

POWER AMPLIFIERMODULES-TURNTAELES-DIMMERS-

OMP MOSFFETPOWERAMFLIFIERS THOUSANDS PURCHASED HIGH POWER, TWO CHANNEL 19 INCH RACK

BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
FEATURES: $\begin{gathered}\text { Independent } \\ \text { power suppiles with two toroidal transtormers * Twin L.E.D. Vu melers } \star ~\end{gathered}$ Levea conirols $\# 1 l l u m i n a t e d$ onfort 5 witch \star XLR connectors \star Standard 775 mV inpots \star Open and short circuil
 USED THE WORLD OVER IN CLUBS, PUES, CINEMAS, DISCOS ETC.

PRICES:-MXF200 £175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15 SPECLALLST CARRIER DEL. 121.50 EACH

OMFX0\} STEREO 3-W/AY ACTVE CROSS-OVER

Advanced 3-Way Slereo Active Cross-Over, housed in a $19^{\prime \prime} \times 1 \mathrm{U}$ case. Each channel has tiree level conirols: bass, mid s top. The removable fronl fascia allows access 10 the programmable DiL swithes lo adjust the
cross-over trequency: Bass-Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid-Top $1.83 / 5 K H z$, all at 24 dB per oclave. Bass invert switches on each bass channel. Nominal n hsmV inputioulput. Fully compatible with OMP rack amplifier and modules. Price £117.44 + £5.00 P\&P
STEFIEO DSOO MIXER RDD8400SE * ECHO \& SOUND EFFECTS* STEREO DISCO MIXER with 2×7 band \& R graphic equalisers wilh bar graph
VU melers. MANY OUTSTANDING FEATURES:- including Echo with repeat \& speed control, ou mic with talk-over plus cross fade, Cue Headphone Monitor. 8 Sound Effects. Usoful combination of the following inputs:- 3 turntables (mag), 3 mics, 5 Line for CD, Tape, Video etc.
Price £144.99 + £5.00 P\&P

Plझ20 EMFCTRIC TWEETERIS-MOTORCLA

Join the Piezo revolution! the low dynamic mass (no voice coil) ol a Piezo tweeter produces an improved translent response with a lower distortion level han ordinary dynamic tweeters. As a crossover is not required EXPLANATORY LEAFLETS ARE SUPP UED WITH EACH TWEETER

VPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for
bookshell and medium sized Hi-Fi apeakers. Price $£ 4.90-50 \mathrm{p}$ P\&P.
TYPE 'B' (KSN1005A) $31 / 2$ " super horn for general purpose speaker
disco and P.A. systems etc. Price $£ 5.99-50 \mathrm{p}$ P\&P.
TYPE 'C' (KSN1016A) $\mathbf{2}^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi-FI sys tems and quality discos etc. Price $\mathbf{8 6 . 9 9}+\mathbf{5 0 p} \mathbf{P} \&$ P.
TYPE ' D ' (KSN1025A) $\mathbf{2 " x 6}^{\prime \prime}$ wide dispersion horn. Upper frequency response relained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P.
TVPE 'E' (KSN1038A) 3^{3} " " horn tweeter with altractive silver fin 2
SEVEI CONTROL Comither and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50 \mathrm{p}$ P\&P.

BIनLIGHT CASED LOUDSPEAKZRS

A new range of quality loudspeakers, designed to take advantage of the latest speaker technology and enclosure designs, Both models utilize studio quality onstant directivity horns, extruded aluminium corner protection and steel ball corners. complimented with heavy duty black covering The enclosures are fitted as standard with top hats for oplional loudspeaker stands.
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE 45 Hz - 20KHz
thi FC 12-100WATTS (100dB) PRICE E159.00 PER PAIR ibl FC 12-200WATTS (100dB) PRICE £175.00 PER PAIR SPECIALIST CARRIER DEL. $£ 12.50$ PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$ Delivery 86.00 per pair

TNFC.MR STEREO EOOSTER ARIPS

PRICES: 150 W £49.99 250W £99.99 400W £109.95 P\&P \&2.00 EACH

THREE SUPERB HIGH POWER 150 SAEREO BOOSTER AMPLIFIERS 150 WATTS ($75+75$) Stereo, 150 W Bridged Mono 250 WATTS $(125-125)$ stereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo, 400 W Bridged Mono
ALL POWERS INTO 4 OHMS
Features:

* Stereo. bridgable mono * Choice o high \& low level Inpuls $\notin L \& R$ leve controls $*$ Remote
thermal orotection

ORIPMOS FET POWER AMPHIFIER MODILES SUPPLIED READY BUILT AND TESTED These modules now onjoy a world-wide reputation for quatity. rellability. and performance al a reallstic price. Fowe
models are available to suil the needs of the prolessional and hoboy market l.e. Industry, Lelsure, Instrumental and laf: models are available to suil the needs ot the prolessional and hobby market I.e. Industry, Lelsure, Instrumental and MEF
etc. When comparing prices. NOTE Inal afl models include toroidal power eupply. inlegrai heat sink, glass libre P.C. B . are etc. When comparing prices, NOTE thal all models include toroidal power zupply. inlegrail heat sink, glass libre P.C.B. an
drive circulls to power a compatiole vu meter. All models are open and shor circuit proof.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watis R.M.S. in to 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{s}$ T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N. 110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $40.85+53.50$ P\&P

OMP/MF 200 Mos-Fet Output power 200 wats R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damping Factor >300, Slew Rate $50 \mathrm{~V} / u$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$. PRICE $264.35 \div$ \&4.00 P\&P

OMP/MF 300 Mos-Fet Output power 300 wath R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KH}$.3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{u}$ S T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE $£ 81.75 \div$ \&5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 wat R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KH}$ 3dB, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{L} 5$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.NR -110 dB , Fan Cooled, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE E132.85 + £5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 wates R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms requency response $1 \mathrm{~Hz}-100 \mathrm{KHz} \cdot 3 \mathrm{~dB}$, Dampin Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typice 0.002%, input Sensitivity 500 mV , S.N.R. $\mathbf{- 1 1 0} \mathrm{dB}$, Far Cooled, D.C. Loudspeaker Protection, 2 Séconc Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$
PRICE $£ 259.00 \div \mathbf{~} 12.00$ P\&P
NOTE MOS-FET MODULES ARE AVAILABLE IN TWO VERSIOM STANOARD - INPUT SENS 5OOmV, BANO WIDTN 1OOKHz. PPEC (PROFESSIONAL EQUIPHENT COMPATIBLEE) - INPUT

TOUDSPFAKERS LARGE SELECTION OF SPECIALIST LOUDSPEAKERS ĀVAILABLE, INCLUOING CABINET FITTINGS, SPEAKE GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E (60p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also available.

EMINENC=INSTRUMENTS, P.A., DISCO, EIC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
8 100 WATT R.M.S. MEB-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 72 Hz , FREQ. RESP. TO 4 KHz , SENS 97 dB . 10 100 WATT R.M.S. ME $10-100$ GUITAR, VOCAL, KEYBOARD, OISCO, EXCELLENT MID RES. FREQ. 7 tHz , FREQ. RESP. TO 7 KHz , SENS 97 dB . PRICE $\mathbf{\varepsilon 3 3 . 7 4 + \varepsilon 2 . 5 0 \rho 8}$ 10 200 WATT R.M.S. ME10-200 GUITAR, KEYB'D, DISCO. VOCAL, EXCE $12^{\prime \prime}$. FREQ. 65 Hz , FREQ. RESP. TO 3.5 KHz . SENS 99 dB . 12 100 WATT R.M.S. ME12-100LE GEN. PURPOS RES.FREQ. 49 Hz, FREO. RESP. TO 6 KHz , SENS 100 dB . 12 100 WATT R.M.S. ME12-10OLT (TWIN CONE) WID 12" RES. FREQ. 58 Hz , FREQ. RESP. TO 6 KHz . SENS 98 dB . 12 " 300 WATT R.M.S ME 12 -300GP HIGH POWER. RES. FREQ. 47 Hz , FREQ. RESP. TO 5 KHz . SENS 103 dB . \qquad ASS, LEAD GUITAR 15200 WATT R.M.S. ME1 5-200 GEN. PURPOSE BASS, INCLUDING B RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99 dB . $15^{-1} 300$ WATT R.M.S. ME1 5-300 HIGH POWER BASS, INCLUDING BASS GUITAR RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB ELENT HIGH POWER MIE PRICE $£ 43.47 \approx £ 2.50 \mathrm{PL}$ PRICE E35E MONITOR. PRICE E35.64 \& E3.50 PE SE, P.A., VOCAL, STAGE PRICE $£ 36.67$ - $£ 3.50 \mathrm{Pz}$ PRICE 46.71 ©3.50 P?
 PRICE E70.19 - 83.50 Ps ASS GUITAR. PRICE $£ 50.72 \div$ ¢ 4.00 PE PRICE E73.34 \div E4.00 P उARRENDERER-HI-FI, STUDTO IN-CAR, EIC ALL EAREENDER UNITS 8 OHMS (Excepl EB8.50 \& EB1a-50 which are dual
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND 8^{\sim} 50watt EB8-50 DUAL IMPEDENCE, TAPPEO $4 / 8$
RES. FREQ. 40 Hz . FREQ. RESP. TO 7KHz SENS 97 dB . RES. FREQ. 40 Hz . FREQ. RESP. TO 7 KHz SENS 97 dB . RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz . SENS. 99 dB . 10" 100WATT ES10-100 BASS, HIFI, STUOIO. RES. FREQ. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB 12'100WATT EB12-100 BASS, STUOIO. HI-FI, EXCELLENT DISCO RES. FREO. 26 Hz , FREO. RESP, TO 3 KHz , SENS 93 dB .
8 OHM BASS, HI-FI PRICE $88.90 \div$ - 2.00 P8P IN-CAR
PRICE $\varepsilon 13.65+\varepsilon 2.50$ P $=$
PRICE £30. $39+£ 3.50$ P $\mathrm{E}=$

51/4" GOWA TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND
IS FWAIT EB5-6OTC (IWIN CONE) HI-F, MULTI-ARRAY DISCO ETC
RES. FREQ. 63 Hz . FREQ. RESP. TO 20KHz, SENS 92dB.
6V $\mathrm{V}_{2}^{\prime \prime}$ 6OW/TT EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREO. 38 Hz . FREQ. RESP. TO 20 KHz , SENS 94 dB B" GOWATT EBS-6OTC (TWIN CONE) HI-FI. MILTI-ARRAY DISCO ETC. RES. FREQ. 40 Hz . FREQ. RESP. TO TOKH2, MIN RES. FREQ. 35 Hz . FREQ. RESP. TO 12 KHz , SENS 98 dB . \qquad
PRICE $£ 9.99+\mathbf{£ 1 . 5 0} \overline{\text { P }}_{\text {\& }}$ F
PRICE $£ 10.99+1.50$ P\&?
PRICE E12.99 + E1.50 \mathbf{P} \& $=$

TRaNSMITHGR HOBEY KTTS
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TRANSMITTER 8Q-10gMHZ VARICAP CONTAOLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES, SZE $38 \times 123 \mathrm{~mm}$. SUPPLY 12 V G $0.5 A M P$ PRICE E14.85- E100 P8P
FIM MICRO TRANSMITTER $100-108 L H Z$ VARICAP TUNED, COMPLETE WITH VERY SENS FET MIC. RANGE $100-300 \mathrm{~m}$. SIZE $56 \times 46 \mathrm{~mm}$. 5 UPPLY GV BATTERY.

PHOTO: JW FM TRANSMITTER
E.K. 日L =CTRONICS

UNITS 1 \& 5 COMET WAY, SOUTHEND-ON-SEA,

Features \& Projects

Window Monitor 16Knowing whether any windows have been left open in a large building can bevery helpful. Nigel Smith reports on an ingenious way to link up and remotesense the state of many windows.
Transformerless Power Supplies 23
There are many altemative economic ways to provide power without the useof a transformer. Andrew Armstrong investigates.
Brake Lights For Radio Control 26
A new mini series providing more accessories for your models. A Craig Talbot provides the latest designs.
Measuring Light Spectra 31
Douglas Clarkson outlines the various ways in which light can be be analysed.
Lumitec 36
Bob Noyes comes up with the solution of knowing when your car lamps havefailed.
AutoMate Mixer 40
Mike Meechan illustrates the many alternatives to mixer routing.
Twi-light Zone 48
Volume 22 No. 8 August 1993Use our cover PCB to construct this automatic low power garden light.Mark Daniels guides us through the construction.
Alternative 12 Volt Supply 52
A supply using low current components that provides the high current whenneeded. K R Ginn reports.

Regulars

Open Channel 4
News 5
News Stateside 9
Read/Write 10
PCB Service 60
PCB Foils 61

Witionial
by Paul Freeman

With joint venture co-operation from the multinationals breaking out all over the place these days, it seems that complete market domination is their aim.
IBM and BT have been collaborating on a project to make the videophone a standard appliance by the end of the century, IBM providing the software and BT the communi= cation technology.
As most people now have Windows on their computer screens and a separate telephone, the videophone will just become another integrated part of the system. Using digital ISDN lines, costing no more than an ordinary phone call a good colour image appears on screen. Improving the moving image is just a case of
using two lines instead of one. Multiway link-ups or video conferencing should also become common place. The two giants see this situation as an inevitability, as they already have companies beating on their doors for the technology. The reasons are clear - cutting down travel time and saving costs would appeal to any company.
The technology is here and the videophone described will be available from around October. Whether there will be intense advertising pressure to make the consumer believe they cannot do without one, or whether computer buffs will want the latest gadget irrespective, remains to be seen.

All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors in the contents of this magazine or for any loss however arising from such errors, including loss resulting from the negligence of our staff. Reliance placed upon the contents of this magazine is at readers own risk.

1ny doubts anyone has ever had about the long-term viability and popularity of satellite television must surely be quashed with British Telecom's recent move into the telecommunications consumer sales arena. By the end of the year, BT will be selling satellite receivers and dishes (Astra-based, of course) from its 90 shops around the country.

Astra's operator, the Societe Européene des Satellites, is not in the least surprised. Other household names are expected to follow BT's lead over the next year or so, as sales in general ramp up and more people take advantage of the wide range of high quality programmes now on offer from the Astra series of satellites.

There are now two Astra satellites in service, while a third - Astra 1C - was successfully launched aboard Arianespace flight number 56 during the early hours of May 12 this year. Indeed, as you read this, Astra 1C will be in the engineering process of being made operational, and several transmissions may already have started from it. Three satellites co-located at the Astra position of 19.2^{\prime} east of south means that some 50 television channels (16 on each of Astras 1 A and 1 B , and 18 from Astra 1 C) are now possible, along with hundreds of radio channels, and all can now be received from just one dish pointed at the satellites' single position.

BT has simply seen the writing on the wall, of course - or probably more to the point, the dishes on the walls - with this move to act as a retail outlet, but it does signal a general change in attitude towards satellite television reception. Just a few years ago, the only satellite dishes around were large multi-satellite affairs in the occasional enthusiast's gardens. While these are still around (and indeed, have become more popular due to Astra's involvements) the norm is now to see dishes on house walls pointed towards Astra. In these few short years, satellite television has changed from being a novelty and an amusement to neighbours, into being almost the norm.

By retailing receivers and dishes, BT has simply underlined the general and growing acceptance of satellite television reception and, thus, can only be good for the already flourishing market. In a few year's time, it may be to the amusement of neighbours if a house doesn't have a satellite dish on its wall.

Virtually reality

It's not often that a new product or service comes along which I think could be a winner. Five years ago, the birth of reasonable satellite television suggested one such service. And now look at it.

The latest development to look promising in my eyes is a service called virtual private networking (OK , if you have to have an acronym - VPN). Actually, the service has been around in one form or another since 1984, but it's only recently that world-wide moves havc been made to make it of interest outside of pure data communications fields among restricted groups in the United States. Things are changing,
as morc users see its potential.
A virtual private network is a method of allowing data communications between distributed sites, such that each data user on the network appears - via a computer - to be directly connected to the other users, despite the distance between them. So, it works in much the same way as local area networks, such as LocalTalk or Ethernet, around a single office, in that data can be freely routed between users and users can communicate equally freely. It's just that distances of many thousands of miles might be involved, rather than the few metres within an office.

There's nothing new in principle here - after all, a few modems can be interlinked over standard 'phone lines to give a similar, if not the same effect. The trick is to do it all so that each user appears to be directly connected to the others, as if a private long distance network of cables between sites had been set-up.

The advantage to users, over a true private network, is in cost - private networks are very expensive. Merely using the 'phone network to interconnect users as and when required is cheaper and, potentially, much cheaper. Private networks are expensive to install (lots of cables) and run, while telephone lines are already there and arc already being run. Private networks require expensive hardware, which inevitably has to be paid for directly by the users, while virtual private networks only require additional software in the switching exchanges which set-up the required links over the existing 'phone network. Effectively, this software simply has to set-up a predefined linkage, in a very similar way to that in which standard 'phone calls are set-up.

To date, the only obstacle in the way of decent and worldwide virtual private networks has been the disparity between telephone network operators. The services which one operator, in one part of the world, provides may be somewhat - if not totally - different to the services provided by another elsewhere. So, what looks to be a good thing, has been held back by lack of standardisation.

Fortunately, things appear to be changing. Telephone operators around the world (some 25 so far) have joined forces to define standard features which should be offered and to fix a seamless method of integrating world-wide services. This is just the start. Once virtual private networks become more common (which they will - simply because of this standardisation and cost benefit) price cuts are inevitable. It's foreseeable that the long-awaited and much-vaunted revolution in teleworking (i.e., working at home, instead of in an office and simply linking to the office computer by 'phone line) will be able to finally happen. Virtual private networks will allow this easily and, what's more, at an ever decreasing cost.

Keith Brindley

Mitsubishi has announced the release of its JEIDA and PCMCIA Standard SRAM memory cards, the first to be approved by Amstrad for use with

MEMORY CARDS

 FOR PERSONAL DIGITAL ASSISTANTthe computer company's new personal digital assistant. The memory cards are used by the computer to provide additional memory for storing text, names, addresses and notes, and 128 k , $256 \mathrm{k}, 512 \mathrm{k}, 1 \mathrm{M}$, and 2 M versions are now available from Amstrad Spares \& Service Division at Brentwood. A 4Mb SRAM card is also available from Mitsubishi.

The SRAM memory cards come in JEIDA and PCMCIA 68 pin format. A double battery backed SRAM version to JEIDA Standards can also be supplied.

LOW DISTORTION SIG GEN

Irio-Kenwood has introduced the AG 203a audio oscillator, which produces low distortion sine and square waveforms with the frequency rangeof 10 Hz to 1 MHz .

The sine wave signal is typically better than 0.1% distortion with an output flatness of +0.5 dB . The square wave signal has a maximum rise time of 200 ns with a duty cycle of $45-55$ at 1 kHz .

Frequency is selected by a series of range switches with fine adjustment by a rotary vemier control. An output attenuator provides up to -50 dB reduction from a maximum output level of 7 V RMS. The output impedance is 600R.

The AG 203a is priced at $£ 155.00$ + VAT.

60 YEARS OF INNOVATION

Dr William Percival, a prolific inventor with over 120 patents to his name, is this year celebrating sixty years furthering British science and technology in the field of electronics. At 89 years old, he is still heavily involved in technological innovation as a consultant and adviser at Central Research Laboratories Ltd (CRL) - formerly the research development centre of THORN EMI plc - where he has been employed as a scientist since 1933.

Dr. Percival's route into electronics began during the early days of radio with research in crystal
detection and technical journalism for Wireless Weekly, Wireless Construction and Modern Wireless. On joining EMI's research laboratories, Dr Percival became a member of the celebrated 'Blumlein' research team, working alongside one of the most influential scientists of this century, A. D. Blumlein, on the first public TV broadcast system at Alexandra Palace in 1936.

Following the success of the first broadcasts, television circuitry became very popular. The 'hook' phenomenon which caused a television picture to drop away
was solved by Dr Percival using frame pulses as line pulses.

During World War II, Dr Percival worked on the world's first RADAR systems and developed particular expertise in aerials for 3 cm and 10 cm RADAR. Percival explains RADAR's origins: "We noticed that every time a plane flew overhead, the picture quality on the television was affected. We deduced that if we
analysed the variation in picture quality, we would detect the pres $=$ ence of a plane. Distance and direction could then be gauged measuring the time it took for the signal to travel from a plane to receptors and by using directional equipment such as rotating aerials."

Another past project was the creation of high power transmitters for TV via distributed ampli-
fier and transversal (Kalman) filters. These were used in early transmitters to broaden bandwidth and allow more information. Dr Percival also completed mathematical analysis to assess the imaging techniques incorporated into the original X-ray scanner, for which CRL's Sir Godfrey Hounsfield won the Nobel prize in 1979.

Some of Dr Percival's most
recentachievements have focused on audio broadcast technologies including ICE, the first system to inaudibly embed security data into music. ICE enables the identity of broadcast music to be monitored off-air automatically and is set to become the industry standard for music identification.

DESOLDERING STATION

With the ever increasing complexities in the Electronics industry, one of the growing problems is removing devices with a large number of pins. The days of removing these devices with a hand desolder pump are getting further and further away. Boards with line tracks are easily damaged with excess heat from the soldering iron or by slipping with the hand desolder pump.

With the cost of integrated circuits rising, it is important to remove components so that no damage is done, cither to it or the printed circuit board and it was with this in mind that the RA100 Desoldering Station was designed by AK Electronics of Edgware. It was intended to produce a low cost unit, with low maintenance and inexpensive
spares, but still with a good vacuum. The vane pump used for this operation develops 15 in of mercury vacuum and should cleanly remove solder fromplated through boards. The wiring loom was specifically designed with push on crimp connectors to enable the user to carry out repairs on site, without the need to return
the unit for repair.
The RAl00 was designed around the Weller DS3 102 magnastat iron, which was perceived to offer a good all round performance and replacement parts at modest cost. The desolder bits are easily removed and do not bond themselves to the iron. Three bits, DS 112: DS 113 and DS 114,
are all that is required to cope with most desolder operations but there is also a range of surface mount desoldering attachments available. For further info contact

Keith Lawrence

on 0425274274
Distributed by:
JJ Components
Tel: 0819524641

PORTABLE POWER

SAJE Electronics of Cambridge has announced the launch of a portable power supply suitable for many applications including boating, yachting, caravanning and camping, as well as for use by motorists and in DIY.

Compact in size for its power, it is designed for multi use. An inbuilt fluorescent light provides up to 5 hours of continuous lighting on a full charge, while a separate flash light is used as a red flashing warning light. It has separate DC outputs at 6 and 12 V to supply external electric tools, portable appliances, televisions
and toys and also includes jump start cables to assist in starting engines.

Called the Power Tank, the unit can be charged from either a 12 V car cigarette lighter sockct which takes approximately 4 hours to fully charge whilst driving, or from a 240 V mains supply. There is an internal circuit breaker to protect the instrument from overload conditions and a battery level meter is fitted to monitor battery condition.

The Power Tank is supplied complete with cables, a protective carry case and mains adapter, for the price of $£ 76.50$ plus VAT.

For further information please contact:-

SAJE Elcctronics, Tel; (0223) 425440

DIGITAL FREQUENCY COUNTER

New from Maplin Electronics is a pair of compact, handheld frequency counters, the 1.2 GHz Counter M415F and the 2.7 GHz Counter M416F. Each unit features an cight digit LED display and is powered from intemal batteries. The counters have only two switches and two BNC input sockets. The lower switch has a centre off position and can select either input, while the sceond switch selects the gate period.

These high sensitivity meters can be powered from an external

12V DC supply (not supplied) which will also recharge the intemal batteries. Normal recharge time is 5 hours and the meters can operate for 4 hours with a fult charge. Overcharge protection is included.

The meters are intended for use by any hobbyist, radio amateur, engineer of student who needs an accurate and yersatite means of frequency measurement. The 1.2 GHz Counter sells for $£ 129.95$ (to incl. VAT) and the 2.7 GHz version $£ 169.95$.

BNR OPENS EMC TEST CENTRE

BNR Europe has opened Europe's first Electromagnetic Compatibility (EMC) Test Centre to use ferrite grid absorber tiles. The Centre, built at a cost of over $\$ 1$ million ($£ 647,000$) at the company's Harlow laboratory, incorporates a semi-anechoic chamber lined with more than 23,000 of the novel ceramic tiles.

The centre will enable the company to testand evaluate telecommunications products to ensure full compliance with the EMC Directive 89/336/EEC.

The Directive stipulates strict product regulations for the emission of, and susceptibility to, electromagnetic energy with the aim of curtailing the growing risk of interference between electronic and electrical equipment.

The new Centre is to be pro-
moted as the comerstone of a comprehensive EMC test and consultancy service to other UK manufacturers and distributors of Information Technology and telecommunications cquipment.

The ferrite tile technology has been proven in extensive commissioning trials and provides high quality, consistent resuits with the bonus of a virtually maintenance free life compared to conventional organic linings. The small 19 mm depth of each tile has also enabled the company to build an anechoic chamber one quarter the volume of that necded if traditional materials had been used.

The tiles absorb incident electromagnetic energy over the frequency range 30 MHz to 1 GHz . and provide a return loss of approximately 18 dB at 30 MHz , in-

creasing to 40 dB at 200 MHz and decreasing thereafter to 17 dB at 1 GHz .

To achieve a negligible reflection, the characteristic impedance of the tilcs matches that of free space, as close as practically possible across the frequency range of interest. The metal plate upon which the tiles are mounted helps
to ensure this match by modifying the input impedance, a function of the tile's permeability, permitivity, shape and dimensions, to provide a good match at the ferrite/air interfacc.

The tilcs can best be looked upon as a ferrite dielectric transmission line with a short circuit load provided by the plate.

PIN HIGH PHOTODIODE

Telecom Devices has introduced a new Planar PIN Photodiode with a photosensitive area 10 mm in diamcter.

Designed to work at Telecommunications and Datacommunications wavelengths of $1300-1550 \mathrm{~nm}$, the actual Spectral range is $850-1650 \mathrm{~nm}$. The
device is now available in the TO3 stylc package, although other package styles can be supplied.

Characteristics of the 35PD10M include, responsivity of $0.85 \mathrm{~A} / \mathrm{W}$ at 1300 nm , low Dark Current of $20 \mu \mathrm{~A}$, Risc Time of $1 \mu \mathrm{~s}$ into 50 R , and a Dynamic Impedance of 200 k

Although initially available with a circular photosensitive region, other geometric designs will be available later, consistent with altemative packaging options.

Applications for this large area PIN Photodiode will include high sensitivity Test and Measuring Equipment in the $1000-1550 \mathrm{~nm}$
field, as well as Receiver and Sensor work with Telecommunications and Datacommunications.

For further details contact:
Access Pacific Ltd
Tel: 0234376695

REDUCTION IN PIRACY PROBLEM

Statistics revealed recently have shown that the level of software piracy has declined in most European markets, although the problem continues to inflict heavy losses, estimated at US $\$ 4.6$ billion in 1992, upon the European software publishing and distribution industries. After a continual rise, the piracy fell in Europe from approximatly 77% in 1991 to a level of 66% in 1992.
"We have finally seen the tide turn against software piracy in Europe, but we have a long way to go before we can declare victory," said Brad Smith, BSA European Legal Counsel. "The Business Software Alliance's goal is to
decrease the supply and demand of pirated software and expand the size of the legitimate software market, and we are steadily advancing toward this goal. However, we will not stop until pirated software is reduced to a zero market share in Europe, and around the world."

According to the BSA's estimates, the reduction in software piracy in 1992 added approximate US $\$ 700$ million in revenue to the European software publishing and distribution industries.
"The reduction in software piracy created more than 8,000 new jobs in the European software industry last year, including
new positions in publishing, distribution, and training companies," said Smith.

The reduction in software piracy is attributed to several factors, including the completion of the European Community Software Directive, which has strengthened copyright laws throughout the member states; creative marketing campaigns conducted by local software associations in individual countries that have increased awareness for the benefits of original software; and an increased pace of legal actions to enforce copyright laws against infringers.
"Lastyear, the BSA filed more
than 100 legal actions in 10 countries in Europe, and coupled with strong informational campaigns about recommended sofiware management practices, we believe the market is finally getting the mcssage that it does not pay to cngage in illegal copying," said Smith.

In 1992, software publishers and resellers incurred the highest losses in France, US $\$ 1.257$ billion, and faced the greatest degree of pirated software in Italy and Spain, where illegal software held 86% of the market in both countries.

THE PC VIDEOPHONE PREVIEWED

BT and IBM UK have previewed the PC videophone. It is thought the low cost face-toface communications product could transform the way business operates in the futurc.

The PC Videophone combines telephone and computer to give users the chance to see and sharc information with the person they are talking to without leaving their desk. In a joint venture, IBM has produced the software with BT technology providing the latest dimension in communications.

Nick Temple, Chicf Executive IBM UK, said that the new product would revolutionise business life. "It's the most exciting development in this area of communications for some time and there is massive potential for it to become an office standard."

The PC Videophone conforms to the CCITT international standard H. 320 , which not only allows the product to interwork with videoconferencing systems and videophones but also protects the business investment when purchasing the PC Videophone.
"The main benefits to users
will not only be faster decision making, speedier and more efficient use of scarce human skills, cost and time savings from reduced travel, but also the added applications including: access to remote expertise; project management support and staff training," said Chris Frost, IBM UK's PC Videophone Project Manager.

The software uses a graphical interface to provide a vidco picture in one window, enabling users to work simultaneously in other windows sharing the data they wish to discuss.

As the voice, video, and data operates using BT's ISDN service, the user can also take advantage of the competitive ISDN call charge both in the UK and overseas. At present 90 per cent of UK businesses have access to the ISDN service via over 4,000 modern telephone exchanges.

The PC Vidcophone kit, comprising software, multimedia communications card, solid state camera and a telephone handsct, will bc available by the fourth quarter of this year, at a price of approximately $£ 3,000-£ 3,500$.

NEWS

> Stateside.

Start All Over Again

Both Motorola Inc.'s Cambridge Research Centre and the Computation Structures Group at Massachusetts Institute of Technology are relying on a special custom version of the 88110 RISC processor for the new Start project. This is the successor to the Monsoon parallel data flow computer project.

In presentations at the present

IEEE CompCon conference in San Francisco, Motorola revealed that the processor used for the system, the 88110 MP , adds more hardware and new instructions to the basic instruction set in order to handle the special message-passing needs of the Start architecture.

Originally, developers hoped that Start would be scaleable to 1,000 processors, but by putting the 88110 MP on special multichip modules and assembling the MCMs in special 3-D bricks, the 512-processor system currently in design can be scaled up to 4,096 processors. The 88110 MP was optimised for Start and Motorola does not plan to commercialise the processor.

The Start architecture allows for greater use of parallel processing when the computer is engaged in long-latency memory transactions, through the use of special split-phase transactions. These transactions require such a high level of interprocessor message-
passing that the original 88110 had to be augmented with new register sets and a special message and synchronisation unit (MSU).

The addition of the MSU required the expansion of the 88110 instruction set to cover 25 new instructions specifically for the MSU. Some of these are used for message-passing, while others cany out a form of multi-threaded compilation that Motorola calls 'micro-threading.' The creation of micro-threads for handling processes between CPUs allows the Start system to carry out its split-phase transactions.

The 88110 MP processors are linked in a topology known as a 'fat tree,' used in such architectures such as Thinking Machines Corp.'s CM-5. In a fat tree, the CPUs are seen as 'leaves' of the tree network and each move up the branch represents a move up in the networking hierarchy. Four of the 88110s are connected locally through one router chip,
four clusters of four (or 16 CPUs) are controlled through the next layer, etc.

While the operating system uses many Unix-like commands, the lack of a central clock means that the model of parallelising tasks is special. The managerprocess assigns several child processes called 'players,' with players distributed one per processor for all processors assigned to a parallel task.

The manager process cannot have direct access to the MSU block in the 88110 MP , in order to communicate with players; instead, it uses standard Unix inter process communication methods.

Currently, Motorola is scheduled to deliver 32-processor and 512-processor versions of the Start system to MIT in 1994. The first will be a departmental supercomputer platform with performance in the 3-Gflops region, while the 512-processor system will aim for performance of roughly 50 Gflops.

Terminator, Too

Anew type of terminal block has been designed for PCBs. It uses a patented contact and actuation design to make connections to a wide range of wire sizes. A turn of a small actuator bar enables a wire to be removed and a new wire inserted and connected.

In making a termination, an operator places a wire against the stop in the applicator opening and depresses the built-in lever. This forces the wire against the 'zero gap' metal body, displacing the wire insulation for an electrical contact. When used with stranded wire, there is no damage to individual strands and opening the lever moves the wire from the terminal contact.

Produced by Pheonix Contact, Harrisburg, Pennsylvania.

Electric Vehicles On The Move

Tlo support the development of fast-charging hardware that is expected to improve the effective range of electric vehicles, the US Federal Transit Administration has awarded the Advanced Lead-Acid Battery Consortium $\$ 1.2$ million in matching funds.

The ALABC fast-charging research programme aims to develop battery-charging hardware that can return roughly 50% of a full charge in 5 minutes, 80% in 15 minutes and full charge in 4 hours. Contemporary electric vehicles have a range of roughly 80 miles, depending on conditions, with a fully charged set of leadacid batteries.

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD

Traditionally, the prospect of recharging EVs has been considered an overnight proposition, dovetailing with the extra capacity of electric utilities during offpeak hours.
"Opportunity charging allows the consumer to benefit from the cost advantage of lead-acid batteries and still enjoy reasonable range from an electric vehicle," said Robert F. Nelson, ILZRO's manager of chemistry and electrochemistry. "Though other battery designs may offer greater range in theory, material costs alone can be as much as 10 times higherthan lead-acid," he pointed out.

In another move, the US Council for Automotive Research (USCAR) has announced that its members, Chrysler, Ford and General Motors, have signed an agreement to investigate coop-
eration in the design, development, testing, and possible manufacturing of electric vehicle components. The group will explore opportunities for common designs and specifications of electric vehicle systems and subsystems that would ultimately be ased in each company's own vehicle.

USCAR, an umbrella organisation formed to recommend, monitor and develop cooperative non-competitive research among the Big Three, now has nine consortia under way. The new electric vehicle group is being established to find the most effective way to hasten electric vehicle development, in order to help meet the US national and industry goal of providing clean, efficient, domestically fuelled, personal transportation.

PROFESSIONAL SERVICES

We offer a full R.F. DESIGN SERVICE from design and development to prototype. Our extensively equipped laboratory with screened room is available for EMC PRE-TESTING to ensure products comply with the EC Directive on emissions and susceptibitity.

Mains Inverter Comments

Wi th regard to the mains inverter in the December issue, the use of two 4 mm connectors was suggested for high current low voltage. Although not the cheapest, the use of three pin XLR plug and chassis socket made a much neater job.

I built the unit so I could demonstrate small portable TVs at car boot sales. Battery leads are expensive and difficult to obtain. It does this job satisfactorally, but will not do larger colour TVstypically 150 watts. I have noticed that when I tried it with two mains radios one valve and one transistor, an intolorable buzzing occurs. The valves light up OK but the AC only set had to have the earth lead connected to lose it. What is happening here? Are there modifications that can be done to the inverter to overcome this effect?

You said in connection with
the mains tester checker that 90 V HT batteries for portable valve radios were expensive. Apart from a source called The Vintage Wireless Co.,I didn't know that they were obtainable at all!

I had heard of a unit which generates the rail from a PP3 battery but costs $£ 50$. May be your checker project could be adapted for this.

Mark Daniels replies:

I will take the points in the order in which they are raised in your letter.

The connectors suggested for the 120 Watt version of this inverter were recommended as cheap and readily available. I agree with your suggestion that the use of XLR connectors in this application is probably a better alternative. However, I would suggest the use of the 'reversed' version of this connector (ie. panel mounted plug, lead mounted socket) in

5-Band Graphic EQ Maths

Regarding the 5-Band Equalizer featured in June 93 ETI, I am interested in using this eircuit as the basis for a 3-Band sweepable EQ, which are quite expensive commercially. Could you print the mathematical formulae for determining centre frequency and the Q of the gyrator circuit, as I cannot find this in any published texts.

Constructor's may like to include a small (39 p) capacitor across R7 in the circuit, to ensure stability of IC2. For a future project, how about a complete +1 -15 V reguiator using the LM317f 337 regulators and 15VA toriodal on one PCB.

F Stewart, London.

Andrew Armstrong replies:

If you wish to sweep the frequencyof the stages in the graphic equaliser, you can do so to a linited extent by varying R1. However, the practical range is
not very great because RI must remain considerably greater than $R 2$, and in any case varying it will affect the Q to some extent.

The gyrator circuit used in the 5 -band graphic equaliser project replaces an inductor. The inductance can be calculated by writing the equation describing the behaviour of the circuit, and equating this to the standard equation describing an inductor and a series resistor: This permits calculation of the equivalent inductance in terms of the resistors and capacitors in the circuit.

The article did originally include the formulae and a brief outline of their derivation, showing the approximate equivalence between the action of the gurator and an inductor, but they were judged unlikely to interest constructors.

Maplin's low cost range, plug KC54J, socket KC57M.

I find it rather surprising that a 120 Watt inverter will not run larger colour televisions, I have run 26 " models from this size inverter on several occasions. It may be that the televisions in question are older models with a 'dropper' type supply requiring more power than a modern set using a mains transformer or switched mode supply.

A 225 Watt version of this design is available as a component kit (excluding PCB) from JPG Electronics, Chatsworth Road, Chesterfield, Tel: 0246 211202. The transformer and suitable power transistors (type MJ11016) are also available separately from this source. A

225 Watt toroidal transformer has been produced specificallyfor use in this design and will perform better than a standard mains transformer used in 'reverse' as suggested in the article.

Low frequency interference (buzzing) has always been a problem with radios of the type mentioned and to a lesser extent with televisions. It is usually possible to cure it by effective earthing as you mention in your letter. A copper grounding rod driven 1.5 to 2 metres into damp ground and connected to the earthedside (neutral) of the transformer secondary may be helpful in more obstinate cases. Where mains electricity is installed the earth connection may conveniently be made to the normal mains earth
\qquad
via the earth pin of a three pin plug.

A squarewave consists of a fundamental sinewave and all the odd harmonics in the appropriate ratios theoretically up to infinity. A sinewave, by comparison, consists only of the fundamental wave and is normally the only source of a.c. which needs to be filtered out by mains equipment, which will normally have been designed to do just this. The output of the inverter is, of course, a squarewave which will introduce frequencies into the equipment which may not be effectively removed by any filters built into the appliance, so additional filtering of the supply will become necessary.

A low pass filter connected between the output of the inverter and the affected appliance will remove some of the harmonics from the square wave output of the inverter, producing a more ideal waveform for sensitive appliances. Maplin list a ready built unit which may be suitable, catalogue no. KR96E.

For those who wish to build their own I present a simple filter
circuit in the figure below which I have used successfully on many occasions. The design may appear 'back to front', but it should be realised that the transformer secondary will provide the necessary inductance for the first stage of this filter. Suitable values for the components are 4 to $10 \mathrm{H}, 1 \mathrm{~A}$ rating for L1 and $52,100 \mathrm{n}$-to 470n 250V AC, for Cl-this component MUST be a class X mains rated device, VDRI is a 275 volt metal oxide varistor, 275LA15 or similar. A certain amount of experimentation may be necessary to obtain best results.

I must admit that I cannot recall having seen 90 V HT batteries on sale in the shops for a number of years now. Wilkinson's definitely used to stock them some time back, but I am not sure whether they still do.

Suggested projects

Amodular form of the following FX: Digital Echo and reverb, vibrato, phasing, flanging, chorus and ADT.

Next an instrument that has a few titles. It is known as a harmony generator, a pitch shifter or a pitch transpozer.

Wayne Human Southdale
South Africa

Wayback in the heyday of analogue electronic music synthesis, vibrato, echo phasing and chorus to name but a few, ETI published circuits galore. Digital circuits have not been so frequent, owing to their complexity and I agree its high timewe sawrenewed amatuer interest in creating these in the digital age instead of leaving it to the Japanese. Ed

I have not come across the portable h.t. unit which you mention, but I assume it is similar to the unit which replaces the difftcult to obtain 15 volt battery in Avo 8 multimeters. This unit is listed by RS Components, catalogue no. 611-048 and has a similar price tag.

I am uncertain how much HT current valve radios require, but the Proving Unit can only output a very small current (a few milliamps at most). This may well be sufficient, but you will need to experiment and see. You mayalso find that this circuit will cause more interference than the battery to mains inverter, due its
much higherswitching frequency.
The number of turns on the secondary of the HF transformer in the Proving Unit will need reducing. A simple half-wave rectifier, smoothing capacitor and possiblyzener regulator will have to be added to the secondary to produce $D C$ for the valves.

Please send your letters to: The Editor
Electronics Today International
Argus Specialist Publications Argus House
Boundary Way
Hemel Hempstead
HP2 7ST

SECURITY EQUIPMENT

INSTALL YOURSELF \& SAVE! SAVE!

Complete range of security parts to protect your house and property. Passive infra-red sensors unltra-sonic movement detectors, control panels, cable, etc etc supplied with instructions.

QUALITY AUDIO MODULES

Power amplifiers from 10-125W, mixer units, pre-amplifiers etc. Build your own disco units, guitar amps, public address systems etc., etc.

call for FREL LITERATURE todar EAUTONA LTD TEL 0844345740 51 POPPY ROAD, PRNCCES RISBOROCGE, BCCKS PP27 9DB

YQ utd stevenage

Professional Sub-Contract Mannufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Manufacture
Device Programming from hand written shts or PC $3^{1 / 2^{\prime \prime}}$ disc Cable Harness Assembly floom Manufacture
Card Cage and Module Wiring
Full Inspection
Phone Tracey on (0438) 310066 or Fax details of your requirements to us on (0438)315829
EQT LTD, BTC, Bessemer Drive, STEVENAGE, HERTS, SG1 2DX

Product Design/Consultation Full Procurement Service
PCB Test \& "Burn in" Facilities
Enclosure Design \& Manufacture
Enclosure Design \& Manufac
Circuits Drawn Professionally
Kit Procurement \& Supply
Component Sales
Refurbishment a speciality
Top Quality Work at Reasonable Rates

Kilyobas N. Binga of Hold Trade Air Services Ltd. sent a fax to the ETI offices, to ask about a triac drive circuit. His fax shows the section of circuit illustrated in Figure 1.

He found that, when power was switched on, although switching signals were reaching the MOC3020, the 12 W lamp remained on all the time. He then tried disconnecting the gate connection to the triac, which caused the lamp to flash and eventually, after 15 minutes, to remain on.

The project is to build a large clock display, which can be read for 100 metres away. He requested procedures for calculating component values to be used with the MOC3020
or it is being falsely triggered by mains spikes. It is, in any case, a good idea to provide the triac with protection against mains spikes, so a snubber network should be connected as shown in Figure 2. If this cures the problem, then it should not recur, but if it doesn't, the only remaining likely cause of the problem is that the triac is defective, so it should be replaced.

A Question of Choice

Several points need to be made about the choice of components and values. First of all, the MOC3020 is rated as requiring 30 mA of LED current to guarantee triggering. Most units I have tested will trigger quite satisfactorily with less than 10 mA , but in a large installation the official ratings of devices should be borne in mind. The section of circuit diagram shows the opto- isolator driven from a logic gate, which cannot be expected to provide 30 mA drive current, particularly not to several loads at once. It might be better to use the MOC3022, which is rated at 10 mA guaranteed trigger current.

The TIC226M triac is an 8 amp device which requires 50 mA of gate trigger current in quadrants 1,2 and 3 and is not rated to trigger at all in quadrant 4 (with gate positive during negative mains half-cycles). The use of an optotriac to trigger the device, means that triggering occurs in quadrants 1 and 3 , so reliable triggering can be expected if
and the TIC 226 M , so that he could make the unit work. Would I be right in guessing that the project is required for use in an airport, perhaps?

Cause and Effect

First of all, why does the lamp remain on when the MOC3020 is apparently being switched by its logic drive? There are four obvious possibilities and it should be quick to find out which is the culprit. The MOC3020 may be receiving drive when it appears not to be, the MOC3020 may be defective, the triac may be defective, or the mains supply may contain such a high amplitude of spike interference that the triac is being broken down (which causes false triggering).

To find out which is the cause, first disconnect $R 2$, not the gate connection to the triac. This leaves R3 connected as a blecd resistor for any leakage current or noise which may reach the gate. If the lamp remains off when R2 is disconnected, than reconnect R2 and disconnect R1. If the lamp now remains off, then the drive is at fault, while if it remains, on the MOC3020 is defective.

If the lamp remained on, then either the triac is defective,

50 mA of gate drive is supplied. Clearly, the value of R 2 is too high to permit reliable triggering near to the mains zero crossing. A $1 \mathrm{~W}, 470 \mathrm{n}$ resistor would be more appropriate.

The triac itself is too large to be suitable for the job of

Fig. 2
driving a 12 W lamp. When a triac or thyristor is triggered, it continues to conduct until the current falls below a level known as the holding current, a level which maintains sufficient chargecarriers in the junction for conduction to continue. It is unlikely that the current drawn by a 12 W lamp will reach the holding current, though this is not specified in my abridged data. The RMS current drawn by a 12 W lamp running on 240 V AC is only 50 mA , while the rated RMS forward current of the MOC 3022 is 100 mA . It would appear that a single 12 W lamp could be driven directly by the MOC3022, the only difficulty being that when a cold
 lamp is switched on, there is a current surge of several times the RMS operating current and this may cause failure of the MOC 3022 . Either a NTC thermistor should be connected in series with the lamp, or a lowercurrent triac such as the TICP206M should be used. This is a 1.5A triac, rated at 8 mA trigger current in quadrants 1 and 3. The holding current of thyristors and triacs is usually of a similar order to the trigger current, so the TICP206M should be able to remain triggered over most of the mains cycle.

Dissipation

Mr. Binga goes on to ask how reliable the clock is likely to be when he calculates that the total dissipation of all the lamps he intends to use is 2.5 kW and that the unit will be
enclosed in a transparent plastic housing which will limit cooling. My estimate is that reliability would be poor and that there could even be a fire-risk. I would, instead, experiment with the visibility of large, high-powered LEDs operated as shown in Figure 3. If a wide viewing-angle is required, then one of the LEDs from the Famell catalogue is specified at 550 millicandelas over 100° solid angle. If, on the other hand, a narrow viewing angle is acceptable, another LED from the same manufacturer offers 3 candelas over a 20° solid angle. Clearly, one would need more LEDs than incandescent lamps to give adequate readability at a long distance, but the reliability will be much higher.
A. Armstrong

TEST AND MEASURING INSTRUMENTS

$\begin{array}{lllll}183 & £ 46.41 & 185 & £ 87.54 & 187 \\ £ 116.91 & 285 & £ 128.66\end{array}$

SC40 £104.58 SC130 £128.-08 SC230 £175.08

CO1305 £198.58 CS4025 £387.75 CS5170 £1361.83

MULTIMETERS

The 180 series of multimeters provide advanced features and are supplied complete with probes, battery and rubber holster. 183; 3.5 digit LCD, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, basic accuracy 0.5%. 185; As 183 plus bar graph, temp. $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.1370^{\circ} \mathrm{C}\right)$, capacitance (1 pF to 40 uF), frequency (1 Hz to 200 kHz), max $/ \mathrm{min}$, edit, $\%$, compare, basic accuracy 0.3\%. 187; As 185 plus Auto ranging. 285; As 185 but 4.5 digit true rms, basic accuracy 0.05%.

COUNTERS

The SC series are high performance microprocessor based frequency counters with advanced features. SC40; 5 Hz to 400 MHz , hand held, battery powered, 8 digit LCD, sensitivity typically 10 mV , hold, \min, max, ave, diff, variable gate and filter. SC130; as SC40 but 5Hz to 1.3 GHz . SC230; Bench version of SC130, backlit LCD, RS232 as standard.

OSCILLOSCOPES

The CO1305 is a compact mains powered DC to 5 MHz single channel oscilloscope. It has a vertical sensitivity of $10 \mathrm{mV} /$ div and features internal and external synchronization. it is capable of $X-Y$ modulation and has a Z input. The CS4025 20 MHz dual trace oscilloscope offering comprehensive features including high sensitivity vertical amplifier (1 mV to $5 \mathrm{~V} / \mathrm{div}$): $\mathrm{CH} 1, \mathrm{ALT}$, ADD, CH2 modes with inverse polarity. A horizontal timebase sweep range of $0.5 \mathrm{~s} / \mathrm{div}$ to 0.5 us. div plus X 10 expansion and $X-Y$ mode. Triggering can be auto or normal from vert, $\mathrm{CH} 1, \mathrm{CH} 2$, line or external sources with coupling provided for AC, TV-F and TV-L. The CS5 170 is a dual trace 100 MHz D/ timebase high performance scope with CRT readout and full cursor measurement. It provides comprehensive triggering features that make it ideal for all applications. All oscilloscopes are provided with probes as standard.

COUNTERS O GENERATORS O OSCILLOSCOPES O POWER SUPPLIES O MULTIMETERS O CLAMP METERS LCR METER O PROGRAMMER/EMULATOR O MULTI-INSTRUMENT O AUDIO/VIDEO TEST O GENERAL PURPOSE

For more detailed information on any of the SAJE range of products please contact:SAJE Electronics, 117 Lovell Road, Cambridge, CB4 2QW. Tel: (0223) 425440 Fax: (0223) 424711. (Please remember to send full credit card details). All prices quoted in this advertisement are inclusive of VAT.

If you've never
had an E.T.I. subscription, grab this chance to get it delivered by our Direct

Delivery Service every month
for 1 year, save 15% and we'll pay the postage anywhere in the U.K.!

1 Yr Direct Delivery
Service Rates:
U.K. $£ 23.40$

Europe $£ 29.50$
Sterling O/S £31
US Dollars \$56

'First Timers'

 Discounted Rates:U.K. £19.85 (save over £3)

Europe \& Eire £25 (save over £4)
Sterling O/S £26.35 (save over £4)
US Doliars $\$ 47.60$ (save over $\$ \$ 8$) you never miss an issue!

Post me today! (PLEASE COMPLETE IN BLOCK CAPITALS) - Yes, I would like a new subscription to E.T.I. magazine for 1 year and get my 15% introductory discount. I Yes, I would like to re-subscribe to E.T.I. for 1 year at the standard rate. (State subscription number if renewing/extending) Commence my subscription from the issue I enclose my cheque/M.O. for $£$ made payable to ASP or debit
my Access/Visa account:
$\square \square \square$


```
*...Expiry:............Today's Date: Expiry: ..............Today's Date:
```

Name:
\qquad
 Post Code:

Please send this coupon to: Argus Subscription Services, Queensway House, 2 Cueensway Redhill, Surrey RHI 1QS. Or call our hotline: 0737 768611. You may receive further information about offers which may be of interest to you. Offer closes: 307/83 (E.T.I.152)

SUMMER 1993 CATALOGUE

The new enlarged Cirkif Catalogue is out now!

> 32 more pages
$>$ New range of Kenwood 'scopes
> The latest scanning receivers and accessories
> New section of low cost security products

- Extended range of Velleman kits including: 250W 12 Vdc to 220 Vac inverter, in-car amplifier power supply, 200 and 400 W amplifiers, suppressed lamp dimmer, halogen lamp dimmer, day/night thermostat and telephone remote control unit
$>$ New test equipment, includes: 2.3 GHz bench frequency counter, EPROM emulator/programmer, portable 'scopes and bench function generators
$>$ Host of new components, including: compression trimmers, variable capacitors, connectors, fuses, and fuseholders, potentiometers, IC's, soldering irons and lead free solder
> Published 27th May 1993
> Available from most large newsagents or directly from Cirkit
$>$ Send for your copy today!

Low cost data acquisition for IBM PCs \& compatibles...

A unique range of low cost data acquisition products for IBM PCs and compatibles. Installed in seconds they simply plug directly into either the serial or parallel port. They are completely self contained, require no external power supply and take up no expansion slots.
Each device comes with an easy to use software package (PicoScope, PicoLog or both). C, Pascal, and Basic drivers are supplied for those who want to develop their own sottware, as is a manual giving full details of the hardware and software. All software supplied on $3.5^{\prime \prime}$ disk.

