MIDI ANALYSER
Making sense of those control signals

Use our cover PCB to construct a

4 RANGE CAPACITANCE METER

RF SIGNAL GENERATOR
TECH TIPS
DIGITAL COMPRESSION
FOR TV

METRONOME
A Musical Time-check
At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages...

...call now for details.

Board Capture
Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

Board Maker
BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 +
- Full netlist support - BoardCapture, OrCad, Schema, Tango, CadStar and others
- Full Design Rule Checking
 - both mechanical and electrical
 - Top down modification from the schematic
 - Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

Board Router
Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
- Penplotters - HP, Graphtec & Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information
or a free evaluation kit:
Tsien (UK) Limited
Cambridge Research Labs
181A Huntingdon Road
Cambridge CB3 0DJ
Phone: (0223) 277 777
Fax: (0223) 277 747
Features & Projects

Flashing Beacon for radio controlled models 12
A Craig Talbot provides another 'bolt-on' for your mini mobiles.

4 Range Capacitance Meter .. 18
Robert Penfold begins a new series on small but invaluable pieces of Test-Gear.

RF Signal Generator .. 22
A constructional project by Raymond Haigh.

Tech Tips ... 28
More of your favorite circuit ideas.

MIDI Analyser .. 32
Tom Scarff provides a clue to what MIDI signal is going where, when and how in this project.

Automate ... 39
Mike Meechan gets to grips with Mixdown, Overdubbing and Subgrouping in this part of the mixer series.

Metronome ... 47
Keeping time is an essential part of playing music. The electronic timepiece shown here, constructed by Will Chester could be an inexpensive way to achieve perfect timing.

Digital Television News .. 52
More on the latest ideas regarding Digital compression from Jim Slater.

Contents

Regulars

Open Channel ... 4
News .. 5
News Stateside ... 9
Read/Write .. 16
PCB Service .. 60
PCB Foils .. 61

Editorial

by Paul Freeman

The internal combustion engine in the motor car is a very conservative beast. The basic workings of this source of 20th century mobility has not changed since its very early development. True, there has been mechanical refinements to improve performance but the electrical ignition system remains the same as it ever was. There are still only very few cars with electronic ignition.

What will prove to be an interesting area of research in the US is in 'plasma conduction' for fuel ignition. In, what appears to be a long period of development, the team has developed a system whereby high frequency electromagnetic fields surround the vapour/air mixture to keep the fuel burning longer and hence reduce harmful emissions by 90%! This longer burning time also leads to better fuel efficiency aswell.

I seem to recall Nikola Tesla, that genius of an inventor, having similar interests many years ago. I suspect a consciousness to preserving our environment and our health was not paramount in his mind at the time.

Whatever the benefits it may bring to the environment and the car industry it still does not change the fact that this is another example of steady developmental design, to a tried and tested product, not an example of an inspirational, radical new approach to the concept of powered transportation.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from the negligence of our staff. Reliance placed upon the contents of this magazine is at readers own risk.
here's a newish term being bandied about excitedly among the computer networking fraternity - asynchronous transfer mode (ATM). It's not actually a new term in its own right - it's been used for a while by telephone operators as the basis for future generations of public telephone network services. These networks will use broadband transmission throughout the medium - from a caller's 'phone to the recipient's 'phone - and as such will ensure that signals as diverse as television pictures and data as well as voice can be communicated between users.

But computer engineers are nothing if not smart and they can see a use for it within the office, as well as outside it. Computers need to communicate with each other in a small environment as much as they do within the larger world environment and local area networks (LANs) have done this job relatively well to date. Where a synchronous transfer mode will aid in-office data communications however, is in the speed of signal transmission and hence the amount of data which can be shifted between computers.

Current local area networks work by shifting packets of data around a wired network between computers. Occasionally these packets get delayed if the network is busy, so presentation of the complete data transmission between users is delayed.

With simple on-screen textual data or application-movement over a network, a delay of a few seconds or so isn't a problem, but computer use is changing rapidly. The days of simple textual networking are numbered and users are going to need to be able to shift large quantities of data more rapidly and with a much smaller time delay. Multimedia applications and presentations, in particular, demand high-speed and instant communications.

Current local area networks typically use data packets which can vary in the amount of data they contain. This means that packets may move at different speeds between users, depending on packet size. In effect, it's possible for packets to arrive at their recipient in a different order to that in which they were sent. Packet header information is used to number the packets as they are transmitted and to reorder the packets if needs be when they are received. Connections between users are never permanent, so each packet header also has to contain information about where it comes from and where it's going. All information is put into the packet header by the sender and decoded by the recipient. This encoding, decoding and re-ordering, of course, takes time.

Asynchronous transfer mode networks, on the other hand, have fixed sized packets (actually called cells). Only the first few cells contain information about who has sent them and where they're going to, to set up the communication link. Thereafter the link is maintained by intelligent routing systems within the network itself. To all intents and purposes the connection is thereafter a direct one between the users. Following initial connection, contents of cells are devoted purely to shifting data between sender and recipient. In effect, asynchronous transfer mode works on the premise that cells are switched through to users in a virtual connection, whereas most existing local area networks route each and every of their packets through a network. Switching naturally gives a faster throughput of data.

Networks built using asynchronous transfer mode principles are expected to be able to shift gigabytes of information between computers each second. Compare this with the (only?) megabytes per second date rates of existing local area networks and you see the reason why the excitement.

One report recently has predicted that asynchronous transfer mode networks will grow to a market of some $1.17 billion by 1997. Already networks are appearing, although it's still early days and they tend to be very expensive. Integrated circuits capable of doing the job are in short supply and larger chip companies haven't yet reached silicon stage with proposed devices. Once they do prices will fall and some standardisation of networks can be expected.

Higher and Higher

The high-definition television (HDTV) debate took a new twist recently with an alliance being formed in the US of an between rival system producers. While the alliance is new and probably still quite shaky it does represent a significant advance on previous dogfights to promote what each system maker naturally thinks is the best system. Now the idea is to compromise and present the final system as being the best of the bunch. Once the final high-definition television system is found manufacturers can then get on with the business of building the receivers and selling them.

This is bound to have repercussions in Europe's quest to do the same. Currently we are in the midst of our own dogfight to produce a system which should be every bit as innovative as theirs. Whatever, we've been arguing as long as the Yanks have (six years or so) and it's about time we got to our own conclusion. Now that an American high-definition television system is close to being defined (digital, as it happens) maybe we could get our act together, too. However, as history will probably record it, maybe not.

Hot Air

There's some evidence that the new cellular telephone standard causes interference, picked up by several types of electrical and electronic appliances such as hearing aids, automobile airbags and anti-lock braking systems. While no-one says the problem is severe, most do acknowledge there is nevertheless, a problem. No solace, perhaps, for the user who receives a call on his car mobile cellular 'phone and finds himself without brakes, or pinned to the seat by his on-board airbag.

Keith Brindley
P enfriend, the first business software package developed for the Amstrad PenPad has been announced by C-Star Software, just 3 weeks after supplies of the PenPad went into distribution.

Penfriend is a flexible data capture application, which allows multi-page forms to be designed and created on a PC, before being transferred to the PenPad. Penfriend makes full use of the handwriting recognition technology incorporated in the PenPad. Aimed at the business community, or any organisation involved in information collection, data collected uses Penfriend on Amstrad's PDA can be uploaded back to a PC and then imported into databases or spreadsheets.

A form template created on a PC can be ported onto a PCMCIA card for use in a PenPad wherever data capture is required. Forms can contain a number of different data types, including text, numeric, date, time, multi-choice, touch buttons and even electronic ink for capturing signatures or diagrams if necessary.

ITC ISSUES DISCUSSION DOCUMENT ON DIGITAL TV POLICY

The ITC has issued a discussion document for public comment on how they should go about implementing earth based digital television services.

The document summarises the technical background relating to digital television broadcasting, whether delivered by satellite or terrestrially, and provides options for the introduction of digital TV terrestrially. The major benefit of digital terrestrial television is seen to be its ability to provide a substantial improvement in spectrum efficiency in the long term, providing existing PAL transmissions are stopped. A variety of ways an orderly transition to an all-digital future in broadcasting is considered. These include a simulcast model, whereby digital capacity might be set aside for existing broadcasters to deliver a version of their services in digital form, and a new services model, whereby all new digital capacity would be made available for the provision of new services. The discussion document favours a third option, a combination of simulcast and new services, coupled with a national policy decision to discontinue existing PAL transmissions with a notice period of at least 10 years.

The ITC believes it is important for there to be an informed policy debate now, in advance of digital broadcasting systems arriving in the market place. The discussion document is intended to stimulate this debate. Comments are to be made to the ITC by the end of September. The ITC has issued a discussion document for public comment on how they should go about implementing earth based digital television services.

LOW COST FLOPPY DISKS

New from MAPLIN Electronics is the comprehensive range of high quality floppy disks from Maxell. Covering 5¼ and 3½ in. sizes, available as double-sided, double-density high-density formats. Also available, the 3 in. 'CF2' type floppy disk, as used in the Armstrad PCW and CFM range of computers. Supplied singly or in boxes of ten.

Also new from MAPLIN, a range of low cost, quality floppy disks in 5¼ in. and 3½ in. size, available as double-sided, double-density and also high density formats. Supplied in quantities of 10 complete with envelopes and labels.

Typical prices:

- 5¼ in. DSDD £4.45 (incl VAT) code: BZ89W
- 3½ in. DSHD £7.00 (incl VAT) code: BZ90X
- 5¼ in. DSDD £2.95 (incl VAT) code: CK09K
- 5¼ in. DSDH £5.00 (incl VAT) code: BZ88V

See Computer section in the new MAPLIN catalogue for full details.

ETI SEPTEMBER 1993
Technology. Using the smart card, card interface provides a secure service. SmartCrypt's dual smart-based methods of charging and a delayed timebase which allows independent setting of A and B sweep triggering.

The 'scope provides a maximum vertical sensitivity of 1mV per division with sweep speeds of 20ns to 0.55 per division on the A sweep and 20ns to 50ms per division on sweep B. Both A and B sweeps can be magnified independently.

The delayed timebase function includes trigger after delay and modes and a trigger count function, allowing the user to select delay times as a count (up to 999) with respect to the main sweep which is video waveforms. The field signal can be triggered on the main sweep to give a stable display of any expanded portion of the line signal.

Other features include: individual A and B intensity controls and A and B trace separation. The CG 6030 is supplied with probes and costs £1699.00 + VAT. For further information please contact Tony Starling Trio-Kenwood UK Ltd

Smart Cards for Pay TV

Schlumberger Technologies has announced SmartCrypt, a new encryption system which frees cable and satellite TV broadcasters from traditional subscription-based methods of charging for services. SmartCrypt's dual smart card interface provides a secure technology. Using the smartcard, viewers are free to access programmes on a 'pay per view' basis for the first time.

The new control mechanism makes it possible for the service providers to sell programmes in highly targeted forms, as viewing rights to, say, the latest Hollywood film release, a sports competition, or an opera season. It is now possible to buy electronic 'tickets' to these events in just the same way as you would a newspaper over the counter. Alternatively, access rights can be sold as units of viewing time which are cancelled as they are used. The product now makes it possible for the programme makers to publish programme material from a very wide selection of independent producers.

This fast-growing market, still in its infancy in Europe is predicted to triple its size from the current 50 million consumers, to 150 million, by the year 2005.

The SmartCrypt system includes a programme encryption encoder, a set-top decoder, and an administration system. The decoder has two smart card readers, one card functions as a detachable security processor and the second card is used for a wide variety of payment options. The card holds electronic tokens for the consumer to use to watch programmes, or view for a unit of time. This information is transferred to the primary smart card when inserted into the decoder.

The system uses on-screen display, and is based on state-of-the-art scrambling technology.

15 Piece Tool Kit

New from Maplin Electronics is a 15-piece Students Tool Kit, ideal for electronics courses at schools, colleagues and all electronics hobbyists. The kit includes a 25W soldering iron with two interchangeable bits (flat & pointed), a detachable hook and small fold-up stand, desoldering tool, a supply of solder and a pot of flux.

For working on PCBs and delicate equipment, a 'helping hands' a 'scraper and a wire wrap tool are included. To help in assembly and repair of most work and projects, two crosspoint and two standard screwdrivers are included, a pair of pliers and wire cutters, and for delicate work, a pair of tweezers.

All tools are housed in a tough carrying case with preformed sockets to hold tools in place during transit. Students Tool Kit. £14.95 (to incl VAT).
IN-CIRCUIT-EMULATORS BECOME AFFORDABLE

The benefits of using in-circuit-emulators for developing applications for eight bit micros have long been appreciated only by large organisations not deterred by price tags in the order of thousands of pounds. Raisonance (France's largest manufacturer of microprocessor development tools) has now resolved this situation with the launch of the TINY-ICE, a low cost in-circuit-emulator for the Intel 8031 & 80C31 microprocessors. Priced at £299, this emulator will enable the electronics enthusiast with a PC to develop applications for these popular eight bit microprocessors. The TINY-ICE comes as a plug in card for PC compatibles and runs at 12MHz. It is supplied with a 300mm probe for 40 pin DIL packages. An EPROM on the card contains monitor software allowing applications to be developed using up to 32K of code space and 64K of external data memory. Software developed on the PC in either Assembler or a high level language such as 'C' can be downloaded to the target system and control of the programme execution can be carried out using the emulator. Windows on the PC speed up the debugging process by simultaneously showing the source code together with the changing contents of the internal registers and RAM of the microprocessor. Single step and continuous emulation are both supported and up to 800 break points can be set in the code space when using continuous emulation. All the hardware resources of the user's target board remain available with the exception of one of the interrupt signals which is reserved for the monitor. Raisonance development tools are distributed in the UK by Logicom Communications Ltd on 081 756 1284.

NEW RF WIDE-BAND AMPLIFIER

NEC Electronics' new family of wide-band RF amplifiers achieve extremely high performance from a six pin SOT23 type package with outline dimensions of only 1.1mm x 2.8mm x 2.8mm. The µPC27XX devices, which have frequency responses ranging from 1GHz to 3GHz, are based on NEC's new MMIC monolithic microwave integrated circuit) technology.

There are eight products in the family and NEC has used the new 20GHz DNP3 process technology to achieve the ultra small size. The amplifiers are intended for low cost gain and buffer stages in cellular and PCN telephones, GPS (global positioning system) receivers, DBS tuners and RF test and measurement equipment.

The amplifier family can be divided into three groups; medium output power, low noise and low power consumption.

The low power versions operate from a 3.4 volt supply and dissipate 15.3 milliwatts. Their frequency responses are 1.8GHz and 1.2GHz respectively.

The µPC2711/2/13 are the low noise amplifiers running off a single +5 volt supply with a noise figure ranging from 3dB to 12dB at f = 1GHz. The medium output power devices, µPC2704/09/0 also run off a single +5 volt supply and have a saturated power output ranging from +10dBm to +13.5dBm. Frequency responses of all six amplifiers range from 1.5GHz to 3GHz.

CREDIT CARD PC

A low power, credit card sized PC compatible board, UK produced by DSP Design is extending application frontiers into areas inconceivable using lap-top technology. It works similarly to a desk-top PC but in, miniature. This makes it particularly useful for lightweight mobile applications, where space is limited, or areas where a long term embedded life are essential.

This computer is said to be the smallest size and the highest integrated PC in the world. It is also far easier and faster to program than microcontrollers.

The GCAT-3000 Processor Card is the heart of the product range. It is expandable or can operate as a stand alone board. A GCAT-2000 Peripheral Card and GCAT-1000 Prototype Card are exactly the same size as the GCAT-3000 and are designed to stack as a 2 or 3 board sandwich. The '2000' provides extra I/O functions and the GCAT-1000 is a blank card to allow users to prototype their own circuits.

Contact:
Malcolm Spencer
NEC Electronics (UK) Ltd
Tel: 0908-691133
Fax: 0908-670290
A new computerised credit card pay system is set to change the face of garage forecourts.
The Integrated Payment Terminal (IPT) is made by Trisan, the largest manufacturer of fuel management systems. It offers customers the choice of paying by credit or debit card for petrol instead of having to wait long queues at the kiosk.
Having successfully passed the trials, 30 terminals have now been installed at Sainsbury and Tesco sites all over the country.
The service also provides a receipt for payment.

NEW PETROL FUELCARD

NEC Electronics has started sampling LCD driver versions of its new 78K0 low cost 8-bit microcontroller product range. The company claims that the new µPD7806X versions offer the industry's highest performance 8-bit microcontrollers with on-chip display capability and will allow many traditional 4-bit applications to be upgraded in performance.

N EC Electronics' recently introduced 78K0 product range combines 16-bit performance with the price, size and power dissipation advantages normally associated with 4-bit microcontrollers. A major strength of the devices lies in the number of on-chip peripheral options available. This includes A to D and D to A converters, I2C serial interface, UARTs and extensive input/output capabilities.

The new versions include an on-chip LCD driver capable of controlling LCD displays organised in 4 x 40 segments (160 total). Traditionally, designers of products such as telephones, car dashboards, electricity meters and intruder alarms have used 4-bit microcontrollers with on-chip LCD drivers; for 8-bit micro designs, an additional LCD driver circuit has been required. The new products allow designers to take advantage of 8-bit performance and a lower chip count, saving size and cost.

The 78K0 microcontrollers are based on 0.8 micron CMOS technology and operate with supplies ranging from 2.0 volts to 6.0 volts with a power dissipation of 2.4mW (typical) at 8MHz, making them suitable for battery powered products. The devices can be used with the 10MHz main clock or the 32kHz subsystem clock, the latter reducing current consumption to 35 microamps.

The three products in the 78K0 LCD driver range are the µPD78062, which has 16Kbytes on-chip ROM, µPD78063 which has 24Kbytes and the µPD78064 with 32Kbytes. An EPROM version (µPD78P064) allows the designer to repeatedly erase code for use in development, and an OTP version is available for prototyping and production start up.

The products operate over the -40° to +85° temperature range and are available in 100 pin QFP packages.

EXPANDED LITHIUM CELL RANGE

Staff Nife has expanded its LS High Energy lithium range with two new high capacity, vented cells. The LS14250 and the LS14500 (AA) offer up to 20% more energy density at moderate and low rates than other lithium systems.

Based on Lithium Thionyl Chloride electrochemistry, the cells have an operating voltage of 3.5V (1mA at 20°C). Nominal capacities exceed 2Ah for the LS14500 and 0.9Ah for the LS14250.

The cells are fitted with a safety vent and a glass-to-metal seal, and resist leakage occurring even in harsh operating conditions.

The LS cells have an operating temperature range of -55°C to +85°C (and a typical shelf life of 10 years or more).

The LS range is available either as single cells or as customised battery packs, complete with diodes and fuses to protect against short circuits, overloads, over-discharge, and recharging.

These high energy density, light weight cells make them ideal power sources for applications such as memory back-up in office and industrial equipment, meters and measuring equipment. They can also be used in electronic devices requiring long storage and/or operating life and low to moderate drain capabilities.

MORE NEWS NEXT MONTH

ETI SEPTEMBER 1993
NEWS

Stateside...

Problems and advantages of RAIDs

Although interest in redundant arrays of independent disks (RAID) continues to remain high, the complexities of disk arrays continue to trouble engineers charged with implementing them. RAID's benefits continue to attract designers of multi-user systems — fault tolerance, faster accessing and transfer times and higher capacity. However, even RAID users who love the technology note that the process of getting a system up and running is not to be undertaken lightly.

Integrating RAID subsystems is a complex task. Anyone using RAID is likely to be tying the array to a fairly complex network and all the parts must work together well, if the peak performance of the host, the network and the array are all to be realised. Since arrays appear to the system as extremely large disks, users may have to do some analysis to figure out how to get optimal performance.

There are now more RAID suppliers than the market will be able to sustain as it matures. Some early players in the RAID market are already on their third-generation products and they acknowledge that earlier generations did not provide optimal solutions.

Today, the most commonly used levels are RAID 1, 3 and 5. Level 1, mirroring, simply uses duplicate disks to promote fault tolerance. Level 3 uses a single parity drive, storing only data on the other drives. The approach offers high bandwidth for the fast transfer rates needed for large files. RAID level 5 spreads parity data across all drives in the array — a technique suited for applications with high I/O demands because it permits more accesses per second than the other levels.

