

JANUARY $1993 £ 1.95$ DIMMER receiver

using our cover PCB

Please tell your retailer if the PCB is missing

OFP MOS-FET POWER AMPLIFIERS
 THOUSANDS PURCHASED

 BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W) aLL POWER RATMES RM.S. INTO 4 OHMS, ©OTH CHANNELS DRUWE

 USED THE WOALO OVER IM CLUBS, PUBS, CINEMAS, DISCOS ETC.
 MXF400 W19 "ME ", " (3U)ID12"

PRICES:- MXF200 E175.00 MXF400 $£ 233.85$ MXF600 £329.00 MXF900 E440.15 SPECULSSI CARAIEA DEL E12.50 EACH

OMP VARISPEJD TUANTABLE CHASSIS

* Maqual arm * Sleel chassis * Elecironic speed conirol 33 \& 45 R.P.M. \& Vari pitch conlrol \& High torque servo driven DC motor * Transit screws * 12° die cest platter * Neon strobe * Calibrated balance weight \# Removable head shell \# 4 cartridge lixings \# Cue lever $\# 220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cul-out template.

PRICE E61.30 + E3.70 P\&P
STANTON AL500mkII GOLDRING G950 MRICEE16.95 + 50P PSP PRICE $57.15+$ SOPPRP

* WITH ECHO *

STEREO DISCO MIXER win 2×7 ano ${ }^{8}{ }^{8}$ a graphic aquabers with ber pasan LED NU MENET: MANY OUTSTANONG FEATURES:- inchudra Ecto with repast e apeed contal, DJ Mic with lone control individual faders plus cross tade, Cue Hesdiphone Monitor. Useful combinstion of the following ingutsio 3 turntables (mag), 3 mien, 5 Line lor CD, Trope, Video elc.
Price 8134.09 + E500 Pip
 serw $482 \times 240 \times 120 \mathrm{~mm}$

Plorozlectalc Twasizis - MOTOROLA

Join the Plaso revolution' The how dynamic mass (no volce coil) of A Plezo tweeter proavces an Improved tramsiont response with a lower distortion bevel than ordinary dynomlc tweeters. As a crossover is not required EXPLANATOAY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN1036A) 3 ' round with proleclive wire mesh. Ideal $\rightarrow 1$ bookshelf and medium sized HWFI a peakers. Price $\mathrm{C} 4.90+50 \mathrm{p}$ Pep. rrpe (or (KSN1005A) $3 / 2$ super horn for general purpose speakers, disco and P.A. systems etc. Price E5.99 + 50p Pep.
YPPE 'C' (KSN1016A) $\mathbf{2}^{-} \mathbf{x 5 ^ { \prime }}$ wide dispersion horn lor quality Hi-Fl sys lems and quality discos etc. Price $\mathbf{C 6} .99+50 \mathrm{p}$ P\&P. TYPE ' D^{\prime} (KSN1025A) $\mathbf{2 ' x 1}^{\prime 2}$ (wide dispersion hom. Upper Irequency response relained extending down to midrange $(2 \mathrm{KHz})$. Suitable tor high quality Hi-Fi systems and quality discos. Price C9.99 + 50p PAP. TYPE 'E' (KSN1038A) 3*4" horn weeter with attractive silver finish trim. Suitable lor $\mathbf{H 1}$-FI monitor systems ek. Price $\mathbf{C 5} .99$ + 50p P\&P LEVELCONTROL Combines, on a recessed mounting plale, level control and cabinel input |ack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{8 4 . 1 0}+50 \mathrm{p}$ PRP.

9MP LICNET LODUDEPEAKERS

the veay best in ouality and value

Made etpecially to suit today's need for compactness with thigh output sound levels. finished on hard wearing blach vynide with prolective corners. grille and carrying handie. Each unit incorporales a 12° driver plua high irequency horn tor a full rrequency renge ol ${ }^{\text {an }}$

CHOICE OF TWOMOOELS
POWEA AATINGS OUOTEDIN WATTS RMS FOR EACM CABIMET
OAP 12-100WATT\$(100dB) PAICE C163.50 PER PAIR SPECIALST CARAIER OEL. 112.50 PEA PAIR

IN-CAR STEREO BOOSTER AMPS

PRICES: 150W C49.99 280W C99.90 400W C109.05 PAPC2.00 EACM

THREE SUPERE MOH POWER CAR 8 TEREO BOOSTERAMPLIFIERS 150 WATTS $(75 \rightarrow 75)$ SIOREO, 150 GW Bridged Mono 250 WATTS (125 Bricoed Mono Erioged Malts (200
400 WAITS Brdged Mono
ALL POWERS INTO 4 OHM Foatures:
$\$$ Siereo. bridgable mono Chole ot high a low level inpute t A A level controls Remols on off Speaker a
thetmaldentaction.

OMP MOS-FET POWER AMPLIFIER MODULEE SUPPLIED READV EULTT AND TESTED.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMPIMF 100 Mos-Fet Output power 110 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$.3 dB . Damping Factor >300. Slew Ral $45 \mathrm{~V} / \mathrm{JS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.M.R 110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICEE40.85 + E3.50 PRP

OMP/MF 200 Mos-Fet Oulput power 200 watle R.m.S. Into 40 hm s, lrequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300, Slew Rale SOV/uS T.H.D. typical 0.001%, Input Sensitivily 500 mV , S.N.R 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE C64.35 + C4.00 PRP

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohme, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB . Damping Factor >300. Slew Rale $60 \mathrm{~V} / \mathrm{US}$, T.H.D. Iypleal 0.001%, Input Senslivity 500 mV , S.N.R .110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$.
PRICEE81.75 + E5.00 P\&P
OMP/MF 450 Mos.Fet Oulput power 450 walts R.M.S. into 4 ahms, Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damping Factor > 300, Slew Rate 75V/uS T.H.D. Iypical 0.001%, Input Sensitivily 500 mV , S.N.R -110 dB , Fan Cooled, D.C. Loudspester Protection, 2 Second Anti-Thump Delay, Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE C132.85 + 55.00 P\&P
NOTE MOS-FET MODULES ARE AVALLELE IM TWO VIRSION TANOARD I IMPUT SENS BOOMV, BAND WIDTH TOOKHL
EC (PROFESSIONAL BOUIPMENT COMPATIELIT) IMPUT SEM PEC (PROFESSIONAL LOUIPMENT COMPATIELIT) - IMPUT
 Vu MET ER Compauble wilh our hour amplikers delailed above, A very accural visual display employing 11 L.E.D. 3 (green. 4 red) plus en additional onjoll indicator. Sophlsticated logic control for vary lasi rise and decay times. Tough moulded plastic ease, with acrylic tinted Iront. Size 84 y 27 z 45 mm . PRICE E8.70 + 50p P\&P

LOUOSP=AKEFS LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CAEINET FITTINES, SPEAKER GRILLES, CROSSOVERS AND HIGH POWER, HIGY FREQUENCY BULLETS AND HORNS, LARGE (A4) S.AE (50p STAMPED) FOR COMPLETE LIST.
E-From McKenzie Prolessional Series

MCKEMEIE-- INSTRUMENTS. P A. DISCO. ETC

ALL MEKENZIE UNITS 8 Ohms mpledance

8" 100 WATT PSE-100GP GEN. PURPOSE, LEAD GUITAR. EXCELLENT MIO. DISCO RES. FAEO. AOHZ, FREO. RESP. TO 7 KHz , SENS 96 GB ,
 RES. FAEO. 72 Hz . FREO. RESP. TO $6 K H z$. SENS 97 dB . $10^{-} 200 W A T T ~ S C 10-200 G P$ GUITAR, KE YE'D. DISCO. EXCELLENT HIGH POWER MID.
RES. FREQ. 69 Hz FREQ RESP TO $5 K H z$ SENS 97 dB . AES. FREO. 69Hz, FREO. RESP. TO 5 KHz , SENS 97 dB . PRYCEE53.28 - 250 PAP 12^{-}100WATT PC12-1000P HIGH POWER GEN. PUAPOSE. LEAD GUITAR, DISCO. RES. FAEO. $49 \mathrm{~Hz} \mathrm{I}_{\mathrm{I}}$ FREO. RESP. TO 7 KHz . SENS 98 dB . 12" 100WATT C C12-100TC (TWIN CONE) HIGH PO
RES. FREO 4 SHz, FAEQ. RESP. TO 12KHz, SENS 97 JB . RES. FREO $4 S \mathrm{~Hz}$, FREQ. AESP. TO 12 KHz , SENS 97 dB . 12^{*} 200WATT SC12-200B HIGH POWER BASS, KE YBOARDS, DISCQ, P.A RES. FREO. 4SHz, FREQ. RESP. TO SKHz, SENS 998 B . 12" 300WATT C C12-300GP HIGH POWER BASS. LEAD GUITAR. KEYBPARE E71.91 ~ C3.30 PAP RES. FREQ. $49 H 2$, FREO. RESP. TO 7 KHz , SENS 100 de . 15 " 100WATT PC15-100BS BASS GUITAR, LOW FREOUENCY PA PFWC RES. FAEO. 4OMZ, FREO. RESP. TO SKH2. SENS 98de. 15 200WATT C15-200BS VERYHGHP OWER BASS AES. FAEO. 40 Hz . FREO. AESP. TO 3 KHz . SENS 98 dB .
15 . 250 WATT C15.250BS VERYMIGH POWER BASS RES. FAEQ. 39Mz. FREO. RESP. TO 4 KHZ, SENS 99 dB .
 RES, FREO. 40 Hz , FAEQ. RESP. TO 4 KHz , SENS 100 dB . 18 500WATT C C 18 -500BS EXTREMELY HIGH PO RES. FREQ. 27 Hz . FAEQ. RESP. TO 2 KHz . SENS. $98 d \mathrm{~B}$.
\qquad PRICE E80. 57 - C400PR EAREENDERS:-HI-FI. STUDIO. IN.CAR. ETC

OASS, SINOLE CONE, HHGH COMPLIANCE, ROLLED SURROUND

B SOWOIt EEB. 50 DUAL IMPEDENCE. TAFPED $4 / 8$ OHM BASS, HI-FI. N-CAR RES. FREO. 40 Hz , FREO. RESP. TO 7 KHz SENS 97 dB . RES. FREO. 40 Hz , FREO RESP. TOSKHz SENS. 99 dB . 10" 100WATT EB10-100 BASS, MI-FI, STUDIO. AES. FREO. 35 Hz . FREO. RESP. TO 3 KHz . SENS 96 dB 12" 100WATT EB12-100 BASS. STUOIO, HI-FI, EXC RES. FREO. 26 Hz FREO. RESP. TO 3 KHz. SENS 93 dB .

4/B OHM BASS. HI. PRICE C8.00-E2.00 PEP RAMOE TWINEO. RESP. TO 3 KHz, SENS GHE. E4- - OWATT EBE-OOTC (IWIN CONE)MI-FI MULT.ARED SURAOUND S4, GOWATT EBS-OOTC (TWIN CONE) MI-FI, MULTI-ARAAY DISCO ETC.
RES, FREO. 63 Hz , FREO. RESP. TO 20 KHz SENS 92 dB . AES. FREQ. ${ }^{2}$. RES. FREQ. $38 H z$, FREO. RESP. TO 20KHz, SENS 94dB. OUSCO PRICET10.00 1.50 PEP RES. FREQ. 40 Hz , FREQ. RESP. TO 1 HKHz , SENS 89 dB . 10" 0^{-}OWATT EB1 O-BOTC (TWIN CONE) HI-FI, MULTI ARAAY DISCO ETC RES. FAEQ. 35 Hz , FAEQ. RESP. TO 12 KHz . SENS 98 d . PRICE E12.00 - C1.60 PGP

PROVEN TRAMSMITTER DESIONS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT ANO INSTRUCTIONS

B.K. =L =CTRONICS

UNITS 1 E EOMET WAY, SOUTMEND-ON-SEA, Tal. ©

Volume 22 No. 1
Jan 1993

Features \& Projects

Macro-Heliograph Receiver .. 12
$\begin{aligned} & \text { Ever wanted to hear what. subsonic sounds a whole variety of insects make? This ingenious receiver } \\ & \text { devised by I.P. Wilkinson can open up a new series of investigations into low frequency low amplitude } \\ & \text { waves. } \\ & \text { EPROM Programmer Part l.. } 16\end{aligned}$
Paul Stenning is back with a very useful piece of equipment saving the constructor much in the way of hard cash. This EPROM programmer does not require a programmed EPROM to work but instead relies on your friendly computer.
The AutoMate Mixing Desk Part 8b.. 24
Mike Mecchan continues with the EQ circuitry for the Automate Mixer
IR Remote-Controlled Lighting System Part 1.................................. 32
Use our cover PCB to construct this four channel receiver board for controlling this applicationoflight dimming. Ken Blackwell hasthe details.
FadingFestoonery.37

As the Christmas season is upon us, why not try your hand at giving the tree lights an extra bit of sparkle. Richard Sagar provides the talking point at the party.
Basic Multimeter Circuits ... 40
Ray Marston continues his Test-Gearseries with a look atmoving-coil meter circuits.
RS232 Interface Part 2.
A serial communications interface for your computer. Further details by Keith Garwell.

Regulars

Open Channel 4
News. 5
News Stateside 9
Read/Write 10
PCB Foils 54
PCB Service 56
Editorial

The 'Smart age'

Just recently the term smart has taken on a whole new meaning. The term as-cribed to the neat, well-dressed individual could fall into insignificance compared with the 'intelligent' use of the term. Soon, you will not be the 'smart Alec' for using the latest technology to be one step ahead, rather it's use will be required by you.

Although smart-cards have been in use in France mainly for bank transactions and cash flow, they are not in general use in the UK yet. Their ultimate introduction could be from a different angle your CV-ID card. information stored on. your plastic friend could be your medical, educational and criminal history, financial liability, insurance risk factor, to name but a few -
in fact your passport (or not) to the many activities in life.

Enter The Smart Book

About to appear is a single 3.5^{n} disk called a SMART book. Most of us with computers know how much text can be crammed onto a disk, but the cramming, stacking or compres-sion on these magnetic floppies bas got the stage where 100 colour images accompanying 100 pages oftext is possible.

The tools are now there for anyone in educational, medical and publishing environments to create your own books. One simple advantage to this electronic book as opposed to the CD-ROM is the simple application of updating, adding and correcting your latest publication. Here comes the revolution!

Every once in a while on a consumer magazine the likes of ETI, something takes the fancy of readers. Indeed, something I wrote in this column a few months back has generated more mail than anything else I've ever written. My original comment was quite flippant (as many of my comments are!) and was regarding dogs, and an electronic dog collar which vets in the States are currently (pun intended) using to train noisy dogs to keep quiet. Every time the dog barks it gets an electric shock. Eventually the dog learns to keep its big mouth shut.

First letter I received was from a dog collared human who was fed up getting attacked and bitten, as he made his way around his parish visiting his security-dog-guarded flock. He was most interested in whether ETI could publish a design for a dog repellent. He'd built one which had been published earlier in a rival magazine. Apparently it did work, but parts had been difficult to come by, and he wanted a new version.

As part of what has turned out to be quite an on-running saga, I asked other readers if they knew of, or could design, a suitable dog repellent which could be presented in project form in ETI. Although no such dog repellent has yet come my way I've had a significant number of letters from readers to suggest that such a project would be extremely popular.

Indeed, I've even had a letter from a British Amateur Electronics Club member who even seems to deny the existence of the original dog repellent reported to me. Apparently, the BAEC has conducted a forum over the last two years or so regarding pet/pest repellents and none of the contributing members could suggest an electronic circuit. The member even went on to suggest it couldn't be done. Well I've news for the member - the Post Office issues electronic dog repellents to its postal delivery staff who feel threatened by dogs on their delivery rounds. So an electronic dog repellent is viable, and maybe a more positive attitude should be adopted by BAEC members.

What's needed, is a hobbyist's version. Unfortunately, I've filed the original letter in that great filing cabinet called our local tip, and can't reply directly to the author to ask him for more information about the dog repellent first published in an electronics magazine. So, if he's reading ETI this month, could 1 ask him to get back to me regarding the first dog repellent. I'd like to see the design myself. Meanwhile, perhaps other readers could put their designing hats on, and suggest a new circuit.

Balancing Act

Other mail arrived on my desk recently, regarding one of the terrestrial television broadcasters' last main arguments against satellite television - NICAM. Now, NICAM is a clever way of adapting the old PAL television format, to give high-quality digital audio alongside the vision signal. It's, in fact, an ingenious method of upgrading sound, and suitably equipped television receivers can be used to take the PAL signal received from terrestrial transmitters and give excellent stereo sound.

Satellite television channels all come with stereo sound, so terrestrial television channels has more-or-less had to upgrade simply to compete. In the past, another of terrestrial television's arguments
against the need for viewers to go to a satellite reception system was that the standard of program-ming on satellite channels was not as good as that from terrestrial channels. Well, some think that's changing now -there are currently thirteen English-speaking satellite chan-nels from Astra, and while these channels tend to be quite specialised in what they transmit, they give a wide variety of quality programming (some of it indeed excellent). So, terrestrial television is about to be given a run for its money.

Considering this, it disappoints me to bear from unsatis-fied viewers who want NICAM. stereo sound - and have gone out and bought a NICAM equipped television receiver - yet still have to wait for the terrestrial broadcasters to upgrade their transmitters to be NICAMcapable. Worse, some view-ers have now been told no upgrade of their transmitter to NICAM is planned. I sympathise with ET! readers and others in this position because I suffered similarly myself until recently. Even now I can only receive the independent channels with NICAM. BBC channels aren't yet available.

The BBC proudly boasts - on its own teletext service that it currently serves over 90% of the population with NICAM. 1 only have one thing to say -only 90% ? Where does thatleave the other poor 5.4 million suckers?

Frankly, it is an appalling situation. The broadcasters have us believe reasonable national NICAM coverage is available, yet the situation is far from this. Worse still, there appears to be little or no effort particularly by the BBC - to expand towards a proper national coverage at a rate which could be even construed reasonable. The reader who wrote to me to express his disquiet against the situation lives in Hereford. I live in the East Midlands. We're not talking about being in the back ofbeyond here, although the BBC appears to think it.

NICAM is one of the terrestrial broadcasters last arguments against satellite television. Are they going to waste it? Remember that satellite television has 100% coverage.

Ringing the changes

Every now and again it becomes necessary to fine tune telephone numbers. Sometimes this is to incorporate changes in the telephone system brought about by combinations of small local exchanges, into a single and much larger district exchange. Typically, this entails only those users originally on the local exchanges having an extra digit applied to their user number. Sometimes, this is undertaken on a larger level where a single dialing code changes to incorporate expan-sion - consider the change a year or so ago when the London code of 01 was changed to either 071 or 081 .

Rarely, is a change undertaken like the one which is planned for April 1995, in which all dial codes in the system will have an extra digit I after the initial o. So, as examples, Birmingham will become 0121, London will be either 0171 or 0181 and Bristol becomes 01272. At the same time the international dialing code (currently 010) will change to 00 .

Although still well over two years away, April 1995 is the chosen date to allow manufacturers and service providers in the telecommunications industry time to modify equipment.

$=1$NEWS

THEY'VE GOT THE POWER

BK Electronics have

 doubled the power with the release of their new 1000 watt MOS-FET amplifier module. The OMP/ MF 1000 has taken over from the popular $\mathrm{OMP}_{4} 50$ as the flagship of the OMP module range.Delivering 1000 watts RMS into a ${ }_{2} \mathrm{Ohm}$ load, the OMP/ MF 1000 provides a no compromise price/power/ performance ratio and, as with all of the OMP range, its advanced MOSFET circuitry

achieves sonic clarity and reliability.
The OMP/MF1000 is priced at
$£ 259.00$, including V.A.T., plus $£_{12.50}$ delivery, and is available from BK Electronics, Units 1 \& 5

Comet way, Southend-on-Sea, Essex. SS 2 6TR Tel: 0702527572

NEW PORTABLE TRAFFIC INFORMATION SERVICE

The UK's first portable traffic information service that delivers live national and regional traffic information has been launched by Air Call Communications. The service
will be of benefit to businesses and individuals who rely on the road system such as salesimen and distribution, fleet and retail companies.

Air Call's AARoad-watch service sends live traffic information direct from the Automobile Association (AA), via Air Cali's national radio paging network, to be displayed on pocket-sized four line message pagers. The service operates day and night, 365 days a year. Subscribers receive traffic information relevant to the regional zone they are traveling in. As they travel through regions the traffic information received on Pagers will automatically change accordingly. There are a total of 10 regional zones. With access to live traffic information, drivers can plan routes in advance and avoid traffic congestion. To help with long distance journey planning, major national traffic incidents are sent to all subscribers

Information received on AA Roadwatch Pagers warns drivers of traffic congestion and details its cause such as burst water mains or traffic lights out of order. Where available, alternative routes are suggested

Information is transmitted within 60 seconds of it being received by the AA and updates are sent until the congestion clears. Users are notified of incoming information by a flashing red light or by an audible tone.
The British Road Federation estimates the cost of idle vehicles to be $£ 16$ per hour including man hours. The CBI estimates that traffic congestion costs British business $£ 15$ billion per year in higher fuel and vehicle mainte-nance costs and in lost man hours. Air Call believes that these costs can be reduced by using its AA Roadwatch service.
Subscribers can opt for either a fixed cost monthly rental package of $£ 19.95$ or they can purchase the AA Road-watch Pagers at $£ 160$ and pay a fixed monthly subscription of $£ 7.50$ for the information service.

SONY ANNOUNCE SMALLEST CAMCORDER YET

Sony has released details of the new CCD-TR8 camcorder. This is the smallest camcorder produced by the company to date and weighs 690 grams.

Set to transform the camcorder market, Sony have developed a Lithium Ion battery for camcorder use.

The NP-500 powers the CCD-TR8 and becomes an integral part of the camcorder

Lithium Ion batteries do not suffer from the 'memory effect' as do conventional camcorder batteries anddo nottherefore have to be fully discharged before recharging.

The battery can now be 'toppedup' at any time, without having to discharge it first.

The CCD-TR8 is a stereo Hi8 camcorder, which utilizes a high precision $113^{\prime \prime}$ CCD imager with 440,000 effective pixels, this provides the highest picture quality.

Full range auto focus is main-tained by way of the Sony Imner Focus system, manual control is possible with a dial at the front of the camera. Manual control over exposure and gain is also pro-vided in 24 steps, while program auto exposure features portrait,
sports and HSS modes.
The CCD-TR8hasan 8 x power zoom with a variable speed of 1.5-16 seconds while the lens is protected with an automatic lens cover, controlled by the power
switch.
Supplied with the CCD-TR8 is a Sony camcorder station. The station can be left permanently connected to the television, while the CCD-TR8 is clipped and
unclipped from its base. Also, when connected to the camcorder station, automatic charging of the battery takes place. For longer periods away from home the AC adaptor unclips from the
camcorderstation and can be used elsewherc.

The CCD-TR8 supplied with accessories, includingremote control is available in the UK from December.

TV ON YOUR PC!

magine Graphics Ltd has launched a television and video adaptor for use with all VGA based PCs. Now one monitor can be used to display the two different sources of information.

The Videomate, model JV819PT, is a real time video standards converter using the latest in microprocessor technology to change a low resolution, interlaced, composite PAL signal to a high quality, non-interlaced, VGA RGB signal.

The VIDEOMATE provides PC users with the ability to display TV and video signals on any standard VGA, SuperVGA or autosync colour monitor. Sound is also provided by an audio amplifier and built-in speaker. The user simply switches between TV/ video and a standard VGA PC display allowing the PC to carry on processing data or compiling a
program while the user watches TV or video.

Application areas include:education, training, corporate presentations, security, financial dealing rooms, factory floor automation and leisure.

An infra-red remote control is provided allowing users to automatically or manually tune and store up to 41 UHF and VHF/ cable TV channels, switch to a video source such as a VCR or camera, adjust colour, contrast, brightness and volume - just like a modern, sophisticated TV set. An on-screen display shows all these functions plus time of day and on-off timer.

The VIDEOMATE is priced at $£ 269+\mathrm{VAT}$.

For further details contact:
Norman Garland - Imagine Graphics Ltd, Tel: 0727830638

THREE NEW ELECTRONIC BOOK PLAYERS ON SALE FROM OCTOBER

back 8 cm CD audio singles, may be powered by a dry cell battery, in-car, with a car adaptor, or from an $A C$ power supply. Continuous playback of six hours is possible with six AA batteries.

Supplied with an AC power adaptor, EBIF lead and software for IBM and IBM compatible PC. the DD-DR 1 will retail for $£ 299.99$ and willbe available from November.

The DD-8 is a portable electronic book player with a fixed 4" LCD screen display and a frontloading mechanism for electronic book insertion. The screen can display ten lines of 30 characters. and graphics with a resolution of 256 (horizontal) x 200 (vertical) pixels.

A truly portable machine weighing only 450 g , the DD-8 will playback speech, musictranslations, or any other audio that is included in the text of the electronic books.

The DD-8 incorporates a book-
mark facility thatwill resumeplay where it left off. An auto scroll facility is also included, with variable speed control. The machine can be powered by dry cell AA batteries, in-car with a car adaptor, or from an $A C$ power supply.

Supplied with headphones, a video lead for connection to a television. an AC power adaptor and carrying case, the DD-8 is priced at $£ 279.99$.

The DD-10EX, a portable machine which features all the facilities of the above model, also has a backlit $3.5^{\prime \prime}$ LCD screen which flips up and is adjustable for angle.

The DD-10EX also operates fiom a supplied rechargeable battery, or dry cell batteries, as well as from the supplied AC power adaptor. Complete with headphones and video connectinglead, the DD-10EX will retail for £379.99.

