71
 ELECTRONICS TODAY INTERNATIONAL

ELECTRONICS, COMPUTERS, TECHNOLOGY
3. . 5232 NTERF:CE

8

Then build this
12 -240 V Mains Inverter

using our

Please tell your retailer if the PCB is missing

HYBRID LINE AMP

OUP VARISPE日 TURNTABLE CHASSIS

\star Manual arm \star Steel chassis \star Electronic speed control 33 \＆ 45 R．P．M．＊Vari pitch control＊High orque servo driven DC motor＊Transit screws＊ $12^{\prime \prime}$ die cast platter \star Neon strobe \star Calibraled balance weight \star Removable head shell $\star^{1 / 2}$ artridge fixings＊Cue lever $\begin{gathered} \\ 220 / 240 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz}\end{gathered}$ ＊ $390 \times 305 \mathrm{~mm}$＊Supplied with mounting cut－out template

PRICE 861.30 ＋E3．70 P\＆P

OPTONGL MEतNJEताC GARTHIDGES STANTON AL500mkII GOLDRING G950

STEFEO DISCO MIXER DNGEOC
＊WITH ECHO
STEREO DISCO MIXER with 2×7 band \＆ R graphic equalisers with bar graph FEATURES：－including Echo with repeat a speed control，D．J Mic with tone control a talk－over switch， 7 Channels with individual faders plus cross fade，cue Headphone Monitor．Useful combination of the foliowing inputs：－ 3 turntables（mag）， 3
Price $\mathbf{1 1 3 4 . 9 9}+$ £5．00 P\＆P

Join the Piezo revolution！The low dynamic mas̀s（no voice coil）of a Piezo tweeter produces an improved Tansient response with a lower distorion level than ordinary dynamic tweeters．As a crossover is not require these Lnits can be added io exisling speaker systems of up to 100 wa
EXPLANATOAY LEAFLETS ARE SUPPLIED WITH EACH TWEETER．

TVPE＇A＇（KSN1036A） $3^{\text {w }}$ round with prolective wire mesh．｜deal for bookshelf and medium sized Hi－Fi apeakerg．Price E4．90＋5Dp PaP． TYPE＇ B ＇（KSN1008A） $31 /$＂super horn lor general purpose speakers， disco and P．A．systems eic．Price E5．99＋50p P\＆P． TYPE＇C＇（KSN1016A） $2^{2} \times 5$＂wide dispersion horn tems and quality discos elc．Price $\mathbf{C} 6.99+50 \mathrm{p}$ P\＆P． TYPE＇D^{\prime}（KSN1025A） $2^{\prime 2} x 6^{\prime \prime}$ wide dispersion horn．Upper trequency response retained extending down to mid－range（2KHz）．Suitable for high quality Hi－Fi sysiems and quality discos．Pice Es．9今 $+50 \bar{p}$ Pap．
TYPE＇E＇（KSN1038A） $3^{3 / 4} a^{\prime}$ horn tweeter with attractive silver linish trim Sultable for Hi－Fi monitor systems elc．Price $\mathbf{£ 5 . 9 9}+50 \mathrm{p}$ P\＆P． LEVEL CONTROL．Combines，on a recessed mounting plate，level contro and cabinet input jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $£ 4.10$－ 60 p P\＆P．

OWP LINTET LOUDSFEAKERS

THE VERY BEST IN QUALITY AND VALUE

Made especially to suit today＇s need lor compactness with high outpu corners，grille and carrying handle Each unit incorporates a $12^{\prime \prime}$ driver plus high Irequency horn lor a full frequency range of $45 \mathrm{~Hz}-20 \mathrm{KHz}$ ． Both models are 8 Ohm impedance．Size： $\mathrm{H} 20^{\prime \prime} \times \mathrm{W} 15^{\prime \prime} \times \mathrm{D} 12$

CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12－100WATTS（100dB）PRICE E163．50 PER PAIR
OMP 12－200WATTS（200dB）PRICE $\mathbf{2} 214.55$ PER PAIR SPECIALIST CARRIER DEL 12.50 PER PAIR

PRICES： 150 W e49．99 250 W ع99．99
PRICES： 150 W £49．99 250 Cl ع99．99

THREE SUPERB HIGH POWER CAR STEREO BDOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo， 150 W Bridged Mono 250 WATTS（125＋125）Slereo， 250 W Bridged Mono 400 WATTS $(200+200)$ 400 WATTS（20
ALL POWERS INTO 4 OHMS Features：
\star Slereo，bridgable meno＊Choice of high \＆low level inputs $\& \& R$ level
controls $\#$ Remote on－oH $\&$ Speaker controls \star Remote on－of \star Speaker \＆
thermal orotastion．
 These modules now enioy a world－wide repulation for qualily，reliability and performance al a realislic price．Fou
models are available lo suil he needs of the protessional and nobby markei i．e．Indusiry．Leisure．Instrumenta｜and \mid the elc．When comparing prices．NOTE that all models include loroidal power supply，inlegral heal sink，glass tibre PC P －
drive circuils lo power a compalible vu meler．All models are open and shor circuit prool
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP／MF 100 Mos－Fet Outpul power 110 wart R．M S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB ，Damping Factor >300 ，Slew Rate 45 Vius T．H．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N R 110 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE E40．85＋E3．50 P\＆P

OMP／MF 200 Mos－Fet Output power 200 wats R．M．S．into 40 hms ，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{uS}$ T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S N R 110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE $\mathbf{8 6 4 . 3 5}+\mathbf{E 4 . 0 0}$ P\＆P

OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T．H．D typical 0001% ，Input Sensilivity 500 mV ．S．N．R 110 dB Size $330 \times 175 \times 100 \mathrm{~mm}$

OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{US}$ T．H．D．typical 0.001% ，Inpui Sensitivity 500 mV ，S N．R 110 dB ，Fan Cooled，D．C．Loudspeaker Protection． Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ ． PRICE E132．85＋E5．00 P\＆P
NOTE MOS－FET MODULES ARE AVAILABLE IN TWO VIERSIONE STANDARE－INPUT SENS 50OmV，BAND WIDTH 100K Kz． PEC（PROFESSIONAL EOUIPMENT COMPATIBLE）－INPUT SEMS
75 mV ，BAND WIDTH $50 K H Z$ ORDER STANDARD

Uu METER Compatible with our four amplifiers detailed above．A very accurate visual display employing 11 L．E．D．s（7 green， 4 red）plus an additional on／of indicator．Sophisticated logic control for very last rise and decay limes．Tough PRICE E8．70＋50p P\＆P

LOUDSPEAKBRE

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREQUENCY BULLETS AND HORNS，LARGE（A4）S．A．E． （50p STAMPED）FOR COMPLETE LIST．
P－From McKenzie Protessional Series
S．From McKenzie Studia Series

ALL McKENZIE UNITS 8 OHMS IMPEDANCE

8＂ 100 WATT PCB－100GP GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO． RES．FREQ． 80 Hz ，FREQ．RESP．TO 7 KHz ，SENS 96 dB ． RES．FREQ． 72 Hz, FREQ．RESP．TO 6 KHz ，SENS 97 dB 10＂200WATTS C10－200GP GUITAR，KEYB＇D，DIS 12＂100WATT M C12－1 OOGP HIGH POWER GEN．PU RES．FREO． $49 H z$ ，FAEQ．RESP TO $7 \mathrm{KHz}_{2}$ ，SENS 98 dB ． $12^{\prime \prime}$ 100WATT C12－100TC（TWIN CONE）HIGH P
RES．FREO 45 Hz ，FREO．RESP，TO 12KHz SENS $97 d B$ RES．FREO 45 Hz, FREO．RESP，TO 12 KHz ，SENS 97 dB ． 12＂200WATT S C 12 －2008 HIGH POWER BASS，KE
RES．FREO． 45 Hz ，FREO．RESP．TO $5 K H Z$ ，SENS SgdB． 12＂300WATT C $12 \cdot 3000$ HIGH POWER BASS，LEA RES．FREQ． 49 Hz ．FAEQ．RESP．TO 7 KHz ，SENS 100d日． RES．FREO． $40 H 2$ ，FREQ．AESP．TO $5 K \mathrm{~Hz}$ ．SENS 98 dB ． 15＇200WATTH C15－200RS VERY HIGM POWER BA RES．FREQ． 40 Hz ，FREQ．RESP．TO 3 KHz ，SENS 98 dB $15^{\prime \prime} 250$ WATT S C1 5－250BS VERY HIGH POWER BASS RES．FREQ． 39 Hz ，FREQ．RESP．TO 4 KHz ．SENS 99 dB 15 ＂400WATT SC15－400BS VERY HIGH POWER，LO RES．FREQ． 40 Hz ，FREQ．RESP．TO 4 KHz ，SENS 100 dB 18 500WATTS C18－500BS EXTAEMELY HIGH POW
RES．FREQ．27Hz，FREQ．RESP．TO 2 KHz ，SENS．98dB． RES．FREQ． 27 Hz ，FREQ．RESP．TO 2 KHz ，SENS．98dB．
ALL EARBENDER UNITS 8 OHMS（Excepl EB8－50\＆EB10－50 which are dua
8＂ 50 watt EB8－50 DUAL IMPEDENCE，TAPPED 4／B OHM BASS．HI－FI，IN－CAR
RES FREQ 40 Hz ，FREQ RESP TO 7KHz SENS 97dB． 10＂ 50 WATT EB $10-50$ DUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS．HI－FI．IN－CAR RES．FREQ 40 Hz ，FREQ RESP TO 5 KHz ，SENS 99 dB ． RES FREQ 35 Hz FREO RESP TO 3 KHz SENS 96 d RES．FREQ 35 Hz ，FREQ．RESP TO 3 KHz ，SENS 96 dB ． 12 100WATT EB12－100 BASS，STUDIO，HI－FI，EXC FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURROUND RES．FREQ．63Hz，FREQ．RESP．TO 20KHz，SENS 92 dB ． $6^{1 / 2} \mathbf{2}^{\prime \prime}$ COWATT EB6－6OTC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC PRICE C9．99－C1．50 P\＆P RES．FREQ． 38 Hz ，FREQ．RESP．TO 20 KHz ，SENS 94 dB ． G＂GOWATT EBB－GOTC（TWIN CONE）HI－FI，MILTI－ARRAY DISCO ETC RES．FREQ． 40 Hz ，FREQ．RESP．TO 18 KHz ，SENS 89 dB ． RES FREQ 35 Hz ，FREQ RESP．TO 12 KHz ，SENS 99 dB ．
AR, DISCO.

PRICE E40．35
NSE，P．A V 53.50 P P A P RICE C．A．VOICE，DISCO PRICE C41．39 + C3． 50 P F म P．A．
PRICE E71．91－£3．50 Ps P PAICES DISCO ETC PAICE C $95.66=C 3.50 \mathrm{PA} P$ isco． PRICE C80．57＋ 4.00 P\＆P PRE $23+50 \mathrm{~Pa}$ PRIC
BASS． PRICE ¢105．46－E4．50 P\＆P ENCY BASS． PRICEE174．97－E5．00 P\＆P

PROVEN TAANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMITTER 80－100MHZ，VARICAP CONTROLLED PROFESSIONAL PE AFORMANCE，RANGE UP TO 3 MILES，SIZE 38 I 123 mm ，SUPPLY 12 V a 0.5 AMP PRICE $14.85+E 1.00$ P $\$$ P
FI MICRO TRANSMITTER $100-108 \mathrm{MHz}$ ，VARICAP TUNED，COMPLETE WITH

$$
\text { PICE } 88.80-\$ 1.00 \mathrm{~Pa}
$$

PHOTO：JW FM TRAMSMITTER
UNITS I E COMETWAY, SROUTHENO-ON-SEA
Telo: 070e-ge757e Fax. 070e-agoeas

Features \& Projects

20/50/100watt Mains Inverter 16Power up your mains equipment on the move from this 12 to 240 V inverter. Mark Daniels reveals the details.
The AutoMate Mixing Desk Part 8 23
Mike Meechan provides the EQ circuitry for the Automate Mixer
Digital Circuit Tester 32A project to test your logical digits. Daniel Brook explains.Hybrid Line Amp36
Another in the valve/transistor catalogue of designs from Jeff Macaulay
Audio Response Measuring System Pt 2 42Ralph Mantel now presents constructional and software details for a projectto test the response of your loudspeakers.
RS232 Interface 48A serial communications interface for your computer. Construction by KeithGarwell.
The Greening Of The Car 54Douglas Clarkson reports on the way the car industry has made attempts to clean up its act.

Page 32

Wiliorial
by Paul Freeman

> Tirstly many thanks for the return of our reader survey. It certainly helps to know your views on the sort of material you require in ETI.
> The convergence towards a certain computer format has emerged from your replies and that standardisation seems to be moving towards an IBM PC format. I think we would all agree that standardisation is essential if information is to flow freely and easily between computers and their operators. Japanese manufacture of PC clones must have played a significant role in this process bringing greater availabity, portability and lower cost to the consumer. Conflict of interests
> I very often have a good laugh over how
media news journalists attempt to report on scientific concepts
"The simplification process can end in further confusion for the viewer or reader. Their lack of comprehension illustrates the need for a very broad based education for journalists and many other individuals in society including government officials"
"The best people at present to simplify scientific jargon are scientists themselves when asked to do so. They have both the everyday language and specialist knowledge to do just that. The sooner the news media realises this the sooner we could start to address the terrible problem of the arts/science imbalance in education, governmental bias and a society fearful of technology".

High definition television, in the guise of the HDMAC derivative, long the spearhead of Europe's television manufacturers, looks as though it might finally bite the dust.
I've been predicting this for long enough, of course. My first qualms about the system have always been my main argument against it. It is not a digital system. MAC uses a quasi-digital principle - its very name (an acronym of multiplexed analogue component) tells you this - to transmit analogue signal elements of video and audio components, in a time-switched multiplexed manner. So, while Mac offers the benefits of higher picture and sound quality due to the separation and independent transmission of the signal parts, it still uses an analogue base.

This makes it little more than a temporary stepping stone to a more permanent digital transmission system.

Even more than this - the stepping stone which MAC affords us, as we cross the river from analogue to digital television technology, isn't even in the right direction. If we go the HD-MAC route, the stepping stone takes us out to the still waters of the river. And we know what still waters do...

The eventual aim of television broadcasting, is to transmit all signals totally digitally.

