

At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...

... call now for details.

Board Copture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editar
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker
BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive ta use
- Surface mount and metric support
- 90, 45 and curved track comers
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 +
- Full netlist support - BoardCapture, OrCad, Schema, Tango, CadStar and others
- Fuli Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM

NEW - Thermal power plane support with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous mult|-layer routing
- SMD and analogue support

E200

- Full interrupt, resume, pan and zoom white routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excelon NC Drill and Annotated drill drawings (BM2)

Features \& Projects

Electronics and the Vehicles of the Future
 12

Electronics will be the key to the development of the car of the future. We look at how electronic systems will dispense with much of the mechanics used in today's cars and add new power saving features.
Computer Interfacing Techniques 18A new series which looks at ways in which your computer can be connectedto the outside world. This month we see how bi-directional I/O capability canbe added to an IBM PC.
Radio Controlled Engine Sound 24If you want your radio controlled model to make realistic engine noises, thentry this project.
RF Hound 30Plagued with stray RF signals in your audio projects? Then let the RF Houndsniff them out.
MIDI Change Pedal 34Changing MIDI channels is easy, with this change pedal circuit.Car Alarm42Part one of a project to build a sophisticated car alarm that should keep the mostdetermined thieves away.
PSU Monitor 48If your bench power supply has no output meters, then this project will supplya good alternative which displays both voltage and current.Experimentally Speaking56A new occasional series which looks at the use of electronics in schools scienceprojects. This month, we look at using a computer as a data logger.
Regulars
News 6
PCB Service 60
PCB Foils 61
Open Forum 66

Protect your car - page 42

Next Nonthe.

In the next issue of ETI, we will be looking at the new generations of super processor chips chips llke the Pentlum, the Alpha 21064 and the R4400. We will be examining what they can do and how they will be used. There will be a full range of new projects, including a computer aided typing system for the disabled. We will also be continuing the series on computer interfacing and introducing the new ETI computer conferencing system, that will put readers in touch with each other.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from the negligence of our staff. Rellance placed upon the contents of this magazine is at readers own risk.

EXPRESS COMPONENTS

AMAZING PC BASE SALE

WE HAVE ACQUIRED A SELECTION OF HIGH gUALITY AMSTRAD PC BASE UNITS AT MEGA dISCOUNT PRICES. LOOK WHAT YOU CAN BUY FROM ONLY \&19.00!
 UNTESTED AMSTRAD PC BASE UNITS COMPLETE WITH MOTHER -BOARD, VIDEO CONTROLLER, DISK CNTRLR, \& 5.25" DRIVE(S)

AMSTRAD 1512SD £19.00 REF: ET/AM 19P1
AMSTRAD 1512DD $£ 25.00$ REF: ET/AM25P1 AMSTRAD 1640SD $£ 25.00$ REF: ET/AM2SP2 AMSTRAD 1640DD $£ 30.00$ REF: ET/AM30P1

NEW or REFURBISHED PC BASES

COMPLETE WITH KEYBOARD,
MOUSE, and 5.25" DRIVE.
RUNS UNDER MS-DOS VER 3 (DOe aot muppliad All sold guaranteed as new. All you need is a power supply unit \& monitor.

AMSTRAD 1512SD AMSTRAD 1512DD AMSTRAD 1640SD AMSTRAD 1640DD
$£ 49.00$
REF: ET/AM49P1 859.00 159.00 $£ 79.00$

REF: ET/AM59P1 REF: ET/AM69P1 REF: ET/AM79P 1

AMSTRAD LAPTOP OPTIONS

AMSTRAD PPC 1512 SD 1512 k memory Single 3.5° disc drive) AMSTRAD PPC 1512 DD (512 k mernory Two 3.5° dse drive)
 AMSTRAD PPC 1640 DD (640 k memory two 3.5° drive modem) £ 139.00 ET/AM 139 P 1 MAINS POWER SUPPLY FOR ALL ABOVE LAPTOP UNITS ONLY \& 10.00

AMAZING COMPUTER BARGAINS

 IBM COMPATIBLE LAPTOPS ${ }_{\text {rom }}$ ONLY $\AA^{99.00} 0_{\text {mus wat }}$ LIMITED OFFER - HURRY WHILE STOCKS LAST

AMAZING SALE OF BT ANSWERPHONES

As NEW, fully guaranteed BT Product as LESS than Half the original retail price!!!

RESPONSE 200 AND 400 MODELS Each Response Unit is supplied with a Micro cassette. PSU and User Details. The following features are found on the 400 Model and the 200 has almost as many features.:
Micro Cassette Call Screening Call Count Answer only Last No redtal On hook dialling BT Network Services Mute Facility

Ren 1.0

Memo Facility Remote Faclity 20 Memorles Varlable volume Hands free speach PABX Compatible LCD DIsplay

RESPONSE $200 £ 35.99$ Ref:ET36P1 RESPONSE $400 £ 49.99$ Ref:ET49P1 (plus vat)
 FOM GOVARNMAENT, SCHOOLS, EMHVERSTHES SLIOAL AUTHORIHES WELCONSA AL OOODS
 SALB AND UNT: SSS: OTHER WTSE STATED GUARANTGEO FOR SO DAYS
RIGKTS RESSRR VED TO CHANUE PRICES \& SPECIFCAI ONS WTLEOUT PREOR NOLILM, ORDIRS SURTHCT TOSTHCK QUOTAMONS WE LINGL Y GYEMFOR QUANTMTHS THAN WHOSE WXATK

10 WATT SOLAR CELL

 (3' x 1') $14.5 \mathrm{v} / 700 \mathrm{~mA}$ Now available by mail order Coated with exceptionally efficient amorphous silicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells. a few of which could be: for Car Battery Charging. for useon Boats or on Caravans, in fact anywhere a portable 12 V supply is required. Several of our overseas Mediterranean customers with homes in remote hilly sites, use these solar cells as a daytime power source to backup generators. The solar cells can be connected in sertes or parallel to give higher voltages or larger current capacity. REF: ET34P2
PRICED at only

$£ 33.95$

PLUS an additional 22.00 special packaging charge

BULL ELECTRICAL

250 PORTLAND ROAD HONE SUSSEX BH3SCT
WA OROER TERMS: CASH PO OR CHEOUE WTH ORDERPLUSE 0.00 PCST PLUEVAT. PLEAsE HLOWH S 10 DA Y F FON DELVERY

FAX: 0273.3235000

FLAT SPEAKERS

Ever fancied having a super efficient high fidelity speaker that was just a centimetre thick and could be hung on the wall or the ceiling? Great for surround sound! Well now, thanks to a bit of lateral thinking by scientists at the UK's Defence Research Agency, such speakers should be on the market within the next few years.

The scientists at the DRA were developing a sound absorbing system for use on helicopters and out of curiosity decided to see if it could produce sound as well as it absorbed it. They were amazed to discover that it was able to produce high quality sound with 100% efficiency in energy conversion, which compares with 1% efficiency in a conventional loudspeaker.

The system is made from a sandwich of two 0.06 mm aluminium sheets with a precision machined air filled honeycomb in

between. The result is a flat metal board about 1 cm thick. It is driven by a conventional mechanical coil attached to the back, which in turn is powered by a standard
power amplifier. There is only one drawback - at the moment they are hand made and a 1 m square flat speaker will set you back a cool $£ 1000$.

SUPER CCDS WILL REPLACE FILM

T1 he development of super-large high resolution CCD imaging chips by the Canadian company Dalsa Inc., of Waterloo, Ontario, looks set to sound the death knell for conventional film based photography.

These giant 2.5 in square chips, called Megasensors, are packed with 26.2 million pixels. An image resolution that is one third better than that of conventional film with an equivalent of about 18 million pixels in the same area. But at $\$ 20,000$ per chip, do not expect to see them in commercial electronic cameras just yet!

EPROM PROGRAMMER/ EMULATOR FOR PCs

NEW DIGITAL STORAGE SCOPE FROM KENWOOD

From Trio Kenwood comes a new programmable digital storage oscilloscope, the DCS8200. It combines a $20 \mathrm{~ms} / \mathrm{s}$ oscilloscope with 32 K words of
memory per channel and 50 Hz real-time capability. It features both GPIB and RS232 interfaces for computer data acquisition.

Complete with probes, the

DCS8200 costs $£ 2455$ and further information can be obtained from Kenwood on 0923816444.

CHIPS AT ATOMIC LEVEL

Cientists at AT\&T's Bell ReD search Labs and Harvard University are developing ways of building electronic circuits from single atoms that are positioned using beams of light. The individual atoms are moved as they are deposited onto the surface of a semiconductor such as silicon, with very precise amounts of energy provided by photons.

The technique actually involves creation of a form of lens for precisely focusing the atoms to be deposited. A lens which is created from a large number of photons forming what is known as a standing wave. Such positional accuracy should allow the construction of electronic circuits with dimensions of less than one tenth of a micron.

Integrated circuits might get a lot smaller, more powerful and a lot faster than we ever thought.

With ever more powerful personal computers on the market at low cost, it is not surprising that an increasing number of people are using a PC to replace traditional laboratory instruments.

Special plug in boards are used to acquire the data to be measured, and computer software then interprets the data and displays it in a way that resembles a conventional instrument. These screen based instruments are referred to as virtual instruments and can range from simple voltmeters to high frequency oscilloscopes.

A range of virtual instrumentation hardware and software is available from Loughborough Sound Images. These are Windows based systems and utilise LSI's DSP based data acquisition boards. Virtual instruments include a multi-channel real-time digital oscilloscope and spectrum analyser. The software also supports data logging, data manipulation and non-real time simulation.

For more information contact LSI on 0509231843.

VIRTUAL INSTRUMENTATION FOR PC USERS

MERCURIAL SUPERCONDUCTOR

Last March, a team of Russian scientists announced the develop1 ment of a new high temperature superconductor based upon mercury. Most high temperature superconductors are based upon either of the two elements, yttrium or bismuth, plus an assortment of other elements.

The properties of these superconductors depend upon the way in which the particles are aligned, a fact which makes fabrication of superconducting wires, etc., very difficult and expensive. According to scientists from the Argonne National Laboratory in the USA this is not the case with the Russian mercury based superconductor, which should therefore be cheaper to manufacture.

But there is one problem - the high mercury content makes it rather dangerous to use!

SUPERSONIC MAGNETS

At a remote firing range in the Scottish coastal area of Kirkudbright, scientists at the Electro-Magnetic Launcher Facility are using electromagnetic pulses to fire projectiles at over ten times the speed of sound.

This technology is seen by many in the military as superseding the use of explosives as the projectile force for big guns. It is also a technology which some space scientists see as having the potential to launch small objects and raw materials, into space at a very low cost.

It is an Anglo-American research project and involves using a tungsten projectile that sits between two conducting rails (the reason why this system is known as a rail gun). An electrical pulse of about 3 million amps passes between the rails through an armature behind the projectile. The result is an enormous magnetic force which accelerates the projectile to a speed of up to 4000 m per second.

NEC'S 240
 SEGMENT LCD DRIVERS

From NEC comes a new range of LCD driver ICs which can handle up to 240 segments, almost twice as many as the current standard chip. An 80 pin device, it can be used directly with microprocessors and microcontrollers, without need for additional logic

For further information contact NEC on 0908691133

SPEECH SYNTHESIS AND RECOGNITION FROM APPLE

TThe personal computer company Apple has just announced two new systems, the Cyclone and Tempest, which feature speech recognition and synthesis.

The speech synthesis used in these computers is based upon phonemes, tiny fragments of speech sound. These phonemes are used to reconstruct the sound of spoken words and phrases in a very natural manner. In-built intelligence allows the system to alter the sound and intonation in, for example, a question.

The speech recognition system is capable of recognising several hundred key words with a high degree of accuracy. It does this without any previous training and regardless of any accent or dialect. It is intended as a voice input command system, as opposed to a voice input typing system. Apple can be contacted on 0815691199.

KEYBOARDS WITHOUT KEYS

rom IBM's researchers in Germany comes the idea of what they refer to as virtual keyboards, in other. words keyboards without any physical keys.

With this technique the keyboard simply consists of a flat surface, a template and a video camera which watches the movement of the user's fingers. The computer analyses the data from this camera and then decides which keys have been pressed.

The great advantage of this system is that it allows the creation of small and very light keyboards which can be instantly reconfigured by using a display as the template. Such keyboards would also be free of all the mechanical problems which plague current keyboard technologies.

The virtual keyboard could also be used in environments which are currently difficult or impossible. Vandal proof keyboards in public places, or fully sterilised keyboards for use in operating theatres.

Expect to see systems in production in 1995.

CABLE TESTING FOR SAFETY

Iefective power leads and plugs can pose a major risk to users, giving rise to electric shocks, or starting fires. With the proliferation of electronic equipment, in particular computers and computer peripherals, a company may be using literally thousands of mains power leads.

If such a company is to comply with the Electricity at Work Regulations 1989, then these leads will need to be checked regularly. To do this, Rendar has launched a new hand held instrument which quickly checks continuity, insulation and polarity on any IEC mains power lead, with a simple display showing whether it is OK or defective.

This portable cable tester costs $£ 99$. For more information contact Rendar Ltd on 0243866741.

CALLING ALL MICROENGINEERS

Microengineering is all about building machines using integrated circuit manufacturing techniques, machines which contain moving parts that are smaller than a human hair and which combine electronics and mechanics to produce accelerometers, pressure sensors, chemical analysers, even microscopic electric motors, and in the future perhaps robots that are no larger than a grain of wheat.

Microengineering is a very new science and one that has enormous industrial potential. It is not surprising that the Japanese are spending $\$ 200$ million on research, the Germans over $£ 60$ million and even the Danes are spending over $£ 6$ million. It is therefore a relief to hear that the UK government has just put up $£ 11.8$ million to fund research through the Link Nanotechnology programme.

This funding should ensure that UK industry has a stake in this new technology. Let's hope that the government does not pull the plug on funding before viable research has been completed.

NEW MAPLIN ALARM PROJECT

From Maplin Electronics comes a new low cost, light operated alarm kit. Called the
'Peep Alarm', it is designed to detect the presence of light. In the dark it is effectively switched off, but when light falls on it, its inbuilt photosensor triggers the alarm which then emits a loud 4.6 KHz shrill tone. At $£ 8.95$ it is available from all Maplin stores, or ring 0702554161 .

BLUE CHIP I/O CARDS

Arange of high quality PC I/O cards are now available from Blue Chip Technology. The cards are all high performance data acquisition products, available off the shelf and built to BS5750 standards using the latest surface mount technology. They come with a three year warranty.

The first boards to be offered include digital, analogue and serial cards, all of which feature 50 way D Type connectors and onboard timers. The range includes a 44 channel combination card which features sixteen analogue input channels, 4 channels of analogue output, DMA and 24 channels of programmable digital I/O. There is also a 144 channel digital I/O card.

For further information contact Blue Chip Technology on 0244 520222.

TWO NEW 1994 CATALOGUES

Henry's Audio Electronics has just published its new 300 page full colour catalogue for 1994. Packed with a wide range of components and equipment, this catalogue is available by post, or at the company's shop, priced at $£ 2$ for callers or $£ 4$ by post. It also contains four money off vouchers worth $£ 5$ each. Henry's shop is at 404 Edgware Road, London W2, or contact their sales office on 0712581831.

The other new catalogue comes from Maplin. In fact, there are two new catalogues from the company, the familiar 800 pager and a new 24 page showcase brochure. The main catalogue is larger and features a new look user friendly index, enhanced colour and better quality paper. It includes over $£ 50$ worth of money saving vouchers costs $£ 2.95$, available from most newsagents or directly from Maplin. The small 'Showcase' brochure features a host of special offers on kits, components, tools, and test equipment.

For more details contact Maplin on 0702552911.

VERTICAL LASERS

At the US Sandia National Laboratories, scientists have developed a revolutionary new form of solid state laser, a development which looks set to change the way in which such lasers are used and could even mean the end of the cumbersome helium neon laser.

The new laser is a type known as a vertical cavity surface emitting laser, or VCSEL. Unlike conventional solid state lasers, it is capable of producing laser light

SHACK ALARM FROM CIRKIT

Cirkit has just introduced a simple to install, but apparently very effective intruder alarm kit, which is ideal for club houses, sheds, garages, shacks, or single room installations.

The alarm is based upon a PIR (Passive Infra Red) detector for general coverage, with magnetic switches for additional door and window protection. It is easy to use with a single key for set or reset. The system provides the user with a $21 / 2$ minute exit time and a 15 second entry delay. It is mains powered but there is an optional battery back-up.

The kit is easy to build and comes complete with detector, control box, high power siren, three magnetic switches, mains power supply and full instructions for assembly, installation, and use. The kit costs $£ 45.95$ plus $£ 1.40 \mathrm{p} \& \mathrm{p}$. For more information contact Cirkit Distribution Lid. on 0992444111.
within the visible spectrum, the red part of the spectrum between 639 nm and 699 nm wavelength.

This development should open up commercial applications such as displays, holographic memories, bar-code scanners, etc., to solid state lasers, applications which are currently confined to using gas or dye lasers.

ULTRA MINI SOCKET AND HEADER SYSTEM

From 3M comes a new mini socket and header IDC system which doubles the density of traditional connectors. This system uses 0.05 in contact spacing as opposed to the familiar 0.1 in spacing.

This high contact density has been made possible by the development of a proprietary termination technique. Called 'Hill-n-Dale', this 3M system vertically displaces every other wire, thus creating the separation necessary to use 0.025 in pitch ribbon cable, without having to reduce the size and strength of the IDC,

This system should give designers a space saving of around 60%, thus increasing flexibility and enabling the design of more compact electronic packaging. For further information contact 3 M on 0344 858509.

COMBINED EPROM EMULATOR/ PROGRAMMER

From White House Systems comes a combined EPROM programmer and emulator called the Progulator. It has been designed with the serious amateur or professional user in mind and will emulate all commonly used EPROMs for 8 bit work, that is the $27(\mathrm{C}) 64$ through to the 27(C) 512.

The system features seven different programming algorithms which allow one to program most commonly used EPROMs. The data to be programmed onto the EPROM is downloaded from a host PC via the serial port.

The programmer/emulator hardware comes with a sophisticated PC based software package which controls the programming and emulation functions.

The Progulator system costs £180. Contact White House Systems on 0913734605.

PROGRAM DSPs IN C

Writing optimised programs for digital signal processor chips has never been very easy. But now, thanks to a special software library from Loughborough Sound Images, it should be possible for any eng ineer to attain close to theoretical peak performance from the Texas Instrument TMS320C40 and TMS320C3x DSP chips, with code written in C.

For example, using LSI's library of routines one can implement a 100 -coefficient finite impulse response (FIR) filter in just 548 us on a 40 MHz C40. That is about one sixth of the execution time of a compiled C routine. Other high performance routines in the library include fast Fourier transforms, infinite impulse response filters, convolution, correlation and windowing functions. In addition, there are other optimised useful routines such as a Gaussian white noise generator and matrix multiplication.

This software package is called DSPlib and comes with full and comprehensive documentation. The routines are supplied as both source and executable code, no run-time licence is necessary. Also provided are high level utilities which allow code to be developed in C on a PC and downloaded to any of LSI's compatible hardware for PCbus, VMEbus or Sbus. Code can then be run on the DSP with results displayed in real time on the screen.

DSP hardware available from LSI includes a variety of TMS320C40 and TMS320C3x boards for PC, VME systems. They also produce a range of software including debuggers, assemblers and linkers, C compilers, etc.

For further information contact Loughborough Sound Images Ltd. on 0509231843.

NEW HANDHELD FREQUENCY COUNTERS

Now available in the UK is a range of handheld frequency counters from the US company, Startek. These low price units are specially designed for the hobby communications market and offer the user a wide range of features not previously obtainable at such a low price.

There are four units in the range and they cover frequency ranges from $1-1300 \mathrm{MHz}$, rising to $1-2800 \mathrm{MHz}$. All units run on rechargeable NiCads which give 3 to 5 hoors of continuous operation. They feature a very high sensitivity, less than Imv (typical), and an ultra fast, less than 80 ms , response time. There is a large bright LED counter display and a 4 GHz signal strength bar graph display.

The units cost between $£ 129$ and $£ 289$ each. For further information contact the distributors, Nevada, on 0705662145.

Electronics and the vehicles of the future

Abstract

The motor vehicles on the roads today are classic examples of a technology which has been refined and honed to near perfection, but nevertheless, has remained fundamentally unchanged over the last fifty years

Amotor mechanic of 1943 could look under the bonnet of a 1993 model car and find most of it familiar. A reciprocating piston internal combustion engine, with spark plug ignition, a gear box and power transmission system, axles, brakes, steering system and fuel tank. Of course the design of most of the components has changed and they are now infinitely better then their equivalents of half a century ago, but this does not alter the fact that the technology is still the same - it is a technology which is now faced with the changing needs of society, and an increasing popular awareness of threats to the environment.

The environmental challenge

The public and politicians are faced with smog bound cities and ozone depleted skies, and they clamour for a cut in pollution levels. There is the ever present threat that fuel supplies will be outpaced by demand, that prices will skyrocket, that we will be held to ransom by the oil producing nations.

Vehicle manufacturers around the world are taking these impending changes seriously, so are the oil companies and even the politicians. From the politicians we have schemes for zero pollution emission zones in our cities, such as the scheme in operation in La Rochelle in France. In the USA, a 10% tax credit for driving an electric vehicle is the most ambitious political proposal. The response from the corporate sector has been an annual world-wide expenditure of over $£ 5$ billion on new low pollution vehicle technologies, such as electric cars.

So far, most of the results have been grandiose schemes and a handful of ingenious one-off concept cars. These concept vehicles have been based on a variety of different drive and power technologies, battery electric, regenerative flywheels and light-weight aerodynamic bodies. They have had a lot of publicity and yet they have remained nothing more than concepts.

The pioneers

Of course, there are brave pioneering inventors like Britain's Sir Clive Sinclair who have attempted to open up a market for electric vehicles, but without a great deal of success. It seems that, although the public may demand a greener future, they are also very conservative when it comes to accepting changes in vehicle technology.

Perhaps they are right to be sceptical about electric vehicles. After all, there are still a lot of fundamental technological and infrastructural problems remaining to be solved. Battery technology has a long way to go before it can begin to compete with a tank of petrol in terms of energy capacity. There is a need for fast battery chargers and as far as infrastructure is concerned, there is a need for the electric car equivalent of the petrol station, the curb side charger.

But are these such major problems or is it simply that both the general public and the manufacturers are so intractably set in their preconceptions of what a motor vehicle should be, that they fail to even see the alternatives? They want an electric car to look and behave like a conventional car. It is an exact replay of the days when the early motor manufacturers had to produce cars which looked like horse drawn

energy stored in the battery. In this way the engine can be designed for running at maximum efficiency and thus best fuel usage and minimum pollution. When the batteries are topped up, the engine is simply switched off.

Lovens expands on the concept of energy reduction by use of a hybrid system, pointing out that if we reduce the energy required to drive the wheels, then for every unit of energy saved there is with an IC engine a seven fold saving in fuel usage. This means that if we reduce the energy requirements sufficiently, the amount of energy stored in a reasonable size and weight battery can provide the user with the kind of vehicle performance which he requires.

Ultralights

For examples of this approach we only have to look at experimental vehicles such as the solar powered cars that take part in the World Solar Challenge in Australia (next one to be held in November). These vehicles which run on minute amounts of solar derived electric power but which can achieve speeds of up to 75 mph . Other examples are the Voyager ultralight aircraft which circumnavigated the globe in 1991 on a single tankful of petrol or, more practically, the recently launched GM Ultralight concept vehicle.

The way to achieve such reductions in power requirement according to Lovens, and he is talking about the equivalent

of 300 miles per gallon in a car the size of a Ford Escort, is first of all to look at the main areas where energy is lost rather than used for locomotion. These his institute has identified as being energy lost through aerodynamic inefficiency, energy lost in heating up tyres and road and energy lost in braking systems.

Of these, air resistance accounts for about 70% of the lost energy. At the moment, a standard car's effective frontal

Motor Technology

The development of a compact, light, high power and efficient electric motor has been one of the key components in the development of electric vehicles. At the forefront of such developments is a revolutionary design developed over the last seven years by Devon based inventor Cedric Lynch.

It is a permanent magnet motor which has been specifically designed for use in electric vehicles. It is pancake shaped with a diskshaped armature that is ideal for use as a hub mounted motor. The design is a low-speed high-torque system with an energy efficiency of well over 90%.

This motor has attracted a lot of interest from electric vehicle manufacturers and is currently being evaluated by several European electric car and scooter producers. One impressive achievement of the

Lynch motor was its use as the power source for a hydroplane which in 1989 set the word speed record for electrically power boats.

The development of the Lynch motor has so far been through the Lynch Nolor Company, with the backing of London Innovation, but the company has recently formed a joint venture with electricity generating giant Powergen to set up a manufacturing unit in Honiton, Devon. This plant will initially be able to produce 5000 motors a year, while a manufacturing plant serving the North American market is likely to be set up in Mexico in the near future.

The initial production will be concentrated upon a 200 mm diameter, 48 V version weighing 11 kg and producing a power output of 8 kW at $3,250 \mathrm{rpm}$. Initially such motors will cost about $£ 750$ each, but prices will fall as manufacturing gets under way.
area, in other words the area which has to be pushed through the air, is about 0.75 square metres. But with computer aided design techniques it should be possible to reduce this to about 0.2 square metres, without affecting the size or seating capacity of the car. Indeed, General Motors has already demonstrated a car with a frontal area of 0.33 square metres.

Reduced aerodynamic drag can also be achieved by using new materials such as carbon fibre composites, which have much smoother surfaces and which can be manufactured to a high tolerance in shapes which would be impossible using conventional pressed steel technology.

