BUILD A Z-80 SINGLE BOARD COMPUTER

RECYCLING OLD PC's

MAKE A FREQUENCY METER ADAPTOR

BUILD AN INGENIOUS DISPLAY FOR YOUR PC

NO COVER DISK?

THEN ASK YOUR NEWSAGENT
(UK COPIES ONLY)

February 1994 £2.25

Electronics Workbench®

NEW Version 3

Complement Your Test Bench

Here's why Electronics Workbench belongs on your test bench: Wires route themselves. Connections are always perfect. And the simulated components and test instruments work just like the real thing. The instruments are indestructible and the parts bin holds an unlimited supply of each component. The result: thousands of electronics professionals and hobbyists save precious time and money. Over 90% would recommend it to their friends and colleagues. Electronics Workbench: the ideal, affordable tool to design and verify your analog and digital circuits before you breadboard.

And now the best is even better - Electronics Workbench Version 3.0 is here. It simulates more and bigger circuits, and sets the standard for ease of use. Guaranteed!

NEW Features in Version 3

- new components include JFETs, MOSFETs, voltage-controlled and current-controlled sources and manual, time-delay, voltage-controlled and current-controlled switches
- real-world models for opamps, BJTs, JFETs, MOSFETs and diodes - over 100 models available
- MS-DOS version now supports up to 16 MB of RAM for simulation of bigger circuits
- new Microsoft® Windows® version available
- technical support now also available on CompuServe®

Just £199!

Electronics Workbench®

The electronics lab in a computer®

Call: (0827) 66212

ROBINSON MARSHALL (EUROPE) LTD.
17 Middle Entry, Tamworth, Staffordshire, England B79 7NJ
Fax: (0827) 59633

*30-day money-back guarantee.

Shipping charges - fax £4.95. All prices are plus VAT.
All trademarks are the property of their respective owners.
Contents

Features & Projects

PCB Design Software 10
An introduction to using the Layol PCB design package, provided free on the cover of this issue of ETI.

Recycling PCs 14
In countless cupboards and drawers lie old, but otherwise serviceable personal computers. From ZX81s and Commodore PETs, to PC ATs and XTs these old machines represent an interesting and challenging resource for the experimenter. We look at where to get such machines and what you can do with them.

Z-80 Single Board Computer 20
A very compact, light weight, low power design for a simple computer, which can be embedded into a wide range of other projects. The first of a two part series.

Programmable Stage Stroboscope 28
A versatile special effects device, especially designed for use by school drama departments.

Frequency Meter Adaptor 36
Turn your digital multimeter into a frequency meter with this simple add-on circuit, a versatile and useful addition to the workbench.

Bookshelf 42
A look at some of the latest titles for the electronics hobbyist.

Latent Image Display 44
An ingenious mechanical and electronic display which allows your computer to produce a simple text display that seems to hang in mid air.

PC Printer Switch Unit 50
If you have ever wanted to share a single printer between two PCs without having to continually plug and unplug cables, then this project should solve your problem.

Paleface Guitar Amplifier 54
Part 2 of a series looking at building a 15W guitar amplifier that gives the unique sound of valves.

Regulars

News 6
PCB service 60
PCB foils 61
Open Forum 66

Volume 23 No.2
February 1994

Project
Frequency Meter Adaptor 16

Subscribe & Save
Phone the hotline and take advantage of our special offer detailed on page 43

ELECTRONICS TODAY INTERNATIONAL

www.americanradiohistory.com
PROTEUS
The Complete Electronics Design System

Schematic Capture
- Easy to Use Graphical interface
- Hierarchical Design
- Extensive component model libraries
- Advanced Property Management
- Seamless integration with simulation and PCB design.

Simulation
- Non-Linear & Linear Analogue Simulation:
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design
- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0274 542688. Fax: 0274 481078. 14 Marriner's Drive, Bradford BD9 4JT.

Proteus software is for PC 386 compatibles and runs under MS-DOS. Prices start from £475 ex VAT; full system costs £1495. Call for information about our budget, educational & Windows products. All manufacturers' trademarks acknowledged.
Low cost data acquisition for IBM PCs & compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.

Each device comes with an easy to use software package (PicoScope, PicoLog or both), C, Pascal, and Basic drivers are supplied for those who want to develop their own software, as is a manual giving full details of the hardware and software. All software supplied on 3.5" disk.

ADC-10
Up to 24kHz sampling rate from a 386/383MHz machine
0-5V Input range
BNC input connector allows use of standard scope probes
30V overload protection
Parallel port connection
Includes PicoScope software

Single Channel 8 bit ADC
£49

ADC-11
15K samples per second
0-2.5V Input range
Digital output
D25 input connector
30V overload protection
Parallel port connection
Includes both PicoScope and PicoLog software

11 Channel 10 bit ADC
£75

ADC-12
Up to 18kHz sampling rate
0-5V Input range
BNC input connector allows use of standard scope probes
30V overload protection
Parallel port connection
Includes both PicoScope and PicoLog software

Single Channel 12 bit ADC
£85

PicoScope
"Virtual instrument" software package for the ADC-10, ADC-11 and ADC-12.
Storage oscilloscope with trigger and timebase. Traces can be printed and saved. Multiple meters on screen. Real time spectrum analysis.

PicoLog
Collect samples from 1 per second to one per day. Scale samples linearly, by equation or by table look-up. Graphical (against time or XY) and text reports can be displayed, printed or exported.
PicoLog is also available for the ADC-10: call for details.

PICO BENEFITS
- 30 day no quibble money back policy
- Full 1 year guarantee
- 1 year's free software upgrades
- Free technical support
- Free user newsletter
- Same day dispatch

Pico Technology Ltd. Broadway House, 149-151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.
TEL: 0954-211716 FAX: 0954-211880
Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT.
High Electronic Mobility Transistors

Although high-electron mobility transistors (HEMTs) are impressive performers in the laboratory they have found only limited applications in commercial systems. This situation could change, however, with a new Asynchronous Transfer Mode (ATM) chip, from Fujitsu Laboratories Ltd., of Atsugi, Japan, that uses more than 7,000 direct coupled FET logic (DCFL) gates, built with advanced transistors.

Compared with the few hundred MHz rates of current ATM switches, this new chip at 1.2GHz is an ideal candidate for broadband ISDN applications. Fujitsu researchers mounted 16 of these ATM switches onto a ceramic substrate and successfully switched video signals at 38.4 Gbit/second.

Because current BICMOS and ECL silicon technologies very quickly reach their limits in Gbit/s channel applications, the new chip could supply a critical link between world-wide telecommunications systems and local nodes. In addition to the advanced transistors, which require special epitaxial layers on gallium-arsenide substrates, the new ATM chip uses a novel event controlled logic design. With gate delays as short as 25ps, the Fujitsu researchers had to scrap static RAM based buffering in favour of asynchronous pipeline architecture.

ATM protocol requires a switch to route data packet to their destination based on address information held in a header. Instead of queueing, the incoming packets in a dual port RAM, the HEMT ATM operates a multistage FIFO that is triggered by the arrival of data, rather than timed with an external clock. Asynchronous operation results in higher parallelism, since data packets do not have to wait for a clock signal to begin their journey through the multi-stage pipeline. The one disadvantage of this new architecture, however, is higher total heat generation. This is because the chip is utilising the available gates more efficiently.

Be Prepared - The Personal Attack Alarm

This is one “Rip-OFF” that you won’t object to! The new personal Attack Alarm from Maplin electronics is triggered by pulling the rip cord, which pulls the plug from its socket. The Alarm can sound continuously for up to an hour and is reset by replacing the plug.

The Personal Security Alarm is a very compact personal alarm, in a tough black plastic case. Thanks to its slim size, it can be easily slipped into a pocket or handbag, carried by hand, or attached to a belt or key ring, using the supplied clip. The loud, piercing, 110dB alarm is activated by pulling the rip cord, which removes a plastic plug from its socket.

The Personal Protector costs £5.95 and can be obtained from any Maplin store or by mail order, tel 0702 554161.

Breakthrough in LCD Technology

A technological breakthrough in the way that Liquid Crystal Displays are manufactured looks set to open up a whole new market for LCDs. The new product, called Visilight, will make it possible to produce large character high visibility LCDs for applications such as airport passenger information, at the moment the exclusive preserve of LED and electroluminescent displays.

The new technology - polymer dispersed large scale liquid crystal - has been developed by a U.S. based company and differs considerably from previous liquid crystal displays, which sandwich a liquid between two plates of glass. Visilight uses a dry film technique which allows the production of light weight flexible displays.

Up to now, the practical maximum size of an LCD display has been 6in, but the manufacturers of Visilight, FP Displays, are offering seven segment display modules in sizes ranging from 2in to 18in high.

Visilight has an excellent visibility in all light conditions as well as a 160 degree viewing angle. Furthermore, its slimness and light weight means that support structures can be kept to a minimum.

For further information on Visilight, contact the manufacturers - FP-Displays AG in Bristol on 0272 251125.
High Quality Listening at a Low Price

The latest addition to the extensive range of headphones from Maplin Electronics is a pair of high quality headphones with a frequency range and sensitivity ideally suited to digitally reproduced music. The unit features gimbal mounted, leather cushioned, detachable earpads. The drivers are equipped with rare earth magnets for high sensitivity and a wide frequency range, making them suited for use with CDs and other digital equipment. These headphones cost £14.95 and are available from all Maplin stores or by mail order, telephone 0702 554161.

Prototype Filter Tank

A U.S. company, Superconductor Technologies Inc. of Santa Barbara, has constructed a prototype filter tank based on high-temperature superconductor technology integrated with fibre optics. The final product could be a very precise filter, operable over a wide range of frequencies, which will be used by the U.S. Air Force for anti-jamming applications.

The module is a four channel bank of individually switchable band reject filters, each tuned to a specific frequency, and controlled by signals from laser diodes, transmitted via optical fibre. The filters are made from the thallium-barium-calium HTS.

STI covers the resonator of each filter with a layer of gallium arsenide. The GaAs film looks like an ordinary dielectric but illumination will generate carriers in the layer that will change the filter's resonant frequency.

One advantage of HTS filters is their lower insertion loss. The loss in traditional YIG (yttrium-iron-garnet) filters is at least 4 to 5dB each. A receiver might have a maximum of 3, which has proved inadequate in some situations.

The loss in an HTS filter is one-tenth of that of most YIG filters, so STI believes it can combine up to 100 and still not exceed the same total loss of 12 to 15dB as a bank of three YIG filters.

The bank fits in a prototype cryocooler measuring 4 x 4 x 10in. To avoid forcing the cryocooler to chill the diodes as well, STI chose to place them outside the module, and channel light signals in through an optical fibre.

New DC-DC Converters from Gresham

Gresham Power Electronics has just introduced a new miniature 3W dc-dc converter which has a wide 2:1 input voltage range and requires no temperature derating in normal use.

This small device is intended for PCB and distributed power applications. The wide range of input voltages makes them useful for operation from 5V dc bus supplies, 12 and 24V batteries and 48V telecommunications systems.

Fully encapsulated and equivalent in size to a standard 24pin DIL package, the range of converters offer output voltages of 5, 12, and 15V. They offer Input to output isolation of better than 500V dc. For further information contact Gresham Power Electronics of Salisbury on 0722 413060.

Pocket Sized Precision

Maplin Electronics has introduced a low-cost, high quality, pocket sized analogue multimeter. The unit is designed for electrical and electronic fault finding, domestic uses around the home, educational uses and for vehicle electronics.

The Precision Gold 108 Pocket Multimeter is a rugged, accurate, easy to use unit with a sensitivity of 2000 ohms per volt for both ac and dc ranges. The linear meter movement offers accurate readings of measurements on all ranges through a 90 degree arc mirrored scale. The functions included are ac and dc voltages, dc current, resistance, battery check, and diodes. The meter has an accuracy of 5% of full scale deflection on the ac voltage range and 4% on the dc voltage and current range.

This multimeter costs just £3.95 plus VAT and can be obtained from any branch of Maplins, or by mail order, telephone 0702 554161.
New Concept Energy Metering

A new concept in metering is available from Northern Design of Bradford. The PM 306 uses the latest microcontroller and unique waveform analysis techniques to accurately measure direct values of RMS voltage, current, and power, and the peak of waveforms and frequency. Calculated values include kVA, kW, PF, kVAh, kWAr, +3 phase kVAR and inductive and capacitive kVAR.

The fully programmable low cost (£269) meter has a backlit wide viewing angle LCD display featuring two rows of 7 x 7 segment digits with custom energy management legends.

For more details contact Northern Design 0274 729333.

Radio Waves Light Lamp

Intersource Technologies Inc. recently developed the long life E-lamp (electronic lamp) for commercial use. The E-lamp differs from conventional incandescent light bulbs in that it does not use a filament to emit light. Radio signals are generated by a crystal controlled oscillator, then amplified and emitted into a phosphor coated bulb through an energy coupling antenna. Mercury vapour inside the glass assembly is ionised by the RF energy, forming a conductive ring and resonating at the ultra-violet wavelength of 254nm. As the ultraviolet radiation is emitted, it strikes the phosphor coating to produce visible light.

Diablo Research Corp. purchased the rights to continue E-lamp research from Dr. Donald C. Hollister. With funding from the Department of Energy, researchers began work on E-lamp technology but were unable to eliminate the RF interference. The program has been rectified and the product is currently undergoing the patent process.

Developers claim the lamp is more efficient than incandescent bulbs, which lose 95% of their energy in heat. The E-lamp requires 25W of ac power to produce as much light as a 100W incandescent bulb. The lamp operates as long as the phosphors and electronics are intact. At about 20,000 hours the phosphors degrade to a point where 30% of the lamp's intensity is lost, and this is considered the end of the bulb's life.

E-lamp bulbs will switch on or off in less than a second, work in cold temperatures and can be used with dimmer switches. Based on four hours of daily operation, the electronic lamp costs about $5 a year to operate. The price tag per bulb is estimated at $15. A 100W incandescent lamp costs $14 a year to operate and lasts from 180 to 250 days.

Commercialising Virtual Reality the Kreuger Way

Myron Kreuger, the man credited with inventing virtual reality, says the time for research into the subject was over 20 years ago. There is "no excuse" for the absence of affordable VR from U.S. companies, he adds.

Kreuger says that U.S. researchers are over-engineering virtual reality gear, making it too cumbersome to be commercially successful—a mistake the Japanese are not making.

"People won't trouble themselves to use virtual reality in its present form with electronic goggles and gloves and tens of thousands of dollars in investment needed," he said.

"The real question is what kind of VR would people use every day if it was free? Once you answer that question, then you can engineer commercial versions that come as close as possible to that ideal.

"As our population ages, many people already wear glasses anyway, so they would probably use VR glasses or contact lenses if they were free," he said. Kreuger called current semiconductor techniques entirely adequate to fabricate transparent surface emitting lasers or diodes onto electronic contact lenses which directly inject photons into the eye.

"Contact lenses could also be fabricated very cheaply, since their size is very small. They would also be the best way to deploy HDTV."

So far, however, only Japanese manufacturers have shown real interest. "If I tell an American company that there is one good application for VR, they are only mildly interested"
s readers in the UK will notice, this issue includes ETI's first ever cover-mounted disk: it contains free software that should run on any IBM PC or 100% compatible, with mouse, EGA graphics and running DOS 3.1 or later. This is the first of two disks and contains a versatile PCB design and schematics package, called Layo1.

This disk contains a shareware version of the program limited to 1000 commands, which in practice means designs with about 200 pads and 800 tracks. Sufficient capacity to design almost any of the PCBs used in ETI projects.

Let's take a brief look at what Layo1 can do.

What Is a PCB Design Program?
A PCB design program, such as Layo1, is really a specialised form of CAD drawing package, concerned with manipulation of two-dimensional graphic objects. Although the copper pattern on a PCB would seem to be a very complex graphic shape, it can be broken down into an arrangement of many small, simple basic objects, which are linked together in a unique pattern to form the PCB. These objects fall into four distinct categories and are referred to as pads, tracks, text and components.

Pads are small areas of copper, usually drilled with a hole, where a component lead is soldered to the board, a tracks being a thin line of copper which joins two or more pads. A special form of pad is the via, which is used to connect tracks on opposite sides of a double-sided board.

A text object is, as its name implies, simply a single character or a string of text characters which are put on the board to provide information to users. A component is a 'ready-made' combination of pads, a component outline and sometimes text, showing the component reference and value. Thus, a component might be the pad outline for a DIL chip or a transistor.

The PCB design program is used to place these objects onto a board. The maximum board size for Layo1 is 650 x 650mm, more than sufficient for any design of an ETI type project. This board size must be defined before starting.

With Layo1, the PCB can normally have from one to seven copper layers and one to eight text or silk-screen layers. Again, this is more than adequate, most boards being fabricated with one or two layers as single sided or double sided boards. The silk-screen layers hold the information that would be printed over the top or bottom copper layers, typically showing component outlines and references.

Objects can be placed on any of the layers, although normally text and component outlines are placed on the silk screen layers and pads and tracks on the copper layers. When a component is placed on the board, the outline automatically appears on the silk-screen layer whilst the pads appear on all the copper layers.

Laying Out a PCB

Having looked at some of the basics, let's now turn to how a simple board can be laid out using Layo1. A line at the top of the screen area is taken up by the display of status information. The various options can be selected by activating a menu bar and then selecting a drop-down menu. The desired function can then be selected from this menu. Everything is under mouse control and very easy to use.

A mouse controlled cursor is also used to move and manipulate objects, and to select options from the menus.

Unless the desired board is very small, the screen will only show a small part of the overall layout, but the board layout view can be altered by pan and zoom functions. The pan function allows one to move the field of view to any part of the board, whilst the zoom function allows one to look at a section of the board in greater detail, or to see more of the board in the viewing field. Layo1 has nine levels of zoom.

Objects on the different layers are normally shown in different colours, in order to clarify the display. In addition, each layer may be turned on or off individually.

Selecting and Laying Out the Components

The first step in manually designing a PCB (the design can be generated automatically, more about that later) is to select components from a library of devices supplied with the program. Each component will have a name, such as R60, which might be a resistor with 0.5in pad spacing. Once selected, a component is placed on the board by moving the cursor to roughly the required position and pressing a mouse button.

Components selected from the library will come complete with pads. Additional pads are added by selecting the size and shape from a menu of options and placing them in position on the selected layer, in a similar manner to the components. The size and shape of pads available from the menu can be configured by the user.

Laying Out the Tracks

The next step is to run the tracks. With the cursor at the starting point, one of the mouse buttons is pressed. The cursor is then moved to the next pad or point...
where a bend is required and the mouse button pressed again. When the last pad is reached the other mouse button is pressed, to finish the track. The procedure is very similar to taping by hand. The width of tracks can be selected in a similar way to the size of pads.

Adding Text
Text may be added to the PCB in a selection of sizes and thicknesses. Once the text has been typed in at the keyboard it is treated as a single object and may be placed anywhere on the board. The main use of the text facilities is for adding references (IC1, R1, etc.) to components. For special characters, logos, etc., Layo1 includes a versatile text editor.

