PC CLINIC

BUILDING, MAINTAINING, CHOOSING AND UPGRADING PCs

- Construct a Midi bass pedal
- Build a passive infra-red alarm
- Sending data on a laser beam
- Make an electronic cycle speedo

ELECTRONIC CIRCUIT SIMULATION ON A PC

AN INTRODUCTION TO MIDI

June 1994 £2.15
Here's why Electronics Workbench belongs on your test bench:

Wires route themselves. Connections are always perfect. And the simulated components and test instruments work just like the real thing. The instruments are indestructible and the parts bin holds an unlimited supply of each component. The result: thousands of electronics professionals and hobbyists save precious time and money. **Over 90% would recommend it to their friends and colleagues.** Electronics Workbench: the ideal affordable tool to design and verify your analog and digital circuits before you breadboard.

And now the best is even better - Electronics Workbench Version 3.0 is here. It simulates more and bigger circuits and sets the standard for ease of use. Guaranteed!

Complement Your Test Bench

NEW Features in Version

- new components include JFETs, MOSFETs, voltage-controlled and current-controlled sources and manual, time-delay, voltage-controlled and current-controlled switches
- real-world models for opamps, BJTs, JFETs, MOSFETs and diodes - over 100 models available
- MS-DOS version now supports up to 16 MB of RAM for simulation of bigger circuits
- new Microsoft® Windows® version available
- technical support now also available on CompuServe®

Just £199!

Electronics Workbench

The electronics lab in a computer™

Call: (0203) 233216

ROBINSON MARSHALL (EUROPE) LTD.

Nadella Building, Progress Close, Leofric Business Park, Coventry CV3 2TZ TEL: (0203) 233216 FAX: (0203) 233210

30-day money-back guarantee.

Shipping charges - UK £9.99. All prices are plus VAT.

All trademarks are the property of their respective owners.

www.americanradiohistory.com
Choosing Building, An Simulation Electronic Circuit

Introduction

The start of a new series showing readers how to repair, maintain, upgrade and build circuits for personal computers. In this issue we look at what is inside a PC, the tools needed and the bus signals.

Passive Infra-red Intruder Alarm

A PIR alarm is a great way of detecting intruders and this portable unit, designed by Robert Penfold, could be the ideal way to provide temporary protection in something like a caravan.

An Alarm for an Alarm

Ever wondered whether an intruder has triggered your PIR alarm? Ben Sullivan has developed an ingenious little device which will solve this and other similar monitoring problems.

An Introduction to MIDI

MIDI communications between electronic musical instruments has now become a universally accepted standard. In the first part of a new series, Robert Penfold shows us what MIDI is and just how it works.

A MIDI Bass Pedal

A bass pedal unit is a useful addition to any electronic music system - build this cheap and versatile unit, designed by Tom Scarff

Sending Your Data by Laser Beam

Ever wondered if you could send data between two sites without using cables? Ken Glenn shows how, with a solid state laser beam.

A Cycle Speedometer

This project, developed by Bob Noyes, will tell you if you are breaking the speed limit on your bike (yes, there is one). It can also be a valuable training aid for sports cyclists.

Regulars

News
PCB foils
Open Forum

Competitions

In this issue of ETI, we have three great competitions for readers to enter.

Win one of ten handy little digital thermometer and clock from Maplin.

Win a complete set of Electronic Workbench circuit simulation software, worth over £240.

Win one of six copies of Robert Penfold's new book 'Electronic Music and MIDI Projects'.

Enter any one, or all three of them and test your luck and knowledge.
DESIGN AND BUILD YOUR OWN OPAMP WITH OPAMP CREATORE FOR JUST £30 + VAT.

You have heard about SpiceAge for Windows, a powerful simulation tool. It can simulate the behavior of any electronic circuit, and it's being used by engineers around the world. But have you heard about OPAMP CREATORE? It's a tool that allows you to design and build your own op amps, which are essential components in electronic circuits.

OPAMP CREATORE works via DDE with Level 3 (or higher) of SpiceAge for Windows to create a library circuit that conforms to your defining parameters. The model synthesized is usually as accurate as Spice models (which may be used in level 7 or higher) but because it exploits SpiceAge's special polynomial programs to give account of non-linear behaviour, it calculates typically 5 times faster.

Do you really need such an expensive op amp or were you just lucky when it worked that once?

These are just some of the questions SpiceAge users are now finding out for themselves. For more information, contact Those Engineers, specialists in circuit simulation since 1982.

Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 081-906 0155, FAX 081-906 0969
EXPRESS COMPONENTS

MAINS IONIZER KIT. Very useful kit that increases the flow of negative ions, helps clear cigarette smoke, dust, pollen etc. Helps reduce stress and respiratory problems. £15 kit, £20 built.

6 COMBINATION LOCK. Electronic 9 key combination lock suitable for alarms, cars, houses etc, easily programable. Includes mains 24Vdc 0.9v operation. £10 kit, £14 built.

VARIABLE POWER SUPPLY. Stabilized, short circuit protected. Gives 3-30V DC at 2.5A, ideal for workshop or laboratory. £14kit, £18 built. 24VAC required.

LEAD ACID CHARGER. Two automatic charging rates (Fast and slow), visual indication of battery state. Ideal for alarm systems, emergency lighting, battery projects etc. £12 kit, £16 built.

PHONE LINE RECORDER. Device that connects to the ‘phone line and activates a cassette recorder when the handset is lifted. Ideal for recording phone conversations etc. £8 kit, £12 built.

ROBOT VOICE. Turns your voice into a robot voice! answer the phone with a different voice! £9 kit, £13 built.

PHONE BUG DETECTOR. This device will warn you if somebody is eavesdropping on your phone line. £6 kit, £9 built.

PHONE BUG. Small bug powered by the telephone line. Only transmits when the phone is used. Popular surveillance product £8 kit, £12 built.

STROBE LIGHT. Bright strobe light with an adjustable frequency of 1-60Hz. (a lot faster than conventional strobes!) £16 kit, £20 built.

4W FM TRANSMITTER 3RF stage, audio preamp. 12-18V DC. Medium powered bug £20 kit, £28 built.

3 CHANNEL LIGHT CHASER. 3x 800 Watt output, speed and direction controls, can be used with 12 led's (supplied) or TRIACS for mains lights (also supplied) 9+15V DC, £17 kit, £23 built.

25W FM TRANSMITTER. 4 stage, a preamp will be required. (Our preamp below is suitable) £79 built (no kits).

SOUND EFFECTS GENERATOR. Produces any thing from bird chirps to sirens! add sounds to all sorts of things £9 kit, £13 built.

FM/AM SCANNER. Well not quite, you have to turn the knob yourself but you will hear things on this radio (even TV) that you would not hear on an ordinary radio! A receiver that covers 50-160MHz both AM and FM. Built in 5w amplifier. £15 kit, £20 built.

CAR ALARM SYSTEM. Works on vibration and/or voltage drop from door etc being opened. Entry and exit delays plus adjustable alarm duration Low cost protection! £12 kit, £16 built.

15W FM TRANSMITTER. 4 stage, high power bug. You will need a preamp for this (see our preamp below which is ok) £69 built (no kits).

1W FM TRANSMITTER. 2 stage including preamp and mic. Good general purpose bug. 8-30VDC. £12 kit, £16 built.

BULK PACKS KITS’ N MODULES

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. £15 kit, £19 built.

TREMBLER ALARM. Designed for bikes etc. adjustable sensitivity, preset alarm time, auto reset. Could be adapted for all sorts of “borrowable” things £12 kit, £16 built.

ULTRASONIC RADAR. A project that can be used as a movement detector in an enclosed space. Range about 10 metres, 12V DC. Good basis for car,shed, caravan alarm etc. £14 kit, £19 built.

PHONE CALL RELAY. Very useful kit that incorporates a relay that operates when the phone rings. Can be used to operate more bells, signalling lights etc. Good for noisy environments or if you have your headphones on! £10 kit, £14 built.

PORTABLE ALARM SYSTEM. Small 9v alarm system based on a mercury switch. The alarm continues to sound until disabled by the owner. Buzzers included £11 kit £15 built.

800W MUSIC TO LIGHT EFFECT. Add rhythm to your music with this simple sound to light kit £8 kit, £12 built.

MOSQUITO REPELLENT. Modern way to keep the midges away! Runs for about a month on one 1.5v battery. Frequency is set to drive away mosquitoes etc. £7 kit, £11 built.

3 CHANNEL SOUND TO LIGHT. Can be £5 kit, £9 built.

3 CHANNEL SOUND TO LIGHT. Can be £5 kit, £9 built.

SEPARATE sound controls for each channel, 1,200Wpowerhandling. Microphone included. £14 kit, £19 built.

MINI METAL DETECTOR. Detects pipes, wires etc. up to 20cm deep. Useful before you drill those holes! £8 kit, £12 built.

0-5 MINUTE TIMER. Simple time switch adjustable from 0-5 min, will switch 2A mains load 12v op. Ideal for laboratory, photographic projects etc. £7 kit, £11 built.

7 WATT FM AMPLIFIER. Useful, powerful amplifier 20hz-15K, 12-18VDC. Good for intercoms, audio systems, car etc. £7 kit £11 built.

INCAR SOUND TO LIGHT. Put some atmosphere in your car with this kit! Each channel has 6 led’s that create a beautiful lighting effect! £10 kit, £14 built.

VOLK SWITCH. This is a sound activated switch, ideal for use on transmitters, CB’s, tape recorders etc. Adjustable sensitivity, built in delay. Mic input £7 kit, £11 built.

LIQUID LEVEL DETECTOR. Useful item, can be used to detect fluid levels in water tanks, baths, ponds, fish tanks etc. Could also be used as rain alarm with an easily constructed sensor. £5 kit, £9 built.

FM TRANSMITTER. Mini FM transmitter 2 transistor, comes with FET microphone and is tuneable from 63 to 130MHZ. £7 kit, £11 built.

FUNCTION GENERATOR. Generates sinusoidal, saw tooth and square waves from 20hz up to 20KHz. Separate level controls for each waveform £15 kit, £20 built.

5 WATT SIREN. Powerful siren kit with an impressive 5 watts output. Ideal for alarms etc. £6 kit £10 built.

TELEPHONE AMPLIFIER. Very sensitive amplifier which using a phone pickup coil (supplied) will let you follow a telephone conversation without holding the handset to your ear! £11 kit £15 built.

SWITCH KIT. 10 switches for just £100.

12VFlourescent. A useful kit that will enable you to light large fluorescent tubes from your car battery etc. 9v transistors required, £8 kit, £12 built.

KNOB KIT. 10 knobs for just £100.

REMEMBER! YOUR FREE COPY OF OUR CUT PRICE COMPONENTS CATALOGUE SENT WITH EVERY ORDER!!

How to place your order........

By phone...........0273 771156
By FAX.............0273 206875
By Post............PO box 517 Hove Sussex BN3 5QZ
Payment by ACCESS, VISA, CHEQUE OR POSTAL ORDER.
Cheques and postal orders should be payable to Express Components.

ALL PRICES ARE SUBJECT TO99p POST AND VAT. Some of our products may be uncopyrightable for use in the UK (particularly the FM transmitters.)
Flatline speaker cable

The Chord Company of Salisbury is well known as a producer of high quality, no nonsense interconnection systems for use in home entertainment systems and hi-fi. It has now extended its range of products with a revolutionary flat cable called Flatline, which should prove very popular in a wide range of applications.

The cable was originally developed by NASA and is less than 1mm thick. It uses very high quality oxygen free copper strands surrounded in Teflon. This means that Flatline can be folded around corners, concealed under carpets, behind skirting board, or even under wallpaper.

Because of the high quality copper used, this is a 'low loss' cable which means that long runs do not compromise sound quality. It is available in three styles, Flatline Gold (£8.50 MT), Flatline Twin (£15.50 MT) and a silver stranded version called Blue Heaven (£58.50 MT).

For more information call the Chord Company on 0722 331674.

High temperature superconducting wire for motor

The first motor with rotating coils made from high temperature superconducting wire has been demonstrated by the Cleveland, Ohio based Reliance Electric Co. The alternating current motor, the superconducting coils of which rotate at 1300 rpm, puts out 5hp, a significant step beyond an earlier prototype that had stationary coils and an output power of 2hp. The 5hp motor has four racetrack shaped coils containing more than 670 metres of flexible copper oxide based wire that is superconducting at -196°C (liquid nitrogen temperature).

The coils were supplied by American Superconducting Corp., Westborough, with support from the US Commerce Dept's Advanced Technology Programme. The 5hp motor is an engineering prototype for larger synchronous motors (1000 to 10,000hp) that might find use in industrial and electric utility applications.

Widespread use of such high temperature superconducting coils in large industrial motors, could potentially save large amounts of energy, because superconductors carry current with no losses due to resistance. Superconducting coils will also allow the use of smaller motors in industry.

Save Money with ETI and Bull Electrical Super Saver Card

On the front cover of this issue of ETI you should find a special discount card which can be used to obtain a 10% discount on any items valued in total at £15 or more and purchased before 2nd of June 1994 from Bull Electrical of Hove, Sussex. See their ad on pages 4 and 5.

This card has a one time use only and to claim your discount, the card should be sent with your order. Please note that this saver card has no redeemable value and can not be used in conjunction with any other promotion by Bull Electrical. Neither can it be used to obtain a discount from ETI or any other company apart from Bull Electrical.

New general purpose interface system

From London based computer interface specialist 3D-Digital Design and Development Ltd, comes a new compact GPIS - General Purpose Interface System. This GPIS is designed for use in data acquisition and control and features a four channel, 16 bit ADC and a four channel, 12 bit DAC.

Connection to the host computer is via the Printer Port.

The interactive menu driven software package, which is included with the unit, allows the user to perform a variety of tasks on both the input and output signals. These include sampling rate, logging rate, calibration, upper and lower limits and magnitude control (output) voltages.

The 3D GPIS is priced at £360 and more details can be obtained from 3D on 081 886 3868.
Desktop supercomputer

British company Parasys has launched a supercomputer capable of processing speeds in excess of 6400MIPS and 800MFLOPs peak performance, with upwards of 2Gb of RAM in a case that is little bigger than the average desktop PC and at a price which starts at just £17,400.

This is, in fact, a massively parallel architecture system based upon the INMOS Transputer and can have up to 32 T9000 processors, each with up to 64MB of EDC memory. Each of these Transputers has four high-speed communications links which are connected to C104 switches in the backplane. The links run at 100Mbits per second in each direction and allow any processor to communicate directly with any other through the C104 switches.

The provision of multiple switches allows for multiple independent communications paths and gives the potential for redundancy in the network. Each network is inherently dead-lock free, ensuring maximum flexibility. A fifth card provides the interface to an external local area network, other Transputer systems or a SPARC host, or provides a Transputer based workstation environment for stand alone development. For more information contact Parasys on 081 579 8683.

All silicon transistor gives 3V gain

The small US company, Nanodynamics Inc., has created an all silicon transistor in which a single electron can produce enough gain for 3V output at room temperature. At the same time, the company has designed a pocket sized X-ray lithography system for the transistors that it says could be built for under $1 million.

According to its creator, the lithography system can squeeze billions of the company’s so called nanotransistors on a chip with 0.1 micron design rules.

Raphael Tzu, who collaborated with Nobel Laureate Leo Esaki on the development of superlattice structures nearly 20 years ago, devised the transistor for Nanodynamics. Chia-Gea Wang, Nanodynamics’ chief scientist, developed the X-ray stepper. “The X-ray source by itself is worth pursuing. We have demonstrated a source that rivals synchrotron radiation in intensity and fits in a shirt pocket”, Wang claimed.

Two other X-ray options are already being pursued for pushing design rules down to 0.1 micron. One uses large and expensive synchrotron radiation systems to produce hard X-rays, but synchrotrons are proving to be complex, power hungry and costly to develop and a production plant based on synchrotrons is projected to cost $2 billion.

Wang’s alternative step and repeat process is intended for a cluster manufacturing approach and could operate below the 0.1 micron design rules. Rather than high-volume, linear manufacturing lines cranking out gigabit DRAMs, Wang envisions smaller production plants that could economically produce complex logic parts.

The nanotransistor itself, devised by Tzu at the University of North Carolina, is still in the research stage, although the basic effect has been demonstrated.

Tzu’s latest work extends the quantum well structure to silicon materials, by building a new type of superlattice with silicon germanium and silicon dioxide layers. The fabrication breakthrough has been the ability to create a strained atomic layer of silicon dioxide molecules over a silicon germanium layer. While device researchers have discovered how to build quantum well devices in silicon germanium systems, the quantum confinement effect has been weak. Silicon dioxide forms a more effective barrier, which enhances quantum confinement in silicon.

SIL relays from Astralux

A new line of SIL relays is being offered by Colchester based Astralux Dynamics. The relays offer high density in-line spacing, low profile for 0.5in board separation. Available in a standard 4-pin package, with normally open contact configuration, the relays feature high input/output isolation to all points, stable contact resistance and fast operate and release times.

Maximum initial contact resistance is 150mohms, maximum switching is 100V DC, 0.5A, 10W, and the range offers coil voltages from 5 to 24V DC.

For more information contact Astralux Dynamics on 0206 302571.
Single slot processor card

Blue Chip Technology has just announced a single slot PC card which features an extremely high level of integration. The board will fit into a standard PC AT ISA/VESA Local Bus expansion slot and is designed for use in building systems which do not use a standard motherboard.

This board has a unique range of standard features, including a VESA local bus expansion slot, local bus video with GUI accelerator, on-board solid state disk and peripheral support. Current processor options range from 486SX 25MHz to 486DX2 66MHz, plus a P24T Pentium version. Processor performance is enhanced by on-board memory to 64MB DRAM and 256KB cache. The GUI accelerator supports video resolutions up to 1280 x 1024 and comes with 1MB RAM, expandable to 2MB if required.

Other standard features include an AMI BIOS with embedded set-up utility, on-board solid state disk up to 512KB SRAM and 1MB FLASH, 2 asynchronous 16550 serial ports with RS232 and RS485, 1 bi-directional parallel port, PS/2 mouse support, IDE and floppy controllers. A watchdog has also been included to provide on-board monitoring of processor integrity.

For more information contact Blue Chip Technology on 0244 5202222.

Maplin device monitors time and temperature

New from Maplin is an attractive, compact thermometer and clock with an outdoor temperature probe. The device has a clear LCD display which can show the temperature in either Centigrade or Farenheit and the display alternates between time and temperature readings at three second intervals.

A small switch on the front of the unit selects either the indoor or outdoor temperature probe, which is attached to the module by 2m of white twin flex. Time settings and the C/F slide switch is on the back of the module.

The unit has a flip-out stand on the back for desk or table top use, or it can be wall mounted using the matching wall bracket (supplied). The unit is finished in light grey.

It uses a single G-13 type 1.55V battery and measures just 68 x 52 x 18mm. It costs just £9.95 and is available from any Maplin shop or by mail order. The Maplin sales office can be contacted by ringing 0702 554161.

Competition

Win a super Maplin digital thermometer and clock - we are giving away ten of them!

Answer the following three simple questions (the answers are all somewhere in this issue of ETT) and you could be the owner of one of these compact and useful little devices which are currently on sale in all Maplin shops, at £9.95 each.

1 What polymer is used to make nanowires?
 a) poly (3-methyithiophenyl)
 b) poly (3-benzylthiophene)
 c) poly (3-methylthiophene)

2 What is the temperature of liquid nitrogen?
 a) -212 C
 b) -196 C
 c) -193 C

3 What is the standard speed of the ISA bus?
 a) 4MHz
 b) 8MHz
 c) 20MHz

Write your answers clearly, in block capitals on a postcard in the form of question number followed by your selection from the multiple choices. Don’t forget to put your name and address on the postcard, also in block capitals.

Entries should be received by June 30th 1994 when a draw will be made from all replies with correct answers and the ten winners selected.

Entries should be addressed to Maplin Competition, ETT, Argus House, Boundary Way, Hornd Hempstead, Herts HP2 7ST. THE competition is open to all UK residents other than employees or their families of ASP and Maplin. The prizes are as stated and there is no cash alternative. The editor’s decision is final and no correspondence can be entered into.
DEARER

FEATURES:
- pecker technology
- MON: FOUR
 - cross fade, Vu
 - mid range
 - 6 control,
- FAKER
 - aluminium loudspeakers
 - ENCLOSURES
 - Latest inputs:
 - channel. Nominal
 - ALL
 - MOS-FETs for stress free power delivery into virtually any load + High slew rate + Very low distortion + Aluminum frame + D.C. loudspeaker and thermal protection
 - USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS, ETC.

SIZES:
- MXF200 W19"xH37/"x(D)11"
- MXF300 W19"xH37/"x(D)14.5"

PRICES:
- MXF200 £175.00
- MXF400 £235.00
- AMERICAN RADIO HISTORY

STEREO DISCO MIXER £44.15

- ECHO & SOUND EFFECTS

STEREO DISCO MIXER with 2 x 7 band S & R graphic equalizers with bar graph LED
 - meters, MANY OUTSTANDING FEATURES:
 - including Echo with repeat & sweep controls
 - with 3-band graphic equalizer, 6 channels with individual faders
 - 2 x runaway switches, 6 channels with individual faders
 - Di Hong Horns, Volcanic Ash, Kicks and Snare Drum. Sound Effects. Suitable combination of the following: 6 outputs, 3 mics. 5 Lane for CD, Tape, Video, Etc.

Price £144.99 - £5.00 P&P.

SIZE: 492 x 240 x 120mm

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution! The low density mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than foil or dynamic tweeters. As a crossover is not required, these units can be added to existing speaker systems without loss of quality, even if the speakers are in use and no change is required.

TYPE 'A' (KSN1036A) 3" round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi speakers. Price £4.90 - 50 P&P.

TYPE 'B' (KSN1035A) 3" super horn, geared for general purpose speakers, disco and P.A. systems. Price £5.99 - 50 P&P.

TYPE 'C' (KSN1034A) 2½" wide dispersion horn for quality Hi-Fi systems and quality disco etc. Price £6.99 - 50 P&P.

TYPE 'D' (KSN1025A) 2½" wide dispersion horn. Upper frequency response 12000Hz - extending down to mid-range (2KHz). Suitable for high quality Hi-Fi systems and quality disco etc. Price £9.99 - 50 P&P.

TWEETER MONITOR. Combines with a re-cased mounting plate, level control and cabinet input jack socket. £6.50. Price £4.10 - 50 P&P.

 стоимости выполненности.
With a fast modern PC it is now possible to simulate the behaviour of any linear or digital circuit, an invaluable aid for anyone interested in electronics, from the student to the designer. In this article we take a look at how it is done.

When we think of personal computers, we too often tend to think of them as being used for word-processing, for data bases or computer aided design. We tend to forget that a computer is a general purpose machine, which can be used to emulate the behaviour of any other machine or mathematically describable system. The system being modeled could range from a simple bouncing rubber ball to the global weather system, or even the circuit of the processor performing the emulation.

Let's look at a simple system, such as a bouncing rubber ball, a system where the height of the ball from the ground can, given a knowledge of the nature of the ball and the ground on which it is bouncing, be calculated with considerable precision for any given time. For a computer to do this, it is simply a matter of repeating a mathematical calculation over a reasonable number of time periods, with the result of each calculation being used as the input for the next calculation. The result is a linear sequence of position calculations plotted against time. It is a simple system, because there is only a need for one set of calculations per time period.

We can also use a computer to emulate the behaviour of a complex system, where a great many identical calculations are performed in any one time period. This could be a complex system, such as the combustion of fuel in an engine, or a model of the flow of heat generated by the components on a printed circuit board. In order to model such system, what the computer does is divide the system up into a large number of small cells. Thus the three dimensional space that forms the combustion chamber would be divided into a large number of small three dimensional spaces, the physical state of each being defined by a mathematical equation. Each small space has the same identical equation but with perhaps different input parameters to define initial temperature, closeness to chamber walls, etc.

In order to simulate the system, the computer will need to perform that calculation for all of those small spaces within the system. But these thousands of different calculations are all part of a large system and the result of the calculation for one small space will affect the future calculations for that space and also for all neighbouring spaces. In this way, a change in input variables, such as a change in temperature, in one part of the system will ripple through the system until it has affected every part.

It is this type of computer modelling of a complex dynamic system that has revolutionized areas as diverse as weather forecasting and designing supersonic aircraft. But as electronics engineers, we are primarily interested in using the computer to simulate a complex dynamic system where it is not possible to simply divide the system up into a large number of small but otherwise identical units. We want to be able to model a system where every unit is different and where the linkage between units is not necessarily a simple positional one.

This is not an easy computational task, but one which has become enormously important to the electronics industry. Indeed, it would be fair to say that without sophisticated computer simulation we would have very few of the electronics devices which are common-place today. Consider the Pentium processor found in the most powerful PCs. It is a huge chip onto which is crammed an enormously complex circuit with over 3,100,000 transistors, designed and built with the aid of highly sophisticated simulation software. Can you imagine someone trying to breadboard a design with that number of components?

Computer simulation of both digital and linear circuits lies at the very heart of modern electronics. Without it, engineers could not handle the complexity of today's designs.

From small beginnings

If we look at any electronic circuit then we discover that we can define it, in cybernetic terms, as being a 'black box' - a determinate system which exhibits a behaviour that can be expressed as a mathematical equation. Indeed, any circuit can be defined as a mathematical function, even one which produces a random output.

The problem with this approach is that the more complex the circuit, the more complex the mathematical equation. Furthermore, every different circuit will require its own specific mathematical equation to model its behaviour and any change to it will necessitate the creation of a new equation. These are all factors which make the use of a single equation to model a whole circuit somewhat impractical.

The solution is to break the circuit up into its constituent components and use relatively simple mathematical equations to model each component. The way that the components are wired up then determines the interaction between them and therefore the behaviour of the entire circuit. This approach makes it possible for the user to easily build, emulate and, if necessary, alter a computational model of any electronic circuit, using a collection of predefined component models, where each

component model is a mathematical formula for that specific component.

If we look at the simplest forms of circuit we find that there are very few basic component types. In a passive linear circuit there are resistors, capacitors and inductors and the variables we are measuring consist of voltage and current with respect to time. We can define each of these basic components as a formula that involves the voltage and current variables and their change with respect to time.