At the moment, the energy lost in braking systems is simply dissipated as heat in the brake shoes. The use of regenerative braking systems would allow this energy, about 70%, to be largely recovered as electricity and used for locomotion at a later period.

Braking losses can also be reduced by cutting down the weight of the car, the less weight the less kinetic energy. Halving the current average car weight of 1440 kilograms by two thirds should be possible and prototype light weights have been demonstrated by General Motors.

However, the main key to reducing vehicle weight lies not

in the materials used in the body shell, but in getting rid of many of the heavy components found in a conventional car and replacing them with light weight electronics. Thus we can get rid of steering mechanisms, power transmission and gearbox systems, braking systems and environmental control systems.

The challenge for auto electronics

Electronics and computer control are the key to the further development of both electric vehicles and hybrid electric/ fuel driven engine vehicles. Electronics will not only be used to replace many existing mechanical systems but will also be used to enhance the performance of both new and existing components.

Electronics will allow the power stored in a battery to be better utilised by allowing power regeneration and short period power boosting for rapid acceleration and hill climbing. Electronics will also be applied to keep battery performance at a constant level, eliminating the current situation, where there is high performance on a full charge, and a subsequent decay in performance as the charge level drops.

These two factors alone have been responsible for designers putting more batteries into a vehicle than were actually

Battery Technology

Conventional electric vehicles, such as the familiar milk float, have for over ninety years (yes electric vehicles have been around that longl) relied upon the standard lead acid battery for electric power storage, but the trouble with such batteries is that the amount of power stored in a kilogram of battery is very low. The best performing electric car using lead acid batteries has a maximum range of 100 miles per charge.

Increasing the amount of power stored means increasing vehicle weight, which in tum increases the need for more power, a vicious circle from which engineers can only produce a compromise solution.

One way out is to increase the amount of electric power stored by a kilogram of batteries - in other words improving battery technology. To date it is estimated that over $\$ 5$ billion has been spent around the world in developing the super battery, research which has resulted in a whole range of new technologies looming on the horizon.

These new lechnologies start with improvements to existing lead acid batteries - the US company Electrosource claims it can procuce a four fold increase in performance of lead acid batteries. Then there are solutions based upon more exotic battery technologies, including the widely used NiCAD and Lithium batteries found in rechargeable consumer goods. These deiver greater power densities but suffer from problems associated with recycling the old batteries. The ithium polymer cell is the long term solution preferred by US car giant General Motors.

Actually in production are two technologies which ofter much better prospects as electric vehicle power sources. These are sodium sulphur batteries and nickel-metal-hydride.

The nickel-melal-hydride battery has been backed by Ford and largely developed by the US company Ovionics. It is a battery lechnology which has been widely applied over the last few years in making small batteries for use in consumer applications. Initial research focusing on scaling up the technology indicates that they should be capable of offering between 250 and 400 miles per charge

The sodium sulphur battery has been the subject of considerable development work in the UK by battery manufacturers Chloride and Silent Power and both companies are now embarking on commercial sodum sulphur battery production. It is the battery technology which has been picked as first choice by BMW, Ford and VW and shoutd provide a performance even better than that of nickel-metal-hyoride on a weight for weight basis.

However, they do have one drawback they operate at a temperature of 425 C . It has been claimed that this could pose a satety problem although the manulacturers have shown in drop tests that it is a problem which can be overcome. Overall, the UK developed sodium-sulphur batteries look like offering electric vehicle manufacturers the best battery lechnology for at least the next decade.
needed. Coupled with new fast charging techniques such electronic systems will enable existing battery technology to be more fully utilised. This will allow practical commercial electric vehicles to be produced without having to wait for better, and much more expensive, battery technologies to be developed.

Power systems

The use of compurer controlled motors built into the hub of each wheel will eliminate the need for power transmission systems and gearboxes, and allow power regeneration as well as accurate speed control. In advanced electric vehicles the motor and the wheel will become one and the same thing, with sensors built into the wheel to measure rotational speed and position. Sensors will also measure the power requirements, allowing the motor to be switched by the controlling computer from a motive power unit te a generator.

When a vehicle with power regeneration is going down

Electric Racing Cars

If you pass a milk float crawling along at ten miles per hour you may be surprised to learn that the speed record for an electric car already stands at 100.242 miles per hour. That is speed!

Indeed, there is considerable interest around the world in the development of electric racing cars. In France, Renault has produced an electric version of the Renault Elf Campus, a racing car aimed at young drivers, and launched at the recent Monaco Grand Prix. This race car is the wordd's first zero emissions single seater and offers the diver a power output of 68bhp at 4000 rpm and can cover a kilometre in just 33 seconds, giving it a maximum speed of 105 mph . OK, it can only do three Monaco laps before recharging, but improvements are already under way, as are proposals for a world electric car racing circuit with very big prize money for drivers and car builders.

If you think 105 mph is fast for an electric vehicle consider the attempt on the 500 kilogram word speed record by a car called the Volta. This vehicie has been designed by UK based Lotus Engineering, in association with electricity company Seeboard, tyre company Michelin and German battery manulacturer Deta. At sixteen feet long, the car should be able to reach speeds of 150 mph .

An attempt on the record is being made at the time of writing at Pendine Sands, Wales, the site of many land speed records. The car will be driven by Lotus engineer Rudy Thomann, who was the man behind the design of Chris Boardman's Olympic gold medal winning bike.

Even this record breaking speed looks set to be broken within a year by a car called Bluebird 9, named after Donald Campbell's famous series of world land and water speed record breaking vehicles. Designed by Sussex engineer Nelson Kruschandl this 15 tt long car has a designed top speed of over 250 mph .
hill, power will be generated and returned to the main battery, thus conserving overall power utilisation. Power regeneration will also provide the vehicle with a braking force. It should be possible to completely do away with mechanical brakes for anything other than emergency operation and instead to rely upon the motors, under computer control, to provide braking in either motive or regenerative mode.

Electric motive power systems which use hub based motors will also permit accurate steering by the simple expedient of creating a differential in rotational speed of wheels on opposite sides of the vehicle. This will operate in much the same way as a tank or tracked vehicle and will allow very accurate manoeuvring. Sensors built into the wheels will give full feedback to the steering column, which will have no mechanical linkage, just a simple rotation sensor attached to the steering control computer.

Future electronics systems

Additional sensors linked into the computer will also be able to provide anti-skid control. Systems such as this are already found on some lorries and top range cars, systems such as the

Schools projects

Electric vehicles are an ideal schools technology project since their design involves such a wide range of different technologies and design concepts, on top of which the development of such vehicles is a direct line to the future, a future in which the environment and the elimination of pollution will be of enormous political and social importance.

One school which has become involved in electric vehicle design is St Richard's RC school in Bexhill-on-Sea. Under the auspices of the school's technology and design teacher, Peter Fairhurst, a team of students were the inspiration and backing behind Lotus Engineering's development of the Volta and its attempt on the land speed record. The school have been closely involved in all stages of the design and building of this car and expect to be at Pendine to see their car break the world record of 100.242 mph .

Bosch VDC which measures wheel speed, traction control and steering angle and is linked via a computer to the engine controller to give real time self correcting action to prevent skids.

Further sensors will provide the driver with anti collision warnings and, via the computer, automatic avoidance procedures. Indeed, the fully computer controlled car will be able to offer the driver a whole range of additional functions, which range from head up instrument displays, to navigation systems based on satellite global positioning systems.

Electronics and computer control will thus provide the key to the creation of the car of the future, a car that will be light weight, low or zero polluting and very fuel efficient, while offering the kind of performance which drivers expect. In many ways, the development of such vehicles will parallel the revolution which has taken place in computing over the last ten or fifteen years.

This is a move which will see car manufacturing move away from large plants with massive investment, towards smaller manufacturers using standardised components, plastic composite body construction and specialist electronics and computer software. In the future, the commercial difference between two manufacturers could be decided by the software run on the car's computer, a development which could see the automotive equivalent of the low cost PC clones and the rise of new, highly entrepreneurial, car manufacturers.

One thing is certain. New car technology is only just around the corner and with it new opportunities, new generations of industrialists and engineers, and new multi-millionaires. Now is the time for such people to grab a chunk of the future, whilst at the same time helping to make the future an environmentally better place to live. Nick Hampshire

For more information

Readers wanting to find out more about electric vehicles and the electronics behind the technology, might find it useful to contact some of the following companies and organisations:

Battery Vehicle Society - 0455290499
Chloride Plc - 020464111
Electric Vehicle Association-0933 276618
London Innovation - 0716078141
Silent Power - 0928574451
Sinclair Research - 0716364488

SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

Features

- Full control of drawing appearance including line widths,
 fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- ILLUSTRATOR+ adds netlist generation, bill of materials etc. and is compatible with most popular CAD software for DOS \& Windows.

CADPAK - Two Programs for the Price of One.

ISIS SUPERSKETCH
A superb schematic drawing
 program for DOS offering Wire 279 Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB ॥
High performance manual PCB layout package for DOS. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Graphical User Interface with intuitive "point and do" operation gives unparalled ease of use.

ISIS and ARES for DOS - The Professional's Choice

isIS

from $£ 275$
ISIS DESIGNER + forms the ideal front end of your CAD system, providing schematic capture, netlisting, bill of materials and electrical rules checks. Advanced features include automatic annotation, hierarchical design and an ASCII data import facility. Put simply, DESIGNER + is one of the easiest to leam and most powerful schematics packages available for the PC.

ARES

from $£ 275$
The ARES range of advanced PCB design products links with ISIS (DOS or Windows) and other schematics programs. Working from a netlist, ARES helps you get it right first time with each connection automatically verified against the schematic.

ARES AUTOROUTE adds multi-strategy autorouting, whilst for the ultimate in performance, ARES 386 goes up to 400% faster with unlimited design capacity.

Fig.1. Basic EOR gate based address decoding circuit

Computer Interpacing I

> The PC may be a versatile machine, but control of external equipment needs a suitable input/output port

If you compare the IBM PC with one of the older generation of personal computers, such as the BBC Acorn, or the Commodore C64, you will notice that something is missing from the PC. Not something that worries most users, but something which prevents those of us with an experimental bent from using the PC in the same way as we used those earlier machines. What the standard PC lacks is a proper bi-directional input/output port, something
that can be used to control external circuitry and equipment.
Of course there is a parallel port on the PC, but the problem with it is that it has been designed for outputting data to a printer. In other words, it is primarily an output port with a couple of bi-directional handshaking lines. This could be used to control external circuitry, but designing the circuitry and the software to use it would be relatively complex for many applications.

The best solution is to use a purposely designed parallel I/O board which plugs directly into the processor bus and which can be easily controlled using programs written in Basic, or any other computer language. Designing a circuit which interfaces directly with the PC bus may sound complex, as indeed it is, but fortunately Intel has done all the work for us, by producing a programmable peripheral interface chip, the 8255 , which contains virtually all the circuitry
that we need to build a 24 line programmable I/O card. The only additional circuitry needed is some address decoding circuits.

Designing a parallel I/O board for the PC

On the PC, as on any computer using an Intel designed processor the I/O address space is different from the memory address space. In general, the I/O addresses on a PC are decoded using address lines A0 through A9. They need to be carefully decoded because there are a lot of different functions performed by I/O devices on a PC, the keyboard, the

Description	Hex address PCXT	Hex address PC/AT
Fixed disk	nit	1F0-1F8
Games adaptor	200-20F	200-207
Expansion unit	210-217	nli
2nd parallel printer port	nil	278-27F
Altemate EGA	2B0-2DF	2B0-20F
GPIB (0)	$2 \mathrm{E} 1^{\text {- }}$	2E1.
Data acquisition (0)	2E2-2E3*	2E2-2E3 *
Serial port 2	2F8-2FF	2F8-2FF
Prototype card	300-31F	300.31F
Fixed disk	320-32F	nit
Network card	360-36F	360-36F
1st parallel printer port	378-37F	378-37F
SLDC	380-38F	380-38F
2nd Bisynchronous	nli	380-38F
Cluster (0)	390-393 *	390-393 ${ }^{\text {. }}$
1st Bisynchronous	nii	3A0-3AF
Monochrome adaptor/printer	380-3BF	380-3BF
EGA	$3 \mathrm{CO}-3 \mathrm{CF}$	$3 \mathrm{CO}-3 \mathrm{FF}$
CGA	300-30F	300-3DF
Floppy diskette controller	3F0-3F7	F0.3F7
Serial port 1	3F8-3FF	3F8-3FF
Ni $=$ not implemented		

the chip select for the 8255. On each of the EOR gates one input is connected to one of the address lines and the other via a switch to either logic 0 for 'on' or logic 1 for 'off'. The complete circuit diagram for this address decoding technique is shown in Fig. 1 .

A more compact solution to the address decoding problem is to use a single chip octal comparator, such as the 74LS688. This single chip replaces the eight EOR gates and the NAND gate used in the previous design, and is the technique we will be using in this design. With either of these circuits it is possible to set the physical base I/O address of the 8255 anywhere within the range $\$ 000$ hex to $\$ 3 \mathrm{FC}$ hex.

The output from either the 74LS688 or the NAND gate will go low when the predefined address is selected, but it cannot be directly used to generate the chip select input for the 8255. In order to generate this signal it needs to be combined with three other signals derived from the PC bus. These are the Input/Output Read, or IOR line, the Input/Output Write, or IOW line, and the Address Enable, or AEN line. First the AEN line and the output from the address decode NAND gate are fed into a NOR gate, and the IOR and IWR lines into a NAND gate, then the output from these two gates is fed into another NAND gate to finally produce the CS or chip select input for the 8255 .

The 8255 also needs to be connected directly to the IOR, IWR, and Reset line inputs from the PC bus, as well as address linés A0 and A1, and the eight data lines D0 through D7 . Apart from a few decoupling capacitors to eliminate any spikes and noise on the power supply lines this is all there is to a simple PC I/O board. A board which offers 24 programmable I/O lines with full buffering latching, and handshaking of data read to or from the board.

This, as can be seen from the circuit diagram in Fig.2, is a very simple circuit and we will not be providing the PCB layout and construction details for this alone, since we will be combining it with other circuitry which will be described in ETI over the next couple of months. The result will be a combined I/O and data acquisition card which will allow your PC to be interfaced to a wide range of external devices, including a range of virtual test equipment.

Using the 8255 I/O circuit.

Before one can think about using the 8255 to control any external circuitry it is essential that one understands how it works, what its limitations are and how it can be programmed to do what you want.

As has already been noted, the 8255 uses four I/O locations. Three of these are eight bit $1 / O$ registers and the fourth is a control register. So at the base address is the register for Port A , at base address +1 , Port B , at base address +2 , Port C, and at base address +3 the Control Register. We can use the computer to read data from, or write data to, any of the ports, but we can only write data to the control register.

It is the control register which determines how the 8255 functions. It determines the mode in which the chip will operate which in turn determines whether a particular I/O line functions as an input or an output line. The 24 I/O lines on the 8255 are grouped into three 8 bit ports, labelled A, B, and C , each of which corresponds to one of the 8255 I/O registers. However, the control register divides these 24 I/O lines into two 12 line groups, Group A and Group B. The lines
printer ports and the disk drive, just to name a few. A list of designated I/O addresses is shown in Table 1.

Unfortunately, we can not predict exactly what I/O addresses are being used in a particular PC because there might be special non-standard add in cards. This means that we need to use an address decoding system which allows us to vary the preset I/O address of the interface circuit. The 8255 chip actually uses four I/O address locations which are selected by the two léast significant address lines, Al and A 0 , but this still leaves A2 through to A9 as defining the so called 'base address' of the chip.

We can set this base address with the aid of a simple comparator circuit and a bank of presettable switches. The comparator, as shown in Fig.1, can be made from eight two input Exclusive OR gates, the outputs from which are fed to an eight input NAND gate that in turn will eventually provide

Fig.2. Circuit for an 8255PPI based IBM PC $/ / O$ board
in Group A consist of all the lines in Port A and the upper four lines of Port C. The lines of Group B consist of all the lines in Port B plus the lower four lines of Port C.

The control register features three operating modes for each of the two twelve line Groups of I/O lines. These modes are selectable by setting the appropriate bits within the
control register, the function of each of the eight bits is shown in Table 1. Bit seven of the control register is the Mode/Bit Set/Reset bit, and is the key to programming the 8255 . Normally this will be set to logic 1, where it allows Group A and B Modes to be selected, if set to logic 0 it will reset the 8255 registers.

In Mode 0, each of the 12 line Groups can be configured as a set of eight lines and as a set of four lines, which can be either inputs or outputs. In Mode 1, each Group of 12 lines can be configured to have $8 \mathrm{I} / \mathrm{O}$ lines, two handshaking lines and two further lines of I/O. Mode 2 governs all 24 I/O lines of the 8255 , the Group A lines are set up as a bi-directional bus with one line from Group B acting as a handshaking line, the remaining lines from Group B being configured to operate in either Mode 0 or 1. This should be made clearer by consulting Table 2.

D7		Mode selection
1		Mode Set
0		Bit Set/Reset
D6	D5	Mode selection - Group A
0	0	Mode 0
0	1	Mode 1
1	x	Mode 2
D4		Port A
0		Input
1		Output
D3		Port C (upper)
0		Input
1		Output
D2		Mode selection - Group B
0		Mode 0
1		Mode 1
D1		Port B
0		Input
1		Output
DO		Port C (lower)
0		Input
1		Output

Table 2. 8522 PPI chip Mode selection on the Control

Connecting external circuitry

The I/O lines on the 8255 PPI chip are fully latched and buffered, but they are unable to source or sink large amounts of current. This means that when configured as inputs they are unable to accept voltages outside the range normally associated with 5V TTL and CMOS logic circuitry. Furthermore when configured as an output, such lines are incapable of providing more power than is necessary to output data to one or two other TTL or CMOS chips.

It is very important that these limitations are born in mind because any attempts to exceed them will almost certainly lead to the destruction of your 8255 , and may well lead to the destruction of your entire PC. So be warned!

The way around the problem is to provide a buffer, or perhaps even isolate, the inputs and outputs of the 8255 from any external circuitry. If the external circuitry is working using normal 5 V TTL power then buffering is probably adequate. At higher voltages and particularly if switching mains voltages, isolation techniques are essential. We will be covering both of these subjects in the next issue.

Conclusion

Adding a versatile programmable I/O port to your PC is neither difficult nor expensive. Indeed, such a port is really
quite a simple circuit, particularly when it is based around a chip like the 8255 PPI. Given a PC board of sufficient quality, its construction is well within the capability of most electronics and computer hobbyists. With such a board you can let your PC control the world about it, you can give it eyes and ears, you can give it muscles, you can let it be something more than a number cruncher.

We strongly recommend that readers who possess a PC should make the effort to install a parallel board based on the 8255 in their system. This is because in future issues of ETI we will be covering a great many projects which will be connected to a PC via an 8255 based parallel port. These projects will range from test equipment, through control systems, to strange and wonderful gadgets. If you thought that computers were just for programmers, or accountants, then wait and see!

Jim Morton

Build your own board?

Readers who so desire could use the circuil described here to create their own parallel I/O board for the PC. A full description of all the lines used in the PC expansion slot connector is shown below. But a note of caution, PCBs which are built to plug into the PC's intemal expansion sith have to be double sided and of very high quality, in terms of both production and dimensions. The edge connector must also be gold plated. The production of such boards is, by and large, not within the capability of most amateurs and it is therefore advisable to either build a board from a kit, use a ready built board, or wait for the ETI board. A list of $1 / O$ board suppliers is given at the end of this piece.

Fig.3.PC expansion slot connector

I/O Address Selection on the PC.

The first thing when using this circuit is to set the address selection switches to an unused part of the $1 / 0$ address area. This can be chosen with the aid of Table 1 , note that there is an area reserved for prototype cards. You should also carefully look at the settings used on any boards already inserted in your machine. The actual way in which the switches are set is shown in the following table. If you get this wrong you will end up with an address contention, in other words two devices at the same VIO address, and the result could range from failure of an $1 / 0$ device to complete system lailure. Do not worry if this does happen, it is unlikely that you have damaged anything, just switch off, reset the address select switches to a new base address and ty again.

Programming the 8255.

If you can write a simple program in Basic you can programme the 8255 PPI . The key commands in GW or Q Basic are INP to input a value from an I/O address or OUT to output a value. The first thing to define in a Basic program which uses the 8255 is the base address at which the chip is lccated. So at the beginning of the program we need to have a line something like this:

10 BADR\% = \& H 300

This sets up a variable called BADR which contains the base address of the 8255 chip, in this case 0300 hex. This variable can then be used when setting the Mode values and in all subsequent $1 / 0$ operations to this chip. Thus if we want to set up the chip so that the eight lines of Port A function as inputs and the sixteen lines of Ports B and C function as outputs then we would use the following line:
20 OUT BADR\%+3,\&H90
With these two lines executed, we can write data to or read data from the three 8255 I/O Ports. Thus it we want to set all the output lines on Port B to logic 1 we would use the following command:
30 OUT BADR $\%+1$, \&HFF
and it we wanted to input state of the $1 / 0$ lines on Port A into a variable called PORTA, we would use the following line:

40 PORTA\% = INP(BADR\%)
It is as simple as that!

I/O Board suppliers.

Maplin Electronics
 P.O.Box 3
 Rayleigh
 Essex
 SS6 2BR
 Tel 0702554161

This company can offer a basic 24 line $1 / 0$ port builh around an 8255 PPI chip available fully assembled and lested, price $£ 29.95$, as a kit $£ 21.95$, or as just the PCB $£ 12.95$. Prices include VAT but not postage

Alfred Enterprises Ltd

Cummeen

Adare
Co.Limerick
Ireland
Tel +353-61-396-696
This company can offer a basic 24 line I/O board based on the 8255, fully assembled and tested with set-up software. price $£ 33+$ VAT, including P\&P

PC Paraphernalia
 Almac House
 Church Lane
 Bisley
 Surrey
 GU24 9DR
 Tel 0483797959

This company provide a whole range of professional PC based data acquisiton, measurement, and instrumentation boards. They include a fully assembled and tested $481 / 0$ line board based upon the 8255, at £69+VAT.

Not an 8255 PPI board but useful never the less.

R Bartlett

17 Lime Tree Avenue Tlle Hill Coventry
CV4 9EY Tel 0203473851

This company offer a PC control board with 8 inputs, 8 latched outputs, 3 strobes, and one IRQ, plus an 8 bit $A-D$ and an 8 bit $D-A$. Fully assembled and tested board with ribbon cable £29plus £1 P\&P, elched double sided board only with full instructions for drilling, assem. bly, and testing $£ 12.50$.

TEST and MEASURING INSTRUMENTS

Multimeters

183, 3.5 digit LCD; DC V, AC V, DC A, AC A Res. Cont. Hold, Basic acc. 0.5\%
£39.50
185, 3.5 digit as 183 plus Bar graph, Temp Frequ. Max/Min, Edit Basic Acc. 0.3\%
£74.50
187, As 185 but Auto Range $£ 99.50$
285, As 185 plus 4.5 digit True, RMs $£ 109.50$

Oscilloscopes

CO 1305, DC to 5 MHz Single channel

CS $4025,20 \mathrm{MHz}$ Dual trace full featured

CS 5170, 100 MHz Dual, Cursor readout

CS $6040150 \mathrm{MHz}, 4$ Chan. Full Featured

Eprom Programmer/Emulator

Stand alone or PC hosted.
Fast programming/downloading
Manufacture specified algorithms Large device support..
Easy to drive.

SP-1000 Programmer/Emulator	$£ 299.00$
4M Bit option	$£ 149.00$
PC Software package	$£ 29.00$

£299.00 §149.00 $£ 29.00$

Counters, Generators Oscilloscopes, Power Supplies, Multimeters, Clamp Meters, L.C.R. Meters Programmers/Emulators, Multi-Instrument, Video and Audio Test, Probes and Accessories.

For further information please contact:

ELECTRONICS

SAJE Electronics
 117 Lovell Road, Cambridge, CB4 2QW Tel: (0223) 425440 Fax: (0223) 424711

EASY-PC, SCHEMATIC and PCB CAD

Over 17,000 Installations in 70 Countries World-wide!

- Runs on:- PC/XT/AT/ 286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations
- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill. - Tech Support - free.
- Superbly easy to use.

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Ask for our fully functional Integrated Demo

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC: Low cost, entry leve PCB and Schematic CAD.	\$195.00	$\underline{888.00}$
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	\$375.00	£185.00
PULSAR: Low cost Digital CIrcuit Simulator - 1500 gate capacity.	\$195.00	¢88.00
PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity.	\$375.00	$£ 186.00$
ANALYSER III: Low cost Linear Analogue Circuit Simulator - 130 node capability	\$195.00	¢98.00
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 node capability.	\$375.00	£196.00
Z-MATCH II: Smith Chart program for RF Engineers - direct import from ANALYSER III.	\$375.00	¢195.00
We operate a no penalty upgrade policy. You can upgrade at any the to the protessional version of a program fust for the difference in price	US\$ prices inctude Post and Packing	Starling $£$ prices exclude P\&P and VAT

For full information, Write, Phone or Fax:-
Number One Systems Ltd.

See us on STAND P29
EDS Wembley 5-7 Oct.

REF: ETI, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR.
Telephone: 0480461778 (7 lines) Fax: 0480494042
International: $+44-480-461778$, Fax: $+44-480-494042$ ACCESS, AMEX, MASTERCARD, VISA Welcome.

Simple Engine Sound for Radio Controlled Models

The satisfaction of roar power

0ver the last few months we have been running a series of projects for radio controlled models by Craig Talbot. This is the latest in the series of addons for his low power speed controller system. It is a small circuit which gives your model vehicle a realistic engine sound.

