

March 1994 £2.25
\square

At last, a fully functional upgradeable

 PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...
Boord Copture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 aperations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly librany editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker BoardMakert - Entry level

- PCB and schematic dratting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMakert +
- Full netlist support - BoardCapture, OrCad, Schema, Tango, CadStar and others
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM

Na 3 - Thermal power plane support with full DRC

Board Roater

Gridless re-entrant autorouter

- Simultaneous mult-layer routing $=200$
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge PE16 6UT Tel (0354) 695959
Fax (0354) 695957

tsien

Contents

Volume 23 No. 3 March 1994

Features - Projects

Machine Vision

12

Will machines ever be able to see, analyse and understand the world around them as well as we can? Or even as well as a humble animal like the ant? This article looks at some of the work being done in this area

Radio Revisited
 18

With the aid of the latest generation of integrated circuits, Raymond Haig shows how to build a high quality FM radio

Audio Frequency Signal Generator

Anyone attempting to design, build, or test audio equipment will need this useful piece of test equipment, designed for ETI by Robert Penfold

Paleface Minor Guitar Amplifier

Part 3, and the concluding part, of David Bradshaw's series on building a 15 W guitar amplifier, an amplifier with the unique classic sound of valves. This month we look at constructing the project

Z-80 Single Board Computer

Part 2 of a project by Jason Sharpe to build a compact, light weight, low power, single board computer which can be used as the basis for many different projects, this month we look at the monitor software

Electronics
 Equipment Review 4

In this month's review section, we take a look at three low cost commercial EPROM programmers

Power Supplies for Electronic Equipment

Part 1 of a project by John Linsley Hood to build a new and improved type of power supply for low signal level electronics circuitry

An Eye for a Robot 52

Part 1 of a project to build a series of simple vision systems which can be used by mobile robots, firstly looking at the circuitry for a basic light intensity scanner

Microprocessor Fundamentals 56

In Part 3 of this series Alex Stuart looks at some basic types of microprocessor I/O circuitry and how they can be used

Regulars

News 6
PCB service 60
PCB foils 61
Open Forum 66

Subscribe $\&$ Save

[^0]
SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24, 26, 32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost. Expandable to cover virtually any programmable part including serial E^{2}, PALS, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

THIS IS THE
 COUPON

that brings the 1993-94 CATALOGUE
140 pages, A4, copiously illustrated, bang up to date and with bonus vouchers. Send cheque/PO for $£ 1.50$ that brings the SERVICE
with choice of very wide ranges of famous-name quality electronic components and associated gear sent promptly on receipt of your order. A service

that Electro/alue

have been providing constructors with continuously since 1965. With this Catalogue, you will find our service the best ever. Send for your copy NOW!

ELECTROVALUE LTD., 3 CENTRAL TRADING ESTATE, STAINES

TW18 4UX Telophome 0784142253 Fax 0784450320
I enclose chequa/PO/Credit Card No.
value $£ 1.50$ to your 1993-94 Catalogue
Name. .
Address

[^1]K

Please commence my subscription from the ...
If renew/extending, please quote subscription n
If renew/extending, please quote subscription number.
ETI One Year Subscription Rate UK £23.40 Europe \& Eire $£ 30.30$
Sterling Overseas $£ 31.50$ US Dollars Overseas $\$ 52$
I enclose a cheque/M.O. for $£_{\ldots}$.................... pade payable to ASP or debit my Access/Nisa:

SUBSCRIPTION OFFER

Subscribe to

Electronics Today tuternationial and
guarantee that every issue is priority delivered to your door for a whole year! (post free in the UK)

Low cost data acquisition for IBM PCs \& compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.
Each device comes with an easy to use software package (PicoScope, PicoLog or both). C, Pascal, and Basic drivers are supplied for those who want to develop their own software, as is a manual giving full details of the hardware and software. All software supplied on $3.5^{\prime \prime}$ disk.

Pico Technology Ltd. Broadway House, 149 -151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.

ET
 NEWS

Miniature Lasers

Miniature laser specialists Imatronic is offering a new range of semiconductor laser diodes aimed at OEM users. This highly reliable range of miniature and compact laser diode modules includes the semiconductor laser, collimating optics and drive circuitry packaged neatly into a rugged anodised aluminium housing. Modules are available in the visible range ($635 \mathrm{~nm} / 650 \mathrm{~nm} / 670 \mathrm{~nm}$) and near infra-red (820 nm), plus other wavelengths and power options.

The applications for which these modules are designed include industrial alignment systems, process control, medical diagnostic equipment, robotic control, range finding, inspection equipment, particle sizing, target designation, speed detection and bar code readers.

For further information contact Imatronic on 0635550477.

Designers kit slashes cost of 8bit micro development

Mitsubishi has just launched a comprehensive low cost microcontroller designer's kit, the DK8. Costing just $£ 249$, the kit is available from Mitsubishi distributors and comes as a complete system that is quickly and easily connected to an MS-DOS PC or compatible, with a text editor.

The DK8 kit comprises a designer's board with a DB8Mon Debug monitor, together with the Mitsubishi SRA74 structured relocatable assembler and communications software. A 5V power supply, serial cables and 9 to 25 way adaptor, plus all manuals, are also provided.

The designer's board is based around a M37451 8bit microcontroller chip. In operation, the device runs in microprocessor mode and an I/O
expander, mapped to page zero, preserves the I/O the ports used as data and address busses. On board 32 Kb of EPROM and battery backed RAM provide ample space for user software. Two decoded chip selects are provided, enabling further I/O expansion if required.

The designer's board features 56 I/O lines, together with eight 8bit analogue to digital inputs, two 8bit digital to analogue outputs and one 16bit PWM output. As well as the host bus interface, three 16bit timers and a serial port with RS232 drivers and baud rate generator are also provided, together with six external and eight internal interrupts.

For more information contact Mitsubishi on 0707 276100.

Differential pressure indicator

The Haden Pressurewatch is a brand new concept for indicating the existence of a differential pressure in clean rooms and in extraction systems such as fume cupboards. It has been invented and developed by Hacien Young Ltd, part of the BICC group.

It contains red and green fuorescent indicators which change from green to red on the failure of the system to maintain the required pressure differential. The change over point can be set without any need to know the actual pres ${ }^{3}$ sure differential.

The standard unit can be adjusted to default over the range $2-16 \mathrm{~Pa}$ approximately and specials will be available for different ranges to suit specific requirements. It can aiso be used to check negative pressure between adjacent areas. It is entirely self powered and reliable.

For further information contact Alert Products on 0948880627.

Valve Power Amplifier Kit from Maplin

Maplin Electronics has launched a valve power amplifier kit, the Millennium 420. This amplifier is, according to Maplin, guaranteed to turn any capable domestic stereo system into something special, emitting a wonderfully gutsy bass even at low volume, together with 'an extra something' in the mid and treble ranges.

Closely resembling Mullard's 520 design of the
early sixties, the amplifier benefits hugely from the quality of modern components. Modern materials have produced transformer cores that are half the size of twenty years ago, yet with better specifications. High speed capacitors achieve a competent, even sparkly, HF performance and 1% metal film resistors help push the S / N ratio to nearly 90 dB , making a nonsense of the
myth that valve circuits are inherently noisy.

Most commercial, ready made valve amplifiers are classed in the high power, Hi-Fi end of the market, and at this giddy altitude prices may begin at $£ 1200$, or even £1500 and increase from that point upwards. The Maplin Millennium route did not aim for 40 or 50W designs, but settled for a more practical (in terms of cost and home
usage) stereo 20 W design.
In order to help spread expenses whilst putting the unit together, the complete system has been organised into just two separate kits. In this way each kit can be bought and built as and when funds permit, as opposed to a large financial outlay at the beginning. The kits comprise one complete mono amplifier module and a power supply as a separate module. To complete the total stereo power amplifier, two identical amplifier kits, together with the PSU will be required. The PSU is able to supply a pair of amplifiers, but it can also cater for a mono version.

A single mono amplifier kit costs $£ 74.95$, the PSU kit £49.95 and the complete stereo kit £179.85.

For more information contact Maplin on 0702554161.

New High Quality Soldering Iron

Maplin Electronics has launched a new high quality soldering iron kit, the SK5. It is ideal for both expert and the beginner. The kit comprises a 17W 240V type CS soldering iron for light electronics work, a soldering iron stand ST4 with tip cleaning sponge and a coil of solder. It is all neatly packaged with full instructions on how to use and the art of soldering.

The kit is available until the 28th February at a special offer, £2 off the normal price of $£ 13.95$.

For further information contact Maplin on 0702554161.

New Magnetic Card Readers

From Phi Ticket Systems of Pinner in Middlesex, comes a range of compact solf contained magnetic card readers for use in a range of different equipment, rangling from access and parking control applications to ticket-validation. These readers feature bult in microprocessors to controf all funclions such as Read, Write, Encode, Cut and Print and only require an extemal low power DC supply. Communication with external devices is over an RS232 link.

For imore information contact Phi Ticket Systems Lid on 0818662871.

Magneto-resistance

Giant magneto-resistance Is a recently discovered effect. that dramatically amplifies the response of magnetic sensors.
Scientists at Argonne National-laboratory have achieved a record for glant magneto-resistance in ironchromium films.

The Argonne group recorded a value of 150%, up 30\% from the previous record. Whilst the underlying physics that results in these high values is not fully understood, studies of the new system suggest that the magneto-resistance could easlly be raised to 200%.

Structured as a superlattice, the film was buill with alternating chrome and iron layers, about 1,100 angstroms thick, sputtered onto a magnesium oxide substrate. Previous attempts to use magnetron sputtering to build iron-chromium magneto-resistance filtns
have produced mediocre results because of the propensity of the deposited lavers to form into polycrystalline domains. Previous records have been set with sputtered cobalt-copper films and ron-chromium films deposited with molecular beam epitaxial methods

Anti-acoustic mountings

High quality audio equipment, such as CD players, tape decks, turntables and speaker cabinets, is frequently supported by special sharp pointed conical mountings. The theory behind the use of such mountings is that the smaller the contact area between the base of the equipment and the supporting surface, the less the music will be affected by feedback and resonance.

Such conical mountings are in fact a very simple but effective way of improving performance by reducing subfrequency vibration and are a must for every serious Hi-Fi enthusiast. A range of
such conical mountings is now available from Maplin and consists of a conical support accompanied by a metal disk with central indentation for the point of the cone to rest upon.

There are three different types available. The first is a gold plated brass cone on a sandal-wood base having a low sympathetic vibration characteristic and is intended for use with items not exceeding 10 Kg in weight. It come as a set of six cones and six bases (price £19.95 for the six), three of which would be used for the CD or record player and three for the amplifier. In use, the cones

are inverted with their bases carrying the bottom panel of the unit, while the points rest upon the metal discs protecting the supporting surface.

The second type ($£ 49.95$ for a set of six) is a composite gold plated brass and sandal-wood cone which is suitable for speaker
cabinets up to 20 Kg in weight. The third type ($£ 59.95$ for a set of six) is the same as the second but has fixing screws so that the cones can be physically attached to the base of the speaker cabinet.

For further details contact Maplin on 0702554161

64Mbit DRAMs from II and Hitachi

Texas instruments and Hitachi have started releasing sarnples of their jointly designed and developed 3.3 V 64 Mbit dynamic randorn access memory inlegrated circut. The two companies have previously jointly developed a 16 Mbit DRAM and are currently considering joint development of a 256 Mbit DRAM.

The 64Mbit DRAM has a 0.35 micrôn feature size la human
hair is 75 microris wide) and a single one of these chips could sfore the equivalent of 2,800 typed pages of text.
The chip has been initially örganised as $8 \mathrm{Mbit} \times 8$ with a 60 nanosecond or less access time. Fabricated using CMOS technology, its memory colis each measure 1.65 square microns and are designed with advanced stacked capacitors: The chlo will be available in 500 mil wide packaging.

This chip is expected to become a standard component in the next generation of PCS and workstations.

For further information contact Hitachi Europe on 0628585000 .

Light Probe

Anew light probe is designed to enter spaces as small as $3 / 8$ in in diameter and has brightness enhancing features. A heat and shatterresistant frosted cover shrunk onto a Jiffy Super Light Probe diffuses the light of the halogen bulb to eliminate shadows. The light illuminates a 190 degree arc, allowing it to be used as a flashlight as
well as a probe. Pins connect the socket, extension tube, and handle to prevent twisted wires that can lead to short circuits.

Two battery holders enable the probe to be used with different Makita rechargeable batteries. Unlike the Makita holders, which cover the entire length of the battery, the Jiffy holders are short and use a quick release catch to hold the batteries securely in place.

The shorter holders can be moulded as a single piece, rather than two. And by not covering the length of the battery, one holder can accommodate both available styles of 9.6 V battery. A 12 V Super Light Probe, also available, can be run from a vehicle cigarette lighter or through a 120 V to 12 V transformer, for bench use.

Lights are used by drug enforcement officers to
inspect hollow panels of cars, boats, and planes for contraband or bombs. They are used by locksmiths to help in opening locked cars, by auto and truck mechanics and in plant maintenance. The battery holders are also used separately to permit Makita batteries to power radio remote controllers.

The probe produced by AAA Products International, Dallas, Texas.

The

This month's cover disk includes Part 2 of the Layo1 PCB design and schematics package PLUS a powerful Cross Assembler package, which allows one to write assembly language programs for all the popular 8bit microprocessors, using your PC

A great many Ell readers are now building and designing projects which include microprocessors. But the use of microprocessors brings with it the problems of writing assembly language software to perform the desired control tasks. In this month's and last month's issue of ETI we have included a project for building a Z- 80 processor system which could form the heart of many a project.

But how can one write $\mathrm{Z}-80$ assembly language software without a Z 80 development system and associated assembler? The answer is to use a cross assembler and do it on a standard PC. The program included on this month's disk is just such a cross assembler, and is called TASM.

TASM is described as a table driven cross assembler for the MS- DOS environment. Assembly source code written in the appropriate dialect can be assembled with TASM and the resulting object code transferred to the target microprocessor system via PROM or other mechanisms.

TASM supports a wide range of popular microprocessor families, they include: 6502, 6800/6801, 6805, TMS32010, TMS7000, 8048, 8051, 8080/8085, Z-80 and users who feel so inclined can even build their own tables to allow TASM to assemble code for other microprocessors.

TASM is, in fact, a very versatile assembler. It supports powerful expression parsing (17 operators), supports a subset of the C preprocessor commands and has extensive macro capability. Output can be in any one of four object file formats (Intel hex, MOS Technology hex, Motorola hex and binary). It also has features in support of PROM programming such as preset memory and contiguous blocks.

The documentation which comes with TASM is extremely comprehensive. However, documentation for the microprocessor you intend writing software for is something which you will have to acquire separately.

In order to use TASM, the source code must be written using a text editor. The source code format should correspond to the standard for the processor, details on which can be obtained from the processor's documentation. Once the source code has been written it should be saved as an ASCll file. It can then be run through TASM.

listalling TASM

To install TASM on your computer, you will first of all need to decompress it. There is a special decompression program to do this.

Firstly, create a directory to store TASM, thus: MD ASM
and then enter that directory and copy the following two ETI cover disk files to it:

> PKUNZIP.EXE 2362.ZIP

Then decompress the files by running PKUNZIP, thus: PKUNZIP C: VASMI2362:ZIP the, result is a decompressed collection of files including TASM and all the documentation (Ignore the comments in the documentation about having to unzip the documentation, since it has already boen done!!.

There is a copy of a very comprehensive manual included on the disk, which be can viewed directly or printed out using a word-processor (don't forget to give your printer plenty of paper before doing this!).

The version of TASM"included on the ETI disk was kindly supplied to EII by the. Public Domain and Shareware Library of Winscombe House, Beacon Rd, Crowborough, Sussex, TNB 1UL Tel. 0892663298 . This company is able to provide a very wide range of useful shareware and public domain programs. many of which will be of interest to ETI readers,

TASM is a shareware product, which means that if you like if and intend using it regularly, then it is only fair that you pay something to the authors. Full details of who the authors are and how to pay them is included in the documentation.

The syntax used by TASM can be quite complex, but is fully detailed in the documentation and also displayed if we try running TASM without any parameters. As a simple example, if we are writing a 6502 program saved as a text file called TEST.SRC, we can assemble it using the following command sequence: TASM -65 TEST.SRC

If there are any errors in the assembly code listing, the assembler will list them. It is then back to the editor to correct them before reassembling.

Layo1 - Part 2

This issue contains the concluding part of the Layo1 PCB design and schematics package. On this month's disk are the schematic output drivers, the PCB output drivers, the PCB design rule checker and a comprehensive set of self running tutorials. All these, together with the programs on last month's disk should enable any reader to start designing professional looking PCBs on his or her PC.

As we noted last month, this is a shareware version of a popular commercial program. This version is limited to 1000 commands, which in practice means designs with about 200 pads and 800 tracks, sufficient capacity to design almost any one of the PCBs used in ETI projects. It will run on any IBM PC or 100\% compatible, with mouse, EGA graphics and running DOS 3.1 or later

Readers who have already installed Layo1 on their PC will find the tutorial package particularly useful since it demonstrates how various operations are performed in a way that is far better than any documentation.

The way that Layo1 works and the basic theory behind the operation of PCB design and schematics layout programs, was included in last month's issue of EII. The operation of the output drivers and the design rule checker was also covered. Any reader who did not get a copy of last month's issue can still get one from EII's Back Issues Dept, the cost is cover price, $£ 2.25$, plus 60 p P\&P, and you will receive both the magazine and the free cover mounted disk for this price. The address to send your cheque or P.O. to is ETI Back Issue Service, Argus House, Boundary Way, Hemel Hempstead, Hertfordshire, HP23 7ST.

Installing Layo1-part 2

To install these additional Layo1 programs on your computer there is a special Install program to simplify the procedure. AH you need to do is insert the disk into the appropriate disk drive and access that drive, then simply type: INSTALL. A windows type menu system will then be displayod and the various messages will lead you through the installation procedure.

There is a copy of the manual on disk and this can be printed outreither from Layol or by loading it into Word. Also included in Layo1 and its documentation are details of how to register your copy of Layol and the prices and ordering details for the full versions of this program.

[^2]

- 107 types available from stock
- Sizes from 15VA to 625VA
-Dual 120 v primaries allowing $110 / 120 \mathrm{v}$ or 220/240v operation

TYPE	$\begin{aligned} & \text { SERIES } \\ & \text { NO. } \end{aligned}$	SEC VOLTS	AMS CURRENT	TYPE	$\begin{aligned} & \text { SEAIES } \\ & \text { NO. } \end{aligned}$	SEC VOLTS	RMS CURRENT
15VA	03010	6+6	125	225VA	63012	12+12	938
	03011	9+9	083		63013	15+15	7.50
$£ 10.68$	03012	12+12	063	£21.04	63014	$18+18$	6.25
	03013	15+15	050		63015	22+22	511
	03014	$18+18$	042		63016	$25+25$	450
	03015	$22+22$	0.34		63017	$30+30$	375
	03016	$25+25$	0.30		63018	$35+35$	321
	03017	$30+30$	0.25		63026	$40+40$	281
30 VA	13010	${ }^{6} 46$	2.50		63025	$45+45$	250
	13011	$9+9$	1.66		63033	$50+50$	225
£12.21	13012	12+12	1.25		63028	110	2.04
	13013	15+15	100		63029	220	102
	13014	$18+18$	083		63030	240	0.93
	13015	22+22	0.68	300VA	73093	15+15	90,00
	13016	$25+25$	0.60		73014	$18+18$	833
	13017	$30+30$	0.50	£22.94	73015	$22+22$	6.82
50 VA	25010	- +6	4.16		73016	$25+25$	6.00
¢13.84	23011	$9+9$	2.77		73017	$30+30$	5.00
	23012	12+12	2.08		73018	$35+35$	428
	23013	15+15	1.66		73026	$40+40$	3.75
	23014	$18+18$	1.38		73025	$45+45$	333
	23015	22+22	1.13		73033	$50+50$	300
	23018	$25+25$	1.00		73028	110	2.72
	23017	$30+30$	0.83		73029	220	1.36
	23028	110	0.45		73030	240	1.25
	23029	220	0.22	500VA	83016	25+26	10.00
	23030	240	0.20		83017	$30+30$	833
80VA	33010	6-6	6.66	$\underline{4} 29.57$	${ }^{83018}$	$35+35$	714
	33011	$9+9$	4.44		83026	$40+40$	625
C15.43	33012	12+12	333		83025	$45+45$	555
	33013	$15+15$	266		83033	50+50	500
	33014	${ }^{1} 8+18$	222		83042	$55+55$	454
	33015	22+22	181		83028	110	4.54
	33016	$25+25$	160		83029	220	227
	33017	$30+30$	133		83030	240	2.08
	33028	110	072	625VA	93017	$30+30$	10.41
	33029	220	036	c32.64	93018	35.35	8.92
	33030	240	0.33	£32.64	93026	$40+40$	781
-120VA	43010	6+6	0.00		93025	$45+45$	694
£16.45	43011	$9+9$	666		93033	$50+50$	625
	43012	12+12	500		93042	55+55	568
	43013	15+15	400		93028	110	5,68
	43014	$18+18$	333		93029	220	2.84
	43015	22+22	272		93030	240	2,60
	43016	25+25	240	13.8 V	DC P	WER	UPPLY
	43018	${ }^{3} 5$	171				
	43027	$20+20$	300		RANS		
	43028	110	109	8C267	500VA	18+18	£32.64
	43029	220	054	$9 T 845$	675VA	16.1V	£38.06
	43030	240	0,50	91845	675 VA	16.1V	230.06
160VA	53011	9+9	889				
£19.21	53012	$12+12$	666				
	53013	15+15	533				
	53014	18+18	444				
	53015	$22+22$	3.63				
	53016	$25+25$	3.20	Prices	include	AT and	arriage
	53017	$30+30$	266				
	53018	$35+35$	2.28				
	53026	40,40	200				
	53028	110	145 072	avai		pre	-
	53029 53030	220 240	072 066	avai	able	on re	Uest

Write, phone or fax for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

Please add E2.00 P \& P to all orders and 17.5% VAT on all U.K. orders For full catalogue please send two 1st class stamps or 2 IRC'S

SOME POPULAR BARGAINS

MOTORS - BATTERY 1-12V
3 DIFFERENT MODEL MOTORS, $£ 1$, Order Rel 35
SPIN TO START 3V DC MOTORS for model aircrath etc. 5 lor El , Order Rel 134
CASSETTE MOTOR $15-12 \mathrm{~V}$, powerlul, speed increases with voltage, \&1, Order Rel 224
MINI CASSETTE MOTOR, $6-9 \mathrm{~V}$ working. 51, Order Rel 944 HIGH EFFICIENCY MOTOR tor solar cell working. ©t, Order Rel 643
12 V MOTOR, ex BSR record player, $£ 1$, Order Rel 687 ov CASSETTE MOTOR, brushless, £1.50, Order Re $1.5 P 14$.
1/104P 12V DC mоTOR, Smiths, EA, Order Ref 4 P22 1/141P 12 V MOTOR, Smiths. E8, Order Rel 6 P1 1/6HP 12V MOTOR, Smiths, E8, Order Rel BP14

MAINS MOTORS WITH GEARBOXES

5RPM 60w, £5, Order Rel. 5P54.
40RPM 100W, E6, Order Rel. 6P21
50RPM 60W, E5, Order Ret. 5P168
60RPM 60W, E5, Order Ret 5P171
110APM 60W, E5, Order Rel 5P172
150RPM 60W, Order Ref 5P169.
200RPM 60W, E5, Order Rel 5P216
500W MOTOR with gearbox \& variable speed selector, 100 rpm upwards, \&5, Order Rel 5P220 1 REV PER 24 HRS $2 W$ MOTOR, E1, Order Rel 89
1 REV PER 12 HRS $2 W$ MOTOR, $£ 1$, Order Rel. 90
1 REV PER 4 HRS 2W MOTOR, $£ 2$, Order Rel 2P239 1 REV PER HOUR 2W EXTRA SMALL MOTOR, 2 lor $\varepsilon 1$, Order Rel. 500.
\%RPM MINI MOTOR, £3, Order Rel. 3P64
1RPM MINI MOTOR, £2, Order Ref $2 P 328$
4RPM 2W MOTOR, E1, Order Rei 446
15RPM 2W MOTOR, $£ 2$, Order Ref $2 P 321$
25RPM 2W MOTOR, $£ 2$, Order Rel 2 P322
200RPM 2W MOTOR, £1, Order Rel 175
250RPM 2W MOTOR, £1, Order Rel 750 .

MAINS MOTORS

4 STACK MOTOR with $1 / /^{*}$ spindle. $£ 1$, Order Rel 85 mOTOR $11 /=$ STACK with good length spindle from each side, $£ 2$, Order Rei 2 P55
MOTOR $1 /{ }^{\prime \prime}$ " STACK with 4^{*} long spindle, $£ 2$, Order Ref. 2P203
MOTOR BY CROMPTON 06 HP but little soiled, $\mathbf{c 3}$, Order Rel 3P4
JAP MADE PAECISION MOTOR balanced rotor reversible, 1500 rpm, $£ 2$, Order Rel 2 2P12.
TAPE MOTOR BY EMI, 2 speed \& reversible, £2, Order Ref $2 P 70$
1/4HP 1000RPM, ct , Order Rel 8P7
VERY POWERFUL MAINS MOTOR, with extra long $\left(2 \%{ }^{\prime \prime}\right)$ shatts extending oul each stide Makes it ideal lor a reversing arrangement for, as you know, shadod pole motors are'rot reversible, E3. Order Ref 3p157.

