

At last, a fully functional upgradeable PCB GAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages

... call now for details.

Board Capture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2

- Forward annotation with part values
- Full undofredo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker?

BoardMaker
BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 +
- Full netlist support - BoardCapture,
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII. BOM

NEW - Thermal power plane support with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom white routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matríx HPLaserjet and PostScript
- Penplotters - HP Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 2×00
- Excellon NC Drill and Annotated drill drawings (BM2)

Volume 22 No. 10 Detober 1993

Features \& Projects

Hot Wire Cutter .. 12
Colin Meikle has come up with a temperature controlled cutter to tackle intricate carving of plastics.
Electronic Picture ... 18
Whether it is for visual amusement or as part of a bigger message display system this project should enlighten you to the simple usage of EPROMs. Colin Meikle reports.
AutoMate Mixer .. 26
This month Mike Meechan looks at 'Pots and Pans' and their connection with routing.
Continuity Tester .. 30
Continuing with our 'test-gear' series, Robert Penfold builds a continuity tester using our cover PCB.
Sega Box .. 37
Keep your kids happy and save your fingers from plug pulling with this handy little box. A quick project from David Silvester.
Transistor Amplifier ... 38 from L Boullart.

Home Minder

 47You could put your mind at rest and the burglar on guard by using this 'magic box. It switches on various lights and appliances throughout the house at variouus times. Bob Noyes provides the details.

Regulars

\qquad
News 5
News Stateside 8
Read/Write 16
PCB Service 60
PCB Foils 61

Page 18
by Paul Freeman

Witiovital

t is that time of year again when we issue our Reader Survey. We like to know your comments regarding the magazine in order to steer it in the direction you want it to go. So please fill in the pages and return it to us (postage paid) as soon as you can. Those who reply early will be sent the new Maplin catalogue in return for your efforts.

A time for security?

Home security is very much on our minds these days as a result of rising crime. From this you'd expect the home security business to be a growth area of consumer electronics, and you'd be right.

Providing your own home security can prove an intriguing challenge and also cheap at half the price. This is of course assuming high security is required. Also intriguing is what deterrents could be produced without falling foul of the law. Alternatively you could build this issues' Home Minder to provide a psychological deterrent to any intruder, by making them think someone is in the building.

And finally, it's a pleasure to see a transistor amp project in this issue after all the hype we have seen and heard about valves. Thank you for taking the time to read ETI.

There's a whole lot going on in the world of personal telecommunications these days. For a start, I use the term personal telecommunications rather than the synonymous term, mobile telecommunications. CB started the personal telecommunications revolution because once users felt the benefits of being able to communicate from the wheel, they began to question why this couldn't apply to other situations. Its great being able to chat with others in the immediate area - but wouldn't it be so much better if it could be as a connection into, say, the public telephone system. Then a mobile user could call up (or receive calls from) anyone else in the world who has a telephone or a similar mobile communications device.

Cellular telephony allows this and various systems have been set up in the UK (Cellnet and Vodafone) as well as in Europe and around the world. They all share the same basic philosophy of having literally hundreds of small local base transceivers picking up signals and retransmitting them to and from other base transceivers or users.

Another mobile phone service known as CT2 (Cordless Telephone type 2) has started up recently in the guise of telepoint, with the only surviving telepoint system known as Rabbit, operated by Hutchison Telecom. However, Rabbit handsets can't receive calls, and outgoing calls can only be made within a strictly limited range (within 200 metres) of a base station. Handsets and calls are, however, much less expensive than those of existing cellular systems.

Cellphones, in their original state, were generally mobile devices, simply because power requirements in the old days meant that a high-current 12 V supply was needed for the output power. Over the last year, low-current low-voltage cellphones have become commonplace, giving users access to totally portable and pocket-sized cellular telephones.

Around 80% of cellphones currently sold are of this handheld category, which signifies a general move from mobile telecommunications to those of a more personal nature. In the UK both Cellnet and Vodafone are tremendously successful. Vodafone is expecting to sign up its millionth customer at the beginning of next year. With user-numbers like this, it's important for us all to see that personal telecommunications - with the accent on personal - is a big thing, and not just a flash in the marketing departments pan. When the landline telephone was invented there were probably people who said it would never catch on, too. Like it or not, personal telecommunications is here and is set to stay in no small way. If you haven't got a personal handset yet, you will have!

Cellular systems in this current category are of an analogue nature and analogue electronic devices are generally destined for the scrapyard. Sooner or later digital devices will take their place, with higher quality and less expense. Cellular systems have their limitations though. For a start, they are fast approaching their maxinum numbers of users. Each communication channel has quite a large bandwidth requirement which means only a limited number of channels can be allocated within any given frequency slot. Secondly, analogue systems are prone to interference and speech
quality problems. Thirdly, they are still expensive with only businessmen and well-to-do consumers able to afford them.

Already starting operation are the latest forms of personal telecommunications, operating on the cellular basis of small local base transceivers but in a digital manner. Being digital, communications between users are less liable to interference and with high-quality audio. Eventually the hand-held or mobile will be cheaper than their analogue counterparts.

The digital networks involved in these cellular systems are of two types. First is the global system for mobiles (GSM) network in which all connected users are able to access any phone or cellular user world-wide with high digital quality. Not only can this be done in the country where the unit was purchased, but in any country which also has a GSM network. Such inter-country usage is called roaming and current analogue cellular systems don't properly allow it. Greater numbers of users can be connected, too, sufficient for every current telephone user to have at least one. Vodafone has the first GSM in the UK, called EuroDigital.

The second type of digital cellular system to start is the personal communications network (PCN). First off the ground here are Mercury's One-2-One and Vodafone's MetroDigital. A third, operated by Hutchison Telecom, will start next year and others may be allocated the following year.

There are several similarities between PCNs and GSM, apart from the obvious that they are both digital. However, it's their differences which are most important. PCNs are envisaged more as local networks, aimed at the mass consumer market, while GSM networks are considered to be for the more business-oriented user who travels internationally.

Interestingly, it looks like handsets used on GSM and PCN networks will be interchangeable, with premium charges, on GSM networks. Pricing, as it happens, is an important consideration. PCNs are set to be considerably cheaper than current cellular systems, while GSM networks should eventually end up at around the same as current systems. Its the price which will make or break the systems, after all. Cheap enough and consumers and business users alike will be falling over themselves to get a handset connected to the respective networks. Too pricey (or no cheaper than current cellular prices) and what's the point? Its going to take a year or two until the PCN and GSM networks are fully up-andrunning, so customers might stick with analogue systems for a while too, to avoid confusion.

Over the last year, current analogue networks have already begun the two-tier strategy with a cheaper connection arrangement (alongside higher call charges) for consumer users - Cellnet's Lifetime, and Vodafone's LowCall. Now the two-tier pricing has been introduced and is understood by users, PCNs and GSM networks should widen the differential even more. Business users can have their world-wide telephone conferences at one price and consumers in the mass market at another, a lower price. And all of this can be achieved without recourse to an existing landline telephone.

Keith Brindley

So
ony has launched two new instrumentation Data Recorders, the 4 channel PC-204A and 8 channel PC-208A. These models offer better features over their predecessors the PC-204 and PC208, but are available at the same price.

The PC-204A and PC-208A offer Double Bandwidth recording and playback at 80 kHz , which can be split into four 20 kHz or eight 10 kHz channels. A wide 'dynamic range of over 80 dB al-
lows the capture of signals in noise-critical environments such as acoustic noise measurement.

The employment ofDAT technology makes the equipment suitable for high density storage as it offers more than ten times the capacity of standard audio cassettes.

In addition to the four or eight available channels there is a digital I/0 channel which uses the LSB (Least Significant Bit) of each data word. This allows for

SMALLEST CHIP CAPACITORS

NEC Electronics' new range of ultra-miniature tantalum chip capacitors are claimed to be the smallest available for their capacitance valuc range.

The SVS series, which ranges from 0.33 uF to 2.2 uF with voltage ratings of 2.5 volts to 16 volt DC, have outline dimensions of only $2.00 \mathrm{~mm} \times 1.20 \mathrm{~mm} \times 1.25 \mathrm{~mm}$ - half the size of the EIA standard A case.

These new products complement NEC's sxisting R-seriestan-
talum chip capacitors which range in value from 0.047 uF to 330 uF with voltage ratings of up to 50 volts $D C$.

All of the SVS series of products operate over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range with a tolerance of 20%. Leakage current is $0.5 u \mathrm{~A}$ maximum with a dissipation factor of 0.1 max. The capacitors are available in tape reel format and pricing is $£ 0.12$ in 1,000 piece quantities.
the recording of binary signals such as rotational and stimulus pulses as well as timing or reference signals.

The PC204A and PC208A can also be used as serial digital recorders with input and output capabilities of up to 3.072 Mbits/ sec . A high speed parallel digital output enables 16 -bit transfer of data to computer platforms.

Another feature of the Sony

Data recorders is the use of PCM (pulse code modulation), a measurement technique which guarantees the accuracy of logged data. By converting the analog signal levels into numeric values and recording them digitally, it avoids the risk of corruption by magnetic tape or tape transport mechanisms.

COMMUNICATION GAP IS HOLDING BACK INDUSTRY

Research released at the Computers in Manufacturing Show (CIM '93) reveals a communication gap between Information Technology suppliers and manufacturers that is holding back UK industry, according to John Puttick, Director of Manufacturing Europe for PA Consulting.

The research undertaken on behalf of CIM ' 93 by Benchmark Research shows that manufacturers remain unconvinced, and distrustful, of the benefits of IT and revert to manual methods during critical production runs. 33% of managers from large and medium sized manufacturing plants revert to manual methods when scheduling rush jobs, 43% still believe manual methods are more suited to control shopfloor processes and 21% are convinced that manual methods are better for scheduling production.

However, users universally accepted that computers were able to manage accounts, sales orders, purchase orders and stock control better than traditional manual methods. Another 51% admitted they did not actively measure the success of computer investments unless a problem emerged.

John Puttick from PA Con-
sulting Group commented: "Manufacturers are so caught up in the chaotic world of the factory floor that they're unable to define their problems adequately, let alone explain them to anybody else. While, IT suppliers do not understand the complexities of manufacturing and are unaware of the limitations of the technology. The resuit is that IT suppliers can 'over-sell' the capabilities of the technology and some manufacturers can become disappointed and disillusioned with IT and its suppliers.
"This gap is holding back technological development within UK manufacturing. Our manufacturing industry is based on the production of capital goods, such as aerospace components, luxury cars and gas turbines. These goods require constant modifications, testing and manufacturing. What is needed is a system that can 'think' in a flexible way, while coping with complex tasks. The UK has the opportuniry to do for capital goods what the Japanese have done for high-volume products, but the adoption of IT is critical.

Alec Cassells, Systems Consultant for IBM Industrial Con-
sultancy agreed that there were problems to be solved, but sees this as an opportunity for customers and supplier alike.
"The fact that most of the users only measure the success of
their computer systems when a problem emerges demonstrates that they don't have an accurate idea about the successes they are achieving," Cassells said.

The Computers in Manufac-
turing Show 1993 (CIM '93) is now commissioning a greater study into the attitudes held by manufacturers, IT suppliers, management consultants and the me-
dia, to look at ways of overcoming this communication problem.

CIM ' 93 will be held at the National Exhibition Centre in Birmingham from October 19-21.

NICAD UNIVERSAL CHARGER

APLIN Electronics can now supply a NICAD UNIVERSAL CHARGER priced at $£ 9.95$ (incl VAT). The Nickel-Cadmium battery charger is capable of charging AAA, AA, C, D, PP3 and rechargeable button cells singly or simultaneously in varying combinations. There are two charge sockets for PP3 batteries and either one or two may be charged together. There are two positions where AA, C or D cells may be charged. In addition there are two positions for rechargeable button cells, diameters $16 \mathrm{~mm}, 11.6 \mathrm{~mm}$ or 8 mm . (Note: It is very dangerous to attempt to recharge
mercuric oxide, zinc-air or silver oxide cells). All ten charge positions may be used simultaneously or in any combination. Each of the eight main charge positions (ie. not the button cells) has an LED associated with it which lights when charging is in progress. In addition, three test positions are provided, one for AAA and AA, one for C and D cells and one for PP3 batteries. When the charging switch is off, depressing the test button for the test position in use allows the meter to show if the battery is flat. The unit has 1.7 m mains lead. Overall size: 185 x $155 \times 56 \mathrm{~mm}$.

SPECIALLY COATED MONITOR SCREENS

Pshilips Components latest screen coating for monitor screens has given the company the leading edge in information display applications.

The anti reflection/anti static screen coating (ARAS) which cuts light reflections on monitors to just 0.5% - a mass twentyfold drop compared with uncoated screens.

The anti-reflection/anti-static screen coating (ARAS) cuts light reflections on monitors to just 0.5% - a twentyfold drop compared with uncoated screens.

The special coating is made of a multi-layer structure of transparent dielectric material that

suppresses specular reflections by broad band interference effects at
the screen surface. The anti-static properties are provided by a sin-
gle conductive layer within the multi-layer structure.

Philips Components has recently won a major contract to supply Amsterdam's Schiphol airport with these specially coated monitor screens which cut light reflections by 90%.

Schiphol has just ordered 400 coated screens and plans to equip each of its 2000 flight information displays with the coated monitors by the end of 1994.

ARAS coating is available as an option on 66 cm (28 inch) Flatter, Squarer Monitor Tubes type M66EEU418X and 16:9 ratio displays.

MD DATA STANDARDS FOR COMPUTER DATA STORAGE

S
ony has announced the development of standards for MD DATA, the new compact data storage medium offering high data stora capacity for personal computer applications.

The MD DATA standard has been developed to meet the computer industry's growing need for storage media capable of handling large amounts of data. The standard is based on specifications recently established for MiniDise personal audio system, which Sony introduced in No-
vember 1992. Sony will offer the new MD DATA standard to computer and other manufacturers to generate industry support.

Typically, floppydisks have been the medium of choice to fill the everyday data storage needs of personal computers because of the disks compact size and cost effectiveness. However, the need to add graphic as well as audio information to documents created on a PC led to the demand for a removable data storage medium capable of handling larger
amounts of data. While magneto optical (MO) discs are currently being used to meet these needs for workstations, Sony believes that factors,such as system size cost and ease-of-use will make MD DATA products widely accepted by consumers seeking portable computing applications.

MD DATA is expected to evolve into the next gencration in data storage technology. Offering the cost-effectiveness and user-friendliness of floppydisks, MD DATA will also provide sev-
eral special features including, a small portable size, 140 MB memory. capacity 2,000 frames of still color images on one MD DATA disc;

It also allows a data transfer rate of 150 kB per second, enabling

CD full motion video;
Importantly, a new file system, which determines how information is encoded ont the disc, has been developed as part of the MD DATA stc lard to facilitate compatibility between computers
based on fferent operating systems (0 S).

Computers using different CPUs and/or OSs employ file systems unique to their standard. these file systems determine file structure and the manner in which data is written onto the disk. As a result, it is difficult to interchange floppydisks between com-
puters of different platforms.
The MD DATA' s file system ill circumvent this problem. Once MD DATA system software is installed onto the computer, information written onto MDDATA discs can be retrieved and modified regardless of differences in the CPU and/or OS of the computers being used.

Specifications:
${ }^{-}$Recording Capacity:

- Sector Size:
- Data Units
- Data Transfer Rate
${ }^{\bullet}$ Cartridge Dimensions
- Disc Diameter
-Disc Thickness
-Track Pitch
-Laser Wavelength
- Numerical Aperture
${ }^{*}$ Recording Method
*Linear Velocity
- Modulation System
${ }^{\bullet}$ Error Correction System

140 MB (maximum)
2,048 bytes
64 kB
$150 \mathrm{kB} / \mathrm{sec}$
$68 \mathrm{~mm} \times 72 \mathrm{~mm} \times 5 \mathrm{~mm}$
64 mm
1.2 mm
1.6

780 nm
0.45

Magnetic Modulation Overwrite
System
$1.2 \mathrm{~m} / \mathrm{sec}-1.4 \mathrm{~m} / \mathrm{sec}$
EFM
Adaptive Cross Interleave Reed
Solomon Code (ACIRC)

VERY LOW POWER SRAMS

Mitsubishi has announced the expansion of its second generation 1MBit, low powerSRAM product family. A new TFT (thin film transistor) cell version of the

1Mbit SRAM has been produced using 4Mbittechnology to achieve superior power saving performance. Indeed, the new TFT device is the lowest power IMBit SRAM

Hesing Technology

TEST EQUIPMENT

Supply
Maintenance
Commissioning

Tel: (0480) 433156 Fax: (0480) 413357

Distributors for:
Distributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ EI.ECTRONICS, PANTHER

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX
 0316672611

The supplier to use if you're looking for * A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST * * COMPETITIVE VAT INCLUSIVE PRICES *
\star MAIL ORDER - generally by RETURN OF POST *

* FRIENDLY SERVICE *

[^0]currently available.
The IMBbit TFT cell SRAMs, like the other 1 MBit SRAM products, operate at $3 \mathrm{~V}(2.7$ to 5 V range) giving increased battery life. The SRAMs are useful in portable applications ranging from computers and dataloggers to mobile communications equipment. The low power devices are also ideal for memory card type appplications where battery backup is used to give portable, non-volatile mass data storage.

The new TFT devices can be used in a 2 Mbyte memory card, providing a ten year life from a single 3 V standard lithium cell.

The 1 Mbit TFT series SRAMs typically consume $0.05 \mu \mathrm{~A}$ on
pared to $0.3 \mu \mathrm{~A}$ from current HR cell devices. The new TFT cell device is downward compatible with previous HR cell IMBit SRAMs and is organised as 128 k x 8bit.
 standby from a 3 V supply com-

AFFORDABLE DATA ACQUISITION

Prices include Prp Solware supplied on 3.5° Disk uniess 525° specilied.

- 1 channel 8 -bit a to D 6 channel 8 -bit A to D
- Plugs into printer port - Plugs into printer port
- Up to 25 KHz sampling - Up to 4 KHz samplinglch
- 0 to 5 Volt input ange - 0 to 5 Volt input range
- Software drivers in C - Software drivers in C and BASIC - Vatmeter and Scope software + source
and BASLC
- Data Logger software (requires eganga)

C. P. Technology

Red Lion Yard. Market Place, Blandford, Dorset DT11 7EB.

QTu LTD STEVENAGE

Protessional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:

PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand Device Programming from h
written shts or PC $3^{1 / 2^{\prime \prime}}$ disc
written shts or PC $3^{1 / 2 "}$ disc
Cable Harness Assembly floom
Cable Harnes
Manufacture
Card Cage and Module Wirlng Full Inspection
Phone Tracey on (0438) 310066 or Fax details of your requirements to us on (0438)315829
EQT LTD, BTC, Bessemer Drive, STEVENAGE, HERTS, SG1 2DX

NEWS

 .Stateside...Volume holographic storage

Athough still in the research stage, volume holographic storage for computer software has recently required its own data compression technique, called fractal space multiplexing.

The technique was tried recently at Northrop Corp.'s Electronic Systems Division, where a demonstration project stored a

Protecting gas furnaces from power cuts

Iuring a sustained power cut, even people with gas furnaces may be without hcat because electricity is needed to operate the blower. Petrol and kerosene-powered generators may be used for backup power, but they must be watched and maintained and mean that potentially dangerous fuel must be kept around the house.
record 5,000 holograms in a lithium niobate crystal. Without the fractal geometry, the crystal could only support 500 holograms with reasonable resolution.

Holographic techniques already perform a kind of data compression. A two-dimensional array of pixels can be represented as a one-dimensional array of ref-

Rochester Gas and Electric, of Rochester, New York, has sought help from the GE Rescarch and Development Centre in Schenectady to solve this problem. The GE centre has now demonstrated the viability of a continuous gas furnace, which converts gas heat into electricity to power the blower and accessories. The key is a small thermoelectric generator that could be incorporated in new furnace designs. The generator exploits the Seebeck effect, where a circuit madc of different materials (a thermocouple) will generate electromotive force (voltage) when its two junctions are kept at different

temperatures.

The prototype furnace, a small, 70 lb unit burning diescl fuel, produced 7.2 kW or $25,000 \mathrm{BTU} / \mathrm{hr}$ of heat, about one-quarter the output of a typical home heating system. In tests, the unit also produced 160 W of electricity, approximately 60 W of which were needed to run the heating system. This left 100 W of auxiliary power. A full-sized gas system could produce around 600 W of energy without reducing heat efficiency. However, economics dictate a production system with fewer thermocouples, which would produce 100 W to 300 W of electricity.
erence beams. The two-dimensional image is reconstructed from a wave interference pattem, generating the reference beams.

That fractal geometry multiplexing would save space seems to be paradoxical at first, since it requires several one-dimensional reference-beam arrays that would therefore take up more
information storage space in the crystal. A large gain in storage occurs on read out, however, since the added information greatly reduces the optical crosstalk between stored images. The reduction in noise results in the ability to store 10 times as much information in the same space.

New microprocessor speeds pose problem

Now microprocessor speeds are moving above 100 MHz , problems normally associated with radio-frequency design are beginning to intrude into digital systems. Several projects aimed at solving system communication bottlenecks with optical methods have converged on a little-known area of organic chemistry - longchain polymers, to which optically active molecules known as chromophores are attached.

Researchers believe the polymer materials may not only be the key to uncorking future bottlenecks but could also lower the
cost per bit of information transmitted by orders of magnitude.

At cycling rates above 100 MHz , electromagnetic interference, terminal echo and ground bounce start to disrupt the simple capacitance model of interconnecting wires. While those unwanted effects complicate current designs, they threaten to become an insurmountable obstacles at the inter-chip level.

Polymer-based materials are attractive because they solve a crucial materials-compatibility problem that has plagued other electro-optic approaches.

High temperature superconductor

\mathbf{S}^{u}uperconductor Technologies Inc., of Santa Barbara, Califormia, has constructed what it believes is the first high-temperature superconductor delay line longer than 100 nanoseconds.

Made of a thallium-based HTS, the line is drawn in a module that measures only $3.8 \infty 3.8 \infty$ 0.5 in . It would replace 70 ft of RG-141 stainless steel coaxial cable in instrumentation and electronic warfare-delay applications.

Compared with the coax line, the HTS delay line improves insertion loss by a factor of 5 , which
enables a system designer to reduce the number of amplifiers needed to recover a signal, improving signal integrity.

The choice of 100 nanoseconds was more or less arbitrary, though within a certain window. The company thinks there is a competitive advantage with superconductors with delays between 25 and 500 , before optical systems become more optimal.

The delay line could be useful for storing signals in channelised receivers while a superheterodyne is being tuned.

Compound semiconductors such as gailium arsenide or indium phosphide are star performers, but crystalline mismatch with silicon has effectively blocked attempts at integration. The same is true of ceramic E-O materials. Lithium Niobate, for example, is preferred for its strong electrooptic performance but, as a crystal, is similarly difficult to integrate with other crystalline materials.

GE research has turned up a new candidate - dimethyl amino stylbazolium tosylate (DAST) which the project is targeting for
use as a thin-film interconnect technology for multi-chip modules. DAST has an unusually strong electro-optic coefficient, which makes it ideal for shrinking the size of devices.

In general, organic polymers tend to have weaker E-O coefficients than crystalline materials, and they also suffer from stability problems.

The new material discovered at GE has an unusually high E-O coefficient, but keeping that value stable over wide temperature ranges and long operational periods is proving difficult.

Simulated Annealing

Exatech Software of Colorado Springs, has announced an add-on that applies simulated annealing, a neural-like learning method, to spreadsheets.

It can quickly locate minima or maxima in problems involving too many simultaneous equations or unaccelcrated PCs.

Called XSolver, the programme has been designed for use with Microsoft's Excel spreadsheet. It communicates directly with Excel via Windows' dynamic data exchange method.

Simulated annealing simulates the way that the temperature is repeatedly raised and lowered on an annealing furnace. For micro-
chips, annealing helps form a perfect crystal lattice.

XSolver's user interface presents the user with the control panel on an annealing furnace while the spreadsheet data undergoes the annealing. The model, must first be expressed as a spreadsheet, with the user declaring the spreadsheet cells that contain adjustable parameters and the value in the single cell, which is a function of those parameters, to be minimised.

The user can choose whether thermal changes alter the values of individual cells or a swap in values between random pairs of cells.

PLASTIC

A RANGE OF SMALL PLASTIC BOXES, CASES AND POTTING BOXES AVAILABLE IN ANY QUANTITY.

SEND FOR FREE CATALOGUE SLM (MODEL) ENGINEERS CHILTERN ROAD, PRESTBURY, CHELTENHAM, GLOS GL52 5JQ FAX: 0242226288

Profusely illustrated, this $140+$ page A4 size catalogue packs a wealth of information on items from the highly sophisticated to modest but essential screws, washers and wire, etc. With 28 years in personal mail order service we know how much you rely on quality of goods above everything plus back-up service from the suppller i.e. Electrovalue. We've got the catalogue you want and we deliver the goods!.