A simulated circuit thus consists of a number of such components joined together and the point where one component joins another is referred to as a 'node'. The circuit solution calculates the voltage at each node in the circuit and each branch joining two nodes will have a current flowing through it. Note that variables like frequency are simply a relationship between voltage change and time.

From these three basic component types we can build more complex components. Thus, a switch can be modelled as a simple circuit consisting of two resistors, an infinitely large 'off' resistance and a very low 'on' resistance. If we wanted to turn it into a relay, we would simply add an inductor to our 'relay' circuit to model the energising coil. Of course, before we actually use this, or any other, component model we have to ensure that the actual resistance, inductance and capacitance values used correspond to those specified by the manufacturer of the device.

This same approach is used to build models of active devices, such as transistors, diodes, operational amplifiers, MOSFETs, JFETs, BJTs, etc. However, in most commercial electronic circuit simulation software it is unnecessary for the user to build such models, since they use component models based upon industry standard SPICE algorithms. SPICE is an acronym for Simulation Program with Integrated Circuit Emphasis, a general purpose circuit simulation program developed at the University of California, Berkeley. Nearly all the current generation of linear circuit analysis programs are descended from SPICE.

What about digital circuits?

Digital circuit simulation is a lot simpler, since all we are interested in is logic states rather than voltages and current. This means that we can represent any component in a digital circuit as a simple truth table, rather than as a complex mathematical formula. However, in most other respects digital and linear circuit simulation is much the same.

There are just four fundamental types of component which can be used to build any digital circuit - AND gates, OR gates, Exclusive OR gates, and Inverters, or NOT gates. To this list we need to add buffers which ensure that pulses have the correct
signal strength and pulse shape. In theory, one could build a computational model of any digital circuit, even a Pentium processor chip. In fact most, digital integrated circuits are actually built from these simple logic gates, a typical example of which is the field programmable logic array that are now so frequently used to replace discrete logic in many commercial products.

However, as with linear circuit simulation, the devices available to the user of a digital circuit simulation program are much more comprehensive than just a few gates. In a full blown simulation system, one will find libraries of nearly all the 74LS and 4000 series integrated circuit families, as well as some more complex ones such as memory chips, although I have yet to see a digital circuit simulation program which includes a model for any of the processor chips. These libraries of integrated circuits are in essence just truth tables, but in the more sophisticated programs they will also take account of propagation delays, thereby helping to ensure that timing for the design is correct.

Practical computer simulation of electronic circuits

As I have already stated, there are a large number of commercial circuit simulation programs on the market today. By far the largest number of these run on the PC and compatibles. However, before diving in and buying any one of these programs, it is worth remembering that they are all computationally very intensive and require a lot of semiconductor memory. The bigger and more complex the circuit, the worse the problem. If you have a 286 with 640K of RAM you will be able to run quite a few of the simulation packages, but you will only be able to model small circuits with a half dozen or so components. In practice the minimum size machine for this sort of application is a 25MHz 386 with 1MB of RAM and an EGA display, better still is a 68MHz 486DX with SVG and 8MB of RAM.

As far as the range of programs available, one cannot go far wrong with SPICE compatible packages. In this article we are including short reviews of four widely available packages, although we are not necessarily saying that these are the best. In many ways, the choice is very much a matter of personal preference and need.

Computer simulation as an educational tool

One of the most important benefits to be gained from using computer simulation of electronic circuits is as an educational tool. With a simulated circuit, it is possible to easily see how a particular design works and the student can see how voltages and waveforms change at each node and how changing component values will change these measure-ments. All a lot easier than breadboarding and without the risk of damaging expensive components (schools' component budgets are often as little as £2 per student, per term).

Of course the kind of simulation program used in an educational role will be different from that used in a more orthodox design capacity. For a start, it will need to have a highly graphical user interface which is easy to use and as intuitive as possible. It will also need to be highly integrated with full schematics layout incorporated as part of the simulation program. In addition it will need virtual instrumentation to enable the user to measure and view what is happening in the simulated circuit.

A typical example of this type of educationally oriented simulation software is Electronics Workbench. For more details on this product, see the accompanying review and if you would like a copy, why not enter our competition at the end of this article and win yourself a copy?

In the design environment, the great advantage of computerised circuit simulation is that it allows the circuit, or parts of it, to be tested prior to the breadboarding stage. This can substantially speed up the design process, since all the major design errors can be pinpointed at a much earlier stage. It is far easier and quicker to change a computer model than it is to change an actual circuit.

Many commercial computer simulation packages are now being produced as part of an integrated suite of design programs running from schematic layout through to PCB design. In many cases, it is possible to cut out the traditional breadboarding stage and move directly from the computer simulated design to a prototype PCB.

Of course, it must always be remembered that software simulation, particularly of linear circuits, requires certain compromises. The algorithms used to model a particular component may be very good, but they may not exactly model that component. This means that one always has to go through the hardware prototyping stage in order to verify that actual performance matches the performance predicted by the simulation.

As I have already stated, the use of computers to simulate the behaviour of both digital and linear circuits is of enormous importance to the electronics industry of today. This type of software has enabled designers to tackle tasks of greater and greater complexity. The type of program we have looked at in this article is relatively simple, when compared to that employed by the designers of complex integrated circuits and it is probably true to say that the future of electronics depends to a large degree on the development of computerised design tools of ever greater sophistication.

Already, design and simulation programs are being written which incorporate intelligence. These types will automatically perform a lot of low level design tasks and allow the designer to define the function and behaviour of a circuit at a much higher level than is possible today. It is with tools like these that the next generations of electronic devices will be created.

For the electronics engineer, whether amateur or professional, the availability of low cost circuit simulation and analysis software, particularly where it is integrated with schematics capture and PCB design, brings with it a great boost in productivity. A design can now be completely tested and debugged in a matter of hours rather than days or weeks. Breadboarding can be virtually eliminated, as well as the need for expensive test equipment. By eliminating a lot of the tedious and frustrating aspects of circuit design, such software can free the designer to be more creative, surely a good thing!

Further reading...

For more information about linear circuit analysis with a computer, a good starting point is a recently published book by Ian Sinclair, entitled 'PC Assisted Linear Circuit Analysis and Drawing', published by Newnes, ISBN 0 7506 1682 8.

Electronics Workbench

This is a powerful and highly graphical software tool which allows the user to build and test simulated analog and digital circuits with the aid of a range of virtual instruments. In fact, it is really two separate programs, one for digital circuits and one for linear circuits, both very easy to use and making full use of Windows, or a Windows type display. Circuits can easily be built using the mouse to obtain parts from a parts bin and then wire them up to other components, each component being assigned its own values.

The analogue module has a library of SPICE compatible models that includes resistors, capacitors, inductors, transistors, diodes, Zener diodes, LEDs, BJTs, bulbs, fuses, JFETs, MOSFETs and switches. The library has both ideal and real world models and both AC and DC voltage and current sources are available. There is also a function generator for square, triangular, and sinusoidal waves.

Linear circuits can make use of a number of virtual instruments (activated by clicking on an icon and then connecting up to the circuit using the mouse). These instruments include a milliammeter, ammeter and voltmeter, a dual trace oscilloscope and a Bode plotter. Transient and steady state analyses can also be performed on a circuit.

The digital module allows the simulation of ideal logic and has a library of AND, OR,
SpiceAge
SpiceAge is a high power linear circuit simulation and analysis program which is available in versions which will run under Windows and under DOS. This is a full SPICE compatible program and comes with an extensive library of models including transistors, op-amps, thyristors, triacs, diodes, bridge rectifiers, transformers, logic gates and the ubiquitous 555 timer. Additional models can easily be built by the user and any SPICE compatible model can also be utilised.

The circuit which is to be simulated is defined as a netlist, which can be entered directly using the programs' flexible circuit text editor, or automatically from the GESSICA schematics editor which is available as an additional program. For larger circuits, input from GESSICA is preterrible since circuit size is only limited by available RAM.

SpiceAge gives the user great flexibility with presentation. The Probe control panel gives a choice of probe points and function, with the output from the probe points being set up like a multi-trace oscilloscope. But a scope with a difference since it also allows one to measure power, current, gain, phase angle, impedance and relative voltages with infinite CMR and input impedance. Furthermore, there are no triggering problems and one can easily capture single events.

For the simulation, any number of programmable voltage and/or current signal generators may be used. They may be programmed to emit step, square, triangular, sine or pulse trains. All waveform parameters, including offset, slew rate and duty cycle, are adjustable. Up to 20 user defined input signals are also available, each defined by its own ASCII text file. The file contains the time and voltage vertices of the waveform, with SpiceAge doing any interpolation automatically. SpiceAge is able to write outputs to file in the same format as that used for the input, which means that it is possible to chain the output of one circuit to the input of another, if required.

A very wide range of different analyses can be performed on a circuit using SpiceAge, including frequency, DC, Transient and Fourier. In every case, graphs can be displayed on screen or output to a printer with a wide range of different co-ordinate and axes options.

SpiceAge requires a PC 286 or higher with the Windows version needing Windows 3.0 or higher in standard or 386 mode, a mouse is required and a maths co-processor is recommended. The program will require 700KB of disk space.

SpiceAge is a very sophisticated program and is available in a variety of different levels. Thus, level 1 is a restricted introductory system and is available at £85.11 plus VAT, the most sophisticated version is Level 15, which has all the SpiceAge functions plus a limited range of logic facilities and an additional library of TTL gates, and costs £695 plus VAT. There is a special addition to SpiceAge which allows the modelling of op-amps, priced at £30. There are other levels available in between these two and a demo program is available for £5.

The schematics capture program GESSICA costs £195 and for all products from Those Engineers there are special educational discounts and multiple user licences.

SpiceAge is produced by Those Engineers Ltd, 31 Birbeck road, Mill Hill, London NW7 4BP. Tel: 081 906 0155, Fax: 081 906 0969.

Pulsar
Pulsar, and the more sophisticated version Pulsar Professional are advanced digital logic circuit simulation programs that completely eliminate many of the expensive and time-consuming aspects of digital design. These programs allow the user to test his designs without soldering a single component and without the need for expensive test equipment. Indeed to save possible skip the breadboarding stage altogether and go straight from design concept to PCB.

The programs incorporate fully programmable signal sources (you can have up to 1000 independent program- mable pulse generators in your simulation), a simple logic analyser display with zoom in capability, which can catch glitches down to 1 picosecond, plus a whole range of adjustable component models.

Circuits are defined as a netlist, which can be entered directly, using Pulsar’s interactive netlist editor or created automatically by the schematics capture and PCB GAD program EASY-PC Professional.

In order to perform the simulation, pulse generators need to be added to the input lines, these are easily created with Pulsar.

Once the netlist and pulse generators have been created the circuit simulation can be run. The analyser shows the resultant waveform at all labelled points within the
Circuit, thereby making it fairly easy to identify logic errors and glitches.

With Pulsar, it is possible to design and debug a digital circuit in a very short period and without the need for expensive test equipment, while because of the extensive library of components, the designer will not encounter delays due to components not being available.

Pulsar and Pulsar Professional include libraries for both TTL and CMOS 4000 series devices and can simulate a circuit over 1000 gate states in a second on a 120 MHz 286. With Pulsar, a circuit can have a maximum complexity of 1500 gate equivalents and in Pulsar Professional over 10,000 gate equivalents. The maximum number of simulated events is over 40,000 gate state changes in Pulsar and 1,000,000 in Professional. The timing resolution is one picosecond in over 250 hours.

Pulsar runs on any PC from an 8086 low-end and uses just 640K DOS memory. Pulsar Professional can simulate larger and more complex circuits and thus requires up to 15MB of memory and a 286 or later processor with VGA/VGA display, mouse, hard disk and DOS 3.0 or later.

Pulsar is priced at £98 and Pulsar Professional at £195, the Pulsar 74HC and 74HCT libraries cost £84 each. They are available from Number One Systems Ltd., Harding Way, Somersham Road, St Ives, Cambs., PE17 4WR. Tel: 0480 461778.

Analysers III

Analysers III and the more sophisticated Analysers III Professional are advanced linear circuit analysis programs that are designed to eliminate many of the expensive time consuming aspects of circuit design. Both programs allow you to test your designs without soldering a single component and without the need for expensive test equipment.

The Analysers III family is ideal for analysis of Filters, Amplifiers, Crossover Networks, Wideband Amplifiers, Aerial matching networks, Radio and TV IF amplifiers, Chroma Filters, Linear ICs, etc.

Analysers III actually out-performs any test equipment, since its frequency range extends from 0.001 Hz to 10 GHz. Analysers III's library contains models of over 2000 different devices and an additional library is available. The devices in the library include bipolar transistor, FETs, operational amplifiers, resistors, capacitors, transformers, inductors, etc. New models of both active and passive devices can easily be added by the user.

Circuits are defined using a netlist, which can be entered directly using Analysers' interactive netlist editor or automatically from the schematic capture and PCB (CAD) package, EASY-PC Professional. With Analysers III, a circuit can have up to 2000 components and 120 nodes. The professional version of these figures is 10,000 components and 750 nodes.

Analysis is set over 50 nodes per second on a 20MHz 8086/SX and the result can be plotted out to screen or printer in a variety of different graph forms. The graphs are generated in frequency response format, showing calculated points and a smooth high resolution curve drawn through them. Alternatively, a tabular listing of 100 points is available if required. The frequency axis can be linear or logarithmic and the displayed response can be shown either linearly or in dB. Impedance results may optionally be plotted in Smith chart form using an additional program called Z-Match II.

Analysers III runs on any PC from an 8086 upwards and uses just 640K DOS memory. Analysers III Professional can simulate larger and more complex circuits and thus requires 2MB of memory and a 286 or later processor, with VGA/VGA display, mouse, hard disk and DOS 3.0 or later.

Analysers III is priced at £98 and Analysers III Professional at £195. The Analysers III Library costs £84, Z-Match II costs £195. They are available from Number One Systems Ltd., Harding Way, Somersham Road, St Ives, Cambs., PE17 4WR. Tel: 0480 461778.

Win over £240 worth of Electronics Workbench software to run on your PC

All you have to do is answer the following questions and you will find the answer to all of them somewhere in this copy of EI. **

1. What is the analogue circuit simulation standard known as?
 a) ANSIM
 b) SPICE
 c) ACSS

2. How many PCs have been sold around the world?
 a) 14 million
 b) 76 million
 c) 120 million
 d) 212 million

3. What is the table of interconnections in a circuit simulation program known as?
 a) Complot
 b) Connectlist
 c) Netlist

4. What are a PC’s self test codes known as?
 a) POST
 b) STEST
 c) ERRORVAL
 d) STC

To enter, put your answers on a postcard in the form of question number followed by your selection from the multiple choice answers. Please make sure that all answers and your name and address are printed as clearly as possible, preferably in block capitals. All entries should be received by June 30th 1994, when the winner will be drawn at random from all the correct entries.

Competition entries should be addressed to: Electronics Workbench Competition, ETI Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST.

The competition is open to all UK residents or other than employees and their families of ASP and Electronics Workbench. The prizes are as stated, there is no cash alternative. The editor’s decision is final and no correspondence can be entered into.
POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST £395...

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then nettlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just £250 if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800x600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH
A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II
High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded... "At £79 I thought this was an excellent buy.”

ISIS ILLUSTRATOR

Schematic Drawing for Windows

Only £79

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0756 753440 or fax 0756 752857 for a demo pack - state DOS or Windows. Multi-copy and educational discounts available.

WE HAVE MOVED - NOTE NEW ADDRESS Prices exclude p&p (£5 for U.K.) and VAT All manufacturers' trademarks acknowledged.

53-55 Main St, Grassington, North Yorks. BD23 5AA.
At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional PCB design packages ...

... call now for details.

BoardCapture
Schematic Capture Design Tool
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back-annotation from BoardMaker2

BoardMaker
BoardMaker1 - Entry level. £95
- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level. £295
- All the features of BoardMaker1 +
- Full netlist support - BoardCapture, OrCad, Schema, Tango, CadStar and others
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter
Gridless re-entrant autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
- Printers - 9 & 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec & Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit.
Tsien (UK) Limited
Aylesby House
Wenny Road, Chatteris
Cambridge
PE16 6UT
Tel (0354) 695959
Fax (0354) 695957

www.americanradiohistory.com
In Part 3 of this project, Jim Spence shows how to construct and program a versatile display and keypad interface for the FORTH experimenters board.

Most applications require some form of input and output. One of the most useful forms of output device is the LCD display and these are now available at a very reasonable cost. Although they have their own built-in microprocessor, they are still not particularly easy to drive. They come in various forms, 16 x 1 line, 20 x 2 line, etc. I have used several types from several sources and they all work in exactly the same way.

This article describes how to use one of these displays and also a 16 button keypad. There is very little to construct as most of the work is carried out by software, but to save on output lines, a decoder has been used to multiplex the keypad.

LCD Display
The display chosen as an example is a 20 x 2 line LCD display, but most of the LCD displays you can buy work in a similar way. They are capable of displaying all the ASCII character set and have their own microprocessors built in. They are, in fact, designed to interface almost directly to most 8 bit microprocessors, although, in this case, we will not be interfacing directly but via an output port. They can be

LCD Drive Voltage
A voltage of between about 3.7V and 4.7V is needed to drive the LCD. The voltage affects the contrast and viewing angle, and the best solution is to use a potentiometer between ground and Vdd.

It was found in practice, however, that a 1K resistor between Vo and Vdd proved adequate in most cases.

RECOMMENDED V_R VALUE = 10k - 20k

Figure 1. Resistor divider derived LCD supply voltage.

The display works from 5V, which can be obtained directly from the board.

Most applications require some form of input and output. One of the most useful forms of output device is the LCD display and these are now available at a very reasonable cost. Although they have their own built-in microprocessor, they are still not particularly easy to drive. They come in various forms, 16 x 1 line, 20 x 2 line, etc. I have used several types from several sources and they all work in exactly the same way.

This article describes how to use one of these displays and also a 16 button keypad. There is very little to construct as most of the work is carried out by software, but to save on output lines, a decoder has been used to multiplex the keypad.

LCD Display
The display chosen as an example is a 20 x 2 line LCD display, but most of the LCD displays you can buy work in a similar way. They are capable of displaying all the ASCII character set and have their own microprocessors built in. They are, in fact, designed to interface almost directly to most 8 bit microprocessors, although, in this case, we will not be interfacing directly but via an output port. They can be

LCD Drive Voltage
A voltage of between about 3.7V and 4.7V is needed to drive the LCD. The voltage affects the contrast and viewing angle, and the best solution is to use a potentiometer between ground and Vdd.

It was found in practice, however, that a 1K resistor between Vo and Vdd proved adequate in most cases.

RECOMMENDED V_R VALUE = 10k - 20k

Figure 1. Resistor divider derived LCD supply voltage.

The display works from 5V, which can be obtained directly from the board.
Connections

The positions of connections to the module may vary.
Figure 2 shows the pin connections and Table 1 shows the function of each connection.

<table>
<thead>
<tr>
<th>Table 1. Pin Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>VSS</td>
</tr>
<tr>
<td>Vdd</td>
</tr>
<tr>
<td>Vo</td>
</tr>
<tr>
<td>RS</td>
</tr>
<tr>
<td>RW</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>DB0-DB3</td>
</tr>
<tr>
<td>DB4-DB7</td>
</tr>
</tbody>
</table>

In addition to the character display, there is also an internal RAM which can be programmed to form your own unique characters. This RAM can be either read or written to.

In order to save on output lines, this system will use the 4 bit mode of operation and will not read from the display. This means that lines DB0-DB3 will not be used and that the R/W line can be permanently tied to ground. We now only need 4 data lines, RS & E, which is six lines in total leaving 2 spare to drive the keypad.

The complete circuit diagram in shown in Figure 2, which also shows the connection to the experimenter's board. The reason for using IC1 is to minimise the use of output lines. This leaves an 8 bit input and an 8 bit output port free.

The 20 x 2 line display has the connections as shown in the diagram. This is looking from the front of the display. Output port 0 is used to control the display and the keypad and the bottom half of input port 4 is used for the keypad input.

Construction

Construction is very straightforward. There is no real need for a PCB as the IC and the four resistors can be mounted on a piece of Veroboard. If you use the Protolab keypad then the connector can also be mounted on this Veroboard.

The whole unit was mounted in a sloping front box with the RS232 and power connectors protruding through holes made in the side. There is room on the front for the display, keypad and a bread board, while the two spare ports are taken to the front panel via an IDE connector socket. This acts as a mini bread board and power is also available here, providing not too much is taken.

The FORTH board is held in place by the RS232 socket and small spacers attached to the bottom of the board keep it level. Figure 4 shows the front plate cutting details.

Driving the Display

The display will either accept commands or characters. This is controlled by the RS line which is connected to our D5. When low the display will accept commands, when high it will expect data. The E line (our D4) acts as a kind of clock. To write data or an instruction, this line (normally high) must be taken low and back to high again.

To further complicate matters, an instruction or data consists of two writes, one for the high nibble and one for the low nibble. Some of the instruction set is shown in Table 2.

The full code for driving the display is shown in Box 1 and is split for convenience into five sections as follows.

Section 1

Display module driver 20 x 2 lines, 4 bit mode
Set up and utilities
hex
0 constant dport \ port used for display
variable enode \ display entry mode
variable cdes \ Cursor and display shift

www.americanradiohistory.com
Figure 2. Display and keypad circuit diagram.

Figure 3. V eroboard layout for keypad circuit.
variable cpos \ current display address
variable linex \ line indicator
variable pvalue \ current value of o/p port
6 emode ! \ initial values
10 cds !
create lbuff 14 allot \ line buffer 20 char
\ This gives including call and return a 1 ms delay
: dell
19 0 do loop
;
\ This gives about 3ms delay including call and return
: dell3
3 0 do dell loop
;
This defines the variable constants and also two delay utilities. The delays are necessary because some of the commands to the display can take up to 10ms to complete. There is a status word generated on the display which can be read in order to determine if the display is ready to accept a command or letter. In this application, there is no means by which we can read the display and so a suitable delay must be introduced. In practice this method was found to be quite satisfactory.

There are two variables, EMODE and CDS which must be initialised (have something put in them) before being used. The initialise word (later) uses these to set up the type of display and how it will work according to the 'cursor display and shift' and the 'function set' commands.

PVALUE works with the word DIP and is important in this application: Bits 0 to 5 of the output port are used for the display, and bits 6 and 7 are used for the keypad. For this reason we must write values to this port while still retaining the value of the data on lines 6 and 7. PVALUE stores the value of the port so this can be achieved.

Section 2
\ Raw data writes to relevant ports
\ Sends byte b to port specified by dport but only to
\ bits 0 to 5, leaves 6 and 7 alone
: dip (b -) \ Display o/p port
 \ mask bits 6 & 7
 \ get copy of actual port contents
 \ combine
 \ values to be written
 \ port p! \ o/p to port
 \ store in variable
\ Write a 4 bit instruction to the display port
: inst4 (b -) \ Only lower nibble is sent
 \ copy because 2 writes are needed
 \ write with E high
 \ bring E low, this writes
 \ leave E high for next write
\ Write a 4bit data nibble to the display port

TABLE 2

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Display</td>
<td>0 0 0 0 0 0 0 0 0 1 0</td>
<td>Clears the display and returns the cursor to the home position</td>
</tr>
<tr>
<td>Return Home</td>
<td>0 0 0 0 0 0 0 0 0 1 0</td>
<td>Returns the cursor to the home position.</td>
</tr>
<tr>
<td>Entry mode Set</td>
<td>0 0 0 0 0 0 0 0 0 1 0</td>
<td>Sets the cursor move direction and specifies whether or not to shift the display. Performed during data read and write.</td>
</tr>
<tr>
<td>Display ON/OFF control</td>
<td>0 0 0 0 0 0 0 0 0 1 1</td>
<td>Sets the display ON/OFF, Cursor, and blink.</td>
</tr>
<tr>
<td>Cursor and display shift</td>
<td>0 0 0 0 0 0 1 0 1 0 0</td>
<td>Moves the cursor and shifts the display</td>
</tr>
<tr>
<td>Function set</td>
<td>0 0 0 0 0 0 0 0 0 1 0</td>
<td>Sets the data length, number of display lines and character length.</td>
</tr>
<tr>
<td>Set the DORAM address</td>
<td>0 0 1 0 0 0 0 0 0 0 0</td>
<td>Sets the Display data ram address</td>
</tr>
<tr>
<td>Write data to display</td>
<td>1 0 1 0 0 0 0 0 0 0 0</td>
<td>WriteData</td>
</tr>
</tbody>
</table>

I/D = 1:Increment (+1)
I/D = 0: Decrement (-1)
S = 1: Accompanies display shift.
S/C = 1: Display shift
R/L = 1:Shift to the right.
R/L = 0: Shift to the left.
DL = 1: 8 bits
DL = 0: 4 bits
N = 1:2 lines
N = 0: 1 line.
F = 1:5 x 10 dots
F = 0: 5 x 7 dots
BF = 1: Internally operating
BF = 0: Can accept instruction

www.americanradiohistory.com
Box 2

1) Write a 4 bit instruction to the display port
2): inst4 (b --) Only lower nibble is sent
3) dup dup \ copy because 2 writes are needed
4) 10 or dip \ write with E high
5) 0f and dip \ bring E low, this writes
6) 10 or dip \ leave E high for next write
7)

Line numbers have been added for the purposes of explanation only:
1) It is always a good idea to give a title and any necessary comments to the word before it is defined, this will act as a short reminder as to what the word does.
2) The ':' (colon) and space defines the word INST4 and the (b --) is a stack diagram. Because the stack is of such importance to FORTH words it is always a good idea to document this. It is carried out in the following way:

The brackets are alternative comments in FORTH, i.e., anything surrounded by brackets will be ignored, and by convention we use the bracketed comment for the stack diagram. The diagram consists of three parts read from the left hand side. The far left is items on the stack before the word executes, the '---' is the word itself and the right of the '---' is the stack after the word executes. In this case, the b indicates that there should be a byte on the stack before the word executes and, after the word has executed, there will be nothing left on the stack. As an example, the word '++' (plus) would have the following stack diagram - (n1 n2 -- n3). A description of this would be that the word + takes two numbers from the stack, n1 & n2 adds them together and leaves the result n3 on the stack.
3) The word DUP (duplicate) copies the top item on the stack. As this is executed twice the stack will contain 3 bytes of identical data after this line.
4) This line simply puts (via DIP) the byte onto the output port, making sure bit D4 is high. The byte is or'd with 10hex before being written.
5) E is now taken low with the same data on the port. This effectively writes the byte to the display.
6) Puts E back to the high state.
7) All words are defined between ': ' and ' '; this line holds the terminating semicolon.

DAT4 is the same as INST4 except it writes data because the RS line is held high when writing. The display will accept 4 bit nibbles instead of 8 bit bytes. The high nibble must be sent followed by the low nibble. This is the job of words INST, for instruction, and DAT, for data. Notice that to get the low nibble the byte is divided by 16 (10 hex).
Section 3
\ Basic display utilities
\ Clear display and home cursor
: clear (=)
01 inst \ This is the clear display inst.
5 0 do dell loop \ Delay 5 ms
0 cp0s ! \ set cursor address to 0
lbuff 14 20 fill \ put all spaces in buffers
linex off \ current line :

\ Initialise the display after a reset.
init (=)
1 0 do dell loop \ delay for 15ms at start
3 inst4 del1 \ repeat 3 times
3 inst4 del1
3 inst4 del1
2 inst4 del1 \ function set for 4 bit interface
2c inst4 del1 \ function set: 4bit, 2 line, 5x10 dots
0e inst del1 \ display on, cursor on, uline
01 inst del1 \ clear display
cds @
 inst del1 \ cursor display & shift
eode @
 inst del1 \ entry mode
0 cp0s ! \ set cursor address to 0
clear

\ Sets the ddram address to that specified by b
: setadds (b)
 80 or \ set up address instruction
 inst \ send it

\ Go to xy, like setadds but with respect to the line
\ we are on
: gxy (xy)
 linex @
 if 40 + setadds \ 64 decimal is next line
 else
 setadds
 endif

\ Cursor to start of line 1 or 2
: line1 (=)
 0 setadds
 0 cp0s ! \ reset cursor position
 linex off \ indicate current line

: line2 (=)
 40 setadds \ decimal 64
 0 cp0s ! \ reset cursor position
 linex on \ indicate current line

The most important word of this section is INIT. This word
initialises the display and sets it to operate in 4 bit mode. The '3
inst4 del3' statements set the display into the 8 bit mode. This
is the default reset condition of the display at switch on. Don't
forget that we are writing to the top nibble of the display. Referring
to table two, writing 3 to the top nibble is the same as function set
with DL high, which is the 8 bit mode. After '2 inst4' is executed,
the instructions can go through the word INST which takes care
of converting the byte into two nibble instructions.

The other words either clear the display or put the cursor at a
specific position along the display. You may notice that the
addressing for the display is rather awkward, in that the first line
goes from address 0 to 19 but the second line goes from 64 to
83. This is because the chips driving the display are used in
different formats, from single line by 80 characters to 1 line by 16
and various combinations between, if you use a different display
format, 2 line by 16 for example, then these addresses will need
changing.

Section 4
\ Higher level display functions
\ Display carriage return, moves display line up one
\ and puts cursor on bottom line
: decr (=)
 01 inst \ clear display inst
 5 0 do dell loop \ Delay 5 ms
 lbuff 14 bounds \ display all buffer on
top line
 do
 i 0@ dat
 20 i c! \ and clear buffer
 loop
 line2 \ start on second line

\ Primary back space function

ELECTRONICS TODAY INTERNATIONAL
```forth
: (bs) ( -- )
  -1 cpos + ! \ decrement cursor
  cpos @ gxy \ move display cursor
  20 dat \ print space
  cpos @ gxy \ move it back again
  20 cpos @ lbuff + c! \ put space in buffer

  \ Display back space, this also takes care of back
  \ spacing

  \ from the bottom line to the top line
  : dbs ( -- )
    linex @ \ this is line 2
    cpos @ \ see if bs takes it to line 1
    0= \ 0 is first position
    if
      linel \ move to line 1
    14 setadd \ end of line 1 + 1
    14 cpos ! \ cursor to end + 1
    (bs) \ do back space stuff
    else
      (bs) \ simply back space
    endif
  endif

\ Writes b to display stores it in the buffer and increments \ character pointer.
: dat-store ( b -- )
  dup dat \ display
  cpos @ lbuff + c! \ store in buffer
  1 cpos +! \ increment buffer

\ Writes b to display and takes care of back spaces and CR
: datl ( b -- )
  case
    0d of dcr endof \ carriage return
    0a of endof \ same as cr
    09 of dbs endof
    dat-store
    1 endcase

\ places b as an ascii character to display, takes care
\ of special \ characters and scrolling. Equivalent to FORTH word EMIT
: demit ( b -- )
  cpos @ \ check line not full
  13 > \ 20 line display
  if
    dcr
    datl \ display character
  else
    datl
    endif

\ Equivalent to the FORTH word TYPE except this word
\ puts puts to the display device.
: dtypem ( addr n -- )
  bounds
  ?do \ only do if there are some
  i 0@ demit \ get character at address and
  send
  loop

\ Equivalent to the forth word ( . ) except this word
\ o/p to \ the display because it uses DTYPE
```

Most of this section may be omitted if simply writing characters to the display is required. Some words look complicated because they take care of special characters such as backspace. If a backspace occurs at the beginning of the second line, then it needs to know this so the cursor may move to the end of the first line.

The last three words of the section DTYPE, (D") and D" are straight equivalents to the FORTH words TYPE and ". Just a word about TYPE here. FORTH stores strings as counted strings, that is the length of the string is the first byte. For example, the string FRED would be stored as 04, 46, 52, 45, 44, 04 being the count byte. TYPE will print out to the console the number of characters, n, at a specified address, adds. DTYPE will do the same but to the display rather than the console.

Section 5

\ Useful words
\ 1 space to display

\ n spaces to display

: dspace " "

\ to the display

: di
 >r
 swap over
 dspace
 loop

\ Equivalent to the FORTH . (dot) to print numbers

These are simply useful words which make the display easier to work with.
Transformer Information

UK Distributor for Standard Toroidal Transformers

- 107 types available from stock
- Sizes from 15VA to 625VA
- Dual 120V primaries allowing 110/120V or 220/240V operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Series</th>
<th>Sec.</th>
<th>Wires</th>
<th>Current</th>
<th>Type</th>
<th>Series</th>
<th>Sec.</th>
<th>Wires</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VA</td>
<td>03010</td>
<td>9-11</td>
<td>0.83</td>
<td>1.50</td>
<td>325VA</td>
<td>03012</td>
<td>15-15</td>
<td>6.25</td>
<td>9.38</td>
</tr>
<tr>
<td></td>
<td>03011</td>
<td>12-12</td>
<td>0.50</td>
<td>1.25</td>
<td></td>
<td>03013</td>
<td>15-15</td>
<td>7.50</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>03012</td>
<td>15-15</td>
<td>0.50</td>
<td>1.25</td>
<td></td>
<td>03014</td>
<td>25-25</td>
<td>4.50</td>
<td>6.89</td>
</tr>
<tr>
<td></td>
<td>03015</td>
<td>22-22</td>
<td>0.34</td>
<td>1.50</td>
<td></td>
<td>03017</td>
<td>35-35</td>
<td>3.75</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>03016</td>
<td>30-30</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td>03019</td>
<td>40-40</td>
<td>2.91</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>03017</td>
<td>35-35</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td>03020</td>
<td>50-50</td>
<td>2.05</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>03018</td>
<td>40-40</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03021</td>
<td>60-60</td>
<td>1.50</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>03019</td>
<td>45-45</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03022</td>
<td>70-70</td>
<td>1.25</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>03020</td>
<td>50-50</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03023</td>
<td>80-80</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>03021</td>
<td>60-60</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03024</td>
<td>90-90</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>03022</td>
<td>70-70</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03025</td>
<td>100-100</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>03023</td>
<td>80-80</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03026</td>
<td>110-110</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>03024</td>
<td>90-90</td>
<td>0.20</td>
<td>0.75</td>
<td></td>
<td>03027</td>
<td>120-120</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>03025</td>
<td>100-100</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td>03028</td>
<td>130-130</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>03026</td>
<td>110-110</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td>03029</td>
<td>140-140</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>03027</td>
<td>120-120</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td>03030</td>
<td>150-150</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Telephone Transmitter
- Operable from a telephone line
- Dimensions: 20 x 20mm

TELEPHONE TRANSMITTER TET
- Small enough to be concealed within a telephone. Will transmit both sides of a conversation (series connection)
- Dimensions: 10 x 20mm

TELEPHONE SOCKET TRANSMITTER TBS
- Replace your telephone socket with this one within which a transmitter has been concealed
- Dimensions: 30 x 25mm

AUTOMATIC TELEPHONE RECORDER
- Operates as a room transmitter, then switches to telephone transmitter mode during telephone calls
- Dimensions: 36 x 50mm

AUTOMATIC TELEPHONE RECORDER ATR1
- Adapt the tape recorder included to record telephone calls automatically

TELEPHONE TAP ALERT TTA
- Visual warning of any invasions of privacy on your telephone line
- Dimensions: 38 x 52mm

RF DETECTOR RDF1
- Highly sensitive hand-held detector
- Range between 10MHz and 600MHz. Silent operation
- Dimensions: 70 x 50mm

CAMERA DETECTOR CDC
- Detects hidden video cameras (even miniature CCD models)
- Dimensions: 63 x 38mm

RECORDING BRIEFCASE RBC1
- Completely discreet recordings at a value for money price

SHOTGUN MICROPHONE AMPLIFIER SMA
- Ideal for surveillance. Amplifier will pick up sounds from a long distance

SIGNALLING TRANSMITTER SIGT
- Sends a continuous audio pulse. Can be integrated into alarm, tracking or warning systems
- Dimensions: 20 x 50mm

TELEPHONE AMPLIFIER TAT
- Connected directly to the telephone, this unit will amplify both sides of a telephone call
- Dimensions: 25 x 52mm

PROFESSIONAL SOUND TO LIGHT UNIT
- RT7 Custom built for disc or home use. Audio signal divided into base, mid and treble bands, with internal microphone and spotlight option
- Dimensions: 210 x 46mm

MICRO METAL DETECTOR MMD
- Detects the presence of ferrous and non-ferrous metals
- Useful for all those DIY jobs
- Dimensions: 40 x 25mm

TELEPHONE TRANSMITTER RTT
- Operates a telephone transmitter mode during telephone calls

13.6V DC POWER SUPPLY TRANSFORMERS

<table>
<thead>
<tr>
<th>Type</th>
<th>KIT</th>
<th>Module</th>
<th>PROF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C67</td>
<td>500VA 18-18V</td>
<td>£32.64</td>
<td></td>
</tr>
<tr>
<td>9T845</td>
<td>675VA 16.1V</td>
<td>£38.06</td>
<td></td>
</tr>
</tbody>
</table>

- Prices include VAT and carriage
- Quantity prices available on request

Write, phone or fax for free Data Pack

Jaytee Electronic Services
- Unit 171/172, John Wilson Business Park, Whitstable, Kent CT5 3RB. U.K.
- Tel: (0227) 265333 Fax: (0227) 265331

TRANSFORMERS from JAYTEE

SURVEILLANCE

A SMALL SAMPLE OF OUR RANGE

TELEPHONE TRANSMITTER RTT
- An extremely sensitive miniature transmitter with long battery life
- Dimensions: 20 x 20mm

MAINS TRANSFORMER MT4
- Can be connected inside any equipment that is mains powered
- Dimensions: 35 x 20mm

TELEPHONE TRANSMITTER TTS
- Small enough to be concealed within a telephone. Will transmit both sides of a conversation (series connection)
- Dimensions: 10 x 20mm

TELEPHONE SOCKET TRANSMITTER TBS
- Replace your telephone socket with this one within which a transmitter has been concealed
- Dimensions: 30 x 25mm

TELEPHONE AMPLIFIER TAT
- Operates as a room transmitter, then switches to telephone transmitter mode during telephone calls
- Dimensions: 36 x 50mm

AUTOMATIC TELEPHONE RECORDER
- Operates as a room transmitter, then switches to telephone transmitter mode during telephone calls
- Dimensions: 36 x 50mm

AUTOMATIC TELEPHONE RECORDER ATR1
- Adapt the tape recorder included to record telephone calls automatically

TELEPHONE TAP ALERT TTA
- Visual warning of any invasions of privacy on your telephone line
- Dimensions: 38 x 52mm

RF DETECTOR RDF1
- Highly sensitive hand-held detector
- Range between 10MHz and 600MHz. Silent operation
- Dimensions: 70 x 50mm

CAMERA DETECTOR CDC
- Detects hidden video cameras (even miniature CCD models)
- Dimensions: 63 x 38mm

RECORDING BRIEFCASE RBC1
- Completely discreet recordings at a value for money price

SHOTGUN MICROPHONE AMPLIFIER SMA
- Ideal for surveillance. Amplifier will pick up sounds from a long distance

SIGNALLING TRANSMITTER SIGT
- Sends a continuous audio pulse. Can be integrated into alarm, tracking or warning systems
- Dimensions: 20 x 50mm

TELEPHONE AMPLIFIER TAT
- Connected directly to the telephone, this unit will amplify both sides of a telephone call
- Dimensions: 25 x 52mm

PROFESSIONAL SOUND TO LIGHT UNIT
- RT7 Custom built for disc or home use. Audio signal divided into base, mid and treble bands, with internal microphone and spotlight option
- Dimensions: 210 x 46mm

MICRO METAL DETECTOR MMD
- Detects the presence of ferrous and non-ferrous metals
- Useful for all those DIY jobs
- Dimensions: 40 x 25mm

Please add £2.00 P & P to all orders and 17.5% VAT on all U.K. orders

For full catalogue please send two 1st class stamps or 2 IRCs

Write, phone or fax for free Data Pack

Jaytee Electronic Services
- Unit 171/172, John Wilson Business Park, Whitstable, Kent CT5 3RB. U.K.
- Tel: (0227) 265333 Fax: (0227) 265331

ELECTRONICS TODAY INTERNATIONAL

www.americanradiohistory.com
Imagine the problem faced by a business which has premises on either side of a busy road. On each side of the road, they have a PC but to use them efficiently, they need to be able to transfer data between them. So what is the solution?

They could send someone across the road ten times a day with the floppy disk. Not the best idea, it is after all a very busy road. Alternatively they could use modems and the telephone network to link the two computers and transfer the data. A neat solution but also one which could run up serious phone bills.

Of course one could take a do-it-yourself approach and string a cable across the road between the two buildings. But council road traffic departments take a rather dim view of anyone strunging pieces of cable across a road. So not worth trying unless you are BT or one of the electricity companies.

The solution is, of course, a line of sight optical link. No cables, no modems, no repeated crossing of the road with a floppy disk, just send the data down a beam of light!

An Overview

A simple alternative to a wire or fibre optic link from one piece of equipment to another over a short distance can be very useful if it overcomes the problems associated with both running a cable between the two pieces of equipment and protecting the cables from outside interference. In the above example we have the case of running a serial data link from one building to another over ten metres a part. If the cabling is run inside the building, then the problem of cable protection has to be addressed, more so if the cable is to be run along the outside of a building and is exposed to all weathers.

The system described here uses a similar principle to the one already used in the remote controllers, found with a number of domestic televisions and video recorders. With such systems, the remote control device is used to send special control codes to the television or video, which will then perform the relevant function. Press a specific button on the hand held controller and the channel will be changed or the sound volume lowered.

This project uses an infra-red beam to send data continuously to and from either end of the system at the same time, i.e. full duplex. It thus provides a simple secure data link between two buildings with the minimum of installation. In terms of cost, this is a very economic way of sending data. To perform the same linkage using twin fibre optic cables would require cable totaling some forty metres in length. If we were to utilise polymer cables, then the component cost is very similar to the design described in this article, but what must be considered is the actual cost of cabling. Protecting such a cable, if surface mounted to a building, or indeed laid under ground is a problem and the alternative of having a cable strung above head height may be unsightly or impractical. Using copper cables to convey the same information over the same installation again runs into problems of running and protecting these delicate cables.

Figure 1 Showing overall idea of system. Range of models should not be greater than 10m. There should be no obstacles in the beam's way to cause reflections from one transmitter back to the adjacent receiver. This will cause an echo to occur and slow down the data transfer.

Figure 2 Basic Block Diagram.
Cost

The cost of such a system is comparable with a conventional fibre optic system, when considering the cost of fibre optic cables over, in this example, a twenty metre run with forty metres of cable (one cable for transmit and one for the receive data path). The data rate, on the other hand, would without doubt be much higher through such a cable. The cost of protecting the fibre optic cable through a run in the ground would prove a problem and perhaps the most cost effective means of running a data cable would be the use of a copper cable. Here, the problems with such a long cable run will have its effect on the ultimate speed of the cable, necessitating perhaps the use of RS485 to cover this distance at higher speeds. The cost again has to be born to protect the cable.

The Mechanical Side

There is one set of equipment at each end of the system. This comprises of a mains power supply and associated circuitry, and two remote heads, one head for the IR transmitter and optics, the second enclosing the IR receiver circuitry and optics. This makes for easy construction of the optical system, utilising mainly 1.5in plastic waste pipe and fittings to fabricate water tight enclosures which need to withstand the variations in weather. Additional metalwork is needed to make the supports for the optical assemblies, which is minimal. The power supplies and signal processing circuitry, including the serial equipment interface, are housed within a separate enclosure, making a total of three parts at each end of the system. Each end has to be duplicated, doubling the equipment, work and cost.
Most IR systems use some form of modulated carrier (950nm) which is controlled to a degree, either switched on and off in the case of AM systems, or frequency modulated (FM) in others. In this system, the simpler approach has been undertaken. The AM system has been adopted, which is adequate for the distance which this serial link is to cover.

Considering the circuit diagram, we will look at the transmit path first. The RS232C serial data comes to the modem via the 9 pin D-type connector, through the transmit path to pin 5 of IC1. This is then inverted and passed on to IC2 pin 4 which is a gated astable oscillator running at 38 to 40kHz, the actual frequency being set by adjusting RV1. The running frequency of this oscillator is dependent on the IR receiving devices used in the system, but more about that later. The output from the astable is fed to a driver transistor TR2 which sends the data down a cable to the remote head, which houses the transmitting IR LED and driver circuitry. TR2 converts the TTL logic levels to 12V logic levels. The square wave, when enabled at pin 11 of IC2, is at a TTL level. This is accomplished with TR2 and gives a higher drive level to the remote transmitter head, which would be a 12V. The IR LED is pulsed at a current of just under 1A through the FET TR2 (TX

How it Works

Most IR systems use some form of modulated carrier (950nm) which is controlled to a degree, either switched on and off in the case of AM systems, or frequency modulated (FM) in the head) and current limiting resistors R4 and R5. Within the remote transmit head assembly, provisions are made to provide the transmitter assembly with its own regulated supply in the head. It was thought best to isolate the supplies to each remote

Figure 5: Circuit diagram of transmit and receiver heads
head, albeit the transmit head or the receive head. The component dissipating any appreciable power is adequately heat sunked, with the 5V regulator in the transmit head.

The receive head is housed in a similar enclosure to the one used in the transmitter. The circuitry within the head is powered and regulated on the receive PCB with an individual 5V regulator, in order to isolate the receiver's power supply. The received signal is picked up by the IR module (or chip) and processed in that device where the IR receiver is a complete system in its own right, i.e. amplifier, limiter, band pass filter, demodulator, comparator and driver. The output from the device is in the form of an inverted pulse, i.e. TTL, which then passes on to an emitter follower TR1 (RX head). This then sends the received signal, inverted, to IC1 pin 2 down the cable connecting the head and the main control circuitry, which then drives the TTL to RS 232C converter (IC1) and on to the connected equipment. In the prototypes case, this is a number of TNC's (Terminal Node Controllers, used for packet radio).

TR1 is an LED driver which indicates the presence of received data and is connected to the received data line from the remote receiver head. TR1 is a junction FET and is a source follower that drives the RXD LED, LED2, the gate impedance of
which is high, so it does not appreciably load the output from the IR receiver. LED2 will illuminate when there is no activity from the IR receiver module. It could be regarded as a NOT RXD (NOT Received Data) indicator. If power were to fail at the IR receiver, then the LED would extinguish, indicating a fault with the RX head. Transmitted Data (TXD) is indicated by LED1 which is driven from the Q output of IC2, pin 10.

IR Remote Control Receiver

In the receiver head, provisions have been made to cater for one of two IR receivers. The prototype was developed around the Sharp GP1U52X IR module, which runs at 40kHz and is currently available from Tandy. The alternative is the IS1U60, also manufactured by Sharp and available from RS Components, stock no 577-897. This runs at 38kHz. The difference in operating frequency of the two components is accounted for at each end of the IR link, where the frequency adjustment of the sub-carrier frequency of 38 or 40kHz is provided with RV1. Therefore, the IR modules can be bought from either one of two suppliers, but it would be wise to use the same type IR receiver modules at both ends of the system and not mix types.

Next month...

We look at construction set up and use.
Power Supply and Interface Circuitry

Resistors
- **R1**: 18K (all resistors are 0.6W metal film)
- **R2**: 680R
- **R3**: 470R
- **R4**: 27K
- **R5**: 10K
- **R6**: 270K
- **R7**: 1K
- **R8**: 1K

Capacitors
- **C1**: 470uF 35v radial elect. (mounted on rear of board, see photo)
- **C2**: 220uF 16v radial elect. (mounted on rear of board, see photo)
- **C3**: 47uF 25v radial elect.
- **C4**: 47uF 25v radial elect.
- **C5**: 100uF 63v metalised polyester
- **C6**: 100uF 63v metalised polyester
- **C7**: 220pF 100v monolithic ceramic
- **C8**: 47uF 25v radial elect.

Diodes
- **D1**: 5V1 500mW zener diode, BZY88C/5V1 (mounted on rear of board, see photo)

Transistors
- **TR1**: 2N3819
- **TR2**: 2N2222

Regulators
- **REG1**: 78L05 5V 100mA TO92 regulator
- **REG2**: 79L05 -12V 100mA TO92 regulator

Remote Heads (TX head)

Resistors
- **R1**: 1K

Capacitors
- **C1**: 100uF 63v metalised polyester
- **C2**: 220uF 16v radial elect. (mounted on rear of board, see photo)

Remote Heads (RX head)

Resistors
- **R1**: 1K

Capacitors
- **C1**: 100uF 63v metalised polyester
- **C2**: 47uF 25v radial elect.

Transformer
- **T1**: 12V, 12VA toroidal transformer, 240V primary

Miscellaneous Components
- Neon mains indicator, DPDT mains switch, 250mA 20mm fuse and panel holder, 1.5A and 100mA 20mm fuses and printed circuit board mounting holders. Molex PCB plugs and sockets. 9 and 15 way D-type plugs and sockets and covers. Enclosure, wire, solder tags, mains filter optional. LEDs, PCB. Terminal pins (1.0mm)

COMPONENT LISTING (ELECTRONIC)

Remote Heads (TX head)

Resistors
- **R1**: 10K
- **R2**: 1K
- **R3**: 100R
- **R4**: 6R8
- **R5**: 6R8

Capacitors
- **C1**: 100uF 63v metalised polyester
- **C2**: 220uF 16v radial elect. (mounted on rear of board, see photo)

Remote Heads (RX head)

Resistors
- **R1**: 1K

Capacitors
- **C1**: 100uF 63v metalised polyester
- **C2**: 220uF 16v radial elect.

Diodes
- **D1**: 1N4148
- **D2**: GaAs IR photo emitting diode, Maplin stock number KW66W

Transistors
- **TR1**: 2N2222
- **TR2**: BUZ10

Regulators
- **REG1**: 78L05 5V 2.5A regulator

Miscellaneous Components
- Terminal pins (1.0mm), connecting cable (twin individually screened cable, Maplin stock number XS26D used in prototype). Cable glands, PCB

COMPONENT LISTING

Remote Heads (RX head)

Resistors
- **R1**: 1K

Capacitors
- **C1**: 100uF 63v metalised polyester
- **C2**: 47uF 25v radial elect.

Transformer
- **T1**: 12V, 12VA toroidal transformer, 240V primary

Miscellaneous Components
- Neon mains indicator, DPDT mains switch, 250mA 20mm fuse and panel holder, 1.5A and 100mA 20mm fuses and printed circuit board mounting holders. Molex PCB plugs and sockets. 9 and 15 way D-type plugs and sockets and covers. Enclosure, wire, solder tags, mains filter optional. LEDs, PCB. Terminal pins (1.0mm)

MECHANICAL PARTS

Optical Assemblies
- 3ft 1.5in PVC waste pipe
- PVC glue for waste pipe
- 4 reducers, 1.5in to 1.25in
- 4 blanking plugs 1.5in
- 8 couplers 1.5 to 1.5in
- 4 cable glands
- Silicon rubber sealing compound or Evostik
- Lens, Maplin stock number FA95D
- 8 1.5in pipe clamps.
- Metal sheet to fabricate head assembly

www.americanradiohistory.com
New from Argus Books!

SCANNERS 3

Putting scanners into practice a new edition by Peter Rouse.

This is the 4th revised and completely updated edition of Scanners. This new edition has seen the largest ever number of changes and additions to the point of being a virtual rewrite, and contains everything you need to know to put your scanner to better use.

There is vastly more information than ever on frequency listing, particularly those by coastal stations, airfields and the emergency services. Also included for the first time is a selection on HF (short wave) bands. Together with actual frequency listings for those services, full British bandplans from 25 to 2000 MHz are given; including cordless and cellular telephones, private mobile radio, amateur radio, repeaters, beacons, satelites, ham radio, military, communication, navigation and weather, including GSM/900 and NASA Space Shuttle Frequencies.

Fully illustrated throughout, including a comprehensive section featuring the actual scanners currently available.

This book includes all the information you need to put your Scanners into practice.

BUILD YOUR OWN PC

Using our low cost component parts we can assemble for you for only £25

386 MOTHERBOARDS	386SX-33MHz	£72
386DX-33MHz	128k Cache	£99
486 MOTHERBOARDS with VESA Local Bus	2 Slot & Pentium PPS4 Sockets	
486SX-25MHz	256k Cache	£159
486DX-33MHz	256k Cache	£179
486DX-66MHz	256k Cache	£309
486DX-100MHz	256k Cache	£390
486DX-133MHz	256k Cache	£480
486DX-200MHz EISA	256k Cache	£640
486DX-33MHz EISA	256k Cache	£640
486DX-50MHz EISA	256k Cache	£425
486DX-66MHz EISA	256k Cache	£425
HARD DISK DRIVES	IDE Drive 16ms	£150
170MB	IDE Drive 15ms	£159
213MB	IDE Drive 15ms	£179
250MB	IDE Drive 12ms	£180
330MB	IDE Drive 12ms	£209
420MB	IDE Drive 10ms	£360
540MB	IDE Drive 12ms	£430
540MB	4SCSI Drive 3ms	£690
2GB	2SCSI Drive 3ms	£960
2.5GB Hard Disk Mounting Brackets	£15	

FLOPPY DISK DRIVES

3 1/4" 1.44Mb Floppy Disk Drive | £33

3 1/2" 1.44Mb Floppy with 5 1/4" Frame | £36

5 1/4" 1.2Mb Floppy Disk Drive | £36

MONITOR

14" Mono VGA |

14" SVGA Colour (Interlaced) (5.25mm) | £263

14" SVGA Colour (Non Interlaced) (5.25mm) | £263

17" High Resolution (0.28mm) | £460

MEMORY

256k x 9 512m 70ns | £13

1M x 9 512m 70ns | £36

4M x 9 512m 70ns | £125

DISPLAY CARDS

Oak 16-bit SVGA Card 256k | £150

Oak 16-bit SVGA Card 512k | £230

VESA Local Bus SVGA 1MB | £170

VESA Local Bus SVGA 2MB | £275

VESA Local Bus 53 Windows Acceler 1MB | £110

VESA Local Bus 53 Windows Acceler 2MB | £140

KEYBOARDS

102 Key Standard | £22

102 Key Deluxe | £27

ADD-ON CARDS

IDE Card 2M/4G for MS-DOS & Windows | £19

IDE Card 2M/6G with Floppy Card | £19

IDE Card 2M/6G with 2 Floppy Cards | £19

IDE Card 2M/6G with 3 Floppy Cards | £20

IDE Card with 4 Floppy Cards | £20

IDE Card with 5 Floppy Cards | £20

Future Domain SCSI Card | £45

Future Domain SC/S with cables | £59

Future Domain SC/S with cables | £59

16-bit Ethernet Card (NE100 compatible) | £59

CD ROM DRIVES

SUN CD-ROM Drive with Interface Card | £19

Panasonic CR-5600 Cliffrac electric CD-ROM | £20

Toshiba XM2401 12 Speed SCSI CD-ROM | £295

OTHER ITEMS

Microsoft Compact Mouse | £13

Deluxe Desktop Case (300W PSU) | £20

Mini Tower Case (200W PSU) | £20

Tower Case (250W PSU) | £20

MINICASE 5.25" | £20

Windows 3.1 | £35

Eurocom International Ltd

Telephone (035 388) 325

The Old School, Prickwillow, Ely, Cambridgeshire, CB7 4UN.

Call for free catalogue or send cheque with order.

Carriage £12.00 per order. All prices excluding VAT are inclusive of current rate to total order.

www.americanradiohistory.com
PCB Designer
For Windows 3.x
Requires MS Windows, 286 or better, with 2MB RAM

*Enclose a copy of this advert with your order, and you can purchase PCB Designer for just
£39.00 (all inclusive)

This offer will only be available for a limited period

Niche Software
22 Tavistock drive, Belmont, Hereford, HR2 7XN
Phone (0432) 264 800, FAX (0432) 264 800

Please note: Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line manual, in Windows Help format. A tutorial is also supplied online.

FANTASTIC SAVINGS
ON METERS
AND MORE !!!

METEX 4½ DIGIT DMM
MM6102 £189.00**
**In stock June 24th
Display 17mm x 0.05% Accuracy
Points B range or any user
range 5 ohm range 0.05M
Continuous use and battery test
Shunt range 20mA 0.05% (0-20mA)
Shunt range 5A 0.1% (0-5A)
With battery tester
Price £130.00
NOW ONLY £99.95

LS140 12½ Range 8 3½ digit
24mm Large Display
Ratlax 3 Coaxial range 0 to 6 ohm
Resistance range 0 to 254 M 1% ef.
and transimpedance 0 to 6,000 with
Ratlax 8 Range 3½ digit current to 20 Amps
and transimpedance 0 to 6,000 with
Battery tester
Price £129.95
NOW ONLY £95.95

ALL PRICES INCLUDE VAT

TEST METERS
LCR Meter @ 1200 £729.85
Inductance @ 1 ohm range £69.95
Capacitance Meter @ 10 mohm £69.95
Digital Lux Meter @ 1 mcd £69.95
Digital UV Meter @ 1 mv £69.95
Sound Level Meter @ 100 db £149.95
Analogic Clamp Meter @ 1000 10A £79.95
1000 20A £79.95
1000 50M £99.95
1000 500M £199.95
Digital Clamp Meter @ 50A £149.95
AC/DC Current Clamp @ 50A £269.95
Temperature Measurement @ 50A £149.95
(with fixed probe £149.95)

BENCH INSTRUMENTS
Digital LCD Exponent calculator with back £29.95
7 Digit frequency(10Hz to 200MHz)
Price £29.95

POWER SUPPLIES
Wide range power supply
£50 & units £79.00
£200 & units £97.00
Variable supply £165.95
Fixed ranges £245.00
Signal sources £20.00
Ratilax 3½ digit ammeter £45.95
Ratlax 3½ digit voltmeter £45.95

Price £25.95
Now only £19.95

ALL PRICES INCLUDE VAT
OPEN 6 DAYS A WEEK

SUMMER 1993/94
CATALOGUE

NEW EDITION!
The new enlarged Catalogue is out now!

Included in this issue:
> A further 16 extra pages
> £200 worth discount vouchers
> 100's new products
> 256 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and supplies
> Expanded entertainment section with in-car amps, speakers, crossovers and low cost disco equipment
> Further additions from Europe's leading kit manufacturer - Velleman
> Published April 28th 1994
> Available from most large newsagents or direct from Circuit
> Send for your copy today!

CIRKIT DISTRIBUTION LTD
Park Lane. Broxbourne. Hertfordshire. EN10 7QN
Telephone (0992) 448899. Fax (0992) 471314

HENRY'S
Audio Electronics
www.americanradiohistory.com
Oscilloscopes

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gould 400</td>
<td>200 MHz DSO, 100 Ms/s</td>
<td>£1000</td>
</tr>
<tr>
<td>Gould 4072</td>
<td>1000 MHz DSO, 400 Ms/s</td>
<td>£2000</td>
</tr>
<tr>
<td>Gould OS4000, OS4200, OS4025</td>
<td>from £125</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 85174A</td>
<td>110MHz dual channel (DMM)</td>
<td>£350</td>
</tr>
<tr>
<td>Hewlett Packard 1822</td>
<td>200MHz dual ch.</td>
<td>£1000</td>
</tr>
<tr>
<td>Hewlett Packard 1707A</td>
<td>750MHz 2ch.</td>
<td>£225</td>
</tr>
<tr>
<td>Tektronix 1715A</td>
<td>200MHz with DMM</td>
<td>£300</td>
</tr>
<tr>
<td>Hewlett Packard 1745A</td>
<td>100MHz dual channel (DMM)</td>
<td>£450</td>
</tr>
<tr>
<td>Tektronix 2201</td>
<td>20MHz DSO dual ch.</td>
<td>£675</td>
</tr>
<tr>
<td>Tektronix 2246</td>
<td>100MHz 4-channel</td>
<td>£550</td>
</tr>
<tr>
<td>Tektronix 2215</td>
<td>60MHz dual trace</td>
<td>£450</td>
</tr>
<tr>
<td>Tektronix 2235</td>
<td>Dual trace 100MHz (portable)</td>
<td>£800</td>
</tr>
<tr>
<td>Tektronix 2335</td>
<td>Dual trace 100MHz (portable)</td>
<td>£750</td>
</tr>
<tr>
<td>Tektronix 2225</td>
<td>50MHz dual ch.</td>
<td>£450</td>
</tr>
<tr>
<td>Tektronix 465/46B</td>
<td>100MHz dual ch.</td>
<td>£350</td>
</tr>
<tr>
<td>Tektronix 475</td>
<td>200MHz dual ch.</td>
<td>£450</td>
</tr>
<tr>
<td>Tektronix 474</td>
<td>60MHz dual channel</td>
<td>£550</td>
</tr>
<tr>
<td>Tektronix 7313, 7633, 7623, 7633</td>
<td>100MHz 4 ch.</td>
<td>£300</td>
</tr>
<tr>
<td>Tektronix 7704</td>
<td>250MHz 4 ch</td>
<td>£650</td>
</tr>
<tr>
<td>Tektronix 7554/744</td>
<td>400MHz 4 ch</td>
<td>£750</td>
</tr>
<tr>
<td>Tektronix 1411, 1412</td>
<td>from £850</td>
<td></td>
</tr>
<tr>
<td>Phillips 3070</td>
<td>100MHz + channel</td>
<td>£900</td>
</tr>
<tr>
<td>Phillips 3206, 3211, 3212, 3217, 3226, 3240, 3243, 3244, 3261, 3282</td>
<td>£125 to £250</td>
<td></td>
</tr>
<tr>
<td>Solartron Schumberger CD1740</td>
<td>200MHz 4 ch</td>
<td>£250</td>
</tr>
</tbody>
</table>

Spectrometer

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altech 1772</td>
<td>27-9GHz</td>
<td>£2200</td>
</tr>
<tr>
<td>Advantest TR1431</td>
<td>10-50GHz</td>
<td>£150</td>
</tr>
<tr>
<td>B&K 2450</td>
<td>2000Hz H&K</td>
<td>£125</td>
</tr>
<tr>
<td>Hewlett Packard 3558A</td>
<td>20-40MHz (GBIP)</td>
<td>£425</td>
</tr>
<tr>
<td>Hewlett Packard 8530A</td>
<td>10K-1.5GHz (as new)</td>
<td>£425</td>
</tr>
<tr>
<td>Marconi 2505A, 2508A</td>
<td>10MHz (as new)</td>
<td>£350</td>
</tr>
<tr>
<td>Marconi 1411T</td>
<td>8552/8552 (125MHz)</td>
<td>£1000</td>
</tr>
<tr>
<td>Marconi 2370</td>
<td>110MHz</td>
<td>£125</td>
</tr>
<tr>
<td>Tektronix S18</td>
<td>Analogue spectrum analyser</td>
<td>£300</td>
</tr>
<tr>
<td>Tektronix 718</td>
<td>with 7603 main frame 1.5GHz - 18GHz</td>
<td>£3500</td>
</tr>
<tr>
<td>Texascan LS1A</td>
<td>(4MHz - 1GHz)</td>
<td>£1500</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anritsu ML93B/ML92B</td>
<td>Optical power meter with sensor</td>
<td>£2000</td>
</tr>
<tr>
<td>Anritsu M3583C</td>
<td>Microwave system analyser (BX+TX)</td>
<td>£350</td>
</tr>
<tr>
<td>B&K 2250</td>
<td>Data analyser</td>
<td>£300</td>
</tr>
<tr>
<td>B&K 2511 Vibration meter</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>B&K 2515 Vibration analyser</td>
<td></td>
<td>£450</td>
</tr>
<tr>
<td>Datel [ML] digital multimeter (digit)</td>
<td></td>
<td>£500</td>
</tr>
<tr>
<td>Datel 1071</td>
<td>Autocal digital multimeter (7V/DIGIT)</td>
<td>£450</td>
</tr>
<tr>
<td>Daymarr 1735</td>
<td>Transistor tester/selector (with all jigs)</td>
<td>£1500</td>
</tr>
<tr>
<td>Dranetz 305 Phase meter</td>
<td></td>
<td>£250</td>
</tr>
<tr>
<td>Dyran 310</td>
<td>Pressure sensor (PS)</td>
<td>£175</td>
</tr>
<tr>
<td>Dyman 2085 AP Power meter</td>
<td></td>
<td>£200</td>
</tr>
<tr>
<td>Farmall RB 1030-35</td>
<td>Electronic load 1KW</td>
<td>£450</td>
</tr>
<tr>
<td>Farmall AMM-8</td>
<td>Automatic modulation meter</td>
<td>£150</td>
</tr>
<tr>
<td>Farmall R/W Power meter</td>
<td></td>
<td>POA</td>
</tr>
<tr>
<td>Feedback TWF3000</td>
<td>Test waveform generator</td>
<td>£200</td>
</tr>
<tr>
<td>Fischer Betascope 2040/2040</td>
<td>Coating thickness computer & non-destructive coating measurement instrument & many jigs and extras</td>
<td>all for £2000</td>
</tr>
<tr>
<td>Fluke 8404A Multimeter (IEEE)</td>
<td></td>
<td>£300</td>
</tr>
<tr>
<td>Fluke 515A Portable Voltmeter</td>
<td></td>
<td>£200</td>
</tr>
<tr>
<td>Fluke 8010A Digital multimeter</td>
<td></td>
<td>£125</td>
</tr>
<tr>
<td>Fluke 8922 True RMS Voltmeter</td>
<td></td>
<td>POA</td>
</tr>
<tr>
<td>Fluke 3592 Current source</td>
<td></td>
<td>POA</td>
</tr>
<tr>
<td>Gay Milano FTMC/FMTC3-MFT - Fast transient monitor</td>
<td></td>
<td>£250</td>
</tr>
<tr>
<td>General Ref 1555 LCR Digibridge</td>
<td></td>
<td>£250</td>
</tr>
<tr>
<td>General Ref 1621 Precision capacitance measurement system</td>
<td></td>
<td>£350</td>
</tr>
<tr>
<td>Hewlett Packard 3558A</td>
<td>Data analyser unit with 8752B sweep amplifier, an.</td>
<td>£350</td>
</tr>
<tr>
<td>Hewlett Packard 3558A</td>
<td>VHF oscilator 10-500MHz</td>
<td>£1000</td>
</tr>
<tr>
<td>Hewlett Packard 3535A</td>
<td>Synthesizer/function generator</td>
<td>£1500</td>
</tr>
<tr>
<td>Hewlett Packard 3490 Multimeter</td>
<td></td>
<td>£150</td>
</tr>
<tr>
<td>Hewlett Packard 3460A Broadband sampling voltmeter</td>
<td></td>
<td>£175</td>
</tr>
<tr>
<td>Hewlett Packard 3477A</td>
<td>System voltmeter</td>
<td>£150</td>
</tr>
<tr>
<td>Hewlett Packard 3476A Digital multimeter</td>
<td></td>
<td>£100</td>
</tr>
<tr>
<td>Hewlett Packard 3478</td>
<td>Digital multimeter, 4 wire system, 1EEE</td>
<td>£650</td>
</tr>
<tr>
<td>Hewlett Packard 3702B/3703A/3704A Microwave link analyser</td>
<td></td>
<td>£500</td>
</tr>
<tr>
<td>Hewlett Packard 3705A</td>
<td>Down converter (with 3705A or 3731A)</td>
<td>£500</td>
</tr>
<tr>
<td>Hewlett Packard 3760</td>
<td>50MHz 4-channel</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 3762/3763 Data gen</td>
<td></td>
<td>POA</td>
</tr>
<tr>
<td>Hewlett Packard 3777A Channel selector</td>
<td></td>
<td>POA</td>
</tr>
</tbody>
</table>

Special Offers

- **Phoenix 5500A** - Tektronix analyser, ex. demo as new with 12 months calibration + 12 months warranty, £6000.
- **Navellite 4400** - Protocol analyser, ex. demo as new £8000, ex. demo as new £3200.
- **Wavetek 157** - Programmable waveform synthesiser, £3000.
- **Wayne Kerr - 4242/4** - LCR Component meter (as new) £3000.
It is just fifteen years since the first IBM PCs started to appear on desktops across the world and few could have realised at that time that it was the beginning of a revolution. Today, there are an estimated 120 million PCs in use around the world, over 8 million of them in the UK alone.

All this represents an enormous world-wide investment in PC hardware and software. If one adds the cost of the PC to that of the various peripherals used, and the software packages run on it, then we are probably looking at a world-wide capital investment of around £600 thousand million. In the UK alone we are probably looking at an investment of £40 billion.

This is an enormous amount and one which, in terms of magnitude, is in the top ten product categories. It is not surprising, therefore, that software and hardware upgradeability is such an important factor in this industry. A state of the art Pentium system can still run the same software as the very first PC and you can still connect it to the same peripherals, the same printers and plug in the same adapter cards.

There is now a considerable market in upgrade components and spare parts. Users are starting to realise that you do not need to throw away the whole system in order to upgrade it. Adding more memory, a better video display, larger disk drives, even a new processor, is not difficult and can be lot cheaper than buying a whole new system.

As a result of the continuing use of old systems and the increasing demand for upgrading such machines, it is hardly surprising that there has also been, in the last couple of years, an explosion in the demand for people capable of servicing and maintaining PCs. Indeed, the US Government has estimated that over 250,000 new jobs will be created by the end of the decade in servicing, upgrading, and maintaining PCs. That is a lot of jobs, and if one takes the same proportion of new jobs in relation to the number of installed PCs in the US, and apply it to the UK, then we should be looking at between 40 and 50,000 new jobs in this country.

So, if you are a PC owner or user (and according to our reader surveys over 90% of ETI readers are) it can be well worthwhile learning how to repair, trouble-shoot, maintain and upgrade PCs. With such a shortage of skilled people, most of us will have to resort to doing it ourselves, hence the reason for this series of articles in ETI. Of course, these articles may just persuade some readers to decide to take it up professionally.

The series will provide readers with a sound introduction to the PC's hardware which will, in conjunction with other ETI projects, enable you to repair faulty systems, salvage old machines, build and design plug in boards, upgrade systems, build your own specification system using commercially available boards and cases and generally understand and find your way around the hardware of a PC.

The way that the series has been designed means that it should appeal to everyone. Readers with little prior knowledge of electronics and computing will find plenty of interest and those with a good grounding in these subjects will find that the information given opens up new areas for experimentation.

In the first article in a new series on repairing, maintaining, and upgrading PCs, Nick Hampshire takes an initial look under the cover.
Before attempting to do any work on a PC, a limited range of tools should be at hand. The number of tools required to perform basic upgrading tasks is not extensive, but should not be skipped upon. Most of us sometime or another have improvised with tools, used a knife blade instead of a screwdriver, or a flat blade screwdriver to undo a Pozidriv screw, or a pair of pliers instead of a nut driver. Invariably, one damages the screw and if the improvised tool slips one can damage oneself, or worse still with electronic equipment, damage a PC board.

Relish the temptation to improvise, the basic toolkit will cost less than £20 and can be used for other purposes as well as idling around inside PCs. One important point to note when choosing your toolkit is that all tools must be non-magnetic. This obviously precludes using some of the combination toolkits, since these often have a magnetic bit clutch. The reason for this is, of course, that there are many components within a PC which can be damaged by exposure to a magnetic field.

Screwdrivers and Nutdrivers

Screwdrivers are the most important components of the basic toolkit and the range should include a small and medium Phillips screwdriver and a small and medium flat blade screwdriver, while a useful addition is a medium flat blade screwdriver with a spring clutch, that will hold a screw onto the blade to that it can be easily inserted into a difficult location. These basic screwdrivers will undo most of the screws used in most systems, but if you are dealing with a Compaq, or Apple system, you will need a special sort of screwdriver called a Torx driver. Without such a driver you will not be able to get into such systems and you will also find Torx screws used on components which are not meant to be user serviceable, such as power supplies and disk drives. Two sizes of Torx driver will be needed, a T10 and a T15.

You will also meet a range of screws with six sided heads, such as the ones used to secure the case, or adapter cards. In most cases these are also slotted for Phillips or flat blade screwdrivers, but sometimes they are not and in such situations a nut driver is an invaluable aid. You will need a 1/4in driver to remove the case screws and a 3/16in driver to remove the adapter card screws.

Gripping and Retrieving

The basic toolkit should also include a chip extractor and a chip inserter. Both are particularly useful for adding and removing memory chips, such as those used on memory expansion boards and can prevent a lot of problems with bent IC pins. If IC pins do become bent, then a small pair of needlenose pliers can be used to straighten them out.

You will also find a pair of tweezers useful for retrieving small parts and removing jumper blocks. When screws and other components become lost deep in the interior of the system, such as under the motherboard, then a small flexible claw type parts grabber can save you having to completely disassemble the system. To prevent screws and other small components getting lost, a small plastic container with a snap on lid, such as 35mm film container, is an invaluable component of the toolkit. Though not an essential part of the basic toolkit a pair of wire cutters can be very useful, as is a wire stripper.

Soldering and Unsoldering

When repairing systems there will be many occasions where it will be necessary to replace a component which is soldered onto one of the boards, or to repair a broken wire. You will need to be able to both solder and unsolder. For soldering a low wattage soldering iron is essential, nothing more than about 25W, since higher wattage irons generate too much heat and can thus damage both the component being soldered and the board. To reduce the possibility of heat damage, it is a good idea to use a clip-on heat sink which will absorb excess heat before it reaches the component.

For unsoldering, there are two commonly used techniques which are designed to remove the unwanted solder that links the component to the board. The cheapest solution is to use a desoldering braid (a woven tape of flux impregnated with very thin copper wire, into which the solder melted by the soldering iron is drawn using capillary action). The other solution is to use a solder sucker, which uses a form of air pump to suck away the molten solder, but which ever technique is used, be very careful not to apply too much heat and damage the board.

Dirt, Dust and Overheating

Dirt and dust constitute an ever present enemy for electronic equipment of all kinds, but a particular hazard for computer equipment. Open up any machine which has been in use for a few years and you will find it full of the stuff. It is important to keep a machine relatively clean, since dust and dirt could easily damage components such as disk drives. A combination of dirt and oxidation can also cause problems with connectors of all sorts, leading to malfunction of the entire system or of certain components.

Cleaning a system is therefore one of the first tasks in any repair/maintenance procedure. A small paintbrush is a first line of attack. However, there are a lot of very inaccessible places on a PC and an excellent way of removing dust from such places is to use a can of compressed air, often to be found in photography shops under the name Spraydust. For cleaning contacts and PCB edge connectors, a good tip is to rub a soft pencil eraser over the contact (make sure it is the soft type and not one of the rather abrasive ink erasers). This will help get rid of any thin film of oxidation that may be causing problems, then clean off the residue using isopropyl alcohol on a lint free cloth. Isopropyl alcohol can be obtained from a chemist and will dry off without leaving any moisture.

On the subject of chemicals there is one further product which may prove very useful in tracking down an intermittent fault, caused by a chip, or any other component, getting too hot. This is a can of spray freezer - a small quantity squirted onto the suspect device will cool it down and, if the fault disappears for a while, then obviously you have a heat related problem with that component.

WARNING - some of these chemicals are highly flammable and should not be used in confined spaces or near naked flames. Always read and obey the instructions on the container!
Simply looking at a PC from the outside can be very difficult, if not impossible, to determine the machine's hardware configuration. Even taking the cover off and looking at the boards will not necessarily tell you everything about the machine.

Fortunately, the design of a PC means that the system knows at about what, how much memory it has, how many and what type of disk drives, which video adapter card, how much cache memory, which processor and co-processor - if any, the interrupt allocations and a lot, lot more. All that is needed, therefore, is a special program which, when run in the system, will analyse it and, if required, produce a print-out of that analysis.

There are quite a few programs of this sort on the market today, either as commercial products, as shareware, or as public domain software and a typical example is a program called InfoPlus.

This was written by Andrew Rossmann, who released Version 1.56 into the public domain on December 30th 1992. Copies are available from ETI at a minimal cost - see the box at the bottom of this page.

All one has to do is load and run InfoPlus from the DOS prompt and then let the program do the rest. It takes just a few seconds for the program to analyse the system on which it is running and obtain information about all its hardware components, over twenty pages of information in total. The pages output by InfoPlus are as follows:

1. System and ROM Identification
2. CPU Identification
3. RAM Identification
4. Memory block listing
5. Video display type
6. Video data
7. Keyboard and mouse information
8. Serial, parallel, and sound ports
9. DOS Information
10. Multiplex bootable devices
11. Environment variables
12. Device drivers
13. DOS drive Information
14. BIOS drive information
15. Partition table listing
16. Boot and DOS drive parameters
17. CMOS data
18. TSRs and drivers
19. Alternate multiplex
20. Memory managers

As can be seen, InfoPlus gives the user a pretty impressive collection of information about the system he or she is using, which can make an excellent starting point for solving a wide range of hardware related problems, ranging from IRQ conflicts, to checking memory usage.

By simply typing InfoPlus at the DOS prompt you will be able to display all the above information on the screen, one page at a time, but the program can also be more selective thanks to the use of a range of switches, which are as follows:

- AP: autoprints all screens and asks for set-up
- AP:filename: autoprints to a file or device
- B: writes to screen using BIOS
- C: uses normal colours
- D: writes directly to screen memory

F: leaves 16550 FIFOs enabled
displays the help screen
H: uses monochrome colours
M: specifies not to read partition table
NP: specifies not to perform VGA
NV: chipset detection

Programs like InfoPlus are a valuable tool in fault diagnosis and in upgrading unknown systems. It is well worthwhile obtaining a copy.

ETI can supply copies of InfoPlus version 1.56 to readers who require them. This is a public domain program so we are simply making a small charge, £6 inclusive of P&P, to cover the cost of the disk and the various handling charges. To get your copy, simply send a cheque or postal order for £6 made out to ASP to: Reader Services, ASP, Boundary Way, Hemel Hempstead, Herts HP2 7ST. Please make sure that you quote order reference number E9406 D.

Besides a range of hand tools, a few pieces of test equipment can prove very useful in tracking down faults. A good quality digital voltmeter is an excellent investment and a suitable one can be obtained for between £30 and £50. It should be capable of measuring AC/DC voltages and currents as well as resistance. Such a meter can be used to check the power supply on the main boards, as well as the state of various bus lines (though to do this, a simple logic probe is the best solution and we will be including a design for one in the next issue of ETI).

Checking the power supply is well worthwhile, and should be the first thing which is done when attempting to repair any faulty system. Probably 80% of all system failures are power supply related and we will be looking at the power supply voltages and cables in the next article in this series.

A much more serious piece of test equipment for the PC repairer, and only really worth investing in if you are going to repair a lot of machines, is a fully featured Power On Self Test diagnostic card and its associated software. Such a POST diagnostic card will simply plug into an ISA adapter card expansion slot. It is capable of examining every part of the system and precisely locating faulty components even though the system may have no functioning keyboard, display, or I/O ports.

So long as the processor and BIOS ROM is functioning, then this card will read the power-up self test code executed when the PC is first switched on. These codes will identify any faulty parts of the circuitry and thus narrow down the search area. The card also includes voltmeter circuitry to check the state of the power supply lines and main processor control lines. It also has a built in logic probe to make fault finding easier.

A typical example of such a card is that produced by Micro 2000. This card and the associated software form a very powerful diagnostic tool and we will be showing in some detail how it can be used, in future articles in this series.

If you would like more information about this diagnostic system, then contact Micro 2000 Europe, P.O.Box 2000, Letchworth, Herts. SG6 1UT. Tel: 0462 483483.
Before one starts to do anything to the hardware of a PC, it is a good idea to know what one is looking at and where all the major components are located. This exploded view of a fairly standard 486 PC should help readers find their way around their own system.

Motherboard

A standard AT motherboard, such as those found in most modern PCs, measures 8.5in by 13in. There is also a mini AT motherboard measuring 8.5 x 9in and an oversized AT at 12 x 14in, neither of which are widely used. Having a standard size motherboard means that one can upgrade motherboards without having to get a new case and power supply which, for upgraders, is a very useful piece of standardisation.

The layout of components on a motherboard is also fairly standard. This is because the standard case design dictates that the eight expansion slots are located at the rear left hand side of the board, where the openings for the expansion card rear panels are positioned. The power connectors are on the right hand side of the board, next to the power supply. Main system memory, today in the form of plug-in SIMMs, is usually located on the right hand side of the board. Connectors to the reset switch, speaker, power LED and keylock, turbo switch, and turbo LED are all located along the front of the board, while the keyboard connector is at the rear right hand corner, next to the hole in the case punched out for it.

Expansion Slots

On a standard AT motherboard there are 8 ISA expansion slots, of which six are full 16 bit versions and two are 8 bit versions. However, on modern motherboards designed for 486 processors, expect to find additional local bus connectors on at least two of the expansion slots. On high powered systems, look for one or two 32 bit EISA expansion sockets, which are much deeper than the standard ISA socket.

On the older PCs, system memory consisted of an array of memory chips soldered into, or socket mounted onto, the motherboard. There could be anywhere between 512KB and 1Mb of such memory. On this type of system, expanding memory above 1Mb invariably meant using a plug in memory card that fitted into one of the ISA expansion sockets.

On more modern systems, the motherboard is usually designed to take up to 16Mb of memory, but most systems will only be sold with 2 or 4Mb of RAM and it will be up to the user to upgrade as desired. Upgrading the amount of memory on such systems is made easier by having memory chips mounted on small plug in printed circuit boards called SIMMs. Each SIMM usually contains 1Mb x 9 bits of memory. Memory is 9 bits wide rather than the expected 8 bits, in order to allow error checking using bit 9.

Hard Disk Drive

The technological advances in hard disk drive design have been almost as rapid as the developments in processor technology. The physical size of drives has decreased, their data capacity has increased enormously, and their access times have also increased. On old AT systems, 20 or 40Mb hard disks were standard, on today's 486 based systems, drives of 210 or 340Mb are increasingly common.

Other Data Storage Devices

There are a whole range of different data storage devices which can be fitted into a standard drive bay on a PC. A CD-ROM drive is an increasingly common choice, with the popularity of multimedia software. Tape streamers are another popular choice, where regularly backing-up of data is important. Another increasingly common option, which is also used for data backup and as a supplement to the hard disk, is a magneto-optical disk drive.
Processor and Co-Processor

The processor is fairly easily identifiable: it is large and square, with the newest generation of chips having as many as 238 pins. With so many transistors packed onto such a small piece of silicon it is not surprising that processor chips use a lot of power and run very hot, about 85°C in fact. This heat production means that processor chips are often filled with large heatsinks or even equipped with a small fan that blows air over the chip to cool it down. Overheating of the processor chip is a common cause of processor failure and can easily occur if the fan is not working properly, if the case is left open, or if the system is used in a very hot environment. In such cases, the addition of a thermal warning device is a good idea and we will be showing how to build such a device in a couple of months' time.

Most AT systems, from the 286 onwards, have had provision for adding a maths co-processor chip in order to improve processing speed in math intensive operations. On most of the more powerful modern systems, such as the 486DX2, the co-processor is actually built into the processor chip, but there is an additional spare socket on such systems for upgrading the processor, by adding either a clock doubler chip or overdrive chip. More about these next month.

Adapter Cards

Most systems usually have several different adapter cards. There will probably be a video controller card, which is used to generate the video display for output on the CRT monitor. Then there will probably be a disk controller card which is used to control the hard and floppy disk drives. Then, of course, there will be an I/O card which will provide parallel and RS232 serial communications ports for attaching to printers, modems, etc.

In the next couple of months we will be running a project in ET to show you how to build and design your own adapter cards and this will be followed by a couple of super adapter card designs, including a very high speed analogue to digital converter that can be used as the basis for a range of data acquisition and virtual instrumentation projects.

In most modern PCs, the power supply is a sealed unit with a power rating of 200W. The power input plug and the on/off switch are usually, though not always, part of the sealed unit. The power supply output is fully regulated and consists of four voltages:

- **+5V at a current of 20A**
- **-5V at a current of 0.5A**
- **+12V at a current of 8A**
- **-12V at a current of 0.5A**

These power supplies are now mass produced and it is really not worth trying to repair a faulty one, it is far better and far safer to simply replace it with a new one.

The case used in this diagram is a standard mini-tower designed to stand vertically, an orientation which has the advantage that it takes up only a small amount of desk top space. Slightly larger versions of this type of case are the mid-tower and the tower. The difference in these is the height of the unit and the number of bays it has in which disk drives can be located. So a mini will probably have four bays, of which one is hidden (this means that a mini-tower based system could have two floppy disk drives, a CD-ROM drive, and an internal hard disk drive). A full tower system, on the other hand may, have as many as nine bays, of which four are hidden. This larger case is the type commonly used for server systems which will have a lot of attached disk drives.

Probably the most common type of case is not the tower system but the desktop. This has the same disk drive capacity as a mini-tower and is about the same size, except that it is laid horizontally instead of vertically. It takes up more desk top space, but usually has the CRT display mounted on top of it.

Getting into a case is not that difficult, usually involving undoing between four and six hex headed bolts with a 1/4in nut driver. The bolts are located at the rear of the case and attach the outer cover to the main rear casing onto which the adapter card and plates are attached. This outer casing usually clips under the front plate, or is integral with it.
The designers of the PC needed that users would want to be able to add new hardware to their systems, to add so-called I/O circuitry to connect the PC to components not considered by the original system designers. To make it possible to do this, they added an expansion bus to the PC motherboard so that additional circuitry could be easily plugged in.

On a standard PC you will find eight of these expansion slots, each with 31 connections on the front of the card and 31 more on the back, a total of 62 contacts. These are 0.1" apart and used to carry all the necessary address, data and control lines, plus the various supply voltages which are needed to permit the main processor system to be extended with additional circuitry, ranging from a simple I/O port to a multi-processor system.

This 62 line bus is found on all generations of PC. However, in the history of the development of the PC it was soon realised that this bus had severe limitations when trying to use it with new generations of processor. It could only support 8 bit wide data transfer and memory addressing was limited to 1Mb.

The limitations were overcome in the AT by expanding the original ISA bus by adding another 36 lines to form the 16 bit Industry Standard Architecture, or ISA bus. If you look inside any AT system you will find that between four and six of the expansion slots have this bus extension socket. With the EISA bus, data can be transferred in 16 bit wide format and up to 16 Mb of memory can be directly addressed.

With the development of processors capable of handling 32 bit wide data transfers, even the AT bus proved a limitation. The problem was solved with the development of the Extended Industry Standard Architecture, or EISA bus. This uses a deeper connector than normal and has the extra bus connectors stacked one above the other, so that the actual connector size is different to that of a 16-bit ISA bus but has twice as many connections. Its use is limited to very high power systems and even then only one or two slots out of the eight will be capable of taking EISA cards.

In the last couple of years, motherboards have been appearing with two or three EISA expansion slots having yet another expansion socket, making a total of three sockets per card. This is to handle something known as a 'local bus' that is used to transfer data between adapter cards and the motherboard. At very high speed (currently a massive 130 Mbois per second, although soon to be upgraded to 264 Mbois per second) thereby freeing the bottleneck which has so limited processing speed. There are two sorts of 'local bus' in use at the moment, the VESA bus and the PCI bus. We will be looking at these in greater detail in future issues of ETV.

Expansion Cards

The diagram to the right shows the dimensions of a full size PC expansion card, however, most adapter cards do not need such a large area of printed circuit board and therefore the most commonly used cards are so called 'half cards'. The normal dimensions for such a 'half card' are shown by the dotted line. Note that the card in this diagram has the edge connectors for a full 90 line AT slot - if the extension connectors are not required then the block of edge connectors towards the front of the PC will be unnecessary.

Since the distance between each expansion slot on the motherboard is just 0.8in, the actual board with its mounted components cannot be any thicker than this. Indeed, to allow air to be blown across the board and thus prevent hot spots from occuring, the maximum thickness of a card including board and components should not exceed 0.5in.

The Bus Connections

As can be seen from the two diagrams accompanying the text on this page the ISA bus edge connector has a total of 62 contacts, 31 on each side of the board. The extension which forms the EISA bus has an extra 36 connections, 18 on each side of the board. Together they form the standard connection between the PC motherboard and an adapter card, although not all adapter cards will use the EISA extension.

The following is a description of the function of each of the 96 lines which make up the complete EISA bus. In the function description, "I" signifies that the line is an input to the motherboard, and "O" that it is an output from the motherboard and, finally, "O" indicates signals which, during normal processor operations, are outputs but may become inputs during a DMA cycle. All signals which are an active low are preceded by a minus sign, all others are active high. Each line, whether input or output, is designed such that the equivalent of two LS TTL loads per expansion slot may be placed upon them.

Power supplies:

+5V current 20A
-5V current 0.5A
+12V current 8A
-12V current 0.5A

The power used by any single expansion slot should not exceed 45W and total power consumption should not exceed the power supply's rating. All power supply lines are fully regulated and the current rating is for a standard 200W power supply.
Address Bus and Associated Signals:

SA0-SA19 * The main address bus. SA0 being the least significant bit. These lines are driven when BALE is high and latched on the falling edge of BALE. These address lines allow addressing up to the 1Mb limit.
LA17-LA23 * To fully decade memory up to the 14Mb limit, these additional address lines on the bus extension are required. These lines are only valid during BALE high as they are not latched on the falling edge and, consequently, they will have to be latched on board by any design using them.
AEN O Address enable. Differentials between SA0-19 and LA17-23 being driven by the processor and being driven by a DMA device. Only when a DMA controller has control of the address bus will this signal be assert, AEN should therefore be included in all decodes of the address bus.
BALE O Address latch enable. This is used on the system board to latch address bits SA0-SA19. To a device on the I/O channel, this signal may be used to detect the start of a processor or DMA cycle.
SBHE * On the extension bus, this is the high enable line and it is use to indicate that the data transfer is to take place on bits SD8-15, in addition to the transfer on bits SDO-SD7 which is common on all cycles. In other words, the use of a full 16 bit data bus.

Data Bus
SD0-SD15 I/O Data lines 0 to 15. Line 0 is the least significant. SBHE is used to indicate that the top half of the data bus is in use.

Interrupts
IRG2,3,4,5,6,7,9,10,11,12,14,15 I Interrupt request lines. In order of decreasing priority they are: 9,10,11,12,14,15,2,3,4,5,6,7 (note that on old PC systems only IRQ lines 2-7 were used and that IRG2 is not used on AT systems). There is no hardware interrupt acknowledge signal, but since the 8259A interrupt controllers are used in edge triggered mode, there are no critical timing limitations. It is normal practice to keep the signal high and the pulse low to generate an interrupt.
-I/O CH CK I I/O channel check. This signal indicates a memory parity error to the system board. NMI is asserted as a result of this signal being active.

Direct Memory Access

DRQ0,1,2,3,5,6,7, I DMA request lines. Lines 1-3 only on the old PC, DRQ 0 has the highest priority and DRQ 7 the lowest. On the original PC, DRQ 0 was used exclusively for memory refresh and was therefore generated on the motherboard. On the AT, this refresh function was performed by circuitry independent of DMA thus allowing DRQ0 to be made available. It should be noted that, to confuse matters, some manufacturers label DRQ0 as DRQ4. An active level on a DRQ line must be maintained until the corresponding -DACK signal is asserted.
-DACK0,1,2,3,5,6,7 O DMA acknowledge. Although DRQ0 is not a bussed signal on the old PC, it is dedicated to memory refresh and therefore generated by the motherboard, the acknowledge signal is present on the I/O channel to indicate a refresh cycle. As with DRQ, some manufacturers refer to -DACK0 as -DACK4.
-Refresh O Terminal count. Indicates that a DMA channel has reached terminal count. It is a pulsed signal.
T/C O On the AT systems only. This line is used in conjunction with a DMA request line to take control of the bus. A processor of DMA controller on the I/O channel access DMA request in cascade mode and receives a DMA acknowledge signal. -Master may be asserted causing the address, data and control lines to go tri-state. The device must then wait one clock period before driving the address and data bus and two cycles before doing a read or write. This signal cannot be asserted for more than 15 use or system memory could be lost due to lack of refresh.

Control Signals

-SMEMR (-MEMR on the PC) * Memory read. Note the different name on the AT, System Memory Read, as -MEMR also exists on the AT. This signal instructs the memory device to put data onto the data bus. On the AT, this signal is only active if the read is from memory within the first 1Mb. Use of this signal on the AT obviates the need to decode address bits LA17-LA23 when working within the first Mb of memory address space.
-MEMR O AT only. Memory read. Should be noted that this is not the same as -MEMR on the PC. It is similar to -SMEMR but active on AT only. Memory read. This signal is therefore generated by the motherboard. This signal will only be used for access to memory outside the first Mb of memory address space.
-SMEMW (-MEMW on the PC) * Memory write. Again a different name on the AT, System Memory Write. Note that -MEMW also exists on the AT. This signal instructs the memory device to store data from the data bus. Only active on ATs if the write is to memory within the first Mb of memory address space. Use of this signal on the AT obviates the need to decode address bits LA17-LA23 when working within the first Mb.
-MEMW O AT only, Memory write. Not the same as -MEMW on the PC. Similar to SMEMW but active for all write operations and only used for access to memory outside the first Mb.
-IOR * I/O Read. Instructs the I/O device to read data from the data bus.
-IOW * I/O Write. Instructs the I/O device to write data to the data bus.
Reset Drv O Reset Drive. Generated during power-up. Used to initialise devices in the I/O channel.
-MEM CS16 I AT only. Memory 16 chip select. This signal informs the motherboard that memory transfer is 16 bits wide. Failure to assert this signal (as will be the case with PC boards) will result in the 16 bits being transferred as two 8 bit wide operations.
-I/O CS16 I AT only. I/O 16 chip select. This signal informs the motherboard that the I/O transfer is 16 bits wide. Failure to assert this signal (as will be the case with PC boards) will result in the 16 bits being transferred as two 8 bit wide operations.

Wait states

I/O CH RDY I I/O channel ready. Should be pulled low to indicate 'not ready' by slow devices requiring additional wait states to be inserted. It should be driven on detecting a valid address and re a read or write signal and should be held for an integral number of clock cycles. There is no harm in using this signal to insert wait states already generated by the motherboard (or more usefully to increase the number of wait states).

OWS I AT only. Zero wait state. Causes the automatic wait state generation of the motherboard (if present - see text on wait states) to be over-ridden. To complete a 16 bit memory cycle without wait states, this signal is derived from an address decode and either the read or write signal. To reduce the wait states on an 8 bit memory cycle to 2, this signal should be made active one system clock after the read or write command. OWS should be driven with an open collector capable of sinking 20mA.

Oscillators

CLK O The system clock. The frequency depends upon the system. True PC clones have a frequency of 4.77MHz. The original ATs were 6MHz and many of the current generations of systems have clock rates of 33MHz and upwards. This signal has a 50% duty cycle. On the 286 processor, the input frequency is double the actual processor internal working frequency, the CLK signal is still the processor frequency although actually in antiphase for reasons of compatibility with the PC. On more recent systems with an 80286 chip, the internal working frequency of the processor is twice that of the clock, thus a 486DX2-66 machine will have a processor running at 66MHz and a system clock running at 33MHz. We will be looking at clock speeds in much greater depth in the next issue of E!!

OSC O Oscillator. A high speed clock with a frequency of 14.31818MHz. The frequency of this signal does not depend upon the processor clock speed and is not synchronous with it.

www.americanradiohistory.com
Wait States

Another factor which can slow down a fast processor is the fact that memory chips and I/O circuits are often too slow for the processor. The processor will need to use one or more wait states to slow things down whenever it is attempting to access any slow device. With modern very fast processors this can be a serious problem and prevent the processor achieving its maximum potential throughput. It is a problem which has led to the development of such techniques as primary and secondary memory caching (more about caching hardware in a future issue of ETI)

A wait state is simply the addition of one or more processor cycles into a standard read or write cycle, thereby lengthening the access time to the memory chip or I/O circuitry. Most of the circuitry used in a modern PC is sufficiently fast that it can operate at 15 to 20MHz without any need for wait states. This is thanks to the enormous improvement in overall speed of most ICs. With the original PC operating at 4.77MHz and the first ATs at 8MHz, the memory chips available at the time were so slow that they often needed one wait state. Indeed the original AT circuitry automatically inserts a wait state into all memory cycles. This was abandoned in more recent versions of the AT in favor of a link selectable automatic wait state generator, which can be set according to the available memory speed.

An understanding of wait states is particularly important when designing any adapter card, particularly an I/O card. On the original PC, one wait state was automatically added to all I/O cycles (this is the reason why some adapter cards which did include fast I/O devices and which were speed critical, were memory mapped rather than interfaced to the conventional I/O map. This is an important consideration when dealing with some of the older adapter cards).

Since adapter cards will generally be expected to run on all systems, the generation of wait states is a good way of ensuring this flexibility of use. This can be done by including link selectable wait state circuitry in the adapter card. This will not be necessary in applications where speed is not critical and where a couple of wait states can always be added.

The circuit diagram at the bottom of this page shows a link selectable wait state circuit, suitable for use on adapter cards (this circuit comes from IBM's Technical Reference Manual). It simply counts the clock cycles in order to generate between 0 and 8 wait states, sufficient for most applications and most processors. Determining how many wait states will be needed will depend on the processor and the access time of the circuitry. If the access time is longer than the time during which the processor address and data lines are valid, then wait states will be needed; the number of wait states depending on how much longer.

Next Month

In the next issue of ETI we will be continuing this series by taking our first real look under the cover at the motherboard and power supply. We will also be taking a close look at the processor, with special emphasis on the PC's memory maps, Interrupts, and direct memory access.

www.americanradiohistory.com
Audio valves with famous brand names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.

We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.

For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVC PREMIUM valves.

A selection of the more popular types are listed below.

Price list & order form for CVC PREMIUM Audio Valves

<table>
<thead>
<tr>
<th>PRE-AMP VALVES</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
<th>CARRIED FORWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC81/12AT7</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC82/12AU7</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC83/12AX7</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC85</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC88</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E89</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E91CC(GOLD PIN)</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E92CC</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E93CC</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E98CC</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E90F</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E83F</td>
<td>5.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6SL7/6GT</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6SN7/6GT</td>
<td>4.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6922</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A3 (4 PIN)</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A3 (OCTAL)</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>22.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300B</td>
<td>50.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>811A</td>
<td>9.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>29.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL34/6CA7</td>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL34/6EQ6</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL84/7189A</td>
<td>5.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT66</td>
<td>9.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT77</td>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT88</td>
<td>12.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT88 (GOLD Q)</td>
<td>18.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6GC</td>
<td>6.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6WGC/5881</td>
<td>8.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6V6GT</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6V6/6B</td>
<td>10.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>636A</td>
<td>38.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550A</td>
<td>11.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550A-S</td>
<td>13.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7581A</td>
<td>11.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL CARRIED FORWARD | |

RECTIFIERS

GZ1/2	4.50
GZ1/4AR4	5.00
5U4G	5.00
5Y3GT	3.20
5Z4GT	3.50

** SOCKETS **

B9A (PCB)	1.60
B9A (CHASSIS)	1.60
OCTAL (CHASSIS)	1.75
4 PIN (UX4)	3.00
4 PIN (FOR 211)	11.00

MATCHING CHARGES

| POST & PACKING (UK) | 3.00 |

TOTAL EXC. VAT

VAT @ 17.5% (UK & EEC)

TOTAL TO PAY

*Matching, if required; state valve types & if pairs, quads or octets - Allow £1.00 per valve for this service.

Make CHEQUES payable to CHELMER VALVE COMPANY or pay by ACCESS/MASTER CARD/VISA, give details:

Signature: ____________________________ Expiry: ____________________________

Name: ________________________________

Address: ______________________________

Post Code: ____________________________

Valve amplifiers sound better still with CVC PREMIUM valves!
Passive Infra-red Intruder Alarm

Get the better of burglars with this portable alarm unit from Robert Penfold

This intruder alarm is a self-contained unit, which is intended for use where the cost of a comprehensive alarm system is not justified. It can also be used as a back-up alarm to an extensive burglar alarm system. As it is small and self-contained, this unit could also be useful as a burglar deterrent for use in a boat or caravan.

It operates using the passive infra-red detection system. In other words, it detects the body heat of anyone who passes in front of the sensor. The unit 'looks' down a narrow corridor and has a maximum range of about 3 metres. It does not require any special lenses, or any form of optical system. It has a built-in delay circuit which enables the user to get clear after switch-on without triggering the alarm, but once the unit is triggered, it immediately produces a warbling alarm signal. The unit is battery powered and, with a standby current consumption of only about 500 µA, each set of HP7 size batteries provides the equivalent to about one year of continuous operation.

Passive infra-red alarms are based on special pyrosensors, which detect long wavelength infra red radiation. Normal infra-red opto-electronic devices operate at wavelengths of about 850 to 950nm, which is only slightly beyond the visible red wavelengths. Body heat is at much longer wavelengths and pyrosensors have optimum sensitivity at wavelengths from about 1 to 20µm (1000 to 20000nm).

Practical pyrosensors normally have two ceramic sensing elements connected in series, but out of phase. The sensing elements are not a form of photodiode or transistor, but are much more like Piezo-electric devices which form the basis of crystal microphones and pick-ups. They consist of a slice of a natural crystal or a synthetic ceramic material which has a metal electrode on each face. Twisting the device results in a small electrical charge being produced across the electrodes. Twisting in the opposite direction produces a charge of the opposite polarity. Pyrosensors are physically similar, but it is heat on one side of the device that results in an electrical charge being produced across the electrodes.

Pyrosensors invariably have a built-in JFET source follower buffer stage (Figure 1). R2 is the source load resistor, which is not always an integral part of the sensor. R1 is the gate bias resistor, and this has a very high resistance which gives the amplifier a correspondingly high input impedance at low frequencies. X1 and X2 are the anti-phase pyro sensing elements. It might seem that the sensor would fail to work due to the anti-phase connection of the sensing elements. On the face of it, any output voltage produced by one element will be cancelled out by an equal and opposite voltage from the other sensor!

To a large extent, this cancelling does occur, but only with changes in the background infra-red level. This is the main point of using dual sensing elements. The sensor as a whole is largely immune to variations in the background infra-red level, which helps to avoid false alarms. It has to be borne in mind that passive infra-red alarms are movement detectors. It is someone moving across the unit's field of view, and the change in the infra-red level that this produces, which is detected by the sensor.

With a dual element sensor, one element receives the increased infra-red first, giving a change in output voltage from the sensor. Then the other element receives the infra-red signal and cancels out the original signal. Next, the infra-red moves past the first element, giving an output voltage due to the infra-red still received by the second element. This voltage has the opposite polarity to the original change in output potential. Finally, the infra-red moves away from the second element, and the output voltage returns to its normal standby level. Someone moving across the sensor's field of view therefore produces a double output pulse, with the pulses having opposite polarities. Compared to a single element, this gives double the peak-to-peak output level.

The frequency response of a pyrosensor is, to say the least, a bit limited. The high frequency response is limited by the thermal inertia of the sensing elements, which are made from very thin pieces of ceramic material in order to minimise this problem. The low frequency end of the response is governed by R1, which
leaks away the charges produced by the sensing elements. This gives a typical frequency response which extends from about 0.5Hz to 2Hz. In practice, this extremely limited frequency response is quite adequate, because someone activating the sensor will produce changes that give strong output signals within this band.

System Operation

Figure 1 shows the block diagram of the passive infra-red alarm. The changes in output voltage from the sensor will be generally no more than a few millivolts peak to peak. A large amount of amplification is therefore needed in order to bring the signal up to a level that can reliably operate the subsequent stages of the circuit. In this case, two high gain amplifiers provide about 80dB gain. A low pass filter severely restricts the high frequency response of the circuit, which helps to give a better signal to noise ratio. The loss of high frequency response is of no significance due to the very restricted bandwidth of the pyrosensor.

The output of the second amplifier stage directly drives a level detector circuit. Under standby conditions, the output potential from the amplifier is too high to activate the level detector. However, when the unit is activated, the output voltage from the amplifier will go below the detection threshold of the level detector on negative signal peaks. The level detector then activates a latch, which in turn switches on the alarm generator. The latch ensures that the alarm continues to sound, even when the intruder has moved out of the sensor’s field of view. A form of warbling alarm sound is produced by the alarm generator which consists of a low frequency oscillator (I.FO.) modulating a voltage controlled oscillator (V.C.O.).

There is a slight problem with any unit of this type in that it tends to trigger at switch-on as the coupling capacitors take up their initial charges. Also, it is likely that the person who switches the unit on will trigger it as they move away. Both problems are overcome by having a delay circuit which holds the latch in the reset state for several seconds after the unit has been switched on.

The circuit could also include a delay circuit to prevent the alarm from sounding as soon as the unit is triggered. This would enable someone entering the premises legitimately to switch off the unit before the alarm sounded. With a small self-contained alarm of this type it is probably better not to include this delay, but to instead deter intruders as soon as possible. The false alarm every time the unit is switched off will not disturb the neighbours, but it will serve as a check that the unit is functioning correctly and that the battery is still serviceable. The unit could also be equipped with a timer that would automatically switch off the alarm generator after a few minutes of operation. Again, a small unit of this type is not going to annoy the neighbours and an automatic muting circuit is not really necessary.

Refer to Figure 3 for the full circuit diagram. IC1 is the dual element pyrosensor and R1 is its discrete source load resistor. Both stages of the high gain amplifier are simple common emitter amplifiers. As the circuit must operate for long periods of time from ordinary ‘dry’ batteries, it is essential that the overall current consumption is kept quite low. For this reason, TR1 and TR2 are operated at collector currents of only about 100 to 150µA. C4 provides the low pass filtering. The values of C2 and C3 are quite high relative to the input impedances of the two amplifiers, but this is necessary in order to give a suitably extended low frequency response.

IC2 is an operational amplifier which is used here as a voltage comparator. R7 and R8 set the non-inverting input at a little under one third of the supply voltage. The inverting input is driven directly from the output of TR2 and the bias voltage here is typically a little over half the supply voltage. Consequently, the output of IC2 is low under standby conditions. When the unit is activated, the voltage at TR2’s collector will fall below the reference level on negative signal peaks, resulting in the output of IC2 pulsing high. IC2 is a low current operational amplifier which has a current consumption of only about 150µA.

The first pulse from IC2 sets the flip/flop formed from two of the NOR gates in IC3. The other two gates are unused, but their inputs are connected to the positive supply rail so that they are not left vulnerable to static charges. C5 and R9 provide a long reset pulse to the flip/flop at switch-on. This pulse lasts about 10 seconds, and provides the unit with its exit delay feature. D1 aids rapid discharging of C5 at switch-off, so that a proper delay is provided when it is switched on again.

The not Q output of the flip/flop (IC3 pin 3) controls the inhibit inputs of the IFO. and V.C.O. stages. The not Q output is normally high and it therefore inhibits both oscillators under standby conditions. It goes low when the unit is activated and switches on both oscillators. The V.C.O. is the oscillator section of a 4046BE micro-power phase locked loop (IC4). One of the phase comparators is used as an inverter which gives anti-phase outputs to drive LS1. This gives a high peak to peak voltage swing across LS1, which is a ceramic resonator. A ceramic resonator gives a high sound level from the limited drive current available from the standard CMOS outputs of IC4. An ordinary moving coil loudspeaker cannot be used with this circuit. Even high impedance types require far higher drive currents than IC4 can provide.

IC5 is used as the basis of the IFO., and this is another 4046BE. In this case the V.C.O. is the only section of the device that is utilised. R12 and R15 provide a fixed bias voltage to the control input of the V.C.O. With the specified values for timing components R13 and C8, this gives an output frequency of about 4Hz.
The output of IC5 drives the control input of IC4 via the potential divider formed by R10 and R14. Although the output signal from IC5 is a squarewave, C9 provides filtering that gives a roughly triangular modulation signal. The v.c.o. is therefore swept smoothly over a range of frequencies rather than simply being switched between two frequencies. A swept tone generally gives a more effective output from a ceramic resonator than a simple two tone signal. The specified values should give a piercing alarm sound, but if desired the value of R11 can be selected to give optimum results.

IC3 to IC5 are CMOS integrated circuits which have insignificant current consumptions under standby conditions. The overall current consumption of the circuit is about 500µA under standby conditions and only increases by about 2mA or so when the alarm sounds.

Figure 4 shows the component overlay for the printed circuit board. IC3, IC4 and IC5 are CMOS integrated circuits which require the usual anti-static handling precautions. In particular, use holders for these devices and do not fit them into their holders until the board and wiring have been completed. IC1 and IC2 contain JFETs rather than MOSFETs and therefore do not require anti-static handling precautions, but it is still a good idea to use a holder for IC2.

In order to fit into the component layout properly, the non-electrolytic capacitors must be printed circuit mounting types, having 7.5mm (0.3in) lead spacing. Fit single-sided solder pins at the six points where connections to off-board components will be made.

The unit will fit into practically any medium size plastic or diecast aluminium box. In the interest of good security, it might seem to be best to use a tough diecast aluminium box and a key-switch for S1. In practice, the unit will always be easily silenced if the intruder is determined to do so, because the ceramic resonator is vulnerable to physical attack. With a unit of this type you are relying on the intruder being unnerved by the alarm going off and beating a hasty retreat. Trying to make the alarm bullet proof is probably not worthwhile! Therefore, an inexpensive case is adequate and S1 can be a miniature toggle switch, slider switch, or whatever.

The printed circuit board is mounted on the rear panel of the case, using 8BA or metric M3 fixings. S1 and LS1 are mounted on the front panel. LS1 can be mounted on the rear surface of the front panel, but it will then be necessary to make a large mounting hole, in addition to the two smaller mounting holes. It is easier to fix it onto the front surface of the panel, because it is then only necessary to make the small mounting holes, plus another small hole to permit the lead out wires to pass through to the inside of the case. Most ceramic resonators require two 8BA or metric M2 fixing screws (plus nuts), which must be purchased separately.

A hole must be drilled in the front panel, directly in front of IC1. This permits infra-red radiation to pass through to IC1 and also narrows IC1's angle of view. Without this narrowing of its response angle, the unit will have relatively low sensitivity. This is simply because someone moving in front of IC1 will tend to produce signals at extremely low frequencies which the unit cannot handle efficiently. A narrower angle ensures that someone moving in front of the sensor produces signals at frequencies where the circuit offers good sensitivity. This increases the range from approximately 1m to about 3m. A hole having a diameter of about 5 to 10mm seems to give good results.
To complete the unit, the battery clip, on/off switch and ceramic resonator are connected to the printed circuit board. The resonator might have one red lead and one black one, but these simply indicate the phasing. The resonator can be connected either way round.

In Use

The alarm generator might operate briefly when the unit is switched on, but it should not latch in the on state. Passing in front of the unit after the hold-off period has expired should trigger the alarm and it should continue to operate until the unit is switched off. If the alarm tends to trigger itself after the hold-off period, try making R6 higher in value.

When positioning the unit for normal use, bear in mind that it is most sensitive to some passing across its field of view. It is least sensitive to someone moving straight towards or away from the sensor. Also, bear in mind that the unit should be positioned horizontally and not on end. If it is used vertically the orientation of the twin sensing elements will not be correct and the maximum operating range will be significantly reduced. It is not a good idea to aim the unit towards a radiator or other heat source and it is probably best to have the unit partially concealed behind some books, ornaments, etc.

Resistors (0.25 watt 5% carbon film)

- R1: 47k
- R2, R12: 4M7
- R3, R5: 27k
- R4: 10k
- R6: 6M8
- R7, R15: 2M2
- R8: 1M
- R9, R10: 220k
- R11, R13: 100k
- R14: 390k

Capacitors

- C1: 100µ 10v radial elect
- C2, C3: 4µ7 50v radial elect
- C4: 100n polyester
- C5: 47µ 10v radial elect
- C6: 10n polyester
- C7: 10µ 25v radial elect
- C8: 470n polyester
- C9: 220n polyester

Semiconductors

- IC1: E100SV1 P.I.R detector
- IC2: LF441N
- IC3: 4001BE
- IC4: 4046BE
- IC5: 4046BE
- TR1: BC549
- TR2: BC549
- D1: 1N4148

Miscellaneous

- LS1: cased ceramic resonator
- B1: 6 x HP7 size cells in holder
- S1: s.p.s.t mini toggle switch (see text)

Case about 150 x 90 x 50mm, printed circuit board, battery clip (PP3 type), 8 pin d.i.l. IC holder, 14 pin d.i.l. IC holder, 16 pin d.i.l. IC holder (2 off), wire, solder, etc.

The performance of a passive infra-red system can be massively boosted by the addition of a suitable lens but, unfortunately, lenses for this application seem to be unobtainable these days. Note that lenses sold for use with infra-red LEDs, etc., do not work well with pyrosensors and long wavelength infra-red signals. These lenses are not designed for use at long wavelengths and, in most cases, they are almost totally opaque to long wavelength infra-red radiation. For a simple self-contained unit of this type, a range of about 3m should be perfectly adequate and a lens is not really necessary.

If a piece of 'window' material is fixed behind the hole in the front panel it must be made from something that is reasonably transparent to long wavelength radiation. Material that is transparent to visible light is not necessarily transparent to long wavelength infra-red (and vice versa). A little experimentation might be needed in order to find a suitable material, or the window can simply be omitted.
A first for Sandown!

TWO WORLD CHAMPIONS
display their skills...

Hanno Prettner
World Aerobatic Champion

AND

Curtis Youngblood
World Champion F3C Helicopters
(Sponsored by Northern Helicopters Ltd.)

Calling all model enthusiasts and families...

Come one. Come all!
Watch the incredible model aircraft displays and check out the model car racing, model railway displays and novelties on the boat pool. Wander around the numerous trade stands. There's something for everyone at Sandown...

- Radio control equipment
- Aircraft
- Car and marine engines
- Helicopters
- IC and electric cars
- Boats and yachts
- Railway layouts and engineering products.

Further details and advance tickets available from: Argus Specialist Exhibitions
Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST. Tel: 0442 66551.
An Alarm for an Alarm

Want to know when your PIR alarm has been triggered? Then why not build this interesting little project from Ben Sullivan

I recently installed a PIR/Passive Infra-Red operated floodlight at the rear of my house, in response to a spate of local burglaries. The unit is installed at one side of the house behind the laundry room, which is separated from the lounge by the kitchen and hall. Consequently, apart from spending the evening sitting in the laundry room (there is no way of knowing whether the 500W tungsten halogen floodlight has been activated or not. This would be handy to know, not only in case of prowlers, but also to check if the alarm is triggered by animals, such as our large moggy or the occasional fox which we have seen in the garden.

One could, of course, wire a mains-operated bell in parallel with the lamp, but this means bringing extra leads out through the weatherseal grommet on the outdoor unit, which might leave it unsealed and in any case would be a modification which would void the warranty. Hence the little alarm, activated by the PIR floodlight, which forms the subject of this article was developed.

Design considerations

To simplify installation, the unit was designed as a short extension lead, which could be connected between the PIR security light's plug and the ring-main outlet into which it had previously been connected. The unit needs to sense that current (about 2A, given the 500W rating of the bulb) is being drawn from the mains. For safety's sake, this should be accomplished without any direct connection between the mains wiring and the rest of the unit.

This 'galvanic isolation' could be accomplished using an opto-coupler, but that would need an auxiliary supply derived from the mains to operate the opto-coupler's internal LED, so another method was sought. The obvious solution was a current transformer, and this was the method chosen.

However, it had to fit the transformer actually within a 13A ring-main type socket (as indicated on the circuit diagram, Figure 1) so that the primary winding could be formed by the neutral conductor of the mains lead itself. This necessitated an unorthodox design of current transformer.

In a conventional current transformer, a resistive secondary load (forming the meter circuit and called the 'burden') is transformed down to an exceedingly small resistive load in series with the main circuit. The transformer has sufficient primary inductance for its reactance to be large, compared to the transformed burden impedance. The measurement circuit is thus insensitive to frequency. This type of

The current transformer's secondary voltage due to the 2A flowing in the primary, consists of alternate positive and negative spikes
current transformer, which may be designed to measure a current of hundreds or even thousands of amps, is designed to work in the ‘constant current’ domain, which is entirely the opposite of the usual ‘constant voltage’ regime that we are so used to in everyday life. Whereas the safe off-load condition for an ordinary transformer is with the secondary open circuit, the safe off-load condition for a large current transformer is with the secondary short circuited. The full rated primary current would cause a dangerously high voltage to appear across an open circuit secondary.

A second type of current transformer operates into an open circuit secondary (or at least into a high resistance load) and therefore is designed with a much lower primary inductance. This type of current transformer is inherently frequency sensitive, the secondary voltage being proportional to the product of the number of primary turns and the number of secondary turns, and to the frequency.

The transformer used in this project is a variant of this second type. The difference is that the core is inadequate for handling the peak magnetising force provided by the primary current, so the core is driven heavily into saturation on each half cycle of the current. Thus, the flux approximates a squarewave and the secondary voltage, being proportional to the rate of change of flux, consists of alternate positive and negative going spikes, as shown on previous page.

When the lamp in the PIR floodlight is lit, the positive spikes of voltage out of the secondary of the current transformer turn on NPN transistor TR1, which discharges C1 and turns on PNP transistor TR2. The time constant C1R2 is so long that C1 cannot recharge significantly between positive spikes, which occur every 20ms. TR2 applies the battery voltage (assuming ON/OFF switch S1 is closed, of course) to the rest of the circuitry.

The rest of the circuit consists of an astable multivibrator formed from a CD4069 hex inverter, driving a Piezo electric sounder. With the component values shown, the ‘beep’ rate is about three beeps every ten seconds. For a faster, possibly more urgent sounding rate, C2 may be reduced to 47n or even less. When the current drawn by the 500W floodlight ceases, TR1 remains cut off; C1 charges back up to 9V, TR2 turns off and silence reigns once more.

Construction

IMPORTANT NOTE: This project involves the wiring of mains plugs and sockets. Readers are advised that, if they are not 100% competent in handling this, they should on no account undertake this task, or at the very least, should have their handiwork checked by a qualified person.

The unit was constructed in a black plastic project box (see parts list) to the lid of which the 13A socket SK1 was bolted. The current transformer T1 was mounted inside SK1. T1 is wound on a ferrite ring core with an Al value of 4000nH/tum. However, the exact value of Al is academic, in this application it is only the saturation flux density which is important.

The secondary consists of 36 turns of very fine enamelled copper wire, leaving most of the aperture free for the primary. This consists of four passes through the core of the neutral conductor of the three-core mains lead. The core will easily accommodate these, if a mains lead rated at not more than 3A is used. The ring core is plastic coated and thus completely free of sharp edges, so there is no danger of the insulation of either winding being penetrated.

The ends of the secondary winding were passed through a hole in the socket and lid and connected to two solder pins on the circuit board, which itself was mounted on the inside of the lid, on the tails of two of the three screws with which the socket was attached.

It is strongly recommended that IC1 be mounted in a 14 pin IC socket, rather than directly onto the circuit board. On completion of the circuit board, inspect all joints with an eyeglass and, if using copper strip board, look out especially for shorts between strips or due to incompletely cleared holes.

The ON/OFF switch S1 was mounted on the side of the box and the Piezo-sounder was mounted on one end, on the outside naturally. A scrap of strip board was inserted into one position of the box’s internal guides, forming a battery compartment to retain the PP3 battery firmly in place. Take care when assembling the finished unit to avoid trapping any of the leads as the lid is fitted to the box.

![Figure 1. The circuit diagram of the PIR Activated Alarm](image-url)
Testing
There are no setting up adjustments, so if the unit has been assembled correctly, it should work first time. However, resist the temptation to try it out without the covers fitted to either SK1 or PL1. The greater part of the circuitry can be tested before ever connecting the unit to the mains.

With the battery fitted and S1 ON, short points A and B - the sounder should commence to beep. Remove the short, and within a second or so the sound should cease - if not, suspect excessive leakage in C1.

A good component is essential here, its leakage will then be a microamp or less, far too little to turn on TR2. Barring wrong wiring, the only other possibility would be a faulty TR1.

Use
The unit is simply inserted between the PIR unit’s mains plug and the socket into which it was previously plugged. When the floodlight comes on, the unit will immediately commence to sound. The sound is fairly penetrating, without being too alarming and will probably be heard from another room even with the door shut, unless the TV is too loud.

If it is felt that the unit would not be heard, it may be constructed in two separate parts. The circuitry to the right of the points A, B can be constructed in a separate box and the the rest as described above. Thin bell wire can be used for the run between the two units, with the wire permanently connected at one end, but, for convenience, via (say) a 3.5mm jack plug and socket at the other. The arrangement using separate units is completely safe, thanks to the isolation between the mains circuitry and the rest, provided by the current transformer.

Note that if a heavy load such as a washing machine is supplied from an adjacent socket, when it switches the alarm may emit a slight hiccup, but it will only sound normally when the PIR unit’s floodlight comes on.

Resistors

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1K</td>
</tr>
<tr>
<td>R2</td>
<td>100K</td>
</tr>
<tr>
<td>R3</td>
<td>100K</td>
</tr>
<tr>
<td>R4</td>
<td>10M</td>
</tr>
<tr>
<td>R5</td>
<td>10M</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10µF</td>
</tr>
<tr>
<td>C2</td>
<td>100nF</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>BC184</td>
</tr>
<tr>
<td>TR2</td>
<td>BC214</td>
</tr>
<tr>
<td>IC1</td>
<td>CD4069</td>
</tr>
</tbody>
</table>

Sundry

<table>
<thead>
<tr>
<th></th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13A plug fitted with 3A fuse</td>
</tr>
<tr>
<td></td>
<td>13A socket</td>
</tr>
<tr>
<td></td>
<td>3A 3 core mains lead</td>
</tr>
<tr>
<td></td>
<td>Small ‘BIMBOX’ (Electrovalue stock no. 2001)</td>
</tr>
<tr>
<td></td>
<td>Battery connector lead</td>
</tr>
<tr>
<td></td>
<td>Battery PP3</td>
</tr>
<tr>
<td></td>
<td>Siemens ferrite ring core B64290-K38X38, (Electrovalue stock no. 2903838K)</td>
</tr>
<tr>
<td></td>
<td>Piezo electronic sounder (Electrovalue stock no. DMP27S)</td>
</tr>
<tr>
<td></td>
<td>Single pole ON/OFF switch</td>
</tr>
<tr>
<td></td>
<td>14 pin IC socket</td>
</tr>
<tr>
<td></td>
<td>Solder pins, as required</td>
</tr>
</tbody>
</table>
SEETRAX CAE - RANGER - PCB DESIGN

Ranger £100

- Schematic capture linked to PCB
- Parts and wiring list entry
- Outline (auto-generated) library editor
- Manual board layout
- Full design rule checker
- Back annotation (linked to schematic)
- Power, memory and signal autorouter - £50

Ranger 2 £599

- All the features of Ranger 1 plus
 - Gate & pin swapping (linked to schematic)
 - Track highlighting
 - Auto track routing
 - Copper/foam/tilt
 - Pocket planes (heat-relief & anti-arc)
 - Rip-up & very autorouter

Ranger 3 £3500

- All the features of Ranger 2 plus
 - UNIX or DOS versions
 - 1 Micron resolution and angles to 1/10th degree
 - Hierarchical or flat schematic
 - Unlimited design size
 - Any shaped pad
 - Split power planes
 - Optional on-line DRC
 - 100% rip-pin & cut, push & chase autorouter

Outputs to:
- HP and 24 pin dot-matrix printers
- HP Desk/Laser Jet, Canon Blit, Postscript (R $ only)
- HP QL, Houston Instruments plotters
- Gather photolot
- NC Drill Executives, Sih & Meyer
- AutoCAD DFX

All trademarks are used with permission.

SEETRAX CAE - RANGER - PCB DESIGN

Ranger £100

- Schematic capture linked to PCB
- Parts and wiring list entry
- Outline (auto-generated) library editor
- Manual board layout
- Full design rule checker
- Back annotation (linked to schematic)
- Power, memory and signal autorouter - £50

Ranger 2 £599

- All the features of Ranger 1 plus
 - Gate & pin swapping (linked to schematic)
 - Track highlighting
 - Auto track routing
 - Copper/foam/tilt
 - Pocket planes (heat-relief & anti-arc)
 - Rip-up & very autorouter

Ranger 3 £3500

- All the features of Ranger 2 plus
 - UNIX or DOS versions
 - 1 Micron resolution and angles to 1/10th degree
 - Hierarchical or flat schematic
 - Unlimited design size
 - Any shaped pad
 - Split power planes
 - Optional on-line DRC
 - 100% rip-pin & cut, push & chase autorouter

Outputs to:
- HP and 24 pin dot-matrix printers
- HP Desk/Laser Jet, Canon Blit, Postscript (R $ only)
- HP QL, Houston Instruments plotters
- Gather photolot
- NC Drill Executives, Sih & Meyer
- AutoCAD DFX

All trademarks are used with permission.

SEETRAX CAE - RANGER - PCB DESIGN

Ranger £100

- Schematic capture linked to PCB
- Parts and wiring list entry
- Outline (auto-generated) library editor
- Manual board layout
- Full design rule checker
- Back annotation (linked to schematic)
- Power, memory and signal autorouter - £50

Ranger 2 £599

- All the features of Ranger 1 plus
 - Gate & pin swapping (linked to schematic)
 - Track highlighting
 - Auto track routing
 - Copper/foam/tilt
 - Pocket planes (heat-relief & anti-arc)
 - Rip-up & very autorouter

Ranger 3 £3500

- All the features of Ranger 2 plus
 - UNIX or DOS versions
 - 1 Micron resolution and angles to 1/10th degree
 - Hierarchical or flat schematic
 - Unlimited design size
 - Any shaped pad
 - Split power planes
 - Optional on-line DRC
 - 100% rip-pin & cut, push & chase autorouter

Outputs to:
- HP and 24 pin dot-matrix printers
- HP Desk/Laser Jet, Canon Blit, Postscript (R $ only)
- HP QL, Houston Instruments plotters
- Gather photolot
- NC Drill Executives, Sih & Meyer
- AutoCAD DFX

All trademarks are used with permission.
SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24, 26, 32 pin EPROMS, EE-PROMS, FLASH and Emulators as standard, quickly, reliably and at low cost. Expandable to cover virtually any programmable part including serial E², PALs, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

MQP ELECTRONICS Ltd.
Park Road Centre,
Malmesbury, Wiltshire, SN16 8XK UK
TEL. 0686 825141 FAX. 0666 825141

GERMANY 069-4602071
NORWAY 0702 17890
ITALY 02-92-10-3 554
FRANCE (1) 69-30-13-79
SWEDEN 08-735-5360
ALSO FROM ELECTROSPEED UK

EQT LTD STEVENAGE
Professional Sub-Contract Manufacturing & Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:
- PCB Assembly (Conventional and Surface Mount)
- Wave & Hand Soldering
- Complete Equipment Manufacture
- Device Programming from hand written shts or PC 3.5" disc
- Cable Harness Assembly /loom Manufacture
- Card Cage and Module Wiring
- Full Inspection
Product Design/Consultation
- Full Procurement Services
- PCB Test & 'Burn in' Facilities
- Enclosure Design & Manufacture
- PCB Artwork Manufacture
- Circuits Drawn Professionally
- Kit Procurement & Supply
- Component Sales
- Refurbishment a specialty
Top Quality Work at Reasonable Rates

Phone Tracey on (0438) 360406 or Fax details of your requirements to us on (0438) 352742
EQT LTD, Cromer House, Caxton Way, STEVENAGE, HERTS, SG1 2DF

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact:
Wise Owl Worldwide Publications,
4314 West 238th Street,
Torrance, CA 90505
Tel: (310) 375 6258

SANDOWN PARK
MODEL SYMPOSIUM
EXHIBITION & DISPLAY
14th & 15th May 1994

HILTON
SANDBURY
STYLE
1994

Argus Specialist Exhibitions offer you yet another great deal with Hilton Hotels. If you require accommodation when visiting the Model Exhibition this year or simply just fancy a weekend break, why not stay at The Hilton National, Cobham, which is about 10 minutes drive away from Sandown Park. The hotel has free car parking so you can leave your car at the hotel and take the courtesy coach to the Model Exhibition, commencing at 9.30am and returning you at 1pm or 6pm.
This beautiful country retreat is in the heart of Surrey, and the Terrace Restaurant offers a fine and varied cuisine. For leisure enjoy the all-weather tennis courts, squash courts, exercise room, indoor swimming pool and steam bath.

THE PRICE:
£36.80 each guest each night (Twin/Double room) including full English breakfast and VAT. £16.00 single room supplement. Add £5 per person to the price if you require the courtesy coach to transfer to and from Sandown Park.

HOW TO BOOK:
Call reservations at the Hilton National, Cobham quoting the Sandown Model Show on 0932 864471. £10 deposit is required and you can give us your credit card number and expiry date.

ENJOY A MODEL STAY
MIDI Explained

In the first part of a new series, Robert Penfold takes a close look at the MIDI musical instrument interface.

The MIDI (Musical Instrument Digital Interface) has been in existence for well over ten years now. To start with, it was not exactly an overnight success, but it did eventually gain widespread acceptance. MIDI is now an everyday part of electronic music making and a comprehensive MIDI implementation is mandatory for any electronic instrument intended for serious music making. At least a basic understanding of MIDI is virtually essential for anyone wishing to exploit modern electronic musical instruments and there is a definite advantage in having an in-depth knowledge of the subject.

In this series of articles, MIDI will be considered in some detail. Subjects to be covered include basic MIDI interface hardware, the MIDI messages and their coding, connecting everything up and practical aspects of using MIDI. We will also be examining the ways in which a MIDI system can be linked up with, and controlled by, a personal computer, and taking a look at a PC to MIDI interface.

No previous knowledge of MIDI is presumed, but it is assumed that you are reasonably familiar with modern electronic musical instruments. Obviously at least a basic understanding of electronics is needed in order to understand the material that deals with the hardware side of MIDI interfacing.

Swapping Notes

MIDI is simply a means of passing digital information from one musical instrument to another, or between any two pieces of equipment in an electronic music system. Probably in most cases a MIDI system is composed of a computer running sequencer software, plus one or more instruments. MIDI is also used with other items of hardware, such as audio mixers and lighting control units.

It was clear to the MIDI designers that they needed to produce a system which was rigidly standardised so that the incompatibility problems which afflicted previous musical instrument interfaces would not be repeated. On the other hand, MIDI also had to be versatile enough to cope with rapid developments in the electronic music business. With hindsight, they would no doubt have done some things differently, but the system they devised was sufficiently versatile to stand the test of time.

The basic hardware for a MIDI interface is just an asynchronous serial link operating at 31250 baud. The interfacing hardware is actually very similar to a computer RS232C port, but opto-isolators are used at all inputs to minimise problems with 'hum' loops. The opto-isolated inputs also help to prevent digital noise from finding its way into audio signal paths. The opto-isolation does not guarantee that 'hum' loops, etc., will not occur, but it does at least ensure that MIDI will not be the cause of any problems of this general type.

Standardising the hardware is easy enough, but the software side of things is more awkward. Previous musical instrument interfaces only provided a means of playing notes on a slave instrument and in many cases did not even provide any control over the dynamics of each note.

MIDI had to be able to cope with increasingly sophisticated instruments, having numerous features that could usefully be controlled via a master controller of some kind. MIDI enables notes to be switched on and off, but it also gives full control over the dynamics of each note, multi-channel polyphonic operation, pitch bending, and a whole range of facilities that are way beyond the old gate/CV interfaces. The coding of most MIDI messages is rigidly standardised so that, within reason, it is possible to connect together any two MIDI devices and get them to work together as a system.

However, there are some general purpose messages that offer a degree of flexibility. Using these requires rather more care on the part of the user, since their effect (if any) will vary somewhat from one MIDI device to another. There is also a special category of MIDI message which enables manufacturers to implement any special features which can not be handled by the normal message types. This system includes a safeguard which ensures that devices ignore messages that they can not respond to properly.

Quick Bytes

With a serial interface, the bytes of data are sent one bit at a time until all eight bits have been transmitted. With an asynchronous system, there are only two connecting wires, the signal and earth leads, there is no third lead to provide some form of synchronisation signal. Obviously some form of synchronisation is essential if the receiving circuit is going to decode the incoming signals correctly. This problem is partially overcome by having the transmitting circuit send the data at a standard rate. If the receiving circuit samples the signal line at the same rate it will not miss bits, or read the same one twice. MIDI is transmitted at a rate of 31250 baud, which is substantially quicker than the highest standard rate used for normal RS232C interfaces.

A serial system such as MIDI also relies on synchronisation signals being sent with each byte of data. MIDI uses the popular word format of one start bit, one stop bit and no parity bit. In other words, an extra bit is always added ahead of each set of eight bits. This simply indicates to the receiving device that a byte is about to be sent, and that after the appropriate delay it must start detecting the logic level on the signal line. The stop bit is not really a synchronisation signal and its purpose is simply to place a small gap between each byte so that the receiving circuit has time to deal with one byte before it has to start decoding the next one. Parity bits are used in a simple method of error checking, but this system is not implemented in MIDI.
Choked Up

The timing diagram of Figure 1 helps to explain the way in which a MIDI interface transfers data. It is the convention that the least significant bit (bit 0) is transmitted first and the most significant bit (bit 7) is sent last. Although MIDI is quite fast by serial interface standards, it has to be borne in mind that it is slow by general electronic and computing standards. Data is sent at a rate of 31250 bits per second, but including the start and stop bit it requires ten bits for each complete byte of data. Furthermore, most MIDI messages consist of a group of two or three bytes. For example, it takes a three byte message to switch on a note and another three note message to switch it off again.

With 30 bits per message this equates to a time of just under one millisecond. This is usually quite fast enough, but at times of high MIDI activity it can be inadequate. Controlling some functions via MIDI requires numerous messages to be sent in rapid succession. It is when using a profusion of these messages that problems with MIDI 'choke' are likely to occur.

The effect of MIDI choke on the reproduced music is unpredictable. It is unlikely that the system will crash or simply grind to a halt, but the timing of notes may well suffer. It is even possible that notes will be omitted, or left switched on. Many sequencers now include a facility that combats MIDI choke by filtering out the messages of lesser importance at times of high MIDI activity. This generally means that something like pitch bending will be less smooth than it might otherwise have been, but no notes will be omitted, left switched on, or significantly delayed.

A much higher data transfer rate could be achieved using some form of parallel interface, but there are practical difficulties with a parallel interface in this application. One of these is simply that relatively thick and expensive connecting cables would be needed. A more serious limitation is that parallel data links tend to have relatively short maximum operating distances. A parallel printer port for example, should not be used with a cable more than 2m long.

Serial interfaces provide much greater operating ranges but, due to the relatively high baud rate and low operating current, MIDI is only guaranteed to operate reliably over a maximum range 15m. However, this should be more than adequate for most purposes. In practice it would probably be possible to obtain good reliability over significantly greater ranges, provided very high quality cables are used.

RS232C serial interfaces have additional connecting wires which are used to provide handshaking. In other words, they are used to control the flow of data from one device to another so that the sending device does not provide data at such a high rate that the receiving device can not cope. MIDI does not use any handshake lines, and MIDI hardware must be designed to cope with a continuous stream of data.

Software handshaking is sometimes used with MIDI when large amounts of data must be 'dumped' from one unit to another. With this type of handshaking 'on' and 'off' codes sent via the normal signal lines are used to control the flow of data. However, this is a special case and is not the way in which MIDI normally functions.

Right Connections

These days, virtually all MIDI equipment has a full set of three MIDI sockets. It is not actually a requirement of the MIDI specification that all three sockets should be present and I suppose that, with some pieces of MIDI hardware, only one or two of the sockets are relevant. The three types of MIDI port are the IN, OUT and THRU varieties. As one would expect, a device transmits data on its OUT socket, and receives data on its IN socket. The THRU port is an output type and it simply provides an output signal that is an exact replica of the signal received at the IN socket.

In its most basic form, a MIDI system consists of a master unit controlling a slave unit, with a single connecting cable.
Most practical MIDI systems actually consist of a master unit controlling several slave units. This easiest way of driving several slave devices from a single controller is to use the ‘chain’ method of connection. This utilises THRU sockets to carry the signal from the master unit from one slave device to the next. Figure 2 shows this basic scheme of things.

There are a couple of potential problems with the chain method of connection. One is simply that not every unit that has an IN socket has a THRU output as well. If only one slave unit lacks a THRU socket there is no problem and it is just a matter of placing that unit at the end of the chain. If two or more of the slave units lack a THRU socket it is impossible to wire up the system using the chain method. In the early days of MIDI, it was by no means uncommon for the THRU socket to be absent and even relatively recently it was not included on some keyboard instruments. Fortunately, all the MIDI devices manufactured in the last few years seem to be equipped with a full complement of MIDI ports.

The second possible problem with the chain system is that the signal passes through an opto-isolator and a switching transistor on each journey from an IN socket to a THRU output. The switching transistor is unlikely to degrade the signal to a significant extent, but opto-isolators are rather slow by normal electronic standards. In fact, standard opto-isolators cannot successfully handle a MIDI signal. MIDI requires the use of high speed opto-isolators that are around one hundred times faster than inexpensive types such as the TIL111.

Even using high speed opto-isolators there is some smearing of the signal as it passes through the system. With the chain method of connection the signal passes through several opto-isolators and there is a risk of significant smearing by the time the signal reaches the final unit in the chain. This smearing alters the timing of the signal and the timing is all-important to correct serial to parallel conversion at the slave units. This problem has become known as MIDI ‘delay’, and it could cause one or more units in the system to behave erratically. In practice, there should be no problem with MIDI delay, even with a dozen or more units chained together, provided that everything in the system uses opto-isolators which are up to the standard dictated by the MIDI specification.

MIDI delay is sometimes described as being a significant delay through the system, causing units at the end of the chain to noticeably lag behind those near the beginning. This is quite definitely a myth and the delay through a chain of even a hundred MIDI devices should be less than a millisecond. The problem of MIDI delay is one that tends to be exaggerated and the likelihood of problems with the chain system is minimal. If some units in a chain system do not operate reliably, it is much more likely that the problem is due to a faulty lead than that the system is suffering a bad case of MIDI delay.

Seeing Stars

There is an alternative to the chain system in the form of the ‘star’ system. With the star method of connection, each unit in the system is driven from a separate output on the master unit. This basic scheme of things is outlined in Figure 3. In practice it is not usually possible to implement the star system without some additional hardware, because it is unlikely that the master unit will have more than one or two MIDI OUT sockets. All that is needed is a THRU box, which is a simple and inexpensive device which provides several THRU outputs from a single input signal. It is just a matter of connecting the OUT socket of the master unit to the IN socket of the THRU.
Cables
The standard connector for MIDI ports is the 5-way 180 degree DIN type (also known as a 5-way type A DIN connector). The cable is a twin screened type which provides a 'straight' coupling between pins 2, 4, and 5. Pin 2 connects to the screen, with pins 4 and 5 carrying the signal. Figure 5 shows the method of interconnection used. In reality, many ready-made MIDI cables seem to provide connections between all five pins. This is not actually within the MIDI specification, but it should not result in any difficulties. Pins 2 and 3 are always left unconnected internally on MIDI units and any external connections to them are therefore superfluous.

Pin 2 is also left unconnected on MIDI input. This is to maintain the isolation at each input, Pin 2 is connected to ground on MIDI outputs and this helps to minimise the radiation of electrical noise by properly earthing the connecting cable's screen.

The MIDI specification allows XLR connectors to be used instead of the normal DIN type. This is only permitted if the equipment manufacturer also makes available suitable DIN to XLR adaptors. XLR connectors are very high quality components, intended for use in top quality professional equipment. In practice they seem to be little used in MIDI equipment.

Figure 4, Using a THRU box to facilitate the star method of connection.

Figure 5, A MIDI lead only provides connections between three pins of the five way sockets.

Next Month....
Robert Penfold will be looking at the mysteries of MIDI coding.
Nowadays, MIDI devices come in all shapes and forms and MIDI controllers range from standard keyboards to various trigger devices. While most MIDI triggers are controlled by hand, some people like to use their feet as well, allowing a guitarist or keyboard player to add bass or trigger drums or other MIDI sources, while simultaneously playing their instrument by hand.

A number of MIDI bass pedals have appeared on the market in the last few years but their price is in the hundreds of pounds range, so I decided to design and build my own bass pedal unit.

Circuit Description

The circuit is designed around the MIDI keyboard controller type E510 and Figure 2 shows its internal structure. The switch scanning frequency and the timing of the serial MIDI data are derived from an internal oscillator that operates with an external 4 MHz quartz crystal, connected to pins 14 and 15. The complete circuit diagram of the bass pedal unit is shown in Figure 1 consisting of the MIDI controller IC4, MIDI out driver transistors Q1, Q2 and Q3, the address decoders IC1, IC2 and
The address bus consisting of 7 lines, A0 to A6, allows the E510 to scan up to 128 individual switches. However, even though the bass pedal unit only requires one octave to be scanned, the other addresses should be fully decoded to prevent incorrect or spurious operation.

While the switches are being scanned, the logic levels at BS and BE, pins 10 and 11 respectively, are monitored internally by the E510 to detect the operation and velocity of any switch being pressed. The time taken for the switch to operate is measured internally by the E510 and generates an appropriate velocity byte relative to how hard the key was pressed. With a clock frequency of 4MHz, the resolution is 256μs for the timing of the velocity byte.

Input BE is connected to the rest contacts of the switches, while BS is connected to the normally open contacts of the changeover switches. The centre pole of a switch addressed by the E510 is made logic low via the decoder/demultiplexer ICs and during scanning, when the centre pole is connected to the rest contact, the BE line is logic low. When the pole is switched to the normally open contact then BS goes logic low. In between the two contacts, both BE and BS are logic high via the pull-up resistors R1 and R2.

The serial output from pin 9 is internally set up to operate at the correct MIDI baud rate of 31.25kHz and is made TTL compatible by using the pull-up resistor R3. The MIDI output is then buffered and inverted by transistor Q1, before being fed to the two MIDI outputs via transistors Q2 and Q3. These two outputs allow the bass pedal unit to trigger two MIDI devices simultaneously even if they do not have a MIDI thru' socket.

The E510 can operate on MIDI channels 1 or 2, depending on the logic level on CO (pin 12) provided by switch SW14. If CO is at logical 0, the E510 transmits on channel 1, if at logical 1, it transmits on channel 2. The TST input is held high during normal operation.

Fig. 1 Circuit diagram of the Midi Bass Pedal Unit

IC3, and the power supply plus regulator IC5.

The bass switch unit only requires one octave to be scanned, the other addresses should be fully decoded to prevent incorrect or spurious operation. While the switches are being scanned, the logic levels at BS and BE, pins 10 and 11 respectively, are monitored internally by the E510 to detect the operation and velocity of any switch being pressed. The time taken for the switch to operate is measured internally by the E510 and generates an appropriate velocity byte relative to how hard the key was pressed. With a clock frequency of 4MHz, the resolution is 256μs for the timing of the velocity byte.

Input BE is connected to the rest contacts of the switches, while BS is connected to the normally open contacts of the changeover switches. The centre pole of a switch addressed by the E510 is made logic low via the decoder/demultiplexer ICs and during scanning, when the centre pole is connected to the rest contact, the BE line is logic low. When the pole is switched to the normally open contact then BS goes logic low. In between the two contacts, both BE and BS are logic high via the pull-up resistors R1 and R2.

The serial output from pin 9 is internally set up to operate at the correct MIDI baud rate of 31.25kHz and is made TTL compatible by using the pull-up resistor R3. The MIDI output is then buffered and inverted by transistor Q1, before being fed to the two MIDI outputs via transistors Q2 and Q3. These two outputs allow the bass pedal unit to trigger two MIDI devices simultaneously even if they do not have a MIDI thru' socket.

The E510 can operate on MIDI channels 1 or 2, depending on the logic level on CO (pin 12) provided by switch SW14. If CO is at logical 0, the E510 transmits on channel 1, if at logical 1, it transmits on channel 2. The TST input is held high during normal operation.
Octave Selection
The octave that is selected depends on the connections of the outputs from IC1 to the gate enable inputs G2A, B, of IC2 and IC3. This allows selection of the particular octave to be triggered within a synthesiser module, as bass notes can sound better at different octaves on different machines. The various link options available are shown in Table 1.

TABLE 1 Links for MIDI Octave Output

<table>
<thead>
<tr>
<th>Links from IC1 to G2A and B</th>
<th></th>
<th></th>
<th>Octave</th>
<th>Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC3</td>
<td>IC2</td>
<td>MIDI Notes</td>
<td>Octave</td>
<td>Connect</td>
</tr>
<tr>
<td>Y0</td>
<td>Y1</td>
<td>0 to 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>8 to 24</td>
<td>C0 to C1D4-D16</td>
<td>to S1-S13</td>
</tr>
<tr>
<td>Y2</td>
<td>Y3</td>
<td>16 to 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>Y4</td>
<td>24 to 40</td>
<td>C1 to C2D1-D13</td>
<td>to S1-S13</td>
</tr>
<tr>
<td>Y4</td>
<td>Y5</td>
<td>32 to 48</td>
<td>C2 to C3D4-D16</td>
<td>to S1-S13</td>
</tr>
<tr>
<td>Y5</td>
<td>Y6</td>
<td>40 to 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y6</td>
<td>Y7</td>
<td>48 to 64</td>
<td>C3 to C4D1-D13</td>
<td>to S1-S13</td>
</tr>
</tbody>
</table>

Table 1 shows how various octaves can be selected, depending on the links from IC1. Note that, although the two 3 to 8 decoders provide 16 outputs, only 13 are required for any particular octave, so that for the octave C1 to C2 to be selected, Y3 and Y4 from IC1 must be connected to the gate enables of IC3 and IC2 respectively and their outputs from D1 to D13 are connected to S1 to S13 respectively.

Power Supply
The power supply uses a standard centre tapped 6V-0V-6V transformer, T1, whose output is rectified by D25 and D26, smoothed by C3 and regulated by IC5, to provide 5V at up to 100mA, although the circuit only draws around 30mA.

Mechanical Construction
The metalwork consists of 1mm aluminium which is bent through 90 degrees twice, to form an inverted "U" shape. The two end brackets are connected to it, via self tapping screws, to form the main cover over the bass pedal switches and enclose the PCB and transformer. The MIDI out socket(s), on/off switch, fuse and neon indicator are mounted in a suitable position on the rear of the enclosure.

Details of the enclosure are shown in Figure 4 and the dimensions are designed to match the pedal unit available from Maplin. Holes need to be drilled in the enclosure, to match the bass pedal unit and, using self-tapping screws, the two units are joined together. The woodwork is nailed and glued together to form a suitable base to support the pedal unit and details are shown in Figure 4.
Electrical Construction
The PCB can be mounted on the bass pedal unit via self-tapping screws, through support pillars, or via adhesive PCB mounting pillars and then wired to the pedal change over switches, MIDI out sockets, channel 1 or 2 toggle switch and 6V-0V-6V transformer secondary. Care should be taken with the mains supply so that no mains connections on the fuse, on/off switch or transformer primary are left exposed and the earth lead should be connected to the metal chassis.

Operation
Actually playing the unit takes a little practise and I found that, by raising my ankle on a piece of wood in front of the pedals, the unit was easier to operate. The bass octave that sounds best depends on the MIDI device being operated, while the unit can also be used to trigger drum machines, but the drum patch may need to be set up internally to trigger the required drum sounds.

Resistors
- R1, 2, 3, 4, 12: 1k
- R5, 6, 7: 10k
- R3, 9, 10, 11: 220

Capacitors
- C1, 2: 22pF
- C3: 1000μF

Semiconductors
- IC1, 2, 3: 74LS138
- IC4: E510

Miscellaneous
Transformer 6V-0-6V; Fuse; DPDT switch; SPST switch; 5-Pin DIN (160); 16-pin IC holders (4 OFF).

Buylines
The foot-pedal is available from Maplin (order code XB18U) as is IC4 E510 (order code KU41U). The other components are available from many sources.
How many times have you heard children boasting to their family and friends that they were doing 60" down such and such a hill, when in fact 16 miles per hour would be nearer reality? Children, on the whole, do not have a sense of speed - hardly surprising really when many adults don’t seem to be able to relate to 30 mph in a built up area either. Anyway, I decided to build a bike speedo for my two boys so that they could see how fast they really were going. Simple, I thought - until the practicalities started to dawn.

1. It had to be damn near bomb proof to survive my lads, so a strong moulded box would be required - Chobham armour was deemed too heavy.

2. The display or method of showing the speed presented a problem. Moving coil meters are not designed to be treated in the same way as most children treat their bikes, so they were ruled out. This also kissed goodbye to the ‘555’ mono that was going to be the heart of the electronics.

 A liquid crystal display was considered, as it is great at conserving energy because of its almost negligible power consumption, but on further inspection, the sheet of glass on the front of the display ruled it out on safety grounds. So that only left LEDs as a practical display medium, but to run the LEDs continuously would require a lot of power, so some means of battery conservation was needed - yet another problem. A very small, low power display could have been used but the difficulty of reading it while riding could distract the rider long enough to cause an accident, so this avenue was out too.

 The course chosen was this. When the cyclometer is in use, the display or LEDs would normally be blank and when a reading is required, a button is pressed, the display giving an instantaneous read out. The display blanks again when the button is released, thus conserving power. The button can be mounted on the cyclometer or on the handle bars of the bike, near to the hand grips. Because the speedo isn’t required most of the time, this is no hardship. To give some idea of the LEDs’ power consumption, for a display of 08 mph, 13 of the 14 segments of the two digits will be illuminated. At, say, 20mA per segment, the consumption is 13 x 20 = 260mA and even the lowest display consumption, 11 mph would require 80mA. Reducing the current in the display reduces the brilliance, which may cause the rider to take longer to read it in sunny conditions - this in turn could increase the risk of an accident, so economies in LED power consumption can be ruled out. As well as the display, the control and counting electronics.
require power, but by using modern CMOS I/Os, this can be kept to a minimum and is quite small compared with the display’s requirements.

3. Because of the heavy current demands, well in excess of 1/4 of an amp, the good old PP3 9V battery is of no use. The higher current PP9 is too large as well as too expensive, so AA batteries are the ones to use. If normal AA non-rechargeable batteries are used, four are needed to produce 8V, if however, rechargeable cells are used - and this is recommended - five are needed as their nominal voltage is only 1.2V.

Increasing the voltage by adding more batteries does not improve anything because an LED segment has a fixed voltage drop, independent of current (well, almost), so increasing the voltage only increases the power dissipated in the drop resistors, PB - R14, and reduces the efficiency of the unit.

If rechargeable batteries are used they are the solder tag type rather than the plug in type, no battery holders are required as these tend to corrode at the terminals when exposed to damp conditions - which may well be the case in the life of a child’s bike. There also needn’t be a cover to come off and get lost.

4. The choice of detectors to detect the speed is a challenging problem in itself. An optical detector could be used but these require power supply to the transmitter LED all the time the cyclometer is on, so this is used out. If a bike has a dynamo generator for the lighting system, this could be used as a kind of tacho, but most bikes do not have these fitted as standard and if they are fitted as an extra, they are often set on the wheel which would cause an accuracy problem, as well as being relatively expensive. So in the end, a reed switch activated by magnets has been chosen. There are several advantages of this method of detection:

a) There is no drive current needed, only digital levels being switched.

b) If more than one pulse per wheel revolution is required, another magnet can be added or several can be fitted at little expense.

c) Reed switches and magnets are quite cheap and readily available.

There is, however, one disadvantage in using reed switches and that is that they are prone to switch bounce when used in a counting circuit. One contact can produce a count of up to ten pulses, so a debounce circuit has been added between the reed switch and the counter.

![Figure 2: Cyclometer PCB layout](image)

![Figure 3: Rear of 0.8" red LED (common cathode) diagram](image)

Background

Speed is defined as the rate at which distance is covered, in our case keeping to the British imperial standard of miles per hour. There are 63,360 inches in 1 mile and in my case both boys’ bikes have a 26in nominal wheel, but when measured it was actually nearer 25.2in. The circumference of a circle, or a wheel, is \(\pi \times d\), i.e., so \(2\pi \times 3.142 \times 12.6\) (radius = 1/2 diameter) = 79.2in wheel circumference. Number of revolutions per mile therefore is 63,360/79.2 = 800 revs/mile.

In order to keep the circuit simple, we do not want to use complicated and expensive electronic techniques to alter the number of pulses to a set 1 second time period, it is far easier to alter the timing period to set the calibration.

To read 20 on the cyclometer display at 20 mph, the counter must read 20 pulses in the time period. At 20 mph, one mile takes 3 minutes so the number of revs/mile = 800 revs/mile divided by 3 = 266.66 revs/minute. Divide this by 60 to get 4.4 seconds. This means that the counter for 4.4 seconds should read 20 (the number of revolutions) in order to give a direct reading in mph.

Although this would work, it assumes that you keep a steady speed for 4.4 seconds to give an accurate read out. This is a long period of time and if two magnets were used instead of one, two pulses would be received per wheel revolution, so the time period could be halved, but if three magnets were used, three pulses per rev would reduce the time period to 1.46 seconds. This is a far more practical timing period as the display can re-time the speed count approximately every 1/1/2 seconds. The three magnets should be placed as symmetrically as possible, i.e., 120 degrees apart, so the gaps between pulses are equal. This calculation is based on a 26in nominal wheel which actually measures 25.2in.

Smaller wheels turn faster for the same speed than larger ones.
but their circumference is smaller too. For an 18in diameter wheel, assuming it to be actually 18in, the circumference is still 2Pr = 2 x 3.142 x 9 = 56.5in. Revs per mile is 56.5/63.360 = 1121.4. Again at 20 mph and for a reading of 20 on the cyclometer, it takes 3 minutes to travel 1 mile so revs/minute = 1121.4 divided by 3 = 373.8 revs/minute. To convert to revs/seconds divide 373.8 by 60 giving you 6.23 seconds. This is too long a time period, so by increasing the number of magnets to four, this timing period can be reduced to 1/4 = 6.23 divided by 4 = 1.55 seconds. Again the magnets should be mounted symmetrically, i.e. 90 degrees apart.

The same principle is used to calculate the time of count for any size wheel. The ideal time period of count is around 1.5 seconds in order to get a sensible and practical display. Too fast and the display appears to be constantly changing and is hard to read, too slow and the accuracy drops off as the speed is averaged out over a longer time.

How It Works

The sensor, or pick up, is a one pole, two way reed switch. As the wheel revolves, the magnets which are tie wrapped to the spokes activate the switch while they pass it. The reed switch is securely fitted to the forks of the front wheel.

The common of the switch (with no magnetic field present) makes contact with terminal B, but when a magnetic field is present (the magnet on the spoke passing the switch) the common breaks contact with B and makes contact with A. However, these contacts have a nasty knack of bouncing when directly connected to a counter, creating an error - one touch of the contacts can produce a count of up to ten. To prevent this error, they are connected to a debounce circuit, which takes the form of two cross coupled NAND gates, connected up as a latch. This requires a transition of the low (the common on the reed switch) from B to A and back to B again, to produce a pulse on the output. It does not matter how many times the common makes and breaks with A (the bounce effect), so long as it does not touch B and again, when the common makes with B it can bounce several times, so long as it doesn’t touch A in between. This type of debounce circuit is used in many critical pulse count applications.

Now the clean pulses are generated at IC1 pin 10. The leading edge of the pulse is generated on the first touch of the common on A and the trailing edge generated on the first touch of the common back on B. These clean pulses are fed directly into the counter IC2 pin 12. IC2 is actually a three decade counter - hundreds, tens and units - but we are only using the two least significant decades, or tens and units. It is still far easier to use this chip, rather than two conventional counter ICs like 4029s, or even a two decade counter like 4518. The great advantage of the CMOS 4553 is that the output is 'multiplexed', which means it only requires one seven segment decoder IC, the 4511. Multiplexing basically means time sharing (not a dirty word in electronics).

Normally, two decades of a BCD counter require eight data output lines - 1, 2, 4, 8 for the units and 1, 2, 4, 8 for the tens. These are then taken as two groups of four, or two seven segment decoder ICs. In the case of the 4553, only one set of data outputs are required. These contain the information for all three decades. This is done by multiplexing - 1, 2, 4, 8 outputs pin 9, 7, 6, 5 respectively, first give the information applicable to one decade for a fraction of a second. This is accompanied by a decade drive signal which, via a transistor, turns on the appropriate display. The information on the BCD outputs is changed to the next decade and the decade drive signal, originally turned on, turns off and the next display is turned on, again via an external transistor. Finally, the third set of information for the third decade is outputted on the data lines and the second decade drive signal removed, the third being energised again via a transistor. This continuously repeats itself very quickly. All three decades appear to be on at the same time, because the human eye reacts much more slowly than the multiplexing speed. In our case we are not using the third decade but the principle of operation remains the same.