Up to 24 kHz sampling rate from a $386 / 33 \mathrm{MHz}$ machine
$0-5 \mathrm{~V}$ Input range BNC input connector allows use of standard scope probes 30Voverload protection Parallel port connection Includes PicoScope software Single Channel 8 bit ADC $£ 49$

ADC-16

8 Channel 16 bit + sign ADC

Scope, voltmeter, spectrumanalyser $\pm 2.5 \mathrm{~V}$ input range
Software selectable single ended or differential inputs
Resolution programmable between 8 and 16 bits + sign 5 V reference output Connects to sërial port Includes PicoLog software

ADC-11 15 K samplesper second 0-2.5V Input range Digital output D25 input connector 30Voverload protection Parallelport connection Includes both PicoScope and PicoLogsoftware
11 Channel 10 bit ADC
£75

Single Channel 12 bit ADC

Typical application	ADC-10	ADC-11	ADC-12	ADC-16
Oscilloscope	-	-	\bigcirc	
Voltmeter	-	\bigcirc	-	-
Spectrumanalyser	-	-	-	
Audio sampling	-		-	
Chartrecorder emulation		-		-
Temperature measurement	-	-	\bigcirc	-
Pressuremeasurement	-	\bigcirc	-	\bigcirc
Chromatography				-
Automotive monitoring		-		-
Medicalresearch		-	\bigcirc	-
Education	-	\bigcirc	-	-

Picolog

 Advanced data logging software
Collect samples from 1 per msto one per day. Scale samples linearly, by equation or by table look-up. Graphical (against time or XY) andtext reports can be displayed, printed or exported.
Picolog is also available for the ADC-10: callfor details.

PICOBENEFITS

- 30 day no quibble money back policy
- Full 1 yearguarantee
- 1 year's free software upgrades
- Freetechnical support
- Freeusernewsletter
- Sameday dispatch

Pico Technology Ltd. Broadway House, 149 -151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.

VISA

 TEL: 0954-211716 FAX: 0954-211880Phone or FAX for sales, ordering information, ibata sheets, kechnitat support. All prices exclusive of VAT.

> A single loop design to detect remote open windows, by Nigel Smith.

Windaty

 NonitorThe window monitor has, as its name suggests, been designed to detect which of one's windows are open or closed. This would be a trivial task if one were allowed separate wires from each window to the monitor, but this was ruled out in the original design brief. The requirement was to monitor greenhouse windows, where there were many windows situated some distance away from the monitor. Separate wires were therefore deemed to be impractical and a system was sought in which the

Fig. 1 The system
windows are connected by a single cable, in loop or chain fashion. The project was designed to solve this problem, but it may find more widespread use as part of a security system. An alarm trigger option has therefore been included.

The system consists of a base unit, which contains the power supply and main circuit and a remote circuit, together with a reed switch at each window, as shown in Figure 1. A prime objective has been to keep the remote circuits as simple as possible, so that a large number can be built at a reasonable cost.

Despite its name, the circuit can, of course, also monitor doors or indeed anything else that can operate a switch. Transistors, including phototransistors, may be used instead of reed switches, so the project would make a versatile 'smart loop' if used with an alarm system, since it will detect which switches have been operated.

Operating Principles

The following provides an outline of the system operation = see 'How it works' for further details.

The base unit supplies a pulse train to the chain of remote circuits, each of which routes the first pulse it receives to its switch. All subsequent pulses are then sent along the chain to the next remote circuit. The first pulse is thus applied to the first switch, the second pulse to the second switch and so on. The relevant waveforms are shown in Figure 2.

The state of the switches is read by monitoring the current in the supply line to the chain. The remote circuits use CMOS ICs which draw a negligible quiescent current but can supply up to 2 mA when working at 10 V . When a pulse is applied to an open switch, the current remains negligible, but nearly 2 mA will be drawn if the switch is closed. The current monitor has simply to distinguish between these two states to tell whether a switch is open or closed.

The output of the current monitor is fed to a serial in/ parallel out shift register which stores the data and drives the LED display. An HC series shift register and low current LEDs are used, as the former can directly drive the latter.

I have assumed that the state of the switches will mirror that of the windows, i.e. that the switches are closed when the windows are closed and that a warning light should show that a window is open. For each window there is therefore a red LED, which will light if its switch is open.

Fig. 2 Remote circuit waveforms
The last remote circuit of the chain is terminated by a fesistor, which acts as a permanently closed dummy switch. The corresponding LED is a green one which lights to indicate the closed condition. This is used to show that the monitor is operating when all the windows are closed and the red LEDs are therefore off, as well as to provide a continuity check for the chain.

The reading sequence is repeated every 700 ms or so, to
give a continually updated reading. The duration of the pulse train will obviously depend upon the number of windows connected, but will typically be about 10 to 20 ms . During this time, the LEDs will flicker as the data moves through the shift register, so the display will show a slight flickering at about 1.5 Hz in use.

Power Supplies

A choice of mains or battery power supply circuits has been provided. These are shown in Figures. 3 and 4 respectively. Both give nominal $5 \mathrm{~V}, 10 \mathrm{~V}$ and 15 V lines, although the recommended battery voltage is actually 6 V . Four 1.5 V cells or five 1.2 V rechargeable cells should be used. Alternatively, a stabilised 5 V or 6 V supply may be used with the battery version.

Switching Options

Although the window monitor was designed to operate using reed switches, active sensors and auxiliary circuits may be connected by using transistors as switches. Connect the emitter and collector of an NPN type to points S1 and S2 respectively, vice versa for a PNP type. The connection points are shown in the remote circuit component layout, Figure 12.
-A point to watch here is earthing. Connection via transistors is suitable only if the circuits driving them are floating, i.e. if they have no connection to earth nor, worse still, to live, neutral or half live mains. If the window monitor itself is not earthed, then one earthed auxiliary circuit is permissible, but if in any doubt, use an opto-coupler. Most types are suitable and the method of connection for these and for phototransistors

Fig. 3 Mains power supply

Fig. 4 Battery powered supply

A voltage tripler was chosen for the battery power supply, because the higher voltage lines require much less current than does the 5 V line. It would have been possible to run the remote circuits at 5 V , but some voltage overhead would still have been required for the current monitor. While a voltage doubler could have provided this, the addition of a couple more capacitors and diodes creates a tripler which enables us to run the remote circuits at 10 V . This is advantageous, because of the higher output current capability of CMOS chips at the higher voitage. The detector of the current monitor can therefore be less sensitive than otherwise, so that noise immunity is improved.
is as described above for transistors. The requisite ratings for the above devices are modest. The 'on' current is only 2 mA , the 'off' voltage is 10 V and leakage current up to $100 \mu \mathrm{~A}$ is acceptable.

As stated above, it has been assumed that the LEDs are required to be on when the switches are open. If, instead, you want a LED to be on when its switch is closed, then connect it to the SV line as shown in Figure 6 for LED 6, the green LED, instead of the 0 V line as shown for the others. The relationship between a switch and the corresponding shift register output is that an open switch gives high output, a closed switch gives low output. This applies for all types of

Fig. 5 Expansion circuit
switches and both methods of LED connection.
Windows can be 'ORed' by wiring their switches in series with one remote circuit. This arrangement could be useful if you have two or more windows close to each other and it is not necessary to know precisely which one of them is open.

HOW IT WORKS

Power Supplies
The mains PSU, shown in Figure 3, requires little explanation. Full waes reciification and a regulator IC are used for the 5 V line, while unregulated tall wave rectification is sufficient for the other lines.

The battery PSU, shown in Figure 4, uses ICs 1a, ib and ic to generze a 150 kHz square wave. This drives the voltage tripler via IC1d to produce the 10 V and 15 V lines.

Main Circuit

The main circuit is shown in block diagram form in Figure 13 and in $t e$ circuit diagrams Figures6 and 8. The diagrams and the text below refer to te case where there are five remote circuits. For the general case where there az n remote circuits, read $Q(n+1)$ for $Q 6$.

The reading sequence is initiated by a pulse from the system reset circar which comprises ICid and associated components. The pulses are negatre going, approximately 2 ms wide and repeat at 1.5 Hz .

The clock generator consists of ICia and its associated components. I oscillates at about 750 Hz , unless it is disabled by a high on output Q6 of the shift register. The clock is therefore enabled by the reset pulses, which take all of the shitt register outputs low.

The signal and 10 V outputs to the remote circuits are controlled by the latch ICs 2 b and 2 c . The 10 V output cannot be left permanenty on because the remofe circuits need to be reset for each reading sequence, but this is achieved automatically by switching on the 10 V output. When this the date input of the shitt register, will be high. This logic 1 becomes a marker bit whict controls the latch ICs $2 b$ and $2 c$. At the first clock pulse after the reset, the marker will be shitted to the first register oupput, $Q 0$. This sets the latch, whict now tums on the signal and 10 V outputs. Subsequent clock pulses are outpa to the chain, while the marker is moved along the register with the switch state data from the current monitor following behind it. When it reaches $Q 6$, the marker stops the clock and resets the latch, so the outputs to the rempoe circuits are tumed off and the data remains in the register until the next resel pulse.

ICs 16 and 3 a are used for logic level shifting at the iatch inputs and ther also form gates, as shown in the block diagram, Figure 13. ICib allows the latec to be reset by the system reset. This is only necessary for the initialisation of the latch, which will subsequently always be reset by the marker at Q6. IC3a prevents the latch from being set when $Q 6$ is high. This ensures that an oper circuit chain condition (putting QO high and the green LED off) does not try to set and reset the latch simultaneously.

The operational amplifier IC3b and R19 form the 10 V output and current monitor. The voltage of the 10 V output line, being also that of the op-amo negative input terminal, will follow the voltage of the positive input terminal. This will be 10 V when the latch is set and OV when it is reset. Any current drawn by the output line will flow from the op-amp output through R19, so the op-amp output voltage will depend upon the said current. When one of the remote circuits applies a puise to its window switch, the output of the op-amp will be 10 V if the switch is open or 12 V if i is closed. The network Rs 17 and 18 drop the voltage to approximately 9 V or 11 V respectively, so that the comparator

Alarm Trigger

If this function is not required, then omit R26, Q1, IC4 and the long link next to it from the main circuit board.

The alarm trigger is output via an open collector transistor. When this is connected to a pull up resistor in the alarm circuit, a positive going pulse will occur if any of the window switches is open. The pulse width is about 1 ms and it will repeat every 700 ms or so, as long as the switch remains open.

A chassis connection must be made between the window monitor and alarm circuits, so one must be mindful of earthing. If both monitor and alarm circuits are earthed, there is not likely to be a problem, provided that the alarm has its negative or 0 V supply line earthed and the two circuits are situated reasonably close together (e.g. in the same room). The best arrangement will depend upon the alarm system in use, but in general the earth connection to the mains powered version of the window monitor should be omitted only if there is a permanent earth connection via an alternative route.

IC1c can compare this to a 10 V reference. The compaator output is then fed to the data input of the shift register. The register is clocked at the trailing edge of each output pulse, so the capacior C2 is used with Rs 17 and 18 to hold the comparator input. The integrating network thus formed will also help to prevent the data being depraved and corrupted by any unpleasantiness that may be picked up by the chain.

The alarm trigger circuit takes the shift register output $Q 0$ and passes it to the transistor $Q 1$ via the gate CAd. All of the switch state data passes though Q0 during the reading sequence, so any open window switch will cause a pulse to trigger the alam by tuming of Q1. The marker bit is excluded from the trigger output by the latch formed from ICS $4 b$ and $4 c$, which tums the gate off when the system reset pulse occurs. The gate is then tumed on by the marker when it appears at Q1, having passed though QO.

Remote Circuit

The 4555 dual 2 to 4 line decoder is used in a rather unusual application here, so an explanation of its functons is given. The input and output waveforms of the diruit are shown in Figure 2.

Taking IC1b first, inspection of the tinth table, Figure 14 , will show that it behaves as a NCR gate, since $Q 0$ is the only output used.

Considering next ICla, we regard the input DO as a signal and D1 as a control input. The truth table now shows that the signal can be switched by the control, between the outputs Q1 and Q3, with the signal complement appearing at Q 0 and Q 2 respectively.

When power is first applied to the circuit, $\mathrm{C1}$ being connected to the positive line ensures that QOb and hence Dla will be low. Q3a will therefore also be low, as nill DOa, since it is connected to Q3a of the previous remote circuit. The initial state of ICla is therefore described by line 1 of the truth table.

At the leading edge of the first input pulse, the state of ICla becomes that of line 2 of the table, but the delay mposed by the network R1,C1 ensures a brief overlapping of high inputs to $\mathrm{IC1b}$, so its output remains glitch tree at logic 0 . At the trailing edge of the first input pulse, the delay now ensures an overiap of low inputs to IC1b, so that its output goes high. The circuit is then latched in this condition, with all subsequent pulses appearing at tre output Q3a, until the power is turned off and then on again at the beginning of the next reading cycle.

Connecting the monitor earth to the mains earth via a high value resistor might be acceptable in some cases.

Expansion

The main PCB designed for this project can accommodate three eight bit shift registers. Since two bits are required as overhead, up to twenty two windows can be connected.

More shift registers may be added by using an expansion board, as shown in Figure 5. Each additional register will provide for a further eight windows. Points for the connection of an expansion board are provided on the main PCB. These are 0 X and 5 X for the power, RX the reset, QX the input and

Fig. 6 Main circuit

Fig. 7 Main circuit component overlay

CX the clock. A return connection to point QN must also be made - see the construction section below about this.

Each LED draws about 2 mA when lit and the rest of the circuit about 10 mA . The mains driven power supply circuit for the project is rated at 100 mA and will therefore limit to about forty the number of windows that can be accommodated. In the unlikely event that you should wish to monitor more than this, a more powerful supply will have to be provided.
either of them may be fabricated on the same board as the main circuit if desired. To do this, simply align the 0 V and 10 V tracks of the main circuit and the chosen power supply layouts, overlapping by one or two mm to form a single layout. The finished board must then have links fitted to connect the 5 V and 15 V supplies from the PSU to the main circuit.

No casing details are given here, as these will depend upon which power supply is used and the number of LEDs required. The user will also probably want the arrangement

Another constraint is imposed by the length of the chain of remote circuits, but the limit here is the resistance of the wires rather than the actual length. The combined resistance of the positive and negative leads may be up to lk , so this is not a severe constraint.

Since the display flickers meaninglessly during the read= ing sequence, it will not give a clear indication if the ratio of the reading time to the overall cycle time is too large. The period of the output pulses is about 1.1 ms and the cycle time about 700 ms , so the display will be stable for approximately 90% of the time, if sixty windows are monitored. (Reading time $=60 \times 1.1 \mathrm{~ms}=66 \mathrm{~ms}=10 \%$ of 700 ms approx.). This is not a fixed limit but the display will become less intelligible if the number of windows is increased, unless the time constants are altered.

Construction

Separate PCB layouts are shown for the main board and the choice of power supply boards, which together with the remote boards are all made from single sided PCB. Both power supply layouts have, however, been designed such that

Fig. 9 Remote circuit
of LEDs on the front panel to reflect the physical placement of the windows being monitored. No LED PCB is therefore shown and the constructor is left to his or her own devices here. Stripboard would make a suitable alternative to a custom built PCB for the LEDs, or they could be mounted onto the front panel using LED clips and have wires soldered directly to their legs.

The LEDs should be wired to the shift register outputs in reverse order, as I shall now explain. The outputs of the first shift register IC are numbered Q0 to Q7 and, for convenience, let us call the outputs of the other registers Q8 to Q15 and Q16 to Q23 for ICs 6 and 7 respectively. Q0 drives the green LED via R7, while the other outputs drive red LEDs via resistors, whose numbers are derived by adding J00 to the output number, e.g. Q9 is connected to R109. The LED

Fig. 10 Mains PSU component overlay

Fig. 11-Battery PSU component overiay
connection points are, for clarity, not labelled on the layout of the main board in Figure 6, but their numbers are implied by the numbers of the resistors closest to them. Let us now suppose that we have, for example, five remote circuits which are numbered in the natural order along the chain, as in Figure 1. This is the case which is used for the circuit diagram in Figure 7, so ICs 6 \& 7 and resistors R106 and above are not used. The LEDs are connected in reverse order to their series resistors, such that LED1 is fed from R105 and LED5 from R101. This is necessary because the first bit into the shift register moves through to the last output used.

A wire must be fitted between point (near C 4 at the centre of the main board) and the shift register output following the last one used for an LED. For the example given above, this will be Q6.

The remote circuits are connected to each other and to the base unit by a three core cable. The prototype uses a stereo jack plug and socket, but these connections may be hard wired via a terminal block or soldered directly onto the PCB. The type of cable used is not critical.

The window switches may be reed switch/magnet combi-
nations of the type commonly used in security systems, or a miniature reed switch can be mounted directly onto the remote PCB.

Points S 1 and S 3 on the remote circuit board are provided for this purpose. The assembly can then be housed in a small
plastic box and used with a suitable magnet. Take care to orient the reed switch correctly if you choose this option.
-The last remote circuit of the chain is terminated by a 5.6 k resistor. This is in addition to the switch, and should be fitted between the output and a 0 V terminal.

The mains powered version of the monitor has the transformer, mains switch

Fig. 12 Remote circuit layout

and mains fuse F1 mounted off board, so that there is no mains voltage on the PCB. A double pole switch and a shrouded panel mounted fuse holder are recommended for the above. If a metal case is used, then it should be earthed.

$D 1$	$D 0$	$C 0$	01	Q_{2}	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Fig. 14 Truth table, 2 to 4 Line decoder ($1 / 2$ of 4555) The LT fuses F2 and F3, are mounted by fuse clips. Holes for these are not shown because clips vary in design and the mounting hole positions will depend upon the type of clips which you use.

A single pole on-off switch will suffice for the battery powered version. A push-to-make type would be appropriate where intermittent rather than continuous operation is required.

PARTS LIST			
MAIN CIRCUIT		MAINS PSU	BATTERY PSU
RESISTORS	CAPACITORS	RESISTORS	RESISTORS
R1,2,10,11,12,14,15 56x	C1 4n7	R1 1k2	R1 1k
R3,6,23 10k	C2 10n		R2-4 10k
R4,8,9,13 27k	C3 1 1410 V	CAPACITORS	C1 100n
R5 100k	C4 100n	C1 100 ${ }^{\prime} 25 \mathrm{~V}$	C2-4 220p
R7 1k8		C2 470 110 V	C5,6 220n
R16 33k	SEMICONDUCTORS	C3 100n	C7,8 $4,4 / 25 \mathrm{~V}$
R17 220k	IC1 LM339	C4 10 116 V	
R18 15k	IC2 4001	SEMICONDUCTORS	SEMICONDUCTORS
R19 1k	IC3 LM358	D1-3 1N4001	IC1 74AC00
R20 270k	IC4 4011	2 O 1 BZY88C10V	Di.4 1N4148
R21 120k	IC5 74HC164		
R22 82k	Q1 BC547	miscellaneous	
R24 560k	D1-4 1 N4148	T1 240V/6-0-6V 100 mA transformer	
R25 2k2	LED1-5 Red LED	F1 63 mA , QB fuse	
R26 47k	LED6 Green	F2,3 $100 \mathrm{~mA}, 20 \mathrm{~mm}, \mathrm{Q}$ Q fuses	

BUYLINES

All of the components used in this project are readily available, with the possible exception of the 74ACOO IC used in the battery PSU This is stocked by Maplin. Other logic families cannot be substituted because CMOS types have insufficient output current drive and $T \mathrm{~L}$ types have insufficient output voltage swing. Other $A C$ series inverting gates may be used, but would require the PCB to be redesigned.

Prices include P+P Solfwere supplied on 3.5^{-} Disk untess 5.25 " specified.

- Plugs into printer port
- Up to 25 KHz sampling
- Oto 5 Volt input range
- Software divivers in C and BASC
- Voltmeter and Scope software + source

- 6 channel 8 -bit A $10 D$
- Plugs into printer port
- Up to 4 KHz sampling/ch
- Oto 5 Volt input range
- Software drivers in C and BASIC
- Data Logger software ((equires egaivga)

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX - 0316672611

The supplier to use if you're looking for -
\star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST \star
\star COMPETITIVE VAT INCLUSIVE PRICES \star
\star MAIL ORDER - generally by RETURN OF POST \star

* FRIENDLY SERVICE *

C.P.Technology

Red Lion Yard. Market Place, Blandford, Dorset DT11 7EB.
Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

JUST LOOK AT WHAT'S AVAILABLE FROM BONEX

Balance Mlxers Batteries
Button Cells, Ni-cads,
Battery Holders,
Battery Eliminators,
NI-cad Chargers,
Boxes
ABS Plastlc, Dle-cast,
Hand-Held Enclosures,
Bridge Rectifiers
Bulbs
Cables
Audio, BBC, Camcorder,
Cassette/Calculator, Mai
Computer, IBM PC/A
Sorial, Monitor Extenalon,
Parallel, PatchVideo Lead
Scart Cables, Se
Vldeo/Audio Dubbing Ktt,
Cablo 7100
Capactior
Ceramle Discs
Ceramic Feedthrough
Chip, Electrolytics,
Monolithics, Myla
Potyc
Polystyrenes, Poiyester
Capaeliors Varia
Fllm Dielectric inmmers,
Ceramlc Trimmers,

CMOS Devices
Computer Accessories Adaptors 9 W to 25 W . Data Switch Boxes, Gender Changers, AS232 - Patch Boxs, Null Modems, Plug in Testers, Surge Protectors, Surge Protector Plugs, Connectors Audio Adaptor/Plugs, Banana Connectors,
Binding Posts BNCs, Centronlcs, D , D High Density,
DC Power, DILIC DiNs, IDCs, Edge , F, Jack $.5 \mathrm{~mm}, 3.5 \mathrm{~mm}, 6.3 \mathrm{~mm}$, Malne , Microphones, Molox, N-Typo, Phono PL259, RF Adaptors, Scart, TNC, Terminal Stripe, TV, XLR, Crocodill Cllps Crystals
Dosolder Pumps
Dlodes
Plastic N 4000 / IN5400,
Toko Varicaps
Signal Dlodes,
Zener, BZYs and $\mathrm{BZX} \mathrm{X}_{1}$

Drllis
Bits and Burrs,
Expo,
Pin Chucks,
Power Supplys,
Saws and Slitting Discs,
Fans
Feet, Rubber
Ferfites
Ellters
FM Coramics, Mechanical IF's, Ceramic Resonators, Crystal, Helicals, NTSC / PAL Pilot Tone, Quadrature Detector, Satellite TV, Video,

Fuses

Grommets
Howes Klts
Heatsinks
Induction Fixed
induotore mouldad
Inducors surface Mount
Inductors Variable
Infra-red Source Sensor
Insulating Tape
IntegratedClicults
CMOS,
Eproms,
Linears,
Memory,
TTL

Kits and Modules	Test Leads
LE.D.s, 3 mm and 5 mm	Test Probes
Ught Dep Reslstors	Tools
Loudspeakers	Crimping, Cutters,
Microphone Inserts	Flies, Insertion,
Multimeters	Reamers,
Neon Indicators	Screwdrivers,
Nuts and Boits	Strip Board, Trimtools,
Opto Switchs	Torold Cores
Optolsolators	Thyristors
P.C.B. 8	Transformers, Mains
Copper Clad, Etch Resist	Transistors
Transfers, Photo Resist.	Audio Power,
Pins, Proto-type,	Darlingtons, F.E.T.s
Polishing Mops	GaAsFET,
Potentiomoters	Low Power RF,
Control Pore, $16 \mathrm{~mm}, 24 \mathrm{~mm}$,	Mlcrowave,
Pro-ets, HorizontalVertical	MosFETs,
Trimmer Pots,	Power RF,
Power Supplieg	Small Signal,
Biave	VMOS,
featiors	Triacs
Carbon Film, Metal Oxide,	TTL
Wrewound,	Video Modulators
Screening Cans	Voitage Regulators
Semi's Mount Kits	Wire
Soldor	Enamelled Copper,
soldoring lrona	Tin Plated,
Switches	Silver Plated,
DIL, Key,	Zero Insert Force
Push, Rotary, Slide, Toggles,	Sockets

12 Elder way
Langley Business Park
Slough

CATALOGUE AVAILABLE

SPECIAL OFFER

 SBL-1 BALANCE MIXERS $£ 3.75$Berkshire SL3 6EP. Telephone : 0753549502 Fax : 0753543812

Power Supplies Without Transiormers
 An alternative approach to low voltage availability by Andrew Armstrong.

Fig. 1

The normal way to power an electronic project is either to use batteries or a mains transformer, rectifier, smoothing capacitor, and voltage regulator. This is fine for many projects, where the circuitry has to be isolated from the mains, or where it draws a substantial current. However, there are instances where the current requirement is very small and the circuitry will never be touched, meaning that the project can be connected to the mains. Maybe the circuitry is already connected to the mains, because it controls a triac. In these applications, a mains transformer is unnecessarily costly and bulky and a direct mains power supply is preferable.

Resistive Supplies

The most obvious type of direct power supply is the resistive type, as illustrated in Figures 1 and 2. In broad terms, the circuit of Figure 1 works by half wave rectifying the mains via a current limiting resistor. The resulting dc voltage is stored on the reservoir capacitor Cl .

The voltage on C 1 is limited by the zencr D2 and is regulated down to 5 V by IC1. IC1 is a voltage regulator with very low quiescent current, so as not to waste the scarce available current from this supply. If the supply is intended to rum circuitry which does not require a very smooth or accurate power source, IC 1 and C2 can be omitted.

The question is: how much current is available? Clearly, the lower the value of the resistor, the higher will be the available current and the hotter the resistor will become. The limit to the heat dissipation of the resistor may be determined by the resistor ratings, or it may be limited by the ventilation of the enclosure in which the circuit is housed.

Let's take a practical example. Assume we can use a 10 W resistor, but want to limit the dissipation to 8 W under worst case conditions, to give an adequate safety margin. If there
were no diode in series with the resistor, the dissipation would simply be $\mathrm{Vrms}^{2} / \mathrm{R}$. Because the diode conducts for half the cycle, the dissipation is halved.

For a mains voltage of 264 V (a 240 V supply, 10% too high), the resistance giving 8 W dissipation would be 4356 R .

Oddly enough, this precise value is unavailable in normal resistor types, but 4 k 7 is available. A $10 \% 4 \mathrm{k} 7$ resistor would have a resistance min of 4230 , giving a maximum possible dissipation of 8.2 W . This is quite good enough, particularly considering that these approximate calculations have neglected the load voltage, which reduces the peak voltage across the resistor and therefore reduces the dissipation by (probably) enough to keep within the specified dissipation under a worst case situation.

Direct Current

The next question is, how much direct current is available from this power supply? It is tempting to make the assumption that the DC available is equal to half the AC that would flow in the resistor R1, if R1 werc simply connected across the mains. This is not the case, however, as is illustrated by Figure 3. Current flows in the resistor for half the time (neglecting the small offset due to the DC output voltage) and, in order to calculate the average direct current available it is necessary to average the current in R1 over a whole mains cycle, even though the current is only flowing during positive halfcycles.

Looking at the maths shownin Figure 3 , the way to calculate the average current over a mains cycle istocalculate the average over a half-cycle and then to divide by one cycle, working in radians. The formula shown consists of threc main elements: the division by 2π averages the current over a whole mains cycle, the V/R term calculates the peak current flowing in R1 and the integral term integrates a halfsinusoid of current over a half-cycle. The final answer is that the avcrage direct current available is equal to the peak current in the resistor divided by π. Therefore, for a 240 V mains supply with a 4 k 7 resistor, as in the example above, a current of 23 mA is available.

In order to avoid the circuit failing to operate under all conditions, it would be prudent to design around the minimum current which could be available, taking into account a below- standard mains supply and subtracting from this the dc voltage at the bottom of D1. A 15% low mains supply would be 204 V , so, subtracting the zener diode voltage we are left with 189 V . The peak voltage is now 267 V , giving an
available current of 18 mA . If we allow 4 mA to be wasted in the zener and the voltage regulator, then the load circuit can be allowed to draw 14 mA without any danger of it failing to work.

The circuits of Figure 1 and Figure 2 are very similar in effect, but the circuit of Figure 1 will always provide an output voltage even if there is not enough current available for the supply to reach its proper voltage. In some cases, this can be harmful. If, for example, the circuit is controlling triacs switching an inductive load, then inadequate powersupply could result in the triacs only triggering on (say) positive mains half-cycles. This would destroy load or triac or both.

The circuit of Figure 2 provides slightly poorer regulation, as it relies upon the voltage characteristics of a zener diode in serics with a base-emitter junction of a transistor. It does, however, cut off the output supply completely if the mains is inadequate to provide a regulated output. This can be helpful in some circumstances.

Capacitive supplies

A disadvantage of power supply circuits like these is that the resistor dissipates a lot of power. If the circuit is to be built into a plastic case, this can become an acute problem. Another way to limit an alternating current, and one which docs not result in any dissipation, is to use a capacitor. A power supply of this type is shown in Figure 4. Note that the surge- current in the capacitor at switch-on is limited by R1 and that two diodes are provided in order to permit an alternating current to flow. If D1 were omitted, then C 1 would charge to the peak mains voltage, after which no further current would flow in D2.

The disadvantage of this type of circuit is that a capacitor with full mains voltage across it can be prone to failure, unless a high-quality component is used. What tends to happen is that because the electric field across the dielectric is constantly reversing, any weak spot in the plastic film which forms the dielectric for most mains-rated capacitors is

Fig. 5
worn out over a period of time. As a slight digression, some authorities hold that paper capacitors of nominally the same rating are more reliable.

In any case, a class X capacitor (rated for direct connection across the mains) should be used in this type of supply.

Once again, the question arises of how much direct current is available from this type of supply. The same reasoning as was applied to the resistive supply will suit the capacitive supply as well. To calculate the direct current available, we divide the peak current by π. (Remember that only one-half of the mains cycle contributes to the DC output.)

Fig. 6

Here is an example, showing the current available if a 220 nanofarad capacitor is used.

$$
I_{a c}=V_{r m s} 2 \times \pi \times f \times c
$$

So for 240 V , with a 220 nF capacitor,

$$
\begin{aligned}
I_{a c} & =240 \times 2 \times \lambda \times 50 \times 220 \times 10^{-9} \\
& =16.58 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Peak current }=16.58 \times \sqrt{2}=23.46 \\
& D C \text { available }=\frac{23.46}{\pi}=7.47 \mathrm{~mA}
\end{aligned}
$$

The available current, 7.47 mA , is disappointingly low, but a useful amount of current can be obtained if two or three of these capacitors are put in parallel. It is also the case that there are some application circuits that would not need more than seven milliamps to operate.

Switching supplies

A completely different approach to a low-dissipation transformerless power supply is illustrated in Figure 5. This diagram shows the mains voltage waveform with a current drawn only near to the zero crossings on the positive halfcycle. With this scheme, a storage capacitor is charged to whatever power supply voltage is required through the expedient of switching off the charging current while the mains voltage is above the required capacitor voltage. I have seen this scheme used in several applications, not all starting at mains voltage.

While it is possible to do this job with discrete circuitry, the easiest way is to use a standard chip which has been developed for the purpose, the HV2405E. Figure 6 shows the general operating scheme which the chip uses.

R1 limits the surge current and should be chosen so that the peak current at peak mains voltage could not excecd $2.5 \mathrm{~A} . \mathrm{Cl}$ is a spike-suppression capacitor, which should have a minimum value of 47 n on normal mains applications. C 2 is the main storage capacitor which is charged to a sufficient voltage to operate the output regulator. C3 is there simply to prevent the internal circuitry of the chip falsely triggering on mains interference.

The switching pre-regulator charges C 2 to a maximum of 10 V above the output voltage. There is then always enough voltage to power the output voltage regulator, which is rated at a maximum of 50 mA . The primary purpose of the output capacitor is to suppress spike interference which could occur on the charging point of C 2 . A minimum value of $1 \mu \mathrm{~F}$ is required, but higher values will provide better suppression.

Figure 7 shows a practical circuit designed for use on 240 V mains. The output voltage is set by the value of R 2 , at 5 V plus $1 \mathrm{~V} /$ kohm. Thus, for example, if R 2 is short circuited, the output will be 5 V and if R 2 is 1 k , the output will be 6 V . The maximum allowable output voltage is 24 V .

Conclusion

As this article shows, there are a number of ways to provide modest low-voltage power-supply currents without the use of a mains transformer. This can save both cost and weight. The only absolutc requirement to power equipment in this way is that it must be safe and appropriate for the equipment to be at mains potential. For example, the circuitry of a remote-controlled light dimmer would be a suitable item to power in this way, but an audio preamplifier would not. When building circuits of this nature, it is important to remember that even the low-voltage parts are at mains potential and appropriate care must be taken in building, testing and using such items.

Fig. 7

Brake Lights For Radio Controiled Models
 By A Craig Talbot

Fig. 1 Brake light circuit

Some time ago, while contemplating the building of my 1/16 Scale Model Truck, 1 decided on a range of what might be described as 'extras'. In addition to the normal electronic Speed Control, I wanted direction indicators, reversing warning sound, headlights, spotlights, engine sound, a flashing beacon (wide load warning) and working brake-lights. As the model has no brakes, I could not operate any mechanical system to switch them on or off. The only way to accomplish this was to use the Speed Control to trigger them in some way.

The circuit described here is designed as an add-on to the Low Power Speed Controller, described in a previous issue. It will give a brief (about 1 second) pulse of light whenever the vehicle stops, goes through a forward to reverse, or a reverse to forward function. The PCB is tiny enough for all but the most diminutive model and while it can, of course, be built on something like Veroboard, the PCB is only postage stamp size and it would be difficult to build it much smaller. CMOS was used because of its low standby current - after all, a brake light is not often switched on. It is also very suitable for the drive battery range, 6 to 12 V . For a scale model car, or truck, in fact any land vehicle that represents a road legal original, brakc-lights that work are a feature that will add

HOW IT WORKS

The circuit in Figure 1 uses a 4007 IC, which consists of an inverter and two complimentary pairs of FETs in a package which allows most of the nodes of the FETs to be accessed. Because of this feature, one complementary pair of FETs can be wired as a second inverter and one N channel FET can be selected to act as a swich. This will discharge $\mathrm{C1}$ whenever the input to it is positive, or whenever it is receiving positive pulses. The pulses, in this case, are generated by the Speed Controller (at the point marked ' X '). By this action, it will stop C 1 charging up via $R 2$, until the positive pulses or positive level on the input are removed. This will happen only when the Speed Controller is in a stop condition. As you can see, C 1 will charge through R2 as soon as the intemal FET (in IC1) is switched off. Th's
intercst to your model. They cost little and employ a very simple circuit, so if you need them, have a go.

Construction

As IC1(4007) and Q1 are both FET devices, care should be taken in handling them as they are sensitive to damage by static charges. Observe the normal handling precautions with these devices. The bulbs need a little thought as to which voltage you are using, since the original Speed Controller can be built as either a 6 V or a 12 V version. This means that two 3 V bulbs in series will be required for 6 V , or two 6 V in series for 12 V . If you elected to use an unusual voltage you will have
to work it out for yourself.
The current rating of the bulbs must be kept below 300 mA and, if you decide on parallel connections to the bulbs, then the bulb current will obviously have to be kept below 150 mA . This board has several fine tracks that run between the IC pads and care must be taken with your soldering to ensure that no solder bridges are formed. Use a fine pointed bit.

Take a good look at Figure 2, the component overlay. Notice the resistor R2 tucked under the PowerFET Q1 and the two resistors under the IC. This more or less dictates that the resistors must be fitted first on this project. Ensure that R1 and R4 are 1/8W types and are fitted hard down on the PCB surface. This will allow the IC to seat as low as is possible, leaving some leg to solder. I would suggest that ICl and QI come next. Remember not to handle them more than is required (if you don't have the luxury of a conductive mat, try raiding the kitchen for a length of aluminium foil, but do remove it before connecting any battery volts). Care will have to be taken in fitting the IC because of the resistors beneath it. The IC will not sit as close as normal to the PCB, leaving a reduced length of the leg to solder, so make sure that the IC is level, thus ensuring that the same length of leg protrudes through the PCB at each pin. When ICI and Q1 are in place, the capacitors can be fitted, noting the polarity of C 2 and C 3 , clearly marked on Figure 2.

There are a couple of wires to the brake-light bulbs from the points marked 'Bulbs'. The neat bit of wiring is to the Low Power Speed Controller so you should temporarily disconnect the drive battery, then fit a red wire from +ve on the PCB to the dead side of the Power switch in the Drive Battery positive lead (so that the circuit can be switched off), and a black one from -vc on the PCB to Drive Battery negative. There's one more wire from the point marked 'In' on the PCB (this will eventually go to the Speed Controller
will cause the input of the first inverter in the circuit to g o positive, making its output swing negative. This negative change will be passed across C2 causing the input of the next inverter to go negative, making its output positive, which will tum on the PowerFET ($Q 1$) and hence fum on the light.

The light will stay on until C 2 is discharged back too positive by the action of R3, making the gate change state and driving its output back to negative. This will switch off the PowerFET (Q1). R1 is to limit the input current into the gate of the intemal FET. R4 serves the same purpose for Q1. C4 is a small decoupler for the power rail, which is a pulse omission detector, followed by a one shot, or monostable. By using this IC, a very simple circuit using very few (and low cost) components is produced. The overall result is a short pulse of light from the brakelights when we want one and very little current being drawn when the light is off. This is the kind of circuit I like best - no surpius Hitech, just the bare minimum and no waste. That covers the basic circuit description so now it's time to warm up the soldering iron and start to build.
at the point marked ' X ' after a brief test). That's the construction of the PCB completed, so now check for the solder bridges that I mentioned at the beginning. If, like me, you use reading glasses, a magnifying glass may be useful. When you are sure that all is as it should be, we can go on to test.

Testing

At this point, the Drive Battery should be re-connected. Switch the power on to the PCB. The bulbs should briefly light up (about 1 second) then go off. That is a sart of power up reset. The next job is to switch off and connect the wire
from the point marked In, to the Speed Controller at the point marked X (see inter-PCB wiring, Figure 3). If you are keen, you will probably have switched on and tricd by the time you read the following!

With that last connection, this circuit is now a part of the Speed Controller. The final test will have to be with the radio control gear. When up and running, the bulbs should light, briefly, whenever you go to stop or through the stop position -on the control stick. Not a lot to test, was there?

Heat-shrink tubing or even a short length of plastic insulation tape will encapsulate this little PCB. It would also make a good subject for potting in a suitable potting box.

In Conclusion

The addition of any feature on a model adds to its pleasure and value, personally I feel that the less they cost, the more the pleasure. If you wish, a small model can use 3 mm or 5 mm Red Light Emitting Diodes (LEDs) instead of bulbs. For this, wire two Super Bright Red LEDs and a resistor, all in series (don't forget the polarity of the LEDs). The resistor should he 100R for 6 V and 390 R for 12 V . I find that translucent, rather than opaque types, look best. It should be possible to use this circuit with other relay reversing, pulse speed controllers, by using pulses from the drive transistor/s that drive the motor, provided that they are positive going

Fig. 2 Component Overlay and of suitable amplitude, but this is something that I have not personally tried.

Any situation in which you require positive pulse detection can use this type of circuit. The pulse repetition frequency that you wish to detect can be accommodated by changing the values of R2 and C1. Likewise, changing the value of R3 and/or C2 will lengthen or shorten the light On time.

A Little Extra

Now, as a bonus, how would you like to fit reversing lights? If so, read on.

The Speed Controller is capable of driving a couple of small bulbs in addition to the Relay, when switched to reverse (i.e. when the relay is called). All that is required is to add a wire to the point marked Y which should be connected via two bulbs to the dead side of the switch in the Drive Battery Positive lead. The bulbs should be selected in exactly the same way as the ones used for the brake-lights except that the current rating must not exceed 100 mA . This applies to all Controllers running at Drive Battery voltages from 6 V to 12 V . This will allow the 300 mA relay drive PowerFET Q1 to drive both loads together without being over-driven. Should the bulbs light while in forward, the wires to the motor should be reversed.

Another feature that can be added at the point marked Y on the speed controller, which applies to trucks in particular, is reversing sound. The reversing sound that you will have heard when juggernauts reverse can be produced by a small piezo ceramic sounder, connected instead of the reversing bulbs. The type with its own built in oscillator, that produces a pulsed tone, is required for this. Again, the 100 mA current limitation should be observed.

A point to note is that some of these devices produce very
high output levels on 12 V , too loud for some applications. To overcome this, all that is needed is to cover, or partly cover, the sound hole with a strip of tape. This will dramatically reduce the level. The high frequency of these sounders is of the same order of frequencies used on some full size trucks.

Well, that's the project done, along with a few extras. I hope you enjoy building it and that it will add something special to your model.

PARTS LIST

RESISTORS	MISCELLANEOUS
R1	100k
R2	470k

BUYLINES

The brake light PCB is available from ACTion. 140 Holme Court Avenue Biggleswade Bediordshire SG18 8PB
Price $£ 1.80$
Plus $£ 0.50$ Postage \& Handing. CWO cheque or postal order

LOW COST RANGER 1 PCB DESIGN FROM SEETRAX

- Circuit Schematic - Gireuit Capture - PCB Design Host of Outputs
 ALL-IN-ONE DESIGN SYSTEM.
 FULLY INTEGRATED AUTO ROUTER.....£50

WHHT THE PRESS SAID ABOUT RANGER1

 For most small users, Soetrax Ranger 1 provides a Sophisticated system at an affordable price. It is better than Easy PC or Tsien's a lot more automce it provides a lot more automation and from schematic all the way packages sematic to PCB - other for both, that is te designs capture. that is, no schematic but the ability to drawpensive circuit diabry to draw in the turn it into board and quickly easily makes up for thign Source JUNE this.Practical Electronics
thk about trade-in Deale! Call Now For Dema Disk an 0705591037

At last, a fully functional upgradeable PCB CAD system to suil any budget. Substantial trade-in discounts are available against other "professional" PCB desion packages ...

... call now for details.

Board Coptare

Schematic Capture Design Took

- Dirock netlist link to Boadlifaker
- Fonward annotation with part values
- Fill undofredo faciliy (50 operations)
- Singe-sheet, "muti-paged afd hisrarchical designs
- Smooth serolling
- Intelligent wires fautomatic junctions)
- Dynarmic connectivity intormation
- Automatic on-line annotation
- integrated on-the-fly llbrany edtor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from? Boardilaker?

$\ddagger 395$

Board Mcker

BoardMaker1 - Entry level

- FCB zad schematic drafting
- Easy and flatuitue to use
- Surface mount and metric support
- 90,45 and curved frack comers
- Ground plane fill
- Copper hightight and clearance oheckine

BoardMaker2 - Advanced level

- All the features of BoardMaker 1
- Full netlist support - BoardCapture, OrCad, Schema Tango, GadStar and others
- Full Design-Rule Checking boin mechanical and electrical
- Top down modification from the schematic
- Component relumber with back annotation
- Report generator - Database ASCll, BOM

Nay - Thermal power plane support with fulf DRC

Board Router
 Gridless re-entrant autorouter

- Simutaneous mult-dayer. youling
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
Printers - 9 \& 24 pin Dpt matrix. HPLaserje: and PostScript

- Penpiotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drit and Annotated erill drawings (BM2)

Call, write or fax for more information of a free evaluation kit Tsien (UK) Limited Camibridge Résearch Labs 181A Huntingdon Road Cambridge CB3 ODJ
Phone : (0223) 277777
Fax : (0223) 277747

tsien

386 AT - PC386

640k RAM expandable $\cdot 2$ serial \& 1 parallel with standard SIMMS ports 20 meg hard disk 1.2 meg 5-1/4" floppy
1.4 meg 3-1/2" floppy
 \section*{EGA driver on board
 \section*{EGA driver on board
 }

The Philips 9CM073 is suggested for the PC286 and the CM8873 tor the PC386. Either may use the SVGAMTS-9600
if a suitable card is installed. We can fit this at a cost of $£ 49.00$ for the PC286 and $£ 39.00$ for the PC386.

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak).Serni open frame giving $+5 \mathrm{v} 35 \mathrm{a},-5 \mathrm{v} 1.5 \mathrm{a},+12 \mathrm{v} 4 \mathrm{a}$ (8a peak), -12 v 1.5 a , +24 v 4 a (6 a peak). All outputs fully regulated with over vottage protection on the +5 V output. AC input selectable for $110 / 240$ vac. Dims $13^{\circ} \times 5^{\circ} \times 2.5^{\circ}$. Fully guaranteed RFE. $\quad \mathbf{8 5 5 . 0 0}$ (B) Power One SPL130. 130 watts. Selectable for $12 \mathrm{~V}(4 \mathrm{~A})$ or 24 V (2A). 5V © $20 \mathrm{~A} . \pm 12 \mathrm{~V}$ © 1.5 A . Switch mode. New. E 59.95 (B) Astec AC-8151 40 watts. Switch mode. +5 V - $2.5 \mathrm{a} .+12 \mathrm{v}$ © $2 \mathrm{a} .-12 v$ - $0.1 \mathrm{a} .6-1 / 4^{\prime} \times 4^{\prime} \times 1-3 / 4^{\prime}$. New

E22.95(B)
Greendale 19ABOE 60 watts switch mode.+5v © $6 a, \pm 12 v 6$ $1 \mathrm{a},+15 \mathrm{v}$: 1 a . RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $\varepsilon 24.95$ (C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode.+5V
 $+12 v \oplus 2.5 a,-12 v \oplus 0.5 a,-5 v \oplus 0.5 a$ C29.95(B) Famell G6/40A. Switch mode. 5 v © 40a. Encased $\mathrm{E95.00}(\mathrm{C})$
Famell G24/5S. As above but 24 V © 5 a.
£65.00(C) Famell $\mathrm{G} 24 / 5 S$. As above but 24 V @ 5 a.
BBC Model B APM Board

Whle £100 CASH FOR THE WHN CIOO CASH! MOST NOVEL DEMONSTRATABLE APPLICATION!

BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics system on large networked systerns the architecture of the BBC board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this board!! I is supplied and BNC type connectors - all you have to do is provide +5 and $\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most major ic's socketed. The ic's are too numerous to list but include a 6502, RAM and an SAA5050 teletext chip. Three 27128
EPROMS contain the custom operating system on EPROMS contain the custom operating system on which we
have no data, On application of DC power the system boots and provides diagnostic information on the video output. On board DIP switches and jumpers select the ECONET address and enable the four extra EPROM sockets for user software. Appx.
dims: main board $13^{\circ} \times 10^{\circ}$, vo board $14^{\prime \prime} \times 3^{\prime}$. Supplied tested with circuit diagram, data and compatition entry form.

SPECIAL INTEREST

Trio 0-18 vde bench PSU. 30 amps. New
Fultsu M3041 600 LPM band pinter
DEC LS/C2 CPU board
Rhode a Schwarz SBUF TV test transmitter
-1000 minz. Complete with SBTF2 Modulator
Calcomp 1036 large drum 3 pen plotter
Thurlby LA 160日 logic analyser
1.5 kw 115 v 60hz power source

Anton Pillar 400 HZ 3 phase frequency converter 75 Kw
Newton Derby 400 Hz 70 Kw converter
Nikon PL-2 Projection tens meter/scope
HP 7580A A1 8 pen high speed drum plotter
Kerwood DA-3501 CD tester, laser pickup simulator

BRAND NEW PRINTERS

No Break Uninterruptable PSU's

Brand new and boxed 230 volts uninterruptable power supplies from Denssi. Model MUK 0565-AUAF is 0.5 kva and MUD 1085-AHBH is 1 kva . Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from interupt are 5 and 15 minutes respectively. Complete with full
operation manuals..........MUK.....E249(F) MUD..... $£ 525$ (G)

2 meg RAM expanded by slóts
20 Mhz with 32 k cache
Expandable to 64 k
40 meg hard disk
1.2 meg 5-1/4" floppy

VGA card installed ports - MS-DOS 4.01 Software - FREE BRAND NEW AND BOXEDI only£425.00

MONITORS

14" Forefront Model MTS-9600 SVGA multisync with resolution of 1024×768. 0.28 pitch. ${ }^{\text {T}}$ Text ${ }^{+}$switch for word processing etc. Overscan switch included. Ideal for the PC 386 or PC-286 with SVGA card added. Also compatibe with BBC, Amiga, Atari (including the monochrome high resolution mode), Archimedes etc. In good used condition (possible minor screen $1 . . .1^{\circ}$ Philips Model CM8873 VGA multisync with 640×480 resolution. CGA, EGA or VGA, digitaVanalog, switch selectable. Sound with volume control. There is also a special "Text switch for word processing, IBM PC's, Amiga, Atari (excluding the monochrome high resolution mode), BBC, Archimedes etc. Good used condition (possible minor screen Phillps 90 day guarantee. $15^{\prime} \times 14^{2} \times 12^{\prime}$. OnlyE139(E)
PC and compats. 640×350 resolution. With Text swith with amber or green screen selection. $14^{\circ} \times 12^{*} \times 13-1 / 2^{\circ} \ldots$. E99(E)
KME $10^{* *}$ high definition colour monitors. Nice fight 0.28° dot pitch for superb clarity and ync RGB video source, with RGB analog and composite sync such as Atan, Commodore Amiga, Acom Arctimedes \& BBC. Measures
only $13.5^{\circ} \times 12^{\text {A }} \times 11^{\text {. }}$. Also works as quality TV with our His Telebox. Good used condition. 90 day guarantee. Only.. 125 (E) KME as above for PC EGA standard.......................... 145 (E) Brand new Centronic 14° monitor for IBM PC and compatibles a ower than ever price! Completely CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz go day guarantee. Only
NEC CGA 12" IBM-PC compatible. High quality ex-equipment fully tested with a 90 ibbed grey plastic case measuring $15^{\circ} \mathrm{L} x$ $13^{\prime} \mathrm{W} \times 12^{\circ} \mathrm{H}$. The front cosmetic bezel has easons. Only........
$20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbly made 'UK manufacture. PIL all solid state colour ive tors, complete with composite video \& sound inputs. Attrac in EXCELLENT little used condition with full 90 day guarantee.
20"....£135 22"....£155 26"...£185 (A)

Superb Quality 6 foot 40 u

19" Rack Cabinets

Massive Reductions

Virtually New, Ultra Smart

Less Than Half Price!

Top quality 19° rack cabinets made in UK by Optima Enclosures Lid. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back door and removable side panels. Fully adjustable internal tixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribu-
tion strip make these racks some of the most versatile we have tion strip make these racks some of the most versatile we have
ever sold. Racks may be stacked side by side and therefore require only two side panels or stand singly. Overall dimensions are $77-1 / 2^{\prime} \mathrm{H} \times 32-1 / 2^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as:
Rack 1 Complete with removable side panels.
Rack 2 Less side panels.........................

2 serial \& 1 parallel Co-processor socket - Enhanced 102 keyboard Kwik Disk Accelerator

SAE -
SAE - PACKED with bat
E275.00 (G)
ع145.00 (G)
बमाप
MAIL ORDER \& OFFICES
Open fon-Fri 9.00-5.30
Dept ET.32 Biggin Way.
ept ET. 32 Biggin Way.
Upper Norwood.
London SE19 3XF.
LONOON SHOP
Open Mon-Sat 9.5 .30
Thursday till 9.00 pm
215 Whitehorse Lane.
South Norwood.
London. SE25.

${ }^{241} 1677.4146$

ELELTREINHIS-
 All goods supplied subject to our standard Conditions of Sale and unless otherwise staled quaranteed lor So days. Al guarantees on a retum to base basis. Rights reserved to change prices \& specifications without prior notice. Orders subject to stock, Quotations willingly given for higher quanitties than those stated. Butk surplus always wanted for cast

Measuring Light Spectira

by Douglas Clarkson

New technology is increasingly making use of 'optical' processes and, as a result, there is an increased need to be able to make measurements of a wide range of 'optical' parameters, such as power output of sources as a function of wavelength and the transmission and reflection properties of materials as a function of wavelength.

While, in a strict sense, 'optical' can be considered to relate to visible wavelengths of light between 400 nm and 700 nm , in practice the term is applied to wavelengths below 400 nm (into the ultra violet) and above 700 nm (infra red). The bulk of optical communications technology, for example, uses wavelengths around 1500 nm . In this field, there is an obvious need to be able to accurately measure the optical properties of fibres as they are manufactured and installed.

Increasingly, optical components such as filters, lenses, reflection coatings, photodiodes, photomultiplier tubes, etc. are being used in new products and services and there is an expanding need to be able to accurately determine the optical properties of such items.

Fig. 2 Spectral output of a solar simulator, indicating the high level of complexity of the spectrum (Courtesy Rees Instruments Ltd)

Fig. 1 Values of absorption properties of samples of doped glass (Courtesy Rees Instruments Ltd)

Optical Measurement - A MultiDimensional Problem

In voltage measurements, the problem is typically one of resolving voltage values with time - i.e. one parameter is being monitored at successive time intervals. In spectral analysis, there are many more independent values to measure. The spectrum of a typical light source from 400 nm to 1200 nm is in fact a continuum of wavelengths, which may be scanned over wavelength extents averaged over $2 \mathrm{~nm}, 1 \mathrm{~nm}$ or 0.5 nm - so there may be 400,800 or 1600 independent measurements to be made to determine the spectrum present.