TO GET YOUR CATALOGUE

Send your cheque or postal order for £1.50 to address on coupon or phone your Credit Card No. \& its expiry dato. Catalogue comes with two $£ 1$. vouchers each for spending with orders value $£ 10$. or more.
*SHOPS AT:
Egham, Surrey
28 St. Jude's Road. Englefield Green Tel. 0784434757
Burnage, Manchester
680 Burnage Lane
0614324945
-PERSONAL SHOPPERS, NOT MAIL ORDER

ELECTROVALUE LTD., UNIT 3. CENTRAL

 TRADING ESTATE, STAINES TW18 4UXPhone 0784442253 Fax 0784480320
| Your 1993/94 Catalogue please, to:
\qquad
\qquad
\qquad
Block fetters please, and POST CODE
1 enclose cheque/postal order for $£$
If not using coupon plaase quote this journal when writing.

We'll pay for every issue of ETI to be posted to you*

A one year subscription guarantees every issue of 'Electronics Today International' is delivered to you on publication and we pay the postage anywhere in the U.K.I

SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

Features

- Full control of drawing appearance including line widths,

fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries.
- Full set of 20 drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- ILLUSTRATOR+ adds netlist generation, bill of materials etc. and is compatible with most popular CAD software for DOS \& Windows.

CADPAK - Two Programs for the Price of One.

ISIS SUPERSKETCH
A superb schematic drawing program for DOS offering Wire
 Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

РСВ II

High performance manual PCB layout package for DOS. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Graphical User Interface with intuitive "point and do" operation gives unparalled ease of use.

ISIS and ARES for DOS - The Professional's Choice

ISIS

from $£ 275$ ISIS DESIGNER + forms the ideal front end of your CAD system, providing schematic capture, netlisting, bill of materials and electrical rules checks. Advanced features include automatic annotation, hierarchical design and an ASCII data import facility. Put simply, DESIGNER + is one of the easiest to leam and most powerful schematics packages available for the PC.

ARES

from $£ 275$
The ARES range of advanced PCB design products links with ISIS (DOS or Windows) and other schematics programs. Working from a netlist, ARES helps you get it right first time with each connection automatically verified against the schematic.

ARES AUTOROUTE adds multi-strategy autorouting, whilst for the ultimate in performance, ARES 386 goes up to 400% faster with unlimited design capacity.

14 Marriner's Drive, Bradford, BD9 4JT. | Call us today on 0274542868 or |
| :---: |
| fax 0274481078 for a demo pack. |
| Combination, multi-copy and |

Hot Wire Cutter

Fig. 1 Current through cutting wire

> Colin Meikle describes a useful instrument for cutting shapes

This piece of equipment will easily find a home on the work bench. Anyone who builds electronic projects has undoubtedly spent many hours drilling, sawing and filing boxes to accommodate meters, connectors, displays, etc.. This piece of equipment is a controllable hot wire, which can be used to cut detailed shapes out of plastic enclosures (or can be used anywhere plastic or even polystyrene requires cutting). The equipment consists of three separate parts, a Power Supply, the control electronics and a ' U ' shaped handle which has the cutting wire. The circuit incorporates a temperature control, which is essential to be able to cleanly cut different thicknesses and cut at different speeds. A Tricoloured LED gives an indication of the cutting wires temperature (green $=$ cool, orange $=$ warm and red = hot). Touch strips are incorporated in the handle of the cutting arm, so that the hot cutting wire is only turned on when the handle is being held (this helps avoid the inevitable burnt fingers). The circuit as described has been designed to operate from a 12 V PSU, such as the power supply for a PCB drill (see the section on Power Supply).

There are a number of ways of controlling the power to the hot wire and hence the temperature of the wire. The method employed in this circuit is Pulse Width Modulation, which is a very efficient method. The power to the hot wire is pulsed on and off and by varying the on/off period, the temperature of the wire can be controlled. Figure I shows the output waveform to the hot wire. The current through the wire when it is on is approximately 4 A and, from Figure 1 , it can be seen that the duty cycle is between 10% and 40%. A bulk capacitor supplies the peak current and hence the current which is drawn from the supply is between 0.35 A and 1.5 A . Since the wire is either on or off, the losses in the circuit are very small. A MOSFET was chosen for the output transistor due to its very small on resistance (0.18 R), hence it can operate without a heatsink. The circuit's operating frequency is not
critical, although a few factors must be taken into consideration. As the wire is continually pulsed on and off, it is constantly heated and cooled. This causes the wire to expand and contract which in turn causes the wire to vibrate a small amount. This vibration at low frequencies manifests itself as an audible hum, which can be annoying. At very high frequencies the circuit becomes less efficient, as losses in the output transistor will start to increase. Another factor to consider at high frequencies is Electromagnetic Emissions. At high frequencies, with large switching currents the cmissions from the circuit could easily interfere with other electronic equipment. With the components specified the operating frequency is between $13-15 \mathrm{kHz}$.

Component Selection

The most important component is the cutting wire itself. The wire used was salvaged from the heating element of an old hair dryer, one element will give years of supply. (I have used the wire from two different elements, both had a resistance of approximately 3 ohms per 10 cm). It is not critical that the wire has the same resistance, as the duty cycle of the circuit canbe altered to compensate for different wires, but wire with a significantly lower resistance should not be used.

The MOSFET specified can be substituted for any Power MOSFET which has a low On resistance (less than $0.25 R$). Any device which has a higher On resistance may require a heatsink - if alternative devices are used, check the pin out.

Resistor 9 is not strictly required, but it does allow the current through the circuit to be easily monitored, thereby allowing you to check that your PSU is not over-loaded (current $=4 \infty 0$ Voltage across R9). The wire used between the control unit and the handle should be the 'Extra Flex' type, to allow free movement of the handle. Ensure the connectors used to connect the wires the handle are capable of handing over 4A.

Power Supply

The circuit has been designed to work from any 12 V power supply that can supply 2A or more. Standard batteries are not a suitable source for the supply, due the high current

HOW IT WORKS

Operation of the circuit is very simple, referring to the circuit diagram (Figure 2).

The circuit is based around a free running oscillator with a variable duty cycle. This oscillator consists of IC1C and associated components. D1 and D2 allow the charge and discharge path for C2 to be separated. By altering RV1 (or R3 and R4) the charge and discharge time for C2 can be altered and hence the duty cycle of the oscillator is altered.

The oscillator signal drives the red segment of the tricoloured LED and its complement drives the green. As the duty cycie is increased the red segment is driven more and the green less, thereby giving an indication of the temperature. Note that R7 and R8 are not equal because the maximum duty is 40%, therefore the green segment is driven longer than the red. To compensate for this, the series resistance for the red segment is lower than for the green.

The oscillator signal is ANDed (ICla \& b) with the TPAD signal, before driving the output transistor. The TPAD-2 signal is pulled low via a very high resistance (R1). When the handle is held the touch strips are 'shorted' and TPAD-2 goes high (slnce the skins resistance is much lower than R1). This allows the oscillator signal to drive the output transistor, Q3, which in tum drives the cutting wire.

C6 smoothes out the high current pulses, resulting in a steady current being drawn from the supply.
drain of the circuit, however rechargeable batteries with a high capacity could be used (c.g. lead acid). Figure 2 gives details of a suitable supply if building your own.

Note: Any power supply over $6 \mathrm{~V}(>24 \mathrm{VA}$) can be used. If lower voltage supplies are used R3, R4, R7 R8 will have to be altered, to increase the duty cycie.

Construction

The component layout for the PCB is given in Figure 3. The finished PCB should be mounted in a small box and 'wander' type connectors are ideal to connect the wires from the cutting arm to the control box. Figure 4 shows the dimensions for the U shaped cutting amm, although there is nothing critical here and you may wish to design your own. The length of the actual cutting wire should nevertheless be kept to a similar length.

As can be seen from Figure 4, the handle of the arm is a $18 \mathrm{~mm}^{2}$ block of wood. The arms are two equal lengths of dowel rod, which can easily be glued into two holes drilled in the handle. Drill all the required holes in the dowel rod before gluing them in place (remember to ensure all the holes line up). Metal tubes should be used to stop the wood from burning where the cutting wire passes through the wooden arms and I used uninsulated bullet type connectors for this. It will sometimes be necessary to temporarily disconnect the cutting wire, e.g. when cutting holes in panels, so the connecting wires are soldered to solder tabs and are bolted, together with a few washers. The cutting wire is then simply sandwiched in between the washers and tightened up.

Fig. 2 Circuit diagram

Fig. 3 Component layout

This gives a simple, quick method of connecting and disconnecting the wire. A small spring is used to keep the cutting wire taught, but still allows some flexibility.

The touch strips on the handle can be any type of metal rod or strip. The two strips should be positioned apart, so that when the handle is held your hand covers both. The connecting wires should be connected as shown in Figure 3/4. Note that the WIRE + wire connects to one touch strip and one end of the cutting wire.

Setting Up

The circuit should first be tested without the cutting wire. Connect the power supply to the circuit and connect a 12 V bulb or an LED via a k resistor to the output terminals. With the touch pad connections open, turn the power on. The tricoloured LED should light and when the pot is altered, the colour should change from mainly green to mainly red. If it does not, check that D1 and D2 are the correct way round. Turn the pot until the LED goes green, then connect the touch pad wire to the positive supply (the test point can be used for this). The test LED or bulb should glow dimly, as the pot is altered the intensity should increase. If the bulb glows most brightly when the LED is green, swap the green/red connections to the tricoloured LED.

Assuming all is OK turn off, leaving the pot set with the LED at green and replace the test bulb with a piece of the Cutting Wire (the same length
as to be used in the handle). Take care that the ends cannot be shorted out and that the wire is away from anything it may burn. When the power is applied to the circuit, the wire should warm up (this may not be visible at the cool setting) and as the pot is slowly altered, the wire should get hotter. When the other end stop of the pot is reached (the LED will be mainly red) the wire should be visibly glowing.

If the wire gets visibly hot before the end of the pot or does not get hot enough, a few adjustments will be required.

If the wire gets too hot at the maximum setting, increase the value of $R 4$. If the wire does not get hot enough decrease R4. If the wire is too hot at the minimum setting, decrease R3 and if it's too cool increase R3. If the values of R3 and/or R4 are altered the tricoloured LED may appear too red or too green. The colour can be easily altered by changing R7 for the red content and R8 for the green (increasing the value decreases the intensity of the corresponding colour).

In Use

When using the cutting wire, you will find the wire will cool locally around the cutting point. To obtain the best results, the wire should be moved gently up and down as you cut, so that the local cooling has less of an effect. You may also find it helpful to build different sized handles, which can be swapped as required, to suit different situations.

PARTS LIST
 RESISTORS

All $0.25 \mathrm{~W}, 5 \%$ Catbon Film, except where stated
R1 5 M 6
R2 100 k
R3 12k
R4 56 k
R5,6 10k
R7 330 R
R8 1k2
R9 OR25 (3W WWound)
RV1 47k Potentiometer

CAPACTIORS	
	10 n
	100 n
C4	100 n polyester (5 mm pitch)
C5 1	100 $\mu^{16 \mathrm{~V}}$ Elect
C6 1	1000p/16V Elect
SEMICONDUCTORS	
01,2	1N4148
D3,4	1N4001
Q1,2	BC327
Q3	BUZ11 Power MOSFET
IC1	4093 CMOS Schmitt NAND Gate

MISCELLANEOUS

4A Slow Blow Fuse and PCB clips.
Tricoloured 5 mm LED and clip.
Suitable 'cutting wire', approx. 3 ohms per
$10 \mathrm{~cm}, \mathrm{e}, \mathrm{g}$. wire from the heating element from a hair dryer.
Extra-Flex wire to connect the handie to the control box.
Plugs and sockets, e.g. Wander type Suriable plastic box to house the circuit (e.g. $125 \propto 60 \propto 40$)

[^1]Fig. 4 Cutting arm

POWER AMPLIFIER MODULES-TURNTABLES-DIMMERS- SEMVICE \& LARGELAWB.A.E, ECPBTAMPEDFORCATALOOUE * LOUDSPEAKERS-19 INCH STEREDRACK AMPLIFIERS

THOUSANDS PURCHASED
BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W + 450W) ALL POWER RATINGS R.M.S. INTO 4 ONMS, BOTH CHANNELS DRIVEM
FEATURES: \#indopendem power supplies with two loriotal ransilormern \#Twin L.E.O. VV metars *

 USEO TME WORLD OVER IN CLUBS, PUES, CIMEMAS, DISCOS ETC.

PRICES:- MXF200 \&175.00 MXF400 C233.85 MXF600 ع329.00 MXF900 ع440.15 SPECIALIST CARRIER DEL. $£ 12.50$ EACH

OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER

Advanced 2-Wey Stereo Active Cross-Over, housed in a 19^{*} I tu case. Esch channel has mree level conirols basa, mid 8 lop. The removable tront lascia aillows access to the programmable OIL awiches to adiust the on each bass channol. Nominal 77 SmV inputitoutpul. fully compalible with OMP reck mplifier and modules. Price E117.44 + E5.00 P\&P

PIEZO ELECTAIC TWEETERS - MOTOROLA
Join the Plezo revolution! The low dynamic mass (no voice coli) of a Piezo tweater produces an improved transionl response wilh a lower distortion level than ordinary dynamt tweeters As a crossover is not requirec These units can be added to existing spesiter systems of up to 100 wan
EXPLANATOAY LEAFLETS ARE SUPPLIED WITH EACH TWEETER

TVPE ' ${ }^{[}$(KSN1036A) 3^{3} " round with protective wire mesh. Ideal tor bookshell and medlum sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{p}$ PEP.
TVPE 'B' (KSN1005A) 3% ' super horn lor general purpose speakers. disco and P.A. systems etc. Price $£ 5.99+50$ P PAP.
TVPE 'C' (KSN1016A) $2^{\prime *} \times 5^{\circ}$ wide dispersion horn for quality Hifi sys tems and quality discos elc. Price $\mathbf{8} 6.90+50$ p P\&P. TYPE ' D^{\prime} (KSN1025A) $2^{\circ} \times 6^{\prime \prime}$ wide dispersion horn. Upper trequenc response retained extending down to mid-range (2 KHz). Suitabie for high quality Hi-fi systems and quality discos. Price $£ 9.9 \theta+50$ p PAP. TYPE 'E' (KSN1038A) $3{ }^{34}$ " horn tweeter with altractive silver finish Irim. Suitable for Hi-Fi monitor systems etc. Price $£ 5.99+30$ P PAP. and cabinet input liack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+30 \mathrm{p}$ pap

IDTFLIGHT CASED LOUDSPEAKERS

A new range of quality buds peakers. designed to take advantage of the lalest speaker lecthology and enclosure destions. Both models utilize sluutio quality
12" casi aluminium toudsoeakers with lactory fined orilles wide constant directivity hoorss, extruded aluminium corner protection and steel ball corners. complimented wibl heary duty black covering The enciosures are fitted as standard with top hats lor Opfional lowdspeaker stands.
POWER RATINOS QUOTED IN WATTS AMS FOR EACH CABINET
FREQUINCY RESPONSE FULL RANGI 45 H - 20 K Nz
 SPECLALIST CARAIER DEL. Et2.50 PER PaIA
OPTIONAL STANDS PRICE PER PAIR \& 40.00 Dellvery 86.00 per palr

PRICES: 1 50W C49.98 250 W ع99.99 400 W \& 109.95 PAP \&2.00 EACH
(
R STEESUPEAB MIGADOW CAR STEREO GOOSTERAMPLIFIERS
150 WATTS $(75+75)$ SIETEO. I50W Bridged Mono 250 WaTtS (125 aridged Mono
Wiged Mono
WATTS $200+200$) Stereo, 200 W) WhTTS $(200+200)$ Stereo, 400 W Brldged Mono
ALL POWERS IWTO 4 OHMS ALL POWE
Features:
F Storeo, bridgable mono *hoice ol high \& low level Inputs L a R level thermal orotection.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 40 hms , trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{us}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R 110 dB . Size $300 \times 123 \mathrm{n} 60 \mathrm{~mm}$
PRICE E40.85 + ع3.50 PAP
OMP/MF 200 Mos-Fet Output power 200 watts A.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB . Damping Faclor >300, Siew Rale $50 \mathrm{~V} / \mathrm{US}$, T.M.D. typical 0.001%, Inpul Sensitivity 500 mV , S.N.R. 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PAICE E64.35 + C4.00 P\& P
OMP/MF 300 Mos-Fet Output power 300 watts A.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.O. typical 0.001%, Input Sensilivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE $£ 81.75+85.00$ PaP
OMP/MF 450 Mos-Fet Output power 450 watts A.M.S. Into 4 ohms, trequency rezponse $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damplng Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{us}$, T.H.D. typleat 0.001%, input Sensitivity 500 mV , S.N.R. -110 dB, Fan Cooled, D.C. Loudspeaker Prolection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$
PAICE E132.85 + £5.00 PAP
OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, slew Rate $75 \mathrm{~V} / \mathrm{LS}$, T.M.D. typical 0.002%, Input Sensitivily 500 mV , S.N.A. -110 dB , Fan Cooled, D.C. Loudspeaker Protecilion, 2 Second Anli-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$. PRICE $259.00+$ \&12.00 P\&P

WOTE MOS-FET MODULES ARE AVALLABLE IN TWO VERSIONS: STAMOARD - INPUT SEHS SOOMV, BAMD WIDTH $100 K M 2$.
PEC (PAOFESSIONAL EOKITMINER STANDARO OR PEC.

LOUDSPEAKERS

LaRGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDINO CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREOUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (80p STAMPED) FOR COMPLETE LIST.

McKenzle and Fane Loudspeakers are also available.

ETNENCE:-INSTRUMENTS. P.A. DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEOANCE
$8^{\circ} 100$ WATT R.M.S. MES-100 GEN. PURPOSE, LEAD QUITAR, EXCELLENT MID. DISCO RES. FREO. 72 Hz , FREQ, RESP. TO 4 KHz , SENS 97 dB. PRICE C32.71 \& C2.00 PAP $10^{\circ} 100$ WATT R.M.S. MIIO-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID RES. FREO. 71 Hz . FAEQ. RESP, TO 7 KNz , SENSS7dB. 10-200 WATT R.M.S. ME $10-200$ GUITAR, KEYB'O, OISCO, VOCAL. EXCELLENT MIGM POWER MIO.
 ,
 12 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A., VOCAL, STAGE MONITOR. RES. FREO 42 Hz , FREO. RESP. TO 10 KHz , SENS 98 dB 12" 200 WATT R.M.S. MI 12-200 GEN. PURPOSE, GUITAR, OISCO, VOCAL, EXCELLENT MIO RES. FREO. 58 Hz , FREO. RESP, TO 6 KHz , SENS $98 d \mathrm{~B}$. PRICE E46.71 + $\mathrm{C3} .50$ P $12^{-} 300$ WATT R.M.S ME $12-300$ GP HIGH POWER BASS, LEAD QUITAR. KEYBOARD, DISCO ETC. RES. FREO. 47 Hz , FREO. RESP. TO 5 KHz , SENS 103 dB . 15 " 200 WATT R.M.S. ME $15-200$ GEN. PURPOSE BASS. INCLUDING BASS GUITAR. RES. FREO. 46Hz. FREQ. RESP. TO 5 KMz , SENS 99dB. $18^{\circ} .300$ WATT R.M.S. ME $15-300 \mathrm{HIGH}$ POWER BASS
RE8. FREO. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB .
ass guitar.
PRICE 530.7

EARIENDERS:- HIFFI, STUDIO IN-CAR, ETC
ALL EAREENDER UNITS 8 OHMS (Excep EB8. SOA ABBO-SO which ~o OU
3ASS, SINGLE CONE, HIGH COW BES. FREO. 4OHZ. FREO. RESP. TO 7KHZ SENS $97 d B$. 10" SOWATT ER $10-50$ DUAL IMPEDENCE, TAPPED $4 / 8$ OMM BASS. HIF RES. FREQ. 40 Hz , FREO, RESP. TO 5 KHz , SENS. 998 dB . 10' 400 WATT EB $10-100$ BASS, MI-FI, STUDIO. RES. FREO. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB .
12** 100WATT E812-400 BASS, STUDIO, MI.FI, EXCELLENT DISCO. RES. FREO. 25Hz, FREO. RESP. TO 3 KHz, SENS $93 d B$. FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND S4』" RES. FREQ. 63 Hz , FREQ. RESP. TO 20 KHz . SENS 92 dB .
 ". RES. FREO. 40 Hz , FREO. RESP. TO 18 KHz . SENS 89 dB . RES. FREQ. 35 Hz , FREO. RESP. TO 12 KHz , SENS 98 dB .

TRANSMITTER HOBBY KITS
PROVEN TRANSMITTER OESIGNS INCLUDING GLASS FIBAE PRINTED CIRCUIT BOARD AND MIGH OUALITY COMPONENTS PRINTED CIACUIF BOARO ANC MIGHO INSTRUCTIONS
COMPLETE WITH CIRCUIT AND
 PERFOAUACE RANGE UP TO 3 WLLES, SIZE 38 a 123 mm , SUPPLY 12 V GO.SSMP

PaICE C1.85 $+\$ 1.00 \mathrm{PaP}$

B.K. ELECTRONICS

UNITS 1 E S COMET WAY, SOUTHENO-ON-SEA,
ESSEX. SSR $5 T R$ Tel: 070 - 527572 Fax.:0702-4202a3

Supplies Supplies

I.would like to congratulate you on one of the most interesting issues of ETI that I have read in a long time. It was nice to see the article on transformerless power supplies but hopefully your contributors will be able to design these safely in the future, and I won't have to write to complain. Contrary to what you seemed to infer from my letter, I have nothing against the transformerless power supply - I design circuits using them on a regular basis, but as I design them commercially, electrical safety is paramount and compliance to the relevant standards is mandatory.

Andrew Armstrong makes no mention of how to calculate R1 in

Figure 4 (the surge limiting resistor). In practice, the larger the better. Not only does R1 limit the surge, it is the only limit to high frequency interference, where the capacitor reactance is negligible. I choose a 2 W component for R I and select its value such that lac $^{2} \mathrm{R} 1=1 \mathrm{~W}$ approx.. Class X capacitors are available up to 1μ phase.
an output voltage 0.6 V less than the Zener voltage. The wave form at the junction of D1 and D2 is a very useful 50 Hz square wave, but unfortunately it is in quadrature with the mains, not in

I was very interested in Mr Binga's clock and I have used the circuit below instead of Figure 3 very successfully. For 5 V logic, the current is $4.4 \mathrm{~V} / \mathrm{Re}$ and is independent of supply voltage fluctuations and number of LEDs in the chain. I have used +VE as rectified mains with next to no smoothing, but the transistor needs a heatsink. The TIPL770 or MJE 13005
which gives a respectable current. If a 400 V polyester is substituted it will blow up sooner rather than later, a 630 V component will last a bit longer. Dl can be the Zener and D3 can be omitted to reduce component count giving

Power Down Problem

am currently attempting to design a circuit incorporating CMOS Static RAM and I would be very grateful if you could offer some advice.

The circuit is designed to download and store data from a computer's serial port using two CMOS Static RAMs, (62648 K x 8 bit and 6225632 K x 8bit). Both devices share a common address bus in my circuit design, but are individually selected to store data by switching logic. It is vital that data is retained after switching off the main 5 V supply to the circuit.

It is simple enough to connect a battery backup to the RAMs using diodes to maintain power to the chips when the main 5 V supply is switched off. One possible problem, however, is the fact that the logic circuitry controlling the RAM chips may set the READ, WRITE and CHIP SELECT lines to an undesirable state as they
power-down. The effects of this would be possible corruption of data in one or more RAM chips.

It seems that a voltage monitoring circuit is required to disable writing to both RAM chips during switching on and switching off the main 5 V supply. The CHIP SELECT lines of both RAMs must be available for use by the rest of the circuit when the main 5 V supply is present.

Any suggestions for such a circuit would be gratefully received and I'm sure would interest other readers.

G A Haddon Birmingham

Your request is being dealt with and will appear as a Blueprint. - Ed.

InterCard 1 Update News

I ere's an update on developments concerning the InterCard 1 Universal Interface Card for the IBM PC:
has a gain of at least 30 , so the logichas to supply less than $660 \mu \mathrm{~A}$ for 20 mA in the LEDs.

If the clock has a 7 -segment display, would fluorescent tubes be a possibility? Starting them would be interesting, I'll leave

1) The software disk for the project has been revised to version I. I. Improvements to the disk are mainly to do with the format and structure of the files, with a few extra sound samples. No new programs yet.
2) Distribution of the software disk is now being handled by:

The Public Domain
Software Library
Winscombe House
Beacon Roall
Crowborough
Sussex
TN6 1UL
United Kingdom
Tel: (0892) 663298
The volume number of the InterCard I software is 3861 - this
that design for someone else to do! Arranging to turn the heaters on a few seconds before voltage is applied to light the tube would be a possibility or, alternatively, running them cold-cathode from a leakage-reactance transformer.

Ona final note regarding making PCBs, photocopying ontooverhead projector film does not usually give enough density, but making two copies and fixing them together, one on top of the other usually produces excellent results, provided that the copier produces two copies of identical size.

