
 ELECTRONICS TODAY INTERNATIONAL

ELECTRONICS, COMPUTERS, TECHNOLOGY

OP-AMPS
TECH TIPS
AMICA
CONIROLLED LCHISHOW

Build this

Infra-red
four
channel transmitter

using

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) m_{M} XF $400(200 \mathrm{~W}+200 \mathrm{~W})$思XF600 (300W + 300W) MXF900 (450W + 450W)
ALL POWER RATINGS R.M.S. IWTO \& OHMS, BOTH CHANNELS DRIVEN

FEATURES: \#imdependen Dower supolies with moo looricial rensiormers * Twin L.E.D. VU meleers

 USED THE WORLD OVER IN CLUES, PUBS, CINEMAS, DISCOS ETC
 MXF400 W $19^{-1} \times H V_{i}(3 U) \times D 12^{n}$

PRICES:-MXF200 C175.00 MXF400 C233.85 MXF600 ©329.00 MXF900 £449.15 SPECIALIST CARRIEA DEL. 12.50 EACH

OMP VAFISPEED TUANTABLE CHASSIS

- Manual arm \# Steel chassis Electronic speed control 33 \& 45 R.P.M. *Varl pitch control High orque servo driven DC motor © Transit screws * 12° die cast platter * Neon strobe * Calibrated balance weight *Removable head shell * H_{2} " cartridge fixings * Cue lever* 220/240V $50 / 60 \mathrm{~Hz}$ - $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out emplate

PRICE ع61.30 + E3.70 P\&P
TWONAH MAGN MTC CARTFIDGES
STANTON AL500 mkII GOLDRING G950 ERICEEF6.95 - SOPPRP PRICKE7.15 - SOPPAP STEAEO DECO MIXXER DJ6500

* WITH ECHO *

STEREO DISCO MIXER with 2×7 band to R graphic equalisers with or graph LED VU melers. MANY OUTSTANDIMG FEATURES:- including Echo with repeat a speed control, od Mic with tone control ${ }^{2}$ tallk-over switch, 7 Channels, with Headphome monitor. Usetul combination of the lollowing inputs:- 3 turntables (magh 3 mics, 5 Line for CD, Tape, Video etc.

Price E134.99 + E5.00 P\&P PIF2 ELECTATC TWEETERS - MOTOROLA
Jom the Piezo revolution! The low dynamic mass (no voice coil) of a Plezo tweeier produces an improve translent response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not require These units can be sdded lo existing speaker systems of up to 100 watts (more If two are pul in series. FRE

EXPLANATORY LEAFLETS ARE SUPPLLED WITH EACH TWEETER.

TYPE ' A ' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal tor bookshell and medium sized Mi-Fi apeakers. Price $\mathbf{C 4 . 9 0}$ \& 50 p P\&P. TVPE 'B' (KSN1005A) $31 /{ }^{\prime \prime}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $55.99-50$ p PIP.
TVPE "C' (KSN1016A) $2^{\prime \prime}$ E5" wide dispersion horn lor quality Hi-Fi sys lems and quality discos etc. Price $\$ 6,99+50$ p P\&P.
TYPE 'D' (KSNID25A) $\mathbf{2}^{2} \times 6^{\prime \prime}$ wide dispersion horn. Upper Irequenc response retained extending down to mid.range $(2 \mathrm{KHz})$. Suitabie for high quallity Hl -Fi systems and quallty discos. Price C $9.99+50 \mathrm{p}$ PaP. TYPE 'E' (KSN1038A) $3{ }^{3}{ }_{4}{ }^{\text {a }}$ horn tweeter with attractive silver finish trim Suitable tor Hi-Fi monitor systems etc. Price $\mathbf{C 5} .99+50$ p P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. 85 k 85 mm . Price $\mathbb{4} .10+50$ p PAP.

OMP LINNET LOUOSPEAKERIS

THREE SUPERB MIGH POWER 50 WATTS (75 + 75) Stereo is0w Bridged Mono 250 WATTS $\{125$ Bridged Mono Oo WATTS $(200,125)$ Stereo, 250 W 400 WATTS 1200
200) Stereo,

S InTO 4 OMMS
Feature:
high \& low lovel inguts
. Choice of
PRICES: 150W C49.99 250 W C99.90 high s low level inpuls \& \& A level
controls Remote on-of \$ Speater a 400W ¢100.05 PAP $\mathbf{2} 2.00$ EACH Sherconal ocotection.
POSTAL CMARGES PER OROER E4.OO MINIMUM, OFFICIAL
OROERS FROM SCHOOLS, COLLEGES, GOVT. BODES, PLCE ETC PRICES INCLUSIVE OF VAT. SALÉS COUNTER VIBA

TMOUSANDS OF MODULES PURCHASED BY PROFESSIONAL UHEXT

OMP/MF 100 Mos-Fet Outpul power T1 R.M.S. into 4 ohms, frequency response ine -3dB, Damping Factor >300, Slew Ra T.H.D. typical 0.002%, Input Sensitivity Sna -110 dB , Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE C40.85 + C3.50 P\&P

OMP/MF 200 Mos-Fet Output power ind R.M.S. into 4 ohms, Irequency response ithe -3 dB , Damping Factor >300, Slew Rave T.H.D. typical 0.001%, Input Sensitivity 500 me , -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE C64.35 + C4.00 P\&P

OMP/MF 300 Mos-Fet Output power 300 R.M.S. into 4 ohms, frequency response 1 Mz $-3 d B_{1}$ Damping Factor >300, Slew Rate T.H.D. typical $0,001 \%$, Input Sensitivily 500 m . Six t -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE C81.75 + C5.00 P\&P
OMP/MF 450 Mos-Fet Outpul power 450 net R.M.S. into 4 ohms , frequency response 1 Hz -$-30 B$, Damping Factor >300, Slew Rate NoV: T.H.D. typical 0.001%, Input Senslitivity 500 mV , SR 110 dB, Fan Cooled, D.C. Loudspeaker Pros_asd PRICE C132.85 + C5.00 P\&P
MOTE: MOS-FET MODULES ARE AYAILABLE IM TWO TEDN STANDARO - IMPUT SENS SOOMV, BAND WIDTM $100 \mathrm{~K} \mathrm{ME}_{2}$

 VU METEA Compalible with our four amplithers detalled above. A very monn visual display employing 11 L.E.D.s (T) green, 4 red) plus an aditione moulded plastic case, with acrylic tinted veryl. Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE C8.70 +50 p P\&P

LOUDSPEAKERS
LARGE SELECTION OF SPECIALIST LOUDSPEAREXI AVAILABLE, INCLUDINÓ CABINET FITTINGS, SPEAKEB GRILLES, CROSS-OVERS AND HIGH POWER, DETE FREOUENCY BULLETS AND HORNS, LARGE (A4) S.A.E (50p STAMPED) FOR COMPLETE LIST.
P. From MeKenzie Prolessional Serles

McK EnzzI:-INSTRUMENTS, P.A., DISCO, ETC

ALL MEKEN2IE UNITS B OHMS IMPEOANC

8- 100 WATT P C8- $100 G P$ GEN. PURPOSE, LEAD GUITAA, EXCELLENT MID, DISCO RES FREO. BOMZ, FREO. RESP. TO 7 KHz , SENS 9608 10°, OOWATT C1O-100GP GUITAR, VOICE, KEYBOARO, OISCO, EXCELLENT MIO RES. FREO. $\mathrm{T}^{2 \mathrm{~Hz}}$ FREO. AESP. TO 6 KHz , SENS97才B. 102 20OWATF C1O-200GP GUITAR, KEYB'O, DISCO, EXCELLENT MIGH POWER MID RES. FREO. 69 Hz , FREQ. RESP. TO 5 KHz , SENS 97dB.
12° SOOWICE CS3.2 RES.FAEO. 49 Hz , FREO. RESP. TO 7 KHZ , SENS 98 dB . RES.FREO. $49 H z$, FREO. RESP. TO $7 K H z$, SENS 98 dB .
$12.100 W A T T$ C12-10OTC (TWIN CONE) HIGH 12 100WATT C12-100TC (TWIN CONE) HIGH PO
RES. FREO 45 Hz HPEO. RESP. TO 12 KHz SENS 97 DB . 12 200WATT, C12-200B HIGH POWER BASS, KEY RES. FREO. 45 Mz , FREO. AESP. TO 5 KHz , SENS 99 dB .
 RES. FREO. 49 Hz FAEO. RESP. TO 7 KHz . SENS 100 dB . 15 1 OOWATT C15-100BS BASS GUITAR, LOW F
RES. FREO. $40 H 2$ FREO, RESP. TO SKHz, SENS $98 d B$ RES. FREQ. 40 Hz FREO, RESP. TO SKHz, SENS 98 dB .
15 200WATT C1S-200BS VEAY HIGH POWER BAS 15 200WAT C1S-200BS VEAY HIGH POWER BA
RES. FREO. 40 Hz , FREO. RESP. TO 3 KHz . SENS $98 d B$. RES. FREQ. 40 KZ , FREO. RESP. TO 3 KHz . SENS 98dB. RES FREO 39Hz FAEO RESP TO AKHE SENS G9 B 15 5 . 00 WATT 15 . 4 OOBS VERYMIGM POWER RES. FREO, 40 Hz . FREO. RESP, TO 4 KHz , SENS 100 dB RES. FREO. 27 Mz , FREO. RESP. TO 2 KHz , SENS. 98 dB . BAREENDERE:- MI-FI, STUDIO, IN-CAR, ETC
ALL EARBENDER UNITS B OHMS (EICepI EBE - 50 \& EBIO-SO which are dual BASS, SIMOLE CONE, MIGM COMPLIANCE, ROLLED SURROUND

PRICE C80.57 $=\mathbf{C 4 . 0 0 ~ N a p ~}$
PRICE C90.23 + e4.50 mo SS.

PRICE C10
PRICEC174.97 +5.00 *

8 50 watt EE8-5O DUAL IMPEDENCE, TAPPEO $4 / 8$ OHM BASS, HI-FI RES. FREO. 40 Hz , FREO. RESP. TO 7 KHz SENS 97 dB . HES. FREO 4OHz FREO RESP TO SKHZ SENS, 990 O $4 / 8$ OHM BASS, H AES. FREQ, 4ON2, FREO. NESP. TO SKHz, SENO, F9d RES. FREO. 35 Mz , FREO. RESP. TO 3 KHz , SENS 96 dB 12^{-}100WAT EB $12-100$ BASS STUD 10 MIFFI EXCE RES. FREQ. 26 Mr , FREO. RESP. TO 3 KHz , SENS 93 dB .
SH. GOWATT EBS-GOTC (TWIN CONEI MIFI, MULTI-ARRAY DISCO ETC
RESP. TO 20 KHz SENS 92 dB .
6:" GOWATT EB6-GOTC (TWIN CONE) MI-FI, MULTI-ARRAY DISCOETC RES. FREQ. 38 Hz , FREO. RESP. TO 20 KHz . SENS $94 d B$. 8 $60 W A T T E B B-6 O T C$ (TWIN CONE) HIFI, MHLTI-ARA RES. FREO. 40 Hz . FREO. RESP. TO 18KHz. SENS 89 dB
10° 60WATT EB 10.60 TC (TWIN CONE) MI-FI MULTI RES. FREO. 35 Hz , FREQ. RESP. TO 12 KHz . SENS 98 dB .

CAR.
PRICEC8.90 C2.00 PA PRICEC13.63 + E2.50 PAP PRICE C30.39 + ¢3.50 PAD PRICEC42.12 + C3.50 PAD
\qquad PRICE C9.99 + C1.50 PAP PRICE C10.99 +1.50 PAP PRICE C12.90 $*$ C1.50 POP PRICE E16.49 + C2.00 PAP

TRANSMITTER MOE BY KIIS

PROVEN TRANSMITTER DESIONS WCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMITEEA SO-10BMHZ VAACA COMTROLLED PROFESSIOWAL

FII micho Thamsurtieh toa-vosmer vanical funea, COMPLETE WTM

 ERYY SEMS FET MIC RAMGE $100-300 \mathrm{~m}$ SLZE 56 I MMm SUPPLY QV BATTEAY

UNITS 1 E 5 COMET WAY, SOUTHEND-ON-SEA, Tel. $0702-527572$ Fax.07i.

Volume 22 No. 2 Feb 1993

Features \& Projects

Diodes... 10
Everything (well almost) you need to know about these one way devices by Paul Chappell.

EPROM Programmer Part 2 ... 16
Paul Stenning provides more details on construction and software for this very useful piece of equipment.
Op-Amps .. 26
Some characteristics reviewed by Douglas Clarkson.
Infra-red remote controlled dimmer. Part 2 The transmitter 32

With the receiver built last month, use our cover PCB to construct the four channel transmitter board. Ken Blackwell continues his circuit description.
Sound To MIDI processor .. 34
Provide yourself with musical backing at the command of a guitar, a whistle or a variety of instruments. Details from Tom Scarff.
Puddletec ... 42
A beginners project by Bob Noyes to give warning of a small flood.
Disco Amiga Part 1
50
Use your Amiga computer to provide some home lighting effects.
Tech Tips .. 53
ETI sees a return to your circuit ideas.

Contents

Regulars

\qquad
Open Channel
4
News .. 5
News Stateside .9
\qquad
PCB Foils 58
Page 42

Wiliorial

Ftrust the seasonal festivities have not only given you time to reflect upon a year that quite a few of us would like to forget but also a time to look forward with renewed vigour to the year ahead. A more hopeful time perhaps for the electronics industry for they have not been immuned to the ravages of the recession.

Lack of sales in brown and white goods has caused a knock-on effect to occur all the way back down the chain to component suppliers.

Toobs, Bottles And Emulators

Hi-fi buffs who can tell the audio difference between a valve amp and a solid state transisitor version will be interested to know that a solid-state "tube emulator"
has been developed in the US. Apparently audiophiles say the new amplifier is indistinguishable from the real thing. The "tube emulator' is dropped into the traditional circuit where the valve was. Further news of this new device will appear next month under our News Stateside column. If all are agreed with the audio characteristics of the tube emulator then we might just see the end to valves being used for audio purposes. The clear disadvantages of valve equipment are weight and bulk but on an analytical level it is difficult sometimes to see where the attachment still remains. Looking into the glass envelope, some would say you can almost see them working!

Readers will note that due to pressure of space, the AutoMate mixer article does not appear in this issue.

Aserious global environmental concern takes up Open Channel this month. It's an issue which all readers of ETI will be aware of, I'm sure. It affects not just us in our present environment, but the environment of generations

I'm talking about the use of chlorofluorocarbons (CFCs). You'll all have heard of them, even if you're not totally aware of what they are or what they're doing to the environment.

Chlorofluorocarbons are chemical compounds, containing various proportional mixtures of Chlorine, Fluorine, Carbon and sometimes Hydrogen. As such, they present little harm to the planet. Stuck in a bottle on a laboratory shelf they're pretty innocuous, but when they get out of the laboratory shelf bottle they turn into vaporous demons which have already changed our environment to a considerable degree - almost beyond repair.

The problem arises when chlorofluorocarbon vapour rises up into the air, through the atmosphere, right up to the stratospheric layer of ozone around earth. The stratospheric ozone layer has one several functions - one is to filter and absorb ultra-violet radiation from the sun.

Ozone is a gas $\left(\mathrm{O}_{3}\right)$ which occurs in all layers of the atmosphere and actually only ever occurs in very small concentrations. However, concentration is greatest in the socalled ozone layer, so scattering ultra-violet light.

Continual processes occur in the ecosphere which for millions of years have maintained a chemical balance, keeping the ozone layer constant. Chemicals rise up through the atmosphere, break down due to energy from the sun, and combine with oxygen atoms from ozone. On the other hand, energy from the sun breaks down oxygen into single atoms, which combine with oxygen molecules to form ozone. And so the cycle continues... unless, too many chemicals rise up through the atmosphere.

Chlorofluorocarbons, are the chemicals which threaten this ozone production-breakdown balance. They are very, very stable, so rise high up in the atmosphere - to the ozone layer - before they can be broken down by sun light.

Not only are there now too many chlorof luorocarbons in the ozone layer, breaking down ozone at a faster rate than the natural cycle can replenish it, but the situation is made much worse because they are so stable they can remain there for some time before breaking down. Even if a total ban on chlorofluorocarbon was issued and its use was stopped today, the amount of chlorofluorocarbon present in the atmosphere in one hundred years time could still be about a third of current levels.

The whole thing has grave effects on the environment. If the ozone layer partially breaks down (causing the so-called 'holes' in the layer, reported in the media) greater amounts of ultra-violet light from the sun reach earth's surface. This can cause immediate and long-term damage to plants, animals, humans and earth itself. Increased risk of cancer and changing climates, are possible hazards.

In the past (and, indeed, even in the recent past) the electronics industry has been one of the greatest culprits in
the crime of ozone layer breakdown. Manufacturing processes are usually pretty dirty, so assemblies (that is, printed circuit boards) require cleaning. Unfortunately, the easiest and cheapest method (cheapest in terms of monetary cost alone, of course) of cleaning printing circuit boards is to dunk them in hot chlorofluorocarbon. As a solvent, chlorofluorocarbon is superb -it dissolves and dislodges most types of dirt, grease, and gunge on assemblies. As a vapour, it is lethal to the environment.

In 1987, in Montreal, worldwide government heads met to decide on a progressive phase-out of chlorofluorocarbon use. The Montreal Protocol was the result; a historical statemeni of intent by world governments to do the job - it's not often you can get more than one government in a room to agree anything, after all. By the turn of the century it was hoped the use of chlorofluorocarbons would be stopped.

As it happens the electronics industry has risen to the challenge, phasing out chlorof luorocarbon use quicker than most other industries, to the level where by the end of this year it will finish in the electronics industry.

Now 1 think that's a tremendous thing, and worth being proud of. To be honest, it was not so much an agreed decision within the industry to do it because of an environmental conscience. Instead, the impetus has been made because new and cheaper manufacturing processes (specifically surface mounted technologies) have recently been instigated, which simply require less cleaning of assemblies. Indeed, some new processes do not require cleaning at all.

Still, let's not run ourselves down too much, we're among the first to be able to say we're about to stop using chlorofluorocarbons and that's a very large feather in our very large collective cap. After all, the Montreal Protocol was never intended to prevent industries using chlorofluorocarbons by law, or by force. Its primary aim was to make the use of chlorofluorocarbons so financially unrewarding that the various industries would be persuaded to use other safer processes. The electronics industry has simply been one of the first industries to benefit from newer (cheaper) processes not requiring chlorofluorocarbons.

But, unfortunately, the story doesn't stop here. While chlorofluorocarbons form the primary cause of alarm environmentally, other compounds are capable of doing the same thing to the environment, to a lesser degree. What we have to ensure is that these other compounds aren't simply used in the place of chlorofluorocarbons. While they may cause lesser damage than chlorofluorocarbons they could still cause some damage.

I for one do not want to be labelled as a person who instigated the partial or total destruction of our children's children's children's world. Do you?

While the chlorofluorocarbon issue is paramount, in wider terms it is merely the first issue tackled globally. Certainly we have got our electronic house in order regarding chlorofluorocarbons, but in the global village there are many more houses, and many more issues.

Keith Brindley

THE LATEST IN TOUCH TECHNOLOGY

Anew touch technology, compatible with almost any display monitor, has been launched throughout Europe by Ellinor Technology.

The TouchMate is a force sensing platform less than $2^{\prime \prime}$ high onto which a monitor is placed. When the monitor is touched, whether by a finger, glove or stylus, the force of the touch causes a movement of the top plate relative to its base, typically of the magnitude of a thousandth of an inch. Internal force sensors detect this movement in the x, y and z

directions enabling it to measure the location of the touch and the level of pressure exerted.

One advantage is that users can simply place their monitor on the sensor, connect it to their computer's serial port and carry out a simple calibration procedure,
from which point the system is ready for use.

It is said to be compatible with virtually any size and make of monitor so users can convert their existing monitors to touch screen.

There is no effect on the image quality of the monitor since no
glass panel or membrane is placed in front of the screen.

The system is based on force detection and can therefore be operated by any pointer, finger; gloved hand or stylus

Point of information applications and interactive training systems are expected to be the main markets for the new product. The screen operates at angles of up to 45 degrees and is environmentally durable which makes it well suited to regular public use in retail information applications. It is also expected to be popular in unattended external applications such as ticketing, tourist information and financial services.

It has a touch resolution of 40 points per inch and noise filtering techniques are employed to ensure that external vibrations do not affect accuracy. TouchMate will retail at $£ 650-00$.

For further information please contact:

John Rodger at
Ellinor Technology
Tel:0734 311066

NEW INKJET PLAIN PAPER FAX

CVity Electronics \& Telecommunications - suppliers and installers of a wide range of telephone systems - has added two new, plain paper, ink inject Fax machines to its telephone equipment range.

Although the plain paper Fax has been on the market for twelve months with lascr printing, the ink inject method reduces the cost of using a plain paper Fax ànd could broaden the market for this type of facsimile.

For professional services such as that offered by accountants, solicitors, and architects, the plain paper Fax is essential and it is
more affordable. It produces good copy, on plain paper, to the same quality expected from a standard photocopier.

The two new units, manufactured by Panasonic, are the Panafax UF311 and Panafax UF312. A special feature of both machines is that a message can be transmitted to up to fifty-two stations in sequence rather than calling stations individually.

If the recording paper or ink in the inkjet cartridge should run out, the message is stored in memory and automatically printed when new paper or an ink cartridge is loaded. In the case of
failure, the units will automatically re-dial and transmit from the page where disconnection occurred, without re-sending from. the first page, thereby reducing time and telephone line costs.

With either machine the user can, if required, share a single line for Fax or voice - the machines will automatically determine whether its for Fax or voice and a telephone answering machine can be added. Automatic reduction and delayed sending are also standard features.

The single touch memory allows for telephone number storage: twelve basic numbers for the

UF311, which can be expanded to twenty-eight if required; and twenty-eight numbers for the UF312, which can be expanded to sixty.

The UF312 can store selected documents in the memory and then programmed to be transmitted later. When printing from memory this machine is still able to reccive or transmit.

City Electronics and Telecommunications retails the UF311 for £1495 and the UF312, for $£ 1895$.

For more information:
Tel: 081-201 9500
FAX: 0812019600

GOVERNMENT SUPPORT FOR DAB

NJational Heritage Secretary Peter Brooke has given the Government's full support for Digital Audio Broadcasting (DAB), saying it offered more choice to listeners and gave British manufacturers a great opportunity to exploit a new market.

DAB will bring near $C D-q u a l-$ ity sound to radio for the first time. The technology could first be introduced for car radios in 1995; domestic sets could benefit soon thereafter. It will also pro-
vide major benefits to broadcasters and listeners through its more efficient use of the radio spectrum, offering more radio channels for each frequency band than are available now.

Mr Brooke urged British manufacturers of radio and electronic equipment to seize the opportunities offered by $D A B$ technology, saying:
"The way forward is now sufficiently clear for broadcasters and manufacturers to prepare for the
introduction of DAB services in the next few years.
"With an average of four or five radio sets in every home in this country, the opportunities for manufacturers prepared to produce DAB sets at reasonable prices are obvious. At this stage there is no reason why UK manufactured sets could not be first into both the home and European markets."

Mt Brooke also called upon the media to help stimulate wider
involvernent in the debate by informing the public about the technological and commercialchanges which were affecting broadcasting:
"The links between policy development, technological change, manufacturing, programme production and consumer choice reinforce the need for people to be well-informed if they are to make sensible choices."

ENGINEERING PHYSICS DEGREE APPLAUDED

TThe lead editorial in a recent issue of Physics World, the members' journal of the Institute of Physics, has singled out Sheffield Hallam University's BSc (Honours) Engineering Physics as inspirational and unique in Europe. The course meets the need of advanced manufacturing countries for professionals who combine physics training with related disciplines, notably engineering.

Physics World states:
"Sheffield Hallam University (hitherto Sheffield City Polytechnic) is setting what appears to be a precedent in Europe: an honours BSc in engineering physics designed to deliver skills not only in physics but in engineering judgement - in other words, a capacity for subjective decisions on design and cost-effectiveness".

A testament to the praise re-
ceived is the excellent record of employment for graduates of the course despite the ongoing recession. Forward thinking employers are keen to recruit industrial placement students for workexperience and graduates for permanent employment.

The professional status of the course has recently (May 1992) been accredited by the Institute of Physics, the Institution of Electri-
cal Engineers and the Engineering Council as the first and so far only physics degree which directly satisfies the educational requirements for membership of both institutions and the status of Chartered Engineer and Chartered Physicist. The course offers a direct route to the status of a Professional Engineering Physicist.

AUDIO POWER AMPLIFIER MODULES

to high power stage amplifiers.
The modulcs are manufactured in three types; Bi-polar, MOSFET and Class A and are encapsulated with an integral heatsink. With power ratings from 15 to 180 W RMS, the amplifiers produce very low THD; the MOSFET series is less than 0.005% and input sensitivity is only 500 mV for full output.

To compliment the modules three power supply boards are available which, together with ILP's toroidal transformers allow high VA rated, split rail power supplies to be casily produced.

For further information please

Cirkit Distribution is now stockUing the complete range of ILP audio power amplificr modules.

The modules provide a range of building blocks for making high quality audio amplifiers with the
minimum of additional components. Applications range from low power hi-fi quality amplifiers contact:

Cirkit Distribution Lid
Tel: 0992441306

SuperJANET TO THE RESCUE

Iife saving surgery could be d'seen' via the telephone with a new high-speed fibre optic network from BT which will link computer systems in universities and polyteclmics throughout the UK.

The network called SuperJANET (Joint Academic Network) will allow medical students to watch operations and learn new surgical techniques from hundreds of miles away.

BT was awarded the contract for the network by the Information Systems Committee (ISC) of the University Funding Council (UFC). The negotiations have been on the basis of an $£ 1.8$ million project over four years, incor-
porating a review period at the end of the installation of the pilot stage.

Under the contract, BT will collaborate with the SERC/UFC (Science and Enginecring Research Council/Universities Funding Council) Joint Network Team to design and implement the new network. It will augment the existing private JANET network created during the early ' 80 s .

The new network is needed to support advanced applications requiring a mixture of voice, data, image and video communications.

SuperJANET will be able to transmit information up to 100,000 times faster than the standard telephone network, with
the initial phase of the project linking sites at Cambridge and Manchester Universities, Ruthetford Appleton Laboratory, University College London, 1mperial College London and Edinburgh University.

The network is designed to use the most up-to-date communications technology - synchronous digital hierarchy (SDH) together with BT's new Switched Multimegabit Data Service (SMDS).

SuperJANET will provide a wide range of new applications and will play a major role in supporting teaching and research activities. Initially, these include distance teaching, electronic pub-
lishing, library document distribution, high quality medical imaging and multimedia information services.

Dr Alan Rudge, BT's Managing Director for Development and Procurement, with responsibility for all of BT's technical research activity, added: "BT is extremely pleased to have won this contract and we view the opportunity to work with the universities as a critically important strand in our development programme for high speed network services. We plan to collaborate in a number of areas of mutual interest, not least the development of an advanced broadband switching platform for SuperJANET

PC VIDEOPHONE SERVICE

BT and IBM are set to extend their collaboration on multimedia by making PC videotelephony available to other operating systems including Apple, PS2 and PC compatibles. In April 1992 BT and IBM announced that they would co-oper-
ate on a personal computer videophone product using specially developed software.

BT's PC videophone hardware, which conforms to the H. 320 series of international videotelephony standards, and IBM's Person to Person 2 (P2P)
software will allow people to participate in desk-top conferences by enabling them to see each other and exchange documents via their PCs. IBM's P2P software can also be used with H. 320 -compatible video over public telephone networks.

BT and IBM UK will have a PC videophone product comprising a PC card, camera and handset on the market by the third quarter of 1993. The expanded P2P support for this technology will be available soon after.

SURFACE RESISTIVITY METER

Tlechnotrend Ltd of Famborough has launched a revamped version of its SRM 30 Surface Resistivity Meter. The SRM 30 is an instrument that measures both surface resistivity and resistance to ground. The new version gives measurements of surface resistivity over a range from 10^{3} to 10^{13} ohms with a clear indication whether a surface or material is conductive, static dissipative or insulative. Accuracy of measurement is assured by means of a system of independently sprung electrodes which can accommo-
date considerable irregularity of the surface under investigation.

Powered by a standard 9 V battery the SRM 30 requires a minimum of operator training. It has applications in such static sensitive environments as microelectronics component assembly areas, computer rooms, quality control, laboratories and hospitals.
For further information contact:
Technotrend Ltd.
Tel: 0252373242
Fax: 0252373440

PAGING SYSTEM HELPS CUT CRIME

The first paging system in the UK to be used by Neighbourhood Watch schemes has been supplied by Hutchison Telecom. The early waming paging system has been introduced into the Birmingham area for both West Bromwich and Sutton Coldfield's Neighbourhood Watch schemes, making them the first and the most technologically advanced schemes in the UK.

The paging system means that police are now be able to send messages immediately to Neigh-
bourhood Watch co-ordinators on matters varying from suspect cars to possible gangs of burglars or vandals operating incertain streets or areas, simply by telephoning details into Business Watch's message bank. This automatically alerts all the coordinators using pagers and each member of the group then dials into the message bank to hear the information. In turn the coordinators will alert Neighbourhood Watch members in their area.

According to the latest Home

Office crime figures, burglaries have increased by 16% over the last twelve months, with 173,000 more burglaries recorded by the police in the twelve months ending June 1992. Of these 91,000 were residential burglaries and 28,000 shop thefts, an increase of 11%. Hutchison Telecom hopes that this new technology will beat the increasing crime rate.

At the trial launch Mr Dave Gerard, Neighbourhood Watcher said: "Within minutes we shall get the message and within min-
utes we have 3000 eyes looking out for what we have been given by the police. 3000 eyes is a lot, we only have a few policemen out in their cars, we have got 3000 eyes".

