ETI
 ELECTRONICS TODAY INTERNATIONAL

TOMORROW'S TECHNOLOGY TODAY

When
 A LOOK ATHOW Clobat
 Poshionire
 SLSTHMS CAM PLACE 101
 MHHIN MAERES

Micreprocessor Motor control

Bufld a sar lichteon reminder

Turbo speed Indicator for PC

Make a ridea light meter

Mecsure minule chcrages in the ecrints maynetis Thetd

PC CIN/C

PROCESSORS
CO-PROCESSORS AND CACHE MEMORY

August 199482.15

Low cost data acquisition for IBM PCs \& compatibles

A unique range of easy to use data acquisition products designed for use with IBM compatible computers. Combined with the software they allow your PC to be used as a host of useful test and measurement instruments, or as an advanced data logger.
Installed in seconds they simply plug into the parallel port (except the ADC-16 which connects to the serial port). They are self-contained, require no power supply and take up no expansion slots.
Each device comes with a comprehensive manual. C, Pascal and Basic drivers are included for users who wish to write their own software. Software supplied on $3.5^{\prime \prime}$ disk.

Scope, voltmeter,
spectrum analyser Printer and file handling support

Collect, store, display and print data from 1 sample per ms to 1 per day. Record average, min/max values or scaled i values (linear, equation, table look up). Report types: monitor (with min/max alarms), y-t graphs, x - y graphs, tabulation.

Advanced data logging software package

NEW ADC 100 virtual Instrument Dual Channel 12-bit resolution The ADC 100 offers both a high sampling rate (100 kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges ($\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to low output sensors such as microphones or to high level signals ($\pm 200 \mathrm{~V}$ with a $\times 10$ scope probe).

ADC 10
 1 Channel 8-bit

- Lowest cost
- Up to 22 kHz sampling - 0-5V input range The ADC 10 gives your computer a single channel of analogue input Simply plug into the parallel port and your ready to go.

ADC 10 with PicoScope $£ 49$
PicoScope and PicoLog £59

ADC11

11 Channel 10-bit

- Digital output
- Up to 18 kHz sampling
$0-2.5 \mathrm{~V}$ input range
The ADC 11 provides 11 channels of analogue input in a case slightly larger than a matchbox. It is ideal for portable data logging using a "notebook" computer

ADC 11 with PicoScope $£ 85$
PicoScope and PicoLog $£ 95$

ADC12

1 Channel 12-bit

- High resolution - Up to 17 kHz sampling $0-5 \mathrm{~V}$ input range The ADC 12 is similar to the ADC 10 but offers an improved 12-bit (1 part in 4096) resolution compared to the ADC 10's 8-bit (1 part in 256).

$$
\begin{aligned}
& \text { AOC } 18 \text { with } \\
& \text { PicoScope £85 } \\
& \text { PicoScope and } \\
& \text { PicoLog } £ 95
\end{aligned}
$$

ADC 16

8 Channel 16-bit + sign

- Highest resolution
- 220 Hz sampling

2 Hz sampling - 16 -bit
The ADC 16 has the highest resolution of the range, it is capable of detecting signal changes as small as $40 \mu \mathrm{~V}$. Pairs of input channels can be used differentially to reject noise. Connects to serial port.

ADC 16 with
 PicoLog $£ 115$

PicoLog for ADC 10/11/12 £25. Oscilloscope Probes ($\times 1, \times 10$) £10. Carriage UK free. Overseas £6

Volume 23 No. 7

Features Projects

Where on Earth Am I?

Global Positioning Systems rely on a complex fusion of space technology and electronics to give a position accurate to just a few metres. We look at how such systems work and now that their price has dropped to just a few hundred pounds, how they are being used.

Microprocessor Motor Control

Hot on the heels of his FORTH programmable Experimenter's Computer project, Jim Spence shows how to use this processor board to accurately control a number of stepper motors.

Turbo Speed Indicator

This little add-on indicator circuit from John Lanigan can be added to any PC and will show which clock rate it is running at.

Bite Alarm

Those lazy days fishing will never be the same again, after you construct Bob Noyes' project to sound an alarm whenever a fish has taken the bait.

PC Clinic

Part 3 of the series that shows readers how to repair, maintain, upgrade and build circuits for their personal computers. In this issue, we look at the CPU, coprocessors, cache memory and making good use of the BIOS software.

Video Light Meter

In this project, Terry Balbirnie shows how to build a small light meter that should help video users to produce better images.

Magnetism and Magnetometers

In Part 1 of this two part article, Keith Garwell looks at the design of sensitive instrumentation that can detect minute changes in the Earth's magnetic field.

Car Lights On Reminder

Build this cheap and simple project from Len O'Connor and you need never worry about leaving your lights on and running down your car's battery. HOTLINE 0737768611

Sulbscribe \& Save
Phone the hotline and take advantage of our special offer detailed on page 67

An Introduction to MIDI

In Part 3 of this series, Robert Penfold continues his introduction to the mysteries of MIDI - the now universally accepted standard for communications between electronic musical instruments.

Regulars

News and events diary 6 Balbirnie's Workshop
Terry Balbirnie divulges some more practical hints and tips for the electronics enthusiast.
Talkback 65
Your letters, and ideas, plus club news.
PCB foils $\quad 68$
Open Forum 74

Competition

In this issue of ETI we have another great compétition
for readers to enter. Win a Maplin Blood Pressure Monitor, worth $£ 75$.

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
 Tel: 0203650702
 Fax: 0203650773
 Mobile: 0860400683

(Premises situated close to Eastern-by-pass in Coventry wlth easy access to M1, M6, M40, M42, M45 and M69)

OSCILESGETPES	
Gould 1602-2 Channel D.S.O.	
Gould 1604-4 Channel D.S.O.	£1750
Gould 1421-2 Channel D.S. O.	£375
Gould OS4000, OS4200, OS4020, OS245	from 125
Hewlett Packard 1740A, 1741A, 17744A, 100MHz dua	from $£ 350$
Hewlett Packard 182C-100MHz 4 ch	. $£ 350$
Hewlett Packard 1707A, 1707B-75MHz 2ch	from £275
Hitachi V.U22-40 MHz Dual Channel	£300
Nlcolet 3091 - LF D.S.O.	. 11100
Philips 3055-60 MHz Dual Chann	¢550
Tektronix 2201-20MHz D.S O. dual ch.	£675
Tektronix 2213-60 MHz Dual Channel	. 425
Tektronix 2246 100MHz-4 channel	(as new) $£ 995$
Tektronix 2215 60MHz dual trace	. $£ 450$
Tektronix 2235 Dual trace 100MHz (portable)	. 8800
Tektronlx 2335 Dual trace 100MHz (portable)	. 8750
Tektronix $2225-50 \mathrm{MHz}$ dual ch.	. $£ 450$
Tektronix 465/465B -100MHz dual ch.	from £350
Tektronix $475-200 \mathrm{MHz}$ dual ch	. $£ 450$
Tektronix 468 -100MHz D.S.O. dual ch.	. $£ 850$
Tektronix 7313, 7603, 7613, 7623, 7633, 100MHz 4 ch	from $£ 300$
Tektronix 7704-250MHz 4 ch	from £650
Tektronix 7834/7844-400MHz 4 ch	from $£ 750$
Tektronlx 7904-500MHz	from $£ 850$
Phillips $3070-100 \mathrm{MHz} 2+1$ channel + cursors, as new	. 900
Phillips 3206, 3211, 3212, 3217, 3226, 3240,	
3243, 3244, 3261, 3262 (2ch + 4 ch.)	£125 to £350
Solartron Schlumberger CD1740-20MHz 4 ch	

SPECTRUM.ANALYSERS	
Alltech $727-20 \mathrm{GHz}$	£2200
Advantest TR4131-10KHz-3.5GHz	¢4500
Hewlett Packard 3580A - $-5 \mathrm{~Hz}-50 \mathrm{KHz}$	£1250
Hewlett Packard 8590A - $10 \mathrm{KHz}-1.5 \mathrm{GHz}$ - (as new)	£4500
Hewlett Packard 182T with 8559A (10MHz-21GHz)	$£ 3750$
Marconi 2370-110MHz	£1250
Hewlett Packard 4953 Protocol analyser	$£ 2500$
Tektronix 492-21GHz	£6000
Tektronix 7 L 18 with 7603 main frame $15 \mathrm{GHZ}-18 \mathrm{GHZ}$	$£ 3500$
Texscan AL51A (4MHZ-1GHZ)	1300

A	£2000
Anritsu ME538C Microwave systern analyser ($B X+\mathrm{Tx}$) .	£3500
B\&K 2511 + 1621 Vibration test set	£2000
B\&K 2511 Vibration m	0
B\&K 2515 Vibration analyser	¢4500
Datron 1061A Autocal digital multimeter ($61 / 2 \mathrm{digits}$)	£850
Daymarc 1735 Transistor tester/sorter (with all jigs)	$£ 5000$
Dranetz 305 Phase meter	£250
Dymar 1585 AF Power meter	£175
Dymar 2085 AF Power meter	$\underline{1200}$
Farnell RB 1030-35 Electronic load 1Kw	$£ 450$
Farnell AMM/B Automatic mod	150
Farnell 2081 R/F Power meter	POA
Feedback TWG300 Test wavefarm generator	£200
Fischer Betascope 2040/2060 Coating thickness computer \& no destructive coating measurement instrument \& many jigs and	xtras
	00
Fluke 8840A Multimeter (IEEE)	¢450
Fluke 515A Portable calibrator	5500
Fluke 8010A Digital multimeter	£125
Fluke 8922A True RMS voltmeter	POA
Fluke 95020 Current shunt	POA
Gay Mllano FTMIC/FTM3C - FTM - Fast transie	£250
General Rad 1658 LCR Digibridge	¢250
General Rad 1621 Precision capacitance measurement system	POA
Hewlett Packard 180TR Display unit with 8755B swept. amp.	£350
Hewlett Packard 3200B VHF oscillator, $10-5000 \mathrm{MHz}$	£175
Hewlett Packard 3400A RMS voltmeter	£150
Hewlett Packard 3406A Broadband sampling voltmeter	. 175
Hewlett Packard 3437A System voltmeter .	$£ 350$
Hewlett Packard 3456A Digital voltmeter	$£ 650$
Hewlett Packard 3476 Digital multimeter	£100
Hewlett Packard 3478 Digital voltmeter, 4 wire system, 1EEE	£650
Hewlett Packard 3702B/3705A/3710A/3716A Microwave link an	nalyser£1500
Hewlett Packard 3730A Down converter (with 3738A or 3737A) $£ 200$
Hewlett Packard 3760/3761 Data gen + error detector.	£300
Hewlett Packard 3762/3763 Data gen + error detector.	.each £350
Hewlett Packard 3777A Channel selecto	£250

Anritsu ME538C Microwave system analyser (BX + Tx) $£ 3500$
251 + 1621 Vibration test se
Bak 2511 Vibration meter.
Datron 1061 A Autocal digital multimeter ($61 / 2$ digits)
ع1500
$£ 4500$
.5850
$£ 5000$
f250
$£ 200$
£450
150
PA
Feedback TWG300 Test wavefarm generator
xtras
450
Fluke 5840 A Multimeter (IEEE) 5500
Fluke 515A Portable calibrator
.5500
Fluke 8922A True RMS voltmeter
POA
Gay Mllano FTMIC/FTM3C - FTM - Fast transient monitor General Rad 1658 LCR Digibridge POA

General Rad 1621 Precision capacitance measurement system Hewlett Packard 180TR Display unit with 8755B swept. amp. an
Hewlett Packard 3200 B VHF oscillator, $10-5000 \mathrm{MHz}$
Hewlett Packard 3400A RMS voltmeter
Hewlett Packard 3406A Broadband sampling voltmeter
Helt Packard 3437A System voltmeter
Hewlett Packard 3453 Digital voltmeter
Hewlett Packard 3476 Digital multimeter 100
Hewlett Packard 3478 Digital voltmeter, 4 wire system, 1EEE t Packard 3730A Down converer (with 3738A or 3737A)

Hewlett Packard 3762/3763 Data gen + error det Hewlett Packard 3777A Channel selector

Hewlett Packard 3779A Primary muliplex analyser
Hewlett Packard 4204A Oscillator $10 \mathrm{~Hz}-1 \mathrm{MHz}$ s.250

Hewlett Packard 435A Power meter (less sensor)
Hewlett Packard 456A AC current probe.
Hewiett Packard 415E SWR meter
Hewlett Packard 4193A Vector impedance meter
Hewlett Packard 5335A Universal counter with 1EE
Hewlett Packard 5342A Microwave freq. count. 18GHz
Hewlett Packard 7402 Recorder with 17401A $\times 2$ plug-ins
Hewlett Packard 8005B Pulse generator
Hewlett Packard 8011A Pulse gen. $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$
Hewlett Packard 8013B Pulse gen. 1Hz-50MHz Hewlett Packard 8012B Pulse generator
Hewlett packard 8406A Frequency comb. generator
Hewlett Packard 8443A Tracking gen/counter with 1EEE
Hewlett Packard 8444A Tracking Generator
Hewlett Packard 8445B Automatic presetter
Hewlett Packard 8601A 110MHz Gen/sweeper 110MHz
Hewlett Packard 8620C Sweep oscillator mainframe
Hewlett Packard 8750A Storage normaliser
Hewlett Packard 938A Freq. doubler
Keithley 19720 MHz with 1EEE
Lyons PG73N/P G75/PG2B/PG Pulse gnerator
Marconi 2019A $80 \mathrm{KHz}-1040 \mathrm{MHz}$ sig gen.
Marconi 2432A 500MHz digital freq. meter
Marconi 2337 Automatic dist. meter
Marconi 235620 MHz level oscillator
Marconi 2306 Programmable interface
Marconi 2610 True RMS voltmeter
Marconi 2830 Multiplex tester.
Marconl 2831 Channel access switch
Marconi 6920 Power sensor
Phllips 5390 1GHz signal gen
Philips PM 516710 MHz function gen.
Philips 5190 LF synthesizer w/th G.P.I.B.
Philips PM 5519 Colour TV pattern gen
Philips PM 2525 Multimeter WF 1EEE
Phlllps 5716 Pulse generator high freq. MOS .
Philips PM 5770 Pulse gen. - $1 \mathrm{MHz}-100 \mathrm{MHz}$
Philips PM 6672 1GHz timer/counter WF 1EEE
Phillps PM 8272 XYT chart recorder
Photodyne 800 Fibre optic attenuator
Projectina CH9345 Microscope
Racal 9009 Modulation meter
Racal Dana 202 Logic analyser + 68000 disassembler
Racal Dana 9242D Programmable PSU 25 V -2A
Racal Dana 9246S Programmable PSU 25V-10A
Racal Dana $310040-130 \mathrm{MHz}$ synthesiser
Racal Dana 5002 Wideband level meter .
Racal Dana 5003 Digital m/meter
Racal Dana 9000 Microprocessing timer/count. 52 MHz
Racal Dana 9081 Synth sig gen 520 MHz
Racal Dana 9084 Synth. sig. gen. 104 MHz
Racal Dana 9087 1.3 GHz low noise sig. generator
Racal Dana 9303 True RMS/RF level meter
Racal Dana 9341 LCR databridge
Racal Dana 9500 Universal timer/counter 100 MHz Racal Dana 9917 UHF frequency meter 560 MHz .
Racal Dana 9919 UHF frequency meter 1 GHz
Rohde \& Schwartz BN36711 Digital Q meter
Rohde \& Schwartz URV5-18 GHz R/F Millivolt-meter (with various probes)
Solartron Schlumb 1170 Freq. response analyser
Tektronlx TM503, SG503, PG506, TG501 Scope calibrator
Tektronix 834 Data comms analyser
Tektronix TM5003 + AFG5101 arbitrary function generator
W\&G SPM12 Level meter $200 \mathrm{~Hz}-6 \mathrm{MHz}$
W\&G PS 12 level generator $200 \mathrm{~Hz}-6 \mathrm{MHHz}$ W\&G SPM60 Level meter $6 \mathrm{KHz}-18.6 \mathrm{MHz}$ W\&G PS60 Level meter $6 \mathrm{KHz}-18.6 \mathrm{MHz}$ W\& G SPM6 Level meter 6KHz-18.6MHz W\&G PS6 Level generator $6 \mathrm{KHz}-18.6 \mathrm{MHz}$ W\&G SPM6 Level meter $6 \mathrm{KHz}-18.6 \mathrm{MHz}$ Wavetek 157 Programmable waveform synthesier Wayne Kerr B424/N LCR Component meter set Wayne Kerr 4250 LCR meter
Wayne Kerr 642 Autobalance universal bridge
Weller D801/D802 Desoldering station
Weller D900 Desoldering station
Wlitron 352 Low freq. differential input phase meter
Hewlett Packard 8640B with OPT 001
Marconl 2022E (10KHZ-1.01GHZ) SIG GEN
SPECIAL OFFERS - Phoenix 5500A Telecoms analyser, ex. demo. as new with 12 months calibration +12 months guarantee fitted with V24 interface. A variety of interface options available - Ring/Fax for details. Navtel 9440 Protocol analyser, ex demo as new 18000 new - cost now £3500. Navtel 9410 PCB based protocol analyser ex. demo. as new £3000 new - cost now $£ 1500$.

MANY MORE ITEMS AVAILABLE - SEND LARGE S.A.E. FOR LIST
 OF EQUIPMENT ALL EQUIPMENT IS USED - WITH 30 DAYS
 GUARANTEE. PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING - CARRIAGE \& VAT TO BE ADDED TO ALL GOODS

Ahelmer Valve Company for andio values

Audio valves with famous brand namës of yesteryear such as MULLARD, MÕV, GEC,RCA etc, are in very limited supply and their scarcity also makes them very expensive.

We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.

For high fidelity use we furtheir process valves from these souces using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVC PREMIUM valves.

A selection of the more popular types are listed below.

Price list \& order form for CVC PREMIUM Audio Valves

Valve amplifiers sound better still with CVC PREMIUM valves!

PCB software for Windows

Pentica Systems of Wokingham has launched a new entry level version of its powerful Tango circuit design and board layout software, which runs under Windows and offers users work-station class performance at one fifth of the cost. TangoPRO Schematics Lite and TangoPRO PCB Lite are both sub-sets of the higher end TangoPRO software, with the benefit of the Windows environment. Their capacity and features are suitable for 80% of PCB designs being produced today.

TangoPRO Schematic Lite offers powerful placement and editing tools, keyboard short-cuts and instantaneous netlist generation. There are over 20,000 unique library components and new components can be created on the fly. Advanced features
 include intelligent wires and busses and support for user defined attributes. Junctions and bus entries are placed automatically. Capacity is up to 200 components, 500 nets and three sheets per design.

The PCB design program includes a Cut/Copy/Paste capability for moving selected items to and from the Windows Clipboard. design error indicators with on-screen highlighting, enhanced report formats and improved attribute editing, with the ability to change reference designators on previously placed components. The 32 bit database gives imperial and metric support down to a tenth mil, or 10 microns. Capacity is for 200 components, 500 nets, and six layer designs.
TangoPRO Lite Schematics costs $£ 175$ and the PCB design program $£ 685$.
For further details on these two products contact Pentica Systems on 0734 792101.

70W Titanium Composite Tweeter

The latest product to be added to the fully comprehensive range of speakers and sounders from Maplin Electronics is the 70W Titanium Composite Tweeter. This is a dome tweeter, where the diaphragm is made from pure titanium which is ion deposited onto an advanced, glass-fibre reinforced, soft polymer 1in diaphragm. The composite that results offers increased stiffness with high internal damping, combining the advantages of pure metal domes while retaining the low distortion of soft dome, leading to detailed sound reproduction for the best musical quality. Efficiency is up to 93dB and the voice coil is ferrofluid cooled. The Faceplate is of a fibre reinforced polymer.

This tweeter is available from all branches of Maplin Electronics and costs £13.95. For more details ring 0702552911

Ultra bright laser diode modules

Imatronic, the leading semiconductor laser diodeomodule manufacturer, has released a new addition to its world beating range of OEM laser diode modules - a 633 nm wavelength option. The new wavelength optios are available in the popular LDM1 15 (1 fmm diameter) and the LDM145 (16mm diameter) package styles. The 633 nm wavelength offers 9 times improvement in vislbility pver the 670 nm versions available to date. This improvement in visibility makes both indoor and outdoor operations sûch as alignment, positioning and levelling far simpler and effective. Particular applications indude machine tool alignment, target sighting, patient positioning robotic control and bar code systems. These highly' reliable modules have been specilically designed to - make the user's life easy. They feature simple DC operation (4-6V DC) and low cuirent consumption of around 80 mA . The focusing 'optiçs can be adjusted by the user with a simple toot provided with each module, so that the focus of the laser can be optimised for his own application. The integrated output power stabilisation sircuitry regulates the laser output to be alway"s

PC based PLD trainer

Pagranmelite logic Devices (PLDs) are now very widely used and there is a considerable need for systems which can be used to train suderts and engineers in their use. To cater for this need, Southampton based Fight Electronics international has launched a menu driven PC baseal PD training system, the PAL Tramer. It is aimed at universities and colleges, although engineers' working on their own could also use it $s 0$ leam quickly about PALs and PALASMs, oventually using it as, a laboratory tool for PAL programming.

Flght Elextronics claims that it is the onfy completely self contained system availatio which successfully introduces sifudents, to the world of Plis, whout the need to source the hardware, software and documentation separately. This riol only saves time, resources and money, buf elso ensures that lecturers are provided with an integrated teaching tool that gives students more than just a cursory glimpse of the real world of industry.

Tha PAL Trainer will run on IBAM XT, AT, or compatible PCs and consists of a complete training course rainging from initial logic desigh to PC simulation, device programming and testing, there
 are 18 ready to run examples. Frogramming of actual devices is done with the aid of a GAL programmer and test unit which is connecied to the PG via an interface card and cable. The programmer is controlled by soflware rurining on the PC. Prograinming ts performed with the aid of the widely used indusiny standard PAL ASM V4 programming language.

The programmer/tost unit has one ZIF 24-way textool for programming and three ZIF 24-way textools for testing, there is a matrix display, four 7 segment displays, a LED array, ten debounced switches and a vanable froquency counter, There is a separate demonstration ares for use with the worked examples and lumper wires allow the pins of the PLD to be quickly and simply connected to other areas of the main boarch.

The full training system costs $£ 695$ and for further details contact Flight Electronios Internationial Lid, on 0703227721.

Cutting PCBs by laser

The Berkshire based company Tracks CAD Systems has launched a multifunction laser prototyping machine which is amed at anyone who involved in the development or production of high sensity Printed Circuit boards, in particclar those used with surface mounted de:ces. Modern PCBs call for closely sceeed pins and conductor or isolation дains. three or more times finer than those that have been traditionally procuced using chemical etching or mecnanical cutting. With its laser system, Tracks has been able to easily cut seven conductor paths, separated by $40 \mu \mathrm{~m}$ isolaton channels between two IC pads, the laser naving a cutting resolution of $1 \mu \mathrm{~m}$ and an accuracy of $2 \mu \mathrm{~m}$.

This laser system will cut standard FR4 PCB materials or copper coated ceramic material with equal facility and all track edges will be clean and square to a degree impossible to achieve in any other way. The laser will not wear, so maintenance is simple and repeatable quality assured. In addition, the system does away with the need to treat large quanti-
ties of highly polluting aqueous chemical solutions.

The system can be installed in any normal laboratory or production area and, apart from power, compressed air and water has no special requirements. A floating focus system is used on the laser, to eliminate risk of optical hazard.

The system can be directly driven from a PC CAD system for flexible prototyping. With more powerful laser cutters, it can be used to cut metal stencils, cut and score ceramics, make board corrections and label products.

For more information, contact Tracks CAD Systems on 034455046

386 system on an STEbus board.

Arcom Control Systems has developed a powerful new 386SX single board computer for embedded control applications, which fits on a single standard STEbus board. Compatible with PC based development and debug tools and offering a DOS like, but royalty free, stand alone operating environment, it delivers far superior real time performance to conventional embedded PCs. Called the SCIM386T, the board provides a complete hardware solution for many embedded tasks, but is also highly configurable, offering a choice of three expansion routes STEbus, SCIM mezzanine bus and signal conditioning system.

The board is available with 25 or 16 MHz versions of the 386SX CPU. Eight surface mount memory sites allow up to 4 MB of dynamic RAM to be fitted. This can be extended to 16 MB , using the SCIM mezzanine bus expansion facility. Further hardware includes a 32 pin EPROM socket for the stand alone operating environment and application firmware, keyboard interface, real time clock, a parallel port and two serial ports.

For more information, contact Arcom Control
Systems Ltd of
Cambridge on
0223411200.

> Profile Plus Indoor FM Aerial.

New from Maplin Electronics is the profile Plus lędoor FM Aerial. This unit is a unique innovative design of an indoor aenal that would pass any critical eye test for modem styling. This bi-directional aerial is suitable for all FM applications in the frequency range 88 to 108 MH Hz . It includes an integrated low noise signal amplifier/booster, for weak signal areas.

The aerial measures $320 \times 220 \times$ 50 mm and is coloured slate grey. It requires two AA batieries and is supplied with a flylead 2 m long. It costs $£ 19.95$ and is available from all branches of Maplin Electronics or via mail order. For furthor details ring 0702552.911.

Negative differential resistance

Negative differential resistance (NDR), a novel transistor effect that occurs in compound semiconductors, is being exploited by advanced device researchers in a bid to build a new, highly compact, digital logic family. NDR logic cuts through much of the complexity of traditional gate design, by exploiting the folded current-voltage ($1-V$) curves of advanced super lattice transistors. While standard transistors have only one operating point, a variety of experimental devices bullt with super lattice Junctions can have two or more stable points, which are used to implement several logic functions with the same circuit.

While the new approach to digital logic offers the usual advantage of speed that comes with hetero-junction transistors, it more importantly could form the basis for a new kind of Ulitra Large Scale Integration (ULSI) technology. In the past, gallium arsenide technology was used for its speed advantage, but that proved to be a critical factor only in niche areas, such as microwave technology. The new generation of NDR logic designs indicates a now direction for compound semiconductors, augmenting the speed advantage with large gains in functional density.
As the voltage across the junction increases, the resulting current begins to increase in a manner similar to a conventional p-n diode. However, at a critical point, the resonant tunnelling eflect kicks in and the current begins to decrease as the voltage increases. The negative slope of the I-V curve in this region represents the unique negative differential resistance of these
diodes, the basic effect that is now being tried in novel logic families.
At Toxas instruments Central Research Labs. (Dallas); 71 researchers were the first to build a three-terminal resonant turnelling device that directly modulated the potential inside the super lattice junction. Prevlous devices had simply been monolithic realisations of the RT diode HBT pair.

The University of Michigan group is attempting to push the technology to the next stage by developing a comprehensive set of design principles and simulation tools. Rather than focusing on specific devices, the group is learning general rules for controling the NDR effect in logic design. A device simulator that solves the quantum mechanical equations that govern resonant tunneling effects has allowed the researchers to explore design aspects of the NDR devices. The group has also built a circuit simulator that takes either data generatod by the device simulator or actual experimental data to simulate. NDR logic designs.

In addition, different digital logic styles, making use of the more complex behaviour of NDR transistors, have been developed. In conventional circuit design, logic 0 and 1 values are represented by 0 and +5 V levels. The $\mathrm{I}-\mathrm{V}$ characteristics of the NDR devices allows for multiple logic values via multiple stable operating points. The Universily of Michigan group is using a logic representation that exploits two stable points in the I-V characteristic to represent Boolean logic, with two positive voltage levels

Big successes for ARM RISC

The UK RISC procesșor company Advanced AISC Machines Ltd seems to be on to a winner, This company. jointly owned by Acom Comerters, Apple and VLSI, has just announced two significant developments. Firstly it has signed an agreement which will allow Korean atectronics and semiconductor giant Samsung to embed ARM6, ARM7, and ARM610 RISC technology into products jointly developen by Sarsung and ARM for the emerging markets, where computing, communications, and consumer electronics converge. These will include wireless personal digital assistants, celluiar fax/phones and interactive TV, plus more traditional products such as hard disk drives, laser pinters and multimedia processors.

The second development is the announcement by IBM that the ARM RISC technology is to form the heart of its new Serial Storage Architecture (SSA) interface. This technology, developed at IBM's UK research facility in Havant; is seen as a key component in linking the computers of the future and will replace existing serial and SCSI interfaces. It is an extremely powerful interfacing system capable of full ouplex operation at a minimum $20 \mathrm{MB} /$ s in each direction, with sophisticated error detection, isolation and recovery features. SSA is destined to be a standard for communications with peripherals such as disk drives.

Low cost microcontroller development kit

Mitsubishi has introduced a new low cost Designer's Kit which will enable users to cost effect ively develop 16 bit microcontroller applications. The easy to use kit comes as a complete system and is simply installed on a PC with a text editor. At the heart of the kit is a DB16 designer board which incorporates an M37702S1ASP chip that is representative of the Mitsubishi 16 bit range and boasts the widest range of features available in single chip microcontrollers.

The on-board device operates in microprocessor mode and together with an M5M82C55 I/O expanded mapped in page zero, preserves the 1/O operations by replacing the ports used as data and address buses. Ample space is provided for user software by 64 KB each of battery backed RAM and EPROM. A decoder chip select is also included. Other on-board features include 52 I/O lines, together with eight 8 bit analogue to digital inputs. There are two serial ports with RS232 drivers, eight 16 bit multifunction timers and a watchdog timer, three external and 16 internal interrupts.

The software provided with the kit is a relocatable assembler which allows software to be written in pure Assembly language with user defined macro functions. Example programs in source code format can be used as templates, including those of the on board Debug monitor. This monitor includes facilities to examine and set processor registers and memory contents, upload programs from host to RAM, go to program from an address, set break point in RAM, fill memory and read analogue port. Drivers are also provided for serial and analogue to digital ports.

The designers kit operates from 5 V supplies and comes complete with serial cable and 9 to 25 way adaptor, comprehensive documentation, software and the development board. The kit costs $£ 299$ and for details of suppliers contact Mitsubishi in Hatfield, Herts., on 0707276100.

Event Diary.

