checking.

PRO+

£299 *
Advanced schematic capture for management of larger schematics. Gerber import facility for file exchanging.

> For more detalls, contact POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

> •Prices oxclude VAT Post \& Packing.
> Tel/Fax 0614497101

from

£99*

The information superhighway

The installation of very high capacity fibre optic networks heralds a revolution in new telecommunication products and gadgets

(1)oday we all stand on the edge of a technological revolution that looks set to sweep into the lives of all of us. A revolution in communications and information which will affect the way we live, the way we work, and how we spend our leisure time. A truly global revolution that is being fuelled by investments of Ebillions in fibre-optic cable.

These really enormous sums of money are being invested in fibre-optic networks by telephone and cable TV companies because of the enormous capacity of such networks.- a capacity which can be used to carry almost limitless amounts of information over much longer distances than was possible with copper wires. Indeed, compared to a copper wire, a single strand of optical fibre can, at the moment, carry about 250,000 times as much information.

Initially, about a decade or so ago, phone companies installed fibreoptic cables along main trunk routes because their high capacity enabled them to carry a lot of calls and thus overcome the capacity problems which had started to occur with older copper wire trunk cables. It was cheaper to put in a single very high capacity cable than to have to keep adding new cables to keep up with increasing demand.

Fibre-optic cable networks were also being installed by cable TV companies, a concept that was only really possible using thls technology. Using fibre-optic cables, it was possible to deliver a much wider range of TV programmes to the viewer than would have been possible with broadcast systems. Furthermore it is a system which allows the programme providers to directly charge the viewer for programmes watched.

This proliferation of fibre-optic networks led US Vice President Al Gore, a great supporter of technology, to make an analogy between fibre-optic networks and transportation networks. The more lanes you build in a highway the easier it

will be for traffic to flow, a flow which will also be made easier if vehicles, speeds, and traffic signs are standardised. We can eliminate transportation bottlenecks by moving from use of highways to superhighways.

But Al Gore took the analogy even further by stating that just as the roads and railways built over the last hundred years have irrevocably changed the developed nations of the world, so these fibre-optic networks will generate equally great changes in the future. Thus was bom the concept of the information superhighway, a concept which is firing the imagination of countless companies and individuals around the world and, in so doing, leading to the creation of a wealth of new ideas.
about transferring images across the phone network, but that alone is not a sufficiently strong commercial concept to warrant this type of investment. Instead, the profits should be derived from a whole clutch of video communications based concepts which all rely on a fusion of the interactive nature of phone lines with the impact and information communications capability of the television and the personal computer.

This of course means that the information superhighway will consist of a lot more than simply having fibre-optic cables linking every home and business in the country. Every user will need special terminals to access the desired information that will become available, and information providers will have to have very fast and sophisticated computer systems that are capable of providing that information.

From the user's point of view, therefore, excitement about the concept of the information superhighway is derived from the potentially enormous range of information and entertainment services which will become available. It also comes from the fact that the user will have control over what he receives, unlike existing broadcast television where the program content and schedule is dictated to him by. the broadcasting companies.

From the commercial point of view the excitement is generated by the enormous range of new products and services which will arise out of the basic investment in the information superhighway infrastructure. The electronic and personal computer companies are already laying the groundwork for the design of home and office systems, such as the smart set-top box which will sit on top of a conventional TV set and will be used as a central switching station. This box will decode TV signals, handle phone calls, retrieve data, and store user preferences. There will also be special computer interfaces for business applications of the network, computers fitted with video cameras for use in teleworking, and as part of interactive work groups.

The provision of information services using this communications infrastructure will also become very big business and will doubtless lead to an enormous expansion in information providers and program makers - information and programmes which will be charged for by the screenfull or by the minute as well as services which will allow expansion of existing retail and financial operations.

Video and audio on demand

Probably the most talked about service on the information superhighway will be the provision of video and audio on demand. In its simplest form this is an extension of the pay as you view service offered by many cable TV companies.
Whereas these services offer particular films at particular hours, in much the same way as a cinema, the video on demand system will be more like an electronic version of a video library. Such systems will allow the user, for a fee, to view any film or programme which is in the library at any time.

The video on demand system would eventually have tens of thousands of films and videos stored in compressed digital form on a network of super computer based server systems. Anyone connected to the network could browse through this library, and view clips/reviews, before selecting one and viewing it. The compressed image data would be sent from the server to the set-top box of the person requesting it where it would be decompressed and output as a normal TV signal that can be viewed on a conventional TV.

The system will also be able to offer the type of 'time-shifted viewing' of broadcast programmes which most of us to a limited extent have been doing with the aid of a video recorder. However, the system will be much more sophisticated, since the server will probably be able to store every programme which has been broadcast over the previous week or more. So if you are a 'soap' fan you could sit down and watch all of last week's episodes

This may sound like a recipe for tuming us all into serious couch potatoes but, just as it may encourage some of us to do more viewing, it will also enable us to be more selective in our viewing. Thus the system could be programmed to detect all programmes covering a specific area of interest; all nature programmes, or all sports programmes, and the user could then view all of them or select samples from the identified list.

In some systems it is proposed to go even further than this. Systems are being designed which will allow parts of programmes to be selected that are of interest, such as particular news stories. These will then be put together to automatically form personalised news programmes. This will enable the news providers to produce a much wider range of stories and it will enable the viewer to be more selective thereby preventing wasted time viewing material that is of little or no interest.

At the moment the majority of video on demand systems are in the experimental stage. BT have a trial system using set-top boxes from Apple at their laboratories In Martelsham Heath, near Ipswich. So far this is just linking the homes of 70 employees, but in September the company plan to extend the trial to 2500 homes in the London borough of Westminster where BT owns a cable TV license. As part of this experiment BT has signed up the BBC, Carlton, LWT, Thames TV and Picture Music Intemational as the main material providers They are also talking to several Hollywood studios as well as computer games company Sega.

This next phase of the trial will be used to prove the technology and the potential demand, as well as showing the many politicians who live and work in Westminster what BT will be able to offer if.the government will allow it the freedom to compete with the cable TV companies. For a further discussion of this point read the Open Forum piece in this issue.

The British computer company Acom have also entered the n_{n}

Set Top Box.

One of the key components of the fibre-optic network based interactive information revolution is the so called 'set-top box', or STB, which act as an interface between the domestic TV and the network. Essentially the STB hardware consists of a very powerful personal computer, the design of which has been optimised for handling high quality digitised video. Although all the designs are careful not to actually look like computers, there is no keyboard or monitor for example. This is to overcome an all too common prejudice against computers that is to be found amongst the general public. Thus, no keyboard means no typing, just a fairly conventional hand-held remote control unit.

Apple have been one of the front runners in development of STBs for the interactive TV market, and they have seen STBs as being a good way for them to lever their core computer products into the homes of people who would not necessarily be personal computer buyers. The Apple STB is being used by BT in their trials and basically consists of an LC475 Motorola 040 based system and the high performance graphics card used in the Apple Quadra, with the whole unit selling for about $£ 300$. Other major companies in the emerging STB market are Philips and Silicon Graphics.

A British designed STB

It is encouraging to know that British computer manufacturer Acom have also entered the STB market with a product produced by their subsidiary Online Media. This STB is based around the high performance ARM RISC processor and, in processing terms, is rated at 25MIPS, therefore ideally suited to the demands of interactive multimedia processing. The hardware design is fully static to ensure exceptionally low power consumption and ellminate any need for a cooling fan.

To ensure high sustained performance and reduced bus

activity the Acom STB has a 4KB instruction cache and Write buffer. It also sports a custom memory management unit, with sophisticated page management and support for virtual memory systems. To allow an environment which will fully exploit the array of simultaneous tasks required by interactive multimedia, the high-performance ARM CPU is coupled with a high speed, sub microsecond, multi-level interrupt. The system comes with 2 MB of RAM and $2 M B$ of ROM fitted as standard, but these are expandable to allow for future developments.

A separate 32 -bit data and address bus allow the high performance architecture to be fully exploited. Allowing real-time decoding of SIF resolution bit streams of 320×240 pixels at 30 Hz or 352×288 pixels at 25 Hz (operating with a 1.5MBps MPEG data stream). Real-time horizontal interpolation and field duplication ensure high quality moving image reproduction, in either 640×480 pixels at 60 Hz (NTSC output format), or 768×576 pixels at 50 Hz (PAL output format. The Acorn STB has a fully programmable VID20 video controller with 8-bit colour DACs for true 16 million colour on screen reproduction, up to 70 MHz pixel clock, and interlace support for either PAL(SECAM) or NTSC formats. The sophisticated video features allow features such as picture mixing and effects such as fades, dissolves, scrolls etc for a highly professional looking output.

For the user there is a high-speed, general purpose communications interface designed to accept and maximise the performance of any host interface requirements such as ATM in the home connection. Connection can also be made to a wide range of associated equipment such as SCART in/out, UHF invout, printer and 16 -bit CD quality stereo audio out, as well as the ability to directly interface to a CD-ROM drive. For ease of use, control is via an infra-red handset, and there is a facility for personalised system configuration.
set-top box market through their subsidiary Online media, and have tied up with Anglia TV, News International (publishers of the Times), Northern Telecom, MAl, Oracle, and Cambridge Cable to set up an experimental video on demand system in Cambridge.

However, the most ambitious scheme so far is being devised by Bell Atlantic in the USA. Using a Philips designed set-top box they will be linking over 250,000 people in Washington DC, North Virginia, and East Maryland. This system will have thousands of films, music videos, and television show repeats on its server systems to glve a full Video on Demand, or VOD service. Bell expect to expand the services on offer within the next year or so to cover home shopping and banking, computer games and 'enhanced' live TV coverage.

Interactive home shopping, and banking

Another much talked about application for fibre-optic networks
and the set-top box is interactive home shopping. Every year, thousands of millions of pounds are spent buying goods by mail order, goods of all sorts that are sold via catalogues or simply via adverts in magazines and newspapers. However, sales are limited by people's natural wariness about buying something which is unseen, hence the enormous expenditure on colour catalogues by the mail order companies.

But colour catalogues bring with them another set of problems as far as the mail order companies are concerned. Catalogues are expensive to print and once printed it is impossible to change anything. This means that the pricing and product range of a mail order company tends to be rigidly set. Unlike a high street retailer it is very difficult for them to have a special offer for a few days in order to help move stock, not to mention the fact that it can be very awkward if they run out of stock.

For such companies the idea of having an interactive video

STB software.

Despite the fact that an STB is deliberately designed not to look like a computer it is one, and will be running a special interactive TV server program which will co-ordinate all the processes and allow the user to perform functions such as freeze frame, fast forward, search, etc. as well as handling requests to search for and send information.

At the moment the two main contenders in the race to produce the world standard STB software are Oracle and Microware's OS/9. The Microware product has In fact been around for nearly sixteen years in various forms, and has been chosen by Philips as the software to run its CD-i system, the basis for its STB.

Oracle, the world's third largest software company are in fact producing software for an entire video on demand/STB system, and they are doing so in conjunction with British Telecom. This software is in two parts, that running on the media server, in this case a massively parallel supercomputer, and that running on the STB.

Oracle and BT linked up in 1992 and the first video server based on Oracle software began running on a supercomputer at BT's Martelsham Heath Research Centre at the beginning of April this year. In this system movies are stored in bits at random across a large number of disks, and a massive array of paraliel processors are used to re-assemble the digitised video and send it down a phone line to the customer using special video pump software.

The important feature of this software is that it gives a large number of users to simultaneously access a single copy of a film, whilst at the same time allowing each customer to individually start, rewind and pause without affecting any of the other viewers. This technique is in opposition to one being developed by Microsoft who are pumping hundreds of millions of dollars into a system called MIMOSA that will instead rely upon lots of powerful PCs to perform the server function.

Which system wins is still an open question, MIMOSA will not be ready until the middle of next year, meanwhile Bell have chosen Oracle for their Washington DC based 250,000 user video on demand test.
system which goes directly into every household in the country is extremely attractive. Initially, such interactive home shopping systems will probably simply be a video version of a catalogue with the capability of being able to move from any one item to any other item, or look items up in an index. Already there are CD-ROM catalogues which work in this manner. A good example is the new disk from Radiospares.

Within a couple of years developments in software should lead to some interesting refinements. For example, there is no reason why, when buying mail-order clothing, that the system should not be able to show it modelled on a computer generated three dimensional image of the intending purchaser, or at least someone who looks very similar. It will also allow closer links between the manufacturer and the purchaser, again using clothing as an example, it could easily be made to measure, thus giving a better product and also eliminating expensive stock holding.

Furthermore, since the information superhighway will have global links, the suppliers, manufacturers and customers might be anywhere in the world. You could live in London and have your shoes made in Hong Kong, chosen, measured and bought over the global network and delivered by post within the week. The potential implications of this form of global electronic shopping are enormous, and as yet little considered by politicians, businessmen and economists.

Of course, if one can buy things over the information superhighway then one must also be able to pay for them in the same way. In earlier trials of home banking systems security posed a major problem, but with the advent of smart cards such as Nat West's Mondex these problems should be a thing of the past, and the information superhighway can also become a financial superhighway that will give everyone the ability to move their money, at will, anywhere in the world. (More headaches for the politicians!)

Other applications.

Another area of enormous importance will be the use of the superhighway and its associated computer hardware to provide interactive education and training of a quality that could seriously rival conventional methods. Open University type courses could be provided that could be automatically linked in with interactive tutorials and computer generated grading systems. The network could also be used to allow individuals to 'sit-in' on lectures given by some of the finest brains in the world. This means that, in theory, everyone could go to the best university and the best school.

The information superhighway could also change the way in
which we work. For a start, it would allow a lot more people to work from home if they so deslred. This would have many advantages. It would effectively make the labour force more mobile, it would allow the skills of people like mothers of young children and the physically handicapped to be used, and it would also enable us to reverse the population decline in some of the more remote rural areas of the country.

Into the future on the superhighway

Although the concept of an information superhighway is very much an American one, the infrastructure necessary for such a communications network is already being laid down in all the major developed nations of the world. In the UK, around 7% of the homes in the country are already linked via fibre-optic cable to one or other of the cable TV services, and BT have used fibre-optic cables on the main trunk routes for many years. It is also being laid down on an intemationai basis - most of the new generation of undersea cables are extremely high capacity fibre optic.

However, if the information superhighway is to achieve its aims and provide the world with a communications network that will be the basis for these, and other applications as yet undreamt of, then creating it will require enormous financial resources. Indeed, in the US it has been estimated that building the infrastructure will cost $\$ 1000$ per household, or $\$ 100$ billion to connect up the entire USA. And if we add onto that the fact that there will be several competing networks, plus all the investment in media servers, STBs, etc. we can easily reach.a figure that is four times that much.

It remains to be seen whether investment of this sort can be undertaken by the private sector or whether governments will become involved. it also remains to be seen whether governments will seek to control and regulate the system, some may well see the elimination of national boundaries and controls as a threat that must be countered.

SPECIAL BUY

AT 286
$40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram

UYTED QUANTITY only of these 12 Mhz HI GRADE 286 systems uade in the USA 10 an industrial specification, the system was asu and EGA video card with single $51^{\circ} \mathbf{n}^{\circ} 1.2 \mathrm{Mb}$ floppy disk drive \& hagral 40 Mb hard dlsk drive to the tront. Real time clock with batomplete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM, DOS 4.01 Order as HIGRADE 286 OMLY E 86.00 (E) Optional Fitted extras: VGA graphics card
1.AMb $31 / 2:$ floppy disk drive (instead of 1.2 Mb) 1.AMb 31/2 floppy disk drive (instead of 1.2 Mb)
E2000 Ethemet (thick. thin or twisted) network card

FLOPPY DISK DRIVES $3.5^{"-}$ - 8^{u}

5.25" from £22.95-3.5" from £24.95 Massive purchases of standard 5.25^{*} and 3.5^{*} drives enables us to
present prime product at industry beating low prices! All units (uniess
stated) are BRAND NEW or femoved from often brand new equipment and are fully tested, a 220. All and 3. Panasonic JU363/4 720K or equivalent Mitsubishl MF355C-L. 1.4 Meg. Lapiops only 25° Teac FD-55GFR 1.2 Meg Meg Non lapio, 25° BRAND NEW MItsubis

Shugart 800/801 8" SS refurbished \& tested Shugart 8518^{-}double sided refurbished \& tested Mitsublshl M2894-63 8^{4} sided switchable NEW
Mitsubishi M2896-63-02U 8^{*} DS slimline NEW

Jual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in

HARD DISK DRIVES

4 hard disk storage! Full industry standard SMD Interface. Uttra soeed data transfer and access time, repiaces Fujitsu equivalent -odel. complete with manual. Only 3.5 FUI FK. $309-2620 \mathrm{mb}$ MFM IF RFE 35° CONNER CP3044 40 mb IDE I/F (or equiv) PFE 525^{1} MINISCRIBE 342520 mb MFM IF (Mac \& Acorn) 525° SEAGATE ST-238R 30 mb RLL I/F Refurb

the AMAZING TELEBOX
 TV SOUND $\&$ VIDEO TUNER!

The TELEBOX consists of an attractive fully cased mains powere whe made by mannuacturers such as MICR hoviTEC, ATARI SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many Wil arr UHF colour television ccnannels. TELEBOX MB covers virtuat y teievision frequencies VHF and UHF including the HYPERouput is iocated on the rear panel for direct connection to most $\begin{array}{ll}\text { TELEBOX ST for composite video input lype monitors } & £ 32.95 \\ \text { TEEBOX STL as ST but with integral speaker } & £ 36.50\end{array}$ rEI EBOX MB Multiband VHF-UHF-Cable- Hyperband tuner £69.95

for cable / hyperband reception Telebox MB should be co

FANS \& BLOWERS

 ExEOUP $12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{VDC}$ D

IC'S TRANSISTORS DIODES
5,000,000 items EX STOCK

PC SCOOP
 COMPLETE

COLOUR SYSTEM ONLY $£ 99.00$
 Computer Controlled Laser Video Disk Player
One of the most amazing surplus deals hat we ever been able to offer you

P410 Laservision player in as new condition, unit features full computer control, Plays standard $12^{\prime \prime}$ LaserVision disks with When controfled by a computer, it may also be used as a versatile high quality storage / retrieval medium. It will play back either LaserVision CAV (active play) or CLV (Long Play) discs (which covers most types of commercially available vioeo discs). Some of the BNC + SCART INTERFACE PAL/RGB DECODER IR+WIRED REMOTE CONTROL PAL / RGB DECODER
AST RANDOM ACCESS 5PELIRL PURCHASE Only $£ 399.00_{\text {(f }}$

VIDEO MONITOR SPECIALS

 Multimode monitor 0.28° dot pitch with resolution 1024×760. The multi mode input allows direct con-
nection to a host of computers hciuding IBM PC's in
CGA. EGA, VGA \& SVGA modes, BBC CGA, EGA, VGA \& SVGA modes, BBC, COM
MODORE (including Amiga 1200), ARCHIMEDES s modes inc HI RES monochrome. Complete with tex switching for WP use. (possibie minor screen bums Syncs down to 15
ldz . Supplied in EXCELIENT ithe used condition with ful 90 day guarantee.
Order as MTS-9600/H for ATARI
\qquad £159.00 (E)
: 139.00 ($)$ ELECTROHOME ECM-1211SBU 12" VGA multisync monitor with resolution 640×480. Multi input selection; 9pin CGN VGA or 5 BNC connectors. Q.31 pitch. Compatible with bums). 90 day guarantee

KME 10° high definition co.. | Ma9.00 (E) |
| :--- | for superb clarity and modem styling. Operates from 0. Commodore Amiga, Acorn Aschimedes \& BEC Atari,

Measures only $13.5^{\prime} \times 12^{\circ} \times 11^{\circ}$. Only $£ 125$ (E) KME used condition. 90 day guarantee.

$$
20^{\prime \prime} 22^{\prime \prime} \text { and } 26^{\prime \prime} \text { AV SPECIALS }
$$ Superbly made UK manufacture. PIL all solid state colour monitors teak styte case. Perfect for Schools, Shops. Disco, Clubs, etc.In 20"....£135 22"…£155 26"....£185 (f) DC POWER SUPPLIES

10,000 Power Supplles Ex Stock

Power One SPL200-5200P 200 watt (250 w peak). Semi cpen Irame giving $+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak), $-12 \mathrm{v} 1.5 \mathrm{a},+24 \mathrm{v}$
4 a (6 a peakk). All outputs fully regulated with over voltage protection
on the +5 v . $5^{\circ} \times 2.5^{\circ}$. Fully guaranteed RFE. Stable for $110 / 240 \mathrm{vac}$. Dims $13^{\circ} \times$
Power One SPL 130.130 watts. Selectable for 12 v (4A) or 24 v (B)

 Lambada LYS-PV 12200 watt switch mode. +12 V DC 629 a semi enclosed, $10^{\circ} \times 5^{\prime \prime} \times$. RFE and fully tested. Boshert 13090. Swich mode. Ideal for drives \& syste

Farnell G6/40A. Switch mode. 5 v - 40 a .Encased

SPECIAL INTEREST

NTEL SBC486/133SE Multibus 486 system. 8Mb Ram

Zets 3220-05 AO 4 pen HPGL. RS232 fast drum plotte
Trlo 0-18 vdc bench PSU. 30 amps. New
Fuftsu M3041 600 LPM band printer
Andrews LARGE 6 m Satelitit Dish + mount (For Voyager) RED TOP IR Heat seeking missile (not armed !!) Tektronly 1 L 30 Spectrum analyser plug in
Thurlby LA 160 B logic analyser
GEC 1.5 kw 115 v 60 hz power source
Brush 2 Kw 400 Hz 3 phase frequency converter
Brush 2 KW 400 Hz 3 phase frequency converter
Anton Pillar 75 kW 400 Hz 3 phase frequency conventerP
Newton Derby 70 KW 400 Hz 3 phase frequency converier
Nikon PL-2 Projection lens meter/scope
Se 7580 AD 150 H 18 channel digital Hytrid chant recorder
HP 7580A A1 8 pen HPGL high speed drum plotter
Kenwood DA-3501 CD tester, laser pickup simulator
Computar MCA1613APC 16 mm auto iris ienses 'C' mount

BBC Model B APM Board
 £100 CASH FOR THE MOST NOVEL DEMONSTRABLE APPLICATION

BBC Model B type computer on a board. A major purchase allows us to offer you the PRDFESSIONAL version of the BBC computer al a parts only price. Used as a front end graphics system on large networked systems the architecture of the BBC board has so many simexperimentation and BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found brings all th it is supplied complete with a connector panel which do is provide +5 and +12 v DC. The APM consists of a single PCB
with most major ic's socketed. The ic's are too numerous to list but include a 6502 / 6512 CPU. RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating system on bools and provides diagnostic information to
the video output. On board DIP switches Only 229.95 and jumpers select the ECONET address
and enable the four extra EPROM sockets 2 for $£ 53$ (8)

19" RACK CABINETS

Superb quality 6 foot 40 u

 Virtually New, Ultra Smart Less than Half Pricel Top quality 19° rack cabinets made in UK byOptima Enclosures Lid. Units feature desionOptima Enclosures Lid. Units feature desioner, smoked acry lockable hal cemovable side panels. Fully adjustable internal fixing struts, ready punctied for any configmounted Integral 12 way 13 amp ready switched mains distribution strip make these racks some of the most versatlie we have ever sold. Racks may be stacked side by side and therefore require Overall dimensions are: $77-1 / 2^{\circ} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as: Rack 1 Complete with removable side paneis. \quad £295.00 (G) Rack 2 Rack. Less side panels
Over 400 racks in all sizes from stock ! Call with your requirements.