Design Aids
One of the most useful design aids is a grid which is superimposed on the design to aid accurate positioning of objects. Its size can be set by the user in multiples and fractions of a tenth of an inch or the metric equivalents. It is also possible to switch on a 'snap' mode, whereby when an object is released it is automatically aligned on the nearest grid point or points. This is a great help in positioning objects quickly and accurately.

The scale function gives a read out on the screen of the x and y co-ordinates of the current position of the cursor in either metric or imperial units. The position is measured relative to the absolute origin, which is at the bottom left of the maximum viewing area, or relative to a user defined origin. As an example, the distance between two pads is easily checked by making the first pad the origin of the scale and then pointing to the second pad.

Editing for Errors
The program provides editing functions to allow correction of the inevitable mistakes that will occur when designing a layout. The method involves selecting an object by positioning the cursor close to it and pressing the mouse or return button. The object is highlighted and can be rotated, reversed, deleted or simply moved by repositioning the cursor. When the mouse button is pressed again, the object is redrawn in the new position or orientation.

To make doubly sure that errors are not made, Layo1 includes a design rule check. This can be used to ensure that tracks and pads are not placed too close to each other.

When editing a component to which tracks have already been connected, each track remains connected to the pads and is stretched as a 'rat's nest' to the new position. Tracks will have to be adjusted but at least the connections are retained.

Editing tracks is a little more complicated. The track route is usually stored as a list of node co-ordinates. A node is a point where the track starts, finishes or changes direction. The nodes are stored in the order in which they were entered. Each node can be selected individually and deleted or moved. If a node is deleted then it is removed from the list and the track is now routed from the previous node in the list directly to the node following the deleted node. If the nodes have been entered in a straightforward manner the result is what is expected. However if the track was laid down with overlapping sections strange things can occur.

Working With Blocks
Block functions form the next higher level of editing facilities. A rectangular area of the PCB is selected and the contents can then be moved, deleted, copied or rotated. As when moving a component, tracks crossing the block boundaries can be left behind or stretched to reach their new position.

Creating Components
Although Layo1 is supplied with an extensive component library, there are facilities to create or modify components. The procedure is to lay down the pattern of pads required together with an outline and any text in a blank area of the screen. Special graphic functions are available for drawing rectangular and circular outlines. The completed component is stored in the library under a suitable name.

What About Schematics?
So far we have just looked at the basic manual PCB layout facility of Layo1, but the program is capable of a lot more than this. Layo1 comes complete with a schematic drawing facility. This not only allows one to create nice looking diagrams to accompany your PCB design but it also provides a means of automating PCB layout, using what is known as autorouting.

Schematic Capture
Integration of schematic drawing and PCB layout design is a very powerful feature of Layo1. It involves a two stage process. First a schematic drawing of the circuit is produced and from the information provided by this drawing, the system automatically produces two files, a component list and a netlist. The component list is a list of all the component types and their circuit references. The netlist specifies the connections between them as a list of nets, which specify the component pins that are to be connected together by tracks. The format of each net is typically a unique reference number followed by a series of component pin designations such as IC3/2.

The great advantage of schematic capture is that the preliminary stages of PCB design are unnecessary, as the program can use the component list and netlist to automatically select components from the libraries, place them on the board and display all connections as a rat's nest, ready for routing. There is also less chance of mistakes as, once the schematic has been defined, the rest of the process is computerised.

A PCB at the Push of a Button
With the aid of schematic capture, Layo1 can automatically generate a PCB. This is done by the autorouter. The results may not be the optimum layout, but it is certainly a very quick way of producing a reasonable quality board. Any board produced by the autorouter can always be altered manually if necessary.

Putting It On Paper
Layo1 supports a range of output devices consisting of 9 and 24 pin dot-matrix printers, HP Laserjet compatible laser or inkjet printers, HPGL compatible pen plotters and PostScript compatible printers. Files can also be produced in Gerber and Excellon format for controlling photo-plotters and NC drills respectively. These latter options are useful if you intend to have a board produced commercially. The layers to be printed are selected individually and output can be produced at various scales, rotated to fit on the paper or mirror-imaged. A draft mode may also be available for producing check plots more rapidly.
Installing Layo1
To install Layo1 on your computer there is a special install program to simplify the procedure. All you need to do is insert the disk into the appropriate disk drive and access that drive, then simply type:

INSTALL
The program will ask you a few questions about your system and where you want to install the program. In most cases, the default answer will be given by simply pressing Return. After these questions, the install program will expand the files stored on the disk and copy them onto the designated target drive (drive C is the default drive for installation of Layo1). This takes a few minutes, after which Layo1 is installed and can be run by typing LAYO1 in the root directory.

There is a copy of the manual on disk and this can be printed out either from Layo1 or by loading it into Word for Windows. Also included in Layo1 and its documentation are details of how to order versions of the program with a larger capacity.

Prices

- Level 1 - has a design capacity of 4000 commands - £95
- Level 2 - has a design capacity of 10000 commands - £295
- Level 3 - has a design capacity of 20,000 commands - £565
- Level 4 - has a design capacity of 65,000 commands - £995

All prices are exclusive of VAT at 17.5%

For educational establishments there is a discount of up to 40% and on all products. There is a 30 day money back guarantee.

Next month

In next month’s issue of ETI we will be giving away another disk which includes the remaining part of Layo1. The programs will include the Schematic output driver and the PCB output driver, the PCB design rule check and tutorial software. To make sure you do not miss your copy, place an order with your newsagent now.

PCB DESIGN SOFTWARE

RANGER 1

- **XT/AT PC**
- Circuit — PCB
- From Circuit Design Through to Artwork In One Package!
 - **£100**
 - Fully Integrated AutoRouter
 - **£50**
 - Exchange your easy PC For a free AutoRouter

RANGER 2

- **XT/AT + 386 PC**
- It has all the features you will ever need at an outstanding price. But now with a new 2 layer 386 Ripup & Retry AutoRouter
 - **£599**
 - Option Pack 100% Router
 - Simultaneous 6 layer Ripup & Retry AutoRouter with via Minimisation.
 - Autocad DXF in & out. GERBER in.

- **£350**

Call us for details & demo disk on 0705 591037

Sectrax C.A.E. Hinfield Denny House, Broadway Lane, Lower Hinfield, Hartley PO8 0SG
Tel: 0705 591037 Fax: 0705 592036

ELECTRONICS TODAY INTERNATIONAL

12

www.americanradiohistory.com
UK Distributor for the complete ILP Audio Range

BIPOLAR AMPLIFIER MODULES
Encapsulated amplifiers with integral heatsink.
- HY30P 15W Bipolar amp = £9.95
- HY60 30W Bipolar amp = £12.62
- HY6060 30W Stereo Bipolar amp = £26.46
- HY124 60W Bipolar amp (4 ohm) = £20.69
- HY128 60W Bipolar amp (8 ohm) = £20.69
- HY244 120W Bipolar amp (4 ohm) = £27.38
- HY248 120W Bipolar amp (8 ohm) = £27.38
- HY364 180W Bipolar amp (4 ohm) = £42.86
- HY368 180W Bipolar amp (8 ohm) = £42.86

MOSFET AMPLIFIER MODULES
Encapsulated amplifiers with integral heatsink.
- SMOS60 30W Mosfet amp = £23.15
- SMOS6060 30W Stereo Mosfet amp = £39.95
- SMOS128 60W Mosfet amp = £30.95
- SMOS248 120W Mosfet amp = £42.50

CLASS A AMPLIFIER MODULE
Encapsulated Class A amplifier with integral heatsink
- HCA40 20W Class A amp = £36.60

POWER SUPPLIES
Full range of transformers and DC boards available for the above amplifiers.

100 VOLT LINE TRANSFORMERS
Full range of speech and music types for amplifiers from 30 watt to 180 watt

PREAMPLIFIER MODULE
General purpose preamplifier for a wide range of applications.

Prices include VAT and carriage

Quantity price available on request

Write, phone or fax for free Data Pack

Jaytee Electronic Services
143 Reculver Road, Herne Bay, Kent CT6 6PL
Telephone: (0227) 375254 Fax: 0227 365104

SURVEILLANCE

A SMALL SAMPLE OF OUR RANGE

<table>
<thead>
<tr>
<th>Kit</th>
<th>Module</th>
<th>Prof</th>
<th>Finished</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM TRANSMITTER RT1</td>
<td>8.95</td>
<td>13.75</td>
<td>19.00</td>
</tr>
<tr>
<td>MAINS TRANSMITTER MT4</td>
<td>18.75</td>
<td>31.50</td>
<td>45.00</td>
</tr>
<tr>
<td>TELEPHONE TRANSMITTER TTS</td>
<td>27.95</td>
<td>17.50</td>
<td>30.00</td>
</tr>
<tr>
<td>TELEPHONE SOCKET TRANSMITTER TSTS</td>
<td>14.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROY AND TELEPHONE TRANSMITTER RTT</td>
<td>31.50</td>
<td>45.50</td>
<td>60.00</td>
</tr>
<tr>
<td>AUTOMATIC TELEPHONE RECORDER</td>
<td>16.90</td>
<td>25.90</td>
<td>30.00</td>
</tr>
<tr>
<td>AUTOMATIC TELEPHONE RECORDERstral</td>
<td>34.95</td>
<td></td>
<td>59.00</td>
</tr>
<tr>
<td>TELEPHONE TAP ALERT TTA1</td>
<td>21.95</td>
<td>31.50</td>
<td>45.00</td>
</tr>
<tr>
<td>RF DETECTOR RDI1</td>
<td>42.75</td>
<td>69.90</td>
<td>95.00</td>
</tr>
<tr>
<td>CAMERA DETECTOR CD8</td>
<td>60.00</td>
<td>89.00</td>
<td>125.00</td>
</tr>
<tr>
<td>RECORDING BRIEFCASE RBC1</td>
<td>24.95</td>
<td>36.00</td>
<td>45.00</td>
</tr>
<tr>
<td>SHOTGUN MICROPHONE AMPLIFIER SMO</td>
<td>21.95</td>
<td>34.95</td>
<td>45.00</td>
</tr>
<tr>
<td>MICRO METAL DETECTOR MMD</td>
<td>10.30</td>
<td>16.95</td>
<td>19.95</td>
</tr>
<tr>
<td>PROFESIONAL SOUND TO LIGHT UNIT</td>
<td>21.95</td>
<td>32.95</td>
<td>44.95</td>
</tr>
</tbody>
</table>

Please add £2.50 P & P to all orders and 17.5% VAT on all U.K. orders
For full catalogue please send two 1st class stamps or 2 IRC'S

172 Caledonian Road
London N1 OS5

Jaytee Services
143 Reculver Road, Herne Bay, Kent CT6 6PL
Telephone: (0227) 375254 Fax: 0227 365104

ELECTRONICS TODAY INTERNATIONAL

www.americanradiohistory.com
Recycling PCs

Discarded personal computers are an ideal source of cheap equipment for the home experimenter

The personal computer revolution began in earnest about fifteen years ago, and since then the number of personal computers of all sorts which have been produced around the world must be well into the hundreds of millions. I doubt if anyone really knows, but an awful lot of machines have been made and sold. It is an industry which has been driven by a relentless drive to produce better and faster machines.

The life of a personal computer is not dictated by it’s starting to break down; but by its obsolescence in this relentless drive for the better and the faster. A machine is now considered old just three or four years after it has been bought. At five or six years old it becomes very difficult to obtain parts and software and thus it is no longer worth keeping. Indeed, it is probably true to say that the majority of PCs which are scrapped are still in working condition and could probably go on working for another ten years or more before suffering serious faults. The personal computer is in many ways the ultimate consumer product.

So what has happened to all these machines, to the ZX81s, to the VIC20s, the Dragons, Orics, TRS80s, PETs, Spectrum and Apple IIs, not to mention the hoards of different makes of IBM PCs. Some, of course, are still in use, but the majority have been scrapped or lie unused in cupboards, attics and draws. Few are recycled and even fewer are refurbished and put to new uses.

It is a terrible waste and one which looks set to increase. Indeed, a recent report by the Carnegie-Mellon University of Pennsylvania predicted that between 1992 and 2005 over 150 million PCs and work stations will have been discarded in the US alone. To this we must add, at the very least, an equal number of peripherals such as printers, plotters, monitors, etc., plus probably five or six times as many consumer/games computers.

So what will happen to all these machines, indeed what has happened to the ones which have already been scrapped? I have already said that some are recycled. Companies like IBM and ICL run recycling projects, but according to reports these are not exactly profitable, and there is an actual loss of over £7 per recycled machine. They are largely PR exercises.

More constructively, a few machines are refurbished and shipped to the third world, but the majority are destined for attics or dumped into landfill sites with the rest of the rubbish we all generate.

It is amazing to think that, according to that Carnegie-Mellon report, the cost of burying those 150 million PCs and work stations discarded in the US over the next decade, will be in the region of $1 billion. Surely a lot of them could be put to some better use, thereby saving some of this massive expenditure?

Scrap PCs and the Experimenter

All these scrap computers and their peripherals are, in a way, a godsend to the experimenter. Probably eighty or more percent of these systems either still work or could easily be repaired. They are in most cases being thrown out because users think them too slow, perhaps they have too little memory, too little disk space, or too low a resolution display, or maybe the company simply has a policy of replacing all electronic equipment after a certain time.

If these old machines still work, then they can be used as the basis for all sorts of devices and experiments which require in-built intelligence. If they don’t work, then they make a great source of spare parts for repairing other machines, or of useful bits and pieces that can be incorporated into other machines. They all contain nice 5V and 12V power supplies, ideal for the experimenter and laser printers also incorporate nice EHT units. They are a good source of memory and processor chips. They are also a good source of

ELECTRONICS TODAY INTERNATIONAL
various units like disk drives, LCD displays, stepper motors, monitors, etc. Even old cases can prove a useful source of sheet metal.

Where Can You Get an Old PC?
Old computers and computer peripherals now seem to crop up in the most unlikely places. I recently saw a whole pile in a builders skip! But rubbish dumps and skips are not the best place to start looking, machines are usually well smashed up by the time they reach such places.

Probably the best places to start looking, besides your own attic, are some of the companies who advertise in magazines like ETI. If you skim through this issue, you will probably find at least half a dozen companies which can sell you old computers, often in guaranteed working condition, at very low prices.

Another good place to look is at the company you work for, or a local large company. Very often companies offer old computers to their employees at knock down prices and in some cases are prepared to give old equipment to local schools or clubs.

Then, of course, there are the small ads in local papers and in computer magazines although, unfortunately, many individuals who advertise old equipment for sale have a very inflated idea of what it is worth. Computer auctions are another very good source, as are local jumble sales and car boot sales.

Refurbishing Old Machines
You will find that a great many old computers and peripherals still work, while many others just need a simple bit of repair and refurbishment to bring them back to working condition. The most likely components to fail are purely mechanical units like printers and disk drives and there is often little that can be done about these, it is just a case of them wearing out. Switches and keyboards fall into the same category. If the unit can be disassembled and, more importantly, reassembled, it may be worth giving the more critical parts of a very good clean, using a suitable non-water based solvent of the type sold for cleaning PCBs etc., then reassembling and very carefully lubricating any bearings.

Dirt is also a major cause of failure in the electronics. I remember once looking inside an old PET computer and finding it full of cigarette ash where the user had let it drop through the keyboard. Again, careful cleaning with a small paint brush and then application of a non-water based PCB cleaner is an essential first step. The next step is to check the power supply, it is surprising how many systems are scrapped simply because a fuse has blown or a voltage regulator has cut out.

Having checked the power supply, any socket mounted chips should then be eased out of their sockets one at a time, pins lightly scraped of any oxide build up (not forgetting to take precautions to protect the device from static damage) and then reinserted in the correct orientation. All edge connectors should also be eased off and back a couple of times to remove any oxide or dirt stopping proper connections being made.

Next, it is a good idea to make a manual check of the board for dry joints (use a low power hand lens for this). These are a not uncommon cause of failure, especially around sockets and socket mounted chips, where the board may have been exposed to local mechanical deformation, or where chips get very hot and there is a continuing cycle of board expansion and contraction. These factors can help turn a weak but conducting solder joint into a dry, non-conducting one. Any suspect joints should be very carefully resoldered.

Seven times out of ten, you will find that the above procedures will bring a seemingly dead machine back to life. I personally have found chip failures to be fairly rare, indeed the commonest of such failures is likely to be that of a RAM chip, which in most cases will not stop the system from running, just reduce the amount of memory available. If you have spares available, then disk drive controller boards, I/O boards and video boards can be checked out by a bit of board swapping. Again all the above procedures should be applied to these boards.

If none of the above procedures bring the system back to life, then I personally would give up and cannibalise it for parts. Attempting more complex repairs will require access to circuit diagrams and fairly good test equipment. On old systems, the manufacturer may very well have given up business, so circuit diagrams are often virtually unobtainable.

Some Intelligent Controller Applications
Old computer systems which can be brought back to life can, of course, continue to be used as conventional computers, but there is always the problem that suitable software becomes very difficult to locate (try small adds in some computer magazines). Alternatively the ingenious experimenter can turn an old computer into the intelligent component of an instrument or a control system.

For example, a simple home computer such as an old Spectrum or C64 could be used as the basis for a home monitoring and alarm system, that could turn lights off and on when you are away on holiday, that would check the integrity of doors and windows, check smoke alarms, etc. The I/O port on the system could be used to poll a collection of different sensors and the program, which could be written in BASIC, would take the appropriate action.

I have heard of people using old computers as the basis of an intelligent weather station, to control a machine tool, to act as a data logger and chart recorder and to act as the basis for an intelligent virtual test equipment set up. In fact, virtual test equipment is becoming very much the in thing amongst professionals, since it offers the user a far greater range of functions than would be possible using conventional test equipment. On top of which it allows the user to log all data for later analysis.

All a virtual test equipment set up consists of is a computer interfaced to, for example, an analogue to digital converter. With suitable software, the computer can then emulate an oscilloscope, a digital voltmeter, or any other piece of test equipment which has as its input a variable voltage. Similarly, with suitable hardware interfaced to the computer, it could be used to measure frequencies, test and analyse logic and test and analyse ICs (we will be looking at implementing different types of virtual instrument in future issues of ETI).

Not Forgetting the Environmental Aspect
Recycling old PCs and peripherals is a great idea for the experimenter and a good way for students to learn about such systems, but we must not forget that recycling machines has a positive environmental aspect. According to a recent issue of New Scientist, it takes £200 worth of electricity and 12 tonnes of water to make the average PC/work station. By recycling old systems, particularly by putting them to new uses we can ensure that this utilisation of scarce resources is not wasted by being buried in a waste tip.
Looking for a publisher?

ARGUS CONTRACT PUBLISHING SERVICES

CAN PROVIDE YOU WITH

MAGAZINES (trade or consumer)
CATALOGUES
YEARBOOKS etc

Let us quote you for a full or part publishing facility offering a full range of professional services...