27-29 June 5th Satellite Systems for Mobile Communications \& Navigation Conference, Institute of Electrical Engineers. London. Tel: 0712401871
4-7 July HF Radio Systems and Techniques Conference, Institute of Electrical Engineers, University of York. Tel: 0712401871
5 July Talk on propagation. Sudbury and District Radio Amateurs. Tel: 0787313212.
14 July Special Event Station in Woodhall School, Sudbury and District Radio Amateurs. Tel: 0787313212
16 July Annual Outing. Crystal Palace and District Radio Club, All Saints Parish Church Rooms, Beulah Hill. Tel; 0816995732.

19-21 July 6th Electronic Engineering In Oceanography Conference, Institute of Electrical Engineers. Churchill College Cambridge. Tel: 0712401871
20-24 July Electrotech 94. National Exhibition Centre, Birmingham. Tel 0712401871.
13 Nov. Midland Amateur Radio Society rally at Stockland Green Leisure Centre, Slade Road, Erdington, Birmingham. Doors open at 10 am, admission $£ 1$, For fuither details ring 021422.9787 or 0214431189 (evenings only).

If you are organising an event which you would like to have included in this section, please send full details to ETI; Airgus House, Boundary Way; Hemel Hempstead, Herts. HP2 7ST, clearly marking your envelope Event Diary:

SEALED LEAD ACID Battery, $\overline{\text { V }} 80 / 100$ AH made for BT, ex equipment but ok $£ 45$ each ref APR47 Ideal electric vehicle etc ASTEC SWITCHED MODE PSU Gives +5 © $3.75 \mathrm{~A},+12$ © 1.5 A -12©.4A. 230/110, cased, BM41012. £9. 99 ref APR10P3. TORRODLAL TX $30-0-30480 \mathrm{VA}$, Perrect for Mosfet amplifier etc. 120 mm dia 55 mm thick. $£ 18.99$ ref APR19.
MOD WIRE Perfect for repairing PCB's, wire wrap etc. Thi insulated wire on 500 m reels. Our price just $£ 999$ ref APR10P8, 12v MOVING LIGHT Controller Made by Hella, 6 channels raled at 90 watts each Speed control, cased $£ 34$,99 ref APR35 ELACTRON FLASH TUBEAs used in police car flashinglights ete, full spec supplied, 60-100 flashes a min E9 99 ref APR10P5 24v 96WATT Cased power supply New £1399 ref APR14. STETHOSCOPE Fully functioning stethoscope, ideal for listen ing to hearts, pipes, motors etc $£ 6$ rer MAR6P6
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and autormatically switches on a built in lamp at dusk. Complete with seales lead acid battery etc.E19.99 ref MAR20P1 A LARM VERSION of above unit comes with built in alarm and pir to deter intruders $£ 2499$ ref MAR25P4
CLOCKMAKER KTT Hours of fun making your own clock, complete instructions and everythingyou need $£ 799$ ref MAR8P2 CARETAKER VOLUMETRIC Alam, will cover the whole of the ground floor against forcred entry. Indudes mains powersupply and integral battery backup. Powerful intemal sounder, will take extemal bell if req'd Retail $£ 150+$, ouls? $£ 49.99$ ref MAR50P1. TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal 'phone extns etc $£ 7,99$ ref MAR8P3 VIEWDATA RETURNS $£ 6$ madeby Tandata, indudes 120075 modem, Kbd, RGB and comp o/p, printer port No PSUE6 MAG6P7 IBM PC CASE AND PSU Ideal base for building your own PC Ex equipment but OK. £ 14.00 each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $5 \times 6{ }^{6}$ 6V 130mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or
motor.Supert value kit just $£ 5.99$ REF: MAG6P8 SOLID STATE RELAYS Will swith 25A SOLID STATE RELAYS Will switch 25 A mains. Input $3.5-26 \mathrm{~V}$ DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10 300DPI A4 DTP MONTOR Brand new, TTLEECL Inputs, 15° landscape, 1200×1664 ptrel complefe with circuit diag to help you interface with your projects. JUST 24 29 REF MAG25P1
ULTRAMINI BUG MIC 6 mmx 3.5 mm made by AKG. $5-12 \mathrm{v}$ electret condenser. Cost $£ 12$ ea, Our? fourfor E9.99 REF MAG10P2 RGB/CGA/EGA/TLL COLOUR MONTIORS 12^{2} in good condition. Back anodised metal case. £99 each REF MAG99P1 GX4000 GAMES MACHINES returns so ok for spares or repair 59 each (no games). REF MAG9P1
C64 COMPUTERS Retums, so ok for spares etc $£ 9$ ref MAG9P2 FUSELAGE LIG HTS 3 loos by 4^{\prime} panel $1 / 8^{\circ}$ thick with 3 panels that glow green when a votage is applied. Good fornight lights, fromt panels, signs, disco etc 50 - 1000 per strip. $£ 25$ ref MAAG25P2 ANSWER PHONES Returns with 2 faults, we give you the bits For 1 lault, you have to find 'the other yourself. BT Response 200's
E18
2em REF MAG1 BP1 PSU £ 18 ea REF MAG18P1. PSU $£ 5$ ref MAGSP12.
SWTCHED MODE PSU ex equip, $60 w+5 v$ © 5 FA , $-5 v$ ©. 5 A , +12 @ 2 A .12 V © 5 A 120/220v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket $£ 6.99$ REF MAG7P1
PLUG IN PSU $9 V 200 \mathrm{~mA}$ DC $£ 299$ each REF MAG3P9
PLUG IN ACORN PSU 19V AC 14 w , £2 99 REF MAG3P 10 POWER SUPPLY fully cased with mains and of leads 17 v DC 900 mA output Bargain price $£ 599$ ref MAG6P9
ACORN ARCH MEDES PSU $+5 v$ © 44A. on/off sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube, complete with PCB and components $£ 29$ REF MAG29P1 SINCLAIR C5 $13^{\prime \prime}$ wheels complete with tube, tyre and cycle style beaning £6 ea REF MAG6P 10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$ £ $£$ a pack. REF MAG3P 11 13.8V 1.9A psu cased with leads Just $£ 999$ REF MAG10P3 360 K 5.25 brand new half height floppy drives IBMcompatible industry standard. Just $£ 699$ REF MAG7P3
PPCMODEM CARDS. These are tigh spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance pice is E5 REF: M AG 5 P1
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment butp perfect for all sonts of remote control prowers IMTERMATIOMAL TRANSISTO
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs cimCLARCEMOTOR
SINCLAIR CE MOTORS We have a few lef without gearnoxes. Theseare $12 \mathrm{VDC} 3,300$ Pm $6^{\prime \prime} \times 4^{\prime \prime}, 14^{\prime}$ OP shaft. E25REF: MAG25 UNNERSAL SPEED CONTROLLER KT Dexigned by us for the above motor but ok for any 12 r motor up lo 30A. Complete with PCB etc. A heat sink may be required: $£ 1700$ REF: MAG17 VIDEO SENDER UNT. Transmits booth audioand vdeo signals from ailher a vitro camara, udeo iecorder. TV or Computer etct to any standard vesetina io tangel(tune Vioa sparfechanne) i2v M CORDLESS MICROPHONE S FMO CORDLESS MICROPHONE Small hand held Unit with a 500 ' rangel 2 transmit power levels. Ress PP3 9y battery Tuneable
to any FM receiver. Price is $£ 15$ REF: MAG 15P1 LOW COST WAL KIETAL KIES PAG 15 P
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200 ' Ideal for garden use or as an educational loy Phtce is $£ 83$ pair REF: MAG BP1 $2 \times$ PP3 req'd.
-MINATURE RADIO TRANSCENERS A pair of walke talkies with a range of up to $\mathbf{2}$ kilometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Compiele with cases and earpieces. $2 \times \mathrm{PP} 3$ req'd. $£ 30.00$ pair REF: MAGJO.
COMPOSITE VIDEO KTT. Converts composite video into separate H sync, V sync, and video $12 \vee D C, £ 800$ REF: MAG日P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical pinter assemblies including pnithead, stepper motors etc etc in facteverything barthe case and eiectronics. a good stripper £5 REF: MAG5P3 or 2 for $£ 8$ REF: MAGGP3

NEW BULL ELECTRICAL STORE WOLVERHAMPTON BRANCH

NOW OPEN AT 55A WORCESTER ST TEL 090222039

100MHZ OSCILLOSCOPES now in stock, $12 \times 10 \mathrm{~cm}$ screen, delayed sweep, $1 \mathrm{Mohm} / 25$ pfinputs, modesch1, ch2, add, chop, alt, dual. 460 x $305 \times 200 \mathrm{~mm}, 17 \mathrm{kgs}, £ 267+$ Vat includes insurance and carriage.

INFRARED LASER NIGHT SCOPES

Second generation image intensifier complete with hand grip attachment with built in laser lamp for zero light conditions. Supplied with Pentax 42 mm camera mount, 1.6 kg , uses $1 \times$ PPP3,3xAA's (all supplied) $2245+$ Vat

NEW HIGH POWER LASERS

15 mW , Helium neon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 polarizer built in so good for holography. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND UNDER GUALIFIED GUIDANCE. £349+Vat.

'PC PAL' VGA TO TV CONVERTER

Just plug in and it coverts your colour television into a basic VGA screen, perfect for laptops, saves lugging monitors about or just as acheap upgrade. Intro price $£ 49.99$ +Vat.

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25 " 360 K DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY $£ 39.00$
REF: MAG39

3FT X 1FT 10WATT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
 NOW AVAILABLE BY MAIL ORDER £33.95

TOP QUALITY AMORPHOUS SLICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICAIIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY
WHERE A PORTABLE $12 V$ SUPPIYIS REQUIRED. REF: MAG 34
££££££WE BUY SURPLUS STOCK£££££££
TURN YOUR SURPLUS STOCK INTO CASH
IMMEDIATE SETTLEMENT WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

1994 CATALOGUE.

PLEASE SEND 4SP, A4 SIZED SAE FOR YOUR FREE COPY,

SOME OF OUR PRODUCTS MAY BE UNLICEMSABLE IN THE UK
BULL ELECTRICAL 250 PORTLUND ROAD HOVE SUSSEX BN3 5QT
MAIL ORDER TERMS: CASH PO OR CHEQUE WTTH ORDER PLUS E3.00 POST PLUS VAT. PLEASE ALLOW 7 - 10 DAYB FOR DELIVERY THLLPHONR ORDERS WELCOME

TEL: 0273203500
FAX: 0273323077
VITS

SPEAKER WIRE Brown 2 core 100 foot hank $£ 2$ REF MAG LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4 UNNERSAL PC POWER SUPPLY complete with nyle
switch, fan etc. Two types available 150 w at $£ 15$ REF:MAG switch, fan etc. Two types available 150 w at $£ 15$ REF MAG4F
($23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at $£ 20$ REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$) $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$)
"FM TRAMSM ITTER housed in a standard working 13A Aadapter!! the bug runs directly ofl the mains so lasis forever why pay E700? or price is E26 REF: MAG26 Transmils to any FM radio
-FW BUG KT New design whth PCB embedded col for extra stability. Works to any FM radio gv battery reg'd E5 REF: MAG5P5 "FM BUG BUILTANDTESTED superior design tokit Supplied to detective agendes of petiory req'id E 14 REF MAG 14
TALKIMG COINBOX STRIPPER orlginally made fo retail a E79 each, these unis are designed to convert and ordinary phone into a payphone. The units neve the lods missing and sometimes oroken hinges. However they cin be adaplec for their orginal use or usec for someth ng eise?? Pnice is just $£ 3$ REF: MAG3P1 100 WATT MOSFET PAIR Same spoc as $25 K 343$ and $2 S J 413$ ($8 \mathrm{AA} 140 \mathrm{~N}, 100 \mathrm{~W}$) 1 N Channel, 1 P channel, $£ 3$ a pair REF: MAG3P2 TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made 4^{4} round with large shielded magnets,
Good quality. $£ 2$ each REF: MAG2P4 4 or 4 for $£ 6$ REF: MAG6P2 Good quality. £2 each REF: MAG2P4 or 4 for £6 REF: MAG6P2 above AT KEYBOARDS Made by MAGncot the orequality keybcards need just 3 small mod to run on ainy AT, they work periectiy but you will have to put up with 102 ioreign keycapsl Pnce E6 REF: MAGBP3 PC CASES Again mixed types so you take a chance next one off COMM E12 REF:MAG 12 or two the same for £20 REF: MAG2OPA COMMODORE MICRODRNE SYSTEM mini storage device for Cos's 4 times faster than disc drives, 10 times faster
than taoes Complete unit ust $£ 12$ REF:MAG12P1 than tapes Complete unit just £12 REF:M AG 12P1
SCHOOL STRIPPERS We have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you need at Just 50p a unit (minimum 10).
HEADPHONES ExVirgin Attantic 8pairs for£2 REF:MAG2P8 PROXMITY SENSORS These are small PCB's with what look ke a sourre and sensor LeD Don ane end and lots of components on he resto the PCB, Completewin fy leads. Pack of $5 £ 3$ REF: MAG: SPS OOPD
SNOOPERS EAR? Onginal made to dip over the earplece of teleohone to amplity the soundit also works quite well on the cable unning along the watl Price is £5 REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuats of price just Ex REF: MAG5PA Worth it just for the very comprenensive manuall 5.25° only.
DOS PACK Microsoft version 5 Original software but no manuals hence onty E3 REF: MAG3P6 525° only.
CTM644 COLOURMONTTOR Madetow ork with the CPCA64 home computer. Standand RGB input so will work with other machines. Refurbished £59.00 REF:MAG59
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12v operation, Silgnt marks on case and unboxed (although brand new) ES REF: MAGBP5 NINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar panell £14 REF: MAG14P9
COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF: MAG4P9 Fully tested units are £ 12 REF: MAG12P5
MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end, cable the other ideal for projects, low cost manufacturing etc Pack of 10 for $£ 3$ REF:MAG3P8 Pack of 100 E20 REF: MAG20P5
MICROWAVE TMER Electronic timer with relay output suitable to make enlarger timer etc £4 REF: MAG4P4
MOBILE CAR PHONE E5.99 Weil aimost! complete in car phone excluding the box of eiectron as nomally hidden under seat. Can ba made to illuminate with 12 V also has bult in light sensor so display only illuminates whendark Totaly convinangl REF:MAG6P6 ALARM BEACONS Zenon strobe made to mount on a extemal bell box but could be used for caravans etc. 12v operation Just connect up and it llashes regulary) E5 REF: MAG5P11
FIRE ALARM CONTROL PANEL High quality metal cased alam panal $350 \times 165 \times 60 \mathrm{~mm}$. With key. Comes with electronics but nolinfornation, sale price 7.99 REF: MAG8P6
REMOTE CONTROL PCB These are receiver boards for garage door opening systems Another use? E4 ea REF: MAG4P5 $6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL 12v $155 \times 310 \mathrm{~mm}$ 130mA Bargain price just £5 99 ea REF MAG6P12 FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 499$ ref MAG5P13 ideal for experimenters! 30 m for $£ 1299$ ref MAG $13 P 1$ LOPTX Line output transformers believed to be for hi res colour monitors but useful forgetting high voltages from low ones! $£ 2$ each

BOTH SHOPS OPEN 9-5.30 SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and X Ray detec tor, This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visuai indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of $5-9999 \mathrm{UR} / \mathrm{h}$ or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

EXPRESS COMPONENTS

MALSS IONIZER KITT. Very useful is tat increases the flow of negative rarst helps clear cigarette smoke, dust, puite ax. Helps reduce stress and :exprition problems. 115 . kil, $£ 20$ Esl
COMBINATION LOCK Electronic ; in combination lock suitable for himsas, cars, houses elc, easily program--aste Includes mains 2 Arelay o/p. 9v equation $£ 10$ kil, $£ 14$ buill.
variable power supply. Šasisized, short circuit protected. Gives 3-3iv DC at 2.5 A , ideal for workshop or liduralory $£ 14 \mathrm{kit}, \mathrm{f} 18$ buill 24 VAC required
LEAD ACID CHARGER. Two amomatic charging rates(fast and slow), sisual indication of battery state. Ideal ior al amm systems, emergency lighting, bantery projects etc. $£ 12$ kit, $£ 16$ builh. PHONE LINE RECORDER.Device that connects to the 'phone line and acuvates a cassette recorder when the handset is lifled. Ideal for recording 'phone conversalions etc!. 18 kit, 112 twilh.
ROBOT VOICE. Turns your voice irio a robot voice! answer the plone with a different voice!. £9 kit, £13 built.
PHONE BUG DETECTOR. This device will wam you if somebody is eavesdropping on your 'plone line $£ 6$ kin $£ 9$ built
PHONE BUG. Small bug powered by thetelephone line. Only transmits when the phone is used. Popular surveillawee product E 8 kit, $£ 12$ built.

STROBE LIGIIT Bright strobe light will an adjustable frequency of $1-60 \mathrm{hz}$. (a lot faster than conventional strobes!) $£ 16 \mathrm{kit}$ £20 buill.
4W FM TRANSMITTER 3 RFstages, audio preamp. 12-18vDC. Medium powered bug $£ 20$ kit, $£ 28$ built.
3 CHANNEL LIGHT CHASER. 3x 800w oulpul, speed and direction controls, can be used with 12 led's (supplied) or TRIACS for mains lights (also supplied). $9-15 v \mathrm{DC} . £ 17 \mathrm{kit}, £ 23$ built. 25W FM TRANSMITTER. 4 stage, a preamp will be required. (Our preamp below is suitable) $£ 79$ buill.(no kits).
SOUND EFFECTS GENERATOR. Produces any thing from bird chips to sirens! add sounds to all sorts of things £9 kit £13 built.
FM/AM SCANNER. Well not quite, you have to turn the knob yourself but you will hear things on this radio (even TV) that you would not hear on an ordinary radio! A receiver that covers $50-160 \mathrm{MHZ}$ both AM and FM. Built in 5 w amplifier $£ 15 \mathrm{kit}, £ 20$ buill.
CAR ALARM SYSTEM. Works on vibration and/or voltage drop from door etc being opened. Entry and exit delays plus adjustable alamn duration Low cost protection! £12 kit, £16 built.
15W FM TRANSMITTER. 4 stage, high power bug. You will need a preamp for this (see our preamp below which is ok) $£ 69$ buill. (no kils).
1W FM TRANSMITTER. 2 stage including preamp and mic. Good general purpose bug. 8-30VDC. £12 kit,£16 built.
$50 \mathrm{I} / \mathrm{C}^{\prime} \mathrm{s}$ for £1.50
Nice mix of chips at a bargain price!
CERAMIC CAPACITOR PACK
Good mixed pack of 100 capacilors for just $£ 1.00$

ELECTROLYTIC PACK 1 100 small mixed electrolytic capacitors just $£ 1.00$
ELECTROLYTIC PACK 2 50 larger electrolytic mixed capacitors

RESISTOR PACK NO 1

250 low wattage resistors, ideal for most projects etc. Just $£ 1.00$

RESISTOR PACK NO 2
Hi wattage pack, good selection of mixed wattages and values 50 in all, bargain price just $£ 1.00$

PRESET PACK

Nice selection of 25 mixed preset pots for just another $£ 1$!

RELAY PACK NO 1
6 mixed relays for $£ 1$, thats just 17 p each.

CONNECTOR PACK
10 different connectors, again for $\mathfrak{£ 1}$

FUSE PACK NO 1

40 mixed 20 mm fuses, ideal for repairs etc, or just to stock up the spares box! Just $£ 100$

FUSE PACK NO 2
30 mixed $1.25^{\prime \prime}$ fuses again ideal for spares etc. Just £1.00

WIRE PACK

25 Metres of insulated wire for just $£ 1.00$, good for projects etc

SLEEVING PACK

100 assorted pieces of sleeving for connectors etc. Yours for just £1.00

DIODE PACK

100 assorted diodes for just $£ 1.00$

LED PACK

20 light emitting diodes for f 100

TRANSISTOR PACK

50 mixed transistors, another bargain at $£ 1.00$

BUZZER PACK

10 things that make a noise for just £1.00:

POT PACK

10 pots for $£ 1$, (5 different types) a snip at $£ 1.00$

DISPLAYS
10 seven segment displays for £1. 00

ORDER 10 PACKS OR MORE AND CHOOSE ONE FREE PACK!!
FREE COMPONENT CATALOGUE WITII EVERY ORDER!!

BULK PACKS

KITS 'N MODULES

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. £15 kit, £19 built,
TREMBLER ALARM. Designed for bikes elc, adjustable sensitivity, presel alarm time, auto reset. Could be adapled for all sorts of "borrowable" things $£ 12$ kit, £1 6 built
LLTRASONIC RADAR. A project that can beused as a movernent detector in an enclosed space. Range about 10 metres, 12 vDC . Good basis for car, shed, caravan alarmi etc. $£ 14 \mathrm{kil}, £ 19$ built.
PHONE CALL RELAY Very useful kit that incorporates a relay that operates u hen the phone rings. Can be used to operate more bells, signalling lights ex. Good for noisy enviroments or if y ou have your headphones on! $£ 10$ kit, all buill
PORTABLE ALARM SYSTEM. Small $9 v$ alarm system based on a mercury switch The alarm contitues to sound until disabled by the owner. Buzzer included. £11 kit £15 built. 800W MUSIC TO IIGHT EFFECT. Add hythm to your music with this simplesound to light kit $£ 8 \mathrm{kit}, \mathrm{E} 12$ buih.
MOSQLITO REPELLER. Moden way to keep the midges away! Runs for
about a month on one 1.5 v battery. Frequency is set to drive away mosquitos etc $£ 7 \mathrm{kit}$, E11 built.
3 CHANNEL SOUND TO LIGIIT. Can be used anywhere as no connection is made to hifi. Separate sensitivity controls for each channel, 1,200Wpowerhandling. Microphone included. £14 kit, £19 built.
MINI METAL DETECTOR. Detects pipes, wires etc up to 20 cm deep. Useful before you drill those holes! $£ 8$ kit, $£ 12$ built.
0-5 MINUTE TIMER. Simple time switch adjustable from 0-5 mins, will switch 2 A mains load. 12 v op. Ideal for laboratory, photographic projects etc. £7 kit, E11 buill
7 WATT HI FI AMPLIFIER. Useful, powerful amplifier $20 \mathrm{hz}-15 \mathrm{hz}$, 12 18 vdc . Good for intercoms, audio systems, car etc. $£ 7$ kit $£ 11$ built.
INCAR SOUND TO LIGIIT. Put some atmosphere in your car with this kit. Each channel has 6 led's that create a beautifu! lighting effect! $£ 10 \mathrm{kit}$, 114 built
VOX SWITCH This is a sound acti vated switch, ideal for use on transmitters, CB's, tape recorders etc. Adjustable sensitivity, built in delay. Mic input. $£ 7$ kit, $£ 11$ built.
low a telephone conversation without holding the handsel to your ear! $£ 11$ kit $£ 15$ built.

SWITCH PACK
10 switches for just $£ 1.00$

12v FLOURESCENT. A useful kit that willenable you to light large flourescent tubes from your car battery etc 9 v mains transformer required $£ 8 \mathrm{kit}, £ 12$ built

KNOB PACK

10 knobs for just $£ 1.00$

REMEMBER! YOUR FREE COPY OF OUR CUT PRICE COMPONENTS CATALOGUE SENT
WITII EVERY ORDERI!!

How to place your order.

By phone.......... 0273771156
By FAX........... 0273206875
By Post....PO box 517 Hove Sussex BN3 5QZ
Payment by ACCESS, VISA, CHEQUE OR POSTAL ORDER.
Cheques and postal orders should be payable to Express Components.
ALL PRICES ARE SUBJECT TO 99p POST AND VAT. Some of our products may be unlicensable for use in the UK (particularly the FM transmitters.)

 on ertin ann ?

Abstract

A network of US military satellites can now be used to pin point your position in three dimensions, to within just a few metres anywhere on the surface of our planet. We look at how this system works and how it is being used as the basis for a range of new devices that could affect all our lives.

During the Gulf War: the US.mfiltary and their allies maderunprécedented use of high technology to give them a strateglc advantage over their lraqi oppenents: This allowed thern to attack key targets. with enormous precision and minimum nisk' to thatt! quth forces. Rethember the news shots of cruise missilles flying low along a main street in Baghdac? Missiles capable of locating and destroyingra spoclic building or installation and so accurate that they could fly into an air conditioning duct onia contarate bunker. There were also SAS teărns who werë capable of moving across the desert at high-speed, under cover of dark, to accurately locate and destroy Iraqi supply columns and SCUD missile launchers.

The technology which allowed the ailled forces to procisely target missiles, aircreft and troops gave them anvenormous edge. It was based on a highly sophisticated network of satellites, orbiting the Earth at a height of 20,200 kilometres, known as, GPS, or Global Positioning Systern. Witb this systern, the USimilitary and NATO allies can pinpoint any piece of hardware with an accuracy in three dimen-- sions ranging from a few metres to a few centimetres or even less.

This is no ordinary military development, since the US has made it possible for anyone to use it, on a somewhat less acčurate level, to
locate their
geographical position or that pftsom pier ef pf:mobile equipmeint. All over the world, therchent ships, watitinght commercial and private alrcratt are now using GPS systems to track their curren sposition, Transport compahies are using It lo locate thioir vehicles, empergency ssrvices are using tito identify the nearest team to a Partichiaroncident, everttaxi companies are using it to locate thenearentrato is customiai.

Very soon GPS systems will inturice the lives of all. of us. The tiig car companies, for example, are developing techniques which will allow, drivers to know exactiy where they are on an electronic atlas. Air triffic control getertisere being developed which will utillse GFS to allow heredsingmimbers of aircratt to fly on busy routes. GPS systems are ser accifate that they are even being used to mreasure and survey new buildings, roads and bridges, taremotefy cheok foridangerous distortions in dams and earth phivementitn eztithquakezzones.

The development of GPS

This system, has taken over twerity years toidevelop \& 4 e reputed cost
ruining into tens of billions of dollars. It was first conceived by the US Navy in 1973 as a navigation aid and was then known as the Navstar Global Positioning System This was based upon a technology derived from
earier, land based, radio beam navigation systems, such as the well thown Loran in America and the Decca in Europe. These had been developed during and after World War II for maritime navigation purposes.

The designated function of Navstar GPS was, like Loran and Deoca, to provide an accurate all weather naval navigation system. However, this function was broadened as a result of its being merged with the US Air Force 612B programme, to provide highly accurate three dimensional positioning which could be used not just by naval .essels, but also by aircraft and for the new generation of smart mssiles.

The GPS concept was the subject of an enormous amount of very careful design work, both from the practical aspect and from the strategic aspect. The system had to be capable of very high accuracy, out also had to be proof against jamming by an enemy. The result of this design work was the launch of a test satellite in June 1977.

The first test system was sufficiently successful to persuade the Pentagon to go ahead with launching a network of GPS satellites. The first of these were launched from the USAF's rocket launch facility at Vandenburg Air Force Base in California, in 1978 and a limited two dimensional positioning system was first possible in October of that year. Three dimensional positioning was demonstrated two months later.

This early system relied on just a small number of satellites and thus provided only a few hours of operation each day. To give a 24 hour global, high accuracy, three dimensional positioning capability required the launch of a lot more satellites, so that at any time at least one and preferably more satellites were above the horizon at any position on Earth. These have been launched over the years, using the space shuttle or Delta rockets.

At the moment, the GPS satellites system can provide full two dimensional high accuracy positioning, 24 hours a day, anywhere on the surface of the Earth, but it is still only capable of providing about 22 hours per day worth of full, high accuracy, three dimensional positioning, depending of course on latitude and altitude. The network is expected to be completed`and fully operational with 24 hour three dimensional positioning capability by mid 1995.

The only real problem which remains is the fact that GPS signals will not penetrate buildings or rock and consequently a GPS receiver can be effectively shielded from the satellites, thus reducing its ability to give an accurate position. This can lead to problems with accurate positioning in built up or mountainous areas. Another source of problems is ionospheric distortion, a signal distortion which can easily account for a positional error of 20 or 30 metres.

The signal shielding problem can, to a degree, be overcome by use of advanced software techniques in the receiver, coupled with an increased number of GPS satellites. The ionospheric distortion problem, on the other hand, is overcome by having the satellite produce two signals at different frequencies. Since the degree of distortion varies with signal frequency, it is thus possible to compare the two signals and compensate for the ionospheric distortion. Again, this is a problem which requires advanced software in the receiver for a satisfactory solution.

The military and civilian modes

The fascinating thing about the US military GPS system is that it is probably the only military system which civilians are allowed to use. Indeed, the US government has guaranteed free access for civilian users until at least the year 2005 and probably longer. However, they are not giving civilian users unlimited access, otherwise they would be handing over the technology to any potential enemy.

The result is that, although a GPS system in stand alone mode has a positional accuracy of about 20 metres, this is degraded to 100 metres in civilian systems. Civilian systems can, however, be used to

How GPS works

The GPS system consists of a network of satellites orbiting Earth at an altitude of $\mathbf{2 0 , 2 0 0}$ kilometres twice per siderial day (a siderial day is 23 hours and 56 minutes long). This means that they cover the same track each day, but four minutes earlier. There are six orbiting planes of three satellites at 55 degrees inclination to the horizon:

Each of the eighteen satellites in current operation transmits continuously on the same frequency, the carrier frequency being 1575 MHz . The actual signal is transmitted using spread spectrum modulation, which means that the carrier wave is phase inverted by a pseudo-random code running, at 1.023 MHz . In order to recover the signal, it is multiplied by a replica of the code used in the satellite. There are two versions of this code the normal civilian version and the secret, highly accurate, military P. code.

Each satellite has its own code which identifies the satellite, its current position and the current time The code containing this information is 1023 bits long and repeated once every millisecond. Timing has to be very accurate and on each satellite is derived from an atomic clock.

Using this system, the receiver finds the position using two techniques. Firstly, it measures the Doppler shift of the signal that results from the satellite's motion relative to Earth. Secondly, it measures the signal propagation delay between several satellites. The data from these two techniques is combined by the controlling computer with data on the satellite orbits and the exact position of the satellites in those orblts; to generate the receiver's exact position.