If we go the MAC route now, the stepping stone gives us a breather for a few years while we stand in the deep waters of the river, but then the jump to the riverbank on the digital side of the river is no shorter thanks to being there. We still need to jump, and being in the deep waters there may be a greater chance of drowning. To be honest, I see and understand what the European manufacturers are trying to do. By creating a new system they hope to create a new marketplace. Everyone in Europe will (they hope) buy a new MAC-based television, so everyone (especially the manufacturers) will be happy. But I believe now's not the time.

NICAM stereo and a change to a better PAL-based system (probably the format known as PALplus) can give excellent sound and pretty good pictures, too. True, technically not so good as HD-MAC, but cheaper, less confusing to Joe Public, and a stepping stone more in line with a cohesive transition from analogue to digital television.

Wait till a viable digital system has been developed. That's my advice.

What's On Radio?

Every now and again, the ether gets clogged up. Too many people broadcasting too many things, to too many receivers. You know the sort of thing; Radio 1 wants a new FM frequency but Radio 2 won't move. Well, yes. That's a simplificatin, but it illustrates the point.

Taken globally, what's good for one country may be an anathema to its neighbours. There is an established procedure setup to define what frequencies can be used by the various countries in the world, and for what specific purposes. The procedure is to hold a World Administrative Radio Conference (WARC), and to thrash out the requirements and frequency slots available to each member country,
and the purposes to which these frequencies can be put. Generally these WARCs, held every few years, plan for the foreseeable future with a pretty clear vision. There is therefore little argument over the conclusions, and they are binding as they are integrated into the Radiocommunications Regulation, which is an Internationally recognised treaty. Looking at the conclusions of one of these conferences, therefore, can give an idea of the way things are going to develop over the coming years. Developers request use of radio frequencies because they have a pretty good idea of what they want to do in the near future, so by looking at allocated frequencies it's possible to make some basic predictions about TV, radio, satellite and mobile comms.

The latest WARC was held earlier this year, albeit allocating frequencies mainly only available as from the year 2007. Nevertheless, its main conclusions are pretty interesting to us. First, high definition television allocations by satellite are allocated to the 21 GHz waveband in Europe. The Americas' slot for the same will be the 17 GHz band.

Second, digital sound radio services have been allocated two slots. Terrestrial services will be digitally broadcast in the VHF band, but satellite services will be in the 14501490 MHz band.

Finally, and what personally is most interesting, low earth orbit (LEO) satellites have been allocated two bands. Radio location and data transmission satellites (called small LEOs) have frequencies below 1 GHz . Large LEOs, on the other hand, are in the 1.6 GHz band. These large LEOs will be used for voice telephony.

Low earth orbit satellites are those satellites which orbit quite closely to earth's surface. Because they orbit much closer to earth than geostationary satellites, their orbit time is much quicker, and several satellites need to be in operation to allow total global coverage. I mentioned Motorola's Iridium project a few months' ago in Open Channel and this is a classic example. Iridium is so named, because the system uses the same number of satellites in low earth orbit as the element iridium's atomic number, that is -77 . Such a system of LEO satellites will realise potential of a mobile communications network in which fairly simple hand-held (pocketsized, wristwatch sized?) transmitter/receivers could be used anywhere around the world.

You're Calling It What?

Talking about low earth orbit satellites allots me to tell you something which you might find amusing. Motorola's Iridium project is being slightly redesigned. It's now planned to give each satellite greater transmission and reception capabilities by carrying 11 extra transponders. Because of this, fewer satellites will be needed to provide world coverage. Instead of 77 satellites, it's calculated that only 66 will be needed. This should greatly reduce costs, of course. But it does mean that the project name should be changed, doesn't it? Instead of Iridium, we'll have to start calling it by the name of the element with the atomic number of 66 - Dyspiosium.

Keith Brindley

NEWVS

Face-to-face meetings between people at their desk-tops are now possible following BT Visual and Broadcast Services's launch of its VC7000 videoconferencing system.

Costing just $£ 7,500$, BT describes the VC7000 as the lowest

cost videoconferencing unit in the world. It allows small groups of people to see each other and show documents and objects regardless of their location. It can also be used for giving presentations, showing product designs and holding training sessions.

BT believes that this low price will vastly increase the size of the visual services market. Steve Maine, BT's Director of Visual and Broadcast Services said: "Traditionally, users of videoconferencing have been large corporations, but the launch of this unit will enable smaller companies to reap the benefits of visual communication."
"The launch of the VC7000 is undoubtably the first step towards the visual services mass market. It will radically alter the way peo-
ple do business by allowing them to have instant face-to-face meetings with colleagues, customers and suppliers regardless of location."

BT has already sold the first VC7000 units to National Power. Tony Stewart, National Power's Customer Services Manager, Telecommunications, said: "The VC7000 has completely changed the economics of videoconferencing and will play an important part in improving desk to desk communication between key people in National Power. I also see this as an enabler to a whole range of other business applications. For example, remote help desks could act
as a central core of expertise."
The unit is manufactured by the Norwegian company Tandberg and complies fully with the CCITT's H. 320 series of international videoconferencing standards. It works over BT's dial up digital network ISDN, at 64 or $128 \mathrm{kbits} / \mathrm{sec}$.
"Because the unit conforms to international standards," continued Maine, "It will interwork with any currently existing standardscompatible product, including all the BT H. 320 equipment that has been sold in the last three years.
"This is the first of many new products which will come onto the market in the next few years. Standards are vital because our
customers must be able to buy a kit which is compatible with equipment manufactured by other companies.
"In addition, the price of equipment will only drop if manufacturers can produce it in large quantities, and they will only do this if they are confident that the market will continue to grow."

BT also announced earlier this year that they will be launching a PC-based videophone, in collaboration with IBM , in the first quarter of 1993. Further launches of videophone products will take place later that year.

MINIDISCS IN EUROPEAN RECORD STORES BEFORE CHRISTMAS

The new portable audio system for digital recording and playback will be available in the shops for Christmas.

Focusing on portbility, the first products on sale will be two types of Walkman, the playback/record and the playback only version, as well as a MiniDisc car stereo model.

An MD software catalogue will be available in time for product launch listing 300 titles, with 500 titles being available by the end of the year.

Many leading record compa-
nies have already confirmed that they will support the introduction of the new disc-based digital recording and playback system with a selection of albums from their top artists, resulting in an initial launch catalogue of around 300 titles, spanning the whole range of music repertoire, from classical to rock.

MD software will be available from: EMI Music (including labels such as EMI, Capitol, SBK, Chrysalis and Parlophone), Factory Records, Mute Records, ARS Records, Curb Records, Sony

Music (labels include Columbia, Epic, Def Jam and Sony Classical) Virgin Records (labels include Virgin, Circa and Ten) and most recently support from the Warner Music Group. Further backing from additional record companies is confidently expected. Many major artists are already scheduled for the launch catalogue, amongst them:Michael Bolton; Depeche Mode; Bob Dylan; Erasure; The Gipsy Kings; Michael Jackson; Lenny Kravitz; George Michael; Gary Moore; Robert Palmer; The Rolling

Stones; Roxette; Simple Minds; Soul II Soul; Bruce Springsteen; Talking Heads and Technotronic.

Not only has Sony confirmed its beliefthat Compact Disc should continue as the benchmark home audio format, but the company has enthused the record industry with its intention to prioritise portable - rather than home-based -music enthusiasts with an SCMSequipped recording \& playback MD Walkman, a playback-only MD Walkman and an MD in-car system.

Although within its protective
slim-line cartridge, an MD disc measures approximately 2.5 " $(6.4 \mathrm{~cm})$ in diameter, MD premastered software is based on the same optical disc recording principle as CD, with information recorded as pits on the disc's surface. Given that the shape and distribution of these pits are similar for both formats, MD software can be manufactured using existing CD production equipment with relatively minor modifications. Within the Sony group, three software production facilities in Eu rope (DADC Austria), Japan and the US are already custom pressing orders from record companies
and by the end of the year, monthly production from these plants will total 1.5 million dises worldwide.

Accolades for MiniDisc are coming in from throughout the music industry: "MD presents the consumer with the quality and convenience of CD , along with portability and recordability features," said Jim Fifield, President and CEO, EMIMusic Worldwide. "The music fan will be very excited about this new optical carrier."

Bob Krasnow, Chairman, Elektra Entertainment, called MD the "best format since Thomas A. Edison."

Added George Michael, internationally renowned recording artist, writer and producer: "The sound is phenomenal....it's the future and I want the first one!" Disc Media:

The Future of Audio

Ten years after the debut of Compact Disc, the introduction of MD brings a whole new dimension to the listener's enjoyment of music. The random access capability and ease of use offered by CD have always met with a very positive response from European consumers. Sony developed the high-tech MiniDisc because it is convinced that today's consumer
demands the features and benefits optical media can deliver not only in the realm of home audio, but also in mobile, portable and personal listening applications where reliability and durability are critical. MiniDisc brings to Walkman, portable systems and in-car stereos the random access capability of a disc medium in a compact size. It also delivers a sound quality approaching that of CD, ease of handling and a simple, high quality recording capability vastly superior to that of the conventional compact cassette.

VOICE RECOGNITION FOR CONSUMER PRODUCTS

AT\&"T Microelectronics has pröduced a voice recogniser for speedier automatic dialling. Users can 'train' the hardware to act on up to 40 key words or phrases, which are recognised within 0.5 sec , even under noisy conditions, such as those encountered on the move in a motor vehicle, or in an industrial environment. Sophisticated noise cancellation algorithms allow the voice recogniser to achieve 95% accuracy in such situations, a figure which exceeds 98% in ennvironments with low background noise.

Its principle application will be in automatic dialling where users can dial a number simply by speaking the name of the person to be called. The technology is also sufficiently flexible and lowcost to be used in products as

diverse as microwave ovens, industrial controls, and digital answering machines.

Based on AT\&T's WEDSP16A digital signal processor chip, the voice recogniser also includes a $32 \mathrm{~K} \times 8,150 \mathrm{nsec}$ SRAM block, and the interface
logic required to marry host processor, DSP, and memory. The training algorithm is used to improve reliability of recognition. The target user says the key word or phrase, and the recogniser effectively stores this in memory. The hardware then asks the user
to repeat the key word, and combines the information obtained in the two passes, to improve recognition and reduce the possibility of false keyword detection.

Reader enquiries to Vic Drake, Admail 4 International Ltd,Tel:0732 460424

ARTISTIC HARMONY BRIDGES THE EUROPEAN DIVIDE

In these uncertain economic and political times, Art is set to play an increasing role in developing a wider sense of communality between the diverse cultures of the new European Generation.

CEREC (Comite Europeen pour le rapprochement de l'economie et de la culture) and

Northern Telecom have launched the first ever pan-European Arts sponsorship programme.

Sponsored by global telecommunications company, Northern Telecom, Northern Telecom Arts Europe (NTAE) forms a unique funding programme designed to enable European Arts establish-
ments and artists to engage in collaboration and exchange.

Incorporating all Art forms, from the diverse fields of music and theatre to dance and photography, from classical to contemporary, this initiative aims to extend the boundaries of the familiar to stimulate new ideas.

NTAE is worth a minimum of $£ 750,000$ (sterling) to the Arts over a three-year period. In the first year, awards of $£ 50,000$ will be given to professional Arts organisations based in France, Germany and the UK., extending into at least three further European countries during 1994 and 1995.

FASTER FRACTAL COMPRESSION FOR WINDOWS

Iterated Systems Ltd has announced Images Incorporated version 2.0 for Windows, the next release of their Fractal Transform image compression and enhancement product for end users,

Version 2.0 offers faster fractal
compression in software alone, and now handles full screen Super VGA image files. It also supports batch processing, provides on-line help and has a simplified installation routine.

Alan McKeon, Managing Di-
rector of Iterated Systems Ltd, commented: "Responding to market demand, this new version overcomes the previous 640×400 pixel barrier, and compresses substantially faster." He added: "As part of our mass-market strategy,
we have reduced the price by one third to £299."

Images Incorporated v2.0 for Windows is designed for use in desktop publishing, desktop presentations and other image-handling situations. Users can build
up a library of photographic quality images conveniently compressed to very small file sizes using Fractal Transform image compression.

Compression ratios of 100 to 1 can be achieved, while retaining the image quality. Decompression is typically quicker than displaying the original image file. Further, fractal compressed im-
ages are resolution independent, meaning they can be decompressed and displayed at several scales.

Images Incorporated also features Fractal Transform resolution enhancement. This technique is applied to original, uncompressed image files, allowing a zoom in facility without pixelation. Additional detail is
fractally predicted and added virtually losslessly to the original image data, without compression. This is useful for resizing images, or for increasing the number of dots per inch to allow printing at a higher resolution than the image was scanned at. The technique is unique in that it predicts infinite detail, while other methods use pixel averaging which
causes smearness.
Existing users can upgrade to version 2.0 for just $£ 45$ plus VAT.

Images Incorporated is available through selected dealers for $£ 299$ plus VAT. For nearest reseller, potential users should call Iterated Systems direct on 0734880261. Academic Discount is available to education establishments.

ELECTRONIC TOLL \& TRAFFIC MANAGEMENT SYSTEM

Dover Electronics, Binghamton, NY, and AT/Comm, Inc. of Marblehead, MA, have entered into an agreement that will allow them to exploit the burgeoning markets for radio frequency identification systems in the transportation industry. The first product is a system for non-stop electronic toll collection. This tested and patented technology allows motorists to travel non-stop through toll lanes, thereby reducing traffic congestion as well as fuel consumption and auto emissions. The
system was recently tested at speeds in excess of 90 mph . by New Hampshire State Police.

Designedand marketed by AT/ Comm, this approach to toll collection is being heralded as the most advanced in the market based on its two-way radio communication techniques, known as 'readwrite'. Europe, the Pacific Rim, and most recently the Illinois Tollway have specifiedmicroproc-essor-based transponders with read-write capability for electronic toll collection. Most other com-
petitors for this multi-billion dollar market have only recently responded to AT/Comm's advancements, announcing plans to develop and test read-write systems of their own. AT/Comm owns broad patents on read-write technology.

In the electronic toll collection, read only refers to a non-stop toll collection process that uses either barcode tags or radio reflective tags to simply 'read' the ID of a passing vehicle. This process is very expensive and complex (and a worry to privacy advocates) because it requires toll agencies to centrally maintain toll accounts and travel records for all their once anonyous patrons. Moreover, read only systems require that all electronic toll lanes on a toll road be networked to validate possibly hundreds of thousands of motorists' account balances. If read only technology were applied on a regional basis, this would require a substantial new bureaucracy to manage possibly millions of toll accounts and to keep track of everyone's travel. For toll road agencies, which charge tolls based on entry and exit locations, read only is an impracticality.