Conventional Approaches Splitting the Spectra

Optical radiation presents typically as a range of wavelengths. Thus, a standard tungsten lamp will have a spectrum between 390 nm and 1300 nm . Specific lasers, such as Argon lasers, present a

Figure 1 shows the absorption properties of three samples of doped glass as a function of wavelength. There are absorption peaks at around 450 mm and 700 nm and it is often important to be able to measure such parameters in this way. Figure 2 shows the measured output of a solar simulator. Clearly, only by measuring the spectral output in relatively narrow wavelength bands is it possible to determine the output from the lamp. In addition, there is often the need to capture spectrum data rapidly. The excitation process can be initiated and completed in timescales of hundreds of micro seconds.
selection of lines of specific radiation - in the case of Argon mainly around 580 nm .

Light can be split into its various wavelength components using either a prism or a diffraction grating. The 'traditional' piece of equipment for spectrum analysis is the monochromator, the basic design of which is shown in Figure 3. Although the device shown is a Spectrograph, which can split the spectrum and present it at a long exit slit, in the monochromator the diffraction grating is rotated (with indication of wavelength selected) and a portion of the output spectra passed through a narrow output slit. The

Monochromator itself does not include any equipment to measure the output of the spectra which are emitted. The mirrors in the system have typical efficiencies of 90%. Gold mirrors, with reflectivities of around 97%, can be used for infra red wavelengths.

Fig. 3 Principle of Monochromator. The diffraction grating is usually rotated by hand and the light output emerges through an output slit. The device shown is, in fact, a Spectrograph manufactured by Oriel where a complete spectrum can be passed to a long narrow exit slit (Spectrograph mode) or a single range of wavelengths can be selected (Monochromator mode).

Light incident on a diffraction grating is split into a series of orders about the main angle of reflection, as shown in figure 4a. Typically, most light is passed into the +1 or -1 order. To improve the amount of light passed into one of the first orders, the surface of the grating is cut in the 'blazed' pattern indicated in Figure 4 b . This blazing process, while optimising the efficiency of the grating at a specific wavelength, makes the grating more 'angular sensitive' and limits the spread of wavelengths which can be used. Typically, a grating optimised for use at 500 nm can be used between $2 / 3$ and $3 / 2$ of its optimised wavelength - in the case of the 500 nm example, between 330 nm and 750 nm .

Conventional gratings are produced by cutting a master using diamond cutting tips. This invariably introduces an element of random error into the grating performance which results in 'stray light' - light which is reflected in error into the order of the grating being scanned.

Holographic gratings produced by the interference of two coherent light sources, can be used to produced gratings which, while having much less stray light (as little as 1% of that of a ruled grating), have a reduced efficiency because they are not 'blazed', i.e. cut to optimise a specific order. This can be of value where measurements are being made of optical materials with high values of

optical densities.

Light enters the unit via a pair of slits and is split typically by the diffraction grating. An emergent portion of the spectrum can be selected by rotating the diffraction grating a known extent. This rotation of the grating can be undertaken by hand or through a stepper motor and can be driven between extreme limits. The emergent light will contain a narrow band of wavelengths dependent on the size of output slit, the line numbers per cm of the diffraction grating and the general optics of the system. The smaller the slit and the greater the number of lines per cm on the diffraction grating, then the more selective the monochromator will be.

The width of the wavelengths present will vary typicaliy from 0.5 nm to 2 nm , depending on the design and construction of the monochromator.

Introducing Rapid Measurements: Spinning Monochromators

The mechanical motion of such a basic design of monochromator is, however, not convenient for many applications where a complete spectrum is required rapidly. The previous 'standard' monochromator, for example, could typically be rotated across its spectra in about a minute. In many applications, such as production line checking of optical components, test results are required much more rapidly.

One option is to rapidly rotate the diffraction grating so that the spectrum is rapidly swept past the output slit. This is the technique used in the Rees Instruments Spectrum analyser whose spinning grating monochromator is shown in Figure 5. A single photodetector device is present at the output slit and the spectrum is constantly rotated past the output slit, which provides a system with a relatively low cost photodetector device that can be selected to match the particular application.

This approach provides flex ibility in it's 'mix and match' of needs to available detectors and diffraction gratings and the system can be optimised for any part of the spectrum between 200 nm and $15,000 \mathrm{~nm}$. The speed with which a spectrum can be obtained is limited by the specd of rotation of the DC motor driving the diffraction grating. At present, a single spectrum can be measured in 80 ms with this particular model. Usually a $\mathrm{He}-\mathrm{Ne}$ laser is used to provide a wavelength reference.

Figure 6 shows the spectral response of a $6118 / 7$ detector - a nine stage photomultiplier tube used with the Rees system. In the photomultiplier tube, electrons are emitted from a light sensitive surface and then cascaded down an avalanche of voltage steps, where each stage increases the number of electrons released. Such a detector has a much higher sensitivity, about $70 \mathrm{~A} / \mathrm{W}$ (peak), compared with a conventional photodiode detector's $0.5 \mathrm{~A} / \mathrm{W}$ (peak). The photomultiplier detector can be used with nar-
row output slits in order to provide better resolution of measured spectra.

Anuncooled silicon photodiode typically covers the wavelength range between 190 nm and 1100 nm . An uncooled germanium photodiode covers the range between 600 nm and 1900 nm while the uncooled lead selenide photoconductive cell covers the range between 1500 nm and 4500 nm . Thus, needs for specific applications can be met, although there is no universal photodetector which will span all the wavelengths which are required.

Introducing Rapid Measurements: Static Spectra

Developments in semiconductor chip technology have made possible the rapid scanning of complete spectra in short time scales with the absence of spinning diffraction gratings. The technique, however, cannot at present be used for wavelengths in excess of 1100 nm .

Figure 7 shows how a linear diode array can be used as a 'static' system for the scanning of an optical spectrum. The light enters the system through the pair of entrance slits and is diffracted by the diffraction grating. The spectrum is incident on the diode array in discrete segments, typically 2.5 mm high by 25 mi crons wide and 25 microns apart. Such a diode array may have $128,256,512$ or 1024 elements and minimum exposure times of from 5 ms to 16.5 ms . Thus, the smaller the diode array element, the longer the minimum exposure time. The electron sensitivity of a diode element could be 3500 electrons per count with the wavelength range able to scan ranges from 180 nm to 1100 nm .

In this mode of spectral analysis, the light is processed into its spectral components by a Spectrograph - the entire spectrum is made available at the exit slit to be read by the solid state linear array of CCD. The solid state detector unit is simply bolted onto the spectrograph output slit structure (Figure 4) and interfaced to a PC via a specialised interface card.

The great advantage of this type of system is that there are no moving parts and the spectrum can be sampled rapidly by reading out the voltage sensed by the various discrete diode elements. Systems can, in addition, be configured to scan a smaller sub set of diode elements more frequently. A scan repetition rate of 25 micro seconds can be achieved by use of special random-access type diode arrays to access specific elements of the diode array.

Linear arrays function on a charge integration bàsis, where the charge released by electrons being released by the photoelectric effect (light photons release electrons) is accumulated over a specific time period and then reset when a specific pixel's data is read. The so called dark current is the current which flows in 'dark' conditions and it can set a limit on the exposure time during which measurements are made. In low cost lincar array systems the dark current at room temperature is around IPA and the total saturation charge of
a diode element is around 7 pA - giving a maximum exposure time of around 10 seconds. Diode arrays of a higher specification and which can be cooled either by liquid nitrogen or thermoelectrically by a Thermoelectric Cooler, allow longer integration times. Such improved diodes have a higher saturation charge and a smaller dark current of around 0.01 pA - providing integration times of 25 minutes at temperatures of around $-10^{\circ} \mathrm{C}$.

Fig. 5 Technique of spinning Monochromator for rapid scanning of spectra (Courtesy Rees Instruments Ltd)

Charge Coupled Device Technology (CCD)

This linear diode array gives a one dimensional view of a specific spectrum, which can be considered as an Nx 1 array. There are applications, however, where several spectra are required to be analysed in parallel. The charge coupled device can be considered to be a $\mathrm{N} \mathrm{x} \mathrm{M} \mathrm{array}$, spectra which have been processed independently by a diffraction element, can be identified separately on the CCD. CCDs are now produced with in excess of 1024×1024 elements.

Figure 8 shows a series of four separate fibre optic inputs which are independently split by means of a spectrograph to produce four separate spectra on the CCD. On a typical CCD unit, of a 1024 by 256 array, each spectrum will typically be contained with a separate array area of 1024 pixels wide by about 64 high. The resulting value for a particular element of the array will be obtained by summing the 64 elements (y axis) at a specific one of the 1024 elements (x axis). Each pixel is typically 22×22 microns and systems are now available which can process up to 35 independent spectra on a single CCD element.

The greatly increased sensitivity of CCD devices allows data from experiments to be obtained much more rapidly compared with conventional photomultiplier systems.

The wavelength response of CCDs is shown in Figure 9. UV enhancement can extend the response down to lower wavelength (300 microns) but sensitivity falls sharply above 1000 nm . Thus, CCD technology cannot at present be used effectively for spectral analysis above this limit. With spin-

They do, however, have an unsurpassed sensitivity. One of the most sensitive units has a sensitivity of 10 light photons to produce one count, several hundred times more sensitive than a conventional linear diode array. CCDs are being developed generally for high quality image data capture. Applications in Astronomy, where extremely weak

Fig. 7 Use of 'static' spectral analysis system, where incident light is diffracted using a static diffraction grating and the output is detected by a stationary linear diode array
ning monochromators, however, the wavelength range can be extended up to 15 nm using detectors such as Mercury Cadmium Telluride (MCT).

Thẹ scanning rate of such a complete CCD unit is 40 Hz , with the display being updated at 20 Hz , although individual pixels can be accessed in fractions of micro seconds.

The technology of the Charge Coupled Device, however, is radically different from that of linear diode arrays and consequently CCDs tend to be expensive. Useful CCDs tend to cost in excess of $£ 15,000$ - just for the chip. light sources are being imaged, are particularly relevant.

Dynamic Range

The dynamic range of a spectral analysis system is based on the resolution of its A / D converter subsystem. The common value for resolution is 16 bits -1 in 65536 , while the lowest values tend to be 14 bits -1 in 16384 . The greatcst dynamic range, however, is provided with systems incorporating CCD units, where an 18 bit resolution - 1 in 262144 - tends to be standard and 22 bit resolution -1 in 4194304 - is 'top of the range'.

It is obviously important to have as high a dynamic range as possible. If, for example, the absorption properties of a material were being investigated, a system with a higher dynamic range is going to be able to directly measure higher levels of optical density.

Conclusion

Developments in several areas of technology have made optical spectral analysis more affordable and subsequent developments are likely to increase the range of features which can be implemented at an acceptable cost. A low specification system interfaced to a PC may cost around $£ 10,000$. While the ability to measure light spectra is of vital

This has to be the BEST VALUE EVER SALE! Never before has so much been offered to so many for so little! 48 pages crammed full of quite staggering offers! Discounts you would not believe! Astounding Bargains! Amazing Deals! As the UK's Biggest and Best Surplus \& New Electronics Mail Order Supplier, we have the largest stocks, the lowest prices and the fastest service.
Don' \dagger miss out - stocks move FAST, so place your order today by phone, fax, post or in person!
The Order Form is on Page 45, and ordering details on page 46

INSIDE! !

Video Processors Less than half price!

Victor Vicki PC Under $£ 100!!$

Hanimex Graphic Writer 75% off!

Fire Detectors £2.50 each!

Switch mode power supplies from $£ 2$!

CD's - $£ 3.95$ each

Massive discounts on multimeters

[^0]

Brand new full spec base unit, keyboard, mouse and manual (no monitor) Standard PC1640 with 640k RAM and $2 \times 5.25^{\prime \prime}$ disk drives, only being sold so cheaply because we have no monitors to go with them. Actually worth more as spares (work it out - keyboard $£ 25,2$ disk drives $£ 50$, case $£ 20$, motherboard $£ 25$, mouse $£ 5$) but as they're taking up lots of room and we haven't the time or space to take them all apart, you
gain an absolute bargain!

AMSTRAD GX400

*Games Console *2 Control Paddles *TV lead
*Burnin' Rubber Cartridge *Power Supply *nstruction Books

cames comsole

These popular consoles are complete. refurbished units with joystick. power supply. TV lead +1 and games cartridge (Centipede).

Bin官

28940 2400 Ht of superb quanty used $0.5^{\prime \prime}$ tape on $10^{\prime \prime}$ reels. 6250 CPI. Various manufacturers. Supplled in carrler. New. they cost $£ 12.00$. Could probably be used as video tape we're checking this out. Meanwhile, why not buy a few reels useful as cheap 'twine' for tying up garden plants etc!!
Price
Only 52 a reel
or come and collect
SATEE Sl .00

Dataspectrum

25138 Modem serial intertace and software package. Plugs directly into spectrum edge connector. Baud rates $1200 \% 75$ $75 / 1200.300 / 300$. Allows use of Prestel. Viewtext user-user comms with suitable modem. Includes Prestel telesottware downloader. Main menu options include. Transmission Format selection, Prestel ID storage. Viewdata mode entry. Teletype mode entry. Frame processor, Mailbox editor, Save Complete and new with cassette and user guide in plastic

28953 Complete unit with power supply and comprehensive instructions. Designed to add the facilties of error correction, speed buffering. encryption (optional) and a battery backed data store with a printer port to existing Send E5 returnable deposit tor 2400 baud. Easy to use information). SAREEEIO.OO

Z9012 Memorex MRX IV $1 / 2^{\prime \prime}$ computer tape. 600 ft on 175 mm dia spool. 6250BPI. In case. in sealed poly bag. List E7.49.
Our price
ع3.50 $50+200$
SARE El. 00
28123 Modem. Fully functional brand new and boxed. Standard $160 \times 100 \mathrm{~mm}$ Eurocard with DIN4 1612 connector. Only 300 baud. but at the price we're asking represents superb-value for money!! Supplied complete with wiring
detarls - needs $\pm 12 \mathrm{~V}$.
REDUCED TO £8.00

QUICKSHOT MOUSE

High quality optomechanical mouse by Bondwell

- Microsoft compatible

IBM PC XT or AT compatible Hardware selectable mouse standard Programmable resolution 29-1450 DPI - High tracking speed $500 \mathrm{~mm} / \mathrm{s}$: Silcone rubber coated tracking ball Includes

- Universal mouse driver
- Performance Test Programme
-D9-D25 connector adaptor ORDER CODE OS158
PRICE REDUCED TO £19.95

SAREE: 14.95

29010 Tape streamer. Tandberg TDC3319. Internai fitting (same size as $5 \%{ }^{\prime \prime}$ disk drive). Takes DC600 tapes. Unsure of capacity - possibly 60 Mb . Does anyone know?
Price.
Pr in ren

Magnetic card reader head-used for detecting when credit card or simitar is swiped. Made by DRH. Type no 01.635. No other info (but our technical expen is working on it).
Order Code
prices.
$82.00 \quad 100 \div 81.00$

CROXSTALK

Another super software deal! - We've purchased a number of the best selling CROSSTALK XVI' data communication packages. New and sealed containing a $51 / 4^{\prime \prime}$ disk and 182 page manual. PC DOS V3.61, last selling for around $£ 60$ - our Special Price

ع17.95 Order Code: $\mathbf{Z 5 4 9 5}$

25444 Multitasking Interface Executive for the IBM PC and compatibles. Enables up to 3 programs to be run simultaneously. 96 page handbook and 5.25 " disk $£ 4.95$

SATE P P 3.51

See Page 33 for details of WINDOWS SOFTWARE just received

WORDS FIGURESO

Features Include
Spreadsheet

- 1.2 .31 A compatible .WKS files
- 9999 rows by 256 columns
- Supports $1-2 \cdot 3$ ta functions.
macros
- Protected and hidden cells
- Horizontal or vertical split screen
- Move. copy, Iranspose ranges
- Sparse matrix data storage
- Supports LIM-Expanded Memory
- Uses 8087, 80287 math coprocessor

Word Processor

- Include "live" spreadsheet data in document
- Two-line headers and footers
- Botd. underline shown on-screen
- Global find and replace
- Right \& left justify. centering
- Automatic reformat. word wrap
- Import iext from ASCII files
- Supports over 200 printers

Auditor

- Toggle from worksheet to audit display with a single command
- Pinpoint circular references
- Identify source ol other errors

Data Management

- Three-key data sort
- 7 database statistical functions
- Query using up to 32 search criteria. wild card parameters
Graphics
- Line and XY graphs: scatter plots. pie. bar and stacked bar charts
- Superset of 1-2-3 1A type fonts
- High-resolution display (EGA. Hercules)
- High-resolution output to printers and plotters

Requirements: DOS 2.0 or higher, 256K RAM two disk drives, monochrome or color display

Printers: Text-over 200 including Epsons, IBM. Tandy, HP LaserJel ${ }^{* *}$ and many others; GraphicsEpson: HP LaserJet. PosiScript " printers, ànd others.
$31 / 2^{\prime \prime}$ disk version available: requires 1 disk drive

WORDS \& FIGURES by LIFETREE
 Comes with 546 page manual

 and spread out menu + disks, all in a library caseZ5442 $5.25^{\prime \prime}$ version
$Z 5443$ 3.5" version

'INDIVIDUAL' Tutors

Nicely boxed sets for IBM PC's with handbook and disk Z5446 Learn to type 3.5 " $£ 3.95$

Z5447 Learn to type 5.25 " disk only $£ 1.95$
Shlice 료인
| 25448 Learn to use DOS 5.25"
sante e2.50
| 25449 Learn to use DOS 3.5" £3.95

C64 GAMES CONSOLE
TY1 Clearing final stocks of this popular console. They are customer retums, and are sold "as seen" - no test, no guarantee, except they are complete. Final reduction to $£ 20$

shite El5

Z5450 Learn to use your PC 5.25" £3.95

SABE: 울?
Z5451 Learn to use your PC 5.25 " disk only $£ 1.95$

Z1101 Sinclair P15/G Pack. 7 cassettes (no library cases) in a boxed set with over 100 games, all with documentation.
ONLY 22.95 Shle

Z1102	Sinclair	
Soft888	pack.	6
cassettes,	all	in
library	cases	in
boxed	a	set.
boh		
Mummy,	Oreasure	
Island,	Punchy,	
Disco	Dan,	Crazy
Colf,		Alien
Destroyer.		

ONLYE2.95
SRITE 1.51

SPECTRUM + + LIGHT GUN
Action Pad - conclete with lead sotware and isstuction book

50.94

SALE SUPERYENOATOMAKSUMMER

ZONEPHONE ZAPPPEDH

You've probably seen in the press the much hailed personal phone has been a dismal flop - with 3 different systems and the restraints imposed on its use meant it had little practical value. Failure seemed inevitable - but there's a silver lining to everÿcloud and its an ill wind that blows nobody any good, etc, etc ... we've purchased some of the goods with more to follow.

VERSATILE TIMER UNIT

25439D Here's an interesting bit of kit In a white 2 par ABS case $145 \times 85 \times 75 \mathrm{~mm}$ is a timer PCB $142 \times 70 \mathrm{~mm}$. Mains is applied directly to the board and the seemingly unnecessanty complicated timer (4 chips where one would do) enable times from 1 min to 2 hrs (can be extended). There are 2 heavy duty relays with 10A contacts, a piezo sounder and MBC indicator. The unit, made by Energy Conservation Systems was designed to switch off lights. Supplied with origina instructions + some useful data and ccis from our technical

CABLE TV RECEIVER

29135 Made. by Cabletime, model 280, this unit is brand new and boxed with a smart black plastic case $220 \times 150 \times 60 \mathrm{~mm}$. It has a 6 digit starburst LCD with internal character generator and $I^{2} C$ bus at the front and 3 push buttons on top with well for remote control (not included). 3 connexions on back - TV co-ax skt, Input co-ax skt and 16 pin IDC data plug. 2 core mains cable
 2 m long. Inside, the high quality PCB $187 \times 133 \mathrm{~mm}$ is packed with useful components: mains transformer, $2 x$ W005 bridges, 7805 \& 7812 v. regs, smoothing caps, fuse + holder, 2 xtals, 7 small signal transistors, 4 green 5 mm LED's. TDA5930, 4093 \& 80C51 PROM in skt. IR receiver LED with integral pre-amp made by Mitsumi. ${ }^{2} \mathrm{C}$ bus interfaced channel selector/UHF modulator unit, ceramic filters, presets, R's, C's etc. Great component value and all for PreviOUSIy f 4

SAME ? ? 2.95

HOME ALARM SYSTEM

Sophisticated hi-tech fire and burglary control system that will:
\square Automatically dial a pre-programmed telephone number

No wining required! Designed to ensure ease of operation for the user by responding with spoken instructions.
Detectors (not supplied) communicate with the panel by radio transmitter
Comprehensive instructions supplied - more info on request.

Giving the world a sense of searity
[Play the relevant synthesized speech message NORMAL SELLING PRICE £300

- Ser off a visual/audible alarm
- Allow up to 32 transmitters to be used \square Program entry, exit and delay times - Program user codes

79121 Dark veneered wood finish, size $330 \times 217 \times 116 \mathrm{~mm}$. Single wide range 4R speaker. Max total output 20 watts music power. Ideal as extension speakers for kitchen, workshop, etc. Only $£ 12.95$ per pair.

STEREO CAR RADIO/CASSETTE

8002
RADIO/CASSETEE PLAYER
ON stondard mourting cor rodiolcossetre plover unit with ANFM. localDistont ond Monorstereo push button selectors Overall tune. volume and balance controts. Auto siop cassette mechonism witl lost forwar而
Cutput power 8.5 W per chamer RMS FMrongo................. per chaner peok Als ronge................. 540.1600 MHz Power 13.810 c nogative earti

رcsi228 Featured in our 1993 Catalogue at £44.95 - now offered at nearly half price! Buy now while stocks last!

CABLEVISION CALAMITY-M:

Seems like Visionhire decame a bit overstocked on their cablevision consoles we've just purchased a quantity of these superb brand new units which contain some great olectronics and as ever can offer them at an absolute BargainPrice!!
Two tone brown case (dimensions as shown) contains PCB $192 \times 195 \mathrm{~mm}$ with easily removed UHF modulator made by abgear (Sound and Vision); video preamp; stabilized power supply and all the decoding circuitry (9 transistors and TBA673 chip).
On the front of the case is a cable/off air
switch and 5 push buttons (4 channels and
on/of mains switch). There are 4 cables coming from the rear (these alone are worth what we are asking for the whole Ihing!) - 2 m mains lead, 1.5 m 8 core screened cable with 9 pin plug, 2 m video in lead with coax plug and 2 m video ou ead with coax sockel. As you would expect from a company like Visionhire everything is top quality. The case can easily be utilised for other purposes - the dark brown inserts on the front are both easily removable, if required. Please note he low price we are asking in no way reflects their true worth - they're taking up a lot of space, so we need to shift them quickly!!
Z8939 $£ 6.95 \quad 100+3.501 \mathrm{k}+2.50$. Add VAT to quantity prices SAlte 8 B. 51

Visual telephone + "Ansaphone" for deaf people. Keyboard +40 character LCD display in case $340 \times 450 \times 137 \mathrm{~mm}$. All sorts of facilities - full details in earlier supplements. Although complete with handbook, there is no guarantee they work.

Shic

 SRILEE E20.00

25371 Simplex rate-of-heat rise and $135^{\circ} \mathrm{F}$ detector, model 4255. A ilse of more than $15^{\circ} \mathrm{F}$ per minute, or 18 temp reaches $135^{\circ} \mathrm{F}$ will close contacts. Supplied boxed with Installation thstructions. These normally sell for around 18.00 . Our price $£ 10.00100+5.50$

25391 Apollo series 30 heatrise fire detector. Set temp $60^{\circ} \mathrm{C}$ Supply 17-28V. OP around 18.00 Our Price $£ 9.50$

Become a Bargain List Subscriber! A new list every month for just $£ 6$ a year. See page 47 for details

Viewdata Terminal/Modem

Remote control cable TV unit made by GEC. Atractive black plastic case $205 \times 120 \times 40 \mathrm{~mm}$ with membrane pustibutton keypad (22 keys). Front panel has $4 \times 5 \mathrm{~mm}$ red LED's to Indleate status and a dual 7 seg display to show channel. On the $195 \times 102 \mathrm{~mm}$ PCB is a small regulated power supply (12V \& 5V) derived from $\mathbf{Z 5 2 2 6}$ plug in PSU (not supplied). The maln chip is a KS49429 and there are also TBA120T, ULN2003B, $4049+4.000 \mathrm{MHz}$ crystal \& 3 small signad transistors as well as the IR detector diode. 2 screened cases contain (a) a PCB with some fiter clrcuitry utilizing surface mount technology. fow small chokes, couple of trimmer caps and Input and output sockets; and (b) the Infra red decoding circultry using a TDA3047 chip. Regrettaby. we dont have any remote controllers, but these units offer great value for money - |ust $£ 5.95$ each

Snitice E3.95

25216 Tandata "Homedeck". These are later versions of Z8063 and are (a) smailer and (b) remote controlled. The imo tone grey case is $270 \times 110 \times 28 \mathrm{~mm}$ and has a full qwerty keyboard and seperate numeric keypad. Inside, on the PCB are a few components to transmit the data via 2 IR LED's to the recelver. The unit is powered by a PP3 battery. Super value at fust $£ 3.00$

SAREEEP.00

25200 Spirt Bumer. Very useful in science labs or for the home experimenter. Chromed steel container 83 mm diax 48 mm high has absorbent material covered in wire mesh. Adfusting lever allows varlations in temperature. Complete with 70 mm dia dish for heating substances in. Only 22.50

SAREEEP1.00

$Z 5499$ UM1233 Astec UHF modulator, brand new, full spec. Currently being sold for around £6.00

> OUR PRICE £2.00 SAREEEL.00

Tandata TD:100 aiphanumeric Viewdata/Prestei Adaptor. These units were used with a home banking system. The console was hooked up to your TV and telephone fine, and by using the standard qwerty keyboard with seperate numerk keypad. you could access your account. The well styled black and gray case $300 \times 180 \times 75 / 40$ has a 75 key kayboard connected Inslde by a DIL plug to the main PCB. Thls has mounted on It the modem sub-panel +3 retays, UM1286 Astec colour modulator with sound, + SAA5020, 5050, 5070. SY6504, 68B10. MCM51101P45, 2×2114 \& 2732 EPROM all in sockets, as weil as over 20 other LS and linear chips. transistors eic. There's a back up nicad battery and a regulated power supply. On the rear panel ls an orvoff rocker switch, UHIF output socket, printer skt(15 way D). and cassette DIN socket for recording data.
There are 3 leads attached: $4 m$ long mans lead with 13A plug. 4 m long $B T$ lead with old-style plug, and a 3 m long TV co-ax lead.
All in all, a versatle, useful compact unit etther to use as it is or for the parts within. The component value alone is over £60. so you can see what a bargaln this is - it even comes with a photocopled handbook!!
Order Code Z8963. The whole unit as described for Just £12.95
 SOUND ACTIVATED SWITCH

SOUND ACTIVATED SWITCH
Plug-in sound acirvated switch. ideal for swiching on lights automatically. On detection of a sound above a presef level power will be switched on to the built-in socke: for a preset lengtn of time. A photo transistor with control prevents the switch from activating during dayight
Controls: Sound level, tirne, light level

28968 Prestel set less monitor. This cased unit $420 \times 430 \times 100 \mathrm{~mm}$ made by Phililps, model HUO1 contains all the loglc and control circultry for Prestel - the monitor (not supplied) sits on top. On the back panel there is an 8 pin DIN socket for text output to monltor, malns outet 10 monitor and an 8 pin DIN printer socket. There's also a manns lead and old type lead to ielephone socket. On the front panel there is a detachable (on curly lead) keypad (20 keys) onvoff keyswitch, tape and keytoard sockets and Indlcator lamps. Inside there's a large transformer and power supply and 4 PCB's - one is a modem panel; one has 8048 and SBB2626 in sockets + 15 Other ch!ps, transistors etc: the third has SAA5030/5042/5020/5050, a blt of memory (2×2114) + a few other chlps. The fourth panel has SAA5010 in socket, 8×8 Sx20, 4xBC548/558. All boards are interconnected with plugs and sockets. These unlts are complete but not new and may well be in working order - but we're seling them for the parts value only - fust $£ 16.00$

SAREE E4.95

Xtra Special INTERFACES
 25130 Spectrum £1.00 25131 Dragon £1.00 25132 CBM £1.00 Star Buy !!

TEFPRONE LEADS AND HANDSETS

Z5381 Curly lead, new, BT handset plug one end, 4 spade terminals the other. Pale groy. DP 4.11 Our Price $£ 2.00$ 253824 core telecom lead 3 m long with BT line plug one und. 4 way socket the other. DP 4.40. Our Price £2.00
24309 BT 'breakout' lead. One ond has moulded housing with 6 pin BT plug and socket. Other end has 6 pin FCC68 plug (as used on some computers). Overall length 3 m

25500 Telephone handset in pale grey with black 4 core lead? No plug 82.00
25512 Nory telephone handset. 4 way cuity cord with spade terminals which can be unpiugged (unusually) from handset. $E 2.50$
25360 New brown telephone handsets by BT, complete with curly cord and 4 wajy socket. £4.50

ALL HALF PRICE

29118 Phillips Sopho K8 Telephone System. Brand new wall hung unit, still in original packing until wo undid it to find out oxactly what it was. Just plug in to the mains, add your lines, buy a lew handsets and you've saved a packell! Wired for 3 lines and 8 extensions. Max capacity 5 lines and 12 extensions. (Extensions can be bought second hand for $£ 25-40$ each) Our price (1 onlv) $£ 175.00$

HANIMEXElectronic Graphic Writer

Professional OHP transparencies at your fingertips...

PRINTS ON PAPER OR CLEAR FILM IN UP TO 4 COLOURS

Interchangeable pen facity allows choice of colour with paper or acetate film option. Use ballpoint pen set with A4 paper. or spectad felt tip OHPP pen set with A4 size OHP transparency film. Both sets avalable in set of four co:ours Blark. Blue. Green and Red. Pens easily changed for muiti colour productions.

3-MODE OPERATION

TYPE MODE: Characters. Numbers and Symbois
are printed immediately on pressing the keys.
LINE MODE: A line of characters is entered into the line memory. Up to 16 Characters can be arranged on the LCD display and then corrected before printing.
EDT MODE: Allows for easy editing of the page memarr. Add. delete. Insert words or graphics as you wish then press 'PRINT to automatically produce the amended version.

MEMORY

LINE MEMORY: 250 Byte
PAC.EMEMORY: 3 k Byte. 1.300 Byte for
charaters.
1.200 Byte for graphs and layout.
4 GRAPH MAKING FUNCTIONS
Layouts (for tables) bar graphs. Linear Graphs and Pie Charts easily and accurately produced in choice of three sizes wath multi colours if desired. It is possible to enter into page memory a maximum . of two layouts andfor three graphs ;Bar, Linear; Pie) for a Maximum of five

18 FONTS IN 9 TYPE SIZES
Choose irom Gothic Courier is Helvetica outinetype faces each in plan or italic. and each available in nine character sizes ranging from 75 characters per line to 8 per line. Letters may be printed in Standard, Half bold or Full bold.

COMPACT, PORTABLE AND CONVENIENT

Measuring a mere $320 \mathrm{~mm}(W) \times 60 \mathrm{~mm}(H) \times$ 260 mm (D) and weighing 2.3 kg (excluding batteres) the Hanimex OHP Graphic Wrrer will travel anywhere. Takes four size 'D' 15 V Alkaline Batteries fitted with $6 \mathrm{~V} D C$ input for use with $A C$ Mans Adaptor: (Batteries and AC Mains Adaptor avaliable extra)

Price INCLUDES mains

PSU + FREE OHP set containing 10 OHP sheets and 2×4 colour pen sets!!

SURFACE MOUNT LED's

These LED's are in a SOT23 package ($2.9 \times 1.1 \times 1.4 \mathrm{~mm}$)

CODE	PART NO	COLOUR	SPEC
72671	TFS056	Red	$1.6 \mathrm{mcd} @ 10 \mathrm{~mA}$
22672	TFS059	Green	1.6 mcd @ 10 mA
22873	TLMP6301	Orange	0.5 mcd @ 10 mA
22674	TLMP6311	Red	1.6 mcd @ 10 mA
22675	TLMP6401	Yellow	0.5 mcd @ 10mA
22676	TLMP6411	Yellow	1.6 mcd @ 10 mA
22677	TLMP6501	Green	0.5 mcd @ 10 mA
22578	TFS021	Red/Green	0.5 mcd @ 10 mA
Z2679	TLMP6802	Redreellow	1.6 med @ 10 mA
22680	TLMP6803	Red/Orange	$1.6 \mathrm{mcd} @ 10 \mathrm{~mA}$
Z2681	TLMP6811	Red/Green	$1.6 \mathrm{mcd} @ 10 \mathrm{~mA}$

KS106 A mixed pack of. 100, containing most of the above types for just $\mathbf{\Sigma 8 . 9 5}$

MINIATURE LED's

These LED's have axial leads

CODE	PART NO	COLOUR	SPEC
Z2691	TFSO65	Red 1.8 mm	2.8 mcd @ 10mA
Z2692	TFS066	Red 1.8 mm	2.8 mcd @ 10mA
Z2893	TFS068	Gren 1.8 mm	4.5 ma 10

$\begin{array}{llll}22692 & \text { TFSO66 } & \text { Red } 1.8 \mathrm{~mm} & 2.8 \mathrm{mcd} \text { @ } 10 \mathrm{~mA} \\ 22693 & \text { TFSO68 } & \text { Grean } 1.8 \mathrm{~mm} & 4.5 \mathrm{mcd} \text { @ } 10 \mathrm{~mA}\end{array}$
Green 1.8 mm
STANDARD LED's
These LED's have radial leads

CODE	PART NO	COLOUR
22682	MV6052	Red 5 mm
22683	SL35091G	Orange 3mm
22684	HLMP3850	Yellow 5mm
22685	HLMP3950	Green 5mm
22686	TLMP7413	Yellow 5mm
Z2687	TLMP7513	Green 5mm
Z2688	TLMP7313	HE Red 5 mm
22689	LST712L	Orange/Green 5mm
22690	XC5549R	Red 5mm
22694	TLMP5401*	Yellow $5 \times 2 \mathrm{~mm}$

SPEC
0.7 mcd $0.7 \mathrm{mcd} @ 20 \mathrm{~mA}$ tintundiffused 150 mcd @ 20 mA untint/undiffuse $150 \mathrm{med} @ 20 \mathrm{~mA}$ untint/undiffused $150 \mathrm{med} @ 20 \mathrm{~mA}$ untint/undiffused $150 \mathrm{mcd} @ 20 \mathrm{~mA}$ untint/undiffused $150 \mathrm{mcd} @ 20 \mathrm{~mA}$ untint/undiffused 4med @ 20 mA milky/diffused 4med @ 10 mA tinted/undiffused 4med @ 20 mA tinted/undiffused tato alignmen men stackered
SPECIFICATION TU/DU QTV E2PACK

Z2907 HLMPO401 YELLOW 2.5 X7MM

 229 229 2299 22912 HLMP3050 22913 HLMP3316 22914 HLMP3416 $\begin{array}{ll}\text { Z2915 } & \text { HLMP3517 } \\ 72916 & \text { HLMP3519 }\end{array}$ $\begin{array}{ll}22917 & \text { HLMP3962 } \\ \text { Z2918 } & \text { HLMP4610 }\end{array}$ 2291 229 2292 Z2921 MV6051
22922 MV6752
22923 TF5012 HERED
22924 TF5031 HE RED 5A

22926 TLMP500
22927 TLMP5301
22928 TLMP5501
22929 TLMP5801
22930 TLMP7003 UE
22931 TLMP7005 UBRED \quad SMM

22932 TLMP9710 HE RED TO46

$£ 2$	PACK	$100+$
12	.08	$1 k+$
12	.08	.06
15	.06	.045
12	.08	.06
15	.06	.045
12	.08	.06
$1 \overline{5}$.06	.045
8	.12	.09
6	.16	.12
6	.16	.12
6	.16	.12

SUBMIN LED'S

These excelient quality 1.5 mm Led's are housed in a $6.2 \times 5 \times 2.4 \mathrm{~mm}$ package with bulli in resistor for 5 V operation (add 470R resisior for 12V). Available in Green (DP £1.73) or red (DP \&1.16). 22135 Red. 22136 Green

22481 PC mntg packaged red LED - mounts at right angles 10 PCB. $10.5 \times 8 \times 3.8 \mathrm{~mm}$. LED is 3 mm . Ore type 9301A. Pack of $10 £ 1.00100+0.05 ; 1 \mathrm{k}+0.04$
21934 Stackable red LED - white casing round $5 \times 3.5 \mathrm{~mm}$. Pack of 10 for $£ 1.00$

A couple of small matching rectangular LED's, $3.8 \times 5.75 \mathrm{~mm}$: Z2500Green Pack of $12 \mathrm{\Sigma 1} 100+.051 \mathrm{k}+.04$
z2501 Red Pack of $12 \Sigma 1 \quad 100+.051 k+04$
21845 Rectangular LED 7×2.5 Red. Unusual size by Hewlett Packärd type LMP301.
Price .. Pack of 12/ £1.00
Z1464 3 way white \star (lights up red) $7.5 \mathrm{~mm} . .20$ p $10 / 1.40$
21932 Red square LED with rounded comers, 5 mm Pack of 15 for $£ 1.00$
$Z 1533$
$\$ 1.00$ Thin rect. red LED $-5 \times 1.5 \mathrm{~mm}$. Pack of 20
\$1.00

(Last digit of Type No. denotes array length)
22571 Hewlett Packard sub-min red LED artay type HLMP6204. Strip of $4 \times 1.8 \mathrm{~mm}$ LED's, easily seperaled if required. DP 1.27. Our Price: Psck of 682.00

22091 Rod 5 mm square, Liton type LTL9223A. Pack of 12 £1.00; $100+0.038 ; 1 \mathrm{k}+0.03$
22098 Red $7 \times 2.55 \mathrm{~mm}$ rectangular by Senior type SE6511 $\overline{0}$ Pack of $12 £ 1.00 ; 100+0.038 ; 1 k+0.03$
Z2095 Red 5 mm square with rounded comers by Phillips type HR44DL. Pack of $12 £ 1.00 ; 100+0.038 ; 1 k+0.03$
Z2096 Clear infra red $4.5 \times 1.5 \mathrm{~mm}$ rectangulas, Honeywell type 8406. Pack of $8 £ 1.00 ; 100+0.06 ; 1 k+0.04$

22097 Red $5 \times 2 \mathrm{~mm}$ rectangular by GI, typo MV57123. Pack of 12 £1.00; $100+0.038 ; 1 k+0.03$.

22182 Standard 5 mm red LED with 18 mm leads, bent at right angles. $18 / \Sigma 1.00100+0.031 \mathrm{k}+0.0210 \mathrm{k}+0.015$.

25501 Panel $71 \times 27 \mathrm{~mm}$ with dual $\overline{7}$ seg LED + red and green rect LED's. Pack of $10 £ 2.00$

25502 Another, this time with a dual and single 7 seg LED+red and green rect LED's. Pack of 8 £2.00

EVERYTHING FOR THE,

26

(B) (i) PHOTOTRANSISTORS, INFRA RED

All are in TO18 hermetically sealed cases.			
CODE	PART	ImA	mW/R cm

E2PK 100+ QTY $\begin{array}{ll}10 & .10 \\ 10 & .10 \\ 10 & 10\end{array}$ $\begin{array}{ll}10 & .10 \\ 10 & .10 \\ 10 & 10\end{array}$

218474 Photo:ransitor SDP8405 with data Price.
$£ 1.00$

Z1846 2 pairs of infra red emitter/ receiver SDP8406/8506 by Honeywell with comprehensive data. Price ... $\mathbf{£ 1} .00$

22122 Vactel Type VTL 10DI - IR emitter and detector can be removed from the plastic housing il required. An extremely cheap version of TIL 100/TIL38!
Pack of 500 $100+0.10 \quad 1 \mathbf{k}+0.07$ 21743 TIL143 Opto slotted switch. These have cropped leads and some are ex-equip. but are all working. Price

Z1499 Opto slotted switch on small ($25 \times 26 \mathrm{~mm}$) pane Type P850.. 21500 Opto reflective switch type OPB6076 with 3pin connector

Z2658 LED module. An interesting litte PCB $50 \times 35 \mathrm{~mm}$ that has mounted on It a 7 dlyit 7 segment red display, and a plastlc mouiding under which are 3 surface mount LeD's, one each red. yellow and green. On the back of the PCB is a SED5031M chlp. Offered without Info at present. altrough we are working on t . Belleved to have been the display on a moblie phone. Only $\Sigma 1$ each

Z2903D̄ Red LED PCB mounted display - 12 bubble digits 0.11 high. Fuli data supplied. Only E1.50 $100+0.80$
2415 Display. 8 digif LED multiplexed. With data. $3 i \times 16 \mathrm{~mm}$.
Price..
........ $80 p$
Z5501 Panel $71 \times 27 \mathrm{~mm}$ with dual 7 seg LED + red and green rec LFD's. Pack of 10 E2.00
Z5502 Another, this time with a dual and single 7 seg LED + red and green recl LED's. Pack of 8 £ 2.00

(C) LED BLOCKS

CODE PART SIZE MATRIXCOLOUR PRICE 22759 TFB3358C 35 5X8 YELLOW 1.60 25469 TFB3458C 35 5X8 GREEN 1.60 Z2760 TFB3758A 35 SXB HERED 1.60 $\begin{array}{llllll}22760 & \text { TFB3758A } & 35 & 5 \times B & \text { HEREO } & 1.60 \\ Z 5470 & \text { TFB3758C } & 35 & 5 \times 8 & \text { HERED } & 1.60\end{array}$ $\begin{array}{llllll}25470 & \text { TFB3758C } 35 & 5 \times 8 & \text { HERED } & 1.60 \\ 22761 & \text { TFB5357A } & 51 & 5 \times 7 & \text { YELLOW } & 1.80\end{array}$ 25471 TFBS357C $51 \quad 5 \times 7$ YELLOW 1.80 25474 TFB5457A 51 5X7 GREEN 1.80 $\begin{array}{llllll}\text { Z5475 } & \text { TFB5457C } & 51 & 5 \times 7 & \text { GREEN } & 1.80 \\ \text { Z5478 } & \text { TFB5757A } & 51 & 5 \times 7 & \text { HERED } & 1.80\end{array}$ 25479 TFB5757C 51 5X7 HERED 1.80 25472 TFB5388A 58 BXB YELLOW 3.50 $\begin{array}{lllll}\text { Z5472 } & \text { TFB5388A } & 58 & 8 \times 8 & \text { YELLOW } \\ \text { Z5473 } & \text { TFB5388C } & 58 & 8 \times 8 & \text { YELLOW } \\ & 3.50\end{array}$ 25476 TFB5488A 58 BX8 GREEN 3.50 $\begin{array}{llllll}25477 & \text { TFB5488C } & 58 & 8 \times 8 & \text { GREEN } & 3.50 \\ 25480 & \text { TFB5788C } & 58 & 8 \times 8 & \text { HE RED } & 3.50\end{array}$ The suffix A or C to the part number indicates common anode and common cathode respectiveley.

Z1855 7 seg LED 81720R - glant 1" digit, red. common cathode 81.00
Z2722 7 seg LED. MAN74A $0.3^{\prime \prime} \mathrm{CC}$ red. A tube of 25 for $£ 3.50$ $500+0.10$

22435 Single 7 seg LED 10 mm high diglt. Type LN514RK. Common cathode. 4 for $£ 1.00 ; 100+0.15 ; 1 k+0.10$

22434 Dual 7 seg LED . type TODR5250 by TFK. Red common anode 13 mm digit height. DP 1.14. Our speclal low price (we have 10000 to clear) 2 for $81.00 ; 100+0.25$: $1 \mathrm{k}+0.18$
Z2905D Red 2 digit 0.5° display as above. Commön cathode 2 for $£ 1.00100+0.50$

Z29060 As above buṭ common anode 2 for $£ 1.001100+0.50$ $1 \mathrm{k}+0.35$

22362 MS463M 0.6° common cathode 4 digil multiplexed display on PCB 70×30 with 15 way connector. Intended for digital clock use. Supplled with pin out. ONL. Y $£ 1.50$
Z29040 Red 3.5 digit $0.5{ }^{\prime \prime}$ PCB mounted LED display. Common anode multiplexed output and stackable with full data. $£ 1.00$ $100+0.50$

Z1361 Right angle DIL socket for mounting 7 seg displays (takes our MAN6740 dual digit). Extremely high quality. Prices: 40 p 10+0.26 100 +0.17 .

NEON INDICATORS

Top qually range by imo - 1hey are cheap because they're $110 / 120 \mathrm{~V}$ - bui we supply a sultable resistor for malns operation

Type A - Panel mounting 33×15 mfinith $025^{\prime \prime}$ tags̀. Clip fix, requires $25 \times 12.5 \mathrm{~mm}$ cut-out.
Z1899 Green
5 for $£ 1 \quad 100+0.10 \quad 1 k+0.08$ Type B - Panel mounting $36.5 \times 26.5 \mathrm{~mm}$ with $\overline{0} .25^{\prime \prime}$ tags. Clip ix. requires $30 \times 22.5 \mathrm{~mm}$ cut- out. 21901 Red (Any mix) 5 for $\mathrm{E1}$ 21903 Amber $100+0.101 k+0.06$
 9.5 mm dia hole.

$\mathbf{z 1 9 1 4}$	Green
21915	Amber
21916	White

Type F - Large square face 13.5 mm . Clip fix, requires 12.5 mm dia hole.

21917 Red
21918 Green
(Any mix) 5 for El
z1919 Amber
$100+0.10 \quad 1 k+0.06$ 21920 White

Type O - Small round face 7.5 mm dia. threaded body. requires 6.5 mm dia nole.
z1921 Red
Price: $\quad 5$ for $£ 1 ; 100+0.10 ; 1 k+0.00$
Type H. Body dia $17.5 \overline{\mathrm{~mm}}$ - chrome bezel. Wire ends 22066 Clear
Price
$100+0.101 \mathrm{k}+0.06$
K700 Pack of indicators, types A-G. May include any of those listed above. Great value for money! 20 for £2.50

22459 Neon bulbs 5.5 mm dia $\times 15 \mathrm{~mm}$ long - wire ended 30 V neons at a great saving over normal pricest Made by $V C H$ international. In packs of 100 at $£ 4.00 \quad 10+3.00$

Z511 Mains neon, clear $0.25^{\prime \prime}$ tabs require 15 mm hole. Prices.............................. 20p 10/1.30 100/10.45 Z614 As above, but 110 V red. Same prices.
Z517 Mains neon, orange. Square face. Req $\mathbf{1 2 m m}$ hole. Prices20p 10/1.30 100/10.45 Z518 Mains neon, white. $0.187^{\prime \prime}$ tabs. Req 15 mm hole. Prices 20p 10/1.30 100/ 10.45 Z529 Mains neons - 90V neon + resistor with clear sleeve over and leads 70 mm long. Some have dry joints.
Price . .. 100/ £6.00

110

A selection of $2 \& 4$ digit red and green displays with on board serial data in/parallel data out chips. Designed to operate with minimal interface. TTL compatible. Wide power supply operation. Direct current drive. Comprehensive data available - see below for details.

CODE	TYPE	COLOUR	DESCRIPTION	QTY	PRICE
22888	TSM4307	RED	2-DIGTT 0.3"p	429	51.00
22889	TSM4507	RED	2-DIGIT 0.5"p	873	$\underline{2.40}$
22890	TSM5032	RED	2-DIGIT $0.3{ }^{\circ}$	543	\$1.00
22891	TSM5032P	RED	2-DIGIT 0.3 ${ }^{\circ}$	354.	£1.00
22892	TSM5052	PED	2-DIGIT $0.5{ }^{\circ}$	131	81.40
22893	TSM5052P	RED	2-DIGIT 0.5p	. 955	51.40
22894	TSM5232P	GREEN	2-DIGIT 0.3 ${ }^{\circ}$	654	£1. 10
22895	TSM5252	GREEN	2-DIGIT 0.5"	14	51.50
22896	TSM5252P	GREEN	2. DIGIT $0.5{ }^{\text {n }} \mathrm{p}$	14	$\$ 1.50$
22697	TSM5732	HE RED	2-DIGIT 0.3"	663	51.10
22898	TSM5735P	HE RED	4-DIGIT 0.3"p	74	$\underline{2} .00$
22899	TSM5752	HE RED	2-DIGIT 0.5 "	98	51.50
22900	TSM6232P	GREEN	2. DIGT 0.3"p	248	$\$ 1.10$
22901	TSM6732P	HE RED	2-DIGIT 0.3"p	358	$\Sigma 1.10$

The ρ sulfix indicales pcb with $0.1^{\prime \prime}$ pilch pins
Individual data sheets are supplied with each device, and a booklet, Z2999 is available with applications data + program listing on all the devices. price $£ 2.00$
K848 A pack of 10 assorted of the above types $£ 5.00$

221834 Digit multiplexud LCD. $50 \times 30 \mathrm{~mm}$ probably for an electronic balance-symbois include balance pens, 5 stage bar graph. ib's and kg's atc. Digit height 12 mm . Self adhesive pad on back. 13 pin PCB connector.