"I've been studying RAID since the Berkeley paper came out and, no matter what, I keep running into compromises," said Peter Dougherty, senior staff engineer for peripheral planning at Unisys Corp.'s Peripheral Products Division.

RAID systems are very time-consuming to develop, partly because so many things can go wrong that the debugging process can seem endless. That drives their cost up well beyond the price for individual disks with the same capacity. Although RAID offers varying levels of fault tolerance and improved performance, many users still view cost as a major sticking point.

The type of high-performance drive that should be used, however, depends on what type of accessing will typically be done with the array.

"In sequential applications, a drive that spins at 5,400 rpm is 6 per cent faster than one that spins at 7,200 rpm. For random seeks, 7,200-rpm drives are 8% faster than 5,400 rpm. In RAID 3 products, sequential transfers are a key parameter. In RAID 5, random access is very important," said systems engineer Jim McGrath, of the disk-drive maker Quantum Corp.

A spark of genius

A new ignition system based on plasma conduction cuts car emissions by 90% while increasing mileage. The result of 15 years of research and development at Combustion Electromagnetics Inc., the approach views fuel combustion as an electromagnetic component that must be included in a complete model of ignition electronics. The redesigned ignition system uses a novel spark-plug design that enhances the plasma interface between spark and fuel mixture, but otherwise employs standard car electrical components and can be retrofitted to any car.

In present arrangements, the electric spark is just there to light the mixture and the subsequent dynamics of the combustion process depends on a relatively rich fuel-air mixture to develop power. In contrast, the new system uses high-frequency electromagnetic fields to continuously feed energy to the burning fuel mixture, resulting in a more controlled burn. The more precise control translates into higher fuel efficiency and fewer unwanted by-products, such as hydrocarbons and oxides of nitrogen.

Molecular beam epitaxy techniques

A team, led by the Texas Instruments Central Research Laboratory and Hughes Research Laboratories, has been formed to study molecular-beam epitaxy techniques in the construction of resonant-tunnelling devices for photonics applications. The partners will be developing intelligent-material-processing techniques, including the use of expert systems, case-based reasoning and other computer-assisted methods. Objectives include the creation of sensors to enable real-time control of the MBE growth process, improvement of models to predict device performance, and fabrication and testing of new high performance devices.

The two-year project is funded at $10 million, with part of that coming from the Advanced Research Projects Agency (Arpa) and more than half coming from the industrial partners.

The programme represents the first example of President Clinton's technology reinvestment commitment, commented Hughes.

Developing cooled subassemblies

A US company, Superconductor Technologies Inc., has received a $1.2 million contract from the US Naval Research Laboratory to develop cooled subassemblies for high-performance workstations. The contract will focus on hardware development, evaluation of cryogenic packaging and cooling of silicon ICs, interconnects for multichip modules made from high-temperature superconducting (HTS) films, as well as appropriate computer architectures.

HTS science and CMOS technology should complement each other extremely well. Apparently, the performance of CMOS ICs improves when cooled. Since the HTS films have to be cryogenically cooled to liquid-nitrogen temperatures, there is no cost penalty for refrigerating the CMOS circuitry to reap additional increases in performance without any re-engineering.

Cryogenic coolers are still large enough that the technology would be impractical for anything smaller than a desktop system, but some companies are actively exploring more compact and efficient cryo pumps that can be manufactured in commercial volume.
NO OTHER PRODUCT TESTS ANALOGICS LIKE THIS

CALL 0226 350145

Mason Way
Platts Common Ind. Park
Barnsley ST4 9TG
Fax: 0226 350483

THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

Only £195 + VAT

- Provides 10kHz, 5kHz & 1kHz
- Use it for calibrating equipment that relies on quartz crystal TCXO's VICOs over the air
- Phase locks to shooting rocket in space
- Phase locks to DDC100 (rubidium controlled and traceable to NPL)
- For AES/EBU. Also phase locks to ALLIANCE (jitter controlled and traceable to DOP - French eq. to NPL)
- British designed and British manufactured

Op-amps
Comparators
Voltage refs
Voltage regs
Analog switches
Analog mux
Opto isolators
Opto couplers
Transistor arrays
Special function
A to D/D to A

NEW

HALCYON ELECTRONICS
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW28 6JR
SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383, FAX 081-542 0340

UK Distributor for
Standard Toroidal Transformers
- 107 types available from stock
- Sizes from 15VA to 625VA
- Dual 120V primaries allowing 110/120V or 220/240V operation

Write, phone or fax for Data Pack
Jaytee Electronic Services
143 Reculver Road, Herne Bay, Kent CT6 6PL
Telephone: (0227) 375254 Fax: 0227 365104

ENDOAPPS TRANSFORMERS

UK Sales Office: Jaytee Electronic Services
143 Reculver Rd, Herne Bay, Kent CT6 6PL
Tel: (0227) 375254 Fax: (0227) 365104

UK Distributors
England

GREAT BRITAIN

Coxley Electro-Products Ltd.

WINEY

10 ETI SEPTEMBER 1993
VOLT HOME STUDIOR

Designed specifically for studio use, this design also gives outstanding results when used for conventional Hi-Fi reproduction. The HSIM kit is remarkable value — you would have to spend many times its cost to achieve comparable results from a ready-made speaker. The HSIM will produce high undistorted sound pressure levels & has massive power handling capability (full uncoupled output of 200 watts). Split circuitry crossover is to enable biwiring to be employed without any modifications.

... all in all, highly recommended "

Paul White, Home & Studio Recording magazine.

The kit includes bass and treble units, flat pack cabinets (accurately machined from smooth MDF for easy assembly), acoustic, assembled crossovers, reflex ports, binding posts, grille fabric etc...

Wilmslow

276-278 Chatsworth Road
Chesterfield S40 7DH

Access, Video Orders
(0246) 211202

Cutters welcome

OFFTRON FOR THE CHEAPEST PRICES IN TOWN

POWER SUPPLIES & TV ACCESSORIES

12/13.5/15/17/18vdc: 800mA for Ani Machine
800mA 3/4/5/6/7.5/12vdc regulated
1200mA 3/4/5/6/7.5en180VDC regulated
650mA 12v regulated
12/24V plug in power supply/charger
Switched coaxial y splitter for games
Brown Bag special control box
TV to video lead (plug lead price)
1 way aerial amplifier
2 way plug in aerial amplifier
1 way high gain amplifier
2 way mast head amplifier
9 pieces audio/video scart lead kit
Single flush mount aerial output
Single flush mount aerial output
Metal COAX plug

SPEAKERS & TWEETERS

2x6" wide dispersion horn tweeter 35w
3" horn tweeter 35w
3.5" super horn tweeter 35w
2" 1/2" wide dispersion cone 20w
400w high power horn driver
Wide dispersion horn for above
5.25" full range speaker 50w
6" wide range speaker 10w
8" cabinet speaker 10w
12" cabinet grill
15" cabinet grill

DISCO AND HI-FI

Mixer 80 with 10band eq
Mixer 80 with 8 digi amp
Compact add on digitised processor.
NEW!

Voice processors/sound effects
Mini stereo
Variable speed speed control unit
Self contained 4 light sequencer
Dynamic mic 500 ohm
Standard unbalanced mic 500 ohm
Mic desk stand
Jaw clp mic holder
Full grip mic holder
5.8mm to 6.35mm right angle lead 3.2m
6.35mm to 6.35mm right angle lead 6.3m

LEDs 3mm or 5mm red or green 6p each
High intensity red or green 6p each
5mm 30pc per

Car radio 12v panel £5.95 per 1000 £9.50 per 10000

Step down 4 phase 12V T.5 £9.95
3A&507 step down motor drive cap £3.95
Fm Transmitter to go on the roof
High quality photo resist copper clad epoxy
Dimensions single sided double sided
8x8 £2.40
8x12 £2.88
12x12 £10.84

Rechargeable Batteries
AA (HP) 500MAH
AA £1.95
AAA £1.50
C with sister taps
£3.20
D with sister taps
£1.10
AAA & D single side/ double side £1.10
C (HP) 3A £2.20
E 6V 20A £2.50
1/2 AA with taps (Philips CT) £1.95
Standard charger, charges 4 AA cells in 10 hours or 4Cs in 12-14 hours 1.49/3.7 £2.20 4 Cs in 14 hours at a time £3.20
High power charger, also in 4Cs £3.20
D & 2S 3 hours. AA & D must be charged separately £2.95
Special offers - please check for availability
Cells 3.20 each
C with sister taps £1.20
D with sister taps £1.20
Stick of 17.1mm £19.00 pul with red & black 3.95
48x4mm £2.05

OFFTRON LTD

UNIT B3A ALLADIN WORK SPACE
426 LONG DRIVE
GREENFORD MIDDX. UB6 8UH

MAIL ORDER TERMS
POSTAL ORDER/CHQUE WITH ORDER P&P £1.50 ON ORDERS OVER £100 £2.50 ON ALL OTHER ORDERS.
ALL PRICES INCLUSIVE OF VAT.

ALSO 24 HOUR ANSWERPHONE SERVICE.

TELEPHONE 081 575 6812 FAX 081 575 8791 OFFICIAL ORDERS FROM TRADE, SCHOOLS AND COLLEGES WELCOME.

ETI SEPTEMBER 1993

I PG ELECTRONICS

276-278 Chatsworth Road
Chesterfield S40 7DH

Access, Video Orders.
(0246) 211202

Callers welcome
Simple Flashing Beacon for Radio Control Models

A Craig Talbot provides an add-on project for the Radio controlled switch.

Any boats and land vehicles these days have a flashing warning beacon of some kind, an obvious example being the blue flashing light on a police vehicle or boat. However, a wide variety of vehicles use warning beacons and what I needed was a bright flashing light on top of the forks of a model fork lift truck (a visual warning system in common use on full size fork lifts). In this particular case the flasher could run whenever the truck was switched on, but a controlled version adds versatility to the circuit and the one presented here can be controlled by using an R/C Switch. If you built the Radio Control Switch as presented in a previous issue of ETI, then this add-on is for you.

Service vehicles usually have a yellow warning flasher and the fork lift was no exception. Self-flashing LEDs are not normally yellow and Ultra Bright types were unsuitable for this application. In the interests of low component count, IC solutions were sought.

The first IC I considered was the 3909 LED flasher. As the circuit would have to drive a bright light with a wide field of vision, the high brightness LEDs were tried. Ultra bright LED's would give the level of light but not the viewing angle required. The 3909 was also designed to produce very short on times for the light but I needed the on to off period about the same. I would require a lamp for this task.

I next looked at 4000 series CMOS oscillators. To drive the current that a lamp would require, the output current capability would need to be enhanced with another device. The other point is that the IC would be a 14 pin device, when an 8 pin would be preferable. The next IC for consideration was the 555. This IC will deliver a couple of hundred milliamps and drive a lamp as required, requires few support components, has an input suitable for control and is very cheap. For all these reasons and the fact that it is one of the best building blocks in the business, the 555 was chosen. This IC is ideal for the voltage range required and, because timing is not critical, the stability it offers is a bonus. The timing stability is due to the way it operates as a free running oscillator.

The range of drive voltage must be from 5 to 12V for this application, while the maximum working voltage of this IC in other applications is 15V. The CMOS version is an 18V Maximum device but delivers a low output current, so the standard 555 is the best choice for the job.

The circuit described is built on a small PCB but may also be built on something like Vero board, if you prefer. I make no apologies for the simple nature of this project as it is ideal for its intended purpose. There are no medals for designing complicated circuits to perform simple tasks.

Construction

No particular order for mounting the components will be given as the layout is very simple. The only things to note are, the fitting of the IC, notch at the left, and the polarity of two of the capacitors, C1 and C3. Both are clear from the layout
HOW IT WORKS

Telling the readers of a magazine like ETI how a 555 works may be like teaching a dog to bark. Nevertheless, there are always new readers, so here is a quick description of what it’s all about.

The 555 consists of a couple of voltage comparators, a bistable latch, an output stage and a discharge transistor, (see Figure 1) The other vital ingredient in this IC is a chain of three reference resistors all of the same value. As all three resistors are the same, the two reference voltages they produce are one third and two thirds of the supply volts.

As you can see from the 555 internal structure (Figure 1) the comparators can detect the two voltages and their outputs and can then trigger the bistable which in turn will switch the output stage. If a capacitor C is charged via RA and RB, as shown by the 555 astable (free running) circuit, Figure 2, when two thirds voltage is reached, the top comparator will trigger the bistable to set. This action will switch on the discharge transistor, causing it to discharge C via RB to the one third level, when the bottom comparator will detect this, switch off the discharge transistor and reset the bistable. As the discharge transistor is now switched off, C can charge once again. As long as pins 2 (trigger pin) and 6 are joined it will retrigger, starting the action over again. In other words, it will free run. The other way to stop it is to hold pin 4 (Reset) at a low voltage (it should normally be held high by tying it to the positive rail, either directly or through a resistor). As the charge path is via RA and RB and discharge is only via RB, an uneven mark to space ratio is bound to happen. If RB is made very large in comparison to RA, the mark space can be controlled close to unity, but not absolutely.

The Charge Time (output high) is $t_1 = 0.7 \times \frac{RC}{RA + RB}$

The Discharge (output low) is $t_2 = 0.7 \times \frac{RB}{RC}$

The actual figure is not 0.7 but 0.693, although 0.7 is near enough for real components as they are not perfect, especially electrolytic capacitors with their +/- 20% tolerance.

The output stage will source or sink a current of 200mA, so the load may be driven to positive or to negative. Selection of the values of RA, RB and C will enable the 555 to oscillate at the frequency that is most suitable for the application.

Figure 3 shows the circuit of the beacon. As you can see it is the normal 555 astable with hardly a change. The reset (pin 4) is tied to the positive via RA and we only have to pull pin 4 down to near 0V to stop it operating. The small PowerFET in the RC switch will do that. The diode D1 is there in case you wish to pull an inductive load, such as a buzzer. D1 will remove the back EMF produced by such a load.

in figure 4, as is the bar end of the diode, D1.

Red and black wires would be a good idea for the positive and negative to the drive battery but the colour of the lamp wiring is not important. The lamp will have to be selected to suit the voltage that you are using to drive it but the main point is to keep its current rating below 200mA. The lamp should be connected with a couple of wires to the points marked, appropriately, Lamp.

Finally, wire from the point marked In, which we will later connect to the RC Switch PCB at the point marked Out and a wire from Common on the Beacon to connect to Common on the RC Switch (that’s after we have initially tested it).

Now the board construction is complete, it would be a good point to look for solder bridges and poor solder joints. Make sure that the wires are clipped off cleanly, giving no possibility of short circuits. The only place that the tracks are close is where the wire track goes between pins 3 and 4. Having done this, we are ready to test.

Testing

When you connect the Red and Black wires momentarily to the Drive Battery you should see a flashing lamp. OK, so it works, now to connect it to a R/C switch PCB so that you can control it. Figure 5 shows the equally simple inter-board wiring. Disconnect the Battery while you wire the Common on the RC Switch PCB to Common on the Beacon PCB and the Input on the Beacon PCB to Output on the Switch PCB. When wiring has been completed, the red and black wires can again be connected to the + and - of the drive battery. Now you can control it with your Radio Control.

Bear in mind that the circuit will draw a small current even when the lamp is not flashing, so make sure that, wherever you use it, you have a switch to disconnect when out of use. If you are using it in conjunction with a Low Power Speed Controller, then the switch in the positive drive battery lead of that board will do the job.

Heatshrink tubing would be an excellent encapsulation for this little PCB, or a potting box of suitable proportions. If the lamp is in a lampholder, a couple of 1/2W resistor leads would be strong enough to hold the PCB when connected between the lampholder and the lamp connections on the PCB, that is assuming you have the available space.

In Conclusion

The first conclusion is that this project is in no way exclusive to Radio Control. It gives you a very compact PCB for any 555 astable application, if you think about it, there must be many uses. It is in fact a 'board for all reasons' (apologies to the Bard).

You may wonder why I did not drive the whole Beacon PCB directly as a load on the R/C Switch. The reason is to retain the 200mA capability of the 555 without overrunning the 300mA capability of the Switch, due to the not inconsider-
erable current that is drawn by this IC during switching and the lamp current. There is also the fact that C3 has to be charged when power is applied.

For my application, I obtained a yellow cap lampholder. Lampholders are available with caps in most of the colours that you may require. I only used the cap, as the lampholder was a bit on the large side.

This beacon is more or less the same as the original in general appearance but does not operate in quite the same way. The original beacon had a lamp and reflector, turned by a small geared motor, giving a lighthouse 'beam of light' action. At about 1/16 Scale, this would not have been possible, but the one described looks very acceptable. This is the general idea with model electronics - better to have a go at something that gives a rough simulation than not to bother.

This circuit could also be used to produce a horn sound by replacing the lamp with a high impedance speaker of 120Ω or more and changing the value of C1. The problem is that speakers of that impedance are not readily available. It could, of course, be made up of say a 40Ω speaker and a fixed resistor to make up the 120Ω but 2/3 of the power would be dissipated in the fixed resistor. At 6V this would give a very low volume and, as only part of the power would be available for the speaker, would be very inefficient. Running a small, modern, 6V or 12V buzzer from this PCB will give an efficient pulsed tone.

If you require just a horn sound, a buzzer can be switched by an RC switch.

JUST LOOK AT WHAT'S AVAILABLE FROM BONEX

<table>
<thead>
<tr>
<th>Balance Mixers</th>
<th>Battery Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button Cells</td>
<td>Ni-cads, Battery Holders, Battery Eliminators, Ni-cad Chargers, Boxes</td>
</tr>
<tr>
<td>ABS Plastic, Die-cast, Hand-Held Enclosures, Bridge Rectifiers</td>
<td>Bulbs</td>
</tr>
<tr>
<td>Audio, BBC, Camcorder, Cassette/Calculator, Main, Computer, IBM PC/AT, Serial, Monitor Extension, Parallel, Patch/Video Leads, Scart Cables, Serial Printer, Video/Audio Dubbling Kit, Cable Ties</td>
<td>Capacitors</td>
</tr>
<tr>
<td>Ceramic Discs</td>
<td>Ceramic Feedthroughs, Chip, Electrolytics, Monolithic, Mylar, Polycarbonates, Polystyrene, Polyester, Tantalum Beads, Ceramic Trimmers, Film Dielectric Trimmers, Ceramic Trimmers, CMOS Devices, Computer Accessories</td>
</tr>
<tr>
<td>Adeptors 8W to 25W, Data Switch Boxes, Gender Changers, RS232 - Patch Boxes, Null Modems, Plug in Testers, Surge Protectors, Surge Protector Plugs, Connectors, Audio Adeptor/Plugs, Banana Connectors, Binding Posts SNCs, Centronics, D, D High Density, DC Power, DIL IC, Dina, IDCs, Edge, E, Jack2.5mm,3.5mm,5.5mm,3mm, Main, Microphones, Molex, N-Type, Phono, PL256, RF Adaptors, Scart, TNC, Terminal, Stripe, TV, XLR, Crocodile Clips, Crysalis, Desolder Pumps, Diodes, Plastic IN4000 / IN5400, Toko Varicaps, Signal Diodes, Zener, BZy2 and BZXs, Drifts, Bits and Burrs, Expo, Pin Chuckers, Power Supplies, Saw and Slicing Disks, Fans, Feet, Rubber, Fuses, Ferrites, Filters</td>
<td></td>
</tr>
<tr>
<td>FM Ceramics, Mechanical I/Fs, Ceramic Resonators, Crystal, Helicals, NTSC, PAL, Pilot Tones, Quadrature Detector, Satellite TV, Video, Fuse, Fuses, Grommets, Howse Kits, Heatsinks, Inductors Fixed Inductors Variable Inductors Surface Mount Inductors Variable Intra-red Source Sensor Insulating Tape Integrated Circuits, ICMs, Eproms, Lines, Memory, TTL, Kites and Modules, L.E.D.s, 3mm and 5mm Light Dep Realisers, Loudspeakers, Microphone Inserts, Multipin, Neon Indicators, Nuts and Bolts, Opto Switches, Optoisolators, P.C.B.s, Copper Clad, Etch Resist, Transfers, Photo Resist, Pins, Proto-type, Polishing Mops, Potentiometers, Control Pot's.16mm,24mm, Pre-set, Horizontal/Vertical Trimmer Pots, Power Supplies, Relays, Resistors, Carbon Film, Metal Oxide, Wirewound, Screwing Cans, Semi's Mount Kts, Solen, Soldering Iron, Switches, DIL, Key, Microswitches, Push, Rotary, Slide, Toggles, Zero Insert Force</td>
<td></td>
</tr>
<tr>
<td>Kite, Key, Microswitches, Push, Rotary, Slide, Toggles, Zero Insert Force, Test Leads, Test Probes, Tools, Crimping, Cutters, Files, Insertion, Reamers, Screwdrivers, Strip Board, Trimtools, Toroid Core, Thyristors, Transformers, Mains Transformers, Audio Power, Darlingtons, F.E.T.s, GaAsFETs, Low Power RF, Microwave, MofETs, Power RF, Small Signal, VMOS, Triacs, TTR, Video Modulators, Voltage Regulators, Wire, Enamelled Copper, Tin Plated, Silver Plated, Zero Insert Force</td>
<td></td>
</tr>
</tbody>
</table>

CATALOGUE AVAILABLE

SPECIAL OFFER
SBL-1 BALANCE MIXERS £3.75

BONEYX

12 Elder way
Langley Business Park
Slough
Berkshire SL6EP. Telephone: 0753 549502 Fax: 0753 543812

ETI SEPTEMBER 1993
Low cost data acquisition for IBM PCs & compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.