MOTORS - STEPPER

MINI MOTOR BY PHILIPS, $12 \mathrm{~V}-75$ degree step, quite standard, data supplied, only $£ 1$, Order Rel 910 MEDIUM POWERED Jap made i 5 degree step. 83 , Order Ref. 3P162
VERY POWERFUL MOTOR by American Philips 10 14V 75 degree step. ©5, Order Ret 5P81

LOUDSPEAKERS

$2^{\prime \prime}$ ROUND 50 OHM COIL $1 / 2 W, 2$ for $£ 1$. Order Rel 908
$21 /{ }^{\circ} 8$ OHM, 2 for $£ 1$, Order Rel 454
$21 /{ }^{\prime \prime} 35$ OHM, 2 lor £1, Order Rel 51
8 OHM, 2 for £1. Order Rel 682
4 OHM WITH TWEETER, £1, Order Rel 895
6 OHM, £1, Order Rel 896
OHM WITH TWEETER, £1, Order Rel 897
$5^{-15} 4$ OHM, E1. Order Rel 242.
5" 15 OHM, £1, Order Ref 906
$3^{-1} 16 \mathrm{OHM}, ~ £ 1$, Order Rel 725
$4^{\prime \prime} 16 \mathrm{OHM}, 2$ for $£ 1$, Order Rel 684
${ }^{-15}$ OHM AUDAX, \&1, Order Ref 504
" $\times 3^{\prime \prime} 8$ OHM 5", \&1, Order Rel 138
3" 4 OHM TWEETER, £1, Order Rel 433
GOODMANS $51 / 3^{=10 W} 4$ OHM, 22 , Order Rel 2P2
GOODMANS $61 /{ }^{\prime \prime} 10 \mathrm{~W} 4 \mathrm{OHM}, £ 2$, Order Rel $2 P 27$
HORN SPEAKER, $4 \% " 8$ OHM, £3, Order Ref
$20 W 5^{\prime \prime}$ BY GOODMAN, £3, Order Rel 3P145
20W 5" BY GOODMAN, £3, Order Ret 3P145
AMSTRAD 8" 15 W B OHM with matching tweeter, EA^{2}, AMSTRAD 8 " 15
Order Rel 4P57
Order Rel CASED PAIR OF STEREO SPEAKERS BY BUSH, CASED PAIR OF STEREO SPEAK
ohm, £5 per pair, Order Ref. 5P141. DOUBLE WOUND VOICE COIL, 251
BULKHEAD SPEAKER metal cased, 810 , Order Ref 1043
25W 2 WAY CROSSOVER, 2 for $\mathbf{£ 1}$, Order Rel 22 40W 3 WAY CROSSOVER, \&1, Order Rel 23

MONITORS AND BITS

PHILIPS 9"HIGH RESOLUTION MONITOR, \&15, Order

 PHILIPS 9Ref, 15P1
Rel, 15P1
METAL CA
METAL CASE for the above Philips monitor, $£ 12$ Order Ref 12P3
PHILIPS 9" HIGH RESOLUTION TUEE, ref M24 306W 812, OLder Rel 12P7. MONITOR TU日E, rel SE5J331 £10, Order Rel. 10P104
MINI SCOPE TU日E face size, $2^{n} \times 2 \frac{1}{2}{ }^{n}$, electrostatic 3 V heater, 1 KV in mu metal shield, 810 , Order Rel 10P73.

CO $31 /$ DIGIT PANEL METER, this is a multi range ollmeterlammeter using the A-D converter chip 7106 provide 5 ranges each of volts and amps. Supplied with full data sheel. Special snip price of $£ 12$. Order Ref. 12P19
12V-0-12V 6VA PCB MOUNTING MAINS TRANSFORMER, normal 230 V primary and conventional open winding construction. E1, Order Rel 938.
AMSTRAD 3" DISK DRIVE brand new Standard re placement or why not have an extra one? E20, Order Rel 20P28
THIS COULD SAVE YOU EXPENSIVE BATTERIES, an in car unit for operating 6 V radio, cassette player, etc. rom car lighter socket, £2, Order Rel 2P318
MEDICINE CUPBOARD ALARM, or it could be used to warn when any cupboard door is opened, built and neatly cased, requires only a battery. 83, Order Rel 3P155
FULLY ENCLOSED MAINS TRANSFORMER, on a $2 \mathrm{M} 3-$ core lead terminating with a 13A plug. Secondary rated at 6 V 4 A . Brought out on a well insulated 2-core lead terminating with insulated push on tags, $£ 3$, Order Ref. terminating with insulated push on tags
3P152. Ditto but 8A, £4, Order Ref 4P69.
DON'T LET IT OVERFLOW, be it bath, sink, cellar, sump DON'T LET IT OVERFLOW, be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased Ref. 3P156
DIGITAL MULTI TESTER MG3800, single switching covers 30 ranges including 20A AC and DC, 10 MEG input impedence, $31 / 2$ LCD display. Complete with lead. Currently advertised by many dealers at nearly $£ 40$, our price only 25 , Order Rel. 25P14.
ANALOGUE TESTER, input impedence 2 K ohms per volt It has 14 ranges, $A C$ volts $0-500$ DC volts $0-500$, DC current 500 micro amps at 250 milliamp, resistance current 500 micro amps at 250 . itted diode protection $0-1$ meg-ohm, decibels 2056 dB . Fitted diode protection, overall size $90 \times 60 \times 30$
$\varepsilon 7.50$, Order Rel 75 PB
LCD CLOCK MODULE, 15 V battery operated, fits nicely into our 50 p project box, Order Rel 876. Only E2, Order Rel 2P307
SENTINEL COMPONENT BOARD, amongst hundreds of other parts this has 15 ICs all plug in so don't need desoldering Cosi well over $£ 100$, yours for $\mathbf{8 4}$, Order Rel 4P67
AMSTRAD KEYBOARD MODEL KB5, this is a most comprehensive keyboard, having ovet 100 keys including of course full numerical and qwerty. Brand new still in maker's packung, £5, Order Ret. 5P202.
SOLAR PANEL BARGAN gives 3 V al 200 mA ع2, SOLAR PANEL
Order Rel 2P324
ULTRA SONIC TRANSDUCERS, 2 metal cased units, ULTRA SONIC TRANSDUCERS, 2 metal cased units, one transmits one receives. Built to
$40 \mathrm{kHz}, \mathbf{£ 1 . 5 0}$ the pair. Order Ref $15 \mathrm{P4}$
INSULATION TESTER WITH MULTIMETER, internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, $A C / D C$ volts, 3 ranges $D C$ milliamps, 3 ranges resistance and 5 amps . These instruments are ex-British Telecom but in very good condition, tested and guaranleed OK, yours for only $£ 7.50$ with leads. carrying case $\varepsilon 2$ exira Order Ref 7 5P4
MAINS ISOLATION TRANSFORMER stops you getting "10 earth" shocks. 230 V in and 230 V out 150 watt upright mounting, 87.50 , Order Ref 7.5P5 and a 250 W lorroidal isolation, £10, Order Ref 10P97
MINI MONO AMP, on pcb Size $4^{\prime \prime} \times 2^{-}$with tront panel holding volume control and with spare hole for switch or tone control. Output is $4 W$ into 4 ohm speaker using 12 V or 1 W into 8 ohm using 9 V Brand new and perfect. only $£ 1$ each, Order Rel 495
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs of $250 \mathrm{~V}-0 \mathrm{~V}-250 \mathrm{~V}$ at 75 mA and 6 3V at 3A, £5, Order Rel 5P167
0-1MA FULL VISION PANEL METER $2^{3{ }^{3}}{ }^{*}$ " square. scated $0-100$ but scale easily removed for re-writing. scaleach. Order Rel 756
PCB DRILLS, 12 assorted sizes between 75 and 15 mm , $\& 1$ the lot, Order Rel 128
$12 V$ AXIAL FAN, for only $£ 1$, ideal tor equipmen cooling, brand new made by West German company. Brushless so virtually everlasting. Supplied complete with a circuit diagram of transistor driver, £1, Order with a
Ref 918
PC OPERATING SYSTEMS, fully user documented and including software. MS-DOS 3.20 with $5^{\prime \prime}$ disk, 85 , Order Rel. 5P2076; MS-DOS 3.3 with $31 / 2^{\prime \prime}$ disk, \&5, Order Rel 5P208, or with 5^{n} disk, £5, Order Rel 5P208/5; MS-DOS 401 with $31 / 2^{\prime \prime}$ disk, £10, Order Rel 10 P 99
45A DOUBLE POLE MAINS SWITCH. Mounted on a $6 \times$ $31 / 2$ aluminium plate, beautifully linished in gold, with pilot light. Top quality, made by MEM, 22 , Order Ref pilot lig
SOLAR ENERGY EDUCATIONAL KIT. It shows how to make solar circuits and electrical circuits, how to in crease voltage or current, to work a radio, calculator cassette player and to charge NiCad batteries. The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to complete a Iree-standing electric lan A really well written in struction manual, £8, Order Ref 8P42B

POWER SUPPLIES - SWITCH MODE (all 230 V mains operated)
ASTEC REF. B51052 with outputs $+125 \mathrm{~A},-12 \mathrm{~V}$ ASTEC REF. B51052 with outputs $+125 \mathrm{~A}_{1}-12 \mathrm{~V}$
$1 \mathrm{~A}_{1}+5 \mathrm{~V} 3 \mathrm{~A}_{1}+10 \mathrm{~V} 05 \mathrm{~A},+5 \mathrm{~V} \cdot 02 \mathrm{~A}$ unboxed on $1 \mathrm{~A}_{1}+5 \mathrm{~V} 3 \mathrm{~A}_{\mathrm{C}}+10 \mathrm{~V} 05 \mathrm{~A},+5 \mathrm{~V} \cdot 02 \mathrm{~A}$ unboxed on pcb size $180 \times 130 \mathrm{~mm}$, \&5, Order Rel 5P188 ASTEC REF. BM4 1004 with outputs $+5 V 31 / 2 A$, $+12 \mathrm{~V} 1 \cdot 3 \mathrm{~A},-12 \mathrm{~V} \cdot 2 \mathrm{~A}$, \&5, Order Re1 5P199 ASTEC No. $12530+12 \mathrm{~V} 1 \mathrm{~A},-12 \mathrm{~V} 1 \mathrm{~A},+5 \mathrm{~V} 3 \mathrm{~A}$, uncased on pcb size $160 \times 100 \mathrm{~mm}$, $\mathbf{~} 3$, Order Ref 3P14
ASTEC No. BM41001 110W 38V $25 A, 25.1 \mathrm{~V} 3 \mathrm{~A}$ part metal cased with instrument type main input socket $\&$ on/of op rocker switch size $354 \times 118 \times$ $84 \mathrm{~mm}, \varepsilon 8.50$, Order Rel 8 5P2
ASTEC MODEL No. BM135-3302 + $12 \mathrm{~V} 4 \mathrm{~A},+5 \mathrm{~A}$ 16A, - 12V 0 5A totally encased in plated steel with mains input plug, mains output sockel \& with mains input ple ong, maif switch size $400 \times 130 \times 65 \mathrm{~mm}$, double pole on/off swite
£9.50, Order Rel. 9.5 SP 4.

POWER SUPPLIES - LINEAR
(all cased unless stated
4.5 V DC 150 mA , \&1, Order Ref 104
$5 V$ DC $21 / 2 A$ psu with filtering $\&$ volt regulation, uncased \&4, Order Ref 4P63
6V DC $700 \mathrm{~mA}, ~ £ 1$, Order Ref 103
6 V DC 200 mA output in 13A case, $\mathbf{2 2}$, Order Rel. 2P112
$6-12 V$ DC for models with switch to vary voltage and reverse polarlty, E2, Order Rel 2P3 9V DC $150 \mathrm{~mA}, ~ £ 1$, Order Ref 762
9V DC 2•1A by Sinclair £3, Order Ref 3P151 9V DC 100 mA , 1 , Order Ref 733
12V DC 200 mA output in 13A case, $\mathbf{~ 2}$, Order Ref. 2P114.
12V DC 500 mA on 13A base, £2.50, Order Ret $25 P 4$.
12 V 1A filtered $\&$ regulated on pcb with relays 8 Piezo sounder, uncased, E3, Order Ref 3P80 AMSTRAD 13.5 V DC at 18 A or 2 V DC at 2 A , f 6 AMSTRAD 13.5V DC at 18A or 2 V DC at 2A, $\mathbf{~} 6$
Order Ref 6P23 Order Ref 6P23
$24 V$ DC at 200 mA twice for stereo amplifiers, $\mathbf{~} 2$ Order Ref. 2P4
9.5V AC 600 mA made for BT, $£ 150$, Order Ref. 1.5P7.

15V 500 mA AC on 13A base, £2, ref 2P281
AC OUT 98 V at $60 \mathrm{~mA} \& 153 \mathrm{~V}$ at $150 \mathrm{~mA}, \mathrm{\&} 1$, Order Rel 751
BT POWER SUPPLY UNIT 206AS, charges 12 V battery and cuts off output should voltage fall below pre-set, \&16, Order Rel 16P6
SINCLAIR MICROVISION PSU, E5, Ref 5P148

LASERS \& LASER BITS

2MW LASER, Helium neon by Philips, full spec E30, Order Ref 30P1
POWER SUPPLY for this in kit form with case is \&15, Order Ref 15P16, or in larger case to house tube as well, 18 , Order Ref 18P2
THE LARGER UNIT, made up. lested and ready to use, complete with laser tube. £69, Order Rel. 69P1.

HEATING UNITS
LINEAR QUARTZ GLASS TUBES 360W, 2 in series for mains, \&1, Order Ref 907
1000W SPIRAL ELEMENTS for repairing fires etc 3 for £1, Order Ref 223
1000W PENCIL ELEMENTS, 2 for £1, Ref 376
1.2KW MINI TANGENTIAL HEATER, ideal for under desk etc 55 , Order Ret 5P23
2KW TANGENTIAL HEATER, \&6, Order Ref. 6P30 3KW TANGENTIAL HEATER, £8, Order Ref 8P24 12' TUBULAR HEATER, slightly storage soiled, $£ 6$, 12' TUBULAR HE
Order Ref 6P31
Order Ref 6P31 WATER-PROOF HEATING WIRE, 60 ohms per metre. 15 M is right length for connecting 10 mains. 55, Order Rel. 5P 109

The above prices include VAT but please add $£ 3$ towards our packing and carriage if your order is under E50 Send cheque or postal orders or quote credit card number

M \& B ELECTRICAL SUPPLIES LTD
 Pilgrim Works (Dept. E,E.) Stairbridge Lane, Bolney, Sussex RH17 5PA
 Telephone: 0444881965 (Also fax but phone first) Collers to 12 Boundary Roadi Hove, Susse\%:

he eye is our window onto the world around us. Through this window we learn about the world, about the objects in it, their relationship to each other, their behaviour and their function. For most of us vision is something we take for granted, but without it life can be very difficult

What applies to us humans, also applies to the intelligent machines which are now being built. If such machines are to find out about the world around them they need to be able to see it. They need to touch it, hear it and be able to learn to recognise familiar object, to discover the basic rules which govern existence in that world.

Sensory systems, in particular vision, for machines has long been a subject of considerable interest to researchers in the field of artificial intelligence. The approach taken by these researchers has, however, tended to one or other of two distinct paths. There are those researchers who will simply input an image üsing a video camera and then attempt to do all the image recognition and analysis by computer software and there are those who are seeking to build systems which more closely model the biological eye. It is the work of this latter group of researchers, who can broadly be described as neural cyberneticists, that we will be looking at in this article.

The biological model

The biologist can give us plenty of examples of vision systems from all sections of the animal kingdom. These range from the extremely simple photoreceptors found in single celled animals, through the compound eyes of insects to the highly complex human eye. We may not want to model these systems exactly but they do give us some ideas about how the problem can be tackled.

There is not much that we can learn from simple single celled and small multicellular organisms since their light receptors are very rudimentary. They are primarily used to allow the organism to
move towards or away from a light source, the direction being dependent upon the feeding habits and behaviour of the animal. There is no suggestion that such optical sensors are used to build up an image of the environment around the animal.

Probably the simplest true image sensors that are of interest to neural cyberneticists are those found on molluscs and on arthropods, such as insects and crustaceans. These optical sensors are designed to not just detect light but also to perform simple image analysis. They can detect the polarisation of light to provide some form of direction finding with respect to the sun. They can also perform motion detection for finding prey and as a warning of predators. They also provide sufficient image analysis to enable a flying insect to identify a leaf and then land upon it.

An insect does not see an image in the same way that a camera does, in fact it is doubtful that an insect can see any sort of image in the sense that we can see an image. An insect has two compound eyes and in most cases a number of single eyes. In an ant, for example, each compound eye consists of about 1200 individual optical elements or ommatidia, each of these elements having its own lens and optical sensor.

But not all the sensors' in an ant's compound eye are the same. Some are sensitive to polarised light, some to ultraviolet radiation, both of which are used to help the ant navigate. Others are sensitive to colour, or to motion. All of these signals from different types of sensors are combined by the nervous system of the ant to provide it with all the visual information that it needs to survive.

If we were to use electronics to model part or all of an insects visual system we would have a system that consisted of a lot of separate optical sensors, each comprising of a lens and perhaps a colour filter, or a polarising filter, to screen out unwanted light radiation. The desired part of the light spectrum, or polarisation direction, is then measured by a sensor, such as a standard photodiode. Depending on what is being measured, the output from this sensor could be a simple on/off voltage, or a variable voltage.

It would be up to a controlling computer program to decide what each input meant and how it would affect overall system behaviour. Thus, a simple mobile robot could be built which had a liking for blue light, or blue coloured
objects and an aversion for red light and red coloured objects. Or one that would search for and follow any light coloured marks painted on the floor. This is visual input, but not image input.

From the standpoint of neural cybernetics, this distinction is very important. In other words an image, as we humans understand it, is not necessary in order to provide a rudimentary level of optical and visual information. Thus the concept of using polarised sunlight to navigate could be adopted in the design of a mobile robot, without the robot actually being able to see where it is going.

Although the eyes of insects and other lowly forms of animal life can provide some interesting design ideas, the neural cyberneticists' main interest lies primarily in the single lens camera type eye found in amphibians, reptiles, birds, mammals and, of course, man. The single lens eye is much more generalised in its function than ommatidia of an ant and it is primarily designed to input and process visual data in the form of images of the external world.

Much of the early work in this area was done at the Massachusetts Institute of Technology by people like J Y Lettvin on amphibian vision. He showed how the eye of an animal like a frog actually worked, an analysis which has enabled the neural cyberneticists to build models of the optical system of not just the frog, but also of higher level animals such as cats and even the human eye.

In a frog's eye, the single lens focuses an image of the world onto the retina, a surface built up from thousands of individual light receptors and their associated nerve cells. Each of the receptors in the retina detects a small part of the focused image and the associated nerve cells perform an initial level of processing on the perceived image, then transmit this data via the optic nerve to the brain, for further analysis.

The result of this pre-processing is the generation of four specific types of information about the image being perceived. The first type if information is described as net dimming and is a measure of how much an image has dimmed when compared with the previous image. The second type of information is moving edge data, concerned with motion at the periphery of objects in the image field. The third type of information is sustained contrast data, telling us the size and shape of objects in the visual field by describing edges of optical contrast. Lastly, there is net convexity data, which tells us the
speed and direction of small moving objects within the image field.

These different types of preprocessing image data are all generated by the horizontal layer of nerve cells which link each photoreceptor. It is this linkage which allows the frog's eye to percieive images rather than the collection of optical data inputs in an insect. This horizontal layer acts as a neural network which allows each receptor to influence, and be influenced by, its neighbouring receptors.

The silicon eye

By the mid 1980s biologists and neuroscientists knew enough about the much more advanced mammalian eye and its associated nerves and synapses to be able to accurately model the processes which takes place. Simultaneously, electronics had advanced to a level where it was possible to duplicate the behaviour of any neural process. From this convergence of two separate areas of development was born a number of projects to build a silicon retina, the sensory portion of an eye on a single silicon chip, that would behave much like its biological analogue and act as a possible basis for future machine vision systems.

Probably the most promising work in this area is being done at the California Institute of Technology under the auspices of veteran Al researcher and the man behind much of the development of modern methods for digital VLSI, Carver Mead. His team has already built silicon models of biological structures, including a silicon retina and a silicon ear.

The silicon retina consists of an array of light sensors, each covering a small portion of the image area, an area known as a pixel. With just a single pixel it is possible for the system to detect changes in lightness and darkness, and even movement of an object across the field of vision, but impossible to detect any image. To identify simple shapes such as the letters on this printed page, we need an array of at least 64 pixels, an array of at least 256 pixels to actually read the text, and 1024 pixels or better for very limited image recognition and scene analysis. The Caltech team's latest silicon retina has over 2500 pixels.

Each of the pixels in the Caltech silicon retina has three parts; the photo receptor, the horizontal cell connections and a bipolar cell. The receptor has a photosensitive element that outputs a current proportional to the number of photons it absorbs. The receptor also has a feedback loop which amplifies the
difference between the instantaneous current output by the sensor and its average level over a long period. The output voltage from the photosensor is thus proportional to the logarithm of the light intensity. There is also a feedback loop between the horizontal connections and the receptor, the function of which is to change the sensitivity to areas of uniform intensity.

The individual pixel circuits are linked by the horizontal cells. The Caltech silicon retina's receptors are arranged on a hexagonal grid pattern and the horizontal links thus form a hexagonal network. The six horizontal links between each pixel and its neighbours consist of six identical variable resistors and capacitors.

Each node in the horizontal network thus has a voltage which represents the spatially weighted average of the receptor inputs to the network. This means that the effective area of the image over which the signals are averaged can be changed by simply changing the resistor values in the horizontal links.

The final component in the silicon retina is the bipolar cell. This is an amplifier which has the function of determining the voltage difference between the photoreceptor to which it is attached and the corresponding node in the horizontal network.

The behaviour of a silicon retina

The Caltech team started work on their silicon model of a mammalian retina in the early 1980s and their retina has now been through about 20 versions in its evolution. What has surprised the researchers is how closely the behaviour of the silicon retina mimics that of the biological original.
Thus, the silicon retina will adapt itself to an image which remains stationary for a reasonable period, the network will gradually adapt the image away. However, just like the human eye, if a blank screen is suddenly placed in front of the adapted retina, it will display a negative after image. The same effect
that we get if we stare at a bright light and then look at a blank wall. Indeed, the researchers made some interesting discoveries that their silicon retina was subject to many of the same optical illusions that we perceive. For example we see a grey square as being darker when placed on a white background than when it is placed upon a dark background, the Caltech silicon retina sees the same illusion. The silicon retina also sees the illusion of apparent bright and dark bands adjacent to a transition from a light to a dark area, the so called Mach bands. Similarly, it also perceives grey spots at the intersections of a grid of white lines, the Herring grid. The appearance of these optical illu-
 digitally.
totally eclipsed by digital computing over the last twenty years, but perhaps it is now time to take another look. It takes a lot of processing time and a lot of silicon space to convert analogue voltages into digital form, then process that data and reconvert it. An analogue computational circuit could do the same thing in less time and with a much smaller usage of silicon. Indeed, as the Caltech silicon retina demonstrates, analogue computational techniques can perform tasks which would be very difficult if not impossible to do

Perhaps the supercomputers of the future will be partly analogue and partly digital?

Future development

As we have seen, scientists are already a long way down the path towards developing viable machine vision systems. The silicon retina is just one component, although probably the most important one. Another component is the development of pattern recognition systems, which can further process the data from the silicon retina. Such systems might also be based on neural networks and will be able to recognise familiar objects irrespective of orientation, distance, lighting conditions, etc.

With silicon retinas
the human eye in the Caltech silicon retina shows that the electronic model of the biological retina is pretty accurate. It also shows how important the image processing done by the retina is. Another enormously important conclusion to come from this research is that it demonstrates the enormous power of analogue computing in neural networks. Normally designers would have converted sensor input to digital form and then worked digitally, only transferring it back to analogue form when necessary. But neurons are, nevertheless, analogue devices and can singly and in networks perform analogue computation, indeed in the form of the human brain they make up the most efficient and most powerful information processor known.
Analogue computation has been almost
that have a resolution perhaps a hundred times that of the current Caltech chip and chips that work in pairs to give binocular vision and hence distance information, real machine vision is a possibility within the next decade or so.

And what about man, will we see the bionic eye of the Six Million Dollar Man? Well scientists at the Duke University Eye Centre in Durham N.C., are well advanced in research work aimed at implanting a silicon retina into the eye of blind people (in particular those with retinitis pigmentosa) so that they will have some sensation of light and dark and eventually complete ímage sensing.

Who says that the future is not going to be a marvellous place?