- Expert design on up-to-the-minute electronic page make-up.
- Dynamic advertisement sales team experienced in niche markets supported by in-house ad. design & production.
- Quality printing & production in mono or full colour
- Long or short runs at top value rates.
- National/International Distribution/Promotion.
- Full administration, credit control etc.

Write or fax...
MANAGING DIRECTOR
ARGUS CONTRACT PUBLISHING SERVICES,
ARGUS HOUSE, BOUNDRY WAY,
HEMEL HEMPSTEAD, HERTS HP2 7ST
TELEPHONE: 0442 66551 FAX: 0442 669988

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact:
Wise Owl Worldwide Publications,
4314 West 238th Street,
Torrance, CA 90505
Tel: (310) 375 6258

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 031 667 2611

The supplier to use if you’re looking for —
★ A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST ★
★ COMPETITIVE VAT INCLUSIVE PRICES ★
★ MAIL ORDER - generally by RETURN OF POST ★
★ FRIENDLY SERVICE ★

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00

ELECTRONICS TODAY INTERNATIONAL
THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS

In-Car Stereo Booster Amplifiers

- **Type A** (K51106A) - 3-way portable wide mesh, ideal for books speaker and medium size hi-fi speakers. £34.99 - 50% P.P.
- **Type B** (K51108A) - 3 super horn for general purpose speakers, disco and P.A. systems etc. Price £5.99 - 50% P.P.
- **Type C** (K51101A) - 215 wide dispersion horn for quality hi-fi systems and disco etc. £6.99 - 50% P.P.
- **Type D** (K51102A) - 215 wide dispersion horn. Upper frequency response extended down to mid-range (KHz). Suitable for high performance hi-fi systems and quality disco etc. Price £7.99 - 50% P.P.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET

- **Type A** (K51106A) - £34.99 - 50% P.P.
- **Type B** (K51108A) - £5.99 - 50% P.P.
- **Type C** (K51101A) - £6.99 - 50% P.P.
- **Type D** (K51102A) - £7.99 - 50% P.P.

STereo DISCO MIXER 5DJ3400SE

- **ECHO & SOUND EFFECTS**

STEREO DISCO MIXER with 2 x 7 band K & R graphic equalizer with 800 15 waking 1 sound control. £399.99 - 50% P.P.

STEREO BASS COLUMN with 2 x 7 band K & R graphic equalizer with 800 15 waking 1 sound control. £399.99 - 50% P.P.

STEREO MONITOR 3-WAY with 2 x 7 band K & R graphic equalizer with 800 15 waking 1 sound control. £399.99 - 50% P.P.

STEREO BASS COLUMN:

- **Type A** (K51106A) - 3-way portable wide mesh, ideal for books speaker and medium size hi-fi speakers. £34.99 - 50% P.P.
- **Type B** (K51108A) - 3 super horn for general purpose speakers, disco and P.A. systems etc. Price £5.99 - 50% P.P.
- **Type C** (K51101A) - 215 wide dispersion horn for quality hi-fi systems and disco etc. £6.99 - 50% P.P.
- **Type D** (K51102A) - 215 wide dispersion horn. Upper frequency response extended down to mid-range (KHz). Suitable for high performance hi-fi systems and quality disco etc. Price £7.99 - 50% P.P.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET

- **Type A** (K51106A) - £34.99 - 50% P.P.
- **Type B** (K51108A) - £5.99 - 50% P.P.
- **Type C** (K51101A) - £6.99 - 50% P.P.
- **Type D** (K51102A) - £7.99 - 50% P.P.

STEREO BASS COLUMN:

- **Type A** (K51106A) - 3-way portable wide mesh, ideal for books speaker and medium size hi-fi speakers. £34.99 - 50% P.P.
- **Type B** (K51108A) - 3 super horn for general purpose speakers, disco and P.A. systems etc. Price £5.99 - 50% P.P.
- **Type C** (K51101A) - 215 wide dispersion horn for quality hi-fi systems and disco etc. £6.99 - 50% P.P.
- **Type D** (K51102A) - 215 wide dispersion horn. Upper frequency response extended down to mid-range (KHz). Suitable for high performance hi-fi systems and quality disco etc. Price £7.99 - 50% P.P.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET

- **Type A** (K51106A) - £34.99 - 50% P.P.
- **Type B** (K51108A) - £5.99 - 50% P.P.
- **Type C** (K51101A) - £6.99 - 50% P.P.
- **Type D** (K51102A) - £7.99 - 50% P.P.
AMSTRAD DMP4000
Entire primer series, including AM and CR models.一切都包括在内。The very
COMPOSITE
FM
£40
stripped
in
element(about
LED
MAG2P2
phone
TWEETERS
are
XT
2
10watt4R
range
etc
MAG3P4
REF:
RED
platen, cables,
SENDER
BT
Clearance
Good
sync,
the
a
C8
a
-3000
-9v
just
req'd.
and
at
1512
yoke.
Can
be
made
in
printed.
This
is
a
very
exotic
thing
but
it
is
the
personal
audio
system.
Some
of
these
combinations
are
available
in
the
range
of
4000.
Also
in
the
esp. *
but
fun
with
a
computer
or
a
phone
or
a
sound
system.
We
will
make
a
sampler
of
what
we
have
in
stock
available
at
www.americanradiohistory.com
INTRODUCTION
COMMODORE MICRODRIVE SYSTEM real storage
device for CASIO 4 times faster than disc drives, 10 times
faster than RAM. See complete unit below. ALSO need
SCHOOL STRIPPER WE have a few of the
units which are 'returns' as they are complete
units. Let us know how many you need at just 4.9f a unit
(minimum 10).
HEADPHONES 16P These are Sennheiser
in India. You can have
PROXIMITY SENSORS These are small
caps with what look
like a source and sensor LED on one end and
cables and components on the
PCB Complete with wiring kit.
FIBRE OPTIC CABLES 1m for Harvest Packard speciy:good
work. You may have any length you want (minimum 6m) £7 E7
MAG7 therefor £1 a metre (£0.5m c£2) £2 E2
MAG15 Max length
SNOPERS EAR? Original clip on to the
speaker to allow you to
hear the conversation on
the cable. Price is £5 E5
MAG17
DOS PACKS Microsoft version 3.3 or higher complete with
all the software. Price just £3 E3
MAG19 Worth it just for the
very comprehensive manual 5" 25p only
DOS PACK Microsoft version 5 original software but no manuals
left £3 E3 REF: MAG5 25p only
FOREIGN DOS 3-3-German,French,Italian etc £2 each
with manual 5" 25p only REF: MAG2P5
WOKO VGA MONITOR Made by Amstrad, refurbished £4
REF: MAG4
CTM644 COLOUR/MONITOR Made batch with the CPC644
home computer. Standard RGB input so will work with other machines.
Refurbished £56 00 E56 MAG8
J ST A SMALL SELECTION of what we have in stock.
But we want more stock. Available
1994 catalogue (43mb) etc on demand in
3-5 80 HAND HELD TONE DIALLERS ideal for the
control of the remote. 8m range £3 £3 REF:
MAG2P5
CROSSWIND SOLAR POWERED RADIO AM/FM radio complete
with hand held case and panel. Price £5 £5 Mag 78
MAGNOFLEX 64 TAPER DRIVES Completed with
software. £16 £16 MAG2P5
MANUFACTURER ONLY £6900
MAG3P8 computer terminals complete with
cable, keyboard and
mouse (black). Ex display. Price £25 £25 MAG2P5
MAGCABLES these are 2-3 standard block 2 metre mains cables
tied with a 13a plug on one end. cable the ideal
for projects, low cost commercialising etc.
MICROWAVE TIMER Electronic timer with min output suitable
to make engraver timer etc £4 E4 MAG4
PLUG 4207 showing its age/pack of 10 with leads £2 £2
MAG2P5 11
MOBILE CAR PHONE £5 £5 Well almost complete in
car phone, including the box of electronics normally hidden under seat.
Can be made to illuminate with 12v also has built in light so
display only illuminates when dark. Totally cooling! REF: MAG1P5 15
ALTIMETERS (carbon core) Actual ones used on a F15 and F16
bell box but could be used for canvases etc. 12v operation. Just connect up and it flashes regulars REF: MAG2P5 3
FIRE ALARM CONTROL PANEL High metal quality coated
alarm panel 350x165x20mm Comes with electronics but no informa
tion £15 £15 E4 MAG2P5
SUPER SIZE HEATKIN Super quality aluminium heatbed, 395 x 185 x 61mm, fits 5" 16V high heat dissipation. No holes £93 £93
REMOTE CONTROL PCB These are receiver boards for garage door opening systems. You may have another use? £4 E4
REF: MAG4P5
LOPTX Line output transformers believed to be for rfs colour
monitors but useful for getting hi voltages from box over £2 £2
REF: MAG2P5 12 bumpers pack of 10 for £12 £12 MAG2P5
PORTABLE RADIATION DETECTOR £49.99 A hand held personal Gamma and X ray detector. This unit contains two
Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30keV to over 1.2 MeV and a measuring range of 5.99999 Ur h/10.99999 Nrh. Supplied complete with handbook.
REF: MAG50
Z-80
Single Board Computer

Jason Sharpe describes how to build a simple, low cost, Z-80 based computer which can be used as the basis for a great many fascinating and useful projects.

In recent years there has been an explosion in the use of single chip micros in electronic products. Small size, falling price, low power consumption and increased functionality, are all contributing factors. Most of the better known microprocessor families, which can be found in anything from telephones to navigation systems, are single chip devices. No external support ICs are required, as they have small amounts of RAM/EEPROM/EPROM/PROM, clock generators, I/O ports, ADCs, etc., on board.

For most amateurs however, the single chip project is out of reach. Device programmers and development boards often cost several hundred pounds, rising to several thousand pounds if an ICE (In Circuit Emulator) is required. This project is a low cost development board for the Z84C15. All that is required to use it is a Z80 assembler or cross assembler and a computer with a serial port and simple terminal emulation software.

The Z84C15 Microcontroller
The Z84C15 microcontroller, or IPC (Intelligent Peripheral Controller) as Zilog calls it, consists of a standard Z80 CPU core, standard Z80 peripherals and some custom devices, all integrated onto a single chip, as shown in Figure 1.

Its main features are:

- Standard Z80 CPU core and bus
- TTL/CMOS compatible
- Two channel 8 bit parallel I/O port (PIO)
- Two channel serial I/O ports (SIO)
- Four channel counter time controller (CTC)
- Watch dog timer (WDT)
- Built in clock generator controller (GCG)
- Built in wait state generator
- Built in power on reset (POR) circuit
- Up to 10Mhz clock
- Small surface mount package
- Power saving 'Idle' modes (50µA supply current in STOP mode)
- No demultiplexing of outputs required

Internal memory on microcontrollers is often too small for all but simple applications. The IPC has no internal memory, instead a standard Z80 bus is available from the chip, allowing 64kB to be accessed. Using the two built-in programmable chip select pins only two OR gates are required to access two external
Fig. 1A Block diagram of Z84C15 Microcontroller
Fig. 2 Z-80 computer circuit
memory devices.

As the IPC contains standard Z80 peripherals, those of you familiar with the devices will have no problem programming it, and may even have some software already developed.

Many pins are required to make the above functions available. Often, microcontrollers multiplex several signals onto one pin, which must be demultiplexed with external logic. Zilog decided to have a pin for every function - the IPC comes in a 100 pin Quad Flat Pack (QFP). This is a surface mount device with a ~65mm pin spacing, and overall package size of ~18 x 24mm.

The Circuit

As the circuit diagram, Figure 2, shows, few components are required to make a working system. It was originally designed for evaluation of the IPC and development, so most pins are available on external connectors. Unused inputs are tied high with 4k7 resistors to prevent spurious operation. A 10Mhz crystal is connected to the CGC inputs. The CGC output (pin 66) is connected to the system clock input (pin 69). Chip Select lines /CS0 and /CS1 are OR'ed with the /MEMREQ line. When a memory access is attempted, /MEMREQ will go low, as will the appropriate CS line, causing the OR output to go low, selecting one of the two memory devices. The circuit board is wired for two 8kB memories, which should be enough for most applications. /CS0 must select a ROM, /CS1 can select a RAM or ROM.

Construction

Due to the IPC package, this circuit must be constructed on the double sided circuit board shown in Figure 3.

The IPC is mounted on the under side of the board. Mount this first, so the board lies flat. Wear an earth strap and try not to touch the pins as it is a CMOS device. Without special equipment, soldering is a slow process. I used a 15W Antex soldering iron with a 1mm bit, grounded via a 10M resistor, and solder paste. Solder paste is a low melting point solder that does not leach as easily as normal solder.

Position the device on the board. A vacuum pen is the best way to handle the device, though sticking a blob of Blu-Tak to the top will suffice and is considerably cheaper! Check the orientation is correct, as it won't be easy to remove once soldering is started. While still holding the device in place, apply a little solder paste to a couple of pins and solder them. This should hold the device in place. Apply the paste to one pin at a time, using a sewing pin, and solder as you go. A couple of applications may be required for each joint. The first application may just line the pin and track.

Be careful not to get the IC too hot. Although the paste will melt when the soldering iron comes close, the (IC) pin and track should be touched, to get a good joint. Figure 4 shows the process. Check each joint carefully for solder bridges and a little solderwink can be used to clean these up. This process may take around an hour (or two with coffee breaks!), but trying to rush is a recipe for disaster.

The board is not through hole plated, so track pins must be used to join tracks on one side to the other, Figure 5. Crossed circles on the overlay show where they should be placed. Turned pin sockets must be used for the ICS, so the pins marked with dots can be soldered to both sides. The case of XTAL1 should be soldered to the ground plane. Add the IDC connectors last.

When constructed, check the board carefully for solder bridges, etc. Then place the ICS in their sockets.

Testing

It is possible to test the circuit without using the monitor ROM by hardwiring certain instructions (e.g. NOP), into a socket, and monitoring the bus with an oscilloscope. It will be assumed that the reader has the monitor ROM, described later.

Figure 6 shows a couple of circuits that can be used to connect the IPC board to a standard RS232 port. One requires a +12V supply, the other operates from a +5V supply. The circuits change the voltage level of the signals from TTL to RS232 and vice versa. When one of these circuits has been connected to the
Terminal Emulation - DEC-VT100 (ANSI)
Text Transfer - Standard Flow Control
Communications - Baud rate 4800
- Data bits 8
- Stop bits 1
- Connector COM2 - or whichever port you are using
- Flow control None
- Parity None
- Carrier detect and
- Parity check, off
- Modem defaults None

You may also wish to change the font size. Save this information.

Connect the PC, and turn on the IPC's power supply. If all is well, a message should appear on the terminal window. If it appears garbled, check the settings, or reload the settings and remove and re-apply the IPC power. Pressing keys (except space) should cause the characters pressed to appear in the terminal window.

If nothing happens, disconnect the RS232 line. Check the CLKOUT pin of the board is oscillating. If it is OK and there is activity on the bus lines, check the connections in the RS232 circuit, especially that the lead is constructed correctly. Otherwise, check the boards for bad connections, shorts, etc.

Next month, we look at the monitor software.
At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages...

... call now for details.

BoardCapture
Schematic Capture Design Tool
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back-annotation from BoardMaker2

BoardMaker

- **BoardMaker1 - Entry level**
 - £395
 - PCB and schematic drafting
 - Easy and intuitive to use
 - Surface mount and metric support
 - 90, 45 and curved track corners
 - Ground plane fill
 - Copper highlight and clearance checking

- **BoardMaker2 - Advanced level**
 - £295
 - All the features of BoardMaker1 +
 - Full netlist support - BoardCapture, OrCad, Schema, Tango, CadStar and others
 - Full Design Rule Checking
 - Both mechanical and electrical
 - Top down modification from the schematic
 - Component renumber with back annotation
 - Report generator + Database ASCII, BOM

NEW
- Thermal power plane support with full DRC

BoardRouter
 Gridless re-entrant autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

- Output drivers - Included as standard
 - Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
 - Penplotters - HP, Graphtec & Houston
 - Photoplotters - All Gerber 3X00 and 4X00
 - Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit
Tsien (UK) Limited
Aylesby House
Wenny Road, Chatteris
Cambridge
PE16 6UT
Tel (0354) 695959
Fax (0354) 695957

www.americanradiohistory.com
SPECIAL OFFER

Spice Age for Windows for £95 incl VAT for a limited period.

We are offering a special version of SpiceAge for Windows to students and serious hobbyists. The version will analyse medium sizes of circuits and may be upgraded to the professional version for the price difference.

SpiceAge is the program used by professional circuit designers that lets you "breadboard" even before you plug in your soldering iron. It gives you quiescent DC voltages, frequency response curves and 'scope-like traces of your circuit ideas. Imagine how easy it is to test new components and values without the risk of smoke! SpiceAge has a friendly editor that lets you tell it what components to put in your circuit and how to connect them. SpiceAge has a "lab" full of "test equipment" to let you inject signals and "probe" for voltages, currents, dissipations, dB gains, phase angle, group delay and power consumption.

Requires Windows 3.0 or higher. S.A.E. please for information pack or £5 for demonstration kit. ACCESS/VISA or cheque with order. Please state disk size. Those Engineers Ltd, Dept Ek03, 31 Birkbeck Road, London NW7 4BP. Tel 081-906 0155, Fax 081-906 0969.

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD
Tel: (0480) 433156
Fax: (0480) 413357
TEST EQUIPMENT
Supply
Maintenance
Commissioning
Replacement Parts
Supply of Service & Operators Manuals
Components
Distributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

OUT NOW!!

HENRY'S NEW 1994 COLOUR CATALOGUE
TRADE • EDUCATION • RETAIL • MAIL ORDER • EXPORT
Open 6 days a week • CALLERS WELCOME

HENRY'S
404 Edgware Road, London W2 1ED

Components
Telephone: 071-724 1008
Security • Communications
Telephone: 071-724 0225
Audio and Test Instruments
Telephone: 071-724 3564

RETAIL • MAIL ORDER VERSION
With price lists, special offers and purchase vouchers. Send PO/Cheque £4.00 (UK) £6.00 (EC) £10.00 (Non EC) Calls £2.00.

Education, trade, quantity purchasers
Post or fax letterhead for FREE copy with trade/quantity price list (UK).
Overseas prices as above.

Affordable Data Acquisition

AD8 Single channel 8-bit A to D

Price includes VAT
Software supplied on 3.5" disk unless 5.25" specified.
Please send Cheques and PO's to:
C.P. Technology
Red Lion Yard, Market Place, Blandford, Dorset DT11 7EB.
Telephone: (0258) 461502

£24.95

Plugs into printer port
Up to 25 KHz sampling
0 to 5 Volt input range
Software drivers in C and BASIC
Voltmeter and Scope software included
+ source code

ELECTRONICS TODAY INTERNATIONAL
Bob Noyes designed this programmable stroboscope project to provide those special effects for a local school drama department.

Programmable Stage Stroboscope.

Recently, the head of Drama at the local secondary school approached me as to the possibility of producing a stroboscope, but one with a couple of extra features.