Read-write refers to a nonstop toll collection process that provides intelligence in the trans-
ponder. Not only can this vehicleborne device be 'read' as it passes through a toll lane, but information can also be 'written' onto the transponder. This could be the entry point of a turnpike so that the proper toll could be calculated upon exit.

The AT'Comm system is the mostadvanced form of read-write. It is known as microprocessorbased read-write, which allows the transponder to be 'read', be 'written' to, and also provides processing to manage the data internally. The smart, microproc-essor-based transponder maintains prepaid toll accounts in the transponder, thus relieving the agency, and ultimately the motorist from the cost associated with centralired accounting. Like a postage meter, the transponder is electronically charged with a value, and that value is reduced each time the car passes through a toll lane. An LCD display and audio alarm on the device also gives the motorist real time information on his or her account.

The AT/Comm smart transponder is also a platform for other 'Intelligent Vehicle Highway Systems' (IVHS) applications such as incident wamings, automated parking, commercial vehicle access control at airports, and other traffic management uses.

TECHNOSHOP '92 - A PLAN TO HELP UK MANUFACTURERS BEAT THE RECESSION

Where manufacturing firms are trying to ride out the world recession by cutting back on R \& D investment, they are naturally reluctant to spend money now on buying in new developments from outside.

But, many of the organisations around the world who have invested in R \& D during this period are now having to prune their
operations even harder. Some research organisations, who normally market their top R \& D output to major corporations, are keen to talk to any firms who are astute enough to be making their product plans ready for implementation when the end of the recession is in sight.

So there are some good 'buys' around in the technology market
and one UK organisation, a not-for-profit company called The Technology Exchange Ltd has published a two volume catalogue covering 5,000 currently available licence and joint venture offers following a search of over 3,000 organisations in 34 countries.

Organisations like Krupp and Aerospatiale, universities and in-
stitutes like MIT, UCLi and Cornell are amongst those whose offers have been selected for publication.

Firms buying the catalogues can choose the offers they require, get a confidential introduction by fax and post, then hold preliminary meetings at the annual Technoshop Fair.

Then negotiations, which gen-
erally proceed slowly, can be ready for implementation when the recession ends.

So manufacturers, can avoid making an investment until the last moment and be ready to launch
new technology products just when their competitors are reviving their old product lines which have been in cold storage for a couple of years at least.

In 1990, when the first two
volume catalogue set called "The Next 5,000 New Products" was published, over 800 firms in 51 countries used them and requested 3,000 introductions. Over 500 negotiations were underway
within six months after publication.

For further details fax: The Technology Exchange Ltd on 0525 860664 or write to them at Wrest Park, Silsoe, Beds MK45 4HS.

CHIPSET FOR TAPELESS ANSWERING MACHINE

Anew telephone answering device (TAD) chipset, developed by AT\&T Microelectronics, provides the core functions required to build a tapeless answering system, in either standalone or integrated products. By replacing the traditional mechanical tape recorder, the TAD chipset allows more reliable and low-cost answering machines to be designed.

The highly integrated DSPbased chipset enables a fully featured answering machine to be configured using just the chipset and a host microcontroller, memory and an analogue switch.

The TAD chipset consists of a ROM coded DSP16A1, a T7513B 8 -bit μ-law codec and an AT\&T custom chip which provides the necessary clocks, control signals and power management. Incorporated in the chips are software algorithms to perform all the functions necessary for speech compression, telecommunications signalling, memory management and

remote operation via touch tone (DTMF) control.

A low bit rate, high quality, speech coding algorithm, developed by AT\&T, enables approximately 2.5 minutes of message storage per Mbit of memory, allowing up to 76 minutes of recording in 32 Mbit of memory. In addition, cost is reduced by a proprietary memory-management system, which allows the use of low-cost audio grade DRAM (ARAM) for incoming and outgoing message storage. The addition of a read-only memory enables the TAD to play synthesised voice and user prompts, instructions and deliver message time labelling.

The TAD chipset is controlled by a system microprocessor via a 4 or 8 bit interface using a com-mand/response-based architecture. Reader enquiries to: Vic Drake, Admail 4 International Ltd, Tel 0732460424

LOW COST FREQUENCY MEASUREMENT TO 1.3GHZ

New from Saje Electronics are two microprocessor based hand-held frequency counters.

Their design incorporates an angle mounted 16×1 liquid crystal display giving excellent readability from a wide viewing area whether in hand held or bench applications.

Annunciators are displayed to assist in defining and editing set up and measurement criteria. A battery condition indicator gives readout of the battery condition.

Both instruments provide a full range of features including measurement of frequency, period, count and with a unique View facility enabling Min, Max, Average and Difference readings to be displayed. In Frequency mode a range of gating rates from 0.15 to 10 seconds is provided plus a switchable low pass filter. A display hold function is standard.

The SC-130 offers a frequency range of 5 Hz to 1.3 GHz and the SC- 40 from 5 Hz to 400 MHz . Both
instruments provide good sensitivity and high accuracy.

The instruments are housed in rugged ABS cases with a separate battery compartment for a PP3 size battery.

The SC-130 is priced at $£ 109.00$ plus VAT and the SC-40 at $£ 89.00$ plus VAT. Both instruments are designed and manufactured in the UK by SAJE Electronics.

For further information please contact:-

SAJE Electronics, Tel: (0223) 425440 Fax: (0223) 424711

NEWS
.Stateside...

Voice recognizer

Alow-cost voice recognizermay pave the way for evalution of voice dialling as a ubiquitous feature of mobile cellular phones.

Up to 40 spoken key words can be stored in memory, enabling hands-free voice dialing in analogue or digital mobile cellular phones. AT\&T claims the speech-recognition algorithm refinements embodied in the voice recognizer were 20 years in the making at AT\&T Bell Labs.

Beyond cellular phones, AT\&T see applications for the technology in digital answering machines, modems, industrial controls and consumer electronics.

Host System Bus

According to market-research firm Herschel Shosteck Associates the availability of low-cost voice recognizers will render cel-lular-phone voice dialing universal in a few years, though last year only $2-3 \%$ of cellular phones installed in the United States featured the capability.

The DSP16A with ROMcoded voice recognizer firmware on-chip will be available this autumn for $\$ 20$ apiece in quanti-
ties of 10,000 .
In the training mode, the recognizer permits the user to store up to 40 spoken words, each of up to two seconds' duration. The recognition mode allows the user to control a process by speaking a phrase that has been encoded and stored in memory. For instance, in cellular-telephone applications, the user would dial a number by speaking a key word (person's name) that is associ-
ated with that telephone number. The voice recognizer's response time is said to be better than 0.5 seconds.

AT\&T Microelectronics has tested the recognizer in a car moving at 30 mph with the air conditioning on. In that situation, the recognizer "achieved 95% accuracy," meaning it could recognize a user command on the first try 19 out of every 20 times.

Manufacturing ferro-electric non destructive read-out memory

Sandia National Labs has agreed to help startup Radiant Technologies Inc. perfect the manufacturing of ferro-electric non-destructive read-out memory.

Radiant was formed by founders of Krysalis Semiconductor Corp. to focus on equipment for testing ferroelectric thin films. Radiant revealed it had won a patent on a special resistive element sandwiched in ferroelectric
and semiconducting layers of thin film.

The Sandia equipment will enable the team to take the first steps toward developing thin films based on plasma-enhanced metallo-organic vapour deposition.

Ferroelectric materials, a class of perovskite ceramics with the capacity to hold a polarization state, have been explored for sev-
eral decades as potential candidates for non-volatile memories. Recent work on ferroelectric thin films has linked the materials' future to improvements in thinfilm deposition techniques, with many research teams exploring low-temperature deposition techniques to improve reliability.

Other materials research has sought to depart from the traditional, Lead zirconate-titanate (PZT) and Lead-Lanthanum Zirconate-titanate (PLZT) compounds used in ferroelectrics.

Since all memory reads in traditional ferroelectric devices require destructive readouts, which could be disrupted by single-event
upsets, a truly non-destructive readout memory device such as the one proposedby Radiant would move ferroelectric research a giant step forward.

Radiant's design calls for depositing a semiconducting thin film atop a PZT thin film. The conductivity of the top layer is modulated by the PZT layer's state of polarization. Reading the device merely involves monitoring the current.

Because it is configured similarly to a programmable resistor, the Radiant design could be used in programmable logic devices and, possibly, as a replacement for analogue elements in neural networks and AI computing.

The memory is expected to have 10^{12} writes, unlimited reads and a minimum data retention of three years.

Radiant and Sandia will try to improve thin-film reliability along several axes, targeting the ability to process wafers at $400^{\circ} \mathrm{C}$. The research team will look at biasing thermal substrate temperature and will also seek to adjust the chemistry of the processes by varying the metallo-organic precursors.

Window

Opener Questioned

I refer to the artical 'Window Opener by Terry Pinnell. I imagine it would be a kind gesture if Terry was informed that it may be, cheaper, easier and not require keeping awake to operate a bedside control, if a simple fly screen was fitted to an open window in the first place before retiring with his book, when he could enjoy fresh air whilst reading.

Quite frankly, I cannot imagine a greater waste of effort on designing something for the sake of it.

J M Whiteley,
Ravenstone, Leics

Each to their own - Mr Whiteley. I agree in principle with what you say, but there could be occasions when the person in bed is not able to physically get out to open a window and it may be that a window is beyond normalireach say in tall buildings or industrial greenhouses. I think the idea is sound, but it is the application which must be questioned. - Ed.

Moving LED Display Requested

Having used circuits (or variations) from your magazine for many years, I am surprised that there is one item that I have not seen mentioned over the years. What I am trying to produce is an LED moving message display as seen in lots of shops and post offices. Although at first it seems quite simple, I soon discovered the whole problem can be quite complex. Can you or your readers give me any pointers towards any books/publications that can help me?

C N Eaton
 Plympton, Devon

Yes, a good idea for a project and we will see what can be done - Ed.

DIY Warning for Electronics In Light Aircraft

Regarding the Light aircraft Intercom in the Sept ${ }^{9} 92$ issue. As both a PPL and and electronics engineer, I feel I should warn readers that although the above project is an excellent design and certianly cheaper than any commercial unit, connection of this unit to the aircraft electrical/radio systems may invalidate the radio licence and could affect aircraft instruments, especially the magnetic compass. I'm afraid such systems must be certified by the CAA - Hence the high cost of such equipment. Many thanks for an excellent magazine.

Ed Dinning, Newcastle

After a break of several years I recently purchased the September issue of ETI (I first started reading ETI in the seventies), and found it most interesting. However I must comment on the "initercom for light aircraft' project. While this design is sound from the electronic view point, it has several drawbacks from the aviarion side. While the author states that "it is not wise to discard the previous microphone/phones etc timmediately' in case of unit failure, this failure could happen at ally time, and the headsets he describes are not compatible with

Loop Aerial System Requested

TheSurround Sound Decoder in the July issue of ETI prompts me to write to you about a loop system for my own use at my home.I have great difficulty in listening to TV, or radio, because of a hearing problem, and the hearing aid develops condensation which makes matters worse.
standard aircraft radios. Commer cial "carry on" units of this type normally use standard headsets with failsafe relay switching to by-pass the amplifier in case of failure or joss of supply. The legal sifuation also needs to be clarified. The Civil Aviation Authority regulates aviation in the UK, and auy modification to an aircraft or its systems may only be carried out and certified by a licensed engineer or approved organisation. Any unapproved modification will render the aircraft's certificate of airworthiness invalid, and as a result the insurance also. This project could be considered a modification if jt was directly wired to any of the aircraft systems, was physically attached, or derived its power from the aireraft supply. Velcro is not acceptable as a means of attach. ing cquipment, the CAA recently issued a letter reminding approved organisation of the requirement to stress avionics installations so that equipment does not come loose in the event of an accident For the record, I have been a CAA licensed engineer for ten years.

Robert Atkinson ${ }_{2}$
Christchurch, Dorset
Points noted, and in the interests of safet: I agree with you both entiraly. Had the project originated from the UK, caution ary warnings may have appeared - who knows?. In retrospect, I'm sure the author would also agree thar checking circuitry by other officlal sources is a must. - Ed.

I wonder if any of your technical contributors could furnish details of the loop system used in public buildings, or a similar circuit that I could assemble for my own use. I am not in the clear as to how that system works, so any instructions would be greatly appreciated. Also any hints on the use of lapel mic's used with these systems. If I could obtain a circuit of some rig-up for such a system it would be the answer to my terrible problem.

P Trayers
Wirral, Cheshire

Active speaker With A Difference

As a long time regular reader (and keeper of old issues) many thanks for a stimulating and educational magazine.Recently considering the purchase of a MIDI synthesiser addition to my piano set-up, I was introduced during the demo to an apparently active and effective amplifier/speaker arrangement. There was one bass unit, floor standing, and two high frequency units mounted about ear level. I feel this could be an interesting home build project, or for Blueprint, discussing the frequency ranges required, active filter characteristics, and power requirements. I do not recall any similar project to use as a basis could it be a first for ETI?

Peter J Metcalf Paisley, Scotland

We have published a few active speaker designs over the years which have been in one cabinet. This might be an interesting variation - Ed.

Another EPROM
 Service

Would you oblige if possible by publishing the following details of a service to ETI readers.

EPROM and CPU programming service to ETI readers, the following types at present programmed, $2708,2716,2732,2764$, 27128, 27256, 27512, 8048/49/ $50,8748 / 8749 / 8750$, data to be supplied on PC format disk 360 k / $720 \mathrm{k} 5^{\prime \prime}$ and Apple II $5^{\prime \prime}$ disk, $£ 10$ setting up charge, printed/ typed lists also accepted, EPROMs supplied by customer or purchased from me, for further details contact:

Mr.D.J.Brown
2 Glentworth Avenue
Whitmore Park
Coventry
CV6 2HW

[^0] tune your radio to the Sound Sender's frequency, and listen to your own music.