Each device comes with an easy to use software package (PicoScope, PicoLog or both). C, Pascal, and Basic drivers are supplied for those who want to develop their own software, as is a manual giving full details of the hardware and software. All software supplied on 3.5" disk.

ADC-10
- Up to 24kHz sampling rate from a 386/33MHz machine
- 0-5V Input range
- BNC input connector allows use of standard scope probes
- 30V overload protection
- Parallel port connection
- Includes PicoScope software

Single Channel 8 bit ADC

£49

ADC-11
- 15K samples per second
- 0-2.5V Input range
- Digital output
- D25 input connector
- 30V overload protection
- Parallel port connection
- Includes both PicoScope and PicoLog software

11 Channel 10 bit ADC

£75

ADC-12
- Up to 18kHz sampling rate
- 0-5V Input range
- BNC input connector allows use of standard scope probes
- 30V overload protection
- Parallel port connection
- Includes both PicoScope and PicoLog software

Single Channel 12 bit ADC

£85

ADC-16
- Software selectable single ended or differential inputs
- Resolution programmable between 8 and 16 bits + sign
- ±2.5V input range
- 5V reference output
- Connects to serial port
- Includes PicoLog software

8 Channel 16 bit + sign ADC

£99

PICO TECHNOLOGY

PicoScope
- 'Virtual instrument' software package for the ADC-10, ADC-11 and ADC-12.
- Storage oscilloscope with trigger and timebase. Traces can be printed and saved. Multiple meters on screen. Real time spectrum analysis.

PicoLog
- Collect samples from 1 per ms to one per day. Scale samples linearly, by equation or by table look-up. Graphical (against time or XY) and text reports can be displayed, printed or exported.
- PicoLog is also available for the ADC-10. Call for details.

Typical application

<table>
<thead>
<tr>
<th>ADC-10</th>
<th>ADC-11</th>
<th>ADC-12</th>
<th>ADC-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Voltmeter</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Spectrum analyser</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Audio sampling</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Chart recorder emulation</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Temperature measurement</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Pressure measurement</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Chromatography</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Automotive monitoring</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Medical research</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Education</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>

PICO BENEFITS

- 30 day no quibble money back policy
- Full 1 year guarantee
- 1 year's free software upgrades
- Free technical support
- Free user newsletter
- Same day dispatch

Pico Technology Ltd. Broadway House, 149-151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.

TEL: 0954-211716 FAX: 0954-211880

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT.

ETI SEPTEMBER 1993
Output Transformers

I have found a source of output transformers suitable for the Hybrid Valve Amp (Sept. 1992). They are from The Vintage Wireless Company Ltd in Bristol.

John Condy
Manchester

Readers might like to know of the items available from this company, supplied by Mr Condy.

Push Pull audio output transformers to suit EL34s

35W output £35
50W output £37
100W output £39
EL34 (傍插) £19
" (Siemens) £7.50
" (Imported) £4.00

All are exclusive of VAT and postage and packing.

The Vintage Valve Company Ltd can be contacted at

Tudor House
Cossham St
Mangotsfield
Bristol BS17 3BN
Tel: 0272 565472

The company has a wide variety of catalogues on audio, radio, and valves. They also claim to be the world’s largest stockists of service sheets, manuals and historical information on valve and early transistor audio radio and TV. They also have large stocks of vintage components.

If you have any old valves, the Vintage wireless company is always interested in possible purchases. Please get in touch with them for valves urgently required.

Valve Alternatives

I read with interest the recent comments concerning the 45W Hybrid Valve Amp. Having invested more than I care to admit on this project, I have none-theless successfully completed one for myself and another for a friend to whom money is no object, and the experiments on the way have taught me a few useful things.

Messrs Bentley and Corsi in June ‘93 Read/Write have already mentioned the benefits of matching the MPSA92 transistors and providing adjustment of the bias current via R3. Anyone foolish enough to have used MPSA42 transistors and then gone off to get a cup of tea and consider the problem will have found the isolating transformer having suffered an internal meltdown (unless they use a suitable fuse). The EL34 valves are fine, although I initially used Sovtek K5881s (as used by Eric Clapton no less) since they were cheaper and are said to sound richer than EL34s. Using a 240V supply, I am not certain how the voltages stated in the project are obtained as even under no load conditions the maximum calculated and measured high tension voltage is only 336V (not 350V) and the transistor supply -56V. If you live in a foreign country (as I do) where the supply voltage varies from 200V to 220V and a wide variety of valve step up transformers of every value except the one desired can be obtained, so some improvisation is required. It would seem to me that with a 240V supply the high voltage transformer would require a 250V tap and the transistor supply 22-0-22V taps. Having used a variety of different high tension voltages, the amp seems perfectly happy with anything from 300V to 380V, providing the bias current is correctly adjusted (although I assume there is some sacrifice in power output at the lower end of the scale).

Lower voltages may make it easier to obtain a suitable capacitor, although there seems to be plenty of 400V (450V surge) caps around with values up to about 2800µ for less than £20. Calculations suggest a bias current of around 280 to 290µA through R3 and a similar current flows through PR1 (half from each collector). Using these figures it is possible to adjust the resistances to reach the required negative grid voltage, depending on the transformer output. Although I have been using the designated -30V, a check of the valve characteristics for the K5881 suggests -37V may be more appropriate.

As Mr Bentley stated, the amp is very sensitive to any input DC offset voltage from pre-amps and I had to critically adjust my FET pre-amp to eliminate the problem (yep, you guessed it - hold your tongue in the correct position while doing this). The other alternative is to use DC blocking capacitors on the inputs.

Anyway, for all that I am quite pleased with the sound and although it has been the source of a great deal of initial frustration, the article inspired me to build a valve amp for a projected cost of less than £90 or so (plus the burned transformer). The amp has worked reliably for 4 months and is used for up to 8 hours a day.

Like all home-built projects you can tweak and modify as much as you like depending on your budget. You are less likely to be so daring with a commercially made version. Music always sounds better when played through equipment you have constructed yourself (well, mostly) and puts the fun back into Hi-Fi at reasonable cost. While it would be nice not to have these problems with setting up, I believe the basic principals in the amp are sound and the project not only interested myself but a large number of others.

Perhaps some of your distinguished readers might be able to suggest some more crude but simple enhancements or alternative designs. The original PCB is not complicated and could be redone to accommodate adjustable bias. If anyone else wants to use K5881 tubes the following data may be useful:

- Filament current 0.9A
- Plate volts 450V (500V Max.)
- Screen volts 400V (450V Max.)
- Neg. grid vol 37V
- Plate current 116mA no signal
- Screen current 5.6mA no signal
- Load for rated output 5600 ohms
- Power output push-pull config., class A-B. 55W

B Lawford, Hong Kong

Calling all Music Chips

Please could you or any of your readers tell me if Digisound Ltd, (formally of Brookmans Green in Blackpool), suppliers of the Curtis range of specialist chips for the music industry, are still trading.

If not, does anybody know of another supplier of the CEM3340 or CEM3345 voltage controlled oscillator ICs. I would be most grateful for any help.

John Scott Paterson
Newcastle upon Tyne

EQ PC/Mac Maths Conversion Problem

In the August issue of ETI, our Read/Write column contained a mathematical analysis for the Graphic equaliser featured in the June issue. For some reason, the square root and multiplication sign were converted to other signs. We show the correct equations here.

\[f = \frac{1}{2\pi} \sqrt{C} \]

where \(C \) is the external capacitor.

Q is calculated using:

\[Q = 2\pi fL/R \]

\[= \frac{2\pi LR}{V_T} \times \frac{1}{2\pi V_C} \]

\[= \frac{V_T}{2\pi V_C} \]
THE RENOWNED MX SERIES OF POWER AMPLIFIERS
HIGHLY POWER. TWO CHANNEL 19 INCH RACK

USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCO ETC.
SIZES: MXF200 W16 x H319 x D231. MXF200 w16 x H319 x D193. MXF400 W325 x H406 x D275. MXF400 W325 x H406 x D237. MXF900 W650 x H610 x D465.
PRICES: MXF200 £175.00 MXF400 £233.05 MXF900 £339.00

OEM X03 STEREO 4-WAY ACTIVE CROSS-OVER
Advanced 3-Way Stereo Active Cross-Over. housed in a 19" t.u case. Each channel has three level controls, bass, mid & top. The removable front fascia allows the programmable D.I.L. switches to adjust the crossover levels. Bass bass 200W into 4 ohms. Mid Top £195.00. all last level switches on each bass channel. Nominal 75Vmp input/output. Fully compatible with OEM rack amplifier and modules.
Price £117.44 + £5.00 P&P

STEREO DISCO MIXER S40/40S
* ECHO & SOUND EFFECTS
STEREO DISCO MIXER with 2 x 7 band L & R graphic equalizers with base, mid & top bands. Many OUTSTANDING FEATURES: including Echo with repeat & speed control, DJ Mic with talk-over switch. 8 Channels with cross fade, Cue Headphone Monitor. Various EFFECTS. Useful combination of the following inputs: 3 turntables (mix), 3 mix, 8 mic, 4 line inputs-3 turntables (mix), 1 mix, 8 mic.
Price £144.99 + £5.00 P&P

PIEZO ELECTRIC TWEETERS - MOTOLOLA
Join the Piezo Revolution! The low profile, high efficiency, small size new style of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic speakers. At last! A crossover not required for use. These speakers are ideal for any audio equipment. The EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH PIEZO.
TYPE A (KS1036A) 1 type with round painted white mesh wire. Ideal for bookshelf and medium sized Hi-Fi speakers. Price £4.90 + 50P P&P.
TYPE B (KS10053A) 1/2" horn for general purpose speakers, Disco and P.A. systems etc. Price £5.99 + 50P P&P.
TYPE C (KS10163E) 2/2" wide dispersion horn for quality Hi-Fi systems and quality disco etc. Price £5.99 + 50P P&P.
TYPE D (KS10253A) 2/2" wide dispersion horn. Upper frequency response extended down to mid-range (300Hz). Suitable for high quality Hi-Fi systems and quality disco etc. Price £5.99 + 50P P&P.
TYPE E (KS10033A) 3/4" horn tweeter with attractive silver finish trim. Suitable for use in any PA systems etc. Price £5.99 + 50P P&P.
LEVEL CONTROL. Combines, on a recessed mounting plate, level control and cabinet input jack socket. £8.55mm. Price £4.10 + 50P P&P.

FLIGHT CASE CABINETS - AIR CARGO
A new range of quality loudspeakers, designed to take advantage of the latest speaker technology. Both modern seeking studio quality 12" cast aluminum loudspeakers with factory fitted grilles, wide dispersion magnetically shielded, and value added cowling, complete with heavy duty latches. The enclosures are finished in a standard with top cap for optional flight case bags.
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE 45Hz - 20kHz
DFC12-120WATTS (100dB) PRICE £119.00 PER PAIR (DFC12-200WATTS) (100dB) PRICE £175.00 PER PAIR SPECIALIST CARRIER DEL. £12.50 PER PAIR

IN-CAR STEREO BOOMER BASS AMPS
THOUSANDS PURCHASED BY PROFESSIONAL USERS

THOUSANDS PURCHASED BY PROFESSIONAL USERS
Capacitance Meter

In the first of a series, Robert Penfold uses our cover PCB to construct this useful piece of test gear.

Capacitors are used in vast quantities in electronic projects, and resistors are probably the only components that are used in greater numbers. It is an unfortunate fact that despite their popularity, few constructors are equipped to test these components properly. This is almost certainly due to the relatively high cost of ready-made capacitance meters, plus the lack of any capacitance ranges on most multimeters.

Basic Checks
It is actually possible to make one or two simple but useful tests on capacitors using a multimeter. A check for a short circuited component (a common fault) can be made using the test meter set to a resistance range. If all is well, an infinite resistance through the component should be indicated. With higher value components there will be an initial low reading while a high charge current flows, but the reading will soon return to infinity, or a very high reading anyway. The rough value of the component can be gauged by the time taken for the reading to rise towards infinity. With low and middle value capacitors the initial charge current is too low to produce this effect to a noticeable degree.

Note that when testing polarised capacitors using an analogue multimeter the positive test prod connects to the negative lead of the capacitor, and the negative test prod connects to the positive lead. For digital multimeters the more logical positive-to-positive and negative-to-negative method of connection is used.

Ranges
In order to test low a medium value capacitors properly it is necessary to use some form of capacitance meter. An analogue capacitance meter still represents the simplest and most cost effective method, and the unit featured here is a simple unit of this type. It has four measuring ranges, as follows:

<table>
<thead>
<tr>
<th>Range</th>
<th>1 0 to ln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>2 0 to 10n</td>
</tr>
<tr>
<td>Range</td>
<td>3 0 to 100n</td>
</tr>
<tr>
<td>Range</td>
<td>4 0 to 1μ</td>
</tr>
</tbody>
</table>

It can therefore be used to measure capacitors in the problem range of a few picofarads to one microfarad. The linearity and general accuracy of the unit is very good. The main limitation on accuracy is probably the accuracy with which the panel meter can be read.

Operating Principle
This capacitance meter uses the simple arrangement shown in the block diagram of Figure 1. The clock oscillator triggers the monostable at regular intervals, and the approximate clock frequency is 50Hz. A monostable produces an output pulse having a duration that is controlled by a C-R timing network, and which is independent of the trigger pulse duration. The timing components in this case are a reference resistor, and the capacitor under test. Four switched reference resistors provide the unit with its four measuring ranges.

Suppose that a 1n test component produced the monostable
output waveform shown in Figure 2(a). The mark-space ratio is one to nine. This means that the output is high for 10% of the time, and that the average output voltage is therefore equal to 10% of the supply voltage. A 2n test capacitor would give output pulses twice as long, producing the output waveform of Figure 2(b). This gives a mark-space ratio of 1 to 4, and an average output voltage that is equal to 20% of the supply voltage. A 3n component gives the output waveform of Figure 2(c), a mark-space ratio of three to seven, and an average output voltage that is equal to 30% of the supply voltage.

This arrangement therefore gives a capacitance to voltage conversion, with a linear relationship between test capacitance and the average output voltage. The voltmeter at the output of the monostable can therefore be calibrated in terms of test capacitance, will have linear scaling.

Circuit operation

Figure 3 shows the full circuit diagram for the capacitance meter. The clock oscillator is a simple C-R oscillator circuit based on IC1, which is a CMOS 4047BE used as a straightforward freerunning astable. The original design used a crystal controlled clock generator, but a simple C-R oscillator was found to give perfectly adequate stability for this application.

The monostable is a very simple type based on a couple of CMOS two input NOR gates (IC2a and IC2b). Although this is very simple form of monostable, it is well suited to this application. It is a non-retriggerable type, which means that it does not require very short trigger pulses in order to function properly. The output from IC1 is a very accurate squarewave signal incidentally. This type of monostable also has an extremely low level of self-capacitance. This is an important factor, since a significant level of built-in capacitance would seriously affect accuracy on the lowest range. The self-capacitance of this monostable is far too low to give a noticeable offset, even on the 1n range.

R2 to R4 are the four switched timing resistors which provide the unit with its four measuring ranges. In order to obtain good accuracy on all four ranges these resistors must be close tolerance types having a tolerance of 1% or better. Note that the other two gates in IC2 are unused, but their inputs are tied to one or other of the supply lines. This prevents spurious operation of these gates, and avoids possible damage to IC2 due to stray static charges.

The voltmeter section is a simple analogue type based on moving coil panel meter ME1. R7 and RV1 provide the series resistance. RV1 is adjusted to give the correct full scale capacitance values. With a pulsed input signal a moving coil meter will effectively provide its own smoothing, and respond to the average current flow, but only if the input frequency is more than about 20Hz. Smoothing capacitor C3 would therefore seem to be superfluous, since the pulse frequency is about 50Hz in this case. However, a frequency of 50Hz is quite low, and could cause problems with pointer-jitter due to mechanical resonances in the meter movement. C3 should ensure that the meter provides completely jitter-free results.

It is essential that the circuit is powered from a well
stabilised supply. Any variations in the supply voltage will produce proportionate changes in the meter readings. IC3 is a monolithic voltage regulator which produces a well stabilised 5 volt supply from the 9 volt battery supply.

When SW2 is set to the battery test (‘BT’) position it connects the voltmeter circuit across the regulated supply lines via series resistor R6. The meter then has an approximate full scale sensitivity of 10 volts, and should read about half full scale. It is not absolute readings that are of importance though. SW2 should be set to the ‘BT’ position with a new battery installed, and the reading obtained should be noted (or marked on the scale of the meter). When at some future time a noticeably lower reading is obtained, the battery should be replaced. The current consumption of the circuit is only about four milliammps, and a PP3 battery is therefore adequate as the power source.

Construction

Figure 4 shows the component overlay for the printed circuit board. IC1 and IC2 are CMOS integrated circuits, and the normal anti-static handling precautions should therefore be taken when dealing with these components. This means using a 14 pin dil holder for each device, but the integrated circuits should not be plugged into place until the board has been completed and wired to the rest of the unit. Until then they should be left in their anti-static packaging. Handle both devices no more than is really necessary, and keep them well away from any obvious sources of static electricity. The 4047BE used for IC1 is not fully static protected, and it would therefore be unwise to take liberties when dealing with this device.

In other respects the board is very simple and straightforward to construct. However, the components must be modern miniature types if they are to fit properly into the available spaces. C2 is a printed circuit mounting type having 7.5 millimetre (0.3 inch) lead spacing. Fit single-sided solder pins to the board at the points where connections to off-board components will be made. The pins should be tinned with a copious amount of solder.

A medium size metal instrument case is ideal for this project, but a case of this type could easily cost more than the total for all the other components! A low cost plastic box having dimensions of around 150 x 100 x 50mm makes a good low-cost alternative. The exact layout used is not too important, but try to avoid long leads from the circuit board to range switch SW1.

Assuming the meter is an ordinary 60 x 46mm type, a 38mm (1.5 inch) diameter mounting hole will be required.

This is easily made in a plastic case using a fretsaw, coping saw, or a miniature round file. The same methods are viable if the case has a metal front panel, but making the cutout is then likely to be a much slower process. Unless you are very skilful at this type of thing, it is advisable to cut just inside the line marking the perimeter of the cutout. The hole can then be enlarged to precisely the right size using a large half-round file. Four smaller (3.3 millimetre diameter) holes are needed for the meter’s integral mounting screws. The positions of these can be located using the meter itself as a sort of template, once the main cutout has been completed. The accuracy of the circuit is more than adequate to justify the use of a larger meter, but these tend to be relatively expensive, and would necessitate the use of a much larger case.

The test capacitors can be connected to the unit via a couple of short crocodile clip leads connected direct to the circuit board. Alternatively, the test components can be connected via a pair of one millimetre sockets mounted on the front panel. Some capacitors will connect direct to these sockets without any difficulty, but components having short
leads must be connected via a pair of crocodile clip leads. Either way, the wiring from test components to the circuit board must be as short as practical, in order to keep stray capacitance down to an acceptable level. The unit can be used to check polarised capacitors such as tantalum and electrolytic types, but they must be connected with the polarity shown in Figures 3 and 4. It is advisable to use red and black test leads and sockets to indicate the correct polarity for test components.