The first of these models, the DD-DRI is an electronic book drive unit, without an LCD screen,
for use with a personal computer. An RS232C interface to link with an IBM PC (or IBM compatible) is included, with emulator software providing audio, text and graphics playback.

This unit, which will also play-

WORLD'S FIRST ROBOTIC EATING AND DRINKING MACHINE

The world's first robotic eating and drinking machine which will give a measure of independence to severely disabled people, was unveiled at Keele University in September.
A machine with a robotic facility to aid eating has already been commercially developed by Keele University's rehabilitation robotics department, and the drinking facility is another major breakthrough.
Now, with the help of a $£ 5,000.00$ CareGrantfromUnited

Norwest Co-operatives, the inventor, Mike Topping, plans further development of the machine which has already astonished scientists and medical engineers.
"We believe that with a little further development the machine will clean teeth, shave, apply cosmetics and give a facial massage. The machine already has the capacity to add seven other functions" he said.

Mr Topping, who has a computer background, has had to pick up engineering skills as he
has progressed, and his department has had to rely heavily on public donations to develop his project. Mike got the idea for the machine after seeing how some children at a special school were so depend-ent on others to feed them.

Be developed the machine during a research period at Keele University following a spell of unemployment. His. assistant on the project is a teenage electronics. technician, Robert Finney.

Mr John Thomson, chief executive of United Norwest
co-operatives, said the $£ 5,000$ grant was one ofthe largest grants made nationally as part of the Coop's community care scheme, and the feeding and drinking machine was one of the most exciting and rewarding projects with which they had been involved.
"It will prove a boon to severely disabled people all over the world and will be of particular help to people with cerebral palsy" he said.

AT \& T LAUNCHES HOBBIT MICROPROCESSOR

AT\&T Microelectronics has
launched the Hobbit microprocessor, a device which will form the basis for future generations of personal communicators.

AT\&T estimates that, by the year 2000, there will be around I billion potential users ofpersonal communicators, devices which will combine voice messaging, electronic mail and portable fax and modern functions, but which could eventually incorporate advanced features such as graphics and full-motion video communications.
"The technology to build superior mobile communications devices is here today," said William Warwick, AT\&T Microelectronics president. "You'll see the first Hobbit-based per-sonal communicators before the end of this year," he added.

The ATT92010 Hobbit processor, which was developed at AT \& T Bell Laboratories, combines high performance, low power consumption, and a full range of communications facilities. To support the processor itself, AT \& T Microelectronics has introduced four highly integrated peripheral support chips, which provide a complete solution for building a personal communicator. These include handing of external storage devices, power management, and display handling.
"Personal communicators represent the next step in giving

mobile users access to global communications services," said, Dan Lankford, head of AT\&T ME's. operations in Europe. "Europe has traditionally been at the forefront of communications technol-ogy, a lead which continues today. We see vast potential for these new devices, and we are proud to be the first to offer a complete silicon solution to personal communicator manufacturers."

The Hobbit microprocessor will be supported by Go's Pen Point operating system, which is tailored for the needs of both pen-based input, and communications devices in general. Pen Point provides task handling facilities, to guarantee that a personal communicator will simultaneously handle communications functions such as call (exception, and user functions such as writing a memo
a memo. The software also provides a consistent user interface, which will make communicators as easy to use as a standard telephone.

The processor is optimise for communications and portable applications. The $20 \mathrm{MHz}, 32$-bit Hobbit chip delivers 37 VAX MIPS per watt, nearly five times the figure for Intel's i486DX, and nearly 30 times that for Intel's 386SL. It is designed for fast context switching and interrupt response, so that the chip can quickly switch between various tasks, for instance editing a document, receiving incoming email, and sending a fax.

Because the ATT 92000 Hobbit chip set has been designed with communications in mind, and without having to retain backward compatibility with existing devices, it represents a very efficient silicon implentation
of the required functions. The CPU, for instance, consists of just 400,000 transistors: processors with similar performance com-monly exceed I million transistors.

To achieve the low power consumption necessary for battery powered mobile operation, the entire Hobbit chipset runs at 3.3 V , rather than the older standard 5 V . System software can stop the processor clock, putting the chip in a low-power standby mode which consumes just $50 \mu \mathrm{~W}$ (50 mil-lionths ofaWatt) of power.

AT \& T will supply a complete set of development tools for the Hobbit processor and its associated support chips, allowing designers to quickly realise real-world personal communicator solutions.

LOW COST DATALOGGER

Pico Technology Limited announce a new addition to their range of PC based data acquisition products. The ADC-16 is a high resolution data logger that plugs directly into the serial port, requiring no external power. It features 8 channels of analogue input at 16 bit resolution.

Unlike plug-in cards it uses no expansion slots making it easy to install and use with portable PC's. The use of a serial connection cable means the unit can be positioned near the experiment to minimise noise pick up.

It is supplied with PicoLog data logging software which al-
lows full use of the ADC-16's features: involving selection of resolution for each channel from 8 to 16 bits and either single ended or differential inputs. Each recorded sample can be the maximum, minimum or average of a number of readings, collectedover a period of a few milliseconds to a day. The software also includes a comprehensive range of graphical and text reporting tools.

The ADC-16 costs $£ 99$ (plus VAT) which includes software drivers and a manual.

Further details contact Pico Technology Ltd, Telephone 0954 211716.

UK FAILING TO EXPLOIT ITS TECHNICAL 'KNOW-HOW' SAYS IEE PRESIDENT

A
lthough it has long regarded itself as a nation of inventors, the UK is significantly failing to exploit its own technical 'knowhow' and expertise. It is also failing to recognise the importance of buying in the best know-howtechnology from elsewhere, and as a result is lagging behind its overseas competitors.

This was the message given by Professor Peter Lawrenson in his Inaugural Address as President of the Institution of Electrical Engineers (IEE), Europe's largest professional engineering society.

World trade in technical 'know-how', or disembodiedtechnology as it is sometimes called, now amounts to $\$ 34$ billion a year - more than the total of all intemational passenger fares - and is set to increase. However, Professor

Lawrenson warned, this trade is increasingly been exploitedby the USA, Japan and Germany.
"Although the UK" he said "has always given rather 'mystical' prestige to inventions and patents, it has failed to award similarprestige to innovative success following from patents and the exploitation of knowledge through design rights, copyrights, trademarks and licensing".
"For too long we have suffered from a belief that cleverness in technology, and particularly science, is the key to success. Rather it is the exploitation of technical know-how and innovation that leads to the creation of benefit and wealth".
"The emphasis being placed internationally on knowledge and innovation, technology property and technology licensing has in-
creased significantly within the last decade. Furthermore there is a close correlation between those countries with high and increasing patent activity and those achieving industrial success. Against this background the performance of the UK is disappointing, at the very least".
\div The percentage of patents granted in the USA to UK inventors shows a steady decline whereas those of our main competitors, Germany and Japan, show a significant increase, reflecting the importance being attached in those countries to new technical knowledge".

The new IEE President went on to comment on the current UK situation.
"Some companies" he said "do have a positive attitude to patenting and to know-how trans-
actions, including buying-in from outside, and are aware of the need to stay continuously abreast of worldwide best practice. Unfortunately, far too many companies seem to have no policy whatever in relation to patenting or licensing strategy"

ProfessorLawrensonended his Address with a call for a change in UK attitudes and for a new framework for positive action.
"There is a clear need for the implementation of vigorous policies to encourage the exploitation ofknow-how andtechnology, both by purchase and sale, to ensure that our manufactured products are truly of world class design and quality and that every possible compensation is made for high labour and production costs and for restricted R \& D budgets".

ELECTRONIC CAR IMMOBILISER

UK Electronics have designed and manufactured a new car immobiliser in conjunction with Acorn Auto Electrical Specialists. Using the latest technology, the two Oldham based companies have produced and launched this new security product in response to repeated customer demand.

Designed to stop vehicles going missing, 'Active 8 ' is inexpensive andeasy to fit. It works by cutting out two electrical circuits, normally starter motor and ignition, to make it doubly safe and secure. Another major benefit is that it is fully automatic: once the
ignition key is removed it is activated in 8 seconds, hence the name Active 8. Simple and convenient to use, with no remote controls to be carried, it works whenever the car is left - even when paying for petrol.

The system is de-activated by tuming on the ignition and pressing a virtually invisible micro thin pad, positioned for the driver's convenience. A new company, Active 8 Ltd has been established to market and distribute the immobiliser via car security specialists and other automotive outlets.

NEWS

..Stateside...

Advances in photo-detectors

 The recent discovery that porous silicon emits light has been followed by a number of breakthroughs, including an all silicon light-emitting diode. Researchers are now discovering that porous-silicon layers make supe-rior photo-detectors and high efficiency solar cells, and could tum out to be a superior optical recording medium. While the underlying physics that produces the unusual photonic effects is still a mystery, the new material is prov-ing to be highly cooperative in applicationoriented research.The ability of porous silicon to absorb photons surprised a
search group at the State University of New York at Buffalo, which has produced a metal/ porous silicon/silicon photo detector.
It was found that the MRS photo diode is comparable in performance to

commercially available silicon The MRS device is formed by photo diodes, but without needing an anti-reflection coating.

Standard silicon photo diodes layer etchea hilicon standar treatment to keep photons from The frame acts as one electrode bouncing off before they are
captured in the silicon lattice Experiments suggest that a porous-silicon layer is able to trap 100% of the photons striking it, eliminating the additional antireflection processing step.

Reducing cost of fibre optics

What it calls a circular-grating surface-emitting laser, which emits a circular column of light from its surface has been produced by Bell-Northern Research. The company said this improves the efficiency of coupling laser light to optical fibres. In contrast, conventional lasers generate a divergent light beam that requires precise positioning of the fibre to capture light efficiently.

Packaging that will hold lasers and wires in precise alignment still makes up more than 70% of the final cost of fibre-optic wiring. The Bell-Northern development makes it possible to relax these tolerances, and to substantially cut costs.

Turning compost automatically

A US company has introduced a machine that turns compost automatically. Key to its operation is a solar panel that charges a 12 V battery, which in turn powers a drive
mechanism. The heavy duty battery is sealed and will run up to 28 days without sunlight.
Called The Swisher Solar Composter, from Swisher Mower
and Machine Co, Inc., Warrensburgh, Missouri, it is made in various sizes, the largest of which is 184 gallons. A dual compartment model allows simultaneous composting

Sub-micron contaminants research

A recent $\$ 62$ million Cooperative Research and Development Agreement package announced by the US Department of Energy includes an initial $\$ 6$ million nine-month funding for a joint centre to be created by Sandia National Labs and Sematech.
The research centre will study A recent $\$ 62$ millio
the feasibility of 0.1 micron manufacturing methods, by looking at new ways to remove clean-room contaminants as small as 0.01 micron. Also being explored are ways to isolate particulate sources.

Wireless communicator

wireless, data-communications tool. The Videopad contains a microprocessor with 1 M -byte memory and uses a menu-driven touch screen that displays alphanumerics, icons, and graphics. Videopad is custom designed for the application and can be easily re-programmed. Models are differentiated by their communications
interface, either spread-spectrum radio or modem. In operation, a user enters data on the touch screen, then sends data to a receiver, which is connected to a host computer or network. Up to 100 Videopads equipped with spread-spectrum radio can communicate simultaneously with the receiver at distances
of up to $1,000 \mathrm{ft}$. The modem is particularly useful for store and forward applications, but can also operate in real time. Videopad is about one-third the price of notebook and pen computers and, at $18-0 \mathrm{z}$, one-quarter the weight. The batteries that power the unit are rechargeable.
and storing. the compost container is recycled galvanized steel and is square for mixing and folding. A patent is pending.

READ/WRITE

Throwing some light on the subject of LEDs

Having read the letter from I. Field in the September issue of ETI, I have researched the problem of comparing the light output of LEDs and lamps. The light output of lamps is usually stated in lumens, which is the luminous power or flux, while the
brightness of LEDs is stated in candela, the unit of luminous intensity.

It is possible to find the output of an LED in lumen's if the view angle is given. It must be assumed that the luminous intensity given is the average over this solid angle. Candela (cd) is another name for the units lumen's per steradian $(\mathrm{lm} / \mathrm{sr})$. The view angle must therefore be converted into a number of steradians. If ' v ' is the view angle, then the number of steradians is:

This number of steradians can now be multiplied by the number of candela to give the luminous power of the LED. This calculation can produce interesting results, for instance, it can show that an LED with a much greater brightness in candela than another LED, may actually have a lower luminous power.

All the units used so far have been photometric, that is they are adjusted to the response of the eye. The eye is at its most sensitive at 555 nm and at that wavelength one watt of radiant energy
is equal to 680 lumen's. On either side ofthis wavelength the number of lumen's per watt reduces according to the sensitivity ofthe eye. It is interesting to work out the radiant power of LEDs (in watts) as their efficiency can then be found.

I think the readership of ETI would find this an interesting topic for an article. I'd like to take this opportunity to thank you for producing the best electronics magazine in this country.

Robert Johnstone.
Worcester Park, Surrey.

Letters

Induction Loop Systems

In response to Mr Trayers request for information regarding Induction Loop systems for the hard ofhearing on the letters page of the December issue of ETI.

We have been manufacturing loop systems for the hard of hearing since 1989 and have many units installed at various sites including concert halls, Hospitals, Churches and Conference centres.

Mr Trayers might be interested in our equipment.. The PDA100 is designed specifically for applications such as his.

Grants are often available from the local authority to help with the purchase of loop products and VAT is not normally charged for personal purchases by disabled persons.

Steve Mehew, A VX Systems, Washington, Tyne \& Wear.

Audio response measuring system - Buylines

Somehow the Buylines section on of our two part project Automatic audio response measuring system in the November/ December issues was missed out.
We produce it here.

Automate Requirements

Firstly I would like to congratulate you on the improvement of the magazine.

The main point ofthis letter is to deal with the Automate Mixer Project. I must say it is quite an impressive project - one that a few of us here are especially interested in. There is one thing that worries me about the project
and that is the number of magazines it is going to take to see it through to the end. At this rate I would suggest that by the time it is completed the technology will be out of date that one would be better off by buying one off the shelf

Why not give your readers the option of buying a manual containing the complete documentation for the project. I know that I would be willing to pay in the region $£ 25 \cdot £ 30$ for

Buylines

The address for all orders is:
Ralph Mantel,
Pipinstr. 23
W-4790 Paderborn,
Germany.
The prices for the UK in pound sterling are:
Compensated measuring microphone with cable and plug £39 Software $£ 29$
PCB with printed overlay $£ 19$.
All three items together for the favorable price of $£ 79$ (saving £8)
Complete kit or ready built PCB please enquire.
such a document. I myself are in need of a decent mixer for my MIDI based system, I know of a band here that is in need of a decent mixer for their events, and there was inter-est expressed by the campus radio station here who could use the mixer as part of an automatic music request system.

David Ingles
Lancaster University Points noted Ed

SECURITY EQUIPMENT

INSTALL YOURSELF \& SAVE! SAVE!

Complete range of security parts to protect your house and property. Passive infra-red sensors ultrasonic movement detectors, control panels, cable, etc etc supplied with instructions.

QUALITY AUDIO MODULES

Power amplifiers from 10-25W, mixer units, pre-amplifiers etc. Build your own disco units, guitar amps, public address systems etc, etc.

call for FREE LITERATURE Today

AUTONA LTD TEL 084446326
51 POPPY ROAD, PRINCES RISBOROUGH, BUCKS HP17 9DB

Hesing Technology

TEST EQUIPMENT
Supply
Maintenance
Commissioning.

SYSTEM CONSULTANCY

Replacement Parts
Supply of Service \&
Operators Manuals
Components

Distributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

MaCROWAVE CONTROL PANEL Mans apermed, with much sminctioe Corpobe with 4 dipe dimpley, digital clook and 2 roley oupusis one for powis end one lor pulsed power (progremmebli).
 rol lp 181. Goocd expen menterar boperd.
ABRE OPTC CABLE Standed optical fibrees sheathed in bleck PVC Five mutre lengith 5700 rot 1 P2osi or 52 a matre. 12V SOLAR CELL 200mA outun ided tor vickio clarging ote 300 mm aquere Oun pree $£ 15.00$ row 15PAZR GMen Uo D 15 S.
CASBVE INFRA-RED MOITON SENSOR

 coverige manus overice maing cormion wuh onteed Now only $\Sigma 19.00$ rell 19029
Pack of mo PAR38 bulta for moove Un! $£ 1200$ rol 12Pa3R VIDEO SENDER UHTT Transmi both evdo end video signale
 Etanderd TV wit wath a 100 rongel (Unt TV to a spere chemnol.
 FM TRANSMU TERRowser in a cind and worting $13 A$ adapler tove is mmine diven) $E 28.00$ rot zepar Good renge
 takies with a range of up to 2 biomarres. Units measicte in in 2300 re 30 P 128
rangel 12 renerin pone
 12 BAND COM price E15 rwi 1sp 12 AR
12 BAND COMMURCATIONS RECEIVER. 9 shor iine
 buthery, Complete with shoulder atrep ard
1gP1AR idoal tor fisoring at owerthe wortd. CAR STEAEO AND FM RADOLO cort
CAR STEREO AND FM RADIOLow cost ateroo cystien giving 5 wate pee channel. Signal to noies nroo bettor than 4Sob. LOW COST WAULIE TALKIESP er of lamen CDearacd LOW COST WAUKJE TALKIESPar of bartary aporated spson rose for ganden uso or as an phev Exiond try.

 TOWERS INTERNATIONAL TRANSISTOR
GOWDE INIEALECTOR GUIDE. The ull mate equia ions book huwed. $\varepsilon 20.00$ rwi 20P32R GEGGER COUNTER KTT.Complet with tose. PCB and al conpo
 any FM racio ev batery reatd $\varepsilon 500$ rel SP158. 35 mm square. FM 日UG Bull and tected aponor ov operation $£ 14.00 \mathrm{rel} 14 \mathrm{P} 3 \mathrm{~h}$ COMPOSITE VIDEO KITS. These conver composie vidso into separase H syna V gync and ndeo. 12 DCC . 88.00 rot $\mathrm{BP} 39 R$. SINCLALR C5 MOTORS 12 v 29 A (NW Load) $3300 \mathrm{rpm} 6^{\circ} \times 4^{-1} 14^{-}$ Of shon Now 220.00 rot 20 P 2 eR Limied sloce.
As mow but wint frod 4 to 1 infine riducion box (0000 mm) and cootrad mion toll drive cog $£ 40.00$ rel 40PBR 800 ppm.

 SOI AR POWERED NUCAD CHARGER Chis 4 AA niceds in 8 have Brand new ondcesed $\varepsilon 6.00$ rof 6 F3R. $2 \times C$ coll model $£ 6.00$.
ACORN DATA RECORDER ALFSO3 Made for Bec computer but seritabte fox otrera. Inctucos mains edaptor, kede and book £15 00 rol 15P43R
VIDEO TAPES. Three hour emperior quality tapes made under romere fiom the famares NC cormpary. Pack of 10 tapas New low price $£ 15.00 \mathrm{rmf}$ J15Pa
PPGUPS LASER. 2HW HEUUM NEON LASER TUBE BRAND NEW FULL SPEC 540.00 REF $40 P 10 R$. MAINS POWER SUPPLY KJT E20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE $£ 75.00$ REF 73P4R. 12 TO 2302V INVERTER KITAB © upplied it with handio up to mbout 15 at 2200 but witha lager tyanstormerit will handbe 80 watra. Baic

VERO EASH WIRE PROTOTYPING SVSTEMLdoal tor deeign-

${ }_{25}$ WATT STEREO AMPURERC STROA3 With the addation of a hanatiul ot conteononts you can build a 25 watt amplifer. £4.00 roll 4 Posp (Ciraun dis included).
BARGAIN NICADS AAA SIZE 200 MAH 1.2 V PACK OF £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P18R FRESNEL MAGNIFYNG LENS $83 \times 52 m m$ § 1.00 rol BDee7R 12 V 19A TRANSFORMER EX \bullet quipment $E 2$ but OK.
ULTRASONC ALARM SYSTEM Once sgen in sock those unie consing of a duccetor tha plaginite a 134 modet in the ares io

 ovsiom now onty \& 19 III
286 MOTHER BOARDS. Brand naw and lested comploto with rechnical manual. E34. 00 rof L34P!
UMVERSAL BATTERY CHARGER,TEKos AA's. CQ, O., and pp3 niceda Hode up 10 Y bancias monce. Now and casod, mana

IN CAR POWER SUPPLY. Pugs into ogar socker and grem
 RESLSTOR PACK. 10 I 50 w

OUICK CUPP A? 12vimmermon haceor with bead end cigor fighter Plug E3 00 ov 3 POPA. Doel lor tos on the Movel
 IBM PRINTER LEAD. (D2S to contronics plegi) 2 motre paraliol
 COPPERCLADSTFIP BOARD $1 T^{\circ}$ I 4 "of ${ }^{\circ}$ " Prich varo boand.
 STRIP GOARD CUTTING TOOL-S2 00 rol $2 P 3 S 2 R$.

WINOUP SOLAR POWERED RAOIOI FMAAM Rad thes to chargonde benariot Complefo with hand PC STYLE POWER SUPPLY Mede ARTEC 1 10vor 240 vinpur, +5 © 15A, 120

UHFNHF TV RECEIVERICONVERTER
CONVERTS COLOUR MOMTOR INTO A TI!

c9.00

TELEPHONE HANDSETS

TObrand now handecte wilh mic and speakeronly £3.00 rat3P 146 R EENCHPOWER SUPPUES
Suparblymade luly cased (metal) giving 1 2vat2Apluas BV oupply. Fueed and ehor orcuit protecied For seleatsees then the cost of the casel Our pricela $\varepsilon 4.00 \mathrm{rel} 4 \mathrm{P} 103 \mathrm{R}$
SPEAKER WIRE
Brown twa corvinaulatod cable 100 foot for £2.00REF 2P79R DISC DRIVES
Cusomer refumedu nita mixed capactoses (up to 1. 44M) We have not sored these so you jutt get the next one on the shah. Price is ondy $\Sigma 7.00$ ref 7P1R (worth it even ss a stripper)
MCROSCOPE 1200X MAGNIFCATION
Brend now complote with thintp hakchery, shrimpe, prepared eldos. bigh ece. 29.00 rel J 29 P 4 .
LIGKT ALARM SYSTEM
Small cased alarme that monitor a narrow beam area for sudaten chenges in ight lovel. Complate with ciron that sounds for a presel JOYEALLS
Back in mock popular Commodoroutan equiv (replace mandard
jovetick) $£ 5.00$ rof J5P8

AMSTRAD 1640DD BASE UNITS
 erand new and cased
 TWO BUILT IN $51 / 4$ " DRIVES

MOTHER BOARD WITH 64OK MEMORY
KEYBOARD, MOUSE \& MANUAL
OUR PRICE JUST
£79!!!!

CAR BATTERY CHARGER
Brend new urits completo witi, panel meter and leada. 6 or 12 V outpur 57.00 rel J7P2
CUSTOMER RETURNED SPECTRUM +2

or 2 lar £40.00 rof 440 P 4
CUSTOMER RETURNED SPECTRUM +3
Complete but sold as eeen so may need attintion £25.00 ref 125P2 or 2 for $£ 4000$ rel J40Ps
SCART TO D TYPE LEADS
Standard Scart on one end. Hi density 0 ype (atandard VGA connector) on the other. Pack of ten leads conly $£ 7.00$ rol $7 P 2 R$ connector) on the other Pack of
OZONE FRIENDLY LATEX
250 m botte of fiquld rubber setsin 2 houre kesifor mounting PCB: fixng wres oc. E2.00 eech re! 2P370月

VIEWDATA SYSTEMS

Brand nawunits made by TANDATA complde with $1200 / 75$ built in modem infer rad momote controlled qwarty keytoand BT eppproved Pressolconpatible. Centronics printerport RGB colour and compoeHe outpur (wothle with ordinary tolovimon) esmplate with AC STEPDOWN CONVERTER
Cased units that conver 240 V to $110 \mathrm{v} 3^{-1} \times 2$ with mains input load and 2 pin American outpul socket (sultabie for realative loads only) our price E2.00 ref 2P381R

CURLY CABLE

 on the other idesl for foy aticks etc (6 core) $£ 1.00$ each rel CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 irysucke only $£ 200$ rat 2P382R
BUGGING TAPE RECORDER
QUGGING TAPE RECORDER
Small hand held caeselte reco riters that only operate when there is soundthen turn oll 8 aeconds atier so you could leeve if in room all doy and tuat rocord any thing that
Contains 8 soler coll, motor, fools, ien etcplue educestonel booklat

296 АТ PC
286 MOTHEA BOARD WITH GAOK AAM FULL SIZE METAL GASE, TECHNCAL MANUAL, KEYEOARD AND POWER SUP. PLY E139 REF 139P1 (no lyo cords or divee included) Some
matal work req'd phone for detalle.