The paging system used in the new trial is the same as that used in Hutchison Telecom's Business Watch scheme which is currently being used to successfully combat crime primarily in businesses and retail outlets.

PRINCESS ROYAL PRESENTS BBC RADIO 4 AWARD TO OPTICS INVENTOR

Adevice which enables par-tially-sighted people to magnify written text and make it appear on a television screen has won an award from the BBC Radio 4 programme 'In Touch'. Mr Pat Crane was presented with the David Scott Blackhall Award by the Princess Royal in a ceremony at Broadcasting House in London.

The 'Eezec-Rcader' which can be connected to any television set
and enlarge print by up to 40 times secured the award, which is given to someone who has provided outstanding service to people with a visual handicap. The award for $£ 1,000$ is funded by the Patients Aid Association from Wolverhampton, and commemorates David Scott Blackhall who worked on the 'In Touch' programme from 1961 until a few weeks before his death in 1981.

Pat Crane's invention consists
of a miniature camera and magnifier in a tiny, hand-held scanner similar in size and shape to a paper stapler. This is mounted like a miniature telephone on a small box into which the television aerial from any domestic set can be connected. The television is tuned into a spare channel and when the camera scans any writing it appears greatly magnified on the television screen.

Pat Crane, an electronics en-
gineer from Ripley in Surrey, runs a small business producing miniature cameras for industrial inspection work. He got the idea for the 'Eezee-Reader' when he saw what pleasure a partially sighted friend got from looking at photographic enlargements which enabled her to see pcople and things she could not normally see.

SAJE Electronics has introduced an MX9000 Multi-Instrument. The MX9000 combines four instruments to suit a broad range of applications in both education and industrial markets including development work stations where space is at a premium.

The Instrument includes:
A triple output power supply with LCD display offering $0-50 \mathrm{~V}$ $0.5 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A} .5 \mathrm{~V} 2 \mathrm{~A}$ with full overcurrent protection;

An 8 digit LED display 1 Hz 100 MHz frequency counter with gating rates of $0.1 \mathrm{~Hz} .1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz providing resolution to 0.1 Hz plus attenuation inputs and data hold;

A 0.02 Hz to 2 MHz full featured sweep/function generator producing sine, square, triangle. skewed sine, pulse and a TTL output and linear or logarithmic sweep. Outputs of 50 R and 600R impedance are standard features; An auto/manual $31 / 2$ digit LCD multimeter reading DCV, DCA, ACV, ACA, resistance, and rela-

tive measurement with data hold. functions.

The MX9000 oomprises four of the most desirable instruments housed in a single unit and built to a high standard. The cosmetic
appearance is extremely pleasing and would be a plus for any bench.

The MX9000 represents good value at $£ 399.00$ plus VAT.

For further information please contact:-

SAJE ELECTRONICS

Tel:0223 425440
Fax: (0223) 424711

VLF RADIO

TThe ELF and VLF radio bands have hitherto been largely neglected by amateur radio and electronic enthusiasts. This is really quite surprising in view of the fascinating properties of this portion of the electromagnetic spectrum. The evocatively named 'dawn chorus', with its 'tweeks' and 'whistlers', comprises a whole range of natural phenomena generated in the earth's atmosphere. More practical uses of frequencies below 150 kHz include broadcasting standard frequency
and standard time services, hyperbolic navigation and communication through sea water or solid rock to submarines, miners and pot-holers. With negotiations between the RSGB and the licensing authorities for an amateur VLF allocation well underway, the neglect of the bottom end of the radio spectrum could be coming to an end.

One British group which is already active in this field is the Cave Radio and Electronics Group of the British Cave Re-
search Association. This group is intent on improving techniques of VLF radio communication with a particular emphasis on its use in cave surveying and cave rescue.

A journal containing a broad mix of practical and theoretical articles is published quarterly. Although most of the group's members are actively involved in caving, there is much here to interest those with a more general interest in VLF radio communication and miscellancous electronic applications. Recent articles have cov-
ered the principles of inductive communication, antenna design, modulation methods, a design for an ultra-sensitive flash trigger, caveproofing equipment, NiCd battery charging, surveying software and cave detection using geophysical techniques.

Full membership of the group, including subscription to the Journal is $£ 7.50$.

For details, contact David Gibson at 12 Well House Drive, Leeds LS8 4BX (Tel 0532481218).

SONY LAUNCHES FIRST MOBILE PHONE FOR CONSUMERS

Sony, is bringing its inimitable touch to the mobile phone market.

The first mobile phone designed specifically for the general consumer has been launched. It is intended to work in conjunction with Cellnet Lifetime, a new service which aims to open up the domestic market by halving usage costs and offering a customer friendly service.

Sony's new phone, the CM-

H333 is small enough to fit in the palm of the hand and will be one of the most compact mobile phones on the market.
"The mobile phone will no longer be the exclusive preserve of the business person" says Tim Woods, Sony"s Senior Manager, Personal Telecommunications.
"Like the electronic calculator, or personal computer, its use is set to become universal. The Sony phone will be available to
everyone, whatever their needs. It's size and shape is about the same as a Mars Bar so convenience combined with ease of use will contribute to its success".

The CM-H333 will be priced at $£ 299$ and battery life will allow up to 90 minutes talk time with 24 hours stand-by time and there is an optional hands-free kit for use in the car.
"Sony aims to lead the way in personal mobile communications
hardware" concludes Tim Woods. "The new phone, together with Cellnet Lifetime, will do for mobile communications what the Sony Walkman did for music".

> MORE
> NEWS
> NEXT
> MONTH

GilNEWS

.Stateside...

Eliminating flat batteries

Electronics that help guard against dead batteries has been installed in the 1993 Oldsmobile Achieva. If the trunk, reading, foot, or glove-box lights are left on for 20 minutes while the ignition is off, the circuitry will automatically turn them off. Battery mun-down protection also works if a door is accidentally left

> Evaluating cross stepper performance

nevaluating micro-stepper performance most people measure only the starting and stopping position of a multi-step move. What they miss are the details of individual steps and motion profiles that could help them optimize the application.

Dynamic measurements contain more information, but they also are more difficult to make. Sensor requirements are particularly demanding: Resolution must be higher than the smallest mi-cro-step and response time must be two to three times faster than the highest velocity.

Battery run-down protection

ajar. To reactivate any lamp, a driver need only turn on the ignition, turn the light switch off then on, or open the car's front door.

The system also guards against voltage loss if the car is not used for an extended period. After 24
days without use, power to the clock, radio, and remote lock is automatically interrupted to reduce battery drain. Power returns as soon as the ignition is turned on. Clock and radio stations have to be reset.

'Self-healing' chips

Clientists at the GE Research and Development Centre have
developed a technology for designing 'self-healing' chips. These are next-generation, integrated circuits that will police themselves for errors caused by malfunctioning circuit elements

Consider a typical measuring probe that senses a flat tab placed $0.5^{\prime \prime}$ from the centre of a motor shaft. For a micro-stepping system with 51,200 steps/rev, a single step corresponds to 61.4 millionths of an inch. The required
response time to gauge stiction, hysteresis, and settling time is on the order of a few hundred microseconds.

Capacitance-based displacement sensors can provide these kinds of numbers.
and produce signals that compensate for errors the faulted elements would otherwise cause.

Such fault-tolerant chips will be especially important for mis-sion-critical applications aboard satellites and spacecraft, for example, where repairs are difficult or impsosible to make and the consequences of errors in processed data can be catastrophic. Intermittent errors introduced by electromagnetic interference and other transient phenomena, as well as errors caused by permanently faulted circuit components, will be detectable and correctable.

The company's new methodology lends itself to the design of both digital and analogue faulttolerant integrated circuits of the type whose behaviour is represented by state-variable equations. Such circuits, including a large class of filters and controllers, are widely used for diverse control and signal-processing applications.

With the GE approach, validated through both computer simulation and prototyping, error
detection and correction are carried out by a small built-in 'checking circuit' that ties into the chip's primary circuitry at strategic 10cations.

The checking circuit computes 'check-sum codes' - specified weighted linear sums of the terms on both sides of the state equations that the ptimary circuit solves in the course of performing its function. If there is a fault, the check-sums do not agree, and an error is signaled. The checking circuit then does an error check of itself, and, if okay, it computes the error value and automatically feeds this value back to the main circuit for error correction.

Fault-tolerant chips are probably two or three years away from their first 'real-life' applications. The company is currently working to extend the technology to the design of complex fault-tolerant circuits of a type that might find aerospace applications, including those that exhibit nonlinear behaviour. The current technique is limited to the design of linear systems.

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE 18 6DD

Tet: (0480) 433156 Fax: (0480) 413357

TEST EQUIPMENT

Supply
Maintenance
Commissioning

SYSTEM CONSULTANCY
Replacement Parts
Supply of Service \& Operators Manuals Components

Distributors for: WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ EIECTRONICS, PANTHER

\square LND STEVENAGE

Professional Sub-Contract Manufacturing \& Suppliers to the

 Electronics IndustryDo you have a requirement for any of the following services:

PCB Assembly (Conventiona and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Complete Equ
Manufacture
Device Programming from hand written shts or PC $3^{1 / 2} / 2^{\prime \prime} \mathrm{disC}$
Cable Harness Assembly /loom Manufacture
Card Cage and Module WIring Full inspection
Phone Tracey on (0438) 310066 or Fax details of your requirements to us on (0438)315829
EQT LTD, BTC, Bessemer Drive, STEVENAGE, HERTS, SG1 2DX

Product Design/Consultation Full Procurement Service PC8 Test \& "Burn in" Faclities Enclosure Design \& Manufacture Enclosure Design \& Manuf
PC8 Artwork Manufacture Circuits Drawn Professionally Circuits Drawn Professiona
Kit Procurement \& Supply Component Sales
Refurbishment a speciallty Top Quality Work at Reasonable Rates

Paul Chappel describes the variations available on a diode theme

Fig.1a The basic IV characteristic of a silicon diode

Rumour has it that if you enrol in certain Cordon Bleu cooking courses, the master chef will have you spend the first month perfecting the art of cooking eggs. In this master class I'm going one stage further: not only will I concentrate on one of the most basic of electronic ingredients, the diode, but I'll only be doing any actual cooking with one varicty: the tunnel diode. Let's begin by taking a quick look at eggs - sorry, diodes - in general.

Fig. 1b The consequences of exceeding the operating limits!

The static current-voltage characteristic of an ordinary rectifier diode is shown in Figure 1a. Under reverse bias there's very little current flow, under forward bias the current rises rapidly from about 0.5 V onwards, so for practical purposes the diode is essentially a component which conducts in one direction and not in the other within reason anyway, as Figure 1 lb shows. Too much forward voltage and the diode will burn. Too much reverse voltage and the junction breaks down, and if the current is not externally limited in some way, once again the diode will burn.

The reverse breakdown is put to good use in the Zener diode. The voltage at which it occurs is pretty repeatable, the conduction is abrupt, so it's quite effective as a voltage reference. A typical silicon signal diode may break down somewhere in the region of 50 V to 200 V , but by doping the silicon more heavily than usual it's an easy matter to make diodes which conduct at much lower reverse voltages. These highly doped devices are the 'zeners' you use in power supply regulators and suchlike.

If the forward characteristic is not to your liking, that can

Diodes

be altered too.
Make a junction from aluminium and lightly doped N type silicon, and you have a schottky diode. It has a considerably lower forward voltage drop than the ordinary P N junction, so the characteristic is closer to the ideal fult conduction (Figure 1c). This is useful in circuits where the power loss from the forward voltage has to be minimised, and for clamping circuits which prevent a voltage exceeding a certain level - the lower voltage drop allows tighter control over the pre-set level. Another good thing about Schottkies is that they work a darn sight faster than ordinary rectifiers - for the physicists amongst you, this is because the current travels by majority carrier only. The problems you get when minority carriers start hanging about round the junction is illustrated by Figure2, showing the results of some measurements I once made on a IN4006. I rest my case.

These are the main variations of the basic diode characteristic, but what I want to concentrate on for the rest of the article is devices where the rectifying property is largely irrelevant. By varying the materials, the geometry (the area of the junction, for instance) and the doping levels, it's possible to make a diode do all manner of tricks totally unrelated to its usual purpose. The variation in junction capacitance with voltage can be increased to make a diode which thinks it's a tuning capacitor; different materials can be used to make one that emits light; and various blips can be added to the characteristic of Figure la for a diode which will oscillate!

Fig.1c Schottky diode characteristic. The forward voitage drop is still significant, but much less than for a P-N diode.

The Gunn Effect

The normal state of affairs for charge carriers in a semiconductor is that their thermal energy is very much greater than the energy supplied by the electric field. They are a bit like a herd of sheep being driven by a sheep dog: they mill about here and there, but the general drift is always towards the exit electrode.

If a very strong field is applied, it can happen that the energy from the field is comparable with, possibly even greater than, the thermal energy. The result is similar to a flock of sheep fleeing from wolves: if the wolves are some
distance away, the motion of the sheep will be fairly well directed away from them. There may be some random movement, but the motion of the flock will be substantially towards the nearest exit! As the wolves get closer (the applied field is increased further still) the sheep will in such a panic that they'll bump into each other, trip each other up, and the overall motion will actually be slower than before.

In the wolf situation, the farmer arrives to find his remaining sheep very overheated - it's referred to as a hot sheep device. In the electronic version the carriers are also said to be hot, and you'll find reference to hot carrier devices.

In 1963 a chap by the name of Gunn discovered that current oscillations can take place in certain materials, N type GaAs in particular, under these hot carrier conditions. The physics of the situation is quite tricky, but it revolves around the slowing down of the charge carriers, which gives Gunn devices a negative resistance over part of their characteristic. One way this can give rise to oscillation, I'll talk about that later when we get on to Tunnel diodes. In the Gunn devices, the field which excites the carriers is unstable. Charge carriers that group together distort the field to attract more carriers, which distorts the field further, and so on. The initial clumping takes place in imperfections around the cathode, the bubble spreads to the anode, where it 'bursts', and the whole process begins over again. This all happens rather quickly - at microwave frequencies, in fact - and several Watts of output power are possible.

Avalanche Diodes

In Zener diodes, the reverse breakdown occurs when charge carriers are accelerated to high enough speeds in the electric field around the junction to dislodge more electrons by colliding with atoms. The newly created charge carriers are also accelerated at high speed, have their own ionising collisions, create still more carriers, until there's a whole avalanche of the things!

An avalanche (or Zener) diode can be adapted to work as an oscillator by adding a length of intrinsic (undoped) semiconductor material either to the end of the diode to give a P-N-I structure, or between the \mathbf{P} and regions to form a P. I-N diode.

Fig. 3 The basic structure of a Gunn device
Unlike Gunn devices, avalanche diodes won't oscillate on their own. They need an external tuned circuit to keep them going. A bias voltage is applied so that the diode is just on the point of avalanche breakdown. If the voltage is increased just a touch, the breakdown will occur, but the current won't rise immediately because the electrons have to make their way though the I region.

If the voltage is decreased again the breakdown stops but there's still a blip of current on its way through.

The trick is to join the diode to a tuned circuit matched to

Fig. 2 The efficiency of a 1 N4006 rectifier at varlous frequenies. At 50 Hz it behaves just as it should but at frequencies as low as $\mathbf{2 k H z}$ it's starting to misbehave. By 20 kHz lt's virtually useless as a rectifier
the drift time of the I region so that the current pops out in antiphase to the voltage. This gives the tuned circuit the boost it needs to keep going; the voltage it creates keeps the breakdowns going, which keeps the blips of charge coming, which keeps the tuned circuit going... And there you have it. An avalanche diode oscillator.

Once again these devices oscillate in the microwave region. The impatt variety which work in the way I've described can produce a fairly high output power, but aren't too efficient (less than 10%) A slightly modified version known as the trapatt can achieve efficiencies of over 50%

Tunnel Diodes

In 1964, J. Tunnel discovered ... no, I lie. The tunnel diode was actually invented by a Japanese gentleman. The year I'm not too sure of, so we'll just say it was in the early sixties. On a Tuesday.

A tunnel diode is made from an ordinary P-N junction, the special feature being that the doping on both sides is very heavy indeed. As with people who are doped up to the eyeballs, the materials are said to be degenerate, which means that the majority carrier energy levels on either side of the junction overlap In this condition a process known as tunneling can occur: charge carriers can disappear from one side of the junction and magically reappear on the other side
without ever having had the energy to make the jump. The rule is that they must end up the same energy level they started at, which is only possible when the energy bands overlap.

The notion of tunneling is one of the bizarre constructs of quantum theory.

In Figure 5 we have a hill. On one side of the hill are some marbles. Now suppose you flick one of the marbles up the hill. As the marble goes up the hill it loses kinetic energy, coming down the other side it gets it back again, so at the moment of arriving it should have exactly the same energy as at the moment it was flicked. The same kinetic energy because the speed lost on the way up the hill is regained on the way down; the same potential energy because it rests at the same level as when it started.

So far classical physics and the quantum variety are in agreement. Where they differ is that quantum physics says there's no need for the flick. If the resting places on either side of the hill represent states of equal energy, as they do, there is a certain probability that a marble on one side of the hill will find itself on the opposite side without ever having the energy to go over the top. The barrier that charge carriers pass is not a physical one - the hill simply represents an

Fig. 5 How do the marbles reach the other side of the hill?
obstacle which needs a certain energy, according to classical physics, to pass. A better analogy might be the magnets in Figure 6. Roll the magnet slowly and it will be repelled by the fixed magnets. It needs a certain kind of kinetic energy to overcome the repulsion, so there is a kind of energy 'hill' that it has to pass.

The process of passing through an energy hill is known as tunneling. The one thing you mustn't ask is how the charge

Fig. 6 The energy hill created by magnets
carriers do it: all that quantum physics has to say on the matter is that there's a certain probability that they will. If you feel skeptical about all this, you're in good company: it was the insistence of certain physicists that the deepest structures underlying our universe are, in a very real sense, statistical in nature which gave rise to Einstein's incredulous 'God does

Fig.7a The bare bones of a tunnel diode oscillator

Flg.7b The practical circuit

Fig.7c The effective series resistance from the blas resistors, showing the need for C2
not play dice.' What was once a daring heresy is now the official doctrine!

As simple engineering bods who like nothing better than to solder a circuit or two, we needn't concern ourselves too much with the physics. The static characteristic of a tunnel diode (Figure 6) tells us all we need to know. The forward characteristic is similar to that of an ordinary diode, except for the all important hump at about 0.1 V . And the really exciting portion of the hump is the downward slope between about 0.1 V and 0.2 V - here an increase in voltage causes a decrease in current, so the diode appears to have a negative resistance.

The basic-idea of a tunnel diode is shown in Figure 7a. The 0.15 V supply biases the diode to the centre of its negative resistance region. A rise in voltage across the tuned circuit $\mathrm{Ll} / \mathrm{Cl}$ will give a corresponding reduction in the voltage across DI which, because of its negative resistance, will cause an increase in the current through it. The extra current supplied to the tuned circuit is therefore in phase with the voltage across it, which is exactly what it needs to keep it oscillating.

A more practical version of the oscillator is shown in Figure 7b. Here R1 and R2 serve to 'pot down' the 1.5 V supply to give the diode its bias voltage. C 2 is included to reduce the impedance of the supply at the operating frequency - without it, the equivalent circuit of the bias supply is as shown in Figure 7c: the diode has a positive resistance in series with it which cancels out part of its negative resistance.

And that, I'm afraid, is your lot. If you're wondering why I haven't explained how diodes can be used for switching, or any of my other omissions, the reason is I didn't realize just how much you could do with a diode until I got started. In the words of the cordon bleu master chef, a diode is as versatile as ...a banana.

'ALL mode' ~ ALL the time...

Whether operating from home base, mobile or while out walking, AOR have all mode receivers to suit... AR3000A - AR2800 - AR1500E

With the AR3000A your listening horizons are truly extended providing receive coverage from 100 kHz all the way up to 2036 MHz without any gaps in the range. The AR3000A offers the widest coverage on the market today with a high level of performance and versatility from long wave through shortwave, VHF and onward to the upper limits of UHF and SHF.

Not only will the AR3000A cover this extremely wide range it will allow listening on any mode: NFM, WFM, AM, USB, LSB AND CW. The high level of performance is achieved by using 15 band pass filters before the GaAsFET RF amplifiers unlike other receivers which may rely largely on broad band amplifiers. This ensures high sensitivity through the entire coverage with outstanding dynamic range and freedom form intermodulation effects.

The receiver features comprehensive search \& scan facilities providing speeds of up to 50 increments per second. An RS232 port is provided enabling full remote control via most computers. A rear panel switch changes control between the keypad and RS232 port.

The AR3000A is powered from 13.8 V DC, a suitable mains power supply is provided with the receiver. Other accessories include a telescopic whip, DC lead and comprehensive operating manual. RRP $£ 875.00$ including VAT.

Computer control

Two AOR software packages are available - AORSC Spectrum Coordinator and ACEPAC3A. Both software packages offer extensive memory, search and scan facilities plus much more. Note: Scan \& search speeds are slower under remote control than offered by the receivers in 'real mode'. P\&P on software $£ 2.00$
AORSC is a powerful program for the IBM PC (and 100% compatible) computer which allows control of the AR3000A, AR3000 or AR2500 receivers via the computer's RS232 serial port. A text display is used to present information regarding operation of the software. The status of the receiver and software is shown above a list of memory channel contents. The bottom line of the screen contains a menu giving a list of options representing the main facilities which the software offers.

The keyboard of the computer may be used to select the frequency and mode using dual VFOs, it is possible to switch instantaneously between the two VFOs with a single key press. A fixed VFO offset may be entered into the system and the VFOs locked together using the "tracking" facility so that a fixed offset is maintained while tuning across the receiver's spectrum.

Three thousand mode sensitive memory channels are provided in each memory file, each with dual VFOs and a 50 character comment. Multiple memory banks may be used so that the total number of stored channels may be several thousand! A selection of memories are displayed on the computet's screen so that you may easily review memory contents. Of course AORSC features comprehensive programmable search \& scan facilities, it is possible to upload and download memory channels to and from an AR3000A/3000. Automatic memory store is also possible.
Activity histograms may be printed (automatically if you wish) and the package has a fully integrated bandplan data-base and logbook. Other facilities include offset simplex reconstruction, detailed single frequency watch, reject frequency list and even a simple spectrum analyser style graphics display... a detalled 8 page sales booklet is available upon request. AORSC is supplied on both 3.5 \& 5.25 inch media. Although it is possible to run the software on a twin 720 k floppy machine, installation is recommended on a hard drive. RRP $\mathbf{8 7 5 . 0 0}$ including VAT.

ACEPAC3A is available to those with a larger budget. The package is designed to compliment the AR3000A \& AR3000 receivers. Facilities are similar to AORSC but the spectrum stye display offers greater facilities. Multiple banks of 400 simplex memory channels are available with character comment. Download of memory channels to the receiver is possible. RRP $£ 129.90$ including VAT.

Enhanced model - AR1500E - the World's ffrst true compact hand-held wide range receiver offering SSB as standard has been made even better. Coverage is from 500 kHz all the way to 1300 MHz without any gaps in the range. Channel steps are programmable in multiples of 5 kHz and 12.5 kHz up to 995 kHz , the BFO will allow tuning between these steps for SSB operation. All popular modes are provided NFM, WFM, AM and SSB (USB, LSB and CW) with the BFO switched on.

The receiver is supplied with a comprehensive selection of accessories: DA 900 wide band flexible aerial, NiCad pack, Dry battery case (for use with 4 x AAA alkaline cells), Charger, DC lead fitted with cigar lighter plug, Earphone, Soft case, SW aerial wire terminated in a BNC connector for shortwave reception and Operating manual.

Versatility is excellent. The ARIS00E may be powered from it's internal NiCad pack, spare dry batteries may be carried for extended operation and used with the dry battery case, the set may also be plugged directly into the cigar lighter socket of a motor vehicle (external input range $11-18 \mathrm{~V}$ DC). RRP $£ 299.00$ including VAT:

> If you are unable to obtain supplies of $A O R$ products from your local dealer, you may order directly - we have a fast mail order service. We usually have 'nearly new' stock available at attractive prices too! Please send a large S.A.E.
> (34p) for full details.

AOR AOR (UK) Ltd.

Room 2, Adam Bede High Tech Centre,
Derby Road, Wirksworth, Derbys. DE4 4BG.
Tel: 0629-825926 Fax: 0629-825927
A subsidiary of AOR Led Japan E\& OE

Chelmer Valve Company

 forAudio Valves
Audio valves with famous Brand Names of yesteryear such as MULLARD, MOV, GEC, RCA etc., are in very limited supply and their scarcity also makes them very expensive.
We at Chelmer Valve Company however provide high quality alternatives to these old makes. We have over 30 years experience in the supply of electronic valves of all types and during this time have established close ties with factories and sources worldwide.
For high fidelity use we further process valves from these sources using our specially developed facilities. After rigorous testing - including noise, hum, microphony, post burn-in selection and matching as needed - we offer this product as CVCPREMIUM valves.
A selection of the more popular types is listed here.

Price list \& Order Form for CVC PREMIUM Audio Valves							
	UNIT PRICE	QTY.	TOTAL PRICE		UNIT PRICE	QTY.	TOTAL PRICE
PRE-AMP VALVES				CARRIED FORWARD			
ECC81/12AT7	5.00			RECTIFIERS			
ECC82/12AU7	4.00			GZ33	4.50		
EOC83/12AX7	5.00			GZ34/5AR4	4.50		
ECC85	4.00			5U4G	5.00		
ECC88	5.00			5Y3GT	3.20		
EF86	4.00 6.00			524GT	3.50		
E81CC (GOLDPIN)	6.00			SOCKETS			
E83CC " "	6.00						
E880C "	7.00			B9A (PCB)	1.60		
E80F	12.00			B9A (CHASSIS)	1.60		
E83F	5.50			OCTAL (CHASSIS)	1.75		
6SL7GT	4.00			4 PIN (UX4)	3.00		
6SN7GT	4.20			$\begin{aligned} & \text { MATCHINGCHARGES*. } \\ & \text { POST \& PACKING } \end{aligned}$			
POWER VALVES							
							3.00
2A3 (4PIN)	14.00			IOTALEXC. VAT			
2A3 (OCTAL)	14.00						
211	22.00			VAT 3178%			
300B	50.50						
811A	9.50			TOTAL TOPAY			£
E84L/7189A	5.10			* MATCHING, if required; state valve types \& if PAIRS, QUADS or OCTETS - Allow $£ 1.00$ per valve for this service.			
KT66	9.20						
KT88	12.50			Make CHEOUES payable to 'CHELMER VALVE COMPANY or pay by ACCESS/MASTERCARD/VISA, give details:-			
KT88 (GOLDQ)	18.50						
6L6GC	6.50						
6LWWGC/5881	8.00						
6V6GT	5.00			Signature Expiry			
6336A	10.20						
6550A	11.00			Name Address			
7581A	10.00						
TOTAL CARRIED FORWARD.				Address			
					... Pos		

Valve amplifiers sound better still with CVC PREMIUM valves!

[^0]
Low cost data acquisition for IBM PCs \& compatibles...

All our products are easy to install - they connect directly to either the printer or serial port and require no power supply. They are supplied with easy to use software which collects data for either display or print-out.

PICO TECHNOLOGY LTD

Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 70J

DPRON Programmer

T

 he construction of this PCB is rather fiddly and great care should be taken. All the components except the power input socket (SK2) and the RS232 socket (SK3) are mounted on the PCB. This is a double sided board, about 2100088 mm in size, which is available from the ETI PCB service. Note that the holes in the PCB are not plated through. The PCB overlay is shown in Figure 6. Due to the complexity of the PCB, the construction should be carried out in the following order.Firstly enlarge 1C20 and IC21 mounting tab holes, L1 mounting hole and the comer fixing holes to 3 mm . Also enlarge the holes for presets RVI-4 to 1.2 mm , and the holes for IC20, IC21, D11 and the Veropins to 1.0 mm

Next fit the through-board connections in the positions marked with a single small circle on the overlay, there are 122 in total. Tinned copper wire should be used here, suitable pins may be available but check they will fit the holes in the PCB $(0.8 \mathrm{~mm})$ before ordering. Now fit the transistors, resistor network and non-polarised capacitors. The resistor network must be fitted the correct way round as shown on the overlay. Note that many of the component leads will also need to be soldered on the top of the PCB - wherever there is a pad it should be soldered to. This also applies to the resistors, diodes and presets which can now be fitted. Note that the presets can be fitted on the back of the PCB if required, this may ease adjustment once the $P C B$ is mounted in the case.

Next fit all the DIL IC's except IC3 and IC19. Note that since many connections need to be soldered on the top of the PCB it is not possible to use conventional IC sockets, although some of the more expensive turned pin types may be
suitable. IC sockets should now be fitted in positions IC3, IC19 and SK1.

It is now possible to fit the remaining components in any convenient order. Temporarily solder the LEDs at the full length of their leads, and adjust them later when the PCB is being fitted in the case. L1 should be mounted with an M3 nut, bolt and shake-proof washer (do not over-tighten) or a dab of glue. IC20 and IC21 should be mounted with M3 nuts and bolts, IC21 would benefit from a small heatsink or bracket of some sort. Veropins should be fitted for the off: board connections. Fit a wire link in LKl position, between the lower two homes for 9600 baud, or as shown on the overlay for other rates.

Testing

The PCB should be tested before fitting into the case. Do not fit IC3 or IC19 yet. Connect the unit to a power supply via a test meter set to 500 mA DC or greater. Switch on and watch the meter, if the reading exceeds 200 mA switch off immediately and find out why! Make a note of this current. If all is well remove the meter and connect the power directly. Now set the meter to 10 V DC or thereabouts and check V_{cc} on the power pins of one of the TTL IC's, this should be between 4.75 V and 5.25 V . Also check for about +9 V on pin 2 of ICl and about -9 V on pin 6 of ICl .