It had to be able to operate as a normal stroboscope, i.e., work over a wide speed range in its own right with the controls built in. It also had to be controlled from the lighting control consul and so be directly under the control of the lighting engineer. It had to be able to be fired on pressing a button and be capable of being synchronised, if more than one strobe was used. These remote control signals had to be 5V compatible and capable of being operated from the computer interface on the lighting control, or a simple manual control for more simple productions.

Because of the possible side effects for those students susceptible to epileptic fits, the strobe should have two power levels. There had to be a low level, in a medium sized hall, so the speed and effect could be seen but would not be as powerful as the level needed for an actual performance. It was estimated that the particular sequence that the strobe would be required for, although only lasting for under a minute on the final performance, might well take a total of several hours in rehearsal - hence exposing the students to the effects during this time, albeit in short bursts. Full power would normally only be used in the final stage production, but must be powerful enough for the medium sized stage used in school productions.

For those of you who are not familiar with strobos, a strobe is based around a xenon tube (flash gun tube). This produces a very fast intense flash, unlike a tungsten light bulb that has to warm up to get the filament white hot before light is given off. The xenon tube relies on a gas breaking down under a high voltage and hence is almost instantaneous.

Normally, a flash gun, once fired, has to charge up before it can be fired again - this is due to it being battery driven and the high voltage produced by a small inverter. A strobe is normally mains powered and so can be fired as quickly as required - power being no limitation. Although each flash is of the same duration, the gap between flashes can be altered on the speed control and, depending upon the setting, normal movement can be made to appear as a series of still frames taken from a movie film.

Unlike a film, where the still frames are shot very close together to get continuous movement, the strobe effect makes it seem as if only every tenth still is used, to produce a very jerky movement that has "certain dynamic qualities" (to quote the teacher). The slower the strobe runs, the more jerky the movements, because the subjects on stage have moved further between flashes when the stage is in darkness and are only illuminated when the strobe flashes. Strobes have been more commonly found in discos but because of the possible side effects, their use has been limited over the past few years.

The Principles of Firing a Xenon Tube.
The most commonly available xenon tubes come in two forms, a short straight tube up to a couple of inches long and the U shaped tube. The straight tube types are usually found in small flash guns and the U shape in strobes and professional flash units. The advantage of the U tube is that the flash is concentrated in a smaller, more compact area and hence the flash produced seems brighter, having effectively two straight tubes next to each other. These tubes are filled with xenon, an inert gas but when a high voltage of 300-500V dc is applied across its anode and cathode, the gas directly around the electrodes ionises. Still next to no current flows and the tube shows no visible signs of glowing. When a high voltage of 6KV or so is applied to the grid (middle pin), the xenon gas breaks down and conducts. When the tube does fire, it becomes a virtual short
Fig. 1 Main Circuit
circuit, so the voltage across it causes a very high current to flow, albeit for a tiny fraction of a second. Because of these high currents, the flash rate should be limited in order to maintain a much lower average current. It is not practicable to use this type of tube for normal lights where its firing rate would need to be several hundred flashes per second. The spec. for the tube used here is around 100 flashes per minute on continuous use, but strobe effects on stage are of limited time duration and this speed can be exceeded for these short periods.

Now the basic principles of the 'flashing' are known, the full circuit can be explained. All of the following circuit is at mains potential and cannot be touched when on. Even after the mains has been removed, the capacitors C6, C7 and, to a lesser extent C5, can maintain a charge of over 300V dc so great care must be taken, especially when getting the circuit working on the bench. This circuit is not recommended for newcomers to electronics.

How It Works

Basically, the strobe has two modes of operation. Firstly, there is continuous flash at a variable speed set on its speed control on the back of the strobe. This function operates around IC3, a standard NAND Schmitt oscillator but with the addition of R8, D3. These two components discharge C1 via the 12K resistor and without these the oscillator gives a square wave at IC3 pin 3, with equal mark to space ratio, but in order to fire the thyristor TR1 and turn it back on again quickly, only a narrow pulse is required, so the square wave oscillator has its output modified to produce low spikes. The charge path for C1 is via R3, VR1 but to discharge it a 12K resistor is added in parallel. D3 prevents R8 from charging C1.

The output of IC3 pin 3 is normally high pulsing low (see Figure 4) when the oscillator is on and high when the oscillator is off. This oscillator can be turned on by the switch on the back of the strobe for manual operation. This is done by switching a high +12V on to IC3 pin 1, normally held low by R5.

To facilitate the remote control
of the strobe, the switch can be bypassed by IC1, an opto isolator. When 5V are applied across the remote run pins of the DIN socket pins 1 and 2, the output transistor in the opto isolator turns on, pulling IC3 pin high, must be off or this feature is bypassed by the internal run switch.

An opto isolator must be used, as the circuit of which IC3a is a part is at full mains potential and any direct connection would also be connected directly to the mains. IC1 then totally electrically isolates the remote start pins on the DIN socket from the rest of the live circuit. If the PCB is not being used for this circuit and it is being built on strip board, all the track under IC1, IC2 should be removed because a track cutting tool leaves the edges of the cut track peripherally close and the mains could easily track across such a small gap (see Figure 5). Making this circuit on strip board is possible, but not recommended because of the problem of mains tracking to adjacent tracks.

The choice of R1 at 120n enables the ‘remote’ to be run from a 5V supply compatible with interfaces from computers. If the internal oscillator would be switched off or, more technically, not turned on. This would cause a high on the output of the oscillator IC3 pin 3 and hence on IC3 pin 5. Normally, R6 pulls up IC3 pin 6, causing a low on the output of the ‘NAND’ gate pin 4. To produce a flash pulse, a 5V pulse is required on the remote fire pins of the DIN socket pins 4 and 5. This is in turn taken to IC2 - another opto isolator where the pulse appears on pin 5 as a low pulse. This low pulse is taken to IC3 pin pulse delivered to IC3 pin 6 is fast and not held low for as long as a normal pulse delivered on to the remote fire pins. Although a fast pulse can be generated by the computer interface, this input can also be driven by a press switch too, for example, synchronised with a gun shot. If the switch were to be pressed and held it would turn on the thyristor and keep it on until the switch was released. Capacitive coupling removes this possibility.

The output of IC3 pin 4 is capacitively coupled and taken to the gate on the thyristor, TR1. R10 also prevents the thyristor from false triggering when high currents are flowing around the PCB, both in firing the xenon tube, hence discharging and also in the recharging of the main reservoir capacitors.

At first sight, the operation of the thyristor looks a bit of a mystery but it works in the following fashion. Normally the thyristor is off, i.e. C5 can charge up via R13 as the trigger transformer’s primary winding is only a couple of ohms. 300V or so appear across C5 when the thyristor is turned on by a high pulse from IC3 pin 4. C5 is discharged and a negative pulse of 300V appears on the primary of the trigger transformer. This is stepped up by the transformer to produce around 6000V on its HT output pin, the pulse that causes the xenon tube to breakdown, hence fire. As there is no direct loading on this HT pulse it can be used to fire more than one tube. This property is used in the boost mode where the HT pulse is used to fire both tubes. Theoretically, tubes could be fired by this HT pulse if they have their own power supply and care is taken that the HT is kept well clear of anything it could possibly track to.

The xenon tubes, when they fire, almost go short circuit and if they were connected directly across the rectified mains, would
Fig. 6. Potentiometer mounting off PCB

blow the fuse or explode - dramatic but not cost effective. So they must have a reservoir of power that they can discharge but not be placed directly across the mains - hence the need for R7, R9, C6.

The capacitor C6 charges up via D4, R7, R9. Large power resistors are required because at the point of firing the full half wave rectified mains can appear across them, albeit for a fraction of a second. Two 10W resistors were chosen rather than one 20/25W, in order to disperse the heat given off. If one resistor of 220Ω was used, heatsinks or forced air cooling would be required increasing the cost and complexity. Even with using two resistors the same amount of heat is given off but more widely dispersed. If the strobe is going to be used in fast flash mode a great deal of heat will be given off especially in full power or boost mode when R14, R15 double the amount of heat generated. As stated earlier, this strobe is not designed for continuous fast flash operation but to be used as an effect for limited time periods, be it for stage or disco operation. This as well as the heat generated also reduces the possible risk of inducing epileptic fits.

Ventilation is required in the case and great care must be taken that enough heat can get out, but that fingers or anything else for that matter, cannot get in. To this end a grill is used but common sense must be exercised as to the mounting and mesh size. When in rehearsal, only one tube is used so the boost switch remains off, but during a performance both tubes are used.

The brightness of the flash is determined by the amount of energy the tube uses during its 'on time'. So, to reduce the power, reducing the value of the reservoir capacitor was tried. Although this worked, the flash was pretty feeble in the hall and so the use of two tubes was found necessary for the performance, with just one for rehearsals. For smaller halls or classrooms, the value of C6 could well be reduced to, say, 22µF @ 450V. Only trial and error can be used to obtain the optimum value, but remember when touching these capacitors they can still hold a charge, well after the strobe has been switched off.

The +12V used to power IC3 is derived directly from the mains supply via C3 1µF X rated capacitor (this means the capacitor can be directly connected across the mains). Only capacitors marked in this fashion should be used. A normal 1µF will not work for long and could cause damage to the circuit if it went short circuit. R11, D6, D5, C4 complete the +12V supply.

Normally, this type of supply is not used to power projects because it is not isolated from the mains. There is no earth or 0V safe on this type of supply and a severe, if not fatal, shock can be received by touching any part of it (as it is not uncommon to find live and neutral reversed in a mains socket).

Because so much of the circuit is at full mains potential, it seems pointless to have a mains transformer producing a 'safe' +12V supply and then having to explain where the 'safe' areas of circuit were, then using an opto isolator to connect to the dangerous areas. It is far cheaper and easier to use this type of supply and say all the circuit is dangerous. The speed control pot VR1 must have a nylon spindle, not a metal one and the pot should be mounted on PCB. In no circumstance should it be mounted directly on the rear panel as the connections to it are at mains potential and they could track to the chassis of the pot. Although the chassis of the strobe is earthed, it is not worth taking the risk. If for one reason or another it is not practicable to mount the pot on the PCB, it must be mounted on an insulated sub panel as in diagram 6. A gap of at least 1/2in should be maintained between the pot and any spacer or part of the rear panel.

All the switches, Mains, On/Off, Run and Boost, must be capable of handling mains voltages and rated at an appropriate current. The base chassis should be a metal one because a plastic one might melt near to the power resistors. Special care needs to be taken with the earthing. A nut and bolt should be used to secure a solder tag, star washers should be used to prevent the nut from becoming loose through vibration. If a metal lid is used this should be earthed in the same way.

Fig. 7. Computer interface
Operating from the External DIN Connections

As can be seen from Figure 7, the two sets of commands that are brought in to the DIN socket are:

a) Remote Run - pins 1 - 2
b) Remote Flash - pins 4 - 5

Both are independent signals and do not have a shared common. This is to allow either open collector or emitter drivers. Both of these can be found on interfaces.

Because 300mA or so is required to drive the opto isolators, some kind of amplifier is used to take the TTL compatible signal from the computer and amplify it. Figure 7 shows how to wire each type of output, while Figure 8 shows how a simple external fire button and external oscillator may be used to control the strobe where a computer is not available. Both of these methods have been employed to great effect (excuse the pun). If 12V CMOS logic is used as the external controller, either R1, R2 of the strobe will need to be increased to 390n 1/2W or a 270n resistor is added in series with the output signal of the control - this then keeps the strobe compatible with 5V controls. When operating from external control try to limit the speed of flash to a maximum of 5 flashes per second. This, as well as limiting the heat build up, keeps it outside the accepted possible danger speed of 8-15 flashes per second for induction of epileptic fits.

Testing and Setting Up

The circuit should be made and checked and double checked, things like the polarity of all the electrolytics, especially C6, C7, as well as the xenon tubes and diodes, etc. The board should have all component leads cropped and the PCB cleaned to remove the flux. The PCB should be connected up to the switches and socket but not plugged into the mains yet. The opto isolators' input pins should be checked with a multimeter to see that there is no circuit to the live side of the board, i.e. there should be no reading at all on the highest resistance range, indicating complete electrical isolation. The earth should be checked back to the plug to ensure a good electrical contact and this should show complete isolation to the PCB. The internal fuse on the back panel should be 1A slow blow and a 2A fuse fitted in the mains plug. All this is common sense, but you can't be too careful with mains projects. While testing, remember that just unplugging the mains does not render the strobe safe as the capacitors C6, C7 may well be fully charged. To remove this charge the mains should be unplugged, not just turned off. Using an insulated piece of wire with bare ends, the mains side of R14 should be shorted to mains return on the PCB. This is shown as the discharge points on the PCB layout drawing. The same should be done to the mains side of R7 and, if the capacitors are fully charged, a small spark may be produced so keep your eyes well clear. The two parts of the circuit that may warrant modification are the value of C6, C7 to reduce the low power brilliance and R3, to adjust the speed range of the internal oscillator. Remember if you are in any doubt, do not take chances - contact a qualified engineer.

Casing the Strobe

No specific ready made box has been recommended for the strobe. The one shown in this article was made out of thin sheet aluminium (1.2mm) off cuts from a local engineering works. Even if the lid is not made of aluminium, the base should be, so that it can be earthed safely. As mentioned before, plastic boxes are not recommended because they can distort or even
melt when exposed to the heat of power resistors.
To bend the front and back of aluminium is easy enough and can be done using two angle iron steel pieces clamped in a Workmate and pressure put on the aluminium to bend. The lid, however, requires bending over a greater distance and hence much more pressure is required. An MDF lid is far easier and can be constructed as shown in Figure 10.
The PCB should be mounted on nylon pillars at least 15mm long, off the bottom of the box - the ones used in my unit are 25mm. Great care should be taken with all aspects of mounting. Check that none of the wires are trapped when bolting the PCB down and fitting the lid. A piece of reflective coated cardboard was used as a reflector mounted behind the tubes and in front of the main capacitors - this increases the output brilliance considerably so all the light is focused forward.
A round hole was cut in the front of the box and a piece of clear but patterned Perspex placed inside and bolted to the front. This keeps fingers out and adds a professional touch as the patterned effect on the Perspex prevents any of the internal workings from being seen.
It also helps diffuse the light to give a more even distribution, although do not look at this from close range.
The precise details of construction are left to the constructor, as the unit may be required for floor standing. In which case feet can be mounted on the bottom, or fixture mounted, in which case a metal bracket is mounted over the top of the box in order that the strobe can be tilted to the correct angle and swivel.
After all’s said and done, this project has proved to be relatively easy to construct and should present no problem to the seasoned constructor. The school is over the moon with it and has since used it in several productions to great effect - so much so that they may well get round to paying for it soon!
SUBSCRIBE
AND SAVE
with our recession beaters for 1994!

It's Your Choice...

OFFER 1
Subscribe to your favourite magazine for 1 year to have every issue delivered to your door (post FREE in the UK) and up to 4 extra issues - FREE!

OFFER 2
Subscribe to the magazine of your choice for 2 years, we'll send you up to 8 extra issues FREE and you'll freeze the 1993 cover price until '96!

PLUS, It's a Gift...
with both offers 1 and 2 we'll send you an extra present - explore a new hobby and choose a magazine, we'll send it to you FREE!

So, how many issues do you get FREE?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>OFFER 1</th>
<th>OFFER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magazine</td>
<td>Your extra issues with a 1 year subscription</td>
<td>Your extra issues with a 2 year subscription</td>
</tr>
<tr>
<td>Twice monthly</td>
<td>24 issues plus 4 FREE</td>
<td>48 issues plus 8 FREE</td>
</tr>
<tr>
<td>Monthly</td>
<td>12 issues plus 2 FREE</td>
<td>24 issues plus 5 FREE</td>
</tr>
<tr>
<td>Alternate monthly</td>
<td>6 issues plus 1 FREE</td>
<td>12 issues plus 3 FREE</td>
</tr>
<tr>
<td>Quarterly</td>
<td>4 issues plus 1 FREE</td>
<td>8 issues plus 2 FREE</td>
</tr>
</tbody>
</table>

Now turn the page for details of how to claim your FREE copies and save money!
SUBSCRIBE

AND

SAVE

It couldn't be easier...

- Just ✓ which magazine/s you wish to subscribe to.
- Then ✓ the relevant box for a 1 or 2 year subscription.
- Now ✓ your chosen FREE sample magazine.
- All you have to do now is relax and enjoy a really good read!

Your Subscribe & Save Order Form

Yes, I would like to take out a subscription to the magazine(s) indicated above.
Please commence my subscription/s from the issue.
If renewing/ extending, please quote subscription number
I enclose a cheque/P.O. for £ , made payable to ASP or debit my Access/Wish:

Signature

Expiry

Name

Address

Post Code

Photocopies of this page are acceptable.
Not to be used in conjunction with any other offer.
This offer is open to all readers - until 4th February 1994
Please post this coupon to: Argus Subscription Services:
Queensway House, 2 Queensway, Redhill, Surrey, RH1 1QS
(ETH/123)

Post this page today!

Explore a new hobby and choose a FREE copy

- ARCHIMEDES WORLD
- CITIZENS BAND
- HOME COOKING
- LOVE STORY
- MODEL BOATS
- POPULAR CRAFTS
- RC & MODEL AIRWAYS
- SCALE MODELS INT
- TRUE STORY
- WOODWORKER
- SILENT FLIGHT
- R/C SCALE AIRCRAFT
- MODEL ENGINEER'S WORKSHOP
- POPULAR PATCHWORK
- ROUTING

ONLY THE MAGAZINE TITLES LISTED ABOVE ARE AVAILABLE FOR THE FREE PROMOTION.