> BULL ELECTRICAL
> 250 PORTLAND ROAD HOVE SUSSEX BN3 50T TELEPHONE 0273202300 MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDEA PLUSC3.OO POST PLUS VAT. PLEASE ALLOW 7. T0: DAYG FOR DELVEAY

FAX 0273323077

CAMERAS Cumbrrer ratimed unike 3 or E 10 Nol L10P2
STEAM ENGINE Standerd Mamod
eng ne complote with boiler pieton of E 30
rel 30p200
TALKING CLOCK
LCDIdiaplay, alem, batrery operate
Clock will announce the lime of the
pule of a buraion and when uhe
shorm is dive The slerm is s micheble
HANDHELD Cock orom ngell4 00 H 14 p200 R
Smell unts tha are designed 10 hotd over the math prece of a telephons to eand MF dialing tonce liseal for the remecte control of onewer machinee. $£ 5.00$ rol SPZOMA
AMAZNG TALKING CONBOXI
Fully programmete taking. lockeble coinbox BT approwed, ro1ail

ANSWER PHONES ETS

Custamer reurred units whi 2 feulle one we tel you how so fir the other you do your sell 218 of J1 oP2 or 4 for 260 mol Jeops ET epproved (rotil price $£ 70$ osh mech)
COLYODORE 64 MMCRODRIVE SYSTEM
Corplets cased brand new dnued with cartidge and ectware 10 imes lasier thin tape machneas works with any Commodore of exup The orginal price for theep was $\varepsilon 4.00$ but we cen of er them to you at only E25.001 Rel 2sP1R
OO WATT MAINS MOTORS Ex equipment but oh Good general pupose unit 5000 rei Fop 1
H A SPEAKER BARGAN Orginely made for TV ant ongy conemit of a $4^{-1} 10$ west $4 R$ speater and $2-140 R$ ineetw. Hyou want two of each phes 2 of our creane you can have the for for $£ 500$ rol FSP2.
EMERGENCY LIGHTING SVSTEM
Fully cased conplate with 2 adumteble hood bghts. All you needis a etanderd 6 v lesd acid harler. Our phoe is insi $£ 10$ rol J10Pzo AMS TRAD 464 COMPUTERS
Customer retumed units complete wh a moniwor for juat E3SI These unlts are aold as fauly and are not meurnable.
WOLSEY DMAC DECODE RS
Medefor iretelartion in howe etc a the main sat recaiver no date but
 Why COHO qualty unit E\%O
SWTCHED MODE PSU
Fully cased unit $215 \mathrm{~mm} \times 1$ 45mmus5men giving +5. +12 and +204 well mede case complata whth mens ised. Es tor Kips. REMOTE CONTROLS
Brand now intra red CONTPOLS onginaly mede for controling WOLSEY aspalite recaivere E2 ear ref K2P1 or 20 for K 99 ral K19P1. TELEPHONES
Modem 1 piecephones BT approved Last no redial $\mathrm{\Sigma 8}$ rel K8P1. 386 TOWER SYSTEMS
Tower case 520 ruinamiriom. 21 ins, wethe. 275 mpsu , IEC in driver, paraliel and serial porta There ane soveral ICs miacting

DOS PACKS
Compleve sut of PC discs with MS DOS 3.2 Lacomative buic.
 CORDLESS TIE CLP MACROPHONE
transmite betwoen 88-108MHZ FM 5 2cm $x 2 \mathrm{~cm}$, Uses L R44 wotch batery. Camplote with wire aenial \& bathery. Ei6 rof K16P1.
CHASSIS MOUNT TRANSFORMERS
CHASSIS MOUNT TRANSFORMERS
240 v primer. 12 v conder 20 VA EI rel heos
$240 v$ primary. 16 v geondary 10 A (split winding). E 10 ral L10P1
100 RED LED PACK (5MM) E5 REF KSP? 100 RED LED PACK (5MMI E5 REF KSP2
12 V STEPPER MOTORIdeallor modets etc. 3° dia $E 2$ rel SePit. INFRA RED BEAM SWITCH24v DC 5m range sourco is senior housed in plastic case E12 mf J12P1.
CAPACTTOR BARGAIN PACK 100 CERAMICS E2 REF J2P2. SPECTRUM JOYSTICKS TWO FOR \&S REF JSP2.

AMSTRAD PC CASE, POWER SUPPLY AND 1.44
FLOPPY DRIVE ALL THS FOR E4A REF L44P1
BUMPER PACK NO 110 of our popular E1 pacts iox ing ES ar
CHMPER PACK NO 225 of our popular $£ 1$ packs for jest $£ 12$. Our thoice of contens.
LCD 1×32 DISPLAY Bargain pnce of just 83 completo with tonde of dete for a similar displey. £3 ral L3Ps
USEFUL POWER SUPPLES. 18v 900 midc cuput (rogulated) thy caeed with mains cable and DC oul cable 56 rel K6P 1 UNCASED PC POWER SUPPUES. Standard PC PAU without
 RADAR DETECTOPS .Detects X and K bends (ie speed traps). Not legal in the UK so only mallebie il youlniend 10 "exportit, Ese Not legalinn
100 WATT MOSFET PAIR.Same spec at 2Sh 343 and 2S.4413 (8A.140v, 100w) 1 N ch annd and 1 P channal. C3 a pair rel J3P9 LOW COST CAPS. 1,000 capealor \&3 (33ul 25v) rol J3P10. VELCRO. 1 matre begth 20 mm wide, blue. C2 rol J2P16
JUG KETTLE ELEMENTS. Good generel purpoe neathg eloMent jut E3 oe rel E3Ps or 5 for $£ 10$ rol J10P3
VERY BIG MOTOR 200vinulution : 1 kw 1410 mpm 10 x P GEC 1"keyod thith Brand now 295 rel J9sp1
BIG MOTOR. z20-240v1425pm2 8A SFAr Mayed unst GEC 65 $\times 8^{\circ}$ complate with mounsng plewe. E30 rel J38p 1
SHALL MOTOR. Electrolux 180 wath 3,000 rpm. 220-240 5 sis shaft prection buill $\varepsilon 18$ rel J18P1.
EPROMS 27CE4 PACK OF $10 \varepsilon 7$ REF M7P1.
EPROMS 27C256 PACK OF' 10 cя REF MQP1.
EPROMS 27C512 PACK OF 10 £ 10 REF MOP1
MODEMS FOA 11.25 ? Theee medome are aribto for winpoing only hunce they are onty 4 for CS rel Jsps
SOUAR POWERED WOOOEN MOOELS. COMpHe wh tor
 TV SOUND RECEVER FUly cesed, mens powered, that need a peaker for mend alon euseor could be mred into hif. $£ 12$ rof 12922 SOUND OPERA TED LIGHT. Clap your handa and light comes on. Turna ther proset delay. (4 AMis reo'dif $\Sigma 2$ rel J 2 P 3 FERGUSON SRBI REMOTE CONTROLS. Brand new Unite deal lor a epare or have two remolel ICA each.
IN SUSSEX? CALL IN AND SEE US!

Macro

Heliograph

 ReceiverInvestigate sub-sonic low intensity frequencies with this receiver. I P Wilkinson provides the details.

Plop, whine, click, growl, buzz, (deep and high) and other suchsounds are the sort of signals thatcan he heard on the headphones plugged into a Macro Heliography receiver. These signals are the result of sunlight being reflected from the shiny membrane, com-prising the wing or wings, of a flying insect, much like the heliography used at sea.
This tiny amount of reflected sunlight is observable, after amplification, and can lead to many hours of fascinating study in wing beat frequencies, and thus the 'signature' of particular species of insect. Since there arc more than 400

varieties in our countryside, this adds up to a lot of sound effects.

The essential ingredient required is of course sunlight. This has to be of sufficient strength to at least, cast a shadow. I have devised a simple table, for reference see Table 1.
Sun factor 1 is the PSD (Photo Synthetic Datum) defined as the, minimum light level required for photo synthesis

Flg. 1 Circuit diagram of receiver
activity in plants. Safe sunbathing for sensitive skins of no more than 20 minutes a day, a SF of 2.5 is reasonable.

Looking at a shadow, estimation becomes quite easy with practice, and is born out by the signal results. For example at SF3 a hover fly, species Episyrphus balteatus, is detectable at a distance from the receiver of about 15 feet.

Butterflies are not easily detectable mainly because the wings are less reflective and show moving. At best at SF5 you might hear the odd Plop! sort of sound a small butterfly signature makes a few feet away.

Given the high resolution and sensitivity of the MH Rx other 'things' are detectable. A dew laden cobweb vibrating in the wind orunder the movement of the spider or the spiders lunch can register. No doubt other things will come to mind, ripples on water etc.

Construction of the receiver is simplicity itself. Just two ICs and a few components mounted on strip board, a plastic lens aphoto detector and a box to stick it all in. Mount the box a frame much like a camera on a tripod, connect phones and battery, 'aim' at the local flower patch or pond, sit back in the deck chair relax and listen to an aphid winging its way to wherever aphids wing their way to on a balmy sunny day.

Sun factor	Amount of Light	Signal strength.
0	No shadow	Nil
1	Very faint shadow	Poor
2	Shadow	Weak but usable
3	Good shadow	Fairly good
4	Strong shadow	Good
5	High contrast shadow	Very good

The detection corridor is determined by the cross sectional area of the lens and the overall gain of the system. So the aphid winging its way at say, 10 mph , is not going to impress you for long. A hover fly is more entertaining as it generally stays in one place.

If you imagine you are looking down a tube 20 feet long and some few inches in diameter, and an insect can fly from from one side, and out of the other, you might get a better impression of what I mean. Aiming this invisible tube at say a cluster of flowers where the insects are flying in circles then signals are going to be better maintained.

So now we come to the lens, and bearing in mind the comments in the last paragraph, it needs to be a little larger in cross section than your average camera lens. It has also, in photographic optical parlance, got to be a 'fast' lens. Able in other words, to be usable at low light levels.

Now this might sound like a tall order in terms of expense, weight, etc. The lens happily for us, is a cheap plastic one, and low in the weight stakes, and 'fast'. A Fresnel lens, commonly used on overhead projection lamps, varying around 8 to 14 inches square, with a short focus satisfies all the criteria I have outlined. For those of you with a photographic bent, I am talking of an f stop faster than a 1.2 probably less than a 0 NE , with some of these types of lenses.

A perfect optical focus is not required, a pin photo diode not being so demanding as the human eyeball. Thus saving in cost compared with high resolution glass lenses is achieved.

Deciding on the cross-sectional area of the lens, will determine the size of the housing for it, and the overall bulk of the finished project. I started off with a $13^{\prime \prime}$ lens, which I still use, but one can get by quite well with a $5^{\prime \prime}$ lens, a considerable saving in the enclosure materials.

Reference to Figure 3 gives you some idea as to the general fabrication of the enclosure, using thin ply, dowel and glue. Build the unit around the lens, after determining the focal length. Focus the sun on a bit of card and measure the distance from the back of the lens to the card, and make a note. Adding roughly a quarter of an inch to this focal length, will give the position for the photo diode.

Fine focus for best results is achieved by adjusting the position of the Veroboard, when mounting inside the enclosure. A target comprising a model electric motor with a 1" tin plate propeller set some 15 feet away (in sunlight SF3 or greater) will provide an ideal focusing and test rig.

Some method of sighting is required, and reference to Figure 2 shows a crude but workable method using basic hardware. Adjust the rear sight using the motor simulator as the target. Once the focusing and sighting arrangements

Fig. 2 Case details and sighting arrangements
have been made secure with glue and pins to prevent disturbance to these settings.

Build the MH Receiver on an area of Veroboard to fit snugly inside the enclosure vertically as shown, with the photo diode centrally placed on the lens axis. (Figure 2). Recess the lens well back inside the enclosure approximately 2 inches on the base. It is wise to use the MH Receiver in a sheltered place, from inside an open window, under a tree to avoid accidental direct exposure to the sun.

Assembly of the electronics is simple enough, start off with the pin diode mounted in the centre of the strip board and check alignment in the enclosure with the lens axis, the actual mounting of the board on two blocks of dowel for support is the method I used. Commence with mounting the IC socket for IC1 orientated in such a way, that pin 14 is closest to the anode of the pin diode photo detector. Cut away any excess track to avoid stray pick up. If for some reason you want to mount the diode on a pillar, then ensure the lead from the anode is kept short and well screened.

IC2 you can solder straight in to the board, screening the lead if a long run, to pin 3. RV1 can be a preset mounted on the board, adjust for minimum volume consistent with a

reasonable level of output.
D1 is for reverse polarity protection for when running this receiver from a battery out in the field or garden etc. The gain of the receiver is around 70 db , and like most high gain systems, noise starts to rear its ugly head, especially when we are amplifying what after all is a change of leakage current in a reversed biased diode, a notorious source of noise, which in this application increases with the light level on the diode.

The RC network between pins 11 and 12 of ICI reduce this noise factor somewhat, at expense of bandwidth, C 1 being the most critical value,
should you wish to experiment. C2 is a decoupling capacitor and is located as near to the IC pins as possible. All resistors are $1 / 4$ watt, all capacitors polyester or min layer types. Headphones are better for this sort of activity, and can be directly connected across the loudspeaker of 16 ohms. RV2 is set to about 80 k on the wiper. This provides about the right level for tape recording the various sounds detected. A supporting frame to allow hands free operation is recommended, much along the lines of a camera tripod. I utilised part of an old bar stool with an extended centre column, and mounted a bracket at the top of this to, give azimuth, and tilt capability.

This project would provide a challenge in building over the winter months ready for the forthcoming summer. Take care with cutting the lens down to size, especially if it is the two layer Fresnel type, to avoid getting chaff between the two slices. Clamp together when sawing, then glue round the edge.

Source for lenses: Anchor Supplies, Nottingham. Large (worn round the neck) plastic reading lenses, are an alternative.
Good luck and good hunting

PARTS LIST	CAPACITORS	SEMICONDUCTORS	
RESISTORS		IC1 TBA2800	
R1 100R	C4 ${ }_{10 \mathrm{n}}$	IC3 LM78L05	
R2 270R	C5 470n	D1 Photo Diode	
R3 ${ }^{8 \mathrm{k} 2}$	C6 4n7	D2 1 N4148	LS1 loudspeaker 16R or headphones
RV1 ${ }_{\text {RV2 }}{ }^{2 \mathrm{k} 2} \mathrm{log}$	${ }_{C 8}{ }^{220 u}$		
RV2 470k			

EASY-PC PCB and Circuit Diagram CAD

Forget using tapes and light-box! Create your Circuit Boards using CAD - like the professionals.

- Runs on PC/XT/AT etc. with Hercules, CGA, EGA orVGA display and many DOS emulations.
- Design Schematics Single and Double sided and Multilayer boards including Surface Mount.
- Standard output includes Dot Matrix/ Laser/Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill
- Extremely powerful.
- Very easy to use.
- Not copy protected.

Over 13,000 Installations in 70 Countries Worldwide!

A project as an aid to other projects. Paul Stenning provides an excellent design and an invaluable aid when a pre-programmed device is required.

EPROM Programmer

There has long been a requirement for a cheap straight-forward EPROM Programmer, suitable for occasionalhome use, without the extrafeatures found on many commercial units. The EPROM Programmer presented here will program the standard 27 family of devices, from 2716 to 27512 , and can be used with any computer which has an RS232 serial port I have avoided the usual "Catch 22 " situation of requiring a programmed EPROM to make the EPROM programmer work! This design uses readily available components to reduce the likelihood of obsolescence.
The unit is powered from an external PSU, since this is cheaper than buying the individual parts! One of the low cost unregulated types with an integral mains plug is suitable, providing it is capable of supplying between 10 and 18 Volts. DC at 500 mA without too much ripple, the voltage regulator IC21 will run cooler if the voltage is nearer the lower end of this range. The types sold for powering electronic keyboards appear to be the most suitable. The prototype is powered by an old Sinclair ZX81 PSU (type UK.1200).
The programmer itself is dumb and is fully controlled by the host computer via the serial port. Control software can be written in BASIC, and a suitable listing for IBM PC compatible computers is given later. Additional software listings are given for initial testing, and to convert to and from standard Intel-HEX files. A disk is available from the author, containing these programs, as well as comprehensive menu driven control software and a selection of useful utilities, see Buylines for details.
Please note that the programming algorithms used may not be exactly as specified in some EPROM manufacturer's data sheets. Because of this the unit cannot be guaranteed to program every device successfully, however no problems have been experienced to date.

HOW IT WORKS HARDWARE

The circuit may appear complicated initially, however a comprises of several relatively straight-forward sections. It is not necessary to understand the operation of the circuit to build and operate the unit with the software given, however a good understanding is most useful if you wish to write your own control software.

Note that when a number is followed by an ' h ' in the following description, for example 27 h , is a hexadecimal number, and when a number is followed by a ' b ' it is binary, other numbers are decimal. Any signal name which is followed by a " - ", for example STROBE-, is active low, on the circuit diagram this will be shown with a bar over the name.

Useful information on EPROM pin-outs and programming requirements can be found on pages 498-499 of the 1993 Maplin catalogue, the project was designed around this data (note that the Maplin programming information for the 2732 is incorrect).

IC2 and surrounding components generate the Baud Rate dock signal (CLOCK1) for IC3, with the rate selectable by LK1. The CLOCK2 signal is used to produce the programming timing pulses, see later. IC3 is a 6402 "Universal Asynchronous Receiver/Transmitter" (UART). In this application it is configured for 8 data bits, 1 stop bit, no parity checking. Note that unused pin 2 is taken low, this pin is used on the RCA CDP1854 to select standard operation mode, this device is otherwise pin compatible can therefore be used in place of the 6402. IC3 is reset by IC4:A and associated components.

When serial data is received on pin 20 of IC3, is converted to a parallel output on pins 5-12 (RO-R7), and pin 19 goes high. A short time later (set by R4 and C8) pin 18 is taken low, which clears the high on pin 19. The pulse so generated on pin 19 is referred to as the STROBE signal, and indicates to other parts of the circuit that data has been received and is valid.

If pin 23 of IC3 (SEND) is pulsed low, data on pins 26-33 (D0D7) is transmitted in serial form on pin 25.

Fig. 1 Serial Interface Circuits

IC1 is the serial line driver/receiver, which converts RS232 standard serial signals to from standard 5V TTL levels. This IC contains voltage converters to produce the required transmission voltages (9 V) from a single +5 V supply.

In thisapplication the 8 bitreceived data is used as 4 data bits on RO-R3 and 4 control bits on R4-R7. 3 of these control lines (R4-R6) are taken to a 3 To 8 Line Decoder IC5. The STROBE signal is taken to one of the Enable lines on IC5, thereby causing the outputs from this IC to be short pulses. For example, If $00 h$ is received lines R4-R6 will be low, STROBE will pulse high and consequently pin 15 of IC5 will pulse high and the remaining outputs will stay low.

The remaining control bit (R7) controls the power to the EPROM, when it is high all power is removed from the EPROM socket so the device can be inserted or removed. When the device is being read or programmed this line is taken low.

The 4 data lines are taken to the inputs of 4 Quad D-Type Latch, IC6-IC9. The Latch Enable lines on these ICs are connected to 4 of the outputs of IC5 (YO Y3). Data can therefore be stored in these latches by seooing the required data on lines R0-R3 and the latch number ($0-3$) on lines R4-R6. The data will be continuously available on the latch output lines Referring back to the previous example, if OOh is received, lines R0-R3 will all be low, and line Y0 will pulse high, storing Oh (0000b) in IC6. Similarly seooing 35 h will store $5 \mathrm{~h}(0101 \mathrm{~b}$) in IC9.

Latch IC6 isused to hold the least significant nibble (4 bits half a byte) of the data which will ultimately be programmed into the EPROM, whilst JC7 holds the most significant nibble. IC5 holds the EPROM type information (see later), and IC9 holds 4 setupbits. Bit 1 of IC9 controls whetherthe unit is inRead orWrite (Program) mode, bit 2 sets the programming pulse length to either 1 or 40 milliseconds, bit 3 sets the programming voltage to either 12 or 21 volts, and bit 4 sets the supply voltage whilst programming to either 5 or 6 volts. Note that the latches have active-high and active-low outputs, and one orboth may beused.

The data outputs from IC6 and IC7 are taken to a tri state buffer (IC10), which in turn drives the EPROM data lines. IC1 O is controlled by the RN-line, such that it's outputs are enabled in Program mode and tri-state in Read mode

The EPROM data tines are also connected to the data input lines on the UART (IC3), and the Y7 output from IC5 is connected to pin 23 of IC3 (SEND). Therefore if 70 h is received, the data currently on the EPROM Data Lines is transmitted backalong the serial interface to the computer.

The EPROM Address lines are controlled by counters IC11 and IC12. These are connected to lines Y4 and Y5 from IC5, and are therefore cleared to 0000 h by sending 40 h and the count is incremented by sending 50 h . This approach is quicker than having to set the actual address each time since it only requiresone byte to be sent along the serial link.

Line Y6 from IC5 (PROO) is used to start a programming pulse. The programmingpulse (either 1 ms or 40 ms) is produced by dividing down the CLOCK2 signal. This signal has a frequency of 19.2 kHz (24576 MHz divided by 128), which equates to a period of 52.1 us. This is fed to counter IC13, which is normally held reset by the Set Reset flip-flop built from IC15c and IC15d. When the PROG line pulses high the flipflop changes state and the counter starts counting the CLOCK 2 pulses. If a 1 ms pulse is required, pin 5 of IC14awill behigh and pins 12 and 13 of IC14b will be low. Whenthe countreaches 19 (52.1 us x $19=989.9 \mathrm{us}$), all the inputs of IC14awill behigh,it'soutputwit therefore golow, changing the state of the flip-flop again via IC16d, and resetting the counter. A 0.99 ms pulse will therefore be present on the output of the flip-flop, 0.99 ms being well within the $1 \mathrm{~ms}+/ 5 \%$ specification. If a 40 ms pulse is required IC13 counts 768 CLOCK2 pulses (52.1us x 768 $=40.01 \mathrm{~ms}$)

The PROOPULSE and STROBE signals are coupled via IC18a and IC1 to the RS232 CTS (Clear To Send) line. This prevents the host computer from sending further data whilst a program pulse is programming while STROBE is still high. This means that data can be sent as fast as possible and no delays are needed in the software.

PROG PULSE-Is coupled with the SEND signal tolC3 by IC16a. This prevents the SEND signal getting through whilst PROG PULSE. Is low. This situation will never occur in normal use, however during initializations the software requests a 40 ms program pulse immediately followed by a SEND. If the RS232 CTS line is present and working then data will be sent, since the CTS line win stop the computer sending the SEND request unti after the program pulse has finished. If CTS Is not working the SEND request will be sent immediately but no data will be returned due to JC16a stopping the SEND pulse reaching IC3. The software notes the lack of received data, prints a warning and then adds delays to allow for the program pulse. You should by to get CTS working properly as there will be a significant speed penalty otherwise

We now come to the connection switching required for the different EPROM types. The table below shows the pin-outs for the 6 types of EPROM this unit will program. 2716 and 2732 are 24 pin devices and fit Into pairs 3 to 26 of the EPROM socket, the pin-outs shown below relate to the socket not the device.

PIN	2716	2732	2764	27128	27256	27512
\#1	**	"	VPP	VPP	VPP	A15
2	\cdots	${ }^{\prime}$	A12	A12	A12	A12
3	A7	A7	A7	A7	A7	A7
4	A6	A6	A6	A6	A6	A6
5	A5	A5	A5	A5	A5	A5
6	A4	A4	A4	A4	A4	A4
7	A3	A3	A3	A3	A3	A3
8	A2	A2	A2	A2	A2	A2
9	A1	A1	A1	A1	A1	A1
10	A0	AO	AO	AO	AO	AO
11	D0	D0	D0	DO	Do	DO
12	D1	D1	D1	D1	01	D1
13	D2	D2	D2	D2	D2	02
14	GND	GND	GND	GND	GND	GND
15	D3	D3	D3	D3	D3	D3
16	D4	D4	D4	D4	D4	D4
17	D5	D5	D5	D5	D5	D5
18	D6	D6	D6	D6	D6	D6
19	D7	07	D7	D7	D7	D7
\#20	CE/PP +	CEIPP.	CE	CE	CE/PP	CEPP
21	A10	A10	A10	A10	A10	A10
\#22	OE	OENPP	OE	OE	OE	OENP
\#23	VPP	Al1	A11	A11	A11	A11
24	A9	A9	A9	A9	A9	A9
25	A8	A8	A8	A8	AB	A8
\#26	VCC	VCC	NC	A13	A13	A13
\#27	**	**	PP.	PP.	A14	A14
28	*	*	VCC	VCC	VCC	VCC
\cdots - No Pin						
$N C=N 0$ Comnection						
$P P_{+}=$Program Pulse, Positive Going						
PP. = Program Pulso, Negative Going						
OE = Outut Enabla (Activa Low)						
CE = Chip Enable (Active Low)						
VPP = Programming Voltage						
VCC $=$ Supdy VoltageGND $=$ Ground (OV)						

It can be seen from the above that most of the pinsare the same for all devices. Only 6 pins require special attention, these are $1,20,22,23,26$ and 27 , and are marked with a'\#' next to the pin number.

The four MODE lines from IC9 control the function of these six pins and are set up by the software to suit the EPROM type required. Note that two of the active-low levels are also used. The table below shows the logic levels on each of these lines, for each of the 6 types of EPROM, together with the code that needs to be sent to select that type.

EPROM TYPE	A	8	MODE LINE			D-	SETUP CODE
			C	C	D		
2716	1	1	1	0	1	0	2Fh
2732	1	0	1	0	0	1	25h
2764	1	1	0	1	0	1	23h
27128	1	1	0	1	0	1	23h
27256	1	0	0	1	0	1	21h
27512	0	0	0	1	0	1	20h

I willnow describe what this meansfor each type of EPROM
2716:
PIN 1: not used.
PIN20:MODEB and MODED are bothhigh,solC17b pin 6 remains high, IC16cpin 8 follows PROG PULSE, as does IC17cpin 8 which is coupled via 06 to PIN 20. PIN 20 is only pulled up in Program mode, so in Read mode it is permanently low.
PIN 22: MODE A and MODE Dare both high, so IC15b pin 6 is low and 01 and 02 remainoff. R-/W is coupled to the pin via 02.

PIN23:MODE D is high, so Q5 and Q6 are on, coupling VPP to PIN 23.
PIN26: MODE Cishigh,soQ7 and Q8 are on, coupling V+ to PIN 26.
PIN 27: notused.