LOW COST RAM UPGRADES

Bord. Ful on board Card is

 fully selectable for Expanded or Extended (286 processor and above) memory. Full data and drlver disk supplied. In good used condition fully tested and guaranteed. Hatf length 8 blt memory upgrade cards for PC AT XI年 6 kteps. May also be used to fill In RAM above 640k DOS limit Compiete with data.Order as: XT RAM UG. 256 k
£32.95(A1)

No Break Uninterruptible PSU's

Brand new and boxed 230 volts 1 KVa uninterruptible power supply
from system from Densel. Model MUD 1085-AHBH. Complete with sealed lead acid batteries in matching case. Approx ime from inter ordar ses manul
£575.00 (G)
EMERSON ACCUCARD UPS, brand new 8 Bit hall length PC compatible card for all IBM XT/AT compatibles. Card provides o all intemal system components in the event ontpower supply faM and automatically copies all system, expanded and video memory to the hard disk in the event of loss of power. When power is returne the machine is retumed to the exact status when is supplied with full finting instructions and manual. Normal price $£ 189.00$

Only $£ 99.00_{\text {(B) }}$ or 2 for $£ 195_{\text {(c) }}$

Issue $\mathbf{1 2}$ of Display News now available - send Iarge SAE - PACKED with bargainsI

LONDON SHOP
Open Mon-Sat 9:00-5:3
215 Whitehorse Lane
South Norwood
LONDON SE25

The ETI Cover Disk Quickroute Lite.

and thus limited in the range of its capabilities compared to the more sophisticated commercial versions of the same program. For example, it does not have the full autorouting facility enabled, and designs are limited to just 500 nodes. However, despite these limitations Quickroute 3.0 Lite can be used to quickly and easily design PCBs with several integrated circuits and associated passives, the sort of design commonly published in ETI, and is thus ideal for use by many hobbyists, as well as schools and training establishments as well as providing a good introduction to the use of such programmes.

Installing Quickroute 3.0 Lite

Quickroute 3.0 Lite is a powerful programme and requires a system with 4 Mbytes of memory, a mouse and Windows 3.1. The user should also have around 3-5Mbytes of free hard disk space. A numerical coprocessor is also very useful, but not essen-

> On the cover of this issue of ETI we are giving away a copy of Quickroute Lite, a high quality PCB layout and schematics design package which will run on PCs with Windows 3.1.

ith Quickroute 3.0 Lite, the user can design, edit, save and print PCB's or schematics, and because it is a Windows product, they can make use of a wide range of printers, the product can be used over networks and the designs can be pasted into other applications such as a wordprocessor or DTP document. On the disk included with this month's issue is the
maln design program, and its associated help files, plus a limited library of symbols which are sufficient to get you up and running. Next month the cover disk will include some additional symbol and component libraries that will allow more sophisticated designs to be produced. There will also be a printable form of the manual and a tutorial.

It should be noted of course that this particular version is free,

that there is data on the dilsk (an extremely small percentage of cover disks do get damaged, if you are one of the unfortunate ones then just return the disk to ETI editorial offices and we will replace it). If the disk is OK then select INSTALL.EXE and RUN it.

The rest of the installation procedure is virtually automatic, and it will creat a Quickroute Program Group in your Program Manager

Getting started.

To run Quickroute simply double click on the Quickroute Program Group to open the window and then double click on the QR3 icon. Quickroute will then execute displaying a sign on banner and copyright notice, there is no need to enter anything here since this version is specially created for ETI readers.

The mouse cursor, which is normally a small arrow or pointer, changes to a small cross as the mouse moves into the Quickroute window, this can be seen in Fig.2. One can also see from this screen display that at the top of this window is a menu bar, beneath that a button bar, and at the bottom of the screen there is a status bar; scroll bars are to the right and bottom of the main design area.

The first thing to be able to do is load one of the sample files that are included with the program. To do load a design simply click on the FILE command on the menu bar and select OPEN. This will display a dialog box such as that shown in Fig.1. listing the five sample designs and two design grids that are on the disk. To load just select one and click OK. The FILE menu can also be used to save designs to disk, print them out or exit from Quickroute.

The Quickroute Button Bar

Beneath the menu bar are a group of 14 buttons arranged as four groups of three and one of two, these can be clearly seen in Fig.2. Going from left to right, the first three buttons are used
to select pads of various sizes (a wide range of different sizes can be assigned to any one button by clicking the right mouse button with the pointer on the desired pad button, this will bring up a menu from which the desired pad can be selected). the second group of three are used to select tracks of varying width.

The third group of three buttons are used to select symbols. These symbols are set up with the aid of the UBRARY menu on the menu bar. Simply select the desired library, there are two on this disk, one for PCB design (CONFIG.SYM) and one for schematic design (SCHEM.SYM), and then use the right mouse button to select from a menu the desired symbol which is to be assigned to each of the three buttons. One of the pages from the Selection Window produced by SCHEM.SYM is shown in Fig.3. and shows a range of component schematics that are available.

The final group of three buttons consist of a DIL pad symbol for use with ICs, a graphics primative button for adding rectangies, circles elipses etc. to the design, and a text button which allows text to be added to any part of the design. With all of these three buttons there is an associated Selection Window which can be accessed using the right mouse button.

Last of all we come to the two buttons at the far right end of the button bar. Button number 13 is used to add pins to the design, these serve no useful purpose on any but the most sophisticated version of Quickroute and are provided for upward compatibility purposes only. Button 14 is an important one to remember because it is the edit button and has to be pushed before one can select, move, cut, or copy any part or all of a design.

Creating a design.

Creating a design, either schematic or PCB, with Quickroute consists simply of selecting objects placing them into the workspace and then linking them with the appropriate lines and

Bar. The cursor will then change to a little arrow which can be used to select tracks and objects. To select a track simply put the cursor on a track node or close to the track and press the left mouse button. To select a pad click on the centre of the pad. For a symbol, click on a little cross that is drawn within it, the 'hot spot'. Text can be selected by putting the cursor on the first character of the text string and clicking, ICs by putting the cursor on pin 1 and clicking, and primitives by putting the cursor on a comer or edge and clicking.

When an object or track has been selected it will change to the default selected colour, usually a light grey, and solid square boxes will appear at the node points on the object. On tracks these node points will be at the start and finish of the
pads. To add a component to the design simply click on one of the component buttons using the left mouse button (make sure that the correct library has been accessed first). To change the component click with the right mouse button and select the desired schematic from the Selection Window (such as the one shown in Fig.3).

When you select a component note that the text shown in the rectangle to the right of the button bar changes to show the object type selected, and that if you selected pads or symbols then the selected object is ghosted with the cursor to enable accurate positioning. Accurate positioning can be aided by making use of one of the design grids that are provided, and to make it easier to see what you are doing make use of the zoom facility in the VIEW menu. You can also pan across the design using the scroll bars (note with some systems you may have part of the old image left on the screen after doing this, to remove it simply go the the VIEW menu and select ALI).

Once objects have been positioned in the workspace they can be linked with tracks. To do this simply select one of the track buttons, and if necessary change the track width using the right mouse button and associated Selection Window. Then place the cursor at the position on the workspace where you wish to start the track, then move the cursor to the end position and click the left mouse button when you are happy with it, or the right mouse button to quit track drawing.

Of course you might want to move objects in order to make joining them together easier, or erase an object or track that was added incorrectly. To do this we need the EDIT function which can be activated by pressing Button 14 on the Button
lines and, for other objects, a box will will be drawn around the object with nodes on the comers, this can be seen in Fig.4. If desired one can select a group of objects or even all the objects in a deslgn by holding down the SHIFT key, then holding down CTRL and using the left mouse button to draw a rubber banded rectangle that contains all the objects you wish to select.

Once objects have been selected they can be copied, moved, cut and pasted. To move a selected object, or group of objects, simply put the cursor in the centre of the object or group and keeping the left mouse button pressed drag it to the new position in the display area. When you let go of the mouse button, a pop-up menu will ask whether the object or group is to be moved, copied, or multi-copied. Milti-copying is very useful where one is repeating a group of objects several times, such as the production of data buses.

To cut and paste selected objects you will need to use the pull down EDIT menu. It should be noted that these use the Windows clipboard and is threfore one way to transfer a design from Quickroute to another application such as a wordprocessor or DTP package.

Going further.

The above is just a quick introduction to using Quickroute and should be sufficient to get you up and running, and allow the creation of some simple designs. There are a lot more features to Quickroute than I have described and next month we will be providing a tutorial program on our cover disk. Don't forget that there is also a comprehensive on-line help facility included with this program which can be used to solve most queries.

Special Reader Offer

For readers who find Quickroute 3.0 Lite useful, but would like to have a more sophisticated and powerful version, the programmes authors are able to offer a 40% discount on Quickroute 3.0 Designer. This will let users edit circuits that are 20 times more complex (10,000 nodes) and also includes full autorouting on 1 or 2 layers. This version normally retails for $£ 99.00$ (excluding VAT and P+P) but ETI readers who send a copy of the cover disk from this issue with their order can get it for just $£ 58.00$ (excluding VAT and $P+P$). It should be noted, however, that at this price a printed manual will not be included; instead the full manual text will be available as art online help (where it can be printed out).

Orders should be sent to: POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD. If you have any queries about this or othe versions of Quickroute then Phone or Fax POWERware on 0614497101.

E HAVE THE WIDEST CHOICE OF US OSCILLOSCOPES IN THE COUNTRY	 NEW EQUIPMENT HAMEG OSCMLOSCOME Het 1005 Trgie Trace 1004ne: APOLLO $10+1004$-2 Counter Timar Rnso menoartime ungerve et METEOA 期 FREOUENCY COUNTEA ROONH: \square \qquad c28 5119 5145 METEOR 1800 PREOUEMCY COUNTEA IGHE保 ORON COLOUR BAR GENERATOR PATV NIENO Al pther Brat Ster Equpment Pviletion \qquad - Mantals supplied if possible E or Telephone for lists. Please check availability To be added to Total of Goods and Camage F READING ADING, BERKS RG6 1PL \square Wolcome sum- 5.30 pm mon.Fi (untul spm Thurs)
Lable	
$\overline{U E L \& K}$	
laxte.	
Used Equipment Guaranteed - Manuals supplied if possible This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering CARRIAGE all units $£ 16$ VAT to be added to Total of Goods and Camiage	
TEWART OF READING Acass	
110 WYKEHAM ROAD, READING, BERKS RG6 1PL 	

SHEAR'AXCAE-RANGER:PGB DESIGN
 Rongerit ide9.

Power On Self Test Card for PCs.

Stephen Smith and A.R.Jardine have developed a POST card which allows the user to detect most hardware faults which may appear in a PC, even when the system appears to be completely dead.

n a cold gloomy Sunday aftemoon, you settle in front of your trusted PC. Cup of tea in one hand, in the other the latest bloodcurdling offering from IDS software. There you are waiting to bludgeor your first alien, when every computer user's worst nightmare strikes. What are you greeted with - the comforting "C: $\backslash>$ " prompt, no-nothing. A blank screen stares bleakly out at you. Nothing but a dead computer. But what can you do?

This is where you would love to have a doctor/patient relationship. Just by asking, "Now what is wrong with you today PC?", you get a simple reply to the problem. Unfortunately, computers cannot talk to us about the problem. But the clever

PC has found a way to communicate its ailments to you. Thé PC goes through a series of tests, a sort of daily physical. This sequence of tests is called POST (Power On Self Test). All you have to do is interpret the information this gives you. Not an easy feat. So this is where your POST card steps in to help you out.

What is POST?

POST is a sequence of program routines built into the motherboard's ROM (the BIOS). This tests vital system parts at the time of power-on. The system BIOS commences and oversees the POST. What, when and how the system is tested is BIOS dependant. The POST testing is completed before the PC attempts to load the operating system. This ensures that the system is fully functional before any essential operating system functions are started. This is what is going on in that infuriating

delay when you turn on an IBM-compatible personal computer. POST was developed as a way of testing the PC at all stages of its life. The memory, DMA, interupt controller etc. on the motherboard can be tested with POST during its manufacture. Such a test requires only a power supply and a POST card like the one described here. Then when the system is assembled, disk drives inserted, display and input/output cards installed, the POST is used again to test the whole system. These tests are the machine's first line of defence against hardware faults, as they are run every time the machine is powered up.

The computer automatically starts POST every time it is turned on. These specific tests scrutinise the main elements in the system. (i.e. CPU, ROM, motherboard support circuitry, memory, keyboard, video, hard and floppy drives, etc). Although these tests are brief in comparison with diskbased diagnostic packages, they are vital in error detection. Often, a system experiencing a serious problem is unable

Fig. 2 The Bus timeing diagram

system passes the POST tests and then goes on to boot the operating system. If a difficulty is encountered during the testing a different series of beeps is signalled. The precise code emitted is BIOS dependent. Next month we will catalogue various audio error codes and associated problem areas.

POST codes are test codes sent to an input/output port address at the start of each test. A special adapter card plugged into a system slot can decode the POST codes, like the one detailed here. These codes pin-point each element tested by POST. During the POST testing, two-digit numeric codes is passed to the adapter's display. If the POST cycle stops unexpectedly, the two-digits displayed on the card indicates where the test has failed, and therefore points an accusing finger at the faulty component. Next month we will catalogue various BIOS POST codes and associated problem areas.

Many commercial cards exist to inform the user of the POST codes. The majority of these display the codes on a pair of seven segment displays, and the user has to then look up their meaning. Some older cards can take over the machine with a special test BIOS, but as all modern BIOSs include POST testing, this capability is mostly redundant. Other cards monitor various bus signals
to function sufficiently to load the disk-based diagnostic package. POST is able to operate and directs you to the source of the problem, providing a warning or error message as soon as a fault is discovered. Three types of output message are provided:- audio codes, display screen messages and the test codes (POST codes sent to an input/output port address).

POST audio error codes consist of a sequence of audio beeps, which can simply identify a faulty component. For a normal functioning system, one short beep is emitted when the
and report their status. One solution to the problem of deciphering the POST code, is to have a computer program to retrieve the meanings of the codes and any suggestions about action to take. This, however, requires a second functional computer and is therefore not practical for the casual user.

The card described here uses a dual seven-segment display to report the status of the POST testing. In addition eight LEDS are used to indicate the status of four bus signals and four power supply lines. This does not guarantee that the supplies

Fig . 3 Post Card component overlay
are within tolerance - just that they are present. You have to use a multimeter for that.

The objective behind the development of this card was to produce a cheap card that was easy to use and had a degree of protection. With commercial cards costing at least $£ 150$ and with no protection, which would you rather use and risk damaging: a $£ 150$ or a $£ 30$ card? Add to this the fact that you have full circuit diagrams and information on the cheap card that you made yourself.

Software diagnostics packages require the majority of the system to be functional. (i.e. You need to be able to boot the system and run the software.) POST cards operate before booting so they will diagnose faults that hinder booting. Also as the POST card has its own display, it does not rely upon the functionality of the system's normal monitor display. This means that the POST card can find fault in 'dead PCs'. The POST card is a natural compliment to software diagnostic packages.

Which PCs can use the POST card, I hear you ask. (Strange, the funny noises you hear in the early hours of the morning.) To use the POST card, your system must be an IBM AT or 100% compatible; equipped with an 80286,80386 ,

80486 or Pentium microprocessor; with an ISA or EISA bus. Vesa and PCI local bus systems are catered for as they all have ISA expansion slots. Some PC and XT systems with modem BIOS's can also use the POST card. Check with your system's manuals for further details.

There are eight status LEDs on the POST card. If you look care-
fully at the card, you will note that they are labelled on the board. From left to right, OSC, CLK, MEMR, $+5,+12,-12,-5$ and RES. If the particular LED is lit, then that element is functional. The status LEDs are an invaluable tool for fault finding. Even if the PC is unable to run POST, the LEDs direct the user to where the problem originates.

OSC: This represents the bus oscillator of 14.318 MHz . Informing whether the clock used by the expansion cards is working.

CLK: This is derived from the processor clock and is usually in the range 8 to 12 MHz . Thus indicating a level of functionality of the main clock generator circuitry.

MEMR: Memory read signal on expansion bus. This indicates activity on bus.
$+5,+12,-12,-5$: These are the power supply lines. The LEDs being lit does not necessarily indicate that they are at the correct voltage.

RES: This represents reset. Indicating the status of the reset line, which is imperative to the operation of the system It is initially off for about half a second then is on during normal operation.

How It Works.

The IBM-AT and clones indicate the POST test currently in progress by sending a byte to the input/output address 80 Hex . All the POST card has to do is catch these bytes and give them to you in a form you can understand. Referring to Figure 1. "But why use PALs?" I hear you ask. (The voices, the voices.) The address decoding is in one PAL as opposed to three pieces of descrete logic. Hexadecimal seven segment drivers are not readily available. The only alternative is using intelligent displays that cost about $£ 10$ each. Using PALs allows a cheaper and simpler design to be produced.

The three PALS do all the hard work, making your life easy. IC1 does the address decoding, IC2 and IC3 drive a seven segment digit each. The address decoding waits for 80 Hex on the ten address Ines with logic lows on the two control lines (NALE and NIOW). Figure 2 illustrates this write cycle, (more later). This enable slgnal latches the decoded hexadecimal digit at the output of the PALs A logic low on the output of a PAL

Listing 1

End;
lights the LED. It sinks current from the appropriate segment of the display and a series resistor. This means a common anode display is necessary. Sorry, I know you've all got a bucket full of common cathode displays, but the PAL can not be trusted to source sufficient current and the additional driver circuitry is just a waste.

The eight LEDs are added to monitor the four power rails

Listing 2.

START.

```
A := /D3*/D2*/D1*D0 +/D3*D2*/D1*/D0
    + D3*/D2*D1*D0 + D3*D2*/D1*D0;
B := /D3*D2*/D1*D0 + /D3*D2*D1*/D0
    + D3*/D2*D1*D0
    + D3*D2*/D1*/DO + D3*D2*D1;
C {= /D3*/D2*D1*/D0 + D3*D2*/D1*/D0 +
    D3*D2*D1;
D := /D3*/D2*/D1*D0 + /D3*D2*/D1*/D0
    + D3*/D2*/D1*D0
    + D3*/D2*D1*/DO + D2*D1*D0;
E := /D3*/D2*D0 + /D3*D2*/D1
    +/D3*D2*D1*DO +D3*/D2*/D1*D0;
F :=/D3*/D2*D1 + /D3*/D2*D0 +
    /D3*D2*D1*D0 +
    D3*D2*/D1*D0;
G := /D3*/D2*/D1 + /D3*D2*D1*D0 +
    D3*D2*/D1*/D0;
```

End;
and four bus signals (OSC, CLK, MEMR and RES).
Part of the prototyping process was to lend the POST card

```
Listing 3.
10 CLS
20 PRINT "POST-CARD TEST PROGRAM"
30 PRINT "A.R.JARDINE S.M.SMITH"
40 PRINT "8/6/94"
50 PRINT
60 port = 128
70 A = 0
80 OUT port, A
90 PRINT "00 SHOULD BE DISPLAYED - TESTING
STUCK DATA LINE AND ALL IC'S"
100 SLEEP 2
110 FOR X = 0 TO 7
120 A = 2 ^ X
130 IF X < 4 THEN PRINT "O";
140 PRINT HEX$(A); " SHOULD BE DISPLAYED -
TESTING DATA LINE D"; HEX$(X);
150 PRINT " AND IC"; HEX$(3 + (X > 3))
160 OUT port, A
170 SLEEP 2
180 NEXT
190 OUT port, }25
200 PRINT "FF SHOULD BE DISPLAYED - ALL DATA
LINES ON - TEST ALL IC'S"
210 SLEEP 2
220 PRINT "O";
230 FOR X = 0 TO 15
240 A = X * 16 + X
250 OUT port, A
260 PRINT HEX$(A); * SHOULD BE DISPLAYED -
TESTING DISPLAY DECODERS IC2 +
IC3"
270 SLEEP 2
280 NEXT
```

to a friend. As the PCB can be inserted either way around into the PC, he inserted it the wrong way. (Thanks Pete!) R16-19 were incorporated in series with some of the address lines. These stop the power rails, $\pm 5 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$, from doing unspeakable things to the poor defenceless PAL when the PCB is inserted incorrectly.

The PAL Programs.

As mentioned earlier, IC1 produces an enable signal when an address of 80 Hex is detected and the control signals are low (see Figure 2). Listing 1 contains the logic to do this and requires no explanation to anyone familiar with Boolean logic.

Listing 2, however, is far more complex as it decodes a four bit binary word into a hexadecimal representation on a conventional seven segment display. The workings of this logic are best explained with the aid of table 1. Table 1a lists all the hexadecimal digits and the segments of the display used to represent it. As you can see the list in table 1 b , the number of digits to encode is long and complicated, It can be simplified with a small piece of lateral thinking, don't turn the segments on, but turn them off. This allows simpler logic expressions to be generated, table 1c. Careful study of listing 2 will reveal that the codes ($0-F$) defined in the logic are those that turn off the segments.
(e.g. the digit A (D3*/D2*D1*/D0) is only decoded by segment D because all the others are listed in table 1.) The
order of the outputs from this PAL may seem strange until you look at the PCB layout. The connections from the PAL, via the resistors, to the display are all solder side without any need to change side. This simplicity comes from careful design of the PCB and PAL logic in unison. A simpler layout was possible but only at the expense of creating two different designs, one for each dlgit.

Construction.

Please read through this section thoroughly before starting construction. Building this project is greatly simplified if the PCB is used, (Figure 3). If you make your own boards and do not have the facility to make plated through holes, you will appreciate that the board has a number of loops to aid soldering components' side connections. Using a readers service board should not present any problems to an experienced constructor.