Accurate position calculation requires that a lot of factors are taken Into account. Thus, corrections need to be made for ionospheric distortions and even the effect of relativity (due to an increase in frequency from the signal interacting with the gravity gradient) has to be taken into account and corrections made to the calcula-
tlons. GPS systems rely upon an enormous amount of highly sophisticated computation to produce their results, hence their need for powerful processor chips.
achieve much higher accuracy when used in other modes.
Thus, a five metre accuracy is possible when used in differential mode with corrections from a reference receiver at a known location. Even greater accuracy, down to a few millimetres, is possible when the system is used with carrier phase tracking.

The primary military and civilian use for GPS systems is in the form of real time, stand alone systems, rather than those involving linkage with other receivers and a considerable amount of post processing. For this reason, it is the stand alone mode which is degraded in the civilian versions.

This degradation, known as 'Selective Availability' is achieved by use of a secondary code, the P or 'precise' code, that is transmitted by the satellite along with the conventional positional and time data. This P-code contains the information which allows far greater positional accuracy to be obtained. This P-code can be changed at regular intervals to prevent enemy access and has also been designed so that an enemy can not generate spurious GPS signals and thus deceive the receiver into giving a false location.

Of course, as one would expect, the Russians have an equivalent GPS system known as GLONASS. To date, this Russian system has not been used commercially, but moves
are underway to incorporate it into the GPS network with the development of combined GPS/GLONASS receivers. Such combined receivers will have the benefit of a far larger number of satellites and thus be less prone to error.

The commercial application of GPS

A practical GPS system consists of two components, the radio receiver/antenna system and the signal analysis computer. Thanks to the military origin of the system, the radio receiver/antenna system is already available as highly integrated units, indeed GEC Plessey Semiconductors has produced a single chip which contains most of the receiver electronics. Similarly, the analysis computer can be one of the high power microprocessor chips that are now widely available and here the Transputer seems to be a common choice. All this means that the actual hardware for a basic commercial GPS system can now be obtained for just a couple of hundred pounds.

The relative low cost of commercial GPS systems has meant that over the last few years there has been an enormous boom in the sales of sets. As one would expect with a system that was initially conceived as a maritime navigation aid, the first big market to appear for commercial GPS was among professional

Basic circut for the heart of a GPS receiver based on the GEC Plessey GP1010
and amateur boat owners. Boat owners were also the first to benefit from 24 hour GPS coverage, because the wide, uninterruoted horizon at sea allowed position fixing with a network of "ewer satellites, while sailors did not need the more complex thee dimensional positioning capability of the full GPS system.

There was initially considerable competition from the existing Loran and Decca navigation systems, but as the price of GPS has come down, it has become more popular, particularly in the professional market and with the serious yachtsman. Indeed, one only has to pick up a copy of any on of the yachting magazines to find dozens of adverts for GPS equipment, at prices ranging from three or four hundred to several thousand pounds.

This increasing popularity is due to a combination of factors. Firstly, the decreasing cost and secondly, the integration of GPS systems with electronic charts and course plotting software that will run on personal computers. Amongst certain professional users the very high accuracy of differential and carrier phase tracking GPS systems has been employed with considerable success. For example, oil rigs are now routinely positioned in oil fields such as the North Sea with enormous accuracy, thanks to GPS, in fact so accurately that a production platiorm can be exactly positioned above the well head left by a drilling rig.

Ferry companies are amongst the other users of GPS
systems that require high accuracy. In many busy and confined navigation channels, such as the Channel and large navigable rivers like the Mississippi or the Rhine, GPS systems can be used to accurately keep a vessel in navigable channels and also in the correct channel to avoid collisions with vessels going in the opposite direction.

The maritime emergency services have also started to make considerable use of GPS. Here, the International Maritime Organisation was one of the first to realise that search and rescue operations could be made much more effective if a GPS system was used to give an accurate position of a vessel in distress. It is now an IMO requirement that all commercial vessels carry a GPS receiver, which means that search and rescue craft can be sent directly to a site and locate it using their own GPS receivers.

Private and commercial pilots were also quick to realise the potential of GPS as an additional aid to navigation. For years they had been relying upon a network of VHF radio beacons to provide accurate fixes, while commercial jets also had an Inertial Navigation System, or INS, for navigation across oceans. Pilots used a combination of these two position location systems, with radar, altimeters and of course voice links with air traffic control, to provide accurate navigation.

GPS on a chip

For anyone interested in experimenting with GPS systems, GEC Plessey Semiconductors has made life a lot easier with the development of a single IC, including all the active circuitry needed to convert global positioning information in rf spread spectrum form to a 4.309 MHz if form, that can be used for subsequent processing. The diagrams in this box show how this chip, the GP1010, functions, as well as a basic applications circuit.

For more information on the GP1010 contact GEC Plessey Semiconductors, in Swindon on 0793 518000.

The problem with the network of beacons is that it automatically creates a system of lanes in the sky, along which aircraft travel from one beacon to another. The result is a localised build up of aircraft in a particular part of the sky, thereby putting limits on the number of aircraft which can safely fly a particular route. The other limitation is that many leisure flyers, such as microlights, small aircraft and balloons may be unable to properly utilise the beacon system.

This is less of a problem over oceans, where there is no beacon network and pilots have to rely upon their INS. But INS systems are notoriously inaccurate and can quite often register a drift of one degree per flying hour, a drift which can result in a serious positional error after a long ocean flight.

The use of GPS systems solves all these problems. They can give accurate positional fixes to within 100 metres on the horizontal and 150 metres in the vertical, which means that there need be no positional drift over oceans, deserts, etc., and where air traffic is heavy, many more lanes can be created and the separation between aircraft reduced. Furthermore, because GPS systems are cheap and lightweight, they can be installed in any type of aircraft, even microlights.

Perhaps the most spectacular use of GPS systems in terms of accuracy is in ground based surveying with the aid of carrier phase tracking. Besides being used in building and civil engineering construction surveying, it can be used to create extremely accurate maps. Maps that are being combined with satellite images to provide information on a wide range of geological, economic and environmental subjects. They can, for example, be used to accurately measure movements in the tectonic plates of the Earth, or in a major fault line and thus help predict earthquakes.

Stand alone GPS systems are also being used by freight companies to accurately locate the position of heavy goods vehicles, trains or even individual freight containers. These systems involve linking the GPS to either existing voice VHF networks for automatically relaying vehicle position within a local area, or via the Inmarsat satellite system for global position location. This not only enables the operator to accurately locate the vehicles in a fleet, thereby optimising their use, but it also allows them to track any stolen vehicles. This is a particularly important feature of the system when one considers that goods
vehicles and their freight loads worth over $£ 500$ million are stolen every year and most of them are never located.

Automatic location of mobile units with the aid of GPS systems is also proving useful to the various emergency services, since it allows police, ambulance and fire services to locate the nearest appliance to an incident and thus reduce the time taken to reach it. A similar system is also being deployed by the London cab company, Computacabs, to enable them to get a cab to a customer as quickly as possible and also via VHF links to warn drivers of problems on the roads, check customer credit cards and advise on optimum routes. Other potential users of such systems include bus companies and service/maintenance vehicles for power and telecommunication companies.

Surprisingly enough, GPS systems are also being used in applications which do not involve position location. In fact, GPS systems can also be used as very accurate time and frequency sources (the satellites all contain highly accurate atomic clocks) and moreover, as a time source which is globally synchronised. The BBC time signal is no longer derived from a time source in Greenwich, but from a GPS receiver.

The future of GPS

As we have seen, GPS systems are already being employed in
a wide range of non military applications. However, the development of GPS applications is still in the early stages and we have yet to see some of the most exciting of these developments, which look likely to have an impact on the lives of nearly all of us.

The application which will undoubtedly have the widest impact is the development of GPS systems for cars. All round the world, the major motor manufacturers are working on such systems. These products range in sophistication from a simple emergency beacon to full scale navigation systems, complete with electronic map displays. Prototype in car navigation systems are already undergoing tests in Japan, the US, the UK and Germany.

Probably the most sophisticated of these projects is being developed by a consortium of Japanese car companies. It involves storing a high precision 50,000:1 vector map database in the car as part of the GPS system, which is displayed on a PC quality flat screen display. This database is linked to a sensor system, allowing the car to be precisely positioned on the map with the aid of dead reckoning and map constraints, all based upon a GPS reference. This gives the navigation system far greater accuracy than is possible with the GPS system alone.

Because the navigation system must not distract the driver, the Japanese system will only function when the car is stationary or moving at under ten miles per hour. At higher speeds, it will simply display trunk roads without any finer detail. The problem of driver distraction has led some European developers to propose a purely voice command system (I can see this driving people mad very quickly!, Ed.).

Car navigation systems based on GPS could be on the market today and, indeed some simpler systems are, but their further development is constrained by one major factor - the lack of high precision electronic map data for many areas of potential use. It is the availability of such maps that has allowed the Japanese to gain an early lead in this market.

Car navigation systems may well prove to be the big commercial market for GPS systems but the future for this technology is no less exciting in other areas. For example, in maritime applications, experimental GPS receivers are now being linked with communications systems that utilise the low flying COSPAS SARSAT satellites to continuously report on a vesse|'s position. In future they will probably be linked to geostationary satellites as part of a system which will allow accurate control of shipping movements.

Moves are also afoot to use GPS systems to replace some elements of air traffic control and permit planes to fly much closer to each other. Again, this will rely upon GPS systems on the plane continuously reporting exact positions to air traffic control, via a geostationary satelite. Problems associated with a failure of the actual GPS system have now been overcome and the safety aspect of relying on GPS has been satisfactorily resolved.

Another aeronautical application for GPS is for precision approach and landing systems. This is a particularly important development, since it will considerably improve safety at countless airports, particularly in the third world, where no MLS system is installed.

This article has, I hope, shown that satellite base global positioning systems are likely to have a considerable impact over the coming decade in a wide range of different non military applications. GPS should improve efficiency and safety in a great many transport operations, and allow scientists and engineers to measure minute movements in the environment, providing vital clues to climatic changes or impending earthquakes.

This is one piece of military expenditure for which we should all be thankful!

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W) ALL POWER RATINGS R.M.S. INTO 4 OHMS, BOTH CHANNELS DRIVEN
FEATURES: \#Independent power supplies with two toroidal translormers \star Twin L.E.D. Vu meters \star
 mor thest mos-ria for stress ree power deilvery into virtuality any load \& High slew rale a Very low $\because D$

MXF $400 \mathrm{W19}{ }^{\times H 5} 5^{14^{4}}$ (3U) (3D12"
MXF900 W $19^{\prime \prime} \times \mathrm{HF}^{1 / 4^{\prime \prime}}{ }^{4}(3 \mathrm{OU}) \times \mathrm{D} 14^{\prime 3}$
PRICES:-MXF200 \&175.00 MXF400 £233. 85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CAAAIER DEL. 512.50 EACH

4hered 3-Way Stereo Acllve Cross-Over, housed in a $19 " \times 10$ case. Each channel has three level controls: Tast mid fop. The removable fronl lassia ailows access to the programmable DIL switches 10 adjust the - men bass channel. Nominal 775 mY inpulioulput. fuily compatible with OMP rack amplifier and invert swit Price £117.44 + £5.00 P\&P
TIEREO DISCO MIXGR SDJ3400SE \star ECHO \& SOUND EFFECTS \star

Price E144.99 + 85.00 P\&P

DISOIELICTRIC TWEETERS' MOTOROLA

- the Piezo revolution! The low dynamic mass (no volce coil) of a Piezo tweeler produces an improved ans response with a lower distartion ievel than ordinary dynamic tweeters. As a crossover is not required Prop can be added to existing speaker systems of up to 100 watis (more if two are put in series FREE

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshelf and medium'sized Hl -Fi apeakers. Price $\mathrm{E} 4.90+50 \mathrm{p}$ P\&P. TYPE ' B ' (KSN1005A) $31 / 2^{\prime \prime}$ super horn lor gerferal purpose speakers disco and P.A. systems etc. Price $E 5.99+50 \rho$ P\&P. TYPE 'C' (KSN1016A) $\mathbf{2}^{\prime \prime} \times 5$ " wide dispersion horn for quality Hi-Fl systems and quality discos etc. Price $\mathbf{8 6 . 9 9}+\mathbf{5 0 p}$ P\&P.
TYPE ' B ' (KSN1025A) $\mathbf{2}^{4} \times 6^{\text {" }}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable tor high quality Hi-fl syslems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&p. TYPE 'E' (KSN1038A) ${ }^{374}{ }^{\text {" }}$ horn tweetar with altractive silver finish trim. Suilable lor Hi -Fi monllor systems etc, Price $£ 5.99+50 \mathrm{p}$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level control and cabinet inpul fack socket. $85 \times 85 \mathrm{~mm}$, Price $\mathrm{C} 4.10+50 \mathrm{p}$ P\&P.

TVIFIGHT GASED LOUDSPEATKERS

- Tew 'ange of quality loudspeakers. designed to lake advantage of the lates - wechnology and enclosure designs. Both modeis utilize sindio qualliy -rsand directivity tioms, extruded alumlnium corner protertion and stea 교 za ers. complimenter with heevy duty black covering. The enclosures wre tree as standard with lop hals lor optional loudspeaker stands
POMEM RATNGS QUOTED IN WATTS RMS FOR EACH CABINET FHEOUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}=20 \mathrm{KHz}$
 SPECIALIST CARRIER DEL. $£ 12.50$ PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$
Dellvery $£ 6.00$ per pair

THAEE SUPERE HIGH POWER 50 WATTS (75OSTER AMPLIFIERS Bridged MS (75 250 WATTS (125 Bridged Mono 125) Stereo, 250W 400 WATTS ($200+200$) Stereo, 400 W ALL POWERS INTO 4 OHMS Features:
Stereo, bridgable mono * Choice of high \& low level inputs $\# 4$ \& R level controls \# Remote on-off \# Speaker \&
150W E49.99 250W ع99.99 OOW E109.95 P\&P E2.00 EACH

OWPM IS FAI POWER AMTLIFIER MODULEE SUPPLIED READY BULLT AND TESTED.

 elc. When comparing prices, NOTE ihal all models Include loroldal power supply, integral heat sinik, glass llbre P.C.B. and

drive circulls to power a compallble Vu meler. All models are open and short elrcuil prool.
 THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts A.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Inpul Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE 840.85 + £3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts A.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PAICE E64.35 + ع4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE ع81.75 + \&5.00 P\&
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE \&132.85 + £5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz} \cdot 3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{LS}$, T.H.D. Iypical 0.002%, Input Sensitivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Prolection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE E259.00 + E12.00 P\&
NOTE MOS-FET MODULES ARE AVALLABLE IN TWO VERSIONS:
STANDARD-INPUTSENS 500 MV BAND WIITH STANDARD - INPUT SEMS SOOMV, BAND WIDTH 100 KHz . 77 BmV , EAND WIOTH SOKk\& ORDER STANDARD OR PEC.
LOUDSPZAKEAR LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGN POWER, HIOH FREQUENCY BULLETS AND MORNS, LAROE (A4) S.A.E (60p STAMPED) FOR COMPLETE LIST. McKenzie and Fane Loudspeakers are also available.

EMINENCEFT IR S RUMIENIS. PY\%. DISCO. ETC

ALL EMINENCE UNITS 8 OMMS IMPEDANCE

8 $^{\prime \prime} 100$ WATT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO
RES. FREQ. 72 Hz , FREQ. RESP TO AES. FREO. 72Hz, FREQ. RESP. TO 4KHz, SENS 97dB.
$10^{\prime \prime} 100$ WATT R.M.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO PRICE ©32.71 + RES. FREQ. $71 H Z$, FR. M 10 . 100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID. $10^{\prime \prime} 200$ WATT R.M.S. MIIO-200 GUITAR, KEYB'O, DISCO, VOCAL EXCELLENT HIGH POWER PAP RES. FREQ. 65 Hz , FREO. RESP. TO 3.5 KHz SENS 99 dB . 12 " 100 WATT R.M.S. ME 12 -100L GEN. PURPOSE, LEAD GUITAR, DISCO, STAGE MONITOR RES.FREQ. 49 Hz , FREQ. RESP. TO 6 KHz , SENS 100 dB . 12" 100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A., VOCAL, STAGE MONTOR RES. FREO 42Hz, FREO. GESP. TO 10KHz, SENS 98dB. PRICE E $36.67+£ 3.50$ P8P $122^{2} 200$ WATT R.M.S. ME $12-200$ GEN. PURPOSE, GUITAG, DISCO, VOCAL, EXCELLENT MID RES. FREQ. 58HZ, FREQ. RESP. TO 5 KHz. SENS 981 B. $\$ 2300$ WATT R.M.S ME1 2. 300 GP HIGH POWER EASS, LEAD GUITAR, KEYBOARO, DISCO ETC. RES. FREC. 47Hz, FRED. RESP. TO 5 KHz , SENS 1034 A . 15SS. FREO. 46 Hz , FREO. RESP. TO 5 KHz , SUNP 99 dB . 15" 300 WAT P.M.S. ME1 5-300 HIGH POWER BA RES. FREO. 39Hz, FREQ. RESP. TO 3 KHz , SENS 103dB. PHICE C70.19 + C3.50 PS , INCLUDING BASS GUITAR.

BARCEND Ji3:- HRE STUDIO, INCAR. ETC

ALL EARBENDER UNITS 8 OHMS (ExcepIE日B-50 A EB10-50 which are due
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
$8^{\prime \prime} 50$ watt EB8-50 DUAL IMPEDENCE, TAPPED 4/8 OHM BASS, HI-FI, IN-CAR 10" SOWATT EB10-50 DUAL TO 7 KHz SENS 97dB. 10 " 50 WATT EB $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR. $90+\varepsilon 2.00$ P\&P RES. FREQ 40 Hz , FREQ. RESP. TO 5 SHz , SENS, 99 dB . RES. FREQ. 35 Hz , FREO. RESP. TO 3 KHz STUDIO.
RES. FAEO. 35 Hz , FREO. RESP. TO 3 KHz , SENS 96 dB . 12 100WATT EB12-100 BASS, STUDIO, HI-FI, EXC
RES. FAEO. 26 Hz , FREO. AESP. TO 3 KHz , SENS 93 CB . RES. FREO. 26 Hz , FREO. RESP. TO 3 KHz , SENS 93 CB . FULL RANGE TWIM CONE, HIGH COMPLIANCE ROLLED SURROUND PAICE E42.12 + E3.50 PIP 54. SOWATT EBS-BOTC (TWIN CONE) HI-FI, MULTI-ARRAY OISCO ETC

RES. FAEO. G3Hz, FREO. RESP. TO 20KHz, SENS 92 dA .
 RES. FREQ. 38 Hz , FREO. RESP. TO 20 KHz , SENS 94 d .
B" 6 OWATT EBE-GOTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC PRICE E10.99 + 1.50 PAP RES. FREQ. 40 Hz , FREO. RESP. TO 18 KHz , SENS 89 dB . 10" 6OWATT EB10-60TC (TWIN CONE) HI-FI, MULTI
RES. FREQ. 35 Hz , FREQ. RESP. TO 12KHz, SENS $98 d B$.

PRICE $\mathbf{E 1 6 . 4 9 + E 2 . 0 0}$ Pap
THANSMITHEA HOBEY KITS
PROVEN TRANSMITEER DESIGNS INCLUDING GLASS FIBR PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENT COMPLETE WITH CIRCUIT AND INSTRUCTIONS
${ }^{3 W}$ TRANSMITTER $90-10 \mathrm{OBMHz}$ VAAICAP CONTAOLED PROFESSIONAL PEAFORMANCE, RANGE UP TO 3 MILES, SIZE $36 \times 123 m m$, SUPPLY $12 V$ @ $0.5 A M P$ PRICE $\{14,85+\mathbb{1} .00$ Pd
FM MICRO TRANSMITIER $100-100$ MHz, VAAICAP TUNED, COMPLETE WTH VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY gV BATTERY.

PHOTO: aw FM TRANSMITTEM

E.K. 日L =CTRONICS

UNITS 1 E 5 COMET WAY, SOUTMEND-ON-SEA, EsEEx. SSe 6 rR. Tel.: O70e-527572 Fax. $0702-420243$

Computer controlled stepper motors

This month, Jim Spence looks at an application for the ETI Forth Experimenters Computer - using it to accurately control the rotation of a stepper motor.

(6)ave you ever experimented with a stepper motor? for next to nothing. The old daisy wheel printers (if you can lift Did it work? Were you pleased with the results? This is a practical article, the intention of which is to tell you how to use stepper motors and make them work for you in your application. Described is an unusual way of driving the ordinary stepper motor and obtaining a much improved performance. Stepper motors seem to be used everywhere - in printers, disk drives, robots, fruit machines, in fact anywhere where mechanical positioning is important.

This is good news for the average electronics enthusiast, if there is such a thing. Why is it good news? Well, you can pick up at a car boot sale, or better still at a Radio Rally, 'junk' disk drives and printers-
ane) have about 5 stepper motors in and these would have cost a fortune to buy new.

Types of stepper motor

The two most common types of stepper motor are unipolar and s polar. The type you are most likely to encounter is the unipolar, which is shown in Figure 1. They come in two types, 5 \therefore ire and 6 wire. Bipolar motors only have two windings and therefore 4 wires (Figure 1d), while modern motors have 8 wires and can be wired either as unipolar or bipolar (Figure 1c).

Before you can use one of these motors you must establish two things. Firstly the common connection, as in the case of Figure 1 a and 1b, and secondly the sequence of the phases. The colours of the wires are of no help, as every manufacturer appears to have their own scheme.

The first step can be achieved with a meter. Usually, the motor windings will be between about 6 and 150 ohms. Obviously, the resistance between two windings will be twice that of the resistance between the common connection and a winding.

Having established the phases, you must determine which phase steps the motor to which position. Do this by wrapping a piece of stiff wire round the shaft of the motor, to act as a kind of clock hand or pointer. Connect each phase in turn to a power source and mark the top of the motor. You will easily establish the sequence of phases this way.

Typical Motor Characteristics

Basically, a stepper motor is a motor capable of revolving in fairly accurate discrete steps, a kind of digital motor if you like Stepper motors have definite characteristics, they are good for some things but not for others. To begin with, they are not very fast in terms of RPM. An average stepper motor will go up to about 1000 steps per second if driven correctly and this translates to 150 RPM for a 1.8 degree per step motor, driven in half step mode. Now for a ballerina that's fast, but for a motor it isn't and it certainly wouldn't be suitable for use on the end of a garden strimmer! Having said that, modern motors are capable of quite reasonable speeds, as high as 10,000 steps per second without appreciable loss of torque.

Stepper motors also need special arrangements to make them work. You can't simply connect them up to a battery and watch them go round. As you will see later, the arrangements for driving this type of motor can make all the difference.

So what's the good news? Well, in spite of the special arrangements needed for driving, for positioning type applications they make life very simple because there is no need to have a constant feedback (as in closed loop). They can also be very accurate. For example, you can do things like move in extremely small increments. All of these options are simply not
possible or practical with an ordinary motor.
With these properties, the motor lends itself. to 'positioning' applications such as plotters and CNC (computer numerically controlled) machines, the main advantage being that there is no feedback required as to the position of the machine. This is known as an open loop system. For example, all you would need to do is to tell the motor to advance a certain number of steps and this would cause an exact and repeatable location to be realised.

In practice there is always some kind of feedback, even in an open loop system. Take a pen plotter. At switch on, how would the controller know where the pen was if there wasn't a 'home' position? There could also be an intermediate monitoring position so that whilst plotting, if this position was crossed. The controller could work out if it should have been there or not, issuing an error if an anomaly occurred.

The point is that in a system like this, the monitoring is minimal. In contrast, a closed loop system requires a constant update of the position: A closed loop system is 'safer' in the sense that if external forces interfere with the motor, e.g. you stick your hand in the machine, the effects are known immediately and corrective action can be taken, whatever that may be. An open loop system would not know if anything had gone wrong until the monitoring position, if any, which may be too late.

Fundamentals of stepper motor control

Although this text is of a practical nature, there are a few fundamental things about stepper motors which must be covered in order to make sense of the rest of the text and to enable you to put your 'junk' motor to good use.

Steps

Most stepper motors, you are likely to encounter, will step either 7.5° or 1.8° per step. This will give 48 and 200 steps per revolution respectively. Ninety degrees per step is also common but these are usually geared down. Obviously, the smaller the step, the better the resolution that can be obtained for a given gear ratio.

Pull-in and Pull-out Rate

The pull in rate is the maximum switching rate at which a loaded motor will start without losing steps. The pull-out rate is the maximum switching rate a loaded motor can go at. The pull-in rate is always lower than the pull-out rate and from this statement it can be seen that, if you want to drive a motor at its full speed, the pull-out rate, then you must progress to this, stepping slowly at first and increasing gradually to the pull-out rate. This is called ramping.

Resonance

Certain operating frequencies cause the motor to resonate. You can actually hear this and it may cause the motor to lose steps. These frequencies should be avoided.

General

There are, of course, many other parameters but for practical purposes the above will suffice. It is also important to realise that the motor will behave very differently when installed in a machine than it does when it is driving nothing.

Motor drivers

How you drive a stepper motor can make all the difference. You may be able to stop a motor with your thumb and finger when it is driven by one method, but take the same motor and drive it differently and it will be unstoppable and probably consume less average current.

Unipolar

As mentioned earlier, there are two broad types of motor unipolar and bipolar. This, however, refers as much to the way motors are driven as to the way the motors are constructed. Some motors are designed to be driven either way. For example Figure 1c. The term unipolar, meaning

Figure 5: 3 types of drive arrangement

gnedrection through the windings．
The old full height 5 1／4in disk drives have a small 12 V ． E＝ecer motor to position the heads．This is driven very simply b．tw． 75463 driver chips（see Figure 2）．This is a very simple frout indeed and I am sure that no attempt is made to get the traximum performance from the motor．However，for this appli－ aton it obviously fits the bill．

A more practical and modern circuit for driving a stepper motor this way is to use an octal driver chip，ULN2803．This intredible device has eight Darlington driver outputs capabie of sirking 500 mA each，at up to 50 V ．The outputs may also be こことaleled to give greater output current and all this for less than El7（see Figure 3）．Be warned here however，the device is an 18 gin DIL with no heat sink，so don＇t put your finger on the top to ミニE if it＇s getting warm．I still have a blister！

More performance

The main problem with the circuits shown so far is in obtaining tre full pull－out rate（maximum speed）．If the motor is fed with iss rated current at a low 12 V voltage，it may take，say 10 ms ， for the winding to become fully energised．This will be the deter－ mining factor for the maximum speed．In order to get more \％eformance，the motor can be driven with a higher voltage but trrough a resistor to limit the current．The effect of this is to rebuce the time taken for the winding to reach its maximum energy and thus increase the maximum speed．It is common practice to use a resistor，which is generally called a Forcing

resistor．Using a resistor also gives improved torque and as a rule the higher the value the resistor，the better the improve－ ment，providing the current is maintained．

The jargon used is $L / n R$ ，where $n R$ is the sum of the external resistance plus the winding resistance R ．The idea is to maintain the rated current but with a higher voltage．For example a 20 Ohm 10V motor（ 0.5 A per phase）driven in L／4R mode would have a 60 Ohm series resistor $(60+20=80=$ four times phase resistance）and be driven with a 40 V supply，thus maintaining the 0．5A．See Figure 4.

It is normal practice for manufacturers to quote torque in the performance figures using a particular L／nR value．

The forcing resistor needs to be fairly hefty and the above example would require a 20 W resistor which would get quite hot，therefore probably requiring a heat sink．This is the main problem with the forcing resistor arrangement，it is very ineffi－ cient．The alternative is to dispense with the resistor but still use a high voltage and monitor the current in the phase winding．Just as the current begins to exceed the rated value， switch off the supply．As the current falls switch the supply back on again，so on and so forth at high speed．This is called chop－ ping，see Figure 5．This is the best arrangement of all and because of the near ideal waveform，gives very much improved performance．For unipolar types of drive，it is usually adequate to use either direct or L／nR types of driving arrangement．

Bipolar

This method of driving stepper motors gives quite a remarkable improvement in performance over unipolar．The phases need to be driven in opposite directions and so the driver circuit needs to be able to source current as well as sink it．In the unipolar arrangement，the unwanted phase is simply switched off．In the bipolar arrangement the phase is either connected to ground or $+v e$ ．The main disadvantage，in the past，has been the difficulty， and complexity of the driving circuits，but there are now ICs available which take care of all the driving complexities．

Chop It

The maximum performance which can be obtained from a stepper motor will be achieved with a bipolar circuit and some

Figure 7：Driver circuit 2
form of chopping mechanism driving a motor designed for bipolar operation. This can be achieved fairly simply using just 2 IC's, Figure 6. The first IC (L297), is the controller IC and the second (L298N) is the driver IC. This is very similar to the L-293, except the package enables it to handle greater currents. The two sense lines monitor the voltage across the motor windings and cut off the current at a predetermined value. This value is set by the input Vref. It is beyond the scope of this article to go into the details of this circuit, as the circuit proposed in Figure 7 performs almost as well. For a lower cost system, the added expense of the chopper circuit will make no practical difference.

The Circuit

The philosophy behind the circuit in Figure 7 was to construct a general purpose high performance stepper motor driver, capable of working with as many different types of motor as possible. The circuit is configured to drive a bipolar motor, but as you can see, a unipolar motor is shown connected. We can get away with this by leaving the common connections unconnected. The circuit will even work with a 5 wire type although some losses can be expected and the 5 wire motor may not reach its maximum performance. It will, however, perform far better with this circuit than it will with the unipolar circuit.

IC1 is a general purpose motor controller capable of supplying 1 A per channel, which is more than adequate for a lot of motors. The board has an on board variable voltage regulator which will need a heat sink. This is so that the current can be adjusted to suit the particular motor. Also, there is a Link on the board which is for an ammeter. Four output lines from the computer are needed as well as +5 V and ground. This is provided by the 6 way connector Only 4 wires are needed for the motor (see How It Works) and two pins are provided for the power input.

In practice, the circuit will supply about 1A for short periods without getting too hot: 300 to 500 mA is a realistic figure for continuous operation and you will be surprised how powerful some motors can be at this current.