21637 LCD Display - Direct drive $31 / 2$ digit with LO-BATT: 12.7 mm high digits. Op voltage 4.12 RMS if 32 Hz type. Consumes only $25 \mu \mathrm{~A}$ with all segments on. Trade price $\boldsymbol{E 7} .97$ each. Supplied with data, but no edge connector.
Prices

241158 digit 12.7 mm high LCD and hoider. These are 14 segment devices allowing alphanumeric display. Normally costing over $£ 15.00$ we are offering these for just $£ 4.50$ $Z 2432$ LCD 8 digit 10 mm high. Single sided 36 way edige connector. Only $E 2.00100+1.001 \mathrm{k}+0.80$

25287 Here's an oldie - we had a batch of these some time ago - the "Tyrometer" - used to indicate tyre pressures on HGV's, this is the pod that fitted into the drivers cab. On the Iront panel are two small push and a toggle switch. Inside is a PCB with 11 miniature wire ended bulbs, a choke, 2 caps and a buzzer. There's a short length of 14 way ribbon cable too. $£ 3.95$
(A) OPTOCOUPLERS

(i) Trañsistor

K845 Mixed pack containing many of the above, plus others in quantities too small to list. 25 for $\mathbf{2 . 9 5}$
(ii) Darlington

CODE	PART NO	VOLTS (RMS)	CTR\% MIN	$\begin{aligned} & \text { E2 PK100+ } \\ & \text { वTY } \end{aligned}$	
2271	4N30	1060	100	B	. 13
22772	4N31	1060	50	10	. 10
22778	CNY35	1060	10	10	. 10
22781	CNY48	1500	600	6	. 16
22798	H1182	1770	200	8	. 13
22799	H1183	1700	100	8	. 13
22823	Hilgi	2500	1000	4	. 25
22824	H11G3	1500	200	8	. 13
22825	H19G46	4000	500	6	. 16
22831	MCA230	2500	100	8	.. 13
22832	MCA231	2500	100	8	. 13
22835	MCA255	2500	200	6	16

K846 Mlxed pack containing many of the above, plus
others in quantities too small to list. 25 for $£ 3.95$

(iii) Triac/SCR

CODE PART VOLTS ItrmAVb NOTE E2PACKIOO
NO
$22774 \quad$ 4N39 22776 CNY30 72783 GE3009 72784 GE3010 22785 GE3012 $\begin{array}{lll}2786 & \text { GE3021 } & 7500\end{array}$
22836 MOC3009 $7500 \quad 30$
22837 MOC3011 7500 10
$\begin{array}{llll}22838 & \text { MOC3012 } & 7500 & 5 \\ 22840 & \text { MOC3021LP7500 } & 15\end{array}$
Note: S = SCR $\quad \mathrm{T}=$ Triac $\quad \mathrm{P}=$ Surlace moun pin $^{\text {N }}$ $K 847$ Mixed pack containing many of the above. plus others in quantities too small to list. 20 for $£ 3.95$
(iv) Schmit CODE PART NO H11L2 Hisl3 HITNi

VOLTS ItrmA	E2PACK $100+$		
(RMS)	(MAX)	aTV	
2500	10	3	.35
2500	5	3	.35
3750	3	3	.35

221194 digit LCD 12.5 mm high with low oattery and clock symbor. Complete with edge connecto
Price
E1.50 $25+0.95100+0.65$

GRAPHIG 8 DOT MATRIX 1） 5 STMAMCs

LM225 Hhachi 640×200 dot matrix LCD for PC＇s．WP＇s，and industrial equipment．Module size $270 \times 150 \times 13 \mathrm{~mm}$ ．Display area $239 \times 104 \mathrm{~mm}$ ．Dot size 0.32×0.46 ；pitch 0.49 ．Has on board $16 \times$ HD6 $1100 \& 4 \times$ HD61 103 chips．Reduced from £39．50．Now only $£ 25.00$

Sing ic 4.96

25424D Graphic module LCD by Hitachl type LM212．Vewing area $240 \quad 26 \mathrm{~mm}$ ．Overall size $270 \quad 63 \mathrm{~mm}$ ．Simllar to LM211 but narrower，for which we have data（supplites）．$£ 20$

 xHD44100 \＆HD44780400 chiss on board Fitted wit 14 pi 10C typo plug．PCB $115 \times 37 \mathrm{~mm}$ ．$£ 7.00$

25460 Epson dot matrix display type EG2401A．Display area

\section*{$139 \times 39 \mathrm{~mm}$ ．Overall size $178 \times 69 \mathrm{~mm}$ ．No data at present $£ 15.00$}
 SPME PBE．9

Z5458 Epson 20 character $\times 8$ line LCD，model EA－Y－20080AT with backlight．This is the same spoc（apart from the size）of our Z4372．Overall size $140 \times 95 \mathrm{~mm}$ ．Dispaly area $83 \times 63 \mathrm{~mm}$ ． Supplied with comprehensive data．$£ 25.00$

Siver ： 1.4 .95

（D）LCD DOT MATRIX MODULES All with HD44780 controller（and HD44100 on larger displays）
CODE PART No．SIZE CHAR HT PRICE $\begin{array}{lllll}\text { 25482D TLCM } 1620 & 16 \times 2 & 5 \times 7 & 4.27 & 5.00\end{array}$ 25484D TLCM2011 20×1 5X7 $\quad 5.20 \quad 4.60$ 25486D TLCM4021 40X2 $5 \times 7 \quad 5.20 \quad 9.50$ A data sheet is included in the price． Application noles：A 16 page booklet is available，price E2．00 order code $\mathbf{Z 2 8 4 2}$

2509616 character $\times 1$ line．Very similar to our 21814 but slightly larger character $-6.3 \times 3.15(8 \times 5$ dots）．Type LCDM16166 by Refac．Supplied with data．Uses Mitach HD44780AOO chip．
\therefore ： 5 ：

25118 Giant 30 mm fluorescent 2 character green star burst

EGDIS

21731 NEC Vacuum Fluoiescent Display FIP8BII．\＆diglt multiplexed output 10 mm high．Heater voltage 2 V ．grid anode voltage 24 V ．（Use Z 4248 transformer to power）．

25459 Fulaba 16 character $\times 2$ line vacuum fiuorescent display， type 162－BY－01Z．Supplied with pin out．Next month＇s＇Guardian＇ will have some driver circuits shown．Only $£ 2.50$

SAITEE E1．00

ampholders－rectangular snap In type that take LES bulb Needs $16.1 \times 11.6 \mathrm{~mm}$ cut－out．DP（1978） 82 p 5193 Red $3 / \Sigma 1.00 \quad 100+0.15$

SARLEE FOR R1．00

PIR SENSOR

$22700 \quad$ PIR sensor．Extremely neat basic sensor（no electronics）In plastic mouiding $33 \times 28 \times 30 \mathrm{~mm}$ ．Supplied with circuits and lots of information．Has 10 m range． 164° angle of lew．slmW power consumption．59．95

51 HT를
 Di国里回

Z1921 Large square face 13.5 mm ．Clip fix，requires 12.5 mm dia hole．Red．Price： 5 for $£ 1.00 ; 100+0.10 ; 1 k+0.06$ ．
shatc 10／El

2217240 characler $\times 1$ line LCD by Optrex（Japan）．Hiğh quality double height display with 192 character ROM：other characters can be displayed by generation in RAM．Other teatures include cursor with control．blink character．scroll display，read and write display dala，single +5 V supply．data and power inputs by one 16 pin 0.05^{*} SIL socket．pin outs and power inputs by one 16 pin D．OS SIL sockel．pin outs stantard and conpaible with orer opir displays．coniras contol．easily interfaced with either 4 or 8 bit up \mathbf{s} ．Supplied complete with data．Dimensions：Characters are 5×12 do Madule size $220 \times 40 \mathrm{~mm}$ DP over $£ 50.00$ Our Price $£ 15.00$ iuv：
 PBAE：

22659 LCD module．Probably Intended for use in moblle plrones．Size $44 \times 28 \mathrm{~mm}$ ．One row of 10 digits + a load of Japantese characters．Uses 2xOKI M5259 chips．No other data （yet）£2．50

SMME

Z5352D Denstion aphanumeric LCD module 40×1 character yoe H2572HT．Farnell＇s price 2828 －Superdeal Price：$£ 9.95$

shlice E6．95

Xtra Special ruma 25 way Dplugss Z5081 100 £5 25080144 £5 Star Buy ！！

High Quality Audio/ Video Leads

Packed in poly bags with header cards, these 'Nu-Way' leads are offered at a surprisingly low price. 16 types avaiiable, all 2 m long except- which are 1.5 m long. All conneclors on all leads are screened - none of your cheapo plastic plugs horely Code Type Description 1+ 25 + $28033 \quad 67$ PL259 +5 pin DIN 180 plug to phono plug +5 pin DiN 180° plug. $\varepsilon 1.84 \quad 0.82$
$\mathbf{5 5 0 3 4} 686$ PL259 + 2 phono plugs to 2503 phono plug $\rightarrow 5$ pin 180 plug. $\mathbb{E 1 . 9 6} 0.98$ $25035687 \quad$ Phono plug +5 pin 180° plug 25037680 PL259 - phono plug to BNC plug +3.5 mm plug. 25038685 Plug $\mathbf{2 5 9}$ PL5mmplug. PL259 +p $\varepsilon 1.240 .62$ both ends ع2.46 1.23 PL259 - $2 \times$ phono plug to BNC plug
180° plug.

〔2.12 1.06
$25039683 \quad$ BNC plug +5 pin DiN
25040 vTVO15 ${ }^{-}$BNC plug +3.5 mm plug to 6 pin DIN plug
$c 2.62 \quad 1.31$ 6 PL259 + phono $25052691 \quad 6$ pin Din plug to 5 pin DIN 180° plug + phono plug. $\varepsilon 1.43 \quad 0.71$ plug io 25053669 PLi259 + phoño plug to 2 phono plugs. PL259 + 5 pin DiN 180° plug PL259 + 5 pin DIN 180° plug
to PL259 +2 phono plugs.
c1.96 0.98 to PL259 + 2 phono plugs. $<2.36 \quad 1.18$

241863 m multicore lead terminated both ends with 50 way centronics (IEEE-488) socket. Ideal for stripping down for flex - total 150 m of multicoloured $7 / 0.2$ Connectors alone worth $£ 12.80$
Price ... Only 29.95
Price ... Only 29.95
PL616 DC adaptor lead for Walkman, 1.8 m long.
Price .. 30p $100 \div 0.15$
PL528 2 pin DIN line socket to phono plug 0.2 m long.
Price20p $100+0.10$
pl708 video lead. PL259 plug to F type plug. 3 m low loss coax.
Price.. 88p $100 \div 0.45$
PL508 5 pin DIN - 3 pin DIN audio lead 1.2 m long.
Price ... 40p $100+0.20$
 MX: PACK 50 HMBI 8

243536 way DIN lead: 1.5 m lead terminated one end with a 6 pin DIN plug. Bare wires the other end.
Prices Pack of 4/C1.00; 100/C12.00; 1000/C90.00 SAIE 8 for ?

Video/audio dubbing kit

* 1 screened lead - 5-pin DIN plug to 5-pin-DIN plug. Mirror Image. 1.5 m .
* 1 twin. screened lead - 2 phono plugs to 2 phoño plugs. 1.5 m .
- 1 twin, screened lead - 2 phono sockets to 5-pin DIN. 180 mm .
* 2 twin, screened leads - 4 phono sockets to 5-pin DIN. 180 mm .
$\star 2$ adaptors - phono socket to PL259 (UHF plug)
$\star 2$ adaptors - phono socket to BNC plug
$\star 4$ adaptors - phono socket to 3.5 mm jack plug

Z4350 A set of 3 different pairs of test leads, offering great vaiusl - a) 67 mm long. 2 mm probes both ends; b) 110 mm long, 2 mm probes one end. 4 mm plugs the other: and c) 80 mm long slifcon rubber, 2 mm probes one end, shroudec 3 mm sockeis the other. All are red and black pairs. All three for just 22.00

Z5401 Splder leads - llke our P0650 at 89p, but they are grey 2 m long and have a 1.3 mm power plug (for Waikmans) as wet as the nommai 2.1 and 2.5 power plugs, and 2.5/3.5 lack plugs. 2 For $£ 1.00 \quad 100+0.24 ; 1 k+0.16$

25387 Car power lead - clgar plu one end. 2.1 mm power piug

$\mathbf{Z 5 4 1 7}$ Scoop purchase on 5PIN DIN - 5PIN DIN leads - 1.2 m long. moulded on plug. black lead. Pack of $10 £ 2.95$

23087 Lead - 6 PIN DIN to 3 coloureu phoso plugs (video i L and R audio) using flat splittable screened lead. Nice and long-2M. Cheap enough to cut the DIN plug off and reterminale with phonos!
Price2/¢1.00 10+ $0.35100 \div 0.25$
Shite 4 for 91

BULK DEAL ON HIGH QUALITY 2.5mm AND 3.5 mm SCREENED PLUGS \& SOCKETS BY ADASTRA!

P9 3.5 mm mono plug
P10 2.5 mm mono plug
P11 3.5 mm enclosed mono chassis skt 20 for $£ 2 ; 100+0.05 ; 1 \mathrm{k}+0.035$ P12 2.5 mm enclosed mono chassis skt 20 for $£ 2 ; 100+0.05 ; 1 k+0.035$ Also $1 / 4$ " stereo jack plug at less than half normal price! 5 for se2 $100+0.25 ; 1 k+0.18$ 25\% OFF ALL THESE PLUGS AND SOCKEYTS!
 T190 \vec{B}

Shte 10 FOR E1.00 CAT PRICE $£ 2.5 \overline{8}$

T108 Buct 12 BNC plug to PL259 fuHFI prus.

SPECIAL OFPER ON ARGOS BOORS All titles on this page only $£ 2.50$ each

 Save up to s 19.80 when buying 4 titles + FREE BBC or GO FORTH book!
AMAZING MODELS!

Peter Holland
Making working models is fun but it can be expensive.
In Amazing Modelsl Peler Holland, a modeller, draughisman and inventor, describes with the aid of full size, defailed drawings, how to make amusing and ingenious models using only the most simple household materials. Paper clips, drinking straws, ald ballpoint pens, cotton buds, balsa wood and plastic lids are just some oit the items which you can use for the construction of these amazing machines.

inc:74 io: 015

RUBBER BAND POWER
$297 \times 210 \mathrm{~mm}$ ILLUSTRATED 64 PAGES
ISBN: 08524296651989 REPRINTED
1990
$\$ 4.95$ PB
BALLOON POWER
$297 \times 210 \mathrm{~mm}$ IILUSTRATED 64 PAGES ISBN: 08524290571989 REPRINTED 1990
$£ 4.95 \mathrm{~PB}$
AMAZING ROBOTS
$297 \times 210 \mathrm{~mm}$ ILLUSTRATED 48 PAGES ISBN: 18548604101991 £5.95 PB Peler Holland gives full instructions for making six working robots. You can cut out and make the robots from the 8 -page card section in the book, and the detailed full.sized drowings are easy to follow. An ideal ond unique book, both for fun and educational use.

Electronic Projects for Model Boats $210 \times 145 \mathrm{~mm}$ HLUSTRATE KEN GINN ISBN: 185486033×1990 £6.95 PB A comprehensive guide containing detailed information on how to make a variety of electronic projects which can connect to your radia control system. Projects covered include a servo checker, speed controlier, wattery tester, dual nicad charger, switcher, and many more

Installing Radio Control in Boats

JOHN CUNDELL
$248 \times 185 \mathrm{~mm}$ IILUSTRATED 64 PAGES
IS8N: 16548602241990 E5.95 P8
Building and fitting radio control equip. ment into a model boat is something that most people can undertake with some degree of success. However, there are aiways better ways of enhancing performance and retiabili'; in this book. John Cundell explains the process of choosing and installing radic control systems in all types of model boats
Learning to Fiy Radió Control Helicopters
DAVE DAY
$248 \times 185 \mathrm{~mm}$ ILLUSTRATED 64 PAGES ISBN: 185486025919905.95 PB
Radio con:rol helicopters are the fastest growing aspect of the hobby. Unfortunately. many modellers attempting to become pro ficient with these machines meet with falure due to igno ance of the design, mechanics. setting-up and flying methods. In this book Dave Day explains the basics of learning to fly these exciting arrerath.

THE CAR MODELLERS HANDBOOK Mar Irvine $210 \times 145 \mathrm{~mm}$ ILUUSTRATED 160 PAGES ISBN: 185486 046 I 1991 96. 95 PB An up to-date and comprehensive guide to all
aspects of building and finishing model cars.
Mat Irvine covers building a basic kit, simple and camplex detailing, building dioramas and using accessories, and pointing and decal application. He also gives history of-the model car market and discusses the 'collectability' of the model kit.
tllustrated throughout, the book is an essential reference for all car modellers worldwide.

FREE! - with any 4 books from this page, your choice of:
"Sensing and Control Projects for the BBC" (Published at $£ 5.95$) or "Go Forth" (Published at $£ 8.95$)
Full information on these two books is contained in Bargain List 90

SUPERSENSATMNAL SUMMER CREENWELD
27 Park Rd. Southampton SOI 3TB Tel: 0703236363 Fax: 236307 All one off and pack prices INCLUDE V.A.T. Qity. prices do not. DACKS = PACKN $=$ PACK $=$ IPACKS All our packs contain top quality, brand new full spec components (unless otherwise stated) and represent incredible value for money! How do we do it? By purchasing bankrupt stocks and manufacturers surplus. It's too costly to sort and catalogue all these parts, hence these outstanding packs at extraordinarily low prices - so stock up now!!
Please note most packs are calculated by weight: quantities quoted are approximate, but we do try to ensure contents are at least the number specified.

LOOK AT THISH Some great offers here: Look especlally at the 'EXTRA SPECIAL' boxes -up to 65% discount:

samiconpuctors

K708 Voltage Regulators. This is an excellent pack, made up from a huge variety of $+v e$, -ve , fixed and variable regulators from 1.2 V to $37 \mathrm{~V}, 100 \mathrm{~mA}$ to 5 A plastic and metal.
PRICE: 25 for $£ 6.95$

K709 Bridge Rectifiers. Another superb value pack - could include anything from half amp to $35 \mathrm{~A}, 25 \mathrm{~V}$ to 1000 V plastic and metal. PRICE: 20 for $£ 6.95$

K710 SCR'S \& TRIACS.
Big mixture could include all types from TO92 plastic up to DO5 stud mounting with a chance of everything in betweenl 25 V to $1000 \mathrm{~V}, 100 \mathrm{~mA}$ to tens of amps. Marvellous value.
PRICE: 25 for £ 5.95

SAITE 83.50

K575 Plastic Power pack . Mainly TO126 and TO220 transistors, SCR's Triacs, etc. All new full spec marked devices offering fantastic value. Lots of TIP and BD types. PRICE: 501 £ 7.95

Shiter 84.50

K576 Mixed pack of TO220 and 4 pin power mosfets with data and pinouts. Types may include: 2N7004/5/6/14, IRF620/710/ 720/820, IRF9520/9620, VNO300D etc. PRICE: Pack of 25 E8.00

satice E4.50

K536 74 Series Pack. "On Doard chips" for you to desolder containing many is and other types. 3Good mix.
PRICE: $100 / £ 4.00$

K71 74 Logic Pack. All brand new full spec devices from basic gates to complex logic. May include $54 \& 64$ types as well as 74 in L, LS, S, ALS, H, HC, HCT, etc. PRICE: Pack of 100 £6.50

34 4

K537 IC Pack - A mix of linear and logic chips, from 6 to 40 pin. All are new and marked but some may not be full spec. PRICE: /100 $£ 7.50$

K711 74 Logic Pack. All brand
new full spec devices from basic
gates to complex logic. May include
$54 \& 64$ types as well as 74 in L. LS,
$S, A L S, H, H C, H C T$, etc
PRICE: Pack of $100 \$ 6.50$

K560 We've now collected together enough semis to offer this pack again - it was extremely popular a couple of years ago. All types of semiconductor included - diodes, transistors, I.C.'s etc all new full spec and marked Oty. is aproximate depending on the number of power devices included.
PRICE: Pack of approx 100 E5.95; 300 E12.95 1000 £42.95

K851 74F fast logic. Types included 00, 02, $04,08,51,74,158,240,244,245,280$, 373 + stacks more. Over 25 types
PRICE: Pack of 100 £6.50

SAITE

K852 74HC. Nice selection of highspeed CMOS logic including 00, 05, 151, 157, 245, 273, 280, 423, 451, 4053, 4060. Over 25 types
PRICE: Pack of $100 £ 7.00$
Birn g a

K853 74 HCT . Super mix of these popular chips - about 30 different types including $00 \hat{0}$, $04,10,14,126,138,158,163,240,241$, $244,245,273,373,377,563,573,688$. List price over E501
PRICE: Pack of 100 £8.00

K854 74LS. Probably the most popular series - this pack has a great selection of over 80 types - far to many to list here, but includes many complex (expensivel) logic devices, would cost over E40 if bought seperately.
PRICE: Pack of $100 \mathrm{£6.00}$

K855 4000 CMOS - all sorts in here, gates, complex logic - a big selection including 42, $50,60,70,76,73,4512$, etc. about 20 different types.
PRICE: Pack of $100 £ 6.00$
3 4 5 B 5

capacitors

K546 Polystyrene/Mica/Ceramic Caps. Lots of useful small value caps up to about 0.01 uF in voltage, up to 8 kV . Good variety.
PRICE: $100 /$ £2.75

K901 Mylar's - a good variety of the small 50 and 100 V types - nearly all values in the E12 series from 0.001 to 0.082 uF
PRICE: Pack of 200 £ 3.50
\therefore in 5 2
K902 Mylar's - a selection of larger values, kall 50 V from 0.1 to 0.47 uF .
PRICE: Pack of 50 £2.00

K518 200 Disc Ceramic Caps Big variety of values and voltages from a few pF to 2.2 uF : 3 V to 3 kV .

PRICE: $£ 2.00$

Br

K530 100 Assorted Polyester Caps. All new modern components radial and axial leads. All values from 0.01 to luF at voltages from 63 to 100011

super value at: £3.00

BABEF Fir

K7 14 Power Supply Capacitors. All cans, mostly computer grade including popular values like $10,000 \mathrm{uF} 40 \mathrm{~V}$ etc. Big mix of values and voltages up to 100 V or more and 50,000uF
PRICE: for box of 25 £12.50
Price: for box of 25 e12.50

K549 Trimmer Capacitors. A nice selection of small value caps ranging in value from a few pF to 100 pF or more, various dielectrics.
PRICE: Pack of $20 £ 1.75$
! !
K548 Tant bead capacitors. About a dozen different types from 0 . I uF to the rather pricey 100 uF , voltage from $6-50 \mathrm{~V}$.
PRICE: 50 for $£ 3.00$

RESISTORS

K540 Black in stockl after a long absence, we can again supply this popular assorted resistor pack-mostly $1 / 4 \leqslant \frac{1}{2} W$, some larger. Big range of popular values, all with full length leads. PRICE: Pack of 500 £2.95.

K531 Precision Resistor Pack. High quality close tolerance R's with an extremely varied selection mostly $1 / 4 \mathrm{~W}$ and $1 / 2 \mathrm{~W}$ tolerances from $1 / 4 W$ and $1 / 2 W$ tolerances from
0.1% to 2%-ideal for meters, test gear etc.
PRICE: 250/ £3.00

K523 Resistor Pack. 1000 - yes 1000 mainly $1 / 2 \mathrm{~W}$ 5\%, 10% \& 20% carbon/carbon film resistors with prefomed leads for PCB mounting. Fair range of preferred values.
PRICE: only $£ 2.95$
SATHE 1.50

K503 100 Wirewound Resistors. From IW to 12 W , with a good range of values. PRICE: $£ 3.50$

Birr

K525 Preset Pack. Big, Dig variety of types and sizes-sub-min, min and std, MP, slider, multiturn and cermets are all incuded. Wide range of values from 20 R to 5 M 100 assorted PRICE: $£ 6.75$

$\therefore 41-2$
 13.50

K505 20 Assorted Potentiometers. All types including single, ganged, rotary and slider.

PRICE: $£ 2.30$

$54 \square 18, ~ ? 1$

K827 Cermet trimmers. An excellent range of multiturn minature cermets from 10 R to 2M.
PRICE: Pack of $50 £ 7.95$
Binn
K828 "Lo-ohm" wirewound pack. Values less than 10R are always popular and this pack contains only resistors between ORI and 1OR. PRICE: Pack of 50 £4.30

optoelagtronics

K701 110 V Indicators. This pack of neon indicators comprises round and square panel mounting types in red. green, amber and clear
PRICE: Pack of 20 £2.50

SMIEEE P1.75

K539 LED Pack. Not only round but many shaped LED's in this pack in red, yellow. green, orange and clear. Fantastic mix.
PRICE: $100 /$ £6.50

-in a

K524 Opto Pack. A variety of single point and 7 segment LED's (incl. dual types) of various colours and sizes, opto isolators, numicators, multi digit gas discharge displays, photo transitors, infra red emitters and receivers.
PRICE: 25 asstd. $£ 4.50$

$\therefore 45 \pi=10$

K806 LED Pack contains only red LED's round, square, rectangular etc, from 3 mm to $7 \times 2.5 \mathrm{~mm}$.
PRICE: 100/ £5.00

K804 Lamp Pack. A superb quality pack containing a wide variety of small lamps. Many different types - wire ended bi-pin slide, MBC . MES , LES I Π, wedge, miniflange etc in voltages from 2.5 V to 220 V . Most are marked with voltage/ current
PRICE: Pack of 50 £ 4.00

SWITCHES \& RELAYS

PLASTIC/SLEEVING

W4700 Push button banks. An assortmens of latching and independant switches on banks from 2 to 7 way DPCO to GPCO. A total of at least 100 switches.
PRICE: 100/E6.95

shiter e3.50

K592 Pack of 25 minature rocker and lever switches from page 125 of the 1991 catalogue.
PRICE: 24.00

Shite ex 3.00

K593 Pack of 25 push and slide switches from page 125 of the 1991 catalogue.
PRICE: $£ 3.50$

K520 Switch pack. 20 different assorted switches - rocker, slide, push, rotary toggle. micro etc. Amazing value.
PRICE: $\mathbf{E 2 . 5 0}$

K542 Reed Relays. Mostly Dil single pole \& double pole also some changeover, these are manufacturers rejects. but a good proportion work. 5 V to 50 V coils. 50 assorted.
PRICE: E3.30

K715 DIP Switch pack temendous selection of DIP switches mostly from page 121 of 1991 catalogue. everything from 1 . 9 way at astonishingly low price.
PRICE: Pack of 20 £3.25

Bin 롭 2 2 2 110

K824 Rocker switches, both minature and standard, single and double pole illuminated red/green/amber and plain Fantastic value.
PRICE: Pack of 20 £4.95

s.imil00E6.00

K825 as above but alsō included some illuminated push switches
PRICE: Pack of 202.95
shीtiow El .95

K564 PCB Stand - Offs. A mixture of 8 different styles and sizes from 4.5 to 12.7 mm high.
PRICE: 100/E2.95

K826 Jumbo pack of plastic stand - offs \& a few cable clips and bits and peices. 1000 parts.

PRICE: $£ 9.95$

K533 Silicon Rubber Sleeves $\quad 15 \mathrm{~mm}$ long 5.5 mm bore, 1 mm wall

PRICE: 100/50p

Salte

HEATSHRINK SLEEVING

K843 This normally expensive sleeving offered at a fraction of normal trade prices. A pack of 10 m , black and clear with at least 5 different sizes from 3.5 to 4.2 mm dia. for just E3.95.

shntwe 3.00

CONNECTORS

K557 Terminal Biocks. In all shapes and sizes. solder and screw from single way to 12 way in many different current ratings.
PRICE: 20/ E2.95

K803 PCB pack with/without ears, straight and right angle from 10 to 64 way.
PRICE: Pack of 20 £5.50

K802 Pack of DIN41612 connectors. These popular PCB connectors come as 32/64/96 way Both plugs and sockets, some with pins missing normally costing $£ 1-£ 3$ each.
PRICE: Pack of $25 £ 8.00$
51AFm\&
$K 836$ DIL Socket Pack A super selection of DIL IC sockets from 8 to 64 way, low profile and standard mntg, turned pin tinned, gold plated, wire wrap and solder terminals
PRICE: 100 for £ 14.95

K705 PCB Headers. SIL \& DIL PC mounting header plugs straight and right angle mostly 0.1^{*} pitch in a variety of ways from 3 to 30 PRICE: Pack of 100/£6.00
5intry

K837 Lead pack. Assortment of signal and power leads terminated with a variety of plugs and sockets
PRICE: 25 for $\mathbf{E 3 . 9 5}$

shitive E2.00

K562 Edge connectors. Mostly 0.1 pitch some $0.15,0.156$ and 0.2 as well Single / double sided / tinned / gold plated solder/ wirewrap / PC connections PRICE: Pack of 20 E3.95

MOTOR\&CEAR PACK

K579 This pack contains 10 assorted battery powered motors (mostly 3 V) +90 gears etc. $16-60 \mathrm{~mm}$ dia. + worms and shafts amazing value.
PRICE: $£ 7.95$
$\therefore i)^{2}+4000$

hardware

K553 28A screw mix . Mostly steel, few brass / nylon etc, cheesehead, hex countersunk, slot and pozi, mainly in lengths from $7-63 \mathrm{~mm}$. Excellent selection
PRICE: $100 /$ E2.60

K552 48A screws - Super mix of types mostly steel, with round pan, cheese, c / s heads in lengths from 5 mm to 50 mm great value.
PRICE: 200 for $\mathbf{E 2} .75$

K811 6BA Screws. Nearly all pan head pozi in plated steel. Lengths to 16 mm .
PRICE: Pack of 100 E1.50

$K 807$ M3 Screws. Good selection of sizes including a few brass. Most heads. Lengths to 35 mm .
PRICE: Pack of 100 £ 1.50

K808 M4 Screws. Huge varietyl Pan, C/s, cheese, set, slide, pozi. From $4-50 \mathrm{~mm}$ long All steel, plated, black / hi-tensife.
PRICE: Pack of 100 E1.60

K809 M5 Serews. As above.
PRICE: Pack of 100 £2.00

K833 M6 pack. Excellent vaiue - contains screws in various lengths and head. Mostly steel, some hi-tensile.
PRICE: pack of 100 £ 4.50
\therefore ALEE
K830 M8 screws and bolts. Good assortment from $16-90 \mathrm{~mm}$ long, c / s hex, pozi some hi-tensile. All steel.
PRICE: pack of 50 £3.80

$K 831$ M10 Bolts. Mostly hi-tensile hex head lengths from $16-90 \mathrm{~mm}$
PRICE: Pack of $20 /$ E3.20
\because :
K832 MI2 Bolts. Mostly high tensile hex head. Lengths from $40-15 \mathrm{~mm}$
PRICE: Pack of $10 / £ 2.40$
SAPItE: E1.70
K820 Large bolts and set screws. Could weigh as much as 150 g each fup to 16 mm dia $x 90 \mathrm{~mm}$ long) Practically all are steel Many different heads.
PRICE: Parcel weighing 5kg $£ 10.00$
B i n =

K527 Hardware Pack This has a large variety of PK (caps) and self tapper screws from $2 \times 1.5^{-}$up to 8×1.25 also washers, some BA metric and whit. Screws plus other miscellaneous brackets, captive nuts and bits and peices 1 kg (up to 1000 peices)
PRICE: Ikg $\$ 4.00$

SATHE: 82.50

K581 Copper Clad Board A selection of single and double sided, mostly fibreglass in useful sizes.
PRICE: 200 sq ins $£ 3.00$
Bin法
$K 535$ Spring Pack. Approx 100 assorted compression, extension and torsion springs up to 22 mm in diameter and 30 mm long. PRICE: 1.70

SARTE: P1.00

K595 Big mix of screws - very few BA mostly metric BSF Whitworth DZU etc. Tremendous variety of heads - cheese, cs, pan, hex, allen round etc. As for size, well we've seen some as small as 3 mm and a few as long as 80 mm . There's even some 12.5 mm dia in this packJ You'll probably also find a few odd clips washers, nuts etc, too.
PRICE: 500 gm pack $£ 2.70$

SARTEEER.00

K717 Keyboard caps - a wide variety of sizes and colours from $17 \times 16 \mathrm{~mm}$ to 25×25 mm . Some long ones too. Most have words some numbers
PRICE: Pack of 100 assorted $\$ 3.50$

SURFACE MOUNT

K577 Surface mount FETs including SM versions of 2N430/1, 4392, 4857 5488/9/60/1, also 2N7001/2 etc. Big variety at a low price.
PRICE: Pack of 50/ £4.00

SPATEE E3.00

KS102 Transistors - about a dozen different types plus a few diodes, mostly SOT23. Type numbers include BCF29/30, BSR15, BC856, BCV71 BCW29/71/72/81. Supplied with code sheet.
PRICE: Pack of 100 for $£ 3.00$
5inn 2 :
KS103 Resistors. 0.125 W 2\% in a range of values from $3 R 3$ to 10 M . Although there is a fair range (about 50 values) many are E24.
PRICE: Pack of 1000 for $£ 3.00$
: in n b

KS104 Capacitors - over 20 different values from IpF to 470 nF . PRICE: Pack of $100 £ 4.00$
SAATE E3.00

KS107 3 values only of tants: luF, 4uF and 2ZuF. Pack of 30,10 each value with DP of 12.70 for just $£ 3.00$

KS105 Surface mount çoil pack, only a few different values $70,80,120,150$ and 180 uH . PRICE: Pack of 50 assorted $£ 3.00$

SACDE E2.50

FUSES \& HOLDERS

K555 Fuses. A marvellous selection of 15, 20, 25 and 32 mm fuses both cartriage and wire ended in quick blow and antisurge varieties, May be anything from 32 mA to 50 A . PRICE: 100/£3.95

K834 Thermal fuses $104,109,121 \& 152^{\prime} \mathrm{C}$. some with cropped leads.
PRICE: Pack of 20 £2.95

K713 Fuse holders. Panel and chassis̄ mounting from basic clip to high current enclosed types for 15,20 and 32 mm fuses. PRICE: Pack of 50 £4.00

SAREEEP.50

MISCEL LANEOUS

K541 Printed Curcuit boards. A wide variety of high quality printed curcuit boards including audio, RF, digital etc all covered in components - resistors, capacitors, transistors, IC's LED's switches etc, etc. A big pack of 2 Kg .
PRICE: only $£ 7.00$
SAlte 5KG ElO.00
K712 Crystals. Mostly HC60 and HC18U in a wide variety of frequecies from a few hundred kilohertz to many megahertz and the odd crystal oscillator module or two.
PRICE: 20 for $£ 4.95$

SAMEE P3.01

$K 829$ Transducers. Piezo, eiectromagnetic, permanent magnet in assorted sizes from 15 mm dia upwards. Lovely mix.
PRICE: Pack of 25 £3.50

SPAIE P3.01

K506 This one's an absolute geml Contains a selection of conventions and switch mode power supplies, including AA12531, Z660, $25307 / 8$ + Lots morel Parcel of 10 originally selling for $£ 40+$.
PRICE: E25.00
SAfire 915.00
K835 New transformer pack. All mains. primary, secondary range from $6-35 \mathrm{~V}, 0.5$ to 3A.
PRICE: Pack of 12 £ 10.00

K574 Wire link pack. A wide range of sizes from 3 mm to 50 mm for use with Breadboards or PCBs. Some are bare, a few are not preformed.
PRICE: per pack of 250 £1.00

SARTE: E0.50

K561 Coils and Chokes. Pot cores, IF cans, open wound coils, chokes, etc from a few uF upwards in a wide variety of sizes and values.
PRICE: 50/£2.80
SAAter EP.01
K844 A small parcel of miniature chokes by Greendale. 8 values from luF to 68 mH , either radial $11 \times 8 \mathrm{~mm}$ or axial $10 \times 4 \mathrm{~mm}$.
PRICE: Pack of 25 £ $\mathbf{2} .60$

18
SAM POWER SUPPLY ε MODULATOR

29111 Never heard of the SAM Coupe Computer? Well, the hoiding company SAMCO wenl bust, and now someone is trying to resurrect it - but the liquidalors were anxious to turn piles of stock into cash, so we purchased all remaining stocks of the Astec made PSU's and can offer them at an amazing price! Inside the $170 \times 150 \times 70 \mathrm{~mm}$ grey and black vented case is a linear power supply (240 V ac in; 5V 2A \& 12V 0.1A dc out) PLUS a UM1286 UHF colour TV + sound modulator! There are 3 leads: 2.2 m phono to co-ax; 2 m mains \& 1.9 m output lead fitted with a 6 pin DIN plug. All brand new
stock. All this for just

SARE E4.95

SPECTRUM +3 PSU

Brand new product - our scoop purchase of these linear power units enable you to buy at less than one third the normal price! Attractively cased in a black vented plastic case $155 \times 102 \times 70 \mathrm{~mm}$, they have a 1.3 m mains lead and an output lead 2 m long fitted with a 6 pin DIN plug. Input: $220 / 240 \mathrm{~V}$ ac. Output: +5 V @ 2 A $+12 \mathrm{~V} @ 0.7 \mathrm{~A}_{;}-12 \mathrm{~V}$ @ 50 mA . Z9110

Z9114 This is a super unit $168 \times 110 \times 50 \mathrm{~mm}$ in its steel case. Again, removed from gaming machines and tested before despatch. Sid mains inpul. Outpuls: $+5 \mathrm{~V} 3 A_{i}+12 \mathrm{~V} 3 A_{i}-5 \mathrm{~V} 0.5 A^{2}$ $+12 \vee 03 A$. Excellent Value at

29109 Although these PSU's are boxed and look in excellent condition. we dont belleve they are brand new. However they are all full spec working units made by Source Electronics Lid. model HSE250-30 and offered at a cost substantially below the market pilce. The units are fully cased and measure $380 \times 125 \times 65 \mathrm{~mm}$. Standard malns inpul and 3 useful outputs: +5V @ 30A, +12V @ 8A and -12 V @ 1A. Maximum total wattage is 250 watts. These would cost around $\mathbf{\Sigma 2 0 0}$ from a distributor - Our price $\mathbf{\Sigma 2 4 . 9 5}$.

SWITCH MODE PSU'S

 A A12531 Swich mode PSU by Astec partially cased. $60 \times 104 \times 45 \mathrm{~mm}$ overall with $160 \times 100 \mathrm{~mm}$ Eurocard PCB. inputs and outputs are on cobour coded flying leads. Input $115 / 230 V 50 / 60 \mathrm{~Hz}$. Outputs: $+5 V$ @ $5 A ;+12 V @ 0.15 A$. Total wattage 50W.

Converslon Kh

K725 This kit converts the AA12531 PSU into a much more versatile supply, glving +5 V (a) 2.5A: +12 V (3) $2 \mathrm{~A}:-12 \mathrm{~V}$ @ 0.1 A and -5 V @ 0.55 A . Complete sst of parts and full instructions $\mathbf{~} 3.50$ Instructions only (K726) $\mathbf{~ 1} 1.00$

8M41012 Superb swich mode PSU made by Astec. Enclosed case $175 \times 136 \times 65 \mathrm{~mm}$ with switched and fused IEC malns Inlet. $160 \times 80 \mathrm{~mm}$ PCB with output pins extended to external connector. Input $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Outputs: +5 V () 3.75 A ; +12 V @ $1.5 \mathrm{~A}:-12 \mathrm{~V}$ @ 0.4 A . Total wattage 65 W £14.95; $25+11.70: 100+9.75$

SATM: 99.95

SAAEE E19.95

Farnell NO55P Power Supplles
We've taken delivery of these popular supplles from several different sources, and now have the following models avallable. All are switch mode $115 / 230 \mathrm{~V}$ input rated 55 watts max. Size of cased units $182 \times 112 \times 55 \mathrm{~mm}$, uncased slze $160 \times 100 \times 40 \mathrm{~mm}$.

25304 Model 326. cased. Outputs: $+5 \mathrm{~V} 3 \mathrm{~A}:+12 \mathrm{~V} 0.1 \mathrm{~A}:-12 \mathrm{~V}$ 0.1A. Price $\$ 12.95$

SAIte E6.95

25334 Model 314. Outputs: $+5 \mathrm{~V} 3.5 \mathrm{~A} ;+12 \mathrm{~V} 3 \mathrm{~A}-12 \mathrm{~V} 1 \mathrm{~A}$. Price $\$ 14.95$

SAATE E7.95

LUGHT UP YOUR LAYOUT
K692 Super deal for mo dellers - we supply a malns power supply. 100 minlature lamps for wiring Into your raliway layout or dolis house, and 100 m of fiex. Circuits and delalls of how to wire up the lamps in series/parallel are prived. Everything for just $£ 19.95$

SARIEEE14.95

MODEL RALLWAY CONTROL ANO SWITCHING UNIT
Thls ready bull versalile plece of equlpment allows:
Full forward and reverse control of trains using regulated and smoothed supply (1.5A)
"Requires 3 components (supplled) to be soldered to each panel.

- Relay control of 5 seperate clrcults. (10A changeover contacts; Ideal for polnis operation)
- Powering of auxlllary equipment -2 seperate 5V 1A outputs.

A malns powered panel $185 \times 105 \mathrm{~mm}$ contains all electrontes. All voltages are fully stabilized and both Input and output are fused.

Connections, both Input and output are by screw torminals which are clipped onto the on-board pins.

The five 12 V relays are controlled by transistor clrcults which require only 5 V 30 mA , supplled by the on board power supply.

Supplled uncased with circuit and wiring diagram. (SAE to fres copy.)

Suitable black ABS plastic case $\{3,50$
Order Code 28897 Price reduced lo $£ 14.95$

CREENWELD

SWITCH MODE POWER SUPPLY BONANZA ATM IN THI \boldsymbol{H}_{1} Biz
 2504 197498mm PCB 50 wall unit. $5 \mathrm{~V} 5 \mathrm{~A}+12 \mathrm{~V}$

$1 \mathrm{~A} ;-5 \mathrm{~V} 0.5 \mathrm{~A} ;-12 \mathrm{~V} 1 \mathrm{~A} . £ 9.95$
$25503126 \times 76 \mathrm{~mm}$ PCB. 30 watt unit: $+5 \mathrm{~V} 4 \mathrm{~A} ;-5 \mathrm{~V}$ 1A. £4.95
$25505205 \times 102 \times 45 \mathrm{~mm}$ uncased unit rated 120 W . $+5 \mathrm{~V} 6 \mathrm{~A} ;+12 \mathrm{~V} 2 \mathrm{~A} ;-12 \mathrm{~V} 1 \mathrm{~A}$. Also has a number of leads attached, one with a 15 way D socket, and a small PCB with LM339 and other bits on it. $£ 14.95$

25508 Cased unit for monitor $205 \times 130 \times 60 \mathrm{~mm}$ by Source Electronics Lid, model HSL80-47. Rated 80 watts. $+70 \mathrm{~V} 0.9 \mathrm{~A} ;+6.3 \mathrm{~V} 0.7 \mathrm{~A} ;+15 \mathrm{~V} 1 \mathrm{~A} ;-15 \mathrm{~V} 0.4 \mathrm{~A}$. £16.95

Z9133 Cased unit $380 \times 128 \times 75 \mathrm{~mm}$ rated 500 watts by Source Electronics Lid, model SAX500-02. +28V $16 \mathrm{~A} ;+5 \mathrm{~V} 6 \mathrm{~A}$, also + and - sense. Super robust unit. £39.95

Z8887 Made by STC. this $160 \times 100 \mathrm{~mm}$ panel is attached to an aluminfum chassis. $165 \times 102 \times 65 \mathrm{~mm}$ and has a single 5 V 6 A output. Suppilied with connection detalls. we can offer these ar a fraction of their normal cost.
Price $£ 5.9510+4.30 \quad 100+3.43$

Z8888 A larger version of the above, PCS $220 \times 100 \mathrm{~mm}$ and chassis $225 \times 102 \times 65 \mathrm{~mm}$ prioviding a single 5 V 10 A outpur.

Supplied with connection detalts.
 Price Only $£ 8.9510+6.50 \quad 100+5.20$

Shite e3.00

25280 Neat switich mode PSU on panel $120 \times 100 \mathrm{~mm}$ and only 32 mm high. Malns Input via skt supplied. 3 outputs on socket are +5V@2A: $+12 \mathrm{~V} @ 0.3 \mathrm{~A}:-12 \mathrm{~V} @ 0.2 \mathrm{~A}$. These have been removed from equipment. but are clean and In full working order $\mathbf{E 7 . 5 0}$

Shtice E3.75

23418 Switch mode power supply - brand new unit, as fitted in 28945 mlcronet terminais (which are now sold out) This is a 60 watt unlt on a panel $280 \times 240 \mathrm{~mm}$ (athough $120 \times 240 \mathrm{~mm}$ Is snused). Each unit is supplled with a final test sheet, listing output voltages and currents which are, iypicaily, $+12 \mathrm{~V} 2 \mathrm{~A}+5 \mathrm{v}$ AA $+5 \mathrm{~V} 0.25 \mathrm{~A} ;-12 \mathrm{~V} 0.5 \mathrm{~A} ; 13.8 \mathrm{~V} 0.1 \mathrm{~A}$ (rrickle charger output). $115 / 230 \mathrm{vac}$ input. Excelient value at $£ 14.95$

Couple more 125 watt cased SMPSU's by Source in small qty's:
$29136+5 \mathrm{~V} 10 \mathrm{~A} ;+12 \mathrm{~V} 4 \mathrm{~A}:+12 \mathrm{~V} 1.5 \mathrm{~A} ;-12 \mathrm{~V} 0.5 \mathrm{~A} . £ 17.95$

$29137+5 \mathrm{~V} 2.5 \mathrm{~A} ;-12 \mathrm{~V} 0.25 \mathrm{~A} ;+16 \mathrm{~V} 4.5 \mathrm{~A}$ (Useful for battery charger? $£ 17.95$

25258 Switch mode PSU made by Tamura Corporation. Board $195 \times 100 \mathrm{~mm}$ whth outputs on PCB pins. Input $120 / 240 \mathrm{~V}$ ac; Outputs: +5V @ 7.5A; +12V @ 125A (2A peak); -12V @ 0.1A. All this for fust $\mathrm{Et2} 2.95$

\&itn \#

DC-DC CONVERTERS
 254060 High aficiency stop down power regulator module by SGS. This is a GSR400 type, as listed by Farnell at $£ 41.11$ each. Output is $7 \mathrm{~V} @ 4 \mathrm{~A}$ fom a $D C$ Input of $10-46 \mathrm{~V}$. Possible uses Inctude battery charger. Our special price - jusi $£ 5.75$

Two 5 watt regulators PCB mounting. $D C-D C$ converters. These are encapsulated in a $51 \times 51 \times 10 \mathrm{~mm}$ package with output pins on 0.1 pitch. These are ex-equip but guaranteed. OUP 559.75 .
Z1893 input 48V (43-52V), output 5V 1 A .
Price input 88 (A3 S2V. outpur ….... $\$ 2.50100+1.00$
21894 input 48V (43-52V), output 12 V 420 mA .
Price ..50 $100+1.00$

28890 DC-DC CONVERTER BOARD

These panels 220×195 require 50 D DC input for 5 V 19.5A output. Inputs and outputs on DIN41612 connector. These brand new panels made by STZ are now being offered at just: Prices $£ 7.9525+5.20100+3.89$

25411 Marconi panel $225 \times 195 \mathrm{~mm}$. No info on this PSU, but It's got some really nice bits on it - $2 \times 2 \mathrm{~N} 3716$ TO3 transistors, 138 8CY71, $2 \times$ BC107, BFW43, BFX29, LM317K and LM33K TO3 variable voliage regs, some high power zeners, pot cores, R's, C's etc., toggle switch with locking device. Great value at $£ 3.95 \mathrm{~B}$

25278 Plug in wail type 24 V ac 100 mA output on 2 m lead $\Sigma 1.75100+1.10$
Bin

Z9115 Double Ringer by Weir. Right angie panel $190 \times 72 \times 46 \mathrm{~mm}$ with 2xBUV45 MOSFET's, $3 \times B F 471$, some small signal T ',
Z860 Astec swith mode PSU type AA7271. Thls smail PCB. just $50 \times 50 \mathrm{~mm}$ will accept $8-24 \mathrm{~V}$ input and give a stable 5 V dc at up to 2A output. The 6 transistor circult provides current overioad protection. thermal cut-out and excelient filtering. Offered at a remarkably low price.
Price $\$ 5.00$

SAATEE E.50

 wh 10 , 7 , M358, 75453, R's C's etc. There are 7 wires leading to the inverter transformer which looks about 50VA. This unit was probably designed to take a low level signal and tum it into ringing current - about 75 V 25 Hz , but we have no further data. Only $£ 4.00$

252920 'Power one' power suppiy. Conventonal unit. 120/240V Input. output 15V © 1.5 A fully stabilized. Part enclosed size $123 \times 102 \times 54 \mathrm{~mm}$. Comprehensive data supplled

$\Sigma 10.00$
 SARTEE: $£ 4.95$

Z52930 'Power One' power supply. Conventlonal unit. 120/240V input. outputs +5 V @ $2 \mathrm{~A}:+$ or -12 V © $0.4 \mathrm{~A} ;-5 \mathrm{~V}$ @ 0.4 . Each output uses a 723 regulator and has a preset for acfiusting voltage. With data $£ 14.50$

SARTEE 97.50

The other item is a high quality 12V 2A power supply ktt with current limit protection. This comprises a ready built PCB you just need to add the power transistors supplied. It comes with a full circuit and instructions, but you'll need a 16 V transformer and a heat sink. Order Code 25298 Price $£ 3.50$

SAME PR P 1.16

25413 KRP PCB mounting power source $90 \times 65 \times 23 \mathrm{~mm} .220 \mathrm{~V}$ ac in $\pm 15 \mathrm{~V} 100 \mathrm{~mA}$ DC out. Some of these are ex-equlp. DP around 30.00 Our price $\mathbf{5 . 0 0}$

Shtice

Z5404 Stabilized power supply panel $140 \times 85 \mathrm{~mm}$. AC input is rectifed and smoothed and is taken via a couple of regulator transistors and a relay to a 12 way terminal block. Probably Uansistors and a
24 V . Onty E.25

25206 Super transformer for railway and other modeliers. Malns primary. secondary 16 V 3 A . Size $50 \times 55 \times 60 \mathrm{~mm}$ high 61 mm FC. Great value for money only $£ 3.00100+2.001 \mathrm{k}+$ 1.50

24360 Very useful 18VA mains transformer with 0-6. 0-6 secondary, each at 9VA giving $6 V_{4} 3 A$ or $12 V / u 11 / 2 A$. PCB mounting $65 \times 52 \times 28 \mathrm{~mm}$.

Exceliem value
 -

22305 Neat GVA PCB mounting low profile mains transformer $53 \times 44 \times 22 \mathrm{~mm}$. Primary $0-120 \mathrm{~V}$, $0-120 \mathrm{~V}$ Secondary $0-15 \mathrm{~V}, 0-15 \mathrm{~V}$, each at 02 A . DP $£ 8.33$

Toroidal Transformers made by Belclere. These are all physically the same size, rated at 35VA but have different windings as listed below. 75 mm dia $\times 33 \mathrm{~mm}$ thick. Fixing by means of a tapped bush. All mains primanes.
24200 Type TR7353 5V 1.4A and $12-0-12 \mathrm{~V} / a 120 \mathrm{~mA}$.
Price.

24291 Type TR7252 12V ; 130 mA ; 12 V ur $80 \mathrm{~mA}: 5-0-5 \mathrm{~V}$ f 600 mA .

Price.

$\overline{2} 520$ 15VA toroldal transformer in screened case with mounting plate by Avel-Lindberg. Bridge rect connected. Pri: 0-120, 0-120; Sec: 0-9, 0-9 7.5VA per winding. $£ 3.50$

22843 Oscillator transformer has push, pull and leedback windings and a secondary of around 385 turns, giving a ratio of about 100:1. As used in high frequency voltage converte

circuits. 2 for $£ 1.00$

27012 27V 4A Chassts mitg Prl $0-240 \mathrm{~V}$ Size $98 \times 83 \times 73 \mathrm{~mm}$ Paround 18.00 Our Price $\mathbf{9 . 0 0}$

27013 40V 1.5A chassis mntg. Pri $0-240 \mathrm{~V}$ Size $79 \times 65 \times 58 \mathrm{~mm}$ DP around 7.00 Our Price $£ 4.00 \quad 100+2.50$

27914 12V 1.5A PC or drop through mntg. Pri $0-240 \mathrm{~V}$ Size $57 \times 48 \times 52 \mathrm{~mm}$ DP around 6.00 Our Price $£ 3.50 \quad 100+2.00$

22452 Uthlum battery - Inorganic type by Tadren, type TL5104. AA slze, 3.6V PC tabs. Date code 06/88 $£ 1.70$ \rightarrow है 0,0 22453 As above, but type SL360. date code 4/87. £1.50 2 FOR E1.50
22719 Lithium battery, Varta 6201 3V 1500 mAh PC mntg 60 mm ong $x 11.2 \mathrm{~mm}$ dia. DP $6.00+$ Our Price $£ 2.00$

53 in E = 5111

Z2720 Lithium Battery, Vidor G06/53. 3V 1400 mah PC mntg. 50 mm long $x 15 \mathrm{~mm}$ dia, individually boxed. DP $6.00+$. Our Price $£ 2.00$

Z2721 Lithium battery 11 mm long $\times 12.5 \mathrm{~mm}$ dia. $3 \mathrm{~V} 160 \mathrm{~mA} P$ mntg. DP 3.73. Our Price $£ 1.20$

22451 Tadiran 0.5AA size battery. 3.6V PC mitg. Date code $8 / 86$. DP 4.58 Our price $£ 1.75 \quad 25+1.35 \quad 100+1.05$

2 FOR Pl. 50

FINAL CLEARANCE

 BIB ACCESSORIES Bccacomplem miceab: soft sumilis brush, cleaning fluid, air-blast. antistatic liquid, cleaning cloths $£ 2.95$ BCC11 Liquid static eliminator in sprak
can + cloth $£ 1.00$
 2:1 11
 Star Buy !!

24248 Mains transformer. 110/240V input via PCB pins Secondary; 6.5 V w 8 VA ; 22V u 8VA: 22 V (u IVA: 1.5-0-1.5V (a IVA. Nicely made by Skot
$\overbrace{\text { 24213 }}^{\text {Price }}$ with wires.
SBIn

ANOTHER SUPPLY OF YUASA LEAD ACID BATTERIES!

Z8920 Type NP10-6 rated 6 V 10A, size $150 \times 95 \times 50 \mathrm{~mm}$. Not new, but regularly maintained and full spec. Last time we had these, they flew out the door, and we had many disappointed customers! Don't miss out on this batch - only £12.00 each

Z9131 12V 24Ah sealed lead acid battery by Dryfit Not new, but only used for about a year and kept carefully maintained, Size $125 \times 166 \times 175 \mathrm{~mm}$. DP 59.33 Our Price 530.00

14149 Ex-mobile radio Ni-cad botteries. discarded because they either have broken cases and od/or a dud cell. - but at the price being asked hay are amaring valuel packof 8 cells, fike AA but 73 mm long, in a tough plastic case. Elher use as a lov battery pack, or remove from case and use cells individually. Each cell rated 1.25 V 900 mA . $£ 3.50$
Siniceli 10/E6

Z5329 A set of 5 NH-Cad button cells 23dlax 5 mm joined iogether in series in an L shape (easily spilt into singles) giving out 6V @ 250 mA . Removed from new equipment. DP £4. Our Price $£ 1.50 ; 100+0.80$.