Firstly populate the resistors and capacltors. R1-14 are the current limiting resistors for the seven segment display and so their value defines the displays brightness, 1 K is advised as any lower may be too much for the PALs and cause them to overheat. We have found that 4 k 7 is a good value for the protection resistors (R16-19) as any lower may not provide enough protection and any higher might interfere with the logic levels. The electrolytic, C 1 , is of course polarised and +ve is at 5 V (that also on the common anode of the display). The LEDs are next with all the anodes towards the text above them. The dual seven-segment display has its pin 1 nearest to IC2. For enhanced visibility it is possible to use a right angle socket to mount the display. This allows the display to be read from above when the card is inserted into the PC, but the card is hardly low profile any more and as a consequence becomes prone to damage. Last and by no means least are the PALs. These are the only static sensitive parts used and are best socketed.

Great care must be taken when soldering to avoid solder bridges between adjacent points, as the consequence could be PC destruction. Visually check all joints and all top side connections.

Testing.

To test your completed POST card check continuity between the supply rails, as a short here could very damaging. Once you are confident about its safety install it in your PC, when it is switched off, making sure the card is the right way around and you can see the display and LEDs clearly. Now tum on your machine watching the display, it should sequence through a set of numbers If the PC does not start up properly shut it off immediately and check that the card is inserted the correct way around, with the writing on the card giving you directions. Now your card should be installed the correct way around and free from shorts.

All eight status LEDs will now be lit. The MEMR LED may be dim or filcker depending upon the amount of access to the memory. If this LED is out try doing something on the PC that involves
allot a screen updating, as this will cause the buses' MEMR signal to be activated. If the LEDs do not light check that they are the correct way around (anode towards the writing).

The address decoding and display drivers can be tested with the small BASIC program in listing 3. As the POST card is at input/output address 80 Hex you can talk to it directly by outputting a byte to this address. In Qbasic that is "out \&H80,byte", where byte is the number you wish to send to the

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST E395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER + and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routhg, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excelion NC machines plus DXF and other DTP file formats.

CADPAK
 Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quičk to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded... "At £79 I thought this was an excellent buy."

ISIS ILLUSTRATOR Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0756753440 or fax 0756752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.
WE HAVE MOVED - NOTE NEW ADDRESS Pnces exdude ptp ($£ 5$ for U.K) and VAT. All manufa cturers' trademarks acknowledged.
53-55 Main St, Grassington, North Yorks. BD23 5AA.

PCB Designer For Windows 3.1

 Runs on any PC running Windows in stan enhanced mode with 2MB RAMabl prices lnclude vat TEST METERS Satallite Finde-
Eacsy 10 use lil
an Protessional satellite E29.95 FSS metere 899.95

 Dightal Lux Moter
 Sound Level Moter
 Analogue Clamp Meter Ansociomos AC 5 ronges on 50 VAC OTFV DC I 0200 KOHM 132.9 Dhithal Clamp Meter
 acoc Current Clamp
 Temperature Measurem Dual inou 3 A Dign ${ }^{5} \mathrm{C}$ t mith BENCH INSTRUPIET BEIVCN IUSTRUMENTS
 LCR brioge
 687.00 POWER SUPPLIES tringie meter owin meter O2LV de Corsomps $\quad 1574.00$
 Twin version

- ET20.00
 digited dispory 699.95

SICNAL SOURCES yonsou ac

5. Ionge Nutio Con 1 OHz : 101 MHz
Sineispuare
I +19.00

ALL PRICES INCLUDE VAT
OPEN 6 DAYS A WEEK
Phone (0432) 355414 (Access and Visa welcome)

Niche Software

22 Tavistock Drive, Belmont, Hereford, HR2 7XN. Please Note Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line tramual, in Windows Help format. A FREE tutorial is also supplied.

\mid Freelâice

THEIDEAL TOWN HOPPER

No, it's not a Sinclair C5, and yes it's electric, environmentally sound and easily manoeuvrable, the City-el explodes the myth that electric cars are impractical, with a 50 KM range and 50 KM top speed, it's the best alternative in urban traffic, 10 metres of flex and conventional plug ensure that wherever you are, just plug in.
$\star £ 2,499$ CABRIO OR HARDTOP
$\star £ 1,875$ EX-DEMONSTRATORS CABRIO-HARDTOP * VEHICLE TAX EXEMPT

* CHARGING TIME 100\% 8 HOURS 75\% 3 HOURS
\star CHARGING COST 9 PENCE/ 100% CHARGE

Patriotic Street, St. Helier, Jersey, Channel Islands Telephone: 053480973 Facsimile: 053480974
 ON MIDHETIS

Full details send for instruments info pack (SAE 36p UK) Ref: TG

HENRY'S

404 Edgware Rd, London W2 1ED Tel: 071-724 3564/071-258 1831 Fax: 071.7240322
Discounts for quantity and education

THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

Still Only
£195.. var carriage extra

Provides $10 \mathrm{MHz}, 5 \mathrm{MHz}$ \& 1 MHz
Use it for calibrating equipment that relies on quartz crystals.
TCXOs, VXCOs, oven crystals
Phase locks to DROITWICH (rubidium controlied and
traceable to NPL)

- For ADDED VALUE also phase locks to ALLOUIS (cesium
controlled and traceable to OP . French eq to NPL).
Brtish designed and British manufactured
Options available inctude enhanced recelver, sine wave
Output frequencies $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Short term stability - better than $1 \times 10^{-6}(1 \mathrm{sec})$ Typical $-4 \times 10^{-0}(1 \mathrm{sec})$ Long term - tends to $2 \times 10^{-72}(1000 \mathrm{sec})$

SUPERB DUAL TRACE SCOPES, TELEQUIPMENT D61A, 10 mV SENSITIVITY, $10 \mathrm{US}-500 \mathrm{mS} / \mathrm{DIV}(\& \times 5)$, X-Y INPUTS, Z-MOD, INT/EXT/TV TRIGS, ETC. FROM £99 THE 2004 DC VOLTAGE STANDABD 0.005% FLUKE 7EOA MULTTME TEA CALIBRATOR BRADLEY 17 IB MGY TMME TER CALIBRATOR BRADLEY 991 OSTIRIBUTION UNIT
HONEWWELI COLOUR GRAPHIC AECOROER HTTACHI V525 5OMHZ 2 TRACE CURSOR ETC TEKTAONV 545 PLUG-NS, VARIOUS PLESSEY TCT10 SIG GENANAL $50-300$ BOS
MURHEAD KZ31A TEMP CONT PRECISICN STD CEL MARCONH TFZ212 X-Y OISPLAY MAWE 1405O(RS) SOUND LEVEL METER QUAD 303 STEREO POWER MAPS OFAKE MN2700 MATCHING NWORK \& PS7 PSU PHKIPS PN 3065 100MHZ DUAL TRACE \& T/B SCOPEX 40108 L.S. 10 WHz WTH EXTENDEO LF T/B LEADER LBO.SC ALIGNMENT SCOPE
IWATSU SSST1G DUAI TRACE 1014 Hz
IWATSU SSSFIG DUAL TRACE 1OHHZ TELEQUPMENT D101T BOMHH DUAL TRACE
TEKTHONIX $533 A 5 O M H Z ~ D U A L ~ T R A C E ~ D E E ~ T ~$ H.P. BSOSA VECTOR VMETER :GHZ TELEQUIPMENT DSTA 2SMHZ 2T. OEL TA HITACHI VC GOIS DOWH2 DIGITAL STORAGE HP1340AX-Y DISPLAYS OERTLNG VO2 SINGLE PAN BAL 0.4 mg 200 g
MARCONI TF2O20 WAVE ANAL YSER $2+\mathrm{Hz-50NHz}$ LEVELL TM68 MICRO V.METER 45ONHZ

$$
\begin{aligned}
& \text { E750 ELECTRONIC VISUALS EV4OZOA NTSC VISCOPE } \\
& \text { PHILIPS PMS134 FUNCTIO NEN GEN } 1 \text { R2-201MHZ } \\
& \text { PHR IPS PM } 5326 \text { RF SIG GEN } 0.1-125 M 1 H z \\
& \text { PHILIPS PMS7 } 16 \text { PULSE GENERATOR } 1 \mathrm{~Hz}-50 \mathrm{MHz} \\
& \text { ROBIN ONZCO LIGHT METER O.5OK LUX } \\
& \text { KT COMPUTEAS } \\
& \text { LEVELL TMBB MICRO V-METER MHZ } \\
& \text { HP4951C PROTOCLL ANAL \& 18179A RS232CVV2 } \\
& \text { HP6131 C DIGITAL VOLTAGE SOURCE } \\
& \text { HP6 } 40 \text { O DIGITAL CURRENT SOURCE } \\
& \text { LING DYN VIB GEN } 4068 \text { PA } 30 \text { PWR OSC } \\
& \text { CITOH CXSOCO GPEN A4 PLOTIER CENTRS23 } \\
& \text { GOULD } 24004 \text { PEN CHART RECORDER } \\
& \text { PHIL IPS PM } 6456 \text { FM STEREO GENERATOA } \\
& \begin{array}{l}
\text { MARCON: TF2300 FWAM MOOULATLON METER } \\
\text { MCKENZIE TDAY TEMP HUMIHTY RECOADEA }
\end{array} \\
& \text { FEEDOACK SSOE03 } 1 \mathrm{M} H 2 \text { SINE SQ OSC } \\
& \text { LCR BRIDGE WAYME KERR CT492 } \\
& \text { LCRO BRIDGE AVO } 151 \\
& \begin{array}{l}
\text { LCA BRIDGE MARCON TF2700 } \\
\text { ICR BRIDGE MARCON TF270 }
\end{array} \\
& \text { LCR BRIDGE MARCON TF2709 }
\end{aligned}
$$

LOS LCR COMPONENT COMPARATOR AVO CZZ57/
OUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED

HALL EFFECT SWELL PEDAL

With this project from Robert Penfold you too can make swell music

(4)traditional swell pedal is basically just a logarithmic potentiometer used in standard volume control fashion, and controlled via a foot-pedal instead of an ordinary control knob. It enables players of electric and electronic instruments to control the volume while still using both hands to play their instruments. Although there may seem to be no point in trying to improve on such a simple piece of equipment, over the years there have been various attempts at producing improved swell pedals. Practical potentiometer type swell pedals do sometimes have one or two shortcomings.

A common complaint about ordinary swell pedals is that they tend to be rather noisy when operated. This is actually a problem with many effects units that are controlled via a potentiometer, and is a byproduct of the
rather crude way in which most potentiometers operate. There are various ways around this problem, one of which is to use a voltage controlled attenuator (VCA). The potentiometer is used to provide the control voltage for the VCA, rather than directly controlling the input signal. The control voltage from the potentiometer is fed through a simple lowpass filter which removes all or most of the audio frequency noise, and gives scratch-free control of the volume.

FIG. 2 The stripboard component lasyout and wiring

Hall Effect

This swell pedal design uses a variation on this method. The potentiometer is dispensed with altogether, and the control voltage is instead provided by a linear Hall Effect device. Hall Effect devices may be unfamiliar to many readers, since they are not exactly the type of thing you use in every other project. A component of this type is a semiconductor device which can detect a magnetic field. In the case of a linear Hall Effect device the quiescent output voltage is about half the supply voltage. A magnetic field of one polarity produces a rise in the output voltage, and a magnetic field of the opposite polarity produces a reduction in the output potential. The change in output voltage is proportional to the strength of the applied magnetic
field.

When used in a swell pedal, the magnetic field is provided by a small bar magnet mounted on the pedal. When the pedal is depressed the magnet is brought closer to the sensor, a higher output voltage is produced, and the losses through the VCA are reduced. This gives noise-free control of the volume, and it is not even necessary use lowpass filtering on the output from the Hall Effect sensor. Unlike using a potentiometer, this method of generating the control voltage is inherently noise-free.
Hall Effect swell pedals are by no means a new idea, and they were first produced more than ten years ago. At one time units of this type tended to be expensive due to the relatively high cost of linear Hall Effect devices. Some linear Hall Effect sensors are still quite expensive, but there are now some low cost devices which have a level of performance that is more than adequate for the present application. The sensor used in this design is avallable for less than one pound, which makes it slightly cheaper than the magnet used to activate it! An advantage of the Hall Effect method for the home constructor is that it avoids the need for a complex pedal mechanism. There is no need for gears or pulleys to provide a coupling between the pedal and a potentiometer. All that is needed is a very basic pedal mechanism fitted with a small bar magnet. Even someone who is not particularly good at the mechanical side of project construction should be able to improvise a usable pedal mechanism.

How It Works

The circuit diagram for the Hall Effect swell pedal appears in Fig.1. IC1 is the Hall Effect sensor, and this three terminal device is very easy to use. A supply voltage of between 4.5 and 8 volts is applied to the appropriate two leads, and the output voltage is taken from the third terminal. The UGN3503U contains a Hali Effect sensor, a linear amplifier, and an emitter follower output stage. It is not particularly sensitive though, and even with a small bar magnet right against the device a change in output potential of no more than about one volt is obtained. IC2 is therefore used to provide a boost in
the output voltage swing. IC2 operates as an inverting amplifier
 having a closed loop voltage gain of about

five times, and it also provides level shifting. VR1 is adjusted to bias the non-inverting input of IC2 to a level that produces an output voltage that is close to zero with the magnet withdrawn from IC1.

FIG. 3: The underside of the component panel

Applying the magnet to IC1 with the correct polarity results in its output voltage reducing, which in turn gives an increase in the output voltage from IC2. This enables IC2's output potential to be varied between about 0 and 4.5 volts by applying and withdrawing the magnet. This is sufficient to give a widecontrol range from the VCA.

The VCA is based on one of the transconductance amplifiers in IC3, and it is of conventional design. The other section of IC3 could be used in an identical VCA circuit if a stereo swell pedal is required. R4, R5, and C 2 provide a centre-tap on the supply lines that is used to bias the inputs and output of IC3. R10 provides a bias current to the linearising dlodes in IC3, and this gives reduced distortion at high signal levels. R11 is the discrete load resistor for the built-in emitter follower output stage.

Strictly speaking, the LM13700N is current rather than voltage controlled, and the circuit is a CCA (current controlled attenuator) rather than a VCA. However, R2 is connected in series with the control input of IC3, and the current flow here is roughly proportional to the input voltage. The circuit therefore provides a normal VCA action, and the attenuation is governed by the output voltage from IC2. The circuit has approximately unity voltage gain with maximum control voltage from IC2. It should provide around 80 to 90 dB of attenuation with zero control voltage from IC2.

The current consumption of the circuit is only about 12 milliamps. Four HP7 size cells in a plastic holder are a more than ample power source.

Construction

Details of the stripboard and wiring are provided in Figs. 2 and 3. The board has 35 holes by 18 copper strips. Note that IC1 has a PMOS input stage, and that it therefore

requires the normal anti-static handling precautions. In particular, use a holder for this device, and do not fit it into place until the board and all the wiring have been completed. The CA3140E used for IC2 is a type that will work properly in single supply DC amplifiers. Most other operational amplifiers (uA741C, TL081CP, LF351N, etc.) will not operate properly in this circuit. Although an LM13700N is specified for IC3, the LM13600N will work just as well. These two devices would seem to be practically identical. Retailers now seem to supply the LM13700N, but if you have an LM13600N in the spares box it is perfectly suitable for use in this project. IC1 is one of those awkward symmetrical devices which make it difficult to determine the correct orientation. The best method seems to be to use the type number to differentiate between the notional front and rear sides of the device. Fig. 4 shows how to identify the three leadout wires using this method. As viewed in Fig.2, the type number is on the right. Of course, in order to get the sensor in the right position relative to the magnet it might be necessary to mount it off-board. It can then be fitted on a small piece of stripboard, and wired to the main unit via a short threeway lead.
It should not be difficult to produce a simple pedal mechanism. Basically all that is required is a large hinge bolted to a sheet of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium. The positioned of the magnet on the pedal should be selected to provide a movement of about 15 millimetres or so. I found that the Maplin "large" and "small" magnets both provided good results, but the "large" type is the more practical choice. It is easier to glue this in position on the underside of the pedal, and its alignment with the sensor is far less critical. Any similar magnets should also be suitable, but I have only tested the circuit with the two Maplin magnets. Small bar magnets do not normally have anything to show their polarity, so the correct orientation for the magnet must be found using trial and error. With any form of pedal style project it is advisable to use a fairly tough case. A diecast aluminium box is ideal, but I have always found simple folded aluminium boxes to be adequate for this type of thing. It is advisable not to use a plastic case for a project of this type.

Note that the unit will only function properly if the correct pole (end) of the magnet is applied to the appropriate face of the sensor. Applying either pole of the magnet to an edge of the sensor will not significantly vary the control voltage to the VCA. Neither will applying the middie of the magnet to any part of the sensor. It does not matter which face of the sensor the pole of the magnet is applied to, provided it is the correct pole for that face. The four HP7 (AA) size cells are fitted into a plastic battery holder. Connections to this holder are made via a standard PP3 type battery clip.

Adjustment

VR1 must be given the correct setting before the unit will function properly. The unit should pass the input signal straight through to the output if VR1 is set almost fully clockwise. Slowly backing off VR1 in a counter-clockwise direction should soon produce a reduction in the output level. VR1 should be backed off just far enough to give a high level of attenuation through the unit. By applying the magnet to VR1 it should then be possible to control the output level, and to vary it over a wide range.

HALL EFFECT SWELL PEDAL
Resistors (0.25 watt 5% carbon film)
R1 10 k
R2 15k
R3 47 k
R4,R5 3k9
R6,R7 330R
R8 $\quad 18 \mathrm{k}$
R9 12k
R10 22k
R11 4k7
VR1 47 k min hor pres̈et
Capacitors
C1 100 u 10 V axial elect
C2 470 u 10 V radial elect
C3 $\quad 2 \mathrm{u} 250 \mathrm{~V}$ axial elect
C4 10 u 25 V radial elect
Semiconductors
IC1 UGN3593U
IC2 CA3140E
IC3 LM13700N or LM13600N

Miscallaneous

JK1,JK2 standard 6.35 mm
jack socket
S1 SPST min toggle
$81 \quad 6$ volt ($4 \times$ HP7 size cells)
Case, 0.1 inch stripboard having 35 holes by 18 copper strips, battery connector (PP3 type), plastic battery holder, Maplin
"large" magnet, materials for pedal, 8 pin DIL IC holder, 16 pin

DIL IC holder, wire, solder, etc.

EASY-PC, Schematic and PCB CAD

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Integrated Electronics CAD
 Analogue
\& Digital
Simulation Analogue
\& Digital
Simulation Analogue
\& Digital
Simulation

Prices from UK£195 I US $\$ 375$

Affordable Electronics CAD

For full information, please write, phone or fax:-

Number One Systems

UKEEC: Ref. ETI, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 0480461778 (7 lines) Fax: 0480494042 International +44480461778
USA: Ref. ETI, 1795 Granger Avenue, Los Aftos, CA 94024
Telephone/Fax: (415) 9689306
MASTERCARD, VISA Welcome.

EASY-PC: Entry level PCB and Schematic CAD.	\$195.00	$¢ 98.00$
EASYPC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	\$376.00	£ 195.00
EASY-PC Pro ${ }^{\circ}$ XM: Extended Memory Version - Greatly increased capacity	\$475.00	£245.00
PULSAR: Digital Circuit Simulator ~ 1500 gate capacity.	\$195.00	$¢ 98.00$
PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity.	\$375.00	£ 195.00
ANALYSER III: Linear Analogue Circuit Simulator - 130 node capability	\$195.00	$¢ 98.00$
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 node capability.	\$375.00	£195.00
Z-MATCH for Windows: NEW Windows based Smith-Chart program for RF Engineers.	\$475.00	£245.00
FILTECH: Active and Passive Fllter Design program	\$275.00	£145.00
We operate a no penatry upgrade policy. You can upgrade st any time to the professional version of a program just for the difference in price.	USS prices include Post and Packing	UKe prices exchde P\& and VAT

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.
,
Teph (415) 9689306

 C

This month in PC Clinic, we examine in depth two of the most commonly used data input devices on a PC, the keyboard, and pointing devices or mice, as well as taking a quick look at some of the other less frequently encountered input devices.

the past, the input and output function was often performed by a terminal which was connected to the computer via a cable from a serial or parallel port.

This terminal may have been a teletype which combined the function of both keyboard and printer (and more often than not a crude data storage device that relied on punching or reading paper tape). Or It may have been the so called 'glass teletype' which had a CRT display in place of the teletype's printer.

The problem with this technique was that the data transfer rate was quite slow on account of transmission, and terminal, hardware limitations. Thus a typical teletype would operate with a data transfer rate of 300 baud, or just 30 characters per second. Video terminals tended to work faster, but anything above 9600baud, or 960 characters per second, was uncommon.

Although this type of data transmission speed is ample for user data input from a keyboard it is obviously totally inadequate for generating the type of graphics displays found on the PCs of today. Hence, this use of a separate terminal for input and output was abandoned quite early on in the development of personal computers. It was abandoned in favour of the currently used fully integrated system where computer, keyboard and monitor were all part of the same unit.

In other words, the terminal and the computer have been merged together. The video display is now connected to special high speed circuitry that interfaces directly with the processor bus and allows for the rapid generation of high resolution images. However, the keyboard is still connected to an input port and, In hardware terms, has hardly changed since the first PC was introduced.

The availability of high resolution, high speed, colour graphics displays has led to the almost universal use of graphical user interfaces such as Windows. Such GUis have made it
much easier to use complex applications software, but they call for an input device which is more versatile than the keyboard, something which can be used to quickly position a software generated pointer at a desired location on the screen.

The most widely used solution to this requirement is the mouse. So, on most modern systems, there are two main input devices, the keyboard and the two or three button mouse.

For certain more demanding applications there may also be other types of input device such as track balls, digitising pads, light pens and touch screens.

In this issue of PC Clinic (unfortunately shortened as a result of having to include a four page reader survey) we will be looking at all these different input devices as well as looking at how to repair and maintain two of the devices which most frequently fail on a PC, the keyboard, and the mouse.

The keyboard.

Since the keyboard on a PC is the one piece of it that we use the most it is hardly surprising that it is also the bit that suffers most from continued use. Few of us will have had a motherboard fail, or a hard disk crash, but I suspect a great many readers will have had a keyboard fail in one way or another. Sometimes the whole keyboard will not work properly, sometimes just a single key.

Besides simple wear and tear through constant use, the main reason for keyboard failure is the fact that they are very vulnerable to dust, hair, dirt, and a thousand and one other sorts of detritus, not to mention the spilled cup of coffee, that can collect under the keys and stop them working properly.

Keyboards used on most PCs are a standard form and therefore mass-produced and not that expensive to replace, but if a keyboard fails it can be well worthwhile trying a few simple maintenance procedures that could easily get it working again. Even if the keyboard has not failed, then a regular clean may well ensure that it has a much longer usable life. A factor which might be very important in the case of non-standard keyboards such as those used on portable and notebook computers.