For Windows 3.0 \& 3.1 Runs on'any 'PC running Windows in standard or enhanced mode with 2MB RAM

Only £49 All Inclusive
....at that price many users will find it (P(CB Designer) preferable to the freeware competition, or the more expensive commercial alternatives...
.. I must have Iried over a dozen $P(B$ design programs in the last few years and PCB Designer is certainly the easiest to learn and use

R A Penfold Everyday with Practical Electronics

Niche Software

22 Tavistock drive, Belmont, Hereford, HR2 7XN Phone (0432) 264800 , FAX (0432) 264800

Please Note: Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line manual, in Windows Help format, A tutorial is also supplied online

READER OFFER

Please supply......................RORM/24@ £5.50 I enclose my cheque/P. O for

SECURITY EQUIPMENT
 COMPLETE SYSTEMS FROM ONLY $£ 63.95$

CONTAINING THE LATEST MICRO BASED CONTROL UNIT MINIATURE P.I.R SENSOR, CABLE, BELL BOX, SIREN, ETC
PLUS FULL RANGE OF SECURITY ACCESSORIES IN STOCK

QUALITY AUDIO MODULES
FROM 10-125W

PLUS PREAMPLIFIERS, AND MIXERS, FOR BUILDING DISCO AMPLIFIERS, PA SYSTEMS GUITAR AMPLIFIERS ETC

FREE LITERATURE
AUTONA LTD.
51 POPPY ROAD,
PRINCES RISBOROUGH
TEL 0844346326 BUCKS HP27 9DB

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Indusiry
Do you have a requirement for any of the following services:

PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand
written shts or PC $31 / 2^{\prime \prime}$ disC
Cable Harness Assembly floom
Manufaclure
Card Cage and Module Wiring Full Inspection
Phone Tracey on (0438) 310066 or Fax details of your requirements to us on (0438) 310073
EQT LTD, BTC, Bessemer Drive, STEVENAGE, HERTS, SG1 2DX

Product Design/Consultation Full Procurement Service PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture EncB Aftwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales
Refurbishment a speciality Top Quality Work al Reasonable Ratés

RANGER 2
 XT/AT + $\mathbf{3 8 6}$ PC

It has all the features you will ever need at an outstanding price. But now with a new 2 layer 386 Ripup \& Retry AutoRouter

$£ 599$

Option Pack 100% Router Simultaneous 6 layer Ripup \& Retry AutoRouter with via Minimisation. Autocad DXF in \& out. GERBER in.
Exchange your easy PC For a free AutoRouter

$£ 350$

 LOUロSPコAKERS－19 INCHSTEFEORACK AMPLIFIERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS：－MXF200（100W＋100W）MXF400（200W＋200W） MXF600（300W＋300W）MXF900（450W＋450W） ALL POWER RATINGS R．M．S．INTO 4 OHMS，BOTH CHANNELS DRIVEN
FEATURES：\＃independeni power supplies with iwo toroldai transtormers \＃Twin LE．D．Wu metere \＃
 dislortion \＃Aluminium cases＊MXFBOO \＆MXF900 ian cooled with D．C．loudspeater and thermal prolection． USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC．

SIZESt－MXF200 W19＂xH311／2＂（2U）xD11＂
MXF400 W19＂xH51،4＂（3U）xD12＂
MXF600 W19＂xH531／4＂（3U）xD13＂
PRICES：－MXF2OO \＆175．00 MXF400 £233．85
MXF600 £329．00 MXF900 £449．15
SPECIALIST CARRIER DEL．$\{12.50$ EACH
OMP XOS STEREO 3－WAY ACTIVE CROSS－OVEF

Advanced 3－Way Stereo Acilve Cross－Over，housed in a $19^{\prime \prime} \times 1 \mathrm{U}$ case．Each channel has three level controls： bass，mid \＆top．The removable front fascla allows aecess to the programmable DIL switches to adjust the cross－over trequency：Bass－Mid $250 / 500 / 800 \mathrm{~Hz}$ ，Mid－Top $1.8 / 3 / 5 \mathrm{KHz}$ ，atl at 24 dB per octave．Bass Inveri switt
on each bass channet．Nominal 775 mV inpul／output．Fully compallbe with OMP rack amplitier and modules． on each bass channet．Nominal 775 mV inpul／output．Fully compatible with OMP rack amptilier and module

Price £117．44＋£5．00 P\＆P

Price 2144.99 ＋E5．00 Pep

Pl＝20 ELzcTRIC TWEEVGRS－WOTOROXA

Join the Piezo revolution！The low dynamic mass（no voice coll）of a Piezo tweeter produces an Improved ranslent responge with a lower distorilon level than ordinary dynamic tweeters．As a crossover is not required chese units can be added to existing speaker systems of up to 100 watt
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER．
 TYPE＇A（KSN1036A） 3 round with prolective wire mesh．Ideal for booksheli and medium sized Hi－fi apeakers．Price E4．90＋50p P\＆P． TYPE＇B＇（KSNiDOSA） $3 \sqrt{2 / 1 "}$ super hörn lor general purpose speakers， disco and P．A．systems etc．Price E5．99＋50p Pa ${ }^{2}$ P．$_{1}$ TYPE＇C＇（KSN1016A） 2 ＂$\times 5^{\prime \prime}$ wide dispersion hom for quallty Hi－Fi sys－ tems and quality discos elc．Price $\mathrm{CB} .90+50 \mathrm{p}$ P眮P．
TYPE＇D＇（KSN1025A）2＂xf＂wide dispersion horn．Upper Irequency response retained extending down to mid－range（ 2 KMz ）．Sultable for high quality MIFFi systems and quality discos．Price $£ 9.99+50 \mathrm{p}$ P\＆P． TYPE＇E＇（KSN1038A） $3^{3^{\prime \prime}}$＂horn tweeter with altractive silver finish trim． Suitable lor Hi－F monilor systems etc．Price $\mathbf{5} 5.09+50 \mathrm{p}$ P最． LEVEL CONTROL Combines，on a recessed mounting plate，level control and cabinet input jack sockel． $85 \times 85 \mathrm{~mm}$ ．Price $\mathrm{E} 4.10+50 \mathrm{p}$ P\＆P．

IDIFLIGKT CASED LOUDSPEAKERS

A new range of quality loudspeakers，designed to take adyantage of the lalest speaker technology and enclosure designs Both models uilize stucio quality $12^{\prime \prime}$ cast aluminium loudspeakers with lactory fitted gril es，wide dispersion constani direcivily horns，axruded aluminum corner molo The enclosures ball corners，complimented with heavy outy black conderina，with top hats for optional loudspeaker stands

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
th1 FC 12－100WATTS（100dB）PRICE E159．00 PER PAIR thl FC 12－200WATTS（100dB）PRICE E175．00 PER PAIR SPECIALIST CARRIER DEL $\{12.50$ PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$
 Delivery $£ 6.00$ per pai

PRICESI 150W E49．99 250W E99．99 400W E109．95 P\＆P E2．00 EACH

THREE SUPERB NEWM POWEM CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo， 150 W Bridged Mono 250 WATTS $(125+125)$ Stereo， 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo， 400 W Bridged Mono
ALL POWERS INTO 4 OHMS
$\frac{\text { Features }}{t}$
Stereo，bridgable mono \star Choice of high \＆low tevel inpuls \star L R tevel
controls \star Remote on－of \star Speaker controls \star Remote on－off \star Speaker
 INCLUBIVE OF VAT，BALES COUNTER，VB
ACCESSACCEPVEISY PDST，PMONE ORFAX，

OMP CIPTITNW TIT PLITIERMOUULES SUPPLIED READY BULLT AND TESTED

 drive eircults lo power a compattio Vu metse，All modele are open and shori circult prool． THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP／MF 100 Mos－Fet Output power 110 waths R．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Aale $45 \mathrm{~V} / \mathrm{JS}$ ， T．H．D．typlcal 0.002% ，Inpui Sensitivity 500 mV ，S．N．R． 110 dB．Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE $840.85+83.50$ P\＆P

OMP／MF 200 Mos－Fet Output power 200 watts R．M．S．into 4 ohms，Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． -110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ ．
PRICE E64．35＋\＆4．00 P\＆P
OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Dampling Factor >300 ，Slew Rate 60V／uS， T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． -110 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE \＆81．75＋E5．00 P\＆P
OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．Into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS} \mathrm{S}_{\mathrm{p}}$ T．H．D．typical 0.001% ，Impul Sensltivity $500 \mathrm{mV}, \mathrm{S} . \mathrm{N}$. R． -110 dB，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ ． PRICE \＆132．85＋85．00 P\＆P

OMP／MF 1000 Mos－Fet Output power 1000 watts R．M．S．into 2 ohms， 725 watts R．M．S．into 4 ohms， frequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}-3 \mathrm{~dB}$ ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ ，T．H．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N．R．-110 dB ，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Antl－Thump Delay．Size $422 \times 300 \times 125 \mathrm{~mm}$ ．
PRICE E259．00＋E12．00 P\＆P
NOTE mOS－FET mODULES ARE AVAILABLE IN TWO VERSIONS NOTE STANOAR－INPUT SENS 500 mV ，BAND WIDTH 100KHz．

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREQUENCY BULLETS AND HORNS，LARGE（A4）S．A．E． （ 60 p STAMPED）FOR COMPLETE LIST．
McKenzie and Fane Loudspeakers are also available．

HMINENGFनINSTKUMENTS．P．A．，DISCO．ERT

ALL EMINENCE UNITS B OHMS IMPEDANCE
$8^{\prime \prime} 100$ WATT R．M．S．ME8－100 GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO． RES．FREO．T2Hz，FREO．RESP．TO $4 K H z$ ，SENS 97dB．
$10^{\prime \prime} 100$ WATT，RAM．S．ME $10-100$ GUITAR，VOCAL，KEYEOARO，DISCO，EXCELLENT MID． 10 I
RES．FREO． 71 Hz ，FREO．RESP．TO 7 KHz ，SENS 97 dB ． $10^{\prime \prime} 200$ WATT R．M．S．ME10－200 GUITAR，KEYB＇D．DISCO，VOCAL，EXCELLENT HIGH POWER MID． RES．FREO． 65 Hz ，FREO．RESP．TO 3.5 KHz ，SENS 99 dB ． $12^{\prime \prime} 100$ WATT R．M．S．ME1 2－100LE GEN．PURPOSE，LEAD GUITAR，DISCO，STAGE MONITOR RES．FREO． $49 H z$ ，FREO．RESP．TO 6 KHz ．SENS IOOdB． ES． 12 100 WATT R．M．S．WE12－100LT（TWIN CONE）WIOE RESPONSE，P．A．，VOCAL，STAGE MONITOR，RES．FAEQ 42 Hz ，FREO．RESP．TO IOKH2，SENS 98 OB，DISCO．VOCAL，EXCEELENT MID． $12{ }^{2} 200$ WATT R．M．S．ME1 2－200 GEN，PURPOSE，GUITAR，DISCO．VO
RES．FREQ． 5 Hz，FREQ．RESP．TO $6 K$ He，SENS $98 d 8$ ． RES．FREQ．53Hz，FREQ．RESP．TO $5 K$ H2，SENS 9808 ． RES，FREO 47 Hz ，FREO．RESP．TO 5 KMI ．SENS 103 dB ASS，LEAD GUITAR RES．FREQ．ATTZ，FREQ．RE1 ． 200 GEN．SEN8 103 dB ． 15200 WATT R．W．S．ME1 5－200 GEN．PURPOSE BASS，INCLUDING BA 1s＂ 300 WATT R．M．S．MEI S－300 HIGH POWER BA
ass，incluoind ba PRICE C48．71＋5980 PI PRICEC48．71＋E3．50 P1 PAICE 〔70．18＋ 83.50 Pi RES．FREQ． 39 Hz ，FREO．RESP．TO 3 KHz ，SENS 103 dB ． S GUITAR．

FARBENDEFKS：－HIFन，STUDTO INECAR ETC

BASS，SIMGLE CONE，HIGH CDMPLIANCE，ROLLED SUAROUMD
8 ह 5 watt EBB－SO OUAL IMPEDENCE，TAPPED $4 / 8$ OMM BASS，HI－FI，IN－CAR．
RES．FREQ $40 H 2$ ，FREQ．RESP．TO 7 KHz SEMS $97 \mathrm{SB}_{3}$
10＂SOWATT EB10－50 PUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS，MI－FI，IN．CAR RES．FREO． 40 Hz ，FREQ．RESP．TO 5 KHz ，SENS． 99 dB 10 100WATT EB $10=100$ BASS， H －FI，STUNI RES．FREQ． 35 Hz ，FREQ．RESP．TO 3 KHz ，SENS 96 dB ． RES．FAEQ． 26 Hz ，FAEO．RESP．TO 3 KHz ，SENS 83 dB ，
OHm bass，MI PR IN－CAR
PRICE C13．65＋E2．50 PAP PRICE $830.30+$ c3．50 PRP FULL RANGE TWIM CONE，MIOM COMPLANCE，ROLLED SURFOUMD St $^{1 / 4}$＂SOWATY EBE－BOTC（TWHN CONE）HI－FI，MULTI－ARRAY OISCO ETC
 Bt，＂EOWATT EB6－BOTC（TWIN CONE）MI－FI，MULTI． RES．FAEO． 38 Mz ．FREO．RESP．TO 20KHz，SENS 994B． $8^{\prime \prime}$ סOWATT EAB－GOTC（TWIN CDNE）MI．FL，MILTI－ARRAY DISCO ETC． RES．FREQ．A0 He，FREQ．RESP．TO $18 K \mathrm{~Hz}$, SENS 89 dB ． RES．FREO． 35 Hz ，FREQ．RESP．TO 12 KHz ，SENS 98 dB ．

PAICE C42． $12+$＋5．60 PRP

TRANSMHTERHOEBY KIS
PROVEN TRANSMITTEA DESIGMS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
PW TRANSMITIEA 80－109MHz，VARICAP CONTROLLED PROFESSIONAL PE FFFORMANCE，RANGE UP TO 3 MILES，SIZE $36 \times 123 \mathrm{~mm}$
PRICE $£ 14.85+\mathbf{1} .00$ P
FII MICRO TRANSMITTER $100-108 \mathrm{MHz}$ ，VARICAP TUNED，COMPLETE WITH VERY SENS FET MIC，RANGE $100-300 \mathrm{~m}$, SIZE 56 I 46 mm ，SUPPLY $9 V$ BATTERY．

E．K，＝，＝CTENDIOS

UNITS 1 E S COMET WAV，SOUTHEND－ON－SEA， Tel： $0702-527572$ Fax：0702－4zoea3

Radio

Revisited

Raymond Haigh shows how to build a low cost, high quality FM radio which has the look of yesteryear.

Transistor portables are probably used for most domestic radio listening but, unless they are in the luxury class, plastic cabinets and tiny speakers can result
in rattles and inferior audio quality. Even their most impressive attributes - very low power consumption and extreme portability are not too relevant in a domestic situation where a mains supply is available and where they are usually left in one location, perhaps the kitchen or dining room, for much of the time.

Most home constructors can provide some form of wooden cabinet and a speaker of reasonable size at little or no cost and many will already have suitable items cluttering up the workshop. The problem is one of finding a low-cost, high-quality radio tuner/amplifier combination that does not involve complicated alignment and setting up procedures. The circuit described below meets all of these requirements. Comprising only two IC's and a handful of external components, there are no alignment problems and adjustment of the single tuned circuit is extremely simple.

Design Considerations

For a high quality, interference-free signal, the choice has to be VHF, FM radio. Most of the BBC's services are transmitted in this mode and commercial stations further extend the range of news and music programmes available. Confining reception to the VHF broadcast band does not, therefore, seriously limit programme choice, especially having regard to the niche this radio is going to fill. However, it does eliminate all signal frequency switching and it greatly reduces complexity and cost. It also makes the choice of an interesting FM radio IC, introduced by Philips a few years ago, particularly appropriate.

This IC, the TDA7000, brought the advantages of solid-state integrated circuitry to an economical FM receiver design developed at the close of the valve era. Featured a number of times
in electronics magazines during the early 60 s, all of the IF transformers were eliminated by the use of a very low IF, typically 150 kHz , which was determined by the RC couplings between the valves. Variable tuning was provided only to the oscillator stage which was often run at the second or third harmonic of the signal frequency in order to improve stability. Detection was carried out by a double-diode pulse counting circuit and AFC was usually applied to the oscillator. The audio signal from the TDA7000 IC is typically 75 mV , more than enough to drive most small power amplifier ICs. An undistorted output of $1 W$ is quite adequate for an ordinary domestic radio, especially when a reasonably sensitive speaker is used and a TBA820M is accordingly an ideal choice for this application.

Mains operation is much more economical than battery power supplies. The additional outlay on components will be more than recovered after a few weeks' steady use and the mains connection lead can increase signal pick-up, improving the action of the telescopic aerial by acting as the second element of a dipole.

Figure 1. Circuit diagram of the receiver

FM Tuner Stage

The full circuit of the receiver is given in Figure 1 and a function diagram for the TBA7000 is shown in Figure 2.

Signals collected by the telescopic aerial are applied to pin 13 of IC1 via C1. Inductor, L1, is wired across the input of the IC and comprises a few turns of wire threaded through a ferrite bead. There is nothing to be gained by tuning this non-critical coil as it is heavily damped by low-value resistors within the chip. During the development of the receiver, alternative input circuits were tried, including connecting pin 13 to a tapping on a tuned coil and the provision of an RF amplifier stage, but they were not found to offer any real advantage over the simple arrangement shown in Figure 1.

The oscillator coil, L2, is connected between pins 5 and 6 of the IC. With this design, the oscillator runs at signal frequency, plus an IF of approximately 70 KHz . Minimal stray capacitances (there are no trimmers) thus permit coverage of the required frequency range with a 10pF variable capacitor, C12. The tuned circuit is set to the centre of the VHF broadcast band by adjusting the core of L 2 .

Capacitors C6, C8, C9, C11, C14, C15 and C16, together with resistors on the chip, determine the receiver's IF and shape its response. Two capacitors, C3 and C4, are connected in parallel to permit the exclusive use of small, ceramic components (the required 150 nF is not a readily available ceramic capacitor value). They combine to mute spurious responses, including unwanted image signals.

The IC contains circuitry to inject inter-station-noise. C5 on pin 3 activates this function, which is discussed later. Simply delete the capacitor for completely silent tuning, or reduce its value for a softer hiss.

Capacitor C7 eliminates IF harmonics at the output of the demodulator stage. It also fixes the time constant for locking the frequency locked loop (FLL) and influences upper audio frequency response. The recommended value is 10 nF , but this had to be increased to 47 nf on prototype receivers in order to completely eliminate spurious signals. The reduction in treble response is hardly noticeable.

Most of the signal shaping and processing circuits are 'grounded' at RF via the positive supply rail and supply decoupling capacitor, C10, is crucial to the stability of the device. It must be located as close as possible to pin 5 . The mixer is decoupled by C2, and R2 and C17 provide a measure of supply line isolation for the entire front end. With prototype receivers, any significant reduction in the value of C 17 gave rise to modulation hum problems.

After de-emphasis by C18 and R1, the output from the TDA7000 is coupled to the audio stages via C19.

The Audio Amplifier

A simple top-cut tone control, comprising C20 and R3, is connected across the volume control, R4, the slider of which is taken to the input pin of the TBA820M power amplifier. Feedback resistor, R5, sets the gain of the device. The value chosen gives an input sensitivity of about 25 mV for 1 W output. This deliberately errs on the high side and constructors who find the gain excessive can increase the value of this resistor to 100 ohms.

One of the loudspeaker leads is connected to supply positive in order to minimise external component count (a resistor and electrolytic capacitor are saved). The value of feedback capacitor, C25, has been chosen to give a frequency response which is more or less flat up to 20kHzand, as the radio is to be mains powered, ripple rejection capacitor C 24 is included in the circuit. Any tendency to instability is curbed by connecting the

Zobel network, comprising R6 and C26, across the output, and by including HF bypass capacitor, C22, which must be located close to pin 6 of the IC.

The
tuner/amplifier
combination has an extended bass response and constructors who wish to try a large speaker in a cabinet of suitable size will find that the value of output coupling capacitor, C 27 , is big enough to fully exploit this. It can be reduced to $470 \mu \mathrm{~F}$, without any audible drop in bass response, when
a 130 or 150 mm speaker is fitted in a small cabinet.

The Power Supply

The power supply is quite conventional with a centre-tapped transformer arranged in a bi-phase, full-wave rectifier circuit. Capacitors C29 and C30, connected across the rectifier diodes, prevent modulation hum and C28 smoothes the output. A 35 V working type was chosen for the smoothing capacitor in order to ensure good ripple current handling.

The receiver is completely silent in the absence of modulation and this increases the risk of it being left switched on and connected to the mains supply after station close-down. LED indicator, D3, and its supply dropper, R7, help to avoid this.

Connecting the transformer core and secondary windings to mains earth and the fitting of a low-value fuse on the PCB where it is less likely to be tampered with, helps to maximise the safety of the equipment. Mains on/off switches, S1a and S1b, are ganged with tone control, R3.

How it Works

Local oscillations combine with incoming signals in the TBA7000 mixer to produce an IF signal of approximately 70 KHz . This signal is fed through two amplifier stages, around

Figure 2. Block diagram of TDA7000
which are arranged a fourth order low pass and a first order high pass RC filter. The signal is then processed by an IF limiter/amplifier stage and a quadrature detector. Conversion gain of the mixer and the gain of the three IF amplifier stages, is high, and the sensitivity of the receiver is at least as good as that displayed by most commercial FM portables.

Because of the low IF frequency, IF deviation has to be limited to $\pm 15 \mathrm{kHzin}$ order to prevent distortion. This is achieved by a frequency locked loop (FLL) system in which the output from the detector is made to shift the oscillator frequency in inverse proportion to the IF deviation caused by the incoming signal. This loop also affords a high degree of automatic frequency control (AFC).

The internal circuitry of the chip is arranged to ensure suppression of AM signals and to provide a measure of automatic gain control (AGC). Correlator and muting systems suppress the images which would otherwise be a problem because of the low IF. They also suppress inter-station noise and provision is made for reinstating this in order to simulate the tuning action of conventional FM receivers.

Audio amplification is provided by IC2 and power for the complete receiver is supplied by a conventional, unregulated, mains unit.

Figure 3. PCB component side

Construction

All of the components, with the exception of R3, R4, C20, D3, the loudspeaker and a telescopic aerial, are mounted on printed circuit boards. A separate board is used for the power supply in order to give more freedom in assembling the receiver and to enable constructors to dispense with the mains unit and use batteries, should they so wish.

The component side of the receiver PCB is given in Figure 3 and the foil side in the PCB foils section at the rear of this issue of ETI. Holders were used for mounting the ICs on the prototype board as this makes substitution checking of the devices an easy matter. Vero pins were inserted at all of the lead-out points and at the three connection points for C12. The pins for C12 must, of course, project on the foil side of the board. They prevent the copper tracks being pulled from the board and also enable the position of C 12 to be adjusted slightly to align it with its spindle bush.

L1 is three turns of 26swg, or similar, enamelled copper wire threaded through a small ferrite bead. Trim the wire leads close to the bead, scrape away the enamel and thoroughly tin the bared copper before attempting to solder it into position on the PCB.

Tone and volume controls, R3 and R4, and a bush for the spindle extension to C12, are mounted on a small plywood or

Figure 4. Power supply PCB component placement paxoline control panel. This panel also carries the telescopic aerial and the LED on/off indicator, the receiver PCB being mounted on stand-offs beneath it. The photographs show the method of assembly adopted for the prototype receiver.

The tuning capacitor, C 12 , is a plastic film dielectric 10pF trimmer and a spindle and control knob have to be attached to its slotted head. Figure 5 shows how this is done. Scrap spindle, cut from R3, is drilled at one end to receive the brass head of the trimmer, which should be a firm push fit into it. Mount the PCB in position, carefully aligning the trimmer with the spindle bush in the control panel, then pass the spindle through the bush and secure it to the trimmer head with a dab of Superglue. This procedure ensures the correct vertical alignment of the spindle, which is otherwise difficult to achieve. It is not easy to form a dead-centre hole in the end of the spindle, but a very close approximation is possible with a little care. If the first attempt is not good enough, try again at the other end of the spindle. If this is not satisfactory, remove the end section and have another go. Scrap spindle from R4 can always be pressed into service should the spindle from
 R3 become too short.

This tuning arrangement, which costs pence rather than pounds, has proved completely satisfactory. It is smooth, noise free, reliable and not prone to microphony. The small effort required to produce such a cost-effective system is certainly worth while.

The power supply is assembled on its own PCB. Details of component placement are given in Figure 4 and the copper foil

Figure 5 Sketch section through spindle attachment for tuning capacitor side of the board is shown in the PCB foils section at the rear of this issue of ETI. Again, Vero pins ease off-board wiring and the mains cable should be restrained where it leaves the cabinet, to prevent it being detached from the PCB by rough handling. The leads which connect the power supply PCB to S1a and S1b should be tightly twisted together, to minimise ac fields which could be picked up as hum by the audio circuits.

The Cabinet

The style and details of the cabinet are very much matters of personal taste, but sealed enclosures should be avoided as they reduce speaker efficiency and create a dull, 'boxy' sound (hi-fi speakers based on this principle rely on special drive units and powerful amplifiers to achieve good results). The photographs accompanying this article show the vintage style cabinet produced by the author. The controls are mounted on the top and a large vent is formed in the base. The $210 \times 130 \times 260 \mathrm{~mm}$

cabinet, which houses a 160 mm diameter speaker, is formed from 6 mm thick hardwood panels, glued and pinned together. Quality of reproduction is pleasant and particularly clear.

Setting Up and Using the Receiver.

The initial adjustment and testing of the receiver is best carried out before the various parts are mounted in the case.

Check the PCBs for defective joints and bridged tracks. Check the ICs, diodes and electrolytic capacitors for correct placement and, if all is in order, connect the power supply to the mains and switch on. Remember that the power supply PCB carries exposed mains wiring and it can be lethal if it is handled carelessly. Constructors who are uncertain of their ability to commission mains powered equipment should consider using batteries.

Set the ferrite core of L 2 so that it projects 2 mm above the top of the former, connect about 1 metre of wire to the aerial pin, advance the volume control until the inter-station hiss is audible, then search for a transmission with tuning capacitor, C 12 . If no signals are heard, adjust the core of L2 and rotate C12 again. If the specified Toko coil has been used, only a slight adjustment of the core will be needed to centre the receiver on the VHF broadcast band. The ferrite core is extremely brittle and the correct trimming tool must be used.

The low-value tuning capacitor and strong AFC eliminate the need for a slow-motion drive. A large diameter knob on the spindle of C12 will, however, make tuning the receiver easier. Fix a pointer to the knob and calibrate the receiver by marking the settings for the local BBC and commercial stations on the control panel.

The action of the tuning control differs from that of conventional receivers, having a less critical, softer feel. The control
should be rotated slowly until the circuit locks on the desired transmission. It will then probably need turning back very slightly to centre the tuning. AFC hold is quite strong and, once lock has taken place, the setting of the dial pointer becomes relatively broad. The pointer should, however, be centred as carefully as possible or interference pulses may drive the circuit out of lock and result in the 'loss' of the signal. Activating the internal noise generator simplifies the correct tuning of the receiver, as the pointer can be set mid-way between the two positions where the inter-station hiss starts. Moreover, accidentally tuning through a station is less likely with the noise generator operational.