How it works

The circuit diagram in Fig. 1 shows the simple two IC circuit. IC1, the ICM 7555 (or any CMOS 555) runs as an astable oscillator and the frequency modulation input (pin 5) is used to increase and decrease the frequency of oscillation. The dc voltage which causes this increase/ decrease is filtered by $R 3, R 4, C 2, C 3$, from the output drive pulses of the Speed Controller (taken from the point marked ' X ', as per Fig.3).

As these drive pulses result in a dc voltage that decreases the frequency for increases in speed, it is inverted by Q1 together with R1 and collector load R2. Q1 also acts as a buffer between the Speed Controller and the filter, providing an output that is proportional to the Drive Battery Voltage. The two stages of RC filter reduce the pulses down to a usable dc level. Preset VR1 alters the unmodulated frequency of the 7555, allowing the tickover rate to be adjusted.

Moving the tickover up or down will, of course, move the range up and down. The output is taken from pin 6 , in other words across the timing capacitor, C4. This signal is then applied via C5 and R8 to the preset volume control VR2 and hence to the amplifier. The amplifier is a bridge tied output type, which is basically two output amplifiers driving the speaker between them. Pretty impressive output levels at low voltage can be obtained with this type of output.

In this application however, the output level is determined more by the wattage capability of the small speaker, but the amplifier will deliver just over 1 W on only 6 V , when used with a suitable speaker. The large $220{ }^{5}$ capacitor, C , is required because of the large current changes generated by this amplifier IC, not to mention all the other loads on the drive battery.

Capacitors $\mathrm{C1}, \mathrm{C6}$ and $\mathrm{C8}$ act as decoupling for the power rail, to remove some of the higher frequency noise (you may be able to remove one, or even two of these, in some cases). C4 is the timing capacitor for

Fig.1. RC engine sound circuit diagram
the 7555 , while C 2 and C 3 are part of the filter. That really is all there is in the way of description, it is a very simple circuit in order that it can be kept to a fairly small size.

Design overview

Having a model truck with steering, forward/reverse speed control, lights, horn, direction indicators and brakelights, I only needed to add engine sound to make it fully realistic.

1 recorded a large truck engine, running at tickover and looked at the waveform on a scope. I soon found that a synthesiser would be required to simulate the full sound. Even if I had one, the model would never carry it!

Clearly a simpler approach was needed. This involved using a waveform generator through an amplifier in order to create a suitable waveform that could pass as a realistic engine sound. Out of the usual Sine, Square and Triangular waveforms, the triangular sounded best. An amplifier with

its input fed through a low value capacitor and series resistor slightly improved the overall sound, but it still sounded a bit too smooth

To make a rougher sound, a simple unijunction sawtooth generator was built which produced a series of spikes that gave a sharp edge to the sound. Perhaps not the most elegant sound, but a lot better than a mere electric motor and gearbox. Armed with this circuit, and a need to keep down both size and cost, design proceeded.

An op amp would produce the waveform, but control of the frequency would have proved to be a little more difficult. Voltage or current control would have to be pretty smooth and there were lots of problems involved in creating a variable tickover. More op amps would get around this, but the component count would be high.

The obvious answer was the faithful old 555 . This would produce a crude sawtooth, if the output was taken from pin 6 instead of the normal pin 3. It also has a frequency modulation input and this was tried.

The resulting crude sawtooth sounded similar to the previous experiment, but it offered the basic sound and a method to vary the rate. What was now needed was a small amplifier and space demanded an 8 pin DIL amplifier. After trying at least three, the TBA7052 IC amplifier was chosen and the 555 replaced by a CMOS version (ICM 7555) in the interests of low power consumption.

The Low Power Speed Controller, previously described, provides a variable length pulse, where the pulse length is proportional to speed. All that was needed was a simple filter to turn the variable length pulses into a control level. The resulting project is a small PCB with few components and easy to build. It can be used as a slow plodding engine sound
for a small boat, or even a screaming fast car sound with slight adjustment.

Do not expect this circuit to have the sound output level of a Disco however, it is only low power. After all, the drive , battery has a lot of work to do and it needs to use most of its energy to drive the model along. This circuit draws little current, although an exact figure is difficult to state because it depends on speaker size and impedance, volume level, controller speed and range of frequency.

The output is a sequence of single palses, so to simulate a four cylinder engine, one needs to run it at about four times the speed of a single cylinder one. Simplicity has been the key to the design, so no attempt has been made to produce the multiple pulses of multi cylinder engines, or the buzz of valves.

As with all this series of projects, a PCB was used, but is not essential.

Construction

The first point to note when constracting this circuit is that as ICl is a CMOS device, care should taken in handling it. All CMOS devices are sensitive to damage by static charges so observe the normal handling precautions.

There can be some difficulty encountered when soldering components since the board will not lie flat, due to uneven component heights. For this reason very small boards, such as this one, are best clamped in some way, as they tend to run away from the soldering iron, due to lack of weight. A modellers vice or something similar will do the job. A large office Bulldog clip, that is screwed to a heavy block of wood is a good low technology and low cost solution.

This PCB is quite easy to build, see layout drawing Fig. 2 . The components are not very crowded and are fitted flat to the board. There are no covered components, which means that parts can be fitted in any order. Fitting the preset controls and the ICs first (observing CMOS handling precautions), will probably help you to get your bearings. Ensure that the ICs are fitted the right way round.

The resistors R1 to R8 only need attention paid to their values (see Fig. 2 and Parts list). All except three of the capacitors are $0.1 \mu \mathrm{~F}$ monolithic ceramics that can be fitted either way round. The other three capacitors, $\mathbf{C 7}$, a $220 \mu \mathrm{~F}$ electrolytic and C3 and C4, which are $1 \mu \mathrm{~F}$ electrolytics, must be inserted the right way. Note the polarity of all of these, which are clearly marked on Fig. 2.

When all components are fitted to the PCB , all that remains is the wiring. Connect a red wire at the point marked + (to go to the drive battery Positive) and a black wire to the point marked - (to go to the drive battery Negative). Next, a wire on Input (colour not important). The last connections are a pair of wires from the points marked Speaker which, of course, go to the speaker and can also be connected at this time.

That completes the construction of the PCB .

Selecting the speaker

A 75 mm speaker, such as the one used on the prototype, will limit the usable power to a few hundred mW . Increasing the diameter of the speaker will increase the volume as larger speakers tend to be more efficient. This is presumably because of the increase in power of the magnet. Assume a maximum power of 1 W with a suitable speaker. If you have a boat which has a very large capacity battery and plenty of

space, a much larger speaker could be used, with an attendant increase in usable output power and a considerable increase in bass response.

The upside of all this, is that very small models will only require low sound levels and can therefore be fitted with the smallest of speakers.

As you will see, the Parts List recommends a Mylar Cone (moisture proof) speaker. The reason is that most models,

PARTS LIST
SEMICONDUCTORS
IC1 CMOS 555 (Observe handling precautions)
IC2 TDA7052 AF Amplifier IC (see Buylines)
Q1 N3904 NPN Transistor
CAPACITORS
C1,4,5,6,8 1,F Monolithic Ceramic (marked 104)
C2,3 IF (16V or more) Min Radial Electrolytic
C7 2201F 16 V Min Radial Electrolytic
RESISTORS

R1,3	100K 1/8W 5\%
R2	3 K3 1/8W 5\%
R4,5,6,7	$10 \mathrm{~K} 1 / 8 \mathrm{~W} 5 \%$
R8	$33 \mathrm{~K} 1 / 8 \mathrm{~W} 5 \%$

MISCELLANEOUS
VR1 1M Min Horizontal Enclosed or Open preset
VR2 4K7 Min Horizontal Enclosed or Open preset
Speaker Minimum impedance 8 Ohms Mylar cone (see construction notes)
PCBEngine sound PCB (see Buylines)

BUYLINES
The TDA7052 is probably available from several suppliers, but if you have difficulty, it is available from Maplin, Tel. 0702554161. Part No UK79L, or Electromail, Tel. 0536 204555, Part No 654-485 Engine sound PCB is available from ACTion, 140 Holme Court Ave., Biggleswade, Bedfordshire, SG18 8PB.
Cost, $£ 2.85$ plus 50 p postage and handling
Cash with order only, cheque or postal order made payable to ACTion. Also available is a range of kits for building the various radio control circuits covered in this series. SAE to the above address for further details.
including land vehicles, may have to operate in at least a damp environment from time to time. A paper cone would be a poor choice from this point of view. Having said that, a paper cone will probably give a better low frequency response for a given size.

Once again, as the unit is versatile and suitable for a huge range of models, every case may be different. Due to this, you will have to decide which type and size suits your purpose. The speaker will need to be in an exposed position in order for you to hear it. It will also need to be mounted on a small panel (baffle) with a hole almost as large as the speaker diameter to give its best performance. Fairly rigid plastic card is ideal for this.

Another type of baffle can be made from a tube, with a diameter as big as the speaker and a few centimetres long. With the speaker glued at the bottom, it gives a good baffle effect. Mounting a Mylar speaker in a hatch with a grating over it would be a good position for a boat.

The impedance is stated as 8 Ohms minimum, and higher impedances will work, with an attendant reduction in wattage. If you have to buy one, then get an 8 Ohm with a cone diameter as large as your model will allow.

If you have speakers in the junk box, try them all. You will be surprised by the results with different sizes and types.

Don't drive the amplifier too hard, you don't want to burn it out. Your fingertip will tell you if it is getting too hot.

Testing
To do a full test, the Low Power Speed Controller will be required, but a quick test can be done without it.

Set the Tickover preset VRI to the centre position and turn the Volume control VR2 fully anti-clockwise, then just move off the stop in a clockwise direction (about an eighth of a turn will do). Setting a low volume will ensure that it will not be too loud at switch on. Next, connect the red and black drive battery leads to the drive battery. As soon as this is done a sound should be heard. Adjust the volume control preset to a suitable level for your needs.

Moving the tickover control will cause a change of frequency and its final setting can be done when the Speed Controller is connected, if you prefer. If it is $\mathbf{O K}$, then the drive battery leads should be disconnected from the battery.

Next, connect the wire you connected to Input, to the point marked ' X ' on the Speed Controller (see Fig.3). Connect the negative from both the Speed Controller and the Engine sound PCBs to the drive battery negative, then connect the positive to the dead side of the power switch in the Speed Controller lead. This will ensure that the sound goes off when the model is switched off.

The unit can now be tested using radio control. The tickover setting can be adjusted while the Speed Controller is in a stop condition to produce the sound of tickover revs that is appropriate to your model. As the control stick on your transmitter is moved away from its centre position, the revs sound will increase. The sound level can now be finally set to offer the best volume level and sound for your particular model. As the unit will probably be subjected to considerable vibration during its life, the two presets can be sealed with a small spot of enamel or nail vamish if you wish.

Conclusion

In this project I have tried to make the tickover adjustable between a slow plodding diesel marine engine to a fast car engine. The increase in rate at tickover is of course reflected at the top end of the speed, so as to get up to a fairly high rate when set for a fast car. As I said earlier, it was originally made for a truck, which is between the two extremes of revs. All this is of course a compromise, but nevertheless, I think you will agree, much better than no sound at all.

You will have noted a point on the Engine Sound PCB layout marked ' X '. An R/C Switch Output can be connected to this point to start and stop the engine sound. This would add the feature of being able to 'start' the engine sound running. It would, however use another channel to do this. Anyway, it's there if you want to use it and it only cost one resistor. If you prefer to use a toggle switch, all you need to do is switch ' X ' point on the Engine Sound PCB to drive battery negative, at some suitable location.

The other detail is that you may want to run both the Brake-lights PCB and the Engine Sound PCB from the Speed Controller. This can be accomplished by using the spare pad on the Input of the Brake-light PCB to connect to the Input of the Engine sound PCB. This is what the spate hole is for.

Whatever you decide to use it for, or on, I do hope that it adds to the pleasure you get from your model.

Craig Talbot

BADGER BOARDS
 Printed
 Circuit
 Boards

Prototype-Singles-Multiple runs. Minimum charge $£ 15.00$. Artwork, Plotting from Schematic to final board layout. Send S.A.E. now for Catalógue of Kits-Soards-Projects avallable. Many magazine boards Dept: HRT ${ }^{\text {produced for individual customers. }}$ Dept: HRT 87, Blackberry Lane, Four Oaks, Sution Coldfleid, B74 4JF *-021-3539326

PROFESSIONAL SERVICES

We offer a full R.F. DESIGN SERVICE from design and development to prototype. Our extensively equipped laboratory with screened room is available for EMC PRE-TESTING to ensure products comply with the EC Directive on emissions and susceptibility.

* SECURITY EQUIPMENT *

DIRECT FROM THE MANUFACTURER Join the thousands who protect their property with AUTONA equipment

LATEST 2000 SERIES CONTROL UNITS

Latest 2000 SERIES control units

- AUTO RESET
- SELF TESTING
- INTELLIGENT EXIT DELAY

2050 Budget version. Sultable all sizes of Installations.

2150 Key operated. Full reature unit with zone switching and very simple operation.
2250 Digital key-pad verslon
offering a user set code of
2-12 diglts +full feature specificatlons.

Free Colour brochures avallable on these exciting new units CALL TODAY
MINIATURE PASSIVE INFRA-RED SENZSOR-RP33
Switchable Dual range detects intruders up to 6 or 12 metres This advanced sensor operates by detecting the body heat of an intruder moving within the detection field. Slow amblent changes such as radiators, etc. are ignored. Easily Installed in a room or hallway. Providing rellable operation from a 12 V supply, it is ideal for use with the 2000 Series or

equivalent high quality control unit. Supplied with full instructions.

COMPLETE

 SECURITY SYSTEM ONLY $£ 63.95$ + VATINCLUDES LATEST MICRO CONTROL UNIT, PASSIVE INFRA-RED SENSOR, SIREN \& BELL BOX, CONTACTS, CABLE ETC.

$$
\begin{aligned}
& \text { EASY TO INSTALL - SIMPLE TO USE } \\
& \text { CALL FOR FULL DETAILS TO DA Y!! } \\
& \text { Plus complete range of systems and accessories }
\end{aligned}
$$

\star AUDIO MODULES \star

 AL 12580-125W AMPLIFIEAA rugged high powered module that is ideal for use in discos \& P.A. Systems where powers of up to 125 W , 4 ohms are required. The heavy
duty output transitors ensure stable and duty output transitors ensure stable and reliable performance. Its is currently supplied to a large number of manufacturers where reliability and pertormance are the main considerations, whilst for others lis low price is
 the major factor. Operating from a supply

ع18.95 voltage of $40-80 \mathrm{~V}$ into loads from $4-16$ ohms.
218.96
+VAT

AL 2550-cOMPAGT LOW-COST 25W AMPLIFIER
High fidelity at a low price.
This popular module with tens ol thousands installed. Ideal for domestic applications. Supply rail 20.50 v with loadsof 8 - 16 ghms.
 + VAT

MIM 100-BUDGET 3-INPUT MIXER
With a host of features including 3 individual level controls, a master volume and separate bass and treble control, it provides for inputs for microphone, and separate
magnetic pick-up and tape, or second pick-up (selectable), and yet costs considerably less than competitive units. This module is ideal for discos and public address units and operates from $45 \mathrm{~V}-70 \mathrm{~V}$.
MM $100 G$ CUITAR MIXER

COMPLETE AUDIO RANGE FROM 10W-125W
SEND FOR DETAILS TODAY

AUTONA LTD

DEPT ETI 11 ,
Add VAT Carriage only $£ 2.00$ Export 10% minimum $£ 2.00$ 51 POPPY ROAD
 Order by Credit Card to PRINCES RISBOROUGH BUCKS HP27 9DB
BUCKS RP2790B
FAX: 0844347102
TEL: 0844346326

THIS IS THE COUPON

that brings the 1993-94 CATALOGUE 140 pages, A4, copiously illustrated, bang up to date and with bonus vouchers. Send cheque/PO for $£ 1.50$ that brings the SERVICE

with choice of very wide ranges of famous-name quality electronic components and associated gear sent promptly on receipt of your order. A service that Electro/alue
have been providing constructors with continuously since 1965. With this Catalogue, you will find our service the best ever. Send for your copy NOW!

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Tel: (0480) 433156 Fax: (0480) 413357

TEST EQUIPMENT SYSTEM CONSULTANCY
 Supply
 Maintenance
 Commissioning
 Replacement Parts Supply of Service \& Operators Manuals Components

Distributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX - 0316672611
The supplier to use if you're looking for \star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST * \star COMPETITIVE VAT INCLUSIVE PRICES \star \star MAIL ORDER - generally by RETURN OF POST * \star FRIENDLY SERVICE *

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

£1 BARGAIN PACKS

In lact... cheaper than $\mathbf{£ 1}$ because if you buy 10 you can choose one other and receive it tree
1 x 12v Stepper Motor. 7.5 degree. Order Ref: 910
1 × 10 pack Screwdrivers. Order Ref: 909
2×5 amp Pull Cord Ceilling Switches. Brown. Order Ref: 921
$5 \times$ reels insulation Tape. Order Ref: 91
4×14 Min Bull-races. Order Ret: 912
$2 \times$ Cord Grp Switch Lamp Holders. Order Ref: 913
$1 \times$ DC Voltage Reducer. 12v-6v. Order Ref: 916.
I x 10 amp 40v Bridge Rectifier. Order Ret: 8698.
Lightwelght Stereo Headphones. Moving coil so superior sound. Order REt: 896.
$2 \times 25 \mathrm{~W}$ Crossovers. For 40 hm loudspeakers. Order Rel: 22 2 x nicad Constant Current Chargers. Easily adapable to charge almost any nlcad battery. Order Ref: 30
10 m Twin Screened Fler. White pve cover. Order Rel: 122 $2 \times$ White Plasfic Bozes. With lids approx 3° cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.
2 x Reed Relay Kits. you get 8 reed switches and 2 coil sets with notes on making relays and other gadgets. Order Ref: 148.

$1 \times$ Big Pull Solenold. Mains operated. Has ${ }^{1 / 2 "}$ pull. Order

Rel: 871 .
1 r Big Push Solenold. Mains operated: Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Min! Mono
into 8 ohm . Order Ref: 268
into 8 ohm. Order Ref: 268 .
$1 \times$ Mini Stereo $1 w$ Amp. Order Ref: 870
$1 \times$ Mini Stereo 1 W Amp. Order Ref: 870
$\mathbf{1}$ x $\mathbf{I n}$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 10-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square. Scaled 0-100. Order Rel: 756.
$2 \times$ Llthlum Batterles, 2.5 V penlight size. Order Ref: 874 $2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. ideal for phone extensions, fax, elc Order Ref: 552
$1 \times 12 \mathrm{~V}$ Solenold Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232
4 x In-Flex Swltches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 16 \mathrm{~V} 1 \mathrm{~A}$ Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$2 \times$ Humidity Switches. As the air becomes damper the membrane stretches and operates a micro switch Order Rel: 32.
$5 \times 13 \mathrm{~A}$ Rocker Switch. Three tags so on/off, or 2 changeover with centre off. Order Ref: 42.
2 a Flat Solenolds. You could make your multi-tester read AC amps with this. Order Ref:79.
$1 \times$ Suck or Blow-Operated Pressure Switch. Or It can be operated by any low pressuire variation such as water level in tanks. Order ref: 67
1 x $6 \vee 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains inputand 6 V output lead. Order Ref: 103A.
2 x Stripper Boards. Each contains a 400V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers. etc. Order ref: 120.
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
6 z Microphone Inserts. Magnetlc 400 ohm, also act as speakers. Order Ret: 139.
$6 \times$ Neon indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \times$ in-Flex SimmerstatKeeps your soldering iron etc always at the ready. Order Ref. 196.
$1 \times$ Mains Solenoid. Very powerful as $1 / 2^{\prime \prime}$ pull or could push if modiffed. Order Ref: 199,
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joinedin parallel to make a high wattage column. Order Ref: 243.
1 I Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 x$ Oblong Push Switches. For beil or chimes these can swlich mains up to 5A so could be foot switch if fitted in patress. Order Ref: 263.
$50 x$ mixed Sillcon Dlodes. Order Ret: 293.
1 K 6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 V$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48
$1 \times$ Cabinet Lock. With two keys. Oreder Ref: 55
$1 \times$ Magnetic Brake. For stopping a motor or rotating tool. Order Ref: 66
$1 \times$ Shaded Pole Mains Motor. $3 / 4^{\prime \prime}$ stack, so quite powerful. Order Ref: 85
2×5 Aluminiumk Fan Blades. Could be fitted to the above motor. Order Rel; 86
$1 \times$ Case. $3^{1 / 2 \times 21 / 4} \times 1^{3 / 4}$ with $13 A$ socket pins. Order Ref: 845
$2 \times$ Cases $2^{1 / 2} \times 2^{1 / 4} \times 1^{3 / 4}$ with 13 A pins. Order Rel 565.
$4 \times$ Luminous Rocker Swltches, 10A mains. Order Rel 793.

4 天 Different Standard V3 Micro Swliches. Order Ref: 340.
$4 \times$ Different Sub Min Micro Swliches. Order Ref: 313 .

BARGAINS GALORE
Medlcine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and
neatly cased requires only a battery. $£ 3$. Order Ref neatly
Don't Let it Overflowl Be it bath, sink, cellar, sump or any other thing that could flood. This device wlll tel you when the water has risen to the pre-set level.
Adjustable over quite a useful range. Neatly cased for Adjustable over quite a useful range. Neatly cased for Order rel: 3P156
Very Powertulk Mains Motor. With extra long ($2^{1 / 22^{\prime \prime}}$) shafts out each side. Makes it ideal for a reversing arrangement for, as you know, shaded pole motors are not reversible. £3. Oreder Ref: 3P157.
Solar Panel Bargaln. Glves $3 v$ at 20 Solar Panel Bargaln. Gives $3 v$ at 200 mA . Order Ref
2 P324. 2P324.

12 V axial fan for only $\mathrm{£1}$. Ideal for equiper Bargain
 12 V axial tan for only £ . Ideal for equipment cool ng, brand new, made by West German company, Brushless so vilually new, made by West German company. Brushless so virtually diagram. Only £1 Order Ref: 919 . When we supply this we will include a list of approximately 800 of our other $£ 1$ bargains.