One Year Subscription ✓ here

<table>
<thead>
<tr>
<th>MONTHLY</th>
<th>U.K.</th>
<th>EUROPE</th>
<th>STERLING</th>
<th>US DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHIMEDES WORLD</td>
<td>£45.00</td>
<td>£54.80</td>
<td>£56.60</td>
<td>£96.00</td>
</tr>
<tr>
<td>AEROMODELLER</td>
<td>£23.40</td>
<td>£29.30</td>
<td>£30.50</td>
<td>£46.00</td>
</tr>
<tr>
<td>CITIZENS BAND</td>
<td>£20.40</td>
<td>£24.60</td>
<td>£25.20</td>
<td>£42.00</td>
</tr>
<tr>
<td>CLOCKS</td>
<td>£28.80</td>
<td>£36.00</td>
<td>£37.20</td>
<td>£56.00</td>
</tr>
<tr>
<td>E.T.I.</td>
<td>£23.40</td>
<td>£30.00</td>
<td>£31.50</td>
<td>£52.00</td>
</tr>
<tr>
<td>HAM RADIO TODAY</td>
<td>£20.40</td>
<td>£27.30</td>
<td>£28.50</td>
<td>£47.00</td>
</tr>
<tr>
<td>MILITARY MODELLING</td>
<td>£21.00</td>
<td>£30.00</td>
<td>£31.50</td>
<td>£43.00</td>
</tr>
<tr>
<td>MODEL BOATS</td>
<td>£21.00</td>
<td>£27.80</td>
<td>£29.00</td>
<td>£42.00</td>
</tr>
<tr>
<td>MODEL RAILWAYS</td>
<td>£20.40</td>
<td>£29.40</td>
<td>£31.00</td>
<td>£51.00</td>
</tr>
<tr>
<td>R/C MODEL CARS</td>
<td>£19.20</td>
<td>£28.20</td>
<td>£29.70</td>
<td>£48.00</td>
</tr>
<tr>
<td>RC & MODEL AIRCRAFT</td>
<td>£20.40</td>
<td>£30.00</td>
<td>£31.60</td>
<td>£43.00</td>
</tr>
<tr>
<td>SCALE MODELS</td>
<td>£20.40</td>
<td>£30.00</td>
<td>£29.90</td>
<td>£40.00</td>
</tr>
<tr>
<td>SCALE MODELS</td>
<td>£20.40</td>
<td>£30.00</td>
<td>£29.70</td>
<td>£40.00</td>
</tr>
<tr>
<td>SCALE MODELS</td>
<td>£20.40</td>
<td>£30.00</td>
<td>£29.90</td>
<td>£40.00</td>
</tr>
<tr>
<td>WOODWORKER</td>
<td>£22.80</td>
<td>£33.90</td>
<td>£35.90</td>
<td>£49.00</td>
</tr>
</tbody>
</table>

TWICE MONTHLY

- MODEL ENGINEER(24)
- ALTERNATE MONTHLY
- SILENT FLIGHT | £15.00 | £18.50 | £19.10 | £32.00 |
- R/C BOAT MODELLER | £10.50 | £13.10 | £13.50 | £22.00 |
- R/C SCALE AIRCRAFT | £15.00 | £19.50 | £20.30 | £29.00 |
- PRACTICAL WARGAMER | £11.70 | £15.00 | £15.60 | £26.00 |
- MODEL ENG. WORKSHOP | £15.00 | £19.20 | £20.00 | £33.00 |
- TAMIA Y I.M. (2)
- QUARTERLY
- ROUTING | £10.00 | £13.30 | £15.70 | £24.00 |
- WOODWORKS | £10.00 | £13.40 | £14.00 | £23.00 |

Two Year Subscription ✓ here

<table>
<thead>
<tr>
<th>MONTHLY</th>
<th>U.K.</th>
<th>EUROPE</th>
<th>STERLING</th>
<th>US DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHIMEDES WORLD</td>
<td>£90.00</td>
<td>£109.60</td>
<td>£113.20</td>
<td>£192.00</td>
</tr>
<tr>
<td>AEROMODELLER</td>
<td>£46.80</td>
<td>£58.60</td>
<td>£61.00</td>
<td>£92.00</td>
</tr>
<tr>
<td>CITIZENS BAND</td>
<td>£40.80</td>
<td>£49.20</td>
<td>£50.40</td>
<td>£84.00</td>
</tr>
<tr>
<td>CLOCKS</td>
<td>£57.60</td>
<td>£72.00</td>
<td>£74.40</td>
<td>£112.00</td>
</tr>
<tr>
<td>E.T.I.</td>
<td>£46.60</td>
<td>£60.60</td>
<td>£63.00</td>
<td>£104.00</td>
</tr>
<tr>
<td>HAM RADIO TODAY</td>
<td>£40.80</td>
<td>£54.60</td>
<td>£57.00</td>
<td>£94.00</td>
</tr>
<tr>
<td>MILITARY MODELLING</td>
<td>£42.00</td>
<td>£60.00</td>
<td>£63.00</td>
<td>£96.00</td>
</tr>
<tr>
<td>MODEL BOATS</td>
<td>£42.00</td>
<td>£56.60</td>
<td>£58.00</td>
<td>£84.00</td>
</tr>
<tr>
<td>MODEL RAILWAYS</td>
<td>£40.80</td>
<td>£58.80</td>
<td>£62.00</td>
<td>£102.00</td>
</tr>
<tr>
<td>R/C MODEL CARS</td>
<td>£38.40</td>
<td>£56.40</td>
<td>£59.40</td>
<td>£96.00</td>
</tr>
<tr>
<td>RC & MODEL AIRCRAFT</td>
<td>£40.80</td>
<td>£60.00</td>
<td>£63.20</td>
<td>£86.00</td>
</tr>
<tr>
<td>RADIO MODELLER</td>
<td>£38.40</td>
<td>£55.20</td>
<td>£59.80</td>
<td>£80.00</td>
</tr>
<tr>
<td>SCALE MODELS</td>
<td>£49.80</td>
<td>£62.20</td>
<td>£64.00</td>
<td>£106.00</td>
</tr>
<tr>
<td>STEAM CLASSIC</td>
<td>£48.80</td>
<td>£62.20</td>
<td>£64.00</td>
<td>£106.00</td>
</tr>
<tr>
<td>WOODWORKER</td>
<td>£45.60</td>
<td>£67.80</td>
<td>£71.60</td>
<td>£98.00</td>
</tr>
</tbody>
</table>

TWICE MONTHLY

- MODEL ENGINEER(24)
- ALTERNATE MONTHLY
- SILENT FLIGHT | £30.00 | £37.00 | £38.20 | £64.00 |
- R/C BOAT MODELLER | £20.40 | £26.20 | £27.00 | £44.00 |
- R/C SCALE AIRCRAFT | £30.00 | £39.00 | £40.00 | £68.00 |
- PRACTICAL WARGAMER | £23.40 | £30.00 | £31.20 | £52.00 |
- MODEL ENG. WORKSHOP | £30.00 | £38.40 | £40.00 | £66.00 |
- TAMIA Y I.M. (2)
- QUARTERLY
- ROUTING | £20.00 | £26.60 | £31.40 | £48.00 |
- WOODWORKS | £20.00 | £26.80 | £28.00 | £46.00 |
EASY-PC, SCHEMATIC and PCB CAD

Over 17,000 Installations
in 70 Countries World-wide!

- Runs on: PC/XT/AT/286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design: Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Tech Support - free.
- Superbly easy to use.

Still Only £98.00!

BRITISH DESIGN AWARD 1989

Options:
- 500 piece Surface Mount Symbol Library £48
- 1000 piece Symbol Library £38
- Gerber Import facility £98.

Electronic Designs Right First Time?
Ask for our fully functional Integrated Demo

Integrated Electronics CAD

Affordable Electronics CAD

- Schematic Capture
- Analogue & Digital Simulation
- And PCB Design

For Less than £400/$775!

For full information, Write, Phone or Fax:-

Number One Systems Ltd.

TECHNICAL SUPPORT FREE FOR LIFE!
PROGRAMS NOT COPY PROTECTED.
SPECIAL PRICES FOR EDUCATION.

ELECTRONICS TODAY INTERNATIONAL

37
he range of facilities offered by modern digital multimeters seems to become greater year by year. In addition to the usual voltage, current, and resistance ranges, many now sport temperature and capacitance ranges. The latest addition to digital multimeters is frequency measurement. Although the maximum frequency that can be read is usually far lower than the maximum frequency for a d.f.m. (digital frequency meter), the ability to measure frequencies up to (typically) a couple of megahertz is extremely useful. Checks on audio frequency oscillators can be made, as can checks on some crystal clock oscillators, b.f.o.s, etc. This project allows one to add such a feature to your multimeter.

Frequency To Voltage Conversion

A normal digital frequency meter operates using a pulse counting process. The basic scheme of things is to have the input signal applied to a pulse counting circuit for a gate period of one second. The final value in the counter is then equal to the input frequency in hertz. In a practical d.f.m., the gate period is controlled by a high precision quartz oscillator so that a high degree of accuracy is obtained.

The frequency ranges of digital multimeters seem to operate using a different process. These devices work on the basis of having a voltmeter with a full scale value of 1.999 or 0.1999V. Every range of the unit, whatever is being measured, has to produce a suitable input voltage to the voltmeter circuit. In the case of frequency measuring ranges, a frequency to voltage converter circuit is obviously all that is needed. Although this method should give highly accurate results in theory, in practice it is difficult to produce a system that will give the sort of accuracy that can be achieved using a pulse counting d.f.m. The same degree of accuracy is not possible anyway, since the 3 1/2 digit display of a digital multimeter can obviously not give the same sort of resolution as the seven digits of a typical d.f.m. display. For many purposes a d.f.m. provides substantial overkill, and a set up of more modest capabilities is still perfectly adequate for much general testing.

Of course, it is possible to add frequency ranges to a digital multimeter using an external frequency to voltage converter. This is the function of the project featured here. It can be used with any digital multimeter which has a 1.999V range, and provides full scale values of 1.999kHz, 19.99kHz, 199.9kHz,
and 1.999MHz. Obviously the decimal point of the display will be in the wrong place on the middle two ranges, but there is no difficulty in mentally adjusting the position of the decimal point.

System Operation

The block diagram of Figure 1 helps to explain the way in which the unit functions. A buffer stage at the input provides the unit with a high input impedance of one megohm. This ensures that minimal loading is placed on the circuit under test. An amplifier stage then boosts the signal to a level that enables the following stages to be driven properly. The voltage gain of this amplifier is not very high, but it enables the unit to function with input signals down to about 50mV r.m.s.

The amplifier is followed by a chain of three divide by ten circuits. These provide the unit with its four ranges. The frequency to voltage converter operates over an input frequency range of 0 to 1.999kHz. Switching in one divider gives an effective frequency range of 0 to 19.99kHz, two gives a range of 0 - 199.9kHz, and three give a range of 0 - 1999kHz.

It would be possible to obtain the ranges by simply altering the timing component values of the frequency to voltage converter, but this would give inferior accuracy. The frequency to voltage converter works best at low frequencies. The divider stages ensure that the frequency to voltage converter never has to deal with frequencies of more than 2kHz, even if the input frequency is as high as one to two megahertz. This considerably improves accuracy on the higher ranges.

The frequency to voltage converter is composed of a non-retriggerable monostable, followed by a simple lowpass filter. The monostable is triggered on each input cycle, and it produces an output pulse having a duration that is independent of the input frequency. The pulse duration is controlled by a C - R timing circuit. Suppose that an input frequency of 1kHz produces the monostable output waveform of Figure 2(a). This has a mark-space ratio of 1:9, so the average output voltage is one tenth of the supply voltage.

If the input frequency is doubled, the output pulses remain the same length, but there are twice as many in a given period of time. This gives the monostable output waveform of Figure 2(b). The mark-space ratio is 1:4, and the average output voltage is one fifth of the supply voltage. In other words, doubling the input frequency has doubled the average output voltage. Increasing the input frequency to 5kHz gives a 1:1 mark-space ratio, as in Figure 2(c). The average output voltage is now half the supply voltage. Like the input frequency, the output voltage is now five times its original figure.

In the present application it is just a matter of selecting C - R timing values that give an output voltage of one volt per kilohertz. The lowpass filter at the output of the unit smoothes the pulsed signal to produce a reasonably ripple-free dc output signal that can be read properly by the digital multimeter. A
basic 6dB per octave passive filter is perfectly adequate.

Although a monostable is a very crude method of frequency to voltage conversion, it actually gives very good linearity at low frequencies. At high frequencies the output waveform tends to deteriorate, and this is reflected in reduced linearity. In this case the maximum frequency handled by the monostable is just under 2kHz, and this is low enough to give extremely good linearity from the CMOS monostable used in the actual unit.

Circuit Operation

Figure 3 shows the full circuit diagram for the frequency meter adaptor. The input buffer stage uses JFET TR1 in a simple source follower stage. RT1 provides gate biasing for TR1 and sets the input impedance at 1 megohm. Of course, at high frequencies the input capacitance of TR1 reduces the input impedance significantly, but this is not a major problem as the input capacitance is only a few picofarads. The voltage amplification is provided by TR2. It is used as a common emitter amplifier having a substantial amount of local negative feedback provided by R5. The voltage gain is about 10 times (20dB) and this is maintained well over the frequency range covered by the circuit.

IC1 to IC3 are the divide by ten circuits, and these are all CMOS 4017BE one of ten decoders. In this application it is only the 'carry out' output at pin 12 of each device that is of interest, and the other ten outputs of each 4017BE are simply left unused. The reset and inhibit inputs are not needed either, and are simply wired to the 0V supply rail.

The monostable is based on IC4, which is a CMOS 4047BE. This can be used in a variety of astable and monostable config-

![Fig. 4 Printed circuit overlay](image)

from the 9V battery supply. The regulated supply voltage should be checked with a new battery fitted, and the reading obtained should be noted. The supply voltage must be rechecked each time the unit is used, and a new battery should be fitted when a significant reduction in the supply voltage is noticed. The current consumption is only about 5mA and a PP3 battery is adequate.

Construction

Figure 4 shows the overlay for the printed circuit board. All four of the d.i.i. integrated circuits are CMOS types, and they should therefore be fitted in holders. The other normal anti-static handling precautions should also be observed when dealing with these components. TR1 is a JFET device not a MOSFET type, and it does not require anti-static handling precautions. Ideally VR1 should be a multi-turn trimpot, but it is possible to adjust an ordinary type for accurate results if great care is taken. C1 and C3 must be miniature printed circuit mounting types having 7.5mm (0.3in) lead spacing if they are to fit onto the board properly. Fit single-sided solder pins to the board at the positions where connections to the off-board components will be made.

The prototype is housed in an aluminium instrument case which measures about 150 x 100 x 75mm, but this is somewhat larger than is really necessary. In particular, a much lower profile case can be used if preferred. The general layout of the unit is not critical, and any sensible layout will do. Try not to have the output sockets too close to the controls, or the test prods might get in the way when adjusting the controls. You might prefer to relocate SK1 and SK2 to the rear panel. Most multimeter test prods will fit 2mm sockets, but it will be necessary to use a different type of connector if your multimeter has non-standard prods.

Details of the hard wiring are shown in Figure 5. This should be used in conjunction with Figure 4 (e.g. point A in Figure 4 connects to point A in Figure 5). It is not necessary to use a screened lead to carry the connection from JK1 to the printed circuit board, provided that the lead is kept reasonably short. S1 is a standard 3 pole 4 way rotary switch, but in this case...
only one pole is used. It should be a break before make type, not a make before break switch.

Adjustment and Use

As an initial check of the unit, switch the multimeter to the 20V (19.99V) dc. range and set S2 to the battery check position. With S3 set to the 'on' position a reading within a few per cent of 5V should be obtained. With VR1 set at a roughly middle setting, S2 set for normal operation and the multimeter set to the 2V (1.999V) dc. range, the system should function properly, but probably with rather poor accuracy.

In order to calibrate the unit, an accurate reference frequency is needed. Ideally, this frequency should be close to the full scale value of one range, but it does not matter which range is used. The accuracy of the adaptor is the same on all ranges. I breadboarded the simple calibration oscillator circuit of Figure 6. This can be built quite cheaply even if all the components (including the crystal) have to be bought specially for this circuit. If you have a crystal calibrator with a 1MHz output frequency, this will also suffice, as will practically any source of an accurately known frequency in the range 1kHz to 1.999MHz.

Calibration is just a matter of setting the adaptor to the appropriate range, connecting the calibration signal to the input, and carefully adjusting VR1 for the correct reading on the multimeter. Very precise adjustment of VR1 is needed, but even using an ordinary preset resistor it is possible to obtain good accuracy if due care is taken.

In use, the ideal test lead is a screened type as used with oscilloscopes, etc. Simple non-screened leads will suffice however, provided they are reasonably short, and the equipment is not used to make checks on signals having high source impedances. As with any frequency measuring equipment, bear in mind that there will be a certain amount of capacitance in the test leads, plus the input capacitance of the adaptor to contend with. This can have a slight detuning effect on some high frequency sources.

Note that the adaptor does not have input overload protection circuitry, and that it should not be used with very strong input signals. The prototype suffered no damage when used with input levels of up to 12V peak-to-peak, but it would probably be advisable not to use the adaptor with input levels much greater than this, unless it is used with an oscilloscope type X10 probe. This will attenuate the input signal by a factor of ten, permitting input levels of up to 120V peak-to-peak to be handled safely.

The unit can be used with an analogue multimeter having a sensitivity of 20k per volt or better. However, it is likely that readings will be less precise than those obtained using a digital multimeter. Bear in mind that the adaptor is only reliable when providing output voltages of under 2.5V. With output voltages of 2.5V or more, it is possible that the monostable is not triggering on every input pulse and that the output voltage produced is misleading.

PARTS LIST

RESISTORS (All 0.25W, 5% tolerance)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1M</td>
</tr>
<tr>
<td>R2</td>
<td>1k5</td>
</tr>
<tr>
<td>R3</td>
<td>680k</td>
</tr>
<tr>
<td>R4</td>
<td>2k2</td>
</tr>
<tr>
<td>R5</td>
<td>12k</td>
</tr>
<tr>
<td>R6</td>
<td>10k</td>
</tr>
</tbody>
</table>

POTENTIOMETER

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>22k sub-min hor preset</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100n polyester</td>
</tr>
<tr>
<td>C2</td>
<td>1µ 63V radial elect</td>
</tr>
<tr>
<td>C3</td>
<td>4n7 polyester</td>
</tr>
<tr>
<td>C4</td>
<td>10µ 25V radial elect</td>
</tr>
<tr>
<td>C5</td>
<td>100n ceramic</td>
</tr>
<tr>
<td>C6</td>
<td>100n ceramic</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>4017BE</td>
</tr>
<tr>
<td>IC2</td>
<td>4017BE</td>
</tr>
<tr>
<td>IC3</td>
<td>4017BE</td>
</tr>
<tr>
<td>IC4</td>
<td>4047BE</td>
</tr>
<tr>
<td>IC5</td>
<td>uA78L05 (5V 100mA positive regulator)</td>
</tr>
<tr>
<td>TR1</td>
<td>BF244A</td>
</tr>
<tr>
<td>TR2</td>
<td>BC549</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK1</td>
<td>3.5mm jack socket</td>
</tr>
<tr>
<td>SK1</td>
<td>Red 2mm socket</td>
</tr>
<tr>
<td>SK2</td>
<td>Black 2mm socket</td>
</tr>
<tr>
<td>S1</td>
<td>4 way 3 pole rotary (only one pole used)</td>
</tr>
<tr>
<td>S2</td>
<td>s.p.d.t. min toggle</td>
</tr>
<tr>
<td>S3</td>
<td>Rotary on/off switch</td>
</tr>
<tr>
<td>B1</td>
<td>9V (PP3 size)</td>
</tr>
</tbody>
</table>

Small instrument case, two control knobs, PP3 battery clip, 14 pin IC. holder, three 16 pin IC. holders, wire, solder, etc.

www.americanradiohistory.com
The Art of Linear Electronics, by John Linsley Hood.
Linear electronics covers that part of the art concerned with the handling of real life signals of variable size, shape and frequency, such as are found in things like audio amplifiers and radio receivers. This handbook covers the principle aspects of the subject in a way that will not only introduce the reader to the basics of linear circuit design but will also allow them to begin to do some designing themselves.