2 FOR E1.50

24216 Much sought atter 4.8 V 150 mA batteries with PCE mounting tags on 25 mm pitch. Battery size 25×16 dia. Idea tor parallelling. Some corrosion.
Prices reduced to ….......... 50p each $25+0.35100+0.25$
$: 10$ है en $25+0.35100+0.25$

21830 Satt 40 RF310 back up Nicad battery PC mounting oń $70 \times 22.5 \mathrm{~mm}$ centres. Rated 3.6 V . $10 \mathrm{mAH}(20 \mathrm{~mA})$. Overali size $76 \times 28 \times 8 \mathrm{~mm}$
Price.
$=5$;

LITHIUM

 BATTERIES The popular 'coin' type, now available at excellent prices. Individually blister packed Qty prices exclude VAT> | CR2016 $£ 1.00$ |
| :--- |
| CR2025 |
| CR1.00 |
| CR2032 |
| $£ 1.00$ | $0+0.66$

NI-CAD BATTERIES

10\% OFF ALL BATTERIESH

A123 NI-CAD CHARGER

Neat attractive Instrument will charge 4 different sizes of battery: AA. C. D and PP3 alther singly or in any combination. Charge time $7-8 \mathrm{hrs}$ for AA, $14-16 \mathrm{hrs}$ for others. Tesi facillty to check if battery neods charging. Size $210 \times 100 \times 50 \mathrm{~mm}$
PRICES $8.9510+4.12$

SAAte E4.95

VERD CLEARANCE

We've stopped selling veroboard and accessories, as imported stripboard is just as good and far cheaper. So grab a Bargain - all remaining stocks at HALF PRICE - and that's half the 1991 cat price - now over 2 years old!

Type	-Description	Qty	Was	Now
$03-0109$	211×213 double sided veroboard	39	11.07	$£ 5.53$
$02-0134$	95×455 plain veroboard	12	4.42	$£ 2.21$
$10-2445$	100×160 DIP board	40	7.07	$£ 3.53$
$03-0026$	100×160 Square pad board	24	7.87	$£ 3.93$
$03-2989$	100×160 do with ground plane	44	10.57	$£ 5.28$
$10-27563$	100×160 microboard	18	8.45	$£ 4.22$
$18-56070$	single sided pins $1.32 \mathrm{~mm}^{*}$	119	1.24	$62 p$
$18-56071$	double sided pins 1.32mm*	54	1.55	$52 p$
$18-56067$	wirewrap pins single sided*	6	3.97	$£ 1.98$
$18-56068$	do double sided*	55	3.97	$£ 1.98$
$22=0230$	Pin insertion tool for 1.02mm pins	41	3.55	$£ 1.77$
$22-0229$	do for 1.32mm pins	27	3.55	$£ 1.77$
$10-2445$	160×100 DIP breadboard	47	6.92	$£ 3.46$
$806-21021$	156×113 DIP breadboard	17	5.80	$£ 2.90$
$10-27564$	234×160 fibreglass DIP board	7	18.86	$£ 9.43$
$801-21084$	148×74 VQ board	122		$£ 1.95$

*All pins are in packs of 100

Keyboard Enclosure

J083 High quality keyboard enclosure $550 \times 225 \times 70 \mathrm{~mm}$ with black aluminium mask. Top professional quality - made by Data Packaging. Normally £38.69.
Our price.

METER CASE

28142 Vacuum mouided case $225 \times 175 \mathrm{~mm}$. ideal fof storing software/ audio cassettes, etc. $3 / £ 1.00100+0.22$ SAREEG for El
25125 Potting box PB105B $75 \times 50 \times 35 \mathrm{~mm}$. List price 48 p . Shite 8 for El
 smaller models.

25165 Zonephone Case. These are black simulated leather zases that held the portable phone. Size $190 \times 50 \times 30 \mathrm{~mm}$, they have a Velcro fastoner along the length; a belt strap and a jetachable swing handle with one of those trondy keyring type zonnoctors. I suppose you could keep your pac-a-mac in it - or zven use it as a pencil case! $\mathbf{2}$ for $£ 1.00$

25288 Polycarbonate grey sealed box $82 c 80 \times 55 \mathrm{~mm}$ with dear lid IDP 9..119. Inside is a steel panel with loud 12 V buzzer and a PCB with push button (operates when lid is removed) a green LED and $\mathbb{N} 4005$. There's a 12 mm hole in the side of the box and a cable gland to fit. Excepilonal value at $£ 4.00$

Sntice $£ 2.00$

28969

 Superb heavy duty steel instrument case finlshed in light grey $426 \times 290 \times 78 \mathrm{~mm}$ with 4 plastic screw on feet. This was an Isolan repeater for use on a data network, and although the contents have been removed (before belng used). the front and back panel rematn the former hawng 4 obtong red LED's and the later a fused, suppressed IEC mains Iniet orvoff DP rocker switch and 2×15 way D sockets jolned to 16 way IDC skis with a short length of flbbon cable. Ther's a 60 mm circular cut-out for a speaker on one side and mounting pllars in the base, Just look around and see the price this type of high quality case normally costs! - somewhere around the £30-£Just $£ 9.95$

SUPER SENSATQNAL SUMMER CREENWELD 27 Park Rd. Southampton SOI 3TB Tel:0703 236363 Fax: 236307 All one off and pack prices INCLUDEV.A.T. Qty. prices do not.

25308 Adastra 8 ohm 10 watt white 135 mm dila boxed hom speaker. model H52. Adjustable bracket. Very slmilar to our PS108 @ £6.50. but at a much better price £3.95 $25+2.75$

彸

2578 Super flat speaker $30 \times 30 \times 3 \mathrm{~mm}$ by Fujf, rated 16 R 0.4 W DP $£ 1.50$.

2533 Danavox transducer - used as a speaker in pockat pagers. Impedance 50 R . 20 mm dia leads 90 mm long. Extremely high quality unit.
Prices.

P1110
8×5 inch plastic hom speaker with built-in line matching transformer for 70 and 25 V line and 8Ω usage. Transformer tapped at 2, 4, 8 and 16 W for 70 V line and $1,2,4$ and 7.5 W for 25 V line, selectable by rotary switch on rear. Mounting bracket fully adjustable for angle and direction. All white plastic.
Slze
 25 V line $\ldots1,2,4$ or 7.5 W 88 16 W

SANEEE 99.95

28988 Super high power siren. Std $5^{\circ} 5 \mathrm{~W} 8 R$ goid horm mounted on an ABS box (ourV216) which contalns the drlver PCB. Can supply elther singie or swept tone and works from

SB5 CAR SPEAKERS. $4^{\text {n }}$ air suspension unit with centre coaxial tweeler and crossover. All black plastic cabiñet. Shell or door mounting.
Power nom.
.7W
Impedance.
20w
Size of speaker
$\ldots \ldots+\ldots+\ldots .4 \Omega$
Magnet weight
$4^{\prime \prime}$ coaxial
Dims
$120 \times 120 \times 90 \mathrm{~mm}$

REDUCED TO £8.00

High quality foreground music speaker provaing exceltent music qualty for pubs, clubs, etc. Ported bass refiex system contains a $5 \%^{\prime \prime \prime}$ bass driver, 1^{-1} sot dome mid and two piezo tweeters. Modern styled all moudfed cabinet Complete with adjustable wall mounting bracket Supplied in pairs.

Power nom

Prwer max
Senstivity (SPL
Speakers
Dimerall impedance Dims (each)

P114B LOUDSPEAKERS

Exceptional quality and value!
Originally sold for over $£ 75$ per pair!
 SAAEE 835.00

40 WATT TWEETER

$Z 55.1655 \mathrm{~mm}$ Dia, 3R5 impedance. Ideal replacement for many speaker systems $£ 4.00$

SAREE P2.50

ALARM BOXES

Z5396 24 V DC buzzer housed in a brigit red surface mounting MK swich box $80 \times 78 \times 40 \mathrm{~mm}$ with louvred front panel $£ 2.00$

25397 24V LES lamp with red bezel mounted in MK switch box $80 \times 78 \times 40 \mathrm{~min}$ with red fascla plate $£ 2.00$

25398 As $\mathbf{Z 5 3 9 6}$ but with white fascla plate $£ 2.00$
Z5399 As Z5397 but with red box $£ 2.60$
Z5400 MK surface mntg box in red with 24 V buzzer and lamp. Red tascla plate marked 'FIRE ALARM' $£ 3.50$

SOUNDERS \& SIRENS

A range of piezo-ceramic sounders made by STC. These are top quality units with extremely high output, up to 115 dBm . Now reduced even further to $1 / 4$ the original. 1 off trade pricell

Current consumption ... 10 mA Frequency ... 2.7 KHz Pulsing frequency.............................. 20410 Hz selectable Sound level at 1 metre .. 85dB(A) Dimensions.. $60 \times 33 \times 70 \mathrm{~mm}$ Z108 U25ORD1D2. 24V. level 85 dBm £1.70 Z109 U25ORD1D2H. 24V. level 90dBm £2.00

A parcel of piezo and magnetic iransducers
Code Mant'r Type -P/M Stz \&i Pack 100 22176 Murata PKM25-6AO P 25×8 6 0.08 $\begin{array}{llllll}22180 & \text { Star OMB-12A } & \text { M } & 15 \times 22 & 4 & 0.12\end{array}$

\qquad
\qquad

Z1429 Murata piezoelectric speaker type VSB41D25. Only 2 mm thick $\times 50 \mathrm{~mm}$ dia. weight 3.3 gm . Freq. res. $500 \mathrm{~Hz}-20 \mathrm{kHz} . \mathrm{Z}=1.2 \mathrm{k}$ at 1 kHz . Max input 200 mW . Normally $£ 2.33$
Our prices.

䡼 3 FOR EI

Burglar Alarm Bell
Z9138 A loud motor driven bell for home or industrial security systems.
Features include: Intemal NiCd battery to drive bell in the ovent of cabte being cut; intemal anti-tamper switch; outpul tor external strobe; selectable positive or negative retum for control panet type; positive or negative ring control.
Oimensions: Gong diameter 185 mm , bracket diameter 220 mm . assembled thickness 75 mm . Requires additional weather prool case for external mounting. $£ 12.95$

29139 Similar to above but requires small 12 volt sealed lead acid battery (not included). $£ 9.95$

LAOIO SCCMMERS - Send SAR for foll dofells of art rump of ligh quality scemeors of croet pices!

HELIX MATHS SET

Colourful 4 piece set - protractor, 15 cm rule, 45 and 60 degree set squares in bright primary colours, in a handy pouch Big Discounts for quantity! 100+ 1000+ 0.45 0.35

(a) SPECIAL OFFERS FROM HELIX

A range of 'Clearance Lines' offering super value for money on top quality product

A10000 Economy maths set - 2 set squares protractor, 15 cm rule all in bright colours together with compasses and an eraser in a rigid see-through pack.
Only $£ 1.50$
H40 Lettering guide value pack. Contains 4 popular sizes - $5 \mathrm{~mm} \& 10 \mathrm{~mm}$ upper and lower case and 20 \& 30 mm upper case only. Supplied in compartmentalized clear plastic case. £1.99

R55 Wedge Pencil Case. Great for younger children! 2 shape templates, 2 letter stencils, 5 teil tips, pencil, eraser and sharpener all in a colourful clear zip case?
OUR PRICE £2.20

A01 Mini maths set - clear zip pencil case with rule, protractor, pencil, rubber and sharpener
OUR PRICE 99P
OUR PRICE 99P

086 Small maths set - colourf rule, 2 set squares, protractor, and a pair of compasses.
R08 Magic Pencil Box amaze your friends - a box within a box makes things disappear!

> OUR PRICE E1.99
(a) Stationery products - mosily as used in ploters

Pentel Rolling Writers. These fine point cartidges are essentially complete pens without an outer casing. so can be used as they are. Current price is around 60p. Now look a our prices! (State 2nd choice)
223199 Black
223201 Blue
223200 Red
Prices (any mix)
$24-0.1 .30 p$ each
$24-0.2096+0.15$

ANK BDHDTR 12 FOR E1

201268 Staedter/Mars lumochrom lēads. Pack of 12 in dispenser. Blue 2 mm . Fits all siandard lead hotders. Prices....................................30p $10+0.2050+0.15$ 201158 Tube of $12 \times 2 \mathrm{H}$ leads 2 mm dra
Prices ...25p $10+0.1750+0.12$
201159 Tube of 12 Green leads 2 mm dia
Prices ..30p $10+0.2050-0.15$
$4 \square 5$ HALF PRIGE

Xtra Special IMICROSDITCHES 24370 20A - 1c/0, 1b 4/E1 25158 10A 380 V 1m 1b 2/E1 25191 2A thermal CB $2 / \varepsilon 1$ 25192 3A thermal CB 2/\&1 22084 Skeleton spco 5A 8/\& 1 22166 Low I 1m 12/£1 Z2486 15A spco 4/E1 22487 15A $380 \mathrm{~V} 2 / \varepsilon 1.50$ Z2488 5A roller lever $2 / \mathrm{f} 1$ 22489 5A air operated 2/£1.50 z2490 As above, double $2 / 53.50$ 22491 Sp heavy duty $4 / \mathrm{E} 1$ 22499 limit sw, 1m 1b $8 / \mathrm{E} 1$ 2294765 mm lever $2 / £ 1$

All CD's listed on these two pages are just

Regrettably, at this low price, we cannot list individual tracks.

JHD003	La Toya Jackson	SYM013	ORFF Carmina Burana	GRFOOI	$60 \cdot 5 \mathrm{SOL} 1$
JHD005	Chris De Burgh	SYM014	MUSSORGSKY Pictures	GRFOO2	60 'S VOL2
JHDOO6	Bee Gees	SYM015	MOZART Sym No. 40	GRF003	COUNTRY GIANTS VOLI
JHD007	Paul Anka	SYM016	MENDELSSOHN Sym No. 4	GRFO04	COUNTRY GIANTS VOL2
JHD012	The Ullimate Suring Album	SYM017	HOLST The Planets	GRF005	LOVESONGS VOLI
JHDO13	Beach Hits	SYM018	BERLIOZ Sym fantastic	GRFO06	LOVE SONGS VOL2
JHD014	Howard Keel	SYMO19	HAYDN The Suprise	GRFO07	THIS IS SOUL
JHDO15	Neil Sedaka	SYM020		GRF008	KING OF ROCK AND ROLL
JHD016	Duke Elington	SYM021	GREIG Peer Gynt Suits	GRF009	ROCK AROUND THE CLOCK
JHD017	Showaddywaddy	SYM022	GERSHWIN Rhap in Blue	GRF010	THE JAZZ SELECTION VOLI
JHDO18	Kim Cames	SYM023	DEVORAK Symphony No. 9	GRFO11	THE JAZZ SELECTION VOL2
JHDO19	Immaculate Mixes	SYM024	BEETH.Sym No. 9	GRFO12	BIG BAND SOUND VOLI
JHDO20	The Taste of Brazil	SYM025	BEETH Sym No. 6	GRF013	BIG BAND SOUND VOL2
JHD022	Donna Summer	SYM026	BEETH Sym No. 5	GRF014	FATS DOMINO
JHD023	Just The Two of Us	SYM027	BEEtH Piano Sonatas	GRF015	GENE CHANDLER
JHD025	Bay City Rollers	SYM028	RAVEL Bolero etc	GRF016	BING CROSBY
JHD026	Gloria Gagnor	SYM029	ROSSINI etc	GRFO17	JUDY GARLAND
JHD027	Amii Stewart	SYM030	BORODIN etc	GRF018	JONNY AND THE HURRICANES
JHD028	Heatwave-Boogie Nights	SYM031	DEBUSSY	GRF020	CRUISIN VOLI
JHD031	Paul Young \& The Q-Tips	SYM032	J.S.BACH Violin C	GRF021	LITLE RICHARD
JHD035	Val Doonican	SYM033	BRAHMS Sym No. 1	GRF022	NINA SIMONE
JHD037	Heat Energy	SYM034	STRAUSS Piz Polka	GRF023	JOHN LEE HOOKER
JHDO40	Sabrina	SYM035	BIZET Carmen Suit	GRF024	DEL SHANNON
JHDO42	Soul of the 80s	SYM036	MOZART Svm No. 41	GRF025	MUDDY WATERS
JHDO43	Dance of The 80s	SYM037	CHOPIN Eludes	GRF027	KENNY ROGERS
JHDO44	Shirley Bassey	SYM038	HANDEL Water Music	GRF028	BOB MARLEY
JHD045	Pavarotii	SYM039	BEETH The Emperor	GRF029	MUD FEATURING LES GRAY
JHD046	Carreras	SYM040	BEETHSYm No. 3	GRF030	THE DRIFFIERS
JHD047	Domingo	SYM041	DVORAK	GRF031	THE SHANGRI-LAS
JHD048	Sandie Shaw	SYM042	OVERTURES	GRF032	WILLIE NEILSON
JHD049	The Bachelors	SYM043	J.S.BACH	GrF033	RAY CHARLES
JHD050	Kiri Te Kanawa	SYM044	LISZT	GRF035	CARL PERKINS
JHD051	Chris Andrews	SYM045	MENDELSSOHN	GRFO36	LOUIS ARMSTRONG
JHD054	Chris Farlowe	SYM046	HAYDEN	GRF037	CRUSIN VOL2
JHD055	Anita Ward	SYM047	SAINT-SAENS	GrF038	NAT KING COLE
JHDO56 JHD057	Hazel O'Connor Shirley Bassey vol 2	SYM048 SYM049	R.STRAUS STRAVINSKY	GrFo39	DUKE ELLINGTON
JHD058	Greyhound	SYM049	STRAVINSKY	GRF040	MANTOVANI
JHD060	Jimmy James \& The	SYM051	BEETH The Great Composer	GRFO41	WESTERN THEMES
	Vagabonds	SYM052	TCAHIK The Great Composer	GRFO42	SHIRELLES SURFIN'SAFARI
JHD061	Bidhu	SYM053	BALLET MUSIC Highlights	GRF043	SURFIN'SAFARI
JHD062	London Invasion	SYM054	VIRTUOSO PIANO	GRFO45	
JHD063	Wild Connections	SYM055	VIRTUOSO VIOLIN	GRFO46	SANTANA
JHD064	Roy Harper	SYM056	MOZART The Great	GRFO47	JAMES BROWN
JHD065	Python Lee Jackson		Composer	GRF048	GLADYS KNIGHT
JHDO66	Gary US Bonds	SYM057	RODRIGO		
JHD068	Elvis Presley	SYM058	QUIETNIGHTS	GRF050	JERRY LEE LEWIS
JHD069	Steve Harley	SYM059	J.S.BACH	GRF05 1	LAMBADA
JHD076	Carl Dougias	SYM060	TCHAIKOVSKY	GRFO52	GENE PITNEY
JHD077	Tina Tumer	SYM061	ELGAR	GrF053	BILLY OCEAN
JHD078	Gibson Brothers	SYM062	BRAHMS	GRF054	FRANKIE VAUGHAN
JHD079	OHowan	SYM063	SCHUMANN	GRF055	GENE VINCENT
JHD084	Immaculate Mixes Vol 2	SYM064	MENDELSSOHN	GRF056	ACKER BILK
$\begin{aligned} & \text { JHD085 } \\ & \text { JHD086 } \end{aligned}$	60's M Mixes 70 's Mixes	SYMO65 SYM066	TCHAIKOVSKY PAVAROTII SINGS VERDI	GRFO57	ULTIMATE WORKOUT
JHD087	Disco Mixes	SYM066 SYM067	PAVAROTII SINGS VERDI BRUCH/PAGANINI	GRF058	WAYLON\& WILLIE NELSON
		SYM068	VIVALD	GRFO60	MEMTNING HOP
SYMOO1	PACHELBELetc	SYM074	PLACIDO DOMINGO	GRFO62	LENA HORNE
SYM002	TCHAIKOVSKYetc	SYM075	LUCIANO PAVAROTII	GRFO63	CHARLIE PARKER
SYM003	WAGNER Overture	SYM076	PUCCINI La Boheme	GRFO64	ELLA FITZGERALD
SYM004	VIVALDI 4 Seasons	SYM077	VERDI Aida	GRF065	DIZZY GILLESPIE
SYM005	TCHAIK Sym No 6	SYM078	PUCCINI	GRFO66	OAK RIDGE BOYS
SYMOO6 SYMOO	TCHAIK Ballet	SYM079	VERDI La Traviatta	GRF067	JIMMY DORSEY
SYM007 SYM008	TCHAIK Violin Concerto	SYM080	ROSSINI	GRF068	TOMMY DORSEY
SYM008 SYM009	SIRELIUS Fintandia	SYM081	BEETHOVENS SYM $5+7$	GRF069	WOODY HERMAN
SYM010	SCHUBERT The Trout	SYM082	BEETHOVENS SYM $6+8$	GRF070	JOHNNY PAYCHECK
SYM011	SCHUBERT SYm No. 5 \& 8	SYM083	BEETHOVEN SYM 9 CHORAL	GrF071	SUMMER LOVIN
SYM012	RIMSKY-KORS Schcherazade	SYM084	M.CALLAS \& L.BERNSTEIN	GRFO72	FREDDY FENDER
	PROKOHV Romeo \& Julier			GRF073	FARON YOUNG

All one off and pack prices INCLUDE V.A.T. Qty. prices do not.

CD-ROM's

More and more software is becoming available on CD-ROM and once you've purchased a suitable drive, it's an incredibly cheap way of buying shareware. We can supply a Mitsumi CD ROM drive kit which is Kodak Photo CD compatible (multi-session) with the following spec. We can vouch for it's speed and reliability, as we have one fitted to one of our computers. Look at these features:

Slide Top Loading

- Mscdex Supported

Multi Media Support

- Audio Playback
- Direct Interface to PC/AT $\square 380$ Millisecond access
Full data on request

PRICE £222.22

 SHAREWARE

 SHAREWARE CD-ROM's

 CD-ROM's}

MIN2 Well balanced material, 7,700 files, 630Mbytes. $\mathbf{£ 2 9 . 9 5}$ MIN3 Latest disk, over $85 \% 1992$ files. 6,600 files, $550 \mathrm{Mbytes} £ 29.95$ Two further disks are due out soon.
Bargain List Subscribers Only Why not become a Subscriber now? - see page 30 tor details

$$
\begin{aligned}
& \text { MIN2 disk with } \\
& \text { ROM drive kit! } \\
& \hline
\end{aligned}
$$

Also the popular Soundblaster V2 Pro. This amazingly versatile package will give you stereo music, voice, game port, midi, CD-ROM interface. Supplied with Sereo Card, Audio cables, $3.5^{\prime \prime}$ disks, Manual + lots of exciting software - Indy 500, Lemmings, Text to speech, mutimedia encyclopaedia (really amazing - includes still \& moving pictures + sound). We'll send you more info on request.
The whole package for just

Solder

25099 Ersin mutticore HMP (high melting point) solder. 22 swg on 500 g reels. Composition: 5% tin. 93.52% lead. 1.5% stlver. Melting temp 301 C . Rec. bit temp 350 C DP £ 1800.
Out price
c8.00

SAlese

STEREO CASSETTE PLAYER

Z5405 High quality heavy drity all metal construction stereo cassette player mechanism, probably Intended for continuous background music. Tnis is a lovely blt of kit - starts playing as soon as a cassette is inserted. Has fast forward. rewind and eject keys. It's bl-directional and the sensing circuit automaticatly reverses the tape at the end. Has a Canon motor and works off 12 VDC . Great value at $£ 4.95$.

SATHE 52.0.

$Z 54889 \mathrm{~V}$ stereo cassette deck mech. Recordireplay and erase heads, 6 push buttons - fwd, rev, play, rec, pause and stop Only $£ 2.95$

SAME

28885 TAPE DECK PANEL. A type of telephone answering machine believed to have been used as an alarm system - a recorded message was sent down a BT line if premises were beng entered illegatly. Steel chassis $245 \times 220 \times 35 \mathrm{~mm}$ contains PCB $228 \times 145 \mathrm{~mm}$ and an 8 track cassette unit almost identical to Z4307. Thls is attached to the panel by 3 screws and is easily removable, being connected to the PCB with a 5 way socket. The output from the tape head is fed into an MC3301 quad op-amp. The PCB also has 10 CMOS gates, 3 relays, isolator transformer, several transistors, R's, C's etc. 12 way connector for BT line, 12 V supply etc, atso olug and socket arrangement for Auto/ Manual and Bell delay. Made by Munford \& White PLC. Price: Reduced to

7.95
 SALEE P? 3.95

Z5246 Mains synchronous motor with easily accessible gearbox giving a final speed to the 5.5 mm dia 12 toothed gearwheel of 0.2RPM (12 revs per hour). Only £3.95; $100+$ 2.50

SAME: 률․․ 1

Z5488 9V stereo cassette motor 35 mm dia $\times 25 \mathrm{~mm}$. Only £1.00; Box of 200 £65

25427 Tachometer. Here's a nice little unit at a fraction of it rue worth - made by Transicon Inc. this will give an accurate voltage for any given speed. Gradient 1.55 V/t000RPM. Only £8.00

Fans

24058 'Patriot' tan. High quality cooling fan for mounting nto equipment 170 mm dia $\times 51 \mathrm{~mm}$. Only probelm is they operate on 48 V ac (but still work down to 24 V).
operat

25006120 mm Fan Guard. 110 mm FC Chrome plated steel

25045 Superb litte 12 V molor by Airpax 35 mm dia $\times 21 \mathrm{~mm}$ deep with a 16 tooth $9,5 \mathrm{~mm}$ dia gear wheel mounted on the 2 mm dia spindle. FC $42 \mathrm{~mm} .7 .5^{\circ} 48$ step. Supplied with data. $100+$ DP 9.04. Our Price $23.00 ; 100+2.00$

SAREEET.50

$Z 5487$ Mabuchi hi-torque 9 V cassette motor 35 mm dia $\times 25 \mathrm{~mm}$ Only 玉1.00; Box of 200 £65

HIGH OUALITY LOW COST SOLDERING IROH + STAND

Y061DA Mains element with interchangeable bit (std Antex CS types fit). Rated 15 watts. Ideal geneal purpose BS approved iron. £4.95

18068 Colourful precision tool set - clear hinged plastic case $210 \times 135 \mathrm{~mm}$ contains 15 instruments with coloured plastic handles tweezers, pick up tool, 37 mm magnitying glass (not plastic), 6 each pozi and straight screwdrivers. Great value at

25.95

2314 Precision spring bow compasses 88 mm long. Max circle dia 70 mm . Replaceable pencil lead and steel tip

TV Stand

1
28930 TVNideo/Hi-fi stand. Satin finish steel side pieces with black ends held apart by veneered umber. Overall dimensions 485 wide $\times 350$ deep $\times 450$ high.
A bargain at
$62.50100+1.25$
SAME $=$

EVERYTHING FOR THE ON THIS PAGE

 15,000 RELAYS TO CLEAR -ALL AT ROCK BOTTOM PRICES!

Code	Volts	Coil R	Contacts	MFCTR	Type	Size	Notes	Qty	Price
Z202	3 V	35R	Spco@3A		AZ535	$32 \times 20 \times 11$	Low profile	83	£1.00
22400	3 V	130R	Spb@1A	Gentech	G42F	$33 \times 16 \times 11$	PC Mntg	46	£1.00
Z1718	$3-24 \mathrm{~V}$	Solid	Spm@4A	Huntleigh	SMT2000/3	$43 \times 25 \times 70$	Solid State	366	£1.00
		State							
23009	5 V	60R	Spco@8A	Schrack	RP110005	$28 \times 24.7 \times 11$	Pc Mntg	184	£2.68
Z2406	5 V	130R	Spb@1A	Elliott	36876/5	$32 \times 15 \times 10$	Pc Mntg reed	429	£1.00
22402	5 V	170R	Spb@1A	Clare	CUPV10201	$25 \times 10.9 \times 9$	Pc Mntg reed	45	£1.00
22310	5 V	370R	SPB	AX	400 FxX 091	$10.5 \times 32.5 \times 13$	Pc Mntg reed	1067	£0.50
Z2405	5 V	470R	Spm ${ }^{6} 500 \mathrm{~m}$ A	Clare	PRMEL5005AB	$20 \times 7 \times 5$	Dil reed	193	£1.00
22407	5 V	470R	Dpm@1A	Hamlin	HE262A7780	$32 \times 12 \times 9$	Pc Mntg reed	16	£1.00
Z2401	5 V	500R	Spme1A	AX	175A-4	$32 \times 9.5 \times 15$	Pc Mntg reed	42	£1.00
22408	5 V	500R	Dpco@1A	Clare	HGR2M	$40 \times 25 \times 10$	Pc Mntg mercury	42	£1.00
Z2403	5 V	520R	Spm@500m A	AX	132A-4	$20 \times 7 \times 7$	Dil reed	60	£1.00
21958	5 V	1200R	Spco	Hamlin	HE3321CO500	$23 \times 7 \times 8$	Sil reed	26	£1.50
22174	$\begin{aligned} & 9 V(5- \\ & 12 V) \end{aligned}$	410R	$4 \mathrm{pco} @ 2 A 30$ V	Aromat	DS4E-S DC9V	$35 \times 10 \times 10$	Pc Mntg 0.1"	104	£3.00
22350	12V	68R	Spme15A			$26 \times 24 \times 36$	Open . $25^{\prime \prime}$ Tabs	322	£1.00
22848	12 V	70R	Sp/ 5 kV 10 mA	Kilovac	K43B234	$53 \times 17 \mathrm{Dia}$	2 Wires for coil	36	£3.00
22409	12V	370R	Spb/spm1A	Clare	Cupv10302	$31 \times 14 \times 9$	Pc Mntg reed	22	£1.00
Z2120	12 V	710R	Spdte1A $28 \mathrm{~V}$	Taiko	NXE-12K	$15.6 \times 10.6 \times 10$	Dil Pc Mntg	375	£2.00
22545	12V	1000R	Spm 200V.5A	Pickering	97-1-A-12	$19 \times 11 \times 10$	Dil reed	256	2/1.00
22413	12 V	1500R	Spco@1A	AX	$481 F$	$32 \times 10 \times 10$	Pc Mntg Mercury	353	£1.00
22411	12V	800 R	Spme1A	Hamlin	HE221A7080	$32 \times 10 \times 9$	Pc Mntg reed	1334	£1.00
22497	12 V	110R	Dpco@10A	IMO	60.32	$32 \times 35 \times 39$	Plug in 8 tags	36	£2.50
25179	12 V	110R	3pco.e 10A	IMO	60.43	$32 \times 35 \times 39$	Pc Mntg	21	£1.50
22843	12 V	285R	Spco' 10A	Omron	G2L.	$28 \times 11 \times 25.5$	Ex equip Pc Mntg	191	3/1.00
22137	12 V	200R	Spm@5A	Omit	TV5/S-112DM	$29 \times 12 \times 20$	Pc Mntg	21	£1.50
Z280	24 V	288R	Spm ${ }^{6}$ 500 mA	Omroñ	G68-1114P	20x9x9	Dil Pc Mntg	44	£1.00
22048	24 V	435R	2 cos 10 A	IMO	60.12	$32 \times 35 \times 63$	Octal	16	£2.50
2275	24 V	480R	Dpco 10A	Releco	MR54-2	$35 \times 35 \times 55$	Octal	49	£2.50
2258	24 V	520 R	3 pco 10A	B\&R	D43	$53 \times 37 \times 36$	11 Pin plug in	18	£2.50
Z2941	24V	600R	4 coos 5 A	Guardian Elec	1315P	$34 \times 28 \times 21$	Pc Mntg	2520	3/2.00
2250	24V	700R	Dpco@ 1A	Perivale	PC2	$30 \times 24 \times 19$	Plug in continalent	35	$\underline{80.80}$
22638	24 V	974R	Dpco@2A	Omron	G2V/BT47	$21 \times 10 \times 11$	Dil Pc Mntg	292	4/1.00
W834	24 V	1050R	Dpco@2A	RS346-839	346-839	$21 \times 10 \times 11$	Dil Pc Mnt	70	£1.00
22637	24 V	1170R	Spco 16A	Ped	11-794-135-740	$29 \times 12 \times 25$	Pc Mntg	11	£1.30
22164	24 V	1200R	Spco ${ }^{\text {8, }} 8$	Zetter	AZ692-052-52	$27.5 \times 25.8 \times 11$	Pc Mntg	7148	£0.75
22418	24V	1200R	Spco@5A	Oub	SS124D	$21 \times 17 \times 15$	Pc Mntg	29	£1.00
22417	24 V	1200R	Dpco@2A	Oub	SS224D	$18 \times 10 \times 12$	Pc Mntg	35	£1.00
22419	24 V	2000R	DPCO@1A	National	AE1324	$30 \times 20 \times 10$	Pc Mntg	45	£1.00
Z230	24 V	2600R	Spm 1A	Electrotherm	GR1011	$20 \times 11 \times 10$	Pc Mntg Reed	82	£0.60
22639	24 V	8000R	Spm@1A	Hamlin	HE221A2490	$32 \times 10 \times 9.5$	Pc Mntg Reed	800	£1.60
22416	24 V	11K	Spm@1A	Hamlin	HE221A4860	$32 \times 10 \times 0.9$	Pc Mntg Reed	639	£1.00
Z218	26.5 V	675R	Dpco 1a	Stc Hi-G	28-8075	$22 \times 20 \times 10$	Sealed S Tags	62	£1.00
22422	36 V	4300R	Spco@1A		AZ1530-Oay	$26 \times 14 \times 11$	Pc Mntg	563	£1.00
Z252	48 V	2500R	2Pcoe1A	Perivale	PC2	$30 \times 24 \times 19$	Plug in Continent	99	£0.60
2253	48 V	2500R	4Pco 1A	Perivale	PC4	$30 \times 30 \times 19$	Plug in Continent	98	$\underline{80.80}$
22424	48 V	3000R	Dpco@1A	ITT	A2446	$29 \times 16 \times 13$	Pc Mntg	53	£1.00
Z3010	48 V	3000R	$6 \mathrm{Pco}{ }^{\text {a }}$		V23030-C2026	$40 \times 37 \times 9$	Pc Mntg		£1.00
22496	48 V A.C	630R	4Pco 3A	Omroñ	MY4	$27 \times 20 \times 41$	Plug in Cont	15	£1.00
2219	50 V A.C	750R	4Pco © 3A	Izumi MY4	RY4S-EC	$35 \times 27 \times 21$	Plug in Cont	409	£1.00
22425	110 V	10K	3Pco@10A	Feme	RCP11	$35 \times 35 \times 56$	11 Pin	73	£2.00
Z261	240 V AC	12K	2Pco@7.5a	P\&B	KU11A15	$46 \times 36 \times 31$	8 Pin Plug in	158	£3.00

EVERYTHING ON THIS PACE

FOR THE PRICE OF

Toggle Switches

21710 Toggle switch double pole on/ off rated 10A 250 V ac. Threaded bush with plastic and metal nut, also can be cllpped in panel.
Price.
E1.50
21711 Anolher toggle switch, very similar to above. No rating printed on body. bul looks about 10A. This one does

Toggle switches by Bonella. High quality, high current, solder tags. All are rated 10 A 250 V ac
2352 Type NTILNZ SPCO (4 tags) Metal dolly
2354 Type N41LNZ DPCO (6 tags) Metal dolly
ع1.20 Above 4 types less 25% for $25+$: less 50% for $100+$

Rotary Switches

21522 Switch, Alps SRS 40 way. As used in CB's for channel switching. Body $20 \times 20 \mathrm{~mm}$. 6 mm dia shaft with M9 fixing nut. Not sure if these are binary or BCD. 7 bits per step. Data sheet supplied. $£ 1.00$

Keyboard Switches

21523 PCB mounting illuminated keyboard switch. High quality single pole reed with 5 V lamp màde by FR. Model $18 \times 18 \mathrm{~mm}$ No tops unfortunately
Price.
.......... 3/ E1.00
21393 PCB mounting keyboard switch with in built yellow LED. SP Size: $12.5 \times 12.5 \mathrm{~mm}$. No tops.
Price

22167 Keyboard switch. single pole clip-1n type with standard + stem for cap. $13.6 \times 12.9 \mathrm{~mm} .7 .5 \mathrm{~mm}$ pitch. DP 75p.
Our low price
Efor E: $100+0.10$
Rocker Switch

28819 Rocker switch in black plastic. SP on/ ofl rated 16A 250 V ac. Needs $30 \times 12 \mathrm{~mm}$ cutout.
Price .. Pack of 4/ E8.00

22596 Keyswith by Lorlin. 1p3w with 2 keys. For low curteent up to 1A. £2.00
$Z 2597$ Keyswlich by Lorlin. 2p5w with. 2 keys. PC innitg for low current up to 1A £2.50

22168 Superb quality British made (TOK). Gold plated DPCO contacts. Key can be removed in either position. PC mounting or clip fix - needs $15 \times 15 \mathrm{~mm}$ cut-out. Ideal for alarms etc.
 Pack of $5 £ 200 ; 100+0.25$
Z2863 Min high quality push to make switch, overall 19 mm long, body 6.4 mm dia. 4 mm fixing. Plunger 2.6 mm dia $\times 4.5 \mathrm{~mm}$ long. Pack of $5 £ 2.00$

22699 Push to make switch, like our W435 only non locking. 8lack top. Normally 52 p. Special offer price 8 for $£ 2.00$.

Microswitches

24370 Burgess 20A microswitch Incorporates 2 switches into one housing $20 \times 12.5 \times 17.5 \mathrm{~mm}$. 1 changeover and 1 break
Price ..2/E1.00 $100+0.25$
Z2084 Skeleton microswitches. SPCO. 5A rating. Two 35 mm mounting holes on 10 mm centres. They are designed to be mounted side by side - in theory the number is only limited by the length of bolts available! (each switch is 5 mm thick). Price ... of 4 for $€ 1.00$
$100+0.15$

22165 Omron minlature type SS rated 3 A 250 V . Single break contact operated by bent lever.
Price 6 for $£ 1 \quad 100+0.12 \quad 1 k+0.08$ Z2166 Omron standard type VL63tC. These are for signal switching, contact rating $0.14125 A \mathrm{AC} / 30 \mathrm{~V} D \mathrm{DC}$. Single make contact.
Price ...
6 for $£ 1 \quad 100+0.09 \quad 1 k+0.05$
25168 High current microswitch by Siemens, model 3 SE3 rated 10A 380 V AC. Fully shrouded screw terminals (4); 1 pair make and 1 pair break terminals. Overall size $28 \times 30 \times 32$
Price.

Joystick Switch

Z004 Skeleton Joystick, switch type. Good quality, mädē by $A B$. Brass spindle has 44 mm long black plastic handle attached. Body has 4 mounting holes. These really are a famtastic bargain!! ONLY £1.00
 Price
$£ 1.95 \quad 25+9.20 \quad 100+0.80$

SWITCHES

Great switch bargains for railway modeilers - these small switches 18 mm wide and 12 mm high (excluding lever) and jus! 4 mm thick with 14 mm FC come in wo versions:

223632 positlon. 2 pairs make and 2 palrs break. Pack of 5 $\$ 1.00100+0.10$

Z2384 3 position. 6 palis contacts (2 pole 3 way). Pack of 5 for $£ 1.00100+0.10$

$\mathbf{Z 1 7 9 7}$ Membrane keyboard $155 \times 113 \mathrm{~mm}$ with $80 \times 22 \mathrm{~m}$ aperture for display from case Z4245. 22 keys. Output to 11 way flexible connector. Self adhesive Price \qquad

©

트브틀

Z4354 Computagraph Colorwriter panel $352 \times 67 \times 12 m m$ Ally frame supports a membrane keyboard which has 22 keys On the rear of the panel are 6 yellow submin LED's. a 3 mm red LED and $2 \times 19 W$ edge conns.
Price
Price

$\mathbf{Z 4 3 6} \overline{3}$ Membrane keyboard $225 \times 84 \mathrm{~mm}$ with 11 keys -1.9 $\& 2$ others. Output (common bus) on 12 way ribbon cable Could be cut down to $95 \times 70 \mathrm{~mm}$ il only 1.9 needed. Price .. 6 p $100+0.30$

2411624 way (8×3) memurane keypad. Large ($200 \times 90 \mathrm{~mm}$) area - these were originally used as a teaching aid. Overlay template and pinout supplied. Now only $\$ 2.00$

Neat keypads in various styles by ORCOM. both with encoded and matrix outputs. All PCB's have room for coder chip ($74 \mathrm{C922}$) to be fitted. All feature 0.9 keys and other characters as shown. Output via 20 pin plug. Data supplied.
(a) No chip fitted:

258073 $\times 4$ (${ }^{(\#)}$

23134 Cherry UB70 keyboard, low cost 67 key, std qwerty $\div \mathrm{F}_{1} \mathrm{~F}_{\mathrm{ts}}$ 5 otc. New and boxed £3

Z5440 2 keypads. These are packed in pairs . both have 12 keys. bur the legends are different (a) 0-9. " and \# and (b) MO LI MU B LO S F WU A and a couple of symbols. They have the graphite coated rubber membrane, but no PCB. Only $£ 1.50$

SUPER SWITCH SENSATION!

K838 A nice parcal of ALPS high quality push switches as u5ed with locking and nonlocking including PC mounting + solder tag, all on standard 4 mm mounting. Differant colours 100 . Whats more, there's a big selection of butions to fit them-round, square. oblong etc in red and black. All at knock-out price - 100 assorted switches + 100 a asorted knobs $£ 7.95$. Pack of 1000 switchee + knobs $£ 49.95$
Pack of to000 switches - no knobs 300.00

 THYYYY

SATE PRICESS
 Pack of 10183.95 Pack of 1000 e2t Pack of 10,000 (no knobs) $\mathbb{E} 175$ TIMER SWITCH

25174 Timer switch by Diehl of Germany, Superb gearec mains motor, (1 rev per 12 nours) operates a cam tha switches 2 change over contacts with centre - off positions rated 164250 V . Size $60 \times 54 \times 43 \mathrm{~mm}$. Spindie is $14 \times 6 \mathrm{~mm}$ dla Only $83.00100+$ E1.50

Shilet $£ 1.00$

Pressure Switches

These are operated by very low air pressure - just blowing down the tube will operate the SPCO microswitch within. Useful in a 'spark free' environment.
202480 mm diax45 total depth. SPCO switch ratod 16 A 250 Vac

80 p
2025 Similar to above, but 37 mm thick
24200 Pressure switch model LDO by Actu. Can be activated by gas or air at very low pressure. Range 13 150 mm w.g. Switch is a SPCO micro switch rated 230 V $2 A$. Precision instrument overall dia $110 \mathrm{~mm} \times 48 \mathrm{~mm}$

ALL LIEYBOARDS $\left\{\begin{array}{l}\text { En } \\ \hline 1\end{array}\right.$

28848 Keyboard by Cherry. Room for 104 keys. all normal keys (65) fitted. Chips on board: LS373 $\times 2$, LS374. LM 3086×2. LS 138×3.555. LSO8. 6805 . Size $442 \times 175 \mathrm{~mm}$ PRICE: $£ 10.00$

Z8852D Keyboard. Superb brand new high qualty keyboard with LCD displaying 1 line of 10 characters and a further line with varlous symbols. 100 keys. inc seperate numeric keypad. Chips on board are $2 \times 74 \mathrm{HCO5}, 80 \mathrm{C} 48$. LCD + drlver chip are easily removed. Amazing iow price - only $£ 10.00$

28863 Keyboard. High quality unit made by Micro Switch 69 pale grey and blue keys. 6 red 5 mm LED's, 15 various LS chips. and socketed D8048 by Intel. Output via 7 way plug and there's a 4 way edge connector too. Keyboard frame is $317 \times 128 \mathrm{~mm} . P C B$ on which it s mounted is $285 \times 170 \mathrm{~mm}$ PRICE: 810.00
 22596 1p3w 2 keys 1A £1 $=$ Z2597 2p5w 1A 2keys £1 Star Bryy!?

TEMPERATURE SWITCHES

remperature sensitive switches designed io protect components or equipment from camage by overheating. Snap action bl-metallic disc operates the normally open contact. Swith resets when temperature falls.
$22533 \quad 130^{\circ} \mathrm{C}$
all the same price - 81.00 each: $25+$ (any mlx) 0.60 :
SAREE 3 for E. 1.00

28842 Tatung VT4100 keyboard. Cased 85 key units with separale numeric keypad. With circuit Has $\overline{2}$ or 3 broken key tops. $450 \times 65 \times 125 \mathrm{~mm}$
Price
69.95

ASCII KEYBOARDS

2893351 koy QWERTY keyboard by McMurdo Orcom with it ASCII encoded parallel output. Measuring $240 \times 115 \mathrm{~mm}$ makes it ideal lor rack mounting applications. With control shift and snift lock keys this keyboard can generate all 128 tandard ASCII codes.
The keyboard requires a +12 V and +5 V power supply connected via a 20 way header type plug. The remaining connections on the piug are DSF. DTR and STR. the strobe and data set ready are switchable to be negative or positive going pulses. The controlting IC is a General instrument AY-5-3600-PRO chip.
Price
ca. 60
28934 As above but supplied in a vacuum formed grey plastic case $280 \times 185 \times 60 \mathrm{~mm}$.
Price
C12.00

28922 Made by Devin. this keyboard has 94 keys (18 without caps: 20 with removable tops) and runs off a single 5 V supply. Serial ASCll output + switch to emulate AT and XT keyboards
perice..

T123A Push button selector switch to give 3 inputs to one TV - co-ax skt inputs, co-ax plug output. Auto substitution of 75R load Normally $£ 3.99$ when channel not in use. Size $90 \times 47 \times 39 \mathrm{~mm}$

MASSIVE DISCOUNTS!
A collection of Eurosize ponels ($160 \times 100 \mathrm{~mm}$) with 64 way DIN plugs fitted.
$\mathbf{7 5 0 9 2}$ 8xHM3-6514-9 RAM + few other chips $£ 1.00$
5
25089 32xTC5514AP. 3 1kx4 static RAM + few other chips etc $£ 3.00$
En-

25090 12xM5M5165P-15L 8kx8 static RAM plus few other
 $2510016 \times \mathrm{HM} 6 \mathrm{i} 67 \mathrm{LP}-8$ + fow other bits $£ 2.00$
हB:
25101 2xM5M5165P-10C + few other chips $£ 1.50$
 252628×2764 in skts + 10 LS chips £ 4

25364 Coln acceptor unit. Moulded plastic case $140 \times 130 \times 50 \mathrm{~mm}$ (belleved used in payphone) which has saveral colls embedded into it. As a coln passes over the Colis. the clrcuitry on the $135 \times 76 \mathrm{~mm}$ PCB generates a pulse train. PCB contains MM9504. 82 S126 in skt, CMOS 4001×2. 4053. KM2802 quad op \rightarrow amp. LM2903 dual comparator. 5 smail signal transistors, 4 small chokes. Fi's, C's etc. Only $22.95100+1.75$

SAhter £1.00

Z653 Control PCB, $140 \times 115 \mathrm{~mm}$ with $2 \times 4013,4020$ 4011, 4081, 4071, 8211, LM3909, 2af02.003TIP130, 5×2 N3906, switch, C'S R's, LED etc. $£ 1.50$

Qifl \quad 品

2631 PCB $170 \times 135 \mathrm{~mm}$ with $2 \times$ LM 324 ; 2×1 LO74 $2 \times$ MC14416; $4519: 2 \times 4510 ; 2 \times 4099 ; 4001: 4584 ; 2 \times 741$ HCl4 LS05: 74125: 2 relays, Rs. Cs, etc

Price .

sime for ci.00

2629 Occasionally we obtain repeat supplies of panels - this one was featured on B/L 30 and is 170×35 with $2 \times$ MC3419 loop interface 4510, LS505, LS514, 4584 all in sockets, also LM324, 4519.2×4099.4013 plus $2 \times 45 \mathrm{~V}$ DPCC BT type relays. Also 64 way DIN plug. 2 bridge rects. 6 Iransistors. Rs, Cs, etc
Pirille Reduced to E1.00

2817 Exciting electronic football game - Waddingtons ${ }^{\text {- }}$ 'JIMMY'. Brand new models in full working order, but without plastic peripherals, stickers etc. Red plastic case 420 mm long $\times 93 \mathrm{~mm}$ wide contains keypad and 7 segment LEDs to keep score either end. The centre section players are represented by red 5 mm LEDs, 14 altogether. The main chip is the TMS1000. programmed to make odd noises whilst playing and a tune when a goal is scored. Also inside are 13 plastic transistors, 57 mm 8R speaker, power supply socket. Rs. Cs etc. Powered by $2 \times$ PP3 batteries. Solo or dual play. Supplied with instruction sheet, playing field complete with coloured "players". Good fun to play as a game with good value for the electronics within. Originally retailed at £19.95.

Price.
 SATLEEEP.50

Z5432 Nice iltite surface mount moduls. PCB 70×51 has sub panel $56 \times 26 \mathrm{~mm}$ plugged Into 2×18 Sil skis. On it are 10 IC's tc. On the main panel are 4 blg chlps - TMS320. CF34035 \& 6 . $77 \mathrm{C} 82: 4 \times$ tals -8 MHz .970 .2048 \& $19660.9 \mathrm{kHz}+$ some smaller chips - ZN429. TL431C eic. Complete panel fo $\Sigma 3.00$

SATE P P P1

24294 Neat panel $213 \times 37 \mathrm{~mm}$ with 5 keyboard switches. 3 red LEDs and a DL1416 4 digit LED display with built in memory There's half a metre of grey ribbon cable attached to a 34 way IDC socket.

$330 \times 170 \mathrm{~mm}$ with 3 chunky heatsinks $47 \times 36 \times 32 \mathrm{~mm}$, each with TO220 voltage reg. Also 56×74 sernes ICs including L-LS. $3 \times 40 \mathrm{~W}$ IDC plugs. few tants etc. Attached to the board are $2 \times 0.5 \mathrm{~m}$ long twisted and flat ribbon cables terminated in 50 way IDC sockets.

Z4319 Small panel $85 \times 43 \mathrm{~mm}$ with 555 timer. BS 107 FET. BCi09. $3 \times$ BFW $43.47 \mu \mathrm{~F} 35 \mathrm{~V}$ tant + other Rs. Cs etc.

Z4318 Ex-BT tone divider PCB. Panel $84 \times 69 \mathrm{~mm}$ has on it 2559 tone divider chip. 3579545 Xtal, 7 small signal transistors, tants, Rs, Cs. etc. Produces required tones for telephone system
Sinke 5 FOR El. 00

Z5203 Relay panel - some panel, thls! 50. yes 50 DPCO 24V OC min relays. Omron type G2V (our type W834) on PCB $230 \times 160 \mathrm{~mm}$ with $2 \times$ OIN41612 64 way plugs. At 1 off prices this would cost around £100, but you can have a complete panel at Just 20p per relay - thal'\$ only $£ 10.00$!

Snlice 85.00

25372 Small PCB $102 \times 51 \mathrm{~mm}$ with 8.4 V 170 mah nicad bution cetI (Ilst 7.31). a DPCO relay and a few other blts $£ 3.00$

shater $\mathrm{s}_{1.50}$

Z5204 Dlecast housing $252 \times 140 \times 25 \mathrm{~mm}$ (subscriber modula). contains PCB with lots of nice high frequency blts. much of which is contalnedwithin 2 dlecast boxes bolted on to the board. Most of the transistors (there are 17 of them) are 3F980. BFR90AK1A BFW92 stc. Single output socket, 2 DiN41612 plugs. Great value al $£ 4.50$

SAME 24. 211

Z5301 Panel from 24113 Contalns all components, Including transformer. Belleved unused - some are very dusty. 83.00 .

SAREE E1.00

25411 Marconi panel $225 \times 195 \mathrm{~mm}$. No info on this PSU, bưt it's got some reatily nice bits on it $-2 \times 2 \mathrm{~N} 3716$ TO3 translstors, 13 BCY71. $2 \times$ BC107, BFW43, BFX29. LM317K and LM337K TO3 varlable voltage regs. some high power zeners, pot cores, R's. C's etc.. toggle swith with tocking device.

Great value at $£ 3.958$

z910 $391 \times 39 \mathrm{~mm}$. This panel has soldered in components TCA4500A and TBA651R, AM radio with If amp. Probably complete RF section ol radio. as IF's and trimmer are on board + R's. C's, etc.
board

Sinlice 5 FOR El.00

2493 D Module. As above, but PCB has $3 \times$ BC̃ 184. 3D124. Rs, Cs etc.

silicie for R2.00

1/2MEC MEMORY BOARD

28900 Massive panel $460 \times 400 \mathrm{~mm}$ smothered in chips. Could be a complete computer judging by the IC's on the board. Made by Whitechapel Computer Works. Contans at oast the following (some panels have extra chips):
$64 \times 4164-15$ RAM's. over 20074 LS. F and other logic chips: $3 \times 4016-3.2 \times 8253-5.8251 .2 \times 5516.6 \times$ xtals, $3 \times \cdot 0 \cdot$ Plugs and sockets, $3 \times$ DIN 64 way socket. + R's. C's etc. Price equlvalent to 4164 's it 30 p each and rest of chips (st 3p each!