Probably the commonest problem with a keyboard is that one or more keys stop working completely, or work only intermittently. Of course, this may be due to the hardware, in particular the switch contacts, wearing out. This is a particular problem with keys which are used a lot. In such cases the only course of action is to replace the entire keyboard.

However, unless the keyboard is very heavily used and quite old it is more likely that something has simply become wedged between the switch contacts, stopping them from working properly. In such cases all one needs to do to get the keyboard working again is to open up the keyboard and clean out the accumulated dust and dirt. In fact, to prevent failure it is a good idea to do this three or four times a year.

To clean the keyboard, first disconnect it from the PC and, after turning it over, carefully remove all the screws that hold the two halves of the case together. Having done this keep the keyboard upside down and remove the case bottom. This will
expose the keyboard PCB inside. This PCB is attached to the key assembly by about twenty small screws. Carefully remove them and put aside.

Once all the screws holding the keyboard PCB to the key assembly have been removed, one can then simply tum over the PCB to expose the contacts. The key caps will remain in place in the upturned keyboard case. With the contacts exposed, it is a simple matter to brush away the dust and dirt with a small soft brush and compressed air (use one of the compressed air cans sold as Spray Duster).

If the contacts are very dirty then you may well need to give them an additional clean by rubbing them over with a soft cloth soaked in alcohol (it is important that the cloth is not abrasive and that you do not rub too hard) .

You will definitely need to do this if the cause of the problem was a drink spilled into the keyboard. Use plenty of alcohol (surgical spirit, not methylated spint since the latter will leave a residue) and let it dry for about an hour before reassembling. You may also need to clean the actual keys as well; cotton tipped swabs are useful for this purpose.

If you have to remove any of the keys for cleaning, then take particular care when popping them off the key assembly. Check undemeath for a little spring wire. If this wire exists, it is safest to leave the key where it is and clean it as best one can in situ. This is because it can be extremely difficult to replace these minute springs once they have been removed.

Once the keyboard has been cleaned, carefully reassemble by replacing all the screws that fasten the PCB to the key assembly. Reattach the back of the case and plug it into the PC. With a bit of luck, it should work perfectly.

The diagram on this page shows the inner working of a single key on a typical PC keyboard. Note that the key is restrained to move by guide holes in the keyboard frame. A small lip on keytops ensures that the key is retained under spring pressure, the key pressure being set by the spring. Key depression is sensed by the bottom edge of the key pressing on a plastic membrane mounted underneath the keyboard frame. Conductive tracks are arranged to cross underneath each key so that when key is depressed a connection is made.

lthough some of the questions here may not seem to relate directly to the magazine, please complete the whole questionnaire. Your answers not only help us to steer the editorial content of the magazine in the direction you want but they also helpus to build up an overall
profile of readers to present to advertisers who require such data to select suitable magazines for their products.
No names and addresses will be disclosed to any third party and all information will be treated in the strictest confidence.

[^0]| 2. Please indicate what you think of the following aspects of ETl's coverage: | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Poor | Average | Good | Excellent |
| Product News | $\square 001$ | 0002 | $\square 003$ | $\square 004$ |
| Industry Technology Newis | -005 | -006 | 0007 | $\square 008$ |
| Advanced Projects | -009 | $\square 010$ | -0, | $\square 012$ |
| Basic Projects | $\square 013$ | $\square 014$ | $\square 015$ | $\square 016$ |
| General Features | $\square 017$ | [018 | $\square 019$ | $\square 020$ |
| Tutorial Features | $\square 021$ | $\square 022$ | $\square 023$ | 0024 |
| Product Reviews | 0025 | 0026 | 0027 | 0028 |

3. Would you like to see a greater or lesser proportion of ETI devoted to the following:

	Less	The same	More
Beginners' Projects	$\square 029$	$\square 030$	$\square 031$
Advanced Projects	$\square 032$	$\square 033$	$\square 034$
Computer Projects	$\square 035$	$\square 036$	$\square 037$
Audio Projects	$\square 038$	$\square 039$	$\square 040$
Music Projects	$\square 041$	$\square 042$	$\square 043$
Radio Projects	$\square 044$	$\square 045$	$\square 046$
Home Improvement Projects	$\square 047$	$\square 048$	$\square 049$
Bio-electronics/Health Projects	$\square 050$	$\square 051$	$\square 052$
Test Equipment Projects	$\square 053$	$\square 054$	$\square 055$
Security/alarm Projects	$\square 056$	$\square 057$	$\square 058$
Car Electronics Projects	$\square 059$	$\square 060$	$\square 061$
Robotics Projects	$\square 062$	$\square 063$	$\square 064$
Photographics	$\square 065$	$\square 066$	$\square 067$
Novelty/Gimmick Projects	$\square 068$	$\square 069$	$\square 070$
Basic Elementary Theory	$\square 071$	$\square 072$	$\square 073$
Advanced Electronic Theory	$\square 074$	$\square 075$	$\square 076$
General Science/Technology	$\square 077$	$\square 078$	$\square 079$
News	$\square 080$	$\square 081$	$\square 082$
Product Reviews	$\square 083$	$\square 084$	$\square 085$
Letters	$\square 086$	$\square 087$	$\square 088$
Open Channel/etc	$\square 089$	$\square 090$	$\square 091$
Design/Circuit ideas	$\square 092$	$\square 093$	$\square 094$
Competitions	$\square 095$	$\square 096$	$\square 097$
Others (please specify)	$\square 098$	$\square 099$	$\square 100$

	Own	Don't own but regularly use
Home Computer	$\square 101$	$\square 102$
Professional Computer	$\square 103$	$\square 104$
Hi-fi	$\square 105$	\square tob
Electronic Musical Instrument	$\square 107$	$\square 108$
M1DI Equipment	$\square 109$	$\square 110$
PA/Recording equipment	-111	$\square 112$

Photographic/Darkroom Equipment	$\square 113$	$\square 114$			
Ham Radio/CB	$\square 115$	$\square 116$			
Satellite TV	$\square 117$	$\square 118$			
Video Camera	$\square 119$	$\square 120$			
Security/Alarm System	$\square 121$	$\square 122$			
Oscilioscope	$\square 123$	$\square 124$			
Multimeter	$\square 125$	$\square 126$			
Other test gear	$\square 127$	$\square 128$			
5. Do you buy ETl for:					
Projects only				Features only	Both
$\square 501$				$\square 502$	$\square 503$

6. Do you read any of the following magazines:

Never Occasionally Regularly
Everyday with Practical

Electronics	$\square 129$	$\square 130$	$\square 131$
Elektor Electronics	$\square 132$	$\square 133$	$\square 134$
Maplin Magazines	$\square 135$	$\square 136$	$\square 137$
Electronics \& Wireless World	$\square 138$	$\square 139$	$\square 140$
Music Technology	$\square 141$	$\square 142$	$\square 143$
Home \& Studio Recording	$\square 144$	$\square 145$	$\square 146$
Hi-fi News \& Record Review	$\square 147$	$\square 148$	$\square 149$
New Scientist	$\square 150$	$\square 151$	$\square 152$
Scientific American	$\square 153$	$\square 154$	$\square 155$
Practical Wireless	$\square 156$	$\square 157$	$\square 158$
Ham Radio Today	$\square 159$	$\square 160$	$\square 161$
Electronics Product News/		-	

Electronics Equipment
News/New Electronics/
Electronic Product Review $\quad 162 \quad$ - 163 - 164
7. If read, please indicate what you think of the following magazines.

Not as good As good Better as ETI as ETI than ETI
Elektor Electronics $\square 165$ ם 166 ■ 167

Everyday with Practical

Electronics	$\square 168$	$\square 169$	$\square 170$
Maplin Magazine	$\square 171$	$\square 172$	$\square 173$

8. Which of the following do you buy and how frequently?

Never Sometimes Regularly

Electronic Components	$\square 174$	$\square 175$	$\square 176$
Complete Electronic Kits	$\square 177$	$\square 178$	$\square 179$
ETI PCBs	$\square 180$	$\square 181$	$\square 182$
Stripboard/Wirewrap Etc	$\square 183$	$\square 184$	$\square 185$
Cases/Case Materials	$\square 186$	$\square 187$	$\square 188$
Tools	$\square 189$	$\square 190$	$\square 191$
PCB making Equipment/Materials	$\square 192$	$\square 193$	$\square 194$
Pre-programmed ROMs	$\square 195$	$\square 196$	$\square 197$
Computer Software	$\square 198$	$\square 199$	$\square 200$

Floppy Disks	$\square 201$	$\square 202$	$\square 203$	19. Do you primarily build electronics	
Electronic Books	$\square 204$	$\square 205$	- 206	To save money on commercial goods	$\square 275$
Data Books	$\square 207$	$\square 208$	$\square 209$	As a satisfying pastime	$\square 276$
Second Hand Equipment	$\square 210$	-211	-212	As an instuctional exercise	$\square 27$
9. Please indicate what you think of the services offered:				20. As far as electronics design and construction is coricerned, do you consider yourself:	
	Poor	Average	Good		
				Novice	$\square 278$
Disk Service	$\square 213$	$\square 214$	$\square 215$	Proficient	$\square 279$
Photocopy Service	$\square 216$	$\square 217$	$\square 218$	Accomplished	$\square 280$
Foil Patterns	$\square 219$	$\square 220$	$\square 221$	Expert	$\square 281$
Buylines	$\square 222$	$\square 223$	$\square 224$	21. Estimate the value of your electronics test gear and construction equipment as new:	
Subscriptions	-225	$\square 226$	$\square 237$		
Back numbers	$\square 228$	$\square 229$	$\square 230$	Under $£ 25$	$\square 282$
10. Have you used:				£25-£100	$\square 283$
	Yes	No		£101-200	$\square 284$
Our disk service	$\square 231$	$\square 232$		£201-£500	$\square 285$
Photocopy service	$\square 233$	$\square 234$		£501-¢1000	$\square 286$
11. If you own or regularly use a computer, please indicate which it is:				£1000-£2000	$\square 287$
				£2000-£4000	$\square 288$
Spectrum			$\square 235$	over $£ 4000$	$\square 289$
BBC Micro/Master/Electron			$\square 236$		
Commodore 64/128			$\square 237$	22. How much do you estimate you have spent on equipment and components during the past 12 months?	
Amstrad CPC			$\square 238$		
Amstrad PCW			$\square 239$	Nothing	$\square 290$
IBM PC Compatible			$\square 240$	Under £25	$\square 291$
Atari ST			-241	£25-£50	$\square 292$
Amiga			$\square 242$	£51-100	- 293
Archimedes			$\square 243$	£101-£200	$\square 294$
Apple Mac			$\square 244$	£201-£500	$\square 295$
Other (please specify)			$\square 245$	£501-£1000	$\square 296$
			over $£ 1000$	$\square 297$
				equipment in your job?	
12. How many ETI projects have you built in the past 12 months?					
None			$\square 246$	Yes ${ }^{298}$	No- 299
1-3			$\square 247$	24. How long do you keep your copie	
46			$\square 248$	Less than one month	$\square 300$
7-12			$\square 249$	One month	$\square 301$
More than 12			$\square 250$	Three months	-302
13. Do you find ETI projects				Six months	$\square 303$
	Yes	No		A year or more	$\square 304$
Reliable	$\square 251$	$\square 252$		25. If kept, how often do you refer back to issues of ETI?	
Easy to build	$\square 253$	$\square 254$			
Useful	$\square 255$	$\square 256$		About once a month	$\square 306$
Instructive	$\square 257$	$\square 258$		About once a month	$\square 307$
Technically understandable	$\square 259$	$\square 260$		Once every three months	-307
Work first time	- 261	$\square 262$		Less often	- 308
14. Do you modify ETI project designs?					
Not At All			$\square 263$	26. How long do you spend reading your copy of ETI?	
A Few Mods			$\square 264$	Over 2 hours	$\square 310$
Many Mods			$\square 265$	112-2hours	D311
15. Do you prefer to build ETI projects from complete kits when they				1-1\% hours	$\square 312$
are available?				- -lhour	$\square 313$
Yes ${ }^{266}$			No■ 267	Less than \% hour	$\square 314$
16. Do you make your own P				27. How long have you been an ETI reader?	
Never			$\square 268$	Less than three months	-315
Sometimes			$\square 269$	3-6 months	$\square 316$
Always			$\square 270$	7-12 months	$\square 317$
				1-2 years	$\square 318$
17. Have you used our cover disks?				2-5 years	$\square 319$
Once $\quad 271$		Sometimes $\square 272$		Over 5 years	$\square 320$
Always $\square 273$		Never $\square 274$		28. How often do you buy ETI?	
				Occasional issues	$\square 321$
18. What type of projects would you like to see in ETI?				Most issues	$\square 322$
			Every issue	$\square 323$
			29. How much of ETI do you read?	
			Read only some articles	- 324

Read most articles	$\square 325$
Read all articles	
30. With regard to the advertisers in ETI do you?	
Read or look through most or nearly all the ads	$\square 327$
Read or look through some of the ads	$\square 328$
Just read or look through the occasional ad	$\square 329$
Very rarely/never look at the ads	$\square 330$

31. Thinking specifically about the advertising content, would you please rate the two main types of advertisement:

Display	Classifieds
$\square 331$	$\square 332$
$\square 333$	$\square 334$
$\square 335$	$\square 336$

32. Which of the following would you most like to see featured with the magazine? (one box only).

Cover mounted gifts	$\square 337$
Additional supplements	$\square 338$
Competitions	$\square 339$
Money saving offers	$\square 340$
Other (please specify)	$\square 341$
33. Does anyone else read your copy of ETI?	
No only myself	
One or two other people	$\square 342$
Three or four other people	$\square 343$
More than four other people	$\square 345$

34. If your copy of ETT is read by other people, please give details of their age and sex:

Person 1 Person 2 Person 3

Age:			
$9-14$ yrs	$\square 346$	$\square 347$	$\square 348$
$15-24$ yrs	$\square 349$	$\square 350$	$\square 351$
$25-34$ yrs	$\square 352$	$\square 353$	$\square 354$
$35-44$ yrs	$\square 355$	$\square 356$	$\square 357$
$45-54$ yrs	$\square 358$	$\square 359$	$\square 360$
$55-64$ yrs	$\square 361$	$\square 362$	$\square 363$
Over 64 yrs	$\square 364$	$\square 365$	$\square 366$
Sex:			
Male	$\square 367$	$\square 368$	$\square 369$
Female	$\square 370$	$\square 371$	$\square 372$

35. Are you aware of the scheduled publication date of ETI?
Yesㅁ 373 No■ 374
36. If the answer to the last question is YES, do you normally attempt to purchase the magazine on that day?
Yesロ 375 Noㅁ 376
37. How do you normally obtain your copy?

Chance purchase $\square 377$
Newsagent shop collection $\square 378$
Newsagent home delivery $\square 379$
Subscription by post $\square 380$
Passed on copy $\square 381$
38. If you are a subsčriber, on which date did you receive this issue?
39. If you are a subscriber, how long have you subscribed to this magazine?

$1-6$ months	$\square 382$
$7-12$ months	$\square 383$
$1-2$ years	$\square 384$
$3-5$ years	$\square 385$
$6-10$ years	$\square 386$
Over 10 years	$\square 387$

40. Are you aware that to subscribe to this magazine in the UK costs the same as purchasing it in a shop?
Yes $\square 388$
41. Would you like to receive details of our latest subscription offer?
Yes $\square 390$
No— 391 YesD 390

No: 391
42. If you do not subscribe, from which type of newsagent do you most often obtain your copy?

High Street Shop	$\square 392$
Estate shop	$\square 393$
Corner shop	$\square 394$
Other (please specify)	$\square 395$

43. Please tick any hobby/interests you may have besides Electronics:

Model Railways:	$\square 396$
Model Engineering:	$\square 397$
Model Cars:	$\square 398$
Model Boats:	$\square 399$
Model Aircraft:	$\square 400$
Steam Locomotives:	$\square 401$
Radio/CB:	$\square 402$
Computers:	$\square 403$
Woodworking:	$\square 404$
Handcrafts:	$\square 405$

44. Please tick the box which represents the annual total of your gross income:

Under $£ 6,500$	$\square 406$
$£ 6,501-£ 8,000$	$\square 407$
$£ 8,001-£ 10,000$	$\square 408$
$£ 10,001-£ 12,500$	$\square 410$
$£ 12,501-£ 15,000$	$\square 411$
$£ 15,001-£ 19,000$	$\square 412$
$£ 19,001-£ 25,000$	$\square 413$
Over $£ 25,000$	
45. What is your age?	$\square 414$
Under 15 yrs	$\square 415$
$15-18$ yrs	$\square 416$
$19-21$ yrs	$\square 417$
$22-24$ yrs	$\square 418$
$25-34$ yrs	$\square 419$
$35-44$ yrs	$\square 420$
$45-54$ yrs	$\square 421$
$55-64$ yrs	$\square 422$
Over 64 yrs	

46. Which of the following newspapers do you read?	
The Times	
The Daily Telegraph	$\square 423$
The Financial Times	$\square 424$
The Guardian	$\square 426$
The Independent	$\square 427$
The Daily Express	$\square 428$
The Daily Mail	$\square 429$
The Daily Mirror	$\square 430$
The Sun	$\square 431$
Today	$\square 432$
None of the above	$\square 433$

47. Which of the following Sunday newspapers do you read?
The Sunday Times
The Observer $\square 435$

The Sunday Telegraph $\square 436$
The Sunday Express $\square 437$
The Mail on Sunday $\square 438$
The Sunday Mirror $\quad 439$
The People $\square 440$
The News of The World $\quad 441$

News on Sundày	-442	54. If a student what subjects do you study?				
Today	$\square 443$					
None of the above	$\square 444$					
48. What is your marital status?		55. If you have children, please indicate their age given in the ranges				
Married	$\square 445$					
Single		First		Second	Third	Fourth
Divorced	-447	Age: 1-3 yrs	$\square 460$	$\square 461$	-462	$\square 463$
		4.8 yrs	$\square 464$	$\square 465$	[466	$\square 467$
49. Sex:		9-12 yrs	$\square 468$	口 469	$\square 470$	-471
Maleci 448	Female ${ }^{4} 49$	$13-16$ yrs	$\square 472$	$\square 473$	$\square 474$	$\square 475$
50. Are you a member of a book club?		Over 16 yrs	$\square 476$	$\square 477$	$\square 478$	$\square 479$
Yes 450	No- 451					
51. Are you a member of a record club?						
Yes ${ }^{4} 52$	No口 453	Female	0484	D485	[486	[487
52. Are you:		Thank you for	ETI rea	ers' sur	Please	
In full time employment	$\square 454$	fill in your na pages, fold as	below, to arrive	pull out not later		
In part time employment	$\square 455$	pages. fold as October 1994	to arrive	not later		
Not employed at present	$\square 456$					
Retired	-457					
Student - full-time	$\square 458$	Name			\ldots	
Student - part-time	$\square 459$	Address			\ldots	
53. If in full-time employment, please state your occupation:						

To post, fold on the dotted line A. Fold again at B and C and tuck B into the flap formed by C.

B

The Mouse.

The mouse is a relatively new type of computer data input device. It was initially developed by Xerox as part of their Xerox Star system, the first machine to use the now ubiquitous graphics user interface, the machine whose design inspired the Apple Macintosh.
It was the success of the Macintosh which led to the first widespread use of a mouse. This success in tum prompted the development of other graphics user interfaces, in particular Microsoft Windows. And it is the almost universal popularity of Windows amongst PC users which has seen the mouse become today as familiar an input device as the keyboard. Mice come in a wide range of different types, there are mechanical mice, opto-mechanical mice, one-button mice, two-button, and three -button mice, but the basic function of all of them is the same. The function is to convert small movements of the mouse into digital signals which the system can translate into
disks, with an LED on one side of the disk and a photo-transistor on the other (notice that a pair of sensors is used in each disk to provide rotational direction information. The three buttons are just microswitches.
With a purely mechanical mouse, the position and direction of the sensors is determined by having metal spokes etched onto the sensor wheel and little spring contacts detecting whether they are touching a conductive spoke.
With both the above sorts of mice, it is important that they are cleaned regularly. Dust and dirt easily collect on the surface of the ball as well as on the sensor spindles and will, if it gets too bad, reduce the efficiency of the mouse and produce jerky pointer movements. Efficiency will also be impared if dirt gets onto the sensor wheels, although this will only happen if the mouse picks up a lot of dirt. Regular cleaning of the mouse ball is the best preventative solution to all these problems, cleaning can be done with the aid of a special cleaning kit, or a soft cloth soaked in alcohol.

corresponding movements of an arrow pointer on the screen. These digital signals are in the form of X and Y co-ordinate values and are produced in the mouse by two rotary position sensors that are rotated in proportion to the direction of movement by a ball that touches the spindle of both sensors as well as the table top or mouse pad. The actuators are so designed that the system can detect the direction of rotation and are sufficiently sensitive to offer a resolution ranging from 200 dpi (dots per inch) to 400 dpi .
The diagram on this page shows a three-button opto-mechanical mouse; the two rotating optical position sensors can be seen lying at 90 degrees to each other and touching the mousé ball at a tangent. The spoked wheels are the optical sensor

There is one sort of mouse which does not use a ball - the purely optical mouse. These work on a different principle, LEDs and photo-transistors in the mouse detect its movement over a special mat that is marked with a fine grid. This sort of mouse is a lot more expensive, but very reliable since it has no moving parts. It should be noted that Windows allows one to configure the way in which the mouse works. You can swap left and right buttons, as well as changing the sensitivity to movement - the tracking speed, and the double click speed. To change these configurations, open the Control Panel, select the Mouse icon, and make the appropriate changes using the sliders or check box

Other Input Devices.

Besides the keyboard and mouse, a wide range of other user input devices exist for specialised applications. Applications where a conventional keyboard or mouse cannot be used or where they are insufficiently accurate. We shall take a brief look here at four of the commonest.

Trackballs

A track ball is essentially just an upside down mouse; instead of moving the mouse the user moves the ball. They are used in the same applications and for the same purpose as a mouse, and have become quite popular recently. There are two main reasons for this popularity, one is that many people find them ergonomically better than a mouse, and the other is that they can be used without a mouse pad or desk top.

The fact that they do not need the use of a mouse pad or desktop is of particular appeal to users of notebooks and portables. Indeed many portables are now being produced with either a built-in, or clip-on, track ball. The ergonomic appeal of a trackball is based upon the fact that it does not require so much movement to use and requires just a very light touch on the ball. It should be noted that trackbalis have been used in military equipment for a long time and probably pre-date the introduction of the mouse.