The printed circuit board is mounted on the base panel of the case using 6BA or metric M3 screws. The hard wiring is then added. Figure 5 shows the wiring to the three controls. This diagram should be used in conjunction with Figure 4 (e.g. point “A” in Figure 4 connects to point “A” in Figure 5). SW1 is a standard 3 way 4 pole rotary switch, but in this case only one pole of the switch is utilized.

Calibration

In order to accurately calibrate the unit it is necessary to have a close tolerance capacitor having a value equal to the full scale value of one of the ranges. For example, a 10n 1% poly styrene capacitor could be used to calibrate the unit on range 2. Initially RV1 should be set for maximum resistance (adjusted fully clockwise). With SW1 set to the appropriate range, SW2 set for normal operation, and the calibration capacitor connected to the unit, RV1 should be carefully adjusted for precisely full scale deflection on ME1. The capacitance meter is then ready for use, and should give good accuracy on all four ranges.

If desired, the lettering of the meter’s scale plate can be altered to suit this application. Modern meters almost invariably have clip-on fronts which are easily unclipped. Removing a couple of small screws then enables the scale plate to be slid free from the rest of the meter. Relabelling is far from essential though, since readings on the 0 to 100 scale are easily converted into corresponding capacitance values. It just requires some mental arithmetic to adjust the decimal point when taking readings on ranges 1, 2, and 4. However, it is very useful to mark the scale plate with the correct “battery check” reading. Be very careful indeed when working on the meter though, since moving coil meters are very delicate, and are easily damaged.

Parts List

<table>
<thead>
<tr>
<th>RESISTORS (All 0.25w)</th>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 10k 5%</td>
<td>IC1 4047BE</td>
</tr>
<tr>
<td>R2 10M 1%</td>
<td>IC2 4001BE</td>
</tr>
<tr>
<td>R3 1M 1%</td>
<td>IC3 µJ28L5S (5V 100mA positive regulator)</td>
</tr>
<tr>
<td>R4 10k 1%</td>
<td></td>
</tr>
<tr>
<td>R5 10k 5%</td>
<td></td>
</tr>
<tr>
<td>R6 82k 5%</td>
<td></td>
</tr>
<tr>
<td>R7 3k</td>
<td></td>
</tr>
<tr>
<td>RV1 22k sub-min hor preset</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.4 100n disc ceramic</td>
</tr>
<tr>
<td>C2 100n polyester</td>
</tr>
<tr>
<td>C3 47µ10V radial elect</td>
</tr>
</tbody>
</table>

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 031 667 2611

The supplier to use if you’re looking for —

* A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST *
* COMPETITIVE VAT INCLUSIVE PRICES *
* MAIL ORDER - generally by RETURN OF POST *
* FRIENDLY SERVICE *

Open: Monday-Thurday 9.15-6.00
Friday 9.15-5.00 • Saturday 9.30-5.00
An RF Signal Generator

A project by Raymond Haigh

Although TRF, direct conversion and even simple superhet radios can be set up without recourse to a signal generator, test equipment of this kind is essential for the correct alignment of more complex receivers. And whether the receiver is simple or complex, a signal generator will be found extremely useful for checking coverage, locating specific bands and as an aid to dial calibration.

Searching the radio frequency spectrum for transmissions to identify receiver coverage is a time consuming process and a signal generator is an invaluable means of determining ranges, or pinpointing amateur bands. Unless the signal generator is up to laboratory standard, final calibration of a receiver dial is best carried out with a crystal marker. However, anyone who has attempted this process will know that it is not easy to identify weak crystal harmonics, especially when the situation is confused by spurious responses from the receiver itself. Under these conditions, an instrument which can inject stronger, modulated signals, at fundamental frequencies, is an enormous help in resolving the confusion.

The signal generator which forms the subject of this article does not call for any special or critical components and many constructors will be able to assemble it from parts already in their spares box. It generates signals over seven, overlapping ranges, from 120kHz to 40MHz. An additional range provides a 100kHz marker signal and the instrument can also be used to check the coverage of tuning coils.

Design Considerations

The heart of any signal generator is, of course, the oscillator. The circuit adopted here is a FET version of the cathode-coupled oscillator first described by the late Frederick Butler in 1944. Butler listed a number of advantages for his original valve circuit, the most significant being the absence of feedback windings or feedback tappings on the tuning inductor. This greatly simplifies coil construction and range switching. The FET version oscillates reliably, even with coils of modest Q and with comparatively high tuning capacitor values. The circuit is reduced to its essentials in Figure 1.

The series (drain) mode has been adopted as this avoids the need for a radio frequency choke in the drain circuit of Q1. It does, however, call for the tuned circuit to be isolated from the negative supply rail and the moving vanes of C1 are insulated from the case and earthed to radio frequencies by C3. (In the shunt-fed version, the tuned circuit is connected to the gate of Q2 in place of R2 and the drain of Q1 is loaded by the radio frequency choke).

The feedback capacitor, C2, should be of the lowest possible value in order to minimise coupling to the tuned circuit, and the 10p component specified is probably the best compromise for the frequency range covered by the generator.

Referring now to the detailed circuit diagram, Figure 2, tuning inductor, L1, is a continuous winding with six tapping points. S1(b) acts as the range switch by progressively shorting out sections of the coil in order to reduce its inductance and increase the frequency of oscillation. The remaining wafers of SW1 control refinements and additional functions and, if all that is required is a very basic signal generator, the switching circuit can be reduced to a one pole, seven way switch (six ways if the rotating switch contact can be turned until it aligns with its own wiping contact). Shorting out the coil windings causes absorption effects which deaden oscillation at around 4MHz and 20MHz. The two notches are extremely sharp and do not materially detract from the useful-
HOW IT WORKS
L1 and C1 form the tuned circuit and Q1 and Q2 are the active devices in the source-coupled oscillator stage. Q1 functions as a grounded gate amplifier and Q2 as a high-impedance, unity gain source follower. Loading on the tuned circuit is light. Signals developed across the shared source resistor, R1, are coupled, via DC blocking capacitor, C5, to the gate of the FET source-follower buffer amplifier stage, C3.

Generator output is developed across R6, the source load resistor for Q3 and one section of a twin-gang potentiometer, R6 and R7. This arrangement of variable resistors controls the output level while at the same time presenting a reasonably constant impedance to the circuit under test. Capacitors C6 and C7 act as DC blockers.

Although the oscillator is reasonably immune from drift caused by temperature and supply voltage fluctuations, operating frequency does shift slightly as battery potential fails. Zener diode, ZD1, stabilises the working voltage of Q1 and Q2 and reduces this drift to neglible proportions.

The radio frequency signal is modulated by the series-fed Hartley oscillator stage formed by T1, C11 and Q4. T1 is a small, push-pull, transistor radio output transformer. Its centre-tapped primary winding and C11 form a tuned circuit resonant at about 1kHz. The audio oscillations produced by this stage are imposed on the radio frequency by connecting the secondary of T1 in series with the power supply to Q1 and Q2. This is the classic or Helsing method of amplitude modulating a carrier wave. Modulation is switched on and off by SW2(a) which connects Q4 to the power supply.

ness of the instrument, but constructors who wish to eliminate this phenomenon can fit SW1(d). This wafer is wired to short out both ends of offending sections of the coil and prevent the absorption of energy at these two spot frequencies.

A 100kHz signal and its harmonics are useful for calibrating receiver dials. SW1(c) connects an additional 390p capacitor, C4, into circuit, thereby enabling C1 to tune the inductor down to this frequency.

There is often a need to check the coverage of tuning coils before they are wired into circuit. SW1(a) switches out the generator’s internal inductor so that coils can be connected to the oscillator circuit via the terminals provided. Checking the frequency of oscillation at the extreme settings of C1 against a receiver tuning dial will give a good idea of the coverage (and inductance) of the coil.

Construction
Details of the printed circuit board and component placement are given in Figure 4. Vero pins inserted at the lead-out points aid wiring up and, if metal stand-offs are used to mount the board, they will connect the metal case to battery negative. Note that C4 is mounted on the wafer of SW1(c), and C6 and C7 on potentiometers R6/R7. Provision is not
made for these components on the printed circuit board.

The tuning inductor, L1, is detailed in Figure 3. The former is a 150mm length of 21mm outside diameter overflow pipe of the type retailed at most DIY stores. Solder tags anchor the start, finish and tapping points of the winding, and the three, pile-wound sections are held in cardboard bobbins. The guidance regarding dimensions, numbers of turns and wire gauge should be closely followed or the specified frequency coverage may not be achieved.

Begin by drilling the former and fixing solder tags at points A, B, C, D, and E (tags F, G, and H have to be fitted after the wound bobbins have been slid into place). Tweezers will be found helpful for inserting the bolts at the centre of the former.

Tightly wind the specified number of turns onto the former, keeping them neat and even. Scrape the enamel from the wire and make good connections to the solder tags. Avoid the prolonged heating of the tag or the plastic former will soften. It is easy to lose track of the number of turns when winding the longer, single-layer sections and a check can be made by slowly drawing a tooth-pick or sharpened matchstick down the winding and counting the clicks. A thin coat of clear cellulose will hold the turns in position.

The bobbins for the larger windings are formed from thin card. Wind a 4mm wide strip of card around a spare length of former and glue it with balsa cement or Bostic All Purpose Clear Adhesive. Slide the card discs which form the bobbin cheeks up to the strip and apply more adhesive. When the glue has hardened, make a pinhole at the bottom of one of the cheeks, thread the start of the winding through, then wind on the specified number of turns. A narrow strip of insulating tape will secure the final turns and protect the winding.

Slide the wound bobbins onto the former and space them as shown in Figure 3. If they are a loose fit, tighten them by winding tape around the former. The entire coil assembly must be rigid or a knock could jolt the instrument out of calibration.

Fit solder tags F, G, and H, and connect up the pile windings. Note that all turns must be wound in the same direction and the finish of one pile winding must be connected to the start of the next.

The prototype was assembled inside a standard 203mm x 153mm =63mm aluminium box. A metal enclosure is essential. It does not do much to limit the escape of RF energy, but it does prevent the calibration of the instrument being affected by external metal objects. A case smaller than the one specified is not recommended as the dial will become too small and clearance between case sides and coil will be excessively reduced. The 9V battery pack of six AA cells is secured to the back cover with an aluminium strap. Great care must be taken when handling the variable capacitor, C1, and the front fixing bolts must be short or they will foul the vanes and damage the component. The capacitor must not be connected directly to the metal case. Fix it to a sheet of paxoline or Perspex with countersunk screws, insulate the screw heads, and bolt the paxoline to the case front.

Figure 5. gives full details of the range switch wiring. An ingenious, split moving contact arrangement on one side of the Maka-switch wafers enables two, 9-way switches to be accommodated on each wafer. Wiring up the unit, and positioning it in the manner shown will ensure that the range pointer moves in a logical way, beneath the bands on the dial and that coil connections are short and direct.

The coil is mounted behind the case front, on 25mm stand-offs, with the start of the winding (tag A) close to the range switch, S1. The printed circuit board is mounted on the floor of the case, beneath the tuning capacitor, on 6mm stand-offs.

Wiring between the off-board components should be carried out in reasonably heavy, single-strand hook-up wire, and all leads must be kept as short and direct as possible. Any subsequent movement of the tuned circuit wiring will have a noticeable effect on calibration.

Black spray paint was used to decorate the case. The dial
and front panel were drawn on cartridge paper, annotated with rubdown lettering and protected by 1.5mm Perspex (acrylic) sheet. The dial pointer was formed by wiping red paint into a line scribed on a strip of Perspex, the strip being fixed to the control knob.

Testing And Calibration

It is a good idea to test the unit before the various components are mounted in the case. Make temporary connections between the PCB and the coil and tuning capacitor, wire up S2, R6 and R7, and connect up a fresh 9V battery. Current consumption with modulation off should be approximately 5.5mA and this should rise to about 6mA with the modulation stage switched into circuit. A portable radio placed near to the generator should be almost swamped by signals.

Peak-to-peak output voltage is approximately 1V up to 20MHz. Beyond 20MHz, output gradually falls until it is about 0.5V at 40MHz.

The quickest and easiest way of calibrating the unit is to connect it to a frequency counter, setting C1 to give the required round-figure read-outs and marking up the dial. If a frequency counter is not available, an all-band radio with a digital frequency read-out could be used. Receivers with analogue dials are not likely to be accurate enough for this purpose.

In the absence of digital read-out equipment, the instrument can be calibrated to a high degree of accuracy using an all-band radio in combination with a crystal marker. The signal generator is set to zero beat with signals injected into the receiver from the marker, moving from marker harmonic to marker harmonic around the dial. The correct setting of the generator tuning control is very clear — whistles are heard on either side and the point of silence in between represents the optimum matching of the two signals. A simple regenerative receiver is better than an inexpensive superhet for this purpose, as the latter is likely to have spurious responses which can cause confusion. However, with care, both types of receiver can be used in combination with a crystal marker to calibrate the unit.

The author used a crystal marker which produced signals at 4, 2, and 1MHz, and 100, 50, 25, and 10kHz, in combination with a simple regenerative receiver, to calibrate the generator. The calibration was subsequently checked by a digital frequency counter and found to be accurate. If this method is adopted, make sure that the correct crystal harmonic has been selected by cross-checking the harmonics produced by the generator itself, e.g. check that when the generator is set to, say, 8MHz, harmonics are produced at 16, 24 and 32MHz, and that there is no output at 4MHz.

When calibrating the lowest frequency range and the 100kHz marker point, listen for second harmonics of generator fundamentals on the long-wave band, e.g. the 100kHz marker will produce a signal at 200kHz, 2kHz above the BBC’s Radio 4 transmission from Droitwich.

Keep generator output low during the calibration process (direct connection to the receiver is not likely to be necessary) and check from time to time that the battery voltage has not fallen so much that the action of the zener stabiliser is impaired. Switching on the modulation will help with the initial identification of the generator signal, but the final, precise tuning to zero beat is best carried out with modulation off.

The author’s dial is reproduced in Figure 6. There are no coil cores or trimmers and, if the specified tuning capacitor is used and the coil wound as described, it should form a useful guide to the coverage and calibration points to be expected with other units.

Frequency coverage with the specified tuning capacitor is as follows:-

1. Full coil winding
 120kHz - 190kHz.
2. Taps G - H shorted
 180kHz - 350kHz.
3. Taps F - H shorted
 300kHz - 750kHz.
4. Taps E - H shorted
 650kHz - 2.1MHz.
5. Taps D - H shorted
 1.7MHz - 6.4MHz.
6. Taps C - H shorted
 3.2MHz - 12 MHz.
7. Taps B - H shorted
 9.5MHz - 40 MHz.

Using The Generator

Coupling between the instrument and the equipment under test should be as light as possible and, in almost all cases, a length of wire laid near to the receiver aerial socket or test point will transfer enough signal. The metal-box screening arrangement does not completely prevent the escape of RF energy (laboratory instruments incorporate heavier and more elaborate screening systems) and the simple output control does not reduce the signal to zero. It will, however, reduce the output to a lower level. Radio manufacturers and set designers usually give detailed alignment guidance for their radio receivers and this should be...
followed. Using the generator to locate amateur bands on a new receiver is quite straight forward, but make sure that the receiver is not inadvertently set to a harmonic of the generator fundamental, e.g. 7MHz instead of the required 3.5MHz. This can be checked by ensuring that the receiver does not respond more strongly when the signal generator is tuned up to the second harmonic. The coverage of tuning coils can be assessed by connecting them to the generator, injecting the resulting signal into a radio receiver and swinging C1.

Further Refinements

The simple signal generator performs well, as designed and most amateurs will find it meets their needs. Constructors who wish to build a more refined instrument could fit a slow motion drive to C1 and, possibly, use a larger case which would provide space for a bigger dial. If expense is no object, the dial could be replaced by a digital frequency display module.

The oscillator circuit will function into the VHF region. Constructors wishing to extend the range of the instrument could fit an air-spaced AM/FM tuning gang and use one of the FM sections to tune suitable coils. As it stands, the third harmonics of 25-40MHz fundamentals extend strongly into the VHF region. Increasing coverage on fundamentals to VHF would produce harmonics into the UHF range. Indeed, this is the practice of some manufacturers who rely on the third harmonic of a 150MHz fundamental to extend the coverage of their equipment to 450MHz. These possibilities were not explored by the author and some experimentation with coil, capacitor and switching arrangements would be required to extend the range of the unit in this way.
TEST and MEASURING INSTRUMENTS

Oscilloscopes
CO 1305, DC to 5MHz Single channel £169.00
CS 4025, 20MHz Dual trace full featured £330.00
CS 5170, 100MHz Dual, Cursor readout £1159.00
CS 6040 150MHz, 4 Chan. Full Featured £2049.00

Multimeters
183, 3.5 digit LCD, DC V, AC V, DC A, AC A, Res. Cont. Hold, Basic acc. 0.5% £39.50
185, 3.5 digit as 183 plus Bar graph, Temp. Freq., Max/Min, Edit Basic Acc. 0.3% £74.50
187, As 185 but Auto Range £99.50
285, As 185 plus 4.5 digit True, RMS £109.50

Frequency Counters
SC - 40, Battery portable 5Hz to 400 MHz with count, frequency, period, R.P.M. Plus View; Min/Max Ave/Diff. Hold £89.00
SC - 130, As SC-40 except 5Hz to 1.3GHz £109.00
SC - 230, As SC-130 plus Bench Unit with Backlit display and RS232 £149.00

Counters, Generators Oscilloscopes, Power Supplies, Multimeters, Clamp Meters, L.C.R. Meters Programmers/Emulators, Multi-Instrument, Video and Audio Test, Probes and Accessories.

For further information please contact:

SAJE Electronics
117 Lovell Road, Cambridge, CB4 2QW
Tel: (0223) 425440 Fax: (0223) 424711
Another selection of your circuit Ideas

Tech Tips

Voltage Controlled Timebase Oscillator

We developed the following circuit module for use with an oscilloscope display. It was designed to produce sawtooth timebase waveform locked to a varying input frequency so that the 'scope showed a fixed number of cycles of the input waveform over a wide range of frequencies.

The circuit consists of three elements: a phase-locked loop, a programmable current mirror and a unijunction oscillator. The UJT oscillator (Q5, C2, R5) produces a ramp waveform of constant amplitude, the steepness of the ramp and hence the oscillator frequency being controlled by the charging current passing through Q3 and Q4 into C2. Q3, Q1 and Q2 are a classic current mirror, the current in this case being determined by the condition of MOSFET Q1. The MOSFET 'sees' the control voltage generated by the phase-locked loop chip IC1: it can be seen thus that the UJT oscillator frequency is dependent upon the PLL's control voltage output. The PLL derives its phase input from the input waveform (the one to be viewed) after this has been cleaned and squared by a Schmitt trigger. The comparison input to the PLL is simply a sampled and squared version of the UJT sawtooth output. Thus the sawtooth is automatically locked in frequency to the input waveform.

In addition to the timebase waveform, provision is made for a blanking pulse to suppress the flyback of the 'scope trace. (This is necessary because we are supplying our own timebase for the x-axis spot movement.) The precise arrangement of this must depend on the particular 'scope used.

The circuit shown was used in the 10-500Hz range but there is no reason why other frequency ranges cannot be used: the values of the PLL low pass filter components (R1, C1, R3) would have to be changed, and C2 replaced with a different value.

The number of cycles of the input waveform displayed may be controlled by the use of a frequency divider at the point shown on the diagram. For example, a simple bistable dividing by two would cause two cycles to be displayed.
Car Fog Lamp Warning

This unit is designed to produce an audible warning signal if the Fog Lamp switch is left on after bad weather, when the vehicle lights are next switched on.

When the lighting circuit is operated, power is applied to the unit. C1 takes around 1 second to charge; if the Fog Lamps switch is on, IC1b will generate a low to high transition once C1 has charged. The Q output of IC2a swings high, taking pin of IC1b high again via diode OR-gate D2.D4, thereby causing IC1b output to swing low. The 0 output a 1 so enables a pulsed tone astable built around IC1c and IC1d.

If the Fog Lamp switch is now opened, a second low to high transition occurs: clocking the flip-Flop and disabling IC1b together with the astable. The Fog lamps can now be switched on again without enabling the warning signal.