2732:

PIN 1: not used.
PIN 20: MODEB and MODE Dare bothlow. IC16c pin 8 will remain low and U17:B pin 6 will follow PROG PULS. IC17c pin 8 will thereforebe PROGPULSE inverted, and is coupled via 06 to PIN20. PIN 20 is only pulled up in Program mode, so in Read mode it is permanently low. PIN22: MODED andMODE A is high, soIC15b pin 6 is high. This switches on 01 and 02, coupling VPP to PIN 22 PIN 23: MODE D is low, so Q5 and Q6 remain off. A 11 is coupled to PIN 23 via 04.
PIN 26: as 2716.
PIN 27: notused.

2764 and 27128:

PIN 1: MODE A is high. This switches on 03 and 04, coupling VPP to PIN 1.
PIN 20: MODEB is high and MODE C islow. IC16cpin 8 remains low and U17:B pin 6remains high, therefore IC17c pin8remains low.
PIN 22:MODEA and MODE C are bothhigh, solC15b pin 6 is low and 01 and 02 remain off. R-/W is coupled to PIN 22 by 02.
PIN23: as 2732.
PIN 26: MODE C is lowso 07 and QB remain off. A13 is coupled
to PIN 26 by 05. Note that in a 2764 EPROM there is no conection to PIN 26.
PIN 27: MODE B is high and $A 14$ will remain low since it is outside the addressing range. IC17d pin 11 will therefore follow PROG PULSE.

27256:
PIN 1: as 2764.
PIN 20: as 2732.
PIN 22: as 2764
PIN 23: as 2732
PIN 26: as 2764
PIN 27 - MODE Bis low so IC16 pin 11 will remain low. IC17d pin 11 will follow A14.

27512:

PIN 1: MODE A is low so Q3 and Q4 will remain off. A15 is coupled to PIN 1 by 03.
PIN 20: as 2732.
PIN 22: MODE A is low so IC15b pin 6 will be high, switching on Q1 and Q2, coupling VPP to PIN 22.
PIN 23: as 2732.
PIN 26: as 2764.
PIN 27: as 27256.
Note that D6 and D7 are germanium types, since silicon types would cause the logic 0 inputs to the EPROM to be at the limit of the specifications.
The two logic gates which would otherwise be unused, are used to control Read and Program LED's. IC18b pin 6 goes low when R-/W and ON-/OFF are both low, lighting 09 (Read) via 010, whilst IC18c pin 8 goes low when R/W and ON-/OFF are low, lighting 08 (Program) via 09. When both LED's are off it is safe to fit or remove the EPROM, the other lines would have been set low by the software before taking ON-/OFF high.
IC21 is the main 5 Volt regulator and powers all the logic IC's. D11 protects the whole circuit against reverse polarity, since it is easily possible to reverse the polarity on the sort of PSU used. LED D10 indicates that the unit is powered up.
IC20 supplies the power to the EPROM, and is enabled by the ON/OFF- line via Q17 and Q18. Q19 raises the GND pin of IC20 by 1 Volt, giving 6 Volts. When 5 Volts is required Q19 is shorted out by Q20 controlled by IC18d, this happens when $5 \mathrm{~V} / 6 \mathrm{~V}$ or R / W - is low.
IC19 is a step-up switching regulator which produces the programming voltage required. The voltage is set by shorting out sections of the resistor chain with transistors. 2716 EPROMs require 25 Volts, not 21 Volts, so the MODE D- line is used to set this. The R-/W line controls Q15 and Q16 which connect the power to the EPROM when the unit is in Program mode.

D1-5 1 N4148 silicon signal diode D6, 7 0A47 germanium signal diode
D8 Red LED
D9 Yellow LED
D10 Green LED
D11 1N4001

MISCELLANEOUS

SK1 28-way ZIF Socket XT1 2.4576 MHz crystal

Power Supply (10-18V DC@ 500mA), DIL IC sockets (1×40 way, 1×14 way and 3×28 way), Heat sink for IC21, PCB, Case type MB6, M3 hardware, Connectors for power and RS232, Veropins, Tinned copper wire (24 SWG) or through-PCB pins.

BUYLINES

All components are available from Maplin, the majority can probably also from your usual supplier. Small 0.47R resistors do not appear to be readily available. use two 1 R0 components in parallel. The PCB will be available from the ETI PCB service, next month. Before purchasing a power supply, check the latest bargain list from Greenweld (0703 236363), they often list suitable units for about $£ 3$.

The software listed in this article, together with a comprehensive menu driven control program and some useful bits and pieces (IBM PC or compatible only) is available from the author at the following address: Paul StennIng, 1 Chisel Close, Hereford, HR4 9XF. Please send a blank PC formatted disk ($3.5^{\prime \prime}$ or 5.25^{\prime}), together with a cheque or postal order for £10, a return address label and adequate return postage (overseas 2 International Reply Coupons). If you do not have a disk send $£ 12$ and I will supply one (please specify size). BAE.C. members see newsletter for a special offer!
The author would also be interested to hear from users of other computers who have either written suitable control software or who are looking for some - he will attempt to put one in touch with the other! Please write with an SAE.

	 Twea wet G网 8 Renges DC 2ANP. Ort cle
	AYO ACFOC Brakdomn Leakege i lonission Teslap
	Mal
	Type 243an mikzemus
	YARCOM UMVERSAL COUNTER TUERS
THIS E JUST A SAMME . MOHY OTMERS AVARAOLE	Type 2430 DC530m+z
PHIIIPS PLESTBS PAOCRULIMAGLE STNTHESIEEPFUNCTION GENERATOA 	 FARTELI PSU LSOE OSON. O. $5 \mathrm{NmPS} N$
	0015............................. 0175
	Oweninio........... 1150
	AYO MULTIMETEA
wowts sche ……i.............. . . bomed	
RACAL menemertation ficopters Slom 4D and Store 70. Irom ES	
H PPLLSE GDERATOR hDe 2118.	
	NEW EQUIPMENT
	MONEO OSCILLOSCOFE HMLOOS Tngl Prace WOM $1 / 2$
	HuLEO CSCILOSCOPE HMSOM Dual Fice 10 MHz
SACCTMU AKUYKERS 	HAMLO OSCMLOSCOFE HVece 7 Dual Trica 200 Hz
	maneg oscaloscope ingos 3 Dual Trace zoulhi
	memilak2022
	METIO IDO FREOUENCY COUNTEA IOOMH2
Used Equipmenl - Guaranted. Menula suppled II posaime. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lifs Pleise check avallablily before ordering. CARAIAGE all units $£ 16$. VAT io be added iotoral ol Goods and Cimse.	
STEWART of READING 110 WYKEHAM ROAD,READING, BERKS, RG6 1PL Tel: (0734) 268041 Fax: (0734) 351696 . Callers welcome 9 am-5.30pm Mon-rri (until 8pm Thurs)	

	THERE'S NO NEED TO WORRY ABOUT THE ISSUES OF ETI YOU'VE MISSED IN 1992
WHAT HAVE YOU	Make a New Year's resolution and phone the ETI Back lssues Service. The last 12 months issues are available only while stocks last so call: 0737 768611 today and check availability to avoid disappointment.
MISSED	Back Issues of ETI cost the cover price plus 60p postage and packing. Order by phone or write to ETI Back Issues, ABP, Queensway House, 2 Queensway, Redhill, Surrey, RH11QS.
	Cheques should be made payable to ASP.

READER OFFER

MINI POWER TOOL ACCESSORY PACK

Purchasers of this bargain pack will avail themselves of an instant selection of tooling ideally suited for use with any of the variety of Mini-Drills currently available.
Whilst the individual contents may vary from pack to pack the kit supplied for review contained a very useful selection of small drills, burrs, rotary brushes, mounted abrasive points and a threaded mandrel together with a couple of rubber bonded abreisive points. Whatever The special Interest, you are bound to find many applications for items in this bargain pack and when: a favourite finally wears out it should bé relatively easy to replace from your local stockist, but not at thls price
We have arranged a very spocial price saving you over 50%, so hurry, as we have only a limited quantity. Our price to you $£ 13.99$ (normally retails at $£ 30.00$) $+£ 1.00$ pap.

Telephone Orders... 044266551 (24 HRS)

Please supply ROMEG/68 @ £13.99 + £12.00 p\&p.
I enclose my cheque/P.O.for $£$
made
payable to ASP or please debit my Access Nisa
Expiry

Signature \qquad
Name \qquad
Address \qquad

Post Code
Coupon to: ASP Reader Offers, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST
Please allow 28 days for delivery U.K. only - Overseas upon request. Please note that from time to time you may receive information about offers and services which may be of interest to you

OTr

FROM
TD NVIEE

UK DISTRIBUTORAND STOCKIST FOR THECOMPLETE ILPRANGE

* AMPLIFIER MODULES \star PRE-AMPLIFIERS
\star 100VLINE TRANSFORMERS
\star TOROIDAL TRANSFORMERS
* LIGHTING TRANSFORMERS

Write, phone orfax fordata and prices

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104

Flg. 6 Block schematic of EQ phase manipulation through equalisation.

Automate Anniversary Mixer

This month, we weigh up the pros and cons of the different designs used in the Equaliser.

You've probably been wondering what happened to some of the diagrams mentioned in part 8. I think that the very mention in the opening paragraphs of Steven Spielberg brought every Gremlin in the vicinity out of the woodwork to bear upon last month's installment! Space restrictions meant that we had to undertake some open-heart surgery on that particular episode (so that it would fit into the magazine) and regrettably, the missing
diagrams were part of this surgery. The gremlins (aside from those already mentioned) seem to have been on piece rate because the How It Works of the HF equaliser section was omitted. Quell barbe! All of the aforementioned means that any interested parties there are still some of you left out there, I hope will have to constantly refer to last months issue. (You have still got last month's ETI ...). I went on at some length in last month's issue about the importance of retaining absolute phase throughout the system and the text mentioned an absolute phase restorer pre-EQ. The original design was implemented as described but combining both

HPF BREAK FREQ. (Hz)	R(freq.) (R56, R57)	Rpreferred	BREAK FREQ. (Hz)	R91 (calculated)	$\underset{\text { R91,R106 }}{\boldsymbol{R}} \mathbf{(p r e f e r r e d)}$
20	22.1k	22k,100R	30	780k	750k,30k
30	16.1k	16K,100R	35	670k	620k,50k
40	12.05k	12k,56R	40	585k	560k,24k
50	9.64k	9k1,560R	45	520k	510k,10k
60	8.0k	7k5,560R	50	470k	470k,IInk
80	6.03k	6k,27R	55	425k	390k,33k
100	4.82k	4k7,120R	60	390k	390k,link
120	4.02k	3k,10R	65	360k	360k,link
140	3.44k	3k,430R	70	330k	330k,IInk
160	3.01k	3k,10R	75	310k	300k,10k
180	2.68k	2k4,270R	80	290k	270k,22k
200	2.41k	2k4,10R	85	270k	270k,IInk
220	2.19k	2k2	90	260k	240k,22k
240	2.1	2k0	95	245k	240k,5k1

Flg. 7 (Table 2) Discrete resistor values for active filter sections (LF).

Volunteering an Op-Amp for the Job

Okay, so much for the error round-up. This month, we'll be looking at some of the problems which had to be surmounted during the design of the EQ.

The choice of op-amp was a difficult one. With so much written in previous issues about the subjects of both op-amps and equalization, all should have some idea of the attributes necessary of such a device in this application. Key requirements are, of course, high gain/bandwidth product, fast slew rate, low noise and a reasonable current sourcing output stage. Absolute noise internally generated by the semiconductor is a lesser consideration because the noise floor has been determined by the choice of circuitry in earlier stages, but the final choice of op-amp shouldn't worsen unduly the noise performance of the equalization stages.
At first, the TLO series of FET op-amps looked attractive
in many ways. This would have seemed to have been particularly true of the TL074 type this four op-amps in a single package IC would have allowed one whole stage of $E Q$ within a single IC. Noise performance is reasonable for such an application because, as previously shown, the noise floor has already been determined by the previous input stage. FET architecture means that bias currents are usually very low and so DC offsets are minimized.
This is important because an obvious requirement is for the EQ to be switched in or out of circuit for purposes of comparison etc and any DC present as we switch between the 'wet' and 'dry' signal paths will impinge itself upon the audio as a click. Output stage current sourcing capability necessary for the integrators - is also reasonable with this family of chip.
The only down-point is that the device has a rather disappointing gain/bandwidth product 3 MHz - which is somewhat limiting to good high level, high frequency performance, a major prerequisite for any high quality EQ. I have therefore used dual op-amp packages which make for a less tidy layout than the quad package but can yield better flexibility.
This is the case because the specification calls ostensibly for the fitting of the NE5532 dual bipolar op-amp in the key areas of the EQ. The TL072 is used as a summer where performance is less critical and DC offset reduction is of greater importance. Using dual package op-amps - as opposed to the quad type of the TL074 means that we can interchange between the two types, fitting all of one family - bipolar - or all of the other - FET - if so desired or the application demands greater performance in one aspect. To the best of the author's knowledge, there are as yet no good quality quad bi-polar op-amp packages available at reasonable cost although 1 stand to be corrected on that one.
In simple terms, this means the user fitting FET op-amps where click elimination is of paramount importance and fitting bipolar types where the requisite is for good performance
up to and beyond HF. Good performance is a relative term and it should not be thought that overall performance in any aspect is compromised by the fitting of a particular type - with both types, it is excellent in all aspects and the difference is basically a paper one- ie visible on a spec. sheet but not audible.

Options, Options, Options!

Various options have also been included for your delec-tation. Whether or not they are to be included on your version depends upon the importance-versus-cost-considerations that you place upon such items. Without wishing to sound like an out-of-work advertising copywriter or a frustrated estate agent, these include a switchable high pass filter with fixed or sweepable centre frequency, an LF equalizer with switchable bell or shelving characteristics and variable turno-ver frequency and an HF equalizer also with variable turnover frequency and bell or shelving response, all available with
easy-payment plans! I saw no good reason for not including them and to configure them out of circuit, whether permanently or until such times as money permits their inclusion, is but a trivial operation with a soldering iron and a few wire links or resistors. Both of these sections (LF and HF) are extremely flexible and as such, extremely useful, too. They are both sufficiently innovative to be called 'original' which is no mean feat in an audio environment plagued by copies and modifications of existing, proven designs. This is not to say that I have not done the same thing myself but an 'own-design', especially in the world of mixing desks, helps to avoid any impending accusations of AUDIO piracy in the courts! As far as the question of whether any or

FREO.	CALCULATED c	PARALLEL C(preferred)
$2 k$	$36 n$	$33 n, 3 n 3$
$2 k 5$	$29 n$	$27 n, 2 n 2$
$3 k$	$24 n 1$	$22 n, 2 n 2$
$3 k 5$	$20 n 67$	$18 n, 2 n 7$
$4 k$	$18 n 1$	$18 n, 100 p$
$4 k 5$	$16 n 1$	$15 n, 1 n 2$
$5 k$	$14 n 5$	$12 n, 2 n 7$
$5 k 5$	$13 n 1$	$12 n, 1 n 2$
$6 k$	$12 n 1$	$12 n, 100 p$
$6 k 5$	$11 n 1$	$10 n, 1 n 2$
$7 k$	$10 n 3$	$10 n, 330 p$
$7 k 5$	$9 n 6$	$8 n 2,1 n 5$
$8 k$	$9 n 0$	$8 n 2,820 p$
$8 k 5$	$8 n 5$	$8 n 2,330 p$
$9 k$	$8 n$	$6 n 8,1 n 2$
$9 k 5$	$7 n 6$	$7 n 5,100 p$
$10 k$	$7 n 2$	$6 n 8,390 p$
$12 k$	$6 n 0$	$5 n 6,390 p$
$14 k$	$5 n 2$	$4 n 7,470 p$
$16 k$	$4 n 5$	$3 n 9,560 p$
$18 k$	$4 n 0$	$3 n 9,100 p$
$20 k$	$3 n 6$	$3 n 6$

Space - The Final Frontier?

Fitting all of the different controls physically onto the panel without ending up with a channel strip which requires the arms of a gorilla to operate the furthermost control - is a conspicuously difficult task. Commercial designers can specify to the pot suppliers that they need x amount of dual concentric triple-gang 50 k anti-log pots with integral push-on/push-off

Flg. 8 Table of values for HF equaliser.

decide where in the audio pathway we may wish to externally process the signal. Again, from a commercial point of view, wishing and having are two completely viewpoints. Next month, we'll show diagrams of the points in the signal pathway where we may wish to access audio and conversely the points where normally we actually CAN in many commercial products. The money which was saved by not including any internal dynamics control bas been put to good use - for a cost of about $£ 0.80$ per channel, it has been used to provide another insert point at a post EQ stage. This is a definite rarity but it is a most useful facility to have. For this to be so, we only have to cast our minds back a few months to what I said about over-zealous use of the $E Q$ and the fact that this very quickly robs the whole channel of headroom. Being able to access the channel Post EQ means that equalization produced transients can be controlled with an external gain control of good pedigree. In this way, the gain of the whole channel can. in effect, be controlled. For the sake of a couple of drive amps - a luxury, really - and a jack socket, I cannot see why it is not. included on more desks hovering around the mid price range. The pre-EQ insert point 1s the more usual one to have. To think of it more as a POST FRONT-END or POST INPUT ST AGE gives a better clue to the kind of use to which it's normally put A dynamics processor, for example, can be inserted here and used to control signals which are periodically unruly and may cause the channel to clip at a later stage - the channel gain control has been set for the average signal level (so that signal-tonoise ratio is good) but it can't cope with transient extremes. Any close mic'd drum kit or other percussive section is bound to output signals which are strongly transient in nature and a bass guitar, especially if it has been Direct Injected has a very wide dynamic range. Sibilance or
switch and an auxiliary switch - you know the type, they prevail on car radio cassette players. These are able to be moved simultaneously in about four different axes of movement, and can control volume, balance, fader, on/off and space and time functions all from one rotary shaft! In this way, two controls can be piggy-backed one on top of the other (normally Q and centre frequency in the case of equalisers), with a corresponding saving in valuable physical panel space. The plebeian DIY designer, on the other hand, doesn't, have this avenue of escape open to him/her and so must struggle with what he/she's got, fitting all separate pots and discrete switches in as tight a squeeze as possible. Anyway, that was MY problem!

The inclusion of TWO insert points (nothing to do with an acupuncturist's map) - both pre and post EQ - might be intriguing to some of our slightly more au-fait readers perhaps used to seeing just one insert point - the pre-EQ one in the channel strip.

The whole subject of dynamics will be covered at a later date. As far as we are presently concerned, however, it relates t the channel as a completely entity in that we have to
plosive from vocalists' microphones can also cause annoying momentary overloads and these, too, can be controlled.

Gain control can also be used for creative (rather than corrective) measures, enabling a voice which is perhaps lacking in certain registers to maintain a reasonably constant loudness level out of the recorder or it may be used to 'tighten up' up' a bass guitar or bass drum. Bass guitar is a good example to quote, as it. transpires. Although many (or most) bass guitarists will want their sound directly injected, some engineers prefer to mike the guitar, too. Direct injection bass will be clear and pure but will lack forcefulness (known in the trade, somewhat vulgarly, as 'balls') while miked bass is usually too boomy and lacks clarity. It is therefore necessary to input the dynamic range of the bass guitar on two channels.

Other FX processors such as noise gates or expanders may be used. As the insert point is almost invariably post High Pass Filter -as in the Automate - any high level LF such as rumble or air conditioning burble can be effectively removed before it can cause spurious triggering of the processor.

HOW IT WORKS

LF AND HF EQUALISER

It is useful to have a bell type equaliser at the low end of the spectrum since It means that boost to bass frequencies, can be given without increasing lower frequency intrusions or disturbances such as air-conditioning burble, mic handling noise or platter rumble. I have included also graphs of the boost/cut responses with an ideal control law as well as those from the 10k pots used. (Figs. 11d,13b). It can be seen that the control has slightly more effect at the extremes of rotation. This is caused by the loading effect of the (relatively) low value pot -which has been used to minimise Johnson noise as much as possible but in practice, the effect is barely noticeable. Larger value pots-10ksay-would minimise this to a certain extent, at the expense of slightly worse noise performance. If the individual wishes to fit this larger value, It will mean wading through a horrendous amount of maths to re-jig identical responses. C'est la vie!

The HF equaliser is another unusual and rather unconventional type. It uses a circuit arrangement which in shelving mode, is, in essence, the reciprocal of the LF control although such a function cannot be yielded simply by transposing the positions of the resistors and capacitors. It incorporates an unusual modification to the shaping of the curve through the addition of the capacitor to the network which can be switched IN or Out as required using SW9 \{which will normally be part of RV12 when this is fitted). The turnover frequency can be changed by varying the effective capacitance to ground using a variable bootstrapping technique centered around IC13a. This arrangement, by virtue of the way that current magnitudes are altered around the loop, changes the effective value of the capacitor from $3 n 3$ at the most clockwise setting (max frequency) of RV12 to 33n at its minimum setting. The break frequencies can be determined as follows:

The value of C 88 has been chosen to give a noticeable change in subjective character of the sound without excessive colouration. It allows the generation of more steeply rising 'boost' curves than is usual with this type of control since it sharpens the corner of the curve. While It cannot be described as a true 'bell' type response, nonetheless, it has the potential to produce greater subjective. brightness enhancement than a conventional shelving equaliser.

Section of Aulomate 4 band equaliser (HP Shelf/Peak).

Phew! The response curves shown in Figure 11 show far more elegantly what all of this means.

There is available the option to flt an inductor into the network in the arrangement shown in Figure 14a. This does achieve the desired bell response at the expense of using an inductor \{with some of its associated problems). In some ways, this is a better arrangement than the previous switched capacitor type. Switching the capacitor into circuit achieves the bell resonant type response, again with C88 arranged effectively as a variable capacitance to ground. The diagram in Figure 14a shows just what all this means while Figure 11 a gives the response curves. It is left to the individual's discretion as to which of the two is the more preferable as regards desired response. Should the frequency determining pot RV12, be omitted from the finished board, the break frequency is determined using C88 tied to ground directly (avoiding the use of IC13a), with a value chosen from the table in Figure 8. A typical arrangement is shown in Figure 14b. Each of these two equalisers are then arranged as variable admittances to ground in the so-called swinging input style cut and boost arrangement of IC8b. C77 and R94 minimise clicks on the output as SW6 is operated. Again LED 5, 6 and associated components provide an optional indication of EQ IN and PHASE REVERSE respectively.

Lf SHELf/BELL EQUALISER SHOWN WITH SHELF RESPONSE SELECTED,
RV2 FREQUENCY CONTROL SET FOR MAX (30hZ)

LF SHELF/BELL EQUALISER SHOWN WITH SHELF RESPONSE SELECTED, RV2 FREQUENCY CONTROL SET FOR MAX (100hZ)

$$
\begin{aligned}
& \mathrm{f} \text { CENTRE }=\quad \frac{1}{2 \pi \cos R 91 \text { eff }} \\
& \text { or }
\end{aligned}
$$

$$
\begin{aligned}
& f \text { CENTRE }=\frac{x_{L}}{2 \pi L}
\end{aligned}
$$

Fig. 10 LF equaliser in schematic form.

LED1	0.1'Green LED
LED4	0.1 'Red LED (optional see text)

MISCELLANEOUS

SW5 PC mounting DPDT push switch (which may be combined with RV2)
JK2 PC mounting $1 / 4$ ' stereo jack socket with switched contacts 8 pin DIL Sockets to suit, PCB, Veropins, M3
mounting hardware, knobs and buttons to suit

4 BAND EQUALISER

RESISTORS (all 1/4W 1% unless otherwise
stated)
$\begin{array}{ll}\text { R68,69,88,89 } & 10 \mathrm{k} \\ \text { R95,96,97 } & 47 \mathrm{k} \\ \text { R70,76 } & 33 \mathrm{k}\end{array}$
$\begin{array}{ll}\text { R70,76 } & \text { 33k } \\ \text { R71,72,77,78 } & 12 k\end{array}$

R73,79	15k
R74,75,80,81	750R
R84,85	750R
R82,83,86,87	2k
R90	2k2
R91,102,105	100k
R93,110,113,	
115	1k5 (R113,115 optional - see text)
R94	1M
R98,108	1k
R99,100,103	22R
R101,104	4k7
R106	(see Table 2)
R107	1k2 (see text)
R114,116	47k (optional see text)
R117,118	(see Table 3)
RV3,4,9,10	PC mounting miniature 10 k LIN
RV5,7	PC mounting miniature 20k LOG
RV6,8	PC mounting miniature 10k dual LIN
RV11 (optional)	PC mounting miniature 10 k LIN c / w integral push DPDT switch
RV12 (optional)	PC mounting miniature 10 k LIN c/w integral push switch
CAPACITORS	
C60,83 polar	100 u 40 V non dial electrolytic
C61,63,65,79,81	22p polystyrene
C62,64,66,68,71	
73,76,78,82	100p disc ceramic
C67	820p polystyrene
C69	6 n 8 polystyrene
C70	10n polystyrene
C72	18n polystyrene
C74	47n polystyrene
C75	330n polyester
C77	1u polycarbonate
C80	10p polystyrene
C84	$1 u 5$ polycarbonate
C85	6 n 8 polystyrene
C87	15n polystyrene
C88	33 n polystyrene
C92,93	4 u 7 (optional see text)

SEMICONDUCTORS	
IC8	TL072
IC9,13	NE5532
Q6,8	BC559C

Q7,10,11	BC549C (Q10,11
	optional - see text)
LED2	$0.1^{\prime \prime}$ green LED
LED5,6	0. 1" red LED (both $^{\text {optional - see text) }}$
D4,5,6	1 N4148

MISCELLANEOUS

L1 $\quad 27 \mathrm{mH}$ inductor
SW6,7 PC mounting push on DPDT switch
SW8 PC mounting push on DPDT switch (or may be integral to RV11 if fitted)
SW9 PC mounting push on DPDT switch (or may be integral to RV12 if fitted)
JK2 PC mounting 1/4' stereojack socket with switched contacts
8 -pin IC sockets to suit, Veropins, PCB, Control knobs, switch caps to suit, M3 mounting hardware

Flg. 11 Responses to LF equaliser section

References
Sound Recording Practice (edited by John Borwick), Microphones John Borwick. Mixing Consoles, Analogue (Richard Sweetenham)

Sound Processing (Richard Elen) - Digital Recorders (Tony Faulkner) - Classical Music (Adrian Revill) - Popular Music (Mike Ross) Radio Broadcasting (Dave Fisher) Oxford University Press

Audio Electronics Handbook (edited by lan R Sinclair) - Sound Recording Techniques (Don Aldous), Sound Waves (Dr W Tempest) -BSP Professional Books

The New Audio Cyclopedia (edited by Glen M. Ballou) - Consoles and Systems (Steve Dove), Details of the Session (Chips Davies with Linda Jacobson) - Howard W Sams

Active Filter Cookbook - First and Second Order Net-works. Bandpass Filter Design, Bandpass Filter Circuits (Don Lancaster) Howard W Sams.