Price.
 SAREE E10.00

RUDIO SCNNNERS - Sond SAE fer full details of our rengo of high quality semnaers al greal pricos! All one off and pack prices INCLUDE V.A.T. Qty. prices do not

25140 As listed in BL75, but weve found some of these seria parallel interface cards for tho Apple II complete with comprehensive 22 page booklet. It provides full serial RS232C output + a fully decoded 8 bir paraliel output port. Excellent value

at $£ 5.00$
 Snitice E3.00

25408 Heatsink $152 \times 50 \mathrm{~mm}$ with $4 \times$ T03 devices mounted on t: $2 \times 7805 \mathrm{CK} 5 \mathrm{~V} 1.5 \mathrm{~A}$ voltage regs (DP 2.00) and $2 \times$ UUY18S. a 200V 15A NPN transistor, In our cat at 2.30. So the total value Is 8.60 . .ur special price $£ 2.50$

25263 Panel $80 \times 60 \mathrm{~mm}$ with FPT100A phototransistor, LM324 quad op amp. 24V SPCO heavy duty relay. BC546. dliodes. i's and C's. Smashing litue board -only 51.00

sulici FOR EI

24368 Panel $310 \times 90 \mathrm{~mm}$ with 20 CMOS chips. $3^{\circ} \times$ MC1488 $2 \times$ MC1489, $6 \times$ C251 opto isolators and a 64 pin chlp MB60504.
Reduced to ...82.00

24279 inleresting little panel ($75 \mathrm{~mm} \times 40 \mathrm{~mm}$) with 16 position BCD channel switch (24 pins). 2 dual green 7-segment displays: 2 min keyboard switches. and a short A4093. Attached by a short length of ribbon cable is a second panel (same size) with 4518,4019 and 2×5068 chips. Supplied with circuit.
Price

Controller Boards

PCB $175 \times 122 \mathrm{~mm}$ containing a wealth of components - 80C3s CPU, $4 \times$ TL066. TL094. CMOS and 74 series chips. $8 \times$ TO126 transistors, 13 TO92 transistors and lots of R's and C's etc also a 3 V lithium battery. 3 connectors on it go to (a) card reader (b) molor panel \& (c) display panel which is identical to our Z027 (P111 of Catalogue)

Order Code 25047

 Redueed to .. 2.00 100+ 1.0025048 Panel $275 \times 178 \mathrm{~mm}$ containing some excellent components: $2 \times$ D8243 t/O expander. 8035 CPU .8253 timer. 2651 USART all in sockets, 2×2111 A-4 RAM. 25 mostly CMOS chips. $8 \times$ TO 126 transistors. $5 \times$ TO92 transistors, R's. C's ete: 26 W IDC plug. $2 \times 34 \mathrm{~W}$ IDC plugs, 2 xtals.

2672 Newbrain motherboards. Complete but probably

Z674 Newbrain data. Interfaces and connector pin out i/p, o/p, port map, cct diagram + data on CP420C. (This lot replaces cct diag only for 75 p)......................... $\mathbf{f Z} .00$

2925 DPCO 12V 185R relay, 12V DPCO relay with heavy duty contacts. SC146D 400V12A Iriac, 555 timer. 11×1 N4001. $2 N 5061$ SCR. 3×2 N37043, Rs, Cs. etc.

2926 Similar to above, but instead of heavy duty relay, a T28000 400V 12A triac and C1220 400V 12A SCR. Both boards $100 \times 75 \mathrm{~mm}$

MOTOR PANELS
PCB $92 \times 31 \mathrm{~mm}$ with mercury tllt switch. 2VTL 1002 opto siotied switches. length of 11 core cable with socket anc stepper motor as described above.
Order Code Z5046
Prices $£ 3.50100+2.20$

HIGH QUALITY ICL COMPUTER PANELS - 2 types, the first a mother board and the second a panel which plugs into the first.
24209 Panel $360 \times 210 \mathrm{~mm}$ covered in high quality chips: 8085AHC, 8255, 8257, 8251A×2, 8253-5,8275, 8202A, 2732, 2716, all in sockets; $18 \times 4116-2+$ other mainly LS chips + min switches, LED's, oscillator, large tants, 3×50 way double sided edge connectors. Amazing value at only... £16.95 Reduced to

Shle

35093 Till display. Plastic housing $200 \times 95 \times 45 \mathrm{~mm}$ contains PCB $195 \times 70 \mathrm{~mm}$ with 87 -seg HP LED'S type $5082-7651$, red $0.43 \mathrm{CA}_{i}, 165 \mathrm{~mm}$ red leds. 8255 programmable interface and other chips etc.

Pricenen

1w Ampllfier mono
2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives 1W output with 9 V supply. Switch and vol control. Just connecl battery and speaker. Fult details supplied.
Pricest …........................ Only $\varepsilon 1.80 \quad 25+0.80 \quad 100+0.60$
SAIEE 2 P1 31X (1) 12883

1 W Amplifier - Stereo
3915 Stereo version of above $115 \times 65 \mathrm{~mm}$. featuring $2 \times$ TBA820M and dual volume control.
Prices reduced to $83.00 \quad 25+1.80 \quad 100+1.20$

2974 Mixer Amp Panel $115 \times 115 \mathrm{~mm}$ and gives 1 O O/P from a TBA820M chip. There are 2 inputs. one via a pre-amp. from phono sockets and separate volume controls. A third pot is used to fade from one inpul to the other. There are also 24 p $3 w$ rotary switches. Attached to the PCB by flying leads is a panel on which are mounted the 2 input sockets. 2×5 pin DIN sockets and 2 pin DIN speaker socket. A data shee! is supplied.

21699 Mini inverter - This handy PCB $31 \times 23 \mathrm{~mm}$ uses a 2 transistor circuit to provide a 60 V peak ac supply (20 V dc (a 1 mA) from a $3-7 \mathrm{~V}$ dc input. Can be used to drive $\mathbf{Z 1 6 3 7}$ LCD or for powering vacuum displays. Originally used in Newbrain compute

Price

5288D Metal detector panel $185 \times 115 \mathrm{~mm}$. This is the complete PCB from an expenslve (E80+) "reasure detector" lust add wire coll and meter to make a worklng unit. Clicuit uses 15 transistors and 3 IC's. There are 5 pots and a rotary switch. Detailed Info supplled. $£ 12.95$

Z5514 Universal bell timer. Panel $63 \times 55 \mathrm{~mm}$ uses a $556+3$ transistors to provide both 10 minute delay and 20 min cut off timers, with ability to disable one or other. +we or -ve trigger. SPCO relay. 12 V operation. Supplied bagged with adhesive stand-offs and connexion data. £5.95

TWO PANELS

Xtra Special WNW M DOR PATMORE Job UUP HAME $Z 4333$ Micro Maestro 5.25 disk + tape + C60 stereo cassette + handbook Concert pitch £2
24334 As above but B flat £2
$Z 4326$ Music Master. Mic to attach to recorder processor $+5.25^{\prime \prime}$ disk handbook 401 £3
24327 As above but $80 \dagger$ £ 3 Z4328 Recorder Tutor - 5.25 disk, 38p handbook, C90 cassette with 52 tunes $£ 2$ $Z 4329$ Ensemble Pack £1 Z4330 Duet Pack £1

Star Buy y!!

Xtra Special

We have a limited quantity of these. high quality units - the beautifully styled beige base unit measures $395 \times 330 \times 130 \mathrm{~mm}$ and is fitted with-an 8086 motherboard with 640 k base memory, $3.5^{\prime \prime}$ 720 k disk drive, 75 mm dia speaker and a fan cooled switch mode power súpply unit. There are 58 bit expansion slots and room to fit a further drive. Socketry includes 9 pin D for standard mono monitor, 25 way D parallel and 9 way D serial ports, 7 pin DIN keyboard socket and power inlet. The keyboard is a standard PC XT layout, but some keycaps need to be changed for English version (Intended for the German market; stickers supplied). Excellent build quality - steel case cover with plastic fascia.

V

víckĺl 86 хт pc

WNDOWS SOFTWARESCOOPT!

All brand new product in sealed packages at enormous savings!

Microsoff Windows 3.0

 supplied on 5 3.5in 1.44 mb Disks With 640 Page Manual Order Code Z9151

BUY BOTH FOR JUST BY 4,000

PFS:WindowWorks Integrated package featuring word processor with page layout, chart editor, database, comms module, address book and label maker. Supplied on 33.5 in 720 k disks. Needs 4 Mb hard disk space on a 286 or better. Lots of on screen help. Less than a year ago it sold for over $£ 100!!$ Order Code 25554
 HEADPITONES $\stackrel{(1)}{3}$
H8 Exceilent qualty Adastra stereo headphones with boom microphone. Freq. response $20-20.000 \mathrm{~Hz}$. 32R Impedance Microphone 600 R .2 m leads ftted with 3.5 mm plug for mic. and 3.5 mm pliug +adaptor for headphones. Padded earpleces and leatherette headband.
Shitice

34

HUGE REDUCTIONS IN AUDIONIDEO PROCESSORS SUPER QUALITY PRODUCT FROM HAMA

Xtra Special
 HARDWARE 25142 Vacuum case $6 / 51$ 221754×0.5.5" poi pon screws 25408 Heatsink wihn 2x7805 \& $2 \times 8 \mathrm{BYY} 18 \mathrm{~S}$ (both 703) 51.00 207007 Seeved grommet 120/E1 123311 Knobs, slid black aly $6 /\{1$ 24283 Seding stip $50 \mathrm{~m} / \mathrm{z}$ 25349323m conduit clomp $12 /\{1$ 25149 Seff amdigamading tope $125 \mathrm{~m} \times 13 \mathrm{~mm}$ 25 25164 As s bove but 21 mm Yide $£ 7$

Star Buy?!

Code	Type	Description
26124	ICM71701PG	CMOS $\mu \mathrm{P}$ real time clock - μ s to years
26125	IRF740	400 V TO220 10A 125W MOSFET
Z6126	IRFRO14	TO252 HEXFET GOV 33A 25W
Z6127	L4885CX	?
Z6128	LM2902D	Quad op-amp
Z6129	LM2903N	Dual low power comparator
Z6130	LM293N	Dual comparator
Z6132	LM336E25	Voltage ref diode TO92 2.5 V
26133	LP365N	Quad low power programmablo comparator 4000ns
26134	MC1489AP	Quad AS232 line drivor
Z6135	MC3486P	Quad diff RS422/3 line receiver
26137	OP07EP	Precision op amp
Z6138	2N4392	TO18 FET. N, 40 V 300 mW
26139	6N139	Darlington single opto coupler 400\%
Z6140	BD436	4 A PNP TO 12632 V 36 W
26141	BF869	50 mA NPN TO202 250 V 5 W
26143	CDP1871ACE	RCIC?
Z6144	D8753H	?
26145	DG417DJ	Precision SPST CMOS analogue switch
26146	MC6809P	8 bil CPU
26147	MCT2E	Transistor opto coupler 2.5kV 20\%
Z6148	MK4501N-12	512×9 Biport FIFO 120 ns
26149	MM58274CN	$\mu \mathrm{P}$ real time clock
26150	N82S129AN	1k bipolar RAM (256 kx 4)
26151	NM1630	Quad translator 5-15V logic isolation
Z6152	NMA0505S	?
Z6153	NMC9346N	E2PROM
26154	OP27GS	Lov: noise op-amp SM
26156	PALCE29MA 16H-25	29 input, 16 prog output
26157	PC5534ANB	wide bandwidth, low noise op amp
26159	S17660DJ	?
26160	TIBPALZ2V10ACNT	22 input 1 time prog PLD
Z6161	TL7705ACP	+5V $\mu \mathrm{P}$ power supply supervisor
26162	TL7705AID	do
26164	TLC272CD	dual do
26166	TMS9129NL	?
26167	UC3524AN	Enhanced SMPSU circuit

List	Our Price
8.95	£4.50
2.09	£1.00
1.07	2181.00
	11.00
0.82	3×1.00
0.76	3×1.00
	\$1.00
4.58	$\underline{2} .50$
0.90	2/21.00
0.45	4×1.00
1.08	2\%1.00
0.92	2\%1.00
1.23	312.00
1.30	3152.00
0.68	3/21.00
0.66	3151.00
13.86?	£5.00
	\$10.00
1.76	2/E1.00
2.17	$\Sigma 1.00$
0.45	4/E1.00
4.78	¢2.50
7.93	£4.00
1.95	£1.00
10.10	£5.00
	$\underline{2200}$
1.43	3/E2.00
3.17	$\Sigma 1.50$
	£5.00
1.18	2181.00
	51.00
£10.00	23.00
£1.75	\$1.00
	51.00
1.17	3/82.00
	\$10.00
1.53	$3 / 22.00$

Semiconductors
We've found a number of odd devices whifst clearing out'a store, all offered at silly prices.
(a) Diodes

22749 XK3817
$Z 2750$ BAX12A $\quad \mathbf{5} .00$
Z2751 OAZ201 Min 100 of
Z2752 T6621425 one type
22753 1N5361A plastic 27V 5W zener. 6 for \&i. 00
22754 Stud mounting rectifier, no nuls. $16 F 40400 \mathrm{~V}$ 16A 4 for $\$ 1.00$
Z2755 Stud mounting zener 1S5056 raled 10W 5.6V. 3 for $£ 1.00$
Z6123 BB105B varicap diodo 17.5pF 1V; 11.5pF 3V. Pack of 3 §1.00
22756 SD2 pair of recifiers connected thus:

400 for 52.00
22757 SD3 as above. Same price
(b) Integrated Circuits

Z6101 LM $305 \mathrm{H}+4.5 \mathrm{~V}$ to +40 V 45 mA TO99 voltage
regulator. 3 for $£ 1.00$
Z6102 LM306H voltage comparator $\$ 1.00$
26103 SN76033N audio amp $\Sigma_{3.00}$
26104 SN76023ND audio amp $£ 2.00$
Z6105 MC8500P £2.00
Z6106 MC2116J-15L £1.00
Z6107 SH30118 pin TO3 device. Voltage reg? $£ 1.50$
Z6108 MC68008L8 £2.00
$26109 \quad 7107$ DPM £3.00
Z6111 1DAC80-CB1-V-C D/A converter $£ 1.00$
Z6112 DAC80-CB1-V D/A converter $£ 1.00$
Z6113 2112A 3 for $\$ 1.00$
Z6114 Z80A DART $\mathbf{~} 1.00$
$26115 \quad 21142$ for $\$ 1.00$
to sort and list it! of semi's - this one has been in stock for some time, but haven't time
Code Type

	туpe	Case	Description	Qty	Price
Z2874	723	TO99	V. Reg, +2 V to 37V 0.1A	260	3/81.00
≥ 2875	TAG306/400	TO66	Triac 6A 400V	100	3/81.00
22876	TAG310/400	STUD	Triac 10A 400 V	34	$3 / 22.00$
22877	TAG3/400	TO66	SCR 5A 400V	74	3/21.00
22878	40430	TO39	Unknown	750	$5 / 81.00$
22879	TAG240/500	TO220	Triac 6.5A 500V	250	3/81.00
22880	TAG06/200	T018	SCR 0.8A 200V	94	$5 / 81.00$
22881	25323	T018	Transistor	1300	22.00
z2882	25324	T018	do	500	$\Sigma 2.00$
Z2883	BC177A	T018	do	275	10/81.00
22884	2N4905	TO3	do	90	$\Sigma 2.00$
≥ 2885	2N5108A	TO39	do	156	2/E1.00
22886	$2 N 3019$	T039	do	30	2/81.00
Z2887	2 N 2223	TO5	dual do	34	E1.00

CODE	TYPE	DESCRIPTION
Z6168	7905CT	-5V 1A TO220 Regulator
Z6172	81LS95	
Z6173	VT7C122-15	22 Pin Dil
Z6174	MCM6064P12	28 Pin Dil
Z6175	AM9517A-4DC	40 Pin Dil
Z6176	82S09	28 Pin Dil
Z6177	MJ2813	28 Pin Dil
Z6178	P8275	
Z6180	TIBPALI6R4-25CN	
Z6181	TIBPAL16L8-15CN	
Z6182	PAL10H8CN	
Z6183	PALCE26V12H-25PC	
Z6284	AM26LS31	16 Pin Dil
Z6187	AM26LS32	
Z6188	AM9122-25	
Z6189	PALC18U8Q-25CN	
Z6190	Z80A S10-2	
Z6191	MK3887N-4	
Z6192	Z80A CTC	
Z6193	P21256-12	256K Dynamic RAM
Z6194	CDM6264E3	28 Pin Dil 64K static RAM
Z6195	MK3885N-4	
Z6196	Z80 SI0-1	
Z6197	P82530-6	
Z6198	VT7C122-12	

QTY	UST	OUR
		Price
353	42p	8/E2
396		81.00
300		£1.00
150		£1.00
58		£1.00
94		\$1.00
175		\$1.00
16		\$1.00
9	1.64	52/1.50
30	1.64	22/1.50
10		£1.00
12		$E 200$
29		£1.00
41		£1.00
10		\$1.00
20		22.00
6		87.00
35		\$1.00
25		81.00
238	3.00	81.00
150	3.00	$\Sigma 1.00$
150		\$1.00
13		£1.00
5		£1.00
102		£1.00

GREENWELD

Stocks listed on this page have only recently arrived, and although not included in our SALE they represent such good value for money, we thought you'd like to see them anyway

fimazing Clock \& Min/Max Temp Modales!

Z5558 LCD Min/max electronic thermometer module. Reads -5 to +50 C (23-122F) Resolution 0.1 . Accuracy $\pm 1 C$. Uses single AA 1.5 V cell. Size $68 \times 35 \times 24 \mathrm{~mm}$. 13 mm display. Supplied with comprehensive instructions.

SLPER BARGAII \& $100+$ BUY - OALY LE 2.00

$\mathbf{z} 5557$ Clock module with timer and two alarms. Displays day, hour, min and AM/PM. Overall size $48 \times 32 \times 7 \mathrm{~mm}$; display 10 mm .

$\mathbf{5 5 5 6 0}$ These headphones have excellent quality transducers, although the gimmicky fold-up style leaves a bit to be desired. Supplied with mini plug + adaptor to std size. $£ 3.95$

BENCH POWER SUPPLY

29154 Well made by Wednesday Electronics, this variable output PSU has std mains input and $0-30 \mathrm{~V}$ DC 1.5A output. Line regulation $0.01 \% / \mathrm{V}$; Load regulation 0.1%; Ripple rejection 65 dB ; Quiescent current 3.5 mA ; Output noise $150 \mu \mathrm{~V}$; Size $168 \times 82 \times 55 \mathrm{~mm}$. Individually boxed with instruction leaflet.

PRICE £29.95

MORE POWER SUPPLIES!

Nice parcel of PSU's,-2 switch mode,? linear.

$Z 5549$ Black plastic cased transformer $102 \times 77 \times 70 \mathrm{~mm}$ with single 'keyhole' hook for hanging on wall. 2 m long 3 core mains cable and 2 m long output lead terminating in 3 pin socket. 240 v ac input, 18 V 2.15 A ac output. Room inside for bridge, cap and regulator if required. $£ 4.95$
25550 Similar to above, but output lead has 4 way socket. This one is rated 230 v ac input, $12 v+12 v$ each at 1 A ac output. $£ 4.95$

Z9148 QUEL Powerline switch mode PSU. Ventilated case $267 \times 120 \times 57 \mathrm{~mm}$. Input: 4256 V DC. Output: $+5 \mathrm{~V} 25 A_{i}-5 \mathrm{~V} 4 A_{i}+12 \mathrm{~V} 4 A_{i}$ $-12 V 4 A_{i}+24 V 4 A$. Max. output power 200 walts. \& 9.95
Z9145 As above, but input $115 / 230 \mathrm{vac}$ (or $325 v$ DC). Outputs: $+5 v 25 A_{i}-5 v 4 A_{i}+12 v$ $.3 A_{i}-12 v 3 A_{i}-48 \vee 2 A$. Max output power 200 watts. $£ 19.95$

FIBRE OPTIC CABLE

Just purchased $40,000 \mathrm{~m}$ of 0.2 mm dia top quality fibre optic cable. Ideal for modellers and experimenters. Last tme we had this (Winter 91/92) it whizzed out the door - so don't leave it too long before ordering!
Tech Spec: $1310 \mathrm{~nm}-0.32-0.39 \mathrm{~dB} / \mathrm{km}$ $1550 \mathrm{~nm}-0.22-0.24 \mathrm{~dB} / \mathrm{km}$.
Sold in the follwing packs:
2301510 m £2.00
25559100 m £ 12.00
29153 1000m reel 885

We're re-offering some red LED displayswhich have appeared in previous lists̈; now at much reduced prices.

CODE	TYPE	SIZE	CACC	DP	QTY	£2PACK	$100+$	$1000+$
Z3001	S806RWB	20mm	CA	RH	792	8	.12	.08
Z3002	LTS312R	$0.3^{\prime \prime}$	CA	BOTH	1325	15	.08	.05
Z3003	3719	$0.3^{\prime \prime}$	CA	RH	1075	20	.05	.03
Z3004	3729	$0.3^{\prime \prime}$	CA	RH	9807	20	.05	.03
Z3005	MIP4710	$0.43^{\prime \prime}$	CA	RH	1705	20	.05	.03
Z3006	MAN4710A	$0.43^{\prime \prime}$	CA	RH	1441	20	.05	.03
Z3007	MIP4720	$0.43^{\prime \prime}$	CA	LH	977	20	.05	.03
Z3008	MIP4920	$0.43^{\prime \prime}$	CA	NONE	3983	20	.05	.03

1/3rd OFF A 1/3rd off all remaining givak product - please give alternatives where possible, as stocks are low on some items

SEMICONDUCTOR PACK

An incredible assortment of devices ranging from small signal diodes through transistors. ICs, regulators, SCRs. triacs, small signal, power, AF. RF. All are new full spec devices, so this pack offers really great value:
Code Description
VP917 Pack of approx 200 (count by weight) Pack of approx 1000

Price
$£ 8.00$
£ 30.00

TRANSISTORS
Pack No Qty Description Price VP46 40 PNP Transistors like BC177/8. all good TO18.
Pairs NPN/PNP plastic Pow 1.00
VP50 60 Transistors, 4A with dato
NPN Sil Switching Trans TO18 and TO92.
VP51 60 PNP Sil Switching Trans, TO18 and TO92.
VP153 15 TIS91 Sil Trans PNP 40 V 400 mA
HP154 15 HPSA50 - TO92.
Hil
Mrans PNP 80 V
VP154
$800 \mathrm{~mA} \mathrm{H}_{\mathrm{fe}} 50+\mathrm{TO} 2$. $£ 1.00$
VP155 20 BF595 Sil Trans NPN equiv BF184 H.F. TO92.
VP156 \qquad BF173 H.F. TO92. $£ 1.00$
VP157 15 2TX500 Series Sil Trans PNP plastic.
-
VP159 15 ZTX108 Sil Trans NPN equiv BC108 plastic.
BC183L Sil Trans NPN 30 V
VP16 25 BC183L Sil Trans NPN 30V
VP162 5 200mA TO92.
SJE5451 Sil Power Trans NPN
£1.00 $80 \mathrm{~V} 4 \mathrm{~A} \mathrm{H}_{\mathrm{Fe}} 20+$. $\quad \mathrm{E} 1.00$
VP163 2 NPN/PNP pairs Sil Power Trans like SJE5451. 4 2N6289 Sil Power Trans NPN 40V 4OW 7A H $\mathrm{Fe}^{30+\text {. } £ 1.00 ~}$
VP104
VP165 6 BFT33 NPN Sil Trans 80V 5A $\mathrm{H}_{\text {fe }}$ 50-200 TO39.
£1.00
VP167 1 BUY69C NPN Trans TO3 VCB 500 10A $100 \mathrm{WH}_{\mathrm{FA}} 15+$
£1.00
VP169 10 BXS21 equiv BC394 NPN Sil Trans 80V 50mA TO18. £1.00
VP170 10 Assorted Power Trans NPN/PNP coded and data. £1.00
VP171 10 BF355 NPN TO39 Sil Trans equiv BF258 225V 100mA. £1.00
VP172 10 SM1502 PNP TO39 Sil Trans equiv $100 \mathrm{~V} 100 \mathrm{mAH}_{\mathrm{Fe}} 100+$. $£ 1.00$
VP200 30 OC71 type germanium AF Transistors uncoded. $£ 1.00$
VP201
VP261
VP272
VP290
VP429
25 OC45 germanium RF Transistors.
$£ 1.00$ 4 Programmable Unijunction Transistor MEU22. full data. £1.00 10 MOS-FETs Signetics. SD304. £1.00 15 MPSA06 Sil Transistors NPN 80 V $500 \mathrm{~mA} \mathrm{H}_{\mathrm{Fe}} 50+\mathrm{TO} 92$ £ 1.00

VP430 Transistors $1 \mathrm{~A} \mathrm{32V}$. $£ 1.00$ 42 N3055 Sil Power Transistors full spec.
VP431 25 PNP Sil Power Transistors TO39 like 2N2905A.
£1.00 VP11

BP801	10	7401
BP802	10	7407
BP803	10	7410
BP804	10	7413
BP805	10	7437
BP806	10	7440
BP807	10	7443
BP808	10	7450
BP809	8	7460
BP810	8	7470
BP811	10	7472
BP812	10	7480
BP813	10	7481

CAPACITORS

ICS

20 NPN Transistors like BFY50/5 all good TO39. £1.00 PNP Power Tran 4AX
£1.00
VP15
V180
25 mixed volts. £1.00
0.01/250V Miniature layer
metal Capacitors. $£ 1.00$
25 Tantalum Bead Capacitors, assorted values.
£1.00
VP532
VP533
VP534
VP535
VP536
VP537

VP331
VP331
VP332
VP333
VP334
VP335
VP336
VP337
VP338
VP339
VP340
VP341
VP342
VP343
VP345
VP346
VP347
VP348
VP349
$\begin{array}{llll}\text { VP349 } & 10 & 470 \mu 50 \mathrm{~V} \text { Radial } & £ 1.00\end{array}$
VP350 $8 \quad 1000 \mu 16 \mathrm{~V}$ Radial E 1.00
VP351 $10 \quad 2200 \mu$ 10V Radial $£ 1.00$

RESISTORS \& POTS

Pack No Qty Description Price
VP1 300 Assorted resistors, mixed
values and types.
v1.00
VP2 300 Carbon resistors, $0.25-0.5 \mathrm{~W}$ performed mixed. $£ 1.00$ performed mixed.
values and types.
£1.00
VP16
50 Wirewound resistors. mixed watt values.
$£ 1.00$ 50 Precision resistors,

1\% tolerance.
£1:00

VP287 100 Close tolerance resistor. 0.05-2\% 10-910 2 mbxed. $£ 1.50$

VP288
100 Close tolerance resistors. 0.05-2\% $1 \mathrm{k}-820 \mathrm{k}$ mixed.
£1.50
VP289 100 Metal oxide high stability resistors 0.25 W mixed values.

E1.50
MINIATURE CARBON FILM RESISTORS 0.25 \& $0.5 \mathrm{~W} 5 \%$
Resistance values from 1 $\Omega-10$ meg Ω.
Available in lots of 100 pleces per value.
To order state R100 0.25W or R200 0.5W, plus resistance required.
egR1001k $=0.25 \mathrm{~W} 1 \mathrm{k}$.
BI-PAK PRICE PER 100 PIECES
R100 £1.00 per pack. R200 \&1.30 per pack
RESISTOR DEVELOPMENT PACK
R199 100 of each value individually packed from 1 R to $10 \mathrm{M} 1 / \mathrm{W} 5 \%$ resistors. Total 8,500 would normally cost $£ 85.00$.
special low price \qquad

A range of miniature pots with spliced 6 mm shaft. Body is 17 mm dia. and fixing requires a 7 mm hole.

Code	Qty	Description
BP633	4	50 k lin.
BP634	4	100k lin.
BP636	4	5 klog.
BP638	4	50 klog.
BP639	4	100k log.
BP640	4	1M log.
BP641	10	Assorted lin values.
BP642	10	Assorted log values.
VP144	4	100k lin multi turn Pots. ideal varianle cap tuning
VP145	10	Assorted Pots, inc dual and switched types.
VP148	30	Pre-sets, horizontal and vertical mixed values.
VP273	10	10k Lin rotary potentiom slim spindle.
VP23	10	40mm track slider pots. 100k lin.

81.00
£1.00
$\$ 1.00$
£2.00 \& 2
£1.00
£1.00
1.00

VP427 o pc cushion grip screwariver set chrome steel.
\& 4.00
VP103 opc STANLEY screwdriver set, flat and crosspoint.
£3.50
£1.00 crosspoint, extra long reach. \&3.00
VP421 Screwdriver 400 mm long 6 mm flat
£1.00 VP420 'Chubby' screwdrivers, flat blade 4.5 \&
1.00 VP419 'Chubby' screwdrivers, crosspoint No 1
£2.00 VP575
Ball Grip Ratchet Screwariver
with 2 flat, and 2 pozidrive bits. $£ 2.50$
1.00 Files

VP407 10 pc Needle File Sef: $£ 3.00$
Soldering
18 and 22SWG. $£ 1.00$
VP247 15W 'Lightweight' high quality low cost soldering iron. 1.7 m lead. $£ 3.50$ VP491 12 V 15 W soldering iron. 4.3 m lead with car cigar type plug for mobile use. £3.00

TOOLS

Vice
VP95 Plastic miniature vice with suction
base.
£1.75
Rules
VP405 Steel Rules $1 \times 4^{\prime \prime}, 1 \times 10^{\prime \prime}$, measuring ins BP820 and mm . 2 for I 1.00 BP821
VP89 $2 \mathrm{~m} / 6 \mathrm{ft}$ steel tape measure. ABS BP822 plastic case. Autopush return. £1.75
Hacksaw
VP406 Junior hacksaw and 3 blades + Hobby BP830 knife and 2 blades.
£1.00

Hex wrenches

VP410 18 pc Hex Wrench keys. AF sizes in wallet.
$\$ 1.50$
Pliers, Snips \& Cutters
VP417A Minioture 4" adjustable forged alloy steel.
£2.25 BP842
VP417 6" adjustable wrench. Forged alloy BP843 steel. £2.50 BP844
VP415 5" grip locking pliers. \quad £3.00 BP845
VP414 End Action Stripping Pliers, adjustable BP847 jaws.
VP221 Miniature Long-nose pliers.
£1.55
Snipe \&Combination Pliers. $5^{\prime \prime}$ red insulated BP852 handies.
$£ 4.50$
VP412 Crimping Pliers, Wire Strippers and Bolt
Cutters.
£2.00
VP571 41/2" pliers. Green insuiated handles.
VP570 4" end nippers. Blue insutated handles.
VP418 $8^{\prime \prime}$ tin snips. Hardened steel spring
joint.

Screwdrivers

VP218 Watchmakers Screwdriver Set BP865 6 pieces.
VP425 7 pc high quality screwdriver set. £8.00 BP868 VP426 7 pc high quality screwariver set BP 869 1000 V .
£12.50 BP870

Code
BP814
BP810
BP817
BP818
BP819
BP820
BP821
BP82 8828
P831 BP832 BP833 P834 BP835 836 837 841 842

$\begin{aligned} & \text { Qty } \\ & 10 \end{aligned}$	Contents 7482	Price £1.00
90	7484	£1.00
8	7491	81.00
8	7492	£1.00
8	7493	81.00
8	7494	¢1.00
8	7495	£1.00
8	7496	£1.00
5	74141	£1.00
8	74151	£1.00
8	74153	£1.00
8	74155	£1.00
8	74156	\$1.00
8	74157	81.00
8	74160	£1.00
8	74161	81.00
8	74164	£1.00
8	74165	¢1.00
8	74174	£1.00
8	74175	\$1.00
5	74181	- 1.00
8	74182	£1.00
8	74191	£1.00
8	74193	£1.00
8	74195	81.00
8	74196	£1.00
8	74197	£1.00
8	74199	- 81.00
10	74LS11	£1.00
10	74LS20	£1.00
10	74LS26	£1.00
10	74LS33	£1.00
6	74LS42	£1.00
8	74LS55	81.00
8	74LS73	£1.00
8	74LS74	81.00
8	$74 L S 76$	£1.00
6	74LS93	£1.00
8	74LS95	£1.00
6	$74 L S 122$	$\Sigma 1.00$
6	74 LS 148	£1.00
8	74LS173	¢1.00
6	74LS221	£1.00
6	74LS275	£1.00
8	7415279	81.00
6	74LS393	£1.00

OPTO

ck No	Qty	Description	Price
VP26	15	Small $0.125^{\prime \prime}$ red LEDs.	£1.00
VP28	10	Rectangular 0.2" red LED	£1.00
VP130	6	Red 7 seg CC $14 \mathrm{~mm} \times 7.5$ RDP FND353 LED Display.	$\begin{aligned} & \mathrm{mmm} \\ & \text { £2.00 } \end{aligned}$
VP131	4	Green 7 seg CA 0.6" LDP XAN6520 LED Displory.	£2.00
VP133	6	Red overflow $0.6^{\prime \prime} 3 \times$ CA $3 \times$ 663050 LED Display.	$\begin{array}{r} 3 \times \mathrm{CC} \\ \mathrm{~s} 2.00 \end{array}$
VP134	5	Green overflow 0.6"CA XAN 6530 LED Display.	£2.00
VP138	20	Assorted LED Displays our mix with data.	55.00
VP147	1	Pair Opto Coupled	
		Modules with data.	£0.60
VP199	4	DL707R LED display CA	£1.00
VP203	15	Triangular shape LEDs mixed colours.	£1.00
VP207	10	Small 3 mm yellow LEDs.	£1.00
VP243	3	Tricolour LEDs rectangular.	
VP266	10	5 mm . red. green yellow. Large 5 mm orange LEDs.	$\begin{aligned} & £ 1.00 \\ & £ 1.00 \end{aligned}$
VP279	10	OCP71 Photo Germaniu Transistor PNP.	£1.00
Code		Qty Contents	Price
VP284	2	Opto-isolator IL74-4N27. single.	
VP285	1	Dual Opto-isolator ILD74.	£1.00

INDICATORS

Code	Qty	Description	Price
1534	5	T $11 / 2$ LES Bulbs 6 V 0.36 W .	£1.00
1535	-5	T 11/2LES Bulbs 6.5 V 1 W .	£1.00
1536	5	T $111 / 2$ LES Bulbs 14 V 0.75 W .	£1.00
1542	5	MES Round 12 V 2.2 W .	£1.00
1539	5	MES Round 6.5 V 0.15 A	81.00
1552	5	Panel mounting bezel.	
		High quality black plastic	
		with recessed aperture.	
		omm dia. For use with	
		3 mm LED.	£1.00
1553	5	As above, but with	
		convexend.	81.00
VP578	3	12 V indicator. Red,	
		8 mm dia $\times 30 \mathrm{~mm}$ long.	
		220 mm long wires.	$£ 1.00$
VP579	13	Panel mounting 3 mm	
		Green LED in chrome	
		holder. Needs 7 mm hole	¢1.00

DIODES \& SCRS

Pack No VP29	Qty	Description	Price
	30	Assorted volt Zeners.	
		50 mW -2W.	£1.00
VP30	10	Assorted volt Zeners,	
		10w coded.	£1.00
VP31	10	5A SCRs TO66, 50-400V.	
		coded.	£1.00
VP32	20	3A SCRs TO66, up to 400V.	
		coded.	81.00
VP33	100	Silicon Diodes like IN4148.	£1.00
VP34	200	Silicon Diodes like	
		OA200/BAX13-16. 40V.	81.00
VP35	50	1A IN4000 Diodes all good	
		uncoded.	£1.00
VP49	30	Assorted Silicon Rectifiers	
		1A-10A mixed volts.	81.00
VP14\%	40	IN4002 Silicon Rectifiers 1A	
		100 V preformed pitch.	£1.00
VP184	3	4 A 400 V Triacs plastic.	£1.00
VP187	10	SCRs 800 mA 200 V .	

2N5064 plastic TO92.
VP194

VP195

VP196
Diodes uncoded. $£ 1.00$
50 OA70-79 detector germanium Diodes. 50 OA90 type germanium Dlode uncoded.
BA248 Silicon Diode 350 V 2A fast recovery.
3A stud Rectifiers. $50-400 \mathrm{~V}$ assorted.
£1.00
VP222
3A 400 V Bridge Rectifiers
VP264 $4 \quad 3$ A 400 V Bridge Rectifiers. $£ 1.00$
VP265 25 OA10 germanium Diodes. £1.00
VP274 12 SCRs (Thyristors) 1A 100-400V TO39.
VP275
3 5A 400 V SCRs. TO220, TIC106D.
£1.00
$£ 1.00$
VP276 5 SCRs standard type 5-16A to 400 V .
$\$ 1.00$
VP277 4 Triacs 2A 400V TO39.
VP278 4 6A 1000V plastic Silicon Rectifiers.

MISCELLANEOUS

VP872 4 channel light sequencer, chassis version. PCB $143 \times 41 \mathrm{~mm}$ ready assembled for immediate use. Takes up to 200 watts per channel. 4 mode settings. Variable speed control. Each channel individually fused. Just wire in lamps and mains to connector blocks on PCB.
£12.95
VP873 Wireless Babyphone. Small PCB $55 \times 20 \mathrm{~mm}$ contains ready built transmitter operating from $88-108 \mathrm{MHz}$. Operates from PP3 battery.
$£ 7.95$

VP875 Speaker terminal. Pax pạnel $60 \times 20 \mathrm{~mm}$ has phono socket and 2 screws. FC52mm Pack of 4
$£ 1.00$

ZONX-81 SOUND UNIT

The ZON X-81 sound unit is completely seif-contained and especially designed for use with the $\mathrm{ZX}-81$. It just plugs in: no dismantling or soldering.
No power pack, batteries. leads or other extras.
Manual Volume Control on panel = ample volume from built-in loudspeaker.
Standard ZX-81-16K Rampack or printer can be plugged into ZON X-81 Sound Unit without affecting normal $X X-81$ operation.
Huge range of possible sounds for games or: Music, Helicopters, Sci-Fi, Space invaders. Explosions, Gunshots, Drums. Pianes, Lasers, Organs, Bells. Tunes, Chords, etc. or whatever you devise!
Uses 3 -channel sound chip giving programme control of pitch, volume of tones and noise, all with envelope control.
Easily added to existing games or programmes using a few simple 'BASIC' lines.
Full instructions with many examples of how to obtain effects and the programmes, supplied.
Fully guaranteed.
£9.95

LOPT TESTER

Dynamic Line Output Transformer Tester. This invaluable piece of test equipment will allow an engineer to test LOPTs under working conditions. It has been designed by a TV engineer with 30 years experience and is both simple to use and effective. operation.

Tool Sets
VP908

VP909
1918
VPQ10

VP260A $2.25^{\prime \prime}$ transducer waterproof
speaker. Polyester film diaphragm. Moisture resistant, $8 \Omega 300 \mathrm{~mW}$ RMS freq res $20-20000 \mathrm{~Hz}$.
$£ 1.00$

CASSETIES ETC

VP232 1 Cassette head cleaner/ demagnetizer in case.
VP230 IO C90 Cassette tape. 2×45 minute, low noise. $£ 6.00$

FUSES/HOLDERS
VP176 30 Fuses 20 mm and $1.25^{\prime \prime}$ glass, assorted values.

$$
£ 1.00
$$

Wirestrippers

VP573 Wirestrippers with adjustable stop for 12-26g.
$£ 1.20$

WIRE \& FLEX

Pack No Qty Description Price
VP17 50 Metres PVC single strand wire, mixed colours. $£ 1.00$
VP18 30 Metres PVC multi strand
VP19 40 Metres PVC single/multi strand wire, mixed colours. $£ 1.00$

BATIERIES \& CAGES

VP178 5 Assorted battery holders \& clips, PP3/9, AA/D. etc. $£ 1.00$
\checkmark VP904 2 Battery cage to take 10 'AA' cells. Uses PP3 connector.
VP905 6 Battery cage to take $11 / 2^{\prime} A A^{\prime}$ cell.
Solder tags.
Battery cage to take
£ 7.00
$2055 \begin{aligned} & \text { Battery cage to take } \\ & \\ & \\ & 4^{\prime} A A^{\prime} \text { cells, } 2 \text { each side }\end{aligned}$ in line.
$£ 1.00$
$£ 1.00$
VP238 4 AA Ni-cad Batteries 1.25 V 500 mAh CR MA. $£ 4.00$
VP239 2 C-HP11 Ni-cad Batteries rechargeable.
§3.50
VP240 2 D-HP2 Ni-cad Batteries rechargeable.
84.00

VP912 Large battery clips with insulated red and black handles. Rated 30A. Overall length 75 mm . Perpair 75p. VP913 Gun type probes - pull on lever to open jow. Takes 4 mm plugs. Red and black. Per pair $£ 1.95$
$2^{\text {n }}$ dia speaker, 8R 0.3W $£ 1.00$
$21 / 2^{\prime \prime}$ dia speaker 80R 0.3W £1.00
4^{n} dia high power speaker for bass
applications. Frequency range $50-8000 \mathrm{~Hz}$. max power 20W 8 R.
£9.95
8R speaker, max 12W. $60-15000 \mathrm{~Hz}$.
$£ 7.95$
8Ω earpiece, magnetic, 2.5 mm plug.
£0.25
8Ω earpiece, magnetic, 3.5 mm plug.
$9^{\prime \prime} \times 6^{\prime \prime}$ elliptical $8 \Omega 10 \mathrm{~W}$
RMS speaker. Freq res
$60-10000 \mathrm{~Hz}$. Gauss 10000
Centre HF cone. $£ 4.50$

BUZZERS, SIRENS miniature, 12 V

CONNECTORS

Pack No Qty Description
Price
25 mm Jack

Magnetic mic holder for CB mic.
$£ 1.00$

MICS, SPEAKERS, EARPIECES

1338

2 Crystai mic insert

23 mm dia $\times 12 \mathrm{~mm}$ £ 1.00
3.5 mm Jack

1746A 23.5 mm Metal stereo plug
$1676 \quad 4 \quad 2.5 \mathrm{~mm}$ in-line jack socket
£ 1.00

1/3rd OFF ALL ITEMS ON THIS PAGE

Y" Jack

1681

1658

$3 \quad 1 / s^{\prime \prime}$ mono in-line socket Black plastic.
$£ 1.00$

$2 \quad 1 / 4$ stereo in-line socket. Metal.

$3 \quad 1 / 4$ " socket. Mono switched. Panel mounting. Metal. $\$ 1.00$

3 Car aerial chassis mounting socket. Metal. $£ 1.00$

$106931 / 4^{\prime \prime}$ socket. Stereo switched. Panel mounting. Black Plastic. $£ 1.00$ $1 / 4^{\prime \prime}$ socket. Stereo switched. Panel mounting. Black Plastic. $£ 1.00$

1665

Phono

1660

1660A

1687
$£ 1.50$

$1 / 4$ socket. Built in DPDT switch for headphones. Stereo.
£才,00

$1660-8$ Panel mounting phono socket with plastic surround.
£1.00

Panel phono soc̣ket single hole mounting

£1.00
$£ 1.00$

Plastic in assorted colours. $\$ 1.00$

1708 In-line phono plug. Metal screened.
$\$ 1.00$

DIN
1 Panel mounting. 3 pin XLR plug.3 pin XLR plug.

1664
3
1/4" socket. Mono switched. Panel mounting. Black Plastic. £1.00 1737

T-Adaptor. $2 \times$ PL259 sockets to $1 \times$ PL259 plug. $£ 1.50$

2 SO239SH chassis mounting socket single

1721
Right angle coupler for PL259 and SO239.
. $£ 1.50$

£1.00

hole fixing.

$1 / 3 \mathrm{rd}$ OFF ALL ITEMS ON THIS PAGE

1759
4 IDC amphenol connectors. 36 way plug.
$£ 2.00$

DC Power

1644	3	$2.5 \mathrm{~mm} D C$ in-line plug.
1645	3	3.1 mm DC in-line plug.
1646	3	$2.1 \mathrm{~mm} D C$ in-line plug.

$£ 1.00$
£ 1.00
$£ 1.00$

$£ 1.00$
1.50

Power

23 pole mains outlet. 6A 250 V Panel mounting socket.
22 pole mains outlet.
1639 6A 250 V Panel mounting socket.

16382 Mains inlet.
3 pin EEC Panel mounting plug. 6A 250 V .

13 pln right angled in-line Bulgin socket.
£1.50

164116 pole Bulgin in-line socket, mains connector. $£ 1.50$

6 pole Chassis mounting plug. Bulgin mains inlet fits 1641.
$\$ 1.50$

LEADS \& TELEPHONE ACCESSORIES

VP300 10m Speaker lead, 2 pin DIN socket. £1.00
VP301 2m video lead coax socket - coox socket +2 adaptors. $£ 1.20$
VP302 3m 4 core cable individually screened 5 pin DIN plug - 5 pin DIN plug.
£1.80
VP303 TV extension lead. Coax plug - coox
plug, white.
£1.00
VP304 1.5 m 4 core cable individually screened 5 pin DIN plug - tinned open end.
£1.00
VP305 1.5 m cable 5 pin DIN plug -3.5 mm jack plug pin 1 \& 4 connection.
£1.00
VP306 2 m typewriter/calculator lead 3 pin plug, angled European IEC configuration, 6 A 250 Vac .

2 for $£ 2.00$
VP307 60 cm patch lead, PL259 plug - PL259
plug. £1.00

VP308 1.2 m patch lead, PL259 plug - PL259
plug. $£ 1.50$
VP309 1.2 m lead, 4 phono plugs - 4 phono
plugs. $£ 1.50$

VP310 20 cm lead 2×2 pin DIN plug - stereo in-line jack socket. $£ 1.00$
VP311 2 m lead scart plug - 5 pin DiN plug and 2 BNC plugs. 86.00
VP312 1.2 m video lead BNC plug - phono plug. £1.50
VP313 3 m headphone lead, 3.5 mm jack plug
3.5 mm jack socket. $£ 1.00$

VP314 2 m coax lead. BNC plug - BNC plug.
75Ω.
\& 3.00
VP315 2 m coax lead. BNC plug - UHF plug,
70Ω.