D6 protects the unit from back-EMF on the supply, while D1 and C4 keep the supply stable. D3 prevents pin 6 of IC1b rising above the supply voltage to IC1 (due to D1). R2 acts both as a pull down resistor and current sink to maintain the correct voltage drop across D3. C5 and R6 provide a brief reset pulse to IC2a on switch-on. R5 is a pull down resistor to prevent false triggering.

With lights on, fog lamps off, supply current is around 16µA. With Fog lamps on, this rises to around 1.2mA due to R2.

David Geary, Romford, Essex

Faster Analogue To Digital Converter

This circuit came about whilst experimenting with R-2R ladders and CMOS counters combined as ADC’s.

The circuit is shown in the figure and consists of 2 x 4 bit binary up/down counters, an 8 bit R-2R DAC, a comparator and some clock steering logic. Conventional ADC’s of this nature have a binary counter starting from zero and counting up until the output of a DAC is greater than the analogue input voltage to be digitised. This works fine, but can be slow when converting signals at the higher end of the conversion range. This circuit is considerably quicker whilst still maintaining the same building blocks. It works as follows:

When the start of conversion pulse goes high, the output of the D-type flip-flop is SET, the MS bits of the counter are set to zero and the LS bits are set to ‘1’. The clock is gated through gate A to gates B and D.

When SOC goes low, the counters will start to count. Initially, the input voltage to be converted will be greater than DAC out so the output of the comparator will be high. This gates the clock through gate B, but stops the clock going through gate D. Thus, the MS bits of the counter will count up and the LS bits will not change.

When DAC out becomes greater than Vin the comparator output will change state to a ‘0’ causing gate D to allow clock pulses through. (The comparator output has no effect on the flip-flop at this stage). The clock pulses are now gated through to the LS bits of the counter which now count down. When DAC out becomes less than Vin the comparator output will change state to a ‘1’. This will clock through a ‘0’ from the D input of the flip-flop to Q which will gate clock pulses from getting through gate A. The conversion is now complete.

The link between B and DOWN on the 40193 is to provide for the possibility when Vin level drops below the level that could be achieved when the LS bits were at zero. This allows for some degree of change in the value of Vin during conversion.

The conversion time between this circuit and a conventional circuit is about 3.5 times faster.

Mike Watson, Basingstoke, Hants.
Servo Tester

The small servo motors used in Radio control cars are very useful devices but can be a bit difficult to test. This circuit was designed to do just that.

The motors are controlled by a Pulse Width Modulated signal, with the position of the arm proportional to the width of the control signal pulse. In most systems this control signal is based on a repetition rate of 20ms and pulse width varying over the range to 2ms, corresponding to the limits of travel.

With RV1 at minimum, the pulse width is 1ms and at maximum the pulse width is 2ms. The whole circuit is designed to operate off the same supply voltage as the servo motor (in most cases this is 4.8V) and the output will drive several servo motors at the same time.

The prototype test unit was mounted in a small plastic box with connectors compatible with those of my radio control servo system to facilitate 'in-car' testing.

Neil Johnson, Northiam, East Sussex.

We'll pay for every issue of ETI to be posted to you*

A one year subscription guarantees every issue of 'Electronics Today International' is delivered to you on publication and we pay the postage anywhere in the U.K.!

*Post me today! PLEASE COMPLETE IN BLOCK CAPITALS

Yes, I would like to subscribe to ETI Magazine for 1 year. (Quote subscription number if renewing/extend.) Commence my subscription from the ___________ issue.

Enclose my cheque/M.O. for £______ made payable to ASP or debit my Access/Visa account:

SIGNATURE

TODAYS DATE: _______________ EXPIRY

ADDRESS

POST CODE

Please send this coupon to: The Subscription Dept., Argus Subscription Services, Queeneway House, 2 Queeneway, Redhill, Surrey, RH1 1QS

Or Call our Hotline: 0737 768811

You may receive further information about offers and services which may be of interest to you. Offer closes 4/04.

ETI SEPTEMBER 1993
Don't miss the
FESTIVAL OF
MODEL FLIGHT
(INCORPORATING 4 STROKE RALLY)

OLD
WARDEN
AERODROME
BIGGLESWADE,
BEDFORDSHIRE
SATURDAY
& SUNDAY
11th - 12th
SEPTEMBER
1993

Make a date!
It's a great day for
the whole family!

IN ACTION...

- R/C 4 STROKE AIRCRAFT
- HELICOPTERS • ROCKETS
- CONTROL LINE • KITES
- ROUND THE POLE
- ELECTRIC SOARERS

Plus
- Tethered Racing Cars • Trade Stands • Children's Bouncy Castle
- Special “All Day” Hog Roast Bar.B.Q

FREE CAR
PARKING

Admission includes entry into

The Shuttleworth Collection

Admission prices
Adults: £4
Senior Citizens & children: £2.50

Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST
Tel: 0442 66551
Getting to grips with MIDI signals. Tom Scarff investigates what goes where and when.

Microprocessor MIDI Analyser

Anyone who has ever tried to connect various pieces of MIDI controlled equipment together will understand the difficulty of not knowing what MIDI data is being transmitted down a MIDI cable. While there are a number of software MIDI analysers available which will provide this information, they require the use of a computer. However a portable analyser would be most useful when connecting up unfamiliar equipment in an external environment, so I designed and built a battery powered, standalone, microprocessor controlled unit, which checks over 40 MIDI events and includes an error display if an overrun or framing error occurs in the received MIDI data.

MIDI, as most people know by now, is the acronym for Musical Instrument Digital Interface and is at present the universal standard for connecting and controlling electronic musical instruments.

MIDI data is transmitted or received as asynchronous serial data at a rate of 31.25K BAUD, with a format of 1 start bit, 8 data bits and 1 stop bit. The MIDI Out connection operates using a 5mA current loop.

Digital Circuit

The circuit is designed around the Motorola 6803 microprocessor, which contains 128 bytes of RAM, for the programme variables, a Serial Communications Interface, for interfacing to the MIDI in and thru connectors, eight parallel input/output lines, initialised as outputs to drive the LED displays via three 4 to 16 line decoders, and a three function programmable timer.

An internal clock generator with a divide-by-four output is also present. The processor allows the combination of two eight bit accumulators to provide operation of sixteen bit arithmetic. The 6803 CPU is backward compatible with 6800 software.

The operating mode of the 6803 is selected at power-on, or reset by the voltage levels present on the Port 2 pins, P20, P21 and P22. Mode 2 is selected, which makes use of the internal RAM and the multiplexed Data/Address bus.
Fig. 2 Flowchart for MIDI Analyser
The lower address byte has to be latched before feeding into the address bus. An output signal, the Address Strobe (AS), is provided to enable the latches in IC5 at the correct instant in time.

The EPROM is chip-enabled when address A15 goes high and fed to the active low input via NAND gate IC7D wired as an inverter and is capable of being read when the E pulse and the read/write lines of the microprocessor are both high and fed to the active low read enable line of the EPROM via nand gate IC7C. The EPROM is address decoded to a hex base address of 8000h to FFFFeH, allowing direct access to the interrupt vectors. The internal RAM is address decoded to hex address range 0000h to 00FFh.

The 4MHz crystal is divided by 4 internally by the microprocessor, to provide an E pulse of 1MHz and a clock cycle time of 1μs. The timing pulse E is further divided by 4 by the dual D-Type flip-flops, IC3a,b and fed to the external serial clock input on port 2 pin 2 (P22), where it is further divided to provide the correct MIDI baud rate. A 2MHz crystal could be used to generate the baud rate internally but then the clock cycle time would be increased to 2μs, which would not allow enough time between MIDI bytes for the various procedures to be calculated.

The MIDI IN connector is fed to IC8 optocoupler type CNY17, whose output is fed to the serial input P23 of IC4 and via inverting nand gate IC7A and transistor Q1 to the MIDI thru output. The remaining nand gate IC7b can have its inputs connected to ground or left floating.

Display

The display section consists of three 4-to-16 binary decoders which drive the 48 LED displays. The LEDs are arranged in a common anode mode, as the decoders have active low outputs to sink the required LED current, which is fed through the three limiting resistors R6,R7 and R8.

Power Supply

Power is provided by four 1.5V batteries and this 6V is fed to the CPU board, where it is reduced to 5.3V approximately via D4, which prevents damage to the circuit if the batteries are connected incorrectly.

Software

The operation of the software can be seen from the flowchart of Figure 2. First the reset vector is loaded from addresses at FFFEh, FFFFeH. Next, the serial and parallel ports are initialized. Then the Power on LED is switched on via the parallel port outputs, showing that the hardware and software initialization are operating correctly.

The software now polls the Receive Data Register Full (RDRF) pin in the Transmit/Receive Control and Status Register of the serial port and when this pin is set, the data in the Receive Register is examined, first for any overrun or framing errors, then for MIDI status.

If an error occurs, the software switches on the error display LED and returns to the start of the programme.

If the received byte is a status byte, i.e. the most significant bit (MSB) is set, otherwise the programme returns to the start. The software then tests for a MIDI system message by checking the top four MSBs and switching on the appropriate display LED.

Whenever the correct MIDI information has been determined and the appropriate LED displayed then the programme returns to the start to receive the next byte of information.

If the data was not a system message then it is a channel message, which is now decoded by the software and the appropriate channel number and channel message LEDs are displayed in a multiplexed mode until the next MIDI status byte is received, when the programme returns to the start.

Mechanical Details

The details for the front panel LED cut-outs are shown in Figure 5 and, when mounting the LEDs into the PCB, enough height should be left for clearance of the decoder ICs mounted.
in sockets. Also, the LED display PCB should be mounted so as to leave the LEDs flush on the front panel.

The label for the front panel can be created by photocopying Figure 6 onto a Xerox transparency and then gluing it in place.

MIDI Standard Messages

MIDI serial data flows at the rate of 31.25 kilobits per second and is organised into 10-bit words. The first bit is called the Start bit (which is always 0), the next eight are the desired information and the last is the Stop bit (which is always 1). The start and stop bits delineate the desired data and provide the required synchronisation, but do not carry MIDI information themselves. A complete word is transmitted in 320 microseconds.

The eight-bit MIDI data is contained between the start and stop bits. There are two main types of bytes, Status and Data. The lead bit of the status byte is always 1 and that of a data byte is always 0. This enables the microprocessor to distinguish between the two types of bytes and so make a corresponding decision.

So, a MIDI message consists of a status byte followed by 0, 1 or 2 data bytes. The MIDI message can be either a channel or system message. The channel message can be addressed to one of sixteen channels, whereas a system message is addressed to all channels. The channel message can operate either on channel voices or on channel modes. The system messages provide real-time, common or exclusive control of the MIDI equipment.
Fig. 4 MIDI Analyser Display overlay

Fig. 5 Details for LED cut-outs

NOTE: ALL DIMENSIONS ARE IN INCHES
MIDI CHANNEL

CHANNEL VOICE AND MODE MESSAGES

SYSTEM MESSAGES

PARTS LIST

RESISTORS
R1,2,3,4,5,11,14 10k
R6,7,8 560R
R9 2k2
R10,12,13 220R

CAPACITORS
C1 22µa
C2.3 22p

SEMICONDUCTORS
IC1,2,3 74LS154
IC4 74HC74
IC5 74HC753
IC6 M27C256B

IC7 74HC00
IC8 CNY17
IC9a,b 74LS74
Q1 ZTX300
B1,2,3 1N4148
D4 1N4001

MISCELLANEOUS
LEDs (48 OFF) 3mm diameter, pure orange type, Maplin order code CK36P;
4MHz crystal; Battery holder long 4AA Maplin order code HF29G; 2 OFF 5:
Pin Din (180) connectors; SPST switch; Plastic box 177 x 120 x 83 white or
light grey;
4 OFF AA or equivalent 1.5 volt batteries; IC holders 6 pin, 14 pin (2 OFF),
20 pin, 24 pin (3 OFF), 28 pin and 40 pin.

BUYLINES
Most of the components are available from many sources.
The 6803 microprocessor is available from Farnell, order code HD6803P. For a copy of the MIDI Analyser routine, send in an
SAE to ETI at the normal address.

PCB DESIGN SOFTWARE

RANGER 1
XT/AT PC
Circuit — PCB
From Circuit Design
Through to Artwork
In One Package!

£100
Fully Integrated
AutoRouter

£50
Exchange your easy PC
For a free AutoRouter

RANGER 2
XT/AT + 386 PC
It has all the features you will ever need
at an outstanding price. But now with a new 2
layer 386 Ripup & Retry AutoRouter

£599
Option Pack 100% Router
Simultaneous 6 layer Ripup & Retry
AutoRouter with via Minimisation.
Autocad DXF in & out. GERBER in.

£350

Call us for details & demo disk on 0705 591037

Seetrex CAE, Hinton Daubney House, Broadway Lane, Lovedean, Hants. PO8 0SG
Tel: 0705 591037 Fax: 0705 599036
With some consoles, it is possible for the channel input to come from a third source (Mic and Line being the other two). This source is labelled Sub or something similar and is sourced from the bus output associated with that channel strip. In other words, pressing the Sub button on, for example, Input/Output module 3 would access bus 3. If there was a collage of three sounds mixed onto this bus via the group routing matrix, Channel 3 fader could control the level for all three simultaneously. This is a very powerful facility to have. Every input channel has an associated output jack. In effect, a 24 input desk is also a 24 (track) output desk and could be connected to and used with a 24 track machine. It is obviously not economical of tape tracks to allocate one sound to an individual track. This is where the Bus or Sub routing comes in, since it enables 16, 24, 32 or 48 track recording with a much smaller bus/routing system. Tracks on which only one sound will be recorded are sourced from the channel output jacks. Where a collage - group - of mixed signals is required, the sounds are sent via the group routing matrix onto the relevant bus.

The bus amp sums the signals, this group is accessed via the Sub button associated with that particular bus and they can then be inputted to a channel as a mic or line might be. This sub-group signal could then be further mixed with another group or sub-group or sent directly to bus and from there onto a tape track. It is obvious that with this particular track sourcing/routing system, a much smaller routing matrix/bus is required for a given number of multitrack tape tracks when compared to a split architecture of similar track capability. Figure 5 shows a sub-group routing configuration.

Mixdown

Mixdown is when the multitrack master tape is mixed down to stereo. The split console normally employs some sort of switch in the input channel architecture which allows the 'normalised', dedicated tape returns from the multitrack to be inputted to the console on a channel by channel basis. Track 1 is normalised through to Channel 1, 2 to Channel 2, etc. This arrangement avoids the need to carry out a lot of messy repatching of the multitrack outputs.

By this time, all of the musicians will have left the studio and the best must be made of the sounds captured on multitrack. Now is when individual sounds from the various tracks can be tailored in accordance with the producer's/artist's wishes. Consequently, all of the facilities available on the channel strip will now be put to good use. Many different permutations of EQ, FX, level, stereo position, etc., can be experimented with since the original sound is now captured safely in the multitrack tape domain and cannot be harmed. This procedure is repeated over and over again, instrument by instrument and track by track until an acceptable mix of the session has been captured in stereo. Mixdown sessions often last all day and all of the night, to paraphrase The Kinks, with the engineer trying to recapture the mix which was 'almost' right eight hours ago. The monitor sections are now no longer in active use and can be employed as extra inputs for line level sources such as synthesisers or FX returns.

The in-line console handles Mixdown in much the same way, with all of the channel facilities flipped across into the tape return path. Again, the monitor sections can be used as extra inputs. This is where the in-line architecture can again score highly. A 24-input desk has 24 channel inputs and 24 monitor inputs. Even if it's only an eight bus system. This equates to 48 inputs at Mixdown (plus, of course, the FX returns). A 24 input, 8 bus split console, on the other hand, will have only 24 channel inputs and 8 monitor inputs, equating only to 32 inputs at Mixdown. The advantages of the in-line console in this aspect are there for all to see. A further advantage inherent to the in-line architecture is in the provision of facilities to direct audio from the output of the channel (large) fader via the small fader to the multitrack routing matrix. The bus outputs can be used as extra FX sends and connected to FX units. Obviously with this arrangement, and subject to certain other constraints, the engineer has access to a possible 8 or 16 or 32 extra FX sends. Conversely, the monitor inputs on a split desk have access only to perhaps 2 or 4 Aux Mix busses for the purposes of FX sends and the limitations are obvious.

Some of the more up-market desks arrange for the EQ to be split into two sections - parametric (2 or more bands only) and shelving. To be entirely flexible, the parametric sections must be able to sweep from low bass frequencies up to high treble and so will be able to cover those frequencies more usually associated with the shelving equaliser, i.e. extreme LF and extreme HF. Conversely, it is useful if the centre frequency of the shelving equaliser is able to be swept up - in the case of an LF section - and down - in the case of an HF section - to the centre frequencies. In this way, they extend into the range of frequencies more usually covered by the parametric. Whichever signal - monitor or input - requires the more flexible of the two equalisers (usually that coming off the tape) will have the parametric inserted in its path while the other, the shelving equaliser, will be used during Mixdown with the signal inserted into the desk on the spare, line input (e.g. a synthesiser). This facility isn't available on all in-line desks, but in those where it is available, the amount of added flexibility is easy to see. Figure 5 shows how Mixdown is achieved in both types of desks.
Tape tracks replaying from the multitrack are inputted to console via the tape return jacks. Master switching (mixdown or master channel flip) or local A/B monitor controls route the signal through the channel (as opposed to monitor) pathway of the channel, the monitor channel input may be used as an extra input (FX return or synth) and depending on how much EQ is desired (or not) the shelving EQ may appear in the 'monitor' path, the large fader controls the level in the MP, stereo routing. Signal may be assigned to one of the Mf busses which in turn can be used as an FX send.

Tape tracks replaying from the multitrack are inputted to the channel line inputs via 'normalised jacks.' The group/monitor tape returns input is now redundant and can be used as an extra line input or FX return during mixdown.
Fig. 5. Front and spill methods of overdubbing.
Track Bounce, Sub-Grouping and Free Grouping

All of the above are facilities/configurations incorporated into the console to maximise the flexibility of it and other outboard equipment such as the multitrack, while using as little electronics as possible.

Track Bouncing

Track bouncing is a long established and often used way of fitting the most amount of information on to the least amount of tape. Before large multitrack machines were available, it involved machine to machine overdubbing. At present, it frequently involves track to track bouncing on the same machine, although on a 'heavy' session—a television show recording of a band/vocalist, say—two or more multitrack machines may be linked and synched together for overdubbing. For the uninitiated, the process involves the storing of original, first generation sounds on discrete tracks of the multitrack, tracks 2, 3 and 4, say. These tracks are then replayed via the appropriate monitor sections, the three tracks are mixed together and then recorded onto another track (1). It is a technique often used with the smaller multitracks (4 or 8 track, for example) and by amateur musicians, who very quickly exhaust the tracks available for recording. Nonetheless, it does find uses in bigger, professional console/multitrack set-ups. The drawback is that there is a very definite limit to the amount of bounces which can be achieved before the generation losses caused by each successive bounce means an objectionable loss of quality. (In theory, digital multitracks should enable completely lossless track bouncing and therefore the availability of an indefinite number of track bounces). Despite the shortcomings inherent in track bouncing with analogue machines, it is a very powerful facility to have and has proven its versatility over the years in many commercially successful mixes - the Sergeant Pepper album is a prime example of a bounced four track recording.
Subgrouping and Free grouping

These use many of the same philosophies and elements as the track bounce pathway switching (an example of the versatile and economical deployment of the console electronics). Free grouping involves a system like that shown in Figure 8. The group select switches are shown represented by rotary types, but this is in the interests of simplicity and different types may well be used in their place. The group selection matrix can place signals onto any one of the group mix busses or itself be sourced from a particular bus. In this way, and in the example shown, three signals are mixed onto the bus, via the relevant group selectors, where the fourth group then accesses them and places them onto another bus. In this way, the Group 4 fader acts as a grand master for the other three. Sub-grouping achieves a similar effect in a slightly different way. This system finds uses where, for example, all of the backing vocalists must occupy only one stereo pair of tracks. The levels of the individual vocalists are set using their relative group faders, while the level of the collective backing vocalist mix is controlled with the final 'grand master' group fader.