PC Operaling Systems. Fully user documented and including software. MS-DOS 3.20 , with 5 " disk. E5 Order Ref.5P208. MS-DOS 4.01 with $3^{1 / 2 "}$ disk 810 Order Ref 10P99.
45A Double Poie Malns Swlich. Mounted on a 6×31 2aluminium plate, beautifully finished in gold, with pilot light. Top quality made by MEM, ©2. Order Ref. 2 P316.
Amstrad $3^{\prime \prime}$ Disk Drive. Brand new and standard Amstrad $3^{\prime \prime}$ Disk Drive. Brand new and standard
replacement for many Amstrad and other machines, $£ 20$ replacement for many Amstrad and other machines, $£ 20$
Order Ref: 20 P28. Order Ref: 20P28.
High Quality Key Switch. This is a single pole 2 position switch, changeover or on/off. Ideal for mounting through a front panel when it would be secured by a hexagona nut. It's a Vale type switch and comes complete with price £1.50. Order Ref: 1.5P12
Movement Alarm. Goes off with the silghtest touch. Ideal 10 protect car, cycle, doorway, window, stairway, etc.
Complete with Piezo, shrieker, ready to use only $£ 2$ (PP3 Complete with' Piezo, shrieker, ready to use only £2(PP3 battery not supplied), Order Ret: 2P282
Project Box. A first-class, Japanese two-part moulding, size $95 \mathrm{mmx} 66 \mathrm{~mm} \times 23 \mathrm{~mm}$. Held together by 2 screws this will hold a PP3 battery and a PCN and is ideal for many projects. To name just one, the washer bottle described in September's issue of E.E. This is nicely Ret: 876.
AM-FM Radio Chassis. With separate LCD module to display date and time. This complete with loudspeaker £3.50 Order Ref: 3.5P5.
2,3 and 4 Way Terminal Blocks. The usual grub screw types. Parcel containing a mixture of the 3 types, giving you 100 waves for £1, Order Ref; 875
that it will push or pull as the plunger is a this is such that it will push or pull as the plunger is a combined is quite good at 12 V and of course it can be pperated by any Intermediate voltage of Order Ref. 1 pplo 2 m 3-Core Lead. Terminating with flat pin instrumen socket. £1. Order Ref: 879 . Ditto but with plug on the other end so that you could use this to extend an instrument lead. E1.50. Order Ref: 1.5 P10.
20W 540 hm Speaker mounted on baffle with front grille, $£ 3$. Order Ref: 3 P 145 . Matching 4 ohm 20 W iweeter on seperate baffle, $£ 1.50$, Order Rel: 1.5 Pg ,

LCJ $31 / 2$ Digit Panel Meter

This is a multh range voltmeter/ammeter using the
A-D converter chip 7106 to provide 5 ranges each
of volts and amps. Supplied with full data sheet
Special snip price of £12. Order Ref. 12P19.
Solar Energy Educational Kit. It shows how to make solar circuits and electrical circuits, how to increase player and to charge nicad batteries. The kir comprises 8 solar cells, one solar motor, fan blades io fit motor and metal trame to hold it complete a free-standing electric fan. A really well written instruction manual Price: $£ 8.00$ Order REf: $8 P 42 \mathrm{~B}$.
High Power Switth Mode PSU Normal mains input, 3 outputs: +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 \mathrm{~A}$ Completely enclosesd in plated steel case. Brand new Our special ofter price of $£ 9.50$. Order Ref: 9.5 P1
Ultra Thin Drills, actually 0.3 mm . To buy these regular costa a fortune. However, these are packed in hal
dozzens and the price to you is $£ 1$ per pack. Order Ref 7978 .
You can Stand On It Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools in, internal size a pprox,
$10^{1} / 2^{\prime \prime} \times 4^{1 / 2} \times 6^{\prime \prime}$ high. Complete with carrying strap, price $10^{1 / 22^{\prime \prime} \times 4^{1} / 2^{\prime \prime} \times 6^{-1} \text { high. Complete with carrying strap, price }}$ ©, Order Ref: 2 P283B.
Ultra Sonic Transducers. Two metal cased units, one transmits, one recelves. Built to operate around 40 kHz Price \&1.50 the pair. Order Ref: $15 \mathrm{P} / 4$
to run. Speed is ideal for ry 2 W so will not cost much to run. Speed is ideal for revolving mirrors or lights 12 SOLAR CELL Could keep a battery charged even when no mains avallable. £17.50, /rder Ref: 17.5P1. Battery Quick Charger Into a flat battery to about 5A the charging rate would be $8-10 \mathrm{~A}$, this would fall away as the battery charges up or it can be switched to lower rate. Complete kit includes mains transformer rectifier, cap
REF: 7.5 P 20

REF: $7.5 P 20$

15 V PSU. Mains operated nicely c
smooth dc output. \&1 Order Ref. 942 .
Unusual Solenold Solenolids norm energised Solenoid Solenoids normally have to be disadvantage pull in and hold the core, thls is a of the time. Whe now have magnetic solenoids which hold the core until a voltage is applied to release it

BARGAINS GALORE

200 VA Malns Transformer. Secondary voltages $8 \mathrm{v}-0-8 \mathrm{v}$. So you could have 16v at 12A. Could be ideal for car starter charger, soil heatling, spot welding, carbon rod
welding or driving high powered amplifiers etc. $£ 15$, welding or driving high powered amplifiers etc. £15, Order Ref: 15P1.
Malns Fliter. Resin impregnated, nicely cased, pcb mounting. E2 Order Ref: 2P315
Safety Leads. Curly coil so they contract but donit hang down. Could easily save a chlid from being scalded, 2 core, 13 A , extends to 3 m , $£ 1$ Order Rel: 846 ,
Power Supply with Extras. Mains input is fused and filtered and the 12 VDC output is voltage regulated. ntended for high class equipment, this is mounted on a PCB and also mounted on the board buteasily removed, are two 12 V relays and Piezo sounder, £3 Order Ref: 3P80B.
100W Malns Transformers. Normal primaries 20-0-20 at 2.5 A . or 30 V at 3.5 A . $£ 4$, Order Ref: $4 \mathrm{P} 24,40 \mathrm{~V}$ at 2.5 A 54 Order Rel: 4P59, 50V at 2A £4 Order Ret: 4P60
Phillips 9 High Resolution Monitor. Black and White in metal frame for easy mounting. Brand new, still in only £15, Order Ref: 15P1
insulation Tester with Multimeter. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges, AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $£ 7.50$ with ains 230VFOn Best make "PAPST", $4^{1 / 2 " ~}{ }^{2 q u a r e, ~}$
Mains $230 V$ Fan. Best make PAPST. $41 / 2$ square, metal blades, £8 Order Ret: 8P8. Phillips, full spec. £30, Order Ref: 30P1. Power supply for this is in kh form with case s £15, Order Ref. 15P16, or in larger case to house lube as well £1\% Order Ref: 18P2. The larger unit, made up. tested and ready to use, completet with laser tube £69, Order Ref: 69P1.
$1 / 3 \mathrm{hp} 12 \mathrm{~V}$ Motor- The Famous Sinclair C5. Brand new, E15 Order Ret: 15P8.
Solar Charger. Holds 4AA nicads and recharges these In 8 hours, in very neat plastic case $£ 6$ Order Ref:6P3 Ferrite Ae-lal Rod. $8^{\prime \prime}$ long $x^{3 / 8} 8^{*}$ diameter, made by 832P. tuning UHF circuits, 4 for $£ 1$. Order Ref: 8188 . Mains Isolation Transformer: Stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt, $£ 7.50$, Order Ref: 7.5P/5 and a 250 W version Is $£ 10$, Order Ref: $10 \mathrm{P97}$
5 RPM
5 RPM Mains Driven. This is a shaded pole motor, £5, Order Ref: 5P54
Amstrad Power Unit. 13.5 V at 1.9 A or 12 V at 2 A encased and with leads and output plug, normal mains output plug, normal malns input £6, Order Ref: 6P23.
Atari $65 \times \mathrm{E}$. At 65 K this is quite powertul, so suitable for home or business. unused and in perfect order but less PSU, only $£ 19.50$ Order Ref: 19.5P/5B
80W Mains Transformer. Two available good quality both with normal primaries and upright mounting, one s 20 V 4 A , Order Ref: 3P106, the other 40V 2A. Order Rel: 3P107. Only $£ 3$ each.
Project Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1 / 22^{\prime \prime}}$ metal, sprayed grey, louvered ends for ventilation otherwise undrilled. hadee for so best quality, only $£ 3$ each. Order

Water Vaive. 230 V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc. $£ 1$ each Order Ref: 370 .
BT Power Supply Unit. Output 9.5 V AC at 600 mA , in black plastic case with 13A plugs to go straight into socket, and approximately 3 metres of twin output lead. Price
500 V Bridge Megger. Developed for GPO technlcians, the Ohmeter 18 B is the modern equivalent of the bridge megger. g bartery operated, it incorporates a 5 insulation testing and a null balance for very accurate resistance measurement. ex BT, EA5, Order Ref: 45P2.
Experimenting with Valves.Don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of $250-0.0 \mathrm{~V}$ at 75 mA and 6.3 V at 3A, ©5, Order Ret: 5P167.
discontinued high quallty mus ${ }^{\text {s }}$. Tweeter. Made for a discontinued high quallty music centre, gives real hiWater PumpVery powerful, mains operated, $£ 10$ Order Rel: 10P74.
0-1mA Ful Vislon Panel Meter. $2^{3 / 4 "}$ square, scaled $0-$ 100 but scate easily removed for re-wiring. $£ 1$ each. Order Ref: 756.
VU Meter. Illuminate this Irom behind becomes on/olf indicator as well, $11 / 2^{\prime \prime}$ square, 75 each. Order Ref: 366. only $40 \times 14 \mathrm{~mm}$, also have builtoin LED 500 Als scaled 0-5. £1 each, Order Ref. 131

Prices Include VAT. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing. Orders over 25 post free.

> M\&B ELECTRICAL SUPPLIES LTD Pilgrim Works (Dept ETI),
> Stairbridge Lane, Bolney, Sussex RH17 5PA
> Telephone (0444) 881965 phone for Fax
> Callers to 12 Boundary Road, Hove, Sussex.

An RF Hound

Eradicate unwanted background hiss with this month's cover PCB project

Radio frequency instability is the cause of many of those nasty hissing sounds and whistles which can bedevil the builders and designers of audio equipment. Indeed, determining the presence of any radio frequency (rf) instability is a common problem when fault finding on audio equipment. A handy piece of test equipment designed to solve this problem is the subject of this month's cover board project, from well known electronics expert Robert Penfold.

Audio equipment utilises semiconductors, which mostly have good gains at frequencies 100 or even 1000 times higher than the 20 kHz upper limit of the audio range. This makes high frequency instability a virtual certainty unless the designer is careful to take appropriate countermeasures. Even when due care is taken with the circuit design and component layout, instability can occasionally be a problem.

ETI
 Cover PCB Project

 hobbyists are not equipped with an oscilloscope and, in general, oscilloscopes are not the most portable of devices. This r.f. probe offers a simple alternative. A LED indicator at the rear of the unit switches on when a rf signal is detected.The unit also has a low sensitivity setting. When in this mode, the unit requires an input level of almost IV peak to peak, before it will produce even a weak glow from the LED indicator. Higher input levels produce greater LED brightness, up to saturation point with an input of about 10 V peak to peak. This mode enables the rough strength of the input signal to be gauged.

The unit has a wide bandwidth and is reasonably sensitive from around 50 kHz to more than 50 MHz . It is insensitive to signals at low and middle audio frequencies, making it possible to test for instability that only occurs when an input signal is present. The input impedance is 100 k shunted by about 15 p, which should ensure that loading effects on the test circuit do not produce erroneous results.

It is worth mentioning that in addition to detecting rf

Fig.1. Block diagram of R.F.Hound

Sometimes, high frequency instability produces tell-tale signs that indicate the likelihood of its presence. These signs include too much or too little background hiss and erratic variations in the background hiss level. There can also be odd whistling scunds, caused by stray pick up of radio signals which react with the rf oscillations to produce heterodyne beat notes. A high hum level on the output signal is another warning sign.

These noises are caused by the instability, resulting in a large high frequency signal being fed to the loudspeaker. This gives high loading on the power supply, with a consequent increase in the ripple level on its output. The most obvious of the tell-tale signs is when smoke wafts out of a tweeter! This is caused by strong instability producing a high power output signal, practically all of which is directed to the tweeter. Few tweeters are designed to handle high power levels (which they would not receive in normal use).

When high frequency instability is suspected, the definitive test is to use an oscilloscope to examine the output waveform of the equipment: Obviously, many electronics
signals where they should not be present, this probe can also show that an rf signal is present and correct. For example, without an oscilloscope it can be difficult to determine whether or not a crystal clock oscillator is functioning correctly. This unit will indicate whether or not such an oscillator is producing any output and it will do the same for any subsequent divider stages that produce a high enough output frequency.

System Operation

This of probe uses the simple arrangement shown in the block diagram of Fig.1. An rf amplifier at the input provides a small but useful amount of voltage gain. This stage is also designed to have built-in highpass filtering, so that the unit is insensitive to low frequency signals. A buffer amplifier provides a low enough output impedance to drive the next stage successfully. This stage is a simple rectifier and smoothing circuit, which provides a positive dc output voltage roughly proportional to the rf input level.

The next stage is a dc amplifier and the LED indicator is

Fig.2. Circuit for R.F.Hound
driven from the output of this amplifier. Normally, this stage exhibits a voltage gain of slightly under 50 times, which ensures that quite low rf input levels will fully turn on the LED indicator. With the sensitivity switch set to the low sensitivity position, the dc amplifier has unity voltage gain. As explained previously, quite high input levels are then needed in order to produce full brightness from the LED indicator.

Circuit Operation

The full circuit diagram for the rf probe is shown in Fig. 2. The rf amplifier is based on dual gate MOSFET TRI. This is used in the common source mode and it provides good gain over a wide bandwidth. RI provides biasing for the gate 1 terminal of TR1 and also sets the input impedance at low frequencies. A further function of R1 is to provide simple highpass filtering in conjunction with Cl . This capacitor also provides dc blocking at the input. C3 only provides efficient

Fig.3. Component overlay
bypassing of R3 at rf frequencies, giving further highpass filtering. TR2 is used as a simple emitter follower output stage at the output of TRI.

The rectifier and smoothing circuit is a simple half-wave type based on D1 and D2. The latter are germanium diodes, which are better than silicon types in this application, due to their much lower forward conduction thresholds.

The dc amplifier uses ICI in a simple non-inverting mode circuit. The unit is in the low sensitivity mode when SI is open. IC1 then has a closed loop voltage gain of unity due to the 100% negative feedback loop through R7. Closing S1 boosts the sensitivity by bringing S1 into action. This decouples some of the negative feedback, and boosts the closed loop voltage gain to almost 50 times. ICI drives LED indicator D3 via current limiting resistor R 9. The maximum LED current is only a few milliamps, but most modern LEDs will give very good brightness from a modest input current.

No negative supply is used for IC1, since the CA3140E will work properly as a dc amplifier using a single supply rail. Note that most other operational amplifiers (uA741C, LF351N, TLO81C, etc.) will not operate properly in this circuit. The total supply current is about 7 mA with the LED switched off, or about 12 mA with the LED at full brightness. A PP3 size battery gives a reasonable operating life and is the largest battery that is practical for a small probe-type unit such as this.

Construction

The component overlay for the printed circuit board is provided in Fig.3. This also shows the small amount of point-to-point wiring. In most respects, construction of the board is very straightforward, but if everything is to be accommodated properly in a small probe type case it is important that the height of the board is restricted to no more than about 9 mm . The leadout wires must therefore be trimmed very short on the underside of the board and it might also be necessary to angle some of the components at about 45 degrees, in order to prevent them from projecting too far above the board. In particular, C1, C2, and TR2 might need to be adjusted in this way.

Unless a suitably low-profile socket can be found for IC1, it must be soldered directly to the printed circuit board. Unfortunately, the CA3140E has a PMOS input stage which is static-sensitive. However, provided the normal anti-static precautions are observed and this component is soldered into
place using an iron having an earthed bit, it is unlikely that it will come to any harm. D1 and D2 are germanium diodes, which are more vulnerable to heat damage than the more usual silicon types. Consequently, each soldered joint should be completed quite swiffly when soldering these two components in place.

Single-sided solder pins are fitted to the board at the points where connections to the off-board components will eventually be made. The pins will probably protrude too far above the board, but they are easily pruned back slightly using a pair of wire clippers.

The Case

Although it is not absolutely essential to build this unit as a probe style device, this is definitely the most appropriate form for a project of this type. The probe approach has the advantage of avoiding a long screened cable at the input, and the input capacitance that this would introduce. This extra capacitance could give misleading results by damping down instability, or blocking rf oscillators that worked perfectly well before the unit was connected to their outputs.

The board has been designed to fit into a Maplin 'small narrow box', which is well suited to probe style projects. The approximate internal dimensions of this box are $120 \times 30 \times$ 25 mm , which represents something very close to the minimum practical size for this project. A long M3 or 6BA screw mounted centrally at the front end of the case acts as a probe tip. The end of the screw is filed down slightly to give a conventional rounded tip. A solder tag is fitted over the screw on the inside of the case to provide an easy connection point.

The chassis connection to the equipment under test is made via an insulated lead about 500 mm long and terminated in a crocodile clip. A small hole for this lead is drilled well towards the front of the case, on the left hand side (as viewed from the rear). The circuit board is bolted in place on the top panel of the case using 6BA or metric M3 screws. The board should be mounted with C1 and R1 as close as possible to the front panel of the case.

D3 is mounted centrally on the rear panel of the case. S1 and $\mathbf{S} 2$ are mounted onto the top panel of the case, just behind the circuit board. The unit is then ready for the hard wiring to be added. Due to the small internal dimensions of the case, it is much easier to complete this wiring with the circuit board temporarily dismounted from the case.

The battery fits into the space above the circuit board and should be held firmly in place when the lid of the case is screwed into place. If there is not quite enough space for the battery, the circuit board is slightly too high and the offending components must be settled down lower on the board.

In Use

The crocodile clip lead is connected to the earth rail (the 0 V supply rail) of the equipment under test. It must be emphasised here that this unit is only suitable for testing equipment that is battery powered, or mains powered via a supply circuit that provides proper isolation from the mains supply. It should not be used with equipment that has a "live" chassis.

For most testing the sensitivity switch should be set at the 'high' sensitivity position. The LED indicator should then light up quite brightly even if only a fairly low level of oscillation is present. You may sometimes find that the LED indicator lights up with the probe tip not quite touching the test point! This happens where the signal at the test point is both strong and at quite a high frequency. Stray coupling then provides sufficient signal transfer to activate the probe.

As pointed out previously, the low sensitivity position can be used if you wish to gauge the approximate amplitude of oscillation. Also, some audio equipment seems to produce significant amounts of high frequency noise which can produce ambiguous results with flickering of the LED indicator. With such equipment, it is better to use the low sensitivity setting.

The unit has very low sensitivity at middle and low audio frequencies, making it possible to feed in an audio test signal and then check for rf instability using the probe. However, bear in mind that a squarewave or pulse signal will contain harmonics well into the rf spectrum. Consequently, it is not possible to use a squarewave or pulse test signal and then use the probe to check for ringing or other mild forms of instability. This type of testing is only possible using an oscilloscope. It is possible to use a sinewave or triangular test signal and to then use the probe to check for more severe forms of intermittent instability.

Overload Protection

The probe can withstand quite high input levels without sustaining damage, but when used to test high power audio amplifiers there is the potential for very high input levels. It would be advisable to use the modified input circuit of Fig. 4 if the unit is to be used for testing very high power audio equipment. This involves the addition of a simple zener diode clipping circuit, that limits the input to TRI to about plus and minus 7.5 V . The 3 k 3 re sistor can be wired between the circuit board and the probe tip in place of the existing connecting wire. The two zener diodes can be wired direct onto R1. The protection circuit inevitably reduces the performance of the probe and, in particular, it significantly reduces its bandwidth, but oscillation well into the megahertz range is not normally a problem with very high power audio amplifiers.
R. Penfold

PARTS LIST
RESISTORS (0.25 W carbon film)
R1,5,7 100k
R2,8 2k2
R3 330
R4 1k5
A6 10k
R9 $\quad 1 \mathrm{k}$

CAPACITORS

C1 $27 p$ ceramic plate
C2 100n ceramic disc
C3 10 n polyester
C4 in polyester
C5 4 n 7 polyester
SEMICONDUCTORS
TR1 MFE201
TR2 BC549
D1,2 OA91
D3 Red panel LED
IC1 CA3140E
MISCELLANEOUS
L1 $\quad 0.1 \mathrm{mH}(100 \mathrm{uH})$ if choke
S1,2 SPST sub-min toggle
B1 9V (PP3 size)
Printed circuit board
Case about $124 \times 33 \times 30 \mathrm{~mm}$ Battery connector
Crocodile clip and lead
Wire, solder, fixings, etc.

OMP MOS－FET POWERAMPTIFIER
 THOUSANDS PURCHASED
 BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS：－MXF200（100W＋100W）MXF400（200W＋200W） MXF600（300W＋300W）MXF900（450W＋450W） all power ratings r．m．s．into 4 Ohms，both Channels driven
FEATURES：independent power supplies with two loroldal tranalormers \＃Twin L．E．D．Vu melers Level controls \＆Hlluminated on OH switch \＄XLA conneclors \＃Standard 775 mV Vnputs \＃Open and shorr clrcuit
 USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC．

MXF600 W $19^{\circ \times H 5} \%{ }^{4}(3) \times D 13^{\prime \prime}$
MXF900 W 19 ＂xH5 $14_{4}^{*}(3 U) \times D 14^{4 \pi}$
PAICES：－MXF200 £175．00 MXF400 £233．85
MXF600 £329．00 MXF900 £449．15
SPECIALIST CARAIER del．£12． 50 EaCh
OMP X03 STEREO 3－WAY ACTIVE CROSS－OVE：

Advanced 3－Way Stereo Active Cross－Over，housed in a $19^{-7} \times 1 \mathrm{C}$ case．Each channel has itree level conirols bass，mid \＆lop．The removable front lascla allows access to the programmable DIL \＆witches to adiust the on each bass channel．Nominal 775 mV Inpulloutout．Fully compalllie wilth OMP rack amplifier and modvies． Price $£ 117.44+\varepsilon 5.00$ P\＆P

PIEZO ELECTRIC TWEETARS－MOTOROLA

Join the Piezo revolution！The low dynamic mass（no volce coill ol a Plezo tweeter produces an improved
Hranslent response with a lower disiortion level than ordinary dynamic weeters．As a crossover is not requred俍 EXPLANATORY LEAFLETS ARE SUPPLIEO WITH EACH TWEETER

TVPE＇ A ＇（KSN1036A） 3^{*}＇round with protective wire mesh．Ideal to
book shelf and medium sized Hi－Fi apeakers．Price $£ 4,90+50 \mathrm{p}$ P\＆P．
TYPE＇B＇（KSN1005A） $31 /{ }^{\prime \prime}$＂super horn for general purpose speakers
disco and P．A．systems etc．Price $\mathbb{5} .99+50 \mathrm{p}$ P\＆． P ．
TYPE＇C＇（KSN1016A） $\mathbf{2}^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quallity Hi－Fi sys lems and quality dlscos etc．Price $\mathbf{£ 6 . 9 9 + 5 0 p \text { P\＆P．}}$
TYPE＇D＇（KSN1025A） $2^{\circ} \times 6^{\circ}$ wide dispersion horn．Upper trequenc， esponse retained extending down to mid－range（ 2 KHz ）．Suitable for high quallit Hi．Fi systems and quality discos．Price $£ 9.99+50 \mathrm{p}$ P\＆P． TYPE＇E＇（KSN1038A）${ }^{3{ }^{3} 4}$＂horn tweeter with attractive silver finish trim． Sultable for Hi－Fi monitor systems etc．Price $\mathbb{£} 5.99+50$ p P\＆P． LEVEL CONTROL Combines，on a recessed mounling plate，level contro and cabinet input jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $£ 4.10+50 p$ P\＆P．

HI FLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers，designed to take advantage of the latest speaker technology and enclosure designs．Both models utilize studio qualify 12 cast aluminium loudspeakers with factory fitted grilles，wide disperslon ball corners，complimented with heavy duty black covering．The enclosures as landard with top hats for optional loudspeaker stands
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE 45 Mz － 20 KMz
IbIFC 12－100WATTS（100dB）PRICE E159．00 PER PAIR CI FC 12－200WATTS（100 dB）PRICE E175．00 PER PAIR SPECIALIST CARRIER OEL． $\mathbf{\$ 1 2 . 5 0 ~ P E R ~ P A I R ~}$
OPTIONAL STANDS PRICE PER PAIR \＆ 49.00
Delivery $\{6.00$ per patr

IN－CAR STEREO BOOSTER AMPS

PRICES：18OW ع49．99 250W E99．99
400W £109．95 P\＆P C2．00 EACH

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo， 150 W Brldged Mono 250 WATTS $(125$ Bridged Mono
400 WATTS 400 WATTS $(200+200)$ Stereo， 400 W Brldged Mono
ALL POWERS INTO 4 OHMS
Features：
Witereo，bridgable mono t Cholce of high \＆low level inputs L \＆R level Controts Remote Thase modules now anjoy a world．wide reputation tor quality，reliability and performance at a cealistic price．Four elc．When comsaring prices，NOTE that all mode s include ioroldal power supply，integrai heat sink，gless Hbre P．C．B，and THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS OMP／日月 100 Mos－Fet Output power 110 watts R．M．S．into 4 ohms，frequency response 1 Hz .100 KHz -3 dB ，Damping Factor >300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.002% ，Input Sensltivity 500 mV ，S．N．R． -110 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE E40．85＋E3．50 P\＆P

OMP／MF 200 Mos－Fet Output power 200 watts R．M．S，Into 4 ohms，trequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{u}$ ， T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． 110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE $64.35+\mathbf{~} 4.00$ P\＆P

OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.001% ，Input Senslitivity 500 mV ，S．N．R． 110 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE C81．75＋E5．00 P\＆P
OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．into 4 ohms，frequency res ponse $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ ， T．M．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． 110 dB ，Fan Cooled，D．C．Loudspeaker Protection， Second Antl－Thump Delay Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE \＆ $132.85+$ E5．00 P\＆P

OMP／MF 1000 Mos－Fet Output power 1000 watts R．M．S．Into 2 ohms， 725 watts R．M．8．Into 4 ohms， Irequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}=3 \mathrm{~dB}$ ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{US}$ ，T．M．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N．R．-110 dB ，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Antl－Thump Delay．Size $422 \times 300 \times 125 \mathrm{~mm}$ ．
PRICE $259.00+$ E12．00 PRP
NOTE MOS－FET MODULES ARE AVAILABLE IM TWO VERSIONS： STANOARD－INPUT SENS 500 mV ，BA CO WIDTH 100 KMZ ． PEC（PROFESSIONAL EQUIPMENT COMPATIGLE）－INPUT SENS 75 mV ，BAND WIDTM $5 O K \mathrm{~Hz}$ ．OROER STANDARD OR PEC

LOUOSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREOUENCY BULLETS AND HORNS，LARGE（A4）S．A．E． （ 00 P STAMPED）FOR COMPLETE LIST．

HCKenzie and Fane Loudspeakers are also available

EMINENCE：－INSTRUMENTS P．A．，DISCO，ETC

ALL EMINENCE UNITS B OHMS IMPEDANCE
3＂ 100 WATT R．M．S．MEE－ 100 GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO． RES．FREO． 72 Hz ，FREQ．RESP．TO $4 K H 2$, SENS 97 CB $10^{\circ} 100$ WATT R．M．S．ME10－100 GUITAR，VOCAL，KEYBOARD，OISCO，EXCELLENT MID RES．FREO T1H F．M．S．ME $10-100$ GUITAR，VOCAL，KEYBOARD，OISCO，EXCELLENT MID $10^{\prime \prime} 200$ WATT RM．S．ME10－200 GUITAR，KEYB＇O，DISCO，VOCAL，EXCELLENT HIGHPOWER MID． RES．FAEO． 65 Hz ，FREQ．RESP．TO 3.5 KHz ，SENS 99 dB ．
12 ＇100 WATT R．M．S．ME12－100LE GEN．PURPOSE，LEAD GUITAR，DI RES．FREO． 49 Hz ，FREO．RESP．TO 6 KMz ，SENS 100 dB ． REM，PISCO，STAGE MONITOR． $12^{\prime \prime} 100$ WATT R．M．S．WE12－100LT（TWIN CONE）WIDE RESPONSE，P．A．，VOCAL STAGE MONITOR．RES．FAEO 42 Hz ，FREQ．RESP．TO 10 KHz ，SENS $98 d B$ ． RES．FREQ． 58 Hz ，FREQ．RESP．TO 6 KHz ，SENS 98 dB ． RES．FREQ． 58 Hz ，FREQ．RESP．TO 6 KHz ，SENS 980 ． 300 WATT R． RES．FREQ． 47 Hz ，FREO．RESP．TO 5 KHz ，SENS 103 dB 15 ＂ 200 WATT R．M．S．ME15－200 GEN．PURPOSE BASS，INCLUOING EA RES．FREO 46 Hz ．FREO．RESP．TO 5 KHz ，SENS 99 dB ． $5^{\prime \prime} 300$ WATT R．I．S．ME1 5－300 HIGH POWER BASS，INCLUDING B PRICE §50．72＋C4．00 P\＆F RES，FREO 39 Hz, FREO．RESP．TO 3 KHz ，SENS 103 dB ．
，INCLUDING BASS GUITAR．
EARBENDERS：－HI－FI，STUDIO，IN－CAR，ETC
ALL EARBENDER UNITS 8 OMDAS（Exsept EB8．50 E EB10－50 which are dua
BASS，SIMGLE CONE，MIGM COMPLIANCE，ROLLED SURROUND BASS，SIMGLE CONE，MIGH COMPLIANCE，ROLLED SURROUND 3＂50watt EB8－50 DUAL IMPEDENCE TAPPEO 4／8 OHM BASS，MI－FI，IN－C AES．FREO． 40 Hz ，FREO．RESP．TO 7 KH Z SENS 97 dB ． O SOWA HE FRO DESP TO SKH SENS $99 \mathrm{~dB} 4 / 8$ OHM BASS， RES．FREQ． 40 Hz ，FREO．RESP．TO 5 KHz ，SENS．99dB．
RES．FREO． 35 Hz ，FREO．RESP．TO 3 KH Hz ，SENS 96 dB 12＂ 100 WATT EB 12－100 BASS，STUDIO，HI－FI，EXCELLENT DISCO RES．FREQ 26 Hz ，FREO．RESP．TO 3 KHz ，SENS 93 dB ． FULL RANGE TWIN CONE，MIGH CO MPLIANCE，ROLLED SURROUND
S\％＂ 60 WATT EB5－8OTC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC RES．FREQ 63 Hz, FREO．RESP．TO 20KHz，SENS 92 dB ．
1／2，SOWATT EB6－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ET
RES．FREQ 38 Hz ，FREO．RESP．TO 20KHz，SENS 94 dB ． RES．FREQ． 38 Hz ，FREO．RESP．TO 20KHz，SENS 94dB．
RES．FREO 40 Hz ，FREO，RESP TO 181 KHz ，SENS 89 dB B OISCO ETC． RES．FREC． 40 Hz ，FREO，RESP．TO 18KHZ，SENS 89dB． RES．FREO． 35 Hz ，FREO．RESP．TO 12 KHz ，SENS 98 dB ．

JRANSMITER HOESY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PAINTED CIACUIT BOARD AND HIGH CUALITY COMPONENTS COMPLETE WITH CIRCUIT AND WSTRUCTIONS 3 TRAN5WITTER SO－10BMHZ，VARICAP CCNTROLLED PROFESSIONAL PERFORMANCE，RANGE UP TO 3 MILES，SLZE 30 I 13 mm ，SUPPLY $12 V$ © O．SAMP． FM MICRO TRANSMITTER $100-108$ MHZ VAAICAP TUMED，COMPLETE WITH VERY SENS FET MIC，RANGE $100-300 \mathrm{~m}$ ，SIZE 56 y 4 mmm ．SUPPL．Y 9 V BATTERY．

0ver the last few years the concept of MIDI interfaced musical instruments has become part and parcel of the lives of most musicians. So much so, that today there is a great deal of MIDI equipment available, not just musical instruments, but equipment of all sorts and for many different applications. However, much of this equipment is, by and large, very expensive, and in some cases vastly over complicated with features which may be of no use to the user whatsoever.