If you have a 'scope, look at the DC input and check that the troughs of any ripple do not go below 10 V . If there is significant ripple from the power supply (greater than about IV pk-pk), try connecting a $1000 \mu / 25 \mathrm{~V}$ capacitor directly across the DC input.

You could now fit the remaining ICs, adjust the voltages, and try the unit in use - and probably get away with it! However I would strongly urge that the following step-bystep checks are carried out to ensure the unit is fully functional. A 'scope or logic probe would be most useful, although most of the checks can be done with just a test meter.

If you have an IBM PC or compatible, start BASICA or G.W.BASIC (or QBASIC if you have MS-DOS 5), and enter the test program given in Listing I (if you have obtained the disk from the author simply run TEST1.EXE, which is the compiled version). If you have a different computer you may have to modify or re-write the program as necessary, the notes in the 'How it Works - Soffware' section may be of some help. It may be worth trying to get access to a PC, to avoid having too many unknowns!

```
10 REM ".- EPROM Programmer BASICA Test Program I Version 1.00
20 AEM =% Coyright (C) Paul Stemning and ET, 1992.
3) REM
40 SCREENO:CLS
50 PPINT "EPROM Programmer BASICA Test Program 1- (C) Paul Stenning & ET, 199%'
80 PRANT
70 OPEN COM1.9600,N,8,1,CS200,CDO,OSO" FOR RANOOM AS 11 LEN = 1
SO INPUT;AS
90 IF AS = - THEN PRINT 'QUIT : CLOSE |1: END
100 IF LEN(AS)O 2 THEN PRINT TAB(10); "NPUT ERROR": GOTO 80
110 PRINT O1, CHRSVNAL("ON" + AS));
120 TIMEOUT = TMMER +0.1
130 IF EOF(I) AND TIMER < TIMEOUT THEN GOTO 130
140 IF TMER >= TMEOUT THEN PRINT TAB(10);"":GOTO 80
150 AS=HEXSASC(INPUTS (1,01))
160 IF LEN(AS) < THEN AS = '0 + AS
170 PRINT TAB(10); AS
180 GOTO8O

Insert IC3 (the 6402), connect the programmer to the computers RS232 scrial port (see Figure 5), switch it on and then run the software. The software does nothing more exciting than wait for you to enter a 2 digit hex number


Fig. 5 Socket connections
(followed by <Enter>) and then sends it to the programmer. It then attempts to read back a number, if it's successful it prints the number otherwise it prints **. To exit just press <Enter> on it's own.

Type 'FF' (don't type the quotes, and follow it with <Enter>). Check the logic levels on pins 5 to 12 of IC3, they
should all be logic 1 . Note that logic 1 is anything over 3.5 V and logic 0 is anything under 0.5 V . Now type ' 00 ' and the logic levels should all be 0 . To be certain, type ' 55 ' and the levels should be 01010101, then type 'AA' and the levels should be 10101010 . If you have a 'scope or logic probe check for a short positive going pulse on pin 19 whenever a number is sent.
```

10 REM =m EPROM Programmer BASICA Test Program 2 Version 1.00
20 REM \cdots Copyngh((C) Paul Stenning and ETT, 1992
30 REM
40 SCREENO:CLS
50 PRINT EPROM Programmer BASICA Test Program 2 - (C) Paul Sleming \& ET, 1992
60 PRINT
70 OPEN CON1:9500,N,Q,1,CS200,CDO,OSO' FOR RANDOM AS ILEN =1
80 PRINT II,CHRSNAL(8
50 PRINT 11,CHRSNAL('83317):
100 PRINT II,CHRSNML(*G40));
110 FOR COUNT = OTO 65535
120 LOCATECSRLIN, 1: PRINT COUNT;
130 IF COUNT = OTHEN GOSUB 210
140 IF COUNT = 21845 THEN GOSUB210
150 IFCOUNT = \$3650 THEN GOSUS 210
180 F COUNT = 65535 THEN GOSUB210
170 PRINT II,CHRSNAL/8H50);
180 IFINKEYS = CHPS/27) THEN PPNT TAB(8); ABORTED:GOTO 200
190 NET
200 CLOSE 11 END
210 PRINT TAB;(8); Press Any Key to Continue."
220 IFINKEYS = - THEN GOTO 22O
230 RETURN

The most likely cause of problems here is the RS232 wiring. Are you using the right port (COM1) on your PC? You can edit line 70 of the program if you are using a port other than COM1. Have you set LK1 to 9600 (or lower if your type of computer won't work at 9600)? Try swapping wires 2 and 3 in the RS232 lead. If the program appears to lock try disconnecting the CTS wire (Ctrl-Break will stop the software in this case). Check the link settings on your serial communications port - if you have the 'Everex EV170 Magic I/O Card' (used in many early XT and 286 AT machines) and can't get it to work, write to the author!

Type ' 0 F' and check pins $9,10,15$ and 16 of IC6, they should all be at logic 1 . Now type ' 00 ' and they should all be at logic 0 . Typing ' 05 ' should give 0101 and ' 0 A ' should give 1010. Now repeat the above, replacing the first character with a ' 1 ' and checking the levels on IC7, then ' 2 ' and IC8, and finally ' 3 ' and IC9.

Now type ' 00 ', ' 10 ', ' 30 ' then ' 70 '. After you typed the ' 70 ' the screen should show ' 00 ', the others should have given '**'. The 'Program' (red) LED should also be on. This set ' 00 ' on the data bus, selected write mode to enable U10, then read the data back down the RS232 link. The most likely cause of problems here is the RS232 link again.

Now type '31' then '70'. The screen should show ' FF ' and the 'Read' (yellow) LED should be on. IC10 is now disabled so it's outputs are tristate and pulled up by RNI.

Typing ' 30 ' then ' 70 ' should return ' 00 ' again. Typing ' 0 F ', ' 1 F ' then ' 70 ' should return ' FF ', typing ' 05 ', ' 15 ' then ' 70 ' should give ' 55 ', and typing ' 0 A ', ' 1 A ' then ' 70 ' should give 'AA'. Also check that the appropriate data is actually reaching the EPROM socket pins as shown below:

Data Line	D7	D6	D5	D4	D3	D2	D1	D0
Socket Pin	19	18	17	16	15	13	12	11
Type	Expected Logic Level							
'00', '10'	0	0	0	0	0	0	0	0
'05', '15'	0	1	0	1	0	1	0	1
'0A', 'IA'	1	0	1	0	1	0	1	0
'0F', '1F'	1	1	1	1	1	1	1	1

HOW IT WORKS SOFTWARE

In the following section a reasonable understanding of programming in BASIC is assumed. The sottware was written for Microsoft BASICA, as supplied with Compaq DOS 3.31. It has also been tested with QBASIC supplied with MS-DOS 5 and with Microsoft QuickBASIC V4.5. Users of other BASIC dialects may have to modity the code to suit.

The first test program is shown in Listing 1. Line 70 opens COM1 (the first serial port) at $<9600>$ Baud, $<N>0$ parity checking, $<8>$ data bits, and <1> stop bit. The timeout on CTS (clear to send) is set to 200 milliseconds, CD (carrier detect) and DSR (data set ready) are disabled. Another serial port could be used in place of COM1 if required, by editing this line.

Line 80 accepts an input from the keyboard, the semicolon causes the cursor to remain on the same line atter <Enters is pressed. Line 90 terminates the program if no value is entered. Line 110 converts the entered, data from a two character string to a single byte and sends it dowm the serial port. Note that in BASICA Hex numbers are indicated by preceding them with "dh", hence the value of " 8 hFF " is 255.

Lines 120 to 170 responsible for waiting up to 0.1 seconds for data to be sent back up the serial port and displaying it. TIMER is a BASICA varable which contains the number of seconds since midnight 102 decimal places (updated 18.2 limes per second), this is used in lines 120 and 130 to control the timeout. EOF(1) will have a value of 0 if data is present, othenwise it will be 1 . Line 140 prints "**" if a timeout has occurred, othenwise lines 150 to 170 read the value, convert it from a single byte to a two character string (using the HEXS function) and print it. Line 180 loops back round for another go!

The second test program, shown in Listing 2 , is used to test the address counter system. This clears the counters and then repeatedly increments them, by sending the appropriate codes. The operation should be evident, given the information above.

The main control program is shown in Listing 3. This software is about the minimum required to make sensible use of the programmer. It is writen in a manner which should make the functioning relatively easy to understand, and is not intended to be an example of good programming!

The subroutines at lines 7000 to 7060 , and 8000108020 tetch a byte from the serial port and send a byle to the serial port respectively. Their operation is as described in the Listing 1 details above. These subroutines are called trequently by the remainder of the program.

Line 100 opens the serial communications as before. Lines 120 to 300 attempt to establish communications with the programmer and test whether or not the CTS connection is present and working. Line 120 sets the program pulse duration 1040 miliseconds, initiates a program puise inmediately followed by a send instruction. II CTS is present the send instruction will not be sent until the program pulse has finished so data will be received, otherwise no data will be sent (see "How it Works Hardware"). The integer variable PAUSE\% is set to 1 if there is no CTS line, causing the software to add suitable delays itself - note that this will slow the operation of the software quite drastically.

Lines 150 to 280 send values to the data latches and then attempt to read them back - this is to establish that communication is reliable.

Lines 310 to 780 request information from the user regarding the EPROM type and programming requirements, whilst lines 790 to 820 set up the programmer accordingly.

Lines 1000 to 1230 form the main menu. Note that CHRS(27) gives the value of the Escape key.

The Read, Program and Verity sections use ASCII-HEX data files in the programmers own format (conversion programs to and from Intel-HEX are given later). The format is easy to produce and edit manually.

The first line is the name of the EPROM type - 2716", $2732^{\prime \prime}$ etc. The remaining lines each stant with the address in Hex (4 digitis), followed by four spaces, followed by 16 bytes in Hex (2 digits) each separated by one space. The addresses must be sequential, starting at 0000 . A smail section is shown below:

2716

$0000 \quad 00112233445566778899$ AA BBCCDDEE FF
0010 FO 23 DE F4 5A 22 3D 7E EA A2 CO CO 38 24 AA 00

O7E0 002348 DE 4 A D7 E1 4C 9A 8B BB DE 09 FF FF FF 07F0 FF FF

It should also be noted that this format is not patticulary efficient with disk space - the file for a 27512 will take up about 250 K . A file compression utility, such as PKZIP or LHARC, will dramatically reduce the size for storage if disk space is a problem.

With the information that has gone before, the operation of the remaining sections of the sotware should be fairly apparent.

The section from 2000 to 2300 reads the contents of the EPROM to a file. Lines 2100 and 2110 give a quatter second delay to allow the power supply rails to come up.

The section from 3000 to 3390 programs the EPROM from the contents of a file. Lines 3270 to 3290 add a delay (100 milliseconds) to allow for the programming pulse it the CTS line is not present, this will occur whether the programming pulse is 1 or 40 milliseconds. This delay may be optimised but it would be better to get CTS working in the first place.

The section from 4000 to 4330 verifies (or compares) the contents of the EPROM with a file, whilst the section from 5000 to 5240 checks the device is blank (all locations contain "FF"). The section from 6000 to 6220 allow the programming voltages to be checked.

Other programs are available to convert the EPROM programmér data files to and trom standard Intel-HEX data files respecively. This is not the place for an explanation of the Intel-HEX file format, so please just accept that the programs workd Details of Intel-HEX and other standard file formats are on the disk available from the author, together with various conversion programs etc.

Now we come to the address bus. Type in the program given in Listing 2 (save the other program first as it will be needed again).

The program configures the programmer for 27512 EPROM's so. all 16 address lines are bought to the EPROM socket and should be checked there. The program clears the address counter and then
repeatedly increments the count, pausing at selected points to enable the checks to be made, as shown below:

Flg. 6 Component Overlay

The logic levels should be checked on the pins of the EPROM socket when the program pauses, if a level is incorrect check on the appropriate pin on IC11 or IC12, then trace the fault as necessary. Note that the program may run quite slowly. A complied version (TEST2.EXE) which runs considerably faster is on the disk available from the author.

Now re-load the first test program. Connect a 'scope or logic probe to IC15 pin 11. Type '30'. Now when you type ' 60 ' you should observe a 40 millisecond positive going pulse. Move the probe to pin 8 of IC15 and the pulse should be negative going. Now type ' 32 ' and repeat the above checks, the pulse should now be 1 millisecond. With a logic probe you will probably only be able to detect the presence of the pulse and will have to assume it is the correct length, with a test meter you probably won't be able to see anything!

Now switch off and insert IC19. Connect a test meter set to about $500 \mathrm{~mA} D C$ in line with the power input and switch back on. If the current is more than 100 mA greater than it was before switch off and find out why! The most likely cause is a short circuit on VPP somewhere. If all is well remove the meter and connect the power directly. Set all four presets to the centre position.

Set a test meter to the 10 V DC range and connect between pins $28(+\mathrm{ve})$ and 14 (-ve) of the EPROM socket. Type ' 23^{\prime} then ' 38 ', the meter should read $5 \mathrm{~V}+1-0.25 \mathrm{~V}$. Now type ' 30 ' and the reading should rise, adjust RV1 for a reading of 6.1V $+/-0.1 \mathrm{~V}$. Type ' 80 ' and the voltage should drop to zero. Set the meter to the 30 V DC range and transfer the +ve meter probe to pin 1 of the EPROM socket. Type ' 34 ' and then adjust RV2 for a reading of $12.6 \mathrm{~V}+1-0.1 \mathrm{~V}$. Type ' 30 ' and adjust RV3 for $21 \mathrm{~V}+/-0.25 \mathrm{~V}$. Type ' 2 F ' and adjust RV4 for $25 \mathrm{~V}+1-0.25 \mathrm{~V}$. Type ' 31 ' and the voltage should drop to zero.

The only thing left to check now is the various configurations for the different types of EPROM's. As described in 'How it Works', the functions of six of the EPROM socket pins vary depending upon the type of EPROM. The address lines have already been checked at the EPROM socket, as has the programming voltage to pin 1 . The checking of the remaining combinations is detailed below.

Type ' 40 ' to clear the address counters. Connect a 'scope or logic probe to pin 20 of the EPROM socket. Type '30' then ' 2 F '. A 40 millisecond positive going pulse should be observed when ' 60 ' is typed. Type ' 20 ', and the pulse when typing ' 60 ' should now be negative going. Now type ' 23 ' and the line should remain at logic 0 when ' 60 ' is typed. Move the probe to pin 22. Type ' $2 F$ ' then ' 31 ' and the line should be at logic 0 . Type ' 30 ' and it should go to logic 1 . Now type ' 20 ' and it should rise to 21 V . Move the probe to pin 23 which should be at logic 0 . Type ' $2 F$ ' and the line should rise to 25 V . Move the probe to pin 26 , which should be at 6 V . Type ' 20 ' and it should go to logic 0 . Finally move the probe to pin 27 and type ' 23 '. A 40 millisecond negative going pulse should be seen when you type ' 60 '.

If you have reached the end of all this successfully you can be confident that your EPROM programmer is 100% functional!

The Case.

The prototype was mounted in a plastic case (type MB6) having external dimensions of 220001500064 mm . The removable panel is considered to be the bottom, and may be fitted with self-adhesive feet if required. The top surface needs cut-outs for the EPROM ZIF (Zero Insertion Force) socket and the LEDs, as well as four fixing holes for the PCB. You may also wish to make four small holes to enable adjustment of the presets.

The rectangular cut-out for the ZIF socket may be made by drilling a line of shall holes around the edge then breaking out the centre part and filing to shape. Take care not to file
the hole too large or the result will look untidy! The socket is raised above the PCB by stacking up a number of 28 pin DIL IC sockets, three were used on the prototype. If the result feels insecure, the sockets may be held together with a suitable adhesive.

Position the PCB and mark the positions of the four fixing holes and then measure the positions of the three LED holes. The first LED is 4 mm down and 6 mm to the left of the top right fixing hole (view from outside the box), the other two are spaced below at 9 mm intervals. The fixing holes are 3 mm in diameter whilst the LED holes are 5 mm . Also drill suitable holes in the rear of the case for the DC input socket and the RS232 cable or connector. On the prototype a 3.5 mm jack socket was used for power (since this matched the plug on the PSU), and the RS232 cable passed through a hole fitted with a grommet. Choose connectors that are not likely to come unplugged accidentally! The case may now be marked with rub-down transfers or similar if required.

Solder suitable lengths of wire to the PCB for the offboard connections and insert the LEDs through the holes in the PCB (do not solder yet). Mount the PCB in the case using M3 screws, nuts and spacers, then position the LEDs so that they slightly protrude through the holes and solder them into place. Complete the interwiring (see Fig 5) and assemble the case. If an additional smoothing capacitor was found necessary whilst testing, this may be mounted across the pins of the DC input socket, or on the rear of the PCB in parallel with C21.

In Use.

The control software is shown in Listing 3 and is suitable for an IBM PC or compatible machine running BASICA, G.W.BASIC or QBASIC. This saftware is about the minimum required to make sensible use of the programmer. The functioning of the software is described in the "How it Works - Software" section.

If BASICA or G.W.BASIC is being used, the program will run fairly slowly. This is a limitation of interpreted BASIC. QBASIC supplied with MS-DOS 5 is a much more advanced product and a good deal better in this respect.

Additional (faster) software is supplied on the disk available from the author, see Buylines.

An EPROM must not be inserted or removed if the 'Program' or 'Read' LED is lit, or if the programmer is configured for a different type of device. 24 pin EPROMs must be fitted in the lower pins (3-26) of the socket. In all cases pin 1 is upwards. Failure to observe the above may result in damage to the EPROM or (less likely) the programmer.

The programmer should be switched on and connected to COM1 (RS232 serial port 1) on the computer. Start the software and the 'Program' LED will light. Once successful communication has been established the program will request information about the type of EPROM and the programming method required. See the table below or consult the manufacturers data book.

Some 2764 and 27128 types require a complex arrangement of programming pulses however a single Ims pulse will usually suffice. If in doubt or if problems are experienced use 40 ms . Although some 2716 and 2732 devices will program successfully with a 1 ms programming pulse, this is not recommended for final EPROMs, but may prove useful when testing software etc.

The use of the 'A' suffix on 12.5 V 2764 and 27128 types appears to be less than standard, it is suggested that all 2764 s and 27128 s should be tried on 12.5 V first, since 21 V will destroy a 12.5 V device.

Once these selections have been made the 'Program' LED will extinguish and the main menu will appear.
'Read' (menu option 1) reads the contents of an EPROM to a file. Note that the file format used is non-standard, however programs to convert to and from the Intel-HEX standard are available from the author (see buylines). The advantage of the file format is that it is easy to generate and edit manually.
'Program' (option 2) programs the EPROM from a file. The EPROM is not blank checked before programming or verified afterwards, these operations should be done from the main menu individually if required.
'Verify" (option 3) compares the contents of the EPROM with a file, and 'Blank Check' (option 4) does as it's name sug-

EPROM Type Number	Programming Voltage	Supply Voltage	Programming Pulse Length
2716 \& 27C16	25 V	5 V	40 ms
2732 \& 27C32	21 V	5 V	40 ms
2764	21 V	5 V	1 ms
27 C 64 \& 2764A	12.5 V	5 V	1 ms
27128	21 V	5 V	1 ms
$27 \mathrm{C} 128 \& 27128 \mathrm{~A}$	12.5 V	5 V	1 ms
$27256 \& 27 \mathrm{C} 256$	12.5 V	6 V	1 ms
$27512 \& 27 \mathrm{C} 12$	12.5 V	6 V	1 ms

'Change Configuration' (option 5) re-starts the software so the EPROM type and programming method can be changed.
'Adjust Voltages' (option 6) allows the programming voltages to be checked and adjusted if required.

Happy programming!

LISTING 3

10 REM $=$ = EPROM Programmer BASICA Control Sothware Version 1.00
20 REM "- Coomignt (C) Paui Stenning and ETL, 1992.
30 REM
40 SCREENO:CLS
50 PRINT EPROW Programmer BASICA Contol Sotware - (C) Paul Stenning \& Enl, 1992°
60 PRINT: PRINT "Ensure EPROM Soctert is Emply, then press any key..."
O K KS = INKEYS: IF KS = - THEN GOTO 70
B0 IFKS = CHRS(2) THEN PRINT: PRINT Quir'. GOTO 10000
90 PRINT "Estabishing Communication ",
100 OPEN COM1:9600, N, 8, 1, CSPOO. CDOO,DSO FOR RANOOM AS LIEN $=1$ 110 PRINT ${ }^{-a}$
$120 \mathrm{SS}=30^{\circ}:$ GOSUB $8000: S S=80^{\circ}:$ GOSUB $8000 ; S S=70^{\circ}:$ GOSUB 8000 : GOSUB 7000 130 IF FS $=\cdots$.THEN PAUSE\% $=1$ ELSE PAUSE\% $=0$
140 PRINT : :
$150 S \$=05^{\circ}:$ GOSUB $8000: S \$={ }^{4} 15^{\circ}:$ GOSUB $8000: S \$=80^{\circ}:$ GOSUB 8000
160 IF PAUSE\% = OTHEN GOTO 190
170 TME $=$ TIMER +0.1
180 IF TMER \& TME GOTO 180
$190 \mathrm{SS}=70^{\circ}$: GOSUB 8000
200 GOSUB 7500
210 IFFS O $\$ 55^{\circ}$ THEN GOTO 9000
200 PRINT : $-\frac{1}{4}$
$230 S S={ }^{2} A^{*}:$ GOSUB $8000: S S={ }^{2} 1 A^{\prime} ;$ GOSUB $8000: S S={ }^{2} 60^{\prime} ;$ GOSUB 8000
240 IF PAUSE\% $=0$ THEN GOTO 270
250 TIME $=$ TIMER +0.1
200 IF TMER < TME GOTO 260
$270 \mathrm{SS}=70^{\circ}$: GOSUB 8000 : GOSUB 7000
280 IF FS O 'MA' THEN GOTO 9000
290 PRIINT - :
300 IF PAUSE\% = O THEN PRINT ${ }^{\circ}$ OK. ELSE PRINT TNO CTS Line Solware Delay Used. 310 PRINT
300 PRINT P 1.2716°

330 PRINT - $2-2732$
340 PRINT - 3-2764
350 PRIITT * 4-27128
360 PRINT • 5.27256°
370 PRINT $=6.27512$
330 PRINT "Select EPROM Type *
$300 \mathrm{KS}=\operatorname{INKEYS}$
400 IF KS = CHRS(2T) THEN PRINT Quir': GOTO 10000
410 IF KS $={ }^{\circ} 1^{\circ}$ THEN TYPENAMES $=2716:$ TYPECODES $={ }^{\circ} 2 F$: MAXAODR $=2047$:GOTO 480 420 IF KS $=$ " 2 THEN TYPENAMES $=2732^{\circ}:$ TYPECODES $\equiv 255^{\circ}:$ MAXADOR $=4095:$ GOTO 480 430 IF KS $=3$ THEN TYPENAMES $=2764^{\circ}:$ TYPECODES $=23^{\circ}:$ MAXADOA $=8191:$ GOTO 480 440 IFK $\$={ }^{2} 4$ " THEN TYPENAME $\$=27128$: TYPECODES $=27$ "MAXAODR $=16383$: GOTO 480 450 IF $K \$=5^{\circ}$ THEN TYPENAME $\$=27256^{\prime}:$ TYPECOOE $\$=21^{\circ}:$ MAXAOOR $=32767:$ GOTO 480 460 IFKIS = '6T THEN TYPENAMES $=27512:$ TYPECODES $=200^{\circ}:$ MAXADDR $=65535:$ GOTO 480 470 GOTO 390
480 PRINTTYPENAMES
450 PRINT
500 PRIINT • $1 \cdot 12.5$ valis
510 PRINT * $2 \cdot 21 / 25$ Volts
520 PRINT "Select EPROM Progremming Votage: *
$530 \mathrm{KS}=$ INKEYS
540 IF KS = CHRS(27) THEN PRINT ROUI: : GOTO 10000
550 IF $\mathrm{KS}=$ "ๆ" THEN PROGVOLTNAMES $={ }^{\circ} 12.5$ VOALS: STATUS\% $=4: 60 T 0580$
560 IF KS $=$ " 2 THEN PROGVOLTNAMES $=\psi 21 / 25$ VOHs $:$ STATUS\% $=0: G 0 T 0580$
570 GOTO 530
580 PPINT PROGVOL TNAMES
590 PPINT
600 PRINT - $1-5$ Voths
610 PRINT ' 2.6 Volts'
620 PRINT "Select EPROM Supply Vollage :

$500 \mathrm{KS}=$ INKEY

640 IF KS = CHRS2TIT THEN PRINT CUR': GOTO10000
650 IFKS = ${ }^{\circ} 1$ " THEN SUPPVOLTNAMES $={ }^{\circ} 5$ VOATS": STATUS\% $=$ STATUS\% $+8:$ GOTO 680 660 IFKS $=2$ "THEN SUPPVOLTNAMES $=$ " 6 Vols": STATUS\% $=$ STATUS $\%+0:$ GOTO 680 670 GOTO 630
680 PRINTSUPPVOLTNAMES
690 PPIIT
700 PPINT = 1-1 MillSecond
710 PRINT ' $2 \cdot 40$ MIIISeconds'
720 PRINT ©Select EPROM Program Puise Duration: :
$730 \mathrm{~K} \$=\operatorname{INKEY}$
740 IF KS = CHPS(27) THEN PRINT 'OUI': GOTO 10000
750 IFKS $=$ aq 9 THEN PROGPULSENAMES $=" \uparrow$ MIILSecond : STATUS\% $=$ STATUS\% $+2:$ GOTO 780
 780
70 GOTO 730
780 PRIIT PROGPULSENAMES
TOO SS = TYPECODES : GOSUB 8000
800 SS $=$ گ + HEXS(STATUS\% +1): GOSUB 8000
$810 \mathrm{~S} S=40^{\circ}$: GOSU8 $3000: S \$={ }^{+1} 10^{\circ}$: GOSUB 6000
$320 \mathrm{~S} \$={ }^{\circ} 40^{\circ}:$ GOSUB $8000: S S=80^{\circ}:$ GOSUB 8000

1000 REM … Main Menc

1010 CLS
1020 PRINT "EPROM Programmer BASICA Control Sotware - (C) Paul Stenning \& Efi, 1992"
1030 PRINT Type "; TYPENAMES." Program "; PROGVOLTNAMES
1040 PRINT * SUPDV "; SUPPVOLTNAMES. " PUISe "; PROGPULSENAMES
1050 PRINT : PRINT TMAIN MENU
1060 PRINT ${ }^{*}$ \qquad
1070 PRINT " 1-Read
1080 PRIITT * 2-Program
1050 PRINT • 3-Verit
1100 PRINT ${ }^{\circ}$ 4- Blank Chect
1110 PPINT * 5 -Change Configuration*
1120 PRINT * 6. Adfust Vothages
1130 PRINT "ESC - Quir
1140 PRINT : PRINT 'Select Opton Required:
$1150 \mathrm{KS}=$ INKEYS
1160 IFKS $=4$ "THENPRINT Read : GOTO 2000
1170 IF KS = "2 THEN PRINT PProgran" : GOTO 3000
1180 IF KS = 3 THEN PRINT Ventry : GOTO 4000
1190 IF KS $=$ "4" THENPPINT Biank Ched"; GOTO 5000
200 IF $K S=5$ THEN RUN
1210 IF K $\$=$ ' 6 TMEN PRINT "Adusi Vatiages' : GOTO 6000
1220 IF $K \$=$ CHRS(27) THEN PRINT QUIR": GOTO 10000
1230 GOTO 1150
2000 REM … Read EPROM to File
2010 PRINT : PRINT 4nsen EPROM to Read, then press any key (ESC 10 Abort)"
2020 KS = INKEYS: IF KS = - THEN GOTO 2020
2000 IFKS = CHRS(27) THEN GOTO 1000
2040 PQINT
OSO INPUT -Ouput File Name "; FLEE

2060 OPEN FLES FOR OUTPUT AS 12

2070 Print

2000 PRINTR2, TYPENAMES
$2090 \mathrm{SS}={ }^{*} 40 \%$: GOSUB 8000
2100 TIME $=$ TIMER +025
2110 IF TIMER \& TIME THEN GOTO 2110
2120 FOR ADOR $=0$ TO MAXADDR -15 J STEP 16
2130 IF INKEYS = CHRS(27) THEN BEEP : PRINT : PRINT 'ABORTED : : GOTO 2280
2140 ADDRS = HEXS (ADOR)
2150 IF LENAADDRS < 4 THEN ADORS $=$ " 0 " + ADDRS: GOTO 2150
2150 PRINT 12, ADDPS: TAB(9):
2170 FOR COUNT\% $=0$ TO 15
$2180 S S=70^{\circ}$: GOSUB 8000 ; GOSUB 7000
2190 PRINT 12 FF ${ }^{\circ}{ }^{\circ}$ "
$2200 \mathrm{SS}={ }^{\circ} 50^{\circ}$: GOSUB 8000
210 LOCATECSRLIN. 1
2220 PRINT Reading Location"; ADOR + COUNT\%; "OF; MAXADDR;

2230 NEXT

2240 PRINT 12
2250 NEXT
$2200 \mathrm{SS}={ }^{*} 40^{\circ}$: GOSUB $8000: S 5=80^{\circ}$: GOSUB 8000
2270 CLOSE 22
280 PRINT : PRINT "Press any key to continue "
2230 IF INKEYS = - THEN GOTO 2290
2500 GOTO 1000