Digitising Pads

For high accuracy work with computer graphics the problem with mouse and trackball type devices is that they use relative positioning of the pointer. In other words, they rely upon a hand/eye feedback to move the mouse in order to accurately position the pointer on the screen. As anyone who has attempted to use graphics design systems will know, this is not that easy

This limitation is overcome by a digitising pad which generates an absolute position of a stylus, or puck, as it is moved across the surface of a special digitising tablet. The tablets range in size from A4 upwards and in the most common systems generate the exact X, Y position on the tablet by means of a sensor in the stylus which detects the position from a grid of wires buried in the tablet. (Some systems work using acoustic positioning, others using a pantograph to which the puck is attached.)

On some systems there is also an additional sensor which allows the pressure on the point of the stylus to be measured. This allows the stylus to be used in exactly the same way as a pen or brush, heavier pressure produces a thicker, darker line, lighter pressure a thinner, fainter line.

The resolution of a digitising tablet ranges from under 100dpi to well over 300 dpi . In addition to two dimensional digitisers, there are also three dimensional digitisers which allow an object to be described in three dimensions. Such systems are very specialised and therefore tend to be very expensive.

Touch Screeens

Touch screens are widely used in applications where it is undesirable to have a keyboard attaohed to a system. Such applica-
tions range from industrial control systems where a keyboard is inappropriate because of the environment in which the system is located (too much dirt, etc), to applications where the system is used by the general public for data queries and it needs to be kept as simple as possible.

There are a range of different technologies used in touch screens. They range from ultrasonic or infra-red based detectors that work on an 'echo location' principle to locate the touching finger, to transparent conductive screens which measure capacitive changes when touched. They usually fit over the existing monitor screen and are connected to the system via the serial port.

Most touch screen systems have a fairly low resolution and obviously have to be used in conjunction with the appropriate software to generate the key legend on the screen undemeath a specific area, and then detect whether that area has been touched.

Light Pens

Light pens are an interactive graphics tool rather like the digltiser pad and stylus since they can be used to directly draw lines on the screen or point to specific parts of the screen, rather than via the mouse pointer. Again it is more like using a pen or pencil.
Light pens were, in fact, some of the first graphics input devices ever used, and have been around for about 25 years. Today they are not widely used; users prefer either the mouse or a digitising tablet. However, provision for a light pen was provided on the now defunct IBM PC Junior, and some light pen support routines are still to be found within BIOS.

Light pens most commonly work by a photo detector in the pen tip to detect the monitor scan and then use this information to calculate the exact position of the pen tip on the screen. The monitor scan can be replaced by detecting a software generated scanning pixel.

Future ETI projects for PC owners.

We have some interesting PC based projects in the pipeline, which will be published over the next few issues. These include: a parallel multi-port for connecting experiments to your PC via the parallel port; a PC anti-theft device; a PC controlled EPROM programmer and emulator; a versatile PC based touch screen; a PC based logic analyser for troubleshooting digital circuits, and a light pen for interactive graphics on a PC. For the more advanced reader, we have a three dimensional digitiser for converting solid objects into an array of data points, and a computer controlied drilling machine.

Indeed, over the coming year we will be bringing PC owning readers of EII a whole range of interesting and useful projects which can be added to your PC. In order not to miss them, why not subscribe to ETI, or put in a regular order with your newsagent?

ETI is THE magazine for electronics and gadget minded PC owners.

[^1]
, ETI Book of Electronics
An introduction to electronics that clearly explains the theory and principles involved. Each chapter includes a project to make Projects include a loudspeaker divider, continuity tester, minl-amplifier, a burglar alarm and more!

\checkmark Scanners2.International

Comprehensive information on the use of VHF and UHF communication bands. This book gives details on how to construct accessories to improve the performance of scanning equipment and is international in its pcope.

Scanners 3-Putting Scanners into Practice
Now in it's 4th edition, this Scanners has seen the largest number of

from

and no postage and packing charges! (UK only)
additions, to the point of a virtual rewrite. More detailed frequency listings, actual frequencies used by coastal stations, airfields and the emergency services. Also, for the first time a section on HF bends.

ETI Book of Electronics ISBN $0852429282 £ 10.95$ Scanners 2 International ISBN $085242924 X$ £9.95 Scanners 3 - A Complete update ISBN 1854861069 £9.95 (U.K only). Overseas $+20 \%$. Telephone orders (0797) 366905 I enclose my remittance of. \qquad Please make cheque payable to Bailey Distribution and send to the address below. Please charge my Mastercard/Visa Expiry Date: \qquad Signature: \qquad Name. \qquad Address. \qquad \qquad \qquad Post code. \qquad Complete details and return to Bailey Distribution Lid, Learoyd Road, Mountfield Road Estate. New Romney, Kent. TN28 8XU.													

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX - 0316672611
The supplier to use if you're looking for \star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST * \star COMPETITIVE VAT INCLUSIVE PRICES \star \star MAIL ORDER - generally by

RETURN OF POST * * FRIENDLY SERVICE *

5

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00
Instrument Case - Electronic
Chassis
PVC (Gray) or clear plastic
Size: $\mathrm{L}=133 \mathrm{~mm}$
$\mathrm{~W}=106 \mathrm{MM}$ wandles
$\mathrm{H}=$ Front Panel 64 mm
Rear Panel 40 mm
Price

Transputer Based Si Construction

Fancy building your own supercomputer or sophisticated graphics engine? Then why not try this versatile single board design from Andy Papageorgiou and Mark Robinson

(B)ack in September 1985 Inmos unveiled the transputer amid a blaze of publicity, promises of unlimited computer power, and cute ray-traced Newton's Cradles on Tomorrow's World. Ninè years later and it seems that the transputer has been mostly forgotten: headlines today are dominated by the new Intel processors. Nevertheless, transputers found a niche in highly parallel supercomputers (the Meiko computing surface, for example), graphics processors and research machines, which justified their continued development by Inmos (now owned by SGS-Thomson). The imminent release of the 64bit T9000 proves that the transputer is far from being consigned to computer history.
To allow you to see for yourself what sets the transputer apart from other processors, we present the ETI T225 based single board computer; the first ever project to feature a transputer in a hobbyist magazine. The board provides a good low-cost evaluation system for experimenting with transputers as well as being a useful 16 bit controller card, which can be built for little
more than the cost of commercial 8 bit cards. The card was designed for use in robotics, but it is ideal for many "intelligent" control applications involving, for example, image processing or neural networks. The full specification of the card ls given in table 1.

The Transputer

The transputer was Inmos' solution to the von-Neumann bottleneck, unfairly named after the computing pioneer John vonNeumann, who first outlined the architecture of the modern microprocessor. In the early days of computing, processing power was limited by crude memory and I/O (the CPU was more likely to be waiting for the right bit to fall out of the mercury delay line than doing real work). Relatively high speed, high capacity core memory and the "glass teletype" changed that, and the computing power became limited by the time taken for the CPU to fetch, decode and operate on instructions - the von-Neumann bottleneck.

Taken on its own, the T225 is a fairly average 16 bit vonNeumann processor. What sets it apart from other processors is the ease with which multiple processors can be connected together using Inmos Links, the asynchronous 20 Mbit per second serial ports which all transputers have on chip. The links provide the hardware to connect large arrays of transputers together very simply and the instruction set provides single instructions to read from, and write to, the links using DMA, with
the minimum of processor overhead. Furthermore, the link protocol remains the same across the entire transputer family allowing any combination of devices to converse easily. Another aid to multiprocessing is the common 5 MHz clock frequency used by all transputers and support devices, which is multiplied by an on-chip PLL to the required device clock frequency.

Fantastic developments in microprocessor technology (RISC, pipe-lining and the phenomenally high speed of modern processors) have now widened the von-Neumann bottleneck to the point where memory speed is again the IImiting factor; nence the requirement for high-speed cache memory to get the maximum benefit from modem devices. This may be part of the reason why the transputer has been overlooked: the vast majority of computing tasks can be performed with a single processor so why bother with the expense of a parallel system, especially given the extra complication of the software development.

Well, that isn't the full story; if it were, the current design using a single T225 would be no better than a design based around, say, a 68000 . It isn't just the multiprocessor capability that sets transputers apart from the 'conventional' processors. The transputer architecture also provides hardware support for multitasking; the ability of a single processor apparently to run several processes (or tasks) concurrently. What actually happens is that the processor runs each process individually for a short time before shelving (descheduling) it and moving on to the next. Obviously, when a process is descheduled (a 'context switch' in the Jargon) its current state (the 'context') must be saved somewhere to allow it to be picked up from where it was left off when it is next scheduled.

Any microprocessor can be programmed to multitask. UNIX and Microsoft Windows are testimony to this. However, on conventional processors the overhead associated with context switching can be considerable, and a process must be running to look after the scheduling of other processes. On the transputer, concurrency is handled in hardware with very little overhead, for example a 25 MHz T225 can achieve a context switch in less than 800 ns . The instruction set contains instructions to simplify the creation and control of concurrent processes. Scheduling of processes is carried out automatically and transparently, a process is descheduled whenever it cannot continue (it may be waiting for data from another process for example) or, when there is more than one active process, these are automatically timesliced.

Processes communicate with each other via a 'channel'; a pre-arranged pair of memory locations into which the communicating processes place their messages. The instruction set includes instructions to create, read from, and write to these channels. Communication between two processes running on separate transputers follows the same protocol, except that one of four 'special' channels associated with the hardware links is
used. This means that you can develop code on one (or a few) transputers, and distribute it around several transputers later with very little modification

Finally, another useful feature is the option to boot from a link. If this mode is selected, after a reset the transputer waits for a boot program to be sent down any of its links. This facility allows code to be sent directly from a host computer, removing the need to repeatedly erase and reprogram EPROMS during debugging. Anyone who has developed code with just an EPROM programmer and eraser will recognise this feature as'a godsend.

The PCB has been designed with future proofing in mina. The four links and other control signals have been brought out to a DIN41612 connector which allows a number of cards to be plugged into a backplane for real parallel computing, and/or to expand the number of I/O ports. ETI will continue to publish add ons: a low cost link-based framestore is planned, with some example image processing software and a card containing four transputers (and associated RAM) is in development.

Circult Description

The full circuit diagram is given in figure 1. IC6c, IC6d and associated components provide the master 5 MHz clock for the transputer, IC1. IC4 and IC5 provide 32K 16 bit words of high speed static RAM, IC4 stores the even bytes of the word and IC5 stores the odd bytes. IC3 is the optional ROM; any 28 pin EPROM, EEPROM or NVRAM device can be fitted here. Although the T225 has a 16 bit data bus, the 'byte access' mode is used to permit a single 8 bit ROM to be used. If the BACC pin of the transputer (pin 56) is asserted during an extemal memory access, the transputer assumes that it is addressing an 8 bit device, and performs two byte-wide accesses. During byte access, the lower haff of the data bus (D0-D7) is used for the data and the address line AO (unused during a normal word access) selects whether the odd or even byte is required. This is the reason why AO is connected to the ROM but not the RAM. The ROM occupies the upper half of the address map and it can be paged in or out under software control.

If a writable device (EEPROM or NVRAM) is used for IC3, the transputer can write to it as if it were RAM. However, when choosing an EEPROM, make sure that it has an automatic selftimed write cycle generator. This type of EEPROM can be written to with the same timing as RAM, except for the restric-
Specifications of the card

Processor	25 MHz 16 bit T225
RAM	64 K High speed static
ROM	up to 32 K
Links	420 Mbit s serial links
IIO	DIN 41612 backplane connector

Fig. 1 EII Transputer Circuit Diagram

Eon that there must be a delay of (typically) 5 ms between writes We have tested the board with Excel XLS28C256AP-15 EEPROMS, available from Maplin, but cannot guarantee that cener devices will work. The jumpers LK11 and LK12 allow for The slightly different pinout of some ROM devices to be accom--odated.

The address decoding and control logic is performed within IC2, a 20V8 GAL. Programmable logic devices tend to be underused in hobbyist projects, probably because device orogrammers are expensive and not easily available to amateur constructors. For this project, the complexity of the logic means that it would be impractical to design using conventional gates, especially since the timing of most of the signals is very tightly

PARTS LIST

Resistors

R1	4 k 7
R2, R19	10 k
R3	47 k
R4	180 R

R5, R6, R7, R8 56R

R9-R16	10k by 8 SIL
R17	1 M
R18	330 R

Capacitors

C1
10 u 16 V elect
C2 1u 16 V Tantalum
C3 20p ceramic
C4 150p ceramic
C5 100 u 16 V elect C6-C22 100 n 50 V miniature ceramic disk

Semiconductors

Q1	BC548
D1-D4	1N4148
IC1	IMST225-
IC2	GAL20V8A
IC3	ROM (see
IC4, IC5	$256 \mathrm{Kbit} \times 8$
IC6	$74 \mathrm{HCO4}$
IC7	74 LS 20
IC8, IC9	$74 \mathrm{HC138}$
IC10	74 HC 273
IC11-IC16	74 HC 652

Misc.

X1 5 MHz crystal
PL1 DIN41642 64AC plug
1 strip 32×20.1 inch connector strip
1 strip 32×10.1 inch connector strip shorting plugs

The following parts are available from the authors. Send a cheque payable to M Robinson to: Mr M Robinson (ETl)kit), 124 Swanlow Lane, Winsford, Cheshire CW7 1JA
complete kit (includes everything) - $£ 175.00$
PCB - £39
preprogrammed GAL - £10
software disk - £8
all prices include VAT, postage etc. PCBs are made by a batch process, so orders will be accumulated until there's sufficient for a batch so please be patient. They won't cash any cheques until orders are about to be sent out.
specified. The logic equations are given in listing 1 for anyone who wishes to program thelr own device, or alternatively preprogrammed devices are available from the authors.

The NAND gates IC7, together with the A6 and A15 lines are used by the GAL to map the I/O space into the upper 128 bytes of memory. These 128 bytes are further decoded into sixteen 8 byte segments (the upper eight of which are echoes of the lower eight) by IC8 and IC9. Read operations are decoded by IC8 and write operations by IC9. IC6f disables the lower RAM when an I/O read is performed to prevent bus contention.

The GAL also handles the ROM paging register and adds the required wait states when the ROM is accessed. Either three or six wait states can be added (selectable with LK9) to cater for ROM devices with speeds of 150 ns or faster and $150-300 \mathrm{~ns}$ respectively. The ROM select line is inverted by IC6b and used to assert the transputer byte access pin.

The I/O ports use the versatile 74 HC 652 latched bus transceiver chlps. These chips are a bit expensive, but the extra versatility is well worth it. When set to input, the port appears as two locations in memory, reading from one retums the data currently on the port, while reading from the other retums the contents of the input latch. Data is put into the latch on the rising edge of the STROBE input, and can still be read when the

Fig. 2 Component Overlay

Fig. 3 Pinout of the T225
pin to bend up under the socket during insertion, so check carefully that every hole has a pin in it before soldering the socket in. Don't put the transputer in yet because it will be next to impossible to get it out without a special tool.

Fit the remaining IC sockets next since they provide useful markers when looking where to place other components. It is probably not worth fitting sockets for the cheap 74 series parts, provided you are careful not to overheat them when soldering, and observe static precautions for the HC family devices. If you have trouble finding the proper IC sockets for the bigger skinny DIP parts, the 24 pin sockets can be built from a 16 and 8 pin socket butted together, and the 24 pin sockets from two 14 pin ones. Nearly ever pair of IC pins has a track passing between them so use a 15 W soldering iron with a fine bit and be extra careful not to bridge tracks.

There are a number of jumper options provided on the board. These are made using 0.1 inch square pin socket strips and push on jumper links. The same socket strip is used for the I/O port connectors because it forms a cheap plug when used with IDC connectors.
port is set to output. If the port is written to while it is set to input, the data is put into the output latch, and will be presented to the port when next put into output mode.

The six least significant lines of the latch IC10 are used as the data direction signals for the I/O ports IC11 to IC16. On reset the latch is cleared, which sets all the ports to input to prevent damage to any extemal devices connected to them. It should be noted though that the ports do not have pull down resistors, so any unused inputs (including the input strobes) must be tied to ground through a 10 K resistor. If an entire port is unused it is probably more convenient not to fit the relevant port chip.

The top two outputs of the data direction latch are taken to the backplane, the idea being that in a multiprocessor system this transputer can use these outputs to reset or analyse transputers further down the line. Jumpers LK1 and LK2 can be used to disable this feature.

The transputer error line is buffered by Q1 and used to light LFD1. The error signal is asserted whenever an instruction results in an error condition, for example a mathematical overflow. There are also a couple of instructions to tum the error signal on or off, which come in handy when testing the board.

Construction

Construction is relatively straightforward using the double sided, through-hole plated PCB. The board must be through-hole plated because connections need to be made to inaccessible places on the top side.

Make sure you have the PCB the right way up before starting to fit any components. The component side has a small rectangle of crosshatching, which is in the top left hand corner of the component overlay given in figure 2. The PLCC socket is a pain to fit so it's best to put this in first before other components get in the way. Make sure all the pins are roughly straight, place the holder over the holes with the odd comer in the top left position and work the pins into the holes, using a small screwdriver to tease the stubborn pins into place. It is easy for a

This is fine for home use, but for industrial use, or where the board will be subject to vibration, it is better to fit latching IDC header plugs.

Fit the remalning components in height order, but leave the semiconductors until last, especially the static sensitive ones. Check carefully that each component is in the right holes before soldering, it is all too easy to put a component into a via-hole. If you do have to remove a component, clean up as much solder as possible with brald or a solder sucker, but do not overheat the board or you may pull the plating out of the hole. When you have finished double and triple check the board for short circuits and bad joints.

Testing

Do not fix any of the socketed chips yet. Apply power to the board and check that +5 V and OV appears on the sockets at the right places. Check that a 5 MHz square wave is present at pin 7 of the PLCC socket (see figure 3 for the pinout). If you can't find the clock on the PLCC socket, check at pin 12 of IC6 If it isn't there, check the circuitry around IC6c. Check also that all the outputs of IC10 are set low which ensures that the power on reset circuit R1, C1 and IC6a are functioning.

If everything seems OK, tum off the power and insert all the ICs into their sockets. Place a finger on the transputer, the GAL and as many other chips as possible and tum on the power. If nothing gets hot or shows signs of distress breathe a huge sigh of relief, otherwise tum off fast and check your work.

That's about as much testing that we can do without some software, but that will have to wait until next month. We will also provide a Link adapter circuit that uses an 8255 based PC V/O card fitted to an IBM compatible PC, so you might like to buy or build a card if you don't already have one. We used the Maplin kit (stock number LP12N), and ETI's card published in November 1993 is compatible with this. Any 8255 based card should work but the connector pinouts may be different. Testing and software development may be carried out without the link adapter, but it is a tedious process.

```
module NEWT PAL
options '-document long'
title 'BOARD LOGIC - ajp'
NEWTic device 'P20V8';
```

proclk romspeed, page_act, paged_at_boot reset, ce, rwo, al5, rwl, a6, anda, andb rom, ram, io, paged, wait count0, count1, count2, writable

pin	$1,2,3,4 ;$
pin	$5,6,7,8,9,10,11,14 ;$
pin	$15,16,17,18,19 ;$
pin	$20,21,22,23 ;$

equations

paged	(reset \& paged_at_boot)
	\#(la15 \& landa \& landb \& nw0 \& !rwi \& la6 \& Ice)
	\#(ireset \& Icount0 \& paged)
	\#(ireset \& !count1 \& paged)
	\#(!reset \& !count2 \& paged)
	\#(ce \& paged_at_boot \& paged);
counto	(lcounto \& wait \& Ireset)
	\#(la15 \& landa \& landb \& rw0 \& Inw1 \& a6 \& Ice);
Count1	(!count1 \& count0 \& wait \& Ireset)
	\#(count1 \& !count0 \& wait \& Ireset)
count2	(lcount2 \& count1 \& count0 \& wait \& Ireset)
	\#(count2 \& lcount0 \& wait \& Ireset)
	\#(count2 \& Icount1 \& wait \& Ireset)
	\#(la15 \& landa \& landb \& rw0 \& Irw1 \& a6 \& Ice);
io	I (la15 \& !anda \& landb \& !ce \& paged);
rom	((la15 \& landa \& landb \& paged)
	\#a15
	\#ce
	\#(! l w0 \& writable)
	\#(la15 \& landa \& landb \& rw0 \& Irw1)
	\#(la15 \& paged \& page_act));
ram	I ((la15 \& landa \& landb \& !ce \& paged)
	\#(a15 \& !ce)
	\#(la15 \& !paged \& Inw0 \& Iwritable \& Ice)
	\#(la15 \& paged \& lpage_act \& !ce));
wait	I (la15 \& !anda \& landb \& paged \& count0)
	\#a15
	\#(la15 \& paged \& page_act)
	\#(! w (${ }^{\text {a }}$ writable)
	\#(la15 \& !anda \& landb \& rw0 \& ! ${ }^{\text {ch } 1 ~ \& ~ c o u n t 0) ~}$
	\#(count1 \& count2 \& romspeed)
	\#(count0 \& count1 \& Iromspeed));

A PROJECT USING THE FORTH

The ETI Forth Experimenter's Computer is used by M. Trueblood to decode the 60khz time transmission broadcast by the National Physical Laboratory in Rugby

(1)s a follow-up to the Forth SBC project, a use has to be made of the available processing power and I-O facilities. Forth being especially suitable for the control of peripherals and input-output signal processing, the proposed project features the FSBC and an input peripheral. The device in question is a radio capable of receiving the National Physical Laboratory 60 KHz time transmission from Rugby. This signal can be received in most, if not all, parts of the U.K. As the main objective of this article concems the programming, using Forth, of the F-SBC, no construction details of the radio equipment have been included. There are at least two kits on the market of suitable receivers, one by Cirkit as used by the author, and one by Maplin.

The time transmissions are maintained to a high degree of
accuracy, being derived from a caesium resonator and so as to be useful to a greater number of potential users, the encoding of the transmitted radio signal has been kept simple.

The coding used is digital, being binary coded decimal, and over a period of one minute there are two data packets sent. Each, when decoded, provide the time. One packet, known as the 'fast code', is transmitted during the first second of any minute. For the following 51 seconds, a 'slow code' is sent and for the remaining 8 seconds a synchronising pattem is transmitted. The modulation method used is switched carrier, for the fast code a pulse present signals a 'one bit' and for the slow code it is the pulse width that signais a 'one' present or a 'zero'. The diagram shows the format of the signal.

It can be seen that the pulse width used to encode the fast code is 10 ms and for the slow code $900 / 800 \mathrm{~ms}$. It is the slow

code that is to be decoded, as it is somewhat easier to receive.
Further information about time transmissions should be available from the National Physical Laboratory, Teddington, Middlesex.

The output signal from the receiver is at a TH logic level and should be connected to one of the input port pins of the F-SBC. I have chosen data bit 0 of input port 6, shown on the F-SBC crcuit dlagram as IC12 pin 2. The cable used for the connection should be screened, and a OVolt line connected between the radio and computer. In the author's location, the radio signal pick-up improved when it was positioned near a window and as tar from the computer as possible. The best reception was in daylight hours.