Power Supply

Modern stepper motors have winding resistances as low as 1 to 2 ohms. A low voltage supply can therefore provide adequate currents. Older, cheaper motors however, have winding resis-
'tance's of 50 ohms and up. Connecting unipolar motors to run in bipolar mode effectively doubles the resistance. The practicality of the above means that to drive motors with a high resistance, a high voltage supply is needed. The circuit shown in Figure 8 will provide about 35 V , which is the maximum rating of IC1.

How It Works

REG1 is a virtually indestructible variable voltage regulator. Resistors R1 to R3 limit the current to about 1.5A and VR1 controls the voltage output, which will swing between 3 and 36V. C1 and C2 help to reduce the noise caused by switching the motor windings. IC1 is an L-293 which is intended as a general purpose motor driver, not just stepper motors. Diodes D1 to D8 prevent the normal voltage spikes exceeding the OV and 36 V rails, usually associated with inductive loads. There exists a variation of the IC, L293D, which has the diodes already built in. If you are using this chip, then the diodes are unnecessary.

As mentioned earlier, only 4 wires are required. The common connections are simply not used (see Figure 7) Figure 7 shows a 6 wire unipolar motor connected to IC1, ready to be driven in bipolar mode. Because current flows through two phases, for example from phase 1 to phase 3, rather than from phase 1 to
common, twice as much torque is available. If phase 1 and phase 3 are opposite each other, physically on opposite sides of the motor, one will be pushing and the other will be pulling so to speak. This gives double the torque that can be obtained from a unipolar system. A five wire motor also works driven by this method. Although current is flowing through the other two, unused phases, it has the same magnitude and direction. They therefore cancel each other out and do not mechanically affect the operation of the motor. This is not ideal, but it does give good results. A bipolar motor only has four wires and this circuit is ideal for driving one of these.

Construction and Testing

Use of the PCB is highly recommended, unless very low currents are to be used. You will notice that the PCB has large areas of copper connected to the ground pins and this is to help dissipate the heat from the IC. The chip is physically bonded to the ground pins for this purpose.

It goes without saying that for once an IC socket should not be used. Solder in all the components except the IC, taking particular care over the orientation of the diodes.

Connect up a power supply and check that the regulator IC is working and varies the voltage as you turn VR1. If everything is functioning correctly, solder in the IC. Make absolutely certain you get it the right way round.

After completing the board, connect a motor to the 4 way connector, a suitable power supply to the two pins, +5 V and ground, to the six way connector and an Ammeter across the pins marked Link. With nothing connected to DOD3, there should be no current flowing. Connect DO to the +5 V pin and adjust VR1 to give about 150 mA . The motor should jerk at this point, indicating current flowing through it. The actual current depends very much on the type of motor you have connected.
150 mA is a fairly safe starting point.

Figure 9: PCB component overlay

8 3 6 5	IC1 L293 or L293D REG1 L200CV R1, 2, 3 1R0.25W R4 820R0.25W VR1 10K lin pre-set C1, $2 \quad 0.1 \mu \mathrm{~F}$ D1-D8 BYW98-100 * $4 \times$ PCB pins, 1×6 way PCB connector, $2 \times$ PCB 2 way terminals * Diodes must have a Trr of less than 200ns, not needed if type L293 is used.
	Noxt month ... will look at the software for diving the stepper motor circuit described in this month's article.

-1

SPECIAL BUY AT 286

40Mb HD + 3Mb Ram

EITme product at industry beating low prices! All units (unles

Quraring all electronics ready toplug into anost of video mon EnMro sony, COMMODORE, PHLIPS, TATUNG, AMSTRAD
 $=50 \times$ ST for composite video input type monitors
$=30 X$ STL as ST but with integral speaker $=50 \times$ STL as ST' but with integral speaker

=30X MB Multiband VHF-UHF.Cable. Hyperband tuner | E36.50 |
| :---: |
| 32.95 |

FANS \& BLOWERS

IC'S TRANSISTORS DIODES
5,000,000 items EX STOCK
5 UAJo SAVINGS - SAE or CALL FOR LATEST LIS

PC SCOOP
 COLOUR SYSTEM ONLY $£ 99.00$

Computer Controlled Laser Video Disk Player
One of the most amazing surplus deals
Phlilps VP410 Laser
The Phillps VP410 LaserVision player, in as new condition, unit fea
lures full computer control, Plays standerd 12" LaserVision diskice with startling visual and audio quality in two channel stereo or mono When controlled by a computer. it may also be used as a varsatie high quality storage / retrleval medrum. It will play back either ers mos! types of commerciahy avalable video discs). Some of the many features of this incredible machine are:
RS- 232 INTERFACE
RGB / COMPOSITE VIDEO OUTPUT BNC+SCART INTERFACE PAL/RGB DECODER IR+WIRED REMOTE CONTROL FAST RANDOM ACCESS SPEEIRL PURLHASE Only £399.00

VIDEO MONITOR SPECIALS

 1024×768 The multi mode input allows direct con CGA, EG

KME 10 " as above for PC EGA standard $£ 145.00$ (E) NEC CGA 12° colour IBM-PC compatible. High quality ex-8quppment tuity tested with a 90 day guarantee. In an attractive two lone ribbed giey plastic case measuring $15^{\circ} \mathrm{L} \mathrm{L} 13^{2} \mathrm{~W} \times 12^{\circ} \mathrm{H}$. The ractual reâsons. Only E49.00(E)

20" 22" and 26" AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour monilors complete with composte video \& optional sound inputs. Attractive teak style case. Perfect lor Schools, Shops, Disco, Clubs, stc.
In EXCELLENT litite used condition with full 90 day guaranioe
 9" Mono cased, Black \& White ior CCTV Used/Tested \&49.00 (C) DC POWER SUPPLIES
10,000 Power Supplies Ex Sto
Ca/I for info / Iist
Power One SPL200-5200P 200 watt (250 w peak). Semi open
 frame giving $+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak). $-12 \mathrm{v} 1.5 \mathrm{a},+24 \mathrm{v}$
4 a (6 a peak). All outputs fully regulated with over voltage protection on the +5 v output. AC input selectable for $110 / 240 \mathrm{vac}$. Dirns $13^{\prime \prime} \times$
$5^{\prime} \times 2.5^{\prime}$. Fully guaranteed RFE.
Power One SPL130. 130 watts. Selectable for $12 \mathrm{v}(4 \mathrm{~A})$ or 24 v (v) (2A). 5 V Ast 20A \& 12 V © 1.5A. Switch mode. New. $£ 59.95(\mathrm{~B})$
 Lambada LYS-PV-12 200 watt switch mode +12 V DC © 29 a
semi enclosed, $10^{-1} \times 5^{\circ} \times 5^{\prime \prime}$. RFE and fully tested.
£59.95(C)
 Boshert 13090 . Switch mode. Ideal for drives \& system, +5 E @ 6 (C $\begin{array}{r}\text { £29.95(B) } \\ \hline\end{array}$

SPECIAL INTEREST

Zeta 3220-05 A0 4 pen HPGL RS232 fast drum plotter Trio 0-18 vdc bench PSU. 30 amps. New
DEC LSU/1102 CPU board
RED TOP IR Heat seeking missile (not armed !!)
Rhode \& Schwarz SBUF TV test transmitter $25-1000 \mathrm{mh}$
complete with SBTF2 Modulator
Calcomp 1036 large drum 3 pen plotte
Thurlby LA 160B logic analyser
Brush 2Kw 400 Hz 3 phase frequency converter
Anton Piltar 75 kW 400 Hz 3 phase frequency converter
Newton Darby 70 KW 400 Hz 3 phase tre
Sekonic SD 150 H 18 channel digitat Hybrid chan recorde
HP 7580A A1 8 pen HPGL. high spees drum plotier
Kenwood DA-3501 CD tester, laser pickup simulator Computar MCA1613APC 18 mm auto iris lenses 'C'.mount

${ }_{\xi 2100}{ }_{575}$
 \section*{}

19" RACK CAEINETS

Superb quality 6 foot 40 u Virtually New, Ultra Smart Less than Half Price! Top guality $19^{\text {reack }}$ cabinets made in UK by
Optima Enclosures Ltto. Units feature desionheight iockable half louvered back door and
removable side panels. Fully adjuslable internal flxing struts, ready punched for any contig witched mains distribution strip make these evar sold. Aacks may be stacked side by side and therefore requir anly two side panels to \qquad
Rack 1 Conple Rack 2 Rack, Less side panels \quad £175.00 (G) Over 400 racks in all sizes from stock! Call with your requirements.

LOW COST RAM UPGRADES

fully selectable for Expanded or Extended (286 processor and

 bova) mamory. Full data and driver disk supplied in good used Condition tully tested and guaranteed.£59.95(Ai) expendis memory elther 256 k or 512 k in 64 k tigp . May also be used to fiti in RAM above 640k DOS limit. Complete wilh data and software diagnostics. Order as: XT RAM UG. 256 k \qquad

No Break Uninterruptible PSU's

 Brand new and boxed 230 volts 1 KVa uninterruptible power supplyfrom systern from Densei. Model MUD 1085-AHBH. Complete with sealed lead acid batteries in matching case Approx time from inle Order as: MUD
$£ 575.00$
EMERSON ACCUCARD UPS, brand news 8 Bir halt engh PC com patble card for all IBM XT/AT compatibles. Card provides DC power to all Internal system components in the event of power supply fall-
ure. The Accusaver soltware provided uses only $6 k$ oi base RaM and automanically copies all system, expanded and video memory to the hard disk in me event of loss of power, when power is returned The machine is relumed to the exact status when the power falled !
The unit tealules lull sell diagnostics on boot and is supplied wittrfull fitting instruct ons and manual. Normal price £189.00

Only $£ 99.00_{\text {(8) }}$ or 2 for $£ 195_{\text {(c) }}$

Issue 12 of Display News now available - send large SAE - PACKED with bargains!

LONDON SHOP
Open Mon-Sat t:00-5:30
215 Whitehorse Lane
South Norwood
LONDON SE25

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30
Dept ETI. 32 Biggin Way Upper Norwood PREE On line Database
Info on 1000's of items V21,V22, V22 BIS
0816791888

Turbo
 speed indicator

In this month's PC project, John Lanigan shows how to build a simple little display which will indicate how fast your PC is running.

he old IBM XT spends more time in bits on my desk than in one piece running software. It's the one that gets all the tinkering, adding this,
tweaking that. It started out as a Portable with twin floppy drives and a built-in mono monitor. Now it is in a new case with uprated power supply, 3-1/2in and 5-1/4in floppies, hard disk,

calour display and turbo motherboard. It was while I was putting in the turbo board that I thought about digital speed indicators, like those on some of the flashier AT clones. It is not necessary ta build a counter and cecoder-driver circuit to display the two speeds at which turbo boards normally run. All we need is ※ switching element (a turbo sivitch for example) and a iftele hard-wired logic.

The 7 -segment display provides a crude but universally ecognisable rendering of the digits 0 to 9 by illuminating 2 or more bars of its 7 bar array. For any given 2 digits, several of the illuminated bars will be the same. For example, 0 and 8 , where the only difference is the centre bar. The board I used for the XT had a base speed of 4.77 and in turbo mode 9.54 MHz . To show 4.8, and in turbo mode 9.5, 10 of the segments involved remain unchanged, including the decimal point of course. A 4 becomes a 9 by adding one more segment and an $\overline{3}$ is made into 5 by removing 2 segments (see Figure 2). If we san hold the unchanging segments on and switch only those that change, we can produce a display of the CPU speed with a simple logic circuit.

How It Works

In the diagram (Figure 1), with SW1 open, the 2 inputs of IC1a are held high, giving a low output. This keeps LED1a turned off and at the same time holds the inputs to IC1b low. A low on both inputs switches IC1b output to high, so lighting the segments LEDOb and Oe. A truth table is given in Figure 3 and the display segments are identified in Figure 2.

IC1c and IC1d have permanent high outputs, because their inputs connect to the OV line. These outputs drive the segments LEDOa, c, d, f, g and LED1b, $\mathrm{c}, \mathrm{d}, \mathrm{p}, \mathrm{f}, \mathrm{g}$. They are the permanent segments.

Closing SW1 pulls IC1a inputs low and consequently the output goes high, lighting segment LED1a. The same 'high' connects to the inputs of IC1b causing its output to go low and turn off the segments LEDOb and Oe.

The 2 resistors, R2 and R3, in the lines to the switched segments adjust their brightness to
match that of the permanent segments. This is necessary because 5 of the permanent segments are driven by each of the remaining 2 gates. If the current to the switched segments was not limited they would be noticeably brighter than the rest.

Assembly and Testing

Before starting this project you should determine the switching levels on your turbo switch, SW1. Almost certainly, it will be switching between 0 and 5 V , but it is always more comfortable to be sure. You need to find the 'high' side of the switch for connecting up anyway. You can check this with a 20 k -ohm N meter set to the 10 V range. You should connect the common lead to a known ground such as the chassis metalwork. If you have more than 5 V , (up to 15 V), on your turbo switch, you must use a potential divider network to reduce it to 5 V . Use high value resistors to minimise the current drawn down the network.

Assembly should not present any problems with only a few components. Start with the low profile parts, the resistors, then the IC followed by the 7 segment displays. While soldering, do not concentrate on one device at a time. Move from one to another as this will avoid overheating and possible damage. This is particularly important if you have difficulty with one joint. Do not keep trying to complete it in one go, move to another component so that the first can cool.

When all the parts and the leads are in place, connect to a DC supply set at less than 5 V . I usually use 3.5 or 4 V , in case I have forgotten a current limiting resistor that should be protecting something either expensive or impossible to replace on a Sunday afternoon! Now connect the lead that goes to the turbo switch, SW1, to a 10k resistor and then to the supply. If you get the expected response - a dim 4.8 on the displays you can take the supply up to 5 V . Grounding the lead to SW1 should change the display to 9.5 .

LED Shot?

If the circuit does not perform as expected, trace the connections on the board and compare to the diagram. If you don't have a display at all, even when you turn up to 5 V , then switch off and start checking the power supply connections.
Meaningless shapes or unexpected numbers on the display mean that the connections to the segment pins are incorrect. If you are using a socket for the IC and/or displays, then look carefully to ensure there are no bent pins. Of course, you didn't insert ICs the wrong way around did you? (Yes so did I.)

Those of you in-the-know will have realised that NAND gates are not essential for this project. It will work perfectly well with inverters, like SN7414, as that is exactly how a NAND gate behaves when both inputs are connected together. The 7400 however, has just the right number of gates and it was on the top of the 'bits box' when I started work on the prototype.

Some applications may need to show different figures from those given, but the How It Works section should allow the confident beginner to alter the circuit to display any value from 0.0 to 99 .

Micro Surgery

It is not possible to describe fitting the board into all of the possible case types. They are, however, largely similar and the metalwork should not be too difficult.

Most cases have a lift and slide-off top, secured with a number of screws around the base of the unit. Under this is a chassis of sheet steel to which most of the sub-assemblies fix. The front panel moulding is held by screws to the front of the chassis from inside (see Figure 4), so some of the peripheral devices and driver cards may have to be removed first. There is usually a void between the front panel and the metalwork to which it mounts. This is where we will be fitting the new circuit board. You need to find a place for the circuit board that puts the 7 segment displays near to the front panel moulding. It may be necessary to mount the board on stand-offs or spacers, depending on the distance from the moulding to the chassis. The prototype was mounted on a sub-chassis that eventually made it easier to fit. If possible, pick a space where there is some room for a little adjustment This will allow you to align the board/assembly when all the surgery has been completed. * When you are satisfied with the position of the board, fit it temporarily and measure from a fixed point on the metalwork, such as one of the holes for the front panel moulding fixing screws, to the LED display. Take care, as this dimension locates the cut-out in the front panel. Mark out the hole on the front of the panel and cut it out.

This is best done by drilling in the corners and cutting between them, then filing or scraping to your marked lines. Better still, if you know a toolmaker or machinist, ask them to do it for you, because the results of any poor craftsmanship will be visible on the front panel!

To finish off the front panel, cut a piece of tinted Perspex and either glue or heat-stake (melt the panel and the Perspex together with a soldering iron) it in place, over the hole. If you have been unlucky cutting the hole and have made less than a perfect job, it may be useful to fix the window on the outside. In this case, you will have to glue it of course. A useful 'dodge' is to use a bezel to cover the hole, so it is not so important to cut a good hole. With the front panel back on, you will need to adjust the position of the circuit board to align it with the window.

There are 3 connections to make - to SW1, the 5 V and OV lines. The supply is fairly easy just connect to the nearest disk
drive power supply but make sure you don't pick the 12 V line! I use a lot of 5A screw or block connectors for this sort of thing. For the switch, it is probably easiest to solder directly to the switch terminal. If you have one of the older PCs whose hard disk drives do not self park on power off, park your disk heads before dismantling or moving the case. This precaution will save you from considerable anguish later. Do not use the switch lead for your 5 V supply. It may work, but more likely you will be trying to draw more current than was expected of the switch.

None of the components are difficult to obtain. Only the 7 -segment displays are important in that they are low current, high brightness types.

Resistors

R1 1k
R2 220R
R3 68R
(all 1/8 W 5\% carbon film)

Semiconductors

C1 SN7400 4 2-input NAND gate
LEDO and 1 low current, high brightness, common cathode 7 -segment LED display (MAPLIN QY54J)

Miscellaneous

PCB or suitable Veroboard
Machine screws, nuts, washers and spacers
Connecting wire

CALL IN - OPEN: MON-FRI 8.30-5.00 SAT 10.00-5.00

BITE ALARM

builds three different bite detectors for anglers, designed for varying stages of the National Curriculum.

his project has been designed to be compatible with the new National Curriculum ideals, where students of varying ability face

the same problems but choose different levels of technology to overcome them.

The object in this case is to indicate audibly, via a beeper and visually through an LED, when a 'bite' is detected while fishing This can be extremely useful, either when using two rods as a monitor for the second, or for night fishing.

There are three versions of this alarm to allow for the varying abilities of students, but all three use the same detector, box, LED and beeper, although the electronics varies from a couple of components to a dozen or more. Here are the three models, together with their appropriate levels within the National Curriculum and as assessed by the CDT Head of Department at Denefield School, Reading.

Model 1000 - very basic, no active electronics, suitable for pupils working at level 3 , minimum.
Model 2000 - simple two stage circuit using a thyristor and a 555 IC, suitable for pupils working at Level 6 or at a range
of levels from 4-7, provided they use the circuits and data supplied for justifying their solutions. Model 3000 - a digital approach using 3 CMOS ICs. The complexity of this circuit is such that pupils using it could, if it is used as a basis for their own development of a bite alarm, achieve the highest levels. With the right description and folder work, this model is suitable for pupils working at Level 7 or higher.

General Background

There are a lot of good quality bite alarms on the market, but their prices seem well out of the reach of many enthusiasts. Several of those looked at seem to draw a fair amount of current when switched on but not indicating, which means battery replacement would be a frequent occurrence and with a good quality PP3 costing $£ 2$ a go, also expensive. So here are my cheaper, low current versions.

The single most important part of the Bite Alarm is the detector. Somehow, this must detect the increased tension
caused by a fish pulling on the line but be able to ignore the constant tension due to current or wind. Many of the ready made units use a disc, which the line rotates when pulled tight and an opto detector is used to monitor dark and transparent sections of this disc. The manufacture of this rotating disc module in production terms and quantities is relatively easy, but trying to make a one off with tools readily available to the amateur is quite a different matter. The most difficult problem is making a spindle to run freely, but strong enough to take the punishment handed out during a day's fishing in all weathers and to survive the average fishing box. Several attempts were made, but all ended up using tools or materials not always available to the amateur. Another approach was required and this was to use a standard $1 / 4$ in mono jack plug socket. This, with slight modification, was found to be ideal cheap, strong and effective.

The spring contact of the socket on the sleeve terminal is bent slightly backwards, to reduce the pressure it exerts on the jack plug. The tip contact on the plug is filed to produce a flat (as per diagram), so that when it is plugged into position A, no contact is made with the socket tip contact, but when the plug is rotated to position B , contact is made. By loosening the shaft contact, by bending it back slightly, we have reduced the current handling capacity of the jack plug/jack socket, but this is unimportant as we are only going to pass a few milliamps through it.

All three versions of the Bite Alarm use this type of detector switch. By filing different amounts off the tip contact on

the jack plug, the distance between the position A and B san be varied to suit. Care must be taken not to file away too much or the tip connection is broken as this goes up the centre of the jack plug. To reduce the force required to turn the jack plug in the socket, a simple ever is used. The length of this lever can . ary to suit, but remember the longer the ever, the less force is required to turn the fack plug, but the further the lever must ze moved. For practical purposes, several levers can be made to suit conditlons, short for fast moving water and longer for water that is still or slow fowing

The jack plug top is also modified. The two connectors are cut off as near to the base as possible to allow them to se soldered together. The screw thread has two flats filed in it in order to stop the に, er turning without turning the jack plug.

A short length of the screw cap is cut ofitito cover these shorted connections and to hold the lever arm in place. If only one arm is going to be used on each jack plug, it is advised that it is glued to the jack plug to give added support. Femember several lever arm jack plug assemblies can be made. The top of the smort length of screw cap can be filled \therefore th glue gun glue and a small screw cap insert can be fitted to give it a profes-

The position of the jack plug on the lever arm is also important as the metal to the right of the jack plug acts as a counterbalance weight, making this heavier and effectively decreasing the force required to turn the lever. Too heavy and it keeps the lever in position B, too light and it only detects Great Whites - quite rare here on the Thames.

The fishing line is passed under the detector lever arm in position A so that when the line is pulled taught by a fish, the lever moves to position B. In order for this to happen easily, the bite alarm is clipped on to the rod rest by a couple of small terry clips. The top of the rod rest has a short bar mounted on it, which has two uses. Firstly, it stops the Bite Alarm from rotating on the rod rest and secondly, it holds the rod in the correct position above the detector arm, to the left of the Bite Alarm. All three versions of the alarm use this type of detector switch, as well as using the same type of box. The switches are all mounted in the same position where applicable - this is to allow an upgrade at a later date if skill and confidence increase during the life of the alarm.

All three versions have a LED as well
sional look. These come in different colours and can be used to instantly recognise which one is most suitable for the conditions, e.g. blue for slow water and red for fast water, etc.
as switchable sound which indicates a 'bite'. The sound can be switched off if it is thought that it might disturb the fish or other people nearby. All versions have been extensively tested and their varying

complexity only determines the way a bite is indicated. It doesn't affect the sensitivity of detection, which remains the same in all three. Each version is equally useful, something not usually found in graded ability projects.

Bite Alarm 1000

This is the simplest version, but is still a very rewarding project which effectively has no active electronics.

How It Works

When the Power switch is On, the +9 V from the PP3 battery goes to the jack socket tip terminal. If the jack plug on the detector lever is in position A, i.e. fishing line loose, the circuit is effectively broken as no contact is made to the tip of the jack plug. However when the jack piug is rotated to position B by the action of the line being pulled taught by a fish, the tip contact of the jack plug make contact with the tip contact of the jack socket and a circuit is made. The jack plug must have its two terminals connected together as shown in the

contacts close, switching 9V to R4. R4 and R5 produce a voltage divider and current limiter, essential to the safe operation of the thyristor.

Thyristors vary considerably in their sensitivity and if a different one is used, it must have a similar
diagram. The +9 V now flows into R1, the current limit resistor and into the positive side of the LED. The negative side of the LED (the lead nearest the flat on the side of the LED) completes the circuit to battery 0 V .

If the Sound switch is On, 9 V is also passed to the positive side of the beeper, the red lead. The black lead goes to battery OV. A low current, low price buzzer rated at 12 V is used in my projects although any small low current piezo sound (active type with oscillator built in) will do.

Although in this version there is plenty of room, it is recommended that the alarm is built to the drawing and the controls fitted roughly where indicated this then allows the project to be upgraded if required later, as the other projects use the same box, etc.

Although this is the simplest of the three alarms it does have the advantage that when the detector lever is in position A, not indicating a bite, no current flows at all, so increasing the life of the battery. Current is only drawn while indicating.

Bite Alarm 2000

This circuit can be broken down into two

distinct parts, both of which use components commonly found in school projects - the latch, built around a thyristor and the oscillator, built around the 555 timer.

How It Works

The latch part of the circuit uses the property of a thyristor that once it is turned on it stays on, even if the input signal is removed. It will stay on until the current passing through it is taken away. The input signal comes from the detector switch which, when in position A, receives nothing as the switch is effectively open. When rotated to position B by a fish on the line, the detector
specification. C2 is used to try to remove any RF (radio frequency) signals that may be present, shorting them down to OV . If present in any quantity they could cause the thyristor to turn on, giving a false indication.

When the detector lever is in position B and the alarm power is switched On, the thyristor turns on, effectively going from open circuit to short circuit. This turning on to a short circuit condition will remain, even if the detector lever drops back from position B, removing the gate signal from the thyristor. From now on, the thyristor applies 9 V to the 555 .

In the oscillator, the 555 is connected
as a standard，slow running oscillator．C1 me be altered to suit anything from $22 \mu \mathrm{~F} 16 \mathrm{~V}$ to $22 \mu \mathrm{~F} 16 \mathrm{~V}$ ．The speed of issoillation will change accordingly－the lager the capacitor the slower the oscil－ le：on．A LED with its current limit resistor It is connected to the output of the ascillator pin 3 and will then flash，indi－ caing a bite．If the sound is switched On， －te beeper will pulse．This pulsing is mare distinctive than it being on continu－ u．sly，as in the 1000 model．To stop the三arm the detector arm must be returned to position A and the reset button pressed．

The reset button bypasses the thyristor，so the current flows through the reset switch and not through the inyristor．Electricity always takes the path镇 least resistance，so reducing the current through the thyristor turns the三ミrm off．Usually，the current through the thyristor is reduced to zero by breaking the circuit，using normally closed contacts on a press switch．The thyristor E surned off by pressing the switch and zeening the normally closed contacts， －nus breaking the circuit．In our case， bypassing the thyristor has the added Ezvantage that it can be used as a＇test＇ zutton．When the alarm is in the fishing ここ．\times without the detector lever and jack olug plugged in，simply switching the三ミm On and pressing the reset button should start the oscillator．This is tacause the reset switch bypasses the －nyrstor and applies power directly to the ここう．but only while the reset button is being pressed The beeper should sound －s：：itched on and the LED should flash． The orilliance of the LED and volume of the beeper should show if the battery is

OK．Some batteries deteriorate quite quickly even thought they are not being used，so it is a good idea to check it before going fishing．It is easy to see the advantage of using this method of reset－ ting over the method normally used．

It is recommended that the layout is followed to allow for a later upgrade to the 3000 if so required．

There are more wires connecting up this alarm PCB than in the 1000 ，but if different coloured wires are used，there should be no difficulty．They should be connected one at a time，checking with the circuit．Small holes are drilled under the alarm to allow the sound out，as in the 1000 unit．

A good quality PP3 battery，i．e．an alkaline type is recommended，more expensive but they don＇t have to be changed so often．Although unplugging the detector arm should reduce the residual current flow to zero，it is recom－ mended that the alarm be switched off when stored and，at the end of the season，the battery should be removed to prevent it from leaking．Despite what the manufacturers say，batteries still leak when left in damp conditions．

Bite Alarm 3000

This is the most sophisticated of the three alarms and hence the most compli－ cated．It gives the option of only having 3 beeps to indicate a bite．or will indicate continuously at the flick of a switch．The other advantage is that it may be reset either automatically after 3 beeps or manually， even though the lever is in position B ．

This alarm works by using 3 digital CMOS ICs and processing the signal
received via a series of logic functions， these include D type RS stat，NAND Schmitt gates（must be Schmitt type for the oscil－ lator to work）and a walking 1 counter．

How It Works

This alarm，with all these extra features， still uses the same detector switch as the other versions，but the inclusion of R2， R3 and C1 makes its operation slightly different，by allowing the alarm to be reset in the active B position．

When the lever is in position A ，i．e．the detector switch is open circuit，C1 charges up via R2．This is passed to the detector switch and is at 9 V when charged．When the lever is in position B ， this 9 V in C 1 is applied to the clock input of IC1a，the D type stat，via the detector switch．This is normally held down by R3． The charge held by C1 allows the clock input to receive a logic 1 before the action of R3 discharges C1 back to a low，via the potential divider action R2， R3 680K to $27 \mathrm{~K}-25: 1$ ．

This somewhat complex action is required to allow the reset of the stat to operate and not be retriggered by the lever moving from B to A or even staying in position B．

Once the clock input has received a low to high transition and assuming the stat is not being reset，a 1 will appear on the Q output pin 1 of IC1a．This 1 ，or 9 V ， will stay on the Q output until reset by a reset signal on pin 4．The Q output is used to enable an oscillator which supplies the pulses for the LED and beeper． The oscillator is built around IC2d and is fed to the input of the counter IC3，as well as being inverted by IC 2 c and used

to drive the output transistor Q1 to power the LED and beeper. A transistor is required to amplify the current output of the CMOS IC which can only supply 1 mA or so directly.

The counter IC3 is a walking 1 type, which means that when the first pulse is received, assuming the counter has previously been reset, the output corresponding to count 1, pin 2 goes high, all the other remain low. On receiving the second pulse from the oscillator, the count 1 output goes low and the count 2 output pin 4 goes high. On receiving the third pulse from the oscillator pin 7 , count 3 output goes high and pin 4 goes low. The pulses, as well as going to the counter, go to the LED and beeper, if switched on. So far, 3 flashes on the LED along with 3 beeps will have passed. The fourth pulse will cause pin 10 of IC3 to go high and pin 7 to go low. Assuming the 3 beeps option has been selected, pin 6 of IC2 will be high, pulled up by R7. Now the 4 output on the counter pin 10 makes pin 5 on IC1b high. Two highs in on a 2 input NAND makes the output go low, so IC2 pin 4 goes from a high to a low - this is fed to IC2 pin 2, the input, to another NAND gate. Any low into a NAND causes its output to go high, regardless of the other inputs. This high on the output of IC2a pin 3 resets the counter as well as the D type, returning the bite indicator to its start position, regardless of the position of the detector lever. All this from the generation of the
fourth pulse happens so quickly that the beep is never heard, so it is cancelled before it has had time to sound or even illuminate the LED.

If the 3 beeps function is not selected, IC2 pin 6 remains low (switched to OV by the selector switch), ensuring a high on the output pin 4 no matter what is on pin 5 due to the counter, so the oscillator will run on until reset by pressing the reset button. This puts a low on IC2 pin 1 causing pin 3 to go high, resetting the counter and D type.