3000 REM … Program EPROM from Five

3010 PRINT
3000 PRINT Insent EPROM 10 Program, then press any key (ESC 10 Abort)
3030 KS = NNKEYS: IF KS = - THEN GOTO 3030
3040 IF KS = CHRS (27) THEN GOTO 1000
3050 PRINT
3000 INPUT Thout File Name "FLLES
3070 OPEN FLES FOR INPUT AS 2
3000 LINE INPUT : 2, DATS
3050 IF DATS O TYPENAMES TMEN: BEEP: PRINT FHLE DOES NOT MATCH EPROM TYPE:
GOTO 3340
3100 SS $=$ ־「 + HEXSSSTATUS\%): COSUB 800
$3110 \mathrm{SS}=40^{\circ}:$ GOSUB 8000
3120 TIME $=$ TMER +0.25
3130 IF TIMER \& TIME THEN GOTO 3130
3140 PRINT
3150 FOR ADOR $=0$ TO (MA XADDR - 15) STEP 16
3150 IF INKEYS = CHRS(27) THEN BEEP : PRINT: PRINT *ABORTED" : GOTO 3340
3170 LINE INPUT M2. DATS
3180 DAT = VAL " 8 h' + LEFTS (DATS. 4)
3180 IF DAT <0 THEN DAT $=$ DAT +65536
3200 IF DAT O ADOR THEN BEEP: PRIMT: PRINT FILLE ADDRESS ERROR': GOTO 3340
3210 FOR COUNT\% = 0 TO 15
320 LOCATECSRLIN, 1
3230 PRINT Programming Location; ADDR + COUNT\%: "Of; MAXADDR
3240 SS $=$ " $^{2}+$ MIDS FDATS, $10+$ COUNT\% * 3,1) : GOSUB 8000
3850 SS $=$ " $^{\circ}+$ MIISFATS $9+$ COUNT\% ' 3,1): GOSUB 8000
$3260 \mathrm{SS}={ }^{4} 60$: GOSUB 8000
3270 IF PAUSE\% $6=0$ THEN GOTO 3300
3280 TIME = TMMER +0.1
3290 IF TIMER \& TIME THEN GOTO 3290
$3300 \mathrm{SS}={ }^{\circ} 50^{\circ}$: GOSUB 8000
3310 NETT
3208 NEXT
3380 PRINT
3340 SS $=$ " 3 + HEXS(STATUS\% +1 1): GOSUB 8000
3350 SS $={ }^{\circ} 40 ;$ GOSUB $8000: S S=80^{\circ}$: GOSUB 8000
3350 CLOSE 12
3370 PRINT : PRINT "Press any key to continve. -
3380 IF INKEVS = " THEN GOTO 3380
3390 GOTO 1000

000 REM … Verify EPROM with Fil

4010 PRINT : PRINT Insen EPROM to Verily, then press any key (ESC 10 Abort)"
4020 KS = INKEYS : IF KS = - THEN GOTO 4020
4030 IF KS = CHRS(27) THEN GOTO 1000
4040 PRINT : INPUT Ynout Fle Name e: FLLES
4050 OPEN FIES FOR INPUT AS 12
4060 PRINT
4070 LINE INPUT 12, DATS
4080 IF DATS O TYPENAMESTHENBEEP: PRINT FLEEDOES NOT MATCH EPRONTYPE:GOTO 4300
$4090 \mathrm{SS}=40^{\circ}:$ GOSUB 8000
1000 TIME $=$ TMMER +0.25
110 IF TIMER < TIME THEN GOTO 4110
4120 FAlt $=0$
4130 FOR ADOR $=0$ TO (MAXADDR - 15) STEP 16
4140 IF INKEYS = CHRS(27) THEN BEEP : PRINT : PRINT "ABORTED": GOTO 4300

4150 LINE INPUT R2.DATS
4160 DAT = VAL" ${ }^{4} \mathrm{H}^{2}+$ LEFT (IDATS. 4))
4170 IF DAT $~<~ O T H E N ~ D A T ~=~ D A T ~+~ 65536 ~$
4180 IF DAT O ADOR TMEN BEEP : PRINT : PRINT "FILE ADORESS ERROR" : GOTO 4300
490 FOR COUNT\% = 0 TO 15
$\$ 200$ LOCATECSRLIN, 1
4210 PRINT Ventying Location; ADDR + COUNT\%; of; MAXADDR;
4220 SS = "70": GOSUB 8000 : GOSUB 7000
4230 IF FS O (MIDSOATS, $9+$ COUNT\%' 3,2) TMEN FALL $=$ FAIL +1
$4240 \mathrm{SS}=50^{\circ}$: GOSUB 8000
4250 NEXT
4250 NEXT
4270 PRINT: PRINT
4280 IF FAIL $=0$ THEN PRINT ${ }^{*}$ oriniad $C x^{\circ}$
4290 IF FAil $\triangle O$ THEN BEEP : PRINT Venty Failed on"; FALl: Locatons"
$4300 \mathrm{SS}=40^{\circ}$: GOSUB 8000 : $\mathrm{S} \$=80 \%$: GOSUB 8000
$\$ 310$ CLOSE I2: PRINT : PRINT Press any key lo continue. :
4320 IF INKEYS = " THEN GOTO 4320
4330 GOTO 1000
5000 REM "" Blank Check EPROM
5010 PRINT : PPIINT "Insen EPROM to Blank Check, then press any key (ESC io Abort)"
5020 KS = $\operatorname{INKEY}:$ IF KS $=$ - THEN GOTO 5020
5000 IF KS = CHRS(27) THEN GOTO 1000
5040 PRNTT
$5050 \mathrm{SS}=40^{\circ}:$ GOSUB 8000
5060 TME $=$ TMER +0.25
5070 IF TIMER < TIME THEN GOTO 5070
5000 FAIL $=0$
5090 FOR ADDR $=0$ TO MAXADOR
5100 LOCATE CSRLIN, 1
5110 PRINT "Chocing Location"; ADOR: orf; MAXADOR;
$5120 \mathrm{SS}=770^{\circ}$: GOSUB 8000
5130 GOSUB 7000
5140 IF FS O ${ }^{\text {FF }}$ THEN FALL $=$ FALL +1
5150 SS = "50": GOSUB 8000
5160 IF INKEYS = CHRS(27) THEN BEEP :PRINT : PAINT *ABORTED : GOTO 5210 5170 NEXT
5180 PRINT : PRINT
5150 IF FALL = OTHEN PRINT 'Blank EPROM
5200 IF FAIL O OTHEN BEEP: PRINT "EPROM NOT BLANK - Failed ori; FALL: Locations" $5210 \mathrm{SS}={ }^{\circ} 40^{\circ}$: $\operatorname{COSUB} 8000: S S={ }^{-80}$: GOSUB 8000
5220 PRINT : PRINT -Press any hey 10 continue...";
5230 IF NKEEYS $=-$ THEN GOTO 5230
5240 GOTO 1000

6000 REM "- Adjus Programming Vothages
6010 PRINT :PRINT "Ensure EPROM Soctiel is Empty, then press any key (ESC to Aborl)" 6020 KS = INKEYS : IF KS = - THEN GOTO 8020
6030 IF K $\$=$ CHR\$ 27 THEN GOTO 1000
6040 PRINT
$6050 \mathrm{SS}=20^{\circ}:$ GOSUB $8000: S 5=30^{\circ}:$ GOSUB 8000
6050 PRINT 'Connect Test Meter Between pins 28 (+ve) and 14 (ve) of EPROM Socker" 6070 PRINT "Adust RVI for Reading of 6 .IV ($+1-0.1 V$), then press any key..."
6080 IF INKEYS = "THEN GOTO 6080
6050 PRNT
$6100 \mathrm{~S} \$=21^{\circ}:$ COSUB $8000: S S=-34^{\circ}:$ COSUB 8500
6110 PRINT Comect Test Meter Berween pins 1 (tve) and 14 (vel of EPROM Sodert
6120 PRINT "Adust RV2 tor Reading of 12.6 V (+1.0 .1 V , then pross any key...""
6130 IF NKEYS = THEN GOTO 6130
$6140 \mathrm{~S} \$=-30^{\circ}$: $\operatorname{GOSUE} 8000$
6150 PRINT "Adust RV3 tor Reading of 21V ($W \cdot \mathbf{0 . 2 5 V}$), then press any key..."
6160 IF INKEYS = - THEN GOTO 6160
6170 SS $=2 F$: $\operatorname{GOSUB} 8000$
6180 PRINT "Adust RVi tor Reading of 25V ($+1 \cdot 0.25 \mathrm{~V}$) then press any key..." 6190 IF INKEYS = - THEN GOTO 6190
G200 SS = TVPECODES : GOSUB $8000: S \$=7+$ HEX $\$$ STATUS\% +1 1): GOSUE 8000 6210 SS : 90° : GOSUB 8000
522060701000
7000 REM "" Fetch Byte from Programmer
7010 TIMEOUT $=$ TMMER +0.1
7020 IF EOF (1) AND TIMER \& TIMEOUT THEN GOTO 7020
TOSO IF TMMER $>=$ TIMEOUT THEN FS $=\cdots \cdots$: RETURN
7040 FS = KEXS (ASC (INPUTध 1,171$))$
750 (F LEN FSS) <2 THEN FS $=0$ " + FS
7000 RETURN
8000 REM "ow Send Byte to Programmer
 8020 RETURN

9000 REM "- Communication Eno Message
5010 PRINT".ERRORCOMMUNICATING WTTHPROGRAMMER"
9020 BEEP
9030 GOTO 10000
10000 REM ". End Program
10010 CLOSE
10020 PRINT:PRINT
10030 SYSTEM

BUYLINES

All components are available from Maplin, the majority can probably also be obtained from your usual supplier. Small 0.47 R resistors do not appear to be readily available - use two 1 R0 components in parallel. The PCB is available from the ETI PCB service. Before purchasing a power supoly, check the latest bargain list from Greenweld (0703 236363), they often list suitable units for about $£ 3$.

The software listed in this article, together with a comprehensive menu driven control program and some useful bils and pieces (IBM PC or compatible only) is available from the author at the following address:

Paul Stenning, 1 Chisel Close, Hereford, HR4 9XF. Please send a blank PC formatted disk ($3.5^{\prime \prime}$ or 5.25°), together with a cheque or postal order for $£ 10$, a retum address label and adequate retum postage (overseas 2 international Reply Coupons). If you do not have a disk send $£ 12$ and I will supply one (please specity size). B.A.E.C. members - see newsletter for a special ofter!

The author would also be interested to hear from users of other computers, who have either written suitabie control sotware or who are looking for some - he will attempt to put one in touch with the other! Please write with an SAE.

Call us now! We have the widest range of components available - At competitive prices 111 CAPACITORS VIDED HEADS SPEAKERS
 CABLES

MCROWAVE CONTROL PANEL Mains operated with touch swhiches Comptine with 4 digit display, digital elock, and 2 reiray outputs ono for power end one tor pulsisd power (programmabib) ideal for all sonts of precision 1mer epplicabons ate. Now oniy \&s 00 ref 4P151. Good expenimentiens board
ABAE OPTIC CABLE Stranded optical fibres sheathed in bleck
 12V SOLAR CELL 200 ma oubpurideal for tickib charging ote. 300 mm seu.
1SP42R Gives Lo to 15 v .
PASSIVE INFRA-RED MOTION SENSOR Complete mith dayligh sonsor, adjustable lighe on omar (8 socs -15 mins). So renge with a 80 deg

 [1200 rel 12943 from either a wheo camera wideo both audio and udeo sygnak from otther a ndeo camera. ndeo rocorder of computer to amy 12V DC OP. £15.00 Tol 15P39A Suitablo mwins adsplot E5.00 rof 5P191R Tum your cameorder ino cordiose cameral FM TRANSMITTER housed in a standard working 13A adapter (bug is mains divent $E 2600$ ret 26P2R Good range dence
talkATURE RADIO TRANSCEIVEPS A pair ol Waloo talkies with a range of up to 2 totomeres Units measure $22152 \times 155 \mathrm{~mm}$ Co
$\varepsilon 30.00$ ref 30 P 12 a
EM COROLESS MCROPHONE. Small hana held unit with a 500
 rangel 2 transmi power ievols Ress Pa
12 BAND COMMUNCATIONS RECEIVER. θ shor Iili $=$ bands. FM. AM and LW DXNocul swith, wining 'yye' mains of ecen bryter. Complite with shoulder strap and mains lead 110 rot 19P14R. Iooal tor tiperning at over the world.
CAR STEREO AND FM RADIO
CAR STEREO AND FM RADIOL ow cost stereo system giving 5 watts per channel Signal to ncise ratio betier than 45 db . Wow and futho was than 35%, Nog earth E19.00rot 19P30 LOW COST WALIKIE TALKIESP git of battery aparated 8PSOR ICoal for garden Use or as an oducational toy.
7 CHANMEL GRAPHIC EOUALZER 7 CHANMEL GAAPHIC EQUALIZERDNs a 60 watr Dowor amol
 MCAD BATTERIES. Brand Now top quality. I I AN's E 4.00 rof

 TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The Utim ale equivalents book Newed. $\varepsilon 20.00$ rul 20 P 32 R GEIGER COUNTER KIT.Completo with tubo, PCB and all compo nems to buitd a batrery operated geiger countior. $£ 39.00$ ret 39P 1R FM BUG KIT. New design with PCB embedded cal. Transmits to any FM radia ov battery req'd $\mathbb{E S} 00$ rot 5 P $158 R$. 35 mm zouare FMM BUG Buil and lested supenor 9 ovopration $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS. Thase convent composile vieo into separato H sync, V Sy nc and wdeo $12 v \mathrm{DC}$. 58.00 roll $8 P 39$. SINCLAIR CS MOTORS 12 V ZSA (full load) $3300 \mathrm{pm} 8^{\circ} \times 4^{\circ} 1 / 4^{\circ}$ OP shath Now $E 20.00$ rol 20P2zA Limited stocks.
As abow but with inted 4101 int ne reduction box (800 mpm) and toothod mylon bell drive cog £40 00 rol 40PsR 800 ppm. ELECTRONIC SPEED CONTROL KITtor E5 motor. PCB and all components to buidd a sper controlier (a-95\% of apperd). Uses SOLAR POWERED NCAD CHARGER.Cherges \& AA nicads in 8 hours Brand new and cased re. cor rel 18P3P. 2mC ACORN DATA RECORDER ALF503 Made for BBC comouter but suitabiv for others incluces mains adrapter, beads and book EO TAPES
Vicence from the lamous JNC compasy Pack of 10 made under prica 115.00 rot J15P4 PHLIPS LASER. 2 MW HELIUM NEON LASER TUBE BRAND NEW FULL SPEC E40.00 REF 4OP1OR. MAINS POWER SUPPLY KIT E20.00 REF 2OP33R READY BULT AND TESTED LASER IN ONE CASE $\mathbf{~} 75.00$ REF $75 P 4 R$. 12 TO $22 O \mathrm{~V}$ INVERTER KITA A supplied it will handib up to about
 VERO EASI WIRE PAOTOTYPING SYSTEMIdeal tor designing prodects on ac. Complite with tools, wire and rausable board Now low bargatn price only E2.00 rof B2P1
25 WATT STEREO AMPUFIERC. STKO43 With the adotiton of a hanatuw of components you can build a 25 wat amplifer, E4.00 of 4PG9R (Circunt dia included).
BARGAIN NICADS AAA SIZE 200 MAH 1.2 V PACK OF 10 [4.00 REF 4P92R. PACK OF $100 £ 30.00$ REF 30P15R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm}$ £1 00 rol BDee7h 12V 19A TRANSFORMER Ex oquipment $£ 20$ but OK. ULTRASONC ALARM SYSTEM. Once again in stock those unis consive of a derector that plugs into a 13 B socker in the area to protect The rocciver plugs into a 13 A zocket anywhere isse on the systom now onty Ets ill
POWER SUPPLLES Made for the Spectum plus 3 give 25 @ $2 A .+12 @ 700 \mathrm{~mA} 8-12 @ 50 \mathrm{~mA}$ c8 rof $\mathrm{Q8P3}$
UNIVERSAL BATTERY CHARGER.Takes AA's. C's. D's and Ppa niceds. Hoto up to 5 batilenes al once. Now and cased, mains OM BAR POWER SUPP
34.56 .75 . and $12 v$ arthuts $m 800 \mathrm{ma}$ Comprockot and gives 3.4.5.6.7.5., and $12 v$ cutputs an 800 mA Complete with Uniwersal RESETOR PACK. 10 P 50 .
RESESTOR PACK. 10×50 volues (500 resistors) all 1/4 watl 2%

OUICK pugg $\varepsilon^{3} 00$ ord $3 P g 2 R$ ideat tor toes on the move!
 IBM PRINTER LEAD. (O2S to controrics plug) 2 metre parallo
 COPPER CLAO STRIP BOARD $17^{\circ} \times 4^{\circ}$ of 1° preh "vero" board. $£ 400$ a sheo rof 4PG2P or 2 sheets for $£ 7.00$ red 7P22R
STRIP BOARD CUTTING TOOL $\Omega 200$ ool $2 P 352 \mathrm{~A}$

WINDUP SOLAR POWERED RADIOI FMAM radio takes rochargesble batruitios. Complete with hand charger \& solar panal 14PROOR. Sal of $2 M$ nicads $\sum 2$ rol L2P9 PC STYLE POWER SUPPLY Mado by
ATTEC 110 V 人 $240 \mathrm{vimput} .+5$ © $154 .+12$ @ 5A-12@.5A-.3@.3A. Fully cased with ton

UHFVHF TV RECEIVERUCONVERTER
CONVERTS COLOUR MONITOR INTO A TV!

TELEPHONE HANOSETS
10 brand now hantets mith mic and speaker only $£ 3.00$ rol 3P146R BENCH POWER SUPPLES
Superty mado fulty casod (mota) giving 12vat 2 A plus a 6 V supoty. Fused end shon oircuit protected For saio al less then the coss of the case! Our phics in $£ 4.00$ rol 4P103F SPEAKER WIRE
Brown tmi cots
DISC DRIVES

Currooner these so you fust goit the nox ons on the shell. Price is only c7 00 rel TPIR (wonth it oven as a thipoen)
MICROSCOPE $1200 X$ MAGNFICATION
Brand now complete with shnimp hatchery, ahnimps, prepared slides, light orc. E2900 ref J29P4
LIGHT ALARM SYSTEM
Small cased elarms thet montior a nesrow beam ares tor sucden changes in ight bevel Complete weth siren that sounds for a prosel tmo when untit is triggered. E7.00 of J7P7
jovaclls
Beck in stock popular Commodoreatań equiv (replace standerd ystick) 55.00 not J5P8

AMSTRAD 1640DD BASE UNITS
 brand new and cased

NWO BUILT IN 5 1/4" DRIVES
MOTHER BOARO WITH GAOK MEMORY
KEYBOARD, MOUSE \& MANUAL
OUR PRICE JUST

£79!!!!

CAR BATTERY CHARGER

Brand now unres complere with panel meter and leade 6 of 12

Compler but saw as seen so may need attenson $\mathrm{C25.00}$ ref J25P1

or 2 lar $£ 4000$ rot hopa
 CUSTOMER RETURNED SPECTRUM +3

Complete bul sold as seen so mey neec attenson $£ 25.00$ rol 125 P2

Standard Scarl on one end. Hi donsin D tupe (standard VGA Standard Scart on one and. Hi densiny D type (standard VGA
connection on the other Padi of ten leeds onty $£ 7.00$ rel $7 P 2 R$ OZONE FRIENDLY LATEX
250 ml bottre of liquic nubber sers in 2 houns ideal tor mounting PCB's Kinn wires otc. E2. 200000
VIEWDATA SYSTEMS
Brand now units made by TANDATA complete with $1200 / 75$ buil in Brand now units made by TAND ATA complete with $1200 / 75$ buit in
modem intra red remote controlled qwerly keyboard BT appproved Prosiel compatibe, Centronics printer por fic colour and compos-
 Huobly and tully casec Our prico is onty $£ 20.00$ rol 20P1A supay snd tully casec. Our pricn is onty £20.00 rel 20P1R
COMMOOORE 64 COMPENDIUM Pack consisting of a Com. modore 64 computer. DOwer supply. data rocorder and sot ware. All modore 64 compu
PPC MODEM CAROS Mede for the Amstrad PPC16ion 512 range these are plug in modules ther oporate at 2400 baud. No dzta E15 ret O15P5.
AMSTRAD LO 3500 PRINTEA ASSEMBLIES Entre mechanicai assombles inctuding prim hoad, pimen, cables, stepper motors atc ete infect overthing bar the etectronics and casel Cur orice usi otc etc infact
AMSTRAD DMP 4000 PRINTER ASSEMBLIES Emiro panter assemblos including prim head, platen, cabies, stopper motors ote.
Eventhing bar the ebecromics and case Our pnce just $£ 20$ roit Eventhin
crop?
TOROIDAL TRANSFORMER 146 VA mith BRODIgS at $8 \mathrm{~V}, 10 \mathrm{~V}$ and 32 v mill give 50 v or 3 A or 32 at 4 A ace Contro topped phmary E 9 ro OAPR. Fiving Ktis is E2 nol O2P1.
AERIAL BRACKETS Wall plate 7.5° sqcomplato math raw bothes, $10{ }^{\circ}$ atand off breck ers with standard Nbe clamps Willtateup to 2 ma Substantial brackel (Mould take booty wight). E7 rel OTP? TV SOUND RECEIVERS Popular units that with the addition of a epoaker act as a N eleund reciver. Ide
connecting into HI FIL £12 rof O12P4

CAMERAS Custorner refurned unita 3 for $£ 10$ ref L10P2
STEAM ENGINE Standard Mamod 1332 engine com

TALKING CLOCK

LCD display, slarm battery operated
Clock will announce the time at the
alarm is dua. The alarm is switchable
alarm is dua. The alarm is sumtchable 14 P200 A
HANDHELD TONE DIALLEAS
Small units thel are designed to hodd over the mouth prece of a telephone to send MF dialing tones Ideal for the remote control of answar machines E5.00 tol 5P20999 AMAZING TALKING COINBOX!
Fully progremmety teking, lockeole coinbor BT approved, witail

ANSWER PHONES E15

Customer returned units with 2 faults one we tell you how to fix the other you do your sell £18 ret J18P2 or 4 for $£ 60$ ref J60P3 BT
approved (retail price $\mathbf{E 7 9 . 9 5 1 1}$ each)
Compliate cased brand now difives with carridge and sotware 10 Imes faster than tape machines worra with any Commodore 64 selup the orginal prica for these was $£ 49.00$ but we can offer them you at only $\mathbf{2} 25.001$ Ret 25P1R
90 WATT MAINS MOTORS Ex equipment bun ok Good general pucose unit re co mi E9P1
HI A SPEAKER BARGAIN Originally made for $T V$ sets they consist of a $4^{\prime \prime} 10$ watt 4 R speaker and a $2^{-1} 1$ COR iweoter. Hyou want two of each plus 2 of our crossovers you can have the lot for $£ 5.00$ F5P
EMERGENCY LIGHTING SVSTEM
Fully cased complite with 2 adjustable flood inghts All you nood is stand ard 6 v wad acd ballery. Our
AMS TRAD 464 COMPUTERS
Customer returned unns complete with a monitor for iusi $£ 35!$ These
Customer refurned unns complote with a monit
units ane sold as fauty and are not returnable
WOLSEY DMAC DECODERS
WOLSE Y DMAC DECODERS
Made for installetion in hotels efc as the main sat neceiver no data bu
Made for installationin hotels efc as the main sat noceiver no data bu
tulty cased quality unit $£ 20$ ref K 20 P . Surtabie pau $£ 8$ nef $\mathrm{KBP3}$ tully cased quality unit $£ 20$ ref $K 20 P 1$. Sunabio pou $£ 8$ ree $K 8 P 3$ SWTCHED MODE PSU
Fully cased unit 215 mmwr 145 mmx 55 mm giving $\uparrow 5, \$ 12$ and +20 V well made case complete whimans iead. EA for K\&P3 REMOTE CONTROLS
Brand now intra red CONTROLS originally made for controlling
 TELEPHONES
Modem 1 pisce phones $8 T$ approved Last no redial $\mathbf{\Sigma 8}$ ret KBP1 306 TOWER SYSTEMS
Tower case 52 cmz 40 cmurCcm 2 ans, speaker, 275 w psu. IEC it and 01,386 mboard with onboard disc controther, olhemet display driver, paraliol and seinal ports There are several ICs missing from the mboard plus no data! 579 rof K79P
DOS PACKS
Comptete set of PC discs with MS DOS 3.2. Locumotvo basic, gemdeskiop and gom pyint. No manualis. $51 / 4$ diecs $£ 10$ ref K10P2
CORDLESS TE CUP MUCROPHONE ranmils been $88-108 M H Z \mathrm{FM} 5.2 \mathrm{~cm} \times 2 \mathrm{~cm}$. uses LR 44 watch baltory. Comptoto with wire aeriais battory $£ 16$ rol KiGP
CHASSIS MOUNT TRANSFORMERS
240 V primary, 12 v second ary $20 \mathrm{VA} £ 2$ ref K2P2
$240 v$ phmary. 16 v secondary 10 A (splt winding). £10 ref L10P1
100 REO LED PACK (5 MM) ES REF KSP2 100 RED LED PACK (5MM) ES REF KSP2
12V STEPPER MOTOR ideal for Modeis atc. $3^{\prime \prime}$ dia $£ 2$ rel .2 PM 4 . INFRA RFD BEAM SWITCH 2evDC 5 m -ange source \& sensor housed in plastic case. 12 net J12P1.
CAPACITOR BARGAIN PACK 100 CERAMICS $£ 2$ REF J2P2. SPECTRUM JOYSTICKS TWO FOR ES REF J5P2.
AMSTRAD PC CASE, POWER SUPPLY AND 1.44 MEG
FLOPPY DRIVE ALL THIS FOR EAA REF LA4P 1
BUMPER PACK
BUMCe of comtents BO 225 of our popular §1 packs for iuse E12. Our BUMPER PACK
Chol en of comtents.
LCD $X 32$ DISPLAY Eargain price of Nss E3 complete with laods of dats for a similar dsplay. $£ 3$ rol L 399
of dats tor Amilar dsplay. \& nef L39
hully cased with mains cablios and DC out cele. E6 col K6P1
hully cased with mains cablo and DC out calle. 16 col K6P1.
UNCASED PC POWER SUPPLIES. Siandard PC psu without UNCASED PC POWER SUPPLES. Standard PC Psu
 RADAR DETECTOAS. Dotects X and K bands (le sped traps).
Not legal in the UK so only svailable in you intend to exportil, r59 Not legal In
ref JSOP 1.
100 WATT MOSFET PAIR.Same spoc as $2 S k 343$ and $2 S 4413$ (8 A 1400.100 w) 1 N Channel and I P Channel C3 a par rel $\mathrm{J3P} \mathrm{~g}$ LOW COST CAPS, 1.000 capecitors $£ 3(33 \mathrm{uf}, 25 \mathrm{v})$ rof J 3 P 10
VELCRO, 1 matro hangth 20 mm wide, blue $£ 2$ rol J2PM 6
JUG KETTLE ELEMENTS. Good general purpose heating olemom jum £3 ba ref E3P8 or 5 for 510 ral J10P3.
VERY BIG MOTOR. 200v induction $1.1 \mathrm{kw} 1410 \mathrm{~mm} 10^{\circ} \times$ T- GEC 1"keyed shaft Brand new. $£ 95$ ted Josp 1.
BIG MOTOR. 220-240v 1425 pm 2.84 58in" noyod snah GEC 65 88^{-}complete with mounting plate $£ 38$ ref $J 38 \mathrm{P} 1$
SMALL MOTOR. Electroux 160 war $3.000 \mathrm{rpm}, 220-240 \mathrm{v} 5 / \mathrm{e}$ shaft procimon buil E18 rul 118 P !
EPROUS 27 C64 PACK OF $10 \varepsilon 7$ REF MTP1.
EPROMS $27 C 256$ PACK OF 10 CP REF MPPI
EPROMS 27 C5 12 PACK OF 10 E10 REF WHOP1.
MODEMS FOR $£ 1.25$? These modems are suitabie for stinpping only hence they are only 4 for $£ 5$ rel JSP 3
SOLAR POWEREO WOOOEN MODELS. Complate with soier panat, motor and full instructiona. £9 ret J9P2 3 dift $£ 20$ rat J20P3 TV SOUND RECEVER FUlly Cased, mmns powerod, that need a speaker for stand alonguse or could be wired into hifí, $\mathrm{C12}$ ref 12922 SOUND OPERATED LIGHT. Clac your hands and fight comes on. Turns aftar aresen detay. (4 M's rea'd). $£ 2$ ref J2P3 on. Turns after presen detay. (TE CONTROLS. Seand new units
FERGUSON SRBI REMOTE ideal for a soare or have two remones 1 £ 4 each.

IN SUSSEX? CALL IN AND SEE US!

Choosing Operational Amplifiers

by Douglas Clarkson

0perational amplifiers can often present themselves like old familiar friends. Faced with a specific need in a specific design situation out will come the preference for a tried and tested solution. The array of choice in the field of operational amplifiers has never been greater. It is useful to examine some of the criteria which are appropriate for selection of operational amplifiers. It is also useful to review some of the specification terminology and compareasingle factor across a range of devices.

Data is taken from various device data books. Such data is usedonly forcomparative purposes and therefore details can vary depending on whether military, industrial, commercial or automotive products are referenced. Differences can also arise due to varying power supply conditions, temperature and loading conditions. For data relating to specific devices the reader is recommended to consult specific data references.

Tables I \& 2 indicate the range for values for a specific parameter for a variety of devices are. This gives a better 'feel' for how parameters can vary. Various parameters are interrelated as will be seen later.

Packing Options

In terms of the packaging of operational amplifiers, the traditional dual in line packaging is still predominant although surface mount technology is being used increasingly in order to minimise board size. Surface mount devices appear to be more expensive than standard DIL versions.

Input Offset Voltage

As indicated in Figure 1, this is the voltage which must be applied at the input to obtain zero output voltage.

Table I indicates that there is something like a ratio of 250:1 in the values of offset voltage that can be selected for devices. The ratio of (maximum/typical) values varies from about 2 to as much as 5 .

Input Offset Voltage Drift

Often a key factor in device design is the rate of change of $\mathrm{V}_{\text {os }}$ with temperature, eg. in low level signal amplification. Table 1 indicates a broad range in Input Offset Voltage drift values which reflects in general term the ranking in the table of V_{OS} itself.