As the complete Forth SMC project has not yet been published, the Forth words used should be part of the implementation, being part of the standard vocabulary. As the system used to develop the program did not allow vast amounts of annotation, the program listing is provided at the end and each words function will be described here. But first, a resume of the basic structure.

What needs to be done?
Read the raw data into the computer, at the lowest level each pulse, one a second. When at least one full minute's worth of data has been collected, decode it first to zero's and ones then into the date and time. To be sure of capturing a complete data set 120 samples are taken. Finally, display the result.

The above scenario is true but a little basic. For instance, it would be more user-friendly if the system didn't loop indefinitely when the position of the radio was such that a garbled signal was being received. Similarly, if no input signal were present, an abort route should be provided. As the data is pulse width modulation, the program is effectively timing the width of incoming pulses by counting; it would be nice if the program would run successfully on any Forth system irrespective of its speed. Both these points are covered. Like all programs, the actual primary function is only a part of the total. As well as catering for the expected data, the unexpected has to be allowed for. The fact that it is unexpected is a major reason for computer crashes. Doing this in real time is an even more difficult task; this program is not a real time implementation. The data is captured, processed and the result displayed, in that order. No attempt has been made to do all three activities concurrently. A point that isn't covered though is the checking for valid results, an equally important part of the total program; this has been left for the reader. Simply, a check for a valid year.

Description of the Words.

First define the variable data space.

RDP6D0

Read data from port 6 data bit 0 and invert if required. As the F SBC project has not yet been concluded, this code has been lested using another system and the polarity of input signals to produce a logic ' 1 ' did not require the inversion. If the F-SBC requires such an inversion, then the AND at the end of this definition should be replaced with a XOR.

So that spurious 'spikes' in the received data stream are not picked up as a data pulse, the input level is sampled and after a delay sampled a second time, both samples have to be positive to indicate a true signal. This is an area for experimentation, changing the timing loop to achleve consistent results.

RDPLS

Read one pulse and count the width. First wait for a pulse to be present, and then count on stack for its duration. This will give
an invalid result if scan starts in other than a gap between pulses. However, the required input data consists of 43 consecutive pulses and the program reads a sequence of 120 so as to include one full sequence. The fact that the first pulse may be incorrectly decoded doesn't matter as processing proceeds from the most recently acquired pulse and the first should never be used. Once the first pulse has ended, the program will be scanning in the following gap looking for the next pulse and so, from here on, will start the count sequence from the leading edge.

ZINDEX

Reset to zero the index used in accessing the data buffer.

INDEX1+

Add 1 to the index variable.

RDATA

Reads 120 pulses onto the stack. The word picks the data off the stack, transferring into the data area variable BUFFER, processing it into ' 0 ' or ' 1 ' depending on whether the value is greater or less than the computed 'critical value' held in variable RADIX. At this stage the most recent read data will be in the start of the buffer, i.e. buffer index $=0=B(I)=$ last pulse received.

DEC-INDEX

Subtract 1 from the INDEX variable

CHK-INDEX

Check for an out of bounds INDEX value. This is used as an indication that no valid data has been received or, more specifically, no sync pattern.

RD-BUF

Pick-up data from the buffer and update the INDEX ready for the next value.

FIND-SYNC

As can be seen from the signal chart, a synchronisation pattern of ' 01111110 ' will be transmitted during the last 8 seconds of every minute. The program reads a sufficient amount of data to include the sync pattem and at least a full minute's worth of data. It was considered to be a more clean-cut method of decoding to search for the sync pattem and then step back through the data from the 52nd second to the 18th second. The information of interest following on from the last sync bit.

On exit, the INDEX variable holds an index into the data buffer where the first valid data bit is stored i.e. this will be the 52 nd second of that particular minute. An error exists if the INDEX > 120, indicating no sync pattern, is found.

RX-TIME

Read the raw data, process it into ' 0 ' or ' 1 '.
Search for a sync pattem, provide an escape by pressing any key if the program is looping. This shouldn't happen as the program checks that a signal is being received before getting this far. But conditions may change.

C-ONETEN

Convert the top three stack items, that represent BCD, into a decimal value.

C-MIN

Calculate the value of minutes(decimal) from the seven BCD
digits located in the buffer the first digit pointed to by the value of INDEX.

C-HOUR

Calculate the value of hours(decimal) from the six BCD digits located In the buffer the first digit pointed to by the value of INDEX.

C-DOW

Calculate the value of the day'of week (decimal) from the three BCD digits located in the buffer the first digit pointed to by the value of INDEX. The day is not displayed by the program.

C-DAY

Calculate the value of the day(decimal) of the month from the six BCD digits located in the buffer the first digit pointed to by the value of INDEX.

C-MONTH

Calculate the value of the month(decimal) from the five BCD digits located in the buffer the first digit pointed to by the value of INDEX.

C-YEAR

Calculate the value of year(decimal) from the eight BCD digits located in the buffer the first digit pointed to by the value of INDEX.

CALC-TIME

Calculate the date and time from the ' 0 ' and ' 1 ' data using the C- words.

DP-DTIME

Display the date and time previously calculated and now held in the respective variables.

CAL-RADIX

So that the system's speed is not a factor in using the program, it calculates a critical pulse width. The simple formulae of ($0.9 \times$ MPW) were MPW is the maximum counter value from a sample of 120 pulses. Pulses greater are deemed to be a logic one and those less than critical are logic zeros. Also checks for the presents of a signal.

RUGBY

This is the top most word, to run the program type RUGBY.
Possible output messages:-

Unable to receive time, check radio position'

Meaning, no pulses have been detected

'Radix set= $\mathbf{x x x}$ '

Meaning, a pulsing signal has been detected and the average calculated as xxx.

'Input data is not pulsing'

Meaning, port 6 data bit 0 is at steady ' 0 ' or ' 1 '

'No sync'

Meaning, after scanning through the data buffer no sync pattem was found

'Index= $\mathbf{x x x}$ '

Meaning, position within the buffer that the sync pattem was found.

SIGNAL TIMING CHART

YEAR

YEAR
YEAR
YEAR
YEAR
YEAR

YEAR

MONTH
MONTH
MONTH
MONTH
MONTH
DAY
DAY
DAY
DAY
DAY
DAY
DAY OF WEEK
DAY OF WEEK
DAY OF WEEK
HOUR
HOUR
HOUR
HOUR
HOUR
HOUR
OMINUTE
MINUTE
MINUTE
MINUTE
MINUTE
MINUTE
MINUTE
SYNC BIT $=0$
SYNC BIT $=1$
SYMC BIT $=1$
SYNC BIT $=0$

WORD USAGE

RUGBY CAL-RADIX

```
RX-TIME.
CALC-TLME . . . . . . C-MIN
DP-DTTME C-HOUR
                        C-DOW
                        C-DAY
                        C-MONTM
```

SIGNAL $>$ RDPLS \gg LO STACK \gg RDATA \gg PO>> BUFFER \gg FIND-SYNC \gg CALC-TIME \gg DP-DITME

count 120 pulses process	$\prime 01111110^{\prime}$	calculate \& display	
width			set variables date

```
( FORTH program listing by M.Trueblood)
VARIABLE BUFFER 121 ALLOT
VARIABLE RADIX
VARIABLE INDEX
VARIABLE MINUTE
VARIABLE DAYOW
VARIABLE DAY
VARIABLE MONIH
VARIABLE YEAR
( READ PORT 6 BIT 0)
    RDP6D0
        6 ~ I N
        100 O DO LOOP
        6 ~ I N
        AND
        1 \text { AND}
```

(RERD ONE PULSE)
RDPLS
BEGIN
RDP6D0 $1=$
UNTIL
0
BEGIN
RDP6DO 1
WHILE
$1+$
REPEAT
(PRINT BUPFER ** DIAGNOSTIC WORD TO DISPLAY 120
gYTIES FROM BUFFER)
PBUF

```
    120 0 DO
    BUFFER I + CE .
    LOOP
( ZEROISE INDRX )
    ZINDEX
    O INDEX
;
( ADD ONE TO THE INDEX )
: INDEX1+
    1 INDEX +!
;
( READ THE PULSES )
RDATA
    ZINDEX
    120 0 DO
                RDPLS
            LOOP
    120 0 DO
                DUP 100 <
                IF
                    DROP
            EL.SE
            RADIX @ <
                                    IF
                                    1 BUFFER INDEX @ + C!
                                    ELSE
                                    O BUFFER INDEX a + Cl
                    ENDIF
                INDEXI+
            ENDIF
            LOOP
```

;

(SUBTRACT ONE FROM INDEX)

: DEC-INDEX
INDEX @ 1 - INDEX !
;

(CHECK FOR OUT OF BOUNDS)

: CHK-INDEX
;
: RD-BUF
BUFFER INDEX $e+$ Ce INDEX $1+$
;
(SEARCH BUFPER FOR SYNC PATTERN 01111110)
: FIND-SYNC
BEGIN
BEGIN

BEGIN

$$
\text { RD-BUF } 0=
$$

UNTIL
060 DO
RD-BUF +
LOOP
$6=$ CHR-INDEX OR $0=$
WHILE
60 DO
DEC-INDEX
LOOP
REPEAT
RD-BUF $0=$ CHK-INDEX OR
UNTIL

```
CHK - INDEX DUP IF . "NO SYNC "
    ELSE ." INDEX=" INDEX @
    ENDIE
```

$0=$
;
(RECEIVE TIME CODE SIGNAL THEN LOOK FOR SYNC
RATHERN)
: RX-TIME
RDATA
BEGIN
FIND-SYNC ?TERM OR $0=$
WHILE
RDATA
REPEAT
;
(READ PULSE COUNT LENGTH FROM BUFFER)
: RD-BUE
BUFFER INDEX e + Ce 1 INDEX + !
: C-ONETEN
10 * + SWAP $8 *+$ SWAP
4 * + SWAP 2 * + SWAP
1 *

(CALC MINUTE)

: C-MIN

70 DO RD-BUF LOOP
40 * SWAP 20 * + SWAP
C-ONETEN DUP $59<$ IF $1+$ ENDIF
MINUTE !
;

(CALCULATE HOUR)

C-HOUR
60 DO RD-BUF LOOP
20 * SWAP C-ONETEN HOUR !
;

(CALCULATE DAY OF WEEK)

C-DOW
30 DO RD-BUF LOOP
4 * SWAP 2 * + SWAP 1 *
DAYOW !
;

(CALCULATB DAY)

: C-DAY
60 DO RD-BUF LOOP
20 * SWAP C-ONETEN
DAY !

(CALCULATE MONTH)

: C-MONTH
50 DO RD-BUF LOOP
0 SWAP C-ONETEN
MONTH !
;
(CAICULATE YEAR)
: C-YEAR
80 DO RD-BUF LOOP
80 * SWAP 40 * SWAP 20 * + SWAP C-ONETEN YEAR !
(CALCULATE THE DATE AND TIME)

CALC-TIME
C-MIN C-HOUR C-DOW C-DAY C-MONTH C-
YEAR
;

(DISPLAY DATE AND TIME)

DP-DTIME
CR TODAYS DATE IS *

PRINTED CIRCUIT BOARDS FOR ETI PROJECTS 1982-94 ONLY £1-00
 EACH PCB + VAT + P\&P

ALL PCB,S F/GLASS FULLY DRILLED \& ROLLER TINNED LIMITED AVAILABILITY OF MOST TYPES SEND SAE FOR COMPLETE LISTS OR TELEPHONE FÓR AVAILABILITY BEFORE ORDERING ORDERS SUPPLIED "FIRST COME FIRST SERVED"

Keep in touch with ANTEX Precision Soldering

Antex thermally balanced irons are available with a wide selection of soldering bits. There are also adjustable temperature controlled irons for low temperature work.

Solder Stations with optional digital temperature read-out are also available.

Ask for Antex at leading Electronic Distributors.

Antex (Electronics) Ltd.

2 Westbridge Industrial Estate, Tavistock, Devon PL19 8DE Telephone: (0822) 613565 Fax: (0822) 617598

A SAMPLING OSCILLOSCOPE AND LOGIC ANALYSER

IN AN AFFORDABLE PORTABLE PACKAGE

- 10 Mega samples per second single channel DSO
- 1 MHz analogue bandwidth
- $0.2 \mathrm{v}-50 \mathrm{v}$ input range
- Various Triggering options
- 10 Mega samples per second 8 channel logic analyser
- 5 v TTL/4.5-15v CMOS logic level inputs
- Crisp. clear LCD screen
- Zoom and Scrol! facilities (selected ranges only)
- Battery or mains adapter powered
- 12 Months Warranty (Built version only)
- "Get you working" service (kits only)

The Miniscope
 MINISCOPE BUILT £169

MAINS PSU £3 P\&P $£ 3$
PLEASE ADD VAT AT 17.5%

Write or phone for a free Information Pack to

36 Attenborough Lane, Chilwell, Nottingham NG9 5JW 0602259737

12VLeadAACdid
 Battery charger

Battery power can be very useful. Terry Balbirnie shows how to build a handy constant-voltage charger.

(1)ead acid batteries may be charged in one of two modes so called, standby (sometimes called floating) and cyclic. In standby use, the battery may be connected to the charger continuously, a small 'trickle' current making up for losses and keeping the battery in good condition. It will only be discharged occasionally, such as when used as the back-up battery in a burglar alarm system. Under standby conditions, the life of a battery should be at least 5 years.

In cyclic use, the battery is regularly charged and discharged and it is thought that most readers will wish to use it this way. The life of a battery in cyclic applications is less than when used in standby mode and depends largely on how deeply it is discharged. If this is only, say,

30% some 1000 charge/discharge cycles may be obtained.
After that, there will be an increasing loss in capacity up to the end of the service life. If the battery is fully discharged each time, only 100 to 200 cycles may be expected. Most small leadacid batteries will tolerate cyclic use well, although those designated cyclic are even better. For a large capacity, a 'leisure' battery such as the Exide Portapower should be used. A standard car battery is designed for near-floating mode and would not make a good choice. This charger can be used for either standby or cyclic charging, with a switch on the front panel selecting the mode.

The maximum current delivered by this unit is only $2 A$, which makes it simple and inexpensive to construct. A battery of up to 8 Ah capacity will take 6 to 8 hours to
charge. Large capacity batteries will take much longer but this will not be a disadvantage if the unit is mostly used to top up the existing charge.

Fig 3. Twin $9 v$ secondary windings connected in series

Constant Voltage

A 12 V lead-acid battery does not have a constant terminal voltage 12 V is only its nominal value. When fully charged, it rises to over 13 V and when discharged falls below 11 V . When the terminal voltage drops much below this, the battery is said to be 'deep discharged'. Serious sulphation of the plates occurs and the battery may never recover its capacity when charged. This is why regular topping up of charge is always a good idea.

Charging this type of battery is best effected by using a constant voltage source and this is how the present circuit works. The output will be set a little higher than the full-charge voltage and the excess voltage then drives current through the battery and charges it. As full capacity is approached, the excess voltage falls and the charging current drops. Eventually, this becomes a very small trickle.

There will be a maximum charging current quoted for any given battery. In standby mode, this will be higher than for cyclic use. With batteries above 1Ah (practically all batteries), a 2 A standby limit is acceptable (i.e. the maximum output from the charger). For cyclic mode, the current limit will be set using a resistor (R2) on the PCB to a figure appropriate to the battery

being used. A battery having a capacity greater than about 8Ah does not need this resistor, since it is acceptable to use a charge rate of $2 A$ or more. Table 1 lists some typical cyclic charging currents for various capacity batteries and the nearest listed value of resistor R2 needed to provide this. Note that some batteries will tolerate up to double this current, so it is a good idea to consult the manufacturer's data and select R2 to maximise the charge rate.

Circuit Description

Figure 1 shows the complete circuit for the Lead Acid Charger. Mains transformer T1 together with bridge rectifier BR1 and smoothing capacitor C1 provide a nominal 24 V supply. This is applied to the input, pin 1, of voltage and current regulator, IC1. The output voltage provided at pin 5 is determined by the resistance connected between pins 2 and 4 in conjunction with resistor R1. With R1 fixed in value, the voltage is determined by either R3 and RV1 or R4 and RV2 according to the position of S2 pole b. RV1 will be adjusted to provide a value of 14.6 V (cyclic) and RV2 to 13.6 V (standby). These are average figures as recommended by the manufacturers of lead-
acid batteries. Preset potentiometers RV1 and RV2 allow an adjustment of about 0.5 V on each side of the nominally 'correct' value, to take account of component tolerances.

With switch S 2 set for cyclic use, pole a allows currentlimiting resistor R2 to be connected between IC1 pin 2 (limiting pin) and pin 5 (output). With S2 set for standby mode the resistor is bypassed. IC1 now imposes its intemally-set current limit of 2A approximately.

LED1, in conjunction with current-limiting resistor R5, glows while the charger is switched on, provided that fuse FS2 is intact and the output leads are not short-circuited. This fuse should never fail and is only provided as a precaution in the event of some catastrophic fallure. Diode D1 is necessary to prevent the battery draining back through the regulator if the mains supply is switched off.

Construction

Construction of the 12 V Lead Acid Battery Charger is based on a single-sided PCB. Figure 2 shows the topside details (parts placement diagram). Refer to Table 1 (and the manufacturer's data) to select the appropriate value and power rating of R2.

Adjust the wipers of RV1 and RV2 to approximately mid-track position.

Before mounting the internal components, adjust the rotary switch to provide only two positions. This is done by removing the large securing nut and the tab washer beneath. This will reveal a circle of small holes. The tab washer should be replaced in its new position to provide the two positions required. Trial and error will soon find the correct location. Replace the large nut. Cut the spindle to a length suitable for the control knob. Do this by gripping the spindle (not the body) In a small vice. Support the switch body by hand and gently cut the spindle to size using a sharp hacksaw. If the transformer is of the type having twin 9 V secondary windings, connect them in series as shown in Figure 3.

Note that an aluminium case of the size stated in the parts list (or larger) must be used. This is because IC1 becomes hot in use and the metalwork is needed to act as a heat sink. If it has no ventilation holes, it will be necessary to make some because the transformer becomes warm. If the inside of the box is painted, the paint must be scraped off in the area beneath the IC. This will allow efficient heat transfer. If the specified enclosure is used, the chassis should be drilled for transformer mounting. If a plain box is used, the transformer is simply mounted on the base. Use one of the transformer fixings to attach the solder tag or drill a hole nearby and use a small nut bolt and washer. This must be secure since it is used to earth the case and transformer and is an essential safety requirement. Drill holes to correspond with those in the circuit panel - depending on the type of box, only two of them may be available and this is satisfactory.

Mount the circuit panel temporarily on stand-off insulators then mark the position of the hole in IC1 tab on the rear panel. Remove the circuit board again before drilling.this hole. Make holes in the front panel of the box for the switches, LED and fuse holder FS1. Drill the hole for the output lead and fit this with a rubber grommet (see photograph). Drill one in the back for entry of the mains lead - this must be large enough to accommodate the strain relief bush which will prevent the wire pulling free in service which could be dangerous. Attach the circuit panel and chassis (if the box is of this type). Tighten all bolts securely, including the one in IC1 tab. Note that IC1 pins must not end up under strain or they are likely to break off in service. Referring to Figure 4, mount the remaining components and complete the intemal wiring. Grouping the wires using small cable ties will keep everything neat and tidy.

Make up the mains lead using 3A three-core wire. Note that this must be secured using a proper strain relief bush makeshift methods are not satisfactory. If the plug is of the UK fused type, fit a 2 or 3A fuse. Solder the mains wires to the transformer primary, fuseholder and on-off switch as shown in Figure 4, making certain they are secure. The earth wire must be soldered to the solder tag. Make a cardboard shield so that it is absolutely impossible to touch any mains connection when the lid of the case is removed. This shield was removed for the photograph.

Make up the output lead using 3A twin wire, red for positive and black for negative. Fit the ends with small crocodile clips and pass the other end of the wire through the rubber grommet. The negative wire should be attached to the solder tag and the positive one connected to the wire already leading from the circuit panel (+ out). Use a single piece of 2A or 3A screw terminal block to make the connection, making sure that the output lead cannot pull free by securing a strong cable tie around it or by using a piece of tightly-tied string. Insert a 1 A ceramic mains fuse in FS1 fuseholder and a 2.5 or 3 A glass one in FS2. Attach the output wires to the spare 1 kW resistor mentioned in the parts list. This is necessary to load D1 and is particularly important if a high impedance digital meter is being used for testing. Without it, the output voltage readings will be on the high side. Leave the lid removed for the moment.

Testing

Keeping the crocodile clips separated, plug the unit in and switch on. The LED should light. Adjust the mulititester to a suitable DC voltage range and apply the probes to the crocodile clips (without disturbing the 1 kW resistor). The reading should be about $13-16 \mathrm{~V}$ for either setting of S2. Carefully adjust RV1 to provide 14.6 V then similarly adjust RV 2 to provide 13.6 V . It may be necessary to make a short trimming tool to do this easily. With the adjustment complete, switch off the mains and attach the lid of the box.

Apply a load (such as a 12 V bulb) to the battery and leave it so that it is substantially discharged (a terminal voltage of not less than 11 V). Adjust the multitester to a suitable DC current range which can cover at least up to 3 A . Remove the 1 kW test resistor and connect the battery to the output observing the polarity (important). Include the multitester in the circuit to measure the current as shown in Figure 5. Waming: make certain that ail crocodile clips are kept apart or a very large current will flow from the battery. If those on the charger output touch, this current could ruin the meter.

With S 2 set to Standby, there should be a reading of about 2A (as the IC heats up it may fall somewhat). When S2 is set to Cyclic, the current should be as previously decided. If it is too
high, it may be reduced by increasing the value of R2 and viceversa. If it is found that the current quickiy falls (within a minute or so) to a very low value, this usually indicates that the heat produced by the IC is not being carried away effectively. The IC's intemal over-temperature protection is then called into effect. Check that any paint under it has been scraped away completely and that the securing bolt is tight. In obstinate cases - perhaps where the surfaces are not perfectly flat - apply a smear of heat sink compound on the back of the IC However, in the prototype there were no problems.

In use, the maximum charge rate will not be maintained for long. Depending on the capacity of the battery and the state of charge to begin with, it will fall to around 1 A as 13 V is approached (cyclic mode). After that it will fall slowly to a constant trickle current which indicates full charge. In the prototype unit, the end-point currents were about 30 mA and 10 mA for Cyclic and Standby settings respectively. They could be adjusted by minute trimming of RV1 or RV2 as appropriate. It takes a long time to reach the end-point figures. In actual cyclic

Buylines

A good quality generously-rated transformer should be used.