> Ian Benton
> Ilkeston Derbys

Andrew Armstrong replies: For alowpower design, R1 would be in the region of 0.6-1W. The minimum value of $R 1$ with $V p k=$ 360 V and $1=2.5 \mathrm{~A}$ would be 144 R (nearest preferred value of $150 R$). If 50 mA is drawn. you would need a IOW version of RI (150R).
should be quoted when placing an order. The current cost for one disk in the UK is $£ 6-00$, with free postage. Due to other commitments I will no longer be able to honour requests for the software disk. All furure orders should be sent to the PDSL at the above address. Those readers who originally acquired the high-density version of the disk from the author and found two extra directories of programs - namely SCOPTRAX and MODPLAY should note that the disk from the PDSL does not contain these programs (they can be found on disks 3676 and 3554 respectively) Further details/catalogue available from the above address.

Neil Johnson

PROFESSIONAL SERVICES

We offer a full R.F. DESIGN SERVICE from design and development to prototype. Our extensively equipped laboratory with screened room is available for EMC PRE-TESTING to ensure products comply with the EC Directive on emisslons and susceptibifity.

Low cost data acquisition for IBM PCs \& compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.
Each device comes with an easy to use software package (PicoScope, PicoLog or both). C, Pascal, and Basic drivers are supplied for those who want to develop thelr own software, as is a manual giving full details of the hardware and software. All software supplied on $3.5^{\prime \prime}$ disk.

[^2]
Dlectronic Picture
 A moving LED display by Colin Meikle
 Idesigned this project as a novel present for my girlfriend. I intended building some sort of display that could show a series of short messages and the original intention was to build a large display that would show several words at a time, although I soon discarded this idea. The circuit would be too complex and even the size of the display would be impractical for my girlfriend's bedroom. I therefore decided on a small LED display that would display one character at a time. This had several advantages, the display could be built into a small picture frame and the electronics to drive the display

 could be kept very simple. I soon realised that in addition to text, interesting patterns could be displayed. As development progressed, I thought the patterns would be more interesting if they responded to surrounding sound, particularly music, so a sound activated circuit was included.The Electronic Picture itself is made up of an $8 \infty 8$ array of LEDs, mounted in a small picture frame. The picture can display short text messages, or various types of patterns to form visual effects. It is similar to the LED type displays found in Post Offices and shops, but on a smaller scale. The circuit allows the messages or patterns to be displayed at a fixed rate. In addition, the circuit has a built in microphone, which allows the display to respond to surrounding sounds.

This feature is of little use for text messages but very good visual effects can be created. Both modes of operation have controls that allow the sensitivity or speed to be altered. A switch allows either sound or automatic mode to be selected. The circuit can store 16 different sequences, which can be individually selected (a push button allows you to cycle through the sequences), or all the sequences can be displayed in turn after a set number of repetitions.

The patterns or messages are stored in an EPROM. Programming the EPROM is a time consuming task (although not as difficult as you may first think), but this is a compromise to keep the circuit simple. The circuit can be powered from the mains or via a small external PSU.

Fig. 1 Memory Map
STEP 1: DRAW PATTERN ON GRID

CONVERT OFF LEDG $\quad 0 \begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$
CONVERT OFF LEDS
01000000 01000000 01111000 01000000 01000000
01111100
STEP 3:
CONVERT TO HEX

REPEAT FOA ALL FRAMES IN SEQUENCE
EXAMPLE 1A: DATA FOR THE CHARACTERS 'ETV

0000	00	00	00	00	00	00	00	00	
0008	00	00	00	00	00	00	00	00	
0010	00	00	00	00	00	00	00	FE	
0018	00	00	00	00	00	00	FE	10	
0020	00	00	00	00	00	FE	10	10	FIRST 15 FRAMES OF
0028	00	00	00	00	FE	10	10	10	FSECUENCE
0030	00	00	00	FE	10	10	10	FE	A SEO
0038	00	00	FE	10	10	10	FE	00	
0040	00	FE	10	10	10	FE	00	00	
0048	FE	10	10	10	FE	00	00	82	
0050	10	10	10	FE	00	00	82	FE	
0058	10	10	FE	00	00	82	FE	82	
0060	10	FE	00	00	82	FE	82	00	
0068	FE	00	00	82	FE	82	00	00	
0070	00	00	82	FE	82	00	00	00	

EXAMPLE 1B: EXAMPLE OF SCROLLING TEXT
THIS EXAMPLE SCROLLS 'HI' ACROSS THE DISPLAY
NOTE THAT IT TAKES 15 FRAMES TO SCROLL TWO LETTERS

0000	10	10	10	10	10	10	10	00
0008	02	04	08	10	20	40	00	00
0010	00	00	00	$F E$	00	00	00	00
0018	80	40	20	10	08	04	02	00

EXAMPLE 1C: SPINNING 㭗*PATTERN
TMIS SEQUENCE STARTS WITHA'-', FOLLOWED BY' $\because^{\prime}| |^{\prime} /$ "
THIS GIVES THE EFFECT OF A SPINNING STAR
THE STAR SPINS IN TME WITH THE MUSIC'

Fig. 2 Examples for creating patterns

In Operation

It is important to understand the memory organisation and the way in which patterns are displayed if you are to create your own display sequences. Figure 1 shows how the memory is organised and how it relates to the LED display.

The EPROM is an $8 \mathbf{K} \infty 8$ bits device. Each byte in the EPROM corresponds to a column on the LED display. Each of the 8 bits within the byte control a LED within that column (setting a bit to a 1 turns the LED on). The memory is firstly organised into 8 byte blocks and each block corresponds to one complete picture 'frame' (one byte for each of the 8 columns). By repeatedly displaying the 8 byte block, with each column displayed in quick succession, it appears that all 8 columns are being displayed at the same time, although there is only one on at any one time. Referring to Figure 1, memory location 0000 corresponds to the first column $\mathbf{C 1}$, the data in this location is 00 H , thus all the LEDs on this column would be off. Location 0001 corresponds to the second column C2, this contains FEH, where all the LEDs in column C2, apart from the top LED R1, would be on. If you complete this for the complete block (i.e. 0000 to 0008) you will find the character ' E ' would be displayed. Each of these 8 byte blocks are displayed for a period of time, e.g. I second,

then the next 8 byte block is displayed. This next block would contain, the next character in the message or the next part of the picture sequence. Thus, each 8 byte block defines a picture frame. 64 of these blocks are displayed in sequence for a set period of time, to create a complete message or

Fig. 3 Component Overlay
of LEDs). This method makes long messages difficult to read, A better way is to scroll characters across the display, although this uses a greater amount of memory and the length of the message that can be displayed is greatly reduced. You may find the 64 frames is a limitation when creating messages but this can be expanded if required (see the section on further expansion). When creating patterns or visual effects, the 64 frames will be more than adequate. To create your own patterns you first must have access to an EPROM programmer and you will find a good text editor invaluable.

The first step is to draw out an $8 \infty 8$ grid on a blank piece of paper, to represent the display. Number the columns (C18) and rows (R7-0), see Figure 2 This can now be used as a template. Place a thin piece of blank paper on top of your template and lightly draw on the grid, the character or pattern you wish to display. Put a \mathbf{X} in all the boxes where a LED should be On. Note that if only displaying text, a $5 \infty 0$ array should be marked out (as most text can fit into this array), that is, don't use $\mathrm{Cl}, \mathrm{C} 7, \mathrm{C} 8$ and row R1.

The next step is to convert the Xs into a Hexadecimal number. This can be done in two steps, convert the Xs to 1 s and the blank spaces to 0 s (remember to include all the blank columns). Reading each of the columns, convert the 8 digit binary number into a hex number (note the bottom, R7 is the MSB). This can be seen in Figure 2, example 1. This process is simply repeated for all the different picture frames you require for your sequence. Remember, you need 64 frames to complete one sequence. If your sequence is, say only 16 frames it can simply be repeated 4 times to fill the 64 frames, blank frames (i.e. all 0 s) or repetitions of frames can be used to pad sequences out.

Displaying moving (i.e. scrolling) text, is equally simple. For example, to scroll the letter ' E ' across the display. Draw the ' E ' on the grid, as previously described, move the top sheet of paper so that the ' E ' is just to the right of the grid, so that the grid is blank. The blank grid is the first frame.
effect. Since there are 64 frames in any complete message or effect, the maximum length of a message is 64 characters. At the end of each message or effect, the circuit loops back to the first frame in the sequence and the sequence is repeated. If the period between each frame is shortened, the individual frames can be run together to create moving pictures or scrolling text.

If the circuit is operating in sound mode, the period between frames depends upon the music or surrounding sounds, (as a result text is difficult to read in this mode, but it results in intercsting patterns). The total memory used for one complete message or picture sequence is 0.5 K , therefore 16 individual messages or sequences can be stored in 8 K of memory (8 columns $\infty 64$ frames $\infty 16$ sequences $=8 \mathrm{~K}$ of memory).

Creating Patterns In The EPROM

Messages can be displayed in a number of different ways. The most memory efficient way is to display one character at a time (note only one full character can fit in the $8 \infty 8$ array

A small problem will arise when displaying individual characters and moving text or patterns. To display individual characters, you require the frames be displayed at a much slower rate than for moving sequences (e.g. Characters have to be displayed for >1 second, but moving sequences require frames to be displayed for $<0.25 \mathrm{sec}$). This can be overcome by setting the frame speed to the faster setting (e.g. 0.25 s). When individual characters are to be displayed they can be repeated a number of times, so in effect they are displayed for a long enough period of time. This avoids having to alter the frame speed between sequences.

Figure 2 gives a few more examples for frames and sequences. When you have collected all the data for your picture sequences you must generate a valid fuse map. Figure I shows the start and end addresses for each sequence. If you wish to gencrate your fuse map in INTEL HEX format, which is accepted by most EPROM programmers, the format is given below.
:Byte Count|Address|Block Type|Data Bytes|Checksum Byte Count : No. of data of bytes E.G 08 (2 Characters) Address : 4 ASCII hex characters E.G. 0008 Block Type: 2 characters. 00 data, 01 end of file Data Bytes : Data, No. of bytes specified by byte count Checksum : Two's Complement of the sum of all the bytes in the line.
e.g. : 0800000000 FE 929292820000 FDC 2 ' E ' :08000800000202FE02020000FFEA 'T' :08001000000082FE82000000FFE6 'I' :00000001FF END OF FILE
(last line, always the same)
Note: Ensure there are no extra characters after the checksum.

Construction

Construction of the PCB is fairly straight forward and Figure 3 shows the component overlay. The main thing to be careful about is the placement of the numerous links. These must be put in place first, as some of them go under IC5. Also make sure that all the links are insulated, as some are close together. Next, solder in place all the resistors and diodes, followed by the ICs and transistors. All the ICs can be mounted in sockets if desired, but IC5 (the EPROM) must be, as it will probably need to be removed several times. The regulator, IC7, requires mounting on a small heatsink, which can be directly mounted to the regulator with some heatsink compound. If the heatsink is close to any of the component leads, use an insulator and mounting kit to isolate it. Do not mount the regulator too close to the board or the heatsink will foul against IC5 (if it does, bend back or cut off the bottom fin of the heatsink). D5 is soldered on the reverse of the PCB across the regulator's input and output terminals.

Figure 4 shows connections to the switches and potentiometers. When connecting the microphone, check the connections with the microphone you have bought. The PSU components, i.e. transformer, C10 D3 and D4, are not mounted on the PCB and all connections to these should be suitably sleeved. Take care that all the usual mains precautions are observed when mounting the components in it's enclosure. Alternatively, the circuit can be powered from an external 9 V DC supply that can supply greater than 300 mA . Simply connect the supply to the +ve and 0 V inputs on the PCB. This method may be preferred if the circuit is to be operated by children - it removes the mains hazard and

Fig. 4 Interconnections
reduces the size of the control box.
Figure 4 also shows the connections to a 25 way D Type connector. Obviously any pins on the connector can be used as long as the rows and columns match up on the control box and on the display. You may even wish to omit the connector and take a ribbon cable directly to the display, although the connector is recommended.

Display

The 64 LEDs are mounted on a thick piece of black card, within a small picture frame as shown in Figure 5. Any picture framing shop will make the frame for you. A plastic face will give more room for the LEDs than would glass. The card should be cut to size, to fit the frame and then the

Fig. 6 Circuit diagram

HOW IT WORKS

Refer to the circuit diagram. Operation of the circuit is quite straight forward. The display is simply an $8<08$ array of LEDs, the anodes in each column and the cathodes in each row are commoned together. An $8 k$ EPROM, IC5, contains all the display information, which is output to the display under the control of the other circuitry (the memory organisation is explained in the Principles of Operation).

The address of the EPROM and hence the display data, is generated by 3 counters. IC3a is configured to count from 0 to 8 which generates $A 0-A 2$. It is this counter which generates each individual picture frame. IC6 decodes the output from this counter to select the correct column of the display for any particular address. The counter is clocked by a simple oscillator generated by IC3. Note that the trequency of this oscillator has been selected to be fast enough to prevent the LEDs flickering, but slow enough to limit shadowing.

ICA counts from 0 to 64 to select each of the 64 frames in tum. This counter is clocked from one of two sources. The first is the 'auto_dk', which is an oscillator generated by IC1d. Its frequency is attered by RV1 allowing the speed of the sequence to be altered. The other source is
the 'sound_clk'. Here, the signal from a small microphone is amplified by $\mathrm{Q} 1, \mathrm{Q} 2$ and associated circuitry. The resultant signal is fed into $\mathrm{IC} \$ \mathrm{~b}$, to generate better defined pulses which are fed into the counter. The counter will therefore respond to the surrounding sound.

IC3b generates the last 4 address bits, A9-12, which determine which of the 16 sequences is selected. This counter, can be clocked from one of two sources. Firsily from a manual switch, SW3. IC1a, CA, R8 \& R9 form a simple debounce circuit so that one pulse is generated each time the switch is pressed (this works because IC1 has Schmitt inputs). Altematively, the sequences can be incremented automatically. A8 toggles once every sequence, this is used to clock IC2 which effectively divides this down by 16,32 or 64 dependent upon the position of link 1 , hence each sequence is displayed 16,32 or 64 before advancing to the next one.

The output transistors provide the necessany drive to power the display. The LEDs are actually driven at a higher level than normal $(30 \mathrm{~mA})$, which is acceptable because they are on a 12% duty cycle.
positions of the holes marked out on the rear of the card. Next, carefully drill the 64 holes (diameter to suit the clips that are used). When all the holes have been drilled, any ragged card round the holes can be tidied up with a scalpel or sharp knife. The LEDs and clips can then be put in place on the drilled card - remember to align all the anodes and cathodes, as shown in Figure 5 (note the cathode is normally identified by
the flat on the side of the body).
When all the LEDs are in place and correctly lined up they can be connected as shown. All the cathodes in each row are connected together and all the anodes in each column are similarly, connected together. Take care that neither the rows nor columns can be shorted together. Also, take care not to weaken or break any LED legs, if you have to bend any.

Fig. 5 Construction of Display

When the circuit has been tested and found to be correctly working, the back of the 'picture' can be coated in silicon rubber (the clear type used to seal sinks, windows, etc. works well). This will help to hold all the LEDs in place and will also stop accidental shorts.

Note that the LEDs used should all be of the same type. The best way to get LEDs of matched brightness and colour, is to buy all the LEDs from the same supplier at the same time. Beware of bargain packs as they may contain different types. It is also best to use bright diffused LEDs with a wide viewing angle.

The suggested connector is a 25 way D Type. Using an IDC type simplifies the connections required. Although only 16 conductors of the ribbon cable are needed, the other 9 conductors can be glued to the back of the picture to prevent straining the other wires.

Testing

Before testing can start there is one option which should be set. The position of LINK_1 determines the number of times each sequence will repeat when in auto increment mode. In position I, each sequence will repeat 16 times, in position 2, 32 times and 64 times in position 3. The link should be soldered in whichever position you wish (initially, for testing, it does not matter).

To test the circuit, connect the PCB up to an external 9 V PSU (so you can poke about without worrying about the mains voltages). With a programmed EPROM in place and the display connected, turn the power on. Hopefully something will appear on the display, with SW2 in the manual position. Press SW3 a few times to advance the sequences (if you have not filled your EPROM this may be necessary, until you find a valid sequence). Assuming you have something on the display, with SW1 in the AUTO position, a valid sequence of pictures should be displayed. Altering RV1 should change the speed at which they are displayed. With SW1 in the sound position, any sound close to the microphone should alter the display. RV2 should alter the sensitivity. If everything appears to be OK, the intemal supply can be connected (if used) and the circuit can be put into it's box and suitably secured.

If everything is not OK , there are a few things to check. First check for the obvious - solder shorts, missing links, correct component orientation. If parts of the display do not appear to be working check the orientation of the LEDs. If the pattern on the display does not make sense, check the row and column wires have been connected correctly and ensure you have a valid EPROM. If the sound circuitry does not work check the connections to the mic. are correct.

A small amount of shadowing on the display may be seen under certain circumstances. This was not found to be a great problem on the prototype, but if you wish, there is a simple solution. The problem is caused because the output transistors cannot turn off quickly enough (Q3-10 seem to be the main culprits). A small diode (1 N 4148) should be soldered across the base resistors (R14-21), the anode towards the transistors and cathode (stripe) towards IC5. This will cause the transistors to be turned off much more quickly.

You may wish to alter the frame speed, i.e. the time between successive frames, although RV1 gives a large amount of control. This can be done by altering C5 increasing it's value will slow the frame speed.

PARTS LIST
 RESISTORS

R1, 14-29	1k
R2	220R
R3,5,7,10	1M
R11,12,38	1M
R4,6,8	4k7
R9	100 k
R13	10 k
R30-37	100 R
R39	220 k
RV1	470 k
RV2	220 k

CAPACITORS

C1	$10 \mu 16 \mathrm{~V}$ elect
C2,3	100 n ceramic
C4, 12	$2, \mathrm{Q}$ tant
C5	330 nmin . poly
C6	220 nmin , poly
C7,8,11,13,14	100n miniature poly or ceramic
C9	$47 / 16 \mathrm{~V}$ elect
C10	$1000 \mu 16 \mathrm{~V}$ elect

SEMICON	CTORS
IC1	4093
IC2	4024
IC3	74HC393
$1 \mathrm{C4}$	4024
IC5	$27 \mathrm{C} 64-158 \mathrm{~K} 008$ CMOS EPROM
IC6	$74 \mathrm{HC138}$
Q1,2	BC109C
Q3-10	2N3706
Q11-18	BC327
D1,2	1 N4148
D3,4,5	1 N 4002
IC7	7805 5V 1A
LED1-64	5 mm Red LEDs (high intensity preiered)

MISCELLANEOUS

2 teminal miniature electret mic
$2 \times$ miniature SPDT toggle switches
Miniature push swich
TR1 Transformer $6 \mathrm{VA} 0-9,0-9 \mathrm{~V} \circ \rho$.
(or 9 V extemal $\mathrm{PSU}>300 \mathrm{~mA}$ opp).
1A huse and panel mount fuse holder
25 WAY D type socket
25 WAY D rype plug (IDE Type)
64 Low profile LED clips
Small TO220 heatsink (21 C CW)
Box $(150 \times 90 \times 60 \mathrm{~mm}$ Approx.)

Further Expansion

If you wish to experiment, the amount of memory could easily be expanded. A 16 K EPROM could be used in place of the 8 K , the additional address line A 13 would come out on pin 26. If the track between IC4 pin $2 \& 3$ is cut and pin 3 connected to the additional address line, the length of each sequence could be doubled, although the last 64 frames of each sequence would be offset by 8 K (i.e. the first 64 frames of seq 0 would be at 0000 to 01 FF and the last 64 would go from 2000 H to 2 FFF). Alternatively, the number of sequences could be doubled by connecting A13 to the common pin of a SPDT switch with the other two pins connected to 0 V and +5 V . The switch would allow the upper or lower 16 sequences to be selected.

There are also 4 unused pads on the PCB. These are connected from A9 to A12. This allows the current sequence number to be decoded and displayed on a 7 segment display (with a little decoding). None of the above suggestions have, however, been tested.

Anniversary AutoMate Mixer

This month, Mike Meechan looks at Pots and Pans and just what they have to do with Routing

It is a belief widely held by engineers and designers alike that on a desk, there can never be too few Aux Mixes (or FX Sends, or a Foldback Mixes as they are sometimes known). Some might go so far as to say that the number (or lack) of facilities in this particular region determines just how flexible (or inflexible, as the case may be) the whole of the desk is.

The Aux Mix section is an area of the desk which lends itself readily to some form of AutoMation. The requirement for automation has arisen because of the pressing need, in the interests of space, convenience, and more importantly, economy, to share FX units between tracks. The engineer may mixdown each vocal track separately and during each of these operations, he may wish to add reverb, so the reverb unit might be connected to Aux Mix 1 output socket. Any channel requiring access to the reverb during mixdown would have its signal routed to the mix bus via the associated Aux Mix 1 Level pot - and perhaps an Aux Mix 1 Mute/ Unmute pushbutton - at the appropriate time. Perhaps, once a collage of almost-completed sounds had been built up, the FX might only be required for brief intervals, or perhaps on different channels in quick succession. Such an operation lends itself readily to implementation by the console automation system, which itself may be under the direction of some kind of automatic time reference control (timecode), or manual time reference.

On a fully equipped Aux Mix module, there are a total of 12 accessible buses. Aux. 's 1-4 are switchable Pre or Post Fade. These are also stereo FX sends, with each Aux Mix able to be panned across the pair of busses associated with the control. In effect, a stereo signal fed to an external FX unit can have the same spatial positioning as the channel, or a different one, for special effects. Within this particular group of Aux Mixes, number 1 is the most capable of the four. Not only is it able to be switched pre or post fader, but the output from the panpot is able to be routed not to Aux 1 Mix bus, but rather to the multitrack group routing matrix. The normal source assigned to the Group Routing Matrix (the Channel panpot) is disconnected in this instance, although routing to the main stereo mix busses is uninterrupted and available, as always, via the Mix pushbutton. In effect, this means access to a further possible 32 busses, with all of the attendant operational advantages, especially during those occasions where a lot of different foldback or monitor mixes are required (PA work, perhaps).

Aux.'s 5-8 are post fade stereo pairs, able to access the 5/ 6 pair, or the $7 / 8$ pair, or another pair - $9 / 10$ in the instance of $5 / 6$, and $11 / 12$ in the instance of $7 / 8$. Each of the six pairs of Aux Mixes on the AutoMate channel architecture can be muted or unmuted by the console AutoMation system (if this is fitted). AutoMated control can be overridden manually with local, strip-mounted pushbuttons. Even on a non-
automated console, it is still possible to properly mute any of the twelve Aux Mixes as a pair.

Although proper muting and turning the rotary level control to zero would seem to be doing the same thing (i.e. reducing the channel's contribution to that Aux Mix bus to zero), they are completely different in their electrical operation and subsequent effect. Muting in the correct sense of the word means physically disconnecting the bus driving resistor from the mix bus, whereas moving the level control to zero merely attenuates the channel contribution.

Ah, you may say, but surely this has the same subjective effect, in that each method removes the unwanted signal (associated with that channel) from the bus. This is partially true, but it misses the point of most importance, and unfortunately, it is a common misconception shared by enginecrs and designers alike. Insofar as the channel signal is concerned, both are similar, but with the mix bus, the two most definitely do not achieve the same effect.

To understand the basic electrical differences between muting and attenuation, we need to refer to something said way back in the past (Part 4). Consider Figure la. On the face of it, the first two achieve the same electrical effect - isolation of signal input from mix bus -with Figure Ib scoring in the added convenience stakes by providing the facility - a switch - to turn the signal send on and off from the mix bus at any desired level. Many mixers use this technique in so-called muting circuits, so what is wrong with it?

Consider Figure la once more, since it is a not untypical arrangement, with $\mathbf{3 6}$ or so channel inputs all able to contribute to a particular Aux Mix bus (which we'll call Aux 1, for arguments sake). We've also just recently bought two thousand quids worth of all singin', all dancin' digital FX gizmo which, quite naturally, we want to use on many parts of the final mix. We connect its input to FX Send I (Aux I Output), connect its output to the FX Return, turn Channel 1 Aux Mix 1 Level control up and start the tape machine, with Track 1 replaying through Channel 1 - it's an in-line desk. The vocal ends and we suddenly think, "Wait a minute, where's that hiss coming from." We check the FX manufacturer's spec. sheet which quotes noise and distortion as being -90 down on 0 dBu . We know from experience that the hiss isn't -90 dBu - more like -60 dBu . We mute (or turn down) Aux Mix 1 on all of the channels and the hiss is still there, so it can't be coming from the channels. Hey presto, unplugging the FX unit from the FX Return socket causes the noise to disappear. QED. Must be a noisy FX unit, or a manufacturer quoting some distinctly unrealistic figures in the spec. sheets - adman's cuphemism for lying - or both? Not necessarily...

Pause to consider the mix bus at this time. We have 36 paralleled Rs's and one Rf. All resistors are equal in value, so it's unity gain for each of the individual contributions to the mix bus, and a gain of 36 for any composite signals

Fig. 1 Typical Aux mix muting arrangements

Fig. 2 Crossed mic. recording
present on the bus. Surely there are no signals on the bus, since everything has been turned down or off? On the face of it, this would seem to be the case. Nevertheless, something is there and it gets amplified up - from -100 dBu , say - by a factor dependent upon the number of paralleled resistors presented to the bus at a given time. It is then stuffed out, through the FX unit and back into the mixer at -70 dBu (where it's audible)- regardless of the excellent specification of the FX unit. In our case, it will always be 31 dB since the 36 bus driving resistors are permanently connected to the bus and the summing amp must always see $1 / 36$ times the value of Rs.