Fig. 11b LF Equaliser response curves (frequency tuning

Fig. 11c Response curves for parametric equaliser (frequency fixed, Q varied full cut and boost)

Fig. 11d LF Equaliser response curves (ideal gain law)

Fig. 11e HF Equaliser response curves (various boost/cut ratios)

fCENTRE $=\frac{1}{2 \pi(\text { R107 + R108) C8B }}$

Fig. 14 Possible modifications to the standard equaliser
(a) HF EQUALISER WITH CB7 OMITTED, R 108 ALSO REPLACED BY SINGLE 2K2 RESISTOR AND 27 MHz INDUCTOR TO ACHIEVE TRUE BELL TYPE RESPONSE.
(b) HF EQUALISER WITH VARIABLE FREQUENCY CONTROL, RV12, (AND IC13a, R109, R110) OMITTEO ANO REPLACED BY "FIXED' CAPACITOR TO
GROUND JOIN AT POINT X.
(c) LF EQUALISER WTH VARIABLE FREQUENCY CONTROL, RV11 (AND R91 - R93) OMITTED ANO REPLACED BY FIXED RESISTOR R106.

Errata
Last month, figure 1 should have included diode D7 in series with D1, D2.

Figure 2 amendments include: replace R78 with $\mathrm{R} 96-47 \mathrm{k}, \mathrm{C} 87-100 \mathrm{n}$ with $\mathrm{C} 91-100 \mathrm{n}$ and $\mathrm{C} 87-100 \mu$ with C82-100u. '*fitted only if RV11 omitted' refers to R106 not R91. HF SHELF/ BELL EQUALISER should read LF SHELF/BELL EQUALISER.

Fig. 1 Circuit of the Infra-red remote receiver

Predictably in the future, domestic remote controlled lighting and dimming will be as common as the television remote control and with the availability of multi programmable transmitters on the market, eventually all domestic systems will be programmed into one master transmitter.
With mains lighting, the design criterion requires that the lighting system must not depend entirely on remote control.

Four Channel Remote

An effective way to control and dim four sets of lights independently. A description by Ken Blackwell.

HOW IT WORKS IR RECEIVER

Mains power is connected to the terminal block 240 V AC and is fed through to the bridge rectifier via a 47R wirewound resistor and a choke. The choke removes most of the $A C$ noise, then to the capacitors which charge and discharge a limited current. The bridge rectifier changes the $A C$ sine wave to $D C$. The zener diode reduces the voltage to a manageable 15V. The current passes through the 1 N4001 rectifier diode to continue to smooth and remove AC pulses. Finally, voltage is smoothed by the 1000 u capacitor. As the components in this circuit are rated at 5 volts, a voltage regulator 78L05 feed is connected to the positive line at the 1 000u capacitor junction.

The receiver is designed to match the PPM output signals generated from the IR transmitter by receiving the word notations on ABCD only. The Tandy receiver/ demodulator unit receives the \mathbb{R} signals generated by the transmitter, any unwanted noise or signals are filtered leaving a clean square wave pulse. This pulse is amplified by Q1 to eventually pass a signal to IC1 pin 1 .
The configuration of the MV601 chip is set to give stable momentary outputs to the four relay positions.

The stability is derived from the 500 kh ceramic resonator.

Each LED will illuminate as a signal is received. As the reed relay operating resistance is very high, the outputs from IC1 will directly drive each relay without any current amplification. A protection diode is integrally built into the relays.

As each relay operates, earth potential is connected to the touch plate (being hard wired to the touch plate on a dimmer switch), giving the effect of manually touching the switch plate.

This receiver has been designed to minimise the passive components used by installing 'off-the-shelf' units such as the Tandy receiver/demodulator. This unit obtains the same results as a complex \mathbb{R} preamp integrated circuit with its array of passive components.

SIL connectors are used for the relays giving a plug in connec-tion and allowing a combination of various positions in which to place up to four relays thus allowing more than one receiver circuit in any one room.

Control Dimmer

combination, MANUAL 'OR' REMOTE switching and dimming can be operated from each separate touch dimmer switch.
From customers various comments and the practical operation of remote lighting, I have used a guide line to bring to attention the main practical points desired by the customer, to form a suitable remote domestic lighting control, whilst not interfering with any manual switching. They are:
a) Cost effectiveness
b) Must be manual and remote. Not either one or the other.
c) Easy to operate multi-coded transmitter.
d) Dimming and switching function.
e) Compact.

The remote system is coupled to control a suitable easily available touch dimmer switch, manufactured by Home Automation. These units are very attractive cost effective units, obtainable in either silver or gold coloured brushed anodized aluminium touch plates, rated at maximum 200 watts each unit.

You could also experiment with other makes as most of them work on the same principle.

Basic Operation.

By parallel earthing the dimmer switch touch plate via a normally open reed relay switch will exactly duplicate the touch switch operation, mechanically. From a relay pulse or tap, the lighting turns 'On'. A further pulse or tap switches 'Off'. Relay held in, or finger held on switch, controls the lighting level. Release at desired light level. It must be emphasized that by pulsing manually just one Infra Red transmitter button,(one channel) control over all these various dimmer switch functions via the receiver reed relay, a full control can be obtained. Further dimmer switch connections can be added to each decoded relay output, to make a total of four coded relay positions on each receiver, giving 800 watts of controlled lighting.

Operation

The transmitter, the construction of which appears next month, together with cover PCB, operates four channels and basically of standard construction, with a couple of selected components to give increased range. Push switch connections are made to operate only digital $A B C D$ logic outputs, thus allowing only one of the four relays to operate at each desired selection.

The receiver is mains powered and converted to give a DC supply output via a zener voltage of 15 volts at 35 mA , then again regulated to supply various components with a smooth 5 volt supply. Detection of infra red pulses are amplified and filtered by the Tandy IR Detector unit, a hybrid receiver/ demodulator. These output signals are transistor amplified and passed to the remote control receiver IC pin I. With matching pulse position modulation, the momentary switch selected ABCD logic couples directly to one of four

Fig. 3 Component Overlay of receiver.
miniature 5V DC plugin reed relays. The normally open relay contacts, close, making an earth connection to the appropriate dimmer switch touch plate, completing the dimming/switching cycle.

Receiver Construction

NO SETTING UP REQUIRED

WARNING. MAINS POWER ON CIRCUIT USE CAUTION DURING OPERATION. Assembly is straight forward and if each component is double checked during assembly for correct polarity no problems will be encountered.

Start from initial mains 240 volt power input connector and solder the components in the operating sequence finally fitting the reed relays. Not only will these procedures safe-guard damaging components, but it will enable testing voltages from mains down to the final 5 volts DC before any semiconductors are fitted. Solder the components in order, working from the mains connector-fuse-47ohm resistor -choke -two 470n/250v capacitors -1 M resistors -Bridge rectifier (imperative that must be positioned top right hand side). Zener diode -diode -finally 1000 u electrolytic capacitor, observing polarity. This completes the high voltage conversion. Connect mains power to connecting block ensuring correct polarity.

Before proceeding ensure that the voltage across the electrolytic capacitor is no more than 15 V DC. Solder in the 5 volt regulator. Before proceeding, check for the existence of 5 volts between earth and LH pin. Solder the remaining components into circuit board. Plug in IC1. Plug in Reed relays to desired SIL outputs. If correctly assembled LED I will illuminate. On a signal from the transmitter (to be featured next month with accompanying cover PCB) one of the four LEDs will illuminate via a relay, whilst LED 1 turns OFF. OP (Relay Outputs) via earth, are hard wired connections to the dimmer switch touch plates. Sub miniature single strand wire is suitable.

Worth-while Tips.

LEDs are normally supplied with the live side leg the longer of the two. The tag on the transistors is the emitter facing towards ground potential. Tantalum capacitor+ mark towards R6. IC1 pin 1 nearest XT. SIL Reed relay 5volts Live connection opposite "S" mark on side of relay. Increase range of receiver by installing a red plastic lens available from Maplin. Part number FA95D.

BUYLINES

Most of the parts are available from Rapid Electronics. The Infra-red receiver module is from Tandy Stores. The choke is from Maplin (JL72P). The MV601, resonator and MV500 are available from Electromail. A kit of parts (excluding box and battery) for $£ 25$ is available from ADVF Service, 131 Aldermans Drive, Peterborough, Cambs PE3 6BB

A seasonal project to provide some extra glitter on the Christmas tree by Richard Sagar.

There are plenty of flashing LED circuits about that can be used for the star on the top of your Christmas tree. One problem with LED arrangements is that they can barely be seen during bright daylight hours, or when the tree is brightly illuminated by a nearby lamp. The circuit in Figure 1 is designed to give a pleasing flash, well more of a twinkle really, and can power mains lights and hence be bright enough for use at any time of the day.

Mains Control

To switch a high voltage (mains) bulb a Silicon Controlled Rectifier (SCR) is generally employed, here a triac, as these are capable of switching currents in amps or 10 s of amps range and voltages of 100's or even 1000's of volts. Being silicon devices with no moving parts they are also faster to switch and more reliable than relay and other mechanical switches. The standard way of giving a dimmed effect using an SCR is to switch the bulb on and off at high speed, using the full supply voltage, and making the percentage of time spent on longer for a bright glow, or shorter for a dim glow. This technique is also used for speed control in motors as it gives better control at low speeds than would be

Flg. 1 Circuit of oscillatory fading lights

How It Works

IC1b is used as an astable oscillator, the oscillations depend on the signal at pin 6 ramping up and down to cross the voltage at pin 5 , causing the output to change state. This only works because R4 provides hysteresis to the circuit, giving the voltage on pin 5 a different value when the output (pin 7) is high, to its voltage when the output is low. Consider the case when the output is high; assuming the output is 5 V (the positive supply), then R4 will effectively be in parallel with R1, making the voltage at pin 5 approximately 60% of the supply voltage.

When the output islow, R4 is in parallel with R2 and the voltage at pin 5 will now only be 20% of the supply voltage.

Figure 2 shows how the voltage on pin 6 changes in relation to the output voltage. Normally on flasher circuits it is the voltage at pin 7 that is used to flash the LED's, but in this case the voltage at pin 5 is used to give the aforementioned 'twinkle'. The sawtooth waveform cannot be used directly to drive the light bulb, as the current and voltage are far toolow.

given by dropping voltage across a resistor, it is also more efficient as less energy is wasted through $1^{2} R$ losses. One interesting point about the SCR is that once the device has been turned on (with a pulse on its GATE input of $1 \mathrm{~V}-2 \mathrm{~V}$ at 10 mA) it will remain on when the gate input is disconnected, as long as the current through the main terminals continues to flow. In AC circuits such as this there is no real problem as the supply regularly turns itself off (100 times a second), however any circuit that used a DC supply would need some additional circuitry to switch off the load current and hence tum off the SCR. Figure 3 shows the voltages at the important points in the circuit. Figure 3a is the rectified output of the transformer, before smoothing. This signal is
it is known) which is exactly what we require to give the dimming effect. Note that the comparator output is fed through_capacitor C5 before driving the GATE input of the triac. This is to allow the GATE current to fall quickly back to zero (Figure 3c) after the positive transition o(the comparator, this prevents the triac being held on past the zero crossing of the load current, which would keep the triac switched-on continually again no good for a dimming circuit.

Power Supplies and Interference

The transformer should have an output of 9 V to 12 V . The bridge can either be a bridge rectifier in a pack or made-up of four diodes and need only be rated at 1 amp . Obviously care must be taken when connecting up the transformer primary and it may be advisable to find a sealed unit that provides the low voltage output and no access to the 240 V primary. The 5 V supply for the opamp circuit needs to be stable, to generate a good sawtooth waveform, however the not smoothed transformer signal (Figure 3a) is required to generate the switching signal for the comparator (IC la). To allow both to be provided R5 and D1 are used to separate the bridge and the regulator portions of the supply circuit. It is worth noting that the voltage at the input to the regulator (IC2) needs to be 7 V or over, so the current through R5 and hence the volts drop across it cannot be too high. Smoothing of the supplies is provided by both large electrolytic and

Fig. 3 Comparison of triggering points.
used for determining when to apply pulses to the GATE input of the triac. A pulse needs to be provided at least once per mains cycle otherwise the triac will spend all its time switched off. By comparing the size of the voltage on pin 5 of IC1 (V trigger) with the rectified transformer output ($\mathrm{V}_{\mathrm{rect}}$) the time at which the triac is switched on will change, earlier in the cycle for high values of V (trigger) and later for low values of V trigger (Figure 3b). This gives the effect of varying the ratio of the ON to OFF time of the triac (the MARK-SPACE ratio as
smaller value ceramic or polyester capacitors. The electrolytic capacitors provide smoothing of the mains ripple, whereas the smaller capacitors are used to remove high frequency noise that the fast switching ofthe triac can induce. The capacitors should be keptas close to the supply connections on IC1 as possible. In parallel with the triac is a further smoothing capacitor which smooths the current through the load (transforming Figure 3d into something more like Figure 3 e , to reduce the sharp current spikes that cause radio frequency interference.

The triacs used have a rating of five amps which is fine for Lighting circuits, however in the excitement of experimenting with the unit it is all too easy to run round the house connecting everything to it, and the simple mistake of connecting a hair drier to the unit could ruin your whole days work (or even your Christmas). It is therefore necessary to place a 3 Amp fuse in series with the triac, as shown in Figure 1, this will also protect the circuit from the usual mains faults.

Setting Of RV1

The variable resistor, RV1, controls the height of the signal (V rect) feeding pin 2 of IC1a. Referring to Figure 3a V trigger should not be greater than the peak value of V rect otherwise the comparator will not switch during that cycle, the triac will not be triggered and the lamp will remain off. Using an oscilloscope the two signals can easily be displayed one on top of the other and the pot adjusted to make $V_{\text {rect }}$ big enough. If an oscilloscope is not available setting up is still possible using a voltmeter as follows: (1) measure the two voltage levels of pin 5 on IC I, which should be approximately 20% and 80% of the supply voltage, as mentioned above; (2) Measure the voltage at pin 2 of IC1 (using the DC range of the voltmeter), this will be the average value of the waveform V rect. For a rectified sinusoid the peak value is ($n / 2$) 00 V and hence the pot can be adjusted until the voltmeter reading is high enough to satisfy $V_{\text {rect }}$ greater than V trigger.

Practical Aspects

The best use for the circuit is in conjunction with a set of fairylights, or to be more accurate two sets of fairy lights. The reason for specifying a quad op-amp was to allow two copies of the circuit in Figure 1 to be built up easily. Two slightly different values of the combination C1/R3 can be selected so the two 'twinkles' change at different speeds and give quite a soothing Christmas effect, even if I do say so myself.

Another important practical aspect of any mains control is to make sure the electronics is housed within a good insulating box or case. As this design is solely for Christmas lights, it would be wise to house power supply and control circuits in the one box, leaving just a 'mains in' lead and 'controlled mains' out lead.

$$
\begin{aligned}
& R_{1}=R_{\text {RANCE }}-R_{m} \\
& R_{m}=R \times \frac{1}{I t} \\
& R_{\text {SHUNT }} \cdot R \times \frac{1}{I t-I} \\
& I t=\frac{V}{R_{\text {RAMNCE }}}
\end{aligned}
$$

Fig.18(a) Basic circuit and formulae, and (b) standard calibration scale (compared to a linear voltage scale) of a series-type ohmmeter.

The last episode of this 'test gear' series outlined the main principles of the moving-coil meter and showed how it can be used to make AC and DC voltage and current measurements. This month's article continues the theme by showing how it can also be used in ohmmeter and multimeter applications, and concludes by introducing various other types of electro-mechani-cal 'moving-pointer" meter.

The Series-type Ohmmeter

There are several ways of using a moving-coil meter to read resistance values. The best known of these uses the basic 'series connected' ohmmeter circuit of Figure 18a, which is used in most commercial analogue multi-meters. This battery powered circuit has a variable shunt wired across the meter and has a combination. In use, the X terminals are first shorted together, causing a current (I) of $\mathrm{V} / \mathrm{R}_{\text {range }}$ to flow in the meter, and the variable shunt is then trimmed to bring the meter pointer to FSD; since zero ohms are connected across the X terminals under this condition, this is called the 'set zero'! operation. The unknown resistor (Rx) is then connected in series with R1 by fitting it across the X terminals, and the new current reading (i) noted; the value of Rx can then be calculated from
$\mathrm{Rx}=\mathrm{R}_{\text {range }}([\mathrm{I} / \mathrm{i}]-1)$
If Rx has the same value as $\mathrm{R}_{\text {range }}$ the " i " value will equal $1 / 2$, and the meter will give a centre scale reading.

Consequently, when designing such meters, the R range value is used to set the instrument's center-scale value.

All meters of the Figure 18a type generate a scale shape ofthe exact formshown in Figure 18b, with a zero to the right with the 'range' value in the dead-center of the scale, and with X 10 and X 0.1 values at 9% and 91% of FSD respectively. Consequently, this scale can be applied to any series-type ohmmeter, provided that its values are all multiplied by an appropriate amount. For example, the old Avo-minor used a centre-scale value of 113 ohms, and the Avo 8 uses a center-scale value of 2000 ohms , and many other meters use center-scale values of 285 ohms, but all use the precise scale shape shown in Figure 18b.

Fig. 19 Chart showing how the output voltage of a lightly loaded 1.5 volt zinc carbon cell varies over its working life.

Superficially, the Figure 18a circuit looks easy to design, but in practice matters are complicated by the facts that the design must allow for large variations in battery voltage and $\mathrm{R}_{\text {shunt }}$ (and thus Rm) values, and by the fact that the circuit's mid-scale value is set by the combined values of the fixed R1 and the variable Rm. Figure 19 shows how the voltage of a 1.5 V zinc carbon cell varies with usage; clearly, an ohmmeter designed for operation from such a cell should have its
component values optimized for operation at 1.4 V , but should be capable ofoperating over the range 1.1 V to 15 V . To design a circuit of the Figure 18a type, the meter's basic sensitivity and ' r ' value must first be known and the battery voltage and mid-scale 'range' resistance decided on; the circuit's component values can then be calculated. Figure 20 shows a practical 3-range series-type ohmmeter, designed around a $50 \mu \mathrm{~A}, 3 \mathrm{k} 0$ meter; on each range, SW1a selects the range resistor and battery, and SW 1b selects the zero setting $\mathrm{R}_{\text {shunt }}$ resistors; note that the circuit uses a 10.5 V supply on the ' x 100 ' range, and that all shunts are wired in series across the meter. Figure 21 lists the full set of calculations made while
meter and reduces its current reading to ' i '. Rx can then be calculated from:

$$
R x=r x(I /[I-i])
$$

Thus, the meter reads half-scale when $\mathrm{Rx}=\mathrm{r}$. In practice, the effective r value can be varied by wiring a shunt across the meter, and the circuit can be used to measure very low values of resistance. Nowadays this circuit is obsolete, and it is presented here purely as a matter oftechnical interest.

Meter Overload Protection

Moving-coil meters are delicate instruments and can easily be damaged by large overload currents. If the meter is

Fig. 20 This ohmmeter spans 100 R to 1 M in three ranges.
converting the basic circuit of Figure 18a into the practical design of Figure 20.Thus, on the ' x 1 ' (1 K) range, the design is first optimized for 1.4 V operation (using the formula of Figure 18); at 1.4 V the meter needs a FSD value of $1400 u A$, so $\mathrm{R}_{\text {shunt }}(=\mathrm{R} 5+\mathrm{RV} 3$) needs a value of 111.1 ohms, and Rm equals I 07.1 ohms: consequently, 'R1' (= R3 of Figure 20) needs a value 893 ohms. Once the R1 value has been settled, new sets of calculations must be made for $1.5 \mathrm{~V}, \mathrm{I} .2 \mathrm{~V}$, and I. IV operation. to enable the spread of $\mathrm{R}_{\text {shunt }}$ values and percentage mid-scale errors to be determined, as shown. Thus. $\mathrm{R}_{\text {shunt }}$ must be variable between at least 103 and 143 ohms. and the circuit's mid-scale reading is 0.7% low (at 993 ohms) at 1.5 V and 29% high (at 1029 ohms) at 1.1 V . Similar sets of calculations are made on the ' x 10 ' and ' x 100 ' ranges; the ' $\times 100$ ' range design is optimized for 10 V operation.

The Parallel-type Ohmmeter

Another well-known ohmmeter is the parallel (shunt) type, which can be used to measure low values of resistance. Figure 22 shows the basic circuit; in use, SW1 is first closed and the meter calibrated by trimming RV1 to set the meter to read FSD with the X terminals open circuit; under this condition the meter current equals 1 , and the effective FSD 'resistance' value equals r . The unknown resistor (Rx) is then connected across the X terminals, so that it shunts the actual
used in conjunction with a swamp resistor, excellent overload protection can be gained by connecting a pair of silicon diodes as shown in Figure 23. Here, the swamp resistor is split into two parts (R1 and R2), with $\mathrm{R} 2, \mathrm{~s}$ value chosen so that 200 mV is generated across the diodes at FSD; at overloads in excess of twice the FSD value the diodes start to conduct, and thus limit the meter's overload current; R1's value is chosen to limit the diode overload currents to no more than a few mA.

Multi-function Meters

A single moving-coil meter is often built into an item of test gear and used to act as a multi-function 'volts and current' meter. The designing of such meters is usually quite a simple matter, the basic principle being that all multiplier and shunt resistors are permanently wired into circuit, the meter simply being switched in series or parallel with the appropriate element. Thus, if a common measuring point can be found the switching can be made via a single-pole switch. as in the case of the Figure 24 circuit, which uses a single meter to monitor the output voltage and current of a regulated power supply unit. If a common measuring point can not be found, the switching must be done via a 2 -pole multi-way switch, as in the case of the circuit of Figure 25 , which can monitor several independent DC voltage and current values.

	BATTERY VOLTAGE	MID-SCALE RANGE VALUE		Rshunt VALUE (Ohms)	VALLUE (Ohms)	NOMINAL R1 VALUE (Ohms)	$\begin{aligned} & \text { MID } \\ & \text { SCALE } \\ & \text { ERROR } \end{aligned}$
	1.5 V	1K	1500	103.5	100	900	-0.7\%
${ }_{\text {x1 }}$	1.4 V	1K	1400	111.1	107.1	893	0\%
$(1 \mathrm{~L})$ RANGE	1.2 V	1 K	1300	130.4	125	875	+1.8\%
RANGE	1.1 V	1K	1200	142.8	136.4	864	2.9\%
	1.5 V	10K	150	1500	1000	9000	-0.7\%
$\times 10$ $(10 K)$	1.4 V	10K	140	1667	1071	8930	0\%
RANGE	1.2 V	10 K	120	2143	1250	8750	+1.8\%
RANGE	1.1 V	10K	110	2500	1364	8636	2.9\%
$\begin{array}{r} \mathbf{x} 100 \\ (100 \mathrm{~K}) \\ \text { RANGE } \end{array}$	11 V	100K	110	2500	1364	98.64K	-0.14\%
	10 V	100K	100	3000	1500	98.50 K	0\%
	9 V	100K	90	3750	1667	98.33K	+0.17\%
	8 V	100K	80	500	1875	98.12K	+0.37\%
	7 V	100K	70	7500	2143	97.86K	+0.64\%

Fig. 21 Design-calculation chart for the 3 - range ohmmeter.

Analogue Multi-meters (VOMs).

Modern analogue multi-meters (called Volt-Ohm Meters, or VOMs, in the USA) are provided with a good selection of ohm and AC and DC volt and current ranges. Such meters are usually such excellent value-for-money that it is simply not cost-effective for the amateur to consider building, rather than buying, a multimeter, and this situation has pertained for at least twenty years. Figure 26 , for example, shows the
awkward) meter with a similar specification. There are occasions, however, when it is worthwhile building a multimeter; these are usually when a meter with special ranges is required, or when a use is wanted for a spare meter. or when the need is felt for a challenging or educational construction project. In such cases the do-ityourself 18 range meter of Figure 27 may be considered; it uses a readily available $50 \mu \mathrm{~A}$ meter, which is protected by a couple of silicon diodes, and

$$
R_{x}=r\left(\frac{1}{1-1}\right)
$$

WHERE 'I' IS METER CURRENT WITH RX IN CIRCUIT

Fig. 22 Basic circuit of the parallel-type ohmmeter.
circuit of a popular medium-priced British-built 18range instrument of the 1970 's, the Avo Multi-minor Mark 5. This ancient and obsolescent instrument uses half-wave rectification on its AC voltage ranges (as in Figure 15), and has a basic sensitivity of $1 \mathrm{k} / \mathrm{volt}$ on the AC ranges and $10 \mathrm{k} /$ volt on its DC voltage ranges. Even so, note that it uses a special moving-coil meter which, with a swamp resistor fitted, has an FSD sensitivity of 100 mV , and uses a purpose-built 2 -pole 18 -way range switch that can handle currents up to 1 Amp and has 1 kV of insulation between switch contacts. Also note that it uses a variety of odd-valued precision resistors, and that the 7M5 resistor needs an insulation rating of at least 750 volts. The amateur has no chance of buying such components at an affordable price.