To sum up, the console designer is trying to eliminate wherever possible repatching and replugging in normal use of the desk. Certain unusual circumstances might dictate that pluggery is necessary, but if it has to be done for the simplest of arrangements, or of-repeated configurations, then either the designer has come up with a bad product, or one which isn’t user-friendly, or the engineer is using the desk in a situation for which it was never intended. Comprehensive jackfields placed within easy reach of the engineer make life a lot more bearable when sources have to be swapped. Unfortunately, these are expensive and normally found only on the more upmarket desks, the type where routing capabilities have been well-thought-out and a patch bay is a nicety, rather than with cheaper desks, where it may well be considered a necessity.

References
Dove, Steve, Consoles and Systems, The Audio Cyclopedia (edited by Glen M. Ballou), SAMS
LAST MONTHS OFFERS

AMSTRAD MP3 £19.00
VHF/UHF TV Receiver, converts RGB or composite monitor into colour TV. Brand new and boxed.
Our Price: £19.00
Our Ref: ET19P1

INDUCTIVE AMPS £5.00
Made for amplifying a telephone handset for the hard of hearing. However if you hold one against a piece of wire carrying a telephone conversation you can hear both sides of the conversation! It can also be used for tracing live wires in a wall or detecting cables carrying mains etc. Fully tested complete with battery and fixing strap.
Aprox 2.5" diameter 1" thick.
Our Price: £5.00
Our Ref: ET5P1

CRODLESS PHONES (non working) £30.00 for 3
These are BT Curlews. They are not new and have been stored in sunlight so the plastic cases are discoloured. They also have the handset missing. This is a standard telescopic aerial - a piece of wire will do! These are NON RETURNABLE!
Our Price: £30.00 for 3
Our Ref: ET30P1

DISC DRIVES BBC MOD £9.00
JVC 3.5" drive supplied with well explained modification details to enable use with a BBC computer. Price includes drive and data.
Our Price: £9.00
Our Ref: ET9P1

RABBIT VIDEO SYSTEM £29.00
Enables video/audio signal to be received on any TV in the house. Use VCR remote with any TV (even non-remote) to control VCR functions downstairs etc. Transmits via 2 wire system. Retail at £60.00.
Our Price: £29.00
Our Ref: ET29P1

CTM644 COLOUR MONITOR £79
Refurbished monitor suitable for many home computers standard RGB input. Our Price: £79.00
Our Ref: ET79P1

THIS MONTHS BIG OFFERS

100W DOOR/SHELF SPEAKERS
Hi-fi quality 3-way co-axial flush mounting speaker system. Unique design gunmetal and blackgrille. 100W max. power handling per speaker. Frequency response -60-20000kHz.
Speaker size 6.5" woofer, 2"mid, 1" tweeter
Impedance = 4 Ohm
Mounting Depth = 59mm
Our Special Price: £23.99
Our Ref: ET24P1

3 BOTTTON LOGITECH MOUSE
Originally made for the Acorn Archimedes but could be easily adapted for other machines. Pin details are supplied. NO SOFTWARE.
Our Price: £4.99
Our Ref: ET5P2

5 VOL T 4.4 AMP PSU
A compact switching mode PSU with on/off switch, selectable voltage input 110/240. NEW! Via fly leads GOOD STOCK AVAILABLE
Our Price: £4.99
Our Ref: ET5P3

PATTERN MOVEMENT DETECTOR
Once again we have acquired stocks of this popular line and are able to offer you a very high quality and professional detector at only **£15.00**. Range: 20 Mtrs with a 90° arc
Day and Night mode. Dimensions: 15cm x 9cm x 11cm
New and boxed complete with installation guide.
Our Price: £15.00
Our Ref: ET15P1

FEEDBACK ELECTRON AC PSU
19V AC 14W very easily adaptable simply add a small bridge rectifier, 3 pin plug in.
Our Price: £2.99 each
Our Ref: ET3P2

SOME OF OUR PRODUCTS MAY BE UNLICENSEABLE IN THE UK

BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 5QT
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £3.00 POST PLUS VAT.
PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
TELEPHONE ORDERS WELCOME
TEL: 0273 288969
FAX: 0273 323077

IN SUSSEX?
CALL IN AND SEE US!!

THESE AUTUMNS FASTEST GROWING MEDIA!
CD ROM DRIVE
The Mitsumi CD ROM DRIVE will realise the true potential of your computer. Once installed through Microsoft Windows 3.1 over 500MBbyte of data can be stored on a single disk, but it is a read only medium. A vast library of CD ROM disks are available from a wide range of suppliers and titles include all encyclopedias. This unit can also reproduce HiFi quality music CDs and delivers high resolution digital pictures. The Mitsumi drive is Kodak CD compatible enabling you to transfer 35mm film onto a CD, a process undertaken in the chemist or with a Kodak CD lab. View your holiday photos on your computer monitor using the ROM DRIVE.

OUR PRICE: £169.00
OUR REF : ET169P1

WE also stock the following titles at £29.00 each:
Wing commander RE:ET29P1, Guinness Disc of Records REF:ET29P2
World Atlas REF:ET29P3
and Sherlock Holmes REF:ET29P4

MANY MORE SPECIAL OFFERS
IN OUR REGULAR NEWSLETTERS

WE HAVE HUNDREDS AND HUNDREDS
MORE STOCK LINES - TOO MANY TO LIST IN ONE ADVERT CHOOSE FROM:
AERIAL AMPLIFIERS
AEROSOLS
ALARMS
AMPLIFIED SPEAKERS
ANALOGUOUE MULTIMETERS
APPLIANCE LEADS
BATTERIES AND HOLDERS
BATTERY CHARGERS
BOOKS
CABLES AND CASES
CAMERARD BITS
CAPACITORS
CAR AMPS, RADIOS & SPEAKERS
CARPET SHIRTS
CONNECTORS
DESIGNER PLUMB
DIGITAL MULTIMETERS
DISCO LIGHTING
DISPLAYS
DUMBING KIT
DVB BOXES
ELECTRIC PLUMB
ENGREY WARES
ERS

IN SUSSX
CALL IN AND SEE US!!

TURN YOUR SURPLUS INTO CASH. IMMEDIATE SETTLEMENT WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE.

MUCH MUCH MORE IN OUR 1993 CATALOGUE PLEASE SEND 41P, A4 SIZED SAE FOR YOUR FREE COPY.

BECOME A CUSTOMER TODAY!
LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

8088 XT - PC39
286 AT - PC286
386 AT - PC386

- 256k RAM - expandable to 640k
- 4 MHz speed
- 360k floppy drive
- 2 serial & 1 parallel ports
- MS-DOS 4.01

NEW BRAND AND BOXED!

- 460k RAM expandable with standard SIMMS
- 2 serial & 1 parallel
- 2 meg hard disk
- 1.2 meg 5-1/4" floppy
- 1.4 meg 3-1/2" floppy
-EGA driver on board

Only £249.00

- Power One SLP200-5200P 200 watt (50w peak) Semi open frame giving +5v 35a, +5v 1.5a, +12v 5a, fully regulated with over voltage protection on the +5v output. AC input selectable for 110/240
- Vac. Dims. 13" x 3" x 2.5". Fully guaranteed RE£. £50.00 (B)
- Astec AD-8151 40watt 70v. Mode. 5volt 2a, +5v 20a, 12v 1.5a. Switch mode. £95.00
- Newton Derby 400 Hz 70v. Mode. 5volt 2a, +5v 20a, 12v 1.5a, +12v 1a. The power supply is designed with the best of American technology. £245.00 (4)
- Greensdale 300BO 60 watt switch mode.4v 12v 2a, 12v 1a. The Aluminium casing makes it very light and compact. £92.95 (B)
- MAC James 400BO 120 watt switch mode.3v 6v 5a, 12v 5a. The Aluminium casing makes it very light and compact. £140.00

Only £249.00

- The Philips SC9M73 is specified for the PC386 and the CM8673 for the PC386. Either may be used in the PC286 if a suitable card is inserted. At this price it is at the cost of £49.00
- EGA/ VGA card with back up battery back up

Only £249.00

- 14" Frontpoint Model MT-9650 SVGA 14" Monitor. Model No. 102 of 766.06 pitch. "Test" switch for word processing etc. Overall size 9" wide x 13" high. Ideal for use on PC286 with SVGA card added. Also compatible with BBC, Amiga, Atlan (including the micro monochrome resolution mode). All monitors etc. In good used condition (possible minor screen burn). 90 day guarantee. 15" x 12" x 1". Only £119.00(B)
- 4 Philips Model MBM73 VGA multisync with 640 x 480 resolution. CGA, EGA or VGA, dual port, switch selectable. £195.00. Sound with volume control. There is also a special "Test" switch for word processing, spread sheeting etc. All monitors etc. Are in good used condition (possible minor screen burn). 90 day guarantee. £90.00

FLOPPY DISK DRIVES

5 1/4" from £22.95 - 3 1/2" from £21.95!

Massive purchases of standard 5 1/4" and 3 1/2" drives enable us to present private products at industry beating low prices! All units (unless stated) are removed from Desktops and are fully tested and aligned. All are be provided to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM PC compatible (if 310G) supported.

3.5" Panasonic JSY03/ 720k or equivalent £92.95 (B)
3.5" Mitsuhihi MF355C-L 1.4 Meg. Laptops only £89.95 (B)
3.5" Mitsuhihi MF355C-L 1.4 Meg. Non Laptop £105.00
3.5" EXTRA SPECIAL BRAND NEW Mitsuhihi MF516B
360k Absolutely standard fits most computers £22.95 (B)

Data cable included in price.

Shugart 800/801 SS refurbished & tested £170.00
Shugart Model 800 SSAL double sided drive £175.00
Mitsubishi M2814/63 double sided switchable hard or soft sectors - BRAND NEW £220.00

End of line purchase. Brand new NEC DEC 5 1/4" 8 1/2" switches enable a wide range of hard and soft stored CPUs. Ultra high transfer and access time leaves the good old ST4/5 interface standing. In mint condition and comes complete with manual. Only £229.00

THE AMAZING TELEBOX!

Converts your colour monitor into a QUALITY COLOUR TV!

The TELEBOX consists of an attractively designed mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as IBM, Compaq, Apple, Compaq, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into video recorders (TELEBOX MB) or push button controls on the rear panel for direct connection to most makes of monitors. For complete conversion - even for monitors without sound - an integrated 4 watt audio amplifier and low level Hi-Fi audio output are provided as standard.

- 9" colour TV
- Front Panel controls for on the spot adjustments
- Built in 32 r.p.s. Colorbar - ideal for testing your monitor's performance!

Only £29.95 or 2 for £53 (P)

- Microline 138. NLD 117x17 matrix. Full width. £139.00
- Hyunipan 138. Korean Full width, £139.00
- Gume Letter Pro 20 daisy. GUM 120 interface. £39.95
- Centronics 159-2. 9 pin Centronics. £16.00
- Centronics 159-7. 7 pin Centronics. 9.1-9.2 width. £15.00
- Pack 2 £275.00 (P)

19" Rack Cabinets

Massive Rebuilds

Virtually New, Ultra Smart!
Less Than Half Price!

Top quality 19" rack cabinets made in UK by a leading manufacturer. Facilities include adjustable shelving, rear cable management, new fully adjustable shelves, etc., all in a cost effective package. Very good condition. £259.00. In excellent condition with full 90 day guarantee. Only £249.00

- Rack 1 £50.00
- Rack 2 £55.00
- Rack 3 £60.00

For CALLING ON PRICES send your order now!
Keeping time in music has long been a requirement of students keen to learn their chosen instrument. There are, of course, several ways of achieving the same end. You can tap your foot on the floor, count evenly in your head (or aloud): enlist the eager help of a friend to beat a drum or biscuit tin lid; or you can use a metronome.

The traditional, age old, pre-electronic metronome is quite elegant in appearance and exudes a certain character reflecting the craftsman-like care with which it was built. The familiar pyramid case is made from pearwood or mahogany. A pendulum swings from side to side, producing a consistent rhythmic tick at each change of direction. The tick automatically denotes each beat within each bar of music, thereby freeing the musician to concentrate on his playing technique.

The electronic cousin presented here offers the degree of beat accuracy available from simple electronics. The pendulum is replaced by a light display that uses nine light emitting diodes. A loudspeaker gives audible indication of the beats. An additional feature is provided by counter circuitry which enables one beat within each bar to be accented. On the environmental front, the mahogany case is replaced with one of grey ABS. A good or bad thing dependent on your point of view!

Circuit building blocks used in this design may indeed prove useful for many other applications.

Design Considerations

The initial design requirement concerned the problem of how to emulate the swinging pendulum idea. Retaining this may seem pointless to some of you, but closer consideration will yield an important benefit. The visual 'swing' actually helps to convey the sensation of passing time just as readily as a consistent tick. The swing may even allow the next beat to be anticipated, which must surely aid, not hinder the musicians' performance. Provision of the means to suppress audible ticks might also prove useful in some instances, the LED display then maintains indication for silent running.

The final design uses nine LEDs. This means that the fifth LED is exactly in the middle (top dead centre) and thus denotes half-beat time. Full beat indications are shown by the first and ninth LEDs.

Why not have green lights for these latter two positions to highlight their importance?

The common red LED is used for LEDs 2 to 4 and 6 to 8 inclusive. A red or green LED may suffice for LED5. Essential for any metronome is the ability to vary the beat rate, or tempo. This is provided by adjustment of a single potentiometer labelled Tempo.

The Circuit

The circuit diagram is shown in Figure 2. The beating heart of this metronome is based upon IC1, a 4510 CMOS programmable up/down BCD counter. The logic level on IC1, pin 10 determines the count direction. Logic 1 (+Vcc volts) makes IC1 count from binary 0000 to 1001 on successive clock pulses at pin 15. Logic 0 at pin 10 ensures a count down from 1001 to 0000.

In the metronome we need to count upward (to the right) then change direction and start a count down, back to the left
Fig. 2 Circuit diagram

HOW IT WORKS

Astable IC3a continuously clocks binary up/down counter IC1. IC2 decodes the BCD output from IC1 and turns on LED1 at power up. Successive clock pulses cause the nine LEDs to be lit separately in turn.

Initial logic 1 output of bistable IC3a, IC3b allows IC1 to count up (LED1 to LED9). When led 9 is ON, Q9 collector goes low (OV) and resets the bistable. Pin 10 of IC1 is taken to logic 0, allowing a count-down (LED9 to LED1) to begin on the next clock pulse. Transistor Q9 also triggers clock-mono IC3d, IC4a by logic 0 through diode D1. Transistor Q10 turns on for time defined by C5-R15. The rising edge appears at IC5 clock input, pin 14 and steps the counter from output '0' to '1'.

While Q10 collector is high, it enables tick-astable IC4b causing the audio tone to be heard from LS1.

IC1 begins counting down at the next positive pulse from IC3c. When minimum count (LED1 On) is reached a fast logic 0 pulse from IC1 pin 7 sets the direction bistable output back to logic 1. At the same time the clock-mono is re-triggered at IC3d, pin 12 giving another audio beat and clocking IC5 again so that output '2' now goes high.

When LEDs is lit, at the next count-up, another beat is heard and IC5 output '3' goes high. This potential (assuming SW2 is set to '3') modulates tick-astable IC4b causing the audio beat-tone to change frequency. When Q10 collector returns to OV reset-mono IC4c, IC4d is fired and IC5 is reset. At the next beat pulse (from clock-mono), IC5 starts its cycle from '0' again.

Diodes D2 and D5 are for protection purposes, so that the respective NAND gate inputs do not go below -0.6V when the capacitors discharge.

Transistor Q11 is biased into cut-off and negative going pulses from IC4b are coupled through C6 to operate Q11 for the period of the tone burst.

Components R1, ZD1 provide supply regulation for the counter and timer circuitry. The tone burst, or tick is muted by opening switch SW1b.
end of the display. The direction change is needed at minimum count (LED1 lit) and at maximum count (LED 9 lit). Fortunately pin 7, IC1 provides a brief but useful single pulse output when the count is at 0000. This pulse is taken to a bistable formed by IC3a, IC3b.

The other bistable input is taken from LED9. The bistable is triggered whenever one of its inputs sees a momentary logic 0. This conveniently toggles the bistable between its two output states, at the extremities of the count. It therefore serves well to program the up, up, down, down action of IC1.

Integrated circuit IC2 is a 4028 CMOS BCD-to-decimal decoder. Only one of it's ten outputs (Q6 to Q9) will go high for each distinct binary-coded-decimal code presented at input lines A, B, C and D. Note that when output Q8 is high, the next clock pulse at IC1, pin 15 will cause Q7 to go high.

This means unused output Q9 never sees the light of day since the direction bistable has already been toggled to initiate count down.

Tempo control RV1 is in the feedback loop of a Schmitt trigger-action NAND gate astable multivibrator which, in it's simplest form, needs only two discrete components for correct operation. The output of this astable provides regular clock pulses to IC1, pin 15 clock input. The tick itself is produced by another Schmitt NAND astable, IC4b. This is gated on momentarily by monostable IC3d, IC4a whenever LED1 or LED9 is on.

Transistor Q10 also feeds positive monostable pulses to the clock input (pin 14) of IC5, a 4017 CMOS decade counter. At power-on counter IC5 is reset by a short capacitive pulse through C10.

IC5 counts successive rising edges from the monostable output at transistor Q10's collector.

Switch SW2 is used to select the required beat that is to be subtly accented. At the third beat, IC5 output goes high; at the fourth beat output 4 goes high - and so on. In this way all outputs of IC5 could go to a selector switch, but this would then become impractically large. Five selectable outputs are chosen to give a useful range.

Resistor R20 applies the selected counter output voltage to the 'tick' astable IC4b. When the selected output is low, i.e. at 0V, R20 has no effect. Reverse biased diode D4 ensures this and the tick tone from loudspeaker LS1 will be at the fundamental frequency defined by R19 and C7. When the selected output assumes logic 1 (+Vcc), this potential is impressed upon the astable time constant. The result is perceived as a slight fall in the tone of the tick. The tick duration corresponds to the active high level from Q10 collector. A following logic 0 seen at IC4b pin 5 disables the tick astable and LS1 is silenced.

Changing the value of resistor R19 will alter the tick astable frequency. For best results the relationship between R19 and R20 should be such that R20 is equal to, or greater than (2×R19). Values of R20 lower than this may cause inadequate operation of the astable.

The clock-mono, IC3d, IC4a standardises the tick period. As the tempo is increased the pulse width at Q9 collector narrows. Conversely, as tempo is made slower, the pulse width available at Q9 collector becomes wider. Without this clock-mono, this would give short or long tick durations according to temp rate. The clock-mono also lengthens the very narrow pulse from IC1 pin 7, so that a beat can be heard at minimum count.

Since we want counter IC5 to reset after the selected count, call this 'n', a further monostable built around IC4d is necessary. Reference to Figure 1 timing diagram will make this point clearer. Figure 1(a) shows the clock-mono, output; the rising edge corresponds to the selected 'n' count clock pulse. Figure 1(b) is the 'n' output of IC5 going high, nanoseconds after the 'n'th clock transition. This selected output enables NAND gate IC4d whose monostable action is fired only when clock pulse 'n' falls back to 0V. Transistor Q12 inverts the pulse and a resultant +Vcc reset appears at IC5, pin 15, shown at Figure 1(c).

This always occurs at the start of a negative clock period to be sure that counting is resumed on the very next rising clock edge.

Note that time constant R21×C9 sets the reset-mono pulse width - which must be much smaller than any negative clock period (10 to 20µs is used). If the selected 'n' line were directly coupled to IC5 pin 15, the accented beat would not be heard.

Output transistor Q11 is normally cut-off and is only biased on for falling edge pulses from IC4b. When tick-tone is disabled, emitter of Q11 will be approximately 9V whereas IC4b, pin 4 will be at 6.2V. Capacitor C6 is thus needed to isolate the DC offset to prevent a large DC current flowing through the loudspeaker. Diode D3 limits the base-emitter reverse bias on Q11 to 0.6V, during the discharge cycle of C6.

Zener diode ZD1 provides simple voltage regulation to ensure consistent beat accuracy throughout the life of the battery.