A classic example of this is the MIDI program change pedal. Normally an expensive piece of equipment, but one that is both cheap and easy to make. To show readers how, ETI regular contributor Pete Sapwell has produced a design for a simple MIDI program change pedal. A design which does just what it says it does - sends MIDI program change commands down one of the sixteen MIDI channels.

Desígn overview

The project described here was designed with a colleague in mind; a guitarist. He uses a signal processor which was controlled by a dedicated MIDI prog change pedal. Unfortunately, he had this unit stolen. During his set, he needed to change programs on his signal processor quickly. Random access was obviously important, 'stepping through' by pressing a switch several times in succession would take too long and a mistake would also be more likely. The design which we came up with is fairly small and with ten small switches it could be fitted into a case, fixed to a guitar strap, or built into a foot sized controller.

To keep the circuit simple, a maximum of ten programs was decided on (he only needed four). I considered using an UPC and a programmed EPROM, but I thought this would be fairly wasteful for such a simple task and I wanted to exercise my brain, so decided to use discrete logic instead. The full circuit diagram is shown in Fig. 1.

How it works.

Referring to Fig.1, SW1-SW10 are the program change switches. The signals from these are decoded into inverse binary by IC5, and then fed to the 24 bit parallel to serial shift register, comprising IC3, IC4 and IC6. SW11 is used to set up the required MIDI channel number.

If all of the inputs of IC5 are at logic '11' (no switch depressed), all its outputs are at logic ' 1 '. Once inverted, this represents the binary for prog '1' (0000). Since no switch needs to be pressed to achieve this, SW1 is connected straight in to the 'wired' OR gate comprising D2 - D6. Any switch depression will result in an output change on IC5 causing one of the diodes to conduct discharging C3. This results in the output of IC2a going high. The components $\mathrm{C4}, \mathrm{R} 3$ and $\mathrm{D1}$ change the leading edge to a brief positive going pulse which is buffered and inverted by IC2b. The action of these components debounces all the switches, preventing retriggering.

The negative going pulse from IC2b is fed to the Shittload inputs of IC3, IC4 and IC6, causing the data present on the parallel inputs to be loaded into its internal shitt registers. As soon as this signal goes high, the data is clocked out to the driver TR1. This then inverts all the data and sends it to the outside worri.

The 31250 baud rate generator is composed of IC1, R1, X 1 , C 1 and C 2 . A 31.250 KHz signal is available at pin 6 of CC 1 . This signal 'clocks' the 24 bit shitt register continuously. The ' 00 ' of the shitt register is set to logic ' 0 ' so that atter a prog change has been sent, the MIDI out socket will revent to no activity.

Fig. 1 Circuit diagram for MIDI change pedal

Fig. 3 Circuit timing waveforms
delimit the data and synchronise the two units. No parity bits are sent as error protection and, generally, if an erroneous signal is received, it is ignored.

The receiving unit 'waits' for a start bit and then samples the signal at fixed intervals to extract the data. Fig. 2 shows the MIDI program change command for program ' 10 ' and is composed as follows:- 1 start bit, 8 data bits, 1 stop bit, 1 start bit, 8 data bits and finally one stop bit.

The first nibble is the MIDI channel (0000 $=\operatorname{ch} 1,1111=$ ch 16), the second nibble (0011) is the MIDI program change command, the last byte represents the program number ($10010000=$ program 10) All MIDI data is sent least significant bit first, start bits are ' 0 ' and stop bits are ' 1 '.

Construction and testing

Referring to Fig.4, construction is fairly straight forward on the PCB. The board is double sided and needs soldering top and bottom. Where you find a pad on the top foil, solder to it! A short length of wire should be soldered in place at ' X '.

I found it hard to get hold of SIL resistors and so decided to mount a number of discrete resistors vertically and solder their top ends together. Take care not to damage the static sensitive ICs, and fit these last along with the semiconductors.

SW1 1 is used to set up the MIDI channel on which the unit will operate. I used a DIL switch, but you could save money by just fitting wire links here. Fig. 6 is a table of link/ switch positions against MIDI channels. Conversely, at slightly more expense, a rotary

Fig. 4 Component overlay
binary switch could be wired in, to provide quick access to any channel.

I decided not to include a design for the case, as I thought this would be a matter of personal preference, the layout of switches and their type being best chosen by the eventual user.

If the circuit is built on anything other than a PCB, then the use of a dual trace scope is likely to be needed if the unit doesn't work. Fig. 3 shows the timing diagram for the unit and should provide an aid when debugging. As for testing, connect the unit to a 9 V battery via an ammeter and the current drawn should not exceed about 5 mA . If all is well, connect the unit into a MIDI device and hit a button. The result will confirm the unit as working (I hope!).

The unit draws around ImA when on 'standby', so it will run quite happily off a 9 V battery for some time!

D Sapwell

PARTS LIST

RESISTORS
All .25W Carbon ar Metal Film
R1 3M9
R2, $7,8-21 \quad 10 \mathrm{~K}$
R3 3 K 3
R4,6 220R
R5 2 K 2
CAPACITORS
C1,2 22pF Min Ceramic C3 47uF Tant 35V Elect
C4 6n8 Polyester
C5 470pF Min Ceramic
C6,7 100nF Polyester
C8 $220 \mu \mathrm{~F} 10 \mathrm{~V}$ Radial Elect

SEMICONDUCTORS
IC1 CD4060
IC2 CD4001
IC3,4,6 74HC165
IC5 74LS147
IC7 78L05
D1-D6 IN4148
TR1 2 N3903
MISCELLANEOUS
SW1-SW10 Momentary Switch
SW11 4 Way DIL switch or wire links SW12 On/Off switch
$\mathrm{X} 1 \quad 4 \mathrm{MHz}$ cystal
5 Pin DIN socket
PP3 Battery connector
17 OHf 1 mm Vero pins

Enter a World of Electronics Hobby Information with Popular Electronics

Get the latest electronic technology and information!

Discover the high-voltage excitement of hobby electronics each month in Popular Electronics. Build sophisticated electronics projects from circuits and plans in each monthly issue. Whether it's add-ons or modifications for stereos, TV's, computers, radios, etc.; work savers for your home and car; or useful test gear for your workbench, you'll find it in Popular Electronics. Plus. . .you'll find informative features and theory articles, monthly columns, hobby-oriented departments, and much more in Popular Electronics.

POPULAR ELECTRONICS SUBSCRIPTION ORDER FORM

Popular Electronics, P.O. Box 338, Mt. Morris, IL 61054 U.S.A.
YES! I want to subscribe to Popular Electronics for 1 full year (12 issues) for only $\$ 26.45$ (U.S. Funds only).
Please print clearly
Name
Address \qquad
City, etc.

SPECIAL COLUMNS

 - Circuit Circus, Think Tank, Computer Bits, DX Listening, Antique Radio, Amateur Radio, Scanner Scene.ETII

Chelmer Valve Company for Audio Valves

Audio valves with famous Brand Names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.
We ar Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.
For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVCPREMIUM valves.
A selection of the more popular types is listed here.

Price list \& Order Form for CVC PREMIUM Audio Valves							
	UNIT PRICE	QTY.	TOTAL PRICE		UNIT PRICE	QTY.	TOTALPRICE
PRE-AMP VALVES				CARRIED FORWARD.			
ECC81/12AT7	5.00			RECTIFIERS			
ECC82/12AU7	4.00			G233			
ECC83/12AX7	5.00				4.50 4.50		
ECC85	4.00			GZ34/5AR4	4.50 5.00		
ECC88	5.00			5U4G	5.00 3.20		
EF86	4.00			5Y3GT	3.20 3.50		
E81CC(GOLDPIN)	6.00			524 GT	3.50		
E82CC " "	6.00			SOCKETS			
E83CC "	6.00						
E88CC " "	7.00			B9A (PCB)	1.60		
E80F	12.00			B9A (CHASSIS)	1.60		
E83F	5.50			OCTAL (CHASSIS)	1.75		
6SL7GT	4.00			4 PIN (UX4)	3.00		
6SN7GT	4.20			MATCHING CHARGES* POST \& PACKING			
POWER VALVES							
							3.00
2A3 (4 PIN)	14.00			TOTALEXC. VAT			
2A3 (OCTAL)	14.00						
$\frac{211}{300 B}$	22.00			VAT@17\%\%			
811 A	50.50 9.50			TOTAL TOPAY			
845	29.90					£
EL34/6CA7	7.50			* MATCHING, if required; state valve types \& if PAIRS, QUADS or OCTETS - Allow $£ 1.00$ per valve for this service.			
EL84/6BP5	4.00						
E84L/7189A	5.10						
KT66	9.20						
KT88	12.50			Make CHEOUES payable to 'CHELMER VALYE COMPANY or pay by ACCESS/MASTERCARD/VISA, give details:-			
KT88(GOLDQ)	18.50						
6L6GC	6.50 8.00						
6 V 6 GT	5.00						
6146B	10.20			Signature	y	
6336A	30.00						
6550A	11.00						
7581A	10.00			Address			
TOTAL CARRIED FORWARD.				..			
				Post Code			

Valve amplifiers sound better still with CVC PREMIUM valves!

130 New London Road. Chelmsford. Essex CM2 ORG, England. Telelphone: (0245) 355296/265865 Fax: (0245) 490064

JUST LOOK AT WHAT'S AVAILABLE FROM BONEX

Balance Mlxers
Batterles
Button Celis, Ni-cads,
Battery Holders,
Battery Ellminators,
Ni-cad Chargers,
Boxes
ABS Plastic, Dle-cast, Hand-Held Enclosures,
Bridge Rectifiers
Bulbs
Cables
Audlo, BBC, Camcorder,
Cassette/Calculator, Mains,
Computer, IBM PC/AT,
Serial, Monitor Extension,
Parallel, Patch Nideo Leads,
Scart Cables, Serial Printer,
Video/Audio Dubbling Kt,
Coblo Tio:
Capachiors
Ceramic Discs
Ceramio Feedthroughs, Chip, Electrohtics, Monolithles, Myiars, Polycarbonates, Polyotyrenos, Polyeatere,
Tantalum Beads,
Capachors Variable
Film Dielectric Trimmere, Ceramic Trimmers,

CMOS Devices Computer Accessorles Adaptore 9 W to 25 W , Data Switch Boxes, Gender Changers, RS232 - Patch Boxs, Null Modems, Plug In Testers, Surge Protectors, Surge Protector Plugs, Connectors Audio Adaptor/Plugs,
Banana Connectors, Binding Posts BNCs.
Centronics, D ,
D High Density,
DC Power, DILIC.
DINs, IDCe , Edge, F,
Jack $2.5 \mathrm{~mm}, 3.5 \mathrm{~mm}, 6.3 \mathrm{~mm}$,
Malne , Microphones, Molex , N-Type, Phono,
PL259, RF Adaptors, Scart, TNC, Terminal
Stips, TV , XLR,
crocodlle Cllps Cryetals
Desolder Pumps Dlodes
Plastic N4000 / IN5400,
Toko Varicaps
Signal Dlodes, Zener, BZYs and BZXs,

Drills

Bits and Burrs
Expo,
Pin Chucks,
Power Supplys,
Saws and Slitting Discs,
Fans
Feot, Rubber
Ferries
Filters
FM Ceramics, Mechanical IF's, Ceramic Resonators, Crystal, Hellcals, NTSC / PAL, Plidt Tone, Quadrature Detector, Satelilite TV, Video, Fuses

Grommete

Howes Kits
Heatsinks
indugiore Flxed
nducore Mouldod
nductore surface Mount
nductors Varisble
infra-red Source Sensor
Insulating Tape
IntegratedClicults
CIMOS,
Eproms,
Memory,
Th.

Khts and Modules
LED. $8,3 \mathrm{~mm}$ and 5 mm Ught Dep Resistors
Loudspeakers
Microphone Inserts
Multumeters
Neon Indicators
Nuts and Bolts
Opto Switchs
Optolsolators
P.C.B. 8

Copper Clad, Etch Resist
Transfers, Photo Reslat,
Pins, Proto-type
Pollshing Mope
Potentlometers
Control Pots, $16 \mathrm{~mm}, 24 \mathrm{~mm}$,
Pre-sets,HorizontalNertical
Timmer Pate,
Power Supplies
geliny
Resistore
Carbon Film, Metal Oxide,
Wirewound,
Screening Cana
Semi's Mount Kits
Solder
Boldering írone
Switches
DIL, Key, Mloroswitches,
Push, Rotay,Slide,Toggles,

Test Leads
Test Probes
Tools
Crimping, Cutters,
Files, Insertion,
Reamers,
Screwdrivers,
Strip Board, Trimtools,
Torold Cores
Thyristors
Transformers, Mains
Transistors
Audio Power,
Darlingtons, F.E.T. 8
GaAsFETs,
Low Power RF,
Microweve,
MosFETs,
Power RF,
Smail SIgnal,
VMOS
Trlacs
TTL
Video Modulators
Voltage Regulators Whre
Enamelled Copper, Tin Plated,
Sllver Plated, Zero Irisert Force Sockets

12 Elder way
CATALOGUE AVAILABLE
Langley Business Park
Slough
SPECIAL OFFER
SBL-1 BALANCE MIXERS $£ 3.75$
Berkshire SL3 6EP. Telephone : 0753549502 Fax: 0753543812

PCB DESIGN SOFTWARE

RANGER 1

XT/AT PC
Circuit - PCB
From Circuit Design Through to Artwork In One Package!

$£ 100$

Fully Integrated AutoRouter
$£ 50$
Exchange your easy PC For a free AutoRouter

RANGER 2
 XT/AT + 386 PC

It has all the features you will ever need at an outstanding price. But now with a new 2 layer 386 Ripup \& Retry AutoRouter

$£ 599$

Option Pack 100\% Router Simultaneous 6 layer Ripup \& Retry AutoRouter with via Minimisation. Autocad DXF in \& out. GERBER in.
$£ 350$

LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

 8088 XT - PC99

256k RAM - expandable to 640k
4.7 Mhz speed 360k 5-1/4" floppy 2 serial \& 1 parallel ports MS-DOS 4.01

Optional FITTED extras: 640K RAM $£ 39.12^{\circ}$ CGA colour monitor with card £39. 2nd $5-1 / 4^{\circ} 360 \mathrm{~K}$ floppy $£ 29.95 .20$
only£99.00

FLOPPY DISK DRIVES

51/4 " from £22.95-31/2" from £21.95! Massive purchases of standard $5^{1 / 4} 4^{\circ}$ and $3 \mathrm{~V} \mathrm{~K}^{\prime \prime}$ drives enables us
to present prime product at industry beating low pricesl All units (unless stated) are removed from often brand new equipmen and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of s
ard size. All are IBM-PC compatible (if $3^{1 / 20}$ supported). 3.5" Panasonic JU363/4 720K or equivalent
3.5" Mitsublshl MF355C-L. 1.4 Meg. Laptops only" $£ 29.95$ (B) 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop $£ 29.95$ (B) 5.25 " EXTRA SPECIAL BRAND NEW Mitsubishi MF5018

360 K . Absolutely standard fits most computers $£ 22.95$ (B) - Data cable included in price. Shugart 800/801 SS refurbished \& tested Shugart Mitsubishi double sided refurbished \& tested Mitsubishi M2894-63 double sided s
hard or soff sectors- BRAND NEW
Dual 8 " drives with 2 mbyte capacity housed with built in power supply! Ideal as exterior drives! $£ 499.00(F)$ End of line purchase scoop! Brand new NEC D2246 8* 85 megabyte of hard disk storagel Full CPU control and industry standard SMD interface. Utrra hi speed transter and access time leaves the good old ST506 interface standing. In mint condintion and comes complete with manual. Only $£ 299$ (E)

THE AMAZING TELEBOX!

Converts your colour monitor into a
QUALITY COLOUR TV!

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronlcs ready to plug into a hos of video monitors made by manufacturers such as
MICROVITEC. ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct connection to most makes of monitor. For complete compatibility even for monitors without sound - an integral 4 watt audio amplifier and low level HI Fi audio output are provided as standard
elebox ST for composite video input monitors $£ 32.95$ Telebox STL Telebox MB as ST but with integral speaker £36.50 \& hyperband For overseas PAL versions state 5.5 or 6 mhz sound specification. Telebox RGB for analogue RGB monitors (15khz) Shipping code on all Teleboxes is (B)
$\mathbf{\Sigma} 69.95$ RGB Telebox also suitable for IBM multisync monitors with RGB analog and composite sync. Overseas versions VHF \& UHF call.

No Break Uninterruptable PSU's brand new and boxed 230 voils uninterruptable power supplies 1085 Densei. Model MUK 0565-AUAF is 0.5 kva and MUO are intemal, MUD has them in a matching case. Times from interrupt are 5 and 15 minutes respectively. Complete with full MUK $\quad 249$ (F) MUD 525 (G)

640k RAM expandable with standard SIMMS

2 serial \& 1 parallel 12 Mhz Landmark speed - MS-DOS 4.01 20 meg hard disk 1.2 meg 5-1/4" floppy 1.4 meg $3-1 / 2^{\prime \prime}$ floppy EGA driver on board

Co-processor socket Enhanced 102 key keyboard
Clock \& calendar with

Only£249.00

The Philips 9CM073 is suggested for the PC286 and the CM8873 for the PC386. Either may use the SVGA MTS. 9600 if a suitable card is Installed. We can fit this a
for the PC286 and £39.00 for the PC386.

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak). Semi open frame giving $+5 v 35 a,-5 v 1.5 a,+12 v 4 a(8 a$ peak), $-12 v 1.5 \mathrm{a}$, $+24 v 4 a$ ($6 a \operatorname{peak}$). All outputs fully regulated with over voltage protection on the $+5 v$ output. AC input selectable for $110 / 240$ pac. Dims $13^{\circ} \times 5^{\circ} \times 2.5^{\circ}$. Fully guaranteed RFE. $\quad \mathbb{8 5 . 0 0}(\mathrm{B})$ Power One SPL130. 130 watts. Selectable for $12 v(4 A)$ or $24 V$ (2A). $5 v$ © 20A. $\pm 12 v$ @ $1.5 A$. Switch mode. New. $£ 59.95(B)$ Astec AC-8151 40 watts. Switch mode. +5 v 영 $2.5 \mathrm{a} .+12 \mathrm{v}$ (3) $2 \mathrm{a} .-12 \mathrm{v}$ © $0.1 \mathrm{a} .6-1 / 4^{\circ} \times 4^{\circ} \times 1-3 / 4^{\circ}$. New $£ 22.95(\mathrm{~B})$ Greendale 19AB0E 60 watts switch mode. $+5 v$ © $6 a,+12 v$ (e) $1 \mathrm{a},+15 \mathrm{v}$ (1) 1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. £24.95(C) (1) 15a. 5 v . 130.130 watt higrade V E spec. Switch mode. 45 v 15a,-5v 1a,土12v@ $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$. New. $£ 49.95(\mathrm{C})$ Boshert 13090. Switch mode. Ideal for drives \& system. $+5 v$ © 6a,
$+12 v$ 2. $2.5 \mathrm{a},-12 \mathrm{v}$ ($0.5 \mathrm{a},-5 \mathrm{v} @ 0.5 \mathrm{a}$. Famell G6/40A. Switch mode. 5v © 40a. Encased £95.00(C) Farnell G24/5S. As above but 24v © 5a. £65.00(C

BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics systern on large networked systerns the architecture of the BBC board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this board!! it is supplied complete with a connector panel which brings all the I/O to 'D and BNC iype connectors - all you have to do is provide +5 and $\pm 12 \mathrm{~V}$ DC. The APM consists of a single PCB with most majo ic's socketed. The ic's are too numerous to llst but include a 6502. RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating system on whlch we EPROMS contain the custom operating system on which we
have no data, On application of DC power the system boots and provides diagnostic information on the video output. On board provides diagnostic information on the video output. On board enable the four extra EPROM sockets for user software. Appr. dims: maln board $13^{\circ} \times 10^{\circ}$. I/O board $14^{\circ} \times 3^{\circ}$. Supplied teste

Only $£ 29.95$ or $2_{\text {for }}$ £53
 SPECIAL INTEREST Trio 0-18 vdc bench PSU. 30 amps. New

DEC LS/02 CPU bord
Rhode \& Schwarz SBUF TV test transmitter
$25-1000 \mathrm{mhz}$. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter Thurlby La 160 B logic analyser
1.5kw 1Jr 60 hz power source

Anton Plllar 400 Hz 3 phase trequency converter 75 K Newton Derty 400 Hz 70 Kw converter Nikon PL-2 Projection lens meter/scope Sekonic SD 150H 18 channel Hybrid recorder HP 7580A A1 8 pen high speed drum plotter

BRAND NEW PRINTERS

Microline 183. NLQ 17×17 dot matrix. Full width. Hyundal HDP-920. NLQ 24×18 dot matrix full width Qume LetterPro 20 daisy Qume OS-3 interface. Centronics 152-29×7 dot matrix. Full width.