Art of noise

What is this phantom plague of mix busses. Noise. Consider this scenario next time you blame an FX unit for excess noise. Figure lc shows a way of eliminating this unfortunate noise amplifying phenomena. Turning a channel FX Send Off completely disconnects the associated bus driving resistor from the bus, so it doesn't appear as part of a parallel combination of any other bus driving resistors. Unless that particular channel is contributing to the bus, potentially noise-amplifying resistors are not connected. Furthermore, the noise needn't come from any, or all, of the sources. Noise on the ground or earth reference for the mix bus is just as likely a culprit, and contingency measures - outlined in Part 5 -must be taken to prevent ground noise ruining console performance.

This is the principle behind the AutoMate muting system and is employed on every mix bus. It's a principle which is applicable where the virtual earth mixing process is concerned. Herc, gain for each signal input to mix-amp output is unity, regardless of how many individual resistors are present as a parallel combination at the virtual earth of the op-amp. It does not, extend to every mix bus in existence in every console, so if your console suffers in this aspect, it's not just
a simple matter of a few two-minute modifications.
As far as the AutoMate muting is concemed, the manual version of the Aux Mix routing system does this by disconnecting the bus driving resistors from the bus via a mechanical, level pot backstop-operated switch. Similarly, the automated versions use FETs to isolate the resistors from the bus. Because four pole single throw switches aren't generally available fitted to the backs of potentiometers (which, from a cost point of view, is probably just as well), the manual version features non-balanced mix busses.

We've discussed at some length the many diverse routing requirements of the various types of desk - monitor, recording and broadcast - and illustrated the subject with examples. The one aspect which every routing has in common has been the centralised theme of the last few months - the switch. Before we leave the subject of routing, it's probably wise to look at one final area, although, strangely, there isn't a switch in sight. This is the panoramic potentiometer, to give it its rather grandiose full title, or pan-pot, as it's better known.

The routing of a signal, using a pan-pot, comes under the general heading of Spatial Localisation Processing. Since the early pioneering days of the stereo recording, there has been the need to position signals in a sound-stage of one sort or another. There is no such requirement when recording in mono, since there is no spatial localisation information available from this format. However, with modern stereo and the so-called multi-dimensional systems the engineer is capable of placing a particular source of sound anywhere along an imaginary straight line between the two speakers.

Where a recording is made direct-to-stefeo (that is, captured using a stereo pair, either coincident, M and S, XY, or whatever), the placing both of the microphones and of the musicians determines the relative level of each sound source

3dD OOWN-AT-CENTRE POT PAN LAW. THIS GIVES CONSTANT LOUDNESS FOR A SINGLE SOURCED PANNED ACROSS PAIR OF SPEAKERS

Fig. 3 Constant loudness pan pot law
across the stereo image.
Two sound channels are the minimum required to achieve the stereophonic effect. This is not an accurate replica of the original sound field, as it might have been heard at the original venue, but an illusion or sensation of spatial distribution which enhances the apparent reality of the progranme material. Although it might seem impossible to achieve an acceptable stereo effect with just two channels and two loudspeakers, since the ear can hear sounds coming from all
directions, our ears, using level and phase information, are deceived sufficiently by pure level distances between the left and right paths of a stereo pair into perceiving changing image position. From this, we are able to determine where within this image a particular source lies.

Stereo information is derived and captured using this technique shown in Figure 2. It is referred to as the coincident pair, or Blumlein pair, and modern examples use a pair of identical directional microphones placed as nearly as possible in the same point in space. There is minimum time-ofarrival difference at the two capsules and the whole of the directional (stereo) information relies on the controlled difference between the two mic. outputs.

In essence, this is the only genuine stereo recording, with all of the instrument placements captured on tape exactly as they were live.

Synthesising Sound Placement using Level

Intuitively, the design of a control to position an image anywhere across the sterco field might seem like a fairly trivial task. In practise, this is seldom the case. The primary reason is mono compatibility. Although mono has traditionally been associated with old recordings and out-of-date, low-technology equipment, for many listeners, mono still forms the backbone of their enjoyment of recorded music. Mono radios are still in abundance and just because a track has been mastered using state-of-the-art digital mixing desks and recorders, doesn't necessarily mean that it won't end up as part of a programme which is then broadcast on short-wave to one of the far-flung corners of the globe. Mono compatibility is of primary importance in every aspect of recording and broadcasting.

Consequently, the pan-pot must achieve a respectable stereo effect whilst leaving the mono signal untouched, or relatively untouched. Since potentiometers play an integral part in the system, it is not surprising that the curve which describes the characteristic of the pan-pot is known as the 'law'. Two basic laws are constant power and constant voltage, and they describe the way in which the control, across its travel, acts in dividing the mono input signal between the two output channels, and whether or not the sum of the two is constant across this travel.

A relationship was established between the proportion of signal level fed to two loud speakers and the apparent position of the sound source (see Figure 3). If the levels to right and left are controlled according to these curves, the power outputs from the two speakers will remain constant. In this way, a source panned from one channel to the other will not cause any apparent change in the level of loudness. This relationship equates to a sine/cosine law and, when desks were fitted with rotary stud faders et al, a double stud potentiometer (with precision resistors connected, as far as was practicable, to each of the studs), was commonly used to reproduce the desired law.

This '3dB-down-at-centre' law, as it is khown, whilst causing a constant acoustic level from a pair of loudspeakers, causcs some strange effects if the two identical -3 dB signals are summed further down the signal chain. The resultant mono output voltage will be doubled, with the ultimate mono output from the system some 3 dB higher with the pan-pot central than with it routing the signal to one side. A stereo signal summed to mono in a playback system suffers from the

a. PAIR OF GANGED, COMPLEMENTARILY - WIRED LINEAR POTS (OFTEN USED AS CHANNEL PAN-POT)

B. PAIR OF GANGED, COMPLEMENTARILY - WIRED LOB POTS (IOB DOWN AT CENTRE - OFTEN USED AS MUL TITRACK OODSEVENS ROUTINE CONTROL)
Fig. 4 Log and lin pots configured as pan pots
same problem. Incorporating a 6 dB loss at the mid-point would correct this, at the expense of an apparent dip in level in the centre when on stereo. Somewhere between these two extremes lies a theoretical happy medium. Here, the signal will keep an even subjective level panning across the image plane. The amount of loss has been the subject of debate and controversy for many years, with proponents of the values 2 , 3,4 or 4.5 all arguing the case. Mono is most important in a broadcasting environment and herc a compromise value of 4.5 dB is often used.

Pots and Pans

An example of what is probably the simplest of all panpots is shown in Figure 4a. Here, a ganged pair of linear potentiometers have complementary connections made to their tracks, such that as the output level from one increases, that from the other decreases. This type doesn't suffer from the drawback outlined above, since re-mono-ing the signals yields an output which remains at constant amplitude, regardless of pan-pot setting. However the subjective effect is one of too much loudness at the extremes of pot travel and diminished output in the middlc.

Figure 4 b shows a derivation of the simple type, with the linear law pots replaced by a pair of \log /anti-log types, again ganged and complementarily wired. Panning right achieves a steady decrease in the level of the leff output, with the right output remaining fairly constant in level. When the control is central, both outputs are attenuated only slightly with respect to original mono input. Subjectively, the image seems louder in the middle than it does at the extremes of settings, which is the opposite of the effect when linear pots are used. This kind of circuit is often implemented as a multitrack routing pan-pot, or as an offset control. Tracking between both halves of the pot is often not too good - certainly not as good as with a linear pot - because it is much harder both to manufacture the log law to accurate tolerances and to retain relatively low cost.

Continuity Tester

There are two common problems with continuity tester designs. One is simply that many testers indicate continuity when there is actually a significant resistance across the test prods. What is supposedly continuity can sometimes be resistances of up to a few hundred ohms. Also, many dcsigns are 'fooled' by diode junctions. Such junctions are not just present in diodes, but also exist in transistors and integrated circuits. In fact modern circuits are liberally scattered with hidden semiconductor junctions that will give misleading results with any continuity tester that is not designed to ignore them.

The second problem is that of high currents flowing through the test circuit. Most continuity testers consist of an audio oscillator driving a loudspeaker, with the test prods connected in series with the battery supply. The full supply current of the continuity checker therefore flows through the test circuit. This is fine if the circuit is designed to consume no more than a few milliamps, but could cause damage to delicate integrated circuits if currents of 50 mA or more are allowed to flow.

The continuity tester featured here avoids both problems. It has two sensitivities, one which requires a test resistance of less than 10 ohms before the audio tone is activated, and one which requires a test resistance of just a fraction of an ohm. This second mode is useful when testing circuits which contain very low value resistors and (or) small inductors which exhibit low resistances. When set to either sensitivity, diode junctions will not 'fool' the unit into producing false indications of continuity. The current flow through the circuit under test is a mere 4 mA or so, which is too low to damage any normal components.

System Operation

This continuity tester uses the basic arrangement shown in the block diagram of Figure 1. The operational amplifier

A piece of test gear that no experimenter should be without. A design by Robert Penfold

is used here as a voltage comparator. If the non-inverting (+) input is at a higher voltage than the inverting $(-)$ input, the output will go high. If the inverting input is at the higher voltage, the output will go low. The output of the comparator controls a gated audio oscillator which drives a small loudspeaker. Strictly speaking, the oscillator is a complement gated type and it is therefore switched on when the control signal is low, and switched off when a high control level is received.

R2 and R3 form a potential divider across the supply rails. Their function is to provide a reference voltage to the inverting input of the comparator. R1 takes the non-inverting input to the full supply voltage under standby conditions, which in turn sends the output of the comparator high. Thus the audio oscillator is gated off under standby conditions.

Connecting a true short circuit across the test prods results in the non-inverting input being taken to 0 V and it is then at a lower potential than the inverting input. This results in the comparator's output going low and the audio oscillator being activated. Of course, it is not essential to have zero

Fig. 1 Block diagram of continuity tester
the integrated circuits are MOS types and, accordingly, they require the normal anti-static procedures to be observed. The most important of these is to use holders for the two integrated circuits. They should only be fitted into their holders once the unit has been completed in all other respects. Both devices should be left in the anti-static packaging until then.

In other respects, construction of the board is extremely simple. Single-sided solder pins are fitted to the board at the points where connections will eventually be made to off-board components such as LSI and SW 1. The tops of the pins should be tinned with a generous amount of solder. Unusually for modern components, some solder pins seem to be reluctant to take a proper coating of solder. If this should occur, clean the pins by scraping them with the blade of a penknife, prior to tinning them.

Fig. Component overlay
The case for the prototype is a small plastic box, which has approximate outside dimensions of $110 \infty 56 \infty 20 \mathrm{~mm}$. It is unlikely that the unit could be fitted into a case which is significantly smaller than this in any dimension. The printed circuit board is mounted on the rear panel, well towards one end of the case, using 6BA or metric M3 fixings. The battery fits into the space at the opposite end of the case, leaving room for SW1 and SW2 in the middle section of the case. The switches are mounted on the front panel/lid of the case.

LS1 must be a cased ceramic resonator which is intended for screw fixing to a case (not an uncased element or a cased type intended for printed circuit mounting). Most require two small (M2 or 8 BA) fixing screws. A third small hole is needed in the case to accommodate the resonator's two flying leads. LS1 is mounted towards the right hand end of the front panel, in front of the circuit board. The resonator itself can be used as a template when marking the positions of these three holes. Note that LSI must be a ceramic resonator and that this circuit can not drive a moving coil loudspeaker. The test prods could be connected to the circuit board via a pair of plugs and sockets, but it is advisable to use direct connection to the circuit board. This ensures that the prods will be in really good electrical contact with the circuit board, which is essential if the unit is to operate properly in the low resistance mode. An entrance hole for the test leads is drilled in the centre of the right hand end panel of the case.

Fig. 2 Practical circuit

HOW IT WORKS

In the practical continuity lester circuit of Fig.2, IC1 is the comparator. The reference voltage to the inverting input of IC1 is provided by R1 and either R2 or R3, depending on the setting of SW1. For the moment, assume that R3 has been selected, which places the unit in its high resistance mode. This gives a reference voltage that is only about $1 / 220$ th of the supply voltage, approximately 40 mV . R4 biases the non-inverting input to the positive supply rail and the important point to note here is that its value is only $1 / 100$ th of Ri's value. Therefore, the resistance across the test prods must be $1 / 100$ th the value of $\mathrm{R} 3(10 \mathrm{ohms})$ in order to balance the input voltages to IC1. The resistance across the prods must be fractionally lower than this in order to activate the audio oscillator.

For general purpose testing, this gives good results. Few circuits contain many resistances that are below 10 ohms, so there should be few false alams. On the other hand, if dirty printed circuit tracks, or something of this nature, should produce some less than perfect electrical contacts with the test prods, this should not be sufficient to prevent the device from being activated property. Silicon diode junctions will not produce misleading results either. Less than about 40 mV must be present across the test prods in order to activate the alarm. The voltage drop across a silicon diode is over ten times this figure. There is no danger of the unit producing high currents which would damage the circuit under test. R4 limits the curent flowing through the test prods to a saie level of about 4 mA .

The circuit operates in much the same way in the low resistance mode. SW1 is then set to select R2. This reduces the reference voltage at the inverting input by a factor of around ten times, since R2 has a resistance which is only $1 / 11$ th of $R 3$'s resistance. The main practical consequence of this is that the resistance across the test prods must now be less lhan 1 ohm (i.e. $1 / 100$ th of R2's value) in order to activate the tone generator. If desired, the value of R 2 could be made lower, in order to make the maximum acceptable test resistance lower as well!

In practice, it is probably best not to use a value of much less than 100R. Firstly, bear in mind that there will be a certain amount of resistance through the test leads. If the unit is made too discriminating, this could be sufficient to prevent it trom operating properly. Also, bear in mind that it might sometimes be difficult to get really good electrical contacts between the test prods and the printed circuit tracks, etc., in the test circuit. Even with R2 at 100R, bad contacts could easily result in misieading results unless adequate care is exercised when using the unit. The audio oscillator is a simple voltage controlled oscillator (VCO) based on IC2, a CMOS 4046BE. In this case it is used at a fixed trequency with the control input at pin 9 simply wired to the positive supply rail. The operating trequency is around 700 Hz , which is too low to give peak efficiency from LSS. Th's component is a cased ceramic resonator. In this application a tone of moderate volume is all that is required and it would be undesirable to use a higher frequency that would give a powertul tone from LS1.

Complete the unit by adding the small amount of point-topoint wiring. This is very straightforward and should present no difficulties. Although most ceramic resonators have one red lead and one black lead, LSI can in fact be connected either way round.

Testing And Use

With the unit switched on and the two test prods connected together, the audio generator should be activated, regardless of SW1's setting. With SW1 set to the high resistance mode (i.e. R3 selected), the au-
 dio alarm should be activated if a 4R7 resistor is connected across the prods. However, changing to a 22 R resistor should not give a response fromthe unit. With the tester set to the low resistance mode (i.e. R2 selected), connecting the 4R7 or 22R test resistors across the test prods should fail to activate the audio tone generator. Using a OR47 resistor should result in the tone generator being activated.

In normal use it is probably best to use the high resistance mode. The unit is not easily 'fooled' when in this mode, and something less than really good connections to the test circuit will give satisfactory results. The low resistance mode is better when the circuit under test is known to contain a lot of
low value resistors, small inductors, RF transformers, etc.. However, when using this mode it is essential to ensure that the test prods make good contact with the test circuit.

PARTS LIST

RESISTORS (0.25 W carbon film)
R1 220k
R2 100
R3 1 k
R4 2k2
R5 100k

CAPACITORS

C1 $1 \mu 63 \mathrm{~V}$ radial elect
C2 $22 n$ polyester

SEMICONDUCTORS

IC1 CA3140E
IC2 4046BE

MISCELLANEOUS

S1 SPDT sub-min toggle
S2 SPST sub-min toggle
LS1 Cased ceramic resonator B1 9V (PP3 size) Printed circuit board Case about $111 \propto 57 \infty 22 \mathrm{~mm}$ 8 pin dil holder 14 pin dili holder Test prods and leads Wire, solder

TEST and MEASURING INSTRUMENTS

Multimeters

183, 3.5 digit LCD; DC V, AC V, DC A, AC A, Res. Cont. Hold, Basic acc. $0.5 \% \quad £ 39.50$
$185,3.5$ digit as 183 plus Bar graph, Temp.
Frequ. Max/Min, Edit Basic Acc.
0.3%
〔74.50
187, As 185 but Auto Range
$£ 99.50$
285, As 185 plus 4.5 digit True, RMs $\mathbf{\$ 1 0 9 . 5 0}$

Oscilloscopes

CO 1305, DC to 5 MHz Single channel
$\$ 169.00$
CS $4025,20 \mathrm{MHz}$ Dual trace full featured

CS $5170,100 \mathrm{MHz}$ Dual, Cursor readout
£1159.00
CS 6040 150MHz, 4 Chan. Full Featured
£2049.00

SP-1000 £299.00
Eprom Programmer/Emulator
Stand alone or PC hosted.
Fast programming/downloading.
Manufacture specified algorithms
Large device support.
Easy to drive.
SP-1000 Programmer/Emulator $£ 299.00$ 4M Bit option
PC Software package $\quad £ 29.00$

Counters, Generators Oscilloscopes, Power Supplies, Multimeters, Clamp Meters, L.C.R. Meters Programmers/Emulators, Multi-Instrument, Video and Audio Test, Probes and Accessories.

For further information please contact:
SAJE Electronics
117 Lovell Road, Cambridge, CB4 2QW Tel: (0223) 425440 Fax: (0223) 424711

Reader
 Survey

It's survey time again and your chance to win one of 40 prizes supplied by Maplin Electronics.

Although some of the questions here may not seen to relate directly to the magazine, please complete the whole questionnaire. Your answers not only help us to steer the editorial content of the magazine in the direction you want but they also help us to build up an overall profile of readers to present to advertisers who require such data to select
suitable magazines for their products.
No names and addresses will be disclosed to any third party and all information will be treated in the strictest confidence.

As an incentive for your hard work, all entries received by 11th October will be entered in the draw for the 40 prizes given by Maplin Electronics.

1. If you could make one improvement to ETL, what would it be!
2. Please indicate what you think of the following aspects of ETT's coverage:

	Poor	Average	Good	Excellent
Product News	$\square 001$	$\square 002$	$\square 003$	$\square 004$
Industry Technology News	$\square 005$	$\square 006$	$\square 007$	$\square 008$
Advanced Projects	$\square 009$	$\square 010$	$\square 011$	$\square 012$
Basic Projects	$\square 013$	$\square 014$	$\square 015$	$\square 016$
General Features	$\square 017$	$\square 018$	$\square 019$	$\square 020$
Tutorial Features	$\square 021$	$\square 022$	$\square 023$	$\square 024$
Product Reviews	$\square 025$	$\square 026$	$\square 027$	$\square 028$

3. Would you like to see a greater or lesser proportion of ETI devoted to the following:

	Less	The same	More
Beginners' Projects	$\square 029$	$\square 030$	$\square 031$
Advanced Projects	$\square 032$	$\square 033$	$\square 034$
Computer Projects	$\square 035$	$\square 036$	$\square 037$
Audio Projects	$\square 038$	$\square 039$	$\square 040$
Music Projects	$\square 041$	$\square 042$	$\square 043$
Radio Projects	$\square 044$	$\square 045$	$\square 046$
Home Improvement Projects	$\square 047$	$\square 048$	$\square 049$
Bio-electronics/Health Projects	$\square 050$	$\square 051$	$\square 052$
Test Equipment Projects	$\square 053$	$\square 054$	$\square 055$
Security/alarm Projects	$\square 056$	$\square 057$	$\square 058$
Car Electronics Projects	$\square 059$	$\square 060$	$\square 061$
Robotics Projects	$\square 062$	$\square 063$	$\square 064$
Photographics	$\square 005$	$\square 066$	$\square 067$
Novelty/Gimmick Projects	$\square 068$	$\square 069$	$\square 070$
Basic Elementary Theory	$\square 071$	$\square 072$	$\square 073$
Advanced Electronic Theory	$\square 074$	$\square 075$	$\square 076$
General Science/Technology	$\square 077$	$\square 078$	$\square 079$
News	$\square 080$	$\square 081$	$\square 082$
Product Reviews	$\square 083$	$\square 084$	$\square 085$
Letters	$\square 086$	$\square 087$	$\square 088$
Open Channel/etc	$\square 009$	$\square 090$	$\square 091$
Design/Circuit ideas	$\square 092$	$\square 093$	$\square 094$
Competitions	$\square 095$	$\square 096$	$\square 097$
Others (please specify)	$\square 098$	$\square 099$	$\square 100$

4. Indicate which of the following equipment you use:
Own Don't own but
regularly use

Home Computer

Professional Computer
Hi -fi
Electronic Musical Instrument MIDI Equipment
PA/Recording equipment

$\square 101$	$\square 102$
$\square 103$	$\square 104$
$\square 105$	$\square 106$
$\square 107$	$\square 108$
$\square 109$	$\square 110$
$\square 111$	$\square 112$

Photographic/Darkroom Equipment	$\square 113$	$\square 114$			
Ham Radio/CB	$\square 115$	$\square 116$			
Satellite TV	$\square 117$	$\square 118$			
Video Camera	$\square 119$	$\square 120$			
Security/Alarm System	$\square 121$	$\square 122$			
Oscilloscope	$\square 123$	$\square 124$			
Multimeter	$\square 125$	$\square 126$			
Other test gear	$\square 127$	$\square 128$			
5. Do you buy ETI for:					
Projects only	Features only	Both			
\square sol				\square s02	\square s03

6. Do you read any of the following magazines:

Never Occasionally Regularly
Everyday with Practical

Electronics	$\square 129$	$\square 130$	$\square 131$
Elektor Electronics	$\square 132$	$\square 133$	$\square 134$
Maplin Magazines	$\square 135$	$\square 136$	$\square 137$
Electronics \& Wireless World	$\square 138$	$\square 139$	$\square 140$
Music Technology	$\square 141$	$\square 142$	$\square 143$
Home \& Studio Recording	$\square 144$	$\square 145$	$\square 146$
Hi-fi News \& Record Review	$\square 147$	$\square 148$	$\square 149$
New Scientist	$\square 150$	$\square 151$	$\square 152$
Scientific American	$\square 153$	$\square 154$	$\square 155$
Practical Wireless	$\square 156$	$\square 157$	$\square 158$
Ham Radio Today	$\square 159$	$\square 160$	$\square 161$
Electronics Product News/			
Electronics Equipment			
News/New Electronics/			$\square 164$
Electronic Product Review	$\square 162$	$\square 163$	\square

7. If read, please indicate what you think of the following magazines.

Not as good as ETI	As good as ETI	Better than ETI
$\square 165$	$\square 166$	$\square 167$
$\square 168$	$\square 169$	$\square 170$
$\square 171$	$\square 172$	$\square 173$

8. Which of the following do you buy and thow frequently?

Never Sometimes Regularly

Electronic Components	$\square 174$	$\square 175$	$\square 176$
Complete Electronic Kits	$\square 177$	$\square 178$	$\square 179$
ETI PCBs	$\square 180$	$\square 181$	$\square 182$
Stripboard/Wirewrap Etc	$\square 183$	$\square 184$	$\square 185$
Cases/Case Materials	$\square 186$	$\square 187$	$\square 188$
Tools	$\square 189$	$\square 190$	$\square 191$
PCB making Equipment/Materials	$\square 192$	$\square 193$	$\square 194$
Pre-programmed ROMs	$\square 1951$	$\square 196$	$\square 197$
Computer Software	$\square 198$	$\square 199$	$\square 200$

Read most articles	325
Read all articles	
30. With regard to the advertisers in ETI do you?	
Read or look through most or nearly all the ads	
Read or look through some of the ads	
Just read or look through the occasional ad	$\square 328$
Very rarely/never look at the ads	$\square 332$

31. Thinking specifically about the advertising content, would you please rate the two main types of advertisement:

	Display	Classifieds
Very useful	$\square 331$	$\square 332$
Useful	$\square 333$	$\square 334$
Not very useful	$\square 335$	$\square 336$

32. Which of the following would you most like to see featured with the magazine? (one box only).

Cover mounted gifis	$\square 337$
Additional supplements	$\square 338$
Competitions	$\square 339$
Money saving offers	$\square 340$
Other (piease specify)	
33. Does anyone else read your copy of ETI?	
No only myself	$\square 342$
One or two other people	$\square 343$
Three or four other people	$\square 344$
More than four other people	$\square 345$

34. If your copy of ETI is read by other people, please give details of their age and sex:

Person 1 Person 2 Person 3

Age:			
$9-14 \mathrm{yrs}$	$\square 346$	$\square 347$	$\square 348$
$15-24 \mathrm{yrs}$	$\square 349$	$\square 350$	$\square 351$
$\mathbf{2 5 - 3 4} \mathrm{yrs}$	$\square 352$	$\square 353$	$\square 354$
$35-44 \mathrm{yrs}$	$\square 355$	$\square 356$	$\square 357$
$\mathbf{4 5 - 5 4}$ yrs	$\square 358$	$\square 359$	$\square 360$
$55-64 \mathrm{yrs}$	$\square 361$	$\square 362$	$\square 363$
Over 64 yrs	$\square 364$	$\square 365$	$\square 366$
Sex:			
Male	$\square 367$	$\square 368$	$\square 369$
Female	$\square 370$	$\square 371$	$\square 372$

35. Are you aware of the scheduled publication date of ETI?

Yes口 ${ }^{373}$

NoD 374
36. If the answer to the last question is YES, do you normally attempt to purchase the magazine on that day?
Yes 1375
NoD 376
37. How do you normally obtain your copy?