The Sound Sender can do other tricks, too. If you have a portable CD player, now you can listen to it in your car without disturbing the in-car wiring. Place it on a level surface, connect the Sound Sender - and tune in your car radio.
Used with a Walkman-style personal stereo radio and headphones, the Sound Sender acts as a cordless stereo headphone - useful if one of the family is hard of hearing. Connect the Sound Sender to the television, tune in the radio, and the listener can select a comfortable volume on the headphones, without disturbing other listeners.

The Sound Sender is battery powered (by one PP3) so you can use it anywhere. Using an alkaline battery, battery life should exceed 150 hours. Automatic gain control ensures that the modulation level is always correct, and compact dimensions - $2.5 \times 1.5 \times 4.75$ inches - mean that you can slot it in alongside any audio kit from your television to your slimline CD player. Listening volume is fully controllable from the radio receiver you are using.

The Sound Sender can be connected to any sound source which has a stereo output - including technology not yet on the market. It works well with mono-only output, too, with a simple cable-adaptor.

You can re-tune the Sound Sender if the preset frequency is inconvenient for you - but this wouldn't nomally be necessary, as the operating frequency is away from broadcast frequencies in most areas.

Specification

The unit draws 3.3 mA typically from a 9V PP3 battery. The current drawn, and the range of transmission, decrease very slightly as the battery runs out. In practice this means that an alkaline manganese battery will normally run the Sound Sender for about 200 hours, but can be relied upon for at least 150 hours. The typical channel separation is 30 dB , while the frequency response extends beyond 13 kHz . The inputs cope with a signal range of approximately 150 mV to IV RMS. The practical result of all this is that on most program material the received signal from the Sound Sender
sounds similar to that from an FM broadcast radio station.
The RF output of the unit is approximately 2 mW , which gives enough range for any normal use while minimising the possibility of causing interference. When the unit is used inside a car, this power is sufficient to reach the car radio aerial no matter where on the car it is mounted.

The sound sender is normally sold for $£ 69.95$, but a discount of 20% is available to ETI readers. To obtain a sound sender at the special offer price of $£ 55.95$, just fill in the coupon opposite and post it to:

Lazerline

Unit 2
Castle Commerce
Old Road
Leighton Buzzard
Beds LU7 7RG
If you refer not to cut your copy of ETI, photocopies of the coupon are acceptable.

Not licensed in the UK

YOUR GUARANTEE

You should be TOTALLY happy with our service as well as your purchase.
All goods are designed and manufactured by
oursalves to a very high standard, and guaranteed for 1 full year.
In the unilikely event that any product falls to give compliste satisfaction return th to us in undemaged condition within 7 days for refund or free replacement.
This, is in addition to your statutory rights.

HOW TO ORDER

TO: Lazerline, Unit2, Castle Commerce, Leighion Buzzard, Beds, LU7 7RG I Please supply............Audio Senders af $£ 55.95+£ 2.00$ p\&p each. I I enclose cheque or crossed PO for...............payable to Lazerline.

\square
Normally despatched within 7days, piease allow up to 28 days for dellivery.

TRADE \& EXPORT ENQUIRIES WELCOME Carriage discount over 5 Items

T
Direct Hotline Number 0525378267 FAX 0525377916

EASY-PC PCB and Circuit Diagram CAD

Forget using tapes and lightbox! Create your Circuit Boards using CAD - like the professionals.

- Runs on PC/XT/AT etc. with Hercules, CGA, EGA or VGA display and many DOS emulations. - Design Schematics Single and Double sided and Multilayer boards including Surface Mount.
- Standard output includes Dot Matrix / Laser / Inkjet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Extremely powerful. - Very easy to use. - Not copy protected.

EASY-PC

Technical support is free, for life!

Over 13,000 Installations in 70 Countries Worldwide! For tull info' $\begin{aligned} & \text { please write, phone or fax: } \\ & \text { Number One Systems Itd. }\end{aligned}$ The Electronics CAD Specialists. REF: ETI, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 048061778 (7lines) Fax: 0480494042 ACCESS, AMEX, MASTERCARD and VISA Welcome.

£30 off Europe's best selling oscilloscopes!

- Excellent quality, built to last a life time
 >2 year warranty Each 'scope supplied with 2 sets $\times 10$ probes, manual and mains lead.

PART NO.
DESCRIPTION

20 MHz , dual channel 20 MHz , storage 'scope 60 MHz , dual channel $100 \mathrm{MHz}, 3$ channel

USUAL PRICE
OFFER PRICE

HM203-7
HM205-3 HM604
HM1005

MULTIMETERS

The D-MM good value meters are now even D-MMer good value!!
The TM series of low cost meters, with $31 / 2$ digit LCDs, full overload protection, strong ABS cases and packed with features. Supplied with test leads, battery and manual.
$£ 397.15$ £367.00

£716.75

£930.60 £686.00
$£ 899.00$

PART NO. DESCRIPTION

ON

DC current (10A) continuity and diode test
\qquad-ith
TM 5315

SPECTRUM ANALYSER ADAPTOR

400 kHz to 250 MHz frequency range

- LC display of centre frequency
Calibration marker

The new TSA250 will adapt any conventional 'scope into-a highly cost effective spectrum analyser. With numerous applications in RF design and development work, EMC investigations, and education.
TSA250
£399.00

Offer must end
31 st Jan 93
USUAL OFFER

PRICE PRICE

The Brand New Cirkit Electronic Constructors Cafalogue Winter 92/93

>192 pages
> £££'s worth discount vouchers

- 100s new products.....

Books - the latest titles.
Capacitors - new range ceramic discs,
extended ranges electrolytic and polyester types.
Computers - new CAD PCB layout software.
Connectors - extended ranges of BNC, Jacks,
XLR and PCB types.
Filters - new narrow band ceramic and low pass TV filters.
Hardware - additions include new range control knobs, cabinet hardware and heatsinks. Inductors - more additions to our already extensive range.
KIts - new additions to the Velleman range. Rigs - handheld 'CB' transceivers, wavemeters, scanning receiver accessories and aerials.
Semis - new linear ICs, transistors and a
complete new range of LEDs including blue types.
Speakers - new radio mic systems.
Test Equipment - new hand-held frequency meter and satellite TV dish alignment system. And much more besides.....

- Available at larger newsagents, from 12 th November, or directly from Cirkit.

All prices include VAT at 17.5%.
Postage and packing; standard $£ 1.40$, next day delivery $£ 4.60$.
Prices correct at time of going to press, but may change in line with exchange rate fluctuations.

Low cost data acquisition for IBM PCs \& compatibles....

All our products are easy to install - they connect directly to eilther the printer or serial port and require no power supply. They are supplied with easy to use software which collects data for either display or priht-out.

- 10 - bit resolution
- 11 channel

5-10k samples per second
Data logger software
0-2.5 V input range
Connects to printer port

8, 12, 16-bit resolution + sign
8 s/e or 4 differential inputs
216 or 300 8-bit samples per second
± 2.5 V input range

- Data logger software

Connects to serial port

All prices exclusive of V.A.T.

PICO TECHNOLOGY LTD

Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 7QJ

Build a 20,50 or 120Watt inverter for a portable mains power source using our cover PCB. Mark Daniels provides the details

Asimple battery to mains inverter can be extremely useful for providingelectricalpower to small mains appliances in the event of a power failure, or for powering similar appliances in situations where no suitable mains supply is available.

Given a suitably large bank balance and an adequate stock of batteries it is possible to power virtually any desired load from an inverter, but in order to keep the

20/50/100Watt Nains

proportions within reason the load should be limited. As an example a 3 kW load (about the maximum which can be safely run from a 13 amp socket outlet) would require an input current to the inverter of around 300 amps from a 12 volt battery, discharging a typical 60 ampere- hour car battery in about five minutes.

A more acceptable load limit for our typical car battery would be around 500 Watts, but this would still drain it in under one hour, which may be quite acceptable if the load is an intermittent one such as an electric drill or similar small power tool. Finding a suitable transformer ex-stock generally poses a problem with such a large inverter and added to that is the cost of suitable power transistors.

The smaller inverters, having an output of 100 Watts or less, are a much better proposition for the home constructor;
all the components being readily available at very low cost.
The circuit described in this article is designed to be used with equipment having a power requirement of less than 20 Watts in the first place. By simple substitution of heavier power components the output of this design may easily be increased to 50 Watts, this is described in detail later. If a little more work and expense can be tolerated a load capability exceeding 100 Watts may be achieved, as will be explained at the end of this article!

Generating AC

There are many ways of generating the AC required for an inverter, some of which are usable only in very small applications, others require expensive or difficult to obtain parts.

One obvious choice for generating the required timing

Fig. 1 Inverter cònfigurätions
signals for the switching transistors is the ubiquitous 555 timer IC in its astable mode, which would have to be used in a single-ended or half-bridge configuration. This would result in quite a simple circuit, but it does pose two major problems; the worst of which is the low RMS output that is never able to exceed half the DC supply voltage. With a 12 volt supply the output is unlikely to be much better than about 4.5 Volts after transistor losses, etc. Also, the mark-space ratio of the signal from an unmodified 555 circuit will always be greater than the ideal 1:1 and consequently will not provide the best waveform for an inverter.

The two electrolytic capacitors in the half- bridge configuration of Figure la would need to have very large values for operation at a frequency as low as 50 Hz if a practical amount of power is to be delivered to the load. The resulting design would work out much more expensive than is necessary.

A full bridge configuration, as in Figure 1 b has a greatly improved output and does not require expensive electrolytic

Inverter

capacitors and could be used to good effect with a 12 Volt supply. It does, however, require twice as many power transistors as the half-bridge and a more complex timebase circuit, which is little advantage in this particular application.

There is a third configuration shown in Figure 1c, which at first glance appears to overcome all of the problems associated with the first two circuits, but not without introducing a couple of minor ones of its own.

The power transistors used in the bi-phase, or push-pull circuit, of Figure 1c require $a V_{\text {ce }}$ rating in excess of twice the peak supply voltage which, with a high DC input voltage, can mean costly or difficult to obtain components. The inverter described in this article runs from a nominal 12 Volt supply and can use ordinary low voltage power transistors which are readily available and inexpensive. This configuration re-

quires complementary timing signals of equal mark-space ratio and obviously cannot be used with a standard 555 timebase.

Fortunately, most CMOS and TTL oscillators have complementary outputs and are ideal for this type of application. The CMOS option is chosen here for its additional advantage of wide supply voltage tolerance.

Printed Circuit Board Assembly

The majority of the components are assembled onto the single-sided glass-fibre printed circuit board, the component overlay for which is provided in Figure 4.

The easiest and safest method of assembly is to fit the small passive components and the socket for IC1 first, checking positioning and orientation before soldering. The three rectifiers, D1, D3 and D4 should be fitted next followed by transistors Q1 and Q2.

The power transistors, Q3 and Q4 need fitting with small heatsinks which may conveniently be made from small pieces of $16 \mathrm{swg}(1.6 \mathrm{~mm})$ aluminium. If separate heatsinks are used then no isolating kits are needed, simply apply a small quantity of heatsink compound to the metal mounting tab of each transistor and bolt it to its respective heatsink, ensuring that the two cannot touch.

The fuseholder and preset, RV1 may be fitted next. If user
adjustment of the output frequency is desired then an external potentiometer may be fitted as described under Modifications.

Assembly To Case And Interwiring

If a two part plastic case with aluminium front and rear panels is used as in the prototype then the PCB and transformer may be mounted in the bottom half of the case using countersunk machine screws and nuts. Use spacers or a couple of nuts to stand the PCB clear of the lower panel of the case.

Drill the mounting hole for SK1 in the rear panel of the case and de-burr it before fitting the miniature power connector. If the panel mounting option for RV1 has been chosen then the mounting holes for this will also need drilling in the back panel.

Prepare the front panel to accept the IEC 6 Amp socket (if used), S1 and D1 in accordance with Figure 5. The cutout for + S1 and 1 inacar

HOW IT WORKS

An inverter works by converting the direct current (DC) from a battery into alternating current (AC), and feeding it into the primary winding of a step-up transformer. For $A C$ applications the frequency is usually chosen to coincide with the local mains frequency of around 50 to 60 Hz , although other frequencies such as 400 Hz , commonly used in aircraft systems are not unheard of.

The usual mains electricity has a sinusoidal voltage waveform, as depicted in Figure 2a. This is normal for electricity generated in a rotating machine, such as an alternator. However, in electronics things are not always as straightionward as this and for reasons of simplicity and efficiency we often make do with a squarewave output (Figure 2b). This does not affect the vast majority of small appliances as the only major device which will not accept a square wave input is the induction motor, which is generally excluded from connection to this particular inverter by nature of its current hungry power requirements anyway.

The circuit used in the Mini Inverter is very simple and is based around stock parts, making it cheap and easy to build. Figure 3 shows its complete circuit diagram.

A CMOS multivibrator, IC1 generates the timing signals at a user adjustable rate, set by preset, RV1 in conjunction with fixed resistor, R2 and capacitor, C . Any frequency in the approximate range 42 to 68 Hz may be selected, thus covering the World's most common mains frequencies of 50 and 60 Hz .

The multivibrator's outputs are used to drive two common emitter darlington pairs, with a phase difference of 180° between their outputs, swinging altemate ends of the transformer primary to ground while the centre-tap is held at +12 V . This generates a low frequency square wave in the primary winding, inducing an alternating magnetic flux in the iron core and ultimately a higher voltage in the transformer's secondary winding due to the far greater number of turns on this winding. The load is connected across the secondary and experiences the equivalent of the full mains voltage.

Diodes D3 and D4 protect the power transistors and drive electronics from the effects of the high voltage spikes produced by virtue of the extremely rapid switching of the inductive primary winding. Capacitor, $\mathrm{C1}$ provides supply decoupling and D 1 in conjunction with the fuse, FS1 protects the circuit against incorrect supply connection.
the socket may be made by drilling a 10 mm hole at each corner of the cutout and then using a junior hacksaw to join up the four holes, finishing to size with a flat file. The other holes are simply drilled, with an anti- rotation notch filed for the switch, if necessary.

If front panel lettering is required apply it now and give the panel two coats of transparent lacquer, which should be allowed to dry before fitting any components to it. Fit the panels to the lower half of the case using the self tapping screws supplied with the case and make all the electrical connections between the various components in accordance with the interwiring diagram of Figure 5.

Fit a length of twin core flex to the DC plug, PL1, making the centre pole positive and fit a large pair of crocodile clips or a cigar lighter plug as preferred to the other end of the lead. Keep this lead as short as possible to reduce cable voltage drops (3 to 4 metres should be adequate in most cases). Any extension leads should be on the high voltage side, where currents will be lower, thus keeping power losses to a minimum.