Modern multi-meters are an even greater challenge; they use the latest technology, usually have between 18 and 40 ranges, and typically cost less than half as much as it would cost the amateur to make a homebuilt (and usually ugly and
has a sensitivity of $10 \mathrm{k} / \mathrm{volt}$ on its AC voltage ranges and $20 \mathrm{k} / \mathrm{volt}$ on its DC voltage ranges.

The reader should have little difficulty in following the circuit of Figure 27. The multimeter's DC current circuitry is derived from Figure 10, its AC voltage section from Figure 13, and its ohms section from Figure 20. No attempt has been made to provide the reader with a rigid range-switching diagram, but switching problems have been eased by provid-ing separate terminals for the 1 Amp and 1 kv inputs. so range switches need maximum current ratings of only 100 mA and contact insulation ratings of 250 volts.

Using A Multimeter

Analogue multi-meters are fragile and easilydamaged instruments: when using them, always remember the following basic rules.
(1). Most analogue multi-meters arc designed to operate with their faces in one specific physical orientation, usually
horizontal. If such meters are sloped at an angle or are placed vertically when in use, measurement accuracy may be impaired.
(2). When measuring an unknown voltage or current, always set the meter to its highest range and then work down the ranges until the right one is found.
(3). When measuring an in-circuit voltage, connect the meter across the voltage source, as shown in

Fig. 23 Meter overload protection given via silicon diodes

Simple volt-current-ohm moving-coil meters are the most widely used types of electromechanical analogue meter used in electronics, but they are not the only ones. The following list gives brief details of a few other popular variations and types worthy of mention:
dB Meters. In AC signal-voltage measurement, the decibel or dB is used as a means of expressing the relative ratios of signal strengths, a value of 1 dB representing a ratio of1.122. Thus, a signal that is 1 dB up on a 10 V reference has a strength of $10 \times 1.122=11.22$ volts, and one that is 1 dB down on the same reference has a strength of $10 / 1.122=8$. 91 volts. The scale of any linear $A C$ voltmeter can be graduated in dB by selecting an arbitrary ' 0 dB ' reference voltage and then calculating the appropriate positions for the dB graduation marks. Figure 29 shows an example of such a scale applied to the 10 V range of a meter; in this case 7.94 V has been selected as the ' 0 dB^{\prime} reference value, because it is precisely 2 dB down in 10 V

Fig. 24 Example of a single meter used to read both V and I in a PSU.

Figure 28a. Always remember that the voltmeter's input impedance (the product of its ' V ' range value and its ohms-per-volt sensitivity) will shunt any resistance that it is connected to and will thus reduce the apparent value of its generated voltage; allow for this 'disturbance' effect when taking measurements.
(4). When measuring an in-circuit current, connect the meter in series with the current source as shown in Figure 28b. Always remember that the current meter will generate a significant volt drop (usually between 100 mV and 500 mV at FSD), and that if it is used in low voltage circuits its presence may have a disturbing effecton the magnitude of the test currents.
(5). When measuring an in-circuit resistance always isolate the resistance from all other circuitry and then connect the meter across the resistor, as shown in Figure 28c. Never try to measure the value of a resistance that has a voltage source applied to it. Always remember that the ohmmeter is itself a voltage generator, and that when connected to a semiconductor junction its readings may depend on the polarity of connection: thus, a diode may give a low reading in one direction and a high reading in the other.

Fig. 25 A single meter used to monitor two ' V ' and two ' 1 ' ranges in an instrument.
and thus enables the meter's FSD point to be used as the ' $+2 \mathrm{~dB}^{\prime}$ point. The table lists the positions for the dB graduation points in terms ofpercentage of FSD. Watt-meters. A true watt meter makes independent meas-urements of a load's voltage and current, and gives an output

Fig. 26. Circuit of the 18 -range Avo Multiminor Mark 5 of the 1970's era (reproduced by courtesy of Avo Limited, Dover, UK).

Fig.27. A 18-range multimeter suitable for home construction.

reading that is equal to their product and is independent of variations in load resistance. Such meters are expensive. If power measurements are to be made into a fixed load resistance, however, an inexpensive pseudo-watt-meter can be made by simply using an AC voltmeter to monitor the resistor's outputvoltage, as shown inFigure 30, and calibrating the meter scale on a basis of $W=(V 2) / R$. Such a meter has a non-linear scale, as shown, since its voltage reading is proportional to the square root of power.

Thermocouple Meters. Thermocouple meters are often used as RF current or power indicators at frequencies up to hundreds of MHz , or as wide-band AC/ DC transfer standards
in electrical calibration work. They consist of a thermocouple (a junction of two wires made from dissimilar metals, which generates a cross-junction voltage when heated) that is connected directly, to a moving-coil meter, and an exter-nally energised 'heater' that is in thermal contact with the thermocouple. When an external current is fed through this second pair of wires it causes the thermocouple to heat up and generate a proportionate current in the moving-coil meter. This current is proportional to the true RMS input current, and is not influenced by the shape or frequency of the waveform, and such meters can thus be used at frequencies from DC to hundreds of MHz . These meters have a square-

Fig.29. A dB volts scale compared with a linear 10 V scale, using 7.94 V as a ' 0 dB ' reference, to give a value of +2 dB at FSD .

Fig.30. Basic circuit and typical non linear scale of a simple pseudo-watt-meter.
law scale. The thermocouples are very fragile and easily burnt out.

Moving Iron Meters. These meters are widely used as AC or DC volt or current meters in lowaccuracy applications, etc. They have a fixed coil (through which the measured current flows) and a balanced iron vane that carries a pointer and deflects when the coil is externally energised. Such meters are cheap and robust but have a low sensitivity. They respond equally well to $A C$ and DC; their scales are non-linear, and are cramped at the low end.

Electrostatic meters. These are usually built to read voltages in the 1 kV to 30 kV range. In essence, they act as one
fixed and one movable set of capacitive vanes; a pointer is fixed to the movable vane, which is deflected electrostatically when an external voltage is applied. Such meters respond to both DC and AC voltage (they draw zero current from DC sources and a frequency-dependent current from AC sources. Their meter scales are nonlinear, and are cramped at the low end. Such meters were once widely used for high voltage measurement, but they are now rarely used.

The next episode of this series will look at electronic analogue meter circuitry.

HALCYON ELECTRONICS

Test equipment，video monitors，amateur radio gear，printers， power supplies，communications，disk drives，multimeters， oscilloscopes，scientific instruments，connectors，component bridges，frequency counters，signal generators，computers．

IE EOUPLENT DE7A 2SIALL 2T，DEL TA

 HP 1 TOM 3 SIMED OUNL TRACE GOULD OSSMO SNHE 2 TRACEDEL TA TEX 453 SOMER DAL TRACE DEL TR TEK \＆ SOMHZOUL TRACE OET TA SCOPEX dDO \％SIHR DUAL IPACE BECXUN Sreo zow DMTAPYECASON EDOO WTH 611 PUGEIN AND GII OSXDPNE LINTGOVLDOSSOOH MHY2 TRACE OE TR FULEG 2OD 5 ruHz 2 TRACE，COMPTESTE日 HTACH VC 5015 IOMHZ OIGIIN STORAGE HPTACHVC Bolsiankz
LEDDEA LBOSC AIGMENT SCOPE
TEX SLL H 1OWH2 SPSCT AUL WTTH 51 DWF． 2 SASO
 TETROOHIX 7 OOAN DFI， $7 D 01$ LOGCC AHML
 TEK SLSSESEEMES RUG WS WANDE SGO TEFHUNSPU2LEVE METE WANDEGO TELLUN SPUJLRE METE WADAGGOTEAMNN PSA SGMAL GEI
 pacal scosfict scourz rancspat 19＇R HCXS201 3110 OEFP 1 IP 34 SOA DNH ACOCNOHMS 6 DIGT XOOPMERS SEC $30-2.30$ 2MS UNIY PMSS CCOOS WHOUSE 1／ATP PEVBE E MOTORS 2WV IKAPM
 COISTANT VOLTAGE TRWCSFS 1 SOUA．2KY MACOW TF231 DISTN FACTOA
B8CS A MASTR CONPTESS 68C－9 IMSTE CONPTERS WhCOM1 FZZOO ПMA HOOU
©15 DERBRIUTOR 50－NOJOOULES BATMMAIMS EX9 FARNELL FGI FUNC GEN 2．22MHZ OPM COLLECTORS TEST EOUPT，VAROUS gM COMILINICATIONS RECEEVEAS，VARIOUS SSO SOWUN．SOURCE WITHTILUE
CI 10 ISCO＇S WAELESS，REED HORN SPKRS
C24 McMURDOSIIVER COFR，1ONLY PERISCOPES MILTAAY NO． 43 MII 3
LCA MARCONITF 1313AO1\％
249 LCA MACONI TF201INSIIU
©24 LCA MACONIT TFEACB
SMS LCA COMPCNENT COMPARTTORAVOCZISTS WAYNE KEFA R 221 LOWINO．BRIDCE
 SCP SiN GIBSON GIA BMERGEACY XIITTER
 E23 LEVEL TG152 3H2．300 H2 OSCSINSO suss LEVELT TMEB MICAO H MEEA SSOMH2 Fromsis Level Theb michov－Mena 3unt FTOM $£ 10$ TuBaruse Tunerunits brand new SIM OERTING VODSINGE PAN BALANCES ZOOGM E1 1 SAGE2 WAY CO－AX SHIT CH SAN 2IO NCONNS LOI 2O6 SOWAR SCANEE SURF ACE LNT UPACAVIOEFIM CDSPT．＇H．TESTE日 IMRCONI LAARINE KEST FE 3 ANAIMCAL ENAHCES HTH WE GHTS DECAOE R ROV／BOES
 2O KAYE DEENEUMOUYEXP LNI ISOCOOMM VACYUM PJMPS TTP：IOOMBAR I28UMN Calleration stanoands cmar COSSOR CAUG33 ИF MAVCOH F SIG GEN From Im COSSOA CALI511ILSNOAAUDIOSIG GEN TOPR 91007 －117．5NVA 120R240－120242 150 KNGSFHLL LSS 1540 IV UAA PSUCASED

UST AVNLADLE，日UT 1SOFFL OF UNLLSTED BARGAINS FOR CALLERS ALS PRICES EXC．OF PJP AND VAT QUALITY ELECTRONIC EQUIPMENT ALWAYS WANTED．
423，KINGSTON ROAD，WIMBLEDON CHASE，LONDON SW20 \＆AR SHOP HOURS 9－5．30 MON－SAT．TEL 081－542 6383

NEW STOCKS
AND SPECIAL OFFERS

PLASTIC BOXES

A RANGE OF SMALL PLASTIC BOXES， CASES AND POTTING BOXES AVAILABLE IN ANY QUANTITY．

SEND FOR FREE CATALOGUE

SLM（MODEL）ENGINEERS CHILTERN ROAD，PRESTBURY， CHELTENHAM，GLOS GL52 5JQ FAX： 0242226288

Professional WEATHER MONITORINE
 at low cost

FEATURES（depending on model）

－WIND DIRECTION	－OUTSIDE TEMPERATURE
－WIND SPEED	－MIN－MAX TEMPERATURE
－GUST ALARM	－RELATIVE HUMIDITY
－GUST SPEED	－BAROMETRIC PRESSURE
－RAINFALL	－WOODEN CABINET
－SUNSHINE	－MAINS \＆ $12-24 V D C$

$\star \star$ All main readings at a glance $\star \star$

R\＆D ELECTRONICS，PERCY AVENUE，

 KINGS GATE，BROADSTAIRS，KENT CT10 3LB．TEL：（0843） 866662 FAX（0843） 866663
Communications Link by RS232

Testing

> A project where 'Device Shall Speak Unto Device' Commentary by Keith Garwell.

We continue our RS232 link by looking at the testing procedure. Connect the power lines $+12,-12,+5$, and 0 volts either direct or via the mother board depending on the decisions arrived at earlier. If you have a frequency meter then the rest is easy. Connect it between the link marked OSC and the link marked $O V$ on the placement diagram (Figure 15). Adjust the 10 k preset until the required frequency of 38.5 kHz is obtained and that's all there is to setting up.
Failing a frequency meter then the first step is to check that the oscillator is running. A 'scope is handy at this point but if no 'scope is available use a conventional (moving coil is conventional to me - that dates me doesn't it!) meter between the OSC and OV links. The voltage should be approximately half the working voltage ie. 2.5 volts as the oscillator has an even mark to space ratio. If you don't have a moving coil meter use a DVM but if it gives a silly answer it may be because of interaction between the oscillator and the sampling system in the DVM. If this is the case connect
a large capacitor across the DVM (a 1 uF or thereabouts is 0 K) and a 470 k approx in series with the OSC connection to filter out the oscillator frequency. If the oscillator isn't running check the component placements particularly for chips the wrong way round. Given the oscillator is running and no frequency meter is available the next job is to set its frequency as accurately as possible. The modus operandi is to connect a meter between bit 7 of the receiver and 0 V then repeatedly send alternate bursts of@ signs ASCII 40 H ie. 01000000 followed by a burst of SOHs ASCII 01H ie. 0000000 1, with a short break between. Do this continuously and adjust the preset until bit 7 changes between 0 and 1 as the burst of characters are received. Then determine the positions of the preset at which this fails and finally set the preset midway between these two extremes.

This done, check with the meter that bit 1 is also changing between 0 and 1 .

This data sending is obviously most easily done using a computer! What is required is a burst of @ about 1 second long, a short pause of at least 2 characters duration followed by a burst of SOH followed by a pause. About 300 characters are a suitable burst length. As an illustration it can be done in the following way using an IBM PC or look-alike.

Connect the board to the PC (see 'In Use') for details and switch on the power to the board. Switch the PC on as well! Set up a file with about a250@s in it. If you want to use your favourite word processor by all means do so but be sure there are no embedded format characters, it should be a straight

Fig. 11. DC to AC converter

ASCII file without carriage returns or line feeds. Alternatively the built-in DOS commands will do it as follows - (depressing the Enter key after each command is implied).

COPY CON AT

Followed by typing two and a half lines of @ signs then control and Z then enter.

The file AT thus contains the @ signs. Now for the file containing the SOH or 01 characters. Your favourite word processor may not be able to do this! But the operation is similar to the previous one viz.

COPY CON SOH

Type 5 lines of control and A then control and Z then enter. Control and A is usually shown as "A so the there are only 40 real char-acters per screen line hence 5 lines to make it the same length as the AT file. The number of characters doesn't matter within a few, just so long as it takes about a second to send. Excluding the time to get the file.
Now make a batch file the contents of which are as follows.

COPY CON SENDALTS.BAT

:AGAIN
COPY AT TO COM1:
COPY SOH TO COM1:

GOTO AGAIN

Now set the Baud rate word length etc with the
MODE command by typing -
MODE COM 1 : $2400, \mathrm{~N}, 8,1, \mathrm{P}$
Now set it all in motion by typing -

SENDALTS

The batch file will read the two files from disc and send them. The disc reads giving the required short pause between sending each block. This pause is important as it forces the conversion board to resynchronize. Without it the characters will just pour out continuously and twiddling the preset will cause synchronization to be lost.
When ready stop the batch file running by pressing CTRL and C.

In Use

The computer end - setting up. All the remaining explanations will be illustrated using an IBM PC or look-alike hereinafter referred to as the PC. Other machines will have similar commands although the command names may not be identical. Only the commands are given below, pressing Enter to activate the command is implied.
First the RS232 computer link must be set up to correspond to our board. (Not Baud! and surely not bored!). To set up the first channel on the PC the MODE command is used as follows.

MODE COM1:2400,N,8,I,P

If it were the second channel then COM2: would be used. In fact I use a batch file (a file containing system commands, often referred to as the System Control Language) called M2400.BAT containing -

ECHO OFF

MODE COM $1: 2400, N, 8, I, P$

Then all I have to do to set up the link is type M2400. Alternatively the Mode command can be inserted in the system start-up file AUTOEXEC.BAT so that the PC is automatically set correctly at switch-on. Before I forget the P at the end of the MODE command causes the receiver to ignore time-outs. By way of explana-tion the program which drives the RS232 in the PC will only wait a limited amount of time for an incoming character before it gives up and returns a null (a character of zero). Without the P every null character would be inserted into the file (see below). The next job is to make up the connecting cable. The cheapest possible cable 'is ideal! Only 3 wires are used so a very thin mains cable would do if you have some and only a short length is required. However mains cable is not the cheapest solution if you have to go out and buy. In this case the four wire cable often referred to as signal cable or burglar alarm cable is the cheapest (Maplin). The connectors used for RS232 on a computer are D type plugs, the standard being a 25 pin. An alternative sometimes . used, especially on physically small machines is a 9 pin D type.
As well as the two data lines and the common ground or OV these plugs carry control signals intended to show the state of readiness (status) of the computer and attached modem. These control lines must be correctly driven otherwise the link will not run. In our case this is achieved by linking some of the lines together.
For a 25 pin socket the connections are:
Pin 2 is the transmit or output and is connected to P10 on the conversion board (CB).
Pin 3 is receive or input and goes to P18 on CB.
Pin 7 is the common and goes to 0 V that is P 12 on CB .
Pins 4 and 5 are Request To Send and Clear To Send, RQS and CTS and should be linked together.
Pins 6, 8 and 20 are respectively Data Set Ready, Data Carrier Detected and Data Terminal Ready, DSR, DCD and DTR and should be linked together.
For a 9 pin socket the connections are:
Pin 3 is transmit and goes to P10 on CB.
Pin 2 is receive and goes to P18 on CB.
Pin 5 is the common and goes to 0 V that is P 12 on CB .

Pins 7 and 8 (RQS CTS) should be linked together. Pins 6, I and 4 (DSR DCD DTR) should be linked together.

The Computer End -Driving The Link

There are three approaches to the problem. Use the features built in to MSDOS to link communications with files. Design the handling into the program(s) which will use the Conversion Board using communications commands. Drive via the BIOS (Basic Input/Output System a part of MSDOS) interrupts from the program(s) using the board.

By sending or receiving a tile via the communication link using MSDOS commands. Given that the name of the file to be sent is TX.DAT and that any data received is to be inserted into the file RX.DAT then the commands are:

COPY TX.DAT COM1:

or
COPY COML: RX.DAT
In the first case the whole tile contents will be sent as one block without pause. Whilst for the receiver command the PC will buffer up the data and only establish the file upon receipt of the normal PC file terminator ASCII 26 (generated by control and Z and represented on screen by Z. Note it is not necessary for the data to be a continuous block the receiver will sit for ever collecting characters until the terminator is received.
The second method is to use BASIC or any other language which will handle the communications port. GWBASIC which is often supplied with a PC is suitable. The file is opened with the statement:
OPEN 'COM!: J400,N,8,1' as file number, length Then use statements to write/read to the specified file number as for any other file.
The third method is perhaps more appropriate to machine code but will usually be available in compiled languages. It consists of making calls to interrupt 14 in the BIOS with certain contents in the machine registers. For example7
To initialize the communications to $2400 \mathrm{~B}, \mathrm{NP}, 8$ bits! SB call interrupt 14 H with $A H=0, b X=0, A L=101000$! I (A3Hex). On return from the routine AX will contain status information.

Fig. 13. LED driver with common anode configuration.

To send a char call interrupt $141-1$ with $A X=O I H, D X=0$, $\mathrm{AL}=$ char to be sent. AH contains status on return.

To receive a char call interrupt 14 H with $\mathrm{AH}=02 \mathrm{H}$, $\mathrm{DX}=0$. On return $\mathrm{AL}=$ char received, $\mathrm{AH}=$ status. Note that if a char is not received within the. 'specified' time-out the routine will return with a null character. The 'specified' time is set as part of the initializing routines when setting up the PC in the first place and is usually stored in battery backed RAM.

As A Converter From Centronics To RS232

This was the original reason for the existence of the converter board. I use a Dragon micro for various jobs from time to time and often wanted to pass data to a PC for processing. However the Dragon only has a Centronics printer connection. Centronics implies a particular connector and style of data handling for 8 bit parallel data. I must be honest and admit that I don't know where the name came from. I suspect it was an original manufacturer. Anyway the interface has become a 'standard'

I'm sure it could be a good idea to go over the operation of the Centronics printer interface so that we can see how it applies to the conversion board. It is also typical of the way in which many parallel interfaces work.

There are 8 data lines along with their own returns to 0 volts, +5 on a data line indicates logical true or 1 . Imagine the sequence. The processor puts the appropriate voltage levels on the 8 data lines for the first character. To ensure that the printer does not misread any of the data whilst it is in a state of change the processor applies a signal to a 'strobe' line to indicate that the data is no longer in a stateof change and can be read by the printer. Before changing the data for the next character the 0 K signal is removed from the strobe line. The sequence is then repeated .for each character.

This arrangement works admirably so long as the printer can handle the characters more quickly than the processor can send them otherwise data will be lost. As it happens this state of affairs is very unlikely. The printer is a mechanical device so will be much slower than the processor. Consequently there must be some. means of slowing down the processor. On the Centronics interface this can be done in either of two ways. There are two other lines, one called BUSY, and one called ACKNOWLEDGE (usually abbreviated to ACK) both under the control of the printer. +5 on the busy line indicates to the processor that the printer is unable to accept further data while 0 V on the acknowledge line indicates to the processor that the data hasbeen received and the printer is ready to accept further data. Putting it round the other way, +5 on the acknowledge line indicates the primer is not ready. Whichever one is used the other must be set to the not true condition. If the busy line is to be used then ACK must be set to NOT ACK ie. to +0 V . Conversely if ACK is 10 be used then BUSY must be set to NOT BUSY.

In our case we use the busy line. The connections between the Centronics socket and the conversion board are shown in the following table where CS indicates the pin number on the Centronics socket and CB indicates the connection number on the conversion board.

CS	Use	CB
1	Strobe (N)	23
2	Data 1	25
to		
9	Data 8	32
10	Ack (N)	not used
11	Busy	16
19	Gnd or 0V	12
20		
to Not used		
29		
In use set the PC to read data from the RS232 line for example		
with the command.		

COPY COM 1: MICRO.DAT

Fig. 14.40 line driver arrangement In bundles of four.

The PC will sit patiently waiting for data.
Now fire up the micro so that it behaves as though it were passing data to the printer. When it has finished the terminating character 26 must be sent. The PC will put the data away in the file MICRO.DAT.

As A Digitiser

Figure 12 shows the arrangement required to provide analogue output and analogue input via the conversion board and RS232 link The shaded bars indicate connections of more than one line.

The analogue output is quite straightforward. A character sent to the conversion board via RS232 appears on pins P8 to P1 (LS pin first) this is coupled to the input pins of the ZN426 (Maplin) where it is converted to an equivalent analogue voltage at the output. NOTE. On DAC chips the MS. bit is often labeled 1 and the 1 s bit 8 . The conversion is in the range 0 to 2.55 which corresponds to the possible character values of 0 to 255 .

The analogue output is buffered by the CA3140. This particular op-amp has the advantage that it includes 0 V in its operating range. It isn't absolutely essential but the output impedance of the ZN426 is 10 K and for accuracy the load resistance would need to be of the order of 220 K at least. For the sake of the few coppers that a 3140 costs the 'old halfpence of tar' really applies. The 3140 also offers the facility for scale changing if required. It is as well to run the 3140 from more than 5 volts if possible because the output of this opamp will not get closer to the positive rail than 2.25 volts which with a maximum output from the ZN426 of 2.55 gives 4.8 which at 5 volts only leaves 0.2 volts spare. That is sailing close to the wind!

The analogue value will appear immediately the character is sent from the PC (well nearly), so there's a simple waveform generator.

The analogue input is less straightforward, in fact its positively crooked! From Figure 12 it will be seen that the analogue input is compared with the analogue output by means of the second CA3140.

The result of comparison, the output of the 3140 , is connected to one of the inputs to the conversion board. I have shown the connection as being to bit 1 and what follows assumes this to be the case. However it need not be, any bit will do, especially if it is more convenient because you are using the bit for something else.

Figure 12 also shows the signal RXDR Receiver Data Received tied to TXS the Transmit Strobe. Thus sending
a character to the DAC will result in RXDR going low and loading the comparator output into the transmit buffer. When RXDR goes high the character will be sent. Thus bit 1 of the character being returned to the PC will indicate whether the analogue input is less than or greater than the analogue output.

From this arrangement it is possible to determine the actual value at the analogue input by means of a little software routine. The demonstration code is written in BASIC. Note, my WP interprets the hash sign as a pound sign, it should be written hash 1 and input hash 1 in line 120.

10 DIM UD(9)
$20 U D(1)=\& H 40: U D(2)=\& H 20: U D(3)=\& H I O:$

30
40
100
110
120
130
140
$\begin{array}{ll}140 & \text { NEXT } \\ 150 & \text { RETURN "CV contains the current value" }\end{array}$
It works by what is known as successive approximation. But before attempting to get it working check the code, particularly in lines 40 , and 120 which is the input/ output and a place where different dialects of Basic will probably differ. It can be called as a subroutine at line 100.