Chance purchase

- 377

Newsagent shop collection

- 378

Newsagent home delivery
$\square 379$
Subscription by post
Passed on copy
38. If you are a subscriber, on which date did you receive this issue?
39. If you are a subscriber, how long have you subscribed to this magazine?

$1-6$ months	$\square 382$
$7-12$ months	$\square 383$
$1-2$ years	$\square 384$
$3-5$ years	$\square 385$
$6-10$ years	$\square 386$
Over 10 years	$\square 387$

40. Are you aware that to subscribe to this magazine in the UK costs the same as purchasing it in a shop?
Yes] $388 \quad \mathrm{NOD} 39$
41. Would you like to receive details of our latest subscription offer?

Yes $\square 390$
NoC 391
42. If you do not subscribe, from which type of newsagent do you most often obtain your copy?

High Street Shop	$\square 392$
Estate shop	$\square 393$
Corner shop	$\square 394$
Other (please specify)	$\square 395$

43. Please tick any hobby/interests you may have besides Electronics:

Model Railways:	$\square 396$
Model Engineering:	$\square 397$
Model Cars:	$\square 398$
Model Boats:	$\square 399$
Model Aircraft:	$\square 400$
Steam Locomotives:	$\square 401$
Radio/CB:	$\square 402$
Computers:	$\square 403$
Woodworking:	$\square 404$
Handcrafts:	$\square 405$

44. Please tick the box which represents the annual total of your gross income:

Under $£ 6,500$	$\square 406$
$£ 6,501-£ 8,000$	$\square 407$
$£ 8,001-£ 10,000$	$\square 408$
$£ 10,001-£ 12.500$	$\square 409$
$£ 12,501-£ 15,000$	$\square 410$
$£ 15,001-£ 19,000$	$\square 411$
$£ 19,001-£ 25,000$	$\square 412$
Over $£ 25,000$	$\square 413$
45. What is your age?	$\square 414$
Under 15 yrs	$\square 415$
$15-18$ yrs	$\square 416$
$19-21$ yrs	$\square 417$
$22-24$ yrs	$\square 418$
$25-34$ yrs	$\square 419$
$35-44$ yrs	$\square 420$
$45-54$ yrs	$\square 421$
$55-64$ yrs	$\square 422$

46. Which of the following newspapers do you read?

The Times	$\square 423$
The Daily Telegraph	$\square 424$
The Financial Times	$\square 425$
The Guardian	$\square 426$
The Independent	$\square 427$
The Daily Express	$\square 428$
The Daily Mail	$\square 429$
The Daily Mirror	$\square 430$
The Sun	$\square 431$
Today	$\square 432$
None of the above	$\square 433$

47. Which of the following Sunday newspapers do you read?

The Sunday Times $\quad 434$
The Observer $\square 435$
The Sunday Telegraph $\quad 436$
The Sunday Express
$\square 437$
The Mail on Sunday
The Sunday Mirror
-438
$\square 439$
The People
The News of The World

To post, fold on the dotted line A. Fold again at B and C and tuck B into the flap formed by C.
A

c

Sega Switchbox

> An easy to construct switcher for the kids, by David Silvester.

Iather Christmas was rather gencrous to my sons last year, as we acquired a Sega Megadrive games system - along, I suspect, with a rather large proportion families. For most games, the joypads supplied with the unit are fine but for those of us who find that after a while you get thumb ache, or when playing flight simulator games, a joystick or touch sensitive joypad is better. Fine you say, just plug in the one you want, which is all very well, but in a short time the sockets will wear and you will get problems.

However, all is not lost. Luckily, the Sega system appears to use a standard 9 pin D connector for the joypads. The answer is to use a switchboard to select the joypad or joystick as required. The problem is that no-one makes one. Centronics parallel and 25 way RS232 switchboxes, yes, but 9 pin D type connectors - no way, well not at a sensible price anyway. At this point 1 started to consider whether such a simple item really constituted a project, but it was my wife who said "If you can't buy it, then it will be of interest". In addition, the switchbox suggested here is suitable for use with a standard 9 pin RS232 output as found on most IBM compatible personal computers.

Construction

Unlike most of the projects in ETI, there is no How it Works section, as the use of a 10 way change-over switch to change over 9 signal lines is just too simple. With the D connectors, the outside pair must be of the same type (either male or female), while the centre one is of the opposite type.

Initially open the case and check that the PCB will fit on the small support studs. The PCB is a tight fit, it will nearly touch both the front and back aluminium panels in the box and it is easier to check at an early stage. If there is a problem, the PCB will need to be filed until it fits, but be careful not to damage any of the tracks. Next, check the position of the six small supports and mark the PCB where the mounting holes have to go, then drill the holes. There are six screws supplied with the box that fit the supports.

Figure 1 shows the PCB layout. To save cost, the PCB is single sided and uses link wires on the component side for the other connections. Fit the bracket to the switch and add the push button. Following Figure 1, mount the switch, the 9 pin D connectors (remember-outside pair the same type) and the link wires.

The box chosen is symmetrical top and bottom except that the bottom has holes for the securing screws. Take the top of the box and insert the front and rear panels back to front, i.e. with the surface that does not have the protective coating on the outside. Then leave it upside down. Fit the completed PCB into the box bottom. Since the two box halves are the

Fig. 1 Component overlay
same size, by placing the top and bottom together on a flat surface it is easy to mark the front and rear panels where the switch button and D connector holes should go. Drill a small hole then use an abrafile or a holesaw to cut out the correct size holes. Remove the PCB from the lower box section, place the holes cut out over the switch and the D connectors and, if all is well, then the PCB can be refitted into the lower box half with the panels fitting into their slots. It may be necessary to ease open some of the holes with a file to make everything fit correctly. Lastly, mark the position of the mounting screw holes for the D connectors, dismantle, drill the holes and reassemble with filing screws.

Conclusions

I think you will agree that the box is a simple but useful connecting box and it was certainly worth the effort in our case. I hope you think so too!

PARTS LIST

10 poie switch	Cirkit Code $53-77010$
Switch bracket	Cirkit Code $53-75100$
Switch button	Cirkit Code $53-11509$
ABS Case	Cirkit Code $21-15992$
D female	Cirkit Code 10.62247,
D male	Cirkit Code $10-62248$
Screws for D connectors	

BUYLINES

When ordering the D connectors you will need two of one type and one of another. Since they are low cost tems it is possibly easier to buy two of each rather than find you have made a mistake when the parts arrive. The saving in postal charges makes it worthwhile.
 Up-Grading a
Thansistor Amplifier

Since the advent of the power MOSFETs, the popularity of the transistor amplifier for high-fidelity applications has somewhat declined. Is it possible to improve the performance of the bipolar transistor up to the point where it can compete successfuilly with its MOSFET counterpart? Not quite, but as the specifications of the present design show, the performance can be lifted a good deal above the average, without the use of unduly complicated circuitry. During the design of a MOSFET amplifier, I made some inquiries into the behaviour of the high-frequency response and distortion with respect to phase-fre-quency-compensation networks. The results, presented here, were highly interesting:

1. Any kind of phase-frequency compensation, in order to ensure unconditional stability in a feedback amplifier, will

SPECIFICATIONS

Nominal power output: 50 Watt
Signallnoise ratio: $\quad-1060 \mathrm{~dB}$ (90, N)
$600 \mathrm{~B}+1-2 \mathrm{~dB}$
10 Watt: $1 \mathrm{kHz}: 0.006 \%$ (hum and noise included) $10 \mathrm{kHz}: 0.03 \%$ (2.9mV)

Efficiency ($50 W$) 58% increase harmonic distortion in the upper frequency range.
2. Increasing the gain of the pre-amplifying stages will give a higher feedback ratio, but the expected reduction of harmonic distortion will be lost again, owing to the need for heavier compensation. Besides, it will become more and more difficult to avoid random oscillations.
3. It follows, therefore, that unconditional stability in a feedback amplifier should depend essentially on the inherent properties of the circuit. This implies that stability must be guaranteed at all signal levels and frequencies, with all kinds of waveforms and with inductive loads.

Fig. 1 The Cascode circuit

The Case For The Preamplifier

The requirements for a preamp may be summarised as follows:
a) High amplification factor
b) Linear response within the audio-frequency range
c) Low harmonic distortion.

Feeding the input stage and the driver from a current source and using current mirrors as load resistances, it is possible to obtain amplification factors up to 150,000 . Unfortunately, there will be a considerable loss of high frequencies and an unfavourable degree of phase-shift, which will make stability a major problem. Several compensation networks

Fig. 2 Main amplifier circuit

Fig. 3 Component overlay for main amp
will be needed, with the inevitable result of increased distortion and poor transient response. With less gain and better frequency response, these problems can be overcome. In this way, the overall feedback ratio could be reduced without ill effects on harmonic distortion and transient response.

There is a device which will help us to reach our goal. This is the cascode circuit in Figure 1. Transistor Q1 has a common base configuration. The Miller effect is therefore eliminated and a high load resistance can be used. On the other hand, Q1 is loaded by the low input impedance of Q2. Together they make up a high gain stage with excellent high
frequency response.
Another important feature is the low distortion level, owing to the complementary characteristics of Q1 (common emitter) and Q2 (common base). The test results of the preamplifying part of the complete circuit (see Figure 2) are approximately as follows:

Gain 91dB (36000x)

Frequency response -3 dB at 18 kHz
Distortion 0.15% for 20 Veff at 1 kHz
0.35% for 20 Veff at 10 kHz

The Complete Circuit

From the input, the signal first goes through the lowpass filter R2, C2, which attenuates supersonic frequencies above 60 kHz . Q1 and Q2 are a long-tailed pair, fed from a FET current sink Q3. A FET transistor is an excellent current sink because in the pinch-off region, drain current is almost completely independant of drain voltage. Q3 works a -12 V tension by means of Zener diode ZD1; the trimpot RV1 is used to equalise the collector currents of Q 1 and Q 2 . For a perfect balance, both transistors should have equal base resistance, hence the somewhat unusual value for R1. Total resistance for $\mathrm{RI}+\mathrm{R} 2$ is 32 k 7 , which will allow the use of a non-polarised capacitor for C . But for C 6 - which is also in the signal path - we have to choose an electrolytic; so we have included a polarisation network consisting of R9, C5, D1, D2.

At first sight, the driver stage ($\mathrm{Q} 4 . . \mathrm{Q} 7$) looks like a symmetrical design. This is not the case: the upper part with Q4, Q5 is the cascode, whereas the lower half ($\mathrm{Q} 6, \mathrm{Q}$) is in fact a stabilised current source. Resistor R14 is used to polarise Q7. Because Vbe for Q7 is approximately 620 mV , the fixed current of the complete stage is $620 \mathrm{mV} / 56 \mathrm{R}=$ llmA, which will be more than adequate to provide the driving current for the output transistors. The voltage at the base of Q5 is stabilised by ZD2, R15, C9. Feedback is applied to the base of Q2 through R10. The gain of the complete amplifier is then determined by the ratio R10/R8 (approx. 34). Since the initial gain (without feedback) is approximately 36,000 , we have a feedback factor of 36,000 / $34 \cup 1000$ or 60 dB . With this heavy feedback it becomes necessary to apply a small amount of phase/frequency com-

Fig. 4 Component overlay for power supply

supply PCB. The use of separate decoupling networks gives a better signal to noise ratio as well as a small increase of music-power output.

Q9 and Q10 as complementary Darington emitter followers with a gain of less than 1 ; even so they are responsible for the major part of the distortion contents, hence the need for heavy feedback. Quiescent current for Q9 and Q10 is adjusted to 60 mA by means of RV2 together with transistor Q8. Power output is limited to 50 W -still an awful lot of noise in the ordinary living room. Medium sized heatsinks for the power transistors can be used and mounted directly on the PC board without separate wire connections and without insulating accessories. Thermal stability is accomplished by screwing Q8 (BD139) firmly to the heatsink for Q9. Beware: the
pensation. This is taken care of by C7, from the collector of Q5 to the base of Q2. Values between 5 and 33p are suitable, depending upon individual parameters of the transistors involved, but 18 p is a good compromise. The effect of C 7 on audio frequencies is negligible, but its presence will ensure absolute stability. Power supply for the preamplifying stages is applied through R22, C16 and R23, C17 on the power
metal part of Q8 must be insulated from the heatsink with a mica washer! R17, C11 and R18, C12 are used to avoid selfoscillation. They should be mounted on the copper side of the board, as near as possible to the base of Q9, Q10. R19 and R20 consist of $2 \times 1 \mathrm{R}$ at 1 W each. Do not use wire-wound resistors here. The usual Zobel network across the output consists of R21 and C13.

Practical hints

The complete amplifier is mounted on a Eurocard-size epoxy PCB ($100 \times 160 \mathrm{~mm}$), half this size $(100 \times 80 \mathrm{~mm})$ is needed for the power supply unit.

The heatsinks are type KL107/37.5 with dimensions $70 \mathrm{~mm} \times 37.5 \mathrm{~W}$. Other types for T0220 envelope are equally suitable, provided the temperature coefficient is below $3.2^{\circ} \mathrm{C} /$ W. Of course, with larger heatsinks, the length of the board must be increased. The power transistors and their heatsinks must be fixed very carefully on the PCB; apply sufficient heat-conducting compound to the metal tab of the transistors.

R17,18 and C11,12 are soldered on the copper side, as well as a wire link for the emitter of Q10. On the component side there are two links.

For a stereo version, the power supply capacity must be increased. $\mathrm{TRI}=225 \mathrm{VA}, \mathrm{BRI}=\mathrm{B} 80 \mathrm{C} 8000, \mathrm{C} 14,15=$ $10000 \mu, \mathrm{C} 16,17=2200 \mu$

Preliminary Adjustments

a) Insert a milliammeter in the $\mathrm{V} 1+$ line between power supply and amplifier. Tum RV2 fully anti-clockwise, then switch on power and adjust RV2 for a quiescent current of 60 mA .
b) Measure the voltage on the output. If everything is correct, this voltage will be below 20 mV
c) Adjust RV1 for equal currents in Q1 and Q2: connect a 10 or 20 M FETVOM or a digital meter across R6 through a 10 k resistor, connected to the collector end of R6 (to avoid unwanted oscillations) and turn RV1 until you read between 1.3 and 1.4 V

PARTS LIST

Resistors (0.3W 1\%)	Capacitors (ceramic)
R1 30k	C7 18p
R2 2 k 7	C11,12 1000p
A3,6,12 3 k3	C3,8 $2200 \mu / 16 \mathrm{~V}$
R4,7 220R	C5 $470{ }^{\prime} 6 \mathrm{~V}$
R8 1k	C6 $47 \mu^{\prime} 6 \mathrm{~V}$ (low leakage or
R9,16 22k	tantalum)
R10 33k	C14,15 $4700 \mu 50 \mathrm{~V}$
R11 47R	C16,17 1000 150 V
A13 1k5	
R14 56R	Semiconductors
R17,18 270R	01,2 1N4148
R22,23 33R	Z01 12V Zener
RV1 2k2	202 3V9 Zener
RV2 470R	Q1,2,7 BC550C
	Q3 BF245A
Resistors (1W 5\%)	Q4 BC560C
R5,15 6k8	Q5 BD140
R19,20 2×1 each	Q6,8 BD139
R21 8R2	Q9 BDT65
	Q10 BDT64
Capacitors (MKM)	
C1 680n	Miscellaneous
C2 in	TR1 Transtormer 120VA $2 \times 30 \mathrm{~V}$
C4,9,10 470n	BR1 Bridge rectifier 80V, 5A
C13 100n	2 PCBs
	2 heatsinks $3.2{ }^{\circ} \mathrm{CW}$ or less
	(KL. 107/37.5 or similar)

d) A final remark: the amplifier has been designed for an 8 R load. Higher loads will give less power output, but lower loads may cause damage to the amplifier, due to overheating of the output transistors, in case of continuous full power operation.

(aMPLIFIERS
 RSOm

UK Distributor for the complete ILP Audio Range

BIPOLAR AMPLIFIER MODULES

Encapsulated ampliflers with integral heatsink.

HY30P	15W Bipolar amp	$£ 9.95$
HY60	30W Bipolar amp	$£ 12.62$
HY6060	30W Stereo Bipolar amp	$£ 26.46$
HY124	60W Bipolar amp (4 ohm)	$£ 20.69$
HY128	60W Bipolar amp (8 ohm)	$£ 20.69$
HY244	120W Bipolar amp (4 ohm)	$£ 27.38$
HY248	120W Bipolar amp (8 ohm)	$£ 27.38$
HY364	180W Bipolar amp (4 ohm)	$£ 42.86$
HY368	180W Bipolar amp (8 ohm)	$£ 42.86$

MOSFET AMPLIFIER MODULES
 Encapsulated amplifiers with integral heatsink.
 SMOS60 30W Mosfet amp £23.15
 SMOS6060 30W Stereo Mosfet amp $\quad £ 39.95$
 SMOS128 60W Mosfet amp £30.95
 SMOS248 120W Mostet amp E42.50

CLASS A AMPLIFIER MODULE
Encapsulated Class A amplifier with integral heatsink
HCA40 20W Class A amp £36.60

POWER SUPPLIES

Full range of transformers and DC boards available for the above amplifiers.
100 VOLT LINE TRANSFORMERS
Full range of speech and music types for amplifiers from 30 watt to 180 watt

PREAMPLIFIER MODULE

General purpose preampllfier for a wide range of applications.

Prices include VAT and carriage

Quantity prices available on request
Write, phone or fax for free Data Pack Jaytee Electronic Services
143 Reculver Road, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

SUMMER 1993 CATALOGUE

The new enlarged Cirkif Catalogue is ouf now!

>32 more pages
$>$ New range of Kenwood 'scopes

- The latest scanning receivers and accessories
$>$ New section of low cost security products
- Extended range of Velleman kits including: 250W 12 Vdc to 220 Vac inverter, in-car amplifier power supply, 200 and 400 W amplifiers, suppressed lamp dimmer, halogen lamp dimmer, day/night thermostat and telephone remote control unit
$>$ New test equipment, includes: 2.3 CHz bench frequency counter, EPROM emulator/programmer, portable 'scopes and bench function generators
- Host of new components, including: compression trimmers, variable capacitors, connectors, fuses, and fuseholders, potentiometers, IC's, soldering irons and lead free solder
$>$ Published 27th May 1993
- Available from most large newsagents or directly from Cirkit
$>$ Send for your copy today!

CIRKIT DISTRIBUTION LTD
Park Lane - Broxbourne . Hertfordshire EN10 7NQ Telephone (0992) 444111 . Fax (0992) 464457

MICROWAVE CONTROL PANEL. Ma is aperated. with touch switehes. Complete whth 4 digit display, digital clock. and 2 relay outputs one for power and one for pulsed power (programmable). Ideal for all sorts of precision tmer applicatons etc. Now only E4.00 ref 4P151. Good expermenters board.
FIBRE OPTIC CABLE Stranded cpical 能res sheathed in black PVC Flve metre length $£ 7.00$ ref $7 P 29 R$ or $£ 2$ a metre. 12V SOLAR CELL. 200 mA outputideal for thckle charging etc 300 mm square. Our price $£ 15.00$ ref 15P42R. Gives $4 p$
to 15 v .
PASSIVE INFRA-REO MOTION SENSOR. Complete with daylight sensor, adjustable lights on fimer (8 secs -15 mins). 50 range with a 90 deg coverage. Manuai overide facilty. Complete with wall breckets, bub hodders etc Brand new and guaranteed. Now only \& 1200 ref 10P29
Pack of two PAR38 butbs for above unt $£ 1200$ ref 12P43R
VIDEO SENDER UNIT. Transmit both audio and video signals from ether a video camera. video recorder or computer to any standard TV set within a 100 rangel (tune TV to a spare channet). 12V DC Op. £1500 ref 15P39R Sutable mains adaptor $£ 5.00$ rel 5P 191R. Tum your camcorder into a cordless cameral FM TRANSMITTER Moused in a standard working 13A adapter (Dug is mains dirven). $£ 26.00$ red 26 P 2 R . Good range MINATURE RADIO TRANSCEIVERS. A pair of walke tallies with a range of up to 2 kilometres Units measure $20 \mathbf{2 2 \times 1 5 5 m m}$. Complete with cases and eapteces E 30.00 ref 30P12R
FM CORDLESS MICROPHONE Smat nand held Unit with a $500^{\text {r }}$ range! 2 transmit power levels. Reqs PP3 battery. Tuneable to any FM recelver. Our price E15 ref 15P42AR. 12 BANDCOMMUNICATIONS RECENER. 9 shortbands Tilt FM. AM and LWD XAocal switch, furling 'eye' malns or battery, zeo ? Complete with shouder strap and mains lead. $£ 19$ ref 19P $14 R$ Ideal for listening all over the wond
CAR STEREO AND FM RADIO. Low cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db . 5 watts per channes, Signai to noise ratio better than 45ab.
wow and futter less than . 35%. Neg earth. E 19.00 ref 19 P 30 LOW COST WALIKIE TALKIES. PaI of battery operated units with a range of about 200°. Our pice $£ 8.00$ a pair ref 8P50R. Ideal for garden use or as an educational toy. 8psor. Idoal io garden use or as an educational toy. 7 CHANNEL GRAPHIC EQUALIZER plus a 60 watt power ampl 20-21KHZ 4-8R 12-14v DC negat ve earth Cased $£ 25$ rel 25 P14R NICAD BATTERIES. Brand new top quality. $4 \times$ Ais $£ 4.00$ ref 4 P44R $2 \times$ CS $E 4.00$ rel $4 P$ 73R. 4×0 O's E9.00 ref SP 12R. $1 \times$ PP3 E6.00 rof 6P35R Pack of 10 AAA s $\varepsilon 4.00$ rel 4P92R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The uttimate equival ents Dook New ed E20.00 ref 20P32R. GEIGER COUNT ER KIT. Complete with tube. PCB and all components io build a battery operated geiger counter, £39.00 ref 39p 1R FM SUG KIT. New design with PCB embedded coil. Transmits to any FM radio. ov battery reqd. $£ 5.00$ ref 5P158R. 35 mm square. FM BUG Buith and tested superfor 9y operation $£ 14.00$ ref 14P3R COMPOMT E VIDEO KIT S. These conven composite video into separate H sync. V sync and video 12v DC. $£ 800$ ref $8 P 39 R$ SINCLAIR C5 MOTORS 12v 29A (full load) $3300 \mathrm{rpm} 6{ }^{\circ} \times 4^{\circ} 1 / 4^{\circ}$ O/P shat New. E22.00 ref 20P23R Linited stocks.
ELECTRONIC SPEED CONTROL KIT for CSmotor. PC8 and all components to bulld a speed controtler (0.96% of speed) Uses components to bulld a speed controller ($0-96 \%$ of speed) Uses
pulse width modulation. 17.00 ref 17P3R Potentiometer control. SOLAR POW ERED NICAD CHARGER. Charges 4 AA nicads in SOLAR POW ERED NICAD CHARG ER. Charges 4 AA nicads in
8 hours. Brand new and cased 66.00 rel GP3R. $2 x$ c cell model $£ 6.00$. ACORN DATA RECORDER ALFSOs Made for BBC computer but suitable for others Includes mains adapter.
leads and book. $£ 15.00$ ref 15 P43R VIDEO TAPES. Three hour superior quality tapes made under licence from the famous JVC comp any. Pack of 10 tapes New low price $£ 15.00$ ref J15P4
PHILIPS LASER 2NW HELIUM NEON LASER TUBE BRAND NEW FULL SPEC £40.00 REF 4OP10R. MAINS POWER SUPPLY KIT E22.00 REF 22P33R READY BUILT ANO TESTED LASER IN ONE CASE E75.00 REF 75P4R.
12 TO 220V INVERT ER KIT. As supplied it will handie up to about 15w at 220 Vbut with a larger transformer lifwill handle 80 watts Basic kit £ 12.00 ref 12P17R Larger transformer $£ 12.00$ ref 12P41R WIND UP SOLAR POWERED RADIOI FMIAM Radio takes recthargeable batteries. Complete whth hand charger and solar panel. £ 14.00 REF 14 P200RA
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF 10 E4.00 REF 4P92R, PACK OF 100 £ 30.00 REF 30P $16 R$ FRESNEL MAGNIFYING LENS. $83 \times 52 \mathrm{~mm} \varepsilon 1.00$ rel BO827R 12V 19A TRANSFORMER Ex equipment £20 but OK POWER SUPPLIES Made for the Spectrum plis 2 give +5 () $2 A,+12$ Q 700 mA \& -12 앙 50 mA £8 ref Q8P3
UNIVERSAL BATTERY CHARGER. Takes AA's. Cs. Os and PP3 ricads Hoids up to 5 batteries at once. New and cased, mains PP3 ricads. 10 oids up to 5 b
operated. $£ 6.00$ ref 6P36R
IN CAR POWER SUPPLY. Plugs into digar socket and gives IN CAR POWER SUPPLY. Plugs into digar socket and gives
$\mathbf{3 , 4 , 5 . 6 . 7 . 5 . 9 \text { , and } 1 2 \mathrm { V } \text { outputs of } 8 0 0 \mathrm { mA } \text { Complete with untversat }}$ 3,4,5.6.7.6.9, and 12v outputs
spider plug. $£ 5.00$ ref $5 P 167 R$.
spider plug. E5.00 ref 5 Pib7R.
QUICK CUPPA 12 V immersion heater with lead and cigar lighter QUICK CUPPA? 12vimmersion heater with lea
plug 53.00 rel 3P92R. Ideal for tes on the movel
Plug $£ 3.00$ rel 3P92R. Ideal for tes on the movel
LED PACK. 50 red, 50 green, 50 yeliow all $5 \mathrm{~mm} \mathrm{Es.00}$ ref $8 P 52$ LED PACK. $50 \mathrm{red}, 50$ green, 50 yelicw all $5 \mathrm{~mm} \mathrm{E8.00}$ rel $8 P 52$
$360 K 5.25^{\circ}$ DISK DRIVE. Industry standard. ideal replecement or second drive for most computers $£ 9.00$ EACH ret: X9P1. PPC PSU 138 V 1.5 A (not plug in). $£ 10.00$ EACH REF- X10P9.