RESISTORS

1/4W carbon film except R2 (see Table 1).

R1, 5	1k
R2	Rset - see Table 1 and manufacturer's data.
R3	$4 \mathrm{k3}$
R4	3k9
RV1,2	470R sub-min vert. presets.

Additional 1 kW resistor required for testing purposes see text.

CAPACITORS

C1 2200 mF 35 V radial.
C2 220 nF disc
C3 100 nF disc

SEMICONDUCTORS

BR1 KBPC102 3A bridge rectifier (see Buy Lines) IC1 L200CV regulator
D1 1N5400 or 1N5401
LED1 5 mm panel mounting LED indicator.

MISCELLANEOUS

T1 Mains transformer with 18 V (or twin 9 V secondaries) rated at 2.78A (50VA)
S1 Mains rocker switch
S2 2P6W rotary switch - make-before-break
action.
F11A 25mm ceramic mains fuse and panel fuse holder. F22.5A 25 mm quick-blow fuse and PCB fuseholder

PCB

Box for unit - minimum size $100 \times 150 \times 100 \mathrm{~mm}$ - see Buy Lines.
Knob to suit S2
Small crocodile clips

See also manufacturers' data for maximum cyclic charging current.
charging, the current is not being monitored so the end-point may not be reached - this does not matter. When charging a substantlally discharged battery up to 8Ah, allow a charging time of 6 to 8 hours. For larger capacity batteries, increase the charging time in proportion. Experience will soon help to judge the correct timings. Give less time if the battery is only partially discharged and do not leave the battery connected to the charger for longer than is necessary (cyclic mode only).

Note that it is normal for the rear panel of the case to become hot especially at the beginning of the charging process when the unit is delivering a high current. If everything works correctly, plastic feet may be fitted to the base of the box and S2 labelled. The project may then be put into permanent service.

This project would be handy for charging the 12 V battery in the mains-free workshop (Practically Speaking, ETI September, 1994). However, it may be used to charge any 12 V lead-acid battery. It is particularly suitable for use with the small, popular 12 V Yuasa type listed by several mail-order suppliers. You will need an accurate multitester - preferably a digital one - for checking the completed project and adjusting it for correct operation at the end of construction.

A good quality generasery- rated Transformer shood be used. This will ensure that it remains cool in operation. The one used in the prototype was obtained from Maplin (order code:

DH 3 OH). Any aluminium box of sufficient size may be used as the enclosure. The sloping-front chassis type used in the prototype (see photograph) was obtained from Maplin (order code XY41U). Suitable rotary switches are listed by most suppliers (e.g. Maplins FH43W). This must be capable of carrying 2A minimum and be of the make-before-break type.

Diode D1 (1N5400) may be replaced by type 1N5401 as listed by some suppliers. An alternative bridge rectifier in similar case style may be used but its current rating must be 2A minimum.

V Vidi Digitisers
ROMBO have specialised in video capture
systems for the last 8 years, starting with

Our Vidi products form the link between a Camcorder, VCR etc. and your home computer. With Vidi you can capture and store images for DTP, graphics or database use.
We have Vidi models (old and new) to suit:
Atari ST/STE/Falcon
Commodore Amiga A500-A4000
Acorn Archimedes A3000
Amstrad 1512/1640
IBM 286-Pentium PC's
Prices start at $£ 49.00$ and most come with programming utilities and all are backed up by our enthusiastic support team.
If you would like further details please ring Malcolm or Bob on 0506 414631, or write to: Tech Sales Dept.
ROMBO Productions Ltd.
2b Young Square
Brucefield Ind. Park
Livingston
Scotland
EH54 9BX

DATECTRONICS LIMITED	
	Leeds LS16 60 E
	Tel: 0532744822 Fax. 0532742872

upon to give amazing results
For information on Active Antennas, AF Amplifiers, Converters, Audio Filters, the Morse Tutor and Speech Processors send or telephone for a free catalogue and selective data sheets as required. All our products are désigned and made in Britain. Orders can be despatched within 48 hours subject to
 availability.

- VISA AND ACCESS WELCOME -

MODEL ENGINEE and Modeling Exhibition

GRAND HALL OLYMPIA, HAMMERSMITH ROAD, KENSINGTON, LONDON W14 8UX 30th DECEMBER 1994-7th January 1995
 OPENING TIMES: 10am-6pm every day except Thursday 5th January 10-8pm.

100'S OF MODELS ON DISPLAY -

boats, aircraft, cars, locomotives, model engineering, science fiction.

- Radio Control Boat Displays - Remote Control Car Racing (30th, 31st Dec, 2nd 87th Jan) O Indoor Fun Flying (DPR 1st Jan)

- Festival of Indoor Model Flight - the biggest indoor flying event O 1/4" Gauge Railway - ride on the longest portable model in England -5" Gauge Steam Railway - rides for everyone - Wargames - continuous participating games O Clayton Driver of the year competition (selected days) - Traction Engine Steam Up (selected days) Associations, societies and club stands

Show Guide giving a diary of events available from 2nd December.
 Further information, competition entry forms and details of RNLI special train from North Wales, obtainable from
Argus Specialist Exhibitions, Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST Tel: 044266551 Olympia is easily accessible by road rail underground and bus - Mainline and underground stations adjacent. Some trains from Brighton, Manchester, Liverpool, Birmingham and Edinburgh stop at Olympia too!

Admission: Adults $£ 6$, Senior Citizens $£ 4.50$, Children $£ 3$, Family Ticket $£ 15$ (2 adults $\&$ up to 4 children) - 2 day and season tickets available in advance.

Argus Specialist Publications with Hitton hotels are offering special rates for the duration of the Exhibition.

Return booking form to: Heidi Ross, HRW, Hilton international, PO Box 137, Watford, Herts WD1 1DN. Tel: (071) 734 6000

Part 5 of Robert Penfold's tutorial series on MIDI systems takes a look at system messaging

(D)ast month we considered some of the more basic system messages, the system real-time messages. This month we will continue with the subject of system messages, but will tum our attention to the system common messages. We will not consider the song position pointer message, as this is used in conjunction with the system real-time messages, and was described last month.

In Tune

The song select message is used to select the song (sequence) that will be commenced when a start message is received. This message is obviously only applicable to sequencers and instruments which have a built-in sequencer. Also, it only applies to sequencers that can store several sequences at once. It will be ignored unless the receiving device is set up to respond to MIDI real-time messages (i.e.unless it is set to use MIDI synchronisation). This message consists of a status byte followed by a single data byte (Fig.1). The song select message can therefore accommodate up to 128 different sequences, but most sequencers cannot handle anything approaching this number. As usual, it is a matter of carefully reading the equipment manuals to determine if this message is supported, and if so, the range of valid data values.

A tune request message may sound more like something you would send to Jimmy Young than to a synthesiser, but it's actually one of the lesser known (and little used) MIDI system messages. When the MIDI specification first came into being there were many analogue synthesisers in use, and many of these suffered from problems with tuning drift. In order to combat this problem, some synthesisers had an automatic
retuning facility which could be used to correct any tuning drift at the press of a button. The tune request message is the MIDI equivalent to pressing this retuning button. Few analogue synthesisers having MIDI interfaces were ever produced, and this message is not really applicable to modern instruments with their largely digital circuits under crystal control. Consequently, this message is one which you are never likely to use, and may as well forget.

In Time

Conventional multi-track recording is basically a matter of building up a completed piece by recording it one track at a time using a multi-track tape recorder. The MIDI equivalent is to use a real-time sequencer to record a piece track-by-track, and then play it back into a MIDI system that has the wherewithal to reproduce every track correctly. The MIDI version of multi- track recording has definite advantages, and not the least of these is the ability to edit the recorded tracks in quite sophisticated ways. For example, most sequencers permit notes to be added, deleted, or corrected in pitch if a wrong note is played. Changes to the timing of notes is usually possible as well. On the other hand, MIDI is clearly only applicable to electronic sound sources, and only electronic sound sources that have a MiDI interface.

Is it possible to obtain the best of both worlds by using a mixture of MIDI sequencing and conventional multi-track tape recording? It is certainly possible to mix the two techniques and , at a basic level, the sequencer is used to produce the backing tracks. These are then played back, and mixed into one or two audio channels which are recorded onto tape. The vocals or other non-electronic tracks are then added in the normal way. This is something less than ideal, and one problem is that once the backing tracks have been mixed and recorded, they cannot be edited, remixed, or altered in any way.

A more sophisticated way of handling things is to use a synchroniser, as in the example system of Fig.2. One track of the tape is recorded with some form of synchronisation signal, and the sequencer is synchronised to this signal via a suitable MIDI synchroniser. There are potential advantages to this system, and one of these is that it is possible to do some editing of the backing tracks recorded on the sequencer at virtually any stage of the proceedings. The backing tracks do not have to be recorded onto the multi-track tape, because the sequencer will always play in perfect synchronisation with the tape recorder. This leaves an extra tape track free, and avoids the slight loss of audio quality that would occur if the sequencer tracks were recorded.

It is only fair to point out that the set up shown in Fig. 2 is just one example, and there are other ways of utilising synchronisers. Most, as in this instance, have a built-in merge facility that enables a keyboard and the synchroniser to drive the input of the sequencer. The exact way in which this facility operates varies from one synchroniser to another, and with this type of equipment you need to check the manual to determine the way in which it should be connected into the system.
get involved with any form of tape synchronisation, and it is probably best to avoid this type of thing unless you genuinely have a need for such a facility. For most users the subject of MIDI/tape synchronisation is of purely academic importance.

Exclusivity

For MIDI to be successful it was clearly necessary for the hardware and software standards to be rigidly standardised. This

Originally the synchroniser had to provide timing signals to the sequencer in the form of MIDI clock messages, and other system real-time messages. In many cases this was perfectly satisfactory, but it is a method that sometimes requires a lot of processing by the synchroniser. In particular, the normal MIDI timing signals are far from ideal when using a SMPTE to MIDI synchroniser. SMPTE (Society Of Motion Picture Engineers) is a sophisticated method of time coding which is primarily intended for use in audio/visual systems, especially television and films. It does not simple provide a train of clock pulses, but instead operates on the basis of refined time coding in hours, minutes, seconds, frames, and sub-frames.

MIDI time coding (MTC) was not part of the original MIDI specification, but it was added in the "MIDI 1.0 Detailed Specification". It seems to have been added to enable MIDI systems to be used with SMPTE systems in a more sophisticated fashion than would otherwise be possible. The main MIDI MTC message is a system common type, and it is the quarter frame message. This Is really eight different messages, with each one being used to provide part of the full time value. Therefore, a group of eight MTC messages is needed in order to send a complete time to the slaved sequencer.

Fig. 3 helps to explain the way in which the two byte MTC message is coded. The status byte has the system message code (1111) as the most significant nibble, and the MTC code (0001) in the four least significant bits. This is followed by a data byte that only really uses the least significant nibble to carry the data value. The most significant bit is set to 0 , in standard data byte fashion, and the other three bits are used to carry the MTC message number. In other words, these three bits indicate which type of MTC message it is, and these three bits are effectively part of an extended status byte. These are the eight MTC message types.

MTC Message No.	Value Carried In Data Nibble
0	Frame count, LS nibble
1	Frame count, MS nibble
2	Seconds count, LS nibble
3	Seconds count, MS nibble
4	Minutes count, LS nibble
5	Minutes count, MS nibble
6	Hours count, LS nibble
7	Hours count, MS nibble

There is rather more to MIDI time code than the MTC quarter frame message, and the general topic of MIDI synchronisation is a fairly involved one. A detalled discussion of this topic really goes beyond the scope of this article. Most MIDI users do not
was necessary to ensure proper compatibility between instruments from various manufacturers, and to avoid the incompatibility problems of the pre-MIDI era. The MIDI standard has stood the test of time, and in general there are no significant incompatibility problems between pieces of equipment from different equipment producers. The problem with such a rigidly defined standard is that it does not leave much scope, if any, for manufacturers to "do their own thing". If a manufacturer should come up with an astounding new feature they could find that there was no reasonably efficient way of implementing it via MIDI. The MIDI controls permit a certain amount of individualism, but are not versatile enough to handle all eventualities.

The MIDI designers realised that MIDI needed to be standardised rigidly enough to avoid incompatibility problems, but that it also needed to be versatile enough to handle any special features that equipment manufacturers might wish to implement. Their solution to the problem was system exclusive messages. The basic idea is to have a special class of message that permits the manufacturers to use any method of coding they like, to implement absolutely any feature they desire. The only proviso is that system exclusive messages should not be used to implement any ordinary features (pitch bending, control changes, etc.) that are catered for by the normal range of MIDI messages. This approach maintains a high degree of compatibility, but does not stifle new developments which MIDI might otherwise be unable to accommodate.

Fig. 4 shows the method of coding used for system exclusive messages. The status byte has the system message code in its most slgnificant nibble, and the system exclusive code (0000) in its least significant nibble. The first data byte carries the manufacturers identification (ID) code. In fact there are now so many manufacturers ID codes, that many now have three byte codes. The first byte is always 00 (hex), and the next two bytes then
carry the manufacturers 14 bit ID code.
The manufacturers ID code is an essential part of the system. It is followed by an uniimited number of data bytes, and these can be coded in any way that the manufacturer sees fit. It is imperative that a unit should only respond to a system exclusive message that is intended for a device of that particular type. If a piece of MIDI equipment should respond to a system exclusive message intended for a different device, the effect of the message is unpredictable. It might be completely meaningless to the device receiving the message and could be ignored. On the other hand, it could completely scramble all the settings for every voice of the instrumentl

In practice it is not usually good enough to simply rely on the manufacturers ID to prevent a MIDI device from responding to inappropriate system exclusive messages. Each manufacturer normally produces a wide range of MIDI units, including synthesisers of varying degrees of sophistication, samplers, and possibly MIDI accessories such as patch-bays and digital effects units. Clearly a sound sample will be of no relevance to a synthesiser, and a set of synthesiser sound generator settings will be irrelevant to a sound sampler. Even with something like two basically similar synthesisers, there can be differences in points of detail that make the sound generator settings for one instrument unusable with the other instrument.

Fig.3. The MIDI-time code quarter frame message is a two byte type

It is normally necessary for system exclusive messages to be machine-specific, rather than just specific to one particular manufacturer. The normal way of achieving this is for the manufacturers ID to be followed by a code number which indicates the particular model that the message is intended for (Roland D550, or whatever). However, everything after the manufacturers' ID falls outside the MIDI standard, and is coded in any manner the manufacturer desires. Therefore, if you wish to know about this, or any other aspect of system exclusive coding, it is necessary to refer to the appropriate manual. Incidentally, it is a requirement that manufacturers should make

Manufacturer	ID Number
Sequential	01
Moog	04
Fender	08
Ensoniq	OF
Oberheim	FF
Apple Computers	11
Lowrey	6
Emu Systems	8
Siel	21
Hohner	24
Soundcraft	39
Roland	41
Korg	42
Yamaha	43
Casio	44
Akai	47
Sony	4 C
TEAC	4 E
Fostex	51
Alesis	0000 OE
Opcode	0000 16

details of their system exclusive coding available to anyone that wants it. Also, third party manufacturers can make use of the coding in their products, such as dedicated controllers, or control software for popular computers.

The end of a system exclusive message is marked using a single byte message. This has the system message code as its most significant nibble, and the end system exclusive code (0111) as its least significant nibble. There is no limit to the number of data bytes that can be used between the manufacturers ID and the end system exclusive message. In theory it is quite in order to use a million or more data bytes per message if desired. In practice it is unusual for large amounts of data to be handled by a single system exclusive message. The more usual method is to use hundreds or even thousands of messages, with each one carrying perhaps a few hundred bytes of data. This normally operates in conjunction with a system of error checking, and possibly software handshaking as well.

System exclusive messages are potentially very useful, but they have a reputation for being problematic. As pointed out previously, most system exclusive messages are exclusive to one particular device, rather than to one particular manufacturer. If you have several MIDI units from one manufacturer there is no guarantee that these units will be able to "talk" to each other via system exclusive messages. If every unit in your MIDI system comes from a different manufacturer, it is highly unlikely that you will be able to make much use of system exclusive messages.

Bear in mind that the default state for most MIDI units is to ignore system exclusive messages. This is apparently to reduce the risk of accidentally altering all the sound generator settings, or doing something equally dire. In order to send or receive system exclusive messages it is therefore necessary to switch on this facility.

In some cases you have to provide a two-way link between the devices by cross coupling the MIDI IN and OUT sockets, even if data is only being sent in one direction. This is due to the fact that the exchange of system exclusive messages
sometimes relies on he sending device transmitting an initial message, followed by the receiving unit sending an acknowledgement message to indicate that it is ready to receive the data. The sending device then sends the data. Without a two way coupling the sending device never receives the acknowiedgement message, and simply hangs-up.

Many sequencers are able to record and play back system exclusive messages, but there can be problems if this two-way dialogue is required. It is important to realise that system exclusive messages are not meant to be sent along with performance data. The intention is that they should be used to set up an instrument in the desired fashion prior to a performance,

Fig.4. Coding for a system exclusive message There can be any number of data bytes
rather than making changes mid-performance. It is not impossible to use system exclusive messages mid-sequence, but it has to be bome in mind that exchanging large amounts of data via MIDI can take quite a long time. Exchanging large amounts of data via MIDI can take several minutes. Also, it might take an instrument a significant time to respond to long system exclusive messages. Mixing system exclusive messages with performance data could clearly produce some very long and totally unacceptable gaps in a piece. Using a few short system exclusive messages would presumably not significantly affect the timing of a sequence. The only way determine exactly what you can and can not get away with is to make some practical tests.

Table 1 gives the ID numbers for some well known manufacturers. The numbers are in hexadecimal incidentally.

Exclusive To Everyone

The idea of system exclusive messages was to enable manufacturers to implement their own special features via MIDI. However, it was inevitable that at least one or two features would be implemented via this route by numerous manufacturers. This leads to a position where there are a number of instruments on the market which implement much the same feature via MIDI, but in a totally incompatible way due to the use of system exclusive messages. This is clearly undesirable, and goes against the general spirit of MIDI.

In an attempt to overcome this potential incompatibility, socalled universal system exclusive messages were introduced. This may sound like a contradiction in terms, which it is, but the basic idea is a sound one. Where several manufacturers are implementing much the same "special" feature via MIDI, a standard system exclusive message to handle that task is introduced. Manufacturers should then adopt this universal message, rather than sticking to their own system exclusive method. In reality, the MIDI specification is not exactly brimming over with examples of universal system exclusive messages. The only message of thls type in general use is the sample dump standard, which is used for exchanging sound samples. All sound samples are basically just a series of digitised values, so they are obvious candidates for a standard method of exchange.

In practice there can be a few problems when using the sample dump standard. The most obvious one is that this "standard" has not been adopted by all manufacturers of sound samplers, and many samplers were produced before the sample dump standard was agreed. It is a matter of checking the equipment manuals to determine whether or not a particular sampler uses this standard (or perhaps a system very closely based on it). There is a major drawback with the sample dump standard, which is simply the time it takes to exchange large samples. MIDI can only handle about 3 k per second, and sound samples can contain a megabyte or more of data. At best it takes about six minutes to transfer one megabyte via MIDI, and
transfeming large samples could theretore take 15 minutes or more. Of course, this is a limitation imposed by MIDI itself, and is not due to a fault in the sample dump standard. Being practical about it, if there is an altemative means of transferring large amounts of data (e.g. via a floppy disk), this will usually be more satisfactory than using MIDI.

The sample dump standard can be used with or without software handshaking. Either way, data is sent in packets of 127 bytes, of which 120 bytes are the actual sound sample data. The first message is always a 21 byte dump header message, which is coded in this manner:-

```
System exclusive header byte (F0 hex)
Sample dump ID number (7E hex)
Channel number
Dump header code (01 hex)
Sample number (two bytes, LSB first)
Sample format (number of bits, from }8\mathrm{ to 28')
Sample period in nano seconds (three bytes,
LSB first)
Sample length in words (three bytes, LSB
first)
Sustain loop starting point (three bytes,
LSB first)
Sustain loop end point (three bytes, LSB
first)
Loop type 100= forward, 01 =
backward/forward)
End system exclusive message (F7 hex)
```

Although the sample dump standard can acoommodate samples having resolutions of between 8 and 28 bits, many samplers will only accept samples over a much narrower range of resolutions (typically 12 to 16 bits). As always, it is a matter of carefully reading MIDI implementation charts and the MIDI manuals in order to determine the limits of your particular instruments. The packets of data use this format:-

```
System exclusive header byte (F0 hex)
Sample dump ID number (7E hex)
Channel number
Data packet code (02 hex)
Running packet count
120 bytes of data
Checksum (XOR of previous 124 bytes)
End system exclusive message (F7 hex)
```

With only seven bits of data per byte it obviously takes two, three, or four data bytes per sample word. The data is left justified, and unused bits are filled with zeros.

There are four handshake signals, and these are only sent by the receiving device. The main one is "ACK", which is used to indicate that the last packet was received correctly, and the next packet should be sent "NACK" is used when a packet of data has not been received correctly, and the previous packet must be sent again. The "Wait" message is used to provide a hold-off while the receiving devices processes the data. An "ACK" message is used when the data has been processed and the next packet is required. The "Cancel" message is used to abort a sample dump. A sample dump can be initiated from the front panel controls of a sampler, or via MIDI and a "Dump Request" message. subject of General MIDI, and we willalso take a look at the hardware side of MIDI.

MAGNEIISM AND MAGNETOMETERS

Abstract

Magnetism is a subtle and mysterious force that influences a lot of things around us. Keith Garwell concludes his practical exploration of how to measure minute changes in a magnetic field by commissioning the Fluxgate Magnetometer described last month.

©aving built the fluxgate magnetometer described in the last two issues, it is now time to test and calibrate it.
For this purpose we need a high resistance (not less than 5M) voltmeter, which will read 0-12V DC and $0-4 \mathrm{AC}$ rms. If $A C$ rms is not available, then peak $A C$ will do and I imagine practically any digital voltmeter will meet these requirements.

You need to know the orientation and a simple compass will do the trick, the variety used by the orientlers being ideal. A piece of card marked out as in Figure 18 will be helpful and should be set by means of the compass to point to magnetic East.

A scope or any other instrument which will indicate frequency, including speaker and amplifier, will be helpful to
reassure you that the second harmonic oscillator is correct, but is not essential.

The 12 V supply must be regulated. I'll say a few words about portable working at the end, but for getting it working in the first instance it's worth lashing up a mains PS. A half amp 12 V tranny with bridge rectifier and half amp regulator will do fine (the magnetometer takes about 150 mA all told, about 110 120 mA of which is taken by the exciter). There should be $2.2 \mu \mathrm{~F}$ across the output of the regulator. Fit one to the input to the electronics if you are not sure; after all it doesn't cost much.