On entry CV is set to \&H80 where the most significant bit is a one. This value is sent down the line and the returned value will indicate whether it is too large or too small in line 130 and the value is adjusted by adding or subtracting the next bit by adding or subtracting $\& H 40$. Then round the loop again until all 8 bits have been done. The answer given can be one bit too small, 0.01 volt too small. This is because the comparator only returns too large or too small there is no equal return.
Whilst on the subject of digitiser if you haven't experimented with them before you may wonder why it sometimes can't make up its mind and keeps returning two answers which differ by 1 . This is because if the analogue voltage is just exactly equal to one of the possible answers circuit noise can make the answer swing either way. In other words if the analogue value is exactly 1.82 you may get answers of 1.81 or 1.82 .

UD(5)=\&H4 :UD(6)=\&H2 :UD(7)=\&HI: UD(8)=\&HI
OPEN 'COM1: 2400,N,8' AS \#1
$\mathrm{CV}=8 \mathrm{H} 80: \mathrm{LC}=0$
FORI = 1 TO 9
WRITE\# 1,CHRS (CV) : INPUT \#1,RXS IF ASC(RX\$) $=0$ THEN CV $=C V-U D(L C)$ ELSE $C V=C V+U D(L C)$ NEXT

Fig. 15. Component overlay.

A Lots-of-LEDs driver

A very handy device is the M5450 (Maplin) which will drive 34 LEDs. Only one additional component is required to set the current through the LEDs. This is enough to drive four 7 segment displays with decimal point if required. If such displays are used they must be common anode. As an alternative to LEDs, resistors may be used in which case 34 logic outputs are available.

Figure 13 shows the outline detail of the arrangement. The M5450 is a serial device. It has one data input (pin 22) and a clock input (pin 21)., A transition from low to high clocks in to a 34 bit shift register whatever level is on the data input. Thus 34 transitions shift in 34 data bits. Two addi-tional bits are required, one before and one after the 34 data bits, both of which should be ones, making 36 bits in all. The 36th transition gates the shift register data into the output buffer to drive the LEDs. There is no intermediate condition at the output. The data changes only on the instant of the 36th clock pulse.

The output of the conversion board provides 8 lines, one of which must provide the common clock pulses. The remaining 7 are each able to supply data to an M5450. This will give the capability of driving 7 M5450s each in tum driving 34 LEDs or logic outputs. I make it 238 LEDs in total.

Since the clock input requires a level change for each data bit to enter the shift register in effect two characters have to be sent for every bit, a total of 38 characters plus the extra bits for gating the output buffer thats 72 altogether plus a final bit to restore the clock to its starting condition, 73 characters. As the system is running at 2400 Baud thats 240 characters per second so in fact it takes less than a third of a second to update 238 LEDs or logic outputs.

Referring to Figure 13 again where bit 0 is connected to the clock and bit 1 to the data. As an illustration suppose the first 4 bits to be entered into the M5450 are 0110 then the characters sent would be -
xxxxxx00
xxxxxx01
1st bit transferred
xxxxxx10
xxxxxx11 2nd bit
xxxxxx10
xxxxxx11 3rd bit
xxxxxx00
xxxxxx01 4th bit
Note two points.
First that since only the first two character bits are used to drive the M5450 it doesn't matter what the value of the others are, indicated by an x in the above. This means that the remaining 6 bits can be used for something else, for example to drive up to 6 other M5450s as suggested above. The clock can be common to all.

Second that the data shifted in is most significant bit first so the first data bit sent will appear on output 34 .

Just to reiterate the actual pulses applied to pin 22. The first is a dummy, not used, the 2nd will appear as output 34. the 35 th as output bit 1 and the 36 th will gate the data onto the output lines.

As A Logic Driver

In the previous example (Figure 13) the data could only be changed to all the M5450 ie. all the lines. Certainly the same data could be rewritten so in effect only one output need change but they would all have to be written to. This example, Figure 14 , can drive up to 40 lines in bundles of 4
lines. The 4 line blocks are directly addressable and so can be written independently, It works like this.

The processor drives the Conversion Board CB as in all the other examples. The first four bits of the output from CB drives a 4028 which is a 4 line to IO line multiplexer. In other words any number between 0 and 9 being applied to the inputs A to D will select the corresponding output line 0 to 9 . Applying 15 to the input will leave all the output lines unselected (at 0 V). Each of these ten lines can be connected to the enable input of a 4028 quad latch. So any one of ten latches can be addressed directly,

The remaining 4 output lines from CB are linked to the 4 inputs of the 4042 latches in parallel. These multi-line highways are indicated by the shaded bars in Figure 14.

The four outputs ($\mathrm{Q} 1-4$) plus the four inverted outputs from each 4042 are available four driving logic. For example the eight outputs fromIC2 and 3 could drive a ZN426 digital to analogue converter. The outputs from other 4042 could drive analogue switches which could be used to switch the output of the DAC to up to 32 destinations.

An alternative technique is to use 4 quad latches, the first two driving a DAC as before. The second pair acting as the, address to drive multiplexing switches. This in fact is a technique proposed for remotely driving a theatre lighting system.

In action a similar driving technique can be used to that of the previous system, by sending pairs of characters. For example to set the output of IC2 to 0110 send the following characters:

01100010 1st character selects latch and applies data

01101111 2nd character deselected latch keeping data constant.

In action the MS four bits of the character act as the data and the Is. four bits select the quad latch to which the data is directed. The second character carries the same data but the address bits contain 15 which deselected the quad latch. Thus any latch can be set up by means of only two characters allowing much faster operation. The DAC data should only be changed when its output is not directed to any destination otherwise the destination will receive the change noise.

References -1. Newchapel Observatory \& Natural Sciences Centre. Newchapel, Stoke on Trent ST7 4PT.

PARTS LIST	
11_{1}	UART IM6402 or A 31015
${ }_{1} 12$	CEEOPP-AMP CAB3140
1 C 4	CMOS Quad NAND 4011
	Diode 1 ${ }^{\text {d }} 148$
	${ }_{470 \mathrm{R}}^{3 \mathrm{k}}$
R5,R6	10k
${ }_{\text {RV1 }}$	10 k Square 22 turn Cermet preset
$\mathrm{Cl}_{2} \mathrm{c}_{1}$	2200 pF Polystyrene

All resistors are Metal Film 0.6W.
PCB Connector is DIN 41612 Indirect Card-frame connector right-angled-plug 32way.

ETI has been published for over 20 years and in thisime a great many interesting features and valuable projects have graced it's pages. Although back numbers are available for only the past 12 month's issues we can supply photo copies of any individual article article ever published in ETI.

Photocopies cost $£ 2.00$ per article regardless of their length. Please note that projects published over several issues must be ordered as a series of individual articles, each for $£ 2.00$.

PCB foil patterns (where published) and any errata are included with all photocopies as applicable.

Please supply photocopies of the following articles from ETI (Complete in BLOCK CAPITALS):

MonthYearPage (if known)
Title. \qquad
Month \qquad Year \qquad Page (if known) \qquad
Title. \qquad
Month \qquad Year \qquad .Page (if known) \qquad
Title. \qquad
I enclose a cheque/postal order made out to ASP Ltd. to the value of $£ 2.00$ per photocopy ordered.
Total remittance $£$............................Date \qquad
Name \qquad
Address \qquad

.Postcode

Send the completed form and your remittance to: ETI Photocopy Service, Argus House, Boundary Way, Hemel Hempstead, Hertfordshlre, HP2 7ST

The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer for the creation of a foil.

Infra-red receiver

RS232 Interface

Fading Festoonery

Automatic Audio Response Measuring System-Dec '92 The following section wasmissed from thearticle, we reproduce it here:

Buylines

The address for all orders is:
Ralph Mantel,
Pipinstr. 23
W-4790 Paderborn,
Germany.
The prices for the UK in pound sterling are:
Compensated measuring microphone with cable and plug $£ 39$ Software $£ 29$
PCB with printed overlay $£ 19$
All three items together to the favorable price of $£ 79$ (saving $£ 8$). Complete kit or ready build PCB please enquire.

	Price (inc. VAT)	E9212-2 Communications Link by RS23 E9301-2 Fading Festoonery	
C	$£ 1.80$	E9301-FC Infra-Red Receiver .	
D	£2.50		
E	£3.25	PCBs for the rema iningprojects are a vailable fromthe companies tists in Buyli	
F	£4.00		
G	£4.75	but also tells you when the project was published. The fir ritwo numbers are the	
H	. $£ 5.50$	- Termsare strietly payment with orde r.Weca nnot accept official orders but we Such orders will not be processed until payment is received	
J	£6.62		
K	£7.20		
L	$£ 8.80$	E9108-2	Model Speed Controller-Main BoardF
M	$£ 10.60$	E9108-3	Model Speed Controller-PowerSupplyF
N	£13.10	E9109-1	Geiger Counter ...E
0	£15.80	E9109-2	Hemisync Waveform GeneratorBoard G
P	£17.90	E9109-3	Hemisync Pulse Generator BoardF
Q	£21.80	E9109-4	Henuisyne Power Supply Board C
R	£23.90	E9109-5	Nighfighter Main Processor Board O
S	$£ 25.90$	E9110-2	Freeze Alarm \qquad E
T	$£ 29.00$	E9110-3	Prototype Designer .. J
U	£32.20	E9110-4	Night fighter - Sound to Light (2 sided) ...
V	. $£ 35.80$	E9110-5.	Nightfighter - Ramp Generator Board F
W	£37.90	E9110-6	Nightfighter-Cyclic Crossfade (2 sided) M
		E9110-7	Night fighter-Strobe Board (2 sided)J
		E9110-8	Nightfighter - 8 Channel Triac BoardN
		E9111-1	Digital Code Lock ..L L
		E9111-2	Switched ModePower SupplyE E
		E9111-3	NightfighterModeSelection(2 sided) J
		E9111-4	Nightfighter- Display Board (2 sided) M
		E9111-5	Nightfighter - Bass Beat Trigger (2 sided)L L

ETI PCB SERVICE, READER'S SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:

| Please supply: | Ref. No. \quad Price Code | Price | Total Price |
| :--- | :--- | :--- | :--- | :--- |

Post \& Packing $£ 0.75$
Total Enclosed £
Please send my PCBs to:

Name
Address \qquad
\qquad

ET]
 ELECTRONICS TODAY INTERNATIONAL

Project Index 1992

AUDIO

Acousdix 20W amplifier
Audio pre-amp. High quality
Part 2
AutoMate Audio
mixing desk Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7
Part 7b
Part 8
Hybrid Line Amp
Hybrid Power Amp 45W
Intercom for light aircraft
Stereo IC Amplifier
Surround sound decoder
Aerial tuner unit
Errata
Alarm protector unit
Audio Pre-amp, High quality
Part 2
Auto Car light control
Auto protection
AutoMate audio mixing desk Part 1 April
Part 2
Part 3 June
Part 4 July
Part 5 August
Part 6
Part 7
Part 7b
Part 8
Automatic audio response
measuring system
Part2
Bat detector
Camera add-on unit
Digital circuit tester
DIY Aerial system
Dynamic noise limiter
Errata
Earth charge recorder Part 1 Part 2
Electronic die for board games
Flashy wizard's hat
Frequency meter range extender Errata
Heartbeat monitor
Hybrid line amplifier
Hybrid Power amplifier 45W

MONTH
February
April
May
April
May
June
July
August
September
October
November
December
December
September
September
June
July
October
December
September
April
May
April
November

August
September
October
October
November
December
November
December
May
July
December
August
August
October
March
April
November
October
June
July
October
December
September

PAGE
51
16

26

MONTH PAGE
Intercom for light aircraft September 13
June $\quad 20$
LED rear bike lamp - Improved July 13
Mains Inverter 20/50/100W December 16
Mains switched timer February 32
Errata June 72
MIDI Keyboard August 40
Errata December 61

MIDI switch MIDIrouter/exchange March 16
Errata June 72
$\begin{array}{lll}\text { Mini Baby bug monitor } & \text { July } & 47 \\ \text { Photogra }\end{array}$
$\begin{array}{lll}\text { Photographic Enlarger timer } & \text { January } & 31 \\ \text { Pond level controller } & \text { May } & 37\end{array}$
Errata July 73
Power supply Laboratory January 16
RS232 Interface December 48

Rapid fuse checker October 12
Star of the Month - LED Christmas
decoration January
$\begin{array}{lll}\text { Sine wave generator } & \text { March } & 52\end{array}$
Scanner for sine wave generator June 22
Smart Battery charger August 26
Errata \quad September 78

Stereo IC amplifier June 26
Errata July 73
$\begin{array}{lll}\text { Surround sound decoder } & \text { July } & 26 \\ \text { Temperature controller } & \text { September } & 54\end{array}$
Temperature controller
Test-card and test pattern
generator Part 2 January
52
Test-card update May 29
Errata March 61
Touch Intercom August 13

Ultra-sonic audio sender	July	50
Universal Interface for PC Part 1	October	16

Part 2

Window opener
Xenon flash trigger
Errata July
Test gear
Automatic audio response

measuring system	November	32
Part 2	December	42

Digital circuit tester \quad December 32
Frequency meter range extender June 36
Laboratory power supply January 16
Rapid Fuse Checker October 12
Sine-wave generator
Scanner for sine-wave generator
March
52
Test-card and test pattern
generator Part 2
June
22
January
52

BARGAINS -Many New Ones This Month

THIS MONTH'S SNIP is a 250 Walt Toroidal Transformer which has tappped main input and 3 secondaries: 230 v lamp 20 v and 6 v but if these voltages are nol quite what you want it is very easy to add an extra winding, 4 lurns adds or subtractsil volt. You can also use this as a 250 watt isolation. Price only $£ 10$ but it's heavy so please add $£ 2$ carriage if not collecting. Order Rel. 10P97.
ANOTHERSNIP extra lightweightstereo headphones. Superior sound quality as these were made for a world lamous airline. Adjustable headband makes these extra comfortable and they come complete with washable foam earpieces. Suitable for use with all types of cassette players and radios, good long lead terminating with 3.5 mm jack plug. Yours for only $£ 1$ per pair, Order Ref. 878 6-12V AXIAL FAN is a Japanese-made 12v DC or battery operated, brushless axialfan. 93 mm square, its optium is 12 bit it performsequally well at only 6 v and its current then is only 100 mA solt could be made into a handheld dry battery-operated cooler. Or, on your desk operated by a p.s.U. or in the car using the lighter socket. Snip price only £4, Order Ref. 4P65. Mains power unit to operate this at variable speeds, E2, Order Ref. 2 P3
F.M. CORDLESS RADIO MIKE hand-held battery-operated prolessional model, has usual shaped body and head and is tuneable to transmit and be picked up on the F.M. band of any radio. Yours for only £8.50, Order Ref. 8.5PI 4 MORE SPEAKERS:
Order Ref. 1.5P11 is Japanese-made 64", 8ohm, rated at 12Wmax. This is a very fine preproducer. The makers are SANYO. Yours for $£ 1.50$
Order Ref. 900 is another Far East made 6F, 40hm, 12W max. speaker. Very nicely made, using Japanese Hitachi tools and technique, only £1.
Order Ref. 896 is $6 \mathbf{y}^{\prime \prime}$, 6ohm, 10W, exceptionally good sounder and yours for only $\varepsilon 1$.
Order Ref. 897 is another 80 hm speakerrated at 5 W but lisunusual feature is that it has a built-in fweeter. Still only $£ 1$.
MULTI-CORE CABLES all with 8A 230V cores so suitable for disco and other special lighting effects. With earthcable woven screen and thick pvc outer. 3 core, 30p per metre, 16 core 50 p per metre, 18 core, 80p per metre, 25 core, \& 1 per metre and 36 core, $£ 1.50$ per metre.
ULTRA THIN DRILLS Actually 0.3 mm . To buy these regular cost a fortune. However, these are packed in half dozens and the price to you is $£ 1$ per pack, Order Ref. 797B
YOU CAN STAND ON ITIMade to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx. $10 \%^{\prime \prime} \times 4 Y^{\prime \prime} \times 6^{\circ}$ high. These are complete with snap closure lip and shoulder-length carrying strap. Taken irom used equipment but in good condition, price E2. Order Rel. 2P283B
BUILD YOUR OWN NIGHT LIGHT, battery charger or any other gadget that you want to enclosein a plastic case and be able to plug intoa 13A socket. Wehave two cases, one $3^{\prime} k \times 2 \hbar$ $\times 1 \%^{\prime \prime}$ deep, $£ 1$ each Order Ref. 845. The other one is $2 \% \times 2 \% \times$ 1\%"deep, 2 for $£ 1$, Order Ref. 565.
SAFETY LEADS curly coil so that they contract but don't hang down. Could easily save a child from being scalded. 2 core, 5 A, extends 103 m £1, Order Rel. 846, 3 core, 13A extends $101 \mathrm{~m}, ~ £ 1$ each, Order Ref. 847,3 core, 13A, extends to $3 \mathrm{~m}, ~ £ 2$ each, Order Ref. 2P290
POWER SUPPLY WITH EXTRAS mains input is fused and fillered and the 12 V dc output is voltage regualted intended for high class equipment, this is mounted on a PCB and also mounted on the board but easily removed, are 212 V relays and a Piezo sounder. £3, Order Ref. 3P80B
ULTRA SONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. 1.5P/4. 100W MAINS TRANSFORMER normal primary 20-0-20 at2.5A, £4, Order Ref. 4 P 24.40 V at 2.5A, £4, Order Rel. 4P59.50V ar 2A, £4, Order Rel. 4 P 60. PHILIPS 9" HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still in maker's packaging, offered at less than price of tube alone, only £15, Order Ref. 15P1
16 CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alphanumericc LCD dot matrix module with integral; micro processor made by Epson, their Ref. 16027Ar, £8, Order Rei. 8P48.
INSULATION TESTER WITH MULTI METER internally generates voltages which enables you to read insulation directly on megohms. The multimeter has lourranges, AC/DC volis, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom but in very good condition, ested and guaranteed OK, probably cost at least $£ 50$ each yours for only $£ 7.50$, with leads, carry case $£ 2$ extra, Order Ref. 7.5P/4
MAINS 230 V FAN best make "PAPST" 4\% square, metal blades, £8, Order Rel. 8 P8.
2MW LASER Helium neon by Rhillips, fullspec. £30, Order Ref. 30P1. Power supply for this kit form with case is $£ 15$, Order Ref 15P16, or in larger case to house tube as well $£ 18$, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Rel. 69P1
1/3 HP 12V MOTOR - THE FAMOUS SINCLAIR C5 brand new, £15, Order Ref. 15P8.
SOLAR CHARGER holds 4AA nicads and recharges these in 8 hours, in very neat plastic case, $£ 6$, Order Rel. 6P3.
FERRITE AERIAL ROD 8° long $\times 3 / 8$ diameter, madeby Mullard. Complete with 2 coil formers. 2 tor $£ 1$. order Rel. 832 B .
AIR SPACED TRIMMER CAPS 2-20 pl ideal for precision tuning UHF circuits, 4 for £1, Order ref. 818 B.
FIELD TELEPHONES just right for building sites, rallies, horse shows, eic., Just join two by twin wire and you have two way calling and talking and you can join Into regular telephone lines if you want to. Ex British Telecom In very good condition, powered by batteries (not included) complete with shoulder slung carrying case, $£ 9.50$, Order Rel. 9.5P/2.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting, $\mathbf{8 7 . 5 0}$, Order Ret. 7.5P/5 and a 250W version is $£ 10$, Order Ref. 10p79.

ASTEC 135 WATT P.S.U.

230 v or 115 v input with outputs of $+12 v$ at $4 A-+5 v$ at 16A and -12 v at l/2A completely enclosed in plated steel case. Brand new and yours for $\varepsilon 9.50$

MINIMONO AMP on PC8. Size 4" $\times 2$ " with front panell,olding volume control and with spare hole for switch or tone control. Output is 4 watt into 4 ohm speaker using 12 V or 1 Watt into 8 ohm using 9 V . Brand new and periect, only $£ 1$ each. Order Rel. 495.
AMSTRAD POWER UNIT 13.5V at 1.9A encased and with leads and outputplug, normal mains input, $£ 6$, Order Rel. 6P23.
ATARI 65XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect orderbut less PSU, only £19.95, Order Rel. 19.5P/5B. 80W MAINS TRANSFORMERS iwo available, good quality, both with norma primaries and upright mounting, one is 20V 4A, Order Ret. 3P106 the other 40V 2A. Order Ref 3P107, only $£ 3$ each.
PROJECT BOXIs approx $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime} 冖^{\prime \prime}$ metal sprayed grey, louvred ends for

IMITED SUPPLY ITEMS

are only described in our ewsletter. Many appear in ou current issue. If you order something this month you will recieve this and the next three issues posted to you free of charge. ventilation otherwise undrilled. Made for GPO so best quality, only $£ 3$ each, Order Rel. 3P74
12V SOLENOID hàs good Y" pull or could push if modified, size approx $1^{\text {un }}$ " long $\times 1^{\text {" }}$ square, $£ 1$, Order Ref. 232
500 V BRIDGE MEGGER developed for GPO technicians the Ohmeter1 8B is the modem equivalent of the bridge megger. 9 V battery operated, it incorporates a 500 V generator forinsulation resting and a null balance bridge for very accurate resistance measurement. Ex B.T. in quite good condition with data \& tested. Yours for a fraction of the original cost, £45, Order Ref. 5P167.
15W 8 OHM 8" SPEAKER \& 3" TWEETER made for discontinued high quality music centre, gives real hi-fi, and only £4 per pair, Order Rel. 4P57.
3V SOLAR PANEL price £3, Order Ref. 5P 189.
SOLARENERGY EDUCATIONAL KIT an ideal present for electronics students. it shows how to make solar circuits and electrical circuits, how to increase the voltage current, how to use solar power to work a radio, calculator, cassetteplayer and to charge nicad batteries. The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to complete a free-standing electric an. A really well written instruction manual makes this a lovely little present. Price 8, Order Ref., 8P12B
BT TELEPHONE LEAD 3m long and with B.T. liat plug ideal to make extension or phone, fax, etc. 2 for $£ 1$, Order Ret. 552.
WATER PUMP very powerful with twin outlets, an ideal shower controller, mains operated, $£ 10$, Order Ref. 10P74. Ditto but with a single outlet, same price \& order ef. Please specify which one you require.
0-1MA FULL VISION PANEL METER 2\%" square, scales $0-100$ but scale easily 0-1MA FULL VISION PANEL METER 2 "u" square, scales 0-100b removed for re-writing. $£ 1$ each, Order Ref. 756 .
PROJECT BOX a first-class, Japanese wo-part moulding size $95 \times 66 \times 23 \mathrm{~mm}$. held together by 2 screws, take a battery and a PCB and is ideal for many projects. To name just a lew, the washer bottle monitor, the Quicktest and the model railway auto signal,described in September's issue of E. E. This is nicely linished and very substantial. You get 2 for £1, Order Rel. 876. HOLD IT MAGNETIC BASE embedded is a circular metal shallow disc, diameter approx. $65 \mathrm{~mm}\left(2 z^{\prime}\right)$, is the most powertu magnet. We have yet to find anyone who can remove this with his fingers. Ideal for adding extra shelves inside a metal case or oglasswithout driling. Its uses, in fact, are innumerable. Price £2each, Order Rel. 2 P296.
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present forbudding young electrician. Should be able to assemble but you may have to help with the soldering of the components on the PCB. Complete kit, £8.96, Order Ret. 9Pg.
OPD DUAL MICRODRIVE UNIT this is a twin unit, eachunit having its own motor, record/playback head and PCB with all electronics. In addition to being a direct replacement in the OPD, this can also be used with the Spectrum or the OL. We have a copy of the procedure necessary and will gladly supply a photostat of this you require it when you purchase the unit. The price is $£ 5$, Order Ref. 5P194. 12V 2A MAINS TRANSFORMER upright mounting with mounting clamp. Price E1.50, order Ref. 1.5P8.
AM/FM MAINS RADIO CHASSIS with separate LCD module to display time and set off alarm. This is complete with loudspeaker but it is not cased. Price $£ 3.50$. Order Rel. 3.5P5.
2, 3 AND 4 WAY TERMINAL BLOCKS the usual grub screw types. Parcel containing a mixture of the 3 types, giving you 100 ways ior £1, Order Ref. 875. 12124 V DC SOLENOID constructed so that it will push or puli, plunger is a combined rod and piston. With 24 v is terrifically powerful but is still very good a 12 v and, of course, with any intermediate voltage with increasing or decreasing

JUST ARRIVED

inira Red Receiver Controller made by Thom to channel swlith their T.V. receivers.
Mounted on panel with Iuminous channel Indicator, mains on/off switch, leads and
plugs all yours for £2,
Order Ref. 2P304 power. It hasall the normal uses of a solenoid and an extraone, if wired in series with a make and break, this could be a scribing tool for marking plastics and soft metals. We welcome other ideas and will give a $£ 25$ credit voucher for any used. Price $£ 1$, Order rel. 877
2M 3-CORE LEAD terminating with flat pin instrument socket, £1, Order Rei. 879. Ditto but with plug on the other end so that you could use this to extend an iristrument lead. $£ 1.50$, Order Ref. 1.5P10.

Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3.00$ post and packing. Order over $£ 25.00$ post free. You can order until 9 pm Mon-Fri on 430380.

OLYMPIA Lonvonw14

 Easy to find - and, the parking is half price! How to get to Olympia - the new venue for the 1993 Model Engineer Exhibition

The Olympia Grand Hall is situated in Olympia Way off Hammersmith Road, Kensington W14.

It is very well served by all forms ofpublic transportand easy to reach by road and railas follows...

- Buses: Local LT bus routes numbers $9 \mathrm{~A}, 10,27,28$ stop outside Olympia in Hammersmith Road. Green Line routes also pass the door.
- Underground: District Lines tube trains run from Earls Court/High -Street Kensington to Olympia's own station opposite the Grand Hall entrance. This is a 15 minute service.
- Half Price Car Parking.