D1, R6 and C4 form a switch on reset so that when the alarm is first powered up from the power switch, C4 from being fully discharged by D1, charges up via R6. So to start with, IC2 pin 1 is low until C4 charges up to above 60% of rail, or about 6 V . During this charging up time, pin 3 is high, resetting $I C 1 a$, the D type and IC3 the counter, but as soon as pin 1 reaches 60% of rail it is seen as a 1 and IC2 pin 3 goes low, cancelling the reset.

If all this seems a bit complicated, it is advised that the truth tables are consulted on the NAND operation. Although IC2 is a NAND Schmitt, its truth table is identical to a normal NAND, like the 4011. The difference is only in the hysteresis allowing it to be used as an oscillator, unlike a normal NAND gate.

IC1b is not used in the circuit but, as is required by all CMOS ICs, all unused inputs are either tied up or down, i.e. connected to rail or OV and, not left unconnected to float.

It will be noted that the first beep is longer than the others - this is due to the fact that C 2 , the timing capacitor for the oscillator, charges up to rail volts, i.e. 9 V , when the oscillator is off, so C2 must discharge from 100% to 40% of rail, taking longer than continuous oscillation where it only charges from 40-60\% and back to 40%.

Although three possible options are given in this article, there are several other approaches to overcome the Bite Alarm problem. Even following one of the suggested circuits, there is still a lot of experimenting to be done with the lever length and shape, where to mount the jack plug, even the possible use of a counterbalance weight and so on.

I have experimented with making a very small alarm, actually mounted on the rod. Although it adds weight to the rod it still works, even if it does get in the way a little.

EASY-PC, Schematic and PCB CAD

Over 18,000 Installations in 80 Countries World-wide!
 - Runs on:- PC/XT/AT/ 286/386/486 with Hercules, CGA, EGA

 or VGA display and many DOS emulations - Design:- Single sided, Double sided and Multi-layer (8) boards.

- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill. - Tech Support - free.
- Superbly easy to use.

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD.	\$195.00	£98.00
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	\$375.00	£195.00
EASY-PC Pro' XM: Extended Memory Version - Greatly increased capacity	\$475.00	¢245.00
PULSAR: Digital Circuit Simulator ~ 1500 gate capacity.	\$195.00	C 98.00
PULSAR Professional: Digital Circuit Simulator ~ 50,000 gate capacity.	\$375.00	¢195.00
ANALYSER III: Linear Analogue Circuit Simulator ~ 130 node capability	\$195.00	£98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 node capability.	\$375.00	£195.00
Z-MATCH for Windows: NEW Windows based Smith-Chart program for RF Engineers .	\$475.00	¢245.00
FILTECH: Active and Passive Filter Design program	\$276.00	£145.00
We operate a no penaty upgrade policy. You can upgrade at any time to the professional version of a program just for the difference in price.	USS prices include Post and Pecking	UK\& prices exckute pso and VAT

For full information, please write, phone or fax:-

Number One Systems

[^0]- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM:

Programs 24, 26, 32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial E², PALS, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

MQP ELECTRONICS LId. Park Road Centre, Malmesbury, Wiltshire, SN16 OBX UK NORWAY 070217890 TEL. 0666825146 FAX. 0666825141 ITALY 02-92-10-3 554

FRANCE (1) 69-30-13-79 SWEDEN 08-735-5360 ALSO FROM ELECTROSPEED UK

4 WATT PPO FM BROADCAST (built) TRANSMITTER: with low pass filter

Modulation 75 KHz wide band Range up to 4.2 miles Supply
\qquad $10-16$ volts AC/DC Current Audio Input \qquad $100 \mathrm{mV}(\mathrm{ADJ})$
Frequency Range $88-108 \mathrm{MHz} \mathrm{FM}$
Stability $+/-20 \mathrm{KHz}$
Size
W. 70 mm, D. 90 mm ,

MANY USER CONTROLS
£23.50
7 WATT PPO FM BROADCAST (built)
TRANSMITTER: Higher watt version of
above transmitter 7 mile range $\mathbf{\Sigma 5 2 . 5 0}$
KT: 3 HATT TRANSMITTER 80-100IMHZ: Coil tank controlled up to 3 miles range. supply 1.2 V DC at 0.5 amps
$\Sigma 52.50$
Please add All prices include VAT
Please add \&1 PRP payment with orders to:

Please send 2×1 st slass stamps for our catalogue

PCB Designer
 For Windows 3.1
 Runs on any PC running Windows in standard or enhanced mode with 2 MB

 RAM\checkmark Produce Single or Double sided PCBs.
\checkmark Print out to any Windows supported printer
\checkmark Toolbar for rapid access to commonly used components.
\checkmark Helpful prompts on screen as you work
\checkmark Pads sizes fully customisable.
\checkmark No charges for technical support.
\checkmark Snap-to grid sizes $0.1^{\prime \prime}, 0.05^{\prime \prime} 0.025^{\prime \prime}$ and unrestricted
\checkmark SMT pads and other pad shapes
\checkmark Positive reviews by Robert Penfold and Paul Stenning, copies available on request.

Phone (0432) 355414 (Access and Visa welcome)

22 Tavistock Drive, Belmont, Hereford, HR2 7XN. Please Note: Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line manual, in Windows Help format A FREE tutorial is also supplied

EPROM EMULATOR

Only 11 mm high, t pluge directly Into your Eprom socket. Compatible with otandard Eprome. Allows faeter product development.

Data witten to the emulator directly from your computer, via a 4 mm cable which pluge into the emulator.
The MicroRom Eprom Emulator offers non-volatile storage and can download a 27256 file in only 1 SECOND. Prices from £ $99+$ VAT

TEL / FAX 0818809889
SquareWave Electronics LId., Imperial House, 64 Willoughby Lane, LONDON N17 OSP

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611

The supplier to use if you're looking for -

* A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST \star
\star COMPETITIVE VAT INCLUSIVE PRICES \star
\star MAIL ORDER - generally by RETURN OF POST \star
* FRIENDLY SERVICE \star

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00
Saturday 9.30-5.00

This month in PC Clinic，we examine the heart of every PC－the CPU． We look at how it can be made to work faster with the aid of coprocessors，clock doublers and cache memory．We will also be looking at the BIOS software and its Power On Self Test routines，which enable us to track down system faults．

（4）t the very heart of every personal computer，no matter what its make or design，there is a processor chip of some sort．In the IBM PC and all compatibles，this processor chip will belong to the Intel x86 family of processors，the familiar 8086， z $2286,80386,80486$ and most recently the Pentium．These arocessor chips were all originally designed and manufactured E：the US semiconductor giant Intel，although the processor in ，our PC will not necessarily be manufactured by intel，but maybe by one of the half dozen or so，mostly US based，manu－ tecturers of＇clone＇processors．These＇clone＇processor chips vill all run the same software as those from Intel，but often have ミlightly different performance ratings．

The function of the processor chip，or Central Processing Unt．CPU for short－is to execute the sequence of instructions sinich make up the program code．This code and its associated $\Sigma シ$ ごa is stored in memory and accessed by the CPU under cuncrol of the clock timing signals．In general，the faster the zock can be made to run，the more instructions can be e：ecouted in a given period and therefore the more powerful the roreessor is in computational terms．

Program instructions and data are all stored in memory and riocessed within the CPU in binary form三－－are organised in units of eight bits，or ate Byte．Since most instructions and data －Thow more than one byte，a processor can be speeded up by handling two or －cre bytes in parallel．Thus，a 16 bit －ruessor is approximately twice as fast as三－ 8 Lit processor and likewise a 32 bit にひ＇Is four times faster，assuming of \cdots ．．ふこ that they are all running at the same aiskrate．

The processing power of a personal iormputer is thus dependent upon a combi－ －＝－n of clock speed and the number of －－s r．can access from memory and $\because \sim u=s s$ during any one clock cycle．This －boessing power is most commonly rated －－こms of Millions of Instructions Per シーニund or MIPS．The very first processor －Is renge，the Intel 8086，was launched in lune 1978 and had a power rating of just 3 si FS ．Five generations of processor二－and the Pentium，launched in March 33 Fad a rating of 112 MIPS ．This is about 3012 ilmes the processing power of the Sulfound in the very first IBM PCs． H：storically，Intel has launched a new
generation of processor chip every 44 months，but under competitive pressure from manufacturers of new very powerful RISC based processors，this development rate has been accel－ erated．Peak power from the Pentium will be more than doubled later this year with a 150 MHz version and the next generation， code named the P6，is already undergoing testing prior to launch next year，only 30 plus months after the Pentium．The P6 looks set to at least double the power output of the best Pentium．

So why do we need more power？The answer is simply that new software applications，particularly those which are highly graphics oriented，need more and more power．Try running Windows or a CAD／DTP package on an old 8 MHz 286 and then compare it with the same software running on a 66 MHz 486. On a slow machine，such software is virtually unusable，it cannot perform all the calculations and update the screen suffi－ ciently quickly to prevent the display hardware having to wait for the processor．

This means that if you want to have a more powerful computer，but do not want to buy an entirely new system，then you will need to look at upgrading the processor．On the following pages we will show some of the ways in which this

Coprocessors

A coprocessor is essentially a piece of hardware, we could call it an assistant processor, which is designed to perform high speed operations which would otherwise have to be executed using much slower software routines, monopolising the main processor It is called a coprocessor because its hardware is very closely integrated with that of the main processor so that in essence it extends the processor's instruction set with a number of new special purpose instructions, that can repiace frequently used software routines.

Thus, a coprocessor might perform a specific function in two or three instruction cycles which would otherwise need a code sequence lasting fifty instructions. In specific applications, a coprocessor can give enormous improvements in processing speed,

Most people, when they talk about coprocessors, think about maths coprocessors, a coprocessor designed to perform a range of complex arithmetic operations which are not normally included in a processor's instruction set, such as calculations involving sine and cosine. However, coprocessors can also be used for other operations.

Some networking and communications systems use special coprocessors to relieve the main processor of the overheads inherent in communications and error checking Similarly, advanced multimedia systems that are designed to handie video images use special image compression and decompression coprocessors. Indeed, literally hundreds of different types of coprocessor have been designed for the 80×86 CPU family alone.

The most commonly encountered coprocessor is the maths coprocessor and there are two principle types - the Intel 80×87 range and the Weitek range The Weitek maths coprocessors offer a better performance than a typical Intel version, but programs will have to be specially written to take advantage of it Although the 486DX has a math coprocessor on the CPU chip, some systems also have provision for installation of a Weitek 4167

* As one can see from the two diagrams accompanying this section, the $386 / 387$ interface is relatively simple, with the 387 being mapped into the high 1/0 address space of the 386 (A31 high and M/IO low). Address line 2 distinguishes command transfers from data transfers. Far more efficient is the much more closely coupled Weitek extended maths coprocessor interface, since it makes full use of both the address and data bus, thereby allowing commands and data to be transferred simultaneously. This interface means that the coprocessor runs about three times faster than the conventional 387 interface and it is thus worth checking to see if your motherboard supports it.

The most common choice of maths coprocessor is the Intel family and adding one to a 286/386 system is relatively easy, since nearly all motherboards designed for these processors have a dedicated coprocessor socket When choosing a coprocessor, it is important that it matches the system into which it will be installed Thus, if it is going into a 20 MHz 386 system then the coprocessor will have to be a 20 MHz 387 , a 25 MHz 386 will require a 25 MHz 387 and so on

When installing a coprocessor chip, always make

REPLACING AND UPGRI

In theory, we can improve the performance of a system by changing the CPU. A faster processor with a wider data width will give us more processing power, so if we swap a 286 for a 386 we should get about five times the processing power. Simitarly, by changing from a 286 or eariier processor to a 386 or later, we can overcome the memory limifations that were inherent in these earier systems

But, unfortunately, changing processors is not that easy and in all but the most recent systems it is certainly not a case of simply removing one chip and plugging in another. The problem is that there are too many sub-systems and interelated components for us to simply be able to change the current processor for a more powerful one.

We therefore have to think about the complete system, about the fact that the clock circuitry will be the wrong frequency and about the fact that the address, data, and control lines of the new processor could be entirely different. Not forgetting the simple fact that the processor chip could be a different size and have a lot more pins.

What this means is that simply changing the processor chip more often than not also involves changing the whole motherboard. However, we can improve the processing power of a system in certain applications with the aid of a maths coprocessor. The type of applications where this will be of value are those which involve a lot of mathematical calculations, rather than simply moving and maniputating data bytes - in other words applications such as image transforms in 3-D CAD packages, or system simulations.

Thus if you are running this type of mathematically intensive application on a 286 or 386 based PC, then a coprocessor of some sort will give quite a considerable boost in performance since it will allow calculations to be performed using hardware rather than software. The result is a reduction in the number of processor cycles needed to perform a specific calculation and thus an overall improvement in the speed at which the application works.
With the 486 and Pentium processors, the situation is slightly different since both chips were designed to include a maths coprocessor integrated on the same slice of silicon as the processor. However, when the 486 was first launched there were apparently some problems associated
sure that the power is disconnected before installing and that any static is fully discharged Before attempting to insert it in the socket, first check that no pins are bent or damaged. If they are bent, gently straighten them with pointed nose pliers. Then make sure that the board under the socket is well supported as it is easy to crack a track by being over enthusiastic when pushing a chip into a socket. Finally check that the orientation of the chip is correct by matching the dot on the top of the chip to the dot or notch on the socket or the motherboard

Having carefully done all these things, press the chip firmly in place On some motherboards, it will be necessary to set a jumper or DIP switch to inform the system that a coprocessor is instalied You will have to check your motherboard documentation for details on which jumper or switch needs to be set. When this has been done, check it by switching the PC on and checking for any error messages, If your
coprocessor chip comes with a diagnostic program then run this, otherwise enter the system's CMOS setup program and check that it indicates that a maths chip is installed. If it does not, then switch off and carefully recheck that the chip is installed properly.

DING THE CPU IN A PC

An the coprocessor and rather than withdrawing the chip，it was decided simply to disable the haprocessor and relabel the device the 80486SX，as opposed to the 80486DX which has the poporocessor．

Apart from the presence or absence of the coprocessor，these two 486 chips are identical， $=5$ adding a maths coprocessor to a 486SX based system is simply a matter of removing the SX －rip and replacing it in the same socket with a DX chip of the same speed

At this stage in the development of the 80×86 family of processors，Intel introduced a new Thovation which allows the user to increase the power of a system by simply replacing the processor chip．This technique is known as clock doubling（now we also have clock tripling and clock quadrupling）and overcomes a lot of the earlier problems associated with the close －siationship between the processor and allied systems

The clock doubling technique is an ingenious one，since it allows the processor to run at －rice the speed（a clock tripler runs at three times the speed，and so on）that would otherwise $s=$ permissible．This means that，for example，a processor could run at 66 MHz on a mother－ soard which is only rated for 33 MHz ．In this way，a processor chip is upgradable without having to upgrade the whole motherboard and，equally important，all the problems associated with designing and building very high speed motherboards are overcome．Board designers can thus cotimise their design to give the best speed at the lowest cost

System manufacturers have also discovered that this gives them a great flexibility，a single motherboard design can be used in a range of different models simply by changing processor and peripherals This of course reduces the need for expensive stock holding，allows them to respond quickly to the development of new processors and new system requirements it also eats as a good sales incentive to be able to say to customers that a system is relatively future proof and can easily be upgraded，a factor which has encouraged a great many manufacturers ：o use Zero Insertion Force－ZIF－sockets for processor chips，thereby making removal and replacement very easy．

Using a DX chip

As can be seen from the chart on page 35 ，the 80×86 family of processor chips has become bigger，mope powerful and much taster．This posed an enormous problem for system designers，the processor was getting ace fast for the system． Memory access tries were becoming too fast for the type of memory chips which could economically be used on a PO，high clock speeds were starting封 give rise to board design problems due to such factors as signal propagation delays．

These factors all meant that，although it was feasible to build much faster system boards，it was uneconomic to push motherboard clock speeds mich beyond the 30 MH az area．Neither was it proc－ tical to do so，since the number of wat states entailed in accessing standard memory chips would effectively slow the system back down to that sort of level．

Processor manufactures were nevertheless capable of making the fir processor chips run at substantially higher speeds．Fut lhemore，users and software producers had an insatiable demand for more power．There are of course only two ways in which processing power can be increased for a given 势e of processor，one way is to morease block speed and the other fo to increase the data bus width，tout data bus width increase also adds a substantial overhead to system fora production costs and would entail the use of an entirely new expansion bus interface．

The solution to these problems involved care－ fully examining the system and looking at which parts of the circuit needed to operate at high speed and which could continue to operate at lower speed．The high speed components would then be integrated onto the same slice of silicon as the GPU，thereby allowing the processor to work at maximum speed．
The result was the DX2，or clock doubling chip，which is in every way compatible with a DX chip but runs twice as fast intarnoly The bus interface unit on a DX2 chip allows the processor to work with the lower speed external circuitry with a 2：1 speed reduction，so that in such situations，the DX2 functions exactly like a DX．However，较e area of memory currently being accessed is mapped onto an 8 K block of memory within the DX2 chip，he processor cache，se that whenever the processor needs to access this memory，use iss internal registers or perform a floating point operation，it can do so at twice the external clock speed．

In practice this clock doubling technique means that a processor can effectively spend 90 to 95% of its time operating at the higher speed，thus effectively increasing the processing power of a system by between 70 and 80% ，lined，this is a technique which can be extended even further，Intel has just ：Bunched tels clock tripling series of $D \times 4$ processors foot as one would logically expect，quadrupling！）offering internal clock speeds of up to 500 MHz ．

In theory therefore，one can simply double the processing power O．，say，a $25 \mathrm{NHHz} 4860 \times$ by replacing the DX chip with a 50 MHz HX 2 chip．On some motherboards this simply involves feplacing the DX chip with a corresponding DX2．Many newer designs 3：metherboare have ZIF sockets for the processor chip， thus making removal and replacement very easy．

Not ai motherboards are the same and on older boards there is an additional socket for what is called an OverDrive chip，the function of which corresponds to that of a DX2 and not，as same vendors would have ore believe，a coprocessor．Another type of overdrive socket found on more recent 486 system boards is the P24T socket， which allows the system to be upgraded to a Pentium．Doing So will simply involve putting the F24T chip into the 238 pin socket provided for it on the motherboard，which will their preempt the ex：sting 486 processor．

In the case of an original 4863 X wi a maths coprocessor socket，it is possible in some cases to upgrade the system to rut a DK2 chip．Thus a 20 AHz 4865 X coL id be replaced by a 40 MHz DX2．This will entail carefully prising out the old CPU chip and replacing it with the new one，but before attempting te do this and certainly before buying the replacement processor chin，位is a good sea to check with the manufacturer that such an upgrade is feasible
in practice，upgrading from a DX to a CX 2 is not quite that simple． One major problem is that an increase in processor speed also means an
 increase in power consumption and thus in heat output．A DX2 chip consumes about 40% nose power then the equivalent DX and outputs a correspondingly ceased amount of heat．This means，that 侍 you thigrade from a DX to a DX2 you will need to take special measures to dissipate the additional heat．

A miniature fan which is mounted directly on top of the processor chit is one solution to this problem and such fans can be readily obtained from the many versions of PC upgrade equipment．Since overheating，where the chip temperature exceeds 185F，can easily damage the processor chip（and bear in mind that this is probably the most expensive component in the system and a few one can cost you several hundred pounds is also a goof idea to use an audible monitor to medicate when the system is overheating－we will show how to paid such a monitor fo next on the ETL，

Inside an Intel CPU

The Pentium is the most powerful member of the Intel 80×86 family of processor chips. By every standard it is a truly massive chip, the packaging is a pin gate array (PGA) and measures 2.13 in square with 273 pins Inside the packaging is a 0.8 micron fabrication technology BiCMOS chip with 3.1 million transistors etched on it and at 66 MHz it draws over 13 W of power. All of which allows it to deliver 112 MIPS of processing power. On these two pages we take a look at what is inside a Pentium chip and compare it with a typical 486DX.

Instruction decode

At the heart of every processor is an area of circuitry which converts the instruction code into a sequence of operations which are performed by the other parts of the CPU. The circuitry which performs this function works at two levels. Simple instructions, such as moving a byte of data between registers, are initiated directly by the circuitry, but more complex instructions require a more sophisticated approach: In essence these instructions are executed by small programs stored within the microcode ROM, which is part of the decode circuitry. They are stored as sequences of simple instructions. It should be noted that nearly all simple instructions are executed in one clock cycle, whereas complex instructions usually take two or more.

Code cache

To overcome the need to use wait states when accessing relatively slow RAM, the Pentium has a high speed 8 KB instructions cache.

Code TLB

Translation lookaside buffers for the code cache.

Clock driver

This circuitry provides the complex synchronisation pulses, all

When any processor is first powered up, or when it is reset by the reset circuitry, it is incapable of using programs straight from disk. In fact, it will know nothing about the system of which it is a part. It will not even be able to input data from the keyboard or output data to the screen. The only information that the processor has coded into it is a single memory address where it expects to find the start of a program, or a pointer to the start of a program.

Because the processor cannot yet load data from disk, this power up/reset system initialisation program has to be stored in non-volatile memory. Because it performs the task of actually defining the system and because it is permanently stored in ROM, it constitutes what is often referred to as firmware.

The PC is no different to any other computer system in this respect and this initial program is known as the system BIOS. If you look carefully at the motherboard you should be able to locate the one or two ROM chips in which it is stored (they often have a printed label stuck on top of the chip which identifies the source of the BIOS).

The name BIOS stands for Basic Input/Output System. Initially, the BIOS was developed by IBM, but comparable versions of BIOS are now produced by a number of other manufacturers, foremost of which are AMI and Phoenix The different types of BIOS are all more or less identical, although the system has changed slightly over the years and old versions of BIOS may not work properly with some modern software.

The first function of the BIOS program is to test the system. to check that all its various components are working properly This is the so called Power On Self Test, or POST, feature If any failures are found, then they are reported as coded signals output on a special POST output port (this can only be accessed if you have the appropriate hardware). Errors are also signalled as coded beeps from the system's internal speaker.

Having checked that the system is running properly, the BIOS software then sets up a basic input/output system which allows user programs to have easy access to all the system components, by simply communicating with the BIOS I/O routines. This gives all PCs a universal software interface, irrespective of the actual system design and thus allows software to be easily moved from one PC to another without any compatibility problems. It also makes it far easier for the programmer, since he does not have to write specialist routines to directly communicate with disk drives, video cards, etc.

The final function of the BIOS program is to act as a bootstrap loader for the main operating system. In most PCs, this would be MS-DOS, but it could equally well be DR-DOS, one of the many different flavours of UNIX, or OS/2. The bootstrap loader searches for the operating system on disk, loads it and then transfers control to it.

One thing to remember is that BIOS routines can be extended and regularly are. The video display card will probably have a ROM containing a set of routines which extend the function of standard BIOS so that it can handle the hardware of the particular video display Similarly, a hard disk controller may have a BIOS extension on the card. These applications card extensions of BIOS allow the operating system and hence application programs to utilise these devices, despite the fact that they are all probably very different from each other

As has already been mentioned, older versions of BIOS can cause problems. A fairly general problem is that they can restrict the type of hard disk that can be used. Other problems are more applications oriented, but on some older 286 ATs the BIOS may cause problems when attempting to run advanced operating
systems, in particular Windows 3.x. This is because the BIOS handles switching between real and protected mode operation and these early BIOSs were written before specifications on this operation were standardised

Replacing the BIOS chip with a more modern version will unfortunately not do the trick and allow one to run this type of software - you will also need to replace the keyboard controller chip, since it seems that this chip is also involved in switching modes.
Unfortunately finding any details of how the BIOS actually works is extremely difficult, a task made even harder for anyone living outside the US since all the BIOS producers are American.

However, unless you are involved in designing PC systems at firmware level, it is not really necessary to know about the inner workings of BIOS . What is important, however, is the fact that BIOS is the lowest level at which the system will operate. A system will run BIOS even without any functioning keyboard, display, or disk drives. This means that we can use BIOS to help us when attempting to repair a faulty system.

We can thus remove all the adapter cards and monitor the POST codes to prove that the motherboard is functioning properly, thereby proving that the fault lies in one of the adapter cards if the motherboard is faulty we can use the POST codes to tell us where the fault lies. A knowledge of BIOS can also be of considerable use when developing hardware and software which interfaces directly to the PC - it is the most fundamental level at which the system operates.

P0ST Error Beeps	
Problemarea Sound soquerime	Peppating shorl ${ }^{\text {a }}$ countion-
Pawer supply ar systen boned	
Uous beopt	
Systern \qquad	Ono lorig and ane shat'beop Orve long and tho stion
System board or power supply	
beeps	
Syatem bouriour or power supply	One short beep and hantr?
displity	
Disk drive, disk controllei, or ceable	

[^1]
Using a POST probe card to check processor status

\therefore nen you boot up your PC, one of the first functions of the BIOS rdutines is to perform a range of Power On Self Test, or POST, routines. These POST routines will check every part of the PC, the memory, the communications ports, the keyboard, video display and the disk drives. Uniess your machine is faulty you will in most cases not be aware that the tests are taking place. Remember the way that your keyboard lights fesh and the double beep before the hard disk is accessed and DOS loaded? These are the POST routines at work. However, if your machine is faulty, POST error codes could provide you with a valuable and accurate guide as to what is wrong

There are three different ways in which the BIOS POST routines will Esil us what is wrong with the system. The first is that it will generate a sequence of beeps on the internal speaker, with the beep sequence roughly indicating the fault area. The second way relies on the video display functioning, and POST generates one or more error messages Which indicate where faults have been located.

The third way is probably the most powerful, since it can be used to dagnose faults in a motherboard without functioning video display or teyboard. Here, the error codes are output through an I/O port (on most EISA and ISA systems this is port 80) and can be displayed using三special plug in adapter card, commonly referred to as a POST card. The error codes displayed on the POST card's two digit hexadecimal a splay can be used to accurately pinpoint a fault to a specific area of the motherboard, or even a specific component

At some stage in their lifetime, most PCs will generate some sort of ROST code error. This is particularly likely to happen when adding or removing expansion boards or altering the onfiguration. It is E so likely to -appen when the internal battery fails End needs replacing. The fact that -rese can all tause POST errors means that whenever a POST error is encountered, the fist step is to check that the fatteries are OK, that all adapter cards are inserted properly, as are all cables and that the system configUetion is correct. Chly then should ore start looking for tauls.

The first step in any fault
tocating procedure using a
FOST card is to check the power supply to the system board (with the Moro 2000 POST card this is easy since the card has a built in logic probe and voltage test circuitry). Next, try removing and reinserting adeoter cards in order to ensure that they are not the cause of the problem (not forgetting to switch off the power every time you remove Er reinsert a card)

If you still have no luck, then power down the system, remove all the
adapter cards one by one, except the POST card, reapplying power between each card removal. If the symptoms stay the same then the motherboard is probably failing. It is here that the POST card really comes into its own, since without it, problems can be very hard to track down. Shorts are a major source of problems and using the area indicated by the POST error code can be further traced with the aid of the logic probe.

First check the supply voltage and ground leads to the suspect chip. If a voltage is missing, then trace the line to its source. Shorts may be produced by defective resistors, ICs, or decoupling capacitors. In fact, such capacitors should always be checked, since this can be the cause of the failure.

With a POST card, it is a lot easier to track down and repair faults on a PC system board and it is surprising how often a fault is caused by the failure of a very cheap and easily replaced component. If you know what you are looking for, there is often every chance that a faulty board can be successfully repaired - forget those people who say that it is not worth doing and far better to just chuck the board away and replace it whih a new one

Note that this table can only be approximate, since the exact error codes used are different for each type of BIOS and for each type of narcware platform. Thus POST code 04 in Phonex BIOS signifies an error with the $8253 / 4$ programmable interval timer chip, on the C\&T BiOS that the 8237 DMA controller has failed and on AMI BIOS that there is a fault either with the 8259 programmable interrupt controller or with the CMOS RAM.

In order to get detailed information from the POST codes, it is essential to have a list of the codes and their associated errors for the version of BIOS installed in the system under test. In most cases, the BIOS POST diagnostics are very accurate, since individual versions of BIOS are specifically tailored to individual hardware designs. However, it should be noted that some versions of BIOS, in particular AMI BIOS, are written for a wide variety of boards with the same chipset, meaning that although generally correct, some codes may point to the wrong error. For anyone involved in serious PC maintenance and repair a POST card is a good investment since it makes tracking down most faults on a PC a lot easier. A good example of such a card is the Micro 2000 POST Probe card and its associated diagnostic software, with which one can track down faults at all levels of functionality, even faults on boards unable to produce POST codes.

For more details on the POST Probe card contact Micro 2000 in Letchworth, on 0462483483.

Watch out in future issues of ETI for our special build it yourself POST card project!

Cache Memory

Over the last few years, we have seen processor clock rates go up from 12 MHz on a 286 AT to 66 MHz on a Pentium or 486DX2 system. At the same time we have seen the amount of RAM in a system go up from 640 K to 4,8 , or even $16+\mathrm{MB}$, and the amount of hard disk storage go up from 20MB to 200 MB or more. By any standard, a modern PC is thus an extremely powerful computer.

However, despite the powerful processor, lots of memory and a big disk we can no longer say that the performance of one make of PC is much like another, simply because it has the same processor, runs at the same speed and has the same general architecture. You only have to look at the benchmarks published by some of the PC magazines to realise this.

The truth is that, as well as bringing enormous processing power, high speed systems have also brought with them a lot of problems for the computer system designer. Problems which, in the way that they are solved, or are not solved, can make enormous differences to the performance of seemingly similar systems.

The problem with bottlenecks

The main reason for these design problems lies in the bottlenecks which can occur in the flow of data and instructions between the processor and the various types of memory used in the system. Bottlenecks can seriously reduce the actual processing power of the system, compared with its theoretical potential power and are moreover exacerbated by processor intensive applications such as Windows, CAD and DTP systems.