The potential across C28 should be of the order of 11 V under no-output conditions. This will fall to approximately 8.5 V when music is being reproduced at loud volume. Provided the receiver has been correctly tuned, the AFC system will prevent this voltage swing having any effect on reception. Quiescent current consumption is approximately 15 mA rising to about 30 mA with speech at normal volume. Battery operation is, therefore, perfectly feasible and a 9 V pack of AA or larger cells is recommended. A 4 ohm loudspeaker will enable the audio IC to deliver more power when 9 V battery supplies are used.

BUYLINES

The TDA7000 IC is retailed by Maplin and the Toko coil is available from Maplin, Cirkit and Bonex. The remaining components can be obtained from a variety of sources. An inexpensive loudspeaker is recommended and suitable types can often be salvaged from old television receivers. A bush for the tuning spindle can be obtained from a discarded volume control.
Resistors (all 0.5W, 5\%)
R1 47 K
R2 200
R3 22k lin' potentiometer with double pole switch
R4 $47 \mathrm{~K} \log ^{\prime}$ potentiometer
R5 47
R6 1
R7. 680

Capacitors

C1 10pF ceramic
C2 4 n 7 ceramic
C3, C7 47nF ceramic
C4, C13, C22 100nF ceramic
C5, C20 22nF ceramic
C6, C11 180pF ceramic
C8, C15 330pF ceramic
C9, C14 3n3 ceramic
C10, C26 220nF ceramic
C12
10 pF plastic film dielectric trimmer
C16, C25 220pF ceramic
C17 $330 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic, radial lead
C18 1nF ceramic
C19 $\quad 1 \mu \mathrm{~F} 63 \mathrm{~V}$ electrolytic, axial lead
C21 $\quad 100 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic, axial lead
C23 $\quad 100 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic, radial lead
C24 $\quad 47 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic, axial lead
C27 $\quad 1000 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic, radial lead
C28 $2200 \mu \mathrm{~F} 35 \mathrm{~V}$ electrolytic, radial lead
C29, C30 10nF ceramic

Inducters and Transformers

L1
L2 Toko type S18 moulded RF coil with ferrite core, $0.230 \mathrm{uH}, 51 / 2$ turn winding, colourcoded green. Toko part No. 301SS0500MT1. Mains transformer: sub-miniature type. Primary to suit mains voltage. Secondary 9-0-9V, 100mA.

Semiconductors

IC1	TDA7000
IC2	TBA820M
D1, D2	1N4002
D3	Red or green LED

Sundries

Small ferrite bead, anti-parasitic type
18 pin and 8 pin holders for ICs
PCB type fuse holder and 500 mA fuse
Telescopic aerial
Loudspeaker, 8 ohm for mains operation, $3 / 4$ ohm for 9 V battery version.
One large and two small control knobs.
Materials for printed circuit boards, Vero pins, hook-up wire, solder; nuts, bolts and screws
Mains lead and plug
Spindle bush for tuning control (see text)
Cabinet or cabinet constructing and finishing materials

AMSTRAD DMP4000 Entire printer assemblies including printhead, platen, cables, stepper motors etc Everything bar the electron-
ics and case Good slipper!! Clearance price just E5 REF: MAG5 or 2 for $£ 8$ REF; MAG8
VIEWDATA SYSTEMS Brandnew units made by TANDATA complete with $1200 / 75$ built in modem, infra red remote controlled keyboard BT approved, Prestel compatible, Centronice printer port, RGB colour and composite output (works with any TV) complete with power supply and fully cased Price is just E20 REF: MAG20 Also some customer returned units available at $£ 10$ each REF: MAG10 PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads Clearance price is E5 REF: HAG5P1
INFRA RED REMOTE CONTROLLERS Originally madefor hi spec satellite equipment but perfect for all sorts of remote control projects Our clearance price is just E2 REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs etc. $£ 20$ REF: MAG20P1
SINCLAIR C6 MOTORS We have a few left without geaboxes These are $12 \mathrm{VDC} 3,300$ rpm $6^{\prime \prime} \times 4^{\prime \prime}, 1 / 4^{\circ}$ OP shaft E 25 REF: MAG 25 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the above motor but suitable for any 12v motor up to 30A Complete with PCB etc A heat sink may be required $£ 1700$ REF: MAG17
VIDEO SENDER UNTT, Transmits both audio and video signals from either a video camera, video recorder. TV or Computer etc to any standard TV set in a 100 ' range! (tune TV to a spare channel) 12v DCop Price is£15REF: MAG15 12 v psuis $£ 5$ extra REF: MAG5P2 *FM CORDLESS MICROPHONE Small hand held unit with a 500 ' range! 2 transmit power levels Reqs PP3 9y battery Tuneable to any FM receiver. Price is £15 REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200' Ideal for garden use or as an educationa toy Price is $£ 8$ a pair REF: MAG 8P1 $2 \times P P 3$ req'd
*MINATURE RADIO TRANSCENERS A pair of walkie talkies with a range of up to 2 kilometres in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases and earpieces $2 \times P$ P3 req'd £30 00 pair REF: MAG30
COMPOSTE VIDEO KIT. Converts composite video into separate H sync, V sync, and video $12 v D C$ operation $£ 800$ REF: MAGBP2.
LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etc etc In fact everything barthe case and electronics, a good stripper £5 REF: MAG5P3 or 2 for £ 8 REF: MAGBP3
PHILIPS LASER 2MW heliurn neon tube Brand new full spec E40 REF: MAG40 Mains power supply kit E20 REF: MAG20P2. Fully built and tested unit E75 REF: MAG 75.
SPEAKER WIRE Brown two core, 100 foot hank 5 REF: MAG2P1
LED PACK of 100 standand red 5 mm leds $£ 5$ REF: MAG5P4 JUG KETTLE ELEMENTS good general purpose heating element (about 2 kW) ideal for allsorts of heating projects etc 2 for E 3 REF: MAG3
UNNERSAL PC POWER SUPPLY complete with flyleads, switch, fan etc Two types available 150 w at $£ 15$ REF:MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF: MAG20P3 $(23 \times 23 \times 23 \mathrm{~mm})$ OZONE FRIENDLY LATEX 250 ml bottle of liquid rubber, sets in 2 hours Ideal for mounting PCB's, fixing wires etc $£ 2$ each REF: MAG2P2
-FM TRANSMITTER housed ina standand working $13 A$ adapter!! the bug runs directly off the mains solasts forever! why pay $£ 700$? or price is £26 REF: MAG26 Transmits to any FM radio
-FM BUG KTT New design with PCB embedded coil for extra stability Transmits to any FM radio 9v battery req'd £5 REF: MAG5P5
-FM BUG BUILT AND TESTED superior design to kit, as supplied to detective agencies etc 9 v battery req'd $£ 14$ REF MAG1ied
TALKING COINBOX STRIPPER originally made to
retail at $£ 79$ each, these units are designed to convert and ordinary phone into a payphone The units we have generally have the locks missing and sometimesbroken hinges. Howeverthey can be adapted for their original pupose or used for something else?? Price is just $£ 3$
REF: MAG3P1 REF: MAG3P
100 WATT MOSFET PAIR Same spec as 2 SK343 and 2SJ413(BA, $140 \mathrm{~V}, 100 \mathrm{w}) 1 \mathrm{~N}$ channel and 1 P channel, £3 a pair REF MAG3P2
VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) $£ 2$ REF: MAG2P3
MAGNETIC AGTATORS Cosisting of a cased mains motor with lead. The motor has two magnets fixed to a rotor that spin round inside There are also 2 plastic covered magnets supplied Made for remotely stiring liquids! youmay have a use? E3 each REF: MAG3P3 2 for £5 REF: MAG5P6
TOP QUALITY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made $4^{\prime \prime}$ round with large shielded magnets Good quality general purpose speaker $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ quality general p
REF: MAG6P2
TWEETERS 2^{2} diameter good quality tweeter 140R (would be good with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ good with the ab
REF: MAG3P4
REF: MAG3P4
AT KEYBOARDS Made by Apricot thesequality keyboards need just a small modification to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price £6 REF: HAG6P3
XT KEYBOARDS Mixed types, some retums, some good, some foreign etc but all good for spares! Price is $£ 2$ each REF:MAG2P6 or 4 for E6 REF: MAGBP4
PC CASES Again mixed types so you take a chance next one off thepile£12REF:MAG12 ortwoidentical ones forE20 REF: MAG20P4 component pack bargain 1,000 resistors $+1,000$ capacitors (all same value) $£ 250$ a pack. REF:MAG2P7

1994 CATALOGUE OUT NOW

Bucces
BULEETOU BOARD
MASSIVE

WAREHOUSE CLEARANCE fantastic $£ 20.00$ reduction

REFURBBISHED PC BASE UNITS COMPLETE WITH KEYBOARD
 from only $£ 29.00$
 AMSTRAD 1512 BASE UNITS GUARANTEED
 PERFECT WORKING ORDER.

A LOW COST INTRODUCTION TO THE HOME COMPUTER MARKET

AMSTRAD 1512SD

1512 BASE UNIT, 5.25" FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONTOR AND POWER SUPPIY. WAS £49.00

NOW ONLY £29.00
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25 " 360K DRIVES ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY £39.00 REF: MAG39

SOLAR POWER PANELS

3FT X IFT IOWATT GLASS PANELS 14.5v/700mA
 NOW AVAILABLE BY MAIL ORDER

 £33.95(PWS 5200 SPECIAL PACKAGING CHARGE)
TOP QUALITY AMORPHOUS SHICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABLE 12 V SUPPLY IS REQUIRED. REF: MAG 34

ALSO $1 \mathrm{FT} \times 1 \mathrm{FT}$ GLASS SOLAR PANELS 12 v 200 mA ONLY £15.00. RE: MAG15PS

FREE SOFTWARE!

Brand new, UNUSED top quality Famous brand licensed software discs. A vailable in 5.25° DSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFWARE. We are actually selling you the floppy disc for youro wn "MEGA CHEAP" storage facilliles, if you happento get software that you want/need/like as well....... you get a "MEGA BARGAIN" tol
DSDD PKT10 \$2.99 REF: MAG3P7 PKT100 $\$ 16.00$ REF: MAG16 HD PKT10 83.99 REF: MAGAP3 PKTI 100 £25.00 REF: MAG2SPI

LARGER OANTITY PRICES AVALLABLE ON APPLICATION

ex££e££WE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH
MMEDIATE SETTLEMENT WE WILL ALSO QUOTE FOR
COMPLETE FACTORY CLEARANCE
COMING SOON
1994 CATALOGUE
PLEASE SEND 42P, A4 SIZED SAE FOR YOUR FREE COPY MINMUM OOODS ORDER SS00 TRADE ORDERS FROM OOVERNMENT, SCHOCLS, UNVVRSTTIES, \& LOCAL AUTHORTIES WETCOME ALL GOODS SUPPLJED SUBJECT TO
OUR CONDITONS OF SALE AND UNLESS OTHRRWIIE STATED GUAR ANTEED FOR 30
 NOTCE ORDERS SURECT TOSTOCK
TIES HOHER THAN THOSE STATED

SOME OF OUA PRODUCTS BAY BE UMLICENSABLE.DN THE UK
BULLELECTRICAL
XAS PORU ANOROAD HOYESUSSEX BNOSCT

HAB ORDIERTERMB: CNSLOOOR OXEPH

期HORDERPLIS E3.00 POST PL E Y VAT.
FLEASE ALLOWT-10 DAYS FOR DEVVERY
TELEFHONX OROSRS WCLCOME
184 ey 206500

Vint

COMMODORE MICRODRNE SYSTEM mini storage device for C64's 4 times faster than disc drives 10 times faster than tapes Complete unit just £12 REF:MAG12P1
SCHOOL STRIPPERS We have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc Let us know how many you need at just 50 p a unit (minimum 10)
HEADPHONES 16P These are ex Virgin Atlantic You can have 8 pairs for £2 REF: MAG2P8
PROXPATY SENSORS These are small PCB's with what look ike a source and sensor LED on one end and lots of components on the rest of the PCB Complete with fly leads. Pack of 5 E3 REF: HAG: $3 P 5$ or 20 for $£ 8$ REF: MAGBP4
FIBRE OPTIC CABLE Made forHewlett Packand sopretty good stuff you can have any length you want (min5m) first $5 \mathrm{~m} £ 7$ REF: MAG7 thereafter $£ 1$ a metre (ie 20 m is $£ 22$) REF: MAG1 Maxlength 250m
SNOOPERS EAR? Originall made to clip over the earpiece of telephone to amplify the sound-it also works quite well on the cable telephone to amplify the sound-it also works quite
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $\mathbf{£ 5}$ REF: MAG5P8 Worth it just for the very comprehensive manual! 525° only
DOS PACK Microsoft version 5 Original software but no manuals hence only £3 REF: MAG3P6 5.25" only
FOREIGN DOS 3 3-German, French, italian elc $£ 2$ a pack with manual 5 25" only REF:MAG2P9
MONO VGA MONTTOR Made by Amstrad, refurtished £49 REF:MAG49
CTM644 COLOURMONTTOR Made to wark with theCPC464 home computer. Standard RGB input so will work with othermachines Refurished $£ 5900$ REF:MAG59
JUST A SMALLSELCTION of what we have-to seemore get our 1994 catalogue (42p stamp) or call in Mon-Sat 9-5 30
HAND HELD TONE DIALLERS ideal for the control of the Response 200 and 400 machines E5 REF:MAG5P9
PIR DETECTOR Made by famous UK alarm manufacturer these re hi spec, long range intemal units $12 v$ operation Slight marks on are hi spec, long range intemal units 12 V operation Slight m
case and unboxed (although brand new) EB REF: MAGBP5
WINDUP SOLAR POWERED RADIO AM/FM radio co
plete with hand charger and solar panel! £14 REF: MAG14P1
COMMODORE 64 Customer returns but ok for spares etc $£ 12$ REF: MAG12P2 Tested and working units are E 6900 REF: MAG69 COMMODORE 64 TAPE DRIVES Customer returns at E4 REF: MAG4P9 Fully tested and working units are 12 REF:MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS232 input/output Ex equipment Price is £27 REF: MAG27
MA INS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13A plug on one end, cable the other Ideal for projects, Iow costmanufacturing etc Pack of 10 for£3 REF: MAG3P8 Pack of 100 E20 REF: MAG20P5
SURFACE MOUNT STRIPPER Originally made as some form of high frequency amplifier (main chip is a TSA5511T 13 GHz synthasiser) but good stripper value, an excellent way to play with surface mount components $£ 100$ REF: MAG1P1
MICROWAVE TIMER Electronic timerwith relay output suitable to make enlarger timer etc $£ 4$ REF: MAG4P4
PLUG 420 ? showing your age? pack of 10 with leads for£2 REF: MAG2P1
MOBILE CAR PHONE £5.99 Well almost! complete in car phone excluding the box of electronics normally hidden under seal Can be made to illuminate with 12 V also has built in light sensor so display only illuminates when dark Totally convincing! REF: MAG6P6 ALARM BEACONS zenon strobe made to mount on an extemal bell box but could be used for caravans etc 12 V operation. Just connect up and it flashes regularly) 55 REF: MAG5P11
FIRE ALARM CONT ROL PAN EL High quality metal cased alam panel $350 \times 165 \times 80 \mathrm{~mm}$. Comes with electronics but noinformation £15 REF: MAG15P4
SUPER SIZE HEATSINK Superb quality aluminium heatsink $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enamble high heat dissipation No holes! E9.99 REF: MAG10P1P
REMOTE CONTROL PCB These are receiver boards for garage door opening systems, You may have another use? $£ 4$ ea REF: MAG4P5
LOPTX Line output transfomers believed to be for hi res colou monitors but useful for getting high voltages from Iow ones! $£ 2$ each REF: MAG2P 12 bumper pack of 10 for £12 REF: MAG12P3

PORTABLE RADIATION DETECTOR

$£ 49.99$

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990 Nr/h. Sup plied complete with handbook.

REF: MAG50

(A)n audio signal generator is an essential item of equipment for anyone involved in the designing, building, or testing of audio equipment. It is by no means crucial, however, to have an elaborate signal generator with all the frills and something much more basic will suffice, provided its basic level of performance is adequate.

The unit featured here is a simple battery powered generator which covers the full 20 Hz to 20 KHz audio band in a single range. It is important that the output level of an audio generator is consistent over the full frequency range, so that frequent manual trimming of the output level is unnecessary. This generator uses thermistor stabilisation which gives no significant variation in the output level from one end of the audio range to the other.

Thermistor stabilisation contributes little noise or distortion and the output signal is an extremely pure sine wave. Using high quality operational amplifiers in the circuit should give a total noise and distortion level that is well below 0.1%, at any output frequency. The output purity is more than adequate for most critical applications, such as checking the frequency response of a notch filter and distortion measurement. It is substantially more than adequate for general purpose testing, such as measuring voltage gain and general frequency response testing. The maximum output level is approximately

3V peak-to-peak (just over 1V r.m.s.). The output level can be controlled using a continuously variable attenuate and a -40 dB switch is also provided.

Wien Oscillator

This design, in common with virtually all high quality audio sine wave generators, is based on a Wien oscillator. Figure 1 shows the circuit for a Wien network. In the present application the most important property of this circuit is that, at a certain frequency, it provides zero phase shift between the

input and output of the circuit. It is only at this frequency that zero phase shift occurs. The zero phase shift frequency is given by the formula:-

Frequency $=1 / 6.283$ C R Hertz

In practical Wien networks, R1 and R2 normally have the same value, as do C1 and C2.

In a Wien oscillator circuit the Wien network is used to provide positive feedback over an amplifier. Of course, the feedback is only fully positive at the zero phase shift frequency. In days gone by the amplifier was usually a discrete type, but these days it is invariably an operational amplifier. Figure 2 shows the basic configuration for a Wien oscillator, based on an operational amplifier. R1, R2 and C2 are merely needed for biasing purposes. R4 and Th1 are the negative feedback network that sets the closed loop voltage gain of the amplifier. We will consider the purpose of Th1 in detail at little later. C4 is merely an output coupling capacitor. C2, C3, R3

Figure 2. The Wien oscillator configuration
and R5 are the Wien network.
There is a loss of about 10 dB through the Wien network at the frequency where zero phase shift occurs. In order to produce oscillation the amplifier must have a voltage gain that at least compensates for the losses through the Wien network. In other words, it must have a voltage gain of about 10 dB , or three times. The circuit then oscillates at the zero phase shift frequency. In order to obtain a good quality sine wave output it is essential for the closed loop voltage gain of IC1 to be stabilised at a suitable level.

On the face of it there is no problem if the gain is accurately preset using a multi-turn trimpot as one element of the negative feedback network, but in practice this does not work very well, since variations in the loading can necessitate minor adjustments in the feedback network to maintain a stable output level. Also, in a signal generator application either C2 and C3, or R3 and R5 must be made variable, so that the output can be set at the required frequency. Changes in the values of these components also require minor adjustments in the closed loop gain in order to maintain a stable output level.

Unfortunately, even a very slight lack of gain is sufficient to quell oscillation. The slightest excess of gain results in the output level steadily increasing until clipping occurs, resulting in a massive amount of harmonic distortion on the output signal. In a signal generator application some form of automatic gain control is needed, in order to maintain a consistent output level and provide an output signal which has a low distortion level.

Some form of field effect transistor (fet) can be used as the gain control element in the feedback circuit, but a drawback of this method is that a fet does not provide pure resistance. Consequently, the distortion introduced by the fet is likely to be far higher than the distortion level of the oscillator itself, giving a relatively low level of performance. A self heating thermistor is a more popular choice. It has the advantage of simplicity and it should produce a very low distortion level as it does provide pure resistance, or something very close to it anyway. The main drawback of a self heating thermistor is that it is relatively expensive. However, considering the level of performance it provides, a good self heating thermistor should

Figure 3.The A.F. Signal Generator circuit diagram
be considered cheap at the price.
The way in which the thermistor stabilises the output level is very simple. Initially the thermistor is cold and, as it is a negative temperature coefficient type, it has a high resistance. This gives IC1 a high closed loop voltage gain and the circuit oscillates strongly. This strong oscillation produces large current flows through the thermistor, which rapidly heats up. Its resistance then drops, as does the closed loop voltage gain of IC1. Oscillation then dies down to a low level, the average current through Th1 decreases and its resistance rises. The closed loop gain of IC1 rises and stronger oscillation is produced.

This cycle of events repeats itself a few times, with the output level gradually stabilising at an intermediate level. At high frequencies, the output level stabilises very rapidly, but at low frequencies it can take a few seconds for the output signal to settle down properly at a consistent amplitude. However, provided a high quality thermistor is used, once the output signal has stabilised it will remain at the same level despite changes in loading, etc.

Circuit Operation

Figure 3 shows the full circuit diagram for the audio signal generator. The Wien oscillator is based on IC1 and it closely follows the configuration described previously. In order to obtain a suitable capacitance value for the Wien network it is necessary to use two capacitors wired in parallel (C3-C4 and C5-C6). Each resistive element consists of a fixed resistor in series with two variable resistors. VR1 is the main frequency control, while VR2 is used for fine tuning the output frequency. VR2 is especially useful when setting high output frequencies, where control via VR1 is rather coarse. Th1 is the self heating thermistor. This is the usual RA53 type, which is sometimes sold as an R53. These two devices seem to be identical, and this circuit will certainly work using either type.

IC2 is simply used às a buffer amplifier at the output of the unit. This feeds into a volume control style output attenuator (VR3). The output signal is fed to VR3 via attenuation resistor R6 when S1 is set to the open position.

This reduces the output level by about 40dB (i.e. it reduces the output level by a factor of approximately 100). The output level can then be varied from zero to about 30 mV peak-topeak using VR3.
the supply voltage virtually doubles the current consumption as well. This makes it essential to use high capacity batteries if an 18 V supply is used.

If high performance is not essential a couple 741Cs are adequate for IC1 and IC2. Much better noise and distortion performance is produced using a couple of good quality Bifet devices such as the specified LF351N and LF356N, or a couple of LF351Ns will work well if the LF356N proves to be difficult to track down. Using these devices, the noise and distortion is so low that it requires some good quality test gear to find it. However, if you require the ultimate in super-fi

Options

The circuit can be powered from a small 9 V battery such as a PP3 and the current consumption is about 8 mA . However, if the unit is likely to receive a lot of use it would be more economic to use a higher capacity battery such as six HP7 size cells in a plastic holder. If very high performance is important, it is better to use a higher supply voltage, such as an 18 V supply provided by two 9 V batteries connected in series. The operational amplifiers will give better performance with an 18 V supply. Also, with a higher supply voltage, the circuit seems to stabilise more rapidly after large readjustments of the frequency control. Unfortunately, doubling

ELECTRONICS TODAY INTERNATIONAL
performance, two high grade bipolar audio operational amplifiers should be used. I found that the NE5534A works very well in this circuit.

Ideally VR1 should have an anti-log law, but a dual anti-log potentiometer of the required value is unlikely to be obtainable. A linear type can be used, but will provide logarithmic, not linear, scaling. Alternatively, VR1 can be a log potentiometer connected in reverse (i.e. clockwise rotation gives reduced output frequency). This gives something approximating to linear scaling and makes frequency adjustment at the high end of the range much easier.

Construction

Details of the printed circuit board component layout are provided in Figure 4. None of the suggested operational amplifiers are static sensitive devices, but I would still strongly urge the use of holders for both integrated circuits. C4 and C6 must be miniature printed circuit types having 7.5 mm (0.3in) pin spacing if they are to fit onto the board easily. They should have a tolerance of 5% or better. The RA53/R53 thermistor is a fairly expensive component and it has a glass encapsulation. Accordingly, it should be handled carefully. It is mounted horizontally on the printed circuit board and it is a good idea to fix it to the board using a small piece of Blue-Tak, rather than simply leaving it to flap around. Fit single-sided solder pins to the board at the places where connections to the controls, etc., will eventually be made.

The prototype is housed in a medium sized metal instrument case. This provides far more space than is needed for the circuit board and battery, but a case having a reasonably large front panel is needed in order to accommodate the controls and output socket. Ideally the unit should be used with a frequency meter to monitor the output and act as a digital frequency readout. Many digital multimeters now have audio frequency ranges wthich can be used for this purpose, or a digital multimeter plus the frequency meter adaptor described in a previous article could be used.

If the generator is to be fitted with a calibrated frequency scale, use a case having a very large front panel so that a long scale can be marked around the control knob of VR1. A large diecast aluminium box used upright is probably the best choice. The control knob should be a large type fitted with a long pointer. Even with a long and carefully calibrated scale, frequency accuracy is likely to be far less precise than that obtained using some form of frequency meter to provide a frequency readout.

The general layout of the unit is not critical. Figure 5 shows details of the hard wiring and should be used in conjunction with Figure 4 (e.g. point A in Figure 4 connects to point A in Figure 5). A 3.5 mm jack socket is used at the output of the prototype, but this can be changed to a coaxial type, a BNC socket, or any type of socket that is apposite for this application. It is assumed in Figure 5 that VR1 will be a reverse connected log potentiometer and that VR2 will be a linear type connected for normal operation.

Testing and Use

It is preferable to check the output of the unit using an oscilloscope. This will show whether or not the output waveform, the output level and the frequency coverage are correct. If access to an oscilloscope is not possible, monitor the output using an amplifier and loudspeaker, or even a crystal earphone will suffice. For most people the lowest output frequencies will be inaudible, as will the highest output frequencies. In between these two extremes it should be possible to hear a wide range
of audio tones. A sine wave signal has a very pure sound which is easily distinguished from other sounds. Any harshness on the output signal at low to middle frequencies indicates that there is some sort of constructional error and that the output signal is being clipped. Check that the output level controls enable the volume of the tone to be varied in the appropriate manner.

When using the unit for frequency response measurements, remember that it takes a short while for the output level to stabilise, particularly when output frequencies below about 100 Hz are involved. At high frequencies the circuit should stabilise almost instantly. The output impedance is quite low, but the generator can only supply output currents of up to a few milliamps. It will drive all normal preamplifiers, power amplifiers, mixers, etc., without any problems, but do not expect it to drive an 80 hm loudspeaker with a high quality 1 V r.m.s. sine wave signal! Bear in mind that the top end of the audio range can only be achieved with VR2 set at minimum resistance. When setting low output levels (less than 30 mV peak-to-peak) S 1 should be set to the -40 dB position. Accurately setting the required output level using VR3 is then very much easier.