Calculated values of the percentage change in V_{os} as a function of a $10^{\circ} \mathrm{C}$ rise in temperature are shown in Table 1.

The LF411 seems to be particularly sensitive to temperature effects compared with average values of other devices.

Input Bias Current

Although in the ideal case operational amplifiers are assumed to draw no current from the system they are connected to, a finite level of current does flow. Figure 2 shows currents I1 and 12 flowing into the device. The input bias current, lb , is defined as:-

$$
\mathrm{Ib}=(\mathrm{II}+[\mathbf{I}) / 2
$$

Typical values are of the order of 50 nA though values for JFET devices are considerably smaller. The significance of the size of the effect introduced due to bias current is largely determined by the circuit used with a specific circuit.

In the simple case of Figure 3, a simple inverting amplifier the total current flowing from input sig-

Fig. 2 Origination of blas currents in inputs of operational amplifier nal point V is determined by the impedance R1 so that:-

$$
\mathbf{I}=\mathbf{V} / \mathbf{R} \mathbf{I}=\mathbf{I b}+\mathbf{I g}
$$

where Ib is the bias current and lg is the signal induced current flowing through the gain resistor. The 'loss' of signal at the output as a percentage of the total signal is:-

$$
\begin{aligned}
& \frac{I b \infty 0100}{(I b+I g)} \\
= & \frac{100}{(1+I g / I b)}
\end{aligned}
$$

The table below gives a summary of percentage loss as a function of ratio of Ig to Ib

$$
\begin{array}{ll}
\text { Ratio Ig/lb } & \text { Percentage 'Loss' of signal } \\
10 & 9.09 \\
100 & 0.99 \\
1000 & 0.0999 \\
10,000 & 0.0099
\end{array}
$$

Percentage loss of signal with ratio of input currents to inverting amplifier for input bias current of 100 nA

Taking the example of a 100 mV signal being amplified with an resistor R1 of $100,000 \mathrm{k}$ ohms to give 1000 nA for $\mathrm{Ig}+\mathrm{Ib}$. Assuming a bias current of 100 nA the ratio of currents is approximately 10 so a percentage loss of around 9% would be experienced. Thus working with low levels of input voltages and high input resistances in this amplifier configuration can significantly influence amplification characteristics.

USE	Device	MANLFACTURER	INPUT OFFSET mV		Vos drim UV/C		$\begin{aligned} & \text { \% Change } \\ & \text { VOA } \end{aligned}$		INPUT BAS ก		nveut OFFSET IA		$\begin{aligned} & \text { Gaw } \\ & \text { typ } \end{aligned}$	
			typ	max	typ	max	ryp	max	IVP	max	typ	max		
GEN PURPOSE QUAD	LM324	NAT	2	7	7	.	3.5	-	45	200	5	50	$100 \mathrm{~V} / \mathrm{mV}$	LS
GEN PURPOSE	LM741A	NAT	0.8	3	-	15	.	5	30	80	3	30	$200 \mathrm{~V} / \mathrm{mV}$	LS
PRECISON LOW NOISE	LH0044AC	NAT	0.008	0.025	0.1	0.5	12.5	20	8.5	15	1	2.5	145 dB	OLG
JFET LOW OFSET, LOW DRIFT	LF411A	NAT	0.3	0.5	7	10	23		0.05	0.2	0.025	0.1	$200 \mathrm{~V} / \mathrm{mV}$	LS
JFET INPUT	TL60CP	TEX	3	15	10	\because	3.3		0.03	0.4	0.005	0.2	$6 \mathrm{~V} / \mathrm{mV}$	LS
JFET	TL80CP	TEX	3	15	10		3.3		0.03	0.4	0.005	0.2	$200 \mathrm{~V} / \mathrm{mV}$	LS
WIDEBAND JFET	LF351	NAT	5	10	10		2		0.05	0.2	0.025	0.1	$100 \mathrm{~V} / \mathrm{mV}$	LS
LINCMOS SINGLE	TLC2201CP	TEX	0.1	0.5	0.5		5			0.1	-	0.1	$55 \mathrm{~V} / \mathrm{mV}$	LS

Table 1 (OLG=OPEN LOOP GAIN)

There is therefore a considerable variation in the bias current performance - ratio of typically 1000 : I between the general purpose LM741A family type and a specialised JFET. Where operational amplifiers are working with low values of current signals, it is appropriate to use devices such as JFETS to minimise effect of bias currents.

Input Offset Current

The input offset current is the difference between the inverting and the non-inverting bias currents:-

$$
\operatorname{los}=11 \cdot 12
$$

Typical values of input offset current are of the order of 10 to 20 nA with JFET devices having significantly smaller values around 0.1 mA . Devices of higher specification have more closely matched bias currents and correspondingly low values of input offset current.

Voltage Gain

The gain of an operational amplifier is the ratio of the output voltage magnitude to the input voltage magnitude. In specifications it is typically shown as V/V (output voltage change as a function of input voltage change) or as dB .

The voltage gain in dB is defined as:-

$$
20 \log _{10}(\mathrm{Vo} / \mathrm{Vi})
$$

where V_{0} is output voltage and Vi_{i} is input voltage.
The table below indicates dB values for corresponding ratio values of voltage gain.

Voltage Ratio	db gain
100	40
1000	60
10000	80
100,000	100
$1,000,000$	120

The $d B$ value is most frequently used in dévice specifications and is identified with the power gain of the specific device rather than the voltage amplification.

Thus where the output rises IV for an input of $10 \mu \mathrm{~V}$, the operational amplifier will have a gain of 100,000 .

The DC voltage gain of an operational amplifier is seldom a critical factor in operational amplifier selection. What is of more relevance is the open-loop gain as a function of frequency. The bandwidth is the frequency range for which the gain is within 3 dB of its peak.

Power Supply

Rejection Ratio

This is the term which relates to the sensitivity of the input offset voltage to power supply voltage. It is defined as the ratio of the change in Vos to the total change in power supply voltage.

Thus for a supply
 change of 1 volt and a PSRR of 100 dB , the change in $\mathrm{V}_{o s}$ will be $10 \mu \mathrm{~V}$. It should be noted that if the power rails change from +6 V and -6 V to +5 V and -5 V , this is a change of 2 V in the power supply for such calculations.

Fig. 4 Typical open loop frequency response curve for the LM324A family.

It is appropriate that the precision low noise amplifier LH0044AC has a very high PSRR. Where, for example, a 1 volt change in supply level will produce $0.05 \mu \mathrm{~V}$ change in $\mathrm{V}_{\text {os }}$. This is consistent with the low value of $8 \mu \mathrm{~V}$ of $\mathrm{V}_{\text {os }}$ for the LHOO44AC device.

Common Mode Rejection Ratio

The CMRR is the magnitude of the ratio of the change in V_{os} to the corresponding change in common mode voltage the common voltage established across the inverting and noninverting inputs.

It will be appreciated that CMRR is potentially more of a problem than.PSRR in some devices in changing the effective value of $\mathrm{V}_{\text {os }}$ in a circuit. The LM324A, for example, has a

Data tends not to be provided for operation at these supply voltages so care is required in using operational amplifiers within these voltage rails. It would be a safe bet, however, to assume that a bipolar operational amplifier powered on $+/$ 5 rails would not be able to be driven beyond $+/-3.5 \mathrm{~V}$. The TLC2201CP has a clear advantage of performing better in this voltage region.

USE	DEVICE	MANL. FACTURER	PSAR (dB)	CMMR	SLEW RATE Vive	$\begin{aligned} & \text { SUPPLY } \\ & \text { CURRENT PER } \\ & \text { UNIT (mA) } \end{aligned}$		voltage SWING		UNTY CAN BAMOWIDTH 	$\begin{aligned} & \text { EO WPUT } \\ & \text { MOISE } \\ & \text { VOLTMEE } \end{aligned}$	cost E
			$t \mathrm{p}$	typ	typ	typ	max	typ	max	typ	typ	
GEN PUAPOSE QUAD	LM324	NAT	100	85	-	1.5	3	$\begin{gathered} (28 \mathrm{~V} \text { at } \\ 30 \mathrm{~V}) \end{gathered}$		1		0.35
GEN PURPOSE	LM741A	NAT	96	95	0.7	1.7	2.8	+1/12	*-14	1.5		0.60
PRECISON LOW NOISE	Lhoomac	NAT	145	145	0.06	0.9	3.0	*/13.7		0.4	$8(1 \mathrm{kHz})$	28.00
JFET LOW OFSET, LOW DRIFT	LF411A	NAT	100	100	15	1.8	2.8	+/13.5		4	25 (1kHz)	10.30
JFET INPUT	RL60CP	TEX	95	86	3.5	0.2	0.25	\$-13.5		1	42 (1 kHz)	0.60
JFET	TL80CP	TEX	86	86	13	1.4	2.8	\$1.13.5		3	18 (1kHz)	0.60
WIOEBANO JFET	LF351	Nat	100	100	13	1.8	3.4	+1/13.5		4	25 (7kHz)	0.50
LINCMOS SINGLE	TLC2201CP	TEX	110	110	2.5	1	1.5	$+48$		1.8	8 (1kHz)	2.70

Table 2 (DATA CORRESPONDS TO \uparrow - 15 V SUPPLY UNLESS OTHERWISE STATED)

CMRR some 15 dB worse than the PSRR. The trend of high CMRR of operational amplifiers which require to have low values of V_{os} is identified. This is a similar situation with specification of PSRR.

Slew rate

This term describes the maximum change in output voltage that the operational amplifier can accommodate. It is usually expressed in $\mathrm{V} / \mu \mathrm{S}$.

Thus while the LH0044AC device is excellent athigh gain operations on account of its low value of $\mathrm{V}_{\text {os }}$ and high CMRR and high PSRR, it would not be appropriate in a sample and hold application where voltage levels were being captured and held over short time intervals, eg $0.1 \mu \mathrm{~s}$.

Supply Current

This is defined as the current which an operational amplifier will draw when there is no load current. This factor is of particular relevance in the design of battery equipment, where low power consumption is a key design criteria. The data presented relates to supply at $+/-15 \mathrm{~V}$.

It is also of relevance when power supply requirements are being determined where extensive linear devices are being used.

The TL60 range thus offers some advantages of lower power consumption. The LM324 is a four amplifier device.

Output Voltage Swing

Problems can often arise in the design of circuits when eg. with a supply of 5 V , a bipolar operational amplifier will develop a maximum positive voltage swing of 3.7 V . The following table gives an indication of the ability of devices to function within the range of supply voltages provided.

Circuits are tending to be used with supply rails of $+1-5 \mathrm{~V}$ in portable equipment in order to minimise current drain.

Unity Gain Bandwidth

Figure 4 shows the typical Open loop frequency response curve for the LM324A family and Figure 5 the circuit used to determine the characteristic.

Table 2 shows that low cost devices such as TL80 range can have unity gain bandwidth products of around 3 MHz .

Noise Information

Data relative to noise is of importance where low level signals are being significantly amplified. Figure 6 shows the equivalent noise voltage as a function of frequency for the TL80 to TL85 range of devices. There is a rapid decline in noise signal with a plateau commencing at around 400 Hz . Values quoted at 1 kHz are therefore representative of the greater range of signals in the noise spectrum. The values quoted in Table 2 are

Fig. 5 Circuit used to measure open loop frequency respose Indicated in Figure 4. $\mathrm{nV} /(\mathrm{Hz})$.

Where data is not available eg for the LM324 and LM741A it may be taken that the values are higher than typically referenced for the other devices. The TL80 range would be of more use as pre amplifiers in audio circuits than the TL60 series. The TLC22001CP shows good low noise characteristics - on a par with the more expensive LH0044AC.

Cost of Components

Table 2 summarises the approximate cost of the devices.
The prices quoted indicate approximate prices and are for
general indication only. Significant variations in price takes place as different specifications of the one device are quoted. Thus the top of the range LM324AM costs around $£ 7.00$ while the humble LM324N costs around $£ 0.35$. The variations within the TL60 range and the TL80 range are certainly not as extreme as with the LM324 package. Considering its good design properties and modest cost, the TLC2201CP device certainly comes out on top of the set reviewed here.

Points of Reflection

The needs of the designer will vary considerably depending on the task in hand. A key factor will perhaps be bandwidth, or low supply current or low noise. At a very basic level it may be price. It is surprising how much of mass produced electronics is down to price - to the last one penny.

In consumer products when customers are inspecting a sound system, they cannot know the noise spectrum of the input stage or be in any position to measure it. Appearances of the console and the LEDs on the front will carry more

Fig. 6 Noise spectrum for TL80 range of devices. The spectrum above 500 Hz Is relatively static and 1 kHz is used as an indication of typical performance. weight. Where there is a difference in 5 p between
two components and one has a higher specification, then invariably the cheaper component will be selected.

For the electronics designer, building and developing his own products in relation to his own understanding, then the
choice between a mediocre chip at $£ 0.50$ and a superior one at $£ 2.50$ is not difficult - he or she invariably choose the better device in order to put better value into the system.

It is perhaps appropriate to set out a table which will help the process of op amp selection. Each of the parameters is graded on a scale of 1 to 10 , reflecting at 10 the best device. This is indicated in Table 4

This chart, therefore, serves to scale operational amplifiers on a scale of 1 to 10 on each parameter. By circling the values required for each parameter (if these are known) this will give a rough and ready assessment of the design requirements. If the electronic designer uses this template (copying it) to enter the details of a set of specific devices, he or she will soon see if the device is a close match to the required parameters.

In order to really understand the devices being worked with, it is essential to obtain appropriate linear data books. This is where education in linear electronics really begins.

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611

The supplier to use if you're looking for -

* A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST \star * COMPETITIVE VAT INCLUSIVE PRICES *
\star MAIL ORDER - generally by RETURN OF POST \star * FRIENDLY SERVICE *

[^1]
BADGER BOARDS

Printed Clrcuit Boards

Prototype-Singles Multiple runs. Minimum Charge $£ 15.00$. Artwork, Plotting from Schematic to final board layout. Send S.A.E. now for Catalogue of Kits-Boards-Projects available. Many magazine boards Dep: HRT 87, Blackberry Lane, Four Osks, Sult B7akerry Lane, Four Osks, Sulton Coldfieid, B74 4JF \quad 021-353 9326

PROFESSIONAL SERVICES

We offer a full R.F. DESIGN SERVICE from design and development to prototype. Our extensively equipped laboratory with screened room is available for EMC PRE-TESTING to ensure products comply with the EC Directive on emissions and susceptibllity.
$\mathscr{T R}^{\circ}$ © Electronic \mathcal{S} emc
1 ARNOLDS COURT, ARNOLDS FARM LANE, MOUNTNESSING
ESSEX CM13 1UT. Tel: 0277352219 Fax: 0277352968

JUST LOOK AT WHAT'S AVAILABLE FROM BONEX

CMOS Devices
Computer Accessorles
Adaptors 9 W to 25W,
Data Switch Boxes,
Gender Changers,
RS232 - Patch Boxs, Null Modems, Plug in Testers,
Surge Protectors
Surge Protector Plugs,
Connectors
Audio Adaptor/Plugs.
Benana Connectors,
Binding Poste BNC5,
Centronics, D_{1}
D High Density,
DC Power, DIL IC
DINs, IDCe, Edge, F Jack $2.5 \mathrm{~mm}, 3.5 \mathrm{~mm}, 6.3 \mathrm{~mm}$, Maine, Mlcrophones, Molox, N-Typo, Phono, PL259, PF Adaptors, Scart, TNC Terminal Stips, TV, XLR, Crocodile Cllpe Crystale
Desolder Pumps
Dlodes
Plastlc N4000 / IN5400,
Toko Varicaps
Slgnal Diodes,
Zener, BZYs and BZX8,
12 Elder way
Langley Business Park
Slough

Drills
Burre,
Expo.
Pin Chucks.
Power Supplys
Saws and Slitting Disce,
Fans
Feet, Rubber
Ferrites
Fiters
FM Ceramics, Mechanical IF's, Ceramic Resonators, Crystal, Hellcals, NTSC /
PAL, Pilot Tone, Quadrature
Detector, Satellite TV, Video,
Fuses
Grommete
Howes Khts
Heatsinks
Induger Fxed nduciors Moulded
inductors suriace mount
induciore Varable
Infre-red sounce Seneor
Insulating Tape
InteoretedClrcutts
CMOS,
Eproms,
Unears,
Memory,
Memor

Kits and Modules Test Leads
LED.s, 3 mm and 5 mm
Uight Dep Reslators
Loudspeakers
Test Probes
Tools
Crimping, Cutters,
Microphone Inserts
Flles, Insertion,
Multimeters
Reamers,
Noon Indicatore
Nuts and Bolts
Opto Swltchs
Optolsolators
P.C.B. 5

Copper Clad, Etch Reslst
Tranafers, Photo Resist,
Pins, Proto-type,
Pollshing Mops
Potentlometers
Control Pote, $16 \mathrm{~mm}, 24 \mathrm{~mm}$,
Pro-sets,HorlzontaiNortical
Tifmmer Pote,
Power Supplles
Ropley
Carbon Flin
Wirewound
Screening Cans
Semis Mount Klt
Solder
soldering trone
Swhches
DIL, Koy, Microswitches,
Push, Rotary,Sllde, Toggles

Screwdrivers
Strip Board, Trimtools,
Torold Cores
Thyristors
Transformers, Mains
Tranalators
Audio Power
Darlingtons, F.E.T.s
GeAsFETs,
Low Power RF.
Mlcrowave
MosFeTs
Power RF,
Small SIgna,
VMOS,
Triacs
TI.
Video Modulators
Voltage Regulatore
Wre
Enamelled Copper,
TIn Plated,
Sliver Plated,
Zero Insert Force Sockots

CATALOGUE AVAILABLE

SPECIAL OFFER

SBL-1 BALANCE MIXERS $£ 3.75$
Berkshlre SL3 6EP. Telephone : 0753549502 Fax : 0753543812

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

OSCILIOSCOPES
Tektronur 2445A 150 MHZ Four Trace
Tekfronix 475200 MHZ Oscilloscopes with prodes/manual Tektroniz 465 B 100 MHZ with Digital Multumeter (as new) Tektronix 465100 MHZ Dual Trace Tektronix 466100 MHZ Starage with DVM option Kikusuil COS6 100 100MHZ 5 channel watsu SS8122 100MHZ 4 trace 4 cursors Tektronix $5103 / 5810 \mathrm{~N}$ T.B. 2.5A20N Differential plugins Phifips PM321750MHZ Duel Trace with probes/manual
Philios 320015 MHZ Mains/Batt portable Filitros 3200 T935A 35 MHZ Dual Trace Portable Ballamine 1022815 MHZ Dual Trace Batl Portable Totequipment D32 15 MM 2 Dual Trace Batt Portable Hitachi V650f 60 MMZ 3 Trace
Mitachi V222 20 MHR Dual Trace
Gould OS 3600 100MMZ Dual Trace with DMM Ont Gould OS 400010 MHZ Dual Trace Digital Storage Scope Gould OS2508 15MHZ Dual Trace Complete with Probe/ Manual
Gould OS1420 20MHZ Digital Storage Oscithascope Farnell DTC12 12 MMZ Dual Trace/Component Tester
 Telequipment DM64 2OMHZ Storage Oscin HP 1727 A 275MHZ Storage Oscilloscope
SIGNAL GENERATOAS
Marconi 2019A 1040MMZ AM/FM
Marconi 2018520 MHZ AM/FM
HP 864081024 MHZ Comptete with opt 001/002/003 Wavetek 2520200 KHZ io 2.7 GHZ Synthesized Marconi 2015/2171 Synchronizer 10 MHZ to 520 MHZ AM/F Singal Generator (as new condirion) Marconi 2016 10KHZ to 120MHZ AMF Tripl
Farnell SSG2000 10KHZ to 2 GHZ Synthesized Farnell SSGi000 10 KHZ to 1 GMZ Synthesized Farnell SSG520 520MHZ Synthesized Farnell SSG520 +TSS520 Mobile Radio Test Station (pair) Adret 740 A 1 OKHZ to 2.7 GHZ Synthesized Generstor Polrad 1106 E1 1.8 to 4.6 GHZ Comotete Wavetek 19320 MMZ Sweep Function Generetor Whilips $5324100 \mathrm{~W} H 2$ to 110 HH ? AM/FM/Sweep

Eatón 35528 Broadband RF Amplifier
Kolamus Wideband RF Power Amplifier 5 to 1000 MHZ Farnell LA520 RF Amplifier 1.5 to 520 MM I Earnell LFM2 Sine Square Wave Osciltaror far neil LFM4 Osacillator
Racal Racal Dana 9301 A True RMS Voltmeter HP 340A True RMS Vohmerer MP 3403C True RMS Voltmeter Racal Dana 1998 Frequency Counter Racal 984 3Ghz Frequency Counte Narda 3020A Bi Directional Coupley Counter Narde 3001 . 30 Directional Coupler 460 to 960 MHZ Narraa 3022 Bi Diractionsi Coupter 1 to AGMZ Narda 789/6 150 W 68 H High Power An (NEW Bird Tenuline 8343 100W 6DB At HP 9133 Computer 150 Touch Screen/Printer Racal Oana 1002 Thermal Printer MP 3 355A Migh Stability Voltmeter GP MP 3478 A LCD Digital Multimeter MP 34680 Diginal Multimeter $51 / 2$ Digit HP 8750 A Storage Normalizer HP 5382 A 225 MHZ Frequency Coumter HP 461 A Amplifier $1 \mathrm{KMZ} \quad 150 \mathrm{MMZ}$ MP 6294 PSU 0 to 60 Voits IAMP MP 3556A posphometer
HP 42718 IMAZ Digiral LCR Meter Tektronur 521 A PAL Vectorscooe
Tektronix 1481 W Waveform Monitor Tektronix 141A PAL Test Signal Generator Racal Dana 5002 Wideband Levell Meter Racal Oana 9303 True RMS RF Levell Merer
SPECTRUM ANALYSERS
Tektronix 496 P 18 GHZ Programmable

H/P 85588 1. $5 \mathrm{GHZ} 1 \mathrm{H2T}$ Mmin Frame | H/P 85588 | |
| :--- | :--- |
| H/P 141T 85528 IF 85548 | $1250 \mathrm{MMZ}+85538$ |
| 18000 | | Autio off System

M/P 85558 1BGH7 Plugin (Mew Bored) M/P 85558 IBGHZ Plugun (Now Bowed) $\quad 2250$ Rohde/ Schwarz ZAM 52 20GHZ Scalar Network Analvser | $[2350$ |
| :--- |
| 2000 | Wame Kerr RA200/ADSI/ALM2 Frequency Response Analyser [As

H/P 3580 A 5 HZ to 50 KHZ Spectrum Analyser (New) $£ 2000$ H/P 3580A 5H2 to 50KH2 Spectrum An
H/P 8566 B 22GMZ Spectrum Ansivser

1000
8500
8500
6750
6750

TEST EQUIPMENT
Marconi 2955 Communications Test Se:
Marconi 2950 Mobile Radio Test Se
Oymer 2085 AF Powwer Meter
actor Meter
HP 333A Distortion Meter
Marconi 2305 Modulation Meter
Etratom FRT Atomic Frequency Standard
Fluke 5408 hermal Transion Standa
Bradley 232 AC Calibration Source
Bradiey 156 Oscilloscooes Calibrator
Wayno Koor 44 C Measuring Set
MP $745 A$ AC Calitrator
HP 8405 A Vector Volimeter + Accessories
Fluke 103A Frequency Comparator
Cossor 437 Cable Logoer
HP 4358 Power Meter $8482+3008$ ATT (As Now)
HP $435 A$ Power Meter 8482 H Mead
Marconi 6960 AF Power Meter 6912 Mead 30 KHZ to 4. $2 \mathrm{GHZ} ~ \$ 975$ Hsag 10 MHZ to 20 GHZ
HP 3944 Variable Attenuator IGHZ to 2 GHZ HP 394 a Variable Attenua
Leader LCTSIOA CRT Tester/Rejuvenator Amber 4400 A Multipurpose Audio Test Ser
Ferrograph RTS2/ATU1 Tepe Recorder Test Sel
Racal Oana 6000 Microprocessing DVM
Racal Dana 9000 Mirroproporcessing Timer Counter 510 MHZ

QULK PURCMASE SPECIALS
MP 18050 MHZ Oncilloscopes Tested Marconi 1101 RC Oscillator 20CS to 20KCS Avo 8 Multimeters Case + Battery Loods Adcola 777 Desoldering Station Meter 4810860 MMZ Fluke 8000 A High Grade Dignal Multimeter
RADIO EQUIPMENT
Racal RA1792 HF Receivers
Racal RA23098 + RA2295 90 to 400MHZ
Eddystone 770 U 150 to 500 MMZ
Edorstone 9905250 to 850 MMZ
Philips $88 M H Z$ to 108 MHZ Broadcast $T X$
63000
63000
6250
5225
1250
6225
$E 295$ 8200
$\$ 225$ 1225
$\$ 1600$ 52500
5850 6850
61000 1000
6200 1550
6750 1000
$\mathbf{r 5 0 0}$

$4-2$

Philips PM2434 OC Microvoltumeter STD 488 Bus Analyser
 6950 $〔 1000$

ALL PRICES PLUS VAT AND CARRIAGE 86 Bishopsgate Street, Leeds LS1 4BB Tel: 0532435649 Fax: (0532) 426881

Jaytee Electronic Services
143 Reculver Road, Beitinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104

PCB \& SCHEMATIC CAD
EASY-PC 298
- Design Single slded, Double aided and Muhtilayer boards. - One software package for Schematics and PCB' . - Standard output Includes Doi Matrix / Laser / Inkjet printers Pen Plotters Photo-plotters and NC Drill. - Award Winning EASY-PC is in use in over 13,000 Installations in 70 Countries World-Wide. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Optional librarios S.M. Components etc. From $\varepsilon 38.00$

For full info' Phone, Fax or Write to:

digital simulation	
pulsar	£195

- Al lasil A full fortured Digital Circuth Simulator for less than E1000!
- Pulsar allows you to test your loglc designs withour the need for expenslve test equipment.
- Catch gitiches down to a pleo-second per week!
- Includes 4000 Series CMOS and 74LS Lbrarles.
- Runs on PC/XT/AT/286/386/ 486 with EGA or VGA. Mard disk recommended.
74HC / HCT Librarles optional at $£ 48.00$ each.

Number One Systems Ltd. The Electronics CAD Specialists

Technical support tree for life! Programs not copy protected. Speclal prices for Education.

REF: ETI; HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PEIT 4WR, ENGLAND.
Telephone: 048061778 (7 lines) Fax: 0480494042 International: $+44-480-61778$ Fax: $+44-480-494042$ ACCESS, AMEX, MASTERCARD, VISA Welcome.

Fig. 1 Circuit of Infra red remote transmitter

HOW IT WORKS

Transmitter Operation
No setting up is required. This IR Transmitter is puise modulated to match the 1 R receiver controling touch type dimmer switches. The coded outputs are digital $A B C D$ only, set to momentary operate the receiver reed relay outputs. VMOS collects a positive supply through the lohm resistors and the \mathbb{R} diodes then discharge to eath.

IC1 is a Plessey IR Encoder MV500 complimentary to IR receiver Decoder MV601. A 9 volt PP3 battery is connected to diode D4. This diode gives protection through mis-connections and also charges the smoothing capacitor Cl to reduce the voltage drop that occurs during the high curent discharge when transmitting, in effect giving the highest obtainable voltage to ICl which in tum gives a high output pulse to pin 1 and the gale of OI. XT1 is a 500 KHz ceramic resonator connected to the two 1000 to forms a Pierce circut. This circuit is oscillating at the same rate as its complimentary receiver circuit. When a push switch selection is made a pulsed output current is sent to 01 gate causing a very high pulsed current to be passed through to ground via the resistors R1-3 and IR emitter diodes D1.3. R4 is included to bias the gate on O1 10 OFF by grounding. Output push switches connect a source to sink as configured,and R5 is included to limit a positive source current.

Predictably in the future, domestic remote controlled lighting and dimming will be as common as the television remote control and with the availabilty of multi programable transmitters on the market, eventually all domestic systems will be programmed into one master transmitter.

With mains lighting, the design criterion requires that the lighting system must not depend entirely on remote control. Manual switching is the most convenient simple method of switching, the remote operation is the added practical refinement of modern living, and probably only used during
relaxation-times or as an aid to the unfortunate handicapped or bed-ridden patients. The greatest advantage is the means of controlling the dimming level of lighting from a position of relaxation.

In the case of the following Infra Red remote design any combination, MANUAL 'OR' REMOTE switching and dimming can be operated from each separate touch dimmer switch.

This remote system is coupled to control a suitable easily available touch dimmer switch, manufactured by Home Automation, but others would work on the same-principle.

In Operation

The circuit described is an infra red encoded system, configured to select four digital channel outputs. This allows a single output for each of the channels. By selecting one of the four push button switches an encoded pulsed infra-red output is sent from the infra-red diodes to the decoder on the receiver circuit, which in turn pulls in the selected reed relay. This transmitter circuit is pre set to match the complimentary encoder micro chip and no setting up is required.

The transmitter operates four channels and basically of standard construction, with a couple of selected components to give increased range.

The receiver described last month is mains powered and converted to give a DC supply output via a zener voltage of 15 volts at 35 mA , then again regulated to supply various components with a smooth 5 volt supply. Detection of infra red pulses are pre amplified and filtered by the 'Tandy' IR

trol Dimmer

Detector unit, a hybrid receiver/demodulator. These output signals are transistor amplified and passed to the remote control receiver IC pin 1. With matching pulse position modulation, the momentary switch selected $A B C D$ logic couples directly to one of four miniature 5 V DC plug in reed relays. The normally open relay contacts, close, making an earth connection to the appropriate dimmer switch touch plate, completing the dimming/switching cycle.