The reason that these bottlenecks exist is fairly simple. They are due to the fact that parts of the system are working much faster than data can be accessed from, or stored to, other part of the system. Thus, the access time of a standard RAM memory chip is longer than the fetch cycle of a 66 MHz 486 , the result being that the processor has to wait maybe two or three clock cycles for memory to be accessed. If we take statistical standard usage of a system with standard reasonably fast RAM, then the effective speed of a 66 MHz system is reduced to an equivalent of one running at less than 55 MHz , simply because the processor has to wait for memory.
. The result of having a processor that is too fast for the available memory is quite a serious reduction in power. Computer system designers try to overcome these slow access speed related bottlenecks by using a special type of memory known as cache memory.

Cache memory is simply a block of memory which works at a higher speed than the ordinary RAM memory. By transferring the block of data and/or instructions currently being used into this cache memory, it is possible to eliminate a high percentage of the delays that would otherwise occur. This makes it possible for the system designer to more closely approach the theoretical maximum power of a given processor.

Memory hierarchy

In order to understand how cache memory works, we need to look at how a computer uses different types of memory. We can divide the memory resources of a computer into a
hierarchy and on most systems there are two levels - short term, fast access RAM memory and long term, slow access, disk memory.

No programmer would attempt to write a program which ran directly from disk memory, in theory it could be done, but it would be terribly slow. Instead, the program stored on disk is transferred to RAM memory and run from there. The same applies to data - rather than slow down the system by accessing the disk directly for each byte of data, a whole block of data is transferred to RAM memory and accessed there.

The function of a CPU cache is to add another one or two levels to that hierarchy, which lie above RAM memory. At the highest level is the primary, or on chip, cache. The 486 has an 8 KB cache on the processor chip and the Pentium has two 8 KB caches. The level below this and immediately above RAM memory is the external or secondary CPU cache, which consists of between 64 K and 1 MB of very fast static RAM.

If we think of RAM memory as being short term memory, then the primary and secondary CPU caches are a type of selective memory in which are stored the most commonly requested pieces of program code and data. Thus, when the processor accesses instructions or data from main memory, a copy is simultaneously transferred to cache memory and all future accesses to that information will be to cache memory rather than main memory. This means that only the first access will be slowed down, all subsequent accesses will be at top speed. So, the more primary cache memory that is built into the actual processor chip, the better the overall improvement in performance. There are, however, limits to the amount that can be put on a processor chip, and anyway it is pre-set by the chip manufacturer, hence the need for external cache memory. Once again, a simple statement such as 'the system has 256 K of cache' is insufficient to indicate performance quality, although of course, broadly speaking, the larger the cache the better the performance improvement.

Cache operation

The type of cache design used is very important, since there can be very significant differences in performance between different designs, especially when the cache is fairly small. There are three commonly used secondary CPU cache designs, fully associative cache, direct mapped cache and set associative cache. Of these, the fully associative cache is too slow for today's processors.

The cheapest and easiest design for a manufacturer to implement is the direct mapped cache, but this will only offer good performance if it has been properly designed. Indeed, if badly designed, a direct mapped cache can actually degrade a system's performance so that it is worse than a cacheless system. This is the result of a process called thrashing and can be a really serious problem when running multi-user operating systems.

Set associative cache offers all the best features of the other two designs but with few of the associated problems. It is fast and flexible and this technique has been used by the Intel designers for the primary processor cache on the 486 and Pentium. It is also the favoured design among top range PC manufacturers and is particularly good with multitasking operating systems.

POWERFUL SCHEMATIC CAPTURE, PCB DESICN AND AUTOROUTING ALL FOR JUST E395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily: Draw the circuit diagram using the powerful facilities of ISIS DESIGNER + and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design
- Automatic component annotation and packaging
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards,
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking
- Power plane generator with thermal relief necking
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more

Alan Chadwick writing in ETI (January 94) concluded.. "At $£ 79$ I thought this was an excellent buy."

ISIS ILLUSTRATOR Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0756753440 or fax 0756752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.
WE HAVE MOVED - NOTE NEW ADDRESS Alices exdude $p \& p$ ($£ 5$ for U.K) and VAT.
53-55 Main St, Grasșington, North Yorks. BD23 5AA.

VIDEO LIGHT METER

Is it bright enough for good camcorder pictures? Terry Balbirnie's light 'meter' will tell you = instantly!

odern camcorders will operate in extremely low light levels. However, the picture quality is often not very good under these conditions - a fact avoided in the advertising hype. Although some models do perform better than others, insufficient light shows itself with grainy pictures and degraded colours. The black-and-white viewfinder picture gives little indication of performance. Poor recordings will only show up when the tape is played back through a full-size colour TV and it may then be too late for a re-take. If the camera operator had been made aware of the problem at the outset, some extra
light could have been laid on or the shots, arranged to exploit the existing light more effectively. Without a lot of practice, the eye itself is not good at judging light intensity, because of its ability to adjust to the conditions.

This Video Light Meter will indicate the ambient light level and hence the performance to be expected from the camcorder. In use, it will normally be pointed from the subject position towards the light - that is, it measures incident light. When a push-button switch is operated, one of the LED bars in a display glows to indicate the brightness. Since no current is drawn until the switch is pressed, and even then less than 30 mA , a miniature battery will have a very long life.

Circuit Description

The Video Light Meter comprises four main parts - the light sensor itself, bargraph driver, LED display
and stabilised supply for the light-sensing section.

Figure 1 shows the complete

Wiring diagram
sensor is phototransistor, Q1, which has a window in the end that allows light to enter and strike the base-collector junction. The effect is equivalent to a photo diode and the light causes a small current to flow, which is subsequently amplified by transistor action The brighter the light, the higher this current will be, up to a point. Increasing light intensity will therefore cause an increasing current to flow through load resistor, R1, and this will result in a greater voltage being developed across it. A falling voltage will then appear between Q1 collector and emitter. It is this reducing voltage which operates the rest of the circuit. Note that no bias is needed for the specified phototransistor, so the base is left unconnected.

The circuit is powered by a 9 V or 12 V battery. However, the phototransistor section is fed from a 5 V supply derived from voltage regulator $I C 1$. Without this, the voltage between Q1 collector and emitter would decrease as the voltage available from the battery fell with age. This would be interpreted by the rest of the circuit as brighter light and would upset the bargraph operating points. As it is, the circuit will operate correctly until the regulator fails to deliver a 5 V output This will happen when the battery voltage drops below 7 V approximately. After that, the regulator output voltage will fall in sympathy. It is therefore necessary to check the battery every so often and the method for doing this is described at the end.

With phototransistor Q1 in bright light, approximately 0.7 V will be developed between its collector and emitter. As the light level falls, it will approach that of the supply, ie. 5 V . This voltage is scaled down by the potential divider consisting of fixed resistor, R2 and preset potentiometer, VR1 I I is then applied to the input, pin 5, of bargraph driver IC2. This device accepts a smoothly changing voltage so that as it increases, successive outputs 1 to 10 (pin 1, then pins 18 to 10 respectively), go low in turn to provide current sinks. The first output operates at 0.125 V and the tenth one at 1.25 V , so the

voltage provided by Q1 collector needs to be divided by four. This is achieved when VR1 wiper is at approximately midtrack position. However, the voltage at the wiper may be adjusted through wide limits. This provides the adjustment for the correct operating levels and will be made at the end of construction.
Capacitor C1 promotes stable operation.
The bargraph display, IC3, consists of ten horizontal LED bars. All the positive (anode) ends - pins 11 to 20 respectively - are connected together and hence to the positive supply rail. The other (cathode) ends of the LEDs (pins 1 to 10) are connected to the corresponding IC2 outputs. As each output goes low, the corresponding LED bar glows. No conventional series resistors are required since current-limiting is carried out on chip with R3 determining the LED operating current, in this case 13 mA approximately.

Construction

Before proceeding, decide on the type of box to be used as an enclosure. This will depend on the size of battery being used. Any small 9 V or 12 V battery will be
suitable. In the prototype unit, a subminiature cylindrical 12 V battery of the type used in cigarette lighters was chosen (see Parts List). Using this allows the small plastic box specified in Buy Lines to be used. A PP3 battery may be used if preferred, but the box will need to be larger.

Construction is based on a singlesided PCB and Figure 2 shows full topside details (parts placement diagram). Drill the two mounting holes then solder the two IC sockets into position. Follow with all fixed resistors (flat with the board), capacitors, C1 and C2 (observing the polarity of C2), preset VR1 and voltage regulator IC1 (taking care with the orientation, see Figure 3). Cut Q1 base lead short and gently bend the other two leads at right-angles (see photograph). Solder Q1 into position, so that its top points to the left. Do not insert IC2 or IC3 into their sockets yet. Adjust VR1 to approximately mid-track position.

Solder 8 cm pieces of light-duty stranded connecting wire to the pads marked 'S1' and 'Batt -'. If a PP3 battery is being used, solder the negative wire of
the battery snap to the pad marked 'Batt \therefore Drill the holes in the case for the switch and for circuit panel mounting. Insert IC2 and IC3 into their sockets. It would be wise to touch something which is earthed, such as a water tap, before handling lC2 pins, because this device is static sensitive. The product lettering on IC3 as used in the prototype was on the right hand side - if it is inserted the wrong way round, it will not work.

Mount the circuit panel temporarily and carefully measure the position of IC3. Make a hole in the lid of the box directly above this and the same size. Mount the panel on short stand-off insulators so that when the lid of the case is in position, the display is level with the face of the box. Mark the inside of the box opposite Q1 position, remove the circuit panel again and drill a hole with the same diameter as Q1 at this point. Fit the switch and complete the wiring as shown in Figure 4. Replace the circuit panel and adjust the phototransistor leads so that its face protrudes slightly through the hole drilled for the purpose.

If the sub-miniature 12 V battery is used as in the prototype, mount it in the
free area of the circuit panel, as shown in the photograph, using a pair of Velcro Exing pads. The connecting wires may be soldered to its terminals using minimum neat from the soldering iron. A PP3 battery could be secured to the base of the box in the same way.

Testing

A basic test can be made by pointing the sensor towards bright light and pressing the switch. By slowly covering the hole with a finger, there should be a response from the LED bars. If this test works, it is then only necessary to adjust VR1 for correct operation. The lid of the case will need to be in position (although not screwed down yet) so that Q2 receives light only through the hole. Adjustment to VR1 is made in a series of small steps with the lid replaced after each one. Cover the sensor with black tape to orevent all light reaching it. It will probably be found to be impossible to adjust VR1 so that all LED bars are off. It will -herefore be set for the first bar to represent total darkness. Press the button and adjust VR1 so that the first bar is on and just before the point of changing to the second one.

Set the camcorder on a tripod and zoom in on a detailed picture such a colour magazine advertisement pinned to a wall. Vary the amount of light in the room and make some test recordings to determine the level at which picture quality just begins to degrade. Point the sensor towards the camera from the subject position and note which bar operates. The other bars may then be interpreted and labelled. Colour-coding could be used, possibly red, orange and green, but this was not thought worthwhile in the prototype. Note that it is normal for there to be a slight overlap so it is possible for two adjacent bars to be illuminated at once. After making any final adjustments to VR1, it only remains to secure the lid and put the Video Light Meter into service.

The device may also be used in reflected light mode, by pointing the sensor towards the subject. Experiment to find out which method gives the best results.

Battery Check

The condition of the battery should be checked every so often. To do this, cover the sensor so that no light can enter. Tress the button and observe the display The first bar should light. If a higher one glows, the battery must be replaced.

Resistors		
R1	470	
R2	56 k	
R3	1 k	
VR1	47 k	

Capacitors

C1 470n ceramic C2 $\quad 47 \mu 16 \mathrm{~V}$ PCB electrolytic.

Semiconductors

Q1 MEL12
IC1 LM78L05
IC2 LM3914
IC3 10-bar red LED
display

Miscellaneous

S1 Miniature push-to-make switch
B1 Miniature alkaline 12 V battery type GP23A or PP3 battery and battery snap (see text).

18-pin d.i.l. socket; 20-pin d.i.I.
socket. PCB materials, plastic box

Buy Lines

Most of the components for the Video Light Meter are freely available. The MEL12 phototransistor may be obtained from Maplin. The box used in the prototype was type T2 size $75 \times 56 \times 25 \mathrm{~mm}$ from Maplin. A larger one will be needed if a PP3 battery is used.

Why not make a date?

Moor Road, Bestwood (M1 Junction 27) NOTTINGHAM

10am - 6pm

Saturday \& Sunday 30/31 July 1994

Flying, Boating, Model Car Racing, Crafts \& much more...

Flying - KING TEAM \& TEAM ZAHN Trade displays
ENTRANCE: Adult E4, Chlldren \& Sonlor Citizoms E2.50, Famlly $£ 10$ (2 adults a up to 4 chlldron)

At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...

... call now for details.

Board Capture

 Schematic Capture Design Tool- Direct netlist link to BoardMiakerd
- Forward annotation with part values
- Full undo/redo faclily (50 operations)
- Single-sheet, multi-paged and hiserarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
. Baek annotation from BoardMaker2

Board Maker

BoardMakert - Entry level

- PCB and schematic drafting
- Easy and Intultivel to use
- Surfice molint and metric support
- 90, 45 and curved track comer's
- Ground plene fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoandMaker1 +
- Full nettist support - BoardCapture,

OrCad, Schema, Tangol CadStar and others

- Fuil Design, Rule Checking Pboth mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM

NEW - Thermal power plane support with full DRC

B) ब - 10014

Gridless re-entrant autorouter

- Simultaneous mult--layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoorn while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excelon NC Drill and Annotated drill drawings (BM2)

MAGNETISM AND MAGNETOMETERS

Magnetism is a subtle and mysterious force that influences a lot of things around us. Keith Garwell embarks on a practical exploration of how to measure minute changes in a magnetic field

(F)or the radio enthusiast, changes in the earth's magnetic field can be used to indicate likely changes in propagation. For the astronomer, the same changes are likely indicators to the advent of auroras and similar heavenly signs. Down to earth, measurements of local magnetism are very helpful to the archaeologist, amateur or otherwise. Unfortunately, while one can go into many a local shop and buy a combination voltmeter/ammeter/ohmmeter for only a few pounds, one cannot easily go into one's local emporium and buy a magnetism meter (magnetometer) and certainly not for a few pounds. Hopefully, I am about to redress this balance, at least in part.

Before delving into the nitty gritty, it may be as well to know something of what we are talking about.

The first dreadful shock to older readers will be to discover that Gausses are out and a new unit is in, to whit the Tesla. This is a very large unit - the field which would generate 1 V along a wire 1 m long moving at $1 \mathrm{~m} / \mathrm{sec}$.

If you cast your mind back to the classroom, you will hopefully remember that the earth's magnetic field has a horizontal component that appears just West of North. Indeed, if you look at your friendly large scale Ordnance Survey map you will find a note giving the deviation between true North and Magnetic North, the Magnetic North being currently some 5 degrees West of true North.

You may also be able to remember something about the 'angle of dip'.

Imagine an ordinary magnetic compass mounted on its side so that the needle could point downwards. Orienting the compass case North/South would leave the needle pointing downwards at an angle of some 67° to the horizontal.
Remember, these are approximate UK figures, they differ both locally and globally.

If you think about it, this is all fairly reasonable as the North Pole isn't really where the compass is pointing when it is hori-
zontal, because it will be at a tangent to the earth's surface and the earth being a sphere, it will be pointing out into space. Only if it were pointing downward as well would it be pointing to the true (well, nearly) origin. However, everybody is used to compass needles which only rotate in the horizontal plain and it's much more convenient too.

Figure 1 suggests the situation. Unfortunately, if drawn to scale the situation gets worse. The line set by the dip angle points to the interior of the earth. In fact the source of the earth's field is believed to be due to some form of dynamo effect within the earth's core which has a very high iron content. This is expected to be a fluid or semi fluid movement which will perhaps account for the continuous change in position. My Ordnance Survey map shows the yearly change as 9 minutes of arc to the East.

The earth's field, or to give it its more usual name in exalted circles, the geomagnetic field, is quoted as two vectors with respect to true North and a true horizontal (tangent). Where l'm sitting, these are 18.5 micro Teslas at 5.3° West

of North and 48.6 micro Teslas at 67.6°. Further North, for instance, at Eskdalemuir, the figures are 6.3 West and 69.3° (Ref. Dr D R Barraclough. British Geological Survey. Edinburgh).

These figures are from time to time upset by disturbances which have various effects on our environment. The changes are quite small, primarily being a change in direction. There is a small daily variation of around 15 minutes of arc in the horizontal, but a disturbance (often referred to as a magnetic storm) may amount to as much as one degree and last for a day or two. The corresponding variation in field strength is normally about 4 nano T for the horizontal and maybe 20 nT for the vertical. A 'storm' may produce a change of a few hundred $n T$. This suggests that, for those interested in the earth's field, the equipment should be able to show changes of a few minutes of arc, not necessarily in absolute values.

Types Of

Magnetometer And Their Characteristics

There are several types of magnetometer, some more suitable for a particular kind of task than others. They can be classified by the basic principles on which they operate.

The oldest type and one of the simplest to construct is the moving magnet. It consists of a simple magnet, operating in the same way as a compass except that the magnet is suspended by a thread either of a metallic but non magnetic material such as phosphor bronze, or in this day and age nylon or similar. The most important features are that it must not have a twist in its construction, discounting threads such as cotton and it must be thin enough to allow free movement of the magnet.

This type of device is not really portable because of the flimsy nature of the suspension. If it is to be ported. then some special feature must be incorporated to support the magnet whilst in transit. Consequently, this type is popular for fixed stations where the interest is primarily in changes of direction in the geomagnetic field. As it is always aligned with the field, it cannot show change in magnitude. I shall discuss later the design of such an instrument in two forms - one that is read by a visible indication and one that is read electronically.

One of the latest types makes use of the Hall-effect. Consider a block of some conducting material (Figure 2), the three visible faces being A, B and C. A current is maintained between face A and its corresponding hidden face, with the flux to be measured applied to face B. This flux will cause electrons to diverge towards the C face or its hidden counterpart, establishing a voltage between the two faces (I seem to remember Fleming had a rule about the direction of motion).

It is now possible to obtain semi-conducting versions of the Hall-effect device. For simple indications of magnetic intensity this type of device is convenient and portable, but the linearity of the devices is more or less in direct proportion to their cost and sensitivity. For example, in the Electromail/RS catalogue one available at around $\# 8$ generates 9 mV per mT . Changes in the earth's field are rather beyond them and they are not inherently suitable for determining direction. However, they are very small and simple to set up and are thus ideal as probes for investigating magnetic circuits.

The most versatile is the fluxgate magnetometer and modern electronic components have really brought this type to the fore. A fluxgate magnetometer is portable, its sensitivity is good and with care in construction can be very accurate, reading down to nano Teslas. It is also direction sensitive, which has the advantage that it can distinguish more than one field and unwanted fields, such as the earth's, can be balanced out.

Briefly, it consists usually of two ferrite rods, each of which carries a winding. The rods are

arranged side by side and the windings excited by a pure (no harmonics) $A C$ drive. Around the pair of rods is arranged a third winding, the sense winding. Any external field causes the second harmonic of the excitation to be generated and it is this harmonic which is used to indicate field strength. The construction of this type will be discussed in a fairly simple form in detail. The earth's horizontal field $(18.5 \mu \mathrm{~T})$ will give an output of around $3 V D C$ on the divide by 10 range. The windings don't have many turns (300 is the most) and the electronics can be assembled on strip board. This will be followed by the enhancements which can be made to improve it further.

There is one other type that must be mentioned, which depends on atomic behaviour - the proton precession magnetometer. This also has the advantage that it is portable and it measures total flux from whatever direction. It is useful in that a
general survey of flux density can be carried out, without the necessity of pointing it in the right direction. The other side of the coin is that it is unable to distinguish more than one source of flux.

The principle is that a small container of liquid, usually alcohol, is subjected to a strong steady field, the polarising field, perhaps by means of a coil wrapped round the container. This field is switched off and the frequency of precession of the protons is measured by means of the same coil, or a second one. This frequency indicates the flux strength remaining after the polarisation is removed. The effect dies away in a few seconds, allowing measurements to be repeated fairly rapidly. As it has a limited, use I am not proposing to give more detail in this article.

Moving Magnet Magnetometer

The MMM is constructed fairly easily from items to be found in most bits and bobs boxes. A fair bit of patience is needed with the setting up and a bit of dexterity in making it, but otherwise it

copper wire. The fixtures in the fishing line are best sealed by heating. The big advantage of copper wire is that the joints can be soldered and Figure 4 suggests a possible construction.

The type of magnet is not dramatically important. The longer and more powerful it is, the better it will align itself in the magnetic field and the small magnets used to operate read relays and security switches may be too small. However, I can see no reason why several should not be set end to end until the available length is four or five inches.

I tried cheating, with quite good results. As it happened, I had some small disc magnets about a half an inch in diameter. A ferrite rod about 5in long was cut in half and the magnet arranged in the centre. Incidentally ferrite rod is extremely hard and you will not be able to saw through it without a diamond saw. Much simpler is to make a small notch at the centre with a hack-saw, then put pressure on this point until it snaps. Maybe I was lucky, but having made the shallow notch I held it against the thumbs of both hands with my fingers and just applied thumb pressure. It snapped with quite a clean break, but in any case the two original ends were quite square so they were used as the inside ends against the magnet. A cradle or stirrup was made from thick copper wire as shown and some Araldite or similar resin will complete this part of the exercise.

The next requirement is a small bulb with preferably a straight filament, because we shall have to use the image of the filament as the indicator. A round MES
should be fairly straightforward. Don't make a start until you have read the whole of this section, as there are one or two points which are critical

It consists of a suspended magnet to which a small mirror is attached. If you know a dentist, then the small surface silvered inspection mirror is ideal. Failing that, a small mirror can be cut from a back silvered mirror, about $3 / 4$ of an inch square will do.

The device will be very susceptible to drafts and therefore must be enclosed within a suitable draft proof enclosure. It must also be transparent, of course. Figure 3 suggests the arrangement. Sweet jars, jam jars and unused gold-fish bowls are all typical of the type of container which is suitable. The gold-fish bowl will require a lid. Don't use any absorbent material such as wood, because it is not dimensionally stable and of course iron or steel is out. The amateur electronic engineer's favourite aluminium - is ideal.

Since the modus operandi is to shine a light on the mirror and use the reflection as the indicator, moulding marks on glass jars can be a nuisance. However, you will be very unlucky if you cannot find a large enough clear patch as the movement is very small. It may just be necessary to experiment a little when you come to set it all up. An excellent scheme if you are handy with Perspex is to make a case up and there is no need for it to be circular.

The suspension can be either fine fishing line or very thin

12 V is probably the best. Run it from a suitable transformer and either adjust the voltage down or add a series resistor, to extend the life of the bulb and limit any filament movement. Only enough light to see the projected image clearly is needed.

A lens will be required which is capable of projecting an image of the filament onto a surface 2 or 3 metres away. This is

also a matter of experiment. I happened to have one or two lenses in my 'photographic' box and an old projector lens seemed to be best.

Remember, the lens will of necessity be separated from the mirror by the 'anti draft' container. It is best to make a mock up of this part of the device so that you are sure it will work Clearly, the more elegant the lens, the clearer the image of the flament will be. However, the object of the exercise is really to give a patch of light that has some clearly defined point which can be used as the reference, not necessarily a perfect image of the lamp filament.

If you don't have lenses, how about trying one of the fairly
cheap plastic eye glass lenses? Alternatively, a small laser would do the trick. And set you back about £60!

Figure 5 suggests the layout in plan view. Before any construction starts, it is essential to decide on the location to be used. There are one or two restrictions. The first depends on the minimum distance D between the mirror and the scale, the very least is $2 \mathrm{~m}, 4 \mathrm{~m}$ is nearer the mark. The arithmetic behind this statement comes in a moment.

Just as importantly, there must be absolutely no movement between the support for the magnet, i.e. its enclosure, the lens assembly and the scale. If it's at all possible, much the best arrangement would be to mount the assembly on an aluminium shelf fastened to a brick wall. Then fasten the scale on the brickwork also as suggested in Figure 5.

A wooden building would be unsuitable because there would be too much movement dependant on weather conditions. However, if there is no option, the only suggestion I have is either a rigid aluminium frame to which all the parts are attached, or to mount the magnet assembly and lamp on a concrete base and arrange that the spot from the mirror shines in through a window.

Figure 5 is drawn as if it were attached to a wall which runs due East-West, in which case the magnet will be slewed by just 5° and Figure 5 will work like a charm. In practice walls are not built conveniently and accurately in this way, so as a consequence the mirror may have to be attached at an angle to the magnet. This can best be done by rehashing Figure 4 slightly, so that the stirrup is extended vertically by a piece of the same copper wire, cementing the mirror to a piece of brass tube and sliding it over the extension. Then attach the extension to the suspension. The mirror can then be turned relative to the magnet until it all works and then be fixed with a dab of cement. See Figure 6 for the alternative to Figure 4.

Now some fairly simple arithmetic.
The sort of movement we are looking for is around 5 minutes of arc or less and up to 1°. To arrange that 1 minute of arc gives one mil limetre of movement on the scale:

1 minute $=1 /(360 \times 60)$ th part of a circle and this must be 1 mm . The circumference of a circle is $2 \pi r$, but in our particular case the distance D in Figure 5 is the radius, so the circle is $2 \pi \mathrm{D}$ and this equals $1 /(360 \times 60)$.

So, $D=360 \times 60 / 2 \times \pi=3438 \mathrm{~mm}$.
However, the reflection from the mirror will turn through twice the angle of the mirror movement so in fact the above distance can be halved to 1719 mm , say 1.72 m .

The minimum D of Figure 5 is 1.72 m and in fact it would be easier to read changes if it could be made greater than this. To cover the general case therefore, given the distance D in metres, one minute of arc will be represented by $\mathrm{D} \times 0.582 \mathrm{~mm}$. ($\mathrm{D} \times 4000 \times \pi / 360 \times 60$). If it's more convenient the other way round then, if there are M millimetres of scale per minute of arc, then the required distance D in metres will be $\mathrm{M} \times 1.72$.

Setting Up

There are no short cuts, it's just a painstaking job of getting the magnet assembly and lamp lens assembly together on a rigid non magnetic base as the first step.

It may need a fair bit of patience to set the mirror so that the reflection appears in the right place - after the magnet assembly has finished swinging! If the mirror is movable in respect to the magnet, use a dab of cement (one of the resin glues is good) which is not quick setting so that you have time to adjust it before the cement hardens.

Don't take the readings too seriously for a day or so as it does need time to settle.

Making The Moving Magnet Magnetometer Machine Readable

The MMM as built so far can only be read by inspection. However, as we now all have chart recorders (ETI April 94 et seq), a much better picture of the way the geomagnetic field changes can be obtained if the readings are recorded: It also helps to avoid the slightly embarrassing moments when in the middle of a social evening one has to announce "Excuse me a few moments, I just have to go and read my magnetometer".

A quite simple arrangement is suggested in Figure 7, in which the ends of the magnet have been extended with thin aluminium blades. One of these intercepts the light from an LED shining onto a photo transistor and there is no absolute need for a blade at each end of the magnet, it's just a simple way of making sure it remains balanced by adding an identical weight at each end

It is best to use infra-red devices encapsulated in black infra-red transmissive plastic to reduce the effect of ambient light. Even so, you may find it necessary to enclose the device in a light proof cover.

One can obtain the two infra-red devices in one moulding, which makes mounting much easier. However, be careful - some of these are switches, the detector includes a trigger so the device does literally switch from one state to the other. Such a device is not suitable for this application as the detector must be a linear device.

A suitable circuit is suggested in Figure 8. This shows a photo transistor as the sensor but a photo diode is a suitable alternative. Two comments are valid here. A photo transistor frequently does not have its base connected and the base connection is often not available. Secondly, the photo diode is usually operated in the reverse biased mode.

I suggest the value of R1 as 1 K for the first trial R2 and R3 are 100 K and 10 K respectively and R 4 is 10 M . Using a CA3140 as IC1, output can swing between 0 and approximately 9 V . Aim for somewhere round the middle of this range when setting up.

Setting the device up is quite tricky, as the blade of the magnet has to just intercept the beam To do this, note the maximum and minimum voltages at the output of the op-amp. One is with the blade fully covering the photo device and the other with the blade fully withdrawn. R3 can be adjusted to help get this right. If this is not sufficient, then the value of R4 may
have to be changed. A little experimentation may be called for.
The next step is to move the device so that with the magnet free to move and when it has settled down to pointing North, the output from the op-amp is roughly in the middle between the limits noted above.

If using a cover, it may upset the readings when fitted. Try carefully moving the device clockwise or anticlockwise to see if the reading can be restored.

One point which I nearly forgot and may not be obvious. The 12 V supply must be regulated. The current consumption is very small, about 20 mA , so the power supply need not be anything very extravagant.

The Fluxgate Magnetometer

Those who are have worked with magnetic amplifiers or mag-amps will find the workings of the fiux gate magnetometer familiar. The FGM to be described illustrates all the principles involved, but leaves the enthusiast room for experiment and enhancement.

It is also designed to be adjustable in gain and offset so that it can be a bit of a jack of all trades, but with adjustment and enhancement at least master of some.

For example, its sensitivity is such that it gives about 3 V for the horizontal component of the earth's flux, with the design sensitivity reduced by 10 If required. therefore, the gain can be alterea so that it gives 5 V for 50 mT , 10uT per volt This is a convenient scale where direct readings of field strength are required, enabling both horizontal and vertical components to be measured.

Similarly, its circular sensitivity is about 3 V for 7° as developed, (7 mV /minute) This sensitivity to rotation means that the normal small changes in the earth's field (5 to 10 mins of arc) would produce an output change of 35 to 70 mV .

Figure 9b: End view of Fluxgate Magnetometer

Next month...

We will continue with building the fluxgate magnetometer, plus two other magnetometer designs.

SUMMER 1994 Catalocule
 components

 \rightarrow hits
 NEW EDJTION!

The new enlarged Catalogue is out now!

Included in this issue:

- A further 16 extra pages
- £200 worth discount vouchers
- 100's new products
> 256 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and suppliers
- Expanded entertainment section with in-car amps, speakers, crossovers and low cost disco equipment
- Further additions from Europe's leading kit manufacture - Velleman
- Available from most large newsagents or direct from Cirkit
> Send for your copy today!