Resistors (all 0.25w)

R1 1k2
R2 1k2

R3 2k2
R4 820R
R5 2k2
R6 100k

Potentiometers

VR1	2M2 log dual gang carbon
VR2	4 k 7 lin dual gang carbon
VR3	1 k lin carbon

Capacitors

C1	$100 \mu 25 \mathrm{~V}$ radial elect
C2	$220 \mu 16 \mathrm{~V}$ radial elect
C3	330 p ceramic plate or polystyrene
C4	4 n 7 polyester 5% or better
C5	330 p ceramic plate or polystyrene
C6	4 n 7 polyester 5% or better
C7	$100 \mu 16 \mathrm{~V}$ radial elect

Semiconductors

IC1	LF351N
IC2	LF356N

Sundries

S1
SPST sub-min toggle
S2
B1
JK1
Th1 R53 or RA53 thermistor PCB, metal instrument case about $200 \times$ $125 \times 50 \mathrm{~mm}$, three control knobs, battery connector, two 8 pin DIL holders, solder pins, wire, solder, etc.

EASY-PC, Schematic and PCB CAD	
Over 17,000 Installations in 70 Countries World-wide!	
-) Onlin Double sided and	
ds	
cher	
- ${ }^{\text {Pen Ploter, Photo }}$ ploter and N.C.	
uperbly eas	

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD	$\mathbf{\$ 1 9 5 . 0 0}$	$\mathbf{£ 9 8 . 0 0}$
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR	$\mathbf{\$ 3 7 5 . 0 0}$	$\mathbf{£ 1 9 6 . 0 0}$
PULSAR: Digital Circuit Simulator ~	$\mathbf{1 5 0 0}$ gate capacity.	

For full information, please write, phone or fax:-

Number One Systems

UK/EEC: Ref. ETI, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 0480461778 (7 lines) Fax: 0480494042 International +44480 461778
USA: Ref. ETI, 1795 Granger Avenue, Los Altos, CA 94024
Telephone: (415)9689306
ACCESS, AMEX, MASTERCARD, VISA Welcome.

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Chelmer Valve Company for Audio Valves

Audio valves with famous Brand Names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.
We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.
For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVCPREMIUM valves.
A selection of the more popular types is listed here.

Valve amplifiers sound better still with CVC PREMIUM valves!

Paleface Minor Guitar

Amp

Part 3

> Time to put together this small amp with a big sound. Design and construction by Dave Bradshaw
here are many different ways that you can build this project. I am going to describe the way I built it (leaving out the bits I got wrong, of course) and point out the main choices you might take along the way.
The chassis is made out of two pieces of aluminium Uchannel bolted together. The valves and transformers mount on the tops of the U-sections, while all the other components mount on the inside. The preamplifier goes in the front section, and the power amplifier and power supply in the rear. The chassis mounts upside-down (i.e. valves and transformers hanging downwards) in the top of the loudspeaker cabinet.

Three PCBs hold most of the components, but the valves are mounted separately. Putting the valves on the PCBs generated too many complications and some combo units with valves mounted on PCBs have a reputation for being unreliable, because the solder joints on to the sockets tend to crack.

Choices, Choices

Before you begin construction, decide which options you are going to build. The most important decisions are:

Stand-alone Unit or Combo?

Which (if any) of the mods and options?
Which controls and inputs do you want on the front panel? In particular, you must decide if you want a 'mid' control.
What controis and connections you want on the rear panel? An alternative to wiring the loudspeaker permanently to the output is to have an output jack. You may also want to put the FX out and FX return sockets on the rear panel.

Speaker Choices

I recommend using a Celestion speaker to recreate the sound of classic speakers and combo units of the 60s and 70s. However, original Celestion speakers are a little hard to get hold of. Mine was kindly supplied by Wilmslow Audio, but two alternative speakers are:

The Celestion G10S-50 PE, a 10 in modern loudspeaker The Celestion Vintage 30, a 12in loudspeaker that follows the design that made Celestion's name for guitar speakers in the 1960 s and 70s.

The Vintage unit is slightly warmer and more characterful, and it is also very marginally louder (by a couple of dB) than the G10S. However, it is getting on for twice the price of the G10S and quite a lot heavier.

Choosing the Components

There are a few problem items that I have identified sources for, as well as a few general points.

High voltage electrolytics: HT smoothing capacitors C4, C11, and C21-25 all have to be small enough to fit on the PCB and not stick above the chassis sides when the PCBs are mounted on their pillars. The absolutely maximum height the capacitors on the PSU board can be is 40 mm and the other capacitors have to be 35 mm or less, depending on the height of the PCB mounting arrangements. Incidentally, it may be cheaper to use 47 \{SYMBOL 109 \f "Symbol"\}F for C4 and C11, and do without C20 to C22.
Non-polar capacitors: make sure you stick to the working voltages I have given. For example, even though C3 normally has

Figure 1. Component layout of power amplifier

Figure 2. Component layout of pre-amplifier
only around 170 V across it, it could have as much as 360 V applied if all the valves are removed. It therefore should have a 400V or higher rating.
Panelware: all the pots, connectors and switches are mounted directly onto the chassis. Some 'snap in' panelware (e.g., rocker switches) will not lodge properly in the thick aluminium of the U-channel used for the chassis.
Push-pull pots: there are potentiometers with dual pole two-way switches on them, operated by pulling out or pushing in the control spindle. I used a push-pull pot for RV1, with the switch as SW5 in the gain switching option. These pots are available in a very limited range of track resistances, but the values of R1 and R5 are not critical, they just have to be between 100k and 500 k and logarithmic. Push-pull pots are hard to find, expensive when you do find them and they have splined spindles which some knobs do not fit. Also, they need a smaller mounting hole than standard pots. But they are very neat for the bright or gain switches.
Resistors: in the power supply, use a carbon or metal film 2W resistor for R40 (or two 100R 1W resistors in parallel - there's space on the PCB). Wire wound types may act as fuses, i.e. the high-current surge at switch on could 'blow' them.
Valve bases: because the chassis is quite thick, there can be a problem with the lugs on some valve bases shorting to the chassis. The valve base's sockets in the prototype, supplied by Chelmer Valves, gave no such problem (they are also available through Maplin).

Assembly Planning

The order that I suggest following is:
4. Paint the chassis front panel.
5. Assemble the electronics components onto PCBs.
6. Assemble all the electronics into the chassis.
7. Follow the commissioning section below.
8. Plug in, switch on and drown out the neighbours!

Chassis Bashing

To make the chassis, I bolted together two $15 \mathrm{in}(381 \mathrm{~mm})$ lengths of aluminium channel, Зin wide by 2 in deep and $1 / 8$ in thick. Spend some time selecting the best side for the front panel. Choose a side with the least deep scratches and gouges, and with good edges.

Carefully plan out where the components are going to fit. Leave room for the one inch wide wooden case struts that run along the front and the sides of the chassis. The preamp valves must be mounted towards the back of their channel, the transformers must be at least an inch from the ends of the chassis and any screws in this region must be countersunk.

Ideally you should use a bench drill to make the holes for the controls, the valves and all the mounting screws. However, I managed with just a conventional power hand drill. There are some points to watch:

Centre-punch the hole centre, then drill a small pilot hole before you drill the main hole.
Be ready for the drill to 'snatch' as it begins to break through the far side of the aluminium.
Use sharp, new drill bits of the right size
Use a proper hole saw for cutting the holes for the valve bases.

For the recommended valve sockets, you need a $7 / 8 i n(22 \mathrm{~mm})$ hole saw with a suitable arbour. Check that the hole saw is intended for use on aluminium, otherwise it may tend to jam or clog up. The type I used was made by Starrett and it cut very easily. Use the hole saw to cut the holes for inter-wiring between the two halves of the chassis. Use the PCBs and other components as a guide.

Bolt together the two sections of the chassis, using five (or more) 4BA, M4 or larger bolts, with shakeproof washers, spaced along the chassis. To drill holes for these bolts, drill a pilot hole in the side where you are starting from, clamp the two halves together as accurately as you can, then, using a long drill bit poking through the panel ware fixing holes, drill all the way through.

The next stage is making the wooden case, using the chassis as a guide. Once this is complete, the front panel should be filed or sanded until reasonably smooth, then spray painted. You can spray quite a thick layer of paint on in two or three goes and still get a neat result by laying the chassis on the back panel, so that the front panel is uppermost and horizontal.

To reduce the projection of the pot mounting bushes through the front panel, I made thick spacer washers from the off-cuts of the hole saw. I drilled out the centre hole then filed down the thickness. An easier alternative is to use an extra nut on the inside of the front panel.

Designing and Making the Case

The prototype case was made from >-inch mixed density fibreboard (MDF), which was screwed and glued together. If you plan to carry the case around a lot, consider using a lighter
and/or thinner material. The inside width of the case has to be a good match to the width of the chassis, with a millimetre or so to spare so that the chassis can be removed easily (and to allow for the thickness of a cloth covering on the case).

If you have a good DIY shop that will cut timber to size more accurately than you can by hand, it's well worth getting them to pre-cut the panel sides for you. It's best to ask them to do this at a time when they're not very busy, i.e. not a Saturday morning!

I lined the top of the case with a thin sheet of aluminium, to increase the screening of the preamplifier. At the front, it is secured with a thin strip of moulding and nails (which the covering cloth can wrap over) and at the rear it is nailed.

Assembling the PCBs

Start by checking all the fixing holes are the right size for the bolts that must go through them. Next mount the PCB pins, then the other components. It proved easiest to finish with the large electrolytic capacitors, because assembly gets more awkward once these are installed, but before inserting any nearby components, check that they do not block the capacitors (or vice-versa).

Double and treble check the assembly of the boards; faults are much harder to rectify once the boards are installed. In particular, double check that you have wired the power supply correctly for the type of secondary on your mains transformer

Note that if you have decided not to use a 'mid' tone control, there is a position on the PCB (labelled RV4) for the 10k resistor needed to replace RV4.

Install the earth busbar. This is a length of thick copper wire that provides a very low resistance earth path through the circuit, so that signal and power supply currents can flow in the same earth path with the minimum addition to signal noise. The wire I used is a single core from mains cable (the type used for house wiring). It starts from the input and loops round to the output socket, passing and attached to the preamp and power amp PCBs, and the central pins of the valve bases, by short lengths of copper wire which also keep it in position.

Do the inter-wiring, following the diagrams associated with the PCB layouts. Wire the mains side of the power supply and the standby switch, but leave off all the connections between the power supply and the pre and power amplifiers. I found it very useful to have a good variety of different coloured hook-up wire for the final wiring. Leave off the HT1,2,3 and 4 connections, so that there are no high voltage connections between the power supply and the other parts of the amplifier. These are installed in commissioning.

Some points to watch are:
RV5 gets its earth from the power amplifier, not the preamp, via the braid on the screened lead.
The other panel components that require an earth get it from the PCB, not from the busbar.
The negative bias supply also gets its earth from the power amp, via one half of a twisted pair of cables (the other half being the negative supply itself). Without this earth, the negative supply will not work, so it is vital this is connected Beware getting the connections to the valves wrong! It is very easy to reverse the cathode and anode connections to one side
of the dual triode valves. This destroys the valve when you apply power.
The heater windings of the mains transformer and the output windings on the output transformer are insulated by varnish as well as a loose sheath, and you will need to carefully scrape or sand off the varnish before you can solder them. The centre-tap of the heater winding is soldered to the earth tag on the heater tag strip. The connections from the output transformer should be soldered to a tag strip or an output socket. You must leave enough spare lead length to be able to reverse the connections to either the primary or the secondary on the output transformer. The connections to the prototype transformer are shown in the table, but it's very easy to get them the wrong way round.

Table 1 Connections on the prototype output transformer

Primary	
Red	Anode, V4
White (two wires)	HT4, via the power amp PCB
Yellow	Anode, V5
Secondary	
Purple	Ground
Grey	No connection
Blue	Signal

You may find some connections (e.g. to the busbar, the heater connections and the output transformer secondary) require a higher power soldering iron, 30W or higher.

Commissioning the amplifier

In this section, we will firstly commission the amplifier, starting with power supply. Before even thinking of applying power, double, treble and quadruple check that you have assembled the electronics correctly. In particular, double-check the polarity of the diodes and the capacitors.

During the tests, I suggest you turn the power on and off by plugging and unplugging the unit from the mains. Leave the mains switch in the 'on' position for the duration of the commissioning so that the mains neon is lit whenever there is mains on any part of the project, a vital warning. I also suggest using a small wooden block about 3 1/2in long (about the same height as the mains transformer) to prop up the amplifier on a bench, so that it can sit with the components exposed without resting on the valves.

The first check is that the earth is good on the amplifier chassis. Next check that there is a resistance of a few tens of ohms (the resistance of the mains transformer primary) between the live and neutral pins on the mains plug.

For the remainder of the PSU tests, there should be no HT connections between the power supply or the pre or power amplifier and no valves should be inserted in their sockets. However, the negative bias supply can be connected.

With the standby switch off (SW2 selecting R39, not R37/38/HT4), apply, then immediately remove, mains power. Measure the voltage on C24 positive terminal. The easiest place to
get at this is on the PCB pin which is connected to the wiper of the standby switch, SW2. You should find voltages of around 300 V on C 24 , but nothing on HT3 or 4. Depending on the option you chose for R36, there may be either nothing or up to 300V on HT1 and HT2 pins. The voltages you find depend on how quick you are and how sensitive your multimeter is. A moving coil meter will discharge the capacitors much faster than a DMM, so its readings will be much lower.

Repeat this test, but with the standby switch closed, and measure the voltage on HT3 and 4. All should be around 100 V to 350 V , again depending on the meter and how quick you are.

If this test is successful, turn off the standby switch, then connect the mains supply and leave it on. Watch for any component distress - resistors heating up, excessive buzzing from the mains transformer, etc. Test the HT voltages again. You should find a steady 350 V or so on C24, nothing on HT3 or 4 (perhaps a few volts residual left over from the earlier test), and either zero or 350 V on HT1 and 2, depending on the placing of R36.

If there is no problem, put your test prod on HT4 and move the standby switch to on: HT3 should quickly climb to around 350 V , and then should carry on rising slowly but steadily. Before the voltage exceeds the rated voltage of the capacitors, switch the standby switch off and the voltage should stop rising. The voltage rise is due to the weak 'pumping' action of negative bias supply. With standby off, this is suppressed by the drain resistor, R39 (in normal conditions, current drain by the power and preamplifiers pull the voltage down more than enough).

Check the negative supply voltage. Using RV7, this should be adjustable between zero and around -15 V . Set it at -12 V for the moment.

Remove mains power and drain all the capacitors using a 1 k resistor attached to an earthed lead. Be careful, as some of the capacitors will have more than enough charge on them to give you a nasty jolt.

Insert all the valves into their sockets. Reapply power and check that the heaters all come on. If not, go looking for the fault in the heater wiring. If all is well, remove the preamplifier valves.

Power amplifier commissioning

To set up the power amplifier, you ideally need an oscilloscope and sine wave generator, as well as your multimeter. Also very useful in any audio project is a dummy 8 ohm load; I made mine from six 47 ohm 10 W wire-wound resistors in parallel, giving me a load of 7.8 ohm and a maximum power handling of 60 W . You can use lower power resistors, for example 3W resistors give a maximum power of 18 W which is ample for this project. However, you can just about make do with multimeter alone if you have been very careful with construction.

Using a multimeter on resistive range, check the resistances between HT3 and HT4 on power amplifier (with no connection
to PSU board) and earth. You should find infinite resistance, i.e. the only connection is through the valves which are not powered up.

Disconnect feedback if already connected, that is remove the link between the output transformer secondary and R19. Connect HT3 and HT4 supplies from the PSU to the power amplifier PCB. Connect an old loudspeaker (or the 8 ohm load, plus scope if you have one) across the output.

Apply mains with standby switch off, allow two minutes for the valves to heat up, then the turn the standby switch on. Immediately start looking for any signs of component distress, components getting very hot, excessive hum from the transformer, strange noises from the loudspeaker (some mains hum would be normal) or anything else unusual, such as high frequency oscillation on the output. Switch off immediately if you see any of these signs and investigate the cause.

Assuming all is well, the first test is of the negative supply voltage at the junction of R33, C19, R27 and R28. This should be 12 V , as set on the negative supply. Check round the circuit and you should find values similar to those given in the table.

Table 2: Prototype power amplifier voltages

If all the voltages are fine, the next stage is to apply a signal. Note that a moving coil meter will give lower readings for

HT3	315 V
HT4	340 V
V3 anode 1	217 V
V3 anode 2	203 V
V3 cathode 1, 2	33.5 V
V4, 5 anode	334 V
V4,5 grid 2	338 V

If you have a scope, signal generator and dummy load, apply a 1 kHz sine wave test signal to the top of RV5. Adjust the volume until you can see the onset of distortion. This should occur at an output of around 15 to 20 V peak. The distortion will not be the neat clipping you get on transistor outputs, due to frequency dependent phase shifts in the transformer. In the prototype, distortion normally had the appearance of a spurious peak and trough near the zero voltage crossing on the 1 kHz sine wave.

If you don't have any test gear, you'll have to improvise. For example, for a test signal use the output from a personal stereo, or anything that gives a signal of around 100 mV or more. Start off with RV5 fully clockwise, and advance it clockwise until you

or your loved ones can stand the din no more. The signal will not be hi-fi, but it should not sound grossly distorted up to quite high volume levels.

Move the standby switch to off, remove the mains power and then connect the negative feedback. Reapply mains, wait for a minute, then move standby to on. Either you will get a much reduced output signal or uncontrollable howling oscillation (so keep you finger near the standby switch!). If the latter occurs, the output transformer is wrongly phased and you need to reverse the connections to the primary or secondary (but not both!).

Once the feedback is OK, you should be able to get back to the same output level as before by turning RV5 further clockwise (assuming you've got enough input signal). You should notice significantly less mains hum form the output. Turning RV6 clockwise should increase the amount of high frequency signals coming through (it will slightly increase the level of a 1 kHz test signal provided it is not overloading).

Finally, set the bias voltage from the power supply. If you only have a multimeter, adjust the bias voltage so that the voltage on C 25 drops by around 30 V when the standby switch is moved from off to on. With more sophisticated test gear, first set the bias voltage to -5 V and apply enough input signal to get the maximum undistorted output signal. Then increase the bias voltage to the most negative you can have it and still get the same output with the same input signal.

The power amplifier is now working, so it's time to look at the preamp. Turn the standby to off, disconnect the mains and wait a few minutes for the voltages on the capacitors to drain away.

Preamplifier commissioning

Check that the capacitors in the power supply are fully discharged (if not, use a resistor as before to discharge them), then connect HT1 and HT2 leads between the PSU and the preamp. Switch on and look for any component distress. You may get some mains hum coming through the circuit, so turn RV1 and RV5 fully anticlockwise.

Check the voltages around the circuit, following the table below.

$H T 1$	270 V
V1a anode	170 V
V1a cathode	1.2 V
V1b anode	170 V
V1b cathode	1.2 V
HT2	267 V
V2a cathode	59 V
V2b anode	175 V
V2b cathode	1.1 V

how the amp feels. One problem you may well have is an excess of gain, which makes the amp hard to control. I suggest considering the gain switching modification (Figure 5 in last month's article) if this is the case.

Buylines

The transformers are made by E A Sowter Ltd, The Boatyard, Cullingham Road, Ipswich, Suffolk, IP1 2EG (telephone 0473 252794 or 219390, fax 0473 236188). The cost is £81.98 for the pair, inclusive of VAT and postage and packing. Each transformer is made to order, so allow 28 days for delivery. Sowter can offer many other valve transformers too, some of which (Editor permitting!) will eventually turn up in other ETI projects.

The valves used in the prototype are from Chelmer Valve Co., which advertises regularly in ETI. The output valves are a matched pair of EL84s. If you are using aluminium channel for the chassis, I strongly recommend using Chelmer's B9A sockets. Chelmer valves and sockets are also available through Maplin, but Maplin does not offer the matching service.

Celestion loudspeakers are available through Wilmslow Audio, which also advertise regularly in EII. The Celestions can take a while to come in from the factory, but they are well worth waiting for!

The best range I could find of high voltage but compact electrolytic capacitors was at Cricklewood Electronics. Maplin has some similar capacitors, but doesn't seem able to guarantee their size. Cricklewood also stocks the 2 W carbon film resistors and standard size pots with proper in shafts (I had problems with Maplin collet knobs not fitting Maplin standard pots).
The pots with push-pull switches are hard but not impossible to get. I found them in a musical instrument shop that catered for guitar customisers and builders.
Aluminium channel is available through 'heavy' hardware and metal merchants, but you may have to do some asking around to find a supplier who will sell you a relatively small amount. All the other components are widely available.

R1,2,14,19	47k	R3,10,12,16,22,23	$31 \mathrm{M0}$	
R4,7,17,26	100k 1W	R5,8,18	1k2	
R6,9,11,38	100k	R13	1 kO	
R15	220k	R17	68k*	
R20	4k7	R21,33	10k	
R24	470	R25	82k 1W	
R27,28	470k	R29,30	22k	
R31,32	100R 2W (or 220R/180R, 1W)			
R33-37	10 k 1 W	R35 10	10 k or 22 k 1 W	
R39	100k 2 W (or $2 \times 220 \mathrm{k} 1 \mathrm{~W}$)			
R40	47R 2 W (or $2 \times 100 \mathrm{R} 1 \mathrm{~W}$)			
R41	10k	R42*,43*	100k 1W	
R44*	470k	R45*	22k	
R46*	180R 2 W (or 2×390, 1W) 100 k panel-mounting log potentiometer (see text)			
RV1,5				
RV2,3	220 k panel-mounting linear potentiometer			
RV4	22k panel-mounting linear potentiometer			
RV6	22 k panel mounting antilog (or linear) potentiometer			
RV7	100k miniature horizontal linear preset			

Capacitors

C1,2,9,12,15
C3,13,16,17
100 n 50 V or higher
100 n 400 V
C4,11,20,21,22
10\{SYMBOL109 \f "Symbol"] 375V radial electrolytic

Valves and Semiconductors

V1,2,3
V4,5
D1-4
D5
ZD1

Miscellaneous

ECC83 or 12AX7 dual triode valves
EL84 pentode valves
(matched pair)
1N5408
1N4001
15V 1.3W Zener

T1
F2. Mains transformer, secondaries 250V 150 mA and 6.3 V 3 A

SW1 Single way, single pole switch to choice (can be part of RV1, see text)
SW2 Two way single pole mains toggle switch
SW3 Single way dual pole mains toggle switch SW4* Single way dual pole switch (can be part of RV1, see text))
NE1,2
LS1
SK1-4
Printed circuit boards; chassis (see text); case (see text); insulated mounting pillars (Maplin type FS36P with countersunk M3 screws BF36P); B9A valve sockets (5 off, see text); tag strips for heater and output transformer connections; mains cable restraint; chassis (in the prototype, two 15 in lengths of 2 in by 3 in $1 / 8$ in thick aluminium U -
channel); bolts, nuts and shake-proof washers; wood for cabinet; wood screws; wood glue; cabinet covering; loudspeaker cloth; knobs, wire, solder, etc.

WINTER 1993/94 CATALOGUE

The new enlarged Catalogue is out now!

> New direct phone lines for prompt service
> 16 more pages

- £££'s worth of discount vouchers
> 100's new products
> 240 pages, 26 sections, over 4000 products
> New section of entertainment and accessories including disco equipment, audio mixers, car amplifiers, crossovers, speakers and boosters
> Complete range of Velleman kits now stocked
- The latest scanning receivers and accessories
> New Ni-cad batteries and chargers
> New range of telephone equipment and accessories
- Published December 1993
- Available from most large newsagents or direct from Cirkit
Send for your copy today!

CIRKIT DISTRIBUTION LTD

Park Lane • Broxbourne • Hertfordshire - EN10 7NQ Telephone (0992) 448899 • Fax (0992) 471314

256k RA
to 640 k 4.7 Mhz speed 360k 5-1/4" floppy 2 serial \& 1 parallel ports Standard 84 in keyboard included Optional FITTED extras: 640 K RAM £39. 12° CGA colour monitor with card $£ 39$. 2nd $5-1 / 4^{\prime} 360 \mathrm{~K}$ floppy $£ 29.95 .20$
mbyte MFM hard drive $£ 99$.

Only£99.00

FLOPPY DISK DRIVES

51/4" from £22 95 - 31/2" from £21.95! Massive purchases of standard $51 / 4^{\prime \prime}$ and $31 / 2^{\prime \prime}$ drives enables us to present prime product at indusiry beating low prices! All units (unless stated) are removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day
guarantee and operate from standard voltages and are of standguarantee and operate from standard voltages and are of stand
ard size. All are IBM-PC compatible (if $31 / 2^{*}$ supported).
3.5" Panasonic JU363/4 720K or equivalent
$\begin{array}{lll}3.5^{\prime \prime} \text { Panasonic JU363/4 720K or equivalent } & £ 29.95(\mathrm{~B}) \\ 3.5^{\prime \prime} \text { Mitsubishi MF355C-L. 1.4 Meg. Laptops only* } & £ 29.95(\mathrm{~B})\end{array}$ 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop £29.95(B) 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B

360K. Absolutely standard fits most computers $£ 22.95$ (B) Data cable included in price.
Shugart 800/801 SS refurbished \& tested Shugart 851 double sided refurbished \& lested hitsubishi M2894-63 double Sided 8

E175.00(E) £275.00(E)

E250.00(E) Dual 8" drives with 2 mbyte capacity housed in a smart case End of line purchase scoop! Brand new NEC D2246 8- 85 megabyte of hard disk storagel Full CPU control and industry standard SMD imferface. Uhrahispeed transter and access time leaves the good ald ST50G imernace standing. In mint condition

and comes complete with manual. Only...................... $299(E)$

THE AMAZING TELEBOX!
Converts your colour monitor into a
QUALITYY COLOUR TV!!