Transmitter Construction

The construction is very straight forward, soldering in the components as shown in the component overlay starting with the low components first like resistors. Do check the polarity

of components before soldering them in. The flats on the infra-red diodes indicate the ground side. Check for pairs of pins on the push buttons before soldering. Ensure the VMOS semiconductor is fitted as per diagrams for polarity. On completion, fit the heavy duty battery to the battery clip and press the push buttons. The circuit is designed to fit in the smallest of hand held plastic boxes readily available from many distributors and Tandy shops. The box has to be drilled to accommodate the infra-red diodes and push buttons.

Fig. 2 Component Overlay of transmitter

PARTS LIST TRANSMITTER RESISTORS
 R1,2,3 1 R
 BUYLINES

R4 720k
R5 10k

CAPACITORS

C1 1000u/10V
C2,3 1000 disc ceramic

SEMICONDUCTORS

IC1 MV500 transmitter
01 VN1OKM
01,2,3 High power Infra-red emitters
D4 1 N4001
MISCELLANEOUS
PB1,2,3,4 Momentary push switches
Pad Kit JYO1B
XT1 500 kHz ceramic resonator
PP3 Battery clip connector
PP3 Battery
Remote control housing

Most of the parts are availble from Rapid Electronics. The Infare-ed receiver module is from Tandy Slores. The choke is from Maplin (JL72P). The MV601, resonator and MV500 are available from Electromail. A kit of parts (exxcuding box and battery) for $£ 25$ is available form ADVF Service, 131 Aldermans Dive, Peterborough, Cambs PE3 6BB

Microprocessor Sound to MIIDI Convertor

Let the musical instruments follow your lead with this follow your lead with this MIDI project by Tom Scarff

Flg. 2 Setting Mode 2

Ever wanted to hum or whistle a tune and have a complete orchestral sound backing you? Well this project consists of the hardware and software to implement a sound to MIDI convertor which will allow the digital playing of MIDI data on a MIDI instrument controlled by any acoustic instrument or voice via a microphone, or by a guitar via an electromagnetic pick-up.

MIDI, as most people know by now, is the acronym for Musical Instrument Digital Interface and is at present the universal standard for connecting and controlling electronic musical instruments. Generally MIDI synthesisers are keyboard controlled but not all musicians are keyboand proficient and would still like access to the various MIDI synthesiser sound sources. In order to achieve this I designed a Sound to MIDI convertor which converts an incoming frequency to its equivalent MIDI note-on and note-off data.

MIDI data is transmitted or received as asynchronous serial data at a rate of 31.25 K BAUD with a format of 1 start bit, 8 data bits, and 1 stop bit. The MIDI Out connection operates using a 5 mA . current loop.

Digital Circuit

The circuit is designed around the 6803 microprocessor which contains 128 bytes of RAM, for the programme variables, a Serial Communications Interface, for interfacing to the MIDI in and out connectors, eight parallel input/output lines, with one input polled for start and end of a note, and a three function programmable timer, which is used to calculate the incoming frequency of a note.

An internal clock generator with a divide-by-four output is also present. The processor also allows the combination of two eight bit accumulators to provide operation of sixteen bit arithmetic. The NMOS 6803 CPU is also available cheaply and 6800 software has appeared in previous articles.

The operating mode of the 6803 is selected at power-on or reset by the voltage levels present on the Port 2 pins P20, P21 and P22. With the configuration shown in Figure 2 mode 2 is selected which makes use of the internal RAM and the multiplexed Data/Address bus.

Fig. 3 Mode 2 system conflguration

The lower address byte has to be latched before feeding into the address bus as in Figure 3. An output signal, the Address Strobe (AS), is provided to enable the latches in IC5 at the correct instant in time.

The EPROM is chip-enabled when address A15 goes high and fed to the active low input via NAND gate IC7d wired as an inverter and is capable of being read when the \mathbf{E} pulse and the read/write lines of the microprocessor are both high and fed to the active low read enable line of the EPROM via NAND gate IC7c. The EPROM is address decoded to a hex base address of 8000 h to 87 FFh . Since the address lines All to A14 inclusive are not decoded ghosts of the EPROM will appear at higher addresses, allowing access to the interrupt vectors. The internal RAM is address decoded to hex address range 0080 h to 00 FFh . See memory map of Figure 4.

The 4 MHz crystal is divided by 4 internally by the microprocessor to provide an E pulse of 1 MHz and a clock cycle time of 1 micro-second. The timing pulse E is further

Fig. 1 CIrcult diagram of the sound to MIDI processor
divided by 4 by the dual D-Type flip-flops IC3a,b and fed to the serial external clock input on port 2 pin 2 (P22), where it is further divided to provide the correct MIDI baud rate. A 2 MHz crystal could be used to generate the baud rate internally but then the clock cycle time would be increased to 2 micro-seconds, which would reduce the frequency resolution of the internal timer by half.

The MIDI IN connector is fed to IC8 optocoupler type CNY17 whose output is fed to the serial input P23 of IC4 and via inverting NAND gate IC7A and transistors Q4, Q5 to the MIDI thru' outputs. This allows splitting of the MIDI signal to twodestinations. Also the serial MIDI input data toIC4 can be used for future MIDI applications.

The remaining NAND gate IC7b can have its inputs connected to ground or

Fig. 5 Flowehart for MIDI to sound processor left floating.

Analogue Circuit

A microphone or other low level source (e.g. a guitar pickup) can be connected to the input preamplifier ICla.

The mid-band gain, of approximately 20 , is set by-R5/R6, the lower cut-off frequency is dependent on the combination of C2R6.

The second stage of amplification is provided by IC1b with a gain similar to the first stage set by - R8/R7. This gives an overall gain of over 400 or 52 dB .

The potential divider R10,R11 sets the DC bias on the outputs of the operational amplifiers ICl a and IClb via the non-inverting inputs, and IC2b via the inverting input, to half the supply potential minus approxiamately 1.5 Volts, which is the value required for the maximum symmetrical AC voltage swing using the LM358 IC. The capacitor C3 ensures that these inputs are AC grounded.

If the inputis removed $\mathbf{R 9}$, which connects the preamplifier input to ground via the input jack, helps prevent spurious noise causing the circuit to operate intermittantly.

The amplified signal is then split and coupled to:

1) A Schmitt trigger circuit consisting of IC2b and associated components R13, R14 which set the threshold voltages. This signal is then fed to the serial port P20 via transistor Q1 which allows the signal swing from 0 V to 5 V .
2) A comparator circuit IC2a via rectifier diode D2 and

Fig. 4 Memory map: Mode 2
smoothing circuit C4,R12. The level at which the output of IC2 a switches is controlled by the setting of RV1, this output is fed to port 1 position 7 (P 17) where it is polled by the software to detect the start and end of a musical note.

Power Supply

The conventional power supply consists of a $9 \mathrm{~V}-0-9 \mathrm{~V}$ transformer T1 with a VA rating capable of providing the required DC current of nearly 250 mA . A capacitor C?

provides smoothing of the full-wave rectified output from diodes D4, D5 which feed a standard 7805 regulator IC9, to provide a regulated 5 V output. Distributed capacitors $\mathrm{C8}$ to C11 provide high frequency and noise rejection on the power supply lines of the PCB.

Software

The operation of the software can be seen from the flowchart of Figure 5. First the reset vector is loaded from addresses 80 FE .80 FF which are ghost addresses for the actual addresses at FFFE, FFFF. Next the serial, parallel and timer ports are initialised.

The software now polls port 1 pin 7 (P17) until the output of comparator IC2a goes high and then proceeds after a short software delay.

The software is designed to ignore the initial transient of a musical note, when the incoming frequency still has not settled to its final value, by storing counts and checking for 5 consecutive similar high bytes, which indicates the conversion of approximately the same input frequency 5 times.

If 5 consecutive similar bytes are not found within the

count table then the programme branches back to read pin P17. Otherwise 4 of these counts are added and averaged to produce a count number equivalent to the frequency of the input musical note. This number is then compared to a lookup table of numbers contained in the EPROM and converted to the equivalent MIDI note data. This number corresponds to the input frequency and is in the range from 0 to 127.

The number is then transferred to the parallel-to-serial port at P24 and is fed to the MIDI output via buffer transistors Q2 and Q3 at 31.25 Kb with the MIDI protocol for a note-on event (see Figure 4). The software defaults to MIDI channel

1 and a velocity byte of 40 h .
Now the software again polls P17 waiting for the musical note to end and then when IC2A goes low, after a short delay, the MIDI note-off data is transmitted to the MIDI out connector, Then the programme jumps back and waits until another note occurs.

Operation

The circuit was designed for voice or any monophonic instrument and because the circuit converts the fundamental frequency so any instruments that contain a lot of harmonics
will not work correctly.
However Ihave used acoustic and electric guitars with the system and the problems associated with getting a good fundamental tone are:

1) Initial transient overshoot.
2) Increase in harmonic content as note decays.
3) Harmonic content depends on how string is plucked.

The first problem is overcome by the programme software. The second can be cured by correct adjustment of preset RV1 for comparator IC2a. The third problem requires damping of the strings by hand or by placing absorbent material against the strings near the bridge of the guitar. Also I found that the best fundamental tone was produced on an
acoustic guitar by playing the middle of a string with my thumb rather than using a plectrum, which produced too many high frequencies.

The frequencies for a guitar range from a low Eat 82.4 Hz to approxiamately 1 KHz for the topmost note depending on the make of guitar. However if a Bass guitar is used then the frequency goes down to 41.2 Hz . However the lower the frequency the longer the conversion time and so the delay becomes discernable with very low frequencies.

I have used a tin-whistle with very good results and other instruments can obviously be used but some experimentation may be required to get a good fundamental tone.

.MAIN PROGRAM.

Hitachl 6301 Structured Cross Assembler Version 3.50 August 1987 Program copyright MicroSol Ltd Dublin

35
?
?
4
8
10
11
12
13
17
31
32
34

```
***********************************
```

% 6
% 6
14 0300
14 0300
831A
831A
18A 0300 3037
18A 0300 3037
191 0302 411C
191 0302 411C
20A 0304 44F8
20A 0304 44F8
2140306491?
2140306491?
22403084069
22403084069
23A 030A 5203
23A 030A 5203
24A 030C 56E4
24A 030C 56E4
25A 030E 5C10
25A 030E 5C10
264 }0310618
264 }0310618
27A 03126757
27A 03126757
28A 0314 607B
28A 0314 607B
29A 0316 73FE
29A 0316 73FE
30A 0318 7AE8
30A 0318 7AE8

**
**
* Table of MIOI notes Cl to C2

```
        * Table of MIOI notes Cl to C2
```



```
        * SOUNO TO MIDI * 42
```

 * SOUNO TO MIDI * 42
 ********************************** 43A O100 8E OOFF
 ********************************** 43A O100 8E OOFF

 ENOROWTABLE equ sb31A
 ENOROWTABLE equ sb31A
 ROHFAELE ftb 13+37
 ROHFAELE ftb 13+37
 fdb s411C
 fdb s411C
 fdb 344F8
 fdb 344F8
 fdb s491?
 fdb s491?
 fdb $4069
 fdb $4069
 fdb $5203
 fdb $5203
 fdb $56E4
 fdb $56E4
 fdb $5C10
 fdb $5C10
 fdb $6189
 fdb $6189
 fab $575%
 fab $575%
 fob $6078
 fob $6078
 fab s/3FE
 fab s/3FE
 fob STAE8
    ```
        fob STAE8
```