Safety

The high voltage output of this inverter is at a fairly low impedance and is capable of giving quite a severe electric

shock. It is essential to observe the same safety procedures which apply when working with the normal mains, particularly with the larger unit described later which is quite capable of delivering sufficient current to kill! If you are at all uncertain about working with mains voltages then do NOT attempt to build any of these circuits.

It is essential that mains rated wire be used for all 240 volt connections and the terminals on the mains socket must be properly insulated to reduce electric shock hazard. Take note of the earthing arrangements shown in Figure 6 as these are essential for safe operation of the completed unit and must NOT be omitted under any circumstances.

Setting Up and Testing

A 12 volt DC source capable of providing at least 2 amps (e.g. car battery) and a 4 R 72.5 W wirewound resistor are the only items essential for testing the inverter. An analogue multimeter, although not essential, would be helpful particularly if fault finding becomes necessary.

Connect the 4R7 resistor in series with the inverter and battery and measure the output voltage of the inverter, which should be in excess of 200 volts. Allow it to run for a while and check that the power transistors do not get warm, switching it off immediately at any sign of a problem.

Fig. 4 Component Overlay
If all is well at this stage disconnect the 4 R 7 resistor, reconnect the unit to the power source and measure the open circuit output voltage, which should be around 300 to 340 volts. Apply a small load, such as a 15 Watt soldering iron and check that the output voltage does not fall below 240 volts.

To set the output frequency connect a digital frequency meter between pin 10 of IC1 and 0 volts and adjust RV1 until the desired frequency is obtained, normally 50 Hz or 60 Hz .

If no frequency meter is available an oscilloscope may alternatively be used to set the period of the waveform to

20 ms for 50 Hz or approximately 17 ms for 60 Hz .
The above two methods of setting the frequency require access to some fairly expensive test equipment, but with a little ingenuity this may be avoided. A high impedance loudspeaker connected between Q 1 collector and the positive supply rail will produce an audible note which may be compared with any accurately known 50 Hz or 60 Hz tone (e.g. a speaker connected across the output of a low voltage transformer plugged into the normal household mains).

If the frequency is unimportant set RV1 to give the highest output frequency as this will also produce the greatest efficiency and output voltage. The two higher power versions of this inverter are tested in a manner similar to that outlined above, with the following differences; a higher current supply and suitably larger loads are required.

Fault Finding

This circuit should prevent no serious problems if assembled on the cover PCB as shown. Solder bridges across adjacent tracks on the board are the most likely problem.

Check the fuse first as this may have failed if the unit was incorrectly connected to the battery. If this is the case the reverse polarity protection diode may have have failed to a short circuit and will also need replacing.

If the fuse fails a second time with the battery correctly connected check the orientation of all the diodes and replace any incorrectly fitted ones with new ones.

It is possible that the secondaries (used here as primaries) of the transformer have been connected in opposition, thus presenting a low impedance to the driver transistors. Check for this by removing the transformer from the circuit and connecting it to the mains in the normal manner. Measure its output across the ends of the centre tapped winding, which should produce around 18 to 20 volts AC. A reading of zero indicates that the connections to one of the windings have been reversed and will need swapping around.

Modifications

An external potentiometer may be fitted to the inverter to allow user adjustment of the output frequency and is connected as shown in Figure 7. The on-board preset shown in Figure 2 is then not needed and should be omitted if this modification is carried out.

Fig. 5 Front panel cutouts

Fig. 6 Case layout and interwiring

For an increased output power of up to 50 Watts replace Q3 and Q4 with TIP41 devices, uprate T1 to 50VA and FS1 to 3 or 4 amps. Fit a larger heatsink to the power transistors, using isolating kits and heatsink compound.

For adequate reverse polarity protection DI will need uprating to at least 6 Amps , otherwise it will have to be replaced each time incorrect battery connections are made and it will fail to a short circuit. The large areas of copper on the PCB which carry the full input current to the inverter, would benefit from heavy tinning if continuous use at high powers is expected. All interwiring on the low voltage side should also be suitably uprated to cope with higher input currents of upto 5 Amps at full load.

For maximum output power the TIP power transistors may be replaced with TO3 packaged power darlingtons mounted off-board on a large heatsink, having a thermal resistance of less than $2^{\circ} \mathrm{C} / \mathrm{W}$. MJ4033 devices, having a current rating of 16 amps , may be used for Q 3 and Q4 and should be fitted to the heatsink using isolating kits and heatsink compound. Connection to the PCB and transformer should be in accordance with Figure 8, using heavy connecting wire for all high current paths, indicated by the thicker lines in the drawing.

Fig. 7 External frequency control wiring

For a full 120 Watts rating a toroidal type transformer is to be recommended for its lower magnetizing current requirement, which is reflected in the inverter's lower no-load current and considerably greater part load efficiency. As an
added bonus a toroidal device of this rating is very much cheaper than a conventional laminated transformer! A full load efficiency of around 80% can be expected.

RESISTORS (All 0.25W 5\% Carbon Film)

R1	680
R2	$330 k$
R3	$2 k 2$
R4	$2 k 2$
RV1	$220 k$ Sub-min Horiz Preset

CAPACITORS

C1 $\quad 100 \mu 25 V$ Radial Elec
C2 4 n 7 Polyester, 5 mm Pitch

SEMICONDUCTORS

D1 1 N 4001 (uprate accordingly for $50 / 120 \mathrm{~W}$ versions)
D2 5 mm Green LED
D3,D4 1N4002 (2 off)
Q1,Q2 BC184L (2 off)
Q3,Q4 TIP31 (2 off for 20W)
TIP41 (2 off for 50W) MJ4033 (2 off for 120W)
IC1 4047B

MISCELLANEOUS

T1 Mains Transtormer
9-0-9V 20VA Rating
(20W)
50VA Rating
120VA Toroidal

(50W)

(120W)

S1

FS1

Push to Make Switch	$(20 \mathrm{~W})$
5A Toggle Switch	$(50 \mathrm{~W})$
16A Rocker Switch	$(120 \mathrm{~W})$
1.5A 20mm Quick Blow	$(20 \mathrm{~W})$
3.15A 20mm Quick Blow	$(50 \mathrm{~W})$
10A $1.25^{\prime \prime}$	$(120 \mathrm{~W})$

PCB Mounting Fuseholder for FS1
(Panel Mounting Type for 120VA Version)
Large Crocodile Clips or Cigar Lighter Plug
Panel Mounting 6A IEC Socket Outlet and Plug to Suit
Panel Mounting DC Power Connector and Cable Mounting Plug Ventilated Enclosure to Suit
Wire, Solder Tags, Crimp Terminals, Screws, etc.

BUYLINES

Ventilated enclosure is TEK K22 from West Hyde (Tel: 0453 731831) All other components are standard parts and were supplied by J.P.G. Electronics (Tel: 0246 211202), who can also supply a case if required.

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers.

WANDELGOLTERMANN SPM-2 LEVEL METER WANDE/GOLTERMANN SPM-3LEVEL MEER WANDEL GOLTERMANN PS-3 SIGNAL GEN

 ADRE $470 A$ AMFM SIG GEN 1-1120MHZ FARNELL FG1 FUNC GEN. 2 -2,2.2MHZ MARCON TF2304 AMFM MOD METER PRTBLE MARCON TF 2304 AM/M MOD METER PRT19' $\mathrm{AACK}, 20 \mathrm{U}, 31^{10} \mathrm{DEEP}$
GOULD OS33300B 50MHZ2 TRACE DEL T/B TEK 453 50MHZ DUAL TTACE DEL T/B TEK 4651 100 M HZ OUAL TRACE DEL T/B SCOPEX 402525 25HZ DUAL TRACE BECKMAN SO2O 2OMHZDUAL TRACE DATA PRECISION 6000 WTH 611 PLUG-IN AND 681 OISK DRIVE UNIT.
GOULD OSSOOOA 40MHZ2 TRACE, DEL T/B HAMEG $203-5$ 2OMHZ, 2 TRACE, COMP TESTER HITACHV V 6015 IOMHZDIGITAL STORAGE HP. 1340A X-Y DISPLAYS.
IEADER LOO-9C ALIGNMENT SCOPE
TEK 5LAN 1OKKHZ SPECT ANAL WTTH 5110 MF TEK 5L4N 100KHZ SPECT ANA
2x5A1BN, 5B10N TMME BASE
TELEQUIPMENT D75, 50MHz 2TRACE DEL T/I
TEKTRONIX 7403N DF1 TDO1 LOGIC ANAL
TEKTRONIX 7403N, OF1, TDO1 LOGIC ANAL
TEK 5458, 5 ,595, 535A, 541A Aelc
TEK $545 / 585$ SERIES PLUG-NS
TEK $545 /$ /5S5 SERIES PLUG-NS
HP 3490 D DMM AC/DCN OHMS 6 DIGIT
HP 349OA DMM ACIDCN OHMS 6 DIGIT
XFORMERS SEC $30-303$ OOA, UNIV PRIS, C-CORE
WHOUSE $1 / 4 H P$ REVBLE MOTORS 2OVN 1KRPM
CONSTANT VOLTAGE TRANSFS 150VA-ZKV
MARCON TF2331 DISTN FACTOR METER BBC-B \& MASTER COMPUTERS MARCON TF2330 FMAMM MODULATION MEEER TEKTRONIX 834 PROG DATACOMMS TESTER VARIABLE OUTPUT PSU'S HV BLV TEKTRONX 520521 A PAL VISCOPES
£169 'ANTIQUE' TEST EQUIPT, VARIOUS E189 COMMUNICATIONS RECEIVERS, VARIOUS £169 2OOW U.V. SOURCE WTTH TIMER c1995 1920's WIRELESS, REED \& HORN SPKRS § 129 MCWURDO SLVER CORD, 1 ONLY £195 PERISCOPES MLITARY NO 43 Mk. 3 £145 LCR MARCON TF1313A0 0 \% E145 LCR MARCON TF1313AA 1% £125 LCR MARCON TF2701 1II
E249 LCR COMPONENT COMPARATOR AVO CZ457/S E450 WAYNE KERR B221 B221 BRIDGES
£169 HP1901A - 55 A- -8A - 17 A 25MHZ PULSE GEN E249 EKCO MARINER UB34 L.M \& 7 S B'CAST REC'R SCR 578B GIBSON GIRL EMERGENCY XMITTER B3995 AMFNENNER 625/2SIG GEN 1Hz-1MHZ SIN/SO £249 LEVELL TG1523HZ-300KHZOSCSINSO
c249 LEVELL TM6B MICRO V-METER 450MHZ
E995 LEVELL TM3B MCROV METER 3MHZ
c99 TUBB/TUSE TUNER UNITS BRAND NEW
£195 OERTLING V2O SINGLE PAN BALANCES 200GM SAGE 2-WAY CO-AX SWITCH SAN 212O N CONNS
£750 UDI 2026 SONAR SCANNER, SURFACE UNIT
P225 BAK 1013 BFO 2305 LVVEL RECORDER
¢495 UPA CAVIDERM CDB PTH TESTER
From L49 MARCON MARINE KESTREL 3
From £io ANALYTICAL BALANCES WITH WEIGHTS £125 DECADE R/CN/BOXES
£20 KAYE DEE PNEUMO UV EXP UNTT $390 \times 280 \mathrm{~mm}$ £25 VACUUM PUMPS TYP 100MBAR (28LIMN) POA CALISRATION STANDARDS CNILR
$\left.\begin{array}{l}\text { £175 COSSOR CRM533A VHF NAV/COM RF SIG GEN } \\ \text { From fg9 COSSOR CRM511 ISNOR AUDIOSIG GEN }\end{array}\right\}$
E195 TOPAZ 91007 -11 $75 / \mathrm{CVA}$ 100/240-120/240 isO
E355 KINGSHILL NS1540 15V 40A PSU CASED
From 299 HP626A, 628A, SIG GENS LAST FEW From 2475 SIGNAL GENERATORS AF TO 21 GHz

POA
POA
POA
PB5
POA
④9
POA
$£ 49$
$£ 19$

A RANGE OF SMALL PLASTIC BOXES, CASES AND POTTING BOXES AVAILABLE IN ANY QUANTITY.
SEND FOR FREE CATALOGUE
SLM (MODEL) ENGINEERS CHILTERN ROAD, PRESTBURY, CHELTENHAM, GLOS GL52 5JQ FAX: 0242226288

AMAZNG ADAPTER BUG

Built into a standard 13A adapter, plugs into any 13A sockel and transmits to a normal FM radio. Directly powered from the mains the unit will transmit conversations etc indefinitly! Price is $£ 26.00$ re M26P1

WALKIE TALKIES 1 MILE RANGE
Pair of small pocket sized walkie talkies complete with cases etc. They will operate (subject to buildings etc) up to 1 mile apart. 2 PP3 9 v batteries required. $£ 30.00$ ref M30P1

CAR STEREO AND SPEAK
ERS
Complete system comprising of sterso cassette player, stereo FM radio plus AM band, Pair of good quality speakers all for just $£ 19.00$ ref M19P1

AMBER MONTORS

$12{ }^{2 \prime}$ high res screen 12 v 1 A supply needed. HerculesiTTL input ie sep HOR and VER sync plus video required. Brand new andhoused in an off white plastic case. E22.00 ref M22P1.

12V SOLAR PANEL

Ideal for trickle charging car batteries etc. Panel is made from amorphous silicon, is waterprool and corres with fly leads. Size is $30 \mathrm{~cm} x$ $30 \mathrm{~cm} \times 4 \mathrm{~mm} . £ 15.00$ ref
 M15P 1. Other sizes stocked

C64 TAPE STREAMER

Originally made for the Commodore 64 Computer but may be adaptable for other machines. Unit is supplied with its own operating systern, and two tapes. Approx 20 times faster than normal tape sys-
 termsl $£ 25.00$ ref M25P1.
Extra lapes are available al $£ 400$ each ref M4P1 or 10 for £25.00 ref M25P2

PC POWER SUPPUES

Brand new units made by Aztec either 110 v or 240 v inpul giving 5 v at $15 \mathrm{~A}, 12 \mathrm{v}$ at $5 \mathrm{~A},-5 \mathrm{v}$ at .3 A and -12 at .5 A . Fully cased with on/off switch and built in fan. $£ 15.00$ ref M15P2 Also available is a 200 watt
 version at $\mathbf{£ 2 2 0 0}$ ref M22P2. Both types have standard PC fly leads

40 PAGE CATALOGUE AVAILABLE CONTAINING OVER 1,500 SIMULAR PRODUCTS FREE ON REQUEST!

EmERGENCY LIGHTING SYSTEM

Complete system give sup to 3 hours light trom an integral 10AH sealed lead acid battery The battery is kept fully charged by the mains, as soon as the mains fails the two powertul lamps are switched on and remain on until power is restored. Maintenance free. $£ 19.00$ complete with battery. ref M19P2

AMSTRAD 464 COMPUT.