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as
MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the and RGB video outputs are located on the rear panel for direct connection to most makes of monitor. For complate compatibility - even for monitors without sound - an integral 4 watt audio amplifier standard.
Telebox
Telebox
Telebox STL as ST but with integral mpeaker $\quad 132.95$ Telebox MB as ST with Multiband iuner VHF-UHF-Cable. \& hyparband For overseas FAL versions state \& hyparband For overseas FAL versions state Telebox RGB for analogue RGB monitors (15 khz) $£ 69.95$ Shipping code on all Teleboxes is (B)
RGB Telebox also suitable for IBM multisync monitors with RGB analog and composite sync. Overseas versions VHF \& UHF call.

No Break Uninterruptable PSU's

 Brand new and boxed 230 volts uninterruptable power supplies from Densei. Model MUK 0565-AUAF is 0.5 kva and MUD$1085-A H B H$ is 1 kva . Both have sealed lead acid batteries. MUK are intemal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with full

640k RAM expandable - 2 serial \& 1 parallel
with standard SlMMS ports
12 Mhz Landmark speed•MS-DOS 4.01 20 meg hard disk

- 1.2 meg 5-1/4" floppy
1.4 meg $3-1 / 2^{\prime \prime}$ floppy
- Co-processor socket
- Enhanced 102 key kayboard
EGA driver on board
Clock \& calendar with

battery back up
 Only 2449.00

The Philips 9CMO73 is suggested for the PC286 and the CM8873 for the PC386. Ether may use the SVGA MTS-9600 if a suitable card is installed. We can fit this at a cost of $£ 49.00$ for the PC286 and $£ 39.00$ for the PC386.

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak).Semi open frame giving $+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak), -12 v 1.5 a , protection on the $+5 v$ output. AC input selectable for $110 / 240$ vac. Dims13" $\times 5^{\prime \prime} \times 2.5^{\text {" }}$. Fully guaranteed RFE. $£ 85.00$ (B) Power One SPL130. 130 watts. Selectable for $12 \mathrm{v}(4 \mathrm{~A})$ or 24 v (2A). 5 v @ $20 \mathrm{~A} . \pm 12 \mathrm{v}$ @ 1.5 A . Switch mode. New. $£ 59.95(\mathrm{~B})$ Astec AC-8151 40 watts. Switch mode. $+5 v @ 2.5 \mathrm{a} .+12 \mathrm{v}$ (9
$2 \mathrm{a} .-12 \mathrm{v}$ @ $0.1 \mathrm{a} .6-1 / 4^{\prime \prime} \times 4^{\prime \prime} \times 1-3 / 4^{\prime}$. New Greendale 19AB0E 60 watts switch mode. $+5 v$ (a) $6 \mathrm{a}, \pm 12 \mathrm{v}$ (9 $1 \mathrm{a},+15 \mathrm{v}$ @1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $224.95(\mathrm{C})$ Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 V (15a,-5v@1a,土12v © 6a. $27 \times 12.5 \times 6.5 \mathrm{cms}$. New. £49.95(C) Boshert 13090. Switch mode. Ideal for drives \& system. +5v © 6a,
 Farnell G24/5S. As above but 24 v @ 5 a .

£ 100 CASH FOR THE MOST NOVEL DEMONSTRATABLE APPLICATION!
BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics systern on large networked systerns the architecture of the BBC board has so many similarities to the regular BBC mode! B that we are sure that with a bit of experimentation and ingenuity many uselul applications will be found for this board! it is supplied complete with a connector panel which brings all the $1 / 0$ to 'D' $\pm 12 \mathrm{~V}$ DC. The APM consists of a single PCB with most majo ic's socketed. The ic's are too numerous to lisl but include a 6502. RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating syslem on which we have no data, On application of DC power the system boots and
DIP switches and jumpers select the ECONET address and enable the four extra EPROM sockets for user software. Appx

dims: main board $13^{\prime \prime} \times 10^{\circ}$. I/O board 1

Ony $\sum 29.95 \circ{ }^{\circ} 2$
 SPECIAL INTEREST

Trio 0-18 vdc bench PSU. 30 amps. New
Fufitsu M3041 600 LPM band primter
DECLS/02 CPU board
Rhode \& Schwarz SEUF TV test transmitler
25-1000mhz. Complete with SBTF2 Modulator
Calcomp 1036 laroe drum 3 pen olotter $£ 2950$
$£ 150$

Thurlby LA 160 B logic analyser
1.5kw 115 v g0hz power source

Anton Pillar 400 Hz 3 phase frequency converter 75 Kw
Newton Derby 400 Hz 70 Kw converter
Nikon PL-2 Projection lens meter/scope
Sekonic SD 150 H 18 channel Hybrid recorder
HP 7580A A1 B pen high speed drum plotter \qquad £6500 Kenwood DA-3501 CDD tester, laser pickup simulator

BRAND NEW PRINTERS

Microline 183. NLQ 17×17 dot matrix. Full width. 8739 (D) Qume LetterPro 20 daisy. Qume QS-3 interiace. 149 (D) Centronics 152-2 9×7 dot matrix. Full width.

2 meg RAM expanded ysots
20 Mhz with 32 k cache
Expandable to $64 k$
40 meg hard disk
1.2 meg 5-1/4" floppy VGA card installed Software - FREE
only 425.00

MONITORS

14" Forefront Model MTS-9600 SVGA multisync with resolution of $1024 \times 768.0 .28$ pitch. "Text" switch for word processing etc. Overscan switch included. Ideal for the PC 386 or PC-286 with SVGA card added. Als compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode), Ar chimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime}$. Only..........E159(E) 14" Philips Model CM8873 VGA multisync
 with 640×480 resolution. CGA, EGA or
VGA, digitalanalog, switch selectable Sound with volume control. There is also a special "Text" switch for word processing spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the Archimedes etc. Good used condition (possible minor screen bums) 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$. Only 139 (E) Philips 9CM073 similar (not identical) to above for EGANCGA amb compats. 640×350 resolution. With Text switch with KME 10" tight $0.28^{\prime \prime}$ dot pitch for superb cors. Nice
 tight $0.28^{\prime \prime}$ dot pitch for superb clarity and
modem styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acom Archimedes \& BEC. Measures
only $13.5 " ~_{\text {" }} \times 12^{\prime \prime} \times 11^{\prime}$. Also works as quality TV with our HMB Telebox. Good used condition. 90 day guarantee. Only. $£ 125$ (E KME as above for PC EGA standard.................................. Brand new Centronic 14" monitor for IBM PC and compatibles Mitsubish than ever pricel bandwidth A 42 dot prich giver in attractive style moulded case Full 90 day guarantee. Only quality 12° IBM-PC compatible. High day guarantee. In an attractive two tone ibbed grey plastic case measuring $15^{\prime \prime} \mathrm{L} x$ been removed for contractual 69

Superbly made 'UK" and $26^{\prime \prime}$ AV SPECIALS
superbly made UK manufacture. PIL all solid state colour
 In EXCELLENT litle used condition with full 90 day gluarantee.
$20^{\prime \prime} \ldots 13522^{\prime \prime} \ldots 15526^{11} \ldots 185(\mathrm{~F})$

CALL FOR PRICING ON NTSC VERSIONSI Superb Quality 6 foot 40u $19^{\text {" Rack Cabinets }}$ Massive Reductions Virtually New, Ultra Smart! Less Than Half Price!
Top quality $19^{\prime \prime}$ rack cabinets made in UK
by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable from door, full height lockable half louvered back door and removable side panels. Fully ad justable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu tion strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Order as:
Rack 1 Complete with removable side panels
Rack 2 Less side panels.

ع275.00 (G)
. 145.00 (G) MAIL ORDER'R OFFICES
Open Mon-Fri $9.00: 5.30$
Dept ET,32 Eiggin Way,
Upper Norwood. LONDON SHOP
Open Mon-Sat $9-5.30$ Thursday till 9.00 pm
215 Whitehorse Upper Norwood,
Lardan SE19 3XF.

> In part 2 of this project Jason Sharpe describes how to add the monitor software to the board described last month.

Z-80 Single
 Board Computer

Abasic machine code monitor program is available on ROM. It has facilities to download software from a computer via the serial port.
The monitor program allows the IPC to communicate with a terminal emulator via a RS232 port and can be used for developing programs. Alternatively, an EPROM emulator could be used for development. The commands available are described below, but should be familiar to those of you who have used debuggers such as SID.

Using the I, Input File, Command

This is probably the most important of the monitor commands. Software can be developed on any assembler, cross assembler, or compiler capable of producing ROMable Z80 code Many PD/Shareware libraries carry cross assemblers (see Ref. 1 at the end of this article). The assembler must produce plain output, i.e. not formatted in, for example, Intel hex format, etc. Assemblers for native Z80 machines such as CP/M machines are suitable. CP/M and Z80 emulators are also available for PCs to enable development to be carried out on the PC.

To load the binary file into RAM, type ' 1 ' in the terminal emulator. A ready message should appear. The file can now be sent. When using the windows terminal program, select 'Send TEXT file' from the TRANSFERS menu. Be sure to remove the cross from the STRIP LF box, otherwise anything with the value OAh will be removed from the file, resulting in strange behaviour. Select the file to send. When 'TERMINATE' (in upper case) is received, control is returned to monitor. This can be achieved by typing TERMINATE after the file has been sent, or the preferred way is to add:

DM "TERMINATE"
(DM=Define Message, maybe different on your assembler), as the last line of your file.

Typing 'G' will start the program. Since I, followed by an address, can be used to load the program into an address other than 2000h (start of RAM), G followed by an address will jump to a location other than 2000h.

Programming Details

Due to the many peripherals in the IPC, it is not possible to give full programming details, it would fill half a dozen magazines! Full programming and architectural information can be found in the title referred to in Ref. 2. There are many texts containing examples of programming Z80 peripherals for those new to this
area. The IPC contains standard $Z 80$ peripheral chips and several custom devices. Routines in the monitor ROM can be called to perform various tasks, such as serial character I/O.

Ports

The I/O map of the IPC is shown below. The file shown in Listing 1, EQUATE.ASM contains all the definitions required to access the I/O devices.

Address	dev	Chan	Register
10h	CTC	Cho	Control register
11h	CTC	Ch1	Control register
12h	CTC	Ch2	Control register
13h	CTC	Ch3	Control register
18h	SIO	ChA	Data register
19h	SIO	ChA	Control register
1 Ah	SIO	ChB	Data register
1Bh	SIO	ChB	Control register
1 Ch	PIO	PortA	Data register
1 Ch	PIO	PortA	Comunand Register
FOh	WDT		Watch dog timer Master Register (WDTMR)
F1h	WDT		Watch dog timer Control Register (WDTCR)
F4h	IPR		Interrupt Priority Register
EEh			System Control Register Pointer (SCRP)
EFh			System Control Data Port (SCDP)

CTC	EQU	010H	CTC BASE
CTCCH0	EQU	CTC	CHANNEL 0
CTCCH1	EQU	CTC+1	CHANNEL 1
CTCCH2	EQU	CTC+2	CHANNEL 2
CTCCH3	EQU	CTC+3	CHANNEL 3
SIO	EQU	018H	SIO BASE
SIOCAD	EQU	SIO	CH.A DATA
SIOCAC	EQU	SIO+1	CH.A CONTROL
SIOCBD	EQU	SIO+2	CH.B DATA
SIOCBC	EQU	SIO+3	CH. B CONTROL
PIO	EQU	01 CH	PIO BASE
PIOPAD	EQU	PIO	PIO PORT A DATA
PIOPAC	EQU	PIO+1	CONTROL
PIOPBD	EQU	PIO +2	PIO PORT B DATA
PIOPBC	EQU	PIO +3	CONTROL
SCRP	EQU	OEEH	SYSTEM CONTROL REGISTER POINTER
SCDP	EQU	OEFH	SYSTEM CONTROL DATA PORT
WDTMR	EQU	0 FOH	WATCH DOG TIMER MASTER REGISTER
WDTCR	EQU	OF1H	WDT CONTROL REG
INTPR	EQU	0F4H	INTERRUPT PRIORITY REGISTER
**********************SYSTEM CONTROL POINTERS********************************)			
WCR	EQU	OOH	WAIT STATE CONTROL REGISTER
MWBR	EQU	01H	MEMORY WAIT STATE BOUNDAY REGISTER
CSBR	EQU	02H	CHIP SEL BOUNDRY REGISTER
MCR	EQU	03H	MISC CONTROL REGISTER

*****************RELOCATED INTERRUPT JUMP BLOCK*******************************)			
RAMBASE	EQU	2000H	START OF USER RAM
USERCMD	EQU	RAMBASE+3H	
INT010	EQU	USERCMD +3 H	
INT018	EQU	INT010 +3 H	
INT020	EQU	INT018+3H	
INT028	EQU	INT020+3H	
INT030	EQU	INT028 +3 H	
INT038	EQU	INT030 +3 H	
NMI	EQU	INT038 + 3H	*
EOT	EQU	"\$"	END OF TEXT MARKER
LF	EQU	0AH	LINE FEED
FF	EQU	0CH	FORM FEED
CR	EQU	0DH	CARRIAGE RETURN
BELL	EQU	07H	BELL CHARACTER
DEL	EQU	08H	DELETE CHARACTER
ESC	EQU	01BH	ESCAPE CHARACTER

Listing 1 Equate file

Listing 2, INIT, shows how the devices are initialised by the monitor. Listing 3, SIO_CODE, shows the BIOS routine to read and write characters from the SIO.

Listing 2 Initialisation Code

	****	NITIALISATIO	CODE EXECUTED BY MONITOR**** J.M.Sharpe
INIT	LD	A, CSBR	CHIP SELECT REGISTER
	OUT	(SCRP), A	SCRP
	LD	A, 31H	CS BOUNDRYS
	OUT	(SCDP), A	SET
	LD	A, MCR	MISC REGISTER
	OUT	(SCRP), A	SCRP
	LD	A, 03H	ENABLE BOTH CS LINES
	OUT	(SCDP) , A	
	LD	SP, SS	SET UP STACK POINTER
	LD	A, 07H	x16,RST, FALL EDGE
	OUT	(CTCCH 3), A	CTC CONTROL WORD
	LD	A,04D	DIVIDE BY 4 (4800x16 @5MHz)
	OUT	(CTCCH3), A	CTC TIME CONSTANT
	LD	A, 05H	WRITE TO REG 5
	OUT	(SIOCAC), A	SIO CH.A CONTROL
	LD	A, 0EEH	DTR, 8, TX, CRC16,RTS
	OUT	(SIOCAC), A	
	LD	A, 04H	WRITE TO REG 4
	OUT	(SIOCAC), A	SIO CH.A CONTROL
	LD	A, 044H	X16,1STOP,NO PARITY
	OUT	(SIOCAC), A	
	LD	A, 03H	WRITE TO REG 3
	OUT	(SIOCAC), A	SIO CH.A CONTROL
	LD	A, 0E1H	8BIT,AUTO ENABLE, Rx ENABLE
	OUT	(SIOCAC), A	
	LD	A, 01H	WRITE TO REG 1
	OUT	(SIOCAC), A	SIO CH.A CONTROL
	LD	A, 0	
	OUT	(SIOCAC), A	

Listing 3 SIO Read and write byte code

BIOS COMMANDS

Various subroutines in the monitor ROM can be called by user software. This is achieved by loading C with the appropriate value and then performing a RST 8, e.g.:

```
LD
RST
e,1
8
...etc.
```

Sends the character in register A to the terminal emulator. RST was used as it is faster and more compact than a CALL. The following commands are available,
$\mathrm{C}=0$
FUNC: RESET,JP 0000
IN: NOTHING
OUT: N/A
$\mathrm{C}=1$
FUNC: Write Byte To Sio Channel A
IN: A=Character
OUT: All preserved
$\mathrm{C}=2$
FUNC: Wait For Byte From Sio Channel A (SIOA)
IN: NONE
OUT: A=Byte Read
$\mathrm{C}=3$
FUNC: Write String To Sio Channel A
IN : HL Holds Start Of String, Terminated With A '\$'
OUT: A,B,HL CORRUPT

C=4
FUNC: Read String, Max 256

	Characters, Buffer Must Be 258 Chars Long
IN:	HL=Address Of Buffer To Place Text In
OUT:	A, HL CORRUPT, C=Number Of Characters In Buffer String Terminated With '\$\$'
$\mathrm{C}=5$	
FUNC:	Send Hex Character For A To SIOA
IN:	A Value To Print
OUT: A	CORRUPT
$\mathrm{C}=6$	
FUNC:	Convert String Pointed To By DE To Uppercase
IN:	B=No. Of Characters, DE Holds Address Of List To Convert
OUT:	A,B,DE CORRUPT
$\mathrm{C}=7$	
FUNC:	Turn ASCII String Into Hex Number
IN:	DE Holds Start Of ASCII Number (Max 4 Byte Number)
OUT:	Carry Set If Error, Else HL Holds Valid Number And DE Points To End Of ASCII Number +1
$\mathrm{C}=8$	
FUNC :	Same As DUMP Command In Monitor.
IN:	DE=Start Address, HL=End Address, If HL=0 Does 16 Lines
OUT:	A, BC, DE, HL CORRUPT

Characters, Buffer Must Be 258 Chars Long Text In

Characters In Buffer String Terminated With '\$\$'
$\mathrm{C}=5$
FUNC: Send Hex Character For A To SIOA
IN: A Value To Print
OUT: A CORRUPT
$\mathrm{C}=6$
FUNC: Convert String Pointed To By DE To Uppercase Address Of List To Convert
$\mathrm{C}=7$
FUNC: Turn ASCII String Into Hex Number (Max 4 Byte Number)
Carry Set If Error, Else HL Holds Valid Number And DE Points To End Of ASCII Number +1

C=8
FUNC: Same As DUMP Command In Monitor. Address, If HL=0 Does 16 Lines
OUT: A,BC,DE,HL CORRUPT

INTerrupts and ReSTarts

Interrupts are disabled when a user program is invoked. So interrupt mode 1, NMI and the free RST instructions can be used. They are redirected from the ROM locations to the start of RAM. If Interrupts are to be enabled, programs should have the following at the start,

PROGRAM HEADER FORMAT

G	2000	Start of user memory
JP	START	Jump to start of program
JP	USERCMD	If '-' entered in monitor, this routine is called, use for adding new monitor commands, set to 'jp 0' if not used
JP	RSTH010	RST 10 Redirected here
JP	RSTH018	RST 18 Redirected here
JP	0000	Reserved for system use
JP	RSTH028	RST 28 Redirected here
JP	RSTH030	RST 30 Redirected here
JP	RSTH038	RST 38 Redirected here
JP	NMI	NMI redirected here, set to 'JP 0' if unused
S	TO 'RET	OR 'JP 0' IF NOT

Listing 4, SECOND, demonstrates how interrupts can be used. In interrupt mode 1, a jump is performed to 0038 h when an interrupt occurs. The instruction at this location performs a jump to the jump block so the user can service the interrupt. In this case the interrupt comes from the CTC. The program outputs location INTCLK2, which acts as a seconds counter. If more than one interrupt source is active it will be necessary to determine which device caused the interrupt.

More Speed

The system starts up with the CGC running in divide by two mode, i.e. the clock input is 5 MHz . If required, the clock input can be switched to divide by one mode by writing to the system control registers. This has the effect of doubling the clock speed to all peripherals, including the CTC which provides the serial data clock. Thus, the baud rate is doubled. Also, remember that increasing the clock speed increases the system power consumption.

Listing 5, CLKDBLE demonstrates how the system control and data ports are accessed, this example sets the clock divide by one flag, increasing the system clock speed to 10 Mhz . Run the program by typing
T2000, A
in the monitor. On exit, change the host computer's baud rate to 9600 baud and press enter several times.

| | $* * * D E M O N S T R A T I O N ~ O F ~ U S I N G ~ I N T E R R U P T ~ M O D E ~$ |
| :--- | :--- | :--- | :--- | AND CTC INTERRUPTS***

Watch Dog Timer

A watch dog timer (WDT) is a mechanism designed to allow crashed systems to recover. The program accesses the WDT periodically to reset the count. If a program has crashed and does not do this, the WDT will time out, causing the MDTOUT pin to go low. Connecting this pin to /RESET, will restart the system in the event of a crash. The WDT register also controls the power saving modes. The system clock to various devices can be stopped to minimise the power consumption in battery operated systems.

Note that the /RESET pin functions as an OUTPUT during

At this speed, older EPROMs may be too slow. If this is the case, the on chip wait state generator can be programmed to slow memory access. If a program works when run in RAM at 10 MHz , but fails in ROM, access time could be the problem.
power up, and so only open collector logic should be connected to it if an external Reset is required. Due to the design, a push button switch from /RESET to GND will normally reset the CPU correctly.

Listing 4 Seconds counter using interrupts

Listing 5 Seconds counter using interrupts

***********Routine Increase clock speed to 10Mhz**********

* To run type T2000,A
* then change the terminal emulator baud rate to 9600 baud ORG 2000H

MCR	EQU	$03 H$	MISC CONTROL REG
SCRP	EQU	$0 E E H$	SYS CONTROL REG PNTR
SCDP	EQU	$0 E F H$	SYS CONTROL DATA PORT

Start
LD A, MCR
OUT (SCRP), A Point to Misc register
IN A, (SCDP) Get current state
OR 10H Set clock divide by one flag
OUT (SCDP),A Clock now 10 Mhz
NOP
NOP
NOP
NOP
DM "TERMINATE"

Ref. 1: Scientific Shareware - Winscombe House, Beacon Rd, Crowborough, East Sussex TN6 1UL. Tel. 0892663298
Ref. 2: Z80 Family Data Book, Zilog, 1991. Available from Maplin Electronics, code: RQ54J £6.95

Note: The monitor software is public domain and may be copied freely. It may not be sold, although a nominal copying fee may be charged, plus the cost of ROM if distributed in said form.

Capacitors

C1-2	33pf ceramic
C3-5	0.15F Surface mount ceramic
C6	105F Tant
C7	0.15F Poly

Resistors

R1-8
4K7 SIL
R9-13 4K7

A programmed 2764 containing the complete monitor programme for this project is available from ETI Reader Services, Price $£ 12.99$ inc. Order No. ROET/42. A printed listing is also available Price £2.00.
Cheques payable to ASP and sent to: ETI Reader Services, Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST

Semiconductors

IC1
IC2
1 C 3
IC4
Xtall 10MHz low profile
2×50 way DIL IDC headers plg
10 way DIL ICD header plg

Electronics equipment

review

EPROMs are finding increasing usage in a great many electronics projects, not just for storing computer programs but also as specialist logic devices, a specific input pattern generating a specific output pattern. In ETI, we have over the years done a number of EPROM programmer projects, many of which have been very successful. However, even though ETI readers have a penchant for building things themselves, it is occasionally a good idea to look at some of the commercial products, as very often they can be surprisingly good buys.

In this short review, we are examining three EPROM programmers from different manufacturers. All are designed to be connected to a PC, from which object code produced by an assembler can be downloaded.

SP-1000

The Saje SP-1000 is a full featured stand alone EPROM programmer and EPROM emulator with the extended power of a PC via a remote control link. As a stand alone device it has a 16 character supertwist backlit display providing high clarity in all lighting and viewing conditions. The programmer also has a small keyboard with which the user can easily operate the unit's many functions, including programming/emulating data. There is a 32pin ZIF socket to hold the chip to be programmed.

The unit is mains powered and is linked to the PC via its RS232 serial communications port. Standard download formats include binary, ASCII, Intel Hex and Extended Intel Hex. PC interface software is provided and handles all the main control functions, as well as handling communications between the PC and the programmer.

The SP- 1000 will emulate a range of different EPROMS including 2716, 2732, 2764, 27128, 27256, 27512, 27010, 27020 and 27040 , plus all compatibles. It will program the same range of devices.

The unit is supplied complete with all cables and software, all that is required is a mains plug! Full documentation is also provided. Cost - £299 + VAT Available from: Saje Electronics Ltd, 117 Lovell Road, Cambridge, CB4 2QW. Tel. 0223425440 Fax. 0223424711.

Dataman S4

The S4 is a battery powered PROM programmer that has been specifically designed for use by microsystem designers. It contains $128 \mathrm{~K}, 256 \mathrm{~K}$, or 512 K of RAM, which retains data and
 configuration even when the unit is switched off. The RAM can be downloaded with data and manipulated either remotely from a computer via a RS232 interface, or directly from the S4's keypad.

The S4 provides plug in emulation for PROMs via a $24 / 28 / 32$ pin emulator lead. The development method is that a new program can be tried out by emulation. Then

In this month's review section we take a look at three relatively low cost commercial EPROM programmers, which can be used in conjunction with a PC to program a range of EPROMs and Microcontrollers.

HEP-101

The HEP-101 is the simplest and cheapest of a family of EPROM programmers, the HEP-800 series. It is a simple, but nonetheless powerful, device which relies heavily on the PC based control software to
 perform many of the programming functions. The hardware comes in two parts, the SAC-101A high speed interface card, a PC half card which plugs directly into the PC's expansion bus, and a programmer unit with quick release socket, the two being linked by a cable.

The HEP 101 can be used to program a wide range of different devices. These include byte wide NMOS/CMOS EPROMs ranging from 2716 to 27512 and 8 Mbit. It will also program EEPROMs including 2816, 2816A, 2864A, 28256A, 28F512, etc. Page mode EPROMS, such as the 27513 or 27011 can also be programmed. Programming is quick, it taking about 20 seconds to program a 27256 . The HEP-101 will accept object code as Intel 80/86 HEX, or Motorola S1/S2/S3 HEX, as well as binary and ASCII.