Newnes Electronic Toolkit, by Geoff Phillips.
The author has used his 30 years experience in the electronics industry to draw together the basic information that is constantly in demand by everyone involved. Facts, formulae, data and charts are presented to help the engineer when designing, developing, evaluating, fault finding and repairing electronic circuits. The result is this handy reference source which is recommended to all electronics engineers, students and technicians. This is the kind of book that is best kept within reach at all times. It is a concise and comprehensive guide to electronics concepts and rules of thumb. It makes it easier for the reader to source a component, or choose between two alternatives for a particular application, and it will save the reader a lot of time and effort searching through manufacturers' specifications.

Circuit Source Book 2, by R.A. Penfold.
Mr Penfold is well known to readers of ETI as the designer of a great many useful projects. He is also well known as the author of a number of successful books. This is the latest in that series and consists of a collection of 170 useful circuits.
The book has been designed to help the reader create and experiment with his/her own electronic designs by combining and using the various standard "building block" circuits provided. Where applicable, advice on how to alter the circuit parameters is provided.
The circuits covered are mainly concerned with signal generation, power supplies and digital electronics and as such is meant to complement the range of circuits provided in Circuit Source Book 1 (which covered filters, amplifiers, voltage comparators, etc.).

Electronic Circuits Pocketbook, by Ray Marston.
Passive components and discrete devices form the bedrock on which all modern electronic circuits are built. This book is a single volume applications guide to the most popular and useful of these devices. It contains 670 diagrams, tables and carefully selected practical circuits. Throughout the pocketbook, great emphasis is placed on practical user information and circuitry, and all of the active devices used are modestly priced and readily available.
The book is split into twenty chapters. The first three explain important practical features of the ranges of modern passive electrical components, including relays, meters, motors, sensors, and transducers. The next two chapters deal with the practical design of attenuators, filters and bridge circuits. The remaining fourteen chapters are devoted to specific types of discrete semiconductor devices, including various types of diode, transistor, JFETs, MOSFETS, VMOS devices, UJT, SCS, TRIACs, and various optoelectronic devices. The easy to read, concise, highly practical and largely non-mathematical volume is aimed directly at engineers, technicians, students and competent experimenters who can build a design directly from a circuit diagram and, if necessary, modify it to suit individual needs.

Published by Butterworth-Heinemann
ISBN 0 7506 0868 4
Price £4.95

Published by Butterworth-Heinemann
ISBN 0 7506 0929 X
Price £12.95
A Latent Image Display

To start our quest for inventive ideas we look at the development of a simple little device which creates a novel form of computer display.

A year or so ago an acquaintance, the manager of a local shop, came to me with a problem which he thought I might be able to solve. It concerned a window display. What he wanted was a display which would attract people and which, when the shop was closed, would inform passers by about the products on display.

I suggested that he use one of the moving signboard systems that are commercially available. But apparently he had already thought about using such a system. Although it was on the right track he had dismissed the idea, the reason being that he did not want to have a large black box stuck in the middle of his shop window display.

He said that what he really wanted was some means whereby the changing text display would seemingly hang in the middle of the window with people being able to see through it to the products displayed behind. Not so easy.

The Solution

This request started me thinking about ways in which one could generate an image which would appear to seemingly hang in mid air. Some form of projection system using mirrors was an obvious solution, the old stage technique for creating theatrical ghosts. But it was a solution which would not necessarily work very well in the wide range of lighting conditions experienced by a shop window, and the low light intensity generated by a computer monitor, or moving signboard display. Use of a projection TV was out of the question.

Fig. 1. Side plate cutting and drilling

CUT (FOR MOTOR BRACKET ONLY)
Calling All Inventors

The unique thing about us humans is our creativity and inventiveness. All around us are products of our species' creativity, things which have been designed by people who perceived a problem, or a need, and then sat down and used their brains and knowledge to invent something which solved that problem or those needs.

Britain has long had a reputation as a land of inventive people. Without a doubt we have a history of inventiveness of which we can truly be proud, but being inventive depends as much upon the way that we look at life as it does upon the knowledge and resources available to the prospective inventor.

Success in innovation is largely an attitude of mind, which allows us to perceive problems and needs. An attitude which then forces us to solve those problems rather than simply shrugging our shoulders and accepting the situation, or waiting for someone else to solve them.

It is the importance of this attitude which makes it so hard to create an innovative society where one does not already exist. It is the reason why it is so dangerous to discourage innovative ideas and an innovative culture.

As editor of ETI, I want to encourage readers to become inventors, not necessarily inventors in a commercial sense, but to be inventive. Not to sit back and blindly follow a project in every detail, but to think of ways of improving it, or of entirely new ways of solving the same problem.

We do not need well-equipped workshops and laboratories to be inventors, neither do we need large financial resources. What we do need is the ability to work out ways of solving a problem and, for that, a pencil and paper are often resource enough.

To show that innovation is not difficult and is something that any reader of ETI can do, I am, over the next few months, going to describe a number of unusual, and I hope innovative, ideas. They may be original, as far as I know they have not been described before, but the inventor can never be sure of complete originality.

All these inventions have been built with the hand tools that most hobbyists and DIY people will already have. They have been built on the proverbial kitchen table and they have been built at less cost that a take away Chinese!

So lets be inventive, and let's hear about it in ETI!

Nick Hampshire

eye by rapidly sweeping a line of LEDs across the field of view. In this way the viewer would just see a computer generated image built up from dots that would appear to hang in the air. If painted black, the cable to the LEDs and any mechanical support would just appear as a blur in all but the brightest light conditions.

To try out the concept I mounted a line of eight LEDs on the end of a rod and with the aid of an octal Darlington driver chip connected the LEDs to a parallel I/O port on a PC. A small program written in Basic was used to output a simple dot pattern. When I ran the program, the line of LEDs lit up as I expected they would with a barely perceptible flickering. But when I waved the rod around, lo and behold a rather jumbled dot pattern appeared to hang in mid air. The concept worked, it now needed to be refined so that it would display a proper image.

The first thing that was needed was a mechanical system for moving the LEDs back and forth over a set path. The line of LEDs would have to move very rapidly and would have to retrace the same visual path at least five times per second. The retracing of the path would have to be accurate, otherwise the resulting image would have an unacceptable jitter.

The problem is that the LEDs have to be connected to the computer. This ruled out mounting them on the outer radius of a transparent rotating disk, or a transparent rotating belt. Building a reliable commentator to connect between the fixed cable from the computer and the rotating component would be too difficult.

The solution had to be a reciprocating system and the most obvious was a metronome type oscillating rod with the LEDs mounted on the far end. To swing it back and forth - a small geared dc motor with a crankshaft. A means of detecting when the oscillating rod had reached the end of its swing was also needed, so that the computer could have a fixed reference point from which to start its display output. For this, an optical sensor on the crankshaft would be ideal.

The Prototype

In order to keep costs down and make construction easier, the

grounds of both size and cost.

The problem was a lot harder than I initially thought!

This difficulty made it all the more intriguing. As so often happens the solution came in a rather oblique manner. During a discussion about movie making someone mentioned the phenomenon of the retention of a latent image by the eye. This was the solution, to build up an image in the viewer's

In this way the viewer would just see a computer generated image built up from dots that would appear to hang in the air. If painted black, the cable to the LEDs and any mechanical support would just appear as a blur in all but the brightest light conditions.

To try out the concept I mounted a line of eight LEDs on the end of a rod and with the aid of an octal Darlington driver chip connected the LEDs to a parallel I/O port on a PC. A small program written in Basic was used to output a simple dot pattern. When I ran the program, the line of LEDs lit up as I expected they would with a barely perceptible flickering. But when I waved the rod around, lo and behold a rather jumbled dot pattern appeared to hang in mid air. The concept worked, it now needed to be refined so that it would display a proper image.

The first thing that was needed was a mechanical system for moving the LEDs back and forth over a set path. The line of LEDs would have to move very rapidly and would have to retrace the same visual path at least five times per second. The retracing of the path would have to be accurate, otherwise the resulting image would have an unacceptable jitter.

The problem is that the LEDs have to be connected to the computer. This ruled out mounting them on the outer radius of a transparent rotating disk, or a transparent rotating belt. Building a reliable commentator to connect between the fixed cable from the computer and the rotating component would be too difficult.

The solution had to be a reciprocating system and the most obvious was a metronome type oscillating rod with the LEDs mounted on the far end. To swing it back and forth - a small geared dc motor with a crankshaft. A means of detecting when the oscillating rod had reached the end of its swing was also needed, so that the computer could have a fixed reference point from which to start its display output. For this, an optical sensor on the crankshaft would be ideal.

The Prototype

In order to keep costs down and make construction easier, the
The prototype was kept quite small, probably about half size. But even so, the sweep of the oscillating arm produced an image area of about twelve inches long and just under one inch high.

All the various bits needed to build the mechanical part of the design were obtained from a local model shop, and it was built with just a few DIY tools.

A small geared motor from Como Drills, outputting 230rpm, provided the motive power. This was mounted on a simple case made from thin (.032in) sheet aluminum. This was cut using a small hacksaw to give two pieces 3.5 x 4in square. The two sheets were then taped together, the site for each hole marked with a punch (a nail lightly hit with a hammer) and then drilled with an electric drill fitted with a 1/16in bit. The four holes in each corner, the two mounting holes at the bottom and the two in the centre were then redrilled to 5/32in diameter (see Figure 1 for cutting and drilling positions).

One of the two plates was then further cut and drilled to provide the motor mounting bracket. Once all the drilling and cutting was done the two plates were folded over a block of wood using hand pressure, and another piece of wood as mallet/former. The two plates were fixed together using 2in 4BA bolts and nuts.

The actual reciprocating arm was made from a 12in long 1/16in brass rod, at one end of which was soldered a wider piece of brass with a 2in slot cut in it, wide enough to take a 6BA bolt. At right angles to the rod was soldered another piece of 1/16in brass rod, about 2in long and positioned about 3/4in above the end of the slot (see Figure 2).

The camshaft was constructed from a standard 2in Meccano pulley, attached to the shaft from the motor gearbox. A 1/2in long 6BA bolt was put through one of the outer holes in the pulley and attached with a screw. On the other, the motor side of this pulley, a disk of black painted cardboard was glued, in which a small 1/8in hole was cut at a position 180 degrees from the bolt. This was for the optical sensor.

The line of LEDs was assembled on a small piece of Veroboard (see Figure 3) together with a SIL resistor pack. The sides of each LED had to be carefully filled down so that they fitted side by side on a 0.1in spacing. The wiring proved a problem. Since nine wires were needed, even the finest plastic covered wires were quite bulky, and it was important to keep the reciprocating rod as thin as possible. The best solution was to use thin enamel coated wire that was taped onto the rod with masking tape. To allow the rod ease of movement the bottom 4in of wire, between the rod and the board containing the electronics, were left free and untaped - this can best be seen in the accompanying photograph.

The actual display output electronics are shown in Figure 4 and consisted of a ULN2 octal Darlington driver IC, connected to Port A of an 8255 based PC I/O card (in this case the PC I/O board produced by Maplin), and driving the eight LEDs. The system also used an optical sensor to detect the rotating hole in the cardboard disk. This sensor consisted of an infra red source and a sensor, the sensor being connected to line 1 of Port B on the 8255. Note that the 1M resistor on the photosensor can be lowered in value to reduce sensitivity, or raised to increase sensitivity. The circuit was built on a small piece of Veroboard as shown in Figure 5.

The Control Program

The control program was written in Basic and is very simple. It consists of three parts. The first part defines the starting location of the 8622 registers, sets up the I/O control register, initializes an array where the dot pattern will be stored and then loads the dot pattern from a data statement into the array. Note that the data statements store decimal values, the binary equivalents of which indicate the dot pattern at each position in the sweep. Always
set the first few values to zero since the beginning of a sweep tends to be rather jittery.

The second part of the program is a small loop which tests for a negative, or zero, pulse coming in from the photosensor on line 1 of Port B. The occurrence of this pulse indicates that arm is at the beginning of its sweep and that the program can jump to the third part. This third part is another loop which simply scans through the data array displaying each byte in turn. A small FOR...NEXT loop is used to generate a delay between each dot display and thus ensure that the pattern is properly spread.

Final Assembly and Testing

Once all the various bits have been located, assembly is fairly easy. The mechanical components are rather noisy and application of a small quantity of light grease should help, as will

RESISTORS

- R1-8 220R SIL
- R9 220R 1/4W
- R10 1M 1/4W

SEMICONDUCTORS

- IC1 ULN2803A
- LED1-8 submin red
- LED10 IR LED
- OT1 IR Phototransistor

MISCELLANEOUS

- Geared motor 430G from Como Drills, Deal, Kent. CT14 0PA.
 Tel. 0304 612734 - price £4.85
- Veroboard 12 tracks x 2.5in
- Aluminium sheet 0.032 x 4 x 10in - K&S
- Engineering, from model shops - £1.00
- Brass rod 1/16in diameter, 12in
 long - K&S - 50p
- Brass tube 5/32in diameter, 12 in
 long - K&S - 70p
- Bolts 4BA x 2in 4off plus 12 x
 4BA nuts
- Bolts 6BA x 1/2in 3off plus 4 x
 6BA nuts
- Meccano 2in pulley
- 3/8in 11way ribbon cable
- 37 way D type connector
 (only needed if used with the Maplin PC
 Parallel I/O Board)
 Approx. 20ft of .23mm
 enamel coated wire.

fastening the unit to a good solid base.

As far as the electronics are concerned, testing the LEDs is simply a matter of connecting the circuitry to the computer and running a little test program which will turn the LEDs off and on. A similar technique can be used to test the IR source and sensor, but be warned that the IR sensor will also react to daylight and artificial light. This means that the system will only work when enclosed in a reasonably light proof box, the inside of which, together with the mechanism, should be painted matt black to stop unwanted reflection.

Depending on the PC being used, the processor speed, the motor voltage, motor gearing ratio, etc... it may be necessary to alter the timing delay in the code in order to ensure generation of a suitable display.

Program Listing for Latent Image Display

```
1 REM Program to display a simple line of text using
2 REM the latent image display hardware and circuitry.
3 REM The program has been designed to run on a system
4 REM equipped with a Maplin 8255 PPI based parallel PC
5 REM I/O port. Port A is configured as an output and
6 REM port B as an input.
7 REM ****************************
8 REM BASEADD%$#4H300
9 REM BASEADD%$#3,130
10 FOR Q = 0 TO 25
11 NEXT Q
12 REM
13 LOOP TO CHECK OPTICAL SENSOR INPUT
14 REM
15 SENSE% = INP(BASEADD%$#1)
16 IF SENSE% = 0 GOTO 100
17 REM
18 REM
19 REM loop to display image - note delay in lines 101 and
20 REM 102
21 REM
22 FOR Q = 1 TO 25
23 FOR X = 1 TO 4
24 NEXT X
25 NEXT Q
26 REM
27 GOTO 70
28 REM
29 REM Data array to generate image. Note that the first
30 REM six characters are 0, to allow the arm to stabilise.
31 REM This data array displays the three characters EFE.
32 REM The first line of dots is the upright part of the E,
33 REM for this all eight LEDs are lit by outputting a
34 REM value of 255, or binary 11111111. The next two lines of
35 REM dots are the horizontal parts of the E, a value of 137, or
36 REM binary 10001011, repeated twice. The other two
37 REM characters are built up in a similar way.
38 REM
39 REM
40 DATA 0,0,0,0,0,255,137,137,0,0,128,255,128,0,0,255
41 REM
42 DATA 0,0,0,0,0,0,0,0,0
```

www.americanradiohistory.com
Please supply binder/s at only £6.95 each, including postage & packing (UK only, Overseas please add £1.50).

I enclose my cheque M/O for £........................ made payable to ASP or please debit my Access/Visa.

Expiry

Signature

PLEASE FILL IN THE FOLLOWING IN BLOCK CAPITALS:
Name
Address
Post Code

Send this coupon and payment to: ASP ETI Binders Offers, Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST. Or why not order by phone? Call us on (0442) 65551

You may receive further information which may be of interest to you. Please allow 28 days for delivery.

New authors and ideas wanted

Looking for a publisher?

As internationally established publishers in the specialist field of model, hobby, crafts, woodwork and engineering, we are constantly seeking new titles.

If you have a synopsis, manuscript or idea that you are confident will enhance our list and that you can develop with us, please write, call or fax...

Beverly Laughlin
ARGUS BOOKS,
Argus House,
Boundary Way,
Hemel Hempstead
HERTS HP2 7ST

Telephone: 0442 66551
Facsimile: 0442 66998

THE new enlarged Catalogue is out now!

> New direct phone lines for prompt service
> 16 more pages
> £££’s worth of discount vouchers
> 100’s new products
> 240 pages, 26 sections, over 4000 products
> New section of entertainment and accessories including disco equipment, audio mixers, car amplifiers, crossovers, speakers and boosters
> Complete range of Velleman kits now stocked
> The latest scanning receivers and accessories
> New Ni-cad batteries and chargers
> New range of telephone equipment and accessories
> Published December 1993
> Available from most large newsagents or direct from Cirkit
> Send for your copy today!

CIRKIT DISTRIBUTION LTD
Park Lane • Broxbourne • Hertfordshire • EN10 7NQ
Telephone (0992) 448899 • Fax (0992) 471314

Computer Control

Universal interface allows any computer to be used to learn or teach programming for control using any dialect of Basic.

- Very affordable at £38.00 inc. in UK (add £2.00 P&P overseas).
- Plugs into the parallel printer lead, no tools required.
- 8 programmable outputs via standard connector, 500mA each.
- Outputs monitored by LEDs to assist in program development.
- Supplied with well-documented programs allowing newcomers to quickly understand and control their model layouts and to use stepper motors for driving buggies, x-y plotters & small machines.

Available by mail only: R. Bartlett, 17 Lime Tree Avenue, Tile Hill, Coventry CV4 9EY. Tel: 0203 478851

BUILD YOUR OWN PC

Using our low cost component parts or we can assemble for you for only £25

MOTHERBOARDS With VESA Local Bus-2 Slots & Pantum P247 Socket, 386DX-25/50MHz £65 386DX-40MHz £109

IDE 288041 Fax: (0734) 351896.}

Eurocom International Ltd

Telephone (035) 388-325

The Old School, Prickwillow, Ely, Cambridgeshire, CB7 4UN

Send cheque with order. Carriage £15.00 per order. All prices exclude VAT please add at current rate to total order.
Printer Switch

Have you ever wanted to connect two PCs to a single printer and be able to switch between them easily? Keith Wardill shows how.

The Circuit

Most computers use the Centronics Interface to a printer. This uses eight parallel data lines and a number of ‘handshake’ lines. The switch uses four bi-directional, three state bus driver ICs, type 74LS245, to switch these lines from one of two ports to a common port. Figures 1a and 1b show the data and handshake lines used, and the possible data flow directions.

IC1 and IC2 switch the eight data lines. If the D7 signal on pin 1 is high (LK1 not fitted), then data flow is as shown in Figure 1a. If LK1 is fitted, then the direction is as shown in Figure 1b. Port selection is with SW1. When the signal on pin 19 is low, then data through that IC is enabled. If it is high, then the output from the IC is ‘tristated’, effectively disconnecting the data path.