ERS

Customer returned units complete with a monitor and circuil diagrams These units

are generally not working and are not returnable. Price is $£ 35.00$ ref M35P 1 .

AMSTRAD 6128 COMPUT

ERS
Customer returned units complete with a circuit diagram and
 built in $3^{\prime \prime}$ disc drive. These units are generally not working and are not returnable. Price is $£ 29.00$ ref M29P1

CORDLESS MICROPHONE

Small hand held battery operated microphone that transmits to a standard FM radio, good range Our price $£ 15.00$ ref M15P3.

VIDEO SENDEA

Transmits videó pictures from
a video recorder or cam corder to any television in the housel. Can also be used to transmit from cam corder to video recorder, no more trailing wires | £15.00 (ex psu) ref M15P4
 £20 00 (inc psu) ref M20P1.

BUILT BUG

Built and tested superior FM bug 100 m range, fits in match box all you need is a 9 v battery and an ordinary FM radio! $£ 14.00$ ref
 M14P1.

ULTRASONIC ALARM SYSTEM

Complete alarmsystem that comprises a detector that simplyplugs into a 13A socket in. the area you wish to protect and a receiver which plugs into a 13A socket where you wish the alarm to sound. You could put one in the garage and one indocrs or perhaps protect your neigbours house etc. Fully adjustable sensitivity. 225.00 for complete system rel M25P3.

TALKING TELEPHONE COIN BOXES

Phone bill too high? fit one of these and save. Fully programmable lor different call rates,
chargebands, time of day elc. accepts 10 p, 50 p and $£ 1.00$ coins. Phone box actually speaks to you with built in voice synthersiser Wall or desk mounting. Two types available 1 with built in lock at £29.00 rel M29P2 the other with
 no lock but easily adaptable is just £23 00 ref M23P 1. Unit takes 4 C cells and is used in conjunction with an ordinary phone. Supplied with full instructions, BT approved.

STEAM ENGINES

Ever wanted one? brand new units made by the famous Mamod company complete with fuel, burner etc £30.00 ref M30P 1 .
Other models stocked.
including traction engine at £59.

BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 5QT TELEPHONE 0273203500 HAL ORDER TERMS: CASH PO OR CHEOU WITH ORDER PLUSE3,NO POSTPLUS VAT. WEASE ALLOW 7 - 70 DAVS FOR DELIVERY

PC CASES

cases ideal io building your own PC four drive bays, attractive plastic front panel. $£ 24.00$ ref
 $M 24 \mathrm{P} 1$

VIEWDATA SYTEMS

Made by Tandata these contain every thing you need to start dialling into databases and bullitin boards such as Prestel etc just plugs into a standard tv or monitor Complete with modem, infrared remote controlled keyboard and console. $£ 20.00$ ref M20P2

SPECTRUM +2 COMPUTERS

Refurbished popular computer with builh in cassette deck and 128 K of memory $£ 32.00$ each ref M32P1 PSU $£ 15.00$ ref M15P4
We also have some requiring attention at $£ 19.00$ (non returnable) ref M19P3

SPECTRUM +3 COM

PUTERS

Refurbished popular
computer with built in
disc drive and 128k of
memory $£ 45.00$ each ref
M45P1 PSU £15.00 ref M15P5. We also have have some requiring atiention at $\mathbf{£ 2 5 . 0 0}$ (non returnable) ref M25P4

EPROMS

Clean erased eproms at bargain prices! 27C64 pack of 10 for $£ 7$ ref M7P1, 27C256 pack of 10 for £9 ref M9P1, 27C512 pack of 10 for $£ 10$ ref M10P1.

WINDUP SOLAR POWERED

RADIO

Compact unit with built in hand
charger and solar panel just a
fow turns of the handle powers
the radio for some time! Our
price is just $£ 14.00$ ref M14P2

BUGGING TAPE RECORDER

Contains voice activated switch so only actual conversations are recorded! takes a standard audio cassette and uses AA batteries. E 20.00 ref M20P3

TALKING ALARM CLOCK

Wakes you up by telling you the time also speaks the time at the push of a button/ Battery operated £14.00 rel M14P3.

BROADBAND RADIO RECEIVER

Covers VHF 54-176 mhz (CB, air FM TV, PB, WB etc etc) hand held unit with squelch control and carrying strap £15.00 ret M15P6 Superb value.
 -

12 BAND WORLD COMMUNACA-

TIONS RECEIVER
Mains or battery qperated covers 9 short wave bands plus FM, LW and AM bands.
Exceptional value at $£ 19$.
ref M19P4

SINCLAIR C5 MOTORS

12v 29A (full load) complete with 4 to 1 reduction gearbox giving 800 rpm output. Motor measures $8^{\prime \prime} \times 4^{\prime \prime}$ with toothed pulley output. £40 ref M40P1. We also stock $13^{\prime \prime}$ wheels with tyres at $\mathbf{\Sigma 6}$ each ref M6P 1, 16" at $£ 6.00$ ref M6P2 and an electronic speed controller kit at $£ 17$ ref M17P1.

This month, Mike Meechan presents some circuits which are guaranteed to raise the hackles and boil the blood of the antitone control brigade.

Although some of our readership has intimated as much, and despite some scurrilous rumours to the contrary, I have yet to secure a deal with Steven Spielberg as regards a blockbuster movie of the Anniversary AutoMate - with screenplay by Stephen King and a musical score by Andrew Lloyd Webber - but T-shirt sales are doing well, book rights have been agreed upon and the album will soon be released! Anyway, enough of the frivolity and wishful thinking and down to business.

The Equalizer

No, not a guest appearance in this column by Edward Woodward, scourge of wrong-doers. At long last, we can now present the equalization circuitry of the AutoMate and I hope that all will agree that it's been worth the wait. At this late (EQ) stage in the game, it might be worthwhile pointing out that the AutoMate EQ is a true parametric equalizer. The name parametric and sweep equalizer have, in many ways, become synonymous. This is a quite false axiom since a sweep equalizer offers control only of centre frequency and boost/cut, not the other parameter necessary - that of Q control - which yields the TRUE parametric equalizer. It is as well to point this out here and now - like can therefore be compared with like in the case of the AutoMate and any potential commercial competitors.

Future topics for exploration and vivizection - in the style of previous sections- will include dynamics and switching (in next month's issue), monitoring, panning, mixing and finally AutoMation. We shall then start to publish some overlays for the mono mic/line channel strip before briskly moving on to other modules in the series including the stereo line/RIAA channel strip, group module, master module etc.

For the present, we'll content ourselves woth looking at the comprehensive equalization circuitry of the AutoMate. Referring to the circuit diagrams of Figures 1 and 2, we should be able to see - after three months of intensive study of EQ and filter networks - that the featured circuits are a veritable smorgasbord of different types. This was flying somewhat in the face of popular fashion where conventional designs - for the parametric EQ at any rate - follow either one school of thought, the constant all-pass phase-shifting types (CAPS) invoked as variable and tunable admittances to ground or the other, state-variable method of implementation. I have used both types where I thought that the performance of one type in a particular aspect was superior to the performance of the other type in that same aspect. Sometimes, a slightly maverick approach to design is to be commended....

Figure 1 shows the High Pass Filter section. This is an outwardly conventional equal-component-type Sallen and Key HPF. Tacked onto the end of it is a reasonably meaty push-pull transistor stage which boosts current-sourcing capability by a good factor and means that long lines or jackfields can be driven with considerable ease. Feedback is therefore derived from the output of the two transistors and not from the op-amp. Referring to the discussion of some
months previous, we now know that the Sallen and Key type of filter has reasonable responses in all of the important areas. Also, with the equal component type, the methods used to produce better out-of-band roll-off ie a Butterworth response means that 4 dB of gain is introduced. This was why the previous Line Trim stage was made to sustain an overall 4 dB loss in the 0 dB setting. There is thus no overall gain (or loss) through the system with all level controls set for 0 dB

Fazed by Phase

In the second stage of the EQ, each of the true parametric sections is able to be tuned over a 20:1 frequency range, from 50 Hz to 1 kHz at the lower end - I've called this section, somewhat misleadingly, low -mid - and from 1 kHz to 20 kHz at the upper end. On the face of it, there is no direct overlap of 'frequencies. This is important since both of the statevariable sections share a common Baxandall-style summing stage. The one caveat, however, (with both filters able to be tuned to the same frequency) is that if both sections are tuned to a particular crossover frequency, or a very similar one for that matter, the available cut or boost ratio is altered - you can't simply just add 15 dB of boost at 1 kHz in one section and also boost it by the same amount in the other! This is because the two stages are summed, not multiplied so the maximum possible (if the op-amp can do so without clipping) is 21 dB . The use of both the gyrated admittances and state variable in the same package meant that the EQ stage had an unattractive overall phase inversion.Again, there has been much subjective argument about the need to maintain faithfully the integrity of the audio phase, with an overall in-phase response from input to output - sounds better, old boy. I can't comment authoritatavely one way or the other but it is interesting to note that many of the most widely-used Japanese professional digital audio processors did, in fact, invert the signal phase of the signal. It is claimed that incorrect phase results in imaging that is perceived psychoacoustically as 'flat' and which sounds as if it emanates from a point near or behind the loudspeaker. Absolute phase, on the other hand, cause the image to tend to surround the listener and the depth and dimensional character of the mix are enhanced greatly. It makes one wonder just what absolute phase reference there is to believe in in many recordings. Phase is of particular importance with microphones, especially those arranged to capture a stereo source (where phase-reversed mics will cause images to wander) or where ambient as well as close-miking of the source is being done since mono will be affected, too, in this instance. Phase inversion can be used

HOW IT WORKS

HIGH PASS FILTER AND EQ PHASE CORRECTION

The High Pass Filter utilizes an equal component second-order Sallen and Key type filler. This gives a $12 d B /$ octave roll-off and a flattest amplitude response while the feedback necessary to create this response gives 4dB of gain. Faster roll-off for out-of-band signals has been compromised for a better in-band response.
The unity gain type, would, in any case, be difficult to tune, because of the non-similar values of R's and C's.

R54 and R55 and the associated part of RV2 set the tumover frequency of the filter. The pot may be omitted and replaced by two discrete resistors chosen from the values given in the attached table (Figure 7). Whatever the case, the filter turnover frequency can be varied from about 20 to 300 Hz . As already mentioned, the resistors may be supplemented with a dual gang 20 k linear pot, thus allowing operator fully variable control of the turnover frequency. As mentioned in the general text, the control law, ideally, should be anti-log in nature so in practise, the linear pot gives a slightly cramped, though useable law.

SW5 switches the filter in and out of circuit. Conventionally, and if the filter caused the signal to sustain no overall loss or gain, ie a unity gain as opposed to equal-component value Sallen-Key, the switch would simply and wholly bypass all of the filter circuitry. This is advantageous in that the signal is passing through one less stage of amplification, which can only be good from a sonic point of view.

However, because the filter is a flattest amplitude type, and so gives 4 dB of gain which has had to be assimilated into the overall level architecture, simple bypassing won't do and with the filter out of circuit, there must still be 4 dB of frequency-insensitive -flat - gain. This is achieved by shoring out C48 and C49. DC paths around the switch are maintained during the switching operation and no clicks are evident on the output.The output of IC7a drives a reasonably hetty pair of line-driving transistors - Q4 and Q5 - in push-pull
conliguration with Q3 behaving as a constant current source for these two. LED1 biases this transistor while overall feedback is provided from the node of R59 and R60 via R57. The C54/R62 combination AC couple and ground reference the output whilst R63 provides some protection against short-circuit or highly capacitive loads. C53 value was chosen so that there is no LF roll-off with the envisaged lowest load impedance of the FX unit - 600R - and the electrolytic is bypassed with non-polarized C54 to improve in-band response.

JK2 is the Channel Pre-EQ Insert point and comprises a $1 / 4^{\prime \prime}$ stereo jack socket with switched contacts. These are 'normalled' in the traditional way, providing an unbroken path for the signal unless a jackplug is inserted whereupon the signal travels out of the mixer through the 'tip' contacts. It then returns in processed form through the 'ring' contacts, with R64 providing a source impedance for any $F X$ and ground-referencing the return path.

IC7b is the Insert Buffer/EQ Phase Corrector. Refer to Figure 4. With EQ inserted via SW6b, overall phase between the input of $\mathrm{IC7b}$ and the output of IC 13 b is unchanged. De-selecting the EQ takes the signal directly from the 'return' contacts of the jack to IC13.

One snag with the arrangement is the absence of the buffer when EQ is OUT but in practise this has proven not to be a problem with any FX units connected to the insert point. Again, each of the high-value polarized couping capacitors have been bypassed.

LED 4 and associated components constitiute an optional indicator operated by the second half of SW5's contacts and shows when the HPF is selecteed IN circuit. This is an important feature should the switch be part of RV2 since the pull on/pull-off operation needed to place the filter in circuit can be difficult to see at a glance when the control is buried amidst countless others. It can be omitted if so desired
creatively, too, to bring a vocalist to the front of the mix, for example, so that the listener is surrounded by vocals while the orchestra or backing instruments reside in the background. See Figure 3. We'll be looking more carefully at spatial positioning at a later stage.

From a purely practical point of view, absolute phase makes life easier for the designer if he knows that the output from each discrete stage should be in-phase with the input. This approach eradicates the need for individualism on particular cards or parts of the mixer - a killer in any modular system since they can then only be replaced by exactly the same type at a particular point.But this is to miss the main point. The problem of most concern here was that the signal was in-phase with the EQ bypassed and out-of-phase with the EQ in - a very unhappy state of affairs.