CIRKIT DISTRIBUTION LTD
Park Lane • Broxbourne • Hertfordshire • EN10 7NQ Telephone (0992) 448899 • Fax (0992) 471314

UK Distributor for the complete ILP Audio Range

BIPOLAR AMPLIFIER MODULES
Encapsulated amplifiers with integral heatsink.
HY30P 15W Bipolar amp E9.95
HY60 30W Bipolar amp £12.62
HY6060 30W Stereo Bipolar amp £26.46
HY124 60W Bipolar amp (4 ohm) £20.69
HY128 60W Bipolar amp (8 ohm) $\quad \mathbf{2 0 . 6 9}$
HY244 120W Bipolar amp (4 ohm) £27.38
HY248 120W Bipolar amp (8 ohm) E27.38
HY364 180W Bipolar amp (4 ohm) £42.86
HY368 180W Bipolar amp (8 ohm) £42.86

MOSFET AMPLIFIER MODULES

Encapsulated amplifiers with integral heatsink.
SMOS60 30W Mosfet amp £23.15
SMOS6060 30W Stereo Mosfet amp £39.95
SMOS128 60W Mosfet amp $£ 30.95$
SMOS248 120W Mosfet amp £42.50
CLASS A AMPLIFIER MODULE
Encapsulated Class A amplifier with integral heatsink
HCA40 20W Class A amp £36.60

POWER SUPPLIES

Full range of transformers and DC boards available for the above amplifiers.
100 VOLT LINE TRANSFORMERS
Full range of speech and music types for amplifiers from 30 watt to 180 watt

PREAMPLIFIER MODULE

General purpose preamplifier for a wide range of applications.

Prices include VAT and carriage

Quantity prices available on request
Write, phone or fax for free Data Pack

Jaytee Electronic Services

Unit 171/172, John Wilson Business Park,
Whitstable, Kent CT5 3RB. U.K.
Tel: (0227) 265333 Fax: (0227) 265331

Headlight Reminder

Don't let your car battery go flat by forgetting to turn off your lights. L.S. O'Connor builds a lights-on reminder for your vehicle.

Fig 1.Car lights on test block diagrams

gate, IC1, and a dual version of the 555 timer, IC2. IC1a is connected as an inverter and checks whether the door is open or closed. With the door closed, the door switch is open circuit and R1 pulls the input high, so the output is low (see Figure 3 for truth table). However, when the door is opened, the door switch grounds the input of IC1a, changing the output to a high. This is fed to one half of the input of IC1b, the other half being connected to the car's side lights power feed. R7 is a pull down resistor and ensures that the input is low when the lights are switched off. The output of IC1b remains in a high state until both the inputs are taken high so with the lights switched on and the door open, the output would change to a low. This is fed to IC10 wired as another inverter, which is used to provide the correct logic level required by the IC2a and IC2b reset pins.

Both IC1a and IC1b are connected as astable multivibrators, producing square wave outputs. IC 2 a is operating at 4 Hz and is determined by the formula $1.44 /(R 2+2 R 4) C 1$, while IC2b is operating at $1.8 \mathrm{KHz} 1.44 /(\mathrm{R} 3+2 \mathrm{R} 5) \mathrm{C} 2$. Both C2a and IC2b are held switched off by the low output from IC1c, connected to the reset pins 4 and 10, so therefore they are only allowed to oscillate when the reset pins are taken high. This only occurs when the lights are on and the door is open. The output of IC2a is fed via R8 to the control input of $I C 2 b$, which has the affect of modulating the output of

に2b by changing the threshold set internally, giving us the : :arbling affect.

The output of 1 C 2 b is passed through C3 and VR1 to grive the piezo sounder directly, with VR1 setting the desired volume level.

D1 protects the circuit from reverse polarity connections and R6, R9, ZD1 and ZD2 clamp any high voltage spikes present in car electrical systems to a safe level. C4 and C5 smooth the supply.

FS1 and FS2 are there should the circuit start to draw an =xcess of current due to a fault.

Construction

The prototype used an ABS box from Maplin (Part no: YU52G). This has slotted walls to accept the PCB and internal dimensions of $49.5 \times 99.5 \times 40 \mathrm{~mm}$. The Veroboard was cut to fit the slots and was 39 strips $\times 14$ holes. Using these dimensions, cut the tracks at the various points (see photograph of layout). Next, solder the appropriate links and then the components (smallest first). When complete, solder suitable lengths of cable from the various points on the circuit board to reach the fuse holders and the 4 way terminal block, where they are to be fitted.

The terminal block was mounted to the lid on the inside, using two 6BA nuts and bolts and the fuse holders at either end of the box. These were done last to ensure that neither fouled the PCB. Insert the PCB as near to one side of the box as possible and mark the position of the piezo sounder, so you can drill a suitable amount of holes to allow the sound through the box. Also mark the positions of your fuse holders and the 4 way terminal block, ensuring that they do not block the PCB. An additional hole was drilled at one end and a grommet fitted, to allow for the through cables connecting to the various points of the car.

Finally, with the fuse holders and terminal block in place, solder the positive feed from the terminal block (position 1) to the fuse holder FS1, and from FS1 to the positive cable from the circuit board. Solder the lights from the terminal block (position 3) to the fuse holder FS2 and from FS2 to the lights feed cable, from the circuit board. Connect the -ve cable from the circuit board to Position 2 and the door switch cable from the circuit board to Position 4 of the terminal block.

Testing

With the unit fully assembled, testing can be carried out as follows. Using a PP3 battery or similar, connect the positive terminal to Position 1 of the terminal block and the negative terminal to Position 2. Link Position 3 to Position 1, which simulates the lights being switched on. Now momentarily link Position 4 to Position 2 to simulate the door being opened

and the sounder should now be operating.
Remove the link from Position 3 to 1 to simulate the lights being switched off. Momentarily link Position 4 to Position 2 and the sounder should remain silent.

If any of the above tests fail, then check all your connections, the cutting of the tracks and that all of the components have been inserted the correct way round. Finally, check the fuses.

Installation

There should be no problem with the installation, provided that you follow these procedures. You will require a suitable multimeter in order to make the correct connections.

Normally, I would recommend disconnection of the car battery prior to fitting, but due to the ever increasing number of car radios that are security coded and cars fitted with microprocessor controlled management systems which require a constant source of power for their operation, it would be advisable to do the installation with the battery still connected.

Ensure that both FS1 and FS2 are removed and that the car ignition switched off. Locate a constant source of power and using auto type cable, connect to Position 1 of the terminal block, housed inside the control box. If you use the ScotchLock type connectors, this will allow you to crimp your cables in parallel with the existing cable and so avoid the need to break the existing cable. Next, find a suitable earth and connect to position 2 of the terminal block.

Now connect position 3 of the terminal block to the live feed of the car's side lights. Switch on your side lights and they should still come on, even with the ignition switched off. I found the best place to make a connection was down by the side light itself, unless of course you have easy access to behind the side lights switch, in which case you can make your connection their.

Wherever you decide, check with your multimeter that it is the live feed for the side lights, by switching the lights off and observing that the power is indeed removed.

Connect Position 4 of the terminal block to the door switch on the driver's side, which operates the car's interior light. If there is a single wire on the door switch, this means that the switch is earthed by the cars' chassis and operation of the switch connects this wire to earth and completes the circuit. All that is required is to make your connection to that single wire. If, on the other hand, you have two wires attached to your door switch, then this means = that the switch is of the plastic type and that there is a separate earth to the switch. Operation of the switch just connects the two wires together and you need to make your connection to the non-earthed wire, which can be found by switching your multimeter to the ohms position and attaching one probe to the car's chassis and the other to either of the two wires. Make your connection to the wire that breaks the continuity when the door switch is operated.

Making sure that the side lights are now switched off, insert both FS1 and FS2 into the fuse holders, switch the lights back on and open the door. You should hear the sounder emitting the reminder tone. You can now adjust VR1 to the desired volume level. When you either switch the lights off or close the door, the sounder should cease.

Finally, fit the lid and tuck the control box up under the dashboard. If any of the above fails, then re-check all your connections and fuses.

R1, 7 47K

R2, $3,4,5$	1 K 2
R6, 9	10
R8	100 K
VR1	10 K
Capacitors	
C1	$100 \mu \mathrm{~F} 25 \mathrm{~V}$ DC Radial
C2	$0.22 \mu \mathrm{~F} 25 \mathrm{~V}$ DC Polyester
C3	$10 \mu \mathrm{~F} \mathrm{25V} \mathrm{DC} \mathrm{Axial}$
C4	100 N Mylar
C5	$47 \mu \mathrm{~F} 25 \mathrm{~V}$ DC Radial

Semiconductors

IC1	4011 CMOS QUAD 2-Input NAND
IC2	556 CMOS DUAL 555 Timer
D1	IN001
ZD2	15 V Zener
PZ1	Piezo Sounder

Miscellaneous

ABS Box (Internal) $49.5 \mathrm{~mm} \times 99.5 \mathrm{~mm} \times 40 \mathrm{~mm}$ $2 \times$ Fuse Holders 20 mm Flush
$2 \times$ Fuses 100 NA Q/Blow 20mm
$1 \times$ Rubber Grommet
Stripboard 0.1 in Matrix, 39 Strips $\times 14$ Holes
4 Way Screw Terminal Block
$2 \times$ DIL Sockets, 14 Way
2×6 BA Nuts and
Bolts (counter-
sunk)
Required length
of Auto Cable
$(160.2 \mathrm{~mm}$
Approximate
Cost: $£ 8.00$

ЭЈИA.IIヨVIU SURVEILLANGE

A SMALL SAMPLE OF OUR RANGE	KIT	MODULE	PROF FINISHED
ROOM TRANSMITTER RT1 An extremely sensitive miniature transmitior with long battery lile Dimensions: $20 \times 20 \mathrm{~mm}$	003	13.75	19.00
MAINS TRANSMITTER MT4 Can be connected inside any equipment that is mains powered. Dimensions $35 \times 20 \mathrm{~mm}$	10.75	31.50	45.00
TELEPHONE TRANSMITTER TTS Small enough to concoal within a leleptrone, will transmit both sides of a conversation (saries connection) Dimensions: $10 \times 20 \mathrm{~mm}$	12.76	17.50	25.00
TELEPHONE SOCKET TRANSMITTER TSTS Replace your tothphone sockat with this one within which a transmither hes been concealod.	14.74	-	20.00
ROOM AND TELEPHONE TRANSMITTER RTT Operates as a room transmitter, then switches to relephone fransmitier mode during telephone calls Dimenstons: $30 \times 25 \mathrm{~mm}$	31.80	45.50	65.00
AUTOMATIC TELEPHONE RECORDER SWICH TRS2 Record ielephone conversations with this inlerlace unit and your own tape recorder. Dimensions: $36 \times 50 \mathrm{~mm}$	16.60	25.90	32.00
AUTOMATIC TELEPHONE RECORDER ATR1 Adapt the tape recordes included to record telephone calls automatically.	24.95	-	80.00:
TELEPHONE TAP ALERT TTA1 Visual waming of any invasions of privacy on your telephone line. Dimensions: $38 \times 52 \mathrm{~mm}$	21.05	31.50	18.00
RF DETECTOR RFDT. Highly sensitive hand-held detedor. Range betwen 10 Mhz and 600 Mhz . Silent operation. Dimensions: $70 \times 50 \mathrm{~mm}$	127	69.00	88.00
CAMERA DETECTOR CD8 Delects hidden video cameras (even miniature CCD models). Dimensions: $63 \times 38 \mathrm{~mm}$	68.co	89.00	12300
RECORDING BRIEFCASE RBC1 Completely discreet recordings at a value for money price.	--	--	145.00
SHOTGUN MICROPHONE AMPLIFIER SMA ideal for surveiliance. The amplilier will pick up sounds from a long distance.	24.05	36.00	45,00
SIGNALLING TRANSMITTER SIGT Sends a continual audio pulse. Can be integrated into alarm, tracking or waming tystemm. Dimensions: $20 \times 50 \mathrm{~mm}$	21.95	34.89	45.00
TELEPHONE AMPLIFIER TAS Connectod directly to the telephone, this unit will aryolify both sides of a teisphone call. Dimens ions: $25 \times 52 \mathrm{~mm}$	10.06	16.95	19.96
PROFESSIONAL SOUND TO LGHT UNIT \$K72 Custom buikt for disco or home use. Audio signal divided intó bass, mid and treble bands, with internal microphone and spothight option. Dimensions $210 \times 45 \mathrm{~mm}$	21.95	32.49	44.8
MICRO METAL DETECTOR MMD Detad the presenco of lemous and various non-ferrous. metals. Usetul for alt those DIY jobs. Dimensions: $40 \times 25 \mathrm{~mm}$	283	16.95	-

Please add $£ 2.00$ P \& P to all orders and 175% VAT on all UK. orders. For full catalogue please send two 1st class stamps or 2 IRC'S
$\left.\begin{array}{l}\text { 172t Caî̃donian Road } \\ \text { Oepi EI }\end{array}\right)\left(\frac{\text { London Nt OSG }}{\text { CRIDGE AUDIO }}\right.$
xin

For rooducts you can rely upon to give amazing results

For information on Active Antennas, RF Amplifiers, Converters, Audio Filters, the Worse Tutor and Speech Processors send or telephone for a free catalogue and selective data sheets as required.
All our products are designed and made in Britain. Orders can be despatched within 48 hours subject to
 availability.

WE HAVE THE WIDEST CHOICE OF USED OSCIL LOSCOPES IN THE COUNTRY		
TEKTRONHX 7000 SEARES OSCILLOSCOPES AVALABLE FROM E200 PLUG-INS SOLO SEPERATELY		
1741 Dua Trace 100 ONHz Delay Sweep Aradguve Sirgae		
 Clin $\mathrm{Hz}-18 \mathrm{BHz}$		
[GP10 \&		

Used Equipment Guaranteed - Manuals supplied if possible This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists Please check availability belore ordering CARRIAGE all units £16 VAT to be added to Tatai of Goods and Carriage

STEWART OF READING
 ИSA 110 WYKEHAM ROAD, READING, BERKS RG6 1PL

MIDI EXPLAINED

In Part 3 of Robert Penfold's series on MIDI, he takes an in depth look at channel messages

(1)n last month's article, the subject of MIDI modes was covered, and a start was made on the related subject of channel messages. In this article we will consider all the remaining channel messages in some detail. These are the most important messages, since they are the ones that are used to play notes, provide touch sensitivity and pitch bends, change to a different set of sound generator

slightly perplexing one, but in this context a 'program' is normally a set of sound generator parameters. This message is therefore used with a synthesiser to change from one sound to another. For instance, this message could be used to change an instrument from a trumpet sound to a guitar sound. Although this might not seem to be particularly useful, most instruments will respond to this type of message very rapidly, making it possible to use program changes midsequence. This is a form of channel message and it is therefore possible to individually change the sound of each voice of an instrument operating in mode 4 or a multi-mode. This may still seem to be a clever but not particularly useful feature, but it can greatly enhance the capabilities of a sequencer system, particularly a budget system. Suppose you have an eight channel instrument operating in mode 4. On the face of it, this system can only operate using eight different instrument sounds (one per MIDI channel). However, by using program change messages it is possible to use several times this number of sounds. A channel could play a piano sound first, then a cello sound, then a bass guitar
and so on. By having several different sounds on each channel, with each one being played in turn, it is quite possible to have eight channels but a total of a hundred or more different sounds.

There is an obvious limitation in that our example system can provide no more than eight different sounds at any one time. For most users, this is not a major drawback though, since they would not wish to use large numbers of sounds simultaneously. Of course, even with a system that has a separate voice assigned to each of the sixteen MIDI channels, program change messages are still a useful means of squeezing a little bit more power out of the system.

Although only envisaged originally as a means of switching an instrument from one sound to another, program change messages can be used to change any MIDI device from one set of control settings to another. These messages could therefore be used to control a lighting unit, MIDI patchbay, audio mixer, digital effects unit, or any MIDI equipped device. Some noninstrument MIDI units do make use of program change messages, but it is only fair to point out that this method of control is not always used. There seems to be an increasing use of system exclusive messages to control patchbays, mixers, etc. Where an instrument or other MIDI unit can be controlled via program change messages, this is often a very easy and convenient means of control. Generating the right system exclusive messages can be difficult, particularly if it is a slightly obscure piece of equipment that you are trying to control.

Practically any MIDI controller can produce program change messages. Most keyboard instruments can be set up so that they will transmit the appropriate program change message each time they are set to a new program number. Consequently, there should be no difficulty in getting the slave instruments to follow changes implemented on the master instrument.

Program change messages have great potential in sequencing work, but their usefulness in 'live' performances should not be overlooked either. For any user of program change messages, there are a couple important points which must be kept in mind. One of these is simply that this is a form of channel message. If you have several instruments or voices of ïnstruments operating on different MIDI channels and you require them all to switch to a new program number, a different program change message is needed for each channel. This problem does not arise in a simple system that has the slave instruments in an 'Omni on' mode, or all operating on the same channel.

Sequencing using program change messages is usually quite straightforward. It is not normally necessary to become imolved in getting a certain sound assigned to a particular pregram number. There should be no difficulty in using the idferault settings of the instrument and using the appropriate program numbers in the program change messages. The same s not true for those who use these messages during 'live'
performances. The slave units have to be carefully set up so that they always provide the correct sounds, as they follow the program change messages from the master instrument. It should always be possible to assign any set of sound generator parameters to any program number and many instruments have facilities that make it easy to copy a group of settings from one program number to another. Getting everything set up correctly may not be very time consuming, but it is advisable to have a 'dummy run' to ensure that everything will be all right on the night.

General MIDI

The original MIDI specification did not make any recommendations about the type of sound assigned to each program number. There probably seemed to be no point in doing so at the time the MIDI specification was devised, but more recently, music has become available in the form of standard MIDI sequencer files, which can be played on a MIDI sequencing system.

The problem with this approach to recorded music is that it gives a different result on each system, due to different sounds being assigned to each program number. Program 23 might be a grand piano sound on the system used to produce the sequencer file, but it could be a banjo, saxophone, jet plane, or anything on the systems used to reproduce the sequence. It was therefore deemed necessary to add a set of standard sound assignments to MIDI and this is known as General MIDI. This is not a subject we will pursue further at the present time, but if you wish to produce Standard MIDI files that others can play back properly on their systems, you must adhere to the standard sound assignments. If not, you are free to assign whatever sound you like to any program number.

A program change message is a two byte type which uses the method of coding shown in Figure 1. The header byte has the program change code (1100) in the most significant nibble and the channel number in the least significant nibble. This is followed by the program number, which in decimal numbering is in the usual MIDI data range of 0 to 127 . Note that equipment manufacturers do not necessarily number programs from 0 to 127. Some use numbers from 1 to 128 , others have sounds arranged in banks, giving program numbers such as A-1 and D7. The equipment manuals should clarify the relationship between the manufacturer's method of numbering and the true program values.

This is not just of academic importance. When using equipment from several different manufacturers it is quite easy to end up selecting the wrong sounds due to differences in the numbering methods. Most modern instruments have the full complement of 128 different sounds, but many older instruments only have 63 or 99 . Again, it is a matter of checking the equipment manuals to determine exactly what each instrument can achieve With some modern instruments, there is the luxury of several banks of sound data, with each one containing 128 different sounds.

Pitching In

In theory, a pitch wheel change message can be generated by any MIDI control unit, but in practice it is unlikely to be produced by any means other than operating the pitch wheel of an instrument. This message is a three byte type which uses the method of coding shown in Figure 2. The header byte has the pitch wheel change code (1110) in the four most significant bits and the channel number in the other four bits. The seven bits of data in each of the next two bytes are combined to produce a 14 bit value.

The first data byte provides the seven least significant bits - the second data byte furnishes the seven most significant bits. In decimal terms, the total pitch change value is obtained by multiplying the most significant byte by 128 and then adding the least significant byte. 14 bit resolution gives a pitch wheel value in the range 0 to 16383. The zero pitch change value is $8192(01000000000000$ in binary). Sending higher values gives an increase

improved control over the dynamics of an instrument. It is a feature that is certainly more than a little desirable.

Velocity sensitivity was not common in the early days of MIDI, and any form of after touch was virtually unknown. Things have changed over the years and it is probable that all current MIDI keyboard instruments implement at least basic velocity sensitivity. Most now have some form of after touch as well. Of course, after touch is not restricted to keyboards and it can be implemented on practically any form of MIDI controller. MIDI guitars represent the only common exception. With a guitar, it is only possible to control the dynamics of the notes by plucking the strings more or less hard. This can be handled by the velocity values in note on messages and after touch does not really apply to any sound that is percussive in nature and of relatively short duration. It only applies to sounds that can be sustained for a long period (wind, organ, strings, etc.).

MIDI provides two versions of after touch, and the more basic form is channel after touch. This type is also known as 'overall' after touch. The data value in this type of message is a sort of average figure for all the keys that are being played on that particular MIDI channel. Although this gives only a rather unrefined method of control, it is still a great improvement on having no after touch facility at all.

This after touch message is a simple two byte type. Figure 3 shows the bit-by-bit make-up of a channel key pressure message. The header byte carries the channel key pressure code (1101) and the channel number. The second byte is the channel pressure data byte. A value of 0 is used for no pressure, through to 127 for maximum pressure.

The other form of after touch message is the polyphonic key pressure type. This provides individual after touch for each note that is played, which clearly provides very precise control of the dynamics of a piece. In theory at any rate, in terms of the amount of expression that can be put into your playing, it makes electronic instruments the equal of any acoustic instruments. Although polyphonic after touch was a rarity until quite recently, it is now becoming much more common. It is even to be found on some low cost MIDI keyboard instruments. Polyphonic after touch is a three byte message which uses the arrangement shown in Figure 4. The header byte contains the polyphonic key pressure code (1010) and the channel number. The second byte contains the note value. The system of note values used here is identical to the one used for note on and note off messages. The third byte carries the key pressure value.

In Control

Last and by no means least, we reach the MIDI control change message. Originally this type of message was used to control any aspect of an instrument which was not covered specifically by one of the other MIDI message types. This included control over the sound generator circuits. An update to the MIDI specifi-
cation banned the general use of control change messages to control the sound generator circuits, but control of the sound generator circuits via these messages is still permitted, provided it is done strictly in the prescribed manner. This is something we will consider in detail later.

The MIDI controls are now primarily used as a means of controlling such things as master volume and switching built-in effects units on and off, rather than as a means of making fine adjustments to the sound generator circuits. When ulsing a MIDI instrument that is not as young as it used to be, bear in mind that it might not conform to the current MIDI recommendations and could use MIDI controls for practically any purpose.

There are two broad categories of MIDI control change message. These are the switching and continuous controller varieties. The switch type is only used to switch something on or off, such as some form of effects unit. The continuous type provides variable control and is used for something like a volume or balance control.

A switch type control is operated using a three byte message. The first byte is the header type, which contains the control change code (1011) and the channel number. The next byte is the number

Fig 5. A sox byte sequence to change boin bytes of a continuous controller
switching type, but the value in the third byte is the new setting for the control. This normally works on the basis of 0 for minimum and 127 for maximum.

The two exceptions to this are controls 8 and 10, which are respectively the balance and pan controls. These have 64 as the central setting, 0 as full left volume and 127 as full right volume. If more than 7 bit resolution is needed, controls 0 to 31 are paired with controls 32 to 63 , so that up to 14 bit resolution can be accommodated. Control numbers in the range 0 to 31 carry the most significant bytes, while those from 32 to 63 carry the least significant bytes. Control 0 is paired with control 32 , control 1 is paired with control 33 , and so on through to control 31 which is paired with control 63. This works in a manner that is similar to the way in which the pitch wheel message provides 14 bit resolution. However, the pitch wheel change message carries the two 7 bit bytes in one message, whereas they are in separate messages for a control change.

Note, however, that it is perfectly in order to change only the higher control number if only minor adjustment of a control is required. Control of the most significant and least significant bytes is totally independent.
Figure 5 shows an example six byte sequence which of the control which must be changed, which gives some 128 different controls numbered fromioto 127. The switch type controls are those having numbers in the range 64 to 127, but some of these now have specialficintions and operate in a nonstandard fashion. This inciudes a fewthich operate as continuous controls. We will not consider these special cases at the present time. The third byre controis the on/off setting. Originally only two values were recognised nere, which were 0 for 'off' and 127 for 'on'. The Detaied MIDI Specification altered this and recent equipment should accept values from 0 to 63 as 'off' and 64 to 127 as 'on'. MIDI controls having numbers from 0 to 63 are the continuous types, but these are used in pairs. If only seven bit resolution is adequate, only controls from 0 to 31 are used. The message then takes the same basic form as a
changes both bytes of a high resolution control.
This method of obtaining high resolution control has proved to be something less than universally popular and many consider it to be an inefficient way of handling things. Few instruments seem to utilise the higher control numbers and have 7 bit resolution for the continuous controls. In fact some do not even implement 7 bit resolution and only utilise the five or six most significant bits of the coarse control. However, there are a few instruments which do use the full 14 bit resolution, or something close to it.

Next month
we will consider MIDI controller assignments, special function controls and system messages.

In this month's ETI competition you could win a sophisticated electronic blood pressure monitor from Maplin Electronics.

With the increasing popular awareness of the importance of living a healthy lifestyle, it is hardly surprising that electronics systems are being employed to monitor body function and warn the user of impending problems, without the need for a lot of medical knowledge and otherwise complex measuring techniques. An example of this kind of electronic device is the newly released Maplin Blood Pressure Monitor.
This is an easy to use digital blood pressure tester which has been specifically designed to remove the complexities of measuring blood pressure and pulse rate, particularly for those who are not familiar with the technique, The monitor takes readings from the left index finger and shows the systolic and diastolic pressures, as well as pulse rate on an LCD display. The system is very easy to use and at various stages in operation will display a 'ready to measure' and 'heart' symbol to indicate the current stage of the operation. The monitor has its own pump, so no manual pumping is required, it will automatically inflate to a pressure of around 200 mmHg and then

	V	V	L	N	P	E	V		U	B	W	N			
	F	U	Q	K	Y	O				S	D	E	W		
	M	C	T	T		H			N	H	C	O	O		
	H	G	I	W	F	L							O		
	X	E	B	L	1	R				S	K	O	\checkmark		
	M	F	L	J	O	P			A	A	S	G	U		
	M	M	E	E	U	T						X			
	B	A		M	S	N					H	H	D		
	L	E	P	Y	Y	L				S	N	K	O		
	T	I	S	L	N	D					S	O	G		
	N	K	B	N	I	,	H		P	V	D	U	M		
	H	K	D	Q	S					O					
	V	J	I	O	R	W				F					
		N													

All entries must be received before August 30th when a draw will be made from all correct entries to decide the winner. Rules. The competition is open to all UK residents other than employees of ASP and Maplin or their families. The prizes are as stated and there is no cash alternative. The editor's decision is final and no correspondence can be entered into.

[^2]
ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact: Wise Owl Worldwide Publications, 4314 West 238th Street,
Torrance, CA 90505
Tel: (310) 3756258

Talkback

Dear ETI

I have developed a small circuitwotich readers dfETl might find useful．This circuit monitors an 8 CTvaue on es＝t of da゙a nes． and latches the peak value onto a futter engt detelnes．This output could be processed further or，as shoi，herき，ce used to drive two seven segment displays．An isealeozlletion for such a circuit would be，for example，a wbraion mantoring system where the peak vibration thet orvius r〒eds to de stored and displayed．
 latch，IC1．The comparator constanty oumperes the inout data， on inputs P ，with the current peak valde oin Irouts Q ．If the input data is greater than the current peat vae then THP Fgreater than＊＊Q line from the comparator goes luwAsinge NOF gate， IC2a，inverts this signal，causing the deta to belatated into IC1． In order for the start－up to be ordety，le，the curtent ceak value to be zero，a reset upon power uD ミFrovioncta，R1，G1 and IC2b．IC4 and IC5 are hexadecimal dislay dreesused to display the higher current value trom RS

The component values used in the clrourare as follows：

IC1	74LS273
IC2	74LS04
IC3	74LS684

IC4， 5 Hex Display（RS 586－7S－）
RN1 3K resistor SIL
R1 330K
R2，3 330ohm
C1 $1 \mu \mathrm{~F}$
Vcc +5 V
T．B．Grant．Glamorgan．

Club contacts

Our regular list of amateur electronics clubs

Ashley，tel： 0304812723.
If you run a club that is concerned with some aspects of elec－ tronics and computing we would like to hear from you so that we can include your club in our regular listing．

Feedback

Here at the editorial offices of ETI we want to provide you，our readers，with the sort of magazine that you want to read．We can of course guess what you would like to see in each issue of EII，but a far better way is to rely upon feedback from readers． To help us in this process we are instituting a new concept，the ＇Feedback Box＇．We are asking readers to take a few minutes and write down on the back of a postcard the ratings which they would award to each article in this issue．Ratings should vary between 1 and 10，with 1 being poor and 10 being brilliant．
A－Where on Earth am I？
B－Computer controlled stepper motor
C－Turbo speed indicator
D－Anglers bite alarm
E－PC Clinic
F－Video light meter
G－Magnetism and magnetometers
H－Car lights on reminder
I－An Introduction to MIDI
Just write the article letter followed by your score for that article and send to
Feedback Box August 94，
ETI，
Argus House，
Boundary Way，
Hemel Hempstead，Herts．HP2 7ST．
To add an extra incentive，all replies received before August 30th 1994 will go into a draw and the winner will receive a ＇goodies bag＇of electronic components．

British Amateur Electronics Gub．
Contact the club secretary M J．F．Davies on 0606883^{--2}
Crystal Palace and Distrot Hactio Club，tel： 0816995732
Lincoln short Wave Racio Club， Lincoln．tel： 0427 788355．
London Live DIY Hi－FiClicle，contadt Launcelot Dow， 7 Pymmes Gerdens South，Lower Edmonton，Liendon 1．9 9NT．

Midland Amateur Redio Sacletv，tet： 0214229787 or $021,443-1189$ （evenings only）．

Sudbury and District Racio
Amateurs，tel： 0787313212
Thanet Electronics Club．Ayouth group for school age people in East Kent．Contact the club secretary Roy

Practically Speaking by Terry Balbirnie

Health and Safety

Last month, we looked at the siting of a workshop inside the house. However, this will not be possible for many readers. An alternative idea is to use a partitioned section of the garage or a garden shed. This will be relatively inexpensive to set up, but the drawback is that such places are likely to be damp and certain

aspects of safety must be taken into consideration if mains electricity is to be used.