The Exciter

Set up the exciter board first, ie don't connect the sense amp board at all. Make the usual basic checks - no shorts across the

DC input and so on. Then connect the head to E1 and E2, leave.
E3 disconnected at the moment. Power it up and check the ms voltage across E1, E2. Adjust R11 until there is exactly 2.00 AC ms present. If using a peak meter thats 2.8 VDC peak or 5.6 p -p. If you are using a scope the waveform here should be a rather splendid sine curve!

The Sense Amp

This magnetometer is very sensitive and the pitfalls in setting it up are legion. If you get any oddball readings while trying to set it up then look round for the odd bit of ferrous metal. My first problem was that the table I was using had steel hinges so I moved the head to a nearby window-sill which had nails in it. This was resolved by setting it up on top of a dictionary which is very thick. Then I realised that there was a steel buckle on my trouser belt and so it goes on. Finally, the moving coil meter was upsetting it on account of its internal magnet and it was nearly a metre away from the head. As I discovered when I fumed the meter round a bit so that I could see it better! Screwdrivers are invariably magnetised though this is fairly obvious as things start to change directly one picks it up to adjust one of the pots. As a generalisation the head needs to be at least a metre from any iron or steel - more if it's likely to be magnetised.

The actual setting up procedure can be a bit of a bind as it's very easy to go round in a loop and at one point you dol Definitely an exercise for moming - or whatever time of day you're best at. I exaggerate of course, but it is a wise move to write out the sequence and tick it off as you do it. Here it is -

The $12 v$ and $O v$ are connected and the exciter is running. Leave it for five or ten minutes to settle down.

The gain (R 2) if variable should be set to maximum, ie. $R 2=1 \mathrm{M}$.

The head balance E3 is disconnected. The sync input from E 2 is disconnected. The sense winding $\mathrm{S} 1, \mathrm{~S} 2$ is disconnected. (Switched off). A moving coil voltmeter suitable for measuring 0 to 10 volts is connected between the output and 0 v .

Adjust the output control to give $4 v$ on the meter.
Connect the sense winding (switch it on). Orientate the head easterly.

Adjust the frequency control to zero beat. This is perhaps best done by starting from the lowest frequency (fully anticlock? wise) and slowly increase frequency by the $18 t$ pot until the meter starts to swing back and forth. Continuing the meter should become stationary (or only move slowly) and then start swinging back and forth again. Now turn in the opposite direction until the meter is stationary once more and readling approximatly 4 v . If this doesn't seem to work check the 555 is oscillating by checking the voltage at pin 3 this should be approximately 6 v . If you have the means to check frequency measure the exciter frequency and then check the 555 can be adjusted to twice this. It may be necessary to change the value of R20. Increase it to reduce the frequency and vice versa. Without any frequency measurement it will have to be a cut and try exercise.

Connect the sync input. Connect (switch on) the sense input.
If the reading goes off the scale reorient the head until it comes back on.

Then alternately adjust the sync pot and reorient the head until the reading is 4 v with the head pointing due east.

Altemately reverse the sense conections and adjust the sync pot until the reading remains the same when the sense connections are reversed. This may not be 4 v any longer.

Connect the head balance. Align the head due East

Adjust the head balance until the output retums to 4 v .
Tum the head on the card until the meter reads $3 v$ and mark its position.Tum the head until the meter reads 5 v .

Check that the two positions are either side of the East line and make roughly the same angle with it.

If it doesn't matter that North/South variations are not identical then that's the end of the exercise.

If you want the symmetry as close as possible then repeat the sense amp / head balance adjustments to see if it can be improved. Beware of anything which might bend the earth's field near your work space. As the two rods in the head are a finite distance apart anything magnetised and at right angles to the head orientation will spoll the symmetry.

Finally make good any connections used for setting up and the magnetometer is ready for use.

IN CONCLUSION

Sensitivity

The limiting values of the output should be taken as 0 and 8 volts to play absolutely safe. Zero is perfectly OK for the CA3140 but the output cannot rise nearer than about 2.2 volts to the positive rail (12 v) giving a theoretical maximum of 9.8 . If it really would be convenient to go from 0 to 10 theres a fairly simple arrangement which requires a transistor adding to the output of the CA3140. See OP-AMP Circuits Manual by R. M. Marston in your local library.

The response of the head follows a sine law where zero degrees is due East (magnetic East that is).

With the head aligned due East, 7 degrees of movement either side gives an output of approximately 3 volts. This is with the configuration given in the schematics and adjusted according to the commissioning procedure given:

We know that the earth's horizontal field is 18uT. The sine of

7 degrees is 0.122 . Pointing due North the sine would be 1 . Therefore the sensitivity pointing North would be $18 \times 0.123=$ 2.2 u for 3 volts of output. Or, to put it more tidily 0.74 uT per volt.

If the sense input is switched off and the meter reading set to zero by means of the output level adjust pot, then (with the sense switched on again of course) the maximum level which could be read (ie equal to 8 V) would be 5.9 uT . This assumes that pointing the head North increases the reading, if it doesn't reverse the sense connections.

Therefore, to measure the earth's field either horizontal or vertical components the sensitivity would have to be reduced by a factor of 10 . Given the correct resistors the scale could be made even more convenient. Like 10uT per volt.

Unfortunately it's not likely to be so perfectly linear that changing resistors according to the arithmetic would give spoton accuracy. A little bit of trial and error may be necessary. For instance, reduce the gain by 10 then see what the reading is like and adjust the gain accordingly.

This is all a case of trusting the earth's field to be known accurately at the location where this is all going on. If it isn't, then friend Heimholtz comes to the rescue.

If two circular and identical coils of wire are arranged such that they are separated by a distance equal to their radius and the same current passes through each, then a fairly uniform field exists between them. The strength of this field is equal to -
$0.72 \times \mathrm{N} \times \mathrm{I} \times$ uo $/ \mathrm{R}$
Where -
N is the number of tums on each coil; R is the radius of each coil (and also their seperation); I is the current in amperes; uo is the permitivity of free space and is $4 \times$ pie $\times 10^{\wedge}-7$. The field is in Teslas.

This gives a fairly simple way of calibrating the magnetometer. Assuming that the head is about 5 inches long (120 mms) then the radius should be rather greater than this, say 150 mms . That is R in the above formula will be 0.15 .

For further details see any A Level Physics book.

Portability

There are two problems, current consumption and regulation. Since all batteries change their terminal voltage as they discharge the battery supply would have to be regulated. This can easily be done using a half amp regulator; unfortunately 100 mA is not enough. The regulator must have "headroom" ie. the supplied voltage must be higher than the required output by about 2.5 volts.

This suggests a PP1 plus a PP9 to give 15 v , followed by the regulator (and don't forget the 2.2uF capacitor). According to my estimation this would run the magnetometer for about 20 to 25 hours and cost about $£ 5$. I should say that I'm not very sure of the current capability of such batteries, 150 mA sounds a lot and I would want to see the spec for the batteries before I parted with my money.

Even if they would stand the strain, if the magnetometer is to be used much primary batteries as above seem like an expensive option. Again doing a bit of estimating secondary cells would be a better bet. For instance a sealed lead acid battery at 12 v and 2.8 Ah costs less than $£ 20$. This leaves the problem of regulation which can be overcome with a suitable $D C$ to $D C$ converter. Such a converter (eg. L78S40 Maplin) would cost about $£ 2$ for the bits plus a box to put it in.

Curiously enough such a device also needs headroom but the other way round; the input must be less than the output, but

1 v is sufficient. This odd volt can be dropped across a resistor connected in series with the input. This assumes the battery will not be on charge whilst in use. A freshly charged battery will need a few minutes to settle.

Assuming an efficiency of arround 70\% and the magnetometer current to be 150 mA (mine takes 124 mA) a charge would run the magnetometer continuously for 13 hours. Incidentally, if it is getting this sort of use, don't switch it off to save ten minutes - it really takes that sort of time to settle.

An altemative battery would be nickel cadmium cells. Nine of them would give 10.8 v which would run the converter without the necessity for the input dropping resistor and 600 mAH (AA cells) would cost about the same as the acid battery and run for about 3 hours.

Metering

So far I have assumed that a moving coil meter will be used as the indicator. Such a meter need not be madly sensitive as the CA3140 can deliver several milliamps.

One must remember that a moving coil instrument averages out the current whereas digital devices will take a snapshot of the voltage. Now there is a far amount of "rubbish" in the output which requires the presence of the low pass filter R7 and C3 in Fig 14. However, the MC meter averages this out and comes up with the right answer. A digital meter, however, will be upset because it is not averaging.

If a digital meter is used there are a number of possibilities.
The simplest is to make the filter even lower pass by increasing C3 by a factor of 10 or more. It is also possible to add a capacitor in parallel with R8 to further reduce the frequency response or add a simple RC filter between the ouput and the meter.

Another possibility is to make the digital device do the averaging. If the reading is done by any sort of computer-driven $A D C$, then insert the averaging into the computer program. Or to be really with it don't bother with the switching circuit or second harmonic oscillator or output stage. Just use the sense amp, digitise its output and do the arithmetic by software! In effect, do the switching and averaging mathematicaly.

Finally

One or two thoughts for the day, but primarily to just reiterate the way in which the instrument behaves.

Remember that it is most sensitive when it is pointing to, ie in line with, the magnetic field. Under this condition it will only be sensitive to change in field strength not direction. Correspondingly when it is at right angles to the field it will be most sensitive to changes in direction. If both changes in direction and chariges in intensity are to be detected then it is best if. set to an intermediate value, perhaps 45 degrees to the field.

This can beeeasily illustrated. Suppose the angle varies from in line by one degree ie. from 90 to 89 -degrees. Sine 90 is 1 , sine 89 is 0.9998 a change of 0.0002 . However, at right angles the variation is from 0 to 1 degree. Sine 0 we know is 0 , whilst sine 1 is 0.01745 giving a change of 0.9825 or nearly 5000 times the in line figure.

Lastly, in any work associated with the earth's field it is still common practice to refer to a horizontal component and a vertical one. However, a very small change in attitude of the head will give a false reading andiso, particularly in portable work, a spiritelevel would be useful. How about one of the small circular ones stuck to the case of the detector?

Practically Speaking by Terry Balbivinie

Low - Voltage Equipment

(c)ast month we looked at the settingup of mains-free workshops using a 12 V battery as a power supply. Although the availability of suitable low-voltage equipment is limited, it is perfectly possible to operate a workshop in this way. This month we shall look at the equipment available and show how to choose a battery with the correct capacity for the job.

Soldering Iron

You will need to choose between a gas soldering iron and a 12 V one. The Antex MLXS 12V Soldering Iron Kit contains an XS 25W soldering iron, stand and length of solder. The Antex CS (17W) and XS are also avallable separately in 12 V options. The same company also produce the GasCut butane soidering iron - this uses lighter fuel and will run for up to 55 minutes on one charge. Light Soldering Developments produce the Litesold LC18 (18W) and LA12 (12W0
soldering irons. These also make a good choice being available in 12 V versions.

Note that if a gas-type soldering iron is used, it must be kept well away from any lead-acid battery and used only in a wellventilated area.

Of course, the battery supply used direct will be unsuitable for circuits requiring an input of only 6 or 9 V . You will therefore need some type of variable-voltage unit. This will be useful for testing projects and will be much cheaper to use than dry batteries. Such a power supply providing a continuous output from 3 V to 9 V with current-limiting will be described as a constructional article in a future issue.

Light Work

General lighting is best provided by fluorescent fittings. These are much more efficient than filament lamps provide virtually shadow-free illumination which promotes safe working. The caravan type will be found very suitable. Some are available with single or dual 8 W tubes, others with a single 13 W tube. Labcraft produce a range of suitable lights. One of these, the Tri-Lite, contains three 8W tubes (see illustration). This may be operated with either one, two or three tubes in position to suit the purpose. The same company also produce reading lights fitted with 10W filament bulbs which may be used as spotlights to direct light on close work. These lights are all available from caravan dealers.

In cold weather, it will be necessary to use a portable heater and the most convenient type uses propane or butane gas. The 12 V battery, of course, has insufficient capacity to provide heating. The type of free-standing camping fire which uses the gas cylinder itself as the base with the burner attached to the top is not safe for workshop use. Use a small domestic-type

heater with self-contalned cylinder. These are stable and provide flame shut-off if knocked over. They also cut off the gas supply if the flame fails for any reason. Whatever the type, ensure that it is safe to use without a flue and provides sufficient ventilation according to the manufacturer's instructions. Once again, any heater must be placed as far as possible from a lead-acid battery.

Choice of battery

Last month we mentioned the wisdom of using a proper leisure battery as a supply even though these are more expensive than the standard car-type. To select the capacity of the battery, you will need to use the "amphour" (Ah) figure stated for it (the Exide Portapower range comprises 60, 75 and 90Ah versions). The capacity figure is the current which the battery can supply (in amps) multiplied by the number of hours over which it can malntain it. In fact, the amp-hour_capacity falls with increasing current and it is usual to quote it at the 20 hour rate (that is, the battery continuously discharged over a period of 20 hours). However, for an approximate calculation, this may be ignored. A 12 V appliance consumes 12 W for each amp of current drawn.

For example, three 8 W flourscent tubes (24 W) will consume 2A. A small spotlight (10W) a little less than 1A. A 25W soldering iron a little over 2A. This gives a total of about 5A so a 60Ahr battery could operate these continuously for about 12 hours before the need to re-charge. However, it would be much better to limit the period of use to 8 hours or so to prevent the battery being discharged excessively. It is always wise to select a higher capacity battery than is actually needed so that it will run down as little as possible during use. This will maximise its life.

Next month we shall look at one of the most important workshop matters - the art of soldering!

Foils for this issue

Power on self test card

Battery charger

Transputer based single board computer

तन- James Gale 044266551

Send your requlrements to:
ETIClassifled Department, ASP, Argus House,
Boundary Way, He mel Hempstead, HP2 7ST
Lineage: 65p per word (+ VAT) (minimum 15 words) Seml display: (minimum 2.5 cms) $£ 8.70+$ VAT per single column centimetre

Rling for information on series bookings/discounts. All advertisements in this section must be prepaid Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (avallable on request).

FOR SALE

$\star \star$ FOR SALE $\star \star$

DEFENCE \& AEROSPACE INDUSTRY ELECTRONIC EQUIPMENT \& COMPONENTS ALL HIGH QUALITY SURPLUS MANY SPECIALS. WE STOCK $1000+$ ITEMS \& IF WE DONT STOCK IT WE MAY BE ABLE TO GET IT FOR YOU PLEASE WRITE OR PHONE FOR LISTS OR REQUIREMENTS
MAYFLOWER ELECTRONICS 48 BRENDON ROAD, WATCHET, SOMERSET, TA23 OHT

VISA

COOKE INTERNATIONAL

SUPPLIER OF OUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS,
GENERATORS, OSCILLOSCOPES, POWER METERS. ETC ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGE S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS

SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM - 5PM COOKE INTERNATIONAL
ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 OEB Tel (+44) $0243545111 / 2$ Fax + 44) 0243542457

SWC
 SCIENTIFIC
 WIRE COMPANY

 ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE. BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 0815591114
LEN COOKE

ENTERPRISES

For the best value In Used
Electronic Test insinuments We buy, sell and service oscilloscopes, signal generators, trequency coumlers, spectrum Spare parts availabie for most Textronix
scopes.
Tel: 091-813-9946
Fax: 081-574-2339
Mobile: 037475998
Mall order address: Unlt 5, Southall
Southall, Middx. UB2 4AI
We engineer what we buy, we support

TURN YOUR SURPLUS TRANSISTORS. ICS ETC INTO CASH immediate settlement.

We also welcome the
opportunity to quote for complete factory clearance

Contact:

COLES-HARDING \& CO.
Unlt 58, Queens Road, Wisbech, Cambs PE13 7PO
BUYERS OF SURPLUS INVENTORY
ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax: 0945475216

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street Tel: 05123609820512360154

47 Whitechapel
Tel: 0512365489
Liverpool 2
THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

COURSES

Start tralning now with the specialists for the following courses. Send for our brochure - without obligation or Telephone us on 0626779398

ETI 10/94

Name

Telecomms Tech C\&G 2710

Radlo Amateur Licence C\&G
Micro processor
\square Introduction to Television

Radio \& Telecommunications Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 gUN

COMPELEC

1994 BARGAIN LIST
THE ELECTRONIC ESSENTIAL MILLIONS OF COR A FREE COPY PHONE FAX OR WRIT (TRADE ONLY)
14 CONSTABLEREAD, ST IVES,
HUNTINGDON, CAMBS. PE 17 6EQ
WE ALSO PURCHASE 048 EIFCTRONIC COMPONENTS, LSTS TO ABOVE ADDRESS

COMPUTER SPARES

COMPUTER PARTS

Hard \& Floppy Disk Drives, Controllers/Adapters, Motherboards, PSU's, Memory, Kcyboards. etc, etc...
Ex-IBM and NEC machines...
For stock list and low prices:
Phone 0814414189 or Fax 0813649495
AD Technology Ltd
46 Salisbury Road,
Barnet, Herts, EN5 4JN

COMPONENTS

EPROM, PLDs + Microcontrollers copied or programmed. we supply devices/convert discrete logic to PLDs. PO Box 1561 Bath 0225 444467.

Solid State Relays

Switch 240 V from

transistor, logic or compute
outputs 3-32V D.C. control
optacally isolated
10 A tag connect $£ 85$
delivery Incl. apply for full range
Eric Jones, Dept. ETI, 0
85 Birchwood AV, Hattield ML10 OPT Tel: 0707265936 Fgx 070727 O877

KITS

NEW VHF MICROTRANSMITTER KIT tuneable $70-115 \mathrm{Mhz}, 500$ metre range, sensitive electret microphone, high quality $\mathrm{PCB}, \mathrm{SPE}$ CIAL OFFER complete kit only £5.95 assembled and ready to use £9.95 inclusive P\&P. 3 Watt/ransmitter kit £15.95. Cheques/PO's to C.E.C. 515A BRISTOL RD, BIRMINGHAM, B29 6AU. TEL: 021 486 3092. Send 2×1 st Class stamps for details of these and other kits.

PLANS, BOOKS AND MANUALS. Windgenerators, petrol generators, inverters, portable welding generators, engine crane, electric bike, solar projects, boats, electronic circuit and project books, and many more. Two first class stamps for descriptive catalogue. Also original plans wanted, Jemmett Engineering 8 Hallam Gardens Pinner Middlesex HA54PR

ETI
ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 65p per word + VAT minimum 15 words.
Semi-display $£ 8.70$ per single column $\mathbf{c m}$ plus VAT. No relmbursements for cancellations. All ads must be pre-paid.

Name
Address
Daytime Tel. No:
Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square
Expiry Date
FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

(1)t has recently been calculated, by an American economist, that the value of all the computer data flowing across the telecommunications networks of the world is, at any one instant, greater than the value of all the physical goods in transit at the same time. Of course the value of information passing between computers is extremely difficult to quantify, but this comparison does raise some interesting points.

It shows, of course, that information is now big business. It also shows that just as manufacturing requires an investment in transport infrastructure, roads, railways, ships, airlines etc. in order to operate efficiently, so businesses based upon information will require an infrastructure of high capacity, reliable, and cheap telecommunications.

Information based business is booming, you only have to look at the business activities of the latest generation of super-ich entrepreneurs, people like Bill Gates of Microsoft, or Larry Ellison of Oracle. In the past, billionaires were made in railways, shipping, oil, and mines; today they are created by the information industry.

In this issue of ETI we take a brief look at just a handful of the countless different technologies and potential applications for such an information infrastructure, what Vice President AI Gore called 'the information superhighway'. If informationbased business is to expand, then it is vitally important that the necessary investment is made in order to build this infrastructure. Without it, information businesses are in the same position as manufacturers without roads, railways and ports.

If the UK is to remain an advanced nation then it is vitally important that the
investment in this infrastructure is made, and made as soon as possible. Delaying the construction of such a network will just hand most of the potential benefits to businesses in those countries which do seize this enormous opportunity and make the appropriate investment.

We have to ask, therefore, whether it is right for the govemment to prevent British Telecom from entering the video on demand business and thereby eliminating a large chunk of the potential profit from an investment in fibre optic transmission networks. The govemment's stated reason is to protect the cable TV companies from competition by a technologically and financially extremely powerful company.

Looked at from some angles, the government's action has merit, though it is rather strange coming from a govemment that passionately believes in the freedom of market forces. But, for the country, this is probably an economic disaster since it is effectively preventing an investment in the type of information infrastructure which is essential for our future prosperity.

We are facing a great challenge, we are at the beginning of the information revolution. In the early part of the last century, Britain gained an enormous industrial advantage by being the first country to have a comprehensive rail network and by having the world's largest merchant fleet. Thanks to these, trade and manufacturing flourished, and prosperity followed.

The information superhighway is today's equivalent. Let us not miss the opportunity for employment and prosperity that its construction will undoubtedly bring. The govemment should stop interfering in its development and let it be built by whichever company, or companies, have the technological and financlal capability, and will, to do so.

Next.Month...

The main feature article in the November issue of ETl will be a look at the 'Brains of men and machines' - the question of whether machine intelligence is really a possibility. On the practical side, we will be starting a new major project to build a parametric equaliser, a must for all audio fans. And of course we will also be continuing the Transputer and POST card projects.

For those of you wanting to use your PC to input and output data to extemal circuitry we have a project which will expand the capability of your parallel port, while for electronic music fans there is a Wah Wah Pedal design by Robert Penfold as well as the last in his MIDI tutorial series. There is also an interesting little project which allows one to control multiple devices from a single switch.

Next month there will be another free cover disk on the cover of Ent; this will contain some extra ilibranes for Quickroute Lite and a very usefu DC circuits simulation programme. Make sure you do not miss getting your copy by ordering it from your newsagents today.

At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...

... call now for details.

Board Capture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2

E395

- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
$o+$ Back annotation from BoardMaker2

Board Maker
BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMakerl +
- Full netlist support - BoardCapture,

OrCad, Schema, Tango, CadStar and others

- Full Design Rute Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM

NEW - Thermal power plane support with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
$E 200$
? Full interrupt, resume, pan
a and zoom while routing
Output drivers - Included as standard
- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penilotters - HP Graphtoc \& Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit
Tsien (UK) Limited Aylesby House Wenny Road, Chatteris

Cambridge
PE16 6UT
Tel (0354) 695959
Fax (0354) 695957

tsien

FUIL MULOUP CUUDETO ELEGTRONSE PBODUETS

AOSOHN

[^0]: 1. If you could make one improvement to ETI, what would it be!
[^1]: ## Next.

 In the next issue we will be back to a full eight pages of PC Clinic and will be looking at the main PC output device, the video monitor, graphics display cards, and the serial and parallel I/O ports.