Consequently, I arranged for a compensatory phase reversal (transparent to the operator) to be introduced into the signal path whenever the EQ was placed in-circuit. The phase reverse amplifier (EQ absolute phase restorer) also serves as a Post-Insert Buffer Amplifier , although it can only be implemented as such when the EQ is in circuit. This is a slightly unorthodox arrangement and ideally, the buffer should have been present whether the EQ was in circuit or out. The original design configured this amplifier in an identical way to the one used in the phase switching arrangement of IC13a and associated components.

The amplifier became an inverter when EQ was IN and a follower when EQ was OUT. All was hunky-dory but for the clicks sometimes caused when switching EQ in and out of circuit (for purposes of comparison etc) with the fader open. It was thus abandoned. In any case, it makes for one less
detrimental amplification stage when $E Q$ is switched out. Further details on this are given in the How It Works section. The signal path in each of the two conditions will be shown next month.

Taking the Law into One's Own Hands

There are some other rather quirky-but-nice design features. Again, I was completely stymied in my efforts to locate suppliers of anti-log pots so some cunning was required to bend the law of the frequency-setting pots from easilyavailable linear or \log to the ideal anti-log law required.

It is important in any variable control - pot - that the available control is not cramped at the extremes of rotation. Figure 4 shows rotation laws for various pots when used, as is a common requirement, as frequency-determining controls. The use of star-delta transforms - as covered by A P Stevenson in an article in the January 1992 issue of ETI facilitates powerful manipulation wherein networks of one type can be converted into the corresponding equivalents of the other type ie from star to delta or vice versa. We can thus approximate various different laws using standard pots and pull-up or pull-down resistors from the wiper to another terminal. See Figure 5. Just such an approach is used commercially in the quest for an financially-viable but also, from the oft-despised subjective point of view, aurally accurate, panpot control law. (We'll cover the pan-pot debate at a later point in the series). This 'law-faking' approach was used at four different points in the EQ - in each of the frequency determining controls for the four different sections.

I suppose that, as in the case of the Mic Gain-setting

Fig. 2 AutoMate 4-band equaliser

HOW IT WORKS

AUTOMATE PARAMETRIC EQUALISER

The parametric section consists of two state-variable sections, identical in all respects but for the size of the frequency-determining capacitors. The state-variable has been discussed at length in previous parts of the article so we'll look only at those aspects of the design which set it aparl from the bog-standard form. Oniy the highmid equalizer as regards component numbering - will be investigated but as we've said, it is identical in electrical operation to the lowmid. Input signals are derived from the wiper of RV4 which is part of a conventional Baxandall-style ratiometric feedback/attenuation network. Resistor values are lower than is customary in this type of contiguration to optimise noise performance.

From the wiper, the signal is injected into a reasonably conventional two-integrator loop state variable. The only quirks in the design which set it apart from other, more conventional types are all centred around the major frequency-determining components, RV6a and RV6b, R75, R82, R83 and R86, and C67 and C72. In straightforward textbook designs, both of the frequency-determining capacitors are kept identical in value. (It simplifies the calculations). Figure 9 will show a schematic diagram next month. Break frequency of the section can be determined quite simply from the equation:
$f_{\text {cartre }}=1 / 2 \pi C 1 R 4$
This is the simple expression and supposes that both C's are the same in value and that there is a single frequency-determining resistor per section. The full expression is as follows:
$f_{\text {cerres }}=1 / 2 \pi \sqrt{\text { R6/R3C1R4C2R7 }}$
With R3 equal to R6, the transfer function simplifes further to:

$$
f_{\text {cente }}=1 / 2 \sqrt{1 / R 4 C 1 R 7 C 2}
$$

In the AutoMate example, one of the capacitors is $\sqrt{22}$ times the value of the other ie scaled about the geometric mean value. From the equation, as in the simpler Sallen and Key types discussed some months ago, we can see the PRODUCT is important. So long as the product of the two calculates to be the same as the originally-needed pair of identical values of single capacitors, the break frequency remains the same.

In past issues, we have said circuits can be modified to realize LARGE Q values. Although it might seem strange now, it can be just as difficult realizing SMALL values with this manifestation of the state variable. This conventional state-variable with its single pot Qadjust can't realize Q values much below 1. The devious business with the non-equal capacitors which was briefly outlined above becomes necessary. In fact, each capacitor has been removed from a middle value by a factor of $\sqrt{22}$, one being scaled up by a factor of $\sqrt{22}$ and the other scaled down although the product of the two remains constant. It is this product which determines the break frequency. Equal value capacitor's mean that the lowest value of Q achieveable is unity. We really want Q's down to values of 0.5 to 0.2 and these measures provide this range for us. Current through each of the integrating capacitors, C 67 and C 71 , is sharednon-equally. Around the integratorloop, R70 can beassumed to be the Q-determining component. Changing the current through this alters the Q value to around the required value of 0.5 .

Values for the f \qquad $t_{\text {cepadior }}$ have been chosen to give a $20: 1$ range, from 50 Hz to 1 kHz in one of the sections and from 1 kHz to 20 kHz in the other. As stated, the complete inavailability of anti-log pots to the hobbyist constructor prompted the use of a three resisior network to fake the anti-log law required. An anti-log control law yields the correct characteristic which should be one of resistance value being inversely proportional to frequency ie as resistance drops, filter break frequency increases.

So the frequency determining pot has an almost linear frequency change:percentage rotation characteristic which is good from an operational viewpoint. Figure 4 shows the effects of using three pots - linear, \log and anti-log - for the control of frequency. Figure 5 shows the transmutation between star and delta networks, how the value of resistors in each network relate to one another and specifically how these values relate to our required law-bending exercise. These
resistor values have been chosen to compromise both good noise performance - values as low as possible but within the driving stage capability of the op-amp - whilst allowing the frequency determining capacitors to be of the polyester type rather than electrolytics etc. 10μ caps become horribly expensive and bulky. RV5 is the Qdetermining pot, with maximum Q - corresponding to 5 - when the pot is at its minimum value. Again, this control should have had an anti\log law so that as the control is turned clockwise, the Q value changes progressively and smoothly from a low to high value. Wiring a \log pot the wrong way round yields a control where WIDTH is smoothly increased as the control is turned clockwise. SSL use this approach on their desks, so we are in good company! Its electrical effect upon the circuit is to attenuate the signal returned via R 70 and so alter the Q .

The phase switcher is straightiorward. In the inverting state, SW7 grounds the non-inverting input of IC13b and it behaves as an inverting amplifier of gain -1 . Swicching SW7 to the NORMAL position corinects the signal input to the inverting and non-inverting input. Amplification through the IC is now 2 (non-inverting) plus -1 (inverting) so the overall gain is non-inverting. R97 and C80 prevent any oscillation or bursts of noise from the output as the switch contacts change over while each side of the switch has a DC path to earth to avoid clicks when EQ is switched in and out of circuit.

In addition, there is an insert point drive amp, comprised of Q6 - the constant current source - and Q7/Q8, the push-pull output stage. This is identical in operation to the line driving stage attached to the HPF op-amp output and reference is made to this

LF AND HF EQUALISER

Both of these circuits could be termed 'unusual'. A gyrator IC12a is used to synthesize an inductor to create a conventional shelving bass control. R90,91,92, and 93 with C85 (and C84 when in-circuit) set the turnover frequency with the network able to be supplemented by a 10 k linear pot (RV11) so the operator can have fully variable conntiol of this frequency. The table shown in Figure 7 gives component values for the range of turnover frequencies between 30 Hz and 100 Hz . Switching capacitor C 84 In or Out of circuit using SW8 achieves a bell or resonant type of response rather than the shelving response yielded when the capacitor is shorted out. Again, the switching operation can be combined as a pull on push off switch integral to RV11 it this is fitted or from a separate switch. Reter to the schematic shown in Figure 10 next month. The network transfer function is as follows:

$$
f_{\text {ceatre }}=1 / 2 \pi \sqrt{1 / C 84 C 85 R 90 R 91} 1_{\text {eftecive }}
$$

A varable bootstrapping arrangement appears on the output of the op-amp. A linear pot is used which, with the law-faking resistors R91.92 and 93 and the bootstrapping lechrique, ylelds a very usable law with frequency nising logarilhmically with pot rolation. in this way, Q varies as frequency is increased, with larger Q's smaller band: widths - at the lower end of the frequency range and the opposite as frequency is increased. This yields an audio characteristic which is subjectively very powerful and useful. Q is around the 1.5 mark at 30 Hz and about 0.47 at 100 Hz . It alters because the ratio of resistance:reactance changes with frequency, in effect making the network more 'lossy' at higher frequencies. C84 value has been chosen so that it swamps C85 and, also, the desired frequency is affected with the in-circuit resistor values. All of the impedances are quite critical, compromised in such a way that there is a reasonable cut and boost ratio to the required frequencies and little effect on the others ie those in the upper-mid and HF patts of the spectrum. The responses in Figure 11 next month, show the lazy Q value at the 100 Hz control setting (with maximum boost) and means the stage has a lot of effect on frequencies extending into the lower mid region. Circuit impedances mean that even ai HF, the response does not tall to unily. The worst case deviation in this design is in the order of pius or minus $1 d \mathrm{~B}$. When we consider there is a 15 dB change to the frequencies at the lower end of the spectrum, the subjective effect upon HF is minimal.
control on the input amplifier, I could have used a multi-way switch coupled to a precision resistor string. This would have resticted flexibility (only discrete values of break frequency would then have been available) and added cost so I thought it better to stick with the preferred arrangement wherein some operational ease is sacrificed - the control law is very slightly cramped at one end of its rotation - but fully variable control is realized.

Admittedly, the star-delta arithmetic does becomes a little tedious but at the risk of sounding sanctimonious or just plain patronizing, to those 'in the know' or with very smart friends (most definitely the author's case), there do exist certain key values which can be used to yield the important law-faking curves. This alleviates calculator-induced insomnia!

Unfortunately, this law-fiddling approach can only work where the network is a three terminal type - this technique could not therefore be used in the Q-determining pots in the parametric sections. A reverse-connected log pot was therefore used and yields a workable compromise although WIDTH is increased as the pot is rotated clockwise compared to Q in conventional, commercial designs using anti-log types - one example of the maverick approach - but in operational use, no problems have been forthcoming. There is nothing to stop enterprising individuals who do manage to track down dual-gang anti-log pots at reasonable prices fitting them to this stage.

Where fully-variable operator control of the optional parts of the equalizer - High pass Filter and LF and HF Equalisers break frequencies - is NOT required, the respective pots can be replaced by resistor or resistors in the cases of the dualgang types.

References

Sound Recording Practise (edited by John Borwick), Microphones John Borwick, Mixing Consoles, Analogue (Richard Sweetenham).

Sound Processing (Richard Elen) - Digital Recorders (Tony Faulkner) - Classical Music

GRAPH OF RESISTANCE VERSUS ELECTRICAL ROTATION FOR VARIOUS POT TAPERS
Fig. 4 Examples of different control laws acheived by using linear, log and anti-log potentiometers to vary frequency (Adrian Revill) - Popular Music (Mike Ross) -Radio Broadcasting (Dave Fisher) Oxford University Press.

Audio Electronics Handbook (edited by Ian R Sinclair) - Sound Recording Techniques (Don Aldous), Sound Waves (Dr W Tempest)-BSP Professional Books.

The New Audio Cyclopedia (edited by Glen M. Ballou) - Consoles and Systems (Steve Dove), Details of the Session (Chips Davies with Linda Jacobson) Howard W Sams.

Active Filter Cookbook - First and Second Order Networks, Bandpass Filter Design, Bandpass Filter Circuits (Don Lancaster) - Howard W Sams.

> MORE ON EQ NEXT MONTH

COMPUTER SCOOPS	
- 20 Mhz DX processor . installed VGA card	
- 2 megs RAM. Exp 10 meg . Enhanced 102 key k/board	
- 40 meg hard drive . Complete with MS-DOS 4.01	
- 1.2 meg 5-1/4" floppy . 2 seriai 1 parallel ports	
. 32K cache exp. 64 K . 8 free slots- 6 off 16 bit!	Ekectanatk
The MP386 quality made by Mitsubishi to last a lifetimel Brand new with all manuals and software plus Super PC-Quick Disk Accelerator for liahtnino disk access. Only.	

A COMPLETE IBM PC COMPAT

SYSTEM FOR ONLY £99!!

ust plug in and go - fully expandable - the Display PC-99! System supplied complete with $12^{\prime \prime}$ mono monitor, 84 key keyboard, 360k 5-1/4" floppy disk drive, 128K RAM, 2 serial and 1 parallel port plus DOS with manual. Many other features include 7 slot backplane, all metal case, 150 watt PSU and US made motherboard. In very good used condition with 90 day guarantee. At th
Optional FITTED extras: 256 K RAM E15; 640K RAM £39. 12" CGA colour monitor with card E89. 2nd 5-1/4" 720 K floppy

FLOPPY DISK DRIVES

51/4" from £22.95-31/2" from £21.95! Massive purchases of standard $5 \mathrm{~V} 4^{\prime \prime}$ and $31 / 2^{\prime \prime}$ drives enables us to present prime product at industry beating low pricesl All units (ünless stated) are removed from aften brand new equipment (unless stated) are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of 3.5" Panasonic JU364 720K*
3.5" Miltaublshl MF353C-L 1.4 Meg Laptops cnly* £21.95(B) 3.5" Mitsublshl MF353C-L. 1.4 Meg. Laptops cnly* £29.95(B) $\begin{array}{lll}\text { 3.5" Mitsublshl MF353C-D. } 1.4 \text { Meg. Non laptop* } & \text { £29.95(B) } \\ 5.25^{\prime \prime} \text { Teac FD-55(36) 360K half height } & \text { £22.95(B) }\end{array}$ $5.25^{\prime \prime}$ Teac FD-55(36) 360K half height
$\mathbf{5 . 2 5 " ~ T e a c ~ F D - 5 5 (7 2) ~} 720 \mathrm{~K}$ half height.

- Data cable included in price.

Shugart 800/801 SS returbished \& tested Shugert 851 double sided refurbished \& rested Mitsublshi M2894-63 double sided switchable hard or soft sectors- BRAND NEW
Dual $8^{\prime \prime}$ drlves with 2 mbyte capacity housed in with built in power supply! Ideal as exterior drives! E499.00(F) End of line purchase scoop! Brand new NEC D2246 8" 85 megabyte of hard disk storage! Full CPU control and industry standard SMD interface. Ultra hi speed iransier and access uime leaves the good old ST506 interface standi.

THE AMAZING TELEBOX!

Converts your colour monitor into a
QUALITY COLOUR TV!!