```
17
```

17

* 0316 73FE

```
* 0316 73FE
```


Idad fs7f set port. 1 with MSB as i/
stad 10000

| | cird | 50002 | clear port 1 o/ps. |
| :---: | :---: | :---: | :---: |
| readp17 | 1 1ヵд | $\$ 0002$ | read ply ond leave loop w |
| | tstd | | comparator o/p is HIGH |
| | | | if conparator olo |

clrport cirs
stad 80001 clear port?
staa 50008 clear timer status reg
jsr $\$ 8260$ detect note edge

* Delay for contact bounce *

delay \begin{tabular}{ll}

dot \& | tsobB8 delay value |
| :--- |
| dex |
| bne delay |

\end{tabular}- Store 5 sample counts

* *ore 5 saple conts *

RESISTORS

R12,3,4, 13,15
19,21,26,29,30
R5,8,14
R6,7,10
R9,16,20
R11
R12
R17,18,23,24,25
A27,28
R22
R22
RV1

CAPACITOAS

| CAPACITORS | |
| :--- | :--- |
| $C 1$ | 22μ |
| $C 2$ | 1μ |
| $C 3$ | 10μ |
| $C A$ | $1 \mu / 63 V$ |
| $C 5,6$ | $22 F F$ |
| $C 7$ | 1000μ |
| $C 8,9,10,11$ | $100 n$ |

| SEMICONDUCTOAS | |
| :---: | :---: |
| IC1,2 | LM358 |
| 1 C 3 | 74LS74 |
| ICA | 6803 |
| IC5 | 74HCT5 |
| IC6 | 2716 |
| IC7 | 74LS00 |
| 108 | CNY17 |
| 109 | 7805 |
| Q1,2,3,4,5 | 27x300 |
| D1, 2, 3, 4 | 1 N4148 |
| 05,6 | 1 N 4002 |

MISCELLANEOUS

IC HOLDERS $6,20,24,40$ 1OFF
8,14 2OFF
T1 Transtormer 9V-OV-9V.
XTAL1 4 MHz crysal, fuse 1 A, LED swich, din connectors 180° (4 OFF) and suitable enclosure.

TOP QUALITY BNDERS
 TO TREASURE YOUR COLLECTION OF TII

12 copies of your magazine kept in pristine condition in these classic, sturdy binders

Please supply binder/s at only $£ 6.95$ each, including postage \& packing (UK only, Overseas please add $£ 1.50$).
I enclose my cheque M/O tor $£$................. . made payable to | ASP or please debit my Access/Visa

Expiry

Signature

PLEASE FILL IN THE FOLLOWING IN BLOCK CAPITALS:
Name
Address

Post Code

Send this coupon and payment to: ASP ETI Binders Offers, Argus House,
Boundary Way, Hemer Hempstead. Herts HP2 7ST.
You may receive further information which may be of interest to you.
Please allow 28 days for delivery

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers.

BELI \& HOWEL 658 IGmm SOUND PROECTOR HAMEG HZGO COMPONENT TESTER TEKTRONIX 520 521A P V VSCOPES TEKTRONX $520521 A$ PAL VISCOPES
 GOVLD OS33008 50 HH ? TRACE DEL T GOU 453 STMHZ DUAL TRACE DEL T/B TEX 1535 SWH HZ DUAL TRACE DEL T/
SCOPEX ADSX X MMZ DUAL TRACE SCOPEX 4 OX X XIMZZ DUAC TRACE BECKMAN SOD zom in dual Trace DATA PRECISION 5000 WTH 6II PUGG-N AND SB1 DSSK DRIVE UNIT. GOULD OSSODOA AOMHZ2 TRACE OEE T/B HAMEG 2 OO- 5 OWHZ 2 TRACE COMP TESTER HITACHIVC GO15 1OWHZ DIGTAL STORAGE h. . 130a X-Y DISPLYS.

LEIDER LBO-C ALIGMMENT SCOPE TEK 54 AN HOKKHZ SPECT AHAI WTH 5110 MFT O 5 SABM SEITN TIME BASE 2TSABN SBION TME BASE TEETRONIX THON OFF, TOOO LOGIC AMML
 TEK $5558.505 .5051 .539 A$ S114, $515 A$ TEK SUGSSES SERIES PUG-HNS WANOEL GO TERMAN SPMI LEVEL METEA WANOEL GOLTERMAN SPM LEVEL METEA WANOELGOL TERMANW PS SIGMAL GEN MARCONI TF2SO AMFW MOO METEE PRTBLE
 19 RACKS TOU. 31° DEEP
HP JGOA OMU ACOCN OHMS 6 DGGIT XFORMERS SEC $30-30 \mathrm{~V} 2 \mathrm{M}$ UNIV PRTSS C-CORE WHOUSE $1 /$ /HP PEVBE E MCTORS ZOOV 1KRPM CONSTANT VOLTAGE TPANSFS SOVN.ZXV CONSTANT VOLTAGE PAASFS I SOWA-ZNY YARCON1 TF23I DISN FFACTO
SOC-B
MARON TFZOOO FW MM MODULATON METER MARCON TFZSOO FWAM MODLLAION METER
TETTRONIX ZOH PAOG DATACOWUS TESTEF

ESS BEATAN ZOSA-VSA O.SKV 5mA
FTO EATS HP

 5249 COUNUNICTHONS RECEVERS VARIOUS ZOW UY. SOURCE MTH TMEF
19 REED HORN SPEAKERS
DAG PERISCOPES MLITARY NO. 43 MI 3
24.4 LCR MARCON TF13130. 15

EMS LCA MLACON TF2701 INSTO
E9 LCA MARCON TFMCB
L95 LCA COMPONENT COMPARATOR AVO CZZST/5 WAWE KERR B32I OW INO. SRIDGE

E22S SCA STM GIBSON GIRL EMEAGENCY YMTTER

From E49 LEVEL TMSB MICRO VMEEE 3 UM?
FTOM E10 TUEBTUSB TUNER UNTTS BRUNO NEW
โIMO OERTLING VZO SINGLE PAN BALANCES 2OOSM
CIGG MVLYTICAL BALANCES WTH WEIGHTS
E190 UCI rees SOWA SCANHER. SURFACE UNIT
E24 UPA CAVDERM CDG P.TH. TESTER
[115 WUACON MARINQE KESTRE. J
DECADERCNIBOXES KAYE DEE PNEUMO UV EXP UNIT 300686OMm
 D2 COUBPATION STANOAROS CNM. POA COSSOR CAMGZ3A MAF NUVICOW RF SIG GEN £175 COSSOR CAMST19 HSNOR AUOLO SIG GEN
FIOM 199 TOPN $91007 \cdot 117$ 5KYVA $120220-1202401$ isO
 E\$8 HP GZA E28 SIG GENS LST FEW

LIST AVALLABLE, BUT TODC: OF UNLISTED BARGAIMS FOR CALLERS ALL PPICES EXC. Of PGP ANO VAT
QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED.
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS ' 9.5 .30 MON-SAT. TEL 081-542 6383

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by Integrating sophisticated graphical editors and CAM outputs at an affordable price.

NEW VERSION

In the new version V 2.23 , full consideration has been given to allowing designers to continue using their existing schematic capture packages as a front end to BoardMaker. Even powerful facilities such as Top Down Modiflcation, Component renumber and Back Annotation have been accomodated to provide overall design integrity within the links between your schematic package and BoardMaker.

Equally, powerful features are included to ensure that users who do not have schematic capture software can take full advantage BoardMaker.

$£ 295$

V2.23 of BoardMaker is still a remarkable £295.00 and includes 3 months free software updates.

NEW AUTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you might route it youself manually.

This ability allows you to autoroute mixed technology designs (SMD, analogue, digltal, power switching etc) in ONE PASS while respecting ALL design rules.

G月IDLESS ROUTING

No worrying about whether tracks will fit between pins. If the tracks widths and clearances allow, BoardRouter will automatically place 1,2 or even 3 tracks between pins.

FULLY RE-ENTRANT

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes plabced, interrupt it, manually modify the layout and resume. autorouting.

Full analogue, digital and SM support - ground and power planes - 45 degree, arced and any angle tracks with full net-based Design Rule

HIGHLIGHTS

- Net list input from OrCAD, Schema, etc
- Top down modification
- Forward and back annotation
- Component renumber
- Simultaneously routes up to eight layers
- Fully re-entrant gridless autorouting
- Powerful component placement tools
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Full support and update service
- Reports generator
- PostScript output
- SMD support
- Effortess manual routing

8495

BoardMaker and BoardRouter are priced at $\$ 295.00$ each. As a special introductory offer, they can be bought together for only $£ 495.00$ which puts sophisticated PCB CAD software within the reach of all engineers. This price includes 3 months free software updates and full telephone technical support.

Don't just take our word for it. Call us today for a FREE Evaluation Pack and judge it for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223277747

b)

| | PIN 1 | PIN2 | PIN3 |
| ---: | :---: | :---: | :---: |
| \mathbf{x} | 0 | 0 | 1 |
| \mathbf{x} | 0 | 1 | 1 |
| WATER | 1 | 0 | 1 |
| NO WATER | 1 | 1 | 0 |

FIRST TWO NOT VALID
Fig. 2 Truth table of NAND gate

Fig. 1 Detecting Action with a NAND gate
Note:C1, D1 and D2 have been removed for simplicity as they do not affect the action of the loglc.

You know how it is - it's late, you load the dishwasher or washing machine and head off to bed thinking that everything's hunky dory. However, instead of waking up to clean dishes and clothes, you find yourself in need of flippers and a snorkel -one of these appliances of science has overfilled and flooded the kitchen floor causing serious damage to anything floor standing. It happened in our house once and I vowed that if it ever happened again I wanted to know about it from the onset, not hours later. Thus the idea for Puddletec was conceived. \AA simple device to detect water where water shouldn't be.

Because of the constant threat of water cascading from a washing machine or dishwasher the unit had to be battery driven so as to be completely safe, also it had to be kept on 24 hours a day. If it was a gadget that had to be got out and switched on each time an appliance was used, the novelty would soon wear off and you'd be back to square one. Puddletec had to be small and unobtrusive -stepping over it would be impracticable in the average kitchen. Another important consideration was the output - it had to be instantly identifiable as the Puddletec and not the buzzer from the oven timer or the microwave.

Hopefully, Puddletec fulfils these conditions - ours has worked well for nearly 5 years now. The battery, a PP3 longlife cell, is changed annually at the same time as the one in the smoke alarm The principle that Puddletec works on is that water has a relatively low resistance and this characteristic can be used to operate an electronic switch built around a gate of a CMOS integrated circuit. The great advantage of CMOS as a range of ICs is that they draw almost no current
in operation so long as they are not used to sink or source power to external devices.

The Output Stage

This consists of two sets of out of phase emitter followers with the output sounder connected between them. The emitter followers are basically a PNP and an NPN transistor with their bases connected together and their emitters connected together. In this mode and with their collectors connected to the supply they form a current amplifier. Q1 and Q3 are connected to the output of the AND gate and follow the output of this gate. The last gate of the IC is used as an inverter and simply outputs a low on pin 11 for a high on pins 12 and 13 and outputs a high for a low on pins 12 and 13 . The output pin 11 is connected to another pair of emitter followers. This means that the emitters of Q1 and Q3 are always out of phase with the emitters of Q2 and Q4. This ensures the voltage swing across the sounder, a piezo sounder, is effectively doubled - increasing the volume from Puddletec when sounding. No other type of sounder i.e. buzzer etc can be used as the potential across it changes when sounding. When there is no sound i.e. dry conditions, it must have almost infinte resistance or there will be a constant load across the battery reducing its life to only a few hours and hence be totally impracticable.

The Box

A small plastic box approx $65 \mathrm{~mm} \times 115 \mathrm{~mm} \times 30 \mathrm{~mm}$ was chosen hecause, when in position, it occupies only a footprint of $30 \mathrm{~mm} \times 115 \mathrm{~mm}$ which can tuck under the lip at the base

HOW IT WORKS

The electronic switch is built around one of the four NAND gates in a 4093 (Quadnuple 2 -inout NAND Schmitt trigger) IC. The Schmitt action of the IC has several uses, for example voltages between nommal (High) and normal (Low) can be apolied to the inout of IC without causing damage and the IC will still swith its output to a true high or low. IC1 pin 1 is tied to the rail by R3 a 1 M resistor. The other input, pin 2 , is tied to the rail by R1 a 10 M as well as being taken through a 10k R2 to one of the sensor terminals. Diodes D1 and D2 prevent any external static voltages trom damaging the IC and C1 damps out any RF signals picked up. In normal condirions, the switch has two highs applied to the input causing lis output pin 3 to be low. If however water is detected by touching the two sensors, one going to pin 2 via R2 the other to OV of the battery, the effective resistance between pin 2 and $O \mathrm{~V}$ will reduce to well below 1 M . This is more than enough to be seen as a low (below 40\% rail) and hence the output pin 3 will go high through the NAND action of the gate. (See Truth Table of NAND Gate)

In order to be instantly identifiable, the output is a series of bleeps. Each bleep is longer than the gap between bleeps this has two advantages: (1) it is more distinctive than a constant bleep and (2) it saves power.

The series of bleeps are generated by two oscillators, one high frequency and variable for maximum volume (which is the resonant frequency of the sounder). The other oscillator acts as a switch gating the first oscillator on and off through the discrete AND gate D4, D5 and R7.

Oscillator 1 (the high frequency variable one).
This is built around gate c pins $8-9$ in and pin 10 out. The timing elements of this oscillator are C 2 and the combination of R4 and RVI. When pin 8 is made high by the detection of water the oscillator is enabled and will oscillate at a frequency depending upon the setting of RV1. It will oscillate all the time pin 8 is high and water is detected. Oscillator 2 (the pulsing one).
This is buill around gate b pins $5-6$ in and pin 4 out. This is basically the same type of circuit as oscillator 1 but runs a lot slower as C 3 is much larger than C 2 . The resistive element of the oscillator is slightly different as only R5 is used to charge C3 but R6 is used in parallel with R5 to discharge C3 via the action of D3, meaning the on and off time of the output of the oscillator is not the same: It is this uneven mark to space relationship which sounds the bleep for longer than the gap between bleeps.

The two oscillators are gated together by a discrete AND gate made up from D4, D5 and R7. When pin 4 of the slow oscillator is low the output of the discrete AND gate is low and prevents the output of the fast oscillator, pin 10, trom getting to the output stage. When pin 4 goes high then the fast oscillator is allowed through to the output stage.
of the washing machine/dishwasher - hardly protruding at all.

Once the components have been soldered it would be wise to melt solder onto the trackwork-assuming a home-made board. This increases the long term reliability as dampness, could easily corrode the board. The circuit should be checked again to ensure no shorts have been introduced i.e. blobs of solder linking parallel tracks. The track and solder connections should then be cleaned with a solvent cleaner to remove surface flux etc. No switch is included because in normal use the battery will last well over a year, although changing it annually is a wise move. Puddletec draws around $10 \mu \mathrm{~A}$ not sounding and 2.5 mA sounding.

The box can be drilled as shown in the diagram. The sensors are Maplin triangular ones - if you are not able to get hold of these then ordinary metal bolts will do (brass preferably, to prevent rusting). Care must be taken that the sensors do not touch the floor as this will increase the

Fig. 3 Complete circuit diagram of Puddletec
likelihood of them scratching it. They should also be held just off the floor to stop any condensation that may be present from setting Puddietec off. The Maplin sensors, if fitted, will have to have their fixing bolts cut to prevent them shorting out with the circuit board when it is fitted.

Before fitting the circuit board it should be tested. Care

Fig. 4 Component overlay using a PCB
back. These hold the board about 5 mm away from the back of the box. The board also helps hold the battery in place. When complete, hold the battery in place ánd check nothing moves or is loose and that no bits and pieces are left in the bottom of the box by turning it upside down. When you're happy, the lid can be bolted down.

When the kitchen floor needs a wash, simply pick Puddletec up and put it back when it's done. A damp floor as against a
should be taken when handling the board as even skin resistance on the input stage may set Puddletec off. The circuit should work once the battery is connected. To test it, simply touch both of the sensors; this should start the sounder which will pulse. Adjusting RVI will change the frequency of the sounder (not the pulsing rate) and it should be set to the loudest sound - this will be at, or nearest to the resonant frequency of the piezo. Releasing the sensors should stop the sound.

Holes in the lid of the box are necessary to let the sound out and these can be drilled in a pattern of small holes rather than one big one. A spare piece of Veroboard can be used as a template and a symetrical pattern can be made using the 0.1 " grid of the Veroboard and drilled with a 1 mm drill. This can be taped on the box lid and held down securely while the

Fig. 5 Case construction
holes are drilled through again, this time into the lid. Their position must be directly above the sounder, as shown in the diagram. The template can then be removed and the holes in the lid opened out to the desired size (3 mm is recommended). When everything is working, the board is mounted off the bottom of the box by a couple of nuts on the bolts from the
flooded one will not upset the device as there should be a sufficient gap between the sensors and the floor.

Other uses have been found for Puddletec such as in DIY plumbing Jobs. When repairing an overflowing tank, placing Puddletec underneath will soon let you know how good a plumber you are.

Possible Modifications

The input sensitivity can be reduced by reducing the 10 M (R1) to any value down to 1 M . This can be experimented with to suit the application. The pulsing rate can be decreased by increasing the value of C3 or increased by reducing the value of C 3 .

| PARTS LIST | |
| :---: | :---: |
| RESISTORS | |
| 1/4w 5% | |
| R1 1 | 10 M |
| R2 1 | 10k |
| R3 1 | 1 M |
| R4 1 | 100k |
| R5 1 | 150k |
| A6 4 | 47k |
| R7 1 | 18k |
| RV1 1 | 10M sub min verica |
| CAPACITORS | |
| C1,2 | 10 n |
| C3 4 | 407 tant |
| C4 1 | 10u tant |
| SEMICONDUCTORS | |
| ICI | 4093 |
| Q1,2 | BC237 or 8 C 17 |
| Q3,4 | BC307 or 8C557 |
| 01,2,3,4 | 3,4 1N4148 |
| MISCELLANEOUS | |
| Plastic box from ElectromailhS, part no. 508914. Dimensions 112 | |
| $\times 62 \times 31 \mathrm{~mm}$ or larger (smallest practical box). Slightly larger $129 \times$ | $64 \times 42 \mathrm{~mm}$ - Maplin, part no. YU 53H. |
| Battery: Duracell or other long life alkaline type PP3. Battery connector: PP3, Maplin parn no. HF28F. Piezo soundertransducer | |
| (not buzzer): Maplin part no. FM59P. | |
| IC holder î required: Maplin part no. BLI8U. DIL 10 way switch made out of $8+2$ way: Maplin part nos. QY70M (8 way) and JHO9K (2 way). | |
| Two touc | ouch pads: Maplin par |

Peerless CC FORCE

Wilmslow Audio's NEW range of speaker kits from Peerless.

This new range of four kits utilise
CC technology drive units for optimum performance.

The klt contains all the cabinet components (accurately machined from smooth MDF for easy assembly). Pictured here the Force 6 , a large floor standing design.

| Dimensions: $800 \times 275 \times 335 \mathrm{~mm}$ | | |
| :---: | :---: | :---: |
| Response:$39 \mathrm{HZ}-20 \mathrm{KHZ}$ | | |
| AMP Suitability: 30-120w | | |
| Impedence: 8 ohms | | |
| Price | | Carr/ins |
| Force 2 | 8188 | 815 pr. |
| Farce 4 | £215 | ${ }_{215} \mathrm{pr}_{8}$ |
| Force 6 | C235 | 2180\% |
| Force 8 | £300 | $\Sigma 18 \mathrm{pr}$. |

All kits are available in Plus and Basic forms.

Wilmslow \checkmark Audio 4

DIY Speaker catalogue $\mathrm{S2} .00$ post free (expon £a.50)
Open Tuesday to Saturday
Open Tuesday lo Saturday

Dept. ETI
Wellington Close Parkgate Trading Estate Knutsford, Cheshire WA16 8DX Tel: (0565) 650605 Fax: (0565) 650080
Telephone credit card orders wetcome \square

WE MAVE THE WIDEST CHOICE OF USED OSCILOSCOPES IN TKE COUNTKY

TEKTROWIX 7000 range Plug-in Oscilloscopes

 743 N min 7 A is \& 7850 Dua TEITROMIX 2306 Dun-Trice locimb Ontay Suno
 HITACHI YTOSOF Dual Trace 100 MHz Dual To mim 4 Channel Mose.
TEKTHONIX

TEXTHON1X \&Ts Duw Trace 20.iniz Dovary Swe.... ICSS
TEKTROMIX 465 Duau Trace 100 WHz Dolay Smen

TETKRONLX 2513 Dual Trace IOONHZ
TEKTRONIX 22
TEKTROMIX 2
Magnilication

Magniticatom GOULO OS3s00 Dun Troce 60 MH Z Devay Smeen GOULD OSIT00 Dual-Trace 30 MHL GOULD OS300 Duad- Fracte 20 MHz
HAMEG 2053 Dual Trace 2014 Hz Digital Siorag
 THLS IS JUST A SAMPLE - MWNY OTHER
SYNTHESIZERVFUNCTION GENERATOA
D.TMHZ IEEE-AB8 AS Mew 1500

 MARCOWI TF2015 AMFM $10-52$ OWHY Sig Gen MARCONI TF2015 Ewn Synchppnite TF2771 MAACOMI TF2016 AMFM 101H2-120Mn wim TF2173 12300 MARCONI SANDEMS Si Sources Vanous mod $500 \mathrm{MHz}+5 \mathrm{GHz}$

RACAL instinumbentation

STOVE 1 D and Siore 70 . KEITMLET 224 Program

 GOULD BIOMATIO Pecoroer Test Sel MP PULSE GENEAATOR TVop It Anmy her
 FARMELU SSG520 SYnthesisec Sig Gen 10.52014
FARNELI TSS50 TH FARNELL TTSS20 Transminer Tesi Sel Conosting
AF Couniec RF af Counioc RF Mor Moter AF Power Meler AF Vottmeles
Af Distionion Meter AF Symitheniser. SOLD as a pair lor OMLY.

$$
\begin{aligned}
& \text { AVO AC/OC } \\
& \text { AW215L/2.. }
\end{aligned}
$$

FARMELL PSU TVSTO ML2 TOV SM 30V 012
 FARMELL PSU LSOE $0.30 \mathrm{~V}, 0.5 A$ Mos Mewed. TELEUIPGUT CTI CuME TITCE MAACOWI TF2T00 Unversal LCR Brioge Bantery B01年 ……........

AVO MULTIMETERS
\qquad

 MAME OSCiLIOSCOPE Hizou 7 Duu Trice zoMmz
 Digital Slorige .
Al other moders avaiabie-

 METEOR 100 FREOUEMCY COUN
Used Equipmont - Guaranteod. Monuals supplied if possible
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability CARAIAGE all units $£ 16$. VAT to be added to total of Goods and Carriage.

Tel: (0734) 268941 Fax (0734) 351696 Callers welcome 9 am-5.30pm Mon-Fri (until 8 pm Thurs).

SURVEILLANCE

A sMall sample of our rance

ROOM TRANSMITTER RT1 An extremoly sonsitive miniature transmiter with long bettery lifo. Dimansions: $20 \times 20 \mathrm{~mm}$

MAINS TRANSMITTER MT4 Can be connectod micie any equipmont that is mains powered. Dimensions $35 \times 20 \mathrm{~mm}$
TELEPHONE TRANSNITTER TTS Small enough to conceal within a telephone. Will transmit both sides of a conversation (series connection)
Dimensions: $10 \times 20 \mathrm{~mm}$
TELEPHONE TRANSMITTER TTP Simila to TTS will monitor all lalaphones on the line (parallal connection) Dimensions: $15 \times 27 \mathrm{~mm}$
TELEPHONE SOCKET TRANSMITTER TSTS Reoplace your telephone socket with this one within which a transmitior has been concoaibd.
ROOM AND TELEPHONE TRANSMITER RTT
Oper ates as a room transmitier, then switches to
Dimensions ${ }^{\circ} 30 \times 25 \mathrm{~mm}$
AUTOMATIC TELEPHONE RECORDER
SWITCH TRS2 Record telephone conversations wih
this interlace unit and your own tape recorder.
Dimensions: $36 \times 50 \mathrm{~mm}$
AUTOMATIC TELEPHONE RECORDER ATRI
Adapt the tape recorder inctuded to record felephone cals automat ically.
TELEPHONE TAP ALERT TTAI Visuad warning of any invasions of privacy on your telephone line.
-
RF DETECTOR RFD1 Highly senstive hand-held delector, Rangen 10 Mhz and 600 Mhz . Siert operation Dimensions: $70 \times 50 \mathrm{~mm}$
CAMERA DETECTOR CDB Dotects hidden video cameras (even miniature CCO models).
Dimensions: $63 \times 38 \mathrm{~mm}$
RECORDING BRIEFCASE RBCI Build your own discrete recording brietcase

SHOTGUN MICROPMONE AMPUFIER SMA ldeal tor surveilance. The amolifier will pick up sounds from a long distance.

SIGNALLING TRANSMITTER SIGT Sends a contmual audio pulsa. Can be integrated into aiarm. traching or warning systoms Dimensions: $20 \times 50 \mathrm{~mm}$
REMOTE SWITCHING SYSTEM RSS
Transmitterlrecoiver set. Applications include cas
security and remote control of household applianoes Dimensions
Singis channel transmitter; $45 \times 35 \times 12 \mathrm{~mm}$, Reoever:-
Doubio channol transmiter, $56 \times 35 \times 10 \mathrm{~mm}$. Recoiver $50 \times 60 \times 25 \mathrm{~mm}$

TELEPHONE AMPUFIER TA5 Connected directly to the telephone, this unil will amplity both sides of a delephone call. Dimensions: $25 \times 52 \mathrm{~mm}$
PROFESSIONAL SOUND TO LGMT UNTT SK 72 Custom buill for disco or home use. Audio signal divided into bass, mid and treble bands, wilh interna nicruphone and spoligm optoon
Dimensions $210 \times 45 \mathrm{~mm}$
1.5-12V POWER SUPPLY PSU Versatilo low cost unit with variable or fixed vollage control (specily on ordering). Regulation better than 1\%. Dimensions $60 \times 43 \mathrm{~mm}$
MICRO LIVE WIRE DETECTOR LWO Winout actual connection will warn of the presence of $A C$ mains
live Dimensions: $40 \times 25 \mathrm{~mm}$

MICRO METAL DETECTOR MAD Dmed the presence of lerrous and various non-ferrous metals.

Single channel 39.00
Double channel 49.00

| 10.95 | 16.95 | 19.95 |
| :--- | :--- | :--- |
| 21.95 | 32.49 | 44.95 |
| 9.95 | 15.95 | |
| 9.95 | 16.95 | \ldots |
| 9.95 | 16.95 | |

Please add 2.00 p p to all orders and 17.5% VAT on all U.K. orders.

For full catalogue please send two 1st class stamps or 2 lifc's

172 Caledonian Road London N1 OSG
Dope ET CANAL BRIDGE AUDIO
$\boxed{\square}$ 071-837 4423

Feature Index 1992

| | MONTH | PAGE | | MONTH | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Basic Multi-meter circuits | November | 40 | Test-gear basics | February | 48 |
| Bootstrapping | February | 30 | Attenuation circuits Part 2 | March | 28 |
| Comets | February | 24 | Part 3 | May | 26 |
| Coping with a paradox | | | Introduction to Audio | | |
| -Technological trends | September | 32 | mixers Part 1 | January | 24 |
| Coping with radiation | October | 24 | Part 2 | February | 16 |
| Digital Audio Broadcasting | | | Intuitive Electronics Part 1 | February | 48 |
| Part 1 | March | 48 | Part 2 | March | 56 |
| Part 2 | April | 48 | Keyboards, A look | | |
| Differential Calculus | November | 54 | at QWERTY | April | 35 |
| Digital TV Part 1 | May | 50 | Low noise systems | July | 42 |
| Part 2 | June | 58 | Maximum power transfer | July | 19 |
| Part 3 | August | 18 | Natural oscillations | July | 53 |
| Part 4 | September | 40 | Nano-technology | November | 12 |
| Part 5 | October | 54 | Optical Connectivity, | | |
| Faraday - Thinker and | | | New concepts in | July | 16 |
| experimeter | January | 47 | Phase locked loop, The | June | 32 |
| Golden Ratio, The | March | 32 | Solar powered Tech Tips | April | 42 |
| Genetic Algorithms | May | 46 | Solar secrets | August | 34 |
| Greening of the car, The | December | 54 | Solar UV Detector design | June | 14 |
| High energy discharge | | | Ten-year Capacitor, The | November | 15 |
| systems | March | 24 | Thevenin and Star-Delta | | |
| How to make PCBs | | | transforms | February | 40 |
| at Home Part 2 | January | 20 | Ulitra violet radiation | March | 35 |
| Instrumentation and | | | Waveguides, Why | September | 20 |

Three Great

Offers
for two years to for one year and

you can receive up to 3 copies at no extra cost to you.
receive up to 7 extra copies at no further cost to you.
This means you save money, freeze the cover price and continue to enjoy reading your favourite magazine for much longer.

HOW MANY EXTRA COPIES WILL YOU ENJOY?

Offer

Explore a new hobby area with our compliments. Claim one free copy of another magazine when you place an order for offer 1 or 2

| Magazine
 frequency | Your extra issues with
 two year subscription | Your extra issues with one
 year subscription |
| :--- | :--- | :--- |
| MONTHLY
 12 per year | 24 issues plus 5 free | 12 issues plus 2 free |
| ALTERNATE MONTHLY
 6 per year | 12 issues plus 3 free | 6 issues plus 1 free |
| TWICE MONTHLY
 24 PER YEAR | 48 issues plus 7 free | 24 issues plus 3 free |

NOW TURN THE PAGE FOR DETAILS OF HOW TO CLAIM YOUR FREE COPIES AND SAVE MONEY

993

Column One
Two Year Subscription

| MOWTHLY | U.K. | ENEON | ovilicers | |
| :---: | :---: | :---: | :---: | :---: |
| Archimedes World | 570.80 | ¢90.60 | 597.40 | \$196 |
| Aseromodelier | £46 80 | E59.60 | £63.80 | \$128 |
| Aquarium | £ 42.00 | £63.00 | £69.00 | \$138 |
| Cifizens Band | ¢38.40 | £48 60 | £52.00 | \$104 |
| Clacks | 557.60 | $\underline{5} 2.20$ | \&7.00 | \$154 |
| E.T.I. | ع46.80 | $\underline{59.00}$ | £62.00 | \$124 |
| Military Modelling | ¢ 42.00 | E54.40 | £58.60 | \$118 |
| Model Boots | $£ 39.60$ | £55.80 | £61.20 | \$124 |
| Madel Railways | $£ 38.40$ | £50.00 | E54.00 | \$108 |
| Popular Crafts | ¢12.00 | £60.00 | £66.00 | \$132 |
| R/C Model Cars | ¢38.40 | C56. 20 | ¢62.20 | \$126 |
| RCM\&E | ¢ 40.80 | ¢57.00 | ¢63.00 | \$126 |
| Rodio Modeller | ¢38.40 | E51.80 | C56.20 | \$114 |
| Hom Rodio Todoy | ¢40.80 | £53.60 | ¢57.80 | \$116 |
| Scale Models int | $¢ 38.40$ | £50. 20 | £54.20 | \$110 |
| Steom Classic | ¢ 12.00 | ¢56.20 | ¢60 80 | \$122 |
| Woodworker | 142.00 | £67.00 | ¢75.40 | \$152 |

Column Two One Year Subscription

| UX. | Hiom | Ovisurs | Ovisus |
| :---: | :---: | :---: | :---: |
| £35. 10 | C45.30 | ¢4870 | \$98 |
| £23.40 | ¢29.80 | £31 90 | \$64 |
| 821.00 | £31.50 | £34 50 | \$69 |
| $£ 19.20$ | 224.30 | £26.00 | \$52 |
| £28.80 | E36. 10 | £38.50 | 57 |
| £23.40 | E29 50 | ¢31.00 | $\$ 6$ |
| £21.00 | £27.20 | £29.30 | \$59 |
| £19.80 | $\underline{27.90}$ | ¢30.60 | \$62 |
| E19,20 | E25.00 | $\underline{27.00}$ | \$54 |
| £21.00 | E30.00 | £33.00 | \$66 |
| ع19 20 | c28.10 | ع31.10. | \$63 |
| £20.40 | ¢28 50 | £31.50 | 563 |
| £19.20 | E25.90 | ¢28.10 | \$57 |
| £20 40 | 226.80 | £28.90 | \$58 |
| ¢19. 20 | c25. 10 | E27.10 | \$55 |
| ¢21.00 | £28.10 | ¢30 40 | \$61 |
| £21.00 | E33.50 | £37.70 | \$76 |

ALTERNATE MONTMLY

| Silent Flight | ¢30.00 | £36.60 | ¢38.60 | \$78 | \$15.00 | ¢18.30 | £19.30 | \$39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R/C Boot Modefler | 119.20 | £25.20 | $\underline{127.20}$ | \$56 | $¢ 9.60$ | £12.60 | £13.60 | \$28 |
| R/C Scale Aircralt | $\Sigma 27.00$ | £35.40 | ¢38.20 | \$78 | £13.50 | $\underline{17.70}$ | £19.10 | \$39 |
| Practical Wargamer | $¢ 23.40$ | £30.20 | £ 32.40 | \$66 | ¢11.70 | \$15.10 | £16.20 | \$33 |
| Model Eng Workshoo | £30.00 | ع38.60 | [41.40 | \$84 | ¢15.00 | £19 30 | $£ 20.70$ | \$42 |
| Tomiyo | £21.00 | £29.00 | £32.00 | \$64 | ¢10.50 | £14.50 | £16.00 | \$32 |

TWICE MONTMLY

| Madel Engineer (48) | C72.00 | $£ 97.80$ | $£ 106.60$ | $\$ 214$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\$ 36.00$ | $£ 48.90$ | $£ 53.30$ | $\$ 107$ |
| :---: | :---: | :---: | :---: | :---: |

Column 3
Explore a New Hobby Free Copy
Archimedes World

Aeromodeller

Aquarium
Citizens Band
Clocks
Military Modelling
Model Boats
Model Railways
Popular Crafts
R/C Model Cars
RCM\&
Radio Modeller
Ham Radio Today
Scale Models Int
Sream Classic
Woodworker
Silent Flight
R/C Boat Modeller
R/C Scele Aircroft
Practical Wargamer
Model Engineers' Workshop
Tamiya
Model Engineer

THE CHOICE IS YOURS

Only those magazine tithes listed in column 3 are available for the free copy promotion.

Please cut out page and return to Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST.

Please note from time to time you may receive information about offers and services which may be of particular interest to you.
-

Feature Index 1982

Basic Multi-meter circuits Bootstrapping
Comets
Coping with a paradox
-Technological trends
Coping with radiation
Digital Audio Broadcasting

| | Part 1 |
| :--- | :--- |
| Part 2 | |
| Differential | Calculus |
| Digital TV | Part 1 |
| | Part 2 |
| | Part 3 |
| Part 4 | |
| Part 5 | |

Faraday - Thinker and experimeter
Golden Ratio, The
Genetic Algorithms Greening of the car, The
High energy discharge systems
How to make PCBs at Home Part 2 Instrumentation and

| MONTH | PAGE |
| :--- | ---: |
| November | 40 |
| February | 30 |
| February | 24 |
| September | 32 |
| October | 24 |
| | |
| March | 48 |
| April | 48 |
| November | 54 |
| May | 50 |
| June | 58 |
| August | 18 |
| September | 40 |
| October | 54 |
| | |
| January | 47 |
| March | 32 |
| May | 46 |
| Decernber | 54 |
| | |
| March | 24 |
| January | 20 |

Test-gear basics
 Attenuation circults Part 2

Part 3
Introduction to Audio
mixers Part 1
Part 2
Intuitive Electronics Part 1
Part 2
Keyboards, A look at QWERTY
Low noise systems Maximum power transfer Natural oscillations Nano-technology Optical Connectivity, New concepts in Phase locked loop, The Solar powered Tech Tips Solar secrets Solar UV Detector design Ten-year Capacitor, The
24 Thevenin and Star-Delta transforms Ultra violet radlation
Waveguldes, Why

| MONTH | PAGE |
| :--- | ---: |
| February | 48 |
| March | 28 |
| May | 26 |
| | |
| January | 24 |
| February | 16 |
| February | 48 |
| March | 56 |
| | |
| April | 35 |
| July | 42 |
| July | 19 |
| July | 53 |
| November | 12 |
| | |
| July | 16 |
| June | 32 |
| April | 42 |
| August | 34 |
| June | 14 |
| November | 15 |
| | |
| February | 40 |
| March | 35 |
| September | 20 |

ETi has been published for over 20 years and in this time a great many interesting features and valuable profects have graced it's pages. Although back numbers are available for only the past 12 month's issues we can supply photo copies of any individual article article ever published in ETI.
Photocoples cost $£ 2.00$ per article regardless of their length. Please note that projects published over several issues must be ordered as a series of individual articles, each for $£ 2.00$
PCB foil pattems (where published) and any errata are included with all photocopies as applicable.

Please supply photocopies of the following articles from ETI (Complete in BLOCK CAPITALS):

Month \qquad Year \qquad Page (if known)
Title.
\qquad
Month \qquad Page (if known)
Title \qquad
Month \qquad Year \qquad Page (if known)

Title
I enclose a cheque/postal order made out to ASP Ltd. to the value of £2.00 per photocopy ordered.
Total remittance $£$. \qquad Date

Name \qquad
\qquad

Postcode
Send the completed form and your remittance to:
ETI Photocopy Service, Argus House, Boundary Way, Hemel Hempstead, Hertfordshire, HP2 7ST

DiscoAmigig
 Marcus Pihl will show you how to impress your friends with a computer controlled lightshow.

Lightshow systems for the home are not easy to find. Especially when everyone should be able to afford it. With this project you can control two rotating lights, one stroboscope and four spotlights. But it is easy to rebuild it for your own needs. If you synchronize your favourite music to the system and teach your computer "what to do", it can replay the recorded sequence, by using a listed program.

To begin with, there are two separate inter-faces-one for the motors and one for light selecting. What both PCB's have in common is that they are totally isolated from extemal voltages that might damage your computer if something should go wrong. That is easily done with some optoswitches. Let's take a look at the interface for the stepmotors.

As the databus should not be connected directly to ground through the LED in the optoswitch, an extra transistor and resistor is coupled to this LED. Now, the maximum current through each databit is 0.43 mA and so your output buffer in your computer is safe. This transistor is also used as an inverter. When the computer is tumed on all databits go 'high'l. If we had used the transistor without inverting, the outputs would be short-circuited, because all LED's in the optoswitches would light and the current would pass 'straight down',(see schematics) instead of passing through each coil in the motor.

When we look at the other side of the optoswitch there is a new voltage. No connection at all with the computerside, not even ground. That's the point of using optoswitches.

Fig. 1 Block diagram of light system

HOW IT WORKS.

To begin with the stepmotor interface, uses all eight bits in the dalabus - four for each motor. To understand how to run these motors we'll take a look at a simple diagram:

(1 tum is normally about 200 steps)
These pulses will move the axis in the motor one step with hallphase exciation. But a normal stepmotor only moves around 1.8 degrees per step, so about 200 pulses (with eight polarization
changes) has to be made to rotate the motor 360 degrees. To reverse the motor just send the pulses backwards, beginning with 8 and ending with 1 , and restart at 8 again to continue. To stop the motorised lights there are two ways. The first way is 10 'park' the motor so it hangs down. To do this in the correct way, the motor should be moved straight down before cutting off the power from both coils. But if we stop and send new pulses, the motor will stay in position and it will hang until we continue to send new pulses. If we cut off the power, the lightunit will fall down to 'start position', a less than protessional approach.

If the LED in OPT1 is active while OPT2's LED is innactive the potential difference between L 1a and L 1 b is positive. If we change the action round in the opto-isolators the voltage is reversed. If both LED's should be high, the external voltage would be short circuited. If neither are alight, no power exists in L1, and the motor hangs free. If we now program our computer to send the sequence to the optoswitches, the motor will move as we want.

Fig. 3 Component overlay for Light Selector Card

Light-selector interface