 2KOGAL AUFHORITIBS WTLCCMBE ALL GOODS

 HUARNHIELEC FOF 30 DAYA.
TKIOHIS RESER VED FO CSANGES PRICKS \& Stictichtions wrotolif pitar Notice OFDBRS summet ros reck otiotamoks
 HaN THCSE STAZED

3

 efficient amorphous silicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells, a few of which could be: for Car Battery Charging, for use on Boats or on Caravans, in fact anywhere a portable 12 V supply is required. Several of our overseas Mediterranean customers with homes in remote hilly sites, use these solar cells as a daytime power source to backup generators. The solar cells can beconnected in serles or parallel to give higher voltages or larger current capacity. REF: ET34P1 PRICED at only £33.95. PLUS an additional 82.00 special packaging charge on this item in addition to 89.00 PF charge.

OTHER SOLAR PANELS:

12V 200 mA GLASS SOLAR PANEL.
$12^{\prime \prime} \times 12^{\prime \prime}$ in dimension $£ 15.00 \mathrm{EACH}$. ref: 15 P 42. . 45 V 700 mA SOLAR CELL
silicon plastic encapsulated $95 \times 65 \times 7.5 \mathrm{~mm}$ in dirns. £3.00 EACH. ref: 3P42.
.45 V 400 mA SOLAR CELL
silicon plastic encapsulated $75 \times 45 \times 7.5 \mathrm{~mm}$ in dims. $\mathbf{6 . 0 0 \mathrm { EACH }}$ ref: 2P199.
$.45 V 100 \mathrm{~mA}$ SOLAR CELL
silicon plastic encapsulated. $45 \times 26 \times 7.5 \mathrm{~mm}$ in dims. $\mathbf{1 . 0 0 ~ E A C H}$, ref: BD631.
SOME OF OUR PRODUCTS MAY BE UMLICEMSABLE M TRE UK
BULL ELECTRICAL
250 FORTLAND ROAD HOVE SUSSEX BH3SAY
WALL OTOER TERMS: CABH PO OR CHECUE Wht ORBERMLUBE200 POST PLUSVIT. PLEASEALLOM 7 - 10 DAYB FOA DELVERY
 IEL: 0273273720
EAK: 0273 323077 EAK: 0273 3223077

INDUCTIVE AMPS 85.00
Made for amplifying a telephone handset for the hard of hearing. However if you hold one agatnst a plece of wire carrying a telephone conversation you can hear both sides of the conversation! It can also be used for tracing live wires in a wall or detecting cables carring mains etc. Fully cased complete with battery and fixing strap. Aprox 2.5° diameter 1^{\prime} thick.
Our Price: :25.00 Our Ref :ET5P11
CTM644 COLOUR MONITOR 279.00 Refurbished monttor suitable for many home computers standard RGB input.
Our Price : $\mathbf{2 7 9 . 0 0}$ Our Ref :ET79P11
ARCHEMEDIES A3000 PSU 210.00
A compact switch mode PSU with on/off switch. selectable voltage input $110 / 240$. NEW O/P va fly leads. GOOD STOCKS AVAILABLE.
Our Price : $\mathbf{2 1 0 . 0 0}$ Our Ref :ET10P11
ANSWERPHONES from only 218.00
Yes its true BT approved push button dialling. These are customer returned units and have two faults. We will supply you with a chip to cure one fault then you have to sort out the other problem! NON RETURNABLE.

Prices:

218.00 each. REF: ET18P21
260.00 PKT 4. REF: ET60P21

PORTABLE ALARM SYSTEM 817.00
'PAL' Portable Mult Beam Scanning System. Lockable Stand-alone PIR untt with removable keys (3 supplied). This unit uses a PP3 battery and when activated emsts a plerctng SHRILL The untt scans the room and memorises the layout. Should this change, the alarm is triggered. There is a 60 second extt delay.
Our Price : 217.00 Our Ref :ET17P11
PIR MOVEMENT DETECTOR $\$ 15.00$
Once agatn we have aquired stocks of this popular line and are able to offer you a very high quality and professional detector at only ${ }^{\circ "} \mathrm{~s} 15^{\circ " \omega}$. Range: 20 m with a 90 arc. Day and Night Mode Dims: $15 \mathrm{~cm} \times 9 \mathrm{~cm} \times 11 \mathrm{~cm}$. New and boxed. complete with installation guide.
Our Price : $\AA 15.00$ Our Ref :ET15P21
MANY MORE SPECIAL OFFERS
IN OUR REGULAR NEWSLETTERS
WE EAVE HUNDREDS AND HUNDREDS MORE STOCK LINES - TOO MANY TO LIST IN ONE ADVERT : CHOOSE FROM AERLAL AMPLIFIERS
AEROSOLS
AL ARMS
AMPLIFIED SPEAKERS
ANALOGUE MULTIMETERS APPL.IANCE LEADS APPLIANCE LEADS
BATTERES AND HOLDERS BATERY CHAROERS BATTER
BOOKS
BOXES AND CASES
BOXGS AND CASES
CAMCORDER BITS
CAPACTIORS
CAPACTTORS
CAR AMPS. RADIOS \& SPKRS
CAR AMPS RADIOS \& SPRR
CB SPEAKERS AND PSII's
CB SPEAKERS AND
COMPUTER BTTS COMPUTER BITS
CONECTORS DESOLDER PUMP DESOLDER PUMP
DIOTAL MULTMETERS DIOITAL MULTTME
DISCO LIGHTTNG DISPLAYS
dubbino ktt
prals

FANs FUSES

OLUE OUN AND GLUE
HEADPHONES
HEATSHRINK SIL EEVINO
HI FI SPEAKERS IONISERS
LED :
LASERS AND LASER PSUU
LOGIC PROBES
LOUD AND MARINE SPKRS
LOUD AND MAR
MIR LGHTS AND DETECTORS
POWERS SUPPLIES POWERS SUPPLIES POWER AM
RADIOS
RADIOS
SERVICE AIDS SERVICE AIDS
SOLDERING EQUIPMENT SOLDERNG EQU
STEAMENONES TRANSETVERS TRANSFORMERS
WIRELESS MICROPHONES IN SUSSEX?
CALL IN AND SEE US!!
TURN YOUR SURPLUS STOCK INTO CASH. MMRDLATE SETILEMENT. WIE WIL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

MUCH Much More in our 1993

CATAV DGHIE, PLEASE SEND $41 P$, 44 3izan SAC How youn wirs cory.

VOLT HOME
 STUDIO MONITOR

Designed speciflcally for studlo use, this design also gives excellent results when used for conventional HIFi reproduction The HSM kit is remarkable value - you would have to spend many times its cost to achieve comparable results from a readymade speaker. The HSM will produce high undistorted sound pressure levels \& has massive power handiling capabillty (full uncllpped output of 200 watts). Split circuitry crossover is used to enable biwlring to be employed without any modificatlons.

. all in all, highly recommended Paul White, Home \& Studio Recording magazine.
The kit includes bass and treble units, flat pack cabinets (accurately machined from smooth MDF for easy assembly), acoustilux, assembled crossovers, reflex ports, binding posts, grille fabric etc.

```
Dimensions:
508\times267\times343mm
Response:
30 HZ-20 KHZ
Sensitivity:
90db/1w/1m
AMP Suitability: 20-200w
&379.00 per pair Inc VAT
carrlage/lns. £18.00
```

Wilmslow \checkmark Audio DIY Speaker catalogue $£ 2.00$ post free (export $£ 3.50$) Open Tuesday to Salurday, 4 demonstration rooms available

Dept. ETI, Wellington Close, Parkgate Trading Estate Knutsford, Cheshire WA16 8DX
Tel: (0565) 650605
Fax: (0565) 650080
Telephone credit card
orders welcome
orders welcome

NEW THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

Only $£ 195+$ vat

carrage extre

- Prondes 10 Whte 5 MHz 8 iluhz
- Use it for calitrating equipment that relies on ouarta crystals TCXOs vCXOs, oven
- Prase locis lo DROTTWCH (nubichum controlled and traceable to MPL) \& FOW ADDED VNLUE also phase locks io MLIOUIS (cessum controliso ing trocseble to OF. French ea D NPL
- British designed and British manutactured

Outpul frequencies-

Short iem stability.
betier than $2 \times 10^{-1}(1 \mathrm{sec})$
Iyped-4:100-1 $(1 \mathrm{sec})$

ECG MOMTOF SEM 430 WTH SEMEDR

 TV PAT GENEPATORS PAi GZSUO EDOYSTONE EPIS PAN ADAPTOR QUAD TLNER $\& 22$ CONTAOL UNIT TEETRONXX 2 PF 5 OMHZ T TRACE DEL TMB TEKTRONIX 453 A 5OMHZ 2 TRACE DEE TB TELEOUIPMENT SQ2 SIHGLE TRACE SWHZ SCOPS H.P. 8405 A VECTOR V METER $1 G$ HR LEADER LBSK2? 2OHZ DUA TRCE TEEEOUPMENT DSIA OIMHZ DUAL TRACE SE LABS SWIII 'BMKI OUAL TRACE TEK 4558100 HH D DUAL TTACE DEL T/B TEKTHONXX 52 S52 A A PM YSCOPES TELEQUPMENT DO7A 2SMHZ,2T, OELT/B HP 1 TOOA 3 SIIHZ DUAL TRACE HITACHI VC OO15 $101 H 2$ OIGTAL STORAGE HP. 13DaX.YOISPLAYS TEK S46 STS5 SERIES PLUG-HNS WANOEL GOLTEGMANN SPM-2 LEVEL WETER WANDELGOLTERMANN SPW-3 LEVEL METE WANOEUGOLTERMAN PS S SIGNA GEN MARCONIT F23O AMFA WOD WETE PPTBLE MAHCONITF2330 WAVE AMU YSER 2OH2-50.t女 HP 5315 A IGHzFCTR OPTS 1.28 .3 COUSTANT YOLTAGE TRWNSFS 150NA-KVV

IIS MIU IPS PMAASS FM STEREO GENEEATO
MARCONI TFZ233 MF OSC LEVEL METER EIMS SO SEGE TESTERS AVO NK 1234 SGHLEX E15 5 51O VA.VE TESTERS AVO NK 1,23.3 FROM 419 TO 149 FEEDAACK FGGDD FNC GEN SINSOTRH TME ZOOCS VOLTAGE CNIBRATOA 1 YOV 1:10 WLTIPLEA FOR ABOVE MARCONI TFSSO FWWA M MOOVATION NETER NASCOWGEMIW CAADS, VAALOUS CISELL TEMP RECORDER PDAY HCKENIE T DAY TEMP PHMMDITY RCADR 19 RACK CASE $204 \times 31^{\circ}$ OEEP FEEDBACK SSOOOO 1HHHZ SINESO OSC
 FARNELL E3SO O.350, $100 \mathrm{~mA}, 2 \times 6.3 \mathrm{Y}$ FARNELL FGI FUNC GEN 2.22 WH Z COMMUNICATIONS RECENERS. VARIOUS LCA MARCON: TF1313025\%
From nio LCa COMPONENT COMPARATOR AVOCZIS7/S LEVEL TMGB MCAO V HETER 150 HHZ LEVEL TM3B IECAO V-METER 3 MHZ OERTLIMG YO SINGLE PAN BALANCES ZOOGM AMALTICA BALANCES WITH WEIGHTS 250GM VACUUUPYMPS 15828 CUMAR $E 128 ~ \& 5149$

LIST AVALLABLE BUT TOOUS OF UNLISTEO BAAGANS FOR CALLERS ALL PAICES EXC. OF PAP ANO VAT
OUNTTY ELECTRONIC EOUPMENT AL WAYS WANTED

HALCYON ELECTRONICS

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

JUST LOOK AT WHAT'S AVAILABLE FROM BONEX

Balance Mlxera Batteries
Button Cells, Ni-cads, Battery Holders, Battery Eliminators, Nl -cad Chargers, Boxes
ABS Plastlc, Dle-cast, Hand-Held Enclosures, Bridge Rectlfiers Bulbs
Cables
Audlo, BBC, Camcorder, Cassette/Calculator, Mains, Computer, IBM PC/AT, Serlal, Monltor Extension, Parallel, PatchVideo Leads, Scart Cables, Serial Printer, Video/Audlo Dubbing Kit. Cable Tles
Capacitors
Ceramic Discs
Coramic Feedthroughs, Chip, Electrolytics, Monolithics, Mylars, Polycarbonates, Polystyrenes, Polyesters, Tantalum Beads, Capactiora Variable Film Dlelectric Trimmers, Ceramic Trimmers,

CMOS Devices Computer Accessories Adaptors 9W to 25W, Data Switch Boxes, Gender Changers RS232 - Patch Boxs, Null Modems, Plug in Testers, Surge Protectors Surge Protector Plugs, Connectors Audio Adaptor/Plugs, Banana Connectors, Binding Posts BNCs, Centronics, D.
D High Density, DC Power, DILIC. DINs, IDCs, Edge F, Jack $2.5 \mathrm{~mm}, 3.5 \mathrm{~mm}, 6.3 \mathrm{~mm}$, Malns, Microphones Molex, N-Type, Phono, PL259, RF Adaplore. Scart, TNC Terminal Stripe, TV, XLA, Crocodile Cllp: Cryetals
Desolder Pumps Dladee
Plastic $N 4000$ / IN5400,
Toko Varicaps
Signal Dlodes,
Zener, BZYB and BZX8,

Drills
Bits and Burrs,
Expo
Pin Chucks,
Power Supplys
Saws and Slitting Discs,
Fans
Feet, Rubber
Ferrites
Fliters
FMCeramics, Mechanlcal IF's, Ceramle Resonatore Crystal, Heticals, NTSC / PAL, Pilot Tone, Quadrature Detector, Satellite TV, Video,
Fuses
Grommets
Howes Kht
Heatsinks
Inductors Fixed
incumiors Moulded
Inductors surtace Mount
Inductors Varlable
Intra-red Source Sensor
Insulating Tape
IntegratodCircults
CMOS:
Eproms
Unears,
Memory,
TTL

KHts and Modules LE.D.s, 3 mm and 5 mm Light Dep Resistors Loudspeakers
Microphone Inserts
Multimeters
Neon Indicators
Nuts and Bolts
Opto Switche
Optolsolators
P.C.B. 8

Copper Clad, Etch Reslst
Transfers, Photo Resist,
Pins, Proto-type,
Pollshing Mops
Potentlometers
Control Pots, $16 \mathrm{~mm}, 24 \mathrm{~mm}$
Pre-sets, Horlzontai Werticel
Trimmer Pots,
Power Supplles
Relly
Reestors
Wirewound,
Screening Cans
Seml's Mount Klts
Solder
Soldering Irons
Swttches
DIL. Koy, Microswithches,
Push, Rotary, Slide, Togglos,

Test Laeds
Test Probes
Tools
Crimping, Cutters,
Files, Insertion,
Reamers,
Screwdrivers,
Strip Board, Trimtoole,
Torold Cores
Thyrlstors
Transformers, Mains
Transletors
Audio Power
Darilngtons, F.E.T.s
GaAsFETs,
Low Power RF,
Mlcrowave,
MosFETb,
Power RF
Small Slanal,
VMOS,
Trimes
TTL
Video Modulatore
Voltage Regulatore
Wire
Enamelled Copper,
Tin Plated
Silver Plated,
Zero Insert Force Sockets

12 Elder way
CATALOGUE AVAILABLE
Langley Business Park
Slough

SPECIAL OFFER

SBL-1 BALANCE MIXERS $£ 3.75$
BONEX
Berkshire SL3 6EP.
Telephone : 0753549502 Fax : 0753543812

Home Minder

Bob Noyes deters the burglars with his house minder

Reducing the risk of break-ins was a topic raised at a Neighbourhood Watch talk which 1 attended recently. A lot of house break-ins are of an opportunistic nature, where someone walks around in the evening passing the same houses several times, looking for those either in total darkness or with a landing or hall light on only.

Such houses are singled out as potential targets because their owners are almost certainly out. Although a burglar alarm can be fitted and is expected to be set off when the house is broken into, there is always the feeling that someone has been in your home and may well have done major damage during entry. Far better to discourage burglars from attempting to break in in the first place, by making your home appear to be buzzing with activity.

All this seemed pretty obvious and what was needed was something that would switch lights on and off in a controlled

fashion, suggesting to the casual passer by that the house was occupied. Single channel timed light switches are readily available, but on the whole these turn on and off once per 24 hours - not really giving the appearance of normality. Several of these could be used in different rooms to give a more realistic effect, but all require suitable table or standard lamps and all the clocks require setting up. This means leaving maybe four or five time clocks running all day and all night and even then they would all have to have their lights activated when required - altogether an impracticable solution when you're in a hurry to go out.

What was needed was a custom designed unit that only
required one switch to be MOME MINDEA activated once installed and set up. It would need to be crystal controlled for long term accuracy and have battery back up for accurate time keeping, even in a power cut, because if the clock stopped and restarted, the lights would come on late depending on the length of the power cut. It must have a summer and winter set of commands because lights are switched on earlier in the winter and stay on longer in the mornings than in the summer. The 'program' would have to be able to be tailor made to the type of building and family it served. In all quite a tall order, but Home Minder achieves all this - and for a very affordable price, considering the peace of mind given when either going out for the evening or away on holiday for a couple of weeks.

Unfortunately, no guarantees can ever be given, no matter what security measures are undertaken, that a break-in will not occur but 1 can say quite confidently that with Home Minder installed and working, a break-in is far less likely when the house is unattended. With the music channel on as well, even in the early evening before lighting up time, the house would have the feeling of being occupied.

How It Is

The principle of operation is basically a crystal controlled clock that gives a pulse every minute. This is fed to a counter that recycles every 24 hours or 1440 minutes. From between 4 pm and 9 am , every minute can be individually programmed to switch up to seven different electrical circuits in any combination and in any order, the object being to switch lights on and off in a controlled manner to give the impression of someone being in. Here's the idea. The outside light comes on just before dusk, followed later by the front room light. Music can be switched on and off during the evening as can the bedroom and toilet lights. The music and front room lights are turned off first and the bedroom and toilet lights are turned on at bedtime. These are then turned off in due course imitating the normal routine of the house. These instructions as to which lights are on or off and when they are tumed on and off are held in a program of an EPROM. The one used here is a 2716 - although small in capacity in modern terms of Megabits, its 2048 bytes are capable of storing two programs, one for winter, the other for summer, selected on a switch Summer/Winter.

Fig. 1 Main control board circuit

HOW IT WORKS

A crystal oscillator of 4.194304 MH Iz is built around IC1, a CMOS 4521 This IC contains most of the oscillator circuit and the dividers necessary to produce a 0.25 Hz output at pin 1 , i.e. 4.194304 MHz divided by 2 twenty-four times gives a frequency of 0.25 Hz . Also Q 18 , a 16 Hz signal is taken from pin 10 - this is used to test the program in fast mode (see later in the text). The 0.25 Hz is nomally connected to a divide by 15 circuit built around IC2, a CMOS 4029. The 4029 counts in binary and would normally reset at 16 , but by the addition of $D 4, D 5$, $D 6,07$ and A 7 it now resets at 15 . The effect of a 0.25 Hz signal divided by 15 is to produce a pulse every minute. This is taken from the carry out pin 7 . None of the jam inputs are required so they are all grounded. The carry in pin 5 is always enabled so is grounded. A ' 1 ' on pin 10 causes it to count up, while a '1' on pin 9 makes the 4029 count in binary.

The pulse every minute is counted by IC3, a CMOS 4040, a 12 bit binary counter. Normally, this would count to 4096 before starting again from zero, but with the addition of D9, D10, D11, D12 and A9 it resets atter 1440, the number of minutes in a day: $60 \propto 24=1440$. This is done by taking

Q6	32 count	Pin 2
Q8	128 count	Pin 13
Q9	256 count	Pin 12
Q11	1024 count	Pin 15
$=$	1440 count	

and forming an AND gate, so when Q6, Q8, Q9, Q11 are all high, the reset goes high, via the pull up R9. The switch that connects the common point of the diodes to the reset should be of the normally closed type. In order to synchronise and zero at 4pm, the 'zero' switch is normally pressed at 4 pm . Then, assuming the Home Minder is not tumed off, the counter will recycle and zero at 4pm every day automatically - even if the outputs are disabled.

If the mains fails, the crystal oscillator and counters remain working via the battery back up. When the mains fails, the -15V stops causing the regulator to be starved of power. The $5 \mathrm{~V}+0.7$ due to D 2 no longer appears at the output of the regulator. D 8 now becomes forward biased allowing the battery supply 4.8 nominal vottage - 0.7 across D 8 to supply the board and being CMOS, this is enough to maintain correct operation of the circuit. For the duration of the power failure, the EPROM is disabied via Q1 causing CE chip enable to be pulled high by R12, normally the 5.7 supply is used via R5, R13 to tum on Q1 keeping $\overline{\mathrm{CE}}$ low and hence the EPROM working. Removing $\overline{C E}$ considerably reduces the power consumption while on battery back up, allowing for even the longest power cut not to affect the overall timing (of course the outputs will not operate, but with no mains the lights would not work anyway).

When a circuit containing a battery back up system is switched off deliberately, it must be remembered that not only the mains must be switched off, but the battery line must also be swiched or all that will happen is that the batteries will take over and eventually run down because they are no longer being trickle charged.

The 2716 EPROM only has 2048 memory addresses and, as stated there are 1440 minutes in a day and two programs would normally require $1440 \times 2=2880$ addresses. This probtem is overcome by not connecting A10 on the EPROM to the counter Q11, but to a Winterl Summer' switch. This means that addresses $0-1023$ are used for the winter program and 1024-2047 for the summer program. The Q11 (1024) output from the counter IC3 is connected to the OE Output enable of the EPROM. This means that from count 1024 to 1440 , the outputs from the EPROM are disabled but as this happens at 9.04 am, no lights would normally be on in either winter or summer, so this has no detrimental effect and allows a 2716 EPROM to be used. These are regarded as old hat nowadays and hence are inexpensive and quicker to program. A 2732 could have been used as it has 4096 addresses or memory locations, but the programs would have been twice. as long, and for those people without an automatic EPROM programmer, it is a lot of switches to activate to make the prográm normally ($4096 \sim 12$ address $\infty 8$ data combinations), as all the addresses should be programmed even if they are not used in the actual program.

When the Home Minder is not required on a day to day basis, the $\overline{\mathrm{CE}}$ chip enable is used to disable the outputs but the counter and oscillator are kept running. To activate Home Minder, assuming it has been left on - i.e. zeroed at 4pm and left powered up, but disabled by the 'activate/deactivate' switch - just flick the switch to 'activate' and it's as simple as that. The outputs from the EPROM are now fed to the Dartington divivers in IC5 on the relay board between (4pm and 9am) which in tum switch the various circuits according to the program. The 'activate' switch can be switched on or off at any time, day or night. It has possibly crossed your mind as to why Home Minder is zeroed at 4 pm . Well each of the two programs are 1023 minutes, long or 17 hours 3 minutes. In order to cover the evening, night and early moming for fult winter coverage within this 17 hour band, all lights should be off by 9 am so working back 17 hours comes to 4pm. In order to start the winter and summer programs at the same time, 4 pm was chosen.