IC3 and IC4 operate in a similar way on the handshake signals. A couple of points to note here are that the Strobe handshake direction is from computer to printer, and that all the others are from printer to computer. If you do not use the PCB layout I use, ensure that this is connected in the correct direction. Also, the Star printer has a 5V supply available for external use on pin 18 of its connector, which I have used to provide power to the switch box. Other Star printers also have this supply available. I was unable to check other makes, but if this supply is not available on your printer, then it is possible to use a small external power supply, the circuit for which is shown in Figure 3.

Construction

The switch can be built using the PCB shown in Figure 5, or, as in the case of the original, built on a piece of matrix...
Fig. 2. Printer switch
board using a Vero wiring pen. To keep the PCB simple and single-sided, four wire links, indicated in Figure 4, the Component Layout, were used. These should be fitted first, because they are under other components. Use insulated wire.

It is not essential that sockets are used for the integrated circuits, but they are recommended. Note the polarity of C5 when fitting it.

For clarity, the individual connections from the integrated circuits to J1, J2 and J3 are not shown in Figure 4, so study the circuit diagram when making these connections.

The board is mounted in the base of a small plastic box, with the two connectors for Ports A and B mounted on top of the box, and connected to the PCB with short pieces of wire. The connection to the common port is a length of cable about 1m long, with 16 cores. It should not be much longer than this to keep noise and consequent signal corruption to a minimum. A suggested layout is shown in Figure 6. SW1 can be mounted on top of the box for easy access.

I used a link, LK1, on the PCB, to select the direction of data flow, because normally I use the box in the Figure 1a configuration. This avoids accidentally switching the data direction, with consequent possible damage. If you wish, this link could be replaced with a switch, allowing quick change-over, but bear in mind the risk of damage.

Finally, I used Centronics 36-pin chassis mounted sockets for J1 and J2, and a 36 pin plug on the end of the common connector. These are the standard connectors used for Centronics, and will allow the box to be plugged straight into the printer and your normal printer lead to be plugged into the box.

Fig.4. Component layout

Fig.5. Unit assembly

Fig.3. 6v DC Power supply

SWITCH BOX

Resistors
- R1, R2, R3: 3K3

Capacitors
- C1, C2, C3, C4: 0.1µF
- C5: 10µF/10V Electrolytic

Semiconductors
- IC1, IC2, IC3, IC4: 74LS245 8-bit bi-directional bus driver

Miscellaneous
- SW1: 1 pole/2 way miniature toggle switch
- J1, J2: 36 pin Centronics socket, chassis mount
- J3: 36 pin Centronics plug, with housing.
- Plastic Box - Internal dimensions about 9 x 6 x 4cm
- 16 core cable about 1m (printer connection)
- M3 nuts, screws and spacers for mounting PCB and connectors.

POWER SUPPLY

Capacitors
- C1: 47µF/16V Electrolytic
- C2: 0.1µF

Semiconductors
- IC1: 78L05 5V regulator IC
- BR1: miniature full-wave bridge rectifier W01 (1A/100V)

Miscellaneous
- TR1: Miniature Transformer: 230V ac:6V ac/100mA
- SW1: 2 pole on-off switch 250V ac
- F1: Fuse holder and Fuse 50mA
- Connecting wire

PARTS LIST

ELECTRONICS TODAY INTERNATIONAL

www.americanradiohistory.com
Chelmer Valve Company
for Audio Valves

Audio valves with famous Brand Names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.

We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.

For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVC PREMIUM valves.

A selection of the more popular types is listed here.

Price list & Order Form for CVC PREMIUM Audio Valves

<table>
<thead>
<tr>
<th>PRE-AMP VALVES</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC81/12A7</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC92/12AU7</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC83/12AX7</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC85</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECC86</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1CC (GOLD PIN)</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES3CC</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES3CC</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES8CC</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES82</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES3F</td>
<td>5.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6SL7GT</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6SN7GT</td>
<td>4.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER VALVES</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
<th>UNIT PRICE</th>
<th>QTY.</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A3 (4 PIN)</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A3 (OCTAL)</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30B</td>
<td>50.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>811A</td>
<td>9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td>29.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL34/6CA7</td>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL84/6CC</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES4L/7159A</td>
<td>5.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT66</td>
<td>9.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT68</td>
<td>12.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT88 (GOLDQ)</td>
<td>18.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6GC</td>
<td>6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6L6WGC/5881</td>
<td>8.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6V6GT</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6146B</td>
<td>10.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6336A</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6550A</td>
<td>11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7581A</td>
<td>11.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CARRIED FORWARD: 3.00

Carried Forward:...

RECTIFIERS

GZ33	4.50					
GZ34/3AR4	4.50					
6U4G	5.20					
5Y3GT	3.20					
5Z4GT	3.50					

SOCKETS

B9A (PCB)	1.60					
B9A (CHASSIS)	1.60					
OCTAL (CHASSIS)	1.75					
4 PIN (UX4)	3.00					
4 PIN (FOR 2I1)	11.00					

MATCHING CHARACT

| POST & PACKING | 3.00 | | | | | |

TOTAL EXC. VAT: 3.00

** VAT @ 17.5% **

TOTAL TO PAY: 3.00

* MATCHING, if required: state valve types & if PAIRS, QUADS or OCTETS - Allow £1.00 per valve for this service.

Make CHEQUES payable to Chelmer Valve Company or pay by ACCESS/MASTERCARD/VISA, give details:-

Signature: Expiry: Name: Address: Post Code:

Valve amplifiers sound better still with CVC PREMIUM valves!

130 New London Road, Chelmsford. Essex CM2 0RG, England. Telephone: (0245) 355296/265865 Fax: (0245) 490064

ELECTRONICS TODAY INTERNATIONAL
For bedroom blues fiends and garage thrashers, Dave Bradshaw presents the 15W Paleface Minor valve combo unit for lead guitar.

Last month, we looked at some of the principles involved in designing a valve amplifier, this month we will look at a practical circuit, a guitar amplifier. When designing a guitar amplifier, you turn most hi-fi design principles on their head. The circuit of the amplifier is very similar to the classic valve amps of the '60s and '70s from likes of Fender, Marshall and Vox. Starting in the pre-amp (Figure 1), the signal is amplified by the two halves of V1, an ECC83 (also known as 12AX7 and, in the USA, 7025) which is a high-gain dual triode valve.

V1a and b are both wired as cathode-coupled amplifiers with a volume control between them. For most guitar pick-
ups, there is more than enough gain for the second stage to overdrive (i.e. overload). With good quality valves, there is so much gain that a suggested modification is to insert some switchable attenuation - see 'Designer Approved' below.

The output from V1b goes to the passive tone control. Again, this is the classic format used on virtually all the older amplifiers, with the values slightly tweaked to take account of E12 and E6 component values (in the good old days, 250k pots were common).

The output from the tone control goes to an attenuator that feeds a self-biasing cathode follower, V2a. The cathode follower sends the signal out to the effects (FX) loop. The attenuation is necessary because the signal level can easily be 10V peak-to-peak, after the tone control. This is more than enough to overload any solid state circuitry in the FX loop.

The FX loop allows you to use an external reverberation effects unit. I really wanted to include a traditional spring line reverberation unit, but could not find a source despite a lot of asking around.

V2b amplifies the Return signal back up to the level needed for the power amplifier. Again, there's the option of adding a capacitor in the cathode circuit, either for more gain (unlikely to be necessary) or as a 'bight' option. The output from V2b goes to the master volume control, and thence to the power amplifier.

Power Amp

The power amplifier (Figure 2) is again classic in design, with a long-tailed pair phase splitter. Actually, the tail is rather short and there are several fiddles applied to this phase splitter to get it to balance more evenly. There are more accurate phase splitter circuits, but they can give problems under overload.

Getting round these problems requires an extra valve and other

Fig. 2 The power amplifier

Fig. 3 The power supply
complications, so we go back to the tried and tested fiddles.

The output stage is a text-book application of the EL84 with one exception - the use of fixed bias on the output values. EL84s normally use self-biasing, i.e. a common resistor between the cathodes and ground (and the control grids at zero volts) so that the grid bias floats according to the demands made on the valves. Moreover, purists will further point out that the Vox AC30, perhaps the best known 'vintage' amp based on EL84s, used self-biasing. If you'd like to follow the purists, there's a mod below.

However, I chose fixed bias because this allows more current flow at signal peaks, giving the amp a lot more punch than most other amps of a similar rating. This little amp sounds more like a 'big' amp than a small one.

In theory both valves may need to be biased individually, but this has not caused problems with the recommended matched pair from Chelmer Valves. Another advantage with fixed bias is slightly lower power dissipation when quiescent, but the difference is only marginal. The heaters dissipate quite a lot of power in stand-by anyway.

Powering

The power supply (Figure 3) will be familiar territory for ETI readers, except for the voltages involved. With a full wave rectifier, it uses a mains transformers with the single 250V secondary. Figure 4 shows the arrangement for use with a 250-0-250V secondary winding, common in the valve gear of yesteryear that you may be plundering.

The stand-by switch has two uses. It should always be off (i.e. the amplifier on stand-by) when the mains is first turned on - this allows the power amplifier valves to warm up before they are asked to pass current. Secondly, the stand-by mode should be selected when the amp is not needed, or when changing input or output connections. This prolongs the life of the power amp valves, and prevents 'thumps' coming through to the loudspeaker while changing inputs or the FX loop.

Do not be tempted to put a smoothing capacitor directly on the power amplifier side of the stand-by switch, as you will eventually destroy both capacitor and switch. Note also the option for powering the pre-amp even when the power amp is held off by the stand-by switch.

Designer Approved

These are the main mods I have tried myself and found to be potentially useful. There are quite a number of circuit options in this design and there is no harm in you trying most of the possibilities yourself. In fact, one of the nice things about working with valves is how easy it is to try out different ideas. However, do remember that many parts of the circuit are at dangerously high voltages and that capacitor voltage ratings have to be high enough to take these voltages, with some margin to spare.

No FX loop: To save some costs, you can leave out V2 and all its circuitry and feed the output from the tone control straight to the master volume control. However, I recommend keeping the effects loop option, unless you are certain you will never want to use the amplifier with any external effects.

Gain increase: You can increase the gain of V1a by changing C2 to a 100µF 10V electrolytic capacitor in parallel with cathode resistors. In the same way, the gain of V2b can be increased by adding a similar electrolytic in parallel with R18. The most flexible option is to include a switch, similar
to SW1, and a resistor like R6, so that gain can be adjusted without a soldering iron. The PCB is laid out to accommodate an electrolytic for C2 and the extra capacitor, resistor and switch in parallel with R18. This mod is probably useful only with old or low-quality valves.

Gain switching: Far from having too little gain, the valves from Chelmer gave an embarrassing wealth of gain! Using a dual pole switch to move the gain around adds some extra flexibility, as shown in Figure 6. The 470k resistor in series with the 'hot' end of RV1 reduces the signal going into the tone control, so that the amplifier sound remains clean up to the maximum

setting of RV1. A section of the switch shorts this out to restore the gain. The other section of the switch adds a 10k or 22k resistor in parallel with R11, reducing the distorted signal level reaching the FX line and reducing the chance of unwanted (solid state) distortion from here.

Bright switches: There are two ways of adding 'bright' switches. The first is to use a 100n or 220n capacitor in parallel with R5 or R18, with a switch to take it out of circuit if required (as with the gain increase mod). The other way is to add a low value capacitor (220 or 330p) in series with a switch between the top and the wiper of RV1. Personally, I didn't find this partic-

ularly useful, as the 'presence' control has a very much stronger effect, but there's no harm in seeing if it suits your needs.

More inputs: The most radical and flexible option is one or more extra input channels. Not only does this allow different inputs, but you can have different set-ups on the channels and switch between them or even 'jumper' (parallel) two channels together, to get a blend. The Paleface Major amplifier will have this option built in, so rather than going into detail I suggest you wait a couple of months until that project is published.

Tone controls: Do play around with the capacitors and resistors in the tone control, but note that the 'hot' side of the capacitors can be at 300V. Not only do you need to use high-voltage capacitors, but you should take care that the power is off and supply capacitors are disconnected. My favourite tweak is to make C6 1n0, not 330p.

Floating power amp bias: Purists trying to reproduce the sound of Vox AC30s can set up the power amp for floating bias. To do this, remove the negative grid bias supply to the power amp, earth the junction of R25 and R26, and add a 180R 5W resistor between the commoned EL84 cathodes and earth, as shown in Figure 8. If you have a scope and signal generator, it may be worth experimenting with different values of cathode resistor to see which give the best cross-over distortion.

Full constructional details will be given next month.

How It Works - Pre-amplifier
The signal passes through R1 and R2, through C1, to the grid of valve V1a, which is wired as a common-cathode amplifier. The cathode is not by-passed so the gain of this stage is around 20.

V1b is a second common-cathode amplifier, but cathode resistor C5 gives it higher gain so that it can be driven into overload fairly easily. Following V1b, are the passive tone controls around RV2-4. If a 'mid' control is not required, RV4 can be replaced with a 10k resistor (there's a place for this resistor on the PCB). Note that capacitors C6 to C8 must withstand at least 300V dc.

The tone control is followed by an 11:1 attenuator (R10 and 11), then V2a wired as a cathode-follower. This circuit supplies
any external effects with a signal of around 1V peak-to-peak at low enough impedance to drive semiconductor circuits. When no input is plugged into the return socket, the switch on the socket connects the FX Out to Return. If you have trouble getting the amplifier to play ‘clean’, it may be either because the external effects are overloading, or V2b may be distorting due to the high signal level. Try lower values for R11, e.g. 47k or 33k.

The returned signal is amplified by the common-cathode amplifier V2b to the level needed to drive the power amplifier. As with the first stage, the gain can be increased by adding a cathode capacitor, although this is unlikely to be necessary. Gain can be reduced by increasing the value of R18, say to 2k7. The signal goes to the power supply via a master volume control, RV5. Note that RV5 gets its earth from the power amplifier, which removes some potential hum noise.

How It Works - Power Amplifier
The driver/phase splitter, V3a and b, is wired as a long-tailed pair amplifier, which takes the input signal from C14 and provides amplified complementary signals to the output valves. However, this circuit is a relatively inaccurate splitter, for a variety of reasons. One of them is that valves generally have fairly high cathode resistances (the cathode resistance is the resistance in series with the ‘perfect’ cathode in valve equivalent circuits). Also, the “tail” (R21 and R24) is only around 15k long wired according to the standard format. (Note that the cathodes and third grids are connected internally.) They operate in class B with a fixed grid bias voltage supplied from the small negative supply. The screen grids are connected to the HT line via resistors R30 and R31, which helps reduce screen current flow at quiescent.

Note the addition of two resistors R29 and R30 in the control grid circuits. This is standard practice in most high power amplifiers. If the signal form the driver stage to the output valve is large enough, it will drive the grid positive with respect to the cathode and some current will flow from the grid. R29 and R30 restrict this current flow. This grid current flow is another reason for choosing the type of splitter/driver employed here - other designs rely on feedback from one valve to the other, and any grid current flow could seriously upset them.

The current from V4 and V5 goes to the output transformer T1, which transforms the signal impedances and also isolates the loudspeaker from the high voltages in the primary. Some of the output is fed back to the input via R19. Do not try to reduce R19 too much, as this can make the amplifier oscillate. C16 and RV6 provide a ‘presence’ control - they reduce feedback at higher frequencies.

Note that the power amplifier should never be operated without a load, and preferably always with a load of the correct impedance. Disconnecting the load under signal can lead to a not-so-nice fireworks display inside the output valves, due to high voltages being generated in the output transformer secondaries.

How It Works - Power Supply
The power supply (Figure 3) will be familiar territory. D1 to D4 form a bridge rectifier. I have used high-current 1N5408
diodes, not for the standing current but for the high switch-on current. This is probably a bit over the top, but they cost only a few pence more than 1N4006s. The output from the bridge is smoothed by C25 and C24, with R40 between them.

Directly following C24 is the standby switch which removes HT power from the rest of the amplifier. Actually, if desired, the pre-amplifier can be powered while in standby mode by an alternative positioning of R36. There is provision for this option on the PCB, but R36 should be 22k not 10k with this option. Leaving the pre-amplifier powered while the power amp is off allows other equipment to be driven by the FX Out jack.

The PCB has room for either 10µ or 47µ for capacitors C22-25, and 47µ or 100µ for capacitors C26 and 27. The prototype used the lower values, with no significant hum problems. In former years, resistors R37 and possibly R40 would be chokes of around 10H.

The negative supply uses a capacitor, C27, tied to one end of the high voltage transformer. This point oscillates between 0V and 400V (although for much of the time, when diodes D1 to D4 are not conducting, this point is actually floating). This is conveyed and dropped by C27 to voltage clamp ZD1 and rectifier D5. Transients tend to come through the capacitor at low impedance and R41 dissipates these. The bias supply is smoothed by C26 and set by RV7. Note that the bias supply gets its earth from the power amplifier.

A curious feature of the bias voltage generator is that it tends to act as a rather inefficient charge pump, pumping up the voltage on capacitors C24 and C25 to over their rated voltages at no load. R39 removes this effect by soaking up a little current (can you work out how the charge pump works?). Neon NE2 needs a dropper resistor, R38, as it is operating at a steady dc voltage above its intended average normal voltage.

If you are using an old transformer, you may well find it has a 250-0-250V winding. To accommodate this, the modifications shown in Figure 4 are needed. Whatever you do, make sure that you do not have diodes D3 and D4 in circuit, or your amplifier will eat main fuses and possibly other components too. Also, R40 becomes 100k, C28 is replaced by R41 and resistor R38 is not needed since the charge-pumping effect no longer takes place.

No mains filter was used on the prototype - this is an obvious extra that could be added if the amp is to be used in electrically noisy conditions.

Warning

This is an advanced project. Not only does it involve working with the mains, but it involves circuits using high voltages. We advise readers with little experience to wait until they have more experience before building this design. Special notice: the author retains all rights of commercial exploitation to this design.

The author would like to thank Chelmer Vaives, Soonter Transformers and Wilmslow Audio, for all their help during the design and construction of this project.