Construction

Using the design given, construction of the PCB is straightforward. It may be wise to use sockets for the ICs, especially if you are unfamiliar with handling static sensitive CMOS chips. Begin assembly by soldering links LK1, LK2 and LK3 using single core wire. Solder in place all resistors and diodes ensuring correct polarisation. Use the component...
Overlay Figure 4 as a guide. Next, fit and solder capacitors C9, C10, C8, C2 and C3. Now fit polyester layer caps, C5, C7 and C4, taking care not to damage the leads. Electrolytics C1 and C6 should be checked for correct polarity before soldering. Fix transistors Q1 to Q9. Flatten the leads on the solder side first before soldering and cropping off excess. Do the same for Q10, Q11 and Q12; the flat on each body points away from IC1. The ICs can be fitted now or after fixing the connecting wires. The prototype does not use terminal pins but they can be used if preferred. A length of 10-way ribbon cable (about 7 inches) provided a neat solution for the PCB to LED display wiring. A 6-way length to switch SW2 was also used. The wires from P6 and P9 are best kept as short as possible and twisted together. The four wires to SW1 are best soldered before mounting the switch in the case. Wire the battery clip to P1 (black) and S1a (red) then solder two wires to P4, P5.

Case

The prototype case has internal dimensions 144 ≈ 84 ≈ 50 deep (mm). The PCB needs only to be fixed at two diagonally opposite corners. Plastic spacers 6mm long and M2.5 or M3 countersunk head screws give good fixing. Two further spacers can be glued on the underside of the remaining corners to provide support. Fix the PCB towards one end of the case, allowing the battery to sit at the other (lower) end in normal use. Drill a 6.5mm hole in the centre of the case top (see photo) to take SW1 which may then be fitted. Make holes in the case lid for the LEDs and controls. The template,
shown actual size in Figure 3, defines the LED centres used on the prototype. It also indicates the centre for LS1. A matrix of drilled holes in the lid allows sound to propagate from the loudspeaker. Drill two holes, each 9mm diameter for RV1 and switch SW2 then bolt these directly to the lid. The loudspeaker can be fixed by various means: glue, twin-stick tape and metal brackets are three examples. The nine 5mm LEDs are clipped into holders. On the lid underside, the LED anode leads are bent over at right-angles then soldered together. This is the common-anode connection to P3. The nine remaining ribbon wires go to their respective LED cathode leads. Crop these to a length of 5 to 10mm. Solder the P4, P5 wires to RV1. Finally solder P15 wire to a pole of SW2 and P10 to P14 wires to consecutive switch tags.

Testing and Setting Up

Before connecting the battery, do a quick check to ensure there are no short circuits between +Vcc (P2) and 0V (P1) supply rails. Use a multimeter set on a low ohms range. Some multimeters will feed 2V or so to the +ve probe on a particular low ohms range. This may be sufficient to check that each LED, 1 to 9 inclusive is correctly polarised. Placing +ve probe on LED anode and -ve probe on cathode will light the LED under test.

Set the tempo control to approximately middle position and turn switch SW2 to select '3'. Now connect the battery and switch SW1 so that sound is muted. The display should immediately spring into action. LED1 will be lit first, followed by LED2, then 3, 4 and so on. Upon reaching LED9, the direction will reverse and head back toward LED1. No two LED’s should be lit simultaneously. Now adjust the tempo and check that the rate of ‘swing’ can be slowed and then quickened.

While the light dances from side to side, flick switch SW1 to ‘sound on’. An audible beep should now occur coincident with LED 1 On and LED9 On. If this is not the case, recheck your values of R19 and R20 and correct polarisation of D4. If no beep is coincident with LED9 On, check for correct polarisation of diode D1.

Within a short time of throwing mute off, it will be clear that one beat is of differing tone to the other two. This is the accented beat. Try selecting beats ‘2’, ‘4’ then ‘6’ and count to see that the correct beat is accented. If no accented beat is present for any setting, check that Q12 collector-emitter junction is not short circuit and that diode D4 is correctly sited. An accent on every tenth beat only suggests that the reset-mono is not functioning. Check that D5 anode goes to 0V before suspecting IC4.

Absolutely no beat is symptomatic of the lock-mono not working. In this instance, check D2 polarisation and C5, R15 values before changing IC3 or IC4.

In Use

Before putting the metronome to good use, it is advisable to calibrate the tempo adjustment, RV1.

Only a few rates need marking on the front panel around the tempo control knob. The markings serve to give a reasonably good initial setting. Real accuracy can only be obtained by counting beats (ticks) in a fixed time period, one minute being the norm (giving beats per minute).

To find the 60 beats per minute mark, rotate RV1 until exactly 30 beats are heard in any 30 second time period. Then simply fix a 60 number or other marking adjacent to the pointer position.

Faster tempo rates, for example 100 beats per minute and higher might be more easily found by counting beats in a 15 second period. In this case, exactly 25 will be heard at the 100 beats per minute setting.

Four or five calibration points, found and marked in the fashion just described may be perfectly adequate.

During normal use, intermediate tempo settings can be estimated.

Some notes may be useful regarding a particular hardware adjustment. The clock-mono output pulse width is determined by C5 and R15. This positive pulse enables audio tick output. Resistor R15 value may be increased to extend the tone duration. However, bear in mind a limitation. At the fastest tempo, the tone duration should be less than the time for the display to travel from LED1 to LED9. Otherwise the correct beat registration is lost.

PARTS LIST

RESISTORS - 0.6W for 1/4W

- R1: 330Ω
- R2: 1k
- R3,4,5,6,7,8,9,10,11,20: 3k
- R12,17,23: 47k
- R13,21: 22k
- R14,19: 10k
- R15,16,22: 100k
- R18: 3k
- RV1: 1M Linear

CAPACITORS

- C1: 47µF 16V Electrolytic
- C2,3,8,10: 15µF polyester or ceramic
- C4: 1µF poly. layer 5% 100V
- C5: 100n polyester 10%
- C6: 10µF 16V Electrolytic
- C7: 150µF poly. layer 5% 250V
- C9: 10 ceramic or mylar film

SEMICONDUTORS

- ZD1: BZY186C6V2 6V Zener
- D1,2,3,4,5: 1N4148
- Q1,2,3,4,5,6,7,8,9: BC547
- Q10,11,12: BC557
- IC1: 4510
- IC2: 4028
- IC3,4: 4030
- IC5: 4017

MISCELLANEOUS

- SW1: Two-pole changeover switch, (centre-off)
- SW2: Two-pole 6-way rotary switch (one pole not needed)
- LED2,3,4,5,6,7,8: Red 5mm
- LED1,3: Green 5mm
- LS1: Miniature loudspeaker, 64R impedance
- Printed Circuit Board
- 9V battery (e.g. PP3)
- Battery clip
- Case
- Connecting wire
- 0.5 metres of 10 way Ribbon cable (optional)
- Vero-pins (optional)
- 3 16-pin IC sockets (optional)
- 2 14-pin IC sockets (optional)

BUYLINES

A complete kit, including all miscellaneous items (except battery, Veropins and IC sockets) and PCB, case, control knobs, ribbon cable, transfers and templates is available for £21.25 +£1.50 postage and packing (227.75 total, VAT inclusive) within the UK. Alternatively, the PCB is available for £4.40 +£0.40 postage and packing (VAT inclusive)

Please send payment, cheque or postal order to Electrotek Developments, 13 Camarvon Grove, Carlton, Notts NG4 1RP
Digital Television News

DTV down to 3Mbit/s - Digital Compression Squeezes Even Harder

IC Research Open Day lifts the veil on the latest progress in Digital TV, and gives a glance at some of the others ‘goodies’ now in the research labs.

Readers learned earlier this year (ETI April ’93) that the ITC had demonstrated live over-air transmissions of widescreen enhanced digital television programmes at a data rate of about 10Mbit/s from its transmitter sites in Devon, representing a more than twenty-fold reduction in the data rate coming from the digital studio. At a series of ‘open days’, designed to show how ITC engineering research works, and the achievements it has made during its first couple of years of operation, this work was taken even further and transmissions were made from Crystal Palace, the main London Transmitter. Demonstrations were also given of digital pictures coded at the incredibly low data rate of just 3.5 Mbit/s, the sort of data rates that could be recorded on simple domestic ‘VCRs.

Jim Slater reports on the various exciting developments that were to be seen at the exhibition.

Changes in Broadcasting Research

Although the effects of the Broadcasting Act 1990 have given rise to acres of press coverage, one of the act’s most significant proposals has been virtually ignored. Prior to its breakup and ‘privatisation’, the IBA had been one of the world’s foremost broadcast engineering research establishments, and there were real fears that the private company, National Transcommunications Ltd would not wish to spend anything like as much time or money on the ‘blue skies’ research that IBA had traditionally carried out. After much well-targeted lobbying by those who understood the importance of engineering research to the future of this country’s electronics industry, an interesting arrangement was finally arrived at. The ITC, whereby the Commission may ‘promote the carrying out by other persons of research and development work relating to television broadcasting’. Effectively, then, the ITC may not actually carry out its own research work, and so the ITC takes money from the Channel Three licence holders, currently some £2 million per year, and uses this to place specific research contracts with other organisations. The open day at the ITC’s London HQ was the first time that the results of this policy were shown publicly, and the numerous demonstrations and stands manned by different contractors were a good indication that the system, very different from anything that has gone before, seems to be working well. The title of the technology exhibition was ‘Working with Industry to Research the Future’.

Digital Transmission

For those of us who are keenly watching the fast moving developments in the field of digital television transmission, the demonstrations of the ITC sponsored work being carried out by National Transcommunications Ltd were fascinating. Without affecting the existing four television services on UHF Channels 23, 26, 30 & 33 from the Crystal Palace transmitter in any way, the researchers managed to squeeze into Channel 28 a completely separate widescreen 625-line digital programme channel. The first demonstrations that were shown used a data rate of about 10 Mbit/s, and the picture quality on the large widescreen displays was superb; the 39’’ Sony monitor provided up-converted pseudo 1250 line pictures, and the 36 inch Nokia widescreen receiver showed clearly just how well the current generation of 625-line domestic receivers can perform. Readers will know from our earlier articles that the key to being able to squeeze extra digital programmes into the existing UHF spectrum without causing interference to the existing programmes is to keep the digital transmissions at very low power, and for these tests a maximum effective radiated power of fifty watts was used, although the directivity characteristics of the transmitting aerial were such that only about 5 watts ERP was used in the direction of the ITC HQ receiving site. Compare that with the 1 Megawatt ERP of the existing Crystal Palace transmissions, and you really do begin to appreciate something of the magic that digital television will be able to provide. The ITC/NTL designed SPECTRE coding and OFDM modulation system that was used in previous trials once again demonstrated its inbuilt ruggedness and inherent error protection; no errors at all were seen on the displayed pictures, even though the signals were being received over a transmission path that included one of the busiest parts of central London, and the digital stereo sound transmissions were completely free of the irritating clicks that can sometimes disturb such signals when there is a lot of traffic about.

Three into one will go!

There has been much talk in recent months of digital transmissions from future Astra satellites using bit rates of 5Mbit/s or less, which would give the satellite operators the opportunity to provide perhaps 80 different programme channels on just 16 radio frequency transmission channels, but, having seen some of the results on satellite tests from America, I have had my doubts about whether the quality of
the resulting pictures would be acceptable to the viewer. It was therefore especially interesting to see the second ITC demonstration, in which they showed three different programme channels coded simultaneously into the 10Mbit/s digital data stream. The demonstration actually used pictures from three PAL videotape recorders, each providing a different programme, and to illustrate the possibilities the ITC had chosen to use the three different regional 'opt-out' news programmes from Meridian, the ITV company that serves the south of England. Each of the programmes was digitally compressed down to only 3.5 Mbit/s, and the data from all three was then coded and multiplexed together into a single 10 Mbit/s data stream. The three decoded pictures were then shown on separate 26 inch monitors, allowing critical viewing of the picture material.

In general, the quality of the 3.5Mbit/s pictures was very good, with virtually no noise, but as with all digitally compressed pictures, the quality varied with the picture material being shown. Still pictures, or those containing little movement, seemed virtually perfect, whereas fast-moving areas of the picture could sometimes be seen to made up from coarse blocks of colour, a side effect of the discrete cosine transform coding used as part of the bit-rate reduction system. Some pictures containing a lot of detail also looked slightly 'artificial', rather like a photograph that has been through a 'solarisation' process, although it was difficult to describe exactly what was wrong. The major difficulty for the so-called 'experts', however, is that we are used to classifying picture quality under the most critical viewing conditions, effectively using a magnifying glass to look for faults, and I have no doubt that the vast majority of viewers would consider the 3.5 Mbit/s pictures to be very acceptable; they are certainly of very much better quality than those provided by many VHS machines, and the continuing popularity of video rental shops shows that the programme content is much more important than the picture quality as far as the typical viewer is concerned.

A side issue of this demonstration that nobody at the ITC wanted to talk about was the possibility of being able to receive lots of different ITV regional programmes. Low bit rate digital transmissions could allow viewers a much wider choice of programmes, meaning that they would no longer have to be restricted to the programmes from their own particular regional ITV contractor. Such a revolution could ruin the carefully planned marketing strategies of the regional ITV companies, and those of the advertisers upon which the companies so heavily depend, so the pros and cons of offering viewers more choice will have to be carefully considered before transmissions begin. The ITC's Controller of Engineering admitted that digital terrestrial transmissions will not come until some years after satellites start to transmit the signals, but he stressed the importance of the existing terrestrial broadcasters keeping up with their satellite competitors, and said that since the future of TV was obviously going to be digital, viewers would have to be given the greatest possible choice. Digital TV bitstreams could be used to carry HDTV pictures, or to carry extremely rugged, less-detailed pictures which could be received on portable receivers virtually anywhere.

No detailed information about the bit-rate reduction algorithms being used was available, but it is known that NTL are currently working with Scientific Atlanta on low bit rate digital transmission equipment for use in the USA, so we can presume that the quality of the pictures shown was very similar to what our American friends will be receiving. The NTL equipment was developed prior to the MPEG-2 low bit-rate digital video standard being finalised, but now that many of the world's broadcasters and video equipment makers have agreed on MPEG-2, we can expect the NTL engineers to be carefully considering how to make the best use of the chips that should start to become available in quantity during 1994. Although it would seem sensible for digital terrestrial broadcasters to use exactly the same MPEG-2 chips as the satellite broadcasters, at the moment the European digital terrestrial television researchers are demanding more; they would like to use a multi-level hierarchical digital system that would allow a single bitstream to carry various qualities of picture, so that the same bitstream could provide stable, reasonably detailed pictures to a portable receiver and more detailed, perhaps even HDTV pictures, on more exotic receivers connected to good quality aerial systems. The idea may be laudable, but those who were involved in the MAC fiasco will know the dangers of including too many technological bells and whistles, just because research engineers are clever enough to include everybody's 'wish list' in their specification. In the end, it is the provision of a cost-effective system that counts, and it certainly looks as though satellite receiving systems based on MPEG-2 chips will be on the market in time for the start of digital transmissions from Astra in 1995; surely it would make sense for the terrestrial broadcasters to ensure that the same receiving equipment can be used for their digital signals, too?

PALplus - Improving on what we have already got!

After the excellent digital transmission demonstrations, it might have been thought that other demonstrations of ITC research projects would have come as something of an anticlimax, but in fact there were several different areas which proved of great interest. Researchers from UK Independent Television and from the BBC have been working as part of the European PALplus project since 1991. PAL plus is designed to allow broadcasters to transmit high quality widescreen 16:9 aspect ratio pictures over their existing networks to those viewers who will be buying widescreen receivers, whilst providing existing viewers with a reasonable degree of compatibility. Such a development could be extremely important commercially, since at the present time

Figure 2. Equipment layout for ITC 3.5 Mbit/s digital demonstrations

![Diagram showing equipment layout for ITC 3.5 Mbit/s digital demonstrations](attachment://figure2.png)

- 3 PAL VIDEO RECORDERS
- DIGITAL IMAGE COMPRESSORS
- MULTIPLEXING AND MODULATION
- 3 DIFFERENT TV PROGRAMMES

the standard UHF PAL transmissions are available to virtually the whole population, and if widescreen capabilities and picture enhancement can be incorporated into these transmissions, then the danger of the existing terrestrial systems becoming 'old-fashioned' or 'second-rate' when compared with satellite systems can be counteracted. The ITC demonstration showed a complete, working, PALplus encoder/decoder chain, and the pictures shown on a standard widescreen receiver were excellent, even when using a compromise 14:9 aspect ratio picture, which may be used at the start of PALplus transmissions in order to make the pictures received on standard 4:3 aspect ratio receivers more acceptable to viewers. The PALplus research group includes Philips, Thomson, Grundig, and Nokia, and the firm intention is to have the system operational during 1995.

PALplus system

Various other enhancements which could be added to PAL transmissions were also demonstrated, together with some impressive pictures showing how effective the inclusion of 'ghost-cancelling' signals can be. A reference signal consisting of short bursts of various different frequencies, known as a 'chirp' signal, is included in the vertical blanking interval of each picture, and the receiver, by comparing the received signal and its reflections with what it knows the original 'chirp' looked like, can introduce variable video delays which can cancel out multiple ghosts. Japanese chips have been available for some time which claim to do the same thing, but whilst they worked well on simple 'ghosts', the results were never good enough on the far more frequently occurring complex ghost signals to make it worthwhile for receiver manufacturers to include them. This new system works well, and broadcasters throughout Europe are currently negotiating to see if they can agree on a standard way of incorporating the signals into the TV waveform. Although ghosting may seem a trivial problem to most of us, there are in fact hundreds of thousands of people in the UK whose pictures are degraded by multiple reflections, and the recently built Canary Wharf tower has ruined reception for more than 100,000 people in the Lea Valley.

Microwave TV Transmissions

One of the potential ways of transmitting dozens of television channels directly to homes is to use microwaves; the high frequency band between 40.5-42.5GHz has been reserved by the Radiocommunications Agency for so-called MVDS - Microwave Video Distribution Services, and there is sufficient bandwidth to carry perhaps 30 or more channels. Some systems of this type are already in use in the USA and in Ireland, although on lower microwave frequencies, and MVDS is sometimes called 'wireless cable' because it provides the multichannel capability of cable systems without having to dig up the streets. If such a system is to be used in the UK a frequency plan will be required, to ensure that systems in adjacent areas use different frequencies, so as not to cause mutual interference. Little is known of the way in which signals at 40GHz behave in different atmospheric conditions, and so the ITC has commissioned the Radio Communications Research Unit of the Rutherford Appleton Laboratory to carry out a series of propagation studies. An inland link is to be installed in Oxfordshire, and a coastal link near Colchester, and data from these experiments will enable planning engineers to determine the optimum distance apart that transmitters must be if frequency re-use is to be maximised. Some of the microwave equipment which has been developed for these tests was on show at the exhibition, including a complete 40GHz transmit-receive chain working at 1kW ERP.

With some 4000 UHF TV transmitters now on the air in the UK, the problems of UHF frequency planning are as complex as ever, and the exhibition included a PC-based demonstration of how the coverage area of a UHF transmitting station can be predicted, and how the path profile between transmit and receive sites can be calculated from a computerised terrain data base. It was fascinating for this PC user to see how the well-known AUTOROUTE map programme had been used to provide displays of the limit of service contours for each of the UK main transmitting stations, and to enable the planners to calculate the numbers of people living within these contours. The system is also used to show the areas covered by each of the UK cable franchises, which are awarded by the ITC.

Television for the blind!

Incredible as it may at first seem, millions of visually impaired people watch television regularly, and the ITC showed off some of the results of research work which it has sponsored as part of the AUDETEL (Audio Description of Television) consortium, where methods have been found of providing blind viewers with more information about what is happening on screen. Demonstrations were given, via infra-red coupled headphones, of an audio commentary which is transmitted during the natural gaps that occur in a television programme between episodes of dialogue. Test transmissions have already been carried out, and a pilot service will be introduced within the next year. This project has been
PALplus - Widescreen higher quality with existing transmissions

- Terrestrial widescreen via existing networks
- Suitable for all PAL countries
- 16:9 widescreen - compatible
- Not new - PAL with add-ons
- Helper signals give format control
- Helper signals give improved pictures

Once widescreen receivers move out of the showrooms into significant numbers of homes, conventional terrestrial broadcasters are faced with a problem - their pictures are only 4:3 aspect ratio, and leave black lines at each side of the widescreen picture display. This would rapidly make terrestrial broadcasting seem old-fashioned or second rate, which cannot be allowed to happen when your services are paid for, whether directly by the viewer, or indirectly via advertising. Realising that the PAL television system that is used throughout most of Europe still has enormous potential, a group of major manufacturers and broadcasters has decided to develop a system called PALplus, which gives existing transmission networks the capability to transmit widescreen higher quality pictures, without affecting existing receivers.