2 meg RAM expanded by slots
20 Mhz with 32 k cache.
Expandable to $64 k$
40 meg hard disk
1.2 meg 5-1/4" floppy VGA card installed

- 2 serial \& 1 parallel ports MS-DOS 4.01 Co-processor socket Enhanced 102 keyboard Kwik Disk Accelerator Software - FREE BRAND NEW AND BOXED! only£425.00

MONITORS

14" Forelront Model MTS-9600 SVGA multisync with resolution of $1024 \times 768.0 .28$ pitch. "Text" switch for word processing etc. Overscan switch included. Ideal for the PC 386 or PC-286 with SVGA card added. Also compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode), Archimedes etc. In good used condition (possible minor screen bums). 90 day guarantee. $15^{\circ} \times 14^{\circ} \times 12^{\circ}$. Only............ $£ 159(E)$
 14 " Phillips Model CM8873 VGA multisync with 640×480 resolution. CGA, EGA or
VGA Sound with volume control. There is also a special 'Text' switch for word processing, spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the monochrome high resolution mode), BBC, Archimedes etc. Good used condition (possible minor screen dums) 90 day guarantee $15^{\circ} \times 14^{\circ} \times 12^{\text {. Only }}$ Philips 9CM073 similar (not identical) to above for EGANCGA amber or green screen selection. $14^{*} \times 12^{\circ} \times 13-1 / 2^{\circ} \ldots \ldots . .599(\mathrm{E})$ KME 10 high definition colour monitors. Nice light 0.28° dot pitch for superb clarity and
modem styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atan, Commodore Amiga, Acom Archimedes \& BBC. Measures
only $13.5^{\circ} \times 12^{\circ} \times 11^{\circ}$. Also works as quality TV with our HGB Telebox. Good used condition. 90 day guarantee. Only. $£ 125$ (E) KME as above for PC EGA standard. \qquad 1445 (E) Brand new Centronic 14° monitor for IBM PC and compatibles at a lower than ever pricel Completely CGA equivalent. Hiores Milsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz 90 day guarantee
quality ex 12° 1BM-PC compatible. High ay guarantee. In an atractive two tone bbed grey plastic case measuring $15^{\circ} \mathrm{L} x$ W $\times 12^{\circ} \mathrm{H}$. The front cosmetic bezel has easons. Only. for contractual 69 (E)

uperbly made "UK manufaciure pIl all solid montors, complete with composite video $\&$ sound inputs AMrac e teak style case Perted for Schools, Shops, Disco, Clubs. XCELLENT little used condition with full 90 day guarantee. 20"....£135 22"....£155 26"....£185 (ค) GALL FOR PAICING ON NTSC VERSIONS! Superb Quality 6 foot 40 u
 19" Rack Cabinets Massive Reductions Virtually New, Ultra Smart! Less Than Half Price! Top quality 19° rack cabinets made in UK by Optima Enclosures Lid. Units feature designer, smoked acrylic lockable front door, tull height lockable half louvered back door and removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu-
tion strip make these racks some of the most versatile we have tion strip make these racks some of the most versatile we have

DISTEL © The Original
Free dial-up database!
1000 's of itenis s info on lin
$: \begin{array}{ll}: 0 \cdots: & :\end{array}$
1000° s of itenistinfo on line
081-679-1888
081.670.414
-ELELTRENHIS5-
All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order $£ 10$. PO orders from Government, Universities, Schools \& Local Authorities
 change prices \& specifications without prior notice. Orders subiect to stock. Quotations willingly given for higher quantties than those stated. Bulk surplus always wanted lor cash.

Q으요

 UK Distributor for Standard Toroidal Transformers

-107 types available from stock

- Sizes from 15VA to 625VA
-Dual 120 v primaries allowing $110 / 120 \mathrm{v}$ or 220/240v operation

TYPE	SERIES NO.	SEC VOLTS	RMS CURRENT	TYPE	SERIES NO.	SEC VOLTS	RISS CURRENT
15va	03010	6+6	1.25	225VA	63012	12+12	9.38
£10.68	03011	$9+9$	0.83		63013	15+15	7.50
	03012	12+12	0.63	L21.04	63014	18+18	625
	03013	15+15	0.50		63015	22+22	5.11
	03014	$18+18$	0.42		63016	25+25	4.50
	03015	22+22	0.34		63017	$30+30$	3.75
	03016	$25+25$	0.30		63018	35+35	3.21
	03017	30+30	0.25		63026	40+40	2.81
30VA	13010	$6+6$	2.50		63025	45+45	2.50
£12.21	13011	$9+9$	1.66		63033	50-50	225
	13012	12+12	1.25		63028	110	2.04
	13013	15+15	1.00		63029	220	1.02 0
	13014	$18+18$	0.83		63030		0.93
	13015	$22+22$	0.68	300 VA	73013	15+15	10.00
	13016	$25+25$	0.60		73014	$18+18$	8.33
	13017	$30+30$	0.50	£22.94	73015	$22+22$	6.82
50VA	23010	6+6	4.16		73016	25+25	6.00
¢13.84	23011	9+9	2.77		73017	$30+30$	5.00
	23012	12+12	2.08		73018	35+35	4.28
	23013	$15+15$	1.66		73026	$40+40$ 45	3.75
	23014	$18+18$	1.38		73025	45+45	3.33
	23045	$22+22$	1.13		73033	50+50	3.00
	23016	$25+25$	1.00		73028	110	2.72
	23017	$30+30$	0.83		73029	220	1.36
	23028	110	0.45		73030	240	1.25
	23029	220	0.22	500VA	83016	$25+25$	10.00
	23030	240	0.20		83017	$30+30$	8.33
80VA	33010	6+6	6.66	£29.57	83018	$35+35$	7.14
£15.43	33011	$9+9$	4.44		83026	$40+40$	6.25
	33012	$12+12$ $15+15$	2.66		83033	50+50	5.00
	33014	18+18	2.22		83042	55+55	4.54
	33015	$22+22$	1.81		83028	110	654
	33016	$25+25$	1.60		83029	220	2.27
	33017	$30+30$	1.33		83030	240	2.08
	33028	110	0.72	625VA	93017	30+30	10.41
	33029	220	0.36	¢32.64	93018	$35+35$	8.92
	33030	240	0.33	¢32.64	93026	$40+40$	7.81
120VA	43010	${ }^{6+6}$	1000		${ }_{9}^{93025}$	$45+45$ $50+50$	6.94 6.25
¢16.45	43011	$9+9$ $12+12$	6.66 5.00		93042	55+55	5.68
	43013	$15+15$	4.00		93028	110	5.68
	43014	$18+18$	3.33		93029	220	2.84
	43015	22+22	2.72		93030	240	2.60
	43016	$25+25$	2.40				
	43017	30+30	2.00	13.8	-	WER	PL
	$\begin{aligned} & 43018 \\ & 43027 \end{aligned}$	$35+35$ $20+20$	3.00		RANS	ORM	
	43028	110	1.09	8C267	500VA	$18+18$	£32.64
	43029	220	0.54	97845	675VA	t6.1V	
	43030	240	0.50	91845			
160VA	53011	$9+9$	889				
£19.21	53012	$12+12$	6.66				
	53013	$15+15$	5.33				
	5	$18+18$	4.44				
	53016	$25+25$	320	Prices	iclude	T an	riage
	53017	$30+30$	2.66				
	53018	$35+35$	2.28				
	53026	40.40	2.00		ant	pri	
	53028 53029	110 220	1.45 0.72	avail	able		
	53030	240	0.66	avail	able	on rec	

Write, phone or fax for free Data Pack Jaytee Electronic Services
143 Reculver Road, Herne Bay, Kent CT6 6PL
Telephone: (0227) 375254 Fax: 0227365104

NEW
 THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

- Provides 10MHZ, 5 MHz 81 MHz
* Use in tor calibraling equipment that relies on ©uartz cysstals TCXOs VCYOs, oven
crystals.
- Phese locks io DROITWICH (rubidium controlled and liaceable to NPL)
- For ADJED VALUE also phase locis to ALLOLIS (cesium controlled and slaceable

10 OP - French eq to NPL
t British Jesigned and British manulactured - Now with Sine Wave Oplion Output I volt into 50Ω

ACRON \&OZP SYNCRONISING PULSE GEN \& 6XSP ENCODER ETSEA CE9S RADIOMETER GKFG DIST. METER ZOHZ-2OKHZ DAWE 14250 SOUND LEVEL METER 40-1200B(A) DAWE 8912 C UITTRASONIC LEAK DETECTOR IWATSU SS-5802 DIGITAL STORAGE SCOPEX 156 GMH2 SINGIE TRACE TEKTRORIX 2215 60MHZ2 TRACE DE. T/B TEKTROHIX 453 A SOMHZ 2 TRACE DE T/B TELEOUPMENT S62 SINGLE TRACE SMHZ SCOP: H.P. B4O5A VECTOR VIWETER IGHZ PHILIPS PM3226 I5MHZ DUAL TRACE TELEQUPMENT D 61 IOMH2 OUAL TRACE SE LABS SM111 IBMH2 DUAL TRACE TEK 4658 100w W Z OUAL TRACE DEL T/B TELEOUPMENT D67A 25MHZ. 2T, DEL T/B H.P 1700A $35 \mathrm{MH} Z \mathrm{D}$ DUAL TRACE HITACHIVC 6015 10MHZ DIGITAL STORAGE H.P. IJAOA X-Y DISPLAYS

WANOELGOLTERMANN SPM- 2 LEVEL METER WANDEL'GOLTERMANN SPM-3 LEVEL METER WANDEUGOLTERMANN PS-3 SIGNAL GEN MARCON TF2304 AMFM MOD METER PRTBLE MARCOM TF 2330 WAVE ANAL YSER $20 \mathrm{~Hz}-50 \mathrm{H}+2$ H.P. $5315 A$ IGh2 FICTR, OPTS 1,283

695 1 PR COPE

POA

POA POA PM 695 TS | COS |
| :---: |
| $\$ 595$ |
| NA |FEEDBACK SSO603 1MHZ SNEE/SO OSC.KAVE DEE, PNEUMO UV EXP UNIT $390 \times 260 \mathrm{~mm}$ FARNELL E $3500-350 \mathrm{~V} 100 \mathrm{~mA} .2 \times 6.3 \mathrm{~V}$ FARNELL FGI FUNC GEN. $2-22$ MHZ

COMMUNICATIONS RECEIVERS VARIOUS LCR MARCONI TF13130254 LCR COMPONENT COMPARATOR NNO CZIS7/S LEVELL TMGB MCRO Y-METER A5OMHZ LEVELL TM3B MICRO V-METER 3MHZ OERTLING VZO SINGLE PAN BALANCES $200 G \mathrm{M}$ ANALYTICAL BALANCES WITH WEIGHTS $250 G \mathrm{GM}$ VACUUM PUMPS $1.5 \& 2.8$ CU.MHR $£ 125$ \& $£ 1$

LIST AVAILABLE BUT 1000 'S OF UNLISTED BARGANS FOR CALLERS ALL PRICES EXC. OF PsP AND VAT

0 HALCYON ELECTRONICS
 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8.JR

 SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340
electronize electronic kits

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION
A unique extended CDI system gives a super high power spark under conditions where the standard system fust cannot cope. The contact breaker is retained for ease of fitting but operates only at low power EXTENDED CDI IGNITION parts kit $£ 24.75$ assembled $£ 32.75$

MICRO-PRESSURE CAR ALARM

A unique air pressure sensing system operates automatically without door switches etc. and is disarmed with the ignition key. Provides exit and entry delays with audible warning when triggered. Easily fitted with only three leads. A Power MOSFET output drives a siren or the existing car hopn.
MICRO-PRESSURE CAR ALARM parts kit $£ 15.95$ assembled $£ 22.35$ VOLT DROP OPERATED CAR ALARM
A similar unit to the above but relying on the courtesy light operation and the well known volt drop detection system
VOLT DROP CAR ALARM parts kit £14.90 assembled £20.95

MICRO PRESSURE TRIGGER

A small module to up-grade any volt drop alarm to "Micro-Pressure" sensing or combine the benefits of both systems.
MICRO PRESSURE TRIGGER parts kit $£ 10.95$ assembled £14.95

$120 d 8$ PIEZO SIREN

A high intensity vehicle alarm siren for use with the above alarms 120dB PIEZO SIREN assembled only $£ 11.95$

CODED INFRARED RECEIVER

A dash top mounted unit gives coded remote control of the above alarms Includes a security chip with anti-scanning and 59,046 customer selectable combinations. Also has "Mega Bright" flashing LED to warn off intruders. CODED IR RECEIVER parts kil $£ 21.35$ assembled $£ 26.55$

CODED INFRARED TRANSMITTER

A key ring code transmitter
CODED IR TRANSMITTER parts kit $£ 13.95$ assembled $£ 17.95$
All the above include cable, connectors and clear easy to follow instructions. All kits Include case, PCB, everything down to the last washer, even solder Prices are mall order discount, fully inclusive and apply for U.K. and export. Telephone orders accepled with VISA or ACCESS payment.
Ask for delalled brochures or order direct (please quote ETH11) from

ELECTRONIZE DESIGN
 Tel. 0213085877

2 Hillside Road, Four Oaks, Sutton Coldfield, 87440 DC

Car Alarm

Protect your car from thieves and vandals with this infra-red alarm project

Pick up a newspaper, switch on the radio or TV, and the odds are that you will hear yet more stories about the horrendous increase in both car thefts and thefts from cars. Indeed, there must now be few people who have not either had a personal experience of such crime or know someone who has.

It seems that we in the UK are not alone in this respect, as according to ETI contributor Magnus Pihl, the same increase in car related crime is happening in his native Sweden. As he points out the only way to protect oneself and one's car from becoming another statistic is to install a car alarm, but cheap and reliable systems are hard to find, a fact that has prompted him to design his own system.

The following is the design for a car alarm which controls the central locking system, together with an infra red remote control key for turning the alarm off and on. This project is divided into two units, the alarm and the infra red transmitter. This month we take a look at the alarm circuit.

How the alarm works

The block diagram in Fig. 1 shows that the \mathbb{R}-radiation from the transmitter is picked up by the \mathbb{R}-receiver module IC6, an HC-NE01. The ΠL-data output from this circcit is then inverted and fed to the decodercircuit IC1. If the code input by the receiver is correct, then the JK-flipflop is clocked by the pulse.

The clocking of the JK-flip-flop then triggers Timer 1 to start flashing the window-LED. Next Timer 2 is triggered by the output of IC1. The function of this Timer is to determine how long the Central Locking System, or CLS, runs. The function of the following AND gates is to separate the open and close signals. These signals then go through two drivers for the relays in your car's CLS. If your car does not have a CLS then you can make one with the aid of two relays, which will be explained later in this article.

The output from the decoder and the JK-flip-flip is also used as input to IC5. The MMV2 in IC5 decides how long the indicator lamps should stay lit Because of the high current involved, these lights are driven by a relay. MMV1 is set running when a door is opened and the alarm is activated. It is coupled via a driver circuit to the car's hom.

Construction of the circuit

If we look at the actual circuit diagram in Fig.2, you can see that R1, R2 and Q1 are used as an inverter, thus the IRreceiver module HC -NE01 has inverted data at its output pin. In order to keep the cost down as well as controlling the size of the receiving PCB, the design uses a fully integrated component for receiving the code. Normally several OPAMPs and additional circuitry needed, but the HC-NE01, remote control receiver will do the job even better, on top of which it is small and only costs about $£ 3$. It should be noted that this module is often used in TV's and VCR's and has a very wide and long distance receiving area. It is low-cost, extremely compact and fully TTL-compatible. It will only detect burstwaves at 37.9 kHz . Wavelength 940 nm . Current dissipation is 3 mA .

The twelve presettable inputs to the UM3750 decoder circuit will give a total of 4096 different combinations. This is a sufficient number of combinations to prevent any other

Fig.2. Alarm circuit diagram

To set pin 17 (transmitter accepted) high, the twelve correct digits must be sent four times, before it accepts the transmission code. When the transmission stops, pin 17 drops low again.

IC 2 (74LS76) is a JKflip flop. When a pulse from the output of IC 1 reaches pin 1 , it changes from low to high and vice versa. The output on pin 15 indicates if the alarm system is on or off.

IC 3 (NE 556) uses this signal to flash the LED in your car's window. The other timer in fhis IC has its trigger input connected to the output of IC 1 by a capacitor C 2 and a resistor R 5 . This is designed to generate a rapid pulse which activates the timer that pulls or pushes the electronic locks in your car's doors.

For motor driven CLS, this pulse length should not exceed one second. For pneumatic systems, 6 seconds is enough. In a Volvo 240 with motor CLS, 0.5 seconds is ample.

The time is set by $\mathrm{t}=\mathrm{R} 6$ * C3.
The two AND gates in IC 4 are used to separate the open/ close signals.

The On/Off signal from IC 2 , pin 15 is connected to pin 2. The signal is also inverted by Q3, R9, R10, and connected to pin 13. The CLS-pulse is then connected to both gates next input. Now, we have two independent open/close signals,

IR transmitters accidentally opening your car. The external resistor and capacitor can be adjusted to determine how fast the twelve digit security code is sent and thus provide further security against unauthorised entry. The recommended frequency is 100 KHz , but the first prototype ran at 26 KHz . It will probably run at many other frequencies. The frequency can be calculated using the formulae:
$f=2 / R 3^{*} \mathrm{Cl}$.
Using this formulae to set your own unique frequency, plus the twelve digit security code, will secure your car completely from unauthorised transmitters. The use of 5% tolerance resistors is perfectly acceptable.

PARTS LIST

Alarm
Resistors
R1,R10,R15 1k
R2,R4,R5,R7 10k
R9,R17,R19 10k
R3 $\quad 100 \mathrm{k}$ (see text)

R6,R16 4k7
R8 100k

R11,R12,R20 220
which are driving the Darlington stages Q4-Q7.
The rest of this circuit is the alarm system which comprises IC 5, a 4538B dual monostable mulbrivator. The length of time that power is supplied to the siren is determined by the formulae:

$$
\mathrm{t}=\mathrm{R} 13^{*} \mathrm{C} 5 .
$$

To confirm that the alarm system has receieved the transmission from the transmitter, all indicator lamps will be lit for a few seconds. The timer device is coupled at IC 5. Once again, the time is set by $\mathrm{t}=\mathrm{R} 18$ and C6.

Q8 and Q9 are driver stages and don't need any further explanation. A closer look at Fig. 3 will help you understand the system better, when it is running.

Building the project.

After you have etched the PCB and cleaned it with acetone, the first task is to set the identity code. On the PCB, pins 1-12 on ICl are connected to ground and in order to set your own code the appropriate tracks should be cut. You must of course set the same ID-code when you construct the transmitter. ICl uses internal pull-up resistors. Calculate your own transmission rate for the UM 3750 and mount the resistor and capacitor.

As always, mount diodes, resistors, capacistors first, and finish with IC's, some resistors are mounted vertically. Solder all wires to a connector to make it easier to troubleshoot the PCB. At all times, study the "PCB-overlay".

Notice that D4 is mounted directly onto the relay's coil connections.

The relay is mounted close by the PCB-card. If you want to put the project in a case, this poses no problem, but is not absolutely necessary and costs money. A good place to put it is under the steering column near the fusebox. But on no account should you forget to isolate the PCB from the chassis, this is very important.

All that is left is to connect all wires and mount the final CLS- motor, see Fig. 4.

For people who do not own a car with CLS, then one can easily join two relays as Fig. 5 shows. You must make sure that the relays can handle the current and that the motors dissipate. Note that the motor dissipates several times more current when connected to the door's lock.

Use an external fuse at IA and connect it in the power lead.

The CLKS signals from the PCB are connected to the key switch in the door, that was removed earlier. Next, connect the door-input to the door switch in the driver door. Connect the left and right direction lamps to the relay and feed the common pins with 12 V power. Do not use the same pin for left and right indicator lamp. If you do, they will always light/ flash together!

Finally, connect the horn, power, ground and IR-detector leads to their appropriate connections. When, everyihing looks OK, turn on the power. Make sure that you can easily turn off the power if anything should go wrong. It is a good idea to sit in the car whilst testing it, otherwise, if you are unlucky, the system might well lock the doors permanently. This will mean that you will not be able to open the door, even with a key, until the power is turned off. A total

BUYLINES

The PCB consists of 5 integrated circuits. There shouldn't be any problem to find any of these, or equivalent circuits. In the UK try Maplin, Radiospares, etc. Otherwise, according to Magnus Pihl, the IR-module HC-NEO1 and the security circuits UM 3750 can be bought at ELFA AB in Sweden (Stockholm). ELFA AB, 17117 Solna, Sweden. Phone: +4687353535 . Order number for IR module is 75-220-06 and for UM3750 it is $73-691-43$.

R13 1M
R14 100
R18 470k disaster for both the CLS

Fig.5. Central locking circuit

If the driver's door is not fitted with a CLS motor then in many cases you can fit one yourself. A local car-dealer that sells used parts should be able to supply one (for a Volvo 240 a complete working motor with axis cost about $£ 14$ in Sweden). It should be connected properly and the key-switch in the door used to open/close the doors removed. Connect the system in parallel to the passenger door. Notice that the driver's door will not be locked or unlocked until the door is closed.
motors, the battery and yourself.
If the system works properly, cut out or copy the labels and attatch them on your windows. Enjoy it, and watch out for thieves!

Troubleshooting

If there is no response to the transmitter, use an oscilloscope to make sure the IR-diode is transmitting and the ID-code is being fed to the UM 3750 in receiver module. If these are OK , then check that both UM 3750s have the same code and that they are running with the same frequency.

If doors are open when they should be closed, swap open/ close leads.

If the driver's door is open when the other is closed, swap leads on CLS motor in driver door.

If the fuse keeps blowing when activating the system, ensure that you only connect the power to the relay's coil by the fusebox in your car.

PC Based Industrial and Lab, Data Acquisition, Control and Measurement, Instrument Cards

AD/DA Cards

Plus Accessories \& Sottware
C.P.U. Boards

Device Programmers
Digital I/O Cards
I EEE 488 Cards
Industrial Chassis Industrial Control Cards Interface Convertors Relay Output Cards RS 232 Cards
Single, 2, 4, 8, 16, Port
RS 422 Cards
Single, 2, 4, 8, Port
PC ROM Disk Cards
Slot Extender Cards

For further information,
Product/Price List
Call Us On:

Tel: 090220267

Roline Systems Ltd Imex House
Imex Business Park Upper Villiers Street Wolverhampton West Midlands WV2 4NU

Specialist PC \& Multimedia Add-on Cards

PC - Telephone Voice Communication Cards Fax Modem Cards Voice Recognitlon Cards Voice Digltiser Cards TV/Video-PC Adaptor Video Grabber Cards Video/TV - PC - Video/TV Cards Sound Cards

Components

Cases
Floppy Disk Drives
Hard Disk Drives
From 40MB to 2.1 GB
Keyboards
Monitors
Mother Boards
Cache Controller Cards
Network Cards
Tape Back Up Unlts

Fax: 090228439

PC ROM Disk Cards up to 1.2 Mb
From $£ 99$

PC Video Master
Frame Grabber and VGA to TV Conventer From 1345

A PSU Output Monitor

Keep an eye on your power supply's output with this ingenious circuit

Apower supply of some sort, is, next to a voltmeter and soldering iron, a piece of equipment owned by most electronics hobbyists. In this project, one of ETI's regular project designers, Bob Noyes, describes an interesting little circuit which can be used to monitor the output of your power supply.

When working at the test bench, most small projects are powered by the 'power supply'. Power supplies range from laboratory types with several outputs and all kinds of trips, cut outs and four digit displays showing everything you want to know (and several things you don't), down to the home-built, crude, but useful type.

The middle range of supplies have moving coil meters which are useful, as both current and voltage can be monitored at the same time, but with age the accuracy diminishes drastically and the damage caused by overloads can result in the needle bending leading to false reading. Also, with age, the clear plastic covers over the meter get scratched and begin to yellow, as does the background scale plate.

If a circuit needs monitoring but no current is built in, then the good old test meter is inserted in series into the circuit. This will give an indication, but as a resistance has been inserted into the circuit an error is introduced: increasing the resistance of the circuit will reduce the total current as well as reducing the regulation, because the voltage drop will depend upon the current being drawn. Uneven current consumption will give the effect of a modulated supply.

This Power Supply Monitor has been designed to upgrade these more simple power supplies and even replace moving coil meters that have come to the end of their life. It will give a voltage reading using 20 LEDs in a barographic display, as well as monitoring the current using 10 LEDs, also in a barographic display.

So as not to upset the regulation, the current sense resistor is inserted in the 0 V line, after the smoothing capacitor/s and before the regulation circuit inside the power supply, although a small current is drawn by the regulator circuitry it's not enough to cause a problem. This procedure has been tried in several old power supplies without any problems. These ranged from an all transistor type - age unknown but rumoured to have been used by Faraday - to a ' 723 ' with series pass transistor and the good old L200. All worked very well and ranged from 500 mA flat out to one that gives 8 A before the volts start to suffer. Fitting instructions are given later in the text.

As can be seen from the circuit diagram there are two distinct and independent parts, the voltmeter with its power supply and the ammeter, with its power supply.

The Voltmeter

At the heart of the voltmeter are two LM 3914 linear barographic display driver ICs, giving a total of 20 LEDs which, via R1 and VR1, are calibrated to give the desired full scale. This can be anywhere from $0-5 \mathrm{~V}$ to $0-6 \mathrm{~V}$, depending upon the supply being upgraded.

The 3914 s are wired in a configuration which allows IC2 to read $0.12-1.2 \mathrm{~V}$ in ten steps and ICl to read $1.32-2.4 \mathrm{~V}$ in ten steps. Inside each 3914 is a ladder of 101 K resistors, as per the diagram (greatly simplified). The internal voltage reference of 1.2 V is wired across the 101 K resistors, meaning the volt drop across each resistor is 0.12 V , giving the resolution. An external reference could have been used, but this would have added to the component count, complexity and cost. When the op amps sense the input voltage going above these potentially divided 0.12 steps, the corresponding op amp turns on the relevant LED, hence giving a bar mode display. Internal circuitry can be selected for bar or dot mode.

Once triggered, the LEDs stay on in 'bar mode', as the voltage increases giving a bar effect. Note that $R 4$ seems out of place, but it is required to ensure LED 10 is turned off when the second 3914 comes into operation - this is to do with the internal workings of the 3914 (in dot mode). Only 1 LED is on at any one time in dot mode, as one LED is turned on, the previous one is turned off.