© David Bradshaw 1993

Parts list with next issue

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24, 26, 32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at low cost. Expandable to cover virtually any programmable part including serial E², PALS, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty, 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

MOP ELECTRONICS Ltd.
Park Road Centre,
Malmesbury, Wiltshire, SN16 GBX UK
TEL. 0686 825146 FAX. 0686 825141

GERMANY 069-4602071
NORWAY 9702 17890
ITALY 02-92-10-3 554
FRANCE (1) 89-30-13-79
SWEDEN 8-590-754-04
ALSO FROM VEROSPEED UK

ELECTRONICS TODAY INTERNATIONAL

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9206-3</td>
<td>Xenon flash trigger (Flash board)</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9206-4</td>
<td>Scanner to audio generator</td>
<td>£2.25</td>
</tr>
<tr>
<td>E9207-1</td>
<td>Improved Rear Bike Lamp</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9207-2</td>
<td>Mini Baby Bug Monitor</td>
<td>£1.50</td>
</tr>
<tr>
<td>E9207-3</td>
<td>Ultrasonic Audio Sender</td>
<td>£1.50</td>
</tr>
<tr>
<td>E9207-4</td>
<td>Camera Add-on unit (4 Boards)</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9207-5</td>
<td>AutoMate 5V/48V</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9208-6</td>
<td>AutoMate Precision</td>
<td>£1.50</td>
</tr>
<tr>
<td>E9209-1</td>
<td>Dynamic Noise Limiter</td>
<td>£1.50</td>
</tr>
<tr>
<td>E9209-2</td>
<td>Touch Controlled Intercom (2 boards)</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-3</td>
<td>MIDI Keyboard</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-4</td>
<td>Battery Charger</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-5</td>
<td>Intercom for light aircraft</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-6</td>
<td>Alarm protector</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-7</td>
<td>Temperature controller</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9209-8</td>
<td>45W Hybrid power amp</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9210-1</td>
<td>Universal I/O Interface for PC</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9210-2</td>
<td>Rapid Fuse Checker</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9210-3</td>
<td>Heartbeat/Audio Listener</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9210-4</td>
<td>Wizards Hat</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9211-1</td>
<td>Electronic Die</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9211-2</td>
<td>Car Alarm</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9212-1</td>
<td>Digital Circuit Tester</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9212-2</td>
<td>Communications Link by RS232/L</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9212-3</td>
<td>Means Inverter</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9301-1</td>
<td>Fading Fastonery</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9301-2</td>
<td>Intra Red Receiver</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-1</td>
<td>Ni-Cd Battery Charger</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-2</td>
<td>IC Tester</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-3</td>
<td>Discio Amiga</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-4</td>
<td>Direct Conversion Receiver</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-5</td>
<td>LED Stoboscope</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-6</td>
<td>Solo Mic Pre-Amplifier</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-7</td>
<td>Multimate Tester</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-8</td>
<td>The Keepsafe Alarm</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-9</td>
<td>Proving Unit</td>
<td>£0.00</td>
</tr>
<tr>
<td>E9303-10</td>
<td>Infra Guide Receiver Module</td>
<td>£0.00</td>
</tr>
</tbody>
</table>

PRICES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>£1.80</td>
</tr>
<tr>
<td>D</td>
<td>£2.50</td>
</tr>
<tr>
<td>E</td>
<td>£2.25</td>
</tr>
<tr>
<td>F</td>
<td>£0.60</td>
</tr>
<tr>
<td>G</td>
<td>£4.75</td>
</tr>
<tr>
<td>H</td>
<td>£5.50</td>
</tr>
<tr>
<td>J</td>
<td>£6.62</td>
</tr>
<tr>
<td>K</td>
<td>£7.40</td>
</tr>
<tr>
<td>L</td>
<td>£8.60</td>
</tr>
<tr>
<td>M</td>
<td>£10.00</td>
</tr>
<tr>
<td>N</td>
<td>£13.10</td>
</tr>
<tr>
<td>O</td>
<td>£15.60</td>
</tr>
<tr>
<td>P</td>
<td>£17.50</td>
</tr>
<tr>
<td>Q</td>
<td>£21.60</td>
</tr>
<tr>
<td>R</td>
<td>£23.90</td>
</tr>
<tr>
<td>S</td>
<td>£27.90</td>
</tr>
<tr>
<td>T</td>
<td>£29.00</td>
</tr>
<tr>
<td>U</td>
<td>£32.20</td>
</tr>
<tr>
<td>V</td>
<td>£35.50</td>
</tr>
<tr>
<td>W</td>
<td>£37.00</td>
</tr>
</tbody>
</table>

Telephone your order on (0442) 66551 Access or Visa

ETI PCB Service, Reader Services, Argus House Boundary Way, Hemel Hempstead, Herts HP2 7ST

Please Supply:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Ref No.</th>
<th>Price Code</th>
<th>Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
</tbody>
</table>

Post & Packing £0.75

Total Enclosed £

Please send my PCBs to:

Name
Address
Postcode

CHEQUES SHOULD BE MADE PAYABLE TO ASP

ELECTRONICS TODAY INTERNATIONAL

60

ETI ELECTRONICS TODAY INTERNATIONAL

PCB SERVICE

E9402-1 Frequency Meter Adaptor

E9402-2 Stroboscope

E9402-3 PC Printer Switch

E9402-4 Z-80 Single Board Computer

PCBs for the remaining projects are available from the companies listed in Buylines. Use the form or a photocopier for your order. Please fill out all parts of the form. Make sure you use the board references numbers. This not only identifies the board but also tells you when it was published. The first two numbers are the year, the next two are the month. Terms are strictly payment with order. We cannot accept credit cards but we can supply a proforma invoice if required. Such orders will not be processed until payment is received.

Telephone your order on (0442) 66551 Access or Visa
PC Switch

Frequency Meter Adaptor

Stroboscope
Video Stabiliser foil in the last issue was unfortunately printed the wrong way round.
COOLE ELECTRIC LTD

TEST & MEASUREMENT EQUIPMENT

IBM COMPATIBLE COMPUTERS:
- Power Supplies
- Monitors
- Audio Equipment
- Disk Drives
- Motherboards
- Telephone Equipment
- Plugs & Connectors

Printers: We also Buy Equipment Please Ring Mail Order Service Pay By Cheque or PO Access

CALLERS BY APPOINTMENT

FIELD ELECTRIC LTD., UNIT 2 MARY MEAD WORKSHOPS, WILLOWS LINK, STEVENAGE HERTS SG2 4AB

0432 33781 / 0432 35859 / 0432 640328

COMPONENTS

EPROM, PLD = Microcontrollers copied or programmed; we supply devices/convert discrete logic to PLDs, PO Box 1561 Bath 0225 444467

SWC SCIENTIFIC WIRE COMPANY

ENAMELLED COPPER WIRE

TINNED NICKEL SILVER

PLATED COPPER WIRE

SOLDER EUREKA WIRE

NICKEL CHROME WIRE

BRASS WIRE

TINZ WIRE

BIFURAL WIRE

MANGANIN WIRE

TEFZEL WIRE

NICKEL SAE BRINGS LIST 18 RAVD ROAD LONDON E18 1WV FAX: 081 329 1114

SOLE DISTRIBUTORS

RA 100 - DESOLDERING STATION - R100

U.K.'S MOST POPULAR DESOLDERING STATION

RA100 £225 + £12 VAT = £237.00

RA100 with iron £290 + £12 p+p + VAT = £343.85

5% surcharge if paying by credit cards. Overseas postage & handling 10 days for delivery time. T.V. - Video - Spares - Semiconductors - etc.

J.J. COMPONENTS, 63 THE CHASE, EDGWARE, MIDXD. HA8 5DN SPARES HOTLINES: 081 381 1700/081 952 4641

FAX: 0800 318498

Fax/Tele: 081 952 4641

(Send £2.50 for our latest 1994 catalogue available Nov '93)

VARIABLE VOLTAGE TRANSFORMERS

INPUT 2-280V OUTPUT 220-240V

0.5kVA 2 A amp max. $31.90 inc VAT

1 kVA 5 A amp max. $41.15 inc VAT

2 kVA 10 A amp max. $69.00 inc VAT

5 kVA 15 A amp max. $67.85 inc VAT

SAVE POUNDS!!

If you are ordering equipment in bulk, we can get you a reduction of 10% to 20% off the list price. If you order by fax, please note that your order must be for 20 or more items for the discount to apply.

WASHING MACHINE WATER PUMP

Brand new £240 AC, 3000 rpm. Can be used for a wide variety of washing machines. Available with 230V or 110V AC input, £240.00 inc. VAT.

MICROSWITCH

Pc based programming loop controller, type 51310. Fitted with a precision fuse, £50.00 inc. VAT.

James Gale 0442 66551

Send your requirements to:

ETI Classified Department, ASG House, Boundary Way, Hemel Hempstead, HP2 7ST

Lineage: 65p per word (+ VAT) (minimum order - 15 words)

Semi display: (minimum 2.5cms) £8.70 + VAT per single column centimeter

Insertion: £240.00 (+ VAT)

Ring for Information on series bookings/discounts. All advertisements in this section must be prepaid. Advertisements are accepted subject to accepted terms and conditions printed on the advertisement rate card (available on request).
Start training now with the specialists for the following courses. Send for our brochure — without obligation or Telephone us on 0626 779398 ETI 2/94

Name

- Telecomms Tech C&G 2710
- Radio Amateur Licence C&G
- Micro
- processor
- Introduction to Television

Radio & Telecommunications Correspondence School
12 Moor View Drive, Teignmouth, Devon TQ14 9UN

KITS

NEW VHF MICROTRANSMITTER KIT tuneable 70-115MHz, 500 metre range, sensitive electron microscope, high quality PCB. SPECIAL OFFER complete kit ONLY £15.95 assembled and ready to use £39.95 inclusive P&P. 3 Watt FM transmitter kit £15.95. Credit card orders Telephone: 021 486 3092, Fax: 021 411 2355. Cheques/P.Os to: C.E.C.(Dept ETI), 515a Bristol Road, Birmingham, B29 6AU. Send 2 x 1st Class stamps for details of these and other kits.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage tests, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

FOR SALE

Falcons DIY SPEAKERS
Send for our FREE price list PL22.
For a large S.A.E. 36p stamp or $2 bill U.S. overseas (Europe - 3 international reply coupons) SYSTEM DESIGNS (Total kits)
Focal, KEF Construction, Sears, etc.
DRIVE UNITS FOCAL, KEF, Audax, Coles, Peerless, Sears, Stave, Elect Metal Dome, Scanspeak, etc.
LOW COST Speaker Kits (Europe - 3 international reply coupons)
CROSSOVER NETWORKS - Active, Passive Components.
ACCESSORIES, Project/blueprint Cables, Speaker Kits, etc.
AUDIO AMPLIFIER PUBLICATIONS BACK ISSUES
Speaker Building Audio Amateur & Class Audio, L/S Cookbook + books
Full details from
FALCON ELECTRONICS
(Dept E.T.I.) Tabor House, Mulbarton,
Norfolk NR14 2JY (0508) 750273
(Proprietors: Falcon Acoustics Ltd.)

SPECIAL

SUPPLIER OF:

SERVICE MANUALS SHEETS + CIRCUITS

We offer:-

- ANY 20 MANUALS FOR ONLY £17.50 each.
- For one payment of £150 you can order any 20 Manuals at any value. Post Free, over any period of time.
- REPLACEMENT & REFUNDS*
- if anything is unreadable
- DIAGRAMS ON A2 pages TWICE the size of A3 diagrams & unavailable from any other Technical Information Supplier
- "Remember we also sell hundreds of technical books"

WANTED

SURPLUS COMPONENTS WANTED

- COMPLETE CLEARANCE
- BEST PRICES PAID
- PCB BOARDS POPULATED

CONTACT

D.T.S. SERVICES
Tel: (0602) 208955
or Fax: (0602) 484530

PUBLIC DOMAIN

PC TECHNICAL SHAREWARE
Would you like to see the best range of low cost technical and scientific public domain and shareware for IBM PC in the U.K.? PC TECHNICAL SHAREWARE is published at £1.50 a copy. For subscription or single copy, send a stamp or 35p to:
PC TECHNICAL SHAREWARE
FOOTSCAYE HOUSE
DAMAS ROAD
LEICESTER LE3 2PD

ELECTROMART

LIVERPOOL

PROGRESSIVE RADIO
67/93 Dale Street
Tel: 051 236 0982 051 236 0154
47 Whitechapel
Tel: 051 236 5489
Liverpool 2
THE ELECTRONICS SPECIALISTS
Open: Tues-Sat 9.30-5.30

ETI ELECTRONICS TODAY INTERNATIONAL

CLASSIFIED ADVERTISEMENT DEPARTMENT

ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words.
Semi-display £14.00 per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name __
Address __
___ Daytime Tel. No: __________________________
___ Date: __________________________
___ Expiry Date: __________________________

[] FOR SALE [] COMPONENTS [] PLANS [] OTHERS STATE

The text contains various advertisements and notices related to technical services, training courses, product sales, and other technical resources. It covers topics like technical sharing, technical shareware, electrical components, and electronic plans. The text is formatted in a way that resembles a magazine or newsletter, with headings, subheadings, and listed items.
Open Forum

Future historians will probably rate the development of the microprocessor during the early 1970s as one of the most significant technological developments in the history of mankind. There must be hardly a single consumer product which does not contain one, or owe its design to equipment which does. The microprocessor has also meant that electronics engineering as a profession, and also as a hobby, has changed. The electronics engineer is now, by and large, an integrator of systems composed of standard building blocks. Systems in which software performs the functions rather than discrete components.

In electronics, a knowledge of programming is now as essential as a knowledge of the theories of circuit design. Indeed, it is probably more important, since in many cases the building blocks can be scotched together without much knowledge of electronics, but will fail dismally without any knowledge of programming.

For the amateur this can be a blessing in disguise. It is now possible to embark on building quite complex projects without being a 'professional' in the area of circuit design.

The use of standard building blocks even extends to the software. Whole libraries of standard routines are available in the public domain for us to use. Not to mention all the programming tools that allow us to do most of the development work on an ordinary PC.

We can even use the PC to help us design the hardware. The free PCB and schematics design program included with this issue is a perfect example. How many of us have, in the past, struggled with designing a PCB using tape and rub down pads.

Now if our schematics are right our PCB will be right. Maybe not as optimised a design as one done by a professional, but a design done in a fraction of the time. The necessary skill level has been reduced, for the professional an unfortunate side effect, but for the amateur a Godsend.

The amateur can now do what five years ago only a professional could do. In consequence we should see an increase in the sophistication of projects published in magazines like ETI.

Gentlemen and Players

The advent of the microprocessor is also narrowing the gap between the professional and the amateur in other areas. Specialised programs can help with design and education - there are already a number of very good computer based electronics education packages.

We are also seeing a de-specialisation in instrumentation. Whilst on the one hand the number of different parameters to be measured is proliferating, on the other hand we are witnessing a decline in the range of hardware.

In the past, there might have been need for a large range of different instruments there is now only need for a few. The PC and the workstation are taking the place of many instrumentation displays, with small front end boxes to perform the actual data input function. The rise of the virtual instrument.

The concept of virtual instruments will put powerful instrumentation into the hands of the amateur electronics engineer. Computerised design tools and the increasing modularity of electronic components will make it easier for him to create sophisticated designs.

For the amateur, the microprocessor has made life much more interesting and challenging, and the scope which it offers us must be seized with both hands.

Next month...

Next month in ETI we will be continuing two major construction projects, Jason Sharpe's Z-80 single board computer and Dave Bradshaw's valve guitar amplifier. We will also be starting a two part piece on an improved power supply design by John Linsley-Hood. There will be another useful test equipment design from Robert Penfold and an interesting radio project from Raymond Haigh. For computer experimenters, the editor will be looking at a simple robotic vision system.

In addition, there will be a look at virtual instrumentation, reviews of some commercial EROM programmers, and our continuing series on microprocessor fundamentals.

Don't forget that the next issue will have the second free disk on the cover, containing the remaining part of the Lay-o PCB design and schematics package. Make sure you don't miss it - order your copy of ETI from your newsagents today.
Cases
Floppy Disk Drives
Hard Disk Drives
From 40MB to 2.1GB
Keyboards

PC Based Industrial and Lab, Data Acquisition, Control and Measurement, Instrument Cards
AD/DA Cards
Plus Accessories & Software
C.P.U. Boards
Device Programmers
Digital I/O Cards
IEEE 488 Cards
Industrial Chassis
Industrial Control Cards

Specialist PC & Multimedia Add-on Cards
PC - Telecommunication Cards
Fax Modem Cards
Voice Recognition Cards
Voice Digitiser Cards
Video/TV - PC - Video/TV Cards
Sound Cards

Components

For further information, Product/Price List
Call Us On:
Tel: 0902 20267 Fax: 0902 28439
Roline Systems Ltd, Imex House,
Imex Business Park, Upper Villiers Street,
Wolverhampton, West Midlands. WV2 4NU
Star Quality, Reliability, and World Class Performance

from only £269.95

Maplin Electronics are pleased to announce their superb new range of precision, laboratory grade Oscilloscopes from Goldstar.

The dual-trace, 40MHz Oscilloscope, OS-904RD, is similar in specification to OS-9040D, but with the additional facility of a digital readout on the CRT. The readout displays information such as timebase and attenuator settings, and on-screen measurements can be performed using movable cursors, the value appearing on the CRT screen.

Top-of-the-range is the excellent 20MHz Digital Storage Oscilloscope, OS-3020, with on-screen digital readout and measurement facilities. The digital storage function enables one-off events to be captured and stored for detailed analysis. Stored waveforms can be printed out on a suitable X-Y plotter via the built-in RS232 interface. Repetitive high-speed waveforms up to 20MHz can be digitised using equivalent sampling techniques and pre-trigger mode allows events occurring before the triggering point to be captured.

The range starts with the superb new range of precision, laboratory grade Oscilloscopes from Goldstar.

For RF signals and high-speed logic applications, the highly specified 100MHz triple-trace Oscilloscope, OS-9100D, has 3 independent input channels and is ideal for simultaneous display of 3 logic pulse trains for timing comparison.

For higher frequency applications, the 40MHz Dual-trace Oscilloscope, OS-9040D, is ideal for TV and video signals and a trigger delay facility allows observation of fast leading edges.

For low frequency applications, the highly specified 100MHz single-trace Oscilloscope, OS-9020A, features include a large 6in. high luminance CRT with internal 8 x 10cm graticule, TV field or line triggering and X/Y mode producing Lissajous patterns for phase shift measurements.

All models are supplied complete with probes, mains lead, spare fuses and detailed operating manual. Full details and specifications can be found in the 1994 Maplin Full Colour Catalogue, available from WHSmith and selected branches of RSMcColl in Scotland for £2.95 (£2.15 by post direct from Maplin). To order, phone the Credit Card Hotline, 0702 554 166, or send your mail order to P.O. Box 3, Rayleigh, SS6 28R, or visit your local Maplin store. Please note latest models are now cream in colour as Model OS-3020.

Visit our stores in: Birmingham, Brighton, Bristol, Cardiff, Chatham, Coventry, Edinburgh, Glasgow, Ilford, Leeds, Leicester, London (Edgware, Forest Hill and Hammersmith), Manchester (Oxford Road and Cheetham Hill), Middlesbrough, Newcastle-upon-Tyne (The Metro Centre, Gateshead), Nottingham, Portsmouth, Reading, Sheffield, Slough, Southampton, Southend-on-Sea, Stockport, plus a new store opening soon in Milton Keynes. Phone 0702 552 911 for further details.

All items subject to availability, prices include VAT and may change after Feb 28 1994. carriage charge per order £5.70. Handling charge £1.49 per order. Overseas customers please phone 0702 552 911.