LEADS \& CABLE
Code Qty Description Price
397 im $\begin{aligned} & 2 \text { core oval mains } \\ & \text { cable. } 2.5 \mathrm{~A} .\end{aligned} 25 \mathrm{p} / \mathrm{m}$
VP301A 1 Phono plug to coax plug lead 2 m long
£1.00
$3661 \begin{aligned} & \text { Enamelled copper wire } \\ & \\ & \text { 38swg, } 20 z \text { reel. } \\ & \text { §1.20 }\end{aligned}$
3831 Tinned copper wire 16 swg.
$40 z$ reel. $£ 1.70$
3821 Tinned copper wire 4.8swg. 4oz reel.
£1.70
SWITCHES \& RELAYS
Code Qty Description Price
1991A 1 Calculator keypad 24 woy + data matrix output.
$£ 2.00$
19735 Min slide switch DPDT. £1.00
$\begin{array}{llll}1974 & 4 & \text { DPDT slide switch. } & \text { £1.00 } \\ 1965 & 2 & 1 p 12 \text { wary rotary switch. } & \text { £1.00 }\end{array}$
1965A 1 Rotary switch, 25 mm dia.
5 wafers. 1p 12 way each. $£ 2.00$
Min latching push button 3A SPST, red top.
£1.50
$19632 \begin{aligned} & \text { Min latching push button } \\ & \text { 3A SPDT, red top. }\end{aligned}$
19951 Heavy duty push - foot action GA DPDT.
VP174 5 DIL switches $1 \& 2$ way slide. 6 way SPST, assorted. $\quad 1.00$
VP114 4 Coax Antenna Switch. 3 way.
£4.75
VP115 1 High pass filter/suppressor CB / T.
£0.50
VP281 4 Plug-in relays, mixed volts, $£ 1.00$

1／3rd OFF ALL ITEMS ON THIS PAGE

HARDWARE

（a）Fasteners（steel）
Code Qty Description
83925 1＂OBA cheesehead screws
$84025 \quad 1 / 2^{\prime \prime}$ OBA cheesehead screws
84225 1＂2BA cheesehead screws
$84325 \quad 1 / z^{\prime \prime} 28 A$ cheesehead screws
84425 1／＂2BA cheesehead screws
84725 $1 / 4$＂4BA cheesehead screws
$848 \quad 25 \quad 1$＂ 6 BA cheesehead screws
86325 1／2＂8BA cheesehead screws
86425 $1 / /^{\prime \prime} 8$ 8BA cheesehead screws
86525 8BA nuts
85925 OBA washers
86025 2BA washers
86125 4BA washers
86625 8BA washers
85125 OBA soldertags
85425 6BA soldertags
（b）Heatsinks

（b）Heatsinks		
Code	Qty	Description
873A	3	TO3 black finned sink $46 \times 46 \times 20 \mathrm{~mm}$
877	10	TO18 Black push fit． 13 dia $\times 6 \mathrm{~mm}$
VP42	10	Black heatsinks fit TO3 and TO220 drilled．
VP43	4	Power－fin heatsinks $2 \times$ TO3 $2 \times$ TO66．
VP44	15	Assorted heatsinks TO1； TO3；TO5：TO18：TO220．

Price 95p 750 70p 65p
35p
50p
$30 p$
$40 p$
40p
$30 p$
15p
$15 p$
15p
45p
$35 p$
（c）Knobs（all for $1 / 2^{\prime \prime}$ spindles）
Code Qty Description
11014 Black plastic knob with calibrated metal skirt．
-.30 mm dia $\times 18 \mathrm{~mm}$ high．$£ 1.00$
11093 As above，but
28 mm dia $\times 16 \mathrm{~mm}$ high．$£ 1.00$
Similar to above
without black Iniay
24 mm dia $\times 17 \mathrm{~mm}$ high．$£ 1.00$
11134 Matches 1101，but with indicator line．
11156 Pointer knob with skirt． Black plastic silver insert．
22 mm dia $\times 14 \mathrm{~mm}$ high．$£ 1.00$
1115A 10 Slider $19 \times 13 \times 13 \mathrm{~mm}$ ． 4 mm slot．
12 Sid $£ 1.00$
VP474 $12 \begin{aligned} & \text { slider Pots knobs．} \\ & \text { black／chrome．push fit．}\end{aligned} \$ 1.00$
Price

DATA BOOK

BPX6 Excellent value TIL data book．Includes H，L S \＆LS．A5 format， 116 pages．giving mechanical data Interchangeability Guide， Function Selection Guide．and pin outs of ThL from 7400－74670．As this was published some years ago，the very latest types do not appear． but at the price．this book offers superb value． Price．

Only $£ 1.50$

TRANSFORMERS
（All have mains primary）

Code	Qty	Description	Price
2036	1	$0-1 \sim$ 250mA	$£ 2.30$
2034	1	$0-35 \mathrm{~V} 1.7 \mathrm{~A}$	$£ 4.90$
2042	1	$0-25 \mathrm{~V} 2 \mathrm{~A}$	$£ 4.40$
2035	1	$0-55 \mathrm{~V} 2 \mathrm{~A}$	$£ 8.95$
2043 A	1	$20-0-20 \mathrm{~V} 500 \mathrm{~mA}$	$£ 3.80$
2031	1	$0-19-25-33-40-50 \mathrm{~V} 500 \mathrm{~mA}$	$£ 7.50$
2032	1	$0-19-25-33-40-50 \mathrm{~V} 1 \mathrm{~A}$	$£ 9.30$
2038	1	Miniature driver，Primary 2Ok Secondary 2k CT	$£ 1.20$

Price
（d）Cases
$\begin{array}{lll}\text { Code } & \text { Qty } & \text { Description } \\ 161 & 1 & 4^{\prime \prime} \times 21 / 4^{\prime \prime} \times 11 / 2^{\prime \prime} \text { aluminium }\end{array}$
box． $102 \times 57 \times 38 \mathrm{~mm}$ ．$£ 1.30$
$7^{\prime \prime} \times 5^{\prime \prime} \times 21 / 2^{\prime \prime}$ aluminium
box． $178 \times 127 \times 63 \mathrm{~mm}$ ．$£ 2.70$
$8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ aluminium
box． $203 \times 152 \times 76 \mathrm{~mm}$ ．$£ 3.50$
（e）Miscellaneous
£1．00
$£ 1.00$

Price BULK PACKS FOR LARGE USERS
（See relevant pack numbers for full details of contents．）
VP1 Resistors $\quad 20,000 \quad$ £35
VP2 Pre－formed resistors 20，000 £35

VP10 Polyester Caps $10,000 \quad$ E50

Electrolytics	10,000	£80
OC71	5.000	$£ 70$

Assorted Pots $\quad 1.000 \quad \mathrm{E} 50$
Heatsinks $\quad 1.000$ E50
74 Series inc LS－gates \＆
complex logic，all new
in tubes．
1,000
560

These transistors are part f Bi－Pak＇s stock．Otters ara invited for those un－ priced：			$2 N 5838-10-3$			8D196	50	0.50	CV7001	134		OC70 500	0.15	CIFARANCE OF CAPACITORS
			2N62B6	15		BD206	25	0.20	CV7086	25		OCP71 1700	0.17	
			2N6289	104	0.22	B0208	55	0.20	CV7644	50		0 O72 208	0.15	T
			2NOMO	＋0		80235	100	0.15	CV7735	197		0 O73 400	0.15	
						BD236	200	0.16	CV9507	1000		OC75 200	0.15	C280 POLYESTER CAPACITORS．
Type	Oty	1004	25012	26		BD239	600	0.18	CV9507	2000		$\bigcirc 075180$	0.15	All new and boxed． 250 V working．g．Somples
2 N 696	550	0.10 0.07	25013	31		B0240	500	0.17	CV9790	950		OC76 11550	0.15	free on request．
2N708	276	0.07	25302	310	3.00	802444\％ 1000		6.17	［05220－47－0．20			0×7973	0.15	Value 100
2N718	942	0.10	25303P	63	3.00	BD312	145	0.17				OC82 530	0.15	Value 100
2N726	6500	0.15	25304	67	3.00	BD508	400	0.37	FB0223	47	0.20	OC200 600	1.80	5.6 nF ． 02 ． 015
2N743	532	0.15	25306	343	3.00	80609	127					RCA16083100	1.00	10 nF －． 02 ． 015
2N914	200	0.70	25324	4087 3.00		B01540	10		ar423－5－					12 nF （ 02 ． 015
2N929	161	0.07	253210			B01560	10					T1P29C 60	0.12	$\begin{array}{lll}12 \mathrm{nF} \\ 15 \mathrm{nF} & .02 & .015\end{array}$
2N1131	500	0.20	2SB89A	100		BD2550	10		fPli $222-2000$			TIP30A 1470	0.12	15 nF （ 02 ． 015
2N1132	485	0.21 0.50				BET885	400					TIP30B 1354	0.12	18 nF ． 02 ． 015
2N1488	20 40	0.50 0.12	ACH9	395	0.10	BFX29	476	0.10	MC7724	76		TIP30C 590	0.12	27 nF －． 02 ． 015
2N2193	350	0.19	AC121	2900 70	0.10 0.10	BFX48 BFX86	250 155	0.10 0.10	ME1120	12000 2273	0.07	$\begin{array}{ll}\text { TIP32日 } & 96 \\ \text { TIP30A } & 102\end{array}$	0.12	39 nF ． 02 ． 015
2N2217	220	0.28	AClalk	300	0.12	BFX87	87	0.10	MPSA56	26750	0.07	TIPG28 96		68 nF ． 02 ． 015
2N2218	758	0.10	AC176K	200	0.12	EFT19	160	0.19	M M E340	595	0.15	TiS90 4000	0.07	82nF ． 02 ． 015
2N2218A	656	0.10 0.10	AC180	250	0.14	Brise	700	000	MJE521	97	0.28	TIP111 22	0.20	120 nF ． 03 ． 02
2N2219A 2N2220	133 500	0.10 0.08	AC181K	190	0.16	BF153	1724	0.09	MJ490	140	0.50	TPP112 55	0.20	150 nF （ 03 ． 02
2N2221	740	0.08	AC187/01	100	0.16 0.09	BF 159 BF 160	2565 6460	0.10 0.10	ML3000	2		$\begin{array}{ll}\text { TIP117 } & 42 \\ \text { TIP126 } & 15\end{array}$	0.20 0.20	180 nF l 03 ． 03
2NE2\％		0.08		－14－0．30		BF181	840	0.12	OC41	81	0.15			330 nF ． 04 ． 03
2N2368	374	0.09	$\begin{aligned} & \text { AOteG } \\ & \text { AF200 } \end{aligned}$	600	0.20	BF186	155	0.12	$0 \mathrm{C42}$	2245	0.15	FW6504－643	088	$390 n \mathrm{nF}$ ． 04 ． 03
2N2411 2N2412	287 517	0.40 0.19	$\begin{aligned} & \text { AF200 } \\ & \text { AF } 116 \end{aligned}$	650	0.30	BF254	3000	0.10	0042	935	0.15	NOTE：PRICES		ELECTROLYTICS，axial leads．
2N2412	3170 180	0.19 0.09	AF118	$\begin{aligned} & 550 \\ & 39 \\ & 750 \end{aligned}$	0.30 0.30	BF255	1178 541	0.11	OC45	145	0.15	EXCLUDE VAT		ELECIROLYICS，axial leads． 100
2N2904A	680	0.10	$\begin{aligned} & \text { AF179 } \\ & \text { ASY76 } \end{aligned}$		0.30	BF357	ge5－	0.72						10uF 160V 03 ． 03
2 N 2904	1115	0.09					2260	0.12						$\begin{array}{lll}10 \mu \mathrm{~F} 160 \mathrm{~V} & .03 & .02 \\ 47 \mu \mathrm{~F} 16 \mathrm{~V} & .03 & .02\end{array}$
2N2906A	5000	0.10				$\begin{aligned} & \text { BF595 } \\ & \text { B595 } \end{aligned}$		0.12						$47 \mu \mathrm{~F} 16 \mathrm{~V}$
－2N2906	200	0.10 0.10					3000	0.07						$22 \mu \mathrm{~F} 16 \mathrm{~V}$ ． 04 ． 03
2N3114	1800	0.85				BF743	500	0.08						100R VAB ． 03 ． 02
2N34 16	96	0.09	BC159	11600	0.05	BFT83	505	0.08						$220 R$ VAB ．03 ． 02
2N3708	592	0.03	－ 0 C1896－60－0．06			BFX29	476	0.10						$1 \mathrm{~K} V \mathrm{AB}$ ． 03 ． 02
2N3710	3223	0.03	BC172	2000－0．03		Erxab		Q20						4 K 7 VAB ． 03 ． K （02
2N3711 2N3789	3858 26	0.03	BC175	2905106	0.03 0.09	BFX86	155	0.10						47 K VAB $\quad .03$ ． 02
2N3789 243702	26		BC178		0.09 0.09	BFX87	87	0.10						$\begin{array}{llll}47 \mathrm{~K} & \text { VAB } & .03 & .02 \\ 47 \mathrm{~K} & \text { VPiher } & .04 & .03\end{array}$
2N4058	2388	0.03	$\begin{aligned} & \text { BC181 } \\ & \text { BC186 } \end{aligned}$	$\begin{aligned} & 1525 \\ & 1920 \end{aligned}$	0.05	E1P20	33							47 K H AB ． 03 ． 02
2N4061	480	0.03			0.05	81P20	46							47 K HPiher 04
－ $\mathrm{N}+399$	－2e		$\begin{aligned} & \text { BC186 } \\ & \text { BC208- } \\ & \text { BCZ212 } \end{aligned}$	-630 121	0.00	BRY56	372	0.17						$\begin{array}{llll}47 \mathrm{~K} & \text { HPiher } & .04 & .03 \\ 47 \mathrm{~K} & \text { M AB } & .03 & .02\end{array}$
2N4901 2N4911	10 23	0.40 0.60	BCZ212	121 3900	0.20 0.03	OStiond								47 K M AB ． 03 ， 02
2N4914	9	0.40	$\begin{aligned} & \text { BC321 } \\ & \text { BD176 } \end{aligned}$	$\begin{aligned} & 3900 \\ & 660 \end{aligned}$	0.18	－00810	38.							We also have large quantities of many values
2N4915	44	0.45	80180	400	0.20									specially switched and dual types
2N5295	2030	0.18	BD185 300		0.30									hich we are clearing of 10p eac

MICROPHONE

M9 Adastra general purpose mic with stand. Omni directional, 500R. Freq Res. $100=8000 \mathrm{~Hz}$. Sensitivity $76 \mathrm{~dB} \pm 4 \mathrm{~dB}$. To clear at

Foldable, designed to give portable radios, cassettes or CD players a high quality boosted sound output. Amp can be switched in or out. Powered by $4 x A A$ cells or external

Dish can be rotated to pick up best signal, then boosted using built in amp with gain controlcan also be used with external aerial.
Gain................ 20dB VHF; 30 dB UHF Gain Control 0-30dB Max Ouput level................... 100 dBuV Power. $12 \mathrm{~V} D C$

 Compact receiver covering FM, MW, LW and 6 SW bands ($19,25,31,41,49 \& 60 \mathrm{~m})$. Built in ferrite rod + telescopic aerial. Tuning LED, earphone skt.
Great spec. at a low, low price!

Y136C INSULATION TEST UNIT
intended for use with the M260 and Desmanimither lit M266 champ ammeters, hut now they are no longer available - however instructions are included to use with almost any digital meter

500 Vdc insulation test unit designed for use with the M260 (Y136B) and M266 (Y136A) digital clamp ammeters. Unit plugs directly into the meter sockets. insulation resistance readings directly on clamp meter display. Complete with leads. instruction manual. battery and carrying case

Measuring voltage

Batteries $4 \times$ AA (supplied) Dims

Xtra Special CONNECTORS: Z042 2 pin DIN spkr skt 50/£1 2598 PC IEC skt $3 / \mathrm{E}$ 1 Z1987 75R conn 3/E1 Z2055 8pin DIN skt 12/£1 Z2021 BNC 3/£2
21714 5pin DIN 240 box of $36 £ 1.00$ Z2504 PS2 k/b adaptor £1 Star Buy !!

Send your order to:

Customer No:
Date:

Name:

Address:

Post code
27 Park Road, Southampton, SO1 3TB
(A different postcode is correctly shown on reply paid envelopes)

PFFICE	ORDER	QTY	No of	Description		Price	ε	p
	20999			Eargain List Subscription Service - - -ee Page 47 Ournext 12 lists with reply paid envelope	UKBFPO inc Post Overseas inc Pos	${ }_{\text {¢ }}^{\text {¢ }}$ ¢ 12.00		
				1224 Catalogue	UK/BFPO inc Post Overseas inc Pos	¢2.00		
				Continue on plain paper if necessary EC custom	- do NOT dedu	VAT!		

IMPORTANT: PPease fill in the following information. Thank you
Did you receive this Catalogue (Tick all that apply):
with your previous orderUnsolicited
with Everyday ElectronicsWith ETIAs a Bargain list subscriber
with Television \square Other (Please state how)
\square with Elektor
\square With Practical Wireless
2. Please let us know if you want this order:
\square Sent as soon as possible with a credit note for any parts out of stock;
\square Sent as soon as possible with any out of stock items to follow: (only if value over £10),
\square Held for expected deliveries for up to
days (state how long);
\square Other (please specify)
3. Have you ordered from us before? YES \square NO \square Are you already a Bargain List Subscriber? YES \square NO \square
4. Please tick method of payment: Cheque \square PO Cash \square Credit Card \square Other \square Ckedit Card No (Visa/Access/Connect):

(Ill ordering b̄y credit carrd, only goods supplied will bee charged, on the date of despatch)

CQ/PO:	EX?:	C/N	C/C	CASH	B/T	G/V	ST	
CO	CH :			P:		D:		

Sale prices for items from Bargain List 85
(Vellow Pages)
25

Z5201 $2 / £ 1$	Z5	All half price
Z4100 $£ 1.00$	Z6	All half price
Z2819 1.00	Z7	All half price
Z5435 $£ 1.50$	Z8	All half price
Z5437 9.95	Z9	All half price
All half price	Z10	All half price
except T120A	Z11	All half price
All half price	Z12	All half price
All half price	Z13	All half price
All half price	Z14	All half price
All half price	Z15	All half price
BP701Less 10%		except T120A
Mags no discount	Z17	RW6T $£ 14.95$
£3.95		RW62 $£ 14.95$
Rest half price		Z5491 $-4 \varepsilon 3.95$
for packs \&1-offs.		ALL4 $£ 12.00$
All half price		Z4357 $£ 12.95$
All half price		Z8891 13.95
All half price	Z18	All half price
All half price	Z19	Manuals less 25\%
All half price	Z20	All half price
Manuals less 25\%	Z21	BP324/320less10\%
Rest half price		BP701 less 10%
		Mags no discount

Sale prices for items from MAIN CATALOGUE

P3-8 10\% OFF
P9 10% OFF Retail price
P10-17 10\% OFF
P18-33 10\% OFF
P34-38 10\% OFF
P39-42 10\% OFF
P43-44 10\% OFF
P48-54 10\% OFF
P69-74 5\% OFF
P75-76 10\% OFF
PT7 10\% OFF Retail price
P79-84 10\% OFF
P89-91 5\% OFF
P92-93 5\% OFF
P94-99 5\% OFF
P116-7 10\% OFF
P122-5 5\% OFF
P133 5\% OFF
P134-7 5\% OFF
P148-9 10\% OFF
P150-5 5\% OFF

Where items are not included, it is because they appear in this brochure, of they are sold out.

> We buy surplus stock for cash! To keep our wide range of customers happy, we constantly need to procure more goods. We'll consider not just electronic components and equipment, but hardware, tools, stationery, modelling goods, photographic and books. All goods must be in reasonable quantities and suitable for re-sale. Write with details, samples and price required to: The Managing Director, Greenweld Electronics Ltd, 27 Park Road, Southampton, SO1 3TB

Thank you for ordering from GREENWELD - we appreciate your custom. This space is for any

ORDERING INFORMATION

Abstract

Please use the order form on page 45 . Single prices and packs of components with the price shown in bold include VAT - bulk or quantity prices exelude VAT which must be added at 17.5% or the current rate. If different. Payment is accepted by cash (sellotape coins to card), Mint GB postage stamps, PO, cheque, Giro transfer, Transcash, foreign currency bank notes, Access, Visa and Connect. We also accept book and record tokens for any goods and gift vouchers from any of the national chain stores. Add postage at the sale rate of $£ 3.00$ per order or $£ 9.50$ for next day delivery for any quantity of goods. Next day delivery applies to credit card and cash orders to UK mainland south of Edinburgh providing the goods required are in stock. Allow clearance time for large cheques.

Check List for Ordering:
Fill in your Name and Address which must include the postcode
Write order ciearly and legibly and include prices. Don't forget to include postage and packing charge. Please keep a copy of your order.
If ordering by credit card, ensure all 16 digits (13 for some Visa cards) are written down, and the expiry date. All credit card transactions are authorised and processed electronically, to combat fraud.
If ordering by fax, please include daytime telephone number In case of illegibility
If paying by cheque, please remember to sign it
Send the completed order to:

Greenweld Electronics
27 Park Road
Southampton
SO1 3TB
United Kingdom

How to contact us:
By Post
In Person
By Phone
By Fax
By EMail
By Giro

Use the address above
At the address above
(0703) 236363 (Ansaphone outside normal business hours) (0703) 236307 (24 hrs a day, 365 days a year)

Compuserve 100014, 1463 (This is not accessed every day, so if your order is urgent, please use phone or fax)
Use a transfer form to send details of your order to us, or pay by Transcash at any PO. Our account number is 2079194

RETURNS

We are finding customers are retuming goods that are not faulty, not wanted and/or ordered incorrectly, Regrettably, we cannot accept any goods without a returns number.

Goods returned for any other reason (including goods alleged to be faulty but found to be working) will carry a 10% handling charge with a minimum of $£ 2$, unless being exchanged for other goods, in which case retum post and packing must be paid. Any refunds made will be by credit card if that was the method of purchase, or by cheque for any other method of payment.

TERMS AND CONDITIONS

Our terms and conditions of trading are shown on page 162 of our 1993 Catalogue. A copy of this page will be sent on receipt of a self addressed stamped envelope.

OVERSEAS CUSTOMERS: Outside the European Community (including Channel Islands) deduct VAT. EC customers who can supply their VAT number may also deduct VAT, otherwise VAT is payable at the UK rate on all orders to member states of the EC. Forelgr pestage rates apply to Eire and Channel Islands.

Most orders are despatched within a day or two, but some may be delayed because of temporary non-availability of goods. If this is going to be more than a week, we will advise you.

1994 CATALOGUE

Be one step ahead! Order your 1994 Catalogue NOW and be first in the queue when they are despatched in late September! Next years edition will be bigger and better than ever before - many more new lines to cater for our customers' ever widening range of interests! Look out for big new additions of video accessories, CD's and books! Included will also be our famous Bargain List, containing an amazingly diverse range of surplus products - 50 don't miss out, Order Now. And if you want to be sure of keeping up with our offers, become a Subsciber. Our monthly mailings contain the Greenweld Guardian, details of our latest purchases with exclusive offers, deals and competitions. As the UK's biggest supplier of new and surplus electronic components and equipment, we have the skills, the manpower and the money to bring you the best ever deals! There's a space on the Order Form to reserve your copy.
Get it from GREENWELD - you know it makes sense!

GreenweldGuardian

Our monthly newsletter contains technical articles from Paul Kerman, news of our products and views from customers, and can be yours for just £6 a year UK, £12 Overseas. Just look what you get by being a Subscriber:

\square Ist Class reply paid Order Form

\square Latest Bargain Lists, including details of goods not advertised elsewhere
\square special Offers only available to Subscribers

Competitions and Free Gifts
\square Priority Service
If you are a modeller or constructor, or have an interest in computing, electronics, mechanics - or just have an eye for a Bargain, then you need to subscribe.
Just tick the appropriate box on the Order Form for a year's supply of Superdeals!

Thank you for taking the time to look through our brochure; this SALE edition has a print run of almost 150,000 as it is being included with several different monthly magazines, and demand for some products will almost certainly outstrip supply.

Because of the staggered publication dates it could mean that although you may have only just received your copy, stocks of the more popular items might well be running low. Please place your order as soon as possible to avoid disappointment. If you are calling in personally, please check before travelling long distances the items you require are available. We will reserve stock if requested.

6 STUNNING METER OFFERS!

IOM Ω MULTIMETER

* 3,999 count resolution
* 40 segments bargraph
* Max., min and average function
* Ratio measurement Function
* Error correction function
* Relative magnitude function
NORMAL SELLING PRICE £I20! Preyiously $£ 4995$ Bil: 4010
Yi30 or YI30A (temp probe not included)
AC volts \qquad . 0-4-40-400-750Vac $\pm 1 \%$
DC volts $0-400 \mathrm{~m}-4-40-400-1000 \mathrm{Vdc} \pm 0.5 \%$
AC current \qquad .0-40m-400-10Aac $\pm 2 \%$
DC current................................0-40-400m-10Add $\pm 1 \%$ Resistance $0-400-4 \mathrm{k}-400 \mathrm{k}-4 \mathrm{M}-40 \mathrm{M} \Omega \pm 1 \%$ Frequency (Y 130 ONLY)0-10k-65kHz TL level (5V) Temperature (YI30A ONLY).
.................... 50 to $1200^{\circ} \mathrm{C}$ Dims.
$165 \times 78 \times 35 \mathrm{~mm}$
$10 \mathrm{M} \Omega \quad$ Order Code M818B
$\star 40$ point analogue bargraph display
$\star 3.75$ digit 17 mm LCD display
\star Autoronging voltage and resistance
\star High and low frequency ranges
- True RMS AC voltage and curent
\star Diode and continuity test
\star Data hold switch
\star Built and tested to IEC 348
\star Fully shrouded test leads
NORMAL SELLING PPCEE75

Battery, instruction manuol and carrying case included.
AC voits DC volts AC curent. ent............ De curtent. Resistance Frequ
Dims.
$.0-40-400-750 \mathrm{Vac} \pm 1.5 \%$ Dims
$0-400 \mathrm{~m}-4-40-400-1000 \mathrm{VdC} \pm 0.5 \%$ $.0-4 m-40 m-400 \mathrm{~m}-2-10 \mathrm{~A} \alpha+1.5 \%$

\qquad $.0-4 m-40 m-400 \mathrm{~m}-2-10 A d c \pm 1.2 \%$ | $. .6-4 m-40 m-400 \mathrm{~m}-2-10 \mathrm{k}$ dc $\pm 1.2 \%$ |
| :--- |
| $0 \mathrm{k}-400 \mathrm{k}-4 \mathrm{M}-20 \mathrm{M} \Omega \pm 0.8 \%$ |

Y123PA

10M Ω PROBE MULTIMETER

$\star 3.5$ digit 8 mm LCD disijiay
\star Fully autoranging
\star Display hold facility
\star Probe styling
\star Auto polarity and zero

Complete with extended probe, fully shrouded test leads and vinyt carrying wallet AC volts. DC volts............................2-20-200-500voc $\pm 1.2 \%$ Resistance-200-2k-20k-200k-2M-2M. $\pm 1.0 \%$ Rims.. $160 \times 35 \times 20 \mathrm{~mm}$
3.75 digit 25 mm LCD disploy (2999 count) with 40 point borgroph

- True RMS meosurement
- Auto/manual ranging
- 20A ac/dc measurement capability
- Frequency measurement
- Memory mode for relative measurement
- Data hold

Full averload protection
NORMAL SELLING PRICE $£ 89.95$ Previously $£ 39.95$. PRICE
 1
. $0-20-200-700 \mathrm{Vac} \pm 1 \%$ $0-30-300-700 \mathrm{Vac} \pm 1 \%$
$A C$ voltage: Auto
Manual

DC voitage: Auto . $0-200 \mathrm{~m}-2-20-200-1000 \mathrm{Vdc} \pm 0.7 \%$
Manual....... $0-300 \mathrm{~m}-3-30-300-1000 \mathrm{Vdc} \pm 0.7 \%$

AC current
$0-30 \mathrm{~m}-300 \mathrm{~m}-20 \mathrm{Aac} \pm 1.8 \%$

C current

0-30m-300m-20Adc $\pm 1 \%$
Resistance: Auto $0-200-2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M} \Omega 2 \pm 0.8 \%$ Manual ... $0-300-3 \mathrm{k}-30 \mathrm{k}-300 \mathrm{k}-3 \mathrm{M}-30 \mathrm{M} \Omega \pm 0.8 \%$
Frequency Dins

10 Hz to $20 \mathrm{kHz} \pm 0.5 \%$
$100 \times 85 \times 40 \mathrm{~mm}$

> RADIO SCANNERS = Send SAE for full details of our range of high quality scanners af greaf prices!
commercial importance, it is also important that such measurement techniques are available within the educational sector, in order to focus awareness on a vital area of future economic growth. Such systems do not necessarily need to be so expensive or complex. A specification such as a wavelength 2 nm resolution between 250 nm and 750 nm , with 12 bit dynamic range and a spectrum able to be produced in 10 seconds would be a useful starting point - educational scientific designers and manufacturers should take note.

Fig. 8 Use of a CCD to record four simultaneous spectra: in this example each spectrum is mapped to a specific region of the CCD suriace

Fig. 9 Typical Quantum efficiency of CCD units. Specific options of back thinning, deep depletion or UV enhancement can improve performance as indicated.

TIME 2OOSS VOTAGE CALIBRATOR MARCCNI TFZSOO WAVE ANALYSER 2OHZ-5OKHZ HP. 5315 A 1GHZ FICTR OPTS $1.2 \& 3$ FLUKE OGSOA DGGTAL MULTIMEIER FISONS FHONITOAS, LIOUDD LEVEL DETN TE EQUPPMENT SS1 SINGLE TRACE SMHZ SCOP PHILIPS PMG156 FM STEREO GENERATOR MARCONI TFZZ33 MFF OSCA LEVEL METER H.P. BUCSA VECTOR VAMETER 1GHZ PHILLPS PH3226 15NHHZ OUAL TRACE EEADER LBO522 2OMHZ DUAL TRCE TELEQUIPMENT DGTA 10HHZ DUAL TRACE SELABS SNIIt IBMHZ OUAL TAACE TEK 4658 1001HZ OUAL TRACE DEE T/B
HP $174 A 1$ IOMHZ DUA TRACE DEI T/B H. 174A 1OMH HZ OUAL TRACE OEE TA TELEQUIPMENT DG7A 25MHZ, 2T, DE1 TELEQUIPMENT DO7A 2SMHZ, TI, DEL T/B H.P 1700A 3SMHZ DUAL TRACE BECKMAN SO2 ZWIHZ DUAL RRACE HP: 1342AX.Y DISPLAYS
WANDEUGOLTERHANN SPM-2 LEVE METER WANDEUGOLER WAN SPR-2LEVE MEIE
WANE GOLTERMAN SPM-3 LEVE MEIER WANOE/GOATEFMKNN PS 3 SIGNAL GEN MARCONI TFZZOL AMFM MOD UETER PRTBLE XFOR ERS SEC 3 O-RZOV 2OA, UNIV PRI'S, C-CO CONSTANT VOLTAGE THANSFS 150VA-ZKVA

A car light failure reminder by Bob Noyes.

Lumitec

"0i mate, did you know one of your brake lights is out?" It's good when someone alerts you to the fact, but more often than not you can be driving around for weeks without knowing your lights aren't working properly. And how many times have you followed a car at night and noticed that only one tail light is working, thinking "how dangerous, I wonder if my lights are OK"? In a perfect world, everyone should regularly check their cars out for the basics but it's not perfect and a lot of us don't bother. How nice it would be to have an audible warning when a tail light failed - it would bring peace of mind, for as well as increasing safety it would help you to keep your car 'legal'.

One of the tail lights on my car failed a couple of months ago and I didn't know about it until my son spotted it, so I decided to design a simple cireuit - 'Lumitec' - to monitor the power going to the bulbs. A small resistance is inserted into
the power positive wire to the bulb in question and, when the bulb is powered, a small volt drop is experienced across the resistor. Because of the relatively high currents, this series resistor is very small. For the brake lamps/indicators, 0.05 R is recommended and for the tail lamps, 0.1 R . When in operation, less than 200 mV is dropped across these resistors so the brightness is not noticcably affected and the power dissipation in these series resistors is minimal.

The output can either illuminate an LED or sound a buzzer, or both. The buzzer is preferable because an LED can illuminate and not be noticed, whereas a buzzer attracts immediate attention.

Fitting And Setting

Because this board is going to work in a car where condensation can be a problem, the tracks should be cleaned of flux and sprayed with a PCB lacquer, to protect the copper

HOW IT WORKS

As indicated before, a small value sense resistor is inserted, into the positive side of the bulb in question. The size of this resistor depends upon the current in the circuit being monitored. The value of the resistor should be chosen so that when the bulb(s) are on, a voitage of no more than 200 mV is developed across it. To give some indication of values, here is a table of currents, powers and so forth.

	BULB POWER WATTS	CURRENT AMPS	RESISTOR OHMS	$\begin{aligned} & \text { PD. } \\ & \text { VOLTS } \end{aligned}$	POWER WATTS
Brakes	2×21	4	0.05	200 mV	0.8
Indicators	21	2	0.05	100 mV	0.2
Tail Lamps	2×5	1	0.1	100 mV	0.1

These values are only an indicator, as battery voltages vary depending upon age, charging rates, etc. and bulbs vary in power depending upon age and state of wiring, etc..

The current in the amps column is the steady current if the bulb is left on, but such buibs as indicators and brake lights are constantly switched on and off. When a bulb is cold, its resistance is much lower, so a high current pulse flows until it warms up. This pulse can be several
times the steady state value so, where fixed value resistors are fitted, the power ratings are much higher than normal. 2.5 W wire wound has been used and no problems have been experienced.

A 741 op-amp is used as a voltage comparitor, to compare the voltages either side of the sense resistor. As op-amps do not like sensing at their rail vollage, both sides of the sense resistor are potentially divided down to approx. $1 / 2 \mathrm{~V}$ so the sensing is done around 6 V . The +ve side of the sense resistor is used as the supply for the op-amp, because it cannot be tumed on all the time or it will give an indication that the brake lamp bulb has blown when the brake has not been activated Each of the sense circuits is individually powered onily when the appropriate bulb is powered. The centre of the potential divider, R 4 -R5, on the +ve side of the sense resistor R 1 is connected to pin 2 (inverting input) while a small variable resistor, ik RV1, is fitted in the middle of the bulb side potential divider, R2-R3. This will allow for any tolerance incompatibilities in R2, R3, R4 and R5 to be cancelled out. The centre of the preset is taken to Pin 3 of the op amp - the Non-inverting input. The setting of this variable resistor is critical for the correct operation of the circuit.

When the circuit is working correctly, the voltage presented at Pin 3 of the op-amp is slightly below that at Pin 2 , because the volts drop across R1 due to the current of the bulb(s).

When one of the bulbs, if there are two, or the bulb it there is only one
tracks from corrosion.
The 4 -way Lumitec has been designed to fit at the back of a car behind the lamp assembly. Most cars have a left and right rear light assembly where all the lamps are mounted in one block - a loom comes in from the front of the car to either the left or right assembly and is connected to the other via a short loom (as per diagram).

The wires on the rear of the light assembly can be identified simply by seeing where they go and can be confirmed by monitoring the voltage on each pin when various lights are activated. Because these assemblies usually have special connectors, it is best to leave them well alone and cut the wire several inches up the loom - enough to allow the wire to pass through into the box containingLumitec and fitting the female insulated spade connector which plugs directly onto the PCB. If desired, Lumitec can be connected to a connector block and the wires connected from the connector block into the loom. All cars are different and it is a matter of taking great care with all the wires by not letting them short and checking that all wiring and connectors are of sufficient current carrying capacity (see table). The buzzer can be mounted in the rear of the car, but in the boot the sound might not be detected, so the best place for it is under the dash. A wire is taken from Pin E up to the dash to the buzzer and, for safety, the +ve side of the buzzer has an inline fuse -500 mA up to the ignition switched side. The single channel Lumitec can be mounted anywhere, such as behind the dash with the LED output mounted on the dash, but the buzzer should also be connected. To find the correct wire to monitor any given light the car's circuit diagram should be consulted. If you're still not sure, ask at your local garage.

A good earth (0 V) connection is required, do not use the bulb common. Wire direct to the chassis
blows, the current through R1 will reduce. This in tum means that the voltage at Pin 3 of the op-amp is no longer lower than Pin 2 and the output of the op amp will go from its normal low to a high, This tums on Q1, which in tum activates the buzzer, the +ve of which goes to the ignition switched side, i.e. at 12 V when the car is in motion.

To save on buzzers, a 4-channel block has been designed, the operation of which is exacty the same as the smaller single channel, but the outputs are connected via diodes to one dive transistor, Q1. This in tum goes to the buzzer and again the +ve side of the buzzer goes to the ignition switched side.

Because of the size of the 4 -way Lumitec, the sense resistors have been formed by the PCB track. This saves fitting power resistors on the brake light and both indicators, but because of the relatively high value 0.18 for the tail light a resistor, R19, is still required.

Athough the first three circuits of the 4 -way Lumitec look the same, the length of track that forms the sense resistors differs. That is why the shortest piece of track, channel 3 , is used as the brake monitor, as this normaly has around 4amps through it, so a smaller track length is required to drop the required sense voitage.

NOTE:
Q1
O1-D4 1 1N4148
IC1-IC4 741
1RT1, RT2, RT3 ARE PIECES OF TRACK ON TRACK SIDE
THESE GIVE THE REQUIRED RESISTANCE
BECAUSE TAIL LIGHTS ONLY TAKE IA'A19 IS REQUIRED

Fig. 1 Four channel circuit

NOTE:
10 WAY CONNECTOR 0.156 BLOCK MALE PINS 10 WAY CONNECTOR MAY BE REPLACED BY SOLDER PIN'S FOR RI SEE TEXT

Fig. 2 Single channel overlay
and off at the indicator speed (normally slower when a bulb is dead or removed). When all of these have been adjusted, drive around the block to check they work in all combinations = sometimes a slight readjustment may be required. When you're happy with the settings, the pots can be sealed with a small dab of paint - this will stop the vibration of the car from adjusting the presets - then fit the lid. The box can either be mounted or laid in the shell of the car. Care should be taken that no strain is put on the wires and that it doesn't vibrate in motion.

It is easy to detect which bulb
is blown when the buzzer sounds. If it only buzzes when the brake pedal is pressed then that is the problem, if it buzzes when the lights
and, once the Lumitec has been fitted and the wiring checked, the RV is adjusted so that the buzzer sounds when the appropriate bulb is removed and the circuit powered.

In the case of the brake and tail lights, the pot should be set so that the buzzer sounds when one of the bulbs is removed. Assuming normal 5\% resistors have been used, the pot should be set in the centre as a rough guide and adjusted to sound when the bulb is removed and the circuit is powered.

Each circuit is set up one at a time. This is much easier with the indicators because at the rear there is only one bulb on each circuit. The output of the buzzer will only bleep when the lamp should be on, i.e. it will pulse on

NOTE:		
Q1	BCI07	
IC1	741	
R1	SELECT FOR MAX OF	200̈V ACROSS RI ON LOAD
TAIL LIGHTS, SIDE LIGHTS	OR1 2.5 W	
INDICATORS, BRAKES	ORO5	2.5 W

Fig. 3 Single channel version of circuit

NOTE:
NOTE: LKK, LK4 MAY BE REPLACED BY ZERO OHM RESISTOR TYPE LINKS MALE SPADE CONNECTORS

MOUNTTNG BOLT HOLES
CORNERS MAY HAVE TO BE REMOVED TO FIT BOX

Fig. 44 channel overiay

are on that gives it away. The sound of the buzzer is annoying, so it should encourage you to replace a dud bulb quickly - not a bad thing from the safety aspect but it should reduce the risk of being stopped by the police.

NB. With the brake or tail lights the buzzer does not sound immediately. This is because although one bulb may have failed, the other one draws a high current pulse which is high enough not to trip the comparitor on switch on. When the bulb settles down to its steady state current, the buzzer sounds. This circuit has been designed for the rear lights, although the single channel unit could be fitted to the front side lights.

The headlights should not be monitored as they draw much
more current - 60 watts each - which is around 10 amps steady state. The heated rear windows should not be connected to this circuit because some of these draw around 20 amps - far beyond the capabilities of this circuit as presented here, although the same monitoring principles apply.

Wire Rating

Before any work is done, check the currents expected. These wire ratings may help:

$16 / 0.2 \mathrm{~mm}$	0.5 mm	3 A
$24 / 0.2 \mathrm{~mm}$	0.75 mm	6 A
$32 / 0.2 \mathrm{~mm}$	1.0 mm	10 A

PARTS LIST SINGLE CHANNEL VERSION RESISTORS
 R1 see text
 R2-6 10k
 R7 2k2 MISCELLANEOUS
 R8 680R $1 / 2 \mathrm{~W}$
 RV1 1 k preset
 SEMICONDUCTORS
 Q1 BC107
 IC1 741
 ABS box, e.g. Maplin Cat No. LH2OW M3 nuts and botis to suit

4 CHANNEL VERSION D1-4 1 N4148
R1.17 10k
R18. 2k2
R19 OR1 2.5W MISCELLANEOUS
RV1-4 1 k preset
SEMICONDUCTORS
Q1 BC107

IC1-4 741

ABS box 2005, e.g. Mapin Cat No. LH61R
M3 nuts and bolts to suit

Call us now! We have the widest range of components available - At competitive prices int CABLES
 CAPACITORS (8)
(3)
VIDEO HEADS

SPEAKERS
CRICKLEWOOD

Fig. 1 Split desk showing simplified input section and monitor section

by Mike Meechan

In this latest part of the AutoMate series, we're going to look at routing and some of the devious paths along which audio must pass, on its way from microphone to stereo master via the multitrack recorder.

Routing deals with switches (and other controls, as we'll discover later) which determine the audio pathway within the console architecture, whether it is in the channel itself, on or off the mix busses, or out of the mixer completely. It also encompasses such mundane but necessary functions as the switching in and out of equalisers, filters and dynamics processors.

Evolution of the In-Line Console

On any multitrack recording desk, it must always be possible to monitor the input or recording signal on each of the scparate tracks, be there four, eight, six= teen or whatever. A mix, both of what is

Annivel

going on to tape and what is down already is then presented to the monitor loudspeakers as a reasonable representation of the final stereo mix. This is the so-called monitor mix. For us to be able to achieve this, there has to be made available some method of inputting each track taken offtape into the console. Conventionally, this is known as off-tape monitoring, B check or tape machine retum. Controls to manipulate level, spatial positioning (pan) and pcrhaps FX send levels must also be provided in any comprehensive system. See Figure 1.

Further, we must be able to monitor the track return in isolation (provision of more Solo monitoring points) and perhaps also create foldback mixes from the signals coming offtape, thus allowing a feed of the machine sync. signal or the line input signal to be sent to the artist's headphones. The recorder clectronics may be used to effect this switching (most incorporate logic switching/audio routing systems which are smart enough to achieve this casily) or there may be a Monitor A/B switch associated with each track on the monitor channel (in normal studio convention, A is the Record or input side of the
tape signal and B is the Replay or output side). Much depends on the console designers overall pricing strategy and the kind of machines which he envisages being connected to the desk. Limited EQ (normally LF and HF shelving types) is also sometimes provided. Figure 1 shows a typical split configuration desk.

With reference to the above, it is easy to see that many of the monitoring facilities attributable to the machine returns are, in fact, similar or identical to those which constitute the

The amount of redundancy of console electronics at any one stage in the recording process was growing at a rate commensurate with the number of tracks involved. Desks of this immensity became not only an economic nightmare, but an ergonomic nightmare into the bargain. During a session, engineers were constantly to-ing and fro-ing, on wheeled seats, across the wide expanse of the desk in an effort to reach the farmost controls.

It's a Wrap(around)

A partial compromise (an expensive compromise) was in the adoption of the 'wrap-around' style of console. This type found vogue in the early Seventies until, later in that same decade, the width increased again. Despite rumours to the contrary, it was because of a growth in the number of input channels (which increased the central width) and not in an effort to accommodate the engineer's flared trousers! Nevertheless, and in spite of the punitive cost of such a design, it was a good arrangement. Costs were prohibitive, though, because each desk was in essence a one-off, custom job. See Figure 2.

sary AutoMate Mixer

mixer input channel. To this end, it is not unusual for multitrack dcsks to have an entire secondary sub-mixer - the monitoring mixer - to achieve the mixes necessary. This is the principle behind so-called 'split' consoles, with one section completely dedicated to recording to multitrack (the input section) and split from the other (the one dedicated to the group output/monitoring input facilities and mixdown to stereo).

These are the lines along which large recording desks first evolved. Channel, group/monitor and master sections were all in different modules. As music recording progressed from four track (in the Sixties) up through eight, sixteen and twenty four tracks, still there remained a requirement for each track return to have all of the controls listed previously and more besides. As the number of tracks increased, so the number of different foldback mixes needed to allow the musicians to keep track of what was going on during the recording session multiplied. What was present for most of the session on the stereo bus, except during mixdown, bore no resemblance at all to the finished mix. The provision of many different foldback mixes was one of the measures necessary to ensure that the artist was fed with what he/she needed at any particular point during the session. The effect on the size of the desk, when one considers a 24 bus example, needs little imagination - two mammoth mixers side by side, a recording one (say 56 inputs) and a monitor one (24 groups/ monitors), split only by the master module. All of the separate facilities of each were considered never to be needed simultancously.

Eureka?

To sidestep such problems, the designers of the era needed to take a tangential look at the mixer and do some rather lateral thinking.

We've already said that just about every aspect of the monitor mixer is identical to that of the input mixer. It was a natural process of evolution to combine them in a multipurpose, input/output channel which could then be configured for whichever job it was being asked to do at a given time. Realising that both input and group/outputs could be combined in a single module - since the full facilities of each section would never be needed simultaneously - was a major step forward in the recording world since all recording/ mixdown requirements could be fulfilled in one multitask module.

It proved to be a somewhat radical, but neverthelcss successful marrying of input and monitoring electronics. Understandably, however, there was more than a little reticence shown by many engineers to using a system which deviated so wildly from the conventional format and today, both types of dcsks find their proponents and detractors.

A further benefit, both from an operational and from a manufacturing point of view, was that some of the more superfluous parts of the split architecture - the group faders, for example - could bc climinated entirely from the new design.

So, the in-line console was bom. Very quickly, other operational advantages were exploited. Facilities once available, on the input channel alone could now be arranged to

32 GROUP MATRIX ROUTING ACCESSED USING 9° SWITCHES AND ROUTING PANPOT. SW1-8 SELECT WHICH PAIR OF BUSSES ARE ASSIGNED AND CHANNEL PANPOT DETERMINES WHETHER IT IS THE ODD(LEFT) OR EVEN (RIGHT) HALF OF THE PAIR. SW 10 SELECTS WHETHER IT IS THE UPPER (17-32) OR LOWER (1-16) GROUP OF BUSSES WHICH ARE IN USE.

ADVANTAGES:
1 CHEAP - ONLY EGGHT 4 POLE SWITCHES AND ONE DOUBLEPOLE CHANGEOVER SWITCH ARE USED

2 SAVINGS IN PANEL SPACE SINGLE BUTTON ROUTING FOR EACH TRACK WOULD REQUIRE 32 SWITCHES

DISADVANTAGES:
1 LACK OF FLEXIBILITY - CANNOT ACCESS A BUS ON THE UPPER 16 AND THE LOWER 18 SIMULTANEOUSLY SIMULTANEOUSLY
SIMILARLYCANNOT SEND SIMILARL YCANNOT SEND
SIGNAL TO ODD AND EVEN SIGNAL TO ODD AND EVE
BUSSES ON DIFFERENT SWITCHES EG. BUS 1 AND BUS4
2 NOLSE INCREASES ON BUSSES WHICH ARE UNASSIGNED BUT WHICH HAVE RBUS
CONNECTED

IN EXAMPLE SHOWN. PANPOT IS HARD LEFI, SWIO IS MADE (BUSSES 17-32) AND SWB IS MADE SO CHANNEL IS ASSIGNED TO MIX BUS 31. NOISE ON BUSSES 15 AND 16 INCREASES BECAUSE R29 AND R30 ARE CONNECTED TO BUS
Fig.3a Group routing matrix example (32 bus example - limited access)
appear in cither of the two parallel signal paths evident in this architecture. Normally, 'Flip' or 'Master' push buttons local to sections expedite this exchange of facilitics between channel and monitor signal paths with, perhaps, a 'Master Channcl Flip" control that effects rerouting of all signal paths within the module. There may also be a 'Console Flip' pushbutton (located on the master module) which can configure signal paths in each channel across the desk (although local Channel Flip controls can reconfigure individual channels as desired). Figure 4 in the June issue of ETI is representative and, rather than 'Channel Flip' type controls, the diagram shows multiway 'Mode' switches at strategic points throughout the channel electronics. These will be commanded by the automation system which resides in the Master module, although some, as in the example mentioned above, can in certain circumstances be overridden locally (on the channel strip). Other switches annotated with an asterisk will also normally be plumbed into the consolc automation system. Interlocksexist in certain modes and between certain switches to stop non-sensical routing arrangements from causing havoc with the console audio pathways.

The only downpoint, ergonomically and consequently, in the operation of the in-line design, was the required increase in channel module length, as a result of having to accommodate on each channel the increased number of switches and
push buttons inherent in an in-line topology. This extreme length has meant adopting the practise of arranging that the most infrequently-used controls are sited at the top. To this end, channel input gain, phase reverse switching and phantom power switching controls, which are infrequently changed, normally reside in these murky recesses of the channel strip. In most normal circumstances, this is a minor irritation and a small price to pay for the overall increased convenience which in-line consoles afford the user.

Nevertheless, at least one major manufacturer, at the pinnacle of the pro-audio profession, considers that there is a lot of redundant circuitry in the In-Line type. Designers of these desks hold the belief that it is rare, except during ovcrdubbing, for the module functions to be operated simultaneously and so cutting the signal path number from two, back to one, means making a single path of high quality more affordable. Their philosophy is to integrate the best features of the in-line architecture - comprehensive logic systems and master switching - into a 'split' format. The desk features a wraparound-style of design and is very expensive, but it may be a new answer to a familiar problem.

The Recording Process

In previous paragraphs, the words mixdown, overdubbing and recording have been bandied about freely. To fully
understand what might reasonably be expected of a decent mixer routing system, we must first look at each of the steps involved in going from the original recording session, via multitrack, to the final stereo master. Only in this way will it become apparent just what a decent routing system must accomplish.

We will now look at the ways in which each of the two types (in-line and split) achieve the audio routing required at each of the different steps involved in the recording process. Where appropriate, in the description of each of the stages, I'll outline the differences which exist in the way that the audio is processed. Each of the main sections of Figures 1 and 4 from the June issue are represented schematically as boxes.

Recording

The name of the game during the recording step is to get the signal from the vocalist or musician, via a microphone and mic input (or the line input, in the case of an instrument) onto a given track of the multitrack. The only modules where
mic amps are fitted are the input modules so any mic'd source must be applied to these. Little manipulation of the sound is done at this point, since the idea is to capture the sound just as it is - once it's safely on tape, it's an entirely different matter. The exception to the no-processing rule is in the use of noise gates, compressors or filters, which are used to tighten up the sound for recording, or to improve the overall clarity or fidelity of it.

- The channel fader controls the input signal level to the bus, while the channel panpot sets its position in the stereo field. In-line architectures contain both channel and monitor faders (large fader and small fader) and channel and monitor panpots, hence the distinction. After the panpot comes the multitrack group routing matrix (and the post-fade take-offs for the post-fade Aux Mixes). This is a matrix of push buttons, either momentary if controlling solid state switches or latching if the mechanical switch itself is doing the routing of the audio.

With an eight bus system we need to be able to access each

18 GROUP MÄTRIX ROUTANG ACCESSED USING 17 SWITCHES ANDIOR ROUTING PANPOT. SW1-16 SELECT THE RELEVENT BUS (ODD=LETT, EVEN=RIGHT)AND SW19 DETERMINES WHETHER THE SIGNAL IS DERIVED POST-PANPOT (AND FOLLOWS IT), AND SO IS STEREO OR IF IT IS DERIVED PRE-PANPOT AND IS MONO.

ADVANTAGES:

1 VERY FLEXBLE - ALI BUSSES ARE ABLE TO BE ACCESSED INDIVIDUALLY OR COLLECTIVELY, NO HATTER WHETHER THEYRE ON ADJACENT BUSSES OR NOT (EG. $5 \& 6,11 \&$ 12). MATRIX INPUT SICNAL CAN BE MONO OR STEREO.

DISADVANTAGES:
1 EXPENSIVE-16 SINGLE POLE SWITCHES RECUIRED EVEN FOR A MEDIUM SEZED 16 BUS EXAMPLE.
2 PUSHBUTTON MATRXX OCCUPES A LARGE AREA OF FRONT PANEL SPACE, SO BUTTONS MUST BE MADE SMALL IN ORDER THAT SPACE USAGE BE MAXIMISED.

3 DIFFICULTY IN AUTOMATING AN ARRANGEMENT SUCH AS THIS - REQUIRES TWO EIGHT BIT WORDS TO DETERMINE ONOFF STATUS OF EACH GROUP.

3b Group routing matrix example (16 bus system, all busses äble to be assigned singly)

Fig. 4 In IIne and split methods of recording

This track laying process is repeated along each of the individual tracks until each is recorded upon. As the mix progresses and more and more tracks of the tape become occupied, it becomes increasingly important that the person providing the contribution at any time during the mix can hear what has already been recorded on tape. It is normal for the drum sound and balance to be done first since the drummer is recorded in an isolation booth and the other musicians normally like to have something to listen to as they play. Next comes bass and electric guitar, keyboards, vocals, etc..

This is where the monitor sections come in. On a split console, the tape returns (from the machine repro heads) are situated on the monitor sections and normalled through to the individual channel line inputs or separate B-check machine inputs. Each monitor section can source what is going out on the Group bus associated with that particular section or track (A-check or Source) or coming back from the tape track (Bcheck or Tape). All but the least expensive machines are clever enough to know what any particular track is doing at any one time - recording or replaying - so this switch is often. left permanently connected to Tape and the machine left to control source/tape switching. As mentioned earlier, some mixers do away with such a switch completely and let the machine do any switching that is necessary.

Associated with each of the monitor sections, as already discussed, is a level control, simple.EQ section, pan-pot, and level and routing controls allowing access to each of the Aux Mix busses. These are then used to generate the individual foldback mixes necessary for each of the different musicians.

Obviously, different musicians playing different instruments might have different foldback requirements, so access to a large number of such foldback mixes is advantageous operationally.

An in-line console does things somewhat differently. The off-tape signal is routed back to its associated input/output channel via the Tape Return jack. All of the facilities of this channel - noise gates, filters, EQ , large channel fader, etc. and any other channel dealing with an off-tape signal, are flipped to monitor so that for the monitor signal, the engineer has at his/her disposal all of the facilities and flexibility normal available only to input (channel) signals during recording.

Figures 4 shows the main elements of input and monitor= ing facilities as blocks. These can be cross-referenced to corresponding dashed and numbered sections of the in-line and split schematics of Figures 1 and 4 in the June issue. In this way, it is much easier to follow signal routing in the different modes of operation and to see what part they play in each. Such a simplified approach allows the operation of any desk, no matter how complicated, to be easily understood.

Next month, we continue to look at audio pathways during Mixdown, Overdubbing and sub-grouping before looking at the switching involved in the Automate's Aux mix busses.

References

Dove, Steve, Consoles and Systems, The Audio Cyclopedia (edited by Glen M. Ballou), SAMS

VOLT HOME STUDIO MONITOR

Designed speciflcally for studlo use, thls design also gives excellent results when used for conventional HIFi reproduction. The HSM kit is remarkable value - you would have to spend many times its cost to achieve comparable results from a readymade speaker. The HSM will produce high undistorted sound pressure levels \& has massive power handlling capability (full uncllpped output of 200 watts). Split circuitry crossover is used to enable biwirlng to be employed without any modificatlons.

... all in all, highly recommended"
Paul White, Home \& Studio Recording magazine.
The kit includes bass and treble units, flat pack cabinets (accurately machined from smooth MDF for easy assembly), acoustilux, assembled crossovers, reflex ports, binding posts, grille fabric etc..

> Dimensioas:
> $508 \times 2 \mathrm{si} 7 \times 243 \mathrm{~mm}$
> Response.
> P $30 \mathrm{~Hz}-20 \mathrm{KHz}$
> Sensitivity:
> 900dh/twatm
> AMP Suitibility: 20:2004
> $\$ 379.00$ per pair inc VAS. carldeetno stana

Wilmslow
 \checkmark Audio

DIY Speaker catalogue $\mathbf{£ 2 . 0 0}$ post free (export $£ 3.50$)
Open Tuesday to Saturday, 4 demonstration rooms available.

Dept. ETI, Wellington Close,
Parkgate Trading Estate Knutsford, Cheshire WA16 8DX
Tel: (0565) 650605
Fax: (0565) 650080
Telephone credit car
orders weicome
elephone credit card
orders weicome
ion rooms available.

UK DISTRIBUTOR AND STOCKIST FOR THE COMPLETE ILP RANGE

\star AMPLIFIER MODULES
\star PRE-AMPLIFIERS
\star 100V LINE TRANSFORMERS
\star TOROIDAL TRANSFORMERS
\star LIGHIING TRANSFORMERS
Write, phone or fax for data and prices

Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104

PLASTIC BOXES

A RANGE OF SMALL PLASTIC BOXES, CASES AND POTTING BOXES AVAILABLE IN ANY QUANTITY

SEND FOR FREE CATALOGUE SLM (MODEL) ENGINEERS CHILTERN ROAD, PRESTBURY, CHELTENHAM, GLOS GL52 5JQ FAX: 0242226288

In the 21 years since ETI first hit the news stands, a great many interesting features and valuable projects have graced it's pages. Although back numbers are only available for the past 12 months, we can supply photocopies of any individual article ever published in ETI.

Photocopies cost just $£ 2.00$ per article, per month regardless of length. Please note that articles published over several issues must be ordered as a series of individual articles, each for $£ 2.00$.

PCB foil patterns (where published) and any errata are included with all photocopies as applicable.

Please supply photocopies of the following article(s) published in ETI (complete in BLOCK CAPITALS)

An auto, low-level path-light by Mark Daniels

1light which comes on automatically at dusk and switches itself off at dawn, all without user intervention, has many applications. The Twi-Light was originally designed to provide all night lowlevel illumination of the author's otherwise unlit garden path.

Conventional outside lamps, the majority of which use mains bulbs of 60 W or greater, would prove qnite expensive to use for regular all night illumination. Taking an average usage of 12 hours per night over a period of one year, a 60 W lamp will use roughly 250 units of electricity. With current electricity costs of around 7.5 pence per unit, at standard rate, the annual running cost would be nearly twenty pounds.
The cost of running the 2.2 W bulb used in the prototype unit is around one pound per year - barely significant. Thus the cost of constructing the unit could be recovered in less than twelve months.

A mains power supply is not essential for the Twi-Light, so it may easily be adapted for use as an automatic outside lamp for a caravan, which on some of the caravan sites frequented by the author would not be regarded as a luxury!

Twi-hight Ione

Fig. 1 Circuit of Twi-light

Light Sensing

Electronic sensing of lightlevels is nofedifficult and there are many suitable transducers on the market, most of which are inexpensive.

The cadmium sulphide (CdS) light dependent resistor (LDR) is one of the best known devices available, particularly as the ever popular ORP=12. It is also amongst the least
expensive and is probably the easiest to use, with its linear luminance/resistance characteristic and its wide variation of rësistance with light level.

Circuit Description

The complete schematic for the mains powered version of the Twi-Light is provided in Figure 1. A suitable mains
power supply is also included in this circuit diagram, but if operation from a car battery is envisaged, the power supply section may be omitted. Complete details of this modification are provided later.