First decide if mains electricity is really needed. It is possible to operate a workshop without it and if there is any hesitation over safety, this must be the course to follow Such a mains-free workshop will be discussed next month.

If you do decide to lay on mains power, you should use a qualified electrical contractor to provide advice on how to install it. Unless you know your IEE Wiring Regulations you should not attempt this job. If a supply already exists, it must be checked by a competent electrician to ensure that it was properly installed in the first place and is fit for the purpose. The Electricity at Work Regulations apply to private houses as well as work places - the person installing the supply is responsible for the safety of those using it.

Considerations

These are the most important points to consider. The wiring from the supply must be of adequate current rating, carry an earth conductor and be of the correct physical type. It must
terminate in a small consumer unit from where it will feed the circuits for power sockets, heating and lighting.

There will be a double-pole switch and separate fuses - 5A for lighting, 10A for heating and 15A for power sockets (only 5A if used for low-power experimental equipment). Rather than conventional fuses, miniature circuit breakers (MCBs) will be found more converient because they can be instantly reset. Earthing must be efficient and any exposed metalwork earth bonded according to latest EE regulations.

For safety reasons, the consumer unit must be of the type containing a RCD (Residual Cument: Device) - see illustration - or have separate RCDs for eacn croult. The H98 PowerBreaker RCBO units are useful, because they combine miniature circuit breakers with RCDs. These are avallable in ratings from 6A to 32A.

A fluorescent light, rather than the fungsten filament, variety should be used because it is relatively shadow free and promotes safe working, A spotignt could also be used for close work. If a heater is needed. use the infra-red bathroom type rather than a free-standing one. This should be wall-mounted, as high as possible and operated through a cord switch.

You should fit a smoke detector in case the soldering iron or other equipment is left switched on and touching something, causing insulation to melt and burn. This must be of the type which can 'repeat' in the house. An add-on circuit which can provide a repeat facility using an ordinary cheap smoke detector will be given as a project in a future issue.

Another must is to provide some means of communicating with the house in an emergency. A simple bell push with a loud buzzer in the house will do, but more useful is a two-way system with a buzzer at each end. This can be built using 3-core wire as shown in Figure 1. Of course, a cheap intercom is even better,

It is essential to provide a good lock on the door - this will prevent a child entering in your absence You are likely to leave things lying around with their lids removed and this could injure a child playing. They could end up with a very nasty burn trying their hand at soldering! In addition to a lock, it may be necessary to provide an intruder alarm arranged to give a warning inside the house. A circuit for such a simple alarm will also be described as a project in a future issue.

Where a mains supply must be avoided, either because of the cost of installing it or on grounds of safety, then some alternative means of operating the workshop will need to be found. We shall she how this can be done next month.

New from Argus Books! SCANNERS 3-

Putting scanners into prádiceanewettion by Peter Rouse. This is the 4th revised a-d co-ple:elvupdated edition of Scanners. This new edition has seen the largest ever number of changes and edstons to the point of being a virtual rewrite, and conta n-s everyining you need to know to put your scanner to beter use
There is vastly more informes in ter e- = teloumby liscing, particularly those

 including cordless and celtuer reeprorm proze caole nachoy amateur radio,
 weather, including cosribsand
Fully illustrated throughour nowaing en esciion fearuring the actual scanners currentiy Evalacie
This book includes all the iriomain ac inoob pou Scamers finio practice

F-ascanners 3- Putting scan=-

| ISBN 185486 1066 g £9.95
\| $\mathrm{p} \& \mathrm{p}+10 \%$ minimum $£ 1$. UK K miry Owerseas $=200 \%$.
Telephone orders 067966505.
enclose my remitancaut- cheove payable to Bailey Distribution and send to the acmese neco- Fowechepe try Mestercard/Visa

Expiry Date:
Name.
Address.

d. foad

Lare made payable to Bailey Diss-finarar

SCANNERS

Putting Scanners into Practice

SUBSCRIPTION OFFER

Foils for this issue

Turbo speed

Car lights

Vidio light meter

Bite alarm 2000

Bite alarm 3000

SEETRAXCAE RANGKR PCB DESIGN

Ancicirif Flow

Parts, and wiring list entry

Rangerí 新 99

....All Hie features arkangert plus

 -90.0.․․…............

\squareTFack tivitigitio* CopperafoodiditilCoppanodisind :-9:

\because.-家............ . . $\because \sqrt{0 \cdot 0-0}$$\because$ Hhanat bonem dayentoBack annotation (tinked to schematic)

- 50
\qquad

Ranger 3 £3500

HMichon resolution and angles to T/10thdegtec othiergehical of Iflifscliomatic
Etnlmited designsize :

* Any-shaped pad
* Split power planes \because

Paprionlal on-line DRC

$;^{\circ} \cdot$ Cull Seetrat CAE for furhier informationiderno packs.

\qquad
\qquad

Qutputs to:

*ig and 24 pin dot-mattix printers
 $*^{\circ} H^{H} \mathrm{GL}^{2}$ Houston Instriments ploters
E Ifemer photoploters

dTw James Gale

Send your requirements to
ETIClassified Department，ASP，Argus House，
Boundary Way，Hemel Hempstead，HP2 7ST
Lineage：65p per word（－VAT）（minimum 15 words） Semi display：（minimum 2．5cms） 88.70 ＋VAT per single column centimetre

Ring for information on series bookings／discounts． All advertisements in this section must be prepaid Advertisements ate accepted subject to the terms and conditions printed on the advertisement rate card（availabie on request）．

KITS

STOP CAR TIET FOR JUST ES

Revolutionser $2 \mathrm{~m}=\mathrm{B}$ $K i t=P C 8-\infty$ $K i t=P C B-M \geq \square$ Aspermme 표

 Massaーシーシー・ー
 versー－－－ ORDER MO゙サ ニコ ORDER NO PEACE IF

NEW VHF MICROTRANSMITTER

KIT tuneable $70-115 \mathrm{MHz}, 500$ Tetre range，sensitive electret microphone，high quality PCB SPECIAL OFFER complete kit ONLY £5．95 assembled and ready to use $£ 9.95$ inclusive P\＆P 3 Watt FM transmitter kit £15．95． Credit card orders Telephone： 321457 7994，Fax： 0214579745 Cheques／PO＇s to：C．E．C．（Dept ETI）， 1678 Bristol Road South Birmingham B45 9TZ．Send $2 x$ 1st Class stamps for details of these and other kits

counses

Start training now with the specialists for

 the folloring courses．Send for our brochure－without obligation or Telephore us on 0626779398ETI 8／94

Name	Telecomms Tech C\＆G 2710
\square	Radio Amateur Licence C\＆G
\square	Micro－ processor
Introduction to Television	
Radio \＆Teiecominmurications Correspondence School	
12 Moor Wrewnwe Teignmouth，Devon TQ14 9UN	

DESICN

SERMCE

> SURVEILLANCE KITS MRT1 MICRO TAANSMITTER， $25 \mathrm{~mm} \times 20 \mathrm{~mm}$ including
sensitive mic．，Luneable $80-115 \mathrm{MHz}$ ． 500 M range Kil $£ 4.95$ Assembled E895 IT1 TELEPHONE TRANSMITTER $35 \mathrm{~mm} \times 10 \mathrm{~mm}$ powered irom line，discreelly transmits all conversation
500 M range $80-120 \mathrm{MHz}$
Kit
555
95 All prices incluoue pâd．Sene 2x2nc class stamps for EXCEL PRODUCTS（DePt ETI） －Unit 14 Sunningdale Eishog＇s Storlion Herts CMi23 2PA

HEATHKIT U．K．Spares and service centre／educationa products distributor．Cedar Electronics， 12 Isbourne Way Winchcombe，Cheltenham，GL5 5NS Tel：（0242） 602402

RACKS
 EQUIPMENT

19＂RACK－MOUNT EQUIPMENT？

Frames，cabinets and flight cases for rack－and non－rack－equipment． A wide range of accessoribs available． For further information and brochure contact：

GROVESTREAM ENGINEERING

 SERVICES， 29 Silverdale Road， Tadley，Hants RG26 6JL Tal／Fax： 0734813395FOR DETAILS OF ADVERTISING RATES CALL JAMES ON 044266551

SLIDER VARIABLE Power－ supplies，9－25V．DC－regulated £3－100 watt poweramps +3 heatsinks 59 －Stereoamps＋ selector 10W £5－K．I．A． Regent Road，Ilkley LS29．．．New ＋Directions！

COMPONENTS

EPROM，PLDs＋Microcontrollers copied or programmed．we supply devices／convert discrete logic to PLDs．PO Box 1561 Bath 0225 444467.

SOFTWARE

SHAREWARE AEFERENCE GUIDE Find out what ceally w wavirble in PD \＆ Shacewnere－ham radio．graphics，businety．
 book．Thou Landitiof the bort PD A shercware proes ams for Dos a Windown deceribed in deteai with he hat dware ereuifementu for cach date shareware reference book availabite uday
 POSL，Winssombe Hse，Beacon Crowborough，Sussex，TN6 1UL，

PLANS

ELECTRONIC PLANS，laser designs，solar and wind generators， high voltage teslas，surveillance devices，pyrotechnics and com－ puter graphics tablet． 150 projects． For catalogue．SAE to Plancentre Publications，Unit 7，Old Wharf Industrial Estate，Dymock Road， Ledbury，Herefordshire，HR8 2HS．

FOR SALE

> THIS SPACE COULD BE WORKING FOR YOU！ CALL 044266551

COOKE INTERNATIONAL

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS，BRIDGES，CALIBRATORS，VOLTMETERS， GENERATORS，OSCILLOSCOPES，POWER METERS．ETC always available

ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE
EXPORT，TRADE AND U．K．ENQUIRIES WELCOME SEND LARGE S．A．E．FOR LISTS OF EQUIPMENT AND MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS

SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM－5PM COOKE INTERNATIONAL
ELECTRONIC TEST \＆MEASURING INSTRUMENTS Unit Four，Fordingbridge Site，Main Road，Barnham，Bognor Regis， West Sussex，P022 0EB Tel（＋44） 0243 545111／2 Fax＋44） 0243542457

TECHNICAL \& SCIENTIFIC S U P P L I E S
 Professional second user equipment.
 - Components
 - Special spares
 - Transducers
 - Instrumentation
 - Professional Consultancy

Please witte, phone or fax anytime
PO Box 19, Hythe, Southampton, Hampshire SO4 6×0.
Tel. 0703848666 Fax. 0703897079

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 05123609820512360154
47 Whitechapel Tel: 0512365469 Liverpool 2
'THE ELECTRONICS SPECIALISTS Open: Tues-Sat 9.30-5.30

TURN YOUR SURPLUS RANSISTORS, ICS ETC INTO CASH immediate settlement. We also welcome the opportunity to quote for complete factory clearance Contact:
COLES-HARDING \& CO Unit 58, Queens Road, WIsbech, Cambs PE13 7PQ
BUYERS OF SURPLUS INVENTOR ESTABLISHED OVER 15 YEARS Tel: 0945584188
Fax: 0945475216

LENCOORE ENTERPRISES

UNIT 5
 SOUTHALI. ENTERPRISE CIENTRT BRIDGE. ROAD
 SOUTHALI. MIDDX. UB2 4AE
 Tel: 081813 9446 Fax: 0815742339
 We Buy, Sell, Repair \& Calibrate Electronic Test Instruments

HP 8165A Programmable Signal Source	£2,500
HP 3580A Spectrum Analyser	£1,500
HP 141T/8552B/8554B	£1,450
HP 8590B opt. 001 Spectrum Analyser	£4,500
HP 54500D Digitising Scope	£2,500
HP 9303 Audio Analyser	£2,650
Marconi 2955 Comms Test Set	£3,000
Marconi 2018 RF Signal Generator	£1,650
Marconi 2019 RF Generator	£1,850
Marconi 2022D RF Generator	£2,000
Marconi 2370/1 Spectrum Analyser	£1,750
Racal 9303 RF Level Meter	$£ 850$
Racal 9902A Frequency Counter	£195
Bradley 192 Scope Calibrator	£1,200
Balatine Calibrator	£1,000
Tektronix 2215 Scope	£450
Tektronix 465	$£ 450$
Tektronix 2235	£750
Tektronix 2211 Digital Storage	£1,200
Tektronix 492 Spectrum Analyser	£5,500
DC Power Supplies 0-50V/2A	from £50
Gould OS 300040 Mhz Scope	£250
Hameg 203-6 20Mhz Scope	£295
Ferograph Recorder Test Set	£395
Wayne Kerr 4225 LCR Meter	£525
TELEPHONE: 0818139946	5742339

SWC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1 HW FAX 0815591114

Solid State Relays

Switch 240 V from

transistor, logic or computer outputs 3-32V D C contro optically isolated
4 A pcb mount
K 10A tag connect $£ 854$ delivery incl apply for full range Erlc Jones, Depl. ETI, 01 85 Blrchwood AV., Hattield AL 10 OP
Tel: 0707265936 Fax 0707270877

ADVERTISING IN ETI COULDN'T BE EASIER SIMPLY CALL JAMES ON 044266551

WANTED

WANTED

Fecevers, Transmitters, Test Equipment, Cermponents, Cable and Electronic, Scrap. Bee DCB's, Plugs and Sockets, Computers, Computer Scrap, Edge Connectors.
TOP PRICES PAID FOR ALL TYPES OF ELECTRONIC EQUIPMENT.
AR. Sinclair Electronics,
Slockholders, 2 Normans Lane, Ratioy Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mab $\mathrm{H}^{2} \boldsymbol{0} 0860$ 214302. Fax: 0438812387

STAND OUT FROM THE REST WITH
SPOT COLOUR
CALL JAMES ON 0442 66551 FOR ADVERTISING DETAILS

ARGUS BOOKS PUBLISHING FOR THE SPECIALIST

THE FULL RANGE OF ARGUS BOOKS

 are available from all good book and hobby shops or contact Argus Books direct for a 1993 Complete List.

COMPLETE LIST, Argus Books, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST OR PHONE 044266551 EXT. 203 ADVERTISEMENT DEPARTMENT, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rtex Lineage 65p per word + VAT minimum 15 words.
Semi-display $£ 8.70$ per single column cm plus VAT. No reimbursements for cancellations. M ads must be pre-paid.

Open Forum

(1)It is normal practice today for electronics system engineers to incorporate microprocessor systems into their designs. Indeed, you will probably find a microcontroller chip embedded into the most mundane of products. Doing so makes the design simpler, cheaper to make, quicker to design and, of course, easier to change in the face of changing customer needs.

It is hardly surprising, therefore, that chip designers are moving in the same direction. Rather than design a complex chip from scratch as a purely hardware implementation, it is often much quicker and cheaper to use a dedicated embedded microcontroller to do the job. Chip manufacturers have found that such an approach allows complex products to be quickly developed to exploit new niche markets.

In the face of this trend, it is good to discover that a British designed and produced microprocessor is being adopted by two major semiconductor manufacturers as their choice for an embedded processor to be employed in future chip designs.

The British company is ARM, the RISC processor manufacturer set up jointly by Acorn Computers, Apple and chip manufacturer VLSI. The two big semiconductor producers are Samsung, one of the world's top ten, and IBM, who besides being still the world's largest computer company are also, surprisingly, the world's biggest semiconductor company

With licensing agreements like these, ARM has placed itself among the top players at the very leading edge of semiconductor and information technology. It shows what is possible, since this is a company founded by men of technical vision as well as men of commercial acumen, It was not founded by UK Government or EEC directives, or aided by subsidies.

This is a typical high technology venture, one that may have seemed risky to the man in the street and extremely risky to the average bank manager or civil servant, but not to the founders, the men who have the technical vision that others so often lack. Equally importantly,
they are men who have faith in their vision and the technical and commercial acumen to turn that vision into reality.

If a country is to succeed in high technology manufacturing then it needs people like this. People like Bill Gates in the US, a man whose vision of what personal computers should be and how they will be used, coupled with his own commercial and technical genius has, in just twenty years, allowed him to build from scratch the world's largest software company and in the process become one of the world's richest men. Or, on this side of the Atlantic in the UK, another example is someone like Robert Madge, a man who foresaw the future demand for computer networks and developed the technology for them. An outstanding businessman and engineer, he has built up a company valued at over $£ 300$ million from nothing, in under ten years Just as ARM has been successful without government aid and intervention, so the above two examples and many more like them, have also been successful without and often in spite of, governments, civil servants and their like. Indeed, if the government really wants to foster the growth of new high technology industries, then it should provide the appropriate encouragement for such individuals.

These people are the modern equivalent of the great Victorian engineer industrialists, such as Parsons, Bell and Eddison. Such people are rare, but not that rare. Governments should help them by freeing them to do what they do best, build high technology businesses.

Governments cannot direct the development of high technology, however much they might like to think that they can. They just don't have the expertise for a start Furthermore, committees of so called experts will never agree on the proper direction for the application of grants and subsidies, the compromise agreements of such committees will always be wrong. Leave such decisions to the engineering entrepreneur, give him tax breaks and free him of red tape, but don't tell him what to do.

Next.Month...

In trie next issue of ETI we will be bringing you a number of interesting and useful projects. They include a handy transistor tester from Robert Penfold, a caravan tow bar alarm from Torry Balbirnie and for PC users, a handy little alarm which will warn you if your PC is getting too hot and prevent any damage to expensive components. We will also be concluding the computer controlled stepper motor project and continuing our look at measuring magnetism with the construction of a flux gate magnetometer.

In the next issue we will also be introducing the start of a sensational new computer project the ETI Transputer board. This high power super-processor board could be the main building block for a parallel computer, a sophisticated robot vision sysiem, or a high speed signal processor.

We will also be continuing our regular series, Robert Penfold will delve further into the mysteries of MIDI and PC Clinic will look at the organisation and upgrading of memory systems: The 'Tomorrow's Technology' feature looks at the fascinating advances being made in the fusion of biochemistry with electronics - the world of bioelectronics.

EnELECTRONICS TODAY INTERNATIONAL EDITORIAL Editor Nick Mampshire Sub Editor Jim Bluck

CREATIVE Art Editor Peter KIrby Technical Illustration John Puczynski Photography Manny Cefai

ADVERTISEMENT SALES
Display Sales
Hellen Taylor Advertisement Copy Control
Marie Quilter
Classified Sales
James Gale

MANAGEMENT Managing Director Terry Pattisson Circulation \& Promotions Manager Debra Stupple Production Manager
Tony Dowdeswell Group Editor Stuart Cooke Group Advertisement Manager Claire Jenkinson

ETI is normally published on the first Friday in the month preceding the cover date, The contents of this publication including all articles, plans, drawings and programs and all copyright and all other intellectual property rights therein belong to Argus Speciaist Pubications All rights conferrod by the Law of Copyright and other intel-
lectual property rights and by virtue of inlemational copyrighl conventions are specincally reserved to Argus Specialist Publications and reproduction requires the specincaly reserved to Argus Specialist Publications and reproduction requires the prior writen consent of the company c1990 Argus Specialist Publications All
reasonable care is taken in the preparation of the magazine contents, but the reasonable care is taken in the preparation of the magazine contents, but the a correction will normally be published as soon as possible atterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at the time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press

Subscription rates-UK $£ 2340$ Europe $£ 30.30$ Stering Overseas $£ 31.50$ US Dollars Overseas $\$ 5200$

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 UK newstrade distribution by SM Distribution Ltd, 6 Leigham Court Road, London SW16 2PG. Telephone 081-667 8111. Overseas and non-newstrade sales by Magazine Sales Department, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST. Telephone (0442) 66551 Subscriplions by Argus Subscription Services, Ell, Oueensway House, 2 Oueensway, Redhill, Surrey RH1 10S. Telephone (0737) 788611. us subscriptions by Wise Owl Worldwide Publications, 4314 West 238th Street, Torrance, CA90505 USA. For Visa/Mastercard orders in USA - Telephone (310) 375 6258 Fax (310) 375054 B . Pacific Time: 9am-9pm Weskdays. 10am-8pm Weekends Typesetting and origination by Ebony, Liskeard, Comwall Printed by Wiltshire Ltd Bristol,

M \& B RADIO (LEEDS)

 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

 THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER}

all prices plus vat and carriage all equipment supplied with 30 Days warranty

> 86 Bishopgate Street, Leeds LS I 4BB Tel: $(0532) 435649$ Fax: $(0532) 426881$

HEWLETT PACKARD Spectrum Analysers

HP $141 \mathrm{~T} /$ 8555A 10 MHz to 18 GHz System Complete with 8552B IF Section High Sensitivity to- $\mathbf{1 2 5} \mathbf{~ d B m}$
Resolve to $\mathbf{1 0 0 ~ H z}$
Scan up to $8 \mathbf{~ G H z}$ full screen
HP 141 T / 8554B 100 KHz to 1250 MHz System Complete with 8552B IF Section
High Sensitivity to - $\mathbf{1 2 2} \mathbf{~ d B m}$
Resolve to 100 Hz
$£ 1000.00$ With the purchase of any of the above systems we will supply FREE of charge one HP 8553B 1 kHz to 110 MHz RF section. Normal retail price of $£ 350.00$.

All systems covered by $\mathbf{3 0}$ day warranty All prices plus Vat and carriage

M \& B RADIO (LEEDS)

86 Bishopgate Street, Leeds LS1 4BB
Tel: (0532) 435649 Fax: (0532) 426881

Model OS 3020 illustrated above

Star Quality, Reliability, and World Class Performance $= \pm 269.95$

 OS-9020A GWO3D £269.95

The dual-trace, 40 MHz Oscilloscope, OS-904RD, is similar in specification to OS-9040D, but with the additional facility of a digital readout on the CRT. The readout displays information such as timebase and attenuator settings, and on-screen measurements can be performed using movable cursors, the value appearing on the CRT screen. Top-of-the-range is the excellent 20MHz Digital Storage Oscilloscope, OS-3020, with on-screen digital readout and measurement facilities. The digital storage function enables one-off events to be captured and stored for detailed analysis. Stored waveforms can be printed out on a suitable X-Y plotter via the built-in RS232 interface. Repetitive high-speed waveforms up to 20 MHz can be digitised using equivalent sampling techniques and pre-trigger mode allows events occurring before the triggering point to be captured.

OS-9040D GWOAE £399.95

OS-904RD GW06G £499.95

OS-9100D GW05F $£ 699.95$

OS-3020 GWOTH £749.95

Technology with the human touch

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD YOU NEED THE MODERN ELECTRONICS MANUAL

EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The essential reference Work

- Easy-to-use format
- Clear and simple layout
- Regular Supplements
- Sturdy ring-binder
- News of latest developments
- Full components checklist
- Extensive data tables
- Detailed supply information
- Ready-to-transfer PCBs
- Comprehensive subject range
- Detailed assembly instructions
- Professionally written

If the fascinating and fast-changing world of electronics is your livelihood, your study subject or simply your passion, the revised edition of THE MODERN
ELECTRONICS MANUAL is the reference work for you to have at your side.

The Base Manual contains information on the following subjects:

BASIC PRINCIPLES: Symbols, components and their characteristics, passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, operational amplifiers, timers, physics for electronics.
CIRCUITS TO BUILD: Construction techniques, radio, telephony, microcomputing, measuring instruments, vehicle electronics, security, audio, power supplies, electronic music (over 25 different projects).

REPAIRS AND MAINTENANCE: Basic circuit operation for radio, television, audio/hi-fi, telephones.

> DATA: Diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors.
> The Manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers.
> OVER 1,000 pages, with over 900 diagrams and photographs, A4 looseleaf format weighing over 3.5 kg .
> ALL-IN-ONE AND EASY-TO-USE: A sturdy ring-binder allows you to use the Manual on your workbench. The looseleaf format also means you can slot in the regular supplements as they arrive - so all your information is there at a glance.
> EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with - simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.
 Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with the Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge).

> Now - at last - the most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

Over 1,000 pages of well-organised and clearly explained information is brought to you by an expert editorial team whose combined experience ensures the widest coverage.

Regular supplements to this unique publication, each around 160 pages, mean that you will always be kept abreast of the latest developments from around the world as they occur

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, the Manual is a living work continuously extended with new material. Recent or upcoming supplements include radio, superconductors, electric motors, basic electronic building blocks for beginners which can be joined together to construct elaborate circuits, filters, IBM PC and compatibles (including updating/expanding PCs). Supplements are sent to you approximately every two months. Each supplement contains approximately 160 pages - all for only $£ 23.50$ $+£ 2.50$ p\&p. You can of course return any supplement (within 10 days) which you feel is superfluous to your needs.

RESPONDING TO your needs

We are able to provide you with the most important and popular, up to the minute, articles in our supplements. Our unique system is based on readers
requests for new information. Through this service you are able to let us know exactly what information you require in your Manual. You can also contact the editor directly in writing if you have a specific technical request or query relating to the Manual.
baby alarms - plus - many more popular devices

Wimborne Publishing Ltd., 6 Church St, Wimborne, Dorset BH21 1JH
Tel: 0202881749 Fax: 0202841692

ASSEMBLING

There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the Manual describes clearly with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, measuring instruments etc. The revised edition of The Modern Electronics Manual contains practical, easy-to-follow instructions for building a wide range of projects. It shows you how to make fun gadgets such as a remote control door opener and a digital rev. counter for your car. It also tells you how to construct useful devices like test gear, security and

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Now contains over 1,000 pages of information.
Regular Updates: Approximately 160-page supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent supplement free).
($£ 39.95$ plus $£ 5.50$ postage and packing). Should I decide not to keep the Manual I will return it to you in good condition within 30 days for a full refund of this payment. I shall also receive the appropriate supplements several times a year. These are billed separately and can be discontinued at any time.

FULL NAME
(PLEASE PRINT)
ADDRESS

POSTCODE

SIGNATURE.
\square I enclose cheque/PO payable to Wimborne Publishing Ltd.
\square Please charge my Visa/Mastercard/Access
Card No.
Card Ex. Date
Aug 123

ORDER FORM

Simply complete and return the order form with your payment to the following address:
Wimborne Publishing Ltd, 6 Church Street Wimborne Dorset BH21 IJH
We offer a 30 day MONEY BACK
GUARANTEE - if you are not happy with the Manual simply return it to us in good condition within 30 days for a full refund.
Overseas buyers do have to pay the overseas postage see below.

OVERSEAS ORDERS: All overseas orders must be prepaid and are supplied under a money-back guarantee of satisfaction If you are not entirely happy with the Manual return it within a month for a refund of the purchase price (you do have to pay the overseas postage). SEND $£ 39.95$ PLUS THE POSTAGE SHOWN BELOW:

EIRE
EUROPE (E E.C. Countries) EUROPE (non E EC)
USA \& CANADA
FAR EAST \& AUSTRALIA
RESTOF WORLD
SURFACE MAIL £31, AIR MAIL $£ 33$ Note surface mail can take SUR 10 wall 225 , Alr MAlle 44 world Each manual weighs about 4.5 kg including the free supplement when packed
All payments must be made in E's Sterling payable to Wimborne Publishing Ltd. We accept Mastercard (Access) and Visa credit cards.

[^0]: UKEEC: Ref. ETI, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
 Telephone UK: 0480461778 (7 lines) Fax: 0480494042 International +44 480461778
 USA: Ref. ETI, 1795 Granger Avenue, Los Altos, CA 94024
 USA: Ref. ETI, 1795 Granger Avenue, Los Altos, CA 94024
 Telephone/Fax: (415) 9689306
 MASTERCARD, VISA Welcome

[^1]: Some of the more common POST Error Codes

 Problem area Error code number
 System board 100-199
 Battery error 161
 Configuration error 162
 Time and date error 163
 System options not set 165
 Memory error 200-299
 Keyboard 301, 303, 305
 Keyboard fuse 305 ,
 Parallel port 401
 Floppy disk drive Reference disk 602 Math coprocessor 600-699 (except 602)

 Serial pot 1100-1299 701
 Serial port 1100-1299
 Hard disk drive 1700-1799
 System board video 2400-2499
 Pointing device 8600
 Hard disk drive 10400-10499

[^2]: PROCRAMMER EPROM. EZPROM * FLASH for all 1ypes $2 k$ (2716 10 8 meg (27CO8O 12.5 to 25 yot. Consects to prinier port on 18 M , fast program ($27512=45$ sess). Comprehensive editos software Requires $15 \cdot 30$ woll AC or DC power supply (optional exira $\mathrm{C6} .50$) only 599.95 ROM EMULATOR. Worts on ANY compuler with a priner port. Code sent to printer appears in PC SCOPE. Fast 8 bii Aid conventer connectis to ernulate up 10 32k Ronis. only 539.95 PC SCOPE. Fast 8 bi AID conventer comnects to printer por on IBM PC. Supplied with Seope and PICI6CS4/5s/S/ $57 / 84 / 71$ PROCR D Foultues to write your own programs. onity $£ 29.95$
 fusc blowing els sequires 15 -20 volt AC or DC power supply (opional exira $\mathrm{E6} 5.50$) oniy $£ 69.95$

 whth stagle step/go with breakpoints tec.
 889.95 wilh connection information and PIC DEV 54 or PIC DEV 71 sofware as bclow.

 PIC DEV 54. Integrated Text editor/ Assembler/Disansembler/Simulator for 54/5s/56/57 Pres. Runs an IBM PC Single sicp trace, go with breakpoint etc. etc. Everything you seed to write and debug programs. Runs with or withour the I.C.E, unit. PIC DEY 71. As above but for PICi6C7I/84 controllers.

 Softwate only $[29.95$
 ASM151 + SIMS1. Text Edilor/Assembler plus simulatos for Misro controleers 80S1/S2. Runs on 18 M PC Full cont rol of registers \& memory, Label disassembly, program trace. siagle slep

 Softmare anty $\mathbf{1 1 9 . 9 5}$
 Software anly $£ 19.95$ h. parts \& labour Guarantee. S.A.E. or telephone for further detaih. Please add $£ 1.50$ for Post/pacing
 JOHN MORRISON (MICROS) Dept ETI,
 4 REIN GARDENS, TINGLEY, WEST YORKSHIRE WF3 1JR Telephone 0532537507