Channel 8 is used as a test signal, which flashes on for one minute every hour. II it comes on, on the hour you could never be sure which hour it was set to, because having a full clock display showing the time would have added to the complexity and cost when normally it is out of sight anyway. So, the test signal appears four minutes past four five minutes past five, six minutes past six and so on. so a simple check can be made that it is in step with the correct time. This test light does not work during 9 am - 4 pm because it works off Channel 8 which is disabled by $\overline{O E}$ affer a count of 1024 , but it is present between 4.04 pm and 8.08 am .

When 'Home Minder has been on for several days it may be noticed that it is gaining or losing a few seconds a day. this can be confirmed by timing the lest light from one day to the next using a good digital watch with a seconds display. Trimmer T1 on the oscillator can be adjusted to improve the accuracy. To start with, the trimmer is set to half way, at around 10 p . This in parallel with the 10 p C 2 is the optimum value for the oscillator but a slight tweak may be necessary to improve matters.

Up to seven channels are programmable but without Channel 8 being used as the time test, this could be increased to 8 . An extra relay is required and is connected like the others on the output of the Darlington driver pin 11. Diodes have been connected across the coils of the relays although this is not strictly needed because the Darlingtons have built in diodes but too many precautions are better than too few.

In practice we have found six channels quite enough to simulate the average family house - with too many lights flashing it more resembles a Christmas tree than a house.

Relays were chosen as the output switching devices as these can switch any voltage AC or DC. Fuses are fitted as standard on all channels for safety.

Opto triacs controlling power triacs could have been used instead of relays, but this would require a different PCB. The
triacs should be fitted with small heatsinks. Isolated tab triacs should always be used as this reduces the amount of live metalwork, since the tab of a normal triac is connected to the output pin. Great care must be taken as they remain live at all times because power to them is brought in from the circuit being switched and not that supplied by the Home Minder via its mains supply. Fuses should still be used for ultimate safety on each channel, as for the relays.

Great care should also be taken when connecting up the outputs of the relays to the house lighting circuit. A diagram of a conventional lighting circuit is shown. This is a simple one switch circuit, the relay contacts are wired in parallel with the wall switch. Never get at the wires via the wall switch, always make the connections well out of the reach of everyone. Don't be surprised if the mains return is the side

that is switched. This is why a common live is not used in the circuit, but each output is completely independent of any of the others.

Again, it must be stressed that once connected the relay terminals and fuses remain live even if the Home Minder is unplugged from its mains supply, because the power is supplied all the time to the live side of the wall switch, or in our case, relay contacts. To connect into the lighting circuit, the mains master switch should be switched off - do not just remove the lighting fuse.

The relay contacts are intended to bypass the normal on/ off switch on the wall to the light. They should not be used for two switch circuits normally found in halls/landings where the light can be turned on or off by either switch. There is no easy, safe way of connecting the relay contacts into this type of circuit (see diagram). In such cases another light should be wired up and run independently from the original light (as shown in the diagram). If you are in any doubt, contact a qualified electrician.

In our case, most of the wires were easily located in the loft for the upstairs and the front room was wired through a new cable to a wall socket which was activated by the relay, causing a standard lamp to come on.

Home Minder is mounted on the top shelf of the wardrobe and the wires connected up into the lof and on to the various lighting circuits. Each one was wired inside a covered 5A connector box - this means that there are no live wires exposed or odd pieces of connector block lying around in the lof. The connections that plug into the relay board are female types, so there are never live, unprotected pins. The pins are on the relay board (unpowered side) and even then, they are covered. Safety is vital in all aspects of mains wiring and no short cuts or economies with safety should ever be taken - if in any doubt at all seek expert advice.

When using Home Minder, neighbours and close trusted friends should be informed of its use if you're out or away, as they may call the Police thinking you have squatters - the effect is that real.

A full program listing is available for the running order to see if the program is suitable - even if it is not used in its entirety, at least it shows what is possible. The channels chosen - and their functions - can be changed to suit so long as the program is made accordingly. The music channel in our case switches a battery operated transistor radio tuned to Radio 2. It is not advisable to leave a television set running unattended and 1 would strongly dissuade anyone from doing so, although a mains radio would be OK.

A Test For Speed

From the interconnections diagram it can be seen that Q18 from the 4521 is brought out to a switch, 'Test/Normal'. This function allows the program to be run roughly sixty: times faster than normal. The complete program can be run in this mode to test that everything is OK . It will show up things like all the channels coming on together because one location has not been programmed or if the EPROM is faulty. Although at this speed it still takes nearly half an hour to run a program, running it any faster it is hard to cquate quite what is happening at any particular time. The TestNormal switch can be mounted inside the Home Minder so that it's not accidentally switched during normal use. Once tested and proved OK, the zero button will still need to be pressed at 4 pm because the counter will be out of step after running at

Fig. 2 Relay Driver board circuit

Fig. 3 Component overlay for Main control board
the higher speed. The battery back up power switch can also be mounted inside the box so that it's not accidentally turned off.

Casing The Joints

Because of the physical size of this project, buying a suitable case to mount it in could cost a small fortune, so a home-made box was used instead. This was made out of 10 12 mm MDF (medium density fibreboard). It is a very easy material to work with as it has no grain or knots. Four pieces should be cut as per the drawing, although their exact sizes are not critical so long as they are compatible with each other and everything fits inside, leaving enough room for the wiring.

The front and back panels are made out of 16 swg aluminium sheet cut to size to fit inside the box, indented by 10 mm to give a pleasing effect. They are mounted on a ledge of 12 mm wide MDF - this, as well as forming a ledge front and back for mounting the panels, also adds to the strength of the box. Alt the MDF parts are glued using Evostik W resin glue rather than screws. This saves a lot of work filling over screw heads when finishing off. The front and back aluminium panels are drilled - a suggested front panel layout is given but this is not critical. The switch holes must suit the type of switches used, so only their centres are shown in the layout. Round hole mounted switches are a lot easier than oblong ones, unless you happen to have an oblong drill!

The panels can then be assembled and wired. A small bracket can be made to take the two internal switches ('Battery' and 'Fast/Normal') and should be mounted well away from the relay board so that the live mains on the fuses don't prove a problem if these switches are activated. It must be remembered that both the front and back panel must be earthed, as must the chassis of the mains transformer.

The PCBs are mounted on stand-off pillars. The main control board is screwed onto these pillars to lift the trackside of the board off the base of the case. Check that these screws
are not too long and don't come out through the bottom of the case. The transformer is screwed down - a small piece of MDF can be glued to the base of the box inside to mount the transformer, which will enable longer screws to be used for holding it down.

The relay board is bolted to the rear panel, again on standoff pillars. These should be at least 10 mm long to keep the live connections of the track side of the relay board well away

	Camane 8	Chanmel7		Crammed 6		Cramel6		Crumela		Cramod 3		Cherioul 2		Crimerel 1	
EPROM OUR Anction	D7	D6		DS		04		03		02		01		-	
EPROW PIn	17	16		15		14		13		11		10		9	
Control Output Pin	01	02		03		04		D6		08		D7		D	
Reday meard input din	F8	F7		F6		F6		54		F3		F2		P1	
Reday No .	No Remer	7		-		5		4		3		2		1	
Funetion	Time reet	Not ueod		Munic		Tollot		Lenalins		Bedreom		Front room		Outale	
Output plim		13	14	11	12	-	10	7	B	6	6	3	6	1	2
Derlington	- 14	7	12	6	13	5	14	4	15	3	18	2	17	1	18
LED Monitor	63	G10		∞		${ }_{68}$		07		0		65		G4	

from the rear panel.

The PCBs should have been fully tested before they are mounted - so a final check can be made that the relays and LEDs come on as expected. Before the lighting connections are made, the master mains switch should be turned off. The cables that come in through the back panel should do so through grommets to protect them from the sharp metal edges of the rear panel. As each of the lighting wires is added, it should be clearly marked with a label. A drawing should also be made as to which fuse and relay switch is which. This is helpful in years to come if a fault should occur or modifications are made to the wiring of the house. So often, something that seems obvious at the time seems anything but much later. The unit is then left on for a few hours and tests made to check there is no heat build up. It is now ready to be zeroed

- 3.5 mm FOR m3 mounting bol.t

Fig. 4 Component overlay for Relay board

	$\begin{aligned} & \text { TME } \\ & \text { TEST } \end{aligned}$	$\begin{aligned} & \text { HOT } \\ & \text { USED } \end{aligned}$	Music	TOILET	LANDING	BEDROOM	FRONT ROOM	OUTSIDE LICHT	\square
EPROM FUNCTION	D7	D	D5	D4	03	D2	D2	D0	DATA CODE
CHANMEL	-	7	©	5	4	3	2	1	-
EMARY Mo.	D	c	B	A	D	c	8	A	
	0	0	1	0	0	0	0	1	21
	0	1	0	1.		1	1	1	57
	1	0	0	1.	1	0	1.	0	84
	0	0	0	0	1	0	1	1	08
	0	1	0	0	1	1.	0	0	4 C
	1	0	0	0	1	1	0	1	8D
	0	0	1	1	1	1	1	0	3 E
	0	1	1	0	1	1	1	1	$5 F$

at 4 pm and started using the 'Activate/Deactivate' switch.

Other Ideas

1. By connecting A 10 of the EPROM to Q11 of the counter IC3 and disconnecting the conncetion from Q11 on the
 counter IC3 to the EPROM OE and grounding OE on the EPROM, one fuli 24 hour program can be run which recycles every 1440 minutes or 24 hours. This has been used in a toy shop window display, to switch on and off various electrical toys, including 3 electric trains in every combination. The zero button can be pressed at various times so that different parts of the program are played at different times during the day and evening when people are passing.
2. Another idea put forward but not tried is that the unit is used in fast speed, the Test rather than the Normal is

THE REL AY CONTACTS (VIA THE FUSE AND PLUG AND SOCKET) ARE CONNECTED ACROSS THE WALL SWITCH WIRES BUT DO NOT CONNECT AT THE WALL SWITCM

Fig. 5 Mains ilghting circuits
selected, and a robotic type toy can be programmed to move in time segments, i.e. 4 seconds forward, 2 seconds right, 7 left and so on. Here, the 16 Hz divided by 15 gives slightly longer than one second time intervals, but by removing D4, D5, D6, D7, R7 and grounding pin 1 of $\mathrm{IC} 2, \mathrm{IC} 2$ now divides by 16 . 16 Hz from IC1 pin 10 divided by 16 in IC2 should produce a 1 Hz pulse to the counter, advancing the program one step every second. The relay contacts are then used to switch the motors on the model causing it to follow the program.

By bringing out the major control signals to sockets, any number of options are available. Obviously, for both of these off shoot ideas, the program listing given will not be suitable.

Fig. 5 Board interconnections

WINTER PROGRAM			SUMMER PROGRAM		
TIME	ADDRESS	TEST	ADORESS	$\begin{aligned} & \text { TEST } \\ & \text { TIME } \end{aligned}$	TIME
4 pm	ZERO WINTER AND SUMMER				4pm
4pm	0	04	1024	1028	4 mm
5 pm	60	65	1084	1089	6pm
6pm	120	126	1244	1160	6pm
7pm	180	187	1204	1211	7pmon
8pm	240	248	1264	1272	emm
9pm	300	309	1324	1333	9pm
1.0mm	360	370	1384	1394	10pm
11 pm	420	431	1444	1455	11pm
12pm	480	492	1504	1616	12 pm
18 m	540	641	1564	1585	1 mm
2 mm	600	602	1824	1626	2 m
3am	660	663	1884	1687	3am
4am	720	724	1744	1748	4 am
6 mm	780	785	1804	1809	5 mm
6 cm	840	846	1864	1870	8 mm
7 mm	900	907	1924	1931	7 mm
Eem	960	968	1884	1992	8 cm
9 mm	1020	*	2044	*	9am
9.04	OUTPUT	TURNE	D OFF TILL	AAM	0.04

Important Note

When buying components for this project it must be remembered that this circuit may well be switched on and left on for a very long time, so the components used should be of good quality and not reclaimed from other projects.

The mains transformer and smoothing capacitor should be new and from a reputable source. Some cheap transformers can get extremely hot when left on for any length of time and these should be avoided at all costs. Only use known dealers and suppliers for any of the major items.

The relays used are 12 V coil with contacts that can switch 10 A with a single pole change over contacts from Electromail. If any others are used it will pay to check that they fit the PCB before buying them. Several look the same but closer inspection shows their pin outs differ slightly.

The value of the fuses depends upon the circuit being switched, but 2.5 A slow blow $1-1 / 4 \mathrm{in}$ should be sufficient in most cases. A slow blow type is recommended as there is an initial current surge when a light bulb is illuminated.

I can supply pre-recorded 2716 EPROMs with the sum-
mer and winter programs for $£ 17.50$ including postage and packing, but payment must be with order and in the form of a postal order or cheque made payable to Bob Noyes at the address below. Custom programs can be made, but their cost depends upon complexity, so write giving the listings and I can quote a price. Write to me at 13 Bowfell Close, Tilehurst, Reading, Berks. RG3 6QR.

A list of programming Hex codes for Summer and Winter are available by sending an SAE to the editor at the ETI offices.

PARTS LIST			
RESISTORS		CAPACITORS	
R1	2k2	C1	$82 p$
R2	1 198	C2	10 p
R3	2k7	C3,8,11	$100 \mathrm{\mu} 25 \mathrm{~V}$
R4,8	1 M	C4,6	$2 \mathrm{p} 2 / 25 \mathrm{~V}$
R5, 11, 12,14	4k7	C5,7,9,10	10W $/ 25 \mathrm{~V}$
R6,7,9	10k	C12	4700, 255
R10,13,15	10k		
R16,17,18,19	1k		
R20,21,22,23	1k		

SEMICONDUCTORS

IC1	4521
IC2	4029
IC3	4040
IC4	2716 Pr
IC5	$2803 A$
Q1	BC107
REG1	7805
D1,2,3,8	1N4001
D4,5,6,7,9	
$10,11,12$	
$15,16,17$	
$18,19,20,21$	1N4148
D13,14	1N5401

80.2 in Red LEDs

MISCELLANEOUS

7 PCB straight headers 0.1 in 10 way
7 Housings for above
1 pack of crimps for housings
Mains connector plugs on relay board
7 Horizontal PCB headers - 2 way
7 plugs for above -2 way
7 Fuses 1 1/4in 2.5A slow blow
14 Fuse PCB holders (one each end)
7 Relays I2V DC coil SPCD
122 p min trimmer
1 cystal 4.194304 MHz
118 pin IC holder
196 pin IC holder
124 pin holder
1 Box to suit application
3 Single pole orvoff switches, style to suit
1 Single pole 2 way switches, style to suit
1 Press button N/C contacts, style to suit
$112-0-12 \mathrm{~V} 20 \mathrm{VA}$ transtormer
2 PCB $1 \times$ Main board, $1 \times$ Relay board
41.2V AA rechargeable NJ cad batteries

14 AA battery holder
1 Connecior for above
8 Stand-off pillars to suit, 10 mm long
Enciosed electrical connectors (lighting stye), number to suit Wire, mains plug, cable to suit application Heatsink, see layout. Size unimportant as 7805 does not get hot - used as a precaution-but the larger the better so long as it can be mounted securely.

LOW COST PC SPECIALISTS - ALL EXPANDABLE 8088 XT - PC99
 286 AT - PC286

640k RAM expandable - 2 serial \& 1 parallel with standard SIMMS ports

256k RAM - expandable - Factory burnt-in
to 640 k to 640 k

360k 5-1/4" floppy

2 serial \& 1 parallel ports

 MS-DOS 4.01Optional FITTED extras: 640K RAM £39. 12* CGA colour mbyte MFM hard drive £99.

only£99.00

FLOPPY DISK DRIVES

$51 / 4^{\text {" }}$ from $£ 22.95-31 / 2^{\text {n }}$ from $£ 21.95$!
Massive purchases of standard $5^{1 / 4^{\circ}}$ and 312° drives enables us to present prime product at industry beating low prices! All units and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of
ard size. All are $1 B M-P C$ compatible (if $31 / 2^{2}$ supported) 3.5' Panasonic JU363/4 720K or equivalent
£29.95(B) 3.5" Mitsubishl MF355C-L. 1.4 Meg. Laptops only* $£ 29.95$ (B) 3.5" Mitsubishi MF355C-D. 1.4 Meg . Non laptop $£ 29.95(\mathrm{E}$
5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B

360 K . Absolutely standard fits most computers $£ 22.95$ (B) - Data cable included in price.

Shugart 800/801 SS refurbished \& tested Shugari 851 double sided refurbished \& tested Mitsubish1 M2894-63 double sided switchable hard or soft sectors- BRAND NEW
\$175.00(E)
§275.00(E) ع250.00(E) Dual $8^{\prime \prime}$ drlves with 2 mbyte capacity housed in a smart case
with buit in power supply! Ideal as exterior drivesl $£ 499.00(F)$ End of line purchase scoopl Brand new NEC D2246 8' 85 megabyte of hard disk storagel Full CPU control and industry standard SMD lold ST506 in intace standing In mint coss lime and comes complete with manual. Only...................ミ299(E) THE AMAZING TELEBOX!
Converts your colour monitor into a
QUALITY COLOUR TV!!

The TELEBOX consists of an attractive fully cased main powered unit, containing all electronics ready to plug into a hos MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILPS, TATUNG, AMSTRAD and many more. The composite allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button conlrols on the front panel allow reception of 8 fully tuneable 'off air' UHF
colour television or video channels. TEL EBOX MB conar tele vision or video channels. TELEBOX MB covers vir-
fually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel tor direct connection to most makes of monitor. For comptete compatibility - even for monitiors without sound - an integral 4 watt audic standard.
Telebox ST for composite video input monitors
E32.95
£36.50 Telebox MB as ST but with integral speaker as ST with Muttiband tuner VHF-UHF-Cable. $\$$ hyperband For overseas PAL versions state Telebox RGB for analogue RGB mpecitication ipping code on all Teleboxes is (B) ana

-

\section*{No Break Uninterruptable PSU's} $1085-A H B H$ is 1 kva . Both have sealed lead acid batteries. MUK | are intemal, 5 and 15 minutes respectively. Complete with ful |
| :--- |
| iterrupt are |

ALL PC COMPATIBLE

386 AT - PC386

2 meg RAM expanded by slots
20 Mhz with 32 k cache Expandable to 64 k 40 meg hard disk 1.2 meg 5-1/4" floppy VGA card installed

2 serial \& 1 paralle! ports
MS-DOS 4.01 Co-processor socket Enhanced 102 keyboard Kwik Disk Accelerator
Software - FREE

ony $£ 425.00$

MONITORS

14 Forefront Model MTS-9600 SVGA mulisync with resolution of $1024 \times 768.0 .28$ pitch. "Text' switch for word processing etc. Overscan switch included. Ideal for the PC386 or PC-286 with SVGA card added. Also compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode). Archimedes etc. In good used condition (possible minor screen burns). 90 day guarantee. $15^{\circ} \times 14^{\circ} \times 12^{\circ}$. Only...........E159(E) 14^{-}Philips Model CM8873 VGA multisync with 640×480 resolution. CGA, EGA or
VGA, digital/analog, switch selectable. Sound with volume control. There is also a special "Text" switch for word processing. spreadsheets and the like. Compatible with IBM PC's, Amiga, Atari (excluding the monochrome high resolution mode), BBC, Archimedes etc. Good used condition (possible minor screen bums) 90 day guarantee $15^{\circ} \times 14^{\circ} \times 12^{\circ}$. Only $£ 139(E)$ Philips 9CM073 similar (not identical) to above for EGAVCGA PC and compats. 640×350 resolution. With Text switch with
amber or green screen selection. $14^{\circ} \times 12^{-} \times 13-1 / 2^{\prime} £ 99(E)$
KME $10^{\prime \prime}$ high definition colour.
tight 0.28° dot pitch for superb clarity and
modern styting. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari. Commodore
Amiga, Acorn Archimedes \& BBC. Measures
only $13.5^{\circ} \times 12^{\circ} \times 11^{\circ}$. Also works as quafity TV wnt our HGB Telebox. Good used condition. 90 day guarantee. Onty. E 125 (E)

\qquad
 computer at a parts only price. Used as a front end graphics Brand new Centronic 14 monitor for IBM PC and compatibles
system on large networked systems the architecture of the BBC at a lower than ever pricel Completely CGA equivalent. Hi-res system on large networked systems the architecture of the BBC board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this boasdll I is supplied
complete with a connector panel which brings all the ID to 'D' and BNC type connectors - all you have to do is provide +5 and $\pm 12 \vee D C$. The APM consists of a single PCB with most major c's socketed. The ic's are too numerous to list but include a 6502, RAM and an SAA5050 teletext chip. Three 27128 EPROMS contain the custom operating systern on which we provides diagnostic information on the video output. On board DIP switches and jumpers select the ECONET address and onable the four extra EPROM sockets for user software. Appx.

dirns: main board $13^{\circ} \times 10^{\circ}$. VO board $14^{\circ} \times 3^{\circ}$. Supplied teste

Only 29.95 or $2_{\text {for }}$ \{53 $3_{\text {(8) }}$

SPECIAL INTEREST

Trio 0-18 vdc bench PSU. 30 amps . New
Fujitsu M3041600 LPM band printer
Rhode \& Schwarz SBUF TV test transmitter
$25-1000 \mathrm{mhz}$. Complete with SBTF2 Modulator Calcomp 1036 large drum 3 pen plotter
Thurlby LA 160B logic analyser Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwidth. A super monitor in attractive style moulded case. Full 90 day guarantee. Only
 quality ex-equiment fully tested with High ay guarantee. In an attractive two tone $3^{\circ} \mathrm{W} x \mathrm{~g}^{\circ}$ grey plastic case measuning $15^{\circ} \mathrm{L} \mathrm{x}$ een removed for contractual 69
$20^{\prime \prime}$ '22" and 26" AV SPECIALS
Superbly made UK manufacture. AL solid state colour ive teak style case. Perfect for Schoole \& sound inputs. Attrac EXCELLENT litite used condition with full 90 day guarantee.
 CALL FOR PRICING ON NTSC VERSIONS! Superb Quality 6 foot 40 u 19" Rack Cabinets Massive Reductions Virtually New, Ultra Smart! Less Than Half Price! Top quality 19° rack cabinets made in UK
by Optima Enclosures Lid. Units feature designer, smoked acrylic lockable tront door, full height lockable half louvered back door and removable side panels. Fully ad-
justable internal fixing siruts, ready
punched for amy configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu tion strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by side and therefore require onty two side panels or stand singly. Overall dimensions are $77-1 / 2^{\circ} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as:
ack 1 Compieit with removable sive panels.
ack
ack
Less side panels

READER OFFER
 Needle Files

10 assorted *English made Needle Flles in a variety of useful shapes.

The ideal tools for putting those finishing touches to a wide range of materials.
Telephone orders 044266551 (24 HRS)
"assoned not always as shown on photograph.

Please supply
ROET/29 @ £6.50
I enclose my cheque/P.O. for ε payable to ASP or please debit my

Address.
Access /Visa
\square

Chelmer Valve Company for Audio Valves

Audio valves with famous Brand Names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.
We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.
For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous resting - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVCPREMIUM valves.
A selection of the more popular types is listed here.

Price list \& Order Form for CVC PREMIUM Audio Valves

Valve amplifiers sound better still with CVC PREMIUM valves!

Dan't miss the

 NATIONAL WOODWCikIR
SANDOWN EXHIBITION CENTRE

Come one, come all to the National Woodworker Show!
You'll be amazed at the artistry the craftsmanship - the labour of love represented by the wide range of exhibits on show at Sandown this year. There will be competitions, demonstrations,

EASY TO FIND!