For the duration of the exhibition, rates for the Olympia multi-storey car park will be reduced to half price $£ 5$ per day - and until the 6 th of January the Earls Court, Seagrave Road car park will also be at half price-£5. Olympia is one stop on the tube train
from Earls Court. On the opposite side of the railway to Olympia, a proportion of Russell Road car park is available at $£ 4$ per day. There are, of course, numerous other car parks in the vicinity.

- Local facilities:

Nat West Bank: Hammersmith Road, opposite Olympia 2. Post Office: Blythe Road, Opposite
K Gate.

Olympia London

Don't miss the 62nd Model Engineer Exhibition

For the first time at Olympia come and see hundreds of competition entries on display as well as scale model boats, aircraft, cars. locomotives and over 100 trade exhibitors

Opening Times
10am-6pm every day except Thursday 7th January 10am-8pm
Catalogue available from 4th December PRICE $£ 1.60$
Competition Entry Forms now available - Loan Entry Exhibits welcome.

Admission Prices

Adults $£ 5.00$
Senior Citizens $£ 4.00$
Children £2.00
Ample Car Parking $£ 5.00$
Olympia, Grand Hall is easily accessible by Road, Rail, Underground and Bus.

ARGUS SPECIALIST EXHIBITIONS

 Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST Tel: 044266551Argus Specialist Publications and Hilton Hotels are offering special rates for the duration of the Exhibition.

The Clive Hotel
The Sherlock Holmes The Rexente Park Hition Plaza on Hyde Park Inndon Otympi Hilton Kensington Hilton The langham Hilton

Small \& welcoming close to Hompsteod and it's Heath Near Madame Tussauds \& London 200 Near Regents Park and ove rlooking Lords Cricket ground Close to Victoria and Albert \& Kensington Palace On Kensington High Street, ideal for shopping Close to London's West End Situated in London's West End and close to Oxford Street 66900 Situated in London's West End and close to Oxford Street 869.00 Landon Ililton on Park Iane in the hean of Mayjair and its elegant shopping district $\mathbf{2 6 9 . 0 0}$

Prices are for each guest each night for Twin/Double Room ($£ 14$ single supplement) and include Continental breabfast, (except The Langham Hilton and London Hilton on Park Lane which include English breakfast), private bath/shower, tea/coffec making facilities and VAT. There is a supplement of £5.50 for full English breakjast.

Booking Form - Intemational Model Engincer \& Modellina Exhibition
Make it a Model Stay
None \qquad
Address
\qquad Tel No
Accommodation required; Double \square Twin \square Single \square No in party .. of nights
Choice of hotel. \qquad \square Dates required
Payment by; cheque \square Access \square Vins \square Diners \square AmEx \square My Credit Cord No \qquad There will be a retum coach scrvice direct to the Exhibition al a cost of $£ 6.00$ per person on the dotes shown. Please tick is required: 'January 2nd \square January 9 ah Return booking form ta: Heidi Ross, CRO, Hilton International, PO Box 137, Watford, Herts WD1 1DN. Tel: (0923) 238877.

Olympia, Hammersmith Road, Kensington W.

1st-9th January 1993
ADVANCE BOOKINGS

Adults	at $£ 4.50$	No..........
SeniorCitizens	at $£ 3.50$	No..........
Children (5-16)	at $£ 2.00$	No.........

PARTY BOOKINGS (for groups of 10 or more)

| Adults | at $£ 4.25$ | No.......... | Amount $£$.......... |
| :--- | :--- | :--- | :--- | :--- |
| Senior Citizens | at $£ 3.25$ | No........ | Amount $£$........ |
| Children $(5-16)$ | at $£ 200$ | No......... | Amount $£$........ |

1 free ticketper25 people

SCHOOL BOOKINGS (for groups of 10 or more, one teacher free per 10 pupils)

Teachers at $£ 4.25$ No.......... Amount $£$.........
Pupils at $£ 2.00$ No.......... Amount $£$.........
Teachers- free ofcharge No..........
Total enclosed $£$

ADVANCE BOOKING INFORMATION

I enclose cheque/P.O. for the total amount stated above, together with an S.A.E. for return of tickets.

Cheques made payable to Argus Specialist Exhibitions (AT) and sent to Ârgus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST. Tel: 044266551

Name
Address \qquad

Closing date - December 7th 1992

AUTHENTIC FIDELITY

Dynaudio is considered one of the most distinguished manufacturers in audio. By means of untiring and successful research and exceptional solutions to questions of concept, design and construction Dynaudio has acquired this excellent reputation, yet success has not altered their independence and single minded concentration on creating products of the highest quality. Dynaudio continues to search for solutions to the basic problems of loudspeaker engineering and then puts these solutions to the test in loudspeakers of their own design. This is especially true for chassis technology. They have

There are three new speaker kits available.from Wilmslow Audio, each kit contains all necessary components to build a superb pair of speakers. 18 mm M.D.F. flat pack cabinets are also available.

	Pluekit	Carr/an:	Total KH	Carrinu
Gemini	\$590.00	\& 10.00	seis.00	\$15.00
Foptuk	¢360.00	110.00	2395,00	¢15.00
Twyin	¢ 2425.90	\&1000	c510.00	118.00
Moniont	. 0675.00	£10.00	1750.00	¢20.00
Finale	1200.00	515.00	127600.00	E2S.00

DIY Sparkencratglogisarimen ste orcars wekorne posi free (export £3.50)

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611
The supplier to use if you're looking for A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST COMPETITIVE VAT INCLUSIVE PRICES

MAIL ORDER generally by RETURN OF POST FRIENDLY SERVICE

Open: Monday-Thursday 9.15-6.00 Friday 9.15-5.00 Saturday 9.30-5.00

BADGER BOARDS

Printed Circuit Boards

Prototype-Singles-Multiple runs. Minimum charge £15.00. Artwork, Ploting from Schematic to final board layout Send S.A.E. now for Catalogue of Kits-Boards-Projects available. Many magazine boards produced for-individual customers. Dept: HRT 87, Blackberry Lane, Four Oaks, Sutton Coldileld, B74 4JF . 021-353 9326

PROFESSIONAL SERVICES

We offer a full R.F. DESIGN SERVICE from design and development to prototype. Ou' extensively equipped laboratory with screened room is available for EMC PRE-TESTING to ensure products comply with the EC Directive on emissions and susceptibility.

SF~W Lucy Hughes 044266551

Send your requirements to:
ETIClassifled Department, ASP, Arqus House,
Boundary Way, Hemel Hempstead, HP2 7ST
Lineage:60p per word (+VAT)(minimum 15 words)
Semidisplay:(minimum 2.5 cms)
E15.00 per single columncentlmetre(+ VAT) $\}$ Per Electromart 24.00 (+ VAT)
Ring for information on series bookings/discounts.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

VARIABLE VOLTAGE TRANSFORMERS	"BOFFINS SPECIAL" UNIQUE OFFEA purplus Precion Detioned pu imedly to elecita excel tolisble amount of the tsom
INPUT 220/240V AC50/80 OUTPUT P. 2.200 V	
1 KVa 5 amp max	
$2 \mathrm{KVA} 10 \mathrm{map}_{\text {max }}$	
3IVA 15	
SKVA 25	
(Plus Cariage) Buvana trom ine mpores kemenp priction the countr	
TRANS FOMMERE IT-HEOLATON B AUTO 	
UITRA VOLET BLACK LIGHT flourescen Tivees	
2JN AC BALLAST MT or rinter $6 \mathrm{mon} \operatorname{3n}$ or 12 n atoes $\mathrm{ES} 50+E 1.15$ 	 as. Cen be omiven kom TTL or Comeves outpur bo.
SAVE POUNDS. Build your own forged bank note detector. Will detect counterfait amongst quanlity of notes. Complete kit 8 parts less case for 240 volt AC OP inc. G^{6} UV black light tubel starter and holder. Pair Bi-pin leads circuit instruction. Total price P\&P VAT $\mathbf{5 1 3 . 0 6}$	His onn wion
	purdination Uie intortor 500 GPH 15 h heid 3 amp 18.21 7.
SUPERFM: 	
SaE for hemine did	

D COOKE INTERNATIONAL E TEST INSTRUMENTS

Marconi 6600A Microwave Sweep Oscillator with 66111.0-2.0
GHz. PJug In and $665126.5-40.0 \mathrm{GHz}$ Plug In $£ 1500.00$
H.P. 4204A Oscilator $10 \mathrm{~Hz}-1 \mathrm{MHz}$
£160.00
SOLARTRON 4601 Frequency Synthesizer SK Hz
180 MHz AM/FM and Sweep
Marconi TF 1370A RC Oscillator 10 Hz - 10 MHz Sine, Square
£320.00
Marconi TF 1370A RC Oscillator 10 Hz - 10 M Hz Sine, Square
Telequipment D61 Dual Trace Portable Scope DC-15M Hz £160.00

Marconi TF 1245 Magnification "Q" Meler
$£ 95.00$
Marconi TF 1246 Oscillator For "Q" Mete £95.00
Many more items available. Original W/Shop manuals for sale send
S.A.E. for lists. Computers, monitors etc. In stock. Phone for details.
All prices exclude VAT \& Carriage. Open Mon-Fri 9am-5pm Saturday by arrangement. Cooke International, Units $4 / 5$ Fordingbridge Site, Main Road, Barnham, Tel: 0243545111 Bognor Regis West Sussex P022 OEB . Fax: 0243542457

Serniconductor Clearance! arepumsincers

 Tox Educalican Dicoul an in oficid mation.

3 WIRE INDUCTIVE proximity switches German manufacture $10-55 \mathrm{v}$ PNP 400 mA 10 mm sensing distance LED indicator mounting clamps new boxed unused only $£ 5.00$ each (0733) 322745.

N.R.BARDWELLLTD (ETI)			
200	Stanal dioder inalis $£ 1.00$		24-way turned pin I.C. oocketa 1.00
76	Recifler Oloces 1N4001 \&1 00		20 pin di.I.I, whe wrap I.C. sockels.... 51.00
50	Recilitiar Olodes 1N4007................ $¢ 1.00$		ORP12 light dopendoni reskiors 1.00
56	Rectiliter Dlodes 1N5001................ §1.00		Printed circult bourd 20 mm fuse clipi $£ 1.00$
100	Assid Zaners $£ 1.00$		Asstd. dise ceramic espactiors £1.00
10	NESSS Timer IC3 $£ 1.00$		Asald. capacibors inf to 1u1. E1.00
8	C106D 400V 6 amp thyrlstors $£ 1.00$		Abld erectrolyic capacitorn. $£ 100$
	BFYS1 Trensistors $£ 1.00$		4.7UF 18V Racial eloctralytics51.00
30	日C478 Trmisistors $₹ 1.00$		4.7UF 03V Raslet elecirolylice 1.00
30	MPSA42 Transistors $£ 1.00$		10UF 18V Radial alecirdylica $£ 1.00$
50	Reciangularred led d.s $\leqslant 100$		10UF SOV Radial dectrolylica £100
25	Asstd. Migh brigminess 1e.dit. $£ 1.00$		
21	Mintarure red l.e.d.s 3 mm dia $£ 1.00$		
50	Axial leads (Diode package) wide engle		GUF SOV Rad al elaciuolytics........ $\leqslant 1.00$
	I.e.d.s . 1.00		100UE 10V Fadial electrolytica 11.00
12	Astid. stien segment displeyp ¢1.00		2200 F 16 V Radal ex ectiolyties $£ 1.00$
30	Assid. I.F. tunmiormers $£ 1.00$		470uF 10 V Radial elecirolyics. 51.00
${ }^{48}$	Assld. coil formers $¢ 100$		1000UF 10V Radial olectrolytics 51.00
100	Assid. Rf chokes (inductors) $£ 100$		1000UF 25N mxial olestrolyticac1 00
30	Asald connectors edga-ditsil otc反1.00		1 Farad 5.5V memory back ud
10	493W M B min. roteh swilches 1.00		capacilor............. 1100
20	1 inch Glass reed swithes $£ 1.00$		Potitier afteci heal pump 1.00
20	Magnotle sar pipe plus bead a plug.... 11.00		10 wath Siereo amplifier, 4 convols plus
20	Min SP/CO sude switches \& 100		data . £2,95
30	Assld. dil sockets up 1040 pin $\leqslant 1.00$		
Prices include VAT, postage £1.25. Stamp for Lists			
288 Abbeydale Road, Sheffield S7 1FL			

MENDASCOPE LTD

REPAIR \& RECALIBRATE OSCILLOSCOPES

ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERY

FREE ESTIMATES
Llangollen, Clywd, N. Wales LL20 7PB
PHONE: 069172597

HOME AUTOMATION

LAMP MODULE Plugs' n to wall socket to control incandescent lamps up to 300 W Responds to ON/OFFIO/MBRIGHT commands from controllors. LM585 £.22.45 MINI TIMER Timed control of up to 4 modules twee a day. Also features direct ONIOFFIDIMERIGHT control plus clock ONOFFIDIMERIGHT COn
functons.MT522 $£ 29.95$.

ENERLOGIC 14000 Controller

UNDERSTANDING 8

 INSTALLING HOME SYSTEMS, How to Automate Your Home The beast practical gulde to dato for tho nome sutamation enthualast. Packed ful of advice and Ideas on Instaling home syaterm and equipment. 140 pegas and 120 |liustrationa of the most up to dato datt on home sutornetion. conssThe frist inteligent home automation oystem. A remarkable hardwere + softwere package that adds brains to the range of X - 10 modules and controlers $\quad £ 348.95$

Part of a remarkable range of home automation components from
Smart House Systems ltd
3 Buchanan Street, Largs, Ayrshire KA30 8PP
Tel: 0475672589

ANY MODULE $£ 5$ Delete \& return. Slider power supply 9-25V. Stereo preamplifier + controls. 30 w power amp + heat-sink. K.I.A. 1 Regent Road, llkley + 100 ASTID Components.

> FAX YOUR ADVERT 044266998

FOR ALL DETAILS OF ADVERTISING RATES TELEPHONE 044266551

Logic Analysis breaks the $£ 1,000$ barrier

The Thurlby LA3200 and LA4800 logic analysers set new performance standards for low-cost logic analysers.

```
- 32 or 48 channels - Multi-level triggering
- 100MHz asynch. capture
- 5ns glitch capture
- Multi-level triggering
- Non-volatile data storage
- Disassemblers for popular \(\mu\) Ps
```

The new LAs incorporate a vast array of features as standard and options are available to connect to a very wide range of target systems. Contact us now for full technical details:
[THURLBY^THANDAR
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

High performance $2 \mathbf{M H z}$ function generators

The new TG200 series from Thurlby-Thandar represents the current state of the art in 2 MHz function generators.
Waveform quality is exceptionally high at all frequencies and at all levels. Eachrange is sweepablebyover 1000:1 and constant frequency variable symmetry is provided.
Other features of the series include full internal lin/log sweep, amplitude modulation, and digital readout of frequency, amplitude and dc offset.
The TG200 series is priced between $£ 169$ and $£ 249$ (+vat).
Contact us now for technical details of all our function generators.

[THURLBY \downarrow THANDAR]
Thurlby-Thandar Limited, Glebe Road, Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451

STUDY ELECTRONICS ON A 'PC'. Over 80 fully Interactive, menu TRANSISTORS, ICS ETC INTO CASH Immediate settlement. We also welcome the opportunily to quote for complete factory clearance.
Contact:
COLES-HARDING \& CO.
Sandall Road, Wisbech,
Camba PE13 2PS
BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 15 YEARS

Tel: 0945584188
Fax: 0945475216

WANTED

RE-USABLE AND ALL TYPES OF ELECTRIC SCRAP P.C.B'S, PLUGS AND SOCKETS, EDGE CONNECTIONS, TEST
EQUIPMENT, VALVES, ETC. paid on Clearance. PAID ON CLEA.
2 NORMANS LANE, RASLEY HEATH, WELWYN, HERTS AL6 9TO
TEL: 0438812193 FAX: 0438 812387 MOBILE: 0860214302

KITS

HEATHKIT. U.K. spares and service centre/Educational products Distributor. Cedar Electronics, 12, Isbourn Way, Winchcombe, Cheltenham GL54 SNS Tel. (0242) 602402.

NEW VHF MICROTRANSMITTER KIT tunable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY £5.95, assembled and ready to use $£ 9.95$ inclusive P\&P. Credit card orders telephone 021411 1821, Fax: 021 4112355.

Cheques/PO's to: Quantek Electronics, (Dept ETI) 3 Houldey Rd, Birmingham, B31 3HL Send. S.A.E. for details of this and other kits. Callers welcome.
driven, graphics screens, containing charts, graphs, circuit diagrams formula and theory. With user Inputs and calculated oulputs. Covers subject from electron flow, through subject from eleciron flow, through
analysis of $A C$ and $D C$ circuits, to analysis of AC and DC circuits, to
semi-conductors. $£ 39.95+£ 2.00$
semi-conductors. $£ 39.95+£ 2.00$
p\&p. Credit Card orders 0371 -
514001 , SAE for details.
E.P.T. Educational Soflware, Pump Houaa, Lockrem Lane, Wliham, Essex CM82BJ.

TEST EQUIPMENT

LOGIC ANALYSER Turn your PC Compatible into a powerful Logic Analyser. Full graphics display, Max 16 Channels, 4 combinational triggers, auto calibration. Excellent value. Includes 8 Input lead probes. Send E29.99 or S.A.E. for details.
J.P. Shay (Dept ETI) 211 Ainsworth

Road, Radcliffe, Manchester M26 OEE
TO
ADVERTISE
IN ETI
TELEPHONE
044266551
FOR ALL
DETAILS OF
RATES

FOR SALE

COURSES

BUSINESS OFFER

A one and only chance to,start your own Semiconductor Business from home, garage etc. $£ 6000$ inc VAT buys you a semiconductor stock of over.
100,000 pieces of over 350 devices all different Inc, IC's, Eproms,
Diodes, Transistors, mostly modern some obsolete all new and boxed/tubed PLUS a complete computer listing giving device type \& quantity.
"PLUS" approx 200 data \& Distribution Books "PLUS" offers of all other stock that arrives at 1st choice. "PLUS" as much help \& advice that I can give to help you succeed.
This is a genuine and unrepeatable offer.

MUNICIPAL
 METALS AND SUPPLIES (ELECTRONIC)

21 WILSHAW STREET, NEW CROSS, LONDON SE14 6TN PHONE 0816926509 FAX 0816941725 BULK ELECTRONIC PURCHASE/SALES. LARGE $£ 1$ SAE FOR LISTS

ELECTRONICS TODAY INTERNATIONAL
CLASSIFIED ADVERTISEMENT DEPARTMENT
ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST
Rates: Lineage 55p per word+ VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name.
Address \qquad
Daytime Tel. No:
Signature Date
PLEASE DEBIT MY ACCE\$S/BARCLAYCARD No.
Expiry Date \qquad
FOR SALE COMPONENTS \square PLANS \square OTHERS STATE

EDITORIAL
Editor Paul Freeman Art Editor Peter Kirby

CREATIVE
Designer Iain Houston
Technical Illustration Tony Burlinson
Photography Manny Cefal
ADVERTISEMENT SALES
Advertisement Manager
Mark Linacre
Advertisement Sales
Michele Donovan
Advertisement Copy Control
Marie Quilter
Key Accounts Manager
Donna Wells
MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ETI is normally published on the first Friday In the month preceding the cover date. The contents of this publication including all articles. plans. drawings and date. The contents of this pubication including all articles. plans. drawings and programs and all copynght and all other intellectual property rights
belong to Argus Specialist Publications. All rights conferred by the Law belong to Argus Specialist Publications. All rights conferred by the Law
of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications and reproduction requires the prior written consent of the company 1990 Argus Specialist Publications. All reasonable care is taken In the preparation of tho magazine contents, but tho publishers cannot be held egally responsible for errors. Where mistakes do occur a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at the time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.
which may occur after the publication has closed for press.
Subscription rates ...UK£23.40 Europe $£ 29.50$ Sterling Overseas $£ 31.00$ US
Subscription rates ... 0 Kı
Published by Argus Specialist Publications, Argus House, Boundary Wa Published by Argus Specialist Publications, Argus House, Boundary Way,
Hemel Hempstead HP2 7ST. Telephone (0442) 66551. UK newstrade distribution by SM Distribution Lid, 6 Leigham Court Road, London SW16 2PG. Telephone 081-667 8111. Overseas and non newsilade sales by Magazine Sales Department, Argus House, Boundary Way. Hemel Hempstead, HP2 7ST. Telephone (0442) 66551. Subscriptions by Argus Subcriplion Services, Ell. Oueensway House, 2 Oueensway. Redhill, surrey RH1 10S. US subscriptions by Wise Owl Wotldwide Publications, 4314 West 238th Street, Torrance. CA90505 USA. Telephone (310) 3756258. Typesetting and origination by Ebony, Uskeard. Cornwall. Printed by Willshire Itd. Bristol.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST
Telephone (0442) 66551 Fax (0442) 66998

Just to make sure we give you a complete helping hand with our Infra-red remote control project, ETI next month will not only contain details of the transmitter but will also give you the PCB on the front cover. If you have ever fancied being accompanied by other musical instruments with just a whistle for a tune or an acoustic guitar then maybe our Sound to MIDI project is for you. A one-man-band could take on a new meaning.
We continue with the EPROM programmer project providing software and constructional details, and we also have yet another computer controlled lightshow. A project for beginners next month is an alarm for detecting pools of water in the kitchen. AU this together with more on multi-meter circuits in our February issue.
Out at your newsagents 011 January 1st.
The above articles are in preparation but circumstances may prevent publication

Our December issue featured:
20/50/100 watt Mains Inverter
The Auto-Mate Mixing Desk Part 8
Digital Circuit Tester
Hybrid Line Amp
Audio Response Measuring System Part 2
RS232 Interface
The Greening of the Car

Back issues can be obtained from Argus Subscription Services. Address in column to left.

ADVERTISER'S INDEX

AUTONA 10	M \& BELECTRICAL 58
BKELECTRONICSIFC	M\&B RADIO 53
BADGER BOARDS 61	MAPLINELECTRONICS OBC
CIRKITIBC	NUMBER ONE SYSTEMS 14
CRICKLEWOOD ELECTRONICS 46	OMNIELECTRONICS 61
HALCYONELECTRONICS 47	PICO TECHNOLOGY 15
HENRY'S 47	R\&DELECTRONICS 47
HESINGTECHNOLOGY 10	RNELECTRONICS 61
J\&NBULL 11	S.L.M.MODEL ENGINEERING 47
JAYTEEELECTRONICS 23	STEWARTSOFREADING 22
JPGELECTRONICS 23	WILMSLOWAUDIO 61

£30 off Europe's best selling oscilloscopes!

PART NO.
DESCRIPTION
USUAL PRICE
OFFER PRICE

HM203-7	20 MHz , dual channel	$£ 397.15$	$\mathbf{£ 3 6 7 . 0 0}$
HM205-3	20 MHz , storage 'scope	$£ 716.75$	$\mathbf{£ 6 8 6 . 0 0}$
HM604	60 MHz , dual channel	$£ 716.75$	$\mathbf{£ 6 8 6 . 0 0}$
HM1005	100 MHz , 3 channel	$£ 930.60$	$\mathbf{£ 8 9 9 . 0 0}$

MULTIMETERS

The D-MM good value meters are now even D-MMer good value!!

The TM series of low cost meters, with 3 in digit LCDs, full overload protection, strong ABS cases and packed with leatures. Supplied with test leads, battery and manual.

TM 5315 DC current (10A) continuity and diode test
£19.99 £19.25
TM 5365 Capacitance and frequency (200 kHz) ranges
M 5375 Frequency range (20 MHz) and HFE test
TM 115 AC \& DC current (IOA), HFE and continuity test
TM 175 Freq. (15 MHz), capacitance ranges with HFE, diode, continuity $\&$ LED test
TM $80203 / 4$ digit display, freq. (4 MHz) capacitance (40 uF], AC+DC current to 20A
TM $803031 / 4$ digit display, freq (4 MHz). temp. (inc probe). $A C+D C$ to 20 A
Capacitance meter. 1pF to 20.000 uF

SPECTRUM ANALYSER ADAPTOR

400kHz to 250 MHz frequency range

LC display of centre frequency
> Calibration marker
Cirkit

The Brand New Cirkit Electronic Constructors Cafalogue Winfer 92/93
>192 pages
$>$ £££'s worth discount vouchers
100s new products.......
Books - the latest titles.
Capacitors - new range ceramic discs,
extended ranges electrolytic and polyester types.
Computers - new CAD PCB layout software. Connectors - extended ranges of BNC, Jacks, XLR and PCB types.
Fliters - new narrow band ceramic and low pass TV filters.
Hardware - additions include new range control knobs, cabinet hardware and heatsinks. Inductors - more additions to our already extensive range.
Kits - new additions to the Velleman range. Rigs - handheld 'CB' transceivers, wavemeters, scanning receiver accessories and aenials.
Semis - new linear ICs, transistors and a
complete new range of LEDs including blue types.
Speakers - new radio mic systems.
Test Equipment - new hand-held frequency meter and satellite TV dish alignment system. And much more besides.....
$>$ Avallable at larger newsagents, from 12th November, or directly from Cirkit.

All prices include VAT at 17.5\%.
Postage and packing; standard $£ 1.40$, next day delivery $£ 4.60$.

Prices correct at time of going to press, but may change in line with exchange rate fluctuations.

BUYERY CUIDE TO ELEGTRONIG COMPONENIS 1993

Over 700 product packed pages with hundreds of brand new products. On sale now, only £2.95

Available from all branches of W.H. SMITH and Maplin shops nationwide. Hundreds of new products at super low prices!