The unit comes complete with interface card, programmer, cable and control software. It can be used with any XT/AT or 100% compatible PC with MS-DOS 2.0 or later, floppy disk drive and 640K RAM (note max. system clock speed is 25 MHz zero memory wait state).
Cost - $£ 149$ Available from: Citadel Products Ltd, 50 High Street, Edgware, Middx. HA8 7EP Tel. 0819511848 Fax. 0819515857.
when it works a PROM can be programmed and plugged into the system. The S4 can program EPROMs of the 27 series, such as the 2716 or 278000 , also FLASH EPROMS and most EEPROMs, including 28, 52,55 and 98 series. Other devices can be programmed, such as single-chip microprocessors, but some require a plug in adaptor.

The S4 comes complete with a comprehensive manual, a mains charger, a WRITE lead 2 mm plug to Minihook, EMULead ribbon cable with 32 pin DIL plug, Library ROM, Disk with terminal driver program and utilities. The whole system, with the exception of the batteries, is covered by a three year parts and labour guarantee.
Cost - £495 Available from: Dataman Programmers Ltd, Station Road, Maiden Newton, Dorset, DT2 OAE. Tel. 0300 320719 Fax 0300321012

Power sup for electro equipment

John Linsley Hood takes a new look at bullding Improved power supplles for low slgnal level electronles clreultry

Ihave heard comments from constructors, from time to time, to the effect that when they had substituted a more permanent, mains-operated power supply for the batteries which they had used during initial testing and operation of some piece of low power audio gear, such as a pre-amplifier module, they were left with the feeling that it had sounded rather better when it had been powered by batteries.

This observation has never really surprised me, since batteries, provided that they are new, are very nearly an ideal source of power for electronic hardware - their output voltage is intrinsically hum-free (provided, of course, that one isn't doing something daft, like taping them onto the side of one's mains transformer), it is easy to arrange their connections so that they don't introduce hum-generating 'earth loops' and they have both a nearly constant output voltage and a very low noise level.

When they are new, their output noise level is certainly better than most stabilised power supply systems, though I would not have expected this to make a noticeable difference. However, I also know that the human ear can detect very small defects in audio systems, which is why I am more reluctant than the average engineer to dismiss claims made by the bat-eared brigade that effects which are measurable, but very, very small, are nevertheless audible. This consideration provided me with the incentive to take a somewhat closer look at the relative characteristics of batteries vs. other kinds of power supply.

Battery Types (Primary)

1. The LeclanchÈ.

A large range of cells has been devised over the years, of which a few have become widely used because of specific advantages, such as high energy capacity or low cost, and these can be broadly subdivided into 'primary' (use until flat, then throw away), and 'secondary' (use until it is convenient to remove and re-charge).

Of the 'primary' cells, the most common is the venerable 'LeclanchE'', or zinc-carbon design, which consists of a cylin-
drical cup-shaped negative electrode, called the 'anode', pressed out of thin zinc sheet, inside which there is a cloth bag containing a carbon rod, surrounded by a mixture of graphite and manganese dioxide to form the positive (cathode) terminal of the cell, as I have shown in Figure 1. The cell is activated during manufacture by saturating the carbon powder mix with a solution of ammonium chloride in water and the top of the cell is then sealed over with pitch, to prevent this 'electrolyte' from leaking out.

Figure 1. The traditional 'Leclanche' flash lamp

When current is drawn from the cell, atomic oxygen is released on the inner surface of the zinc cup, which it attacks and converts the metal into various zinc salts, while hydrogen is released at the cathode. The gas evolved here would impede the current flow through the cell and cause its output voltage to fall, on load, a process which is called 'polarisation', so manganese dioxide powder is mixed with the carbon powder filling to combine with, and get rid of, this unwanted hydrogen. For this reason it is called the 'depolariser'.

The working life of the cell is limited by the progressive corrosion of the zinc outer cup - which continues slowly, due to
impurities in the zinc, even when no current is being drawn from the cell - by the using up of the electrolyte and by the exhaustion of the depolariser. The cell manufacturers usually allow a little surplus zinc on the anode cup, to try to lessen the risk of the cell case perforating and allowing the highly corrosive goo to leak out into ones 'Walkman' or pocket calculator.

2. The Zinc Chloride Cell

About twenty years ago it was noticed that if the ammonium chloride solution used as the electrolyte in the standard LeclanchĖ cell was replaced by a zinc chloride solution (which was at least as cheap), the cell had better electrical characteristics. This observation, which had been known to the chemists for about a hundred years, was hailed by the battery manufacturers as a huge technical breakthrough, especially since it enabled them to charge more money for their batteries.

Figure 2. Modern zinc chloride cell, with tight fitting outer plastics sleeve

The way 'zinc chloride' cells work is virtually identical to that of the original Leclanch忘, though such cells, the most common type on any supermarket shelf, are usually fitted with tin plated steel top and bottom caps and an outer plastics sleeve, as shown in Figure 2, to help prevent leakage of the corrosive electrolyte from the cell.

3. The Alkaline-Manganese Cell

This type of cell really is better than the zinc chloride or ammonium chloride based versions and it has the same 1.5-1.55V output voltage as its predecessors, though with a capacity about seven times as great. The main difference is in the electrolyte used, which is a concentrated solution of caustic potash (potassium hydroxide). This would be quite nasty if it escaped, which demands that the cell is made completely leak-proof, both when new and when fully discharged, which is a good thing for the forgetful user.

Although caustic potash solution is a much better conductor of electricity, it reacts much less vigorously with zinc than, say, a zinc chloride solution, so for the same output current it is necessary to increase the effective surface area of the zinc anode. This is done by forming the anode from finely divided powdered zinc, made into a paste with the electrolyte. The cathode is still a mixture of graphite and manganese dioxide, but pressed into a series of hollow cylinders, which are fitted inside the steel outer case as shown in Figure 3.

4. Button Cells

Electronic wrist watches, automatic cameras, hearing aids and
contemporary designs of pocket calculator, have created a demand for very small, relatively low output batteries, often of just single-cell type, mostly based on zinc in combination with silver or mercuric oxides, with output voltages in the range 1.31.55 V . Like the alkaline manganese cell types, these all use a potassium hydroxide electrolyte and are both fully sealed and leak-proof during their entire life.

The most common of these cell types, the 'mercury' cell, is so widely used that, in the more popular forms, such as those employed in miniature hearing aids, individual cells can cost as little as 30p each. The 'zinc-air' cell is very similar in design, except that instead of using mercuric oxide as the source of oxygen to power the electro-chemical system, a small hole is made in the base of the cell to allow oxygen from the air to reach a water impermeable catalytic carbon layer in the base of the cell.

Figure 3. 'Alkaline manganese' high energy cell

Since this occupies less space than the mercuric oxide layer, there is more room inside the cell for the zinc/mercury amalgam anode and the cell has a somewhat greater electrical capacity. It is commonly supposed that a 'zinc-air' cell will last twice as long as the standard mercury cell, which is used to justify the fact that it will also, usually, cost twice as much. However, the Duracell catalogue quotes the RM312 mercury button cell as having a 57 mA hour capacity, as compared with 70 mA hour capacity for the physically equivalent DA312H zinc-air type which is only 23% greater.

The extra convenience of not having to replace zinc-air cells quite as frequently as the mercuric oxide equivalents is offset by the fact that, once the sealing tab has been removed from the base of the zinc-air cell, to allow ingress of air and to start the cell working, the cell begins, slowly, to discharge. This favours applications where the cell will normally be replaced in weeks or months, at the latest, rather than those where it is in intermittent use and a long shelf- life would be an advantage.

The construction of both of these cells is very similar and I have illustrated them in Figures 4 a and 4b. The silver oxide cell, which I have shown in Figure 4c, has a somewhat higher output voltage of 1.55 V , as compared with 1.35 V for the mercuric oxide or zinc-air equivalents and it also has a very flat output voltage vs. discharge curve. However, it is more expensive and has, other things being equal, a capacity which is only about 75% that of the mercuric oxide type.

The final important cell of this kind is the Lithium-manganese dioxide type, which is notable for its high (3V) output voltage, its good storage capacity - though this is not a lot larger than the

Figure 4. Construction of typical 'button cells'
mercuric oxide type - and its exceedingly long shelf life, a quality which has led to its widespread use in computer memory back-up applications. Because lithium metal reacts violently with water, exotic electrolytes which are not water based must be used and these are, in general, not very good conductors of electricity, which makes lithium cells suitable only for low current applications.

Rechargeable (Secondary) Batteries

For all practical purposes, these are now either lead-acid, the system used in car batteries, or nickel-cadmium 'NiCad', which are used in mobile 'phones and the like.

Figure 5. Typical construction of cylindrical Ni-Cad cell

1. NiCad

As in the alkaline manganese cell, the electrolyte is a potassium hydroxide solution, which gives the cell a very low internal resistance and allows high discharge currents. However, in order to get large storage capacity, it is necessary to provide a large effective surface area for the plates. This is done by depositing the metallic nickel (negative) and cadmium (positive) electrodes in the form of a sintered powder, within a micro-porous matrix formed on the surface of a pair of nickel or cadmium plated plates.

In the case of the cylindrical type cells, these plates are made of thin foils, which are wound up into a kind of 'swiss-roll' structure shown in Figure 5. This is similar to an aluminium foil electrolytic capacitor and the surface of the cadmium metal is oxidised to form the positive, cadmium oxide, electrode when the cell is given its initial charge.

During charging, both hydrogen and oxygen are released, but only in very small quantities up to the point where the cell is fully charged and these gases recombine chemically, in the cell, to form water. Provided that the charging rate of the cell is not too high, no 'free' gas is evolved at all and the fully charged state is indicated by an increase in temperature of the cell as all the input power is absorbed in breaking down the electrolyte into gases, which then recombine.

This increase in cell temperature at the end of a charge is a much more reliable indication that the cell is fully charged than the measurement of cell voltage and is used as a control mechanism in some of the charger systems provided, for example for use with battery powered hand tools.

The normal cause of deterioration in NiCad cells is that frequent gentle charging and discharging of the cells tends to produce a smooth surface to the plates. Because these have a relatively low surface area, it lessens the storage capacity of the
battery. To avoid this problem periodic complete discharge and fast recharge cycles are recommended.

Catastrophic failure of the cell, so that it has neither output voltage nor storage capacity, is usually caused by the growth of thin metallic tree-like structures called 'dendrites', which penetrate the porous 'separator' layer between the plates and produce internal short circuits. The recommended cure for such a dud cell is to 'treat it rough', by forcing current through it at a 'one hour' or faster charging rate, i.e. a 1 A charging current for a 1 Ah cell. If a voltmeter is connected across the cell in question, success in fusing the dendrite will be indicated by the cell voltage suddenly 'taking off'.

2. Lead-Acid

I have included these for completeness, because they are, like the zinc-carbon LeclanchE flash-lamp battery, within the range of nearly everyone's experience, though seldom used in electronics applications. They consist of a pair of lead plates, one of which is pocketed with cavities filled with lead dioxide, to make the positive electrode, while the other is left simply as plain lead. The electrolyte is dilute sulphuric acid, at approximately 20% concentration and the output voltage is in the range $2-2.25 \mathrm{~V}$.

Recharging 'Primary' Cells.

Most cells can be recharged, to some extent, even those which are intended to be used once and discarded when flat and, from time to time, schemes are proposed in patents or in electronics magazines, for gadgets which will do this. Taking, as an
example, the zinc chloride cell, the requirement is that the cell should not be allowed to become too fully discharged - obviously, if the outer zinc case becomes corroded away, the cell is an unwelcome neighbour anyway - and it should be recharged in such a way that the zinc is replaced as a smooth, continuous layer. This usually means using a pulsating uni-directional charging current, having a fairly high repetition rate for the current pulses.

Also, since the recharging process is likely to cause the loss of water from the cell, by electrolysis, the charging process should not be allowed to continue beyond the extent which is necessary, nor should the charging rate be so high that the gases formed cannot recombine, or leak away.

Power Supply Characteristics

The desirable characteristics of a power supply are that its output voltage should be constant, that its internal resistance should be as low as possible and that the noise voltage superimposed on the output shall be negligibly small. Because most cells have press fit contacts and the possibility of multiple internal current paths, the noise they suffer from is mostly 'excess' or ' $1 / \mathrm{f}$ ' noise - a kind of noise which is basically only noticeable below, say, 100 Hz . It will, for physical reasons, worsen as the cell discharges.

Cell and Power Supply Characteristics

I have listed the relative characteristics of typical supply systems in the table below, where all cells are of HP7 or 'AA' size.

Cells	Output voltage (new)	Output voltage (partially used)	Internal resistance (new)	Internal resistance (partially used)	Noise voltage*

Next month, in the second part of this article, John Linsley Hood will describe an add-on circuit which will improve the noise characteristics of a conventional IC series voltage regulator so that it is comparable in performance to a battery, as a source of power for low-level audio circuitry.

An eye for a robot

Simple optical sensors can help a robot find out about the world around it. In Part 1 of this series, Nick Hampshire looks at some of the basics

(A)true robot is a self contained autonomous system. It has sensors to provide information about the world in which it lives, it has a knowledge base which allows it to interpret the input from these sensors, and it has actuators which allow it to respond to the sensor input in a manner determined by its knowledge base. If it does not have all three of these components, then it is doubtful that we can regard the system as a true robot.

Simple mobile robots rely almost exclusively on touch sensors to stop them bumping into any object they encounters, in much the same way that a mouse running along a burrow uses its whiskers to stop it bumping into the walls. But trying to navigate around even a simple environment with just touch sensors is very much a hit and miss affair, as anyone who has played blind man's buff will testify. A far better way of sensing the objects around one is to use some form of visual input in addition to the touch sensors.

Visual input can take many forms. It could be a sophisticated image analysis system with a TV camera and high speed computer for doing the analysis or, at the other extreme, it could be a simple light sensor that can be used to steer the robot towards or away from a light source, or even follow a white line painted on the floor.

In this short series, we shall be looking at a few simple and practical forms of visual input and pattern recognition for robots. We will not be considering the sort of sophisticated visual input that allows an industrial robot to accurately identify a part lying in any orientation.in a bin of mixed parts and then assemble it with other parts it has picked out, but we will be looking at visual systems that allow a small mobile robot to build a visual map of the world around it to aid in its navigation. We will also be looking at simple image input and a system which can, with a reasonable degree of accuracy, recognise simple patterns. With a bit of expansion it should
also be able to recognise your face from those of your friends.

Simple optical input

The simplest form of optical input device is a single phototransistor, onto which light is focused using a lens.
Phototransistors are sold as infra-red light detectors but they are also efficient detectors of light in the visible part of the spectrum (infra-red sensitivity means that your robot can see things you can not!). The output from a phototransistor is a current that is roughly proportional to the intensity of the light falling on it. We need to change this variable current into a variable voltage if we are to either measure the light intensity or simply feed it into a threshold detector, which tells the computer that it is light when intensity is above a certain level and dark when that level.

A simple signal conditioner that will turn the variable current output of the phototransistor into a variable voltage is shown in Figure 1. The first thing to note

Figure 1. Optical sensor circuit
about this circuit is that its sensitivity can be altered by changing the value of the 1 Mohm resistor. It can have any value between about 5 Kohms and 3 Mohms , the higher the value the greater the sensitivity to light. With the optical set-up that I used, a value between 500 K and 1 M gave the best sensitivity in a room with a mixture of artificial and natural light.

In order for it to work properly as a sensor, light needs to be focused onto the phototransistor with either a lens or a small parabolic mirror. Because I happened to have a small. lens available which had a focal distance of about 1in, I decided to use that as the basis of a small camera type system. For the camera body I used an old plastic container in which 35 mm film was packaged. This was about the right size and, most importantly, was designed to be light-proof.

A small hole was cut in the bottom, with a diameter slightly less than that of the lens I was using and the lens was glued to the container so as to cover the aperture.
Great care should be taken when doing this, to ensure that no glue is spilt onto the central part of the lens, as
cleaning it off can be quite difficult. The focal plane of the lens was then determined by using a piece of tracing paper covering the end of a small cardboard tube, which could be slid in and out of the plastic container with the lens mounted in the bottom.

With the lens pointing at a well lit object about 10ft away, the tracing paper screen was slid in or out until it displayed a sharp image of that object. The position of the screen from the lens was then measured to determine the actual focal distance. The phototransistor was mounted by simply making two holes through the push on lid with a needle and pushing the two leads of the phototransistor through it. The phototransistor leads should be pushed far enough through the cap so that the actual phototransistor chip lies on the previously measured focal plane.

The output from the circuit in Figure 1 will be an analogue signal between 0 and +5 V , where 0 V will correspond to high light intensity, and 5 V to total darkness. This output could be connected to an input port of a computer using a 7404 buffer inverter as a simple
threshold detector (the gate output will only switch from logic low to logic high when the input voltage exceeds a certain level, and vice versa). A more sophisticated threshold detector can be constructed using an op amp and a preset reference voltage, although, in most applications the NAND gate approach works quite well and the threshold light intensity can be changed by altering the sensitivity.

Expanding the visual input

Since the output from the phototransistor and its signal conditioning circuit is a variable voltage, we can extract a lot more information from it by measuring that voltage and thus determining the light intensity at the position where the camera is pointing. We can measure the voltage by using an analogue to digital converter circuit and outputting the digital value to the controlling computer.

The degree of precision in measuring the voltage need not be that great, dividing light intensity into 64 levels (often referred to as grey scale levels) is more than enough for most forms of image analysis. This means using an analogue to digital converter with six bit digitisation and sufficient speed and ease of connection to a computer to allow it at a later date to digitise multiplexed input from a small array of photodetectors. The choice was the Harris CA3306 A/D converter chip as the basis of the circuit shown in Figure 2.

This circuit is designed to measure

Scanning the world

So far in this design for a simple robot vision system, we have an optical sensor that can measure the light intensity in a particular direction with a resolution of 64 grey scale levels. If this were mounted on top of a mobile robot it could tell the robot's computer something about the 'whiteness' or 'darkness' of the world in front of us. Similarly if it was mounted looking at the floor it would tell the computer if the white line painted on the floor which the robot is following is still there. If not, then the robot could retrace its steps and hunt for the white line.

But we may want our robot to have more than this, we may want it to be able to build up some simple visual image of the world around it to help it navigate its way around this environment and recognise certain key features. To do this, we ideally need more than a single light sensor, we need a means of detecting the spatial relationship between variations in light intensity, preferably an array of photosensors.

However, all we have for the time being is a single photosensor, but even that can be used to provide spatial information by sweeping it around a field of vision. In this way, the robot's computer can be provided with information about the rela-

Figure 3. Power supply circuit
voltages between OV and +5 V and can, if necessary, digitise up to 10 million samples per second. The output lines are all TTL compatible, so can be connected directly to a processor I/O port. Digitisation of the voltage on the input is initiated by the processor toggling the clock input line. The 741 op amp and associated circuitry provide a reference voltage which can be adjusted for calibration using the 5 K potentiometer.

A question of power

The analogue to digital converter circuit needs three different positive voltages, $+5 \mathrm{~V},+6.2 \mathrm{~V}$, and +12 V . With digital circuitry, power supplies tend to be restricted to just +5 V , so some additional power supplies will probably be needed. The robot system, for which this vision system is eventually intended, has its own battery power supply with an output of just under 15 V , high enough to supply the main motors.

The vision system therefore has its own set of voltage regulators to provide the necessary supply voltages from this 15 V battery power supply. The circuit is shown in Figure 3 and consists of three identical

Figure 4. Stepper motor

variable output voltage regulator circuits based upon the LM317 regulator chip, the output from each of which can be set using the appropriate 5 K preset potentiometer. In this way we can get stabilised outputs at the three required voltages with the minimum additional circuitry.
tive positions of light and dark areas, not just directly in front of it but to each side of it and even behind it. Information from which it can build up a crude visual map of the world in which it lives.

Thus, if the mobile robot was designed to find its way around a maze
constructed from white painted walls, it would be able to discover passageways to the left or right of it because these would exhibit a lower reflected light intensity than the walls. Such a system is a lot more clever than blindly bumping around using touch sensors.

This visual scanner can be constructed by mounting the optical sensor onto the shaft of a stepper motor. The processor
can take a sequence of light intensity readings which are of locations one step, or 7.5 degrees, apart. This therefore brings us to the last circuit in this simple robot image sensor, the stepper motor controller, shown in Figure 4.

The motor used was a small 12 V model with a 7.5 degree step angle. A small stepper motor of this sort is best controlled using one of the integrated
circuit stepper motor controller chips, in this case the Philips SAA1027. The chip makes a stepper motor very easy to control, the motor will turn clockwise when pin 3 is low and anti-clockwise when it is high. The motor will turn one step for every low to high transition on pin 15 , the reset line on pin 2 will normally be kept high, when it is taken low it will reset the chip and take pins 6 and 9 low, and 8 and 11 high. The reset is not normally used. One thing to note from the circuit diagram is that the SAA1027 does not operate with normal $+5 \mathrm{~V} T \mathrm{~T}$ inputs, Instead it operates at +12 V (logic high is $>7.5 \mathrm{~V}$, and logic low is $<+4.5 \mathrm{~V}$). Hence the 7407 buffers and pull-up resistors in the circuit - these allow the chip to be driven by TTL logic, including a processor output port.

Next month...

Next month we will look at assembling the circults, cennecting them to a computer and writing'some software to both control them and imput some visual data. We will also look at how the circuit can be expanded to handie multiple photosensors, the start of a true image input systemi

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611
The supplier to use if you're looking for * A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST * \star COMPETITIVE VAT INCLUSIVE PRICES \star \star MAIL ORDER - generally by RETURN OF POST \star

* FRIENDLY SERVICE *

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD

Tel: (0480) 433156 Fax: (0480) 413357

TEST EQUIPMENT SYSTEM CONSULTANCY

Supply
Maintenance
Commissioning
ributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

Microprocessor Fundamentals Part 3

There is little point in having a computer system which does not communicate with the outside world. This communication could be via switches, keyboards, flashing lights, TV monitors, modems... The list of devices and circuitry which can be connected to a computer to either provide data for the computer or receive data from it, is virtually endless.

Although the range of I/O devices is enormous, there are a number of basic fundamentals in the way that all such devices are connected to a computer system. This month, we will be looking at some of these basics and examining the various ways

Alex Stuart continues his series, looking at some of the various ways in which a microprocessor system can communicate with external devices

Figure 1. Tri-state buffer input on memory mapped system.
all accessed by the processor outputting a specific address on the address bus and then either reading data from, or writing data to, the location pointed to by that address. This means that all I/O circuitry must have an address decoding component and a means of allowing the external circuitry to communicate via the data bus when, and only when, the correct address has been detected by the decoding circuit.

Figure 3. Waveforms for buffer input to I/O mapped system
in which data is transferred between the computer and external circuitry.

The Question of I/O Addressing.

In the last issue, we looked at memory mapping and address decoding. We saw that there are two types of microprocessor, those where input and output devices are mapped as part of
memory and those which have a separate I/O addressing area. Amongst the eight bit processors, the 6502 and 6800 families fall into the first category, whilst the Z-80 and 8080 families fall into the second category.

Whether any attached I/O devices communicate via memory locations or locations in a special I/O area, they are

The Most Basic Form of I/O Circuil

If the processor uses straight forward memory mapped I/O, then the output from the address decoding circuitry can be used to enable an eight bit tri-state buffer, or a latch, which is connected between the external circuitry and the processor system's data bus. But it also needs circuitry to define whether the lines connected to the buffer or latch are input lines or output lines. In other

words, something to define the direction of data flow. This is achieved by using the processor's RNW line - note the use of an inverter to make the port function as an input in the example circuit shown in Figure 1.

If the processor has separate I/O mapping, such as when using the Z-80, then some slightly different circuitry is required. Such an I/O circuit will not rely on the RNW line to provide information
on data direction but will instead rely on the RD and IORQ lines to provide the same information. Note that the IORQ line is used by the processor to signal that the address being decoded lies within the I/O addressing area, rather than the memory addressing area. An example of such a circuit in a Z-80 system is shown in Figure 2. and its waveform diagram in Figure 3.

When writing the software to use
such an input circuit, we are faced with a problem. When is the data on the input lines valid data and when is it spurious data? For example, if the inputs are derived from switches we can have a problem with switch bounce, which means that data input when the switch position is being changed could be invalid.
Alternatively, the system could be receiving a regular sequence of input pulses from some other piece of circuitry. Once again, the question is when is the input valid?

With the problem of switch bounce, the solution is to test the input lines several times in order to ensure that the status on each line has settled to a steady state. However, when faced with inputting a sequence of pulses, the problem is much harder and it is not something which can be done by pure software techniques. Indeed, the only practical solution is to use one of the input lines as a strobe line, in other words a line which will only go high

Figure 4. Latched 7475 output circuit.

Figure 5. Waveforms for latched 7475 output circuit
when there is valid data on the other seven input lines.

With such a strobe line, the software simply has to test the status of the strobe line in order to determine whether there is valid data on the other input lines. Alternatively, the processor's interrupt request line could be used to signal the arrival of valid data. By pulling the IRQ line low, the processor will be forced to execute a routine which will input data from the port. The choice of technique depends on whether data is being input continuously from the port or whether it appears at irregular intervals. Thus, switch status would require no strobing, input of an analogue waveform would need a strobe pulse derived from the A to D converter. On the other hand, input of data from another computer or a terminal would require a combination of an interrupt to signal the start of transmission and a strobedo clock in successive bytes of data.

Of course, this type of circuit can also be used as an output, all that is necessary is to reverse the direction of the tristate buffers and remove the inverter from the RM line. Once again, the major problem is that any circuitry attached to the output lines will not know when there is valid data on those linès. The solution is to dedicate one of the output lines as a strobe line, which can be used to indicate to any external circuitry that data on the output lines is valid only when the strobe line goes high.

This kind of simple buffered I/O circuitry is ideal for simple I/O functions, such as reading the status of a number of switches. These could be placed between the input lines and earth, with pull up resistors to +5 to ensure that the input line is at either logic 0 or logic 1. As one can see from the waveform diagram in Figure. 3, it is not, however, suitable for applications which require more than a brief transitory output pulse. For applications such as LED indicators a latching I / O circuit is required.