Although the bar mode looks more effective, it consumes up to ten times more current in each 3914 with all 10 LEDs on. This means the supply has to be capable of supplying this current and the 3914 can get hot, coming close to its maxi-

A SIMPLIFED DIAGRAM OF THE RESISTOR POTENTIAL DIVIDER AND COMPARATORS TO GIVE THE 10 LINEAR OUTPUTS. THE $3915 / 3916$ HAVE RESISTORS OF DIFFERENT VALUES TO MAKE OUTPUT LOG OR SEM-LOG

The Ammeter

The ammeter can monitor very low to very high currents because the main current flow is not through the monitor PCB but through a bypass sense resistor, mounted elsewhere in the power supply.

The requirements of the monitor are that at least 1.2 V are dropped across this sense resistor at full scale, i.e. maximum current. The monitor, although called an ammeter, is in fact a volt meter measuring voltage dropped across the sense resistor. The relationship between voltage drop and the current developing it, is given by the good old ohms law, when

```
\(\mathrm{V}=\mathrm{I} \times \mathrm{RV}=\) volts dropped
    \(\mathrm{I}=\) current in amps
    \(\mathrm{R}=\) sense resistor in ohms
```

In a perfect world, where the reference built in to the 3914 is exactly 1.200000 V , the sense resistor is made with the same accuracy and all the leads and wires have no resistance at all, there wouldn't be any need for a calibration pot, VR2, to set the calibration. Unfortunately, this is not the case and errors can creep in everywhere. So, instead of developing exactly 1.2 V across the sense resistor we actually try to develop in the order of 1.5 V , which means that this voltage is too high for a direct reading. By using R6 VR2, this over-voltage can be potentially divided down to the correct level required to give full scale. The reference built in is very stable, it doesn't vary much in value with time or temperature, but this exact reference does vary between ICs.

The size of the current being monitored dictates not only the value of the sense resistor but its size due to dissipation. As the chart shows, at the lower end of the scale - say 500 mA -this resistor
mum power dissipation - not to be recommended in an important meter such as a voltmeter. The value of R1 is chosen to give the ideal setting of VR1 somewhere in the middle. All the rest of the volt drop should appear across R1, so for

10 volts full scale $1 / 2$ volt per LED RI $=10 \mathrm{~K}$
20 volts full scale 1 volt per LED RI $=27 \mathrm{~K}$
30 volts full scale 1.5 volts per LED RI $=47 \mathrm{~K}$
and so on. The selected value is fitted into R1's position on the PCB

For the best and most accurate results, the voltage is monitored as near to the output terminals as possible, but if a switch is included in the output circuit, the unswitched side should be monitored. This means that the supply can be turned on at the mains with the output switched off and the output can be adjusted to the correct voltage before power is applied to the outside world via the output switch (see diagram). This is extremely useful when using TTL or other circuitry that can be overloaded, or possibly give an error if the supply is too low.

The ac supply to the monitor is brought into the terminals from its own transformer, which is important because using existing taps already connected in the supply could cause great damage to the existing supply as well as the monitor.
should have a rating of at least 1 W up to 25 W for monitoring 10A. The dissipation power of the resistor is given by

$$
\begin{aligned}
& \mathrm{W}=\mathrm{I} \times \mathrm{V} \quad \mathrm{~W}=\text { watts } \\
& \\
& \\
& \mathrm{I}=\text { current in amps } \\
& \mathrm{V}=\text { volts across resistor }
\end{aligned}
$$

1 is the maximum value likely to be achieved, i.e. the power supply's maximum. The resistor size shown is one that allows this dissipation with a good safety margin, i.e. 10 A through 0.15 n drops 1.5 V - good old ohms law again.

Actual dissípation is $\mathrm{W}=\mathrm{I} \times \mathrm{V}, \mathrm{W}=10 \times 1.5$, therefore 15 W dissipated, only at full power. The resistor recommended is a 25 W device and so runs well within its specification. The dissipation will be much less at lower currents, i.e. at 2 A only 0.3 V are developed across it, so a dissipation of only 0.6 W occurs.

The IW 3 n resistor could be mounted on the original power supply PCB if room can be found, but it is recommended that any one of the others is mounted off the board and on insulated pillars - care being taken to find a place that has good internal air flow to keep this resistor as cool as possible. If the 25 W one is required then a good heatsink is needed. In such a supply, a large heatsink should already be
available to keep the output devices cool. This could then be used by bolting the 25 W resistor to it. When soldering to high power resistors a good mechanical joint should be used as well as good soldered one, i.e. the leads are wrapped around the terminals on an insulated pillar in the middle order resistors $-7,10 \mathrm{~W}$ - and the wires pushed through the hole and twisted around the terminal of the 25 W ones. This means that if the solder was to get a little soft, due to heat, the wires will not fall off because no strain is put on the joint. These high current carrying wires should be as short as possible and the wire used should be large enough to withstand the expected current range.
used for the voltage monitor and the current monitor are slightly larger than may have been expected for a 5 V supply requiring only a few milliamps. The reason is to supply a good clean 9 V into the regulators enabling them to operate at this low voltage without any detectable ripple. This means that the 5 V regulators can operate without heatsinks as they only dissipate a few milliwatts. The regulator tabs should not be allowed to touch anything because although the voltage monitor one is at supply 0 V , the current one is effectively connected to the other side of the sense resistor from 0 V , making it slightly negative in respect to the power supply, 0 V .

Fig.3. Adding monitor to PSU

Fig.4. Testing LED polarity

As with the voltmeter monitor, a completely separate 6 V winding is needed to power the circuit. Although it comes from the same transformer as the voltmeter supply, it must be electrically isolated from it and any other part of the original power supply circuit. When fitted, this transformer can be wired in parallel across the main transformer mains connections.

It may have been noticed that the smoothing capacitors

Connecting The Monitor To A Power Supply

Because no actual power supply is featured, these instructions are general rather than specific.

Firstly, the monitor should be up and running as a separate unit in its own right before it's permanently connected into its host power supply. When running, i.e. with the two 6 V ac supplies connected and with no input going to the voltage or current terminals $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , all the LEDs should be off. If any are on, these should be investigated and corrected before continuing.

Terminals A and B of the voltage monitor connections can then be made, making sure B is connected to the positive of the supply using longer leads than will be required when permanently mounting the monitor. This will enable easy access to the monitor for calibration and testing. units are switched on and a multimeter used to determine the exact voltage coming out of the power supply. This should be adjusted to around $80-90 \%$ of full output of the power supply, never used 100%, i.e. the 20th LED as this comes on and stays on even when the voltage exceeds the true setting - a bit like a moving coil meter will show full scale deflection when the needle hits the end stop and even if the voltage is increased the needle stays in the same position. So for greatest accuracy the higher end of the scale is used, but not its extremity. Any error is divided between as many LEDs as possible. If the calibration was set at say 20% of the scale, any

Fig.5. Calibration potentiometer
error would be multiplied up to 5 times at the full scale end.

The resolution of the LEDs should be known depending upon the highest voltage out, i.e. if the highest voltage out is 10 V , then the resolution can be one LED per 1 / 2 V , i.e. each increasing LED indicates the voltage increasing by $1 / 2 \mathrm{~V}$. If the highest voltage is 20 V then a resolution of 1 LED per volt is selected. 30 V means 1.5 V per LED and so on.

For the purposes of this article and for simplicity, a full scale of 20 V is presumed. This means 1 LED per volt, so the output of the supply is adjusted to say 18 V as monitored on the multimeter used for calibration. VRI on the monitor should be adjusted so that the 18th LED comes on. The voltage should be reduced to say 5 V and the fifth LED should
come on - all the LEDs in between have come on and gone off (at this point the current monitor remains blank because it has yet to be connected). A slight tweak may be required to RV1 so as to improve the precise point at which the LEDs come on, comparing this to the meter. Once this has been completed, a small dab of nail vamish may be used to stop the vibration (sometimes experienced, especially with higher current supplies) from causing the pre-set to re-adjust itself with use. Only a small dot of nail varnish is required and it should not get onto the track of the pot as this could affect its resistance as well as preventing further adjustment and hence calibration (see diagram).

In order to test the current monitor, the power supply is used unmoded. Connect up pins C and D across the selected value sense resistor and place the multimeter in series. As an ammeter a test circuit is produced by using odd resistors to

hand, the voltage is adjusted to give around $80-90 \%$ of the rated current output. RV2 is adjusted to give a corresponding reading to that on the multimeter.

Although there is a volt drop across the sense resistor and the multimeter, the accuracy is unaffected as the series current is the same all round the circuit, i.e. the current through the sense resistor is the same as the current through the multimeter, giving the reading used for calibration. For the sake of this article I assume a maximum of 1 A . The chosen sense resistor is 1.5 n (from the chart), at least 2.5 W .

AMPS RANGE	SENSE RESISTOR	COMMENTS	WATTAGE
0-500mA	3R	CAN BE MOUNTED ON PCB	1 WATT
$0-1$ AMP	1R5	MAY BE MOUNTED ON PCB	2.5 WATT
0-2 AMP	OR82	MOUNT ON PILLARS	7 WATT
0-5 AMP	OR33	MOUNT ON PILLARS	10 WATT
$0-10$ AMP	OR15	MOUNT ON HEATSINK	25 WATT

Table.1. Sense resistor values

The connections are made across the resistor and connected to C and D , with C the most positive (see diagram). A high power resistor of 4.7 n has been found (any value from 2.2 n to 15 n) to work, but the higher the value, the higher the power it will be expected to handle (15 n at amp develops 15 W).

A series circuit is produced as per the diagram and the multimeter set to a range to show 1A. The voltage from the power supply is increased until the multimeter shows 800 mA . VR2 is adjusted so that the 8th LED comes on. As the voltage, which should be around 6 V , is reduced the multimeter's current should reduce with a corresponding reduction on the LEDs, because at 1 A full scale, each LED indicates 100 mA - again, a final little tweak may be necessary. A further up and down the scale comparison is carried out, checking the monitor against the multimeter.

If everything is OK and all the LEDs illuminate correctly, VR2 can be set with a dab of nail varnish. While doing these tests, great care must be taken because high temperatures may be experienced in the load resistor (in this case 4.7 n) especially with the higher currents. Once the calibration has been carried out, the sense resistor can be mounted inside the power supply and the mains transformer also mounted. Great care must be taken with mains connections!

It may be possible to drill out the front panel but more than likely a new front panel will be required. This will mean repositioning controls and output terminals. Care must be
taken that as well as room on the fror panel, there must be enough room inside so that none of the repositioned items foul the insides of the power supply and no mains connections are left exposed, i.e. on the back of the mains switch (they should all be sleeved).

Because mains is involved, the new front panel must be earthed, although the output of the supply need not be. This earthing should be done using a non-load bearing bolt and a solder tag and wired straight back to the mains lead earth using a correctly coloured wire - green and yellow, of sufficient size.

In extreme conditions, a new box may be required to fit everything in - again care should be taken mounting heavy items like transformers, to make sure they are secure and safe and that no wires are trapped. Also ensure that all removable panels are well earthed. A template is shown to indicate where to drill the 34 holes required on the front panel, 30 for LEDs and 4 for mounting.

The colour of the LEDs is not important so different colours can be used, i.e. the upper current 8,9 and 10 can be red with $5,6,7$ orange and $1,2,3,4$ green. This gives a pleasing effect. The same idea can be used with the voltage but can only be done if the front panel is drilled with individual holes, one for each LED. If one oblong hole is cut and a piece of coloured polarised filter is used, only one colour of LED is suitable, the colour of the polarising filter. When using this mode of display, oblong LEDs can be used for greatest effect, but check they all fit first.

Bob Noyes

SEMICONDUCTORS

VR1 10 Kn Sub Min Horizontal
VR2 10Kn Suo Min Horizontal
REG 17805
REG 27805
DB 1 W005
DB 2 W005
IC1 LM3914
IC2 LM3914
IC3 LM3914

MISCELLANEOUS

303 mm LEDs (colours not important, see text) which are mounted on back side of board. Transtormer, 0.606 3VA upwards, independent windings.
Sense resistor (see text for value and rating). Mounting pillars or heat sink.
Most of these items are readily available from a host of suppliers. The high value 25 W resistors can be obtained from Electrobase/RS.

AFFORDABLE DATA ACQUISITION

C.p. Technology c (0258) 451562

G1
 LTD stevenage

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Indusiry
Do you have a requirement for any of the following services:

PCB Assembly (Conventional and Surface Mount Wave \& Hand Soldering Complete Equipment Manufacture
Device Programming from hand written shts or PC $3^{1 / 2^{\prime \prime}}$ disc Cable Harness Assembly floom Manufacture
Card Cage and Module Wirlng Full Inspection

Product Design/Consullation Full Procurement Service PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales
Refurbishment a speciality Top Quality Work at Reasonable Rates

Phone Tracey on (0438) 310066 or Fax details of your requirements to us on (0438)315829
EQT LTD, BTC, Bessemer Drive, STEVENAGE, HERTS, SG1 2DX

TOP QUALTY 3NDERS
 TO TREASURE YOUR COLLECTION OF

 12 copies of your magazine kept in pristine condition in these classic, sturdy binders

READER OFFER

Drill Bits

These difficult to locate small size drills are exclusive to ASP readers at a very special price of $£ 7.99$.
They normally retall for $£ 10.40$ so
ASP readres can save $£ 2.40$ and we will post them to you free.
Useful on almost any material for small detailed work these drills have an application in all hobby and model making crafts.
Our exclusive Drill Bits are a low cost and invaluable addilion (or replacent) for any tool box.
c-

Credit card orders
044266551 (24 HRS)

Only
7.99
inc p\&p

Please supply.......................ROC/13 @ £7.99

I enclose my cheque /P.O. for £..................payable to ASP or please debit my
Access /Visa
\square
Address.

Please allow 28 days for detlvery U.K. only. Overseas upon request
Coupon to: ASP Read̀er Otfers, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 757.
Please nore the above Information may be used for marketing purposes.

Experimentally Speaking... Sensors and data logging

The design of an experiment to investigate a specific phenomena and the collection of suitable data from that experiment lies at the heart of scientific research methodology. Devising the experiment is often an enormous challenge and working out the results can be very satisfying, but the actual process of taking all the measurements can be very repetitive and tedious.

It is hardly surprising, therefore, that scientists have always jumped at techniques which enable them to automate some of the measurement and data collection work. Such techniques have been made much easier with the advent of electronic circuitry to perform many of the most common measurements. Electronic circuits can now be built which measure temperature, pressure, humidity, light intensity, acidity/alkalinity, mechanical stress, gas composition and a

However, for the amateur experimenter and for schools science departments, the use of a commercial data logger is out of the question, as they are far too expensive. But there is a cheap and easy solution to this problem, a solution which involves the use of a cheap computer, making it possible to continuously record, for several hours without human attendance, one or more experimental parameters which can be measured by simple analogue sensors.

A digital data logger.

The function of a data logger is to log, or record, information, but by its very nature a computer works using binary logic. A pulse is either 'on' at logic high, or 'off' at logic low. This is fine if all you want to do is measure and record the state of a set of switches, but most sensors used to measure scientific experiments are not on/off. They produce a variable output voltage, they are analogue devices rather than digital devices.

So if we want to use a computer to record analogue information coming from sensor circuits we need to be able to convert analogue information, the variable output voltage, into digital information. We can do this with the aid of an analogue to digital converter circuit. This can be connected to the parallel user port of a cheap personal computer, such as the Commodore 64 . This circuitry plus a bit of software to control it and input the digitised data, constitutes our simple data logger.

The analogue to digital converter circuit is very simple and cheap to build. It consists of a low cost digital to analogue converter IC and a voltage comparator, the circuit is shown in Fig.1. The comparator has two inputs, one, the voltage to be measured, the other a variable reference voltage derived from the digital to analogue converter. Only when the two voltages match will the comparator generate an output. In this circuit, the computer's parallel I/O port provides the eight data output lines which go into the digital to analogue converter and the single input line input from the comparator.

In operation, the computer ramps up the output voltage from the digital to ana-
thousand other things. Indeed every lab is now full of such electronic measuring equipment.

With electronic measuring circuitry, it becomes possible to build systems which will record sequences of measurements, thereby saving the experimenter the tedium of standing over his experiment for hours, taking measurements every five minutes. Such recording systems are known as data loggers.
logue converter from zero volts until the required voltage is reached. The computer just goes through a simple loop which increments the voltage from the D / A, then tests to see if there is an input from the comparator. If there is not it goes back through the loop. If there is an input from the comparator then the value output to the D / A is taken as the input voltage and stored in a suitable database.

Since there are eight output lines going into the D / A, there

could be 28 , or 256 , steps before a matching voltage is indicated by the comparator. This means that such measurements can be a rather slow process. Much faster is a successive approximation technique, which requires just eight loops instead of up to 256 .

A successive approximation technique starts by setting the most significant bit, bit 8 , to logic 1 and all the other bits to logic 0 . The program then tests to see if the resulting voltage is greater or less than the voltage being measured. If it is larger, then bit 8 is left set, if smaller then it is cleared. The same process is repeated with bit 7 set to logic 1 , leaving bit 8 set to the value defined in the previous loop and all the other bits set to logic 0 . Depending on the result bit seven is left set or cleared. This same process is then repeated for bits $6,5,4,3,2,1$ and 0 in turn. The result, a voltage measurement in just eight program loops.

By using a successive approximation technique and sufficiently high sampling rates. It is possible to use the combination of computer and analogue to digital converter as a low frequency storage oscilloscope, something which can be used to record and analyse the human voice, vibrations, or even bird song.

We can also trade off sampling rate for sampling several channels of analogue information coming from different sensors. We can do this on low voltage systems with the aid of an analogue switch IC which can be controlled by more output lines from the I/O port. In this way, one can easily measure and record data from eight different sensors without any great loss in maximum sampling rate on any one of them.

Using the simple data logger.

What has been described so far in this article is a very simple data logging technique and one which lends itself to being used with some equally simple measurement circuits. By far
the simplest measurement circuits are those based around a sensor which exhibits variable resistance. This could be a photoresistor for measuring changes in light intensity, or a thermistor for measuring changes in temperature. The circuitry for both of these is just a simple voltage divider chain, and an example is shown in Fig.2.

More complex are those sensors which involve a change in output current, sensors such as the photodiode. The best way to convert such a current change into a voltage change is to use an operational amplifier. A technique which has the added advantage in that it allows one to adjust the amplifier gain in order to improve or reduce the sensitivity of the sensor. A typical circuit for use with a photodiode is shown in Fig. 3.

The calibration of a particular sensor is always a problem. If the sensor has a linear response then the two ends of the graph can be determined experimentally.

If the response is not linear, then the computer can be used to convert the input value into a measurement value. Indeed, so long as one can adjust the sensor's output voltage range so that it equals the input voltage range of the analogue to digital converter it is possible to use the computer to perform the calibration. In a linear response system all that one needs to do is multiply all input values by a constant.

Besides measuring the output of a sensor, the other main requirement in logging data from an experiment is to keep an accurate track of time. This can be done in one of two ways. The first is not that accurate and involves using delay loops within the controlling program. The second method is to us a real time clock, such as the one which is built into every PC. Wherever possible the real time clock should be used.

In conclusion

This use of a computer as a simple digital/analog data logger is one which lends itself to a lot of different applications. In this article we have only looked at sensors for light and temperature which can be easily attached to this type of data logger but, with a bit of ingenuity, it is possible to build a wide range of different sensors thereby enabling one to \log the results from a great many different experiments.

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF, ENGLAND. TELEPHONE (0203) 650702. FAX (0203) 650773

KEITH MORRIS
Tel: 0203650702
Fax:0203650773

TELNET

LIST OF TEST EQUIPMENT AVAILABLE

	5002	Wideband Level Meter ...650	
054200 - Digital Storage ...	5003	Digital Multimeter..- $£ 15$	
	9000	Microprocessing Timer/Counter 500 MHz275	
$1740 \mathrm{~A}-100 \mathrm{MHz}$ Dual Channel	9081	Synthesized Signal Generator - 520MHz $\mathbf{8 6 0 0}$	
1741 A-100 MHz Dual Channel with Analgoue Storage £350	9083	2 Tone Signal Source ... $£ 225$	
$1744 \mathrm{~A}-100 \mathrm{MHz}$ Dual Channel with Analogue Storage £350	9242 D	Programmable Power Supply 25V-2A $£ 300$	
3211 - 15 MHz Dual Channel .. 1 Irom $£ 150$	9246S	Programmable Power Supply 25V-10A $¢ 400$	
3217 - 50 MHz Dual Channel	9300 B	RMS Voltmeter ... 2275	
3226-15 MHz Dual Channel …... $£ 150$	9300	RMS Voltmeter .. $£ 250$	
$3240-50 \mathrm{MHz}$ Dual Channel ..from £250	9341	LCR Databndge ... 5120	
3261 - 120 MHz Dual Channel .. from £325	9500/9515	Universal Counter/Timer 512 MHz .. $£ 200$	
453-100 MHz Duat Channel .. £250	9839	Frequency Counter (UHF) -560 MHz	
515A ...150	9901	50 MHz Universal Counter Timer	
2445-150 MHz 4 Channel $£ 1250$	9903		
$7313-100 ~ M H z ~ 4 ~ C h a n n e l ~ w i t h ~ A n a l o g u e ~ S t o r a g e ~ f r o m ~$ ¢ 350 $7403 \mathrm{~N}-60 \mathrm{MHz} 4$ Channel	9905	Frequency Counter - 200 MHz ..	
$7403 \mathrm{~N}-60 \mathrm{MHz} 4$ Channel $7603-100 \mathrm{MHz} 4$ Channel	99017	Frequency Meter (UHF Freq. Counter - 560 MHz) $£ 175$	
7623-100 MHz 4 Channel .. 1 § $£ 500$	9919	Frequency Meter (UHF Freq. COunter - 1 GHz) £275	
$7904-500 \mathrm{MHz} 4$ Channel ...	9932		
	9303	True RMS R/F Level Meter .. 6650	
	9475	Rubidium Frequency Std .. $£ 3.5 \mathrm{~K}$	
465 B - 100 MHz ... $£ 500$	9084	Synthesised Signal Gen, .. $£ 700$	
468 - 100 MHz Digital Storage .. 5850	(TRONIX		
7834 - 400 MHz Analgoue Storage from $£ 750$	Type G	Oscilloscope Plug In Unit - Wideband Ditterential Calitrated	
$7704 \mathrm{~A}-300 \mathrm{MHz}$... from £650		Pre-Amp (as NEW) .. 875	
7613-100 MHz Analgoue Storage,.................... from ¢ 400	PM 104	Personality Module ... 840	
7844 -400 MHz ... from £750	TM 515	Mainframe (Traveller Power Module - 5 Compartment) 150	
454 - 100 MHz ... from £300	P6201	Fet Probe .. $£ 100$	
	P6451	Data Acquisition Probes ...25	
Milliwatt Power Meter .. $£ 50$	5-3A	Sampling Heads ... $\mathbb{1} 150$	
0-30V-3A Twin ..	106	Square Wave Generator .. 100	
0.1\% Universal Bridge .. $£ 100$	109		
	191	Constant Amplitude Signal Generator ($\mathbf{3 5 0} \mathbf{K H z - 1 0 0 ~ M H z) ~ ~} \mathbb{1} 100$	
		Storage Monitor .. $£ 75$	
	1921-PI	Storage Display Unit ... $\mathrm{E}_{\text {¢ }}$	
	4041	Disc Drives $\Sigma 50$	
Q Meter ${ }_{20} .300 \mathrm{MHz}$ Oscillator $\mathrm{E}_{2} 50$	WANDEL AND GOLTERMANN		
AM/FM Signal Generator 10KHz-120MHz $\mathrm{E}^{\text {a }} 175$	AZD-1	Display Expander ... 100	
Digital Error Detector .. $£ 250$	PRT-1	PCM Regeneration Test Set .. $£ 5$	
(White) Noise Generator ... £250	PS 12	$200 \mathrm{Mz} \cdot 6 \mathrm{MHz}$ Level Oscillator .. 500	
(White) Noise Receiver ... $£ 550$	PS 12	$200 \mathrm{~Hz}-4.5 \mathrm{MHz}$ Level Oscillator .. 5500	
Sine/Square 10 MHz Oscillator (Battery) $£ 50$	PS 60	$6 \mathrm{KHz-18.6} \mathrm{MHz} \mathrm{Level} \mathrm{Oscillator} \mathrm{...}$.	
X-Y Display .. £200	PSG. 1	Test Signal Generator (TV Colour Carrier - 4.429687 MHz) ¢50	
FM/AM Modulation Meter ... £195	RFZ-5		
FM/AM Modulation Meter .. $£ 200$	RG. 1	Noise Generator 0-100 KHz ... £50	
	SG-3		
110 MHz Spectrum Analyzer ... $£ 1250$	SPM-3	Selective Level Measuring Set .. $£ 50$	
560 MHz Digital Frequency Meter .. $£ 200$	SPM-60	6 KHz -18.6 MHz Level Meter ... 5500	
Video Voltmeter ... 875	SPM 12	$200 \mathrm{Hz-6} \mathrm{MHz} \mathrm{Level} \mathrm{Meter} \mathrm{..}$.	
Sensitive Valve Voltmeter ...	SPM 12	$200 \mathrm{~Hz}-4.5 \mathrm{MHz}$ Level Meter ... $£ 500$	
Electranic Voltmeter .. $£ 75$	MISCELLANEOUS		
Differential DC Voirmeter .. $¢ 125$	DATRON DATRON DATAON DATRON DATRON ANRITSU ADRET MARKEM DAYMARK		
Pattem Generator and SLMS \qquad E250 Colour Gain and Delay Test Set \qquad £150			
		Auto Transistor Tester/Soner Cost new £50K NOW $¢ 6 \mathrm{~K}$	
6 Db Hybrid (Retum Loss Sheet) ... ESO^{5}	AVO	RM215-U2 Breakdown Leakage \& Ionisation Tester ¢750	
Logic State Analyser .. E^{100}	PULSETEK	192 Oscilloscope Calibrator (as new) $£ 1250$Biomation K100-D Logic Analysers	
Logic Analysers ... $£ 200$	GOULD		
With 8755B - Sept Amplitude Analyser (Rack Mounted) 5350	ADRET	2230 A 0-1 MHz Synthesizer ... $£ 250$	
Time Base and Delay Generator (Scope Plug-in Unit) $\mathbf{¢ 7 5}$	advance	J2 AF Sle. Generator $15 \mathrm{~Hz}-50 \mathrm{KHz}$SG68 Low Dist. Osc $(0-150 \mathrm{KHz})$ Sine/Sq Wave	
Osciloscope Camera .. 51	ADVANCE		
VHF Oscillator $10-500 \mathrm{MHz}$	BRADLEY	192 Oscillioscope Calibrator ...	
Function Generator wilh 3305A Sweep Plug:In	GALLENKAMP	300 Plus Series ThermostavCyclic Timerftemp Cycling Oven £900	
3400 a RMS Voitmeter .. 150	FISCHER	Beta 2040/2060 Coating Thickness Computer	
Broadband Sampling Voltmeter .. 175		Plus many extras all for ...5.5K	
		8010 Digital Multimeter ..125	
Spectrum Analyser Dual Channel 25 KHz $£ 3 \mathrm{~K}$	FLUKE		
Spectrum Analyser $20 \mathrm{~Hz}-40 \mathrm{MHz}$ (GPIB)	FLUKE	8922A True RMS Voltmeter .. $£ 250$	
1F/Baseband Transmitter Fitted with 3716A B/B TX	HATFIELD	1015 Level Measuring Set $30 \mathrm{~Hz}-120 \mathrm{KHz}$.................................. $£ 150$	
IF/Baseband Receiver Fitted with 3705A	HATFIELD	1016 Level Osc. Sel $30 \mathrm{~Hz}-120 \mathrm{KHz}$.. $£ 150$	
	PHILIPS	5167 Function Generator 1-10 MHz .. E 400	
Down Converter with 3738 A Oscillator (6.3 -8.5 GHz) O/P $70 \mathrm{MHz} . £ 200$	PROJECTINA	CH 9435 Photo Microscope	
Altentuator (0-100 MHz) ..100	SIEMENS	W2008 Level Oscillator $200 \mathrm{~Hz}-18.6 \mathrm{MHz}$.......................... $£ 500$	
Data Generator $£ 750$			
Error Detector ${ }^{2}$	LYONS	PG-75a Pulse Generator	
Instrumentation Recorder (As New Immaculate Condition) $£ 500$	MULTICORE	PG-2erulse Generatire..300	
AC Volimeter ... $£ 150$	MULTICORE	Mk III Solderability Test Machine ...	
AC Voltmeter ... $£ 150$	PHILIPS	8226 Six LIne Pen Recorders .. $£ 250$	
Vaccum Tube Voltmeter .. 550	PHILIPS	6671 High Resolution 120 MHz Counter $£ 150$	
	SYSTRONDONNER		
	thandar	TP600 Prescaler (BrandNew) will increase Frea, Range of Counter by Factor of 10	
$10 \mathrm{~Hz}-1 \mathrm{MHz}$ Osciliator			
Test Oscillator $0-10 \mathrm{MHz}$.. 150	TREND WATANABE WAYNE KERR WAYNE KERR KIKUSUI HELPERLTD THANDAR NEW TOWARD LTD		
20dB Altentuator 0-12.4 GHz ... $£ 100$			
Sweep Oscillator (Mainframes) .. $\mathrm{E} 250^{\text {a }}$		TE 2090 Transducer Equipment ... 1100	
Sweep Oscillator with 894A Plug-In (8-12.4GHz) $£ 500$			
Storage Normalisers.................. 18.26 .5 GHz)		Autobalance Universal Bridge AVM $23 / 25$ Dual Channel VRMS SinadDB+CAL O/P	
Frequency Doubler (1/P 9-13.25 GHz) (O/P 18-26.5 GHz) £250			
10 dB Directional Coupler ... $£ 100$			
Power Meter ... $\mathrm{£}^{4} 50$		8115 Digital Sweep Function ... $£ 200$	
		Generator \& Freq. Counter (with manuals)	
Universal Switch Controller	FARNELL	NO55P314 (55 watts) Swith Mode	
Sensing Heads		Power Supplies BRAND NEW Cost NEW £55 now ¢20	
Sensing Heads		Give +5V@3.5A+12V@3A-12@1A	
1 MHz Frequency Standards Distribution Unit	Many more items such as power Please send S.A.E. for details.		
Synthesizer 40.130 MHz			