The mains power supply section, comprising transformer Tl , bridge rectifier BR 1 , smoothing capacitor Cl and monolithic voltage regulator ICl provide regulated 12 V DC for the electronics and the lamp.

The light dependent resistor R 1 and a preset potentiometer RV1 are connected across the 12 V , supply forming a potential divider network. The output voltage of the potential divider varies with illumination level and is sensed by the flip-flop in a 555 timer, IC2.

This device normally senses the voltage level on a timing capacitor, which is omitted here, the output going high when pin 2 (the Trigger input) is taken to a voltage level of less than $1 / 3$ of the supply voltage. The output returns to the low state when pin 6 (the Threshold input) is taken higher than $2 / 3$ of the supply voltage.

The difference in the voltage levels required for the output to switch from the high to low states and vice-versa is very important in this application as it provides the necessary

hysteresis for correct operation. Without this hystercsis, the output would fluctuate between the on and off states as the lamp was switched on and the photocell being illuminated by the lamp would experience a fall in resistance, thus turning the lamp off again. This would repeat cyclically until the ambient light level fell sufficiently for the combined effect of daylight and the light from the lamp to be insufficient for repcated triggering.

The output of IC2, at pin 3 , is only capable of driving small loads and is followed by a single stage of transistor amplification, comprising Q1 and resistor, R3 to limit the current into its base. The device specified for Q1 is capable of handling currents of up to 2A and will comfortably drive a 10 W (maximum) bulb at 12 V .

An LED, D1, connected between pin 3 of IC2 and the positive supply rail via current limiting resistor $R 2$, switches on during daylight hours to indicate that the circuit is powered and functioning. In darkness, when the lamp illuminates, the LED is extinguished.

Fig. 2 Component Overlay

PCB Construction

A suitable PCB foil pattern and component overlay for the Twi-Light are provided in Figure 2. The heavy tracks on the board have been designed to handle the current required by a 10 W lamp, so if an alternative layout is envisaged this should be bome in mind.

The order of assembly of components to the PCB is not particularly critical, though fitting the smaller components first would be sensible. Take care with the semiconductors, as they are easily damaged by the application of excessive heat. The orientation of these devices is also critical and particular care should be taken with the bridge rectifier, BR1. A socket is recommended for IC2 and will alleviate any problems which may occur with this device.

The LDR, which is mounted at one end of the PCB, should be angled to face away from the main bulb and any external light source (other than the sky) to avoid unwanted triggering.

The Twi-Light, as originally designed, was intended for use with a $2.2 \mathrm{~W}, 12 \mathrm{~V}$ MES lamp and no heatsinks were fitted to ICl or Q 1 . With a larger lamp, heatsinking will be necessary for both of these devices. IC1 may be fitted with a readily available TO-220 clip on device. A commercial heatsink for the small 'E-line' packaged power transistor, Q1 may prove difficult to locate and a small piece of thin aluminium super-glued to the device after it has been soldered should prove adequate.

Bulkhead Lamp Modifications

The prototype T'wi-Light was housed in a standard 240 V , 60 W weatherproof bulkhead lamp assembly and any similar unit, of suitable dimensions, may be employed for outdoor use.

The original lampholder and reflector assembly should be removed from the fitting and discarded (or put in the junk box for future use). Knock one of the cable entry holes through in the fitting ànd assemble the supplied cable gland to it. Use round double insulated mains cable for the 12 V feed to the unit, increasing its diameter with PTFE thread tape as necessary, to form a water-tight seal when the gland is tightened onto it.

If the mains version is being built, connect the cable to the DC input pins on the PCB, the polarity being unimportant.

For the 12 V version see Modifications
The printed circuit board as shown is the correct size to fit the most popular type of bulkhead lamp and is held in place by the glass diffuser and rubber seal supplied with the original unit. If another type of unit is used, it may be necessary to fix the board in place with double sided selfadhesive pads. The use of any fixings which necessitate the drilling of holes in the lamp fitting is not to be recommended, as this could lead to the ingress of moisture.

When mounting the completed unit outside, the cable

Modifications

For operation from a 12 V car battery (for use with a caravan, etc.) the PCB layout given in Figure. 4 should be used. All component values are as per the mains version and are given in the components list. The LED has been retained as its current consumption is so small as to be insignificant, but it may be omitted if desired.

It is very important to note the new positions for the 12 V supply connections and also that the polarity is now of vital importance for the survival of the semiconductors. An in-line fuse, fitted in the positive supply lead as shown, will give protection against overload or short circuits.

For a child's night-light, the PCB may be trimmed down and installed in a plug in power supply box. A tinted filter securely fitted over a cut-out in the box lid will provide a gentle glow to chase away the shadows. The LDR should be mounted on the outside of the case with its leads fed through suitable holes to their respective connections on the board.

Particular attention should be paid to safety if the TwiLight is to be used in a child's room, especially with regard to the choice of enclosure. Make sure that the plug-in case has shrouded live and neutral pins.

Fig. 3 Transformer wiring diagram
should enter the unit at the bottom and the LDR should, ideally. point towards the sky.

Mains Power Supply

If the Twi-Light is to be mains powered then a suitable transformer will be required. The transformer needs to have a 12 V secondary with a VA rating of at least twice the power of the lamp, e.g. a 10 W lamp will need a 20VA transformer.

The transformer should be fitted in a ventilated enclosure and mounted remotely from the lamp. Figure 3 shows the wiring details. The mains plug should be fitted with a 3A fuse and the transformer must be

Fig. 4 Component overiay of 12 V version earthed.

Setting Up

Set the preset, RV1 to its mid-position, apply power and cover the LDR with your hand. The lamp should light immediately. If not, try adjusting RV1 until it does.

Fit the lamp in its final installed position and, at dusk, adjust the preset until the lamp just comes on. Fitting the glass may have an effect on the triggering point, thus requiring adjustment over a period of a few days until the optimum trigger point is obtained.

Fault Finding

The circuit is very simple and fault finding should be quite straight forward. Before suspecting component failure, look for obvious faults such as solder splashes, semiconductors inserted the wrong way round (particularly BR1), etc.. The use of an IC socket for IC2 may well be appreciated at this stage, since it may be readily checked by substitution with a known working device. Check the supply voltage to IC2, as this device will withstand a maximum of 15 V and requires a minimum of 3 V to work. In this application, 12 V is required for the bulb.

PARTS LIST
RESISTORS
R1 ORP12
R2 470R
R3 1 k
RV1 22k Sub Min Horiz Preset
\section*{CAPACITORS}
C1 $220 \mu 25 \mathrm{~V}$ Axial Electrolytic
C2 100n Polyester 5 mm Pitch
SEMICONDUCTORS
BR1 WO2
D1 5 mm Super Bright Red LED
Q1 TTX650
IC1 7812
IC2 555
\section*{MISCELLANEOUS}
T1 Mains Transtormer 12V 6VA Secondary LP1 12V 2.2W MES Lamp and PCB Mounting Holder Bulkhead Lamp Fiting; PCB; 5A Round Mains Cable, 2 Core; Case to suit Mains Transformer

BUYLINES

The bulkhead lamp fititing was purchased from Wilkinsons.

Electronic Designs Right First Time?

From Schematic Capture -

EASY-PC Professional
Create your schematics quickly and efficiently on your PC using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using our PULSAR, ANALYSER III and Z-MATCH il simulation programs.

through Analogue and Digital Simulation -

PULSAR

ANALYSER III

Z-MATCH II

If the results of the simulations are not as expected, the configuration and component values of the circuit can be modified until the required performance is achieved.

to Printed Circuit Board Design!

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable Electronics CAD			Ask for our fully functional
EASYPC: Low cost, entry level PCB and Schematic CAD.	\$195.00	$£ 98.00$	
EASYPC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER ill and PULSAR.	\$375.00	£195.00	Integrated CAD DEMO!
PULSAR: Low cost Digital Circuit Simulator ~ 1500 gate capacity	\$195.00	$£ 98.00$	Ref: ETI, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.
PULSAR Professional: Digital Circuit Simulator ~ 50,000 gate capacity.	\$375.00	£195.00	
ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 nodes.	\$195.00	$£ 98.00$	
ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 nodes.	\$375.00	£195.00	For Full Information: Please Write, Phone or Fax.
Z-MATCH II: Smith Chart program for RF Engineers - direct import from ANALYSER III.	\$375.00	£195.00	Fer. 480461778
We operate a no penalty upgrade policy. You can upgrade at any time to the professional version of a program for the difference in price.	US\$ prices include Post and Packing	Sterling Prices exclude P\&P and VAT.	Fax: 0480494042 USA tel:011-44-480 461778 fax 011-44-480 494042 VISA, MasterCard, AMERICAN EXPRESS

Alternative I2V Supply

by K R Ginn

his power supply was originally designed to power a three port packet node. In this application, where aquiescent current of approximately 400 mA per rig was needed, totalling some 1.2 A on receive and about 15 A with three rigs simultaneously transmitting. A 20A supply could have been designed and built to suit these needs, but I decided to adopt a different approach to the power supply problem. To understand the reason why, you have to consider the structure of current demand for a packet node.

Fig. 1 Component Overlay

Current Demand

In a packet system, the node (or Terminal Node Controller, TNC) is waiting and in a receive state for what could be 90% of its operational time, for the majority of nodes. The rest of the time it is, of course transmitting, from which we can see that there is quite a high duty cycle biased towards the receive. What was called for in this design was a power supply which would supply the quiescent current during the receive part of its duty cycle and only supply the additional higher current on demand, without building a full blown 20A supply. There may be times when all three rigs will be transmitting together, i.e. drawing maximum current from the supply, but this incidence is bound to be very low. The situation where two rigs are transmitting is more common and a peak current of 10 A is the more likely of the two. Nevertheless, the PSU had to have the capability of supplying the full simultaneous transmit current of the three rigs.

The supply I chose is basically a low current source, which will supply the receive current for the three rigs from the ac mains derived power source. The additional transmit current will come from a gel cell storage battery, which is float charged during receive times and is topped up during the transceiver's receive cycle.

Mains input stage

The AC mains is taken through a mains isolating transformer(T1). converting the voltage down to 15 V rms ac , then rectified through the bridge rectifier and onto the smoothing capacitors (C3 and C4). At this point we will expect to see 23 V dc. C 1 and C 2 serve to illuminate noise coming through the mains transformer, either mains born noise to the equipment or RF noise to the mains supply.

Current Limit Circuit

There follows a discrete current limit circuit, Q1, Q2, R2, R3, RV1 and C5, which limits the current drawn from the transformer to 3.0 A and this will operate only when one or more rigs goes into transmit, or if the battery needs to take a high charge current, having been discharged. This circuit will limit the de supply current drawn from the mains transformer secondary's rectified side to 3.0 A DC (approximately 5.2ARMS AC) whose

Fig. 2 Circuit diagram
actual value is set with adjustment of RV1.
Normally, when the current drawn through this part of the circuit is less than 3.0 A , the voltage across R 3 and RV 1 is less than 0.7 V . With insufficient base-emitter voltage to turn on Q2, Q1 will be turned hard on through the base bias current supplied by R2. Thercfore, the voltage drop across the current limit circuit will be minimal. When the current rises through R3 and the voltage across it in proportion, Q2 will begin to turn on, robbing Q1 of base drive current. This will
amount of current drawn, the greater the current drawn the greater the fall in output voltage and the greater the oscillation of the power supply's output voltage. This would inevitably amplitude modulate the de supply to the transs ceiver and ultimately the RF power to the aerial.

A current limit condition in most power supplies is a fail condition of some sort, a failure of the load which has for some reason decided to draw more than the permitted current, whereas in this circuit it is not and is exploited.

Fig. 3 Interconnections
have the effect of limiting the current through Q1 and R3.
C5 is included to give some degree of decoupling to Q1 and will reduce any mains ripple from the smoothing capacitors to a more acceptable level, i.e. 250 mV peak-to-peak on the output of this part of the circuit.

The reason for adopting this approach to have a separate current limit circuit ahead of the voltage regulator, as opposed to onc incorporated within a constant voltage source. If a standard power supply were used, for example a 723 IC regulator, you would find that when the power supply goes into current limit (during transmit or a period of heavy charging current demand) the error amplifier of the 723 regulator will fight against the current limit circuit to maintain a constant output voltage. In this situation, the power supply would oscillate at an amplitude dependent on the

Voltage Regulator Circuit

There follows a three terminal regulator with an extension to the basic configuration, which will increase the current through what is a 1.5 A regulator. This, with the addition of $R 6$ and $Q 3$, will raise the current handling of this stage to above 4 A , more than is actually needed for the supply. This stage sets the charging voltage for the gel cell battery. which can be set to between 14.4 and 15.0 V , the recommended charging voltage for these types of battery.

Threc terminal regulators are quite common - ICl supplies the first 400 mA of current and as the current rises through R6, Q3 will begin to turn on, thus causing current to flow through the emitter-collector of the transistor. Any additional current above 400 mA will flow through Q3 and increase the current handling of the regulator circuit.

Safety Cut-out

Incorporated alongside is a safety cut-out circuit, which will isolate the battery from being over discharged in the event of a mains failure. It is a 741 op -amp configured as a comparator, with additional hysteresis of about IV added. The purpose of the cut-out circuit is to monitor the battery's terminal voltage and, as long as the battery voltage remains above 11.5 V (set with RV3) it will remain active within the system and will supply the additional transmit current required by the connected equipment. It ensures that the battery is not destroyed by too deep a discharge, which would otherwise cause irreparable damage.

When a supply of around 12 V is applied to the circuit via the momentary push button switch S2, IC2's circuit becomes active. D1 is supplied with a current via R 4 of 10 mA and supplies a stabilised reference voltage to the comparator pin 2 of 4.7 V . Pin 3 of IC2 picks off a portion of the voltage applied to this circuit, with the potential divider R5, R7 and RV2. R8 provides the hysteresis.

When the voltage applicd to the circuit is higher than 11.5 V , the voltage at pin 3 of IC2, when set correctly, will be a little greater than the 4.7 V which is supplied by the zener diode as the reference to pin 2 of the same IC. The voltage on the output of IC2, that is, pin 6 , will also be high in this condition (+12 V) causing Q 4 to conduct and turning RLA on, as the voltage is higher on the non-inverting input of IC2 than the inverting input. The voltage at pin 3 of IC2 will also be influenced by a secondary path to this input, as R8 is effectively in parallel with R5. When the voltage to the circuit drops below the trigger level, i.e. 4.7 V at pin 3 of IC2, the output of IC2 will fall to 0 V , thus turning off the relay RLA. R8 will now bc effectively in parallel with $R 7$ and $R V 2$, causing the voltage at pin 3 IC2 to fall lower, further changing it's operating point:

When power is reinstated to this circuit, a greater potential has to be applied to it to overcome the hysteresis built in. This is simply effected by closing momentarily the contacts of S2.

The hystercsis is added for two reasons, one of which is that at the switching point of the comparator, the output will tend to oscillate and cause the relay RLA the buzz crratically. The second is to cnable the battery, in the event of a mains failure, to be recharged successfully bcfore it is connected back to the supply's load. The terminal voltage of the battery in a discharged state will be low, so this has to be raised sufficiently to give the battery time to be charged up before bcing discharged again. If this approach was not adopted with an additional mechanical reset, the battery would undoubtedly take a considerable time to reach a fully charged state.

As the mains supply (current limit) would be supplying current to the transceivers in both receive and transmit modes as well as the battery, the transmit output current of the supply would not be reached in this way with a discharged battery. Time is given for the battery to be charged again before the equipment is once again connected to the supply.

Construction

The whole unit can be built in one of two ways, either housing all the electronics, including the gel cell battery, within a common enclosure, or housing the battery remotely. The first approach was employed here, as this lends itself to a greater flexibility in the choice of batteries. The whole unit,
including the battery, was to be housed within a home made enclosure, which would make the whole unit safe from prying hands and falling objects, which could be rather dangerous if they were to come into contact with the terminals of the battery, in particular.

The components are mainly accommodated on one PCB, as shown. The board is attached to the rear of the enclosure with a piece of aluminium angle which forms part of the heatsink and all the major power devices, which emit a reasonable amount of heat, are attached to this. This helps to keep the whole unit cool. An additional heatsink could be attached to the rear of the enclosure to aid in the cooling.

Wiring within the unit is made as short as possible, to avoid unnecessarily long runs which would induce a significant voltage drop along it's length. Those wires which are carrying any appreciable current will have to be able to cope with the runining current, in this case 15 A peak. $50 / 0.25$ cable is rated at 30 A continuous and will be adequate, but at a pinch $32 / 0.2$ is also suitable, as the current rating for the power supply is not a continuous one and will not permit the wire to heat up to any appreciable degree.

Setting Up

The unit once fully assembled is ready for setting up and there are only three presets on the PCB, making it an easy task. Set all presets to their mid position.

RV1 sets the current limit to, in the prototype's case, 3.0A. This is accomplished by connecting a high power wirewound resistor or combination to make 3R3 ohms to the output of the supply, i.e. the transceiver socket, with an ammeter in series with the resistor. Adjust RV1 until the current reads 3.0 A . The output voltage will fall slightly, by approximately IV, to indicate that the circuit is working properly. Remove the resistor, as it will be dissipating some 36W.

RV2 sets the low voltage drop-out of the supply on the comparator IC2. With no battery connected, the voltage across the supply of 1 C 2 should be 13.8 V , adjust RV3 until this is so. Monitor the voltage across the pins 2 (positive) and 3 (negative) of IC2 and adjust RV3 until the voltage is at 1.5 V . This will have set the drop out voltage to 11.0 V and at this point the battery will have been discharged to 30% of it's full capacity.

RV3 sets the output voltage, which is set to 14.4 V at the battery's terminals. There should be less than 13.8 V on the main output to the transceiver and at least 12.5 V .

Use of the Power Supply

The power supply as previously mentioned was originally designed to run a three port packet node. The circuit can however be used to run in a single TNC and transceiver combination with very few modifications. These would only be to actual component values in the circuit.

The capacity of the storage battery in the power supply is dependent on two factors, the first of which is related to the amount of backup required in the event of a power failure. It is also dependent on the total current drain from the power supply. For example, if the transceiver were disconnected from the supply and the battery remained connected, the maximum charging current would remain at 3.0 A . For a gel cell battery, as used here, a maximum charging current of 3.0A relates to a minimum battery capacity of $12 \mathrm{~A} / \mathrm{H}$. The maximum charging current is a quartcr of the Amp Hour
capacity in the type of battery used in the prototypes, but according to one manufacturer, Yuasa, it is quite in order to charge a gel cell at twice the current of it's Amp/Hour capacity, which means that a $1.5 \mathrm{~A} / \mathrm{H}$ gel cell can be used. This will result in a 20% reduction in the life of the battery if this is done often, would have little effect on the overall life of the battery as this charging rate would be a rare occurrence. A 12 V 3 A Hour battery would be most suitable for this unit. In the case of a single TNC/transceiver combination, the charging current (current limit), when the transceiver is disconnected, can be reduced to 1.5 A or even 1.0 A , thereby reducing the size and cost of the storage battery needed. There need only be one component change and this involves a new selection for R3.

For a limiting current of $1.0 \mathrm{~A}, \mathrm{R} 3$ can be changed to 1 R 0 . For a higher current of 1.5 A , R3 will stay as in the modified case above at IRO. The adjustment can be accommodated for the additional current with the preset RV1. This will therefore change the size of battery needed and the cost and size of the enclosure required. Limiting the current to 1.0 A charging current will need a 12 V 4 A hour battery, 1.5 A will need 6A hours.

One further thought on the construction of the power supply should be considered if the storage battery is built within the same enclosure as the rest of the electronics. A simple battery On/Off switch should be incorporated in series with the positive line to the battery. This will enable the battery to be isolated from the rest of the circuit in the event of the unit being switched off from the mains supply for any appreciable length of time, which may discharge the battery.
Using the Power Supply

Firstly, the power supply is connected to the mains and switched on and the battery is connected to the unit, if it is external. The mains neon will illuminate on the front panel, but the power led LED1 will remain unlit until the push button S 2 is momentarily pressed. This should not be done unless either the battery is in a fully charged state, or the supply has been allowed to charge the battery for at least two hours. This should give the battery time to actually get some charge in it before it is used. Press S2 and the relay RLA will energise, causing the contact to be made between the battery and the transceiver. The relay will remain energised if the battery is in a good state, otherwise it will de-energise as the storage battery will need tend to take all current in charging.

Conclusions

The unit has been in operation since March this year and shows no signs of deterioration. The main problem associated with this type of PSU incorporating a storage battery, is that batteries need some form of exercise, rather like you and I. They need to be cycled often to maintain their efficiency and this design keeps the battery float charged and cycled throughout use, as the extra current demanded on transmit is enough to cycle the battery, with the float charge part of the circuit keeping it in top condition.

This power supply has replaced a 12 V 30 A switch mode power supply, which can now be put to other uses. There seems to be no apparent change in performance of the equipment and the after some time in use, I have seen no problems with the storage capacity of the battery, which was always a worry.

PARTS LIST
RESISTORS
R1 2 k 212 W
R2 2k7 1/4
R3 OR47 2.5 W wirewound
R4 820 R
R56k8
R6 1R5 2.5 W wirewound
R7 3k9
R8 68k
R9 २२०R
R10 1k8
R11 1kO
RV1 1k0 horizontal preset
RV2 5 kO horizontal preset
RV3 tho horizontal preset

CAPACIORS

C1 100n 250V AC RMS working
C2 100n ceramic
C3 $4700 \mu 50 \mathrm{~V} 10 \mathrm{~mm}$ pitch pc mounting electroytyic
C4 $4700 \mu 50 \mathrm{~V}$ 10mm pitch pc mounting electrolytic
C5 $47 \mu 25 v$ axial electroytyic
C6 $4 \mu \mathrm{~J} 25 \mathrm{v}$ axial electrolytic
C7 47 $\mu 25 v$ axial electrolytic

SEMICONDUCTORS

IC1 LM317T 1.5 A adjustabie regulator, plus insulating kit IC2 LM741N opamp

Q1 TIP142, plus insulating kit

Q2 TIX300
Q3 TIP34A, plus insulating kit
04 TTX650
BR1 200 V piv 4 A pc mounting bridge rectifier 0.2° pitch
$014 V 7500 \mathrm{~mW}$ zener diode
D2 1 N4148 signal diode
D3 BYW80-150 fast recovery diode, plus insulating kit D4 MBR20100 20A diode
LED1 0.2 in 10 mA , green LED

MISCELLANEOUS

LP1 240V mains neon indicator, with intemal resistor
RLA 12 volt coil, 30A contact SP relay. RS stock no. 351-768
F1 500 mA 20 mm anti-surge fuse and chassis holder
F2 3.15A 20 mm fuse and PC mounting holder
F3 15A $11 / 4^{"}$ fuse and chassis holder
BAT1 12V 15AH gell cell battery (used in prototype), 3AHcapacity battery can be used can be used as an altemative. T1 240/15V 100VA mains transtormer
SW1 240 V 3A mains switch, DPDT
SW2 Push button switch (momentary), push to make
Case, bracket fabricated from aluminium sheet for heatsink, connecting wire, mica washer insulating kits, connectors, 3R3 25 W resistor (test purposes only), etc.

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF, ENGLAND. TELEPHONE (0203) 650702. FAX (0203) 650773

KEITH MORRIS
Tel: 0203650702
Fax:0203650773

LIST OF TEST EQUIPMENT AVAILABLE

OSCILLOSCOPES
GOULD
HEWLETT PACKARD HEWLETT PACKARD HEWLETT PACKARD
PHILIPS
PHILIPS
TEKTRONIX
TEKTRONIX
TEKTRONIXTEKTRONIX
TELEOUIPMENTTEKTRONIX
TEKTRONIX
TEKTRONIXTEKTRONIX
TEKTRONIX
MARCONI
TF GTA 9A
TF 893A
TF 10668/6
IF 1073
IF 1247
TF 2016A
TF 20928
TF 2103TF 2213/1
TF 23008
TF 2330
TF 237011
TF 2432a
TF 2600A
TF 2800
TF 2604
TF 2606
TF 2700
TF 2802/2
TF 2904
TF 2905/6M
TF 2909
TF 60578/1
TF 2437
HEWLETT PACKARD
15520A
1600A
1615A
180 TR
1825 A
196A
32008
3300A
3400A
3406A
3580
3582
3585
3710A
37028
3730A
3750A
3762A
3763A
3964A
400 FL
400 F
400 H
00E
415E
204 A
6518
8491 A
8620 C
8690 B
8750 A
938 A
X752C
435A
$\begin{aligned} & \text { enies } 1200 \\ & 1-1478 \\ & 1-1572 \\ & 15.1 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { Series } 1200 \\ & 11-1478 \\ & 11-1572 \\ & 845.1 \\ & 3100 \end{aligned}$

EXPRESS COMPONENTS

AMP KITS

30 WATT SINGLE CHANNEL
30 watt rms into $80 \mathrm{hm}, 20 \mathrm{HZ}$-20KHZ harmonic distortion 0.1%, sensitive to 150 MV , mic sensitivity $50 \mathrm{MV}, 36 \mathrm{~V} \times 2$ psu's required complete with base, treble and volume controls and heat sink
Our Price : $£ 8.00$ each
Our Ref : EE/W8P7
120+120 WATT STEREO AMP
240 watts rms into $4 \mathrm{ohm}, 10 \mathrm{KZ}-20 \mathrm{KHZ}$, harmonic distortion less than 0.01%, sensitivity 3 MV (phono), 130 MV (aux), $2 \times 30 \mathrm{~V}$ psu's required.
Our Price : $£ 30.00$ each
Our Ref : EE/W3OP3
30 WATT STEREO AMP
30 watus rms into 8 ohm, harmonic distortion 1%, sensitiveity 3 MV (phono), 130 MV (tuner), signal to noise 80 db , $36 \mathrm{~V} \times 2$ psu's required.
Our Price : $£ 16.00$ each
OUX Ref : EE/W16P1

300 WATT MONO AMP

300 watt rms output, harmonic distortion less than 0.05% 10 KHZ . $2 \times 60 \mathrm{~V}$ psu's required
Our Price : $£ 40.00$ each
OUF Ref : EK/W40P3

AMSTRAD MP3

A complete fully tunable VHF/UHF TV reciever with RGB and composite video out, audio on internal speaker. Intended for use with CTM644 colour monitor but can be used with monitors that have a 15.825 kHz line frequency. Needs 12 V DC psu.
BRAND NEW AND CASED.
Our Price : $£ 19.00$
Our Ref
: ET/V19P1
we mave hundreds and gundreds MORE STOCK LINES - TOO MANY TO
LIST IN ONE ADVERT CHOOSE FROM.

AERML ANPLIFIRRS

ARrosols
aitarus

ALARMS
AMPLIFIED SFEAKERS ANAL OGUE MULTIMETERS APPLIANCE LEADS BATTERIES AND HOLDERS BATTERY CHARGERS BOOKS
BOXES AND CASES CAMCORDER BITS CAPACITORS CAR AMPS, RADIOS \& SPKRS CB SPEAKERS AND PSUE COMPUTER BITS CONNECTORS DESOLDER PUMP DIGITAL MUL TMMETERS DISCO LIGHTING DISPLAYS
DUBBING KIT
DRILLS
FANS
FUSES GUN AND GLUE HEADPHONES
HEATSHRINK SLEEVING HEATSHRINK SI HIONISERS LENISER
LASERS AND LASER PSU': LOGIC PROBES LOGIC PROBES
LOUD AND MARINE SPPRS LOUD AND MAR
MICROPHONES MIRLIGHTS AND DETECTORS POWERS SUPPLIES POWERS SUPPLIES POWER ADIOS
RADIO RADIOS
SERVICE AIDS SOLDERING EQUIPMENT STEAM ENGDNES TRANSEIVERS TRANSFORMERS WIRELESS MICROPHONES

MINIEJOME GOOES ORBER 55 \%O TRADE ORDER FROM GOVERNMENI, SCHOOLS, UNIVERSMTES \& LOCAL AUTHORITIES WELCOME. ALL GOOMS SURPLIEDSUBIECT TOOUR CONDITIONSOF SALE AND UNLESS OTHERWISE STATED GUARAANTBEB FOR 30 DAYS:
RTGHTS RFSER VED TO CHANGE PRICES \& SPECT KICATIONS WIMHOUT PRHR NOTICE ORDER: SUBBECT TO STOCK. QUOTAMIONS WILIRNGL GIVEN FOR QUANTITIES HIGHER THANF THOSE STATED.

THIS MONTHS SPECIAL OFFERS

COMMODORE 64 \& PSU

Once again available due to a bulk purchase. Commodore 64 together with Power Supply, supplied and tested in working order.
Our Price: $£ 50.00$ Ref:ET/F50P1

PIR MOVEMENT DECTECTOR

Once again we have acquired stocks of this popular line and are able to offer you a very high quality and professional detector at only $* * £ 15.00 * *$. Range: 20 Mtrs with a 90° arc. Day and Night Mode Dimensions: $15 \mathrm{~cm} x$ $9 \mathrm{~cm} \times 11 \mathrm{~cm}$. New and boxed complete with installation guide.
Our Price: $£ 15.00$
Oux Ref :ET/W15P2

ELECTRIC MOTOR - 3 PHASE

GEC Alpak Induction Motor. This is an extremely well made industrial 3 phase motor. BRAND NEW \& UNUSED. Supplied with full installation and maintenance literature.
Our Price: £60.00
Our Ref : ET/W60P1

PORTABLE ALARM SYSTEM

'PAL• Portable Multi Bean Scanning System. Lockable Stand-alone PIR unit with removable keys(3 supplied). This unit uses a PP3 battery and when activated emits a piercing SHRILL! The units scans the room and memorises the layout. Should this change, the alarm is triggered. There is a 60 second exit delay.
Our Price: $£ 17.00$
REF : ET/W17P1

CAR PHONE HANDSETS
 YUPPIES LOOKOUT!!

Brand New High quality handsets originally intended for use with Phillips Mobile Phone System. We have acquired a number of these handsets, supplied in two parts, speaker and combined phone rest unit plus bandset with LCD display. LED indicators and push button dialling. 6 additional keys as well as the conventional 12 numeric keypad. No transmitter freceiver. 5 Mtr 12 core black cable attached Excellent Dummy Mobile Phone!!!
Price: $£ 6.00$ each
Ref : ET/H6P3

MINI MULTI TESTER

Mini multi-tester with 9 ranges. AC Volts up to 1000 . DC Volts up to 500 .
OhmsinA ranges.
1 K ohm/V. Ideal for pocket or toolbox use and at only £5.00 each - replaceable!!
Our Price: $£ 5.00$
Oux Ref : ET/W5P2

HEAT DETECTOR

This is a Japanese made combination type hest detector which could be linked to a suitable fire alarm panel. 105 mm dia. 30 V operational.
Our Price: £4.00 OurRef:ETW4P1
SOME OF OUR PRODUCTS MAY BE UNLICEMSABLE W THE UK

BULL ELECTRICAL
 250 PORTLANDROAD HOVE SUSSEX BN3 5at

MAL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS E3.00 POST PIUSVAT.

PLEASEALLOW 7 - 10 DAYS FOR DELIVERY
TELEPFYONE ORDERS WELCOME
TEL. 0273203500
FAX: 0273 323077

USEFUL POWER SUPPLY - $£ 5.00$
$14.5 \mathrm{VDC} @ 400 \mathrm{Ma}$ battery chargcr
Plug in type with sleeved pins. Lead terminates in
3 pin din plug, easily removeaole. Originally intended
for mobile phone charging. (Large quantities available)
Our Price: $£ 5.00$ each
Our Ref : ET/W5P8

AMSTRAD PRINTER MECHS

We have both Amstrad LQ3500 and Amstrad DMP4000 printer mechanisisms No case or electronics but complete with print head. Ideal for replacement The mechanism comes with two high quality stepper motors which together with the print head are worth much more than we are selling the whole unit for!!!! This unit could also be utilised for a number of other projects including coil winding. laser scanning ${ }^{*}$!) etc.
(Quantity Prices available on application)
AMSTRAD LQ3500 units
Our Price : $£ 10.00$ each
Our Ref : ET/W10P5
AMSTRAD DMP 4000 units
Our Price: $£ 20.00$ each
Oux Ref : ET/W2OP3
MANY MORE SPECIAL OFFERS IN OUR REGULAR NEWSLETTERS

PC CORNER

PC CASES desk top case + PSU $£ 51.60$ ref BPCCC1.Deluxe slimiline case tpsu $£ 60.00$ ref BPCIC2. Minitower case $+p s u$ £51.60 ref BPCIC3. Deluxe midi case tpsu $£ 90.00$ ref BPCIC4. MONTORS Mitac 14. SVGA . $39 D P$ £ 174.00 ref BPCMO2. Mitac 14' SVGA 280 E £20200 rel BPCMM 1.
MEMORY 256 K Simm $70 \mathrm{~ns} \mathrm{~EB}, 40$ ref BPCIMIT. 1 IMB Simm 70 ns E26.40 ref BPCMMI2, 4MB Simm 70 ns E96.00 ref BPCMM13 MICE 2 button serial mouse with 3.5° sware $£ 8.40$ ref BPC/M16. 3 button seria mouse with 3.5° sware $£ 9.60$ ref BPCMM17 KEYBOARDS 102 AT UK standard keyooard $£ 18.60$ rel BPC Mi4. Delluxe keyboard 102 AT UK $£ 28.40$ ref BP CMMI5 SOFTWAREMS DOS 5 OEIM Version $£ 39.60$ red BPCMI\&, MS WINDOWS 31 OEIM version $£ 4200$ ref BPCIM: 6286 - 16 Headland chipset $£ 46.80$ rel BPCMMB $9.3865 \times$ - 33 Acer Chipset 58280 ref BPCMMB2 3865 X - 40 UMC with 64 K cache £110.00 F BPCIMB3, 4865 X - 25 UMC with 64 K cache $£ 191.00$ rel BPCMM4, 486DX. 33 UMC with 256 K cache $\mathrm{E378} .00$ ref BPC MB5, 488DX-88 UMC with 256 K cache $£ 5515.00$ ref BPCMMB6 FLOPPY DRIVES $1.44 \mathrm{mb} 3.5^{\circ}$ dive $£ 3234$ rel BPCJDOO5, 1.2 mb 5.25° difve $£ 38.40$ ref $\mathrm{BPC} D 002.3 .5^{\circ}-5.25^{\prime \prime}$ mounting kit $£ 5.00$ ref BPCDDO7.
HARD DRNES 42 MB IDE 17 ms 599.00 ref BPC/DDO $1,89 \mathrm{MB}$
 BPCIDDO3. 213 MB IDE 14 ms £238.00 ref BPGDDOA.
VIEO CARDS $256 K$ C8T 8 bit SVGA card E22 20 ref BPCI VCO1. 512 K Trident 900016 bit SVGA card $£ 3120$ rel BPCI VC02, 1 MB Trident 890016 bit SVGA card $£ 45.00$ ret BPCNCO3,
IMB Cirus AVGA3 16.74 cotours $£ 48.00$ ref BPCNCO4, 1 MB 1MB Cimus AVGA3 16.7 M colours $£ 48.00$ ref BPCNCO4. 1 MB Tseng mutimedia $£ 8280$ ref BPCNCOS
ADD ON CARDS Mutti 10 card 2x. 1 p. 19 . 2 Tda. 2 hodaf 11.00 ret BPC/AOCO1. ADLIB sound card with speakers $£ 37.00$ ref $B P C /$ AOC02. Orchid sound card with speakers $巨 63.00$ ref BPC AOCOS.

EXAMPLES OF COMPLETE SYSTEMS
3885×33 SYSTEM
3865 X - 33 board at $£ 8280$, case $£ 51.60 .2 \mathrm{MB}$ ram $£ 5280.42 \mathrm{MB}$
drive $£ 99.00$, SVGA colour morritor $£ 174.00$. 102 keyboard. $£ 5$ bulid fee if required. Total $£ 579.34$
488DX 33 SYSTEM
4860 X - 33 board $£ 378.00$. case $£ 51.60$. 2 MB ram $\mathrm{E52.80}. \mathrm{89MB}$ dive $£ 166.00 .512$ SVGA card $£ 31.20$. 3.5" FDD $£ 3234$, mult 40 card £11.00, SVGA montor $£ 174.00$, 102 keyboard $£ 18.60, £ 25$ buth fee if requred. Total 5939.84

ALL PC PARTS AND SYSTEMS ARE GUARANTEED FOR I YEAR PARIS AND LABOUR.

IN SUSSEX?

CALL IN AND SEE US!!

TURN YOUR SURPLUS STOCK INTO CASH MMMEDIATE SETILEMENT WE WILI ALSO QUOTE FOR
COMPLETE FACTORY CLEARANEE.

MUCH MUCH MORE IN OUR 1993
CATALOGUE PLEASESEND $41 P$, A4 SIVAR SAE FOR YOUR FREE COPY.

PCB Service August

E9308-1 Window Monitor (4 Boards) K
E9308-2 Alternative 12V Supply M
E9308-3 Single Channel Lumitec E
E9308-4 Four Channel Lumitec H
E9308-FC Twi-light Zone F
PCBs for the remaining projects are available from the companies listed in Buylines.
Use the form or a photocopy foryour order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the boardbut also tells you when the project was published. The first two numbers are the year, the next two are the month
Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required.
Such orders will not be processed until payment is received.

E9201-5	Enlarger TimerSelector Board (2 sided)
E9201-6	Enlarger Timer Switch PCB
E9203-1	MIDI Switcher-Main Board
E9203-2	MIDI Switcher-Power Suply
E9203-3	Sine Wave Generator (surface mount)
E9204-1	Auto Car Lights
E9205-1	BatDetector
E9205-2	Pond Controller
E9206-FC	Stercoamplificr
E9206-2	Xenon flash trigger Main Board
E9206-3	Xenon flash trigger Flash Board
E9206-4	Scanner for audio generator
E9207-1	Improved Rear Bike Lamp
E9207-2	Mini Baby Bug Monitor
E9207-3	Ultrasonic Audio Sender (2 boards)
E9207-4	Camera Add-on unit (4 boards)
E9207-5	AutoMate $5 \mathrm{~V} / 48 \mathrm{~V}$ Mixer power supply
E9207-6	AutoMate Precision 17V power supply

ETI PCB Service, Reader's Services, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

Please Supply:

Quantity	Ref No.	Price Code	Price	Total Price
	E		ε	ε
	E		£	ε
	E		Σ	ε
Post \& Packing Total Enclosed				£ 0.75
				ε

Please send my PCBs to:
Name
Address

Postcode

CHEQUES SHOULD BE MADE PAYABLE TO ASP.
E9207-FC Surround Sound Decoder F
E9208-1 Dynamic Noise Limiter F
E9208-2 Touch Controlled Intercom (2 boards) H
E9208-3 MIDIKeyboard K
E9208-FC Battery charger F
E9209-1 Intercom for light aircraft H
E9209-2 Alarm protector C
E9209-3 Temperature controller M
E9209-FC 45W Hybrid power amp F
E9210-1 Universal I/O Intcrface for PC (2 Sided) N
E2910-2 RapidFuse Checker E
E9210-3 Heartbeat/AudioListener E
E9210-FC Wizards Hat
E9211-1 ElectronicDie E
E9211-FC Car Alarm F
E9212-1 Digital Circuit Tester F
E9212-2 Communications Link by RS232 L
E9212-FC MainsInverter
E9301-2 Fading Festoonery G
E9301-FC Infra Red Receiver F
E9302-1 EPROM Programmer (2 Sidcd)E9302-2 Sound to MIDI Board
E9302-3 Puddle TecE9302-4 DiscoAmiga Light SelectorE9302-FC Infra Red TransmitterE9303-1 Ni-Cd Battery ChargerE9303-2 IC Tester
E9303-4 Direct Conversion RecieverN
E9303-FC LEDStoboscope F
E9304-1 SoloMicPre-Amplificr
E9304-2 Multimate Tester. C
E9304-3 The Keepsafe Alarm F
E9304-4 Proving Unit E
E9304-5 Infra Guide Receiver Module CE9304-6 Infra Guide Transmitter
E9304-FC (AutoMate) Peak Program Meter F
E9305-1 Pentacode Main Board F
E9305-2 Pentacode Relay Board F
E9305-4 Vibration Detector D
E9305-FC The Fuzztone
E9306-1 Graphic Equaliser F
E9306-2 SuperSpooker H
E9306-3 Middle \& Side Stereo Coding D
E9306-FC The Chaperon F
E9307-1 Car Battery Tester (Double Sided - Surface Mount) ... E9307-2 Mind Trainer F

PCB Foils

The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer for the creation of a foil.

Alternative 12V PSU

Twi-light Zone

4 Channel Lumitec

[^1]

Single Channel Lumitec

Battery PSU Board

Mains PSU Board

Remote Circuit Board

James Cale 114426651

Send your requirements to
,
Lineage: 60 p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms)
8800 - VAT per single column centimetre Per Electromart $£ 24.00$ (+ VAT) Insertion
Ring for Information on series bookings/discounts. All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

 sink Can be diven from T.T.L of Complyitablo Hoatneeen 3.10 V D.C. Size: $24 \mathrm{~mm} \times 17 \mathrm{~mm} \times 15 \mathrm{~mm}$ tigh Fixing centres 30 mm (TO-3). Phice: $£ 3.00+400 \mathrm{pA}$
($£ 400$ inc. VAJ)
71 RPM 2OIb GEAREO MOTORS
71 RPM 201 b inch borque reverasable 115 V AC m.
put including capactior and tanstormer for 240 V AC oderation. Prica inc VAT 8 ofen $£ 23.50$.
Designed for boiler ignition. Dozens ol uses in the
$\begin{aligned} & \text { held of pivsics sind electronics, eg supphying neon } \\ & \text { or argen tubes otc. Price less case } \mathrm{E8.50}+£ 2.40\end{aligned}$
D\&P ($\$ 12.81$ inc VAI) NMS
Build your own far POU Dank noin
$\begin{aligned} & \text { Build your own forped bank note detector. Can } \\ & \text { detect coumtionteis amongsta a quantury of nores }\end{aligned}$
Compleee kito of oams lesss a case 240 Va a.c.
including 5^{5} W Dibcct ing t tube. staner and WASHING MACHINE WATER PUMP 3rand new 24 V AC tan cooled Can be used for a variety of
purposes. Iniet $11 / 2$ in outief 1 m . de Price nnd udes pap $\&$ pupposes inlet $1 / 2$ in outief in. Ge Price
VAT. $E 11.20$ each or 2 for 2050 inc usive. MICROSWITCH

COOKE INTERNATIONAL

SUPPLIER OF QUAIITY USED TEST INSTRUMENTS
andlysers, bridges, calibrators, voltmeters, GENERATORS, OSCILIOSCOPES, POWER METERS. ETC always avallable

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENOUIRIES WELCOME
SEND S.A.E. FOR LISTS OF EOUIPMENT AND MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM - 5PM
ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, P022 0EB
$\mathrm{Tel}(+44) 0243545111 / 2 \mathrm{Fax}+44) 0243542457$

CATALOGUE $81.00+25 p$ P\&P		
LEDismmor 5 mmm red or yren		
Pa Trasmitie la pood craty seurd, - 5980		
	spole stees	
$3 \times 4 \mathrm{nches}$		
*x9 incees	5.40	
6×12 inctes	5537	
12,12 incteel	c10.s5	

£3.99 EACH - Delete 8 returnad! Stereo-10w amplifier + Scontrols. Slider powersupply $9.25 v$ + LED. 60 watt Toz poweramp - ex-equipment. K.I.A. 1 Regent Rd., likley.

VALVE SOUNDSI 6 valve 15 watt amplifier, 3 Gaines, base, treble, unboxed transformer and accessorie supplies. Xprofessional projector: heavy! £19.00 + carriage. M.W. Jarvis, 6 Peggy's Mill Road, Edinburgh EH4 6JY.

Faicoñ DIY SPEAKERS

Send for our FPEE price list PL21 All we ask for is a large SAE. (Europe -3 International reply coupons) SYSTEM DESIGNS (Total Kits): Focal. KEF Constructor, Seas, etc. DRIVE UNITS FOCAL, KEF, Audax. Coles Peerless. Seas, Siare, Elac Metal Dome, Scanpeak, etc. Also Group/Disco Units Chos Pin Active \&. Passive components, AUDIO AMATEUR YUGLICATIONS BACK ISSUES:
Speaker Builder, Audio Amateur \& Glas Audio, L'S CookDook + books Full details from FALCON ELECTRONICS Dept E.T.I.) Tabor House, Mulbarton Noriolk NR14 8JT (0508) 78272 (Proprietors: Falcon Acoustics Lid.

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Te:: 05123609820512360154

47 Whitechapel
 Tel: 0512365489

Liverpool 2
THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30

HURRY, WHEN SOLD OUT

 THATS IT,DEFINITELY NO RINTS. "THE WORLD OF BA MINI TRANSMITTERS ozens of circuits \& info. The only book of it's kind availabie in the of its kind available in
U.K. $£ 7.95$ inc. P PPP.
Due to cancelled order, sale of ready built bugs, two transistor circuit, very sensitive, $27 \times 10 \mathrm{~mm}$. ${ }^{\text {circcuit, very }}$ f5.50 +35 P P\&P telitephone bums ready built $20 \times 10 \mathrm{~mm} .54,20+35$ $P \&{ }^{\circ}$ send for free catalogue of many types of circuits Enclose S.A.E.all cheques \& PO'S payable to:
"GAINSFORD ELECTRONICS"
71 GAINSFORD ROAD,
SOUTHAMPTON SO2 7AW.
Allow 7 days delivery.

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefō̃dshire, HR8 2HS.

SURPLUS STOCK

SPECIAL PURCHASE:
 ETHERNET TRANSCEIVERS $\mathbf{5 0 . 0 0}$ O Manufactures in UK by Bull O Full CSMANCD - $10 \mathrm{MB} / \mathrm{sec}$ Specification
 O ISO $8802 / 3$ - CEI 435 Conforming ASTECLOW VOLTAGE POWER SUPPLIES O 36 to 100 watt, from $£ 15.00$ STORAGE OEVICES.
 $03.5-15.25^{\prime \prime}$ Disk Drives from $£ 10.50$ O 8/16-blt SCSI Adaptors $£ 17.50$ FANS, SWITCHES, PLUGS, RIBBONS, MAINS ADAPTERS, KEYBOARDS, and much more...
 For latest stock list.
 Call: 0814414189 or'Fax: 0813649495 AD TECHNOLOGY UMIED Barnet EN5 4JN

KITS

NEW VHF MICROTRANSMITTER KIT tuneable $70-115 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY £5.95 assembled and ready to use $£ 9.95$ inclusive $P \& P$. 3 Watt FM transmitter kit $£ 15.95$ Credit card orders telephone 0214863092 Cheques/PO's to: Quantek Electronics, (DEPT ETI) 3 Houidey Rd, Birmingham, B31 3HL. Send 2×1 st Class stamps for details of these and other kits.

WANTED

WANTED

RE-USABLE AND ALL TYPES OF ELECTRIC SCRAP
P.C.B's, PLUGS AND

SOCKETS, EDGE
CONNECTIONS, TEST
EQUIPMENT, VALVES, ETC PAID ON CLEARANCE.
A.R.S.

2 NORMANS LANE, RABLEY
HEATH, WELWYN,
HERTS AL6 9 TO
TEL: 0438812193 FAX: 0438
TURN YOUR SURPLUS
TRANSISTORS, ICS ETC INTO CASH immediaie settlement.
We also welcome the opportunity
to quote for complete factory clearance. Contact:
COLES-HARDING \& CO.
Sandall Road, Wisbech, Cambs PE13 2PS BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax: 0945475216

COURSES

Start training now for the following
courses. Send for our brochure -
without obligation or Telephone us on
0626779398

- Telecomms Tech C\&G 271
- Radio Amateur Licence C\&G
- Micro-
processor
- Introduction to Television

Radio \& Telecommunications Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 gUN

GII
ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address.
Daytime Tel. No:
Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No.
\square FOR SALE \square COMPONENTS

PLANS
OTHERS STATE

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

EDITORIAL Editor Paul Freeman Sub Editor Jim Bluck

CREATIVE Art Editor Peter Kirby Designer Iain Houston Technical Illustration John Puczynski Photography Manny Cefai

ADVERTISEMENT SALES
Advertisement Manager
Mark Linacre Display Sales
Tony Hill
Advertisement Copy Control
Marie Quilter
Classified Sales James Gale

MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell Group Editor Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ISSN
CONSUMER PRESS
En is normally published on the first Friday in the month preceding the cover date. The contents of this publication incuding all articies, plans, drawings and programs and all copynght and all of this pubbication including all articies, plans, drawings and programs and all copynght and ais
other intellectual property rights therein belong to Argus Specialist Pubtications. All rights other intellectual property rights therein belong to Argus Specialist Publications. Alr nity
conferred by the Law of Copyinght and other intellectual propery ingts and by virtue of conterred by the Law of copynght and other intellecual propery nights and by
intemational copyright conventions are specifically reserved to Argus Specialist Publications intemational copyright cconventions are specifically reserved to Argus Specialist Pubicaiions
and reprocuction requires the prior writen consent of the company el1990 Argus Speciaist and reproduction requires the pror writen consent of the company olaso Argus specianst
Publications. All reasonable care is taken in the praparation of the magazine contents. put the
 publishers canner pulisteg gally responsibie for errors. Where mistakes co occur, a corteced
will normally be published as soon as possible atterwards. All prices and dala contaned in widvertisements are accepted by us in goos taith as correct at the time of going to press. Neither
ail adverisements are accepter by us in good taith as correce at the time of going to press. Neither affecting price or availability vhich may occur atter the publication has closed for press.
-Subscription rates...UK £23.40 Europe £29.50 Sterling Overseas £31.00 US Dollars Overseas $\$ 59.00$

Published by Argus Speciatist Publications, Argus House, Boundary Way. Hemel Hempstead HP2 7ST. Telephone (0442) 66551. UK newstrade distribution by SM Distribution Ltd, 6 Leigham Court Road, London SW16 2PG. Telephone $081-667$ 8111. Overseas and nonnowstrade sales by Magazine Sales Department. Argus House, Boundary Way, Hermel Hempstead. H P2 TST. Teiephone (O442) 66551 . Subscripbons by Argus Subscription Services, Owi Wordwide Publications, 4314 West 238in Street Torrance CACO505 USA Teiephone (310) 375 G258. Typesetting and ongignation by Ebony, Liskeard. Contwall. Primted by Witshire Lid. Bristo!.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fax (0442) 66998

Why not build a simple 4-range capacitance meter using our PCB next month or if you feel you want to be entertained with messages and patterns, how about having a go at The Electronic Picture, an LED matrix indicator panel. If home entertainment is not for you, then it may be time to construct an RF Signal generator for your workshop or even a MIDI Analyser for the music workshop. It sometimes helps to know what signal is going where and at what time.

OK, so if you're not bothered by all those wonderful projects maybe the latest news on Digital compression techniques will interest you. Either way it would be a safe bet to pop into your newsagents for the next eagerly awaited copy of ETI. Out on Friday 6th August.

The above anticles are in preparation but circumstances may prevent publication

ur July issue featured:
Microwave Monitor
Car Battery Tester
Look No Hands (Hands Free-Telephones)
Switch Change for RC Models
Mind Trainer Low Cost Cases
Anniversary AutoMate Mixer
Charge Pump Devices
Back issues can be obtained from Argus Subscription Services. Address in column to left.
ADVERTISERS' INDEX
AUTONA 11BK ELECTRONICS
BONEXIFC
22CIRKI
14
CP TECHNOLOGY 22
CRICKLEWOOD ELECTRONICS 39
DISPLAY ELECTRONICS 30
EQT 11
HALCYON ELECTRONICS 35
HESING TECHNOLOGY
J\&N BULL 58,59
JAY TEE ELECTRONICS 47
JPG 46

Dan't miss the

FESTIVAL OF MODEL FLICHT
 (INGORPORATING 4 STROKE RALLY)

Make a datel It's a great day for the whole family!

IN ACTION...

- R/C 4 STROKE AIRCRAFT - HELICOPTERS - ROCKETS
- CONTROL LINE - KITES
- ROUND THE POLE
- ELECTRIC SOARERS

Plus

- Tethered Racing Cars © Trade Stands - Children's Bouncy Castle
- Special "All Day" Hog Roast Bar.B.Q FREE CAR PARKING

Admission prices

Adults: £4
Senior Citizens \& children: $£ 2.50$

Over 700 colour packed pages with hundreds of brand New Products at Super Lōw Prices,

[^0]: There are only 3 special conditions if you order from these pages:

 1. The MINIMUM GOODS VALUE IS $£ 12$ (although this can include goods from any of our lists or catalogues)
 2 POST \& PACKING CHARGE IS $£ 3.00$
 3 Free gifts and reduced price offers from previous lists are not available with sale goods
 Regrettably, we cannot accept orders for Sale Goods that do not meet these requirements
[^1]: Window Monitor