The technique which PALplus uses to provide widescreen pictures assumes that viewers with existing receivers will be happy with a 'letterbox' style of presentation, which gives a black band at the top and bottom of the picture. In the standard PAL system only 576 of the 625 transmitted lines actually carry picture information. The PALplus system actually downconverts these 576 active lines to form a new picture with only 432 lines. This results, for the conventional viewer, in a picture of about three-quarters the original height, with an aspect ratio of 16:9. The information on the 44 lines which were effectively discarded is not actually thrown away, but during the downconversion process it is used to generate so-called 'helper' signals. The helper information is then inserted into the blank bands at the top and bottom of the cropped picture, in a 'blacker than black' part of the video signal, so that it is invisible to the viewer with a conventional receiver. The area between the black level and half the sync pulse level, typically between the 150 and 300mV levels of the standard video signal has been tested, and seems likely to prove suitable for carrying the 'helper' signals without causing distress to the viewer with a conventional receiver.

A top-end wide screen PALplus receiver can make use of these invisible helper signals to instruct its display circuitry to reconstruct the original 576 line wide-screen display, this time in a progressively scanned, i.e. non-interlaced format. Tests in laboratories and at exhibitions have shown that the system works well, and a programme of longer term field tests has already started, and will continue during the months ahead, to find out whether there are any hidden snags or needs for modifications.

All this can be achieved without changes to the transmitters and transmission network, apart from the insertion of PALplus coders at the studio outputs, but the big question remains: Will viewers with conventional receivers accept black bands on many of their pictures without complaining? Although French and German viewers have become used to letterbox transmissions of films, their reactions to having many other programmes in this format are not clear, and in the UK there is considerable evidence that viewers would not be happy. In order to overcome this problem the PALplus team are looking at possible intermediate letterbox formats, not quite so wide as 16:9, and therefore without such big black bands at the top and bottom of the picture. Such a format, perhaps 14:9, could be used in the transition phase, until sufficient viewers have bought wide-screen receivers, when the final move to 16:9 could be made without upsetting too many people.

The PALplus timescale is tight; the system parameters have been agreed, trade demonstrations were given in Amsterdam in July, and after substantial field trials, some of which have already started, as insomniacs amongst you may know, the aim is to have PAL plus receivers on sale in the shops by 1995. Within three to four years existing transmitters throughout Europe could be providing these enhanced pictures, which should encourage the sale of widescreen receivers and provide yet another marketing opportunity for the retail trade.

You will see from the list of PALplus partners that this project is being taken very seriously indeed. Some of the techniques being proposed for use in PALplus could equally well be applied to SECAM signals, and Thomson are looking at a system called 'Colour-plus' which could encompass both PAL and SECAM systems.

PALplus project partners
British Broadcasting Corporation
UK Independent Television
Independent Television Commission
ARD(Germany)
ORF(Austria)
SRG(Switzerland)
Philips
Thomson
Grundig
Nokia

partially funded by the European Commission. The AUDETEL speech has to be extensively coded and compressed in order to be able to squeeze it into the small amount of channel space available, and the ITC subcontracted SPEKA Ltd, a spin-off company from the University of Surrey, to develop the speech coding algorithms. On the SPEKA stand it was interesting to listen to the high quality of speech that can now be obtained at data rates as low as 2.4kbit/s, which compares well with the standard 64kbit/s used for digital telephony.

One of the companies being used as a contractor by the ITC to design and develop AUDETEL receivers, Portset Systems Ltd, had its own exhibition stand on which it was showing a whole range of novel equipment designed to help blind and disabled people. Clever electronics and smart thinking have been combined by this company to provide such things as 'Talking Teletext' receivers, a 'Talking Statement' machine for use by Bank of Scotland customers
who are blind, and other gadgets such as a 'LITEFINDER' which helps blind people to detect when lights are on or off, whether they are interested in daylight, room lights, or LED indicators on electrical equipment. Of use to a far wider range of people will be their 'Talking Timeswitch' which gives you the ability to set two different sockets to switch on and off at various times, literally talking you through the process of programming the unit. Anyone who has spent ages fiddling with the tiny bits of plastic that need to be carefully positioned on standard time switches will appreciate this unit - it actually tells you what time it is due to switch on and off, and you certainly don't need to be disabled to find this useful!

Picture Quality and colour fidelity

Traditionally, the ITC has been responsible for not only the quality of the programmes we see, (and who would want to admit to that!), but also for technical quality. Demonstrations of the ITC work on colorimetry in television were given, showing a commercially available measuring system controlled by a PC, which can be used for measurements on camera equipment and on displays and lighting. It is very important that different makes and types of camera can all produce matching colours when they are used in programme making, and it was impressive to see how this equipment could be used to ensure that different cameras are as closely colour-matched as possible.

Picture quality assessments have been carried out subjectively for many decades using the five-point grading scale, which ranges from 'excellent' to 'bad', with picture impairments being classified between 'imperceptible' and 'unusable', but the coming of digital picture processing has led to new problems. The quality of a digitally processed picture may well vary according to the scene content; for example, still parts of the picture may be sharp and clear, whereas fast moving parts may appear distorted. The ITC has realised that methods will need to be developed which give realistic assessments of many different types of picture, and on the MOSAIC (Methods for Optimisation and Subjective Assessment in Image Communications) stand it gave excellent demonstrations of the various problems that can occur. ITC research, in conjunction with several other partners, including the University of Essex, has put forward a proposal for European research funding which will allow these important areas to be studied in detail.

New Technology - Waiting for next year

Anyone who wasn't familiar with what is happening in broadcasting research would have been surprised to see the wide ranging nature of the research projects with which the ITC is currently involved. It certainly seems that the concerns of those who were originally worried about the future of this type of research have been taken care of, and that 'privatisation' has not led to the disaster that some predicted. It just seemed a pity that attendance at this exhibition was by invitation only - in future years the ITC might be brave enough to show its New Technology Exhibition to a far wider audience.
EASY-PC, SCHEMATIC and PCB CAD

Over 17,000 Installations in 70 Countries World-wide!

- Runs on: - PC/XT/AT/286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design: Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Tech Support - free.
- Superbly easy to use.

Options:- 500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?
Ask for our fully functional Integrated Demo

Integrated Electronics CAD
Schematic Capture
Analogue & Digital Simulation
And PCB Design
For Less than £400/$775!

Affordable Electronics CAD

<table>
<thead>
<tr>
<th>Program</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASY-PC: Low cost</td>
<td>£195.00</td>
<td>entry level PCB and Schematic CAD.</td>
</tr>
<tr>
<td>EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.</td>
<td>£376.00</td>
<td></td>
</tr>
<tr>
<td>PULSAR: Low cost Digital Circuit Simulator ~1500 gate capacity.</td>
<td>£195.00</td>
<td></td>
</tr>
<tr>
<td>PULSAR Professional: Digital Circuit Simulator ~50,000 gate capacity.</td>
<td>£376.00</td>
<td></td>
</tr>
<tr>
<td>ANALYSER III: Low cost Linear Analogue Circuit Simulator ~130 node capability.</td>
<td>£195.00</td>
<td></td>
</tr>
<tr>
<td>ANALYSER III Professional: Linear Analogue Circuit Simulator ~750 node capability.</td>
<td>£376.00</td>
<td></td>
</tr>
<tr>
<td>Z-MATCH II: Smith Chart program for RF Engineers - direct import from ANALYSER III.</td>
<td>£376.00</td>
<td></td>
</tr>
</tbody>
</table>

US$ prices include Post and Packing. Starling £ prices exclude P&P and VAT.

- TECHNICAL SUPPORT FREE FOR LIFE!
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Number One Systems Ltd.
REF: ETI, HARDING WAY, ST. IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR.
Telephone: 0480 461779 (7 lines) Fax: 0480 494042
International: +44-480-461778, Fax:+44-480-494042
ACCESS, AMEX, MASTERCARD, VISA Welcome.
Don't miss the
NATIONAL
WOODWORKER
SHOW

SANDBOWEN
EXHIBITION CENTRE
23rd - 26th
SEPTEMBER 1993

EASY TO FIND!
SANDBOWEN EXHIBITION CENTRE, Esher Surrey
- Free car parking
- Easy access
- Within easy reach of London
- Well sign posted for motorists

By car: Sandown is just 15 minutes from the M25 (junction 10) and national motorway network, 35 minutes from central London and 30 minutes from Heathrow or Gatwick.
By rail: British Rail's Esher station from Waterloo is in the immediate vicinity. Trains journey time just 21 minutes - run at least every half hour, more frequently at peak times.
Bus services run regularly from central London and neighbouring towns towns of Guildford and Kingston-upon-Thames.

ADVANCE TICKET DISCOUNT
Use this coupon to save money when you buy tickets in advance!

<table>
<thead>
<tr>
<th>Ticket Type</th>
<th>Standard Price</th>
<th>Advance Discount</th>
<th>No. of tickets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>£5</td>
<td>£4.50</td>
<td>2</td>
</tr>
<tr>
<td>Senior Citizens</td>
<td>£3.50</td>
<td>£3</td>
<td></td>
</tr>
<tr>
<td>Children (5-16 years)</td>
<td>£2</td>
<td>£1.50</td>
<td></td>
</tr>
</tbody>
</table>

Cheque enclosed for £

NAME: __________________________
ADDRESS: __________________________
POST CODE: __________________________

COMPETITION ENTRY FORM
If woodworking is your skill, why not enter an exhibit in the National Woodworker Show competition? Complete the coupon to receive details and entry form (one per exhibit) and send to Argus Specialist Exhibitions at the address shown in advance tickets coupon on left.

NAME: __________________________
ADDRESS: __________________________
POST CODE: __________________________

Closing dates for entry: 5th July for show catalogue entry, FINAL CLOSING DATE 30th August.
Woodworker Show 1993

This year meet fellow Craftsmen & Stay Hilton

"Craftsmanship is evident at Hilton National"

NATIONAL WOODWORKER SHOW
23-26 September 1993

- 4 Star hotel with indoor swimming pool and steam bath
- Hilton National Cobham only 10 minutes from Sandown Park
- Coach transfers to and from the Show
- A Special Evening with Master Craftsman Stuart King.

A COMPLETE PACKAGE
Once again Argus and Hilton have joined forces to offer accommodation at the Hilton National at Last Year's Prices. £34.95 each guest each night including full English breakfast and VAT. Again a special coach is available to take you to the Show each morning (leave 10am - return 6pm, except Sunday 5pm). Add £5 for coach transfers each day.

A NOTABLE CRAFTSMAN
On Friday 23rd at 7.30pm, Stuart King will give a lecture and slide presentation of his work. This will cover traditional British crafts and some with an international flavour. Stuart is one of the most highly respected Country Craftsmen, being an excellent woodworker, miniaturist, fretsawyer and cabinet maker.

COST
The Stuart King Evening is £12 each person, including a supper buffet in the Brooklands Suite.

TO BOOK
Please call Heidi Ross at Hilton Central Reservations (023) 238877 and quote Woodworker Show. A £10 deposit is required to reserve your room and full prepayment is required for attendance at the Stuart King Evening.
ETI PCB Service, Reader's Services, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

Please Supply:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Ref No.</th>
<th>Price Code</th>
<th>Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>£</td>
<td>£</td>
</tr>
</tbody>
</table>

Post & Packing

Total Enclosed £ 0.75

Please send my PCBs to:

Name ...
Address ..
Postcode ...

CHEQUES SHOULD BE MADE PAYABLE TO ASP.

PCB Service September

<table>
<thead>
<tr>
<th>Price Code</th>
<th>Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£3.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£4.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£6.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£7.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£8.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£10.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£13.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£15.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£17.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£23.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£25.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£29.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£32.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£35.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£37.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£40.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£0.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETI SEPTEMBER 1993
The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer for the creation of a foil.

Capacitance Meter

MIDI Analyser CPU Board

MIDI Analyser Display Board
Microwave Monitor July '93
In the Parts List, IC1 should be CA3130 not CA3103.

PCB Foils
The June Foil page showed the incorrect sides for the lower (solder side) of the Graphic Equalizer board and the Middle and Side Stereo coding board. The August issue also showed an incorrect side to the Alternative 12V PSU. Anyone using these as a template for making their own PCBs must use the 'mirror reflection' of these images.

Flash Beacn for Remote Control
RF Signal Generator
Metronome
FOR SALE

SYSTEM 200 DEVICE PROGRAMMER

SYST E M : Programs 24, 26, 32 pin EPROMS, E E - P ROM S , FLASH and Emulators as standard, quickly, reliably and at low cost.

Expandable to cover virtually any programmable part including serial E', PALS, GALs, EPLDs and microcontrollers from all manufacturers.

DESIGN: Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support.

Same day dispatch, 12 month warrant, 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

MQP ELECTRONICS Ltd.
Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 8BX UK
TEL. 0666 825146 FAX. 0666 825141

GERMANY 089/4602071
NORWAY 071-17890
ITALY 02 92 10 3854
FRANCE (1) 59.41.28.01
Also from VEROSPEED UK

SALE

COOKE INTERNATIONAL

SUPPLIER OF QUALITY TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC

ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME
SEND LARGER L.S.E. FOR LISTS OF EQUIPMENT AND MANUALS
ALL PRICES EXCLUDE VAT AND CARRIAGE

DISCOUNT FOR BULK ORDERS
SHIPPING ARRANGED

OPEN MONDAY TO FRIDAY 9AM - 5PM

COOKE INTERNATIONAL

ELECTRONIC TEST & MEASURING INSTRUMENTS

Unit Four, Fordbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB Tel (+ 44) 0243 545111/2 Fax + (+ 44) 0243 542457

VALVE SOUNDS! 6 valve 15 watt amplifier, 3 Gains, base, treble, unboxed transformer and accessory supplies X-professional projector heavy!
£19.00 + carriage, M.W. Jarvis, 6 Peggy's Mill Road, Edinburgh EH4 6JY.

PLANS

ELECTRONIC PLANS. Laser Productive, solar and wind generators, hi-fi, village tests, surveillance devices, pyrotechnics and computer graphics tableau - 150 projects. For catalogue SAE to Plancentre Publications, Unit 7 Old Wharf Industrial Estate Dymock Road Ludlow Herefordshire HR8 2HS

James Gale
0442 66551

Send your request to:
ETI Classified Department, ASP, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST
Lineage: 60p per word (+ VAT) (minimum 15 words)
Semideal: (minimum 2.5cms)
£6.00 • VAT per single column centimetre

Electricart £24.00 (+ VAT)

Ring for information on series bookings/discounts

All advertisements in this section must be prepaid.

Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).
WANTED
RE-USABLE AND ALL TYPES
OF ELECTRIC SCRAP
P.C.B.'S, PLUGS AND
SOCKETS, EDGE
EQUIPMENT, VALVES, ETC.
PAID ON CLEARANCE.
A.R.S.
2 NORMANS LANE, RABLEY
HEATH, WELWYN,
HERTS AL4 9TO
TEL: 0438 812193 FAX: 0438
812387 MOBILE: 0860 214302

KITS
NEW VHF MICROTRANSmitter
KIT tuneable 70-115MHz, 500
metre range, sensitive electret
microphone, high quality PCB,
SPECIAL OFFER complete kit
ONLY £5.95 assembled and
ready to use £9.95 inclusive P&P.
3 Watt FM transmitter kit £15.95
Credit card orders telephone
021 486 3092 Cheques/PO's to:
Quantek Electronics, (DEPT
ETI)3 Houldey Rd, Birmingham,
B31 3HL. Send 2 x 1st Class
stamps for details of these and
other kits.

FOR ALL
DETAILS OF
ADVERTISING
RATES IN ETI
TELEPHONE
JAMES GALE
ON 0442 66551
OR FAX YOUR
ADVERT ON
0442 66998

WANTED
TURN YOUR SURPLUS
TRANSISTORS, ICS ETC INTO CASH
immediate settlement.
We also welcome the opportunity
to quote for complete factory
clearance.
Contact
COLES-HARDING & CO.
Sandall Road, Wisbech,
Cambs PE13 2PS
BUYERS OF SURPLUS INVENTORY
ESTABLISHED OVER 15 YEARS
Tel: 0945 584166
Fax: 0945 475216

TOP QUALITY BINDERS
TO TREASURE YOUR COLLECTION OF

ELECTRONICS TODAY INTERNATIONAL
CLASSIFIED ADVERTISEMENT DEPARTMENT
ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words.
Semi-display £14.00 per single column cm plus VAT. No reimbursement for cancellations. All ads must be
pre-paid.

Name
Address
Daytime Tel. No:
Signature
Day
Expiry Date

FOR SALE COMPONENTS PLANS OTHERS STATE

Please supply binder/s at only £6.95 each, including
postage & packing (UK only, Overseas please add £1.50).
I enclose my cheque M/O for £ made payable to
ASP or please debit my Access/Visa

Signature

PLEASE FILL IN THE FOLLOWING IN BLOCK CAPITALS:
Name
Address
Post Code

Send this coupon and payment to: ASP ETI Binders Offers, Argus House,
Boundary Way, Hemel Hempstead, Herts HP2 7ST.
Or why not order by phone? Call us on (0442) 66551
You may receive further information which may be of interest to you.
Please allow 28 days for delivery
Test equipment has always been popular with constructors and next month we feature a simple but very effective continuity tester for construction. To help you on your way, we give the PCB away for this on our front cover.

A moving message display from an LED matrix can provide an effective way to convey messages to people at a distance. The Electronic Picture will also provide entertainment in the form of illuminating pictures, the informational content being only limited by your creativity.

Giving the impression that there is somebody always in residence in a house even, when it is empty, is a good deterrent to would-be burglars. The ‘Home Monitor’ will switch your house-lights on and off at predetermined times.

It’s a long time since we have presented a basic transistor amplifier design and so we rectify that in the next issue.

Finally, we feature a review of a selection of currently available PCB design software systems.

The October edition of ETI will be on sale 3rd September.

The above articles are in preparation but circumstances may prevent publication.

Next Month

Window Monitor
Transformerless Power Supplies
Brake Lights for Radio Control
Measuring Light Spectra
Lumitec
AutoMate Mixer
Twi-light Zone

Alternative 12 Volt Supply

Back issues can be obtained from Argus Subscription Services.
Address in column to left.

ADVERTISERS’ INDEX

ABI ..10
BADGER BOARDS43
BK ELECTRONICS17
BONEX14
CP TECHNOLOGY....................21
CANAL BRIDGE AUDIO59
DISPLAY ELECTRONICS46
ELECTROMAILIBC
EOT21
HALCYON ELECTRONICS10
HEISING TECHNOLOGY21
J & N BULL44,45
JAY TEE ELECTRONICS11
JPG10
MAPLINES ELECTRONICSOBC
NUMBER ONE SYSTEMS57
OFFTRON11
OMNIELECTRONICS21
PICO TECHNOLOGY15
R E ELECTRONICS43
SEETRAX38
TSIEN (UK) Ltd.10
WILMSLOW AUDIO10

AN ARGUS SPECIALIST PUBLICATION

Argus House, Boundary Way,
Hemel Hempstead HP2 7ST
Telephone (0442) 66551 Fax (0442) 66998
Electromail offers you over 38,000 products – you could read all about them, FREE.

Electromail is Europe's biggest electronic, electrical and mechanical components and equipment catalogue, with information on over 38,000 top quality products and tools. In fact, there's so much information that it comes in 3 parts. Normally it would cost £6.50, but when you spend £50.00 on your next order, we'll provide a full refund!

The Electromail catalogue gives you access to the full RS Components range of carefully selected products, together with full specifications. With over 2,000 full colour pages, it is the industry's premier reference work – no professional engineer would be without it.

Send for your copy now – it can be yours FREE. Either phone or fax us direct quoting your Access/Visa number and this code: A895.

Or complete the coupon. The offer closes on 31st October 1993.

THE INDUSTRY'S TOP REFERENCE GUIDE
Electromail, PO Box 33, Corby, Northants, NN17 9EL
Tel: 0536 204555 Fax: 0536 405555
Over 700 colour packed pages with hundreds of brand New Products at Super Low Prices, on sale from 3rd September, only £2.95.