ALL EQUIPMENT IS USED, WITH 30 DAYS GUARANTEE.
PLEASE CHECK AVAILABILITY BEFORE ORDERING.
CARRIAGE CAN BE ARRANGED - VAT TO BE ADDED TO TOTAL PRICE OF ALL GOODS AND CARRIAGE.

SUMMER 1993

 CATALOGUE

The new enlarged Cirkit Catalogue is ouf now!

- 32 more pages
> New range of Kenwood 'scopes
- The latest scanning receivers and accessories
- New section of low cost security products
- Extended range of Velleman kits including: 250 W 12 Vdc to 220 Vac inverter, in-car amplifier power supply, 200 and 400 W amplifiers, suppressed lamp dimmer, halogen lamp dimmer, day/night thermostat and telephone remote control unit
> New test equipment, includes: 2.3 GHz bench frequency counter, EPROM emulator/programmer, portable 'scopes and bench function generators
> Host of new components, including: compression trimmers, variable capacitors, connectors, fuses, and fuseholders, potentiometers, IC's, soldering irons and lead free solder
- Published 27th May 1993
- Available from most large newsagents or directly from Cirkit

Send for your copy today!

CIRKIT DISTRIBUTION LTD
Park Lane • Broxbourne • Hertfordshire EN10 7NQ
Telephone (0992) 444111 . Fax (0992) 464457

ЭगИAJJIJVqUZ SURVEILLANCE

A SMALL SAMPLE OF OUR RANGE	KT	MODULE	$\begin{aligned} & \text { PROF } \\ & \text { FINISHED } \end{aligned}$
ROOM TRANSMTTTER RT1 An extremely sensitive miniature transmifter with long battery lile. Dimensions: $20 \times 20 \mathrm{~mm}$	8.85	13.75	12.00
MAINS TRANSMITTER MT4 Can be connected inside any equipment that is mains powered Dimensions $35 \times 20 \mathrm{~mm}$	19.76	31.50	40.00
TELEPHONE TRANSMTTER TTS Small onough to conceal within a leleahone. Will transmit both sides of a conversation (series conneccion) Dimensions: $10 \times 20 \mathrm{~mm}$	12.75	17.50	28.00
TELEPHONE SOCKET TRANSNITTER TSTS Replace your telephone socket with this one within which a transmitter has been concealed.	14.74	-	29.00
ROOM AND TELEPHONE TRANSMITTER RTT Operates as a room liansmitier, then suitchos to telephone transmitter mode during telephone calls. Dimensions: $30 \times 25 \mathrm{~mm}$	31.50	45.50	65.00
AUTOMPTIC TELEPHONE RECORDER SWITCH TRS2 Record telephione conversations with this interlace unit and your own tape resorder. Dimensions: $36 \times 50 \mathrm{~mm}$	16.80	25.90	39.00
AUTORATIC TELEPHONE RECORDER ATR1 Adapt the tape recorder included to record telephone calls automatically.	34.95	\cdots	89.00
TELEPHONE TAP ALERT TTA1 Visual warning of any invasions of privacy on your telephone line. Dimensions: $38 \times 52 \mathrm{~mm}$	21.95	31.50	45.00
RF DETECTOR RFD1 Highly senstive hand-held detector. Range 10 Mhz and 600 Mhz . Silent aperation. Dimensions: $70 \times 50 \mathrm{~mm}$	42.75	69.00	95.00
CAMERA DETECTOR CD8 Detexts hidden video cameras (even miniature CCD models). Dimensions: $63 \times 38 \mathrm{~mm}$	09.00	89.00	126.00
RECORDING BRIEFCASE RBCI Completly discreet resordings at a value for money price.	-	-	145.00
SHOTGUN MICROPHONE AMPLFIER SMA ideal lor surveillance. The amplifier will pick up sounds from a long distance.	24.95	36.00	45.00
SIGNALLING TRANSMITTER SIGT Sends a continual audio pulse. Can be integrated Into alarm, tracking or warning systems. Dimensions: $20 \times 50 \mathrm{~mm}$	21.95	34.89	45.00
TELEPHONE AMPLIFIER TA5 Connected directly to the teleophone, this unit will amplity both sides of a telephone call Dimensions: $25 \times 52 \mathrm{~mm}$	10.88	16.95	19.95
PROFESSIONAL SOUND TO LIGHT UNTT SK72 Custom buili for disco or hóme use. Audio signal divided into bass, mid and treble bands, with intemal microphone and spotight opfion. Dimensions $210 \times 45 \mathrm{~mm}$	21.95	32.49	44.95
MICRO METAL DETECTOR MMD Detect the presence of ferrous and varous non-terrous metals Usetul for all those DIY jobs. Dimensions: $40 \times 25 \mathrm{~mm}$	9.95	16.95	\cdots

Please add $£ 200$ P \& P to all orders and 17.5% VAT on all U.K. orders. For full catalogue please send two 1st class stamps or 2 IRCS

172 Caledonian Road
 Dept ET
 CANAL
 vix

E9311-1 Car Alarm G
E9311-2 MIDI Change Pedal (Double Sided) H
E9311-3 RC Engine Sound J
E9311-4 PSU Monitor N
E9310-FC RF Hound D
PCBs for the remaining projects are available from the companies listed in Buylinesse the formoTerms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required
Such orders will not be processed until payment is received.

ETI PCB Service, Reader's Services, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

Please Supply:

Quantity	Ref No.	Price Code	Price	Total Price
	E		£	£
	E		ε	£
	E		£	£
Post \& Packing Total Enclosed				£ 0.75
				£

Please send my PCBs to:
Name
Address

Postcode

CHEOUES SHOULD BE MADE PAYABLE TO ASPE9212-FC Mains InverterE
E9301-2 FadingFestoonery G
E9301-FC InfraRed Receiver F
E9302-1 EPROM Programmer (2 Sided) NE9302-2 Sound to MIDI Board
E9302-3 Puddle Tec L
E9302-4 DiscoAmiga Light Selector H
E9302-FC Infra Red Transmitter E
E9303-1 Ni-Cd Battery Charger E
E9303-2 IC Tester E
E9303-3 Disco Amiga (motor driver board) H
E9303-4 Direct Conversion Reciever (2 Sided) N
E9303-FC LEDStoboscope F
E9304-1 Solo Mic Pre-Amplifier F
E9304-2 Multimate Tester
E9304-3 The Keepsafe Alarm F
E9304-4 Proving Unit E9304-4 Proving Unit E
E9304-6 Infra Guide Transmitter C
E9304-FC (AutoMate) Peak Program MeterF
E9305-1 Pentacode Main Board F
E9305-2 Pentacode Relay Board F
E9305-4 Vibration Detector D
E9305-FC The Fuzztone E
E9306-1 Graphic Equaliser F
E9306-2 Super Spooker H
E9306-3 Middle \& Side Stereo Coding D
E9306-FC TheChaperon F
E9307-1 Car Battery Tester (Double Sided - Surface Mount) E9307-2 Mind Trainer F
E9307-FC Microwave Monitor F
E9308-1 Window Monitor (4 Boards) K
E9308-2 Alternative 12V Supply M
E9308-3 Single Channel Lumitec
E9308-4 Four Channel Lumitec H
E9308-FC Twi-lightZone F
E9309-1 RFSignal Generator F
E9309-2 MIDI Analyser CPU Board K
E9309-3 MIDI Analyser Display Board J
E9309-4 Metronome G
E9310-1 Hot Wire Cutter
E9310-2 Electronic Picture H
E9310-3 Sega Box J
E9310-4 Transistor Amp (2 Boards) N
E9310-5 Home Minder (2 Boards) N
E9310-FC Continuity Tester D

PCB Foils

Car alarm

MIDI pedal

Component side

Solder side

PSU Monitor

RF Hound

CTME James Gale 044266551

Send your requirements to:

TIClasslfied Department, ASP, Argus House
Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 60p per word (+ VAT) (minimum 15 words)
$8.00-$ VAT per single column centimetre
8.00 - VAT per single colu

Aing for information on series bookings/discounts
All advertisements in this section must be prepaid
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

Num

COOKE INTERNATIONAL

SUPPLIER OF QUALITY USED TEST INSTRUMENTS
ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES POWER METERS. ETC

ALWAYS AVAILABLE

original service manuals for Sale COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME
SEND LARGE S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE
DISCOUNT FOR BULK ORDERS
OPEN MONDAY TO FRIDAY 9AM - 5PM COOKE INTERNATIONAL
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 0EB Tel (+44) 0243 545111/2 Fax + 44) 0243542457

III ON OFFER THIS MONTH III!			
Red Super Lod 5 mm in Recerver a. 1uF X fated 0.1 Poly 7. 5 jovad 4.7uF 16v PaD 2.2 F Non Pol 250uF 16y AAD 2700pf is Iol Contact Cleaner flux-OH $2 \mathrm{pl}-26 \mathrm{pF}$ IN4001 47UF 350 DC 74HC75 Crystal 45 Mhz		Cr	
		Ea	65p
		250AC	
		BC639 100V	
		LM337 VREG	
		LM7924 VREG	
		2718 Eprom	
		2732 Eprom	
		Contact	
		Restore	
		2pt-100t Trim	
		Tilt Switch	
		4 Way Till SW	
		5 Wart 300 OH	
	Crysla $45 \mathrm{Mhz} \quad 400200 \mathrm{l}^{3} 300 \mathrm{~V} \mathrm{DC}$		
STRIP OF ASSORTEO COMPONENTS IM			
WIDE RANGE OF ELECTRONIC COMPONENTS ALWAYS IN STOCK RING FOR DETAILS FM TRANSMITTERS ALSO IN STOCK -			
ELEY ELECTRONIC LTD 100-104 BEATRICE ROAD, LEICESTER, LE3 9FF TEL: 0533515944 PAY BY:- VISA/ACCESS OPEN 10-6 MON-SAT			

FREE

REGULATED

SWC ${ }^{\text {ScIENTIIC }}$

 WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE. BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HWFAX 0815591114 POWERSUPPLY 9-25VDC+LED Auto Cut out + 12 project cat £1 p\&p K.I.A. 1 Regent Rd, Ilkley Stereoamps 40w +6 bar equaliser. 240 volt $£ 17$ Poweramps $100 \mathrm{w} /$ £9.

PC STORAGE SCOPE. Turn your PC into a 4 channel digita storage scope variable timebase \& triggers, 1 shot or real time mode. Measures up to 25 kHz 516.50 Tel: 045 835692 24hrs.

ELEGTROMART

LIVERPOOL

PROGRESSIVE RADIO
$87 / 93$ Dale Street
Tel: 05123609820512360154 47 Whitechapel Tel: 0512365489
Liverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance high voltage testas, pyrotechnics and comdevices, pyrotechnics and computer graphics tablet. 150 projects.
For catalogue. SAE to Plancentre For catalogue. SAE to Plancentre Industrial Estate, Dymock Road Industrial Estate, Dymock Road
Ledbury, Herefordshire, HR8 2HS
"BUGS...Do you need a circuit for a bug? Dozens of circuits availabie, from very basic to crystal control.
We also specialise in unusual \& We also specialise in unusual \& interesting circuils. Ready Bult Bugs avallable ex-
stock. We are cheaper than ANY stock. We are cheaper han ANY Bugs in tact we sell ready made bugs cheaper than our rivals are able to sell identically in kit form. Miniaturisation is our speciality. Free lists available. Send S.A.E. to Gainsford Electronics, 71 Gainstord Road, Bitterne, Southampton. SO2 7AW.

TO ADVERTISE TELEPHONE JAMES GALE ON 044266551

SURPLUS COMPONENTS WANTED

\& COMPLETE CLEARANCE

* BEST PRICES PAID
\leftrightarrow PCB BOARDS POPULATED

CONTACT

D.T.S. SERVICES

Tel: (0602) 208955
or Fax: (0602) 484530

ETI/POWERTRAIN VOCODER
main PCB foil pattern wanted Hallvard Tangeraas, Fjellhaug, Sinsenvelen 15, 0572 Oslo Norway

COMPONENTS

ELECTRONIC components clearance sale. Resistors Transistors, I.C.'s etc. Foir a FREE catalogue phone 0992 582710.

FOR DETAILS OF ADVERTISING RATES TELEPHONE 044266551

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement
We also welcome the opportunity to quote for complete factory clearance.
Contact:
COLES-HARDING \& CO.
Sandall Road, Wlisbech, Cambs PE13 2PS
BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 15 YEARS Tel: 0945584188
Fax: 0945475216

KITS

NEW VHF MICROTRANSMITTER KIT tuneable $70-115 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY £5.95 assembled and ready to use £9.95 inclusive P\&P. 3 Watt FM transmitter kit $£ 15.95$ Credit card orders telephone 0214863092 Cheques/PO's to: Quantek Electronics, (DEPT ETI) 3 Houldey Rd, Birmingham, B31 3HL. Send 2×1 st Class stamps for details of these and other kits

BASIKITS for beginners from multivibrators to radios. S.A.E. for details. 23 Gloucester Avenue, Margate, Kent

Start training now for the following courses. Send for our brochure - without obligation or Telephone us on 0626779398	
ETI 11/93	

Tech C\&G 271

Rame

Radio Amateur

Licence C\&G

Micro-

processor

Introduction to

Television\end{array}\right|\)

TO ADVERTISE TELEPHONE JAMES GALE ON 044266551

ETI
ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55 p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address.

 Expiry Date...........................
FOR SALE COMPONENTS
PLANS
OTHERS STATE

OPEN FORUM

Electronics Today International has been published for nearly 23 years and, in the course of that time has informed, led and inspired countless numbers of readers across the world. Readers who are interested in electronics and technology. Readers who want to be part of the future.

Under ETI's guidance, such readers built computers before IBM even thought of the PC. They investigated the potential of new integrated circuits before they found their way into consumer products. They dreamt of using technology to make their fortunes or just to make the world a better place.

Technology as we know it today, of which electronics is a major part, represents the very frontier of human endeavour, a frontier which is daily being pushed ever forward into the future, along a path which started fifty thousand years ago with the makers of simple stone tools. But readers of magazines like ETI do not want to remain in the past, they want to be part of the future, part of that onward rolling wave of advancement.

This desire shows clearly in readership surveys. Over 70% of our readers have their own personal computer, an overwhelming majority are avid viewers of programmes such as Tomorrow's World and a great many are readers of magazines such as New Scientist.

As the new editor of ETI, I see it as both my own, and the magazine's, duty to be there with our readers at the leading edge of technology. To share in the excitement and the opportunity that goes hand in hand with leading edge developments, while at the same time showing how such technology can be used in a socially responsible manner to create a better world for everyone. Along with this, we must retain the unique practical element which has distinguished ETI from other magazines.

We will be looking at the electronics involved in advanced computer designs, as well as using electronics to help the disadvantaged. We will be looking at ways of using technology to improve the environment, at alternative energy sources and measurement of environmental change. We will be looking at the use of electronics in schools and education, as well as continuing the tradition of informing our readers of new ideas and inspiring them to create new ideas of their own.

We will also be improving the practical side of the magazine by commissioning new projects from some of the best writers and designers in the country. Projects which can be built by our readers without having to have any more than a basic set of tools and equipment. Projects which can be built on a budget,
but at the same time provide devices which are not readily available and which will be useful in the home, at work, or in the laboratory.

Because so many of our readers have their own computer, we will also be looking at ways in which readers can use this technology to assist them in their work with electronics. We will be looking at new software for electronics engineers and at ways in which your computer can be turned into a range of different pieces of test equipment. We will also be looking at the use of microprocessors and microcontrollers in electronics applications and the software needed to make them work.

We will be introducing, in the next issue, a computer conference system which will enable any reader with a PC and a modem to communicate with other like minded individuals around the world. A system which will enable participants to swap ideas, seek help, find that unusual component, data sheet, or piece of equipment, download free software, access vast databases and of course download the CAD files and any related software from ETI projects.

The ETI computer based conference system is the modern way for enthusiasts to talk to enthusiasts. ETI readers will thus have access to a 24 hour, 7 day a week, direct line to us and to all the other readers. With the ETI conference system you need never be alone!

In fact, communication between readers is a primary function of a magazine like ETI. We rely on you, our readers, for letters, projects and information about what is happening in some of the more obscure areas of technology. If you have a good idea, or have developed an interesting project then let us know and you too could be a project author. Let us know what you think of the magazine as well, what articles you would like to read, what projects you would like to make. Without such interaction we can not guarantee to always give you the of magazine that you want.

What we at ETI want to do is to keep on going from strength to strength, increasing readership and the quality of the contents, for at least another 23 years. To keep our readers up to date with the latest developments in electronics and encourage them to make things and carry out experiments using these latest techniques. To provide our readers who are involved in the industry and in education, with useful ideas which can be used to make development work easier. Above all, we want to live up to the claim on our front cover - that we bring you, our readers, tomorrow's technology today.

Nick Hampshire

EDITORIAL Editor Nick Hampshire Sub Editor Jim Bluck

CREATIVE Art Editor Peter Kirby Designer Iain Houston Technical Illustration John Puczynski Photography Manny Cefai

ADVERTISEMENT SALES
Display Sales
Tony Hill
Advertisement Copy Control
Marie Quilter
Classified Sales
James Gale

MANAGEMENT
Managing Director
Terry Patisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell Group Editor Stuart Cooke Group Advertisement Manager Claire Jenkinson

ETI is normally published on the first Friday in the month preceding the cover date. The contents of this publication including all articles, plans, drawings and programs and all copyright and all other intellectual property rights therein belong to Argus Specialist Publications. All rights conterred by the Law of Copyright and other intellectual property rights and by virtue of international copynght conventions are specifically reserved to Argus
Specialist Publications and reproduction requires the prior written consent of the company ©1990 Argus Specialist Publications. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible aftenwards. All prices and data contained in advertisements are accepted by us in good faith as correct at the time of going to press. Neither the advertisers nor the publlshers can be held responsible, however, for any vaniations affecting price or availablity which may occur after the publication has closed lor press.

- Subscription rates...UK £23.40 Europe £29.50 Sterling Overseas £ 31.00 US Dollars Overseas $\$ 56.00$
Published by Argus Speclalist Publications, Argus House, Boundary Way. Hemel Hempstead HP2 7ST. Telephone (0442) 66551. UK newstrade distribution by SM Distribution Lid, 6 Lelgham Court Road, London SW 16 2PG. Telephone 081-667 8111. Overseas and nonnewstrade sales by Magazine Sales Department. Argus House, Boundary Way. Hemel Hempstead, HP2 7ST. Telephone (0442) 66551. Subscriptions by Argus Subscription Services, ETI, Queensway House, 2 Queensway, Redhill, Surrey RH1 1OS. Telephone (0737) 768611. US subscriptions by Wise OwI Worldwide Publications, 4314 West 238th Street, Torrance, CA90505 USA. For Visa/Mastercard orders in USA - Telephone (310) 3756258 Fax (310) 3750548 . Pacilic Time: 9amEbm Weekdays. Liskeard, Comwall. Printed by Wiltshire ting and ongination by Ebony, Liskeard. Comwall. Printed by Wiltshire Lid. Bristot.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fax (0442) 66998

Low cost data acquisition for IBM PCs \& compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.
Each device comes with an easy to use software package (PicoScope, PicoLog or both). C, Pascal, and Basic drivers are supplied for those who want to develop their own software, as is a manual giving full details of the hardware and software. All software supplied on 3.5° disk.

Up to 24 kHz sampling rate from a $386 / 33 \mathrm{MHz}$ machine
0-5V Input range
BNC input connector allows use of standard scope probes 30 V overload protection Parallel port connection Includes PicoScope software Single Channel 8 bit ADC £49

ADC-16

Software selectable single ended or differential inputs Resolution programmable between 8 and 16 bits + sign $\pm 2.5 \mathrm{~V}$ input range 5 V reference output Connects to serial port Includes PicoLog software 8 Channel 16 bit + sign ADC

PicoScope

Scope, voltmeter, spectrum analyser
'Virtual instrument' software package for the $A D C-10, A D C$ 11 and ADC-12.

Storage oscilloscope with trigger and timebase. Traces can be printed and saved. Multiple maters onscreen. Real time spectrum analysis.

PicoLog

Collect samples from 1 perms to one per day. Scale samples linearly, by equation or by table look-up. Graphical (against time or XM and text reports can be displayed, printed or exported.
Picolog is also available for the ADC-10: call for details.

Advanced data logging software

Single Channel 12 bit ADC $\mathcal{E} 5$

PICOBENEFITS

- 30 day no quibble money back policy
- Full 1 year guarantee
- 1 year's free software upgrades
- Freetechnical support - Freeuser newsletter - Someday dispatch

15K samples per second $0-2.5 \mathrm{~V}$ Input range Digital output D25 input connector 30 V overload protection Parallel port connection Includes both PicoScope and PicoLog software
11 Channel 10 bit ADC
£75

Up to 18 kHz sampling rate $0-5 \mathrm{~V}$ Input range BNC input connector allows use of standard scope probes 30 V overload protection Parallel port connection Includes both PicoScope and PicoLogsoftware

Typical application	ADC-10	ADC-11

Piso Technology Ltd. Broadway House, 149 -151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.

FULL GOLOUR GUIDE TO ELEETRONC PRODUGTS