TV SOUND \& VIDEO
 \& VIDEO TUNER!

The TELEBOX consists of an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by manufacturers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD and many more. The composite video output will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television receivers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off air' UHF colour television or video channels. TELEBOX MB covers virtually all tolevision frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators Composite and RGB to most makes of monitor. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard.
Telebox ST for composite video input monitors
Telebox STL as ST but with integral speaker
£32.95
E36.50 Telebox MB as ST with Multiband tuner VHF-UHF-Cable. \& hyperband For overseas PAL versions state 5.5 or 6 mhz sound specification. $£ 69.95$ Telebox RGB for analogue RGB monitors (15 khz) Shipping code on all Teleboxes is (B)
FGB Telebox also suitable for IBM multisync monitors with RGB analog and composite sync. Overseas versions VHF \& UHF call

No Break Uninterruptable PSU's Brand new and boxed 230 voits uninterrupiable power supplies. from Densel. Model MUK 0565-AUAF is 0.5 kva and MUD $1085-\mathrm{AHBH}$ is 1 kVa . Both have sealed lead acid batteries. MUK are internal, MUD has them in a matching case. Times from
interrupt are 5 and 15 minutes respectively. Complete with full

POWER SUPPLIES

Power One SPL200-5200P 200 watt (250 w peak).Semi op frame giving $+5 v 35 a,-5 v 1.5 a,+12 v 4 a(8 a$ peak), $-12 v 1.5 a$,
$+24 v 4 a$ ($6 a$ peak). All outputs fully regulated with over voltage protection on the +5 v output. AC input selectable for $110 / 240$ vac. Dims $13^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$. Fully guaranteed RFE. $\quad £ 85.00$ (B) Power One SPL130. 130 watts. Selectable for $12 \mathrm{v}(4 \mathrm{~A})$ or 24 v (2A). $5 \mathrm{v} @ 20 \mathrm{~A} . \pm 12 \mathrm{v} @ 1.5 \mathrm{~A}$. Switch mode. New. £59.95(B) Astec AC-8151 40 watts. Switch mode. $+5 v$ @ $2.5 \mathrm{a} .+12 \mathrm{v}$ @
$2 \mathrm{a}-12 \mathrm{~B} @ 0.1 \mathrm{a} .6-1 / 4^{\prime \prime} \times 4^{\prime \prime} \times 1-3 / 4^{4}$.New
$£ 22.95(\mathrm{~B})$ Greendale 19ABOE 60 watts switch mode.+5v @ 6a, $\pm 12 v @$ a, $+15 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $£ 24.95$ (C)
Conver AC130. 130 watt hi-grade VDE spec. Switch mod Conver AC130. 130 watt hi-grade VDE spec. Switch mode.+5v
$@ 15 \mathrm{a},-5 \mathrm{v} @ 1 \mathrm{a}, \pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$.New. $£ 49.95$ (C) Boshert 13090 Switch mode Ideal for drives \& system. $+5 \mathrm{v} @ 6 \mathrm{a}$ $+12 v @ 2.5 a,-12 v @ 0.5 a,-5 v @ 0.5 a$.
Farnell $\mathbf{G} / 40 \mathrm{~A}$. Switch mode. $5 \mathrm{v} @ 40$

40a.Encased $\begin{aligned} & \text { £95.00(C) }\end{aligned}$

BBC Model B APM Board

£100 CASH FOR THE

 MOST NOVEL
DEMONSTRATABLE

 APPLICATION!BBC Model B type computer on a board. A major purchase allows us to offer you the PROFESSIONAL version of the BBC computer at a parts only price. Used as a front end graphics board has so many similarities to the regular BBC model B that we are sure that with a bit of experimentation and ingenuity many useful applications will be found for this board!! It is supplied complete with a connector panel which brings all the $1 / O$ to ' D ' and BNC type connectors - all you have to do is provide +5 and
$\pm 12 \mathrm{v}$ DC. The APM consists of a single PCB with most maior c's socketed. The ic's are too numerous to list but include a 6502, RAM and an SAA5050 teletext chip Three 27128 EPROMS contain the custom operating system on which we have no data, On application of DC power the system boots and provides diagnostic information on the video output On board DIP switches and jumpers select the ECONET address and enable the four extra EPROM sockets for user software. Appx. dims: main board $13^{\prime \prime} \times 10^{\prime \prime}$. VO board $14^{\prime \prime} \times 3^{\prime \prime}$ Supplied tested Ony $\sum 29.95$ or 2 tor 553

SPECIAL INTEREST

 Fullisu M3041Fyjlisu M3041 600 LPM band printer
OEC LS/02 CPU board
Rhode \& Schwarz SBUF TV test transmitter
Calcomp 1036 Complete with SETF2 Modulator
Calcomp 1036 large drum 3 peñin plotter
Thurby LA 160 B loglc anslyser
1.5 kw 115 v 60 hz power source

Anton Pillar 400 Hz 3 phase frequency converter 75 Kw Newton Derby 400 Hz 70 Kw convertier
Sekonic SD 150H 18 channel Hybrid recorder
HP 7580A A1 8 pen hich speed drum roloter
Kenwood DA-3501 CB tester, laser pickup simulato

BRAND NEW PRINTERS

Microline 183. NLQ 17×17 dot matrix. Full width. Hyundai HDP-920. NLQ 24×18 dot matrix full width. $£ 149$ (D) Qume LetterPro 20 daisy. Qume QS-3 interface. $£ 39.95$ (D) Centronics 152-2 9×7 dot matrix. Full width 375
$£ 950$ POA POA
$£ 225$
$£ 2000$ £ 225

MONITORS

MONOCHROME MONITORS
THIS MONTH'S SPECIALJ
 There has never been a deal like this one Brand spankling new \& boxed monitors rom NEC, normally selling at about $£ 140$ These are over-engineered for ultra relia-
bility. 9° green screen compasite input with bility, 9° green-screen composite input with
etched non-glare screen plus switchable highthow impedance input and output for daisy chaining. 3 tront controts and 6 at rear. Standard BNC sockets. Beautiful high contrast screen and attractive case with carrying ledge. Pertect as a main or backup monitor and for quantity users! $£ 39.95$ each (D) or 5 for $£ 185$ (G) COLOUR MONITORS
HI-DEFINITION COLOUR MONITORS

SAVE E59-ONLY E100 WHEN BOUGHT WITH

THE 386 ABOVE!
14"Philips Modef CM8973 VGA mult-
sync all the way up to 34 Khz with 640 x
480 resolution. This one has every-
thing! Two switches enable you to se lect CGA, EGA or VGA and digital/analog. Unusual for a professional monitor, sound is also provided, with a volume control. There is also a special "Text" switch for word processing, spreadsheets and the like. Compatible with virtually all computers including IBM PC's, Amiga, Atari, BBC, Archimedes etc. Good used condition (possible minor screen burns) 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$. Only................................159(E)
tight 0.28 dot pitch for superb clarity and modern two tone plastic styling. Operates from any 15.625 khz sync RGB video source,
with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes
\& BBC. Measures only $13.5^{n} \times 12^{n} \times 11^{\prime \prime}$. Also
condifion with anlly TV with our RGB Telebox. Excellent used brown case. Only guramee. In mice two fone beige and Brand new Centronic 14^{*} monitor tor IBM PC and compatibles at a lower than ever pricel Complatety CGA equivalent. Hi-res Mitsubishi 0.42 dot pitch giving 669×507 pixels. Big 28 Mhz bandwidth. A super monitor in attractive style moulded case. Full 90 day guarantee. Only
£129(E)
NEC CGA $12^{-1} \operatorname{IBM}-P$
quality ex-equipment fully tested with a 90 day guarantee. In an attractive two tone ribbed grey plastic case measuring $15 " \mathrm{~L} \times$
$13^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{H}$. The front cosmetic bezel has been removed for contractual rea- $£ 79$ (E)

20", 22" and 26" AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour moniors. complete with composite video \& sound inputs. Attractive In EXCEILENT litlla used condition with fult 00 day
20"....£135 22"....£155 26'....£185 (F)
CALL FOR PRICING ON NTSC VERSIONS!
Superb Quality 6 foot 40u
19" Rack Cabinets Masslve Reductions Virtually New, Ultra Smart! Less Than Half Price!
Top quality 19 " rack cabinets made in UK
by Optima Enclosures Ltd. Units feature by Optima Enclosures Ltd. Units feature door, full height lockaclela lowvered back door and removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready
mounted integral 12 way 13 amp socket switched mains distribu£2950 tion strip make these racks some of the most versatile we have £ 150 ever sold. Racks may be stacked side by side and therefore $£ 6500$ require only two side panels or stand singly. Overall dimensions £6500 are $77-1 / 2^{2 " H} \times 32-1 / 2^{" D} \times 22^{\prime \prime} \mathrm{W}$. Order as:
£ 650 Rack 1 Complete with removable side panels....... $£ 275.00$ (G)
-

ack2 Less side panels 5145.00 (G)

COOLING FANS

$$
\mathrm{E} 9.95
$$

$$
\begin{aligned}
& \text { E12.9. } \\
& \varepsilon 10.95(\mathrm{~A})
\end{aligned}
$$

$$
\begin{aligned}
& \text { E15.95(A) } \\
& \text { ع19.95 }
\end{aligned}
$$

$$
\begin{aligned}
& \{200032 \mathrm{vin} \text { inch AC ETRI slimline.Only } 1 " \text { thick. }
\end{aligned}
$$

$\begin{aligned} & 4 \text { inch } A C ~ 110 / 240 \mathrm{v} 1112^{\prime \prime} \text { thick. } 4 \text { thick } \\ & 10 \text { inch } A C \text { round. } 31 / 2 \text { thick. Rotron } 110 \mathrm{v}\end{aligned}$
$\begin{aligned} & 10 \text { inch } \mathrm{AC} \text { round. } 312 \text { thick Rotron } 110 \mathrm{v} \\ & 10 \text { inch As above but } 230 \text { volts }\end{aligned}$
$\begin{aligned} & \text { DC } 5 \mathrm{v} \text {. Papst } 8105 \mathrm{G} 4 \mathrm{w} \text {. } 38 \mathrm{~mm} \text {. RFE } \\ & \text { DC } 12 \mathrm{v} .18 \mathrm{~mm} \text { thick. }\end{aligned}$
$\begin{aligned} & \text { DC } 12 \mathrm{v} .18 \mathrm{~mm} \text { thick } \\ & \text { DC } 12 \mathrm{v}, 12 \mathrm{w} 112^{\prime \prime} \text { thick }\end{aligned}$ operation manuals,MUK.........249 (F) MUD....... 5525 (G)

DISTEL MT The Original
Free dizl up database!
1000 s ofitems on Line
V21. V22 V 22 bis
$081-679-1888$
081-67.-9414

A AUTONA LTD
 UK's teading, module'manulacturer since 1972 *AUDIO MODULES \star
 AL 12580.125 W AMPLIFIER
 A rugged high powered module that is ideal for use in discos \& P.A. Systems where powers of up to $125 \mathrm{~W}, 4$ ohms are required. The heavy duty outpul transitors ensure stable and reliable performance its is currenily supplied to a large number of manufacturers where reliability and pertormance are the main considerations, whilst for olners its low price is the major factor. Operating from a supply
 voltage of $40-80 \mathrm{~V}$ into loads from $4-16$ ohms
 AL 2550-COMPACT LOW-COST 25W AMPLIFIER

One of our mos! popular audio modulies with tens of
thousands installed. Ideal for domestic applications where low distortion and compact size are $\quad 26.55$ the prime requirements. Used with supply

MM 100-BUDCET उ-INPUT MIXER

With a host of features inciuding 3 individual level controls, a master volume and separate bass and treble control, it provides for inputs for microphone, magnetic pick-up and tape, or second pick-up (seiectable), and yet costs considerably less than competitive units. This module is ideal for discos and public address units and operates from 45 V - 70 V MM 1 OQG GUIT A ROMIXEER? As MM100 with two guitar + 1 microphone
input intended for guitar amplifier applications.

COMFLETE AUDIO RANGE OM TOWET2SW
SEND FOR DETAILS TODAY SEND FOR DETALSTODAY
SECURITY EQUIPMENT

MINIATURIE PASSIVE INFRA-RED SENSOR-RP33

Switchable Dual range, detects intruders up to 6 or 12 metres
Quantity This advanced sensor operales by delecting the body discounts heat of an iniruder moving within the detection lield. start at 3 Slow ambient changes such as radialors, etc. are units ignored. Easily installed in a room or hallway. Providing

K17.95
VAT
reliabie operation from a 12 V supply, it is ideal for use with the CA 1382^{\prime} or equivalent high quality control unit Supplied with full instructions.
Size $80 \times 60 \times 40 \mathrm{~mm}$

DIGITAL ULTRASONIC DETECTOR-US 5063

 50 n led movement detection module operating at 50 kHz with a effective range up to 20 ft . Suitable for 12 V operation and built-in timing makes it suitable for a wide range of applications. ADVANCED CONTROL UTIT-CA 1382

Automatic Loop Test on Switch On \star Automatic Siren Re-Set \star Audible Entry/Exit Warning Buzzer \star Two Separate Loop inputs + 24-hr Circuins * Easily Installed. Full instructions Supplied.
This advanced control panel provides effective and reliable control for all security installations, yet its operation is sheer simplicity for all members of the fasmily, and is supplied wouth two keys Housed in a steel
with units costing twice the price.

LOWCOST CONTROL UNIT-CA 1250

his tried and tested control unit provides the fines value for money in control systems, with many thousands protecting houses all over the country. A suitable steel enclosure is available separately.

SOFT INFRA-RED BEAM-IR 1470
The IR1470 consists of a separate transmitter and receiver providing a beam of up to 50 ft ar otes a in turn may be used to control external equin receiver which requires only 65 mA from a12V supply Size (each. The system requires only 65 mA from a12V supply Size:(each unit) $82 \times 52 \times 57 \mathrm{~mm}$

PLUS FULL RANGE OF SECURITY ACCESSORIES FOR COMPLETE HOME PROTECTION

TELEPHONE FOR FREE LITERATURE TOOAY

DEPT ETI-11
51 POPPY ROAD
PRINCES RISBOROUGH BUCKS NP 17 9DB T튼 (08444) 6326 FAX: $(08444) 7102$

Order by Credit. Card for immediate despatch

VSA

Add VAT Carriage only $£ 1.50$ Export 10