Latching I/O Circuitry

For data output applications data is present on the data bus for too short a period, what is needed is a circuit which catches the data during a memory write, or output, cycle and holds it. We can do this with the aid of a simple TTL latch, such as a 7475 4-bit bi-stable. It should be noted that this is a unidirectional port, primarily an output port. This means that the R / W line, or WR and IORQ lines, are not performing a data direction deter-

Figure 6. Connection of a 6522 to a 6502 processor
mining operation, but are instead providing a latch enable function. A simple circuit for such a latched output on a memory mapped system is shown in Figure 4.

In order to perform the data latching operation we simply feed the RMW line and the address decoder output into an AND gate and thereby generate a positive going pulse which will clock the data on the data bus into the latches. The data is then latched on the falling edge of the pulse. The waveform diagram for the above circuit is shown in Figure 5.

The output from the 7475 latch can then be used to directly drive an LED, or when fed through a transistor or a driver circuit (such as the ULN2803A octal Darlington driver chip), it can be used to switch a relay or control a small motor.

The software used to output data on a latched port is extremely simple. All that is required is for the processor to write the required byte of data to the memory or I/O address where the port is located. If multiple bytes of data are to be output then it might be necessary to use an output strobe coupled with a delay loop within the output routine.

General Purpose I/O Chips

Both of the above types of latched and buffered I/O circuits are simple and easy to understand, but as we have seen they are not particularly versatile and suffer from drawbacks, such as the need to use one of the lines to strobe data on the others. One way to overcome this, and at the same time reduce the overall chip count, is to use one of the general purpose I/O chips.

Virtually every microprocessor manu-
facturer produces one or more of these general purpose l/O chips, often referred to generically as PIAs (Peripheral Interface Adapters), or PIO (Parallel Input/Output) devices. Fundamentally, all these chips are very similar in their design. They all offer the user either two or three eight line user ports. They allow data direction in individual ports, or even on individual lines, to be set by software rather than hardware. They offer latched input and output, plus one or more control lines to generate interrupts or strobe data
in or out. They also allow the programmer to test the status of the chip.
As one can see, this offers the user greater flexibility and many more functions than are available on any of the circuits outlined at the beginning of this article. They are all designed for ease of implementation within a microcomputer system and

Figure 7. Block diagram of 6522 VIA
voltages, it is a good idea to use an opto isolator to protect the processor circuitry from accidental high voltage inputs. Indeed, it is good practice to buffer or isolate all I/O lines for the same reason.

If we look at the block diagram, Figure 7, of a typical PIA chip, in this case the widely used 6522 VIA chip, we can see that it is a complex collection of registers, latches, timers, counters and buffers. But if we look a bit more carefully, then we can see that it is possible to put each of the blocks into one of the following categories:

Data input/output registers.
Data direction registers.
Counter/timers.
Shift register.
Control registers.
Interrupt registers.

Each of these registers, latches, counters, etc., is assigned a memory location, the 6522 uses sixteen memory locations, a far cry from the single location used in the simple I/O ports examined at the beginning of this piece. As can be seen from Figure 6, these sixteen registers form a continuous block of memory or I/O address space and are accessed by the processor using the address decoding circuitry and the bottom four address lines. The function of each of the 6522s addressable locations is shown in Table 1.

The actual I/O section of this chip consists of two 8-bit bi-directional ports. Each of these ports has an associated input register, an output register and a data direction register. The data direction register determinés which lines in the port are acting as inputs and which lines are acting as outputs. As far as the computer is concerned the input register and output register are not separate - all there is, is an output register. If the data direction register has defined lines as inputs, then the current state of the input lines is reflected in the 'output register' which the processor can then read, If the lines are defined as outputs, then the processor can set these lines high or low by writing to the appropriate bits in the output register.

On the 6522, data can be input or output under what is referred to as 'handshake' control. This is in essence
the same function as that performed by the strobe line in our simple I/O circuitry. It tells the processor, or the external circuitry, that valid data is present on the appropriate I/O port - the way in which the handshaking function is determined by the peripheral control register. The data contained in this register is set by the programmer and determines whether the data on the I/O port is clocked in, or out, on a rising or falling pulse on the handshake line. It also, in conjunction with the interrupt flag and enable registers, determines whether a handshake line on an input will generate a system interrupt and thereby initialise a special interrupt routine to service that input.

The timers in the chip allow the programmer to generate precision delays and, in conjunction with the shift register, allow the serial input and output of data. Here, eight bits of data are
loaded into the shift register and then output one bit at a time on the CB2 line, with pulses being clocked by either the timer or the system clock.

The 6522 is a very versatile and flexible chip which can operate in a wide variety of ways all under software control. It is typical of most parallel I/O controllers. Of course, it is now about fifteen years since devices like the 6522 first appeared on the market and many of these chips have now been integrated into the processor chip to produce the so called microcontroller chip. With a small amount of RAM and ROM plus two or three I/O ports, microcontroller chips have integrated an entire basic processor system onto a single chip, ideal for many applications, but not always as flexible as designs based on a number of chips. We can therefore expect to see chips like the 6522 around for many years to come.

ELECTRONICS today international

E9403-1 Audio Signal Generator E
E9403-2 Paleface Power Amp E
E9403-3 Paleface Pre Amp
E9403-4 Paleface PSU G
E9403-5 Radio PSU
E9403-6 FM Radio F

PCBs for the remaining proiects are avalable from the companies listed in Buylines.

Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board references numbers. This not only identifies the board but also tells you when it was published. The first two numbers are the year, the next two are the month. Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required. Such orders will not be processed until payment is received

Telephone your order on (0442) 66551 Access or Visa

E9207-2	Mini Baby Bug Monitor................C
E9207-3	Ultrasonic Audio Sender (2 Boards) \qquad H
E9307-4	Camera Add-on unit (4 Boards)
E9207-5	AutoMate $5 \mathrm{~V} / 48 \mathrm{~V}$ Mixer power supply..
E9207-6	AutoMate Precision 17V power supply.....
E9207-FC	Surround Sound Decoder.
E9208-1	Dynamic Noise Limiter
E9208-2	Touch Controlled Intercom (2 boards) \qquad
E9208-3	MIDI Keyboard
E9208-FC	Battery charge
E9209-1	Intercom for light aircraft
E9209-2	Alarm protector
E9209-3	Temperature controllerM
E9209-FC	45W Hybrid power amp..............F
E9210-1	Universal I/O Interface for PC (2 Sided) .
E2910-2	Rapid Fuse Checker-....... E
E9210-3	Heartbeat/Audio ListenerE
E9210-FC	Wizards Hat..............................E
E9211-1	Electronic DieE
E9211-FC	Car Alarm

E9212-1	Di
E9212-2	Communications Link by RS232...L
E9212-FC	Mains Inverter
E9301-2	Fading Festooneryc........ G
E9301-FC	Infra Red Receiver F
E9302-1	EPROM Programmer (2 Sided)... .N
E9302-2	Sound to
E9302-3	Puddle
E9302-4	DiscoAmiga
E9302-FC	Infra Red Transmitter
E9303-1	Ni-Cd Battery Charger............ ..E
E9303-2	IC TesterE
E9303-3	Disco Amiga (motor driver board) \qquad
E9303-4	Direct Conversion Reciever (2 Sided) \qquad
E9303-FC	LED Stoboscope
E9304-1	Solo Mic Pre-AmplifierF
E9304-2	Multimate Tester C
E9304-3	The Keepsafe AlarmF
E9304-4	Proving Unit
E9304-5	Infra Guide Receiver ModuleC
E9304-6	Infra Guide TransmitterF
E9304-FC	(AutoMate) Peak Program Meter...F
E9305-1	Pentacode Main BoardF.F
E9305-2	Pentacode Relay BoardF

ETI PCB Service, Reader Services, Argus House Boundary Way, Hemel Hempstead, Herts HP2 7ST

Please Supply:

Quantity	Ref No.	Price Code	Price	Total Price
	E		£	£
	E		£	£
	E		£	Σ
Post \& Packing Total Enclosed				£ 0.75
				£

Please send my PCBs to:

Name
Address

PRICES
C. $\quad 1180$
D..........52.50 E.......... $\mathrm{E}_{2} 25$ F........ 84.00 G 2475°
H...... 55.50°
J....... $£ 6.62$
K....-. $\mathcal{E} 7.20$

- 88.80
M......510.60

NE53.10
O $E 15.80$
P...... £it:
Q.nn2.
8.m. 220.00
S. . $\mathrm{F} . \mathrm{E}$ [25.90

Tanmen 29.00
$U_{i}=\ldots 32.20^{\circ}$
V $1, \ldots, 535.80 \mathrm{e}$
W..... 297:

E9305-4 Vibration Detector D
E9305-FC The Fuzztone E
E9306-1 Graphic Equaliser F
E9306-2 Super Spooker H
E9306-3 Middle \& Side Stereo Coding D
E9306-FC The Chaperon. F
E9307-1 Car Battery Tester
(Double Sided - Surface Mount)....E
E9307-2 Mind Trainer F
E9307-FC Microwave Monitor F
E9308-1 Window Monitor (4 Boards) K
E9308-2 Alternative 12 V Supply. M
E9308-3 Single Channel Lurnitec E
E9308-4 Four Channel Lurnitec H
E9308-FC Twi-light Zone. F
E9309-1 RF Signal Generator F
E9309-2 MIDI Analyser CPU Board KE9309-3 MIDI Analyser Display BoardJ
E9309-4 Metronome G
E9310-1 Hot Wire Cutter F
E9310-2 Electronic Picture H
E9310-3 Sega Box. J
E9310-4 Transistor Amp (2 Boards)............
E9310-5 Home Minder (2 Boards)N N
E9310-FC Continuity Tester D
E9311-1 Car Alarm .
E9311-2 MIDI Change Pedal(double sided) H
E9311-3 RC Engine sound J
E9311-4 PSU Monitor N
E9311-FC RF Hound D
E9312-1 Car Alarm D
E9312-2 NiCd Battery Charger F
E9312-3 PC I/O board N
E9312-4 Video Stabiliser G
E9312-FC Transistor Tester F
E9401-1 ProgRAM. G
E9401-2 Logic Pulse Generator F
E9401-3 Motor Mate. F
E9401-4 Bike Alarm. E
E9401-5 Paleface Guitar Amp. E
E9402-1 Frequency Meter Adaptor. E
E9402-2 Stroboscope K
E9402-3 PC Printer Switch E

Audio Signal Gen

Paleface Pre Amp

Paleface PSU

Paleface Power Amp

Radio PSU

FM Radio

Z-80 Computer (Component Side)

Z-80 Computer (Solder Side)

Due to a printers error the
280 Computer foils were unfortunately printed incorrectly

Enter a World of Electronics Hobby Information with Popular Electronics

Get the latest electronic technology and information!

Discover the high-voltage excitement of hobby electronics each month in Popular Electronics. Build sophisticated electronics projects from circuits and plans in each monthly issue. Whether it's add-ons or modifications for stereos, TV's, computers, radios, etc.; work savers for your home and car; or useful test gear for your workbench, you'll find it in Popular Electronics. Plus. . .you'll find informative features and theory articles, monthly columns, hobby-oriented departments, and much more in Popular Electronics.

POPULAR ELECTRONICS SUBSCRIPTION ORDER FORM

Popular Electronics, P.O. Box 338, Mt. Morris, IL 61054 U.S.A.
YES! I want to subscribe to Popular Electronics for 1 full year (12 issues) for only $\$ 26.45$ (U.S. Funds only).

Please print clearly
Name \qquad
Address \qquad
City, etc.

SPECIAL COLUMNS
-Circuit Circus, Think Tank, Computer Bits, DX Listening, Antique Radio, Amateur Radio, Scanner Scene.

RETAIL - MAIL ORDER VERSION With price lists, special offers and purchase vouchers. Send PO/Cheque $£ 4.00$ (UK) $£ 6.00$ (EC) $£ 10.00$ (Non EC) Calers $£ 2.00$. Education, trade, quantity purchasers Post or fax letterhead for FREE copy with trade/quantity price list (UK). Overseas prices as above.	HEMRY'S aUDHO ELECTRONLK catalorue
	404 Edgware Road, London W2 1ED Components Telephone: 071-723 1008 Security - Communications Telephone: 071-7240323 Audio and Test Instruments Telephone: 071-724 3564 Trade/Quantity Telephone: 071-258 1831 Fax: 0717240322

\pm

 cy James GaleSend your requirements to:
ETIClassified Department, ASP, Argus Housé
Boundary Way, Hemel Hempstead, HP2 7ST
ineage: 65p per word (-VAT) (minimum 15 words) Serni display: (minimum 2.5 cms)
$£ 8.70$ + VAT per single column centlmetre 1 Per Electromart £24.00 (• VAT) printed on the adventisement rate card (available on request).

FOR SALE

mensat

COOKE INTERNATIONAL

SUPPLIER OF QUALITY USED TEST INSTRUMENTS
ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS. ETC ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE
EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGESA.E. FOR IISTS OF EQUIPMENT AND MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR gULK ORDERS SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM - 5PM COOKE INTERNATIONAL
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 0EB Tel (+44) 0243 545111/2 Fax + 44) 0243542457

SWCSCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE. BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 0815591114

EJFIELD ELECTRIC LId

EST \& MEASUREMENT EQUIPMENT IBM COMPATIBLE COMPUTERS: POWER SUPPLIES MONITORS: AUDIO EQURMANS TEI EPHONE EOUIPMENT. PLUGS \& CONNECTORS: PRINTERS: WE ALSO BUY EQUIPMENT PLEASE RING MAIL ORDER SERVICE PAY BY CHEQUE: PO ACCESS OR VISA CALLERS BY APPOINTMENT FIELD ELECTRIC LTD., UNIT 2 MARY MEAD WORKSHOPS, WILLOWS LIN STEVENAGE HERTS SG2 BAB
$0438353781 ; 083664032$
Fax 0438359397

FAX YOUR ADVERT TO JAMES GALE
 044266998

IIII ON OFFER THIS MONTH :IH	
Fed Super Led 5 mm	${ }^{150}$ Crysial
1f Aecover	
-ipoly	50 250AC ${ }^{15}$
${ }^{\text {Sun }}$	1008
2 arling ,	30. LMP924 YAEG
${ }_{27000} 308$ in 90	
	${ }_{¢ 1125}^{5135}$ Conisci
${ }^{\text {Flux-OH }}$	
4745300 DC	
$\begin{aligned} & \text { 714CTI } \\ & \text { Crytal } 45 \mathrm{Mhz} \end{aligned}$	
STRIP OF ASSORTED COMPONENTS $1 M$ LENGTH £1. WIDE RANGE OF ELECTRONIC COMPONENTS ALWAYS IN STOCK RING FOR DETAILS FM TRANSMITTERS ALSO IN STOCK -	
ELEY ELECTRONIC LTD	
PAY EY:- VISA/CCESS	

COMPONENTS

EPROM, PLDs + Microcontrollers copied or programmed. we supply devices/converl discrete logic to PLDs PO Box 1561 Bath 0225 444467.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and cornputer graphics tablel. 150 projects. For catalogue. SAE to Plancentre Publications, Und 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshlre, HR8 2HS

 put including capacior and transiorme
operation Price inc VAT \& P \& P 23.50 .

SOLID STATE ENTUNIT InPuI $230 / 240 \mathrm{~N}$ AC. Output appros isKV, Producing 10 mm mpark. Buith.m 10 ate limen, Easily modifud for 20 sec 30 sec to continuouss. hatd of phyacs end elecironices wog supotying neon or argon lubes efr. Pnce lass case $\mathrm{EP} 50-\mathbf{5 2 . 4 0}$ D\&P ($C 12$ 2 1 ine VAT) NMS
SAVE POUNDS!!! Buld your own forged bank nole deleclor Can defect councer feits amongsl a quantity of notes Camplote bit of parts less case. 240 V a.c including 5^{4} uV black light tube, starter and includipe aldo \& VAT only $£ 1399$

WASHING MACHINE WATER PUMP Brand new 240 V AC fan cooled. Can be used tor a variety of purposes. Inles $1 / 2$, in. outleel 1 in dia. Price
VAT. $£ 1120$ each or 2 for $~$
20.50 inclusive. MICROSWITCH
Pye 15 amp changeover Iever microswitch, type $S 171$
Brand new price 5 for 4705 mo VAT \& p\&p

SERVICE TRADING CO

57 BAIDGMAN ROAD, CHISWICK, LONDON W4 5BB
FAX Ôb̂i צys ūás 081-995 1560
Showroom open
Monder/finidey \quad ACCOUNT CUSTOMERS MIN. ORDER $£ 10$
=

P.C.B. DESICN

KITS

PC8CAD. PGB DESIGN SOFTWAR	
BASIC VEASION	
ANCE CHEC	
+ GERBER VIEWER	39.
Output to 9 pin printer and Gerber/Exceillon files	
Half price upgrade to PCBCAD2 when released	
PCBCAD2 2499 New version ol PCBCAD but at beta test stage. This is NETLIST driven, has clearance chacking, integrity check and Gerber viewer, but absolutely no comebacks at this price	
ASSEMBLERS 24,99 each Or ring for multiple prices. 8088, 80286, Z80, 8031, 6805, P1C16C5X. TMS32010 and 8748.	
All wilh EDITOR and BINARY to INTEL HEX converter	
COM to EXE converter inclusive with 8086 and 80286	
DEMO DISC'S 299 ea	
LED'S 30 for 100	
Concessions to Educational or multiple users	
Note all software is not copy protected a	

NEW VHF MICROTRANSMITTER KIT tuneable $70-115 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY £5 95 assembled and ready to use $£ 9.95$ inclusive P\&P 3 Watt FM transmitter kit £15.95. Credit card orders Telephone: 021486 3092, Fax: 0214112355 Cheques/PO's to: C.E.C.(Dept ETI), 515a Bristol Road Birmingham, B29 6AU. Send 2 $\times 1$ st Class stamps for details of these and other kits.

	Technical Information Services 76 Church Street, Larkhall, Lanarkshire, ML9 1 HE Tel/Fax: (0698) 883334 Mon-Fri 8.30am - 5.00 pm Tel/Fax: (0698) 888343 Outwith business hours
	SUPPLIER OF:
	VICE MANU
	TS

WANTED

SURPLUS COMPONENTS WANTED

\& COMPLETE CLEARANCE
4 BEST PRICES PAID
\& PCB BOARDS POPULATED

CONTACT

D.T.S. SERVICES

Tel: (0602) 208955
or Fax: (0602) 484530

TUAN YOUR SURPLUS
TRANSISTORS, ICS ETC INTO CASH immediate settlement
We also welcome the opportunity to quote for complete factory clearance Contact:
COLES-HARDING \& CO. Sandall Road, Wisbech, Cambs PE13 2PS BUYERS OF SURPLUS INVENTOR ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax: 0945475216

FOR ADVERTISING RATES IN ETI CLASSIFIED RING 044266551

Start training now with the specialists for the following courses. Send for our brochure - without obligation or Telephone us on 0626779398
 ETI 3/94

Name

- Telecomms Tech C\&G 2710
\square Radio Amateur Licence C\&G
- Microprocessor \square Introduction to Television

Radio \& Telecommunications Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 9UN

TO ADVERTISE IN ETI CLASSIFIED USE THE COUPON BELOW OR FAX US ON 044266998

ELECTROMART

L.F. HANNEY

Your Electric Component Specialist for Avon, Wilts \& Somerset.
77 Lower Bristol Road, Bath, Avon.
Tel: 0225424811

LIVERPOOL

 PROGRESSIVE RADIO 87/93 Dale Street Tel: 05123609820512360154
47 Whitechapel

Tel: 0512365489
Liverpool 2
'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

ETI
ELECTRONICS TODAY INTERNATIONAL
CLASSIFIED ADVERTISEMENT DEPARTMENT
ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST
Rates: Lineage 55p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address
Daytime Tel. No:
Signature Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square Expiry Date
FOR SALE COMPONENTS PLANS \square OTHERS STATE

				-	-	

Open Forum

Every practical experimenter, and I am sure all Ell readers put themselves in this category, loves the challenge of trying to create something new, doing something which few others have tried before. Let's face it, the experimenter is just as much a creative person as any writer, artist, or musician.

Messing about with electronics is all about creativity and the hell of a kick one gets when something one has designed actually works, when it actually does what it was designed to do. Creating something is a great ego boost and the boost is even greater if you are one of the first people to do it.

It is the thrill of using one's brain and one's knowledge and skill to overcome problems which makes a hobby like electronics so addictive, but also rather daunting to the newcomer. In the early stages of learning about a technology as complex as electronics, any little problem can seem overwhelming and it is all too easy to walk away.

This is one of the major reasons why we are seeing a gradual decline in the number of people who would count electronics as one of their major hobbies. There is little doubt that learning about electronics is hard work, and particularly hard if you are trying to leam by yourself or you have a teacher who knows little more about it than his students.

If teaching a subject like electronics is to succeed, then the thrill of creating something which works, of overcoming problems, has to outweigh the frustration of trying to master a difficult subject. The practical element has to complement the theoretical element. Otherwise it is like trying to train artists without letting them ever pick up a brush many will give up in frustration and those who do not will produce some pretty awful work when they actually do get hold of a brush.

Unfortunately, this is what is happening in schools all over the country. The technology curriculum, which includes electronics, is more often than not handed over to the school's former woodworking and crafts department. There are plenty of stories, many of them which I suspect are true, that tell of woodwork and craft
teachers being given crash one week courses in teaching electronics.

A teacher may be able to teach English or History by being just a few lessons ahead of his pupils, but teaching electronics requires a good practical and theoretical knowledge of the subject to start with. Without it, the teacher will all too often find himself unable to answer even the simplest question and I have the utmost sympathy for teachers who are placed in this type of situation.

But perhaps there are ways around this problem. Perhaps computer based interactive tutorial systems are a solution, particularly when coupled with practical experiments. This is, however, an expensive solution, as each student will need his/her own computer system, software and experimental hardware. It will take a very serious commitment to electronics education on the part of educational authorities for such an investment to happen.

Unfortunately, there are few signs of this kind of commitment, though many high technology companies might be prepared to heip. This brings us back to the knowledgeable hobbyist. Who better to instil some of his enthusiasm for the subject into those who are just starting? Above all it is this sense of enthusiasm, of the kick one gets in solving problems and creating something that works, which needs to be communicated to students.

So I end with a plea to readers to give the youngsters of today a hand. Think about giving talks at local schools, or invitations to your local electronics club. It is this sort of action which can help, it will help the individuals, it will help the country and it will help swell the ranks of electronics hobbyists, something that will be good for all of us!

Nick Hampshire.
If you organise an electronics club, why not let us know and we will publish your contact name, phone number and meeting dates in future issues of EII.

Next month...

FORTH is one of the most powerful of computer languages for real time control systems and, next month, Jim Spence looks at building a FORTH computer. Dave Bradshaw builds an audio attenuator to accompany his Paleface Minor valve amplifier while, for campers and those who spend a lot of time in their cars, Terry Balbyrnie shows how to construct a low voltage power supply that allows you to run your Walkman from a car battery. We also take a look with Keith Garwell at virtual instrumentation and how to turn your PC into a chart recorder.

There will be the continuation of the series on robot vision, as well as John Linsley Hood's improved power supply and, of course, another useful piece of test equipment designed by Robert Penfold.

EDITORIAL

 Editor Nick Hampshire Sub Editor Jim BluckCREATIVE Art Editor Peter Kirby Technical lllustration John Puczynski Photography Manny Cefai

ADVERTISEMENT SALES

Display Sales
Tony Hill Advertisement Copy Control Marie Quilter
Classified Sales
James Gale
MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson
$\mathrm{ABC}^{15142-7229}$
consump hers
ETl is normally published on the first Friday in the month preceding the cover date The contents of this publication including all articles, plans, drawings and programs and all copyright and all other imellectual property rights therein belong to Argus Specialist Publications All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications and reproduction requires the prior written consent of the company c1990 Argus Specialist Publications. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at the time of going to press Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press

Subscription rates-UK £23.40 Europe £30.30 Sterling Overseas £31.50 US Dollars Overseas $\$ 5200$

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551, UK newstrade distribution by SM Distribution Lid, 6 Leigham Court Road, London SW18 2PG Telephone 081-667 8111 Overseas and non-newstrade sales by Magazine Sales Department, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST Telephone (0442) 66551 Subscriptions by Argus Subscription Services, ETl, Queensway House, 2 Queensway, Redhill, Surrey RH1 1OS Telephone (0737) 768611. US subscriptions by Wise Owl Worldwide Publications, 4314 West 23Bth Street, Torrance, CA90505 USA For Visa/Mastercard orders in USA - Tolephone (310) 375 6258 Fax (310) 3750548 Pacific Time: 9am-9pm Weekdays. 10am-6pm Weekends Typesetting and origination by Ebony, Liskeard, Comwall Printed by Wiltshire Ltd Bristol.

PROTEUS

The Complete Alectronics Design System

Schematic Capture

- Easy to Use Graphical Interface.
- Netiist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive componentimodel libraries:
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

simulation

O. Non-Linear \& Linear Analogue Simulation.

- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PGB Dexign

- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.

O Advanced Multi-Strategy Autorouting.

- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps:
- Gerber View and Import capability.

E/ectronics

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0274542868. Fax: 0274481078. 14 Marriner's Drive, Bradford BD9 4JT.

Over 700 colour packed pages with hundreds of brand New Products at Super Low Prices,

[^0]: Phone the hotline and take advantage of our special offer detailed on page 43

[^1]:

[^2]: Prices for Layo1 Commercial Versions. Level 1 - has a design capacity of 4000 commands 295 Level 2 - has a design capacity of 10000 commands 2285 Level 3 - has a design capacity of 20,000 commands $£ 565$ Level 4 - has a design capacity of 65,000 commands $£ 995$

 All prices are exclusive of VAT at 17.5% For educational establishiments there is a discount of up to 40% and on all. products there is a 30 day money back guarantee.

 All versions of Layo1 are avaliable from: Baas Electronics m, Rujkstraatweg 42, 3281 LW Numansdorp. The Netherlands. Tel. +311865 4211. Fax +3118653480