The 4553 is responsible for synchronising the turning on of the decade at the correct time, as well as outputting the data. This, with the three decade capacity and such features as 'disable' and 'latch enable', makes this a very useful IC, albeit a little more expensive than the average CMOS IC.

Because only one 4511 seven segment decoder is used to control two decades, its 'latch enable' cannot be used as this would freeze its output and both tens and units would show the same frozen number. This is of no consequence because the 4553 has its own latch enable pin 10. This is normally held high by IC1 pin 3 holding the output of the last count cycle, but at the
end of the present count cycle it has a very narrow 20µs pulse applied. This low pulse transfers the count at the end of the count cycle into the latch or memory, enabling the counter side of the IC to be reset via C4, R6, D1 and count the next number of pulses in the count cycle time period which, via the calibration, is the speed in mph. This cycle of count, latch, reset is repeated over and over again. The counting is never seen - only the result of the previous count cycle, stored as a number in the latch and displayed when the ‘display’ button is pressed.

![Figure 7: home made NiCad battery charger.](image)

In order to blank the display to conserve power, the ‘blanking input’ to the 4511 pin 4 is held low (OV) by means of normally closed contacts on a ‘display button’. When the button is pressed, BI is pulled high by R9, enabling the 4511 to output its information to the LED display. The form of control, rather than pulling down BI with a resistor and switching high with normally open contacts, was chosen so that the battery positive need not be brought out of the box and possibly short to the bike’s frame. A fuse is incorporated on the positive battery supply, because when using rechargeable batteries, very large currents are available owing to their extremely low internal resistance.

The LEDs used are 0.8µ, quite large in LED terms. This is in order for the display to be read as quickly as possible, so as to distract the rider as little as possible. In order to get the greatest contrast from the display in lighting conditions, a red filter is used. This blots out anything in the background and only shows the illuminated segments. The red filter, when mounted inside the box, produces a pocket which could trap water when left out in the rain, so the filter is coated onto the inside of the front panel using neat instrument-filled plated 3mm bolts. Care must be taken not to mount the bolts too close to the edge of the filter or over-tighten them as the filter has a nasty tendency to crack or chip, and the overlap of the filter with the front panel should be glued, using a glue that doesn’t eat away the plastic. The ‘power switch’ used is chosen because a rubber cover can be obtained for it to keep out dampness - this is very important as contacts switching power are very prone to corrosion when exposed to dampness, due to electrolysis. The ‘display’ button is of the normally closed contact type - here the switch is not a waterproof type but as it only switches a logic level this is not too important. However, a waterproof type can be used if desired, but must be of the normally closed contact type.

The rechargeable batteries are soldered together as per diagram (make sure you use the solder tag type). Great care should be taken that the heat applied during soldering is not allowed to reduce the insulation around them, as their cases are the negative contact and each one is 1.2V different from the next one. To help with this, small cardboard strips are placed between the batteries. The batteries should not be charged until they are soldered, so if a short was to occur, any damage is limited. The five batteries should be fully charged and checked as a block. It is recommended that a charger is bought, because it is going to be used hundreds of times during the life of the speedo. Buying also ensures safety, as the charger is a mains unit and strict safety precautions should be taken. A diagram is given of a suitable charger, but no constructional details are given.

The charger should be capable of charging the batteries as a block and normally comes with a 2.1mm plug. If the output is switchable, as many are these days, the selection should be 4-6 cells as against 6-8. The output of the charger will need to be tested with regard to polarity. There seems to be no standard - some are wired with the positive in the centre, others wired with the negative in the centre and some are switched. I have used the positive in the centre, so some of you may need to have the plug either altered or changed to suit. Always alter the plug 2.1mm (charger type), do not take the charger apart. Do not use the rapid 1 hour type chargers, which can cause the batteries to heat up and come loose in their pack. No harm will come to the charger or the batteries if the polarity is incorrect, because of the protection diode D2, but incorrect polarity will not charge the batteries.

Once the batteries have been charged and the output checked to be 6V or above, they can be taped together - again great care being taken that they are not allowed to short to one another or to anything else. When the PCB is built and about to be tested, it is recommended that a bench power supply current, limited to 500mA is used, as some of the tracks on the board are quite thin and in the event of a fault could burn up if large currents are available. The Cyclometer should be fully tested on the bench using the power supply before the rechargeables are connected.

When on the bench, the Reed switch sensor can be replaced by a one pole two way press switch (break before make). This enables a reading to be obtained on the bench without trying to get the bike in the workshop. Pressing and releasing the switch will generate pulses, which are counted in the same way as the pulses from the reed switch. They do not appear on the display as the switch is pressed because of the ‘latch enable’ but should appear at the end of the count cycle as a number. VR1 can be set accurately if a scope is available, by monitoring pulses on pin 3 as calculated earlier. If a scope is not available, a logic probe set
to 'pulse' rather than normal can be used - although not as accurate, the adjustment is made to VR1 to produce a bleep at the intervals calculated earlier.

Because the Cyclometer, when fitted, may well get left out in the rain, the box it's mounted in should at least be waterproof. To this end, the lid of the box is mounted underneath and the conventional bottom of the box is used as the top. This means that if the junction of the lid and the box leaks slightly, the circuit board is held well above any dampness and if any wet does get in it cannot fill the box up. The PCB and battery support board are mounted on suitable pillars, off the base of the box as in the diagram.

Another consideration is the increasing problem of theft from bikes. Although the Cyclometer is useless without the sensor and magnets, this does not seem to stop the light fingered from taking anything not securely fastened down. So, two thin aluminium brackets have been made to hold the Cyclometer to the handlebars, tape being used to prevent the brackets from scratching them. These two brackets are securely bolted to the bottom of the Cyclometer box and to get inside the Cyclometer or to remove it, the four bolts securing the lid must be undone. These, when supplied, are 4 slot headed 3mm counter sunk bolts. Two of these are replaced with cross headed 3mm bolts so it now requires two screwdrivers to remove it. This should discourage most from trying to steal it.

The cable to the sensor (reed switch) should be screened stereo cable, with the screen going to the common on the reed switch, as well as being used as the earthing point where the OV is connected to the chassis of the bike frame. This should help prevent stray pick up from radio signals and the like from affecting the accuracy during use. The cable should enter the case at the bottom, near the lowest point. To prevent seepage of dampness, the cable can be sealed with glue from a glue gun. The case of the reed switch is normally glass, but this is so small there is no safety problem in the case of an accident. The contacts of the reed switch are individually sleeved to prevent them from shorting, as the contacts A and B are very close together. Do not try and bend the leads out of the reed switch, as they will cause the glass to break. Solder a wire to the lead sleeve and bend the wire, not the lead out of the switch. The whole assembly, reed switch and sleeved wires are encased in a heat shrink sleeve, to help protect the switch as well as add strength to the whole assembly. The top of the heatshrink sleeve is glued together, again to prevent rain from getting into the switch. Great care should be taken that the brakes of the bike are not interfered with or fouled in any way by the wiring or mounting of the reed switch assembly. As every bike is different, no specific instructions can be given, but the diagram shows how my sensor is mounted and may be useful for other types of bike. As well as upsetting the brakes, the other danger is causing the front wheel to jam. To prevent this, the magnets are short bar types held firmly on to the spokes by two tie wraps, plus a dab of glue from a glue gun over the tie wrap to prevent it coming loose.

The magnets are mounted on the spokes, next to the rim of the wheel. The reason for this is that when the wheel revolves there is a centrifugal force which tries to throw the magnets outward from the centre towards the rim. If the magnets are already touching the rim, they cannot travel any further. Also, at the rim the spokes are all in the centre giving the most room between them and the forks of the frame. This gives more clearance and a greater safety margin. The magnets should be tried out with the sensor before fitting, to get some idea of their reliable range acting on the reed.

Figure 9: Cyclometer inter connections.

www.americanradiohistory.com
switch.

If any youngsters are fitting these magnets, a responsible adult should check the installation before the bike is taken on the road. Before anyone takes it on the road, the bike should be turned upside down. The front wheel can then be spun, slowly at first then gradually increasing the speed, to check that everything is clear and working. Remember the cyclometer must be switched on and the display button must be pressed in order to illuminate the display.

So far, the calibration has only been done; theoretically by calculation and VR1 adjusted to the resonant figure. This can be checked against a car’s speedo. For safety reasons, this should be done somewhere where the bike can be paced alongside the car, never follow the bike in a car, in case the rider comes off.

Although not as accurate, another check would be to time a known distance at as constant a speed as possible, for instance, at 15 mph on the Cyclometer, you should take four minutes to travel one mile. The further the distance the less the error, assuming the speed is kept constant - easier said than done. This method can be employed well away from cars, although the distance can be measured by a car or motorbike beforehand. Adjustment can then be made to VR1 to improve the accuracy. Decreasing the resistance shortens the time period and hence reduces the reading, increasing the resistance of VR1 increases the time period and hence the reading.

In my case, my kids have complained that since the Cyclometer has been fitted, their bikes don’t go as fast as they used to - they can’t do 60 mph any more!

Figure 11: Reed switch and mounting.

Figure 10: Reed switch assembly.

RESISTORS
R1, R2, R3, R7 10K
R4 27K
R5, R6 100K
R8, 9, 10, 11, 12, 13, 14 47n

CAPACITORS
C1 4μF/TANT 16V
C2 220μF/DISC 16V
C3 100μF/RADIAL 16V MIN
C4 220μF/DISC 16V
C5 100μF/RADIAL 16V MIN

TRANSISTORS
TR1, TR2 BC307 or BC178

DIODES
D1 IN4148
D2 IN4002
IC1 CMOS 4093
IC2 CMOS 4558
IC3 CMOS 4511
VR1 1 MEG POT

MISCELLANEOUS
2 x 0.8in common cathode LED displays, Electromall 569-960 1 x box, Maplin LH61R
1 x 2.1mm charger socket, Maplin FT96
1 x power switch, two pole, 2 way, Maplin FH04E
1 x press switch N/C contacts
5 x AA solder tag recharge batteries, Electromall 591-051
1 x reed switch, one pole, 2 way, Maplin FX89A
Magnets (see text for quantity), Maplin FX72P Screen stereo cable
Tie wraps
Spacers to suit
Scrap PCB for battery shelf
Aluminium for brackets
Cover for switch, Maplin JR79L

ELECTRONICS TODAY INTERNATIONAL

67

www.americanradiohistory.com
For products you can rely upon to give amazing results

For information on Active Antennas, RF Amplifiers, Converters, Audio Filters, the Morse Tutor and Speech Processors send or telephone for a free catalogue and selective data sheets as required.

All our products are designed and made in Britain. Orders can be despatched within 48 hours subject to availability.

--- VISA AND ACCESS WELCOME ---

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD
Tel: (0480) 433156 Fax: (0480) 413357

TEST EQUIPMENT SYSTEM CONSULTANCY
Supply Replacement Parts
Maintenance Supply of Service & Operators Manuals
Commissioning Components

Distributors for: WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 031 667 2611

The supplier to use if you're looking for —
★ A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST★
★ COMPETITIVE VAT INCLUSIVE PRICES ★
★ MAIL ORDER - generally by RETURN OF POST ★
★ FRIENDLY SERVICE ★

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00
Foils for this issue

Cyclometer

PIR Intruder Alarm
Mini Bass Pedal

Data by Laserbeam

Data by Laserbeam
SOFTWARE

PC TECHNICAL SHAREWARE
Would you like to see the best range of low cost technical and educational software and shareware for IBM PC and other IBM
RISC RANGE includes: PACKAGE, FAX, DATA ACCESS, PC
豢趣, CASINO and PRODUCTIVE ADVICES FOR ETC.
CD ROM ELECTRONIC ARCADE, EDUCATIONAL,
MATHS & STATISTICS, MEDICAL, PROGRAMMING,
SOURCE CODE DATA, EDUCATIONAL, WINDOWS,
BROWSER and more.
Write, phone or fax today for your free 20 page printed
advertisement catalogue.

PC TECHNICAL SHAREWARE
Semi-display £8.70 per single column cm plus VAT. No reimbursements for cancellations.

CALL JAMES ON 0442 66551 TO ADVERTISE

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators,
high voltage teslas, surveillance devices, pyrotechnics and com-
puter graphics tablets. 150 projects. For catalogue, SAE to Plancentre
Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road,
Ledbury, Herefordshire, HR8 2HS.

COMPONENTS

EPROM, PLDs + Microcontrollers copied or programmed. we supply
devices/convert discrete logic to
PLDs. PO Box 1561 Bath 0225
444467

CALL JAMES ON 0442 66551 TO ADVERTISE

PROTECT and TREASURE

your collection of
Electronics Today International
magazines.
Keep up to 12 issues of
your favourite magazines
in pristine condition in our
smart, sturdy binders.

Order your binder and post this today!
PLEASE COMPLETE IN BLOCK CAPITALS

Post this coupon and payment to:
ASP. ETI Binders Offers, Argus House, Boundary Way, Hemel Hempstead, Herts.
HP2 7ST. Or if you've got a credit card, it's faster by phone: 0442 66551

PLEASE DEBIT MY ACCESS/BARCLAYCARD No.

Order your binder and post this today!
PLEASE COMPLETE IN BLOCK CAPITALS

Rates: Lineage 65p per word + VAT minimum 15 words.
Semi-display £8.70 per single column cm plus VAT. No reimbursements for cancellations.
All ads must be pre-paid.

Name
Address
Signature
Daytime Tel. No.

Please supply............................binders at only £6.95 each, including p&p
(UK only; Overseas please add £1.50)
I enclose my cheque/P.O for £........made payable to ASP or please debit my Access/Visa

Date

Post Code

Name ..
Address ..
Signature ...
Daytime Tel. No: ...

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED
ADVERTISEMENT DEPARTMENT, ARGUS HOUSE, BOUNDARY
WAY, HEMEL HEMPSTEAD HP2 7ST

PLEASE DEBIT MY ACCESS/BARCLAYCARD No.

Expiry Date

FOR SALE COMPONENTS PLANS OTHER - PLEASE STATE

ELECTRONICS TODAY INTERNATIONAL 72

www.americanradiohistory.com
FOR SALE

4 WATT PPO FM BROADCAST (Built) TRANSMITTER: with Low Pass Filter
Modulation 75KHz Wide Band
Range up to 4.2 miles
Supply 10-16 Volts AC/DC
Current 250mA
Audio Input 100mV (ADJ)
Frequency Range 88-108MHz FM
Stability +/- 20KHz
Size W. 70mm D. 90mm H. 50mm.
MANY USER CONTROLS Price: £23.50

7 WATT PPO FM BROADCAST (Built) TRANSMITTER: Higher Watt Version of above
Transmitter 7 miles range Price: £52.50

KIT: 3 WATT TRANSMITTER 80-108MHz
Coil Tank Controlled up to 3 miles range.
Supply 12V dc at 0.5 amps Price: £12.50

ALL PRICES INCLUDE VAT
PLEASE ADD £1 P&P PAYMENT WITH ORDERS TO:
DEL CIA ELECTRONICS,
14 ST. MERYL PARK, GLEN ROAD,
BELFAST, BT11 8YF,
Tel: (0232) 611995 24 Hour Turn Around
Please send 2 x 1st class stamps for our catalogue

SURPLUS COMPONENTS WANTED
• COMPLETE CLEARANCE
• BEST PRICES PAID
• PCB BOARDS POPULATED

NEWMARKET TRANSFORMERS LTD
Mail Order Transformer Specialists.
Toroidal and Laminated Transformers, 3VA to 1kVA.
Phone Michael Dorman on 0638 602889 for Immediate Quote

FAX YOUR ADVERT ON 0442 66998

Component's - Component's - Components
• WIDE RANGE ALWAYS IN STOCK
• SURPLUS COMPONENT'S ALWAYS IN STOCK
• SPEAKERS BY SOUND LAB AND R.C.L.
• SOUND LAB IN-CAR BOOSTERS
• LARGE RANGE OF ACCESSORIES IN STOCK
• LARGE RANGE OF CONNECTORS IN STOCK
• FM - TRANSMITTER - ROOM OR TELEPHONE
• THERE IS LOTS LOTS MORE IN STOCK

Please give us a call on our
HOTLINE 0533 - 515944
ELEY ELECTRONICS LTD
100-104 BEATRICE ROAD
LEICESTER LE3 9FF

Falcon DIY SPEAKERS
Send for our FREE price list PL22:
All we ask for is to a large S.A.E.
3 x 1st class stamps or $2.50 U.S.A. overseas
(Twist - 3 international reply coupons)
SYSTEM DESIGNS (Total Kits):
Foe'm, K.E., Construction, Seats, etc.
DRIVE UNITS TOTAL: K.E., Audax, Coles, Precision, Seats, Stack Radio, Valve.
Order: Bifilar, Scopark, etc.
AGC Group/Dissolution Units
CROSSOVER NETWORKS:
Active & Passive Components.
Accessories, Polypropylene Clamps.
AUDIO AMATEUR PUBLICATIONS
BACK ISSUES:
Speaker Builder, Audio Amateur & Glass Audio, U.S. Cookbook + books
Full details from
FALCON ELECTRONICS
(Dept E.T.L.) 109 Horse, Medman, Northall NR14 6JT (0508) 79272
(Proprietors: Falcon Acoustics Ltd)

LEN COOKE ENTERPRISES
For the best value in Used Electronic Test Instruments
We buy, sell and repair Oscilloscopes, Signal Generators, Frequency Counters, Spectrum Analysers, Power Meters, Logic Testers etc.
We have a large selection of Tektronix Oscilloscopes
Tel/Fax: 081 964 5551
Mobile: 081 6380820
Mail Order Address: 179 Northolt Road, Harrow, Middlesex, HA2 8LY.
We engineer what we buy, we support what we sell.

HEATHKIT U.K. Spares and service centre / educational products distributor. Cedar Electronics, 12 Isbourne Way, Winchcombe, Cheltenham, GL5 5NS Tel: (0242) 620240.

TO ADVERTISE IN ETI CLASSIFIED CALL 0442 66551

ELECTRONICS TODAY INTERNATIONAL 73

www.americanradiohistory.com
My feelings about the future of technology, and electronics in particular, in this country have changed over the last few days. In the past, I had always had a gut feeling that the next generation of engineers would be able to continue the tradition for innovation that has for so long been something which we in Britain could be proud of. Now, I know that that gut feeling was not only correct but underestimated.

This change was brought about by talking to the finalists at the recent Young Electronics Designer Award.

If these young people, their ages ranging from 13 to 23, are at all representative of the next generation of engineers, then both they and the people of this country in general, could be in for an exciting future. Rarely have I encountered a group of people who were so enthusiastic, and knowledgeable about their chosen subject.

It went further than just knowing about electronics, these were designers and innovators in the best sense. They had all developed products to meet specific needs, they had thought carefully about how their creations would be used, the people who would use them and the markets they would sell to. They had thought about the questions raised by production and had optimised their designs for cheap and easy manufacture.

These are all attitudes which we need to foster if high technology industry in the UK is to survive and prosper. There is little doubt that we have had extraordinary success in developing new ideas, indeed the number of new ideas that were initially conceived in this country during the last fifty years is enormous and equalled only by the US.

The trouble is that we have, by and large, failed to turn ideas into commercial products. We have been beaten commercially by the undoubted skill of Japanese or German production engineers, who seem able to see a new device as a commercial product, as well as a great idea. These engineers can see a product from the point of view of the customer and tailor it to suit their needs. They can see a product from the point of view of costs and profit, then design it to be produced as cheaply as possible.

If we are to beat the Japanese and Germans, and I firmly believe we in this country can, then we need to go even further. We need to produce engineers who combine the traditional creativity of British engineers with the commercial orientation of our competitors. Such a combination would be unbeatable and if the young people I met last week were at all representative, then we may have a new generation of engineers with just that winning combination.

Another encouraging aspect highlighted by the group of finalists was the fact that about one third of them were girls. I have always considered it to be wrong that both electronics and computing are such solidly male dominated activities. In theory, they are subjects which should be equally attractive to girls as they are to boys.

Of course, we all know the source of the problem lies in tradition within the educational system and within society in general.

Engineering was not something done by girls. Come to that, given the rather negative attitude to engineering in this country, engineering was not considered a proper occupation for 'nice people' of either sex.

Far better to be a secretary, a civil servant, a bank manager, or an estate agent! The 'nice people' in society considered these clean, socially acceptable jobs, unlike engineers who had dirt under their fingernails and talked about 'boiling' things.

That is the real problem, the reason why there are so few girls in engineering and why engineering has such a low social status. We have allowed ourselves to be given a sense of inferiority by a lot of ignorant, snobbish people and what is worse, we have allowed the future of this country to be dictated by such people.

It is time that we as engineers regained our self respect, it is time that we made the rest of society realise that without us they would have nothing. Every material comfort that society values so much was made possible by the work of engineers.

We continue our series on repairing, maintaining and upgrading PCs and Ken Gill will be concluding his article on sending data on a laser beam, showing how to set up the system, Jim Spence will conclude the Experimentor's computer keypad and display with a look at the software needed to implement the keypad, while we will also be continuing our series on MIDI musical instruments.

For computer users, Robert Penfold will show how to build a RS232 breakout box for solving all those difficult cable configuration problems. Terry Balby will show how to build a handy little light meter for video cameras, and Bob Noyes has an interesting project to stop your children spending all their time playing computer games. In addition, we will be starting a new series of simple projects for the beginner with a logic probe designed by Robert Penfold.

The main feature next month will be looking at smart cards, what they are, how they work and whether they will replace the cash in your pocket.
SURVEILLANCE
PROFESSIONAL QUALITY KITS

No. 1 for Kits

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics, SUMA DESIGNS has a kit to suit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on any ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available, incredible size of 10mm x 20mm inc. 3-12v operation. 100m range £16.45

MTX Micro-miniature Telephone Transmitter
Just 17mm x 11mm inc. 3-12v operation 1000m range £13.45

STX High-performance Telephone Transmitter
Hi-performance transmitter with a buffered output stage for greater stability and range. Size 28mm x 20mm. 3-12v operation, 1500m range £15.45

VXT500 High-power Telephone Transmitter
Powerful 25cm output providing excellent range and performance. Size 20mm x 40mm. 9-12v operation. 500m range £16.45

VXT Voice Activated Telephone Transmitter
Triggers only when voice is heard. Very low standby current. Variable sensitivity and delay with LED indicator. Size 35mm x 21mm. 9V operation. 1000m range £19.45

HVX400 Maltese Cross Telephone Transmitter
Connects directly to 240v AC supply for long-term monitoring. Size 30mm x 35mm 500m range £19.45

SCLX Subcarrier Telephone Transmitter
Scrambler circuit for the transmitted signal cannot be monitored without the SCDM decoder connected to the receiver. Size 27mm x 18mm. 9V operation 1000m range £22.95

SCX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambles so required SCDM decoder in receiver. Size 35mm x 27mm. 1000m range £23.95

SCDM Subcarrier Telephone Transmitter
Connects to receiver and provides decoded audio output to headphone, size 30mm x 30mm. 9V operation £22.95

ATE Micro Size Telephone Recording Interface
Connects directly to telephone line (Beware!) and cassette recorder. Switches take automatically on and off as desired. All conversations recorded. Size 15mm x 32mm. Powered from line £13.45

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available, incredible size of 10mm x 20mm inc. 3-12v operation. 100m range £16.45

Connects to line anywhere and switches on and off with phone use. £15.95

TLX700 Micro-miniature Telephone Transmitter
Best-selling telephone transmitter. Being 20mm x 20mm it is easier to assemble than UTLX. Connects to line anywhere and switches on and off with phone use. All conversations transmitted. Power from line. 1000m range £11.45

STLX High-performance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line anywhere and switches on and off with phone use. All conversations transmitted. Power from line. Size 22mm x 22mm 1500m range £16.45

TXV300 Signalling/Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000m. Size 25mm x 35mm. 9V operation £22.95

CD400 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. Size 45mm x 54mm. 9V operation £30.95

CARO Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO/CONFIRM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size 70mm x 100mm. 9V operation £50.95

QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and includes the use of a scanner receiver or our QRX180 kit (see catalogue). Size 20mm x 17mm 9V operation. 1000m range £40.45

QX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. 20mm x 37mm 9V operation. 1000m range £40.45

QTX180 Crystal Controlled Telephonze Transmitter
As per QX180 but draws power requirements from line. No batteries required. Size 32mm x 37mm Range 500m £35.95

QRX180 Crystal Controlled FM Receiver
For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF sections supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Output to headphones. 60mm x 75mm 9V operation £60.95

A build-up service is available on all our kits if required. UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add £5.00 per order for shipment. Credit card orders welcomed on 0827 714476.

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCs.

Specials

UTLX/QLX Radio Control Switch
Remote control system for around your home or garden, outside lights, alarms, paging system etc. Designed around small VHF transmitter with digital encoder and receiver unit with SECURICAR outward, momentary or alternate, 8-way diode switches on both boards set your own unique security code. TX size 25mm x 45mm. RX size 35mm x 50mm. Both operation. Range up to 200m. £50.95

Complete System $120.95

Individual Transmitter $37.95

Individual Receiver $19.95

MDX-1 RF Micro Detector
Not technically a surveillance device but a great idea! Connects to the headphone output of your hi-fi, size or used and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music, murrmrs around the house, garden, in the bath or in the garage and you can slice and dice with the DJ's choice and boring music. Size 27mm x 15mm 9V operation. £20.95

Dept. ETI
THE WORKSHOPS, 95 MAIN ROAD,
BAXTERLEY, NEAR Atherstone,
WARWICKSHIRE CV9 2LE

Visitors: strictly by appointment only

Tel/Fax: 0827 714476

www.americanradiohistory.com
Over 700 colour packed pages with hundreds of brand new products at super low prices, on sale now, only £2.95.

Available from all branches of WHSMITH, selected branches of RMS/COLL in Scotland ONLY, and Maplin stores nationwide.

The Maplin Electronics 1994 Catalogue – UNIQUELY DIFFERENT!

Order your copy of the New MAPLIN Catalogue on sale NOW!