SANDOWN EXHIBITION CENTRE, ESHER SURREY

- Free car parking Easy access - Within easy reach of London Well sign posted for motorists

By car; Sandown is just 15 minutes from the M25 (junction 10) and national motorway network, 35 minutes from central London and 30 minutes from Heathrow or Gatwick.
By rall; British Rail's Esher station from Waterloo is in the immediate vicinity. Trains journey time just 21 minutes - run at least every half hour, more frequently at peak times.
Bus services run regularly from central London and neighbouring towns towns of Guildford and Kingston-upon-Thames. displays by colleges, trade stands and much, much more. Sandown Exhibition Centre is easy to get to - and car parking is free! Come early - stay latel

ADVANCE TICKET DISCOUNT
 Use this coupon to save money when you buy tickets in advance!

standard	Advance Discount	No. of tickets
Entrance	£4.50
E5	£3	-
£3.50	£1.50	

\qquad
\qquad ADDAESS

POST CODE
(A) Argus Specialist Exhibitions (AT), Complete coupon and return to Argel Hempstead, HERTS HP2 7ST Argus House, Boundary Whickets you may order. Speciai rates ion coar. There is no limit to the number Hurny Other closes on Tuesday Isl Sep Cun There is available on request. Hury
avallable orrear

FNAMELLED COPPFR WIHt	
All 202	eols
14 SWG	c0.63
16 SWG	50.47
18 SWG	c0. 67
20 SWG	c0.72
22 SWG	${ }^{2} 0.76$
24 SWG	¢0.80
26 SWG	c0. 89
${ }^{28}$ SWG	c0. 21
30SWG	c0.93
32 SWG	${ }^{2} 0.93$
$34.5 W \mathrm{G}$	¢0.99
36 SWG	c1.04
38 SwG	0.10
40 SWG	$\mathrm{Cl2}^{22}$

OPTO DEVICES 5 mm Red LED 5 mm Green LED 5 mm Yellow LED 5 mm Orange LED 3 mm Red LED 3 mm Green LED 3 mm Yellow LED 3 mm Orange LED Smm Flishhing Green 5 mm BiCO 5 mm Tri Colour 5 mm Plestic Bozel 3 mm Prasic Bezei 0.3^{-7} Segment Display Red common anode	

${ }^{9} 9 \mathrm{P}$ in

5 Pin
9 Way $\begin{array}{lll}\text { C4-25 } & \text { £2.97 } & \text { BR32.3A 200V } \\ 28-20 & £ 3.15 & \text { BR62 } 8 \mathrm{~A} 200 \mathrm{~V} \\ 128-20 & £ 3.31 & 100410 \mathrm{~A} 400 \mathrm{~V}\end{array}$

PLASTIC OEVELOPING TRA PHOTO RESISTAEROSOL SPRAY (100 ml) FERRIC CHLORIOE CAYSTALS (O.SKg) ETCH RESIST PEN
ENT
STAIPBOARDO1 PITCH \quad EREADBOARD

E67.38
61.36
f3.
ع2.46
62.46

50.72
c1.84
$100 \mathrm{~mm}=180 \mathrm{~mm}$
$110 \mathrm{~mm} \times 160 \mathrm{~mm}$
$110 \mathrm{~mm} \approx 220 \mathrm{~mm}$

HOTO AESIST BOARD

$c 0.86$
17.62
82.09
82.41

CAPACITORS Ceramic Mini Disc $100 \& 63 \mathrm{~V}$
 10 DF to 100 nF $10 \mathrm{FF}, 1 \mathrm{nF}$ Co.

DCON

9 Pin 5 Pin 6 Pin HO

23 Wey plastic cover

WOOS 1 5A 50V
WO2 1.5A 200V

(Paper)

SWITCHE
3amp 250 V .4 mm mo
SPST Toggie
C0.12

SPDT Toggle
SPDT COTOM
DPDT Togole
DPDT CO TO
DPDT CO Toggle
DPOT CO Togole
(DBEsed)
(biased 1 wor)
DPDT mini sil

Rotary Water $1 \mathrm{P} .12 \mathrm{~W}, 2 \mathrm{P} .6 \mathrm{~W}$
$3 \mathrm{P} .4 \mathrm{~W}, 4 \mathrm{P} .3 \mathrm{~W}$
60.67
f1. 24
c1.58
ع. 63

Key Switeh
Push to mak
Push to breal
Lich
Balching Push S
${ }^{\circ} \mathrm{CB}$ Tact $6 \times 6 \mathrm{~m}$ \qquad
\qquad
ounting
\qquad
C0. 68
80.60

co. 68 60.60

$c 0.78$
$c 2.70$
$c 0.25$
$c 0.28$
60.83
0.25

80/100 co. 80/1
0.25W 5\% CFE12 SAT IMO 25 mm c1.72/100
dis 0.25 m
0.5W 5% CF E E12 Series
$0.26 \mathrm{~W} 1 \%$ MF E24 Series
POTS Log or Lin 470 R Cl
cl
dis
0 $c 0.20$
$c 0.38$
$c 0.64$
61.39 PRESETS
RESEIS Enclosed Horr
or Vart $100 \mathrm{R}-1 \mathrm{MO} 0.15 \mathrm{~W}$

COMPUTER ACCESSORIES
$\begin{array}{l}\text { CLEASE STATE VA } \\ \text { Parallel Printer Lead } 2 \mathrm{~m} \\ \text { RS232 Lead (al pina) Male - Male } \\ \text { AS232 }\end{array}$

AS232 Lead (sill pint) Fommie - Male
Centronicg 38 Wor tesd Mare - Maio
Gender Changers
9 Way DMini Femsie to Femal
25 Why O Mini Maiems io Malo to Female
25 Way O Mini Male to Male
9 Way O Fomale to Fo
25 Whar D Foenale 10 Female
25 Way D Maie to Male
25 Way D
Adeptore
9 Way
9 Why Mate to 25 Woy Femate
25 Way Male 109 Way Femaie
25 Way Male 109 Way Femaie
25 Way O Male to 36 Wor Centronic
25 Way O Male to 36 Wor Centronic
25 Way Null Modom Mole of Fomale
25 Way Null Modem Maie to Male
RS232 Surge Protector Mate. Famsie
AS232 Jumper Bos Msie to Fonsie
RS232 Tester (7 LEDs) Male - Female
AS232 Jumper Boa Mato to Fomaie
RS232 Tester (7 (LD Ds) Male - Fimale
Data Switch Boxes
Serral Swrith box -2 Wivy A/B
Serial Switeh box -3 Wav $A B / C$
Serial Switch box - 3 Way $A / B / C$
Serial Switch bor - 4 Woy $/ B / C / D$
Serial Swrich box -
Seriat Swith box -
Senial Wwitch box - Cross over
Paratiol tox -2 Way A / B
Parall box
$\begin{array}{ll}\text { Paralial box } & -2 \text { Way A/B } \\ \text { Parallel box } & -3 \text { Why NB/Cl } \\ \text { Parallei box } & -4 \text { Way }\end{array}$ Paraikel box -Cross over
Disks - 35^{-1} OSDO Diks Pack
35° OSDO

35 OSDO Disks Pack of 10
3. 5° DSDD OIsks Pack of 50
3. $5^{\prime \prime}$ DSHD Disks Pack 100

ORDERING INFORMATION

All prices exclude VAT.
 Please add $£ 1.25$ carriage to all orders and VAT (17.5\%).

 No minimum order charge.Please send payment with your order. PO/Cheques made payable to
ESR Electronic Components VBI ESR Electronic Component Zoner Diodes 2 V 7

V7-33V
£0.08
50.14
E0.
88
8.8
N
N
N

COMPUTER ACCESSORIES		DIODES	
Parallel Printer Lead 2 m RS232 Lead (all pins) Male - Male RS232 Lead (all pina) Fomaie - Maie Centronicg 38 Woy Lead Mabe - Malio Gender Changers 9 Way 0 Mini Fernaie to Femsle 9 Why O Mint Male to Malo 25 Why D Mini Female to Formale 25 Way O Mini Male to Male 9 Way 0 Fomsle to Femaie 8 Wry D Male to Mole 25 Woy D Female to formale 25 Way D Maie to Male Aduptors 9 Wey Mate to 25 Woy Female 25 Way Male 109 Way Fomaie 25 Way O Male to 36 Wor Centronic 25 Way Null Modem Fonale - Femele 25 Woy Null Modem Mate to Female 25 Way Null Modam Maie to Male RS232 Surge Protector Male. Famale RS 232 Jumper Bon Male to Fernaie RS232 Tester (7 LEDs) Male - Femalo Data Switch Boxea Serial Switch box-2 Wby A/B Serial Swith box - 3 Way A/B/C Serial Swich bos - 4 Wor A/B/C/D Serial Switch box - Cross over Paraliel box - 2 Way AB Parallel box Paralleibox - 3 Woy NB/CI - 4 Way NB/C/D Paraliel box - Cross over Diske $-35^{\prime \prime}$ OSDD Disks Pack of 10 35° DSDD Oisks Pack of 50 3.5° DSHD Disks Pack of 10 3. ${ }^{\text {" }}$ OSHD Disks Peck of 50 3.5^{*} - 80 Drsk Storage Bor $3.5^{\prime \prime} \times 100$ Disk Storage Box	C5.	Zener Diodes 2V7-33V	
	C3.99	BZY88400m	¢0.08
	E4.78	8ZX85 1.3W	0.1
		9N4001	c0.06
	81.87	1N4002	80.07
	C1. 9.48	1N4003	c0.07
	2.2.48	1 N 4004	c0.07
	¢2.33	1 N 4005	c0.07
	¢2.48	1 N 4006	¢0.08
	C2.7	7N4007	c0.08
	,	1N5400	C0.09
	c2. 33	1N5409	c0.09
	¢2.78	1N5402	C0.09
	C3 88	TN5404	c0.11
	¢ 53.02	1 N5406	c0.11
	E3.02	1N5407	20.14
	${ }^{68.32}$	1N5408	$\underline{0.15}$
		1N914	c0.06
		1 N916	c0.08
	¢9. 20	IN4148	¢0.05
	C13.16	BY133	¢0. 13
	C76.15		
	11989	OA47	c0. 28
	c1184	OA90	C0,07
	617.11	OA91	¢0.10
	818.43	OA202	¢0.27
	E20.32	BA957	ca, 10
	C1795	BA158	c0.10
	f6.46	8A159	c0.10
	E4.28	1N4149	0.06
	¢5.45	OA200	c0. 10
ORDERING INFORNATION			
All prices exclude VAT. Please add $\mathbf{£ 1 . 2 5}$ carriage to all orders and VAT (17.5\%). No minimum order charge. Please send payment with your order.			
PO/Cheques made payable to			
ESR Electron	omp	nents	
Access \& Visa cards accepted			
orders from schools \& colleges we			

TELEPHONE ORDERS may be made on

 ELECTRONICS TODAY INTERNATIONAL Dctober

 \section*{PCB

 \section*{PCB Service}

 Service}}

Price	Price
code	(inc.
	VAT)
C	$£ 1.80$
D	$£ 2.50$
E	$£ 3.25$
F	$£ 4.00$
G	$£ 4.75$
H	$£ 5.50$
J	$£ 6.62$
K	$£ 7.20$
L	$£ 8.80$
M	$£ 10.60$
N	$£ 13.10$
O	$£ 15.80$
P	$£ 17.90$
Q	$£ 21.80$
R	$£ 23.90$
S	$£ 25.90$
T	$£ 29.00$
\mathbf{U}	$£ 32.20$
V	$£ 35.80$
W	$£ 3.90$
X	$£ 40.70$

E93010-1 Hot Wire Cutter F
E93010-2 Electronic Picture H
E93010-3 Sega Box J
E93010-4 Transister Amp (2 Boards) N
E93010-5 Home Minder (2 Boards) N
E93010-FC Continuity Tester D
${ }^{\circ} \mathrm{CBs}$ for the remaining projects are available from the companies listed in Buylines.Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the boardbut also tells you when the project was published. The first two numbers are the year, the next two are the month.Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required.Such orders will not be processed until payment is received.

E9207-1	Improved Rear Bike Lamp
E9207-2	Mini Baby Bug Monitor
E9207-3	Ultrasonic Audio Sender (2 boards)
E9207-4	Camera Add-on unit (4 boards)
E9207-5	AutoMate $5 \mathrm{~V} / 48 \mathrm{~V}$ Mixer power supply
E9207-6	AutoMate Precision 17V power supply
E9207-FC	Surround Sound Decoder
E9208-1	Dynamic Noise Limiter
E9208-2	Touch Controlled Intercom (2 boards)
E9208-3	MIDI Keyboard
E9208-FC	Battery charger .
E9209-1	Intercom for light aircraft
E9209-2	Alarm protector
E9209-3	Temperature controller
E9209-FC	45W Hybrid power amp
E9210-1	Universal I/O Interface for PC (2 Sided)
E2910-2	Rapid Fuse Checker

E9210-3 Heartbea/Audio Listener E
E9210-FC Wizards Hat
E9211-1 Electronic Die E
E9211-FC Car Alarm
F
E9212-1 Digital Circuit Tester F
E9212-2 Communications Link by RS232 L
E9212-FC Mains Inverter E
E9301-2 FadingFestoonery G
E9301-FC InfraRed Receiver F
E9302-1 EPROM Programmer (2 Sided) N
E9302-2 Sound to MIDI Board L
E9302-3 Puddle Tec E
E9302-4 DiscoAmiga Light Selector H
E9302-FC Infra Red Transmitter
E9303-1 Ni-Cd Battery Charger E
E9303-2 IC Tester.
E
E
E9303-3 Disco Amiga (motordriver board) H
E9303-4 Direct Conversion Reciever (2 Sided) N
E9303-FC LEDStoboscope F
E9304-1 Solo Mic Pre-Amplifier F
E9304-2 Multimate Tester C
E9304-3 The Keepsafe Alarm F
E9304-4 Proving Unit E
E9304-5 Infra Guide Receiver Module C
E9304-6 Infra Guide TransmitterF
E9304-FC (AutoMate)Peak Program Meter F
E9305-1 Pentacode Main Board F
E9305-2 Pentacode Relay Board F
E9305-4 Vibration Detector D
E9305-FC The Fuzztone E
E9306-1 Graphic Equaliser F
E9306-2 SuperSpooker. H
E9306-3 Middle \& Side Stereo Coding D
E9306-FC The Chaperon F
E9307-1 Car Battery Tc F
99307-2 Mind Trainer
F
F
E9308-1 Window Monitor (4 Boards) K
E9308-2 Altemative 12V Supply M
E9308-3 Single Channel Lumitec
E9308-4 Four Channel Lumitec H
E9308-FC Twi-lightZone F
E9309-1 RF Signal Generator F
E9309-2 MIDI Analyser CPU Board
E9309-3 MIDI Analyser Display Board G

PCB Foils
The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer for the creation of a foil.

Hot Wire Cutter

Transistor Amplifier Power Supply

Electronic Picture

$\pm T$

ch James Gale 044266551

Send your requirements to：
EnClassified Department，ASP，Argus House，
Boundary Way，Hemel Hempstead，HP2 7ST
Lineage：60p per word（＋VAT）（minimum 15 words） Semi display：（minimum 2.5 cms ） $\mathbf{8 8 . 0 0}$＋VAT per singie column centimetre Per Electromart $£ 24.00$（＋VAT）
Ring for information on series bookings／discounts．
All advertisements in this section must be prepaid．
Advertisements are accepted sublect to the terms and conditions printed on the advertisement rate card（available on request）．

FOR SALE

$\overline{A G E}$	＂BOFFINS SPECIAL＂ UNIOUE OFFEA	
	为	
ma		
max	 quatir camomenn Regat o Cirius Avicen	
	込	
TOP RNUGE Of XEIIOM RLSESTUEES		
	 SOLO STATE RELAY	
（eme		
	Thation van	
	and	
\％	易	
	Sumple STV Pouvosil	
	WASHING MACHINE WATER PUMP Brand new 240 V AC．fan cooled Can be used for a variecty of	
SERVICE TRADING CO 57 BRIDGMAN ROAD．CHISWick．London WA 5 BB 		

III ON OFFER THIS MONTH IIII			
And Super Led Smm		Cr	
IP Receiver		Earphone	65p
$0.14 \mathrm{~F} \times$ ratic		Neon Bulb	
0.1 Pory		250AC	15p
33 F 1er PAD		BD332 PNP Oe	
47UF 3Sy RAO	100	8C639 100V 1／	
4．7uF 18v rad		LM337 VREG	
22 fr Non Pod	309	LM7924 VREG	
25Ouf 100 ReO		2718 Eprom	
2700 pt NTOL		2732 Eprom	E1 65
Contuct Civenar		Contact	
Aur－On	1.125	Restorer	51.25
2pl－20pf		2pfilopl Trim	
		Tilt Switch	
$4 \mathrm{4JF} 380 \mathrm{OC}$		4Way Till SW	$\underline{295}$
$74 \mathrm{HC75}$		5 Watt 300 OHM	
Cratei 4 Sunt		200 u 300 V DC	850
STAIP OF ASSOATEO COMPONENTS IM LENGTH £1．			
WIDE RANGE OF ELECTRONIC COMPONENTS ALWAYS IN STOCK RING fOR OETAILS －FM TRANSMITTERS ALSO IN STOCK ．			
ELEY ELECTRONIC LTD 100－104 BEATRICE ROAD，LEICESTER， LE3 OFF TEL： 0533 S1594 PAYBY：－VESA／ACCESS OPEN 10－6 MON－SAT			

PC TECHNICAL SHAREWARE

> FOR ALL DETAILS OF RATES TELEPHONE JAMES GALE 044266551

BREWER ELECTRONICS

BRYNAWELON，CROESLAN，LLANDYSUL，DYFED，WALES．SA44 5SH． TELEPHONE：－ 0239851669 WRITE OR PHONE FOR FREE CATALOGUE
A smal selection from our catalogue of full spec．branded products：

 GOODS BY RETURN SUBJECT TO AVAILABILTY

WANTED

SURPLUS COMPONENTS WANTED

* COMPLETE CLEARANCE
* BEST PRICES PAID
\& PCB BOARDS POPULATED

CONTACT

D.T.S. SERVICES

Tel: (0602) 208955
or Fax: (0602) 484530

TUAN YOUR SURPLUS TAANSISTORS, ICS ETC INTO CASH

 immediate settlement. We also welcome the opportunity to quota for complete factory clearance. Contact:COLES-HARDING \& CO.
Sandall Road, Wisbech, Cambs PE13 2PS BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax: 0945475216

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap. Boxes, PCB's, Plugs and Sockets, Computers, Computer Scrap, Edge Connectors.

TOP PRICES PAID FOR ALL TYPES OF ELECTRONIC EQUIPMENT.

A.R. Sinclair Electronics, Stockholders, 2 Normans Lane, Rabley Heath, Welwyn, Herts AL6 9TQ. Telephone: 0438812193. Mobile: 0860 214302. Fax: 0438812387

PLANS

KITS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

WIND POWEA, DESCRIPTIVE GUIDE including list of manufacturers and equipment. Pus descriptive price list of 25 plans, wind, solar, water, petro! and welding generators. Inverters, and weiding, genera and guldes only
controllers, books contro
JEMMETT ENGINEERING, 8 Hallam
Gardens, Pinner, Mlddlesex HA5 4PA.

NEW VHF MICROTRANSMITTER KIT tuneable $70-115 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY $£ 5.95$ assembled and ready to use £9.95 inclusive P\&P. 3 Watt FM transmitter kit £15.95 Credit card orders telephone 0214863092 Cheques/PO's to: Quantek Electronics, (DEPT ETI) 3 Houldey Rd, Birmingham, B31 3HL. Send 2×1 st Class stamps for detalls of these and other kits.

COURSES

Start training now for the following courses. Send for our brochure without obligation or Telephone us on 0626779398

ETI 10/93

Name	Telecomms Tech C\&G 271 Radio Amateur Licence C\&G
Micro- processor Introduction to Television	
Radio \& Telecommunications Correspondence School 12 Moor View Drive, Telgnmouth, Devon TQ14 9UN	

ELECTROMART

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 05123609820512360154
47 Whitechapel
Tel: 0512365489 Liverpool 2
THE ELECTRONICS SPECIALISTS Open: Tues-Sat 9.30-5.30

FOR SALE

"ELECTRO COMP"

WE CLEAR Electronic Components - Semiconductors Computer Equipment • Electronic Test Equipment Populated Boards
In fact anything with an electronic bias
JOB LOTS, FACTORY CLEARANCE A SPECIALITY
Decision normally within $24-36$ hours
LOOKING FOR COMPONENTS!! As an ex Industrial buyer for 25 years I wor't sell you reiect or fauthy productll Only top quality componenens at the ight price!! No Mail Order only production quantities!!
SNAGS only one. My terms are C.O.D. Deliveries normally made within 48 hours
Phone or Fax your list or enquiry to: 063546496
ELECTRO COMP 36 Talbot Close, Newbury, Berks RG13 IUA

12. copies of your magazine kept in pristine condition in these classic, sfurdy binders

ETIELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST
Rates: Lineage 55 p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name

Address

Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square Expiry Date
FOR SALE \square COMPONENTS \square PLANS \square OTHERS STATE

EDITORIAL
Editor Paul Freeman
Sub Editor Jim Bluck
CREATIVE
Art Editor Peter Kirby
Designer Iain Houston Technical Illustration John Puczynski Photography Manny Cefai

ADVERTISEMENT SALES
Display Sales
Tony Hill
Advertisement Copy Control
Marie Quilter
Classified Sales
James Gale
MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ISSN
0142.7229

ETI is normally published on the first friday in the month preceding the cover date. The contents of this pubtication including all articles. plans, drawings and programs and all copyright and all other miellectual property nights therein belong to Argus Specialist Publications All fights conterred by the Law of Copyright and other inteliectual property nights and by virtue of international copynight conventions are spectically reserved to Argus Specialist Publications international copynght conventions are specrically reserved to Argus Speaaist Pubicaicns and reproduction requires the pror witten consent of the company e1990 Argus Soeciatst
Publications. All reasonable care is taken in the preparation of the magazine contents. but the Publications. All reasonable care is taken in the preparation of the magazine contents. but the
publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction Will normally be published as soon as possible atherwards. All prices and data contamed in the advertisers nor the pubishers can be held responsible, however, for any variations affecting price or availabitity which may ocour after the publication has closed for press.

- Subscription rates...UK E23.40 Europe E99.50 Sterling Overseas $£ 31.00$ US Dollars Overseas $\$ 5600$

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemei Hempstead HP2 7ST. Telephone (0442) 66551. UK newstrade distribution by SM Distibution Lid. 6 Leigham Court Road. London SW16 2PG. Telephone 081 - 667 8111. Overseas and nonnewstrade sales by Magazine Sales Deparment, Argus House, Boundary Way, Memel newstrade saies by Magazine Sales Deparment, Argus House, Boundary Way, Mernel Hempstead, HP2 7ST. Teiephone (0442) 60551. Subscriptions oy Argus Subscription Services, Owl Wordwide Publications, 4314 West 238 th Street. Torrance, CA90505 USA. For Visa/ Owl Wordwide Pubications, 4314 West 238 th Street. Torrance, CA9050S USA. For Visa/
Mastercard orders in USA . Telephone (310) 3756258 Fax (310) 375 0548. Pacific Tme: 9am$9 p m$ Weekdays. $10 a m-6 p m$ Weekends. Typeselting and origination by Ebony, Liskeard. Comwall. Primed by Winshire Lid. Binstol.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fax (0442) 66998

Ever wondered how to find those stray radio frequencies that seem to lurk around in your amplifier and cause small amounts of noise and distortion? OK, so the ETI RF Hound, featured next month, can sniff out where those mysterious little oscillations are coming from.

For any of you worried about car theft, we have another car alarm to tax the mind of the burglar. We also have a MIDI program change pedal for our music fans and a fast charger for your batteries if you are one of those people that have not got all day to wait.

All this, plus a feature article on computer interfacing for the PC, are the regular features you have come to expect from ETI.

The November edition of ETI is available from your newsagents on 1st October.

The above articles are in preparation but circumstances may prevent publication

LastMonth

ur August issue featured:

Flashing Beacon for R/C models
4 Range Capacitance Meter RF Signal Generator
Tech Tips
MIDI Analyser
AutoMate
Metronome Digital Television News

Back issues can be obtained from Argus Subscription Services. Address in column to left.

ADVERTISERS' INDEX

BK ELECTRONICS 15	
BONEX-m................... 46	LABCENTER 11
CIRKITa............................ 43	MAPLIN ELECTRONICSOBC
CHELMER VALVE Co. 57	NUMBER ONE SYSTEMSIBC
CP TECHNOLOGY 7	OMNI ELECTRONICS ..
SPLAY ELECTRONICS 30	PICO TECHNOLOGY
ELECTROVALUE	RN ELECTRONICS .-................. 16
	SAJE ELECTRONICS
HALCYON ELECTRONICS - ... 46	SEETRAX
HESING TECHNOLOGY 7	
HENRYS AUDIO 9	STEWARTS OF READ
J\&N BULL-	TSIEN (UK) Lto
ay TEE ELECTRONICS 43	WILMSLOW AUDIO

EASY-PC, SCHEMATIC and PCB CAD

 Over 17,000 Installations in 70 Countries World-wide!

Runs on:- PC/XT/AT/ 286/ 386/ 486 with Hercules, CGA, EGA or VGA display and many DOS emulations

- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill. - Tech Support - free.
- Superbly easy to use.

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library $£ 38$, Gerber Import facility $£ 98$.

Electronic Designs Right First Time?

Ask for our fully functional Integrated Dem̈o

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC: Low cost, entry level PCB and Schematic CAD.	$\$ 195.00$	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.	$\$ 375.00$	$£ 195.00$
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity.	$\$ 195.00$	$£ 98.00$
PULSAR Professional: Digital Circuit Simulator ~ $~$ 50,000 gate capacity.		

For full information, Write, Phone or Fax:-

> - TECHNICAL SUPPORT FREE FOR LIFE! Number One Systems Lta. - PROGRAMS NOT COPY PROTECTED
REF: ETI, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR. Telephone: 0480461778 (7 lines) Fax: 0480494042
International: +44-480-461778, Fax:+44-480-494042 ACCESS, AMEX, MASTERCARD, VISA WeIcome.

Over 700 colour packed pages with hundreds of brand New Products at Super Low Prices, on sale now, only £2.95. Available from all branches of WHSMITH, selected branches of

[^0]: Open: Monday-Thursday 9.15-6.00
 Friday 9.15-5.00 Saturday 9.30-5.00

[^1]: NOTE: ETTHER METAL ROD OR STRIPS CAN BE USED FOR THE TOUCH PADS

[^2]: VM TEL: 0954-211716 FAX: 0954-211880
 Phone or FAX for sales, ordering intormation, dita sheets, technical support, All prices exclusive of VAT.