This part of the project uses the same connector as the stepmotor interface does. The three extra status signals from the connector $(11,12,13)$ is connected to a BCD to decimal decoder. The input D is earthed to ground, because we're running out of control signals. It was felt that seven different lights should be enough. From each output of the 74LS42 a resistor is coupled to a driver transistor for extra current drive. The transistor is also used as an inverter, similarly to the stepmotor interface transistors.

From the output of the optoswitches you have a choice to connect whatever you want. Firstly there are the two lightbulb switches being turned on and off by an power transistor. Then there is a stroboscope output which uses a relay to activate the flash. The stroboscope you connect it to must have an output for external trigger. This should be a shortcircuit to have the stroboscope flashed. Otherwise, use a
spotlight-switch to turn the power on and off.
The spotlight switch uses another method to control the light. The optoswitch uses a triac to switch the bigger power triac which may switch up to 8A. In that case, the triac must be cooled. I use normal spotlights which is enough for my use. CONTINUTED NBXT MCDNTII

PARTS LIST

RESISTORS
R1-R8
R40-R46 10k
R9-R16 330
R33-R39 330
R17-R32 1k
R47-R49 2k
R50-R53 4k7

CAPACITORS
Cl $100 \mathrm{~N} / 16 \mathrm{~V}$

SEMICONDUCTORS

Q1-8 BC546B

| Q25-31 | BC546B |
| :--- | :--- |
| O9-24 | BC337-25 |
| Q32-34 | BD683 |
| TR1-4 | TIC225D |
| OPT 1-11 | PC715 |
| OPT12-15 | MOC3021 |
| D1-17 | IN4003 |
| IC1 74LS42 | |

MISCELLANEOUS

RLY1Relay. 6V 500V, 0.5A MZP A001 4205
K1 25 -pin DSUB male
Case to K1
Suitable connectors for outputs.
13way cable.
Plastic case to môunt the card in. (With cooling)

Self-arming Anti-theft Device for Cars

This circuit has been fitted in my car for a number of years. Originally designed as a self arming antitheft device, the unit will also provide some protection against hi-jack, which has become a mode of operation for some theives.

In operation (Without the hidden switch SWI pushed).
When the ignition circuit is energised Cl charges via R1 and the relay, causing it to energise and latch via contacts 1 and R2. Other relay contacts break the supply to the cars ignition circuit.

When the ignition circuit is energised with switch SW1 pushed, Cl is charged via RI within a short time, and the relay now cannot energise.

If the anti-theft device is accidently set, unsetting is achieved by powering down the ignition, de-energising the
relay.
Many of the component values are not critical, however Cl must be large enough to cause the relay to energise. The value given works for a 12 Volt 110 Ohm coil. R1 should allow Cl to charge within a short time with SW1 pushed. R2 must limit the maximum capacitor discharge current within the specification of Cl and not have a large voltage across it when the relay is energised, which may cause it to dropout.

Some consideration should be given to the location of the hidden switch, since it has to be operated while the ignition key is turned.

Each time the cars ignition circuit is switched off, the circuit is automatically armed. Should some one get into your car and attempt to hi-jack you, simply switch off the ignition.

Mike Dyer, St Albans, Herts

DC Voltage Doubler

Ahandy yet simple voltage doubler can be realised around a single CMOS Quad Schmitt trigger type 4093. The circuit can provide up to 50 mA at input voltages between $6-9 \mathrm{~V}$. This typically can be handy when, say one needs to power an op-amp from a 5 V supply rail!

ICla is wired as an astable oscillator running at 10 kHz . This oscillator drives two buffer inverters built around ICla and ICIC - two of the four available NAND gates of the
integrated circuit used. When Q2 is conducting, then C2 charges to approximately the input/positive rail voltage. Then during the next cycle, when the opposite transistor conducts, the voltage across it, and that across the capacitor add up harmoniously to give twice the input voltage at the output. Since this process repeats about 10,000 times each second, the output current and voltage is fairly steady.

Amrit Bir Tiwana, India

Digital Potentiometer

AItimes, a digitally controlled potentiometer can more useful than a manual one. One reason being that it can be controlled from more than just one location. Another can be, that such a device at least the one described here can have resistances up to megohms for which variable resistors are not commonly available. And of course such a device can be preprogrammed by attaching to a timing control,to say dim lights etc etc.

The present circuit uses an up-down CMOS counter type

4029 which is made to count up and down by SW1 \& SW2 respectively. The oscillator built around one of six inverters of the hex schimitt inverter type 40106 provides a clock pulse of about IHz which automatically clocks the counter if the up/down controls are held down. The selection/variation is done in 16 equal steps, by the bi-directional static switches in the CMOS switch type 4016. The only point to note is that $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4$ are twice the value of the preceeding resistors:

Amrit Bir Tiwana, India

Gas Leakage Detector

butane, iso-butane etc) on time enough to avert any potential damage.

A special sensor forms the heart of the circuit. This consists of a Platinum coil, coated with chemical oxidation catalysts, which oxidises the above gases. When the concentration of the gases crosses a preset safe level; owing to the fall of resistance of the coil sensor the input of CCl a goes low, and its output goes high. This in turn activates the alarm generator, BZ1 a Piezo buzzer. The sensitivity of the detector is specifically adjusted with the help of PRI.

Since the sensitivity is affected by the ambient conditions, and not just the concentearion of the gas, a compensator resistance, RT2 is introduced into the circuit, at the input of NAND gate ICla.Cl is

The circuit design describeed here is that of an austere gas leakage detector, built around a single quad schmitt NAND gate CMOS integrated circuit type 4093 - only two of the four available gates are used. The circuit is capable of effectively detecting the presence of a majority of the inflammable gases (such as
delibrately introduced to prevent false triggering.

The dependability of the curcuit is, to a fair extent dependent on the placement of the sensor (the compensator \& sensor are packaged in a steel wire framed mesh), which optimally must be placed somewhere around the ceiling.

Amrit Bir Tiwana, India

Duty Cycle Indicator

The logic probe unlike most other hand held probes, can distinguish not only between LO-HI and PULSE levels states of digital circuits, but also give a fair approximation of duty cycle of the signal input. This is a rather useful indication of fault isolation in digital circuitry.

The circuit is based on a CMOS quad
 NAND type 4093, only two of the four gates being used in this design. Initially the Red LED is lit indicating no signal or Low logic. On applying an input, if the status of the bi-colour LED display changes to green, it indicates high logic. If it alternates visibly between red and green, it implies that the point under test has a pulse train at the frequency of the LED alternation. If the frequency exceeds 20 Hz , then the duty cycle becomes significant as the
effective colour is not green or red but intermediate.
After just some time, you will be aquanted, and from the intensity of the RED GREEN and orange portions or the shade of orange, the duty cycle can be approximated fairly. For example a bright pure orange display shows about 50% duty cycle, which may be approximated at $45-55 \%$ and so on.

Amrit Bir Tiwana, India.

Stereo Balance Meter

Balance on a stereo amplifier is usually set by ear, but this of course catn be very difficult to judge. If an amplifier has a balance meter at all, it is usually of the centre-zero moving coil type bulky, oldfashioned looking and expensive. This circuit is designed to overcome all of these problems.

The outputs from each channel are fed to the two inputs of ICl , this being connected as a differential amplifier. If the left and right channels are of equal levels, the output of IC」 will have its output at about halfway between the supply rails. If the left channel gets above the level of the right channel, the output of ICl will approach the 0 V rail. If the right channel is loudest, the output becomes positive.

IC2 and 3 are also differential amplifiers, but in this case they are driven by the output of IC1. LEDs form a display at the outputs of the two ICs. Pin 2 of ICs 2 and 3 each go to a preset across the supply. In practice, the preset in conjunction
with IC2 is set to hold pin 2 . slightly above 0 V and the preset connected to IC3 is set to hold pin 2 just below supply voltage. These settings, however, must be set by trial and error so that the circuit works accurately.

The output of IC 1 is connected to the non inverting inputs of IC2 and 3. If the output of IC1 approaches the supply rail, the outputs of ICs 2 and 3 will also go high, thus illuminating LED 3. This would happen if the right channel were dominating. If the left channel were dominant, the outputs of ICs 2 and 3 would be low, thus illuminating LED 1. If the two channels were equal in amplitude, the outputs of ICs 2 and 3 would be high and low respectively, lighting up LED 2.

The circuit can easily be added on to a ready
constructed unit without using up large amounts of panel space, or used as an add-on unit for a hi-fi system. The unit draws about 20 mA , so battery operation is practical.

High Quality Headphone Amplifier

This circuit is capable of high performance using low cost, readily available components. The class A amplifier is designed to drive efficient, high impedance headphones of 150 R and above, although it will drive 8 R headphones with reduced performance.

Feedback is applied by $\mathrm{R} 1,2$ and gain with the specified components is 11 . For maximum output the input sensitivity is 0 dB . Q3,4 and C4 form a gyrator circuit and present a high
impedence to A6 signals. This gives the circuit a high openloop gain. Quiescent current is set by R9 (approximately 60 mA)

Performance is good with distortion and noise measured on Radford test kit at less than 0.01% for maximum output. Noise is less than -80 dB unweighted. Power bandwidth is less than 10 Hz to over 50 kHz . Slew rate is greater than $5 \mathrm{~V} / \mu \mathrm{s}$.

Active Audio Filter

The main drawback of passive IF filters is their insertion loss when using inductors, necessitating the use of a two or three stage high-gain preamp to compensate for this loss. With an active audio filter the insertion loss can be low, non-existent or even provide gain. In this FET filter there is virtually no insertion loss.

When this filter is incorporated in a receiver and switched in, there is an apparent improvement in the signal-to-noise ratio and readability of signals. High and low frequency heterodynes and audio chatter outside the filter passband are quite noticeably attenuated, making listening more pleasant.

Simple Sound Effects

This circuit will generate 24 different sound effects including two-tone sirens, rising tones. seagulls etc.
It operates from a 9 V battery and uses only one CMOS IC. Most of the components are not critical, but the speaker must have an impedance 64 100R. Note that the negative supply from the battery does not go to the negative supply pin on the IC, which must be the buffered version of the 4001.

Altering the 33 n capacitor or 100 k resistor changes the basic frequency, and the 2 M 0 pot adjusts the speed of the rise and fall of the tones. A PP6 battery was used to drive the circuit and has been in regular operation for six months without replacement.

> MORE TIPS NEXT MONTH

QUALITY INSTRUMENTS AT EXCEPTIONAL VALUE

MULTI INSTRLMENT

DIGITAL MULTIMETERS
183, 185, 187, 285

COUNTERS SC-130, SC-40 LCR METER MIC-4070D
MX9000

DIGITAL MULTMETES

MULTI INSTRUMENT

The MX9000 combines four instruments to surit a bruad range of applications in both education and indusrrial markets including development work sations where spece is at a prentium.
The instruments include.
The instrumenus include

1. A riple outpur power supply with LCD display offering $0.50 \mathrm{~V} 0.5 \mathrm{~A}, 15 \mathrm{~V} 1 \mathrm{~A}, 5 \mathrm{~V} 2 \mathrm{~A}$ with full owercurrent protection:
2. An 8 digit LED display $1 \mathrm{~Hz} \cdot 100 \mathrm{MHz}$ frequency counter with gating rates of $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz providing resolution to 0.1 Hz plus atcenuation inputs and data hold:
3. A 0.02 Hz to 2 MHz full fratured sweep/function gencrator producing sine, square, triangle, skewed sine. pulse and a TTL. output and lincar or logarithmic sweep. Outputs of 50Ω and 600 a impedance are standard features
4. An auto/manual $31 / 2$ digit LCD multimeter reading $\mathrm{DCV}, \mathrm{DCA}, \mathrm{ACV}, \mathrm{ACA}$, resistance, and relative measurement with data hold functions.
The MX 9000 represents exceptionally grod vaiue at only $\$ 399.00$ plus VAT ($\$ 68.83$).

DIGITAL MULTIMETERS

The 180 serles of high performance multimeters provide advanced feanures and are supplied complete with probes, batrery and rubber holser. The case is dusk and splash proof maling if ideal in moss environments. Designed to meet IEC348 Class II swfery standard.
183-31/2 digit lage LOD dipplay, ACV, DCV, ACA, DCA resistance, continuity bubotr, dinde test, hald basic accuracy 0.5%. 539.50 plus VAT (46.41).
185-31/2 digit LCD, bar graph, ACV, DCV, ACA, DCA, restanance, continuity buzzer, diode test, hold, temperature ($40^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$), cepacitance (1 pf to 400 f), freguency (1 Hz to 200 kHz), max min, edit, \% comparc, basic accurncy 0.3\% . 574.50 plus VAT (587.54)
187 - $31 / 2$ digit LCD, bar graph. ACV, DCV, ACA, DCA, resistance, concinuity buzzer, diode test, hold.
 accuracy 0.3%, auto ranging $\$ 99.50$ plus VAT ($\$ 116.91$)
285 . As 185 excepe $41 / 2$ digit true RMS, basic accuracy 0.05%. $\$ 109.50$ plus VAT (128.66).

FREQUENCY COUNTERS

The SC- 130 and SC. 40 are full featured micro processor besed, hand held frequency counters providing portability and high performance Both instruments provide mezsurement of frequency, period, count and RPM plus a view Eccility enabling min, max, av and difference readings
SC. $130.5 \mathrm{~Hz} 1.3 \mathrm{GHz}, 8$ digit readout, sensitivity typically 10 mV , high impedence input, hattery condition indicator. $\$ 10900$ plus VAT (128.08)
SC 40 . As SC. 130 except 5 Hz to 400 MHz . $£ 89.00$ plus VAT ($\$ 104.58$)

LCR METER

The MIC-4070D LCD digital LCR meter provides capacitance, inductance, resistance and dissipation mwasurement Capacitance ranges are from 0.1 pf to 20,000uf plus dissipation inductance ranges from a.pht to 200 H plus a digital readout of dissipation Resistance ranges from Imato 20 Ma . Housed in a ruoged ABS case with inicoral stand it is applied complete with batrery and probes an 585,00 phus VAT nuged ABs

C 1 For further information contart SAJE now on tel (0223) 425440 or fax (0223) 424711, or fox fas delivery send your order direct enclosing cheque/postal order made payable to SNE EIECTRONICS to: SNE Ekctrunics, 117 Lovell Road

IRTransmitter

PCB Foils

The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer for the creation of a foil.

Sound to MIDI

DiscoAmiga (Light selector)

PuddleTec

CTH: Nick Wallker
 044266551

Send your requirements to:
ETI Classified Department, ASP, Argus House
Boundary Way, Hemel Hempstead, HP2 751
Lineage: 60p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) 15.00 per single column centimetre (+VAT) 1 Per Electromart $224.00(+$ VAT)

Insertion
Ring for information on series bookings/discounts.
All advertisements in this section must be prepaid.
Advertisements are accepled subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

N.R. BARDWELL LTD (ETI)

HOME AUTOMATION

LAMP MODULE Plugs in to wall socket to control incandescent lamps up to 300 W Responds to ON/OFF/DIM/BRIGHT commands from controliers LM5B5 E2. 45 MINI TIMER Timed control of up to 4 modules ince a day. Also features direci ON/OFF/DIMVBRIGHT control pius dock functions MT522 $£ 29.95$.

ENERLOGIC 1400 e Controller
The first intelligent home automation system A remarkabte hardware + sofware package that adds brains to the range of X - 10 moduies and controllers $£ 349.95$
Part of a remarkable range of home automation components from
Smart House Systems lid 3 Buchanan Street, Largs, Ayrshire KA30 8PP Tel: 0475672589

Metal delector boards with data, has tuner, mode, discrimitate, headphone jack, on/ott/volumé and push button tacilities . 87.95 e Dictephone cassette, mech/record erase playback heads, 6 V solenoid, motor, hall offect switchn2,00 88 35 mm Camers returns with Auto Flash/ Wind on etc. $\varepsilon 8$ ea or 2 tor $\mathrm{El0}$ TV/Printer stands
Bicc-Vero Easiwire
construction kit
Cabinet Speakers tro Ni-cam TV- $£ 4.95$ es use 514.95 pa PCB with Lithium Battery, 2732, 34 IC's + Transisto Fuse, Crystal,
Hrs $+\mathrm{C}^{\prime} \mathrm{s}$
TTUCMOS short circuit snooper95 Dot matnx
with Dots
with Dots9.95
with data . 1 line dot matrix display
2 digit 16 segment VF display with data
.52 .95 ea
4 digit imelligent dot matrix display $\$ 8.00$ 17 segment VF display with driver
board and data
29960
8 dight Itquid erysial display
81.75 ea

4 digh LCO with
$.53 .5060^{\circ}$
Digitel driver chip 22.50
11 key membrane keypad51.50 es Keyboerd $392 \mathrm{~mm}=180 \mathrm{~mm} / 100$ keys
on board + LCD + 74HCO5/
80 C49 easily removabio 44.95 $19{ }^{\circ} 3 \mathrm{U}$ sub rack enclosures 88.95 12 V stepped motor board with slotted
opto +2 mercury tilt switches $3 . \% 5$ ea
1000 mixed $1 / 4$ watt 1% resistors $\$ 4.95$ ea
250 electrolyic axial-radial caps $\$ 4.95$ es
200 off mixed polyester caps 87.95
100 Mixed trimmer caps popular
values
.$£ 4.95$
Cable box UHF modulator/video preamp/ transformers/R's + C's/leads 56.95
1000 off mixed Multilayer Ceramic Caps
25 of Milxed crystal oscillators
Audio Cassette Cleaning *
De-magnetizing Kit.
ar Burglar alarm vibration auto entry/ exit delay 5 .
Single zone alarm pand auto entry' exit delay housed in domestic light sockel
P.C. P.S.U. 50 watt 115-230V input+5V $4 A+12 V 2.5 A$ output with built-in fen 1EC inletton oflce. 895 e fonverts to 12 V 3 A details avallable)
.25 .95 ea
240 V input 5 V iö \ddot{A} output (converts 12V 5A no details)55.95 ea 600 ine output ransiormers $£ 1.25$ ee 240 V in $0-28 \mathrm{~V} 62 \mathrm{VA}$ out transformer $£ 2.75$ Transtormer + PCE gives $2=7.5 \mathrm{~V} 32 \mathrm{VA}$ with skt for 5 or 12 V regulator, will power Hitrasonic transducer (transmitt 75 ea
\qquad recerve) 1.50 pal 3 to $6 V$ Piezoelectric sounders 2aV DC electromechanical sound
removeable in two positions
DIL switches PCB MT $3 / 4 / 6$ way
5V SPCO SIL reed relay
5V 2PCO DIL miniature relay 12 V 2PCO or $4 P C O$ continentol 600
12V 10A PCB MT (to make contact) $\stackrel{\text { relay. }}{ }$
3 to 12 V electro magnetic accoustic 24576/8.8329/21.10 MHz
crystals . . . 0 . ${ }^{\circ}$. 50 p en
Bndges 25A 200V
31 b Mixed components pack
25 off mixed relays 40 off mixed toggle switches 50 off mixed swiches, toggle, rocker miniature. slide axtal choke...............c9.9 0.18 .018 $039,0.15,3,30 \mathrm{H}$ 10p en 100 tor 5.50 50 Mixed terminal blocks. $\sum 2.95$ 250 off $16 / 22 / 24 / 40$ way IC Skts Cryotal Oscillators $10 / 24 / 48 \mathrm{MHz}$ Ei.00 e9 Spider Plug Leads
100 of Phono plugs (red/bili)grey) c3.50 QUANTITY DISCOUNTS AVALLABLE - PLEASE RING WE ALSO BUY ALL FORIUS OF ELECTRONIC COMPONENTS, P.S.U.'S, DISK DRIVES ETC, LISTS TO BELOW ADORESS

PLEASE ADD PROO Pdp EXCEPT IEMS MARKED WHICH ARE SOD SAE FOR BULK GUYNG LIST Dept ETI, COMPELEC, 14 Constable Road, St Ives, Muntingdon, Cambs PE17 6EO Tel/Fax: 0480300819

COOKE INTERNATIONAL
USED TEST INSTRUMENTS FOR SALE

SCOPES, SIG GENS, PSU's, POWER METERS, DVM'S. OSCILLATORS, ATTENUATORS ETC. WIDE RANGE OF ITEMS AVAILABLE

ORIGINAL. WORKSHOP SERVICE MANUALS FOR SALE ALSO COPY SERVICE AVAILABLE.

SEND S.A.E. FOR LISTS OF EQUIPMENT \& MANUALS OR PHONE
ALL PRICES EXCLUDE VAT AND CARRIAGE.
OPEN MON - FRI 9AM - 5PM

COOKE INTERNATIONAL

UNIT 4, FORDINGBRIDGE SITE, MAIN ROAD,
BARNHAM, BOGNOR REGIS, WEST SUSSEX PO22 OEB TEL: 0243545111 FAX 0243542457
£5 EACH! - Delete \& return! Audioamps $240 \mathrm{v}+$ Controls + speaker! Slider powersupply 9 25v! 50 w Mosfet poweramps! K.L.A. 1 Regent Road, llkley... 30 radial caps + lists SAE

MASSIVE ELECTRONICS

 components clearance chips 10 p caps 4 p , transformers, resistors etc. SAE details: N.S. Elvy 108 West Drive, Cleveleys, Blackpool FY5 2JG.

| | Technical Information Services
 76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE
 TEL/FAX: (0698) 884585 Mon-Fri 8.30am - 5.00pm TEL/FAX: (0698) 883334 Outwith business hours
 Write now with an SAE for your FREE QUOTE + FREE CATALOGUE |
| :---: | :---: |
| | SERVICE MANUALS SHEETS + CIRCUITS |
| We offer:- | |
| \star REPLACEMENTS \& REFUNDS \star if anything is unreadable | |
| \star DIAGRAMS ON A2 pages *
 TWICE the size of A3 diagrams \& unavailable from any other Technical Information Supplier | |
| \star ORDERS BY RETURN \star
 just pick up the phone and order by ACCESS or VISA or send a cheque for same day posting | |
| "Remember we also sell hundreds of technical books" | |
| WE NOW HAVE A LIBRARY SERVICE | |
| For the Loaning of Service Information. PLEASE CALL FOR ALL INFOR MATION | |
| WE ALSO HAVE HUNDREDS OF OTHER TOP SELLING TITLES! | |
| we run another Library, for
 P.C.- GAMES SOFTWARE WRITE FOR DETAILS | |

th LOW COST IBM SHAREWARE $t \star \star$ HIGH QUALITY MEDIA $+t \rightarrow$ * ANALOGUE \& DIGITAL SIMILATION * TEST * PCB DESIGN * TUTORIAL * BUSINESS * Vast uectunkal experience and experrise in avileble chrough 1000 Y of powerful wfiware took bolt in the Public Domain ano us shareware by distributing sets of hD dists we can offer an unpremedented selection for your evalumion at of fretion of what you would pay y normal PD/sharew ure iberary for distribution Electronics on your PC. Wifhoul breating the ban 000000 SEMICONDUCTOR CLEARANCE 000000

- MICROPROCESSORS \& MEMORY \& INTERFACE \& LOGIC \& LNEAA \& DISCRETES * Our Lemiconductor clear ance eontinues with bow prices 100 numerous to adverisc, eg
 Profile Electronics (ETI), 100-102 Woodhouse Road, Leytonstone, London E11 3NA
 ARIAS
Passive Bandpass Responses $25-80 / 100 \mathrm{~Hz}$ Sensitivities 87.94 dB . $250+$ Watt Rating No scparate amplifiers required. Also
Active Centre Bass Designs Active Stereo Designs
All in our SUB-BASS Leaflet
30 p (stamps) +28 p SASE FALCON ELECTRONICS (Dept ETI) Tsbor House, Mulbarton, Norfolk NR14 8JT (0508) 78272 (mom NAIA $8 J T$ (0508) 7 R

> For details of Rates Telephone Nick Walker 044266551

Layo 1 Version 4.9 PCB CAD/CAM

The ideal solution for the creative Electronic Designer. Just ask thousands of satisfied users!

\star Netlist import via Project Manager
from Layo 1 schematics, Orcad, Schema, Tango etc.
\star Forward annotation
\star Graphical netlist entry
\star Routing - manual, interactive, auto
\star Design rule checking
\star SMD support
\star Extensive component library

* User defineable macro's
\star Output drivers for Gerber photoplotters, Excellon and Sieb \& Meyer drilling programs
\star Output drivers for HPGL/DMPL penplotters and Adobe PostScript with open pads
\star Output for dot matrix, laser and Deskjet printers

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programe 24, 26, 32 pin EPROMS, EEPROMS, FLASH and Emulators as standard, quickly, reliably and at Jow cost. Expandable to cover virtually any programmable part including serial $E^{2}, P A L S$, GALS, EPLD's and microcontrollers from all manufacturers.
DESIGN: Not a plug in card but connects to the PC aerial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MOP ELECTRONICS Lid.
Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 OBX UK TEL. 0666825146 FAX. 0666825141

GERMANY 089/4602071 NORWAY 071-17890 ITALY 0292103554 Also from VEROSPEED UK

Micro AMPS

 8051"C" COMPILER $£ 125$
BASIC COMPILER £99

ICE51 £225

ICE51+ £495
ICE751 £495

66 SMITHBROOK KILNS, GRANBLEIGH, SURREY GL6 8JJ UK
Tel: $+44(0) 483268999$
Prixa
Fax: +44(0)48368397

TRADE DISPOSAL SALE

Due to emigration/retirement a dealer in components \& equipment has entire stock for disposal. Mostly new components (every type) and various \mathbf{s} / h equipment. Available in job lots of our selection. Ideal for radio rallies, shops, mail order etc. Varlous size lots from $£ 80$ (fill a car), $£ 200$ (Transit shops, mail order etc. Varlous size lots rrom $£ 80$ (iock a car), $£ 200$ (rransit
van), £450 (Luton van). Cash \& Carry only. Rock bottom price with van), E450 (Luton van) Cash \& Carry only. Rock botrom orice with
excellient profit margin ($300 \%, 400 \%$, Plus) for quick clearance. bring your vehicle \& cash - you won't de disappointed

Tel: 0214464346

COMPONENTS

"ELECTRO COMP"

WE ClEAR

Electronic Components • Semiconductors
Computer Equipment • Electronic Test Equipment Populated Boards In fact anything with an electronic bias
JOB LOTS, FACTORY CLEARANCE A SPECIALITY Decision normally within 24-36 hours
LOOKING FOR COMPONENTSI! As an ex Industrial buyer for 25 years \downarrow wor't sell you reject or lautly productll Only top quality components at the right price!! No Mail Order only production quantities!!
SNAGS only one. My terms are C.O.D. Deliveries normally made within 48 hours
Phone or Fax your list or enquiry to: 063546496
ELECTRO COMP 36 Talbot Close, Newbury, Berks RG13, IUA

ELECTROMART

AVON

L.F. HANNEY

Your Electric Component Specialist for Avon, Wilts \& Şomerset.
77 Lower Bristol Road, Bath, Avon.
Tel: 0225424811

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 05123609820512360154
47 Whitechapel
Tel: 0512365489 Liverpool 2
'THE ELECTHONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

MANCHESTER

THE ELECTRONIC SHOP
Electronic components, test equipment, telephone accessories, computer accessories, microphones, disco lighting, speakers, turn tables, mixers, meters, stylus. 29 Hanging Ditch, Manchester M4 3ES Telephone \& Fax 0618341185

SERVICE MANUALS

Avallable for Most Equipment. TV, Video, Audio, lest elc. Any Age, Make or Model. Write or Phone for Quotation.
MAURITRON (ETI)
8. Cherry tree Road, Chinnor, Oxon, OX9 4QY.
Tel:- (0844) 351694.
Fax:- (0844) 352554

If you require a home study course in the fundamentals of electronics. for either carcer or hobby reasons, then consider
BASIC ELECTRONICS,
a course from the Direct Personal Learning scheme. For more information contact:
K. Sparrow etc...(Department E.T.I.) 11 Claydon Green, Bristol, BSI 4 ONG Telephone (0275) 835669

FOR ALL DETAILS OF RATES TELEPHONE 044266551

HEATHKIT. U.K. spares and service centre/Educational Products Distributor. Cedar Electronics, 12, Isbourn Way, Winchcombe, Cheltenham GL54 5NS Tel. (0242) 602402.

NEW VHF MICROTRANSMITTER KIT Iuneable 80 $135 \mathrm{MHz}, 500$ metre range, sensltive electret microphone, high quality PCB, Special offer complete kit only $£ 5.95$, assembled and ready to use $£ 9.95$ inclusive P\&P. 3 Watt FM transmitter kit £14.95. Credit card orders telephone 021411 1821. Fax 021 411 2355. Cheques/PO's to Quantek Electronics, (Dept ETI). 3 Houldey Road, Birmingham, B31 3 HL . Send 2×1 st class stamps for details of these and other kits.

| $\begin{array}{c}\text { Start training now for the following } \\ \text { courses. Send for our brochure } \\ \text { without obligation or Telephone us on } \\ 0626779398\end{array}$ | | | | |
|---|---|---|---|---|
| ETI 293 | |$]$| Telecomms | |
| :---: | :---: |
| Tech C\&G 271 | |
| Name | Radlo Amateur
 Licence C\&G |
| | Micro-
 processor
 production to
 Television |
| Radlo \& Telecommunications Correspondence School | |
| 12 Moor View Drive, Teignmouth, Devon Ta14 9UN | |

EQUIPMENT

- Series X Mixer Kits.
up to 1,000 inputs. 6
cor PA racording
ror Pa, recor
racio, disca.
From es. 92
- Circuins for noise
gates compressors exciters, tape machines mixers 100 mm rader switches Send $40 p$ for catalogue to: K. Tok, P.O. Bok 172 S Surtition, Surrey KTB 6HN. Tel: 0813375997 Mobile: 0831875878

ETI
ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55 p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address
Daytime Tel. No:
Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square
\square FOR SALE \square COMPONENTS \square PLANS \square OTHERS STATE

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

EDITORIAL

Editor Paul Freeman

CREATIVE
Art Editor Peter Kirby Designer Iain Houston Technical Illustration Tony Burlinson Photography Manny Cefai

ADVERTISEMENT SALES
Advertisement Manager
Mark Linacre
Advertisement Sales
Michele Donovan
Advertişement Copy Control
Marie Quilter
Key Accounts Manager Donna Wells

MANAGEMENT
Managing Director
Terry Pattissom
Circulation \& Promotions Manager
Debra Stupple
Managing Editor
Mark Neeter
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ISSN
0142.7229

Ell is normally published on the first Finday in the month preceding the cover date. The contents of this publication inctuding all articies, plans, drawings and programs and all copynght and all other intellectuel property nights therein betong to Argus Specialist Publications All nghts conferred by the Lew of Copynight and other intellectual propenty nghts and by virtue of intemational copynght conventions are specifically reserved to Argus Specialist Publications and reproduction requires the pror witten consem of the company elperialist Publications Publications All reasonable care is taken inthe preparation of the magazine coments, but the Publications All reasonable care is taken inthe preparation of the magazine conients, but the publishers cannot be held legally responsible for errors Where mistakes do occur. a correction will normally be published as soon as possible atterwards All pnces and data contained in advertisments are accepted by us in good fart as conrect at the ome of going to press Neither affecting pnce or availaboity which may occur atter the publication tias chosed tor press.

- Subsciption rates...UK 23.40 Europe $£ 29.50$ Stering Overseas $\mathbb{E 3 1 . 0 0}$ US Dollars Overseas $\$ 62.00$

Published by Argus Specialist Publications, Argus House, Boundary Wey, Hemel Hempstead MP2 7ST. Telephone (0442) 66551. UK newstrade distribution by SM Distribution Lid, 6 Leigham Court Road, London SW16 2PG. Telephone $081-667$ 8111. Overseas and nonnewstrade sales by Magazine Sales Depanment. Argus House, Boundary Way, Hemet Hempsiead. HP2 7ST. Telephone (0442) 66551. Subscriptions by Argus Subcnption Services. EII, Queensway House, 2 Oueensway, Redhill. Surrey RHI 10S. US subscriptions by Wise Owl Worldwide Publications, 4314 West 238th Street. Torrance, CAg0505 USA Telephone (310) 375 6258. Typesetting and origination by Ebony, Liskeard, Comwail. Primted by Winshire Lto. Bristol.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fax (0442) 66998

Next Month

You may be surprised to hear that we are featuring an LED stroboscope in our next issue. This might sound funny but with the development of Ultra bright LEDs it means that a truly portable, cheap investigation stroboscope is now available for observing and 'freezing' many local oscillations in the laboratory.

With the use of digital ICs as standard in many applications, it is handy to know about logic level status quickly and easily in the event of a system failure. Using a visual IC Tester is the answer and more details can be found in our March issue.

We develop the four channel remote control theme by sending digital messages via radio waves and we also feature a Nickel-cadmium battery charger for reviving 'tired' batteries.

All this and more within these pages of ETI next month. At your newsagent on Friday 5th February.

The above articles are in preparation but circumstances may prevent publication

Last Nonth

ur January issue featured:
Macro-Heliograph Receiver EPROM Programmer Part 1
The AutoMate Mixing Desk Part 8b
IR Remote-Controlled Lighting System Part 1 Fading Festoonery
Basic Multimeter Circuits
RS232 Interface Part 2
Back issues can be obtained from Argus Subscription Services. Address in column to left.

| ADVERTISERS' INDEX | |
| :---: | :---: |
| | JAY TEE ELECTRONICS 31 |
| 8K ELECTRONICS........ | |
| BADGER BOARDS | MAPLIN ELECTRONICS OBC |
| BONEX | NUMBER ONE SYSTEMS- |
| CANAL BRIDGE AUDOO 45 | OHN ELECTRONICS 29 |
| CHELMER VALVE CO.............. 14 | PICO TECHNOLOGYwn $\quad 15$ |
| CIRKT | |
| CRICKLEWOOO ELECTRONCS 23 | SAJE ELECTRONICS . . |
| EOT | STEWARTS OF READING 45 |
| HALCYON ELECTRONCS 40 | TSIEN (UK) LTod. |
| HESING TECHNOLOGY9 | WLLLSLOW AUDIO |
| | |

£30 off Europe's best selling oscilloscopes!

$>$ Excellent quality, built to last a life time

>2 year warranty

- Each 'scope supplied with 2 sets $\times 10$ probes, manual and mains lead.

PART NO.
HM203-7
HM205-3
HM604
HM1005

20 MHz , dual channel 20 MHz , storage 'scope 60 MHz , dual channel $100 \mathrm{MHz}, 3$ channel

USUAL PRICE
OFFER PRICE

MULTIMETERS

 The D-MM good value meters arenow even D-MMer good value!!

PART NO. DESCRIPTION

TM 5315
TM 5365
TM 5375
TM 115

7705

TM 8020 Freq. (5 MHz), capacitance ranges with HFE, diode, continuity a LED test
TM $8030 \quad 3^{3 / 4}$ digit display, freq ($4 \mathrm{MHz)} \mathrm{)}, \mathrm{temp}. \mathrm{(inc} \mathrm{probe)}. \mathrm{AC+DC} \mathrm{to} \mathrm{20A}$
DC current (10A) continuity and diode test Capacitance and frequency (200 kHz) ranges Frequency range $(20 \mathrm{MHz})$ and HFE test $A C \& D C$ current (10 A), HFE and continuity test $3^{3 / 4}$ digit display, freq. (4 MHz) capacitance (40 uF), $A C+D C$ current to 20 A Capacitance meter, 1 pF to 20,000uF

Offer must end
31 st Jan
93
£367.00 £ 686.00 $£ 686.00$ $£ 899.00$

The TM series of low cost meters, with $31 / 2$ digit LCDs, full overload protection, strong ABS cases and packed with features. Supplied with test leads, battery and manual.
test leads, battery and manual.

USUAL OFFER
PRICE PRICE
$£ 19.99 \boldsymbol{£ 1 9 . 2 5}$
£36.50 £29.99
£36.95 £31.49
£32.50 £30.99
£53.60 £45.00
£54.76 £49.95
$£ 59.96$ £55.49
£39.82 £ $\mathbf{3 5 . 9 0}$

$>400 \mathrm{kHz}$ to $\mathbf{2 5 0 M H z}$ frequency range

- LC display of centre frequency
- Calibration marker

Cirkit

SPECTRUM ANALYSER ADAPTOR

The new TSA250 will adapt any conventional 'scope into a highly cost effective spectrum analyser. With numerous applications in RF design and development work, EMC investigations, and education.

TSA250
$£ 399.00$

The Brand New Cirkif Electronic Constructors Cafalogue Winfer 92/93

>192 pages
> £££'s worth discount vouchers

- 100s new products.......

Books - the latest titles.
Capacitors - new range ceramic discs.
extended ranges electrolytic and polyester types.
Computers - new CAD PCB layout software.
Connectors - extended ranges of BNC, Jacks,
XLR and PCB types.
Filters - new narrow band ceramic and low pass TV filters.
Hardware - additions include new range control knobs, cabinet hardware and heatsinks. Inductors - more additions to our already extensive range.
Kits - new additions to the Velleman range.
Rigs - handheld 'CB' transceivers, wavemeters,
scanning receiver accessories and aerials.
Semis - new linear ICs, transistors and a complete new range of LEDs including blue types.
Speakers - new radio mic systems.
Test Equipment - new hand-held frequency meter and satellite TV dish alignment system. And much more besides.....
> Avallable at larger newsagents, from 12th November, or directly from Cirkit.

All prices include VAT at 17.5\%.
Postage and packing; standard $£ 1.40$, next day delivery $£ 4.60$.

Prices correct at time of going to press, but may change in line with exchange rate fluctuations.

Park Lane • Broxbourne • Hertfordshire • EN10 7NQ Telephone (0992) 444111. Fax (0992) 464457

BUYER'S CUIDE TO ELEGTRONIC EOMPONENTS 1993

[^0]: 130 New London Road. Chelmsford. Essex CM2 ORG, England. Telelphone: (0245) 355296/265865 Fax: (0245) 490064

[^1]: Open: Monday-Thursday 9.15-6.00
 Friday 9.15-5.00 Saturday 9.30-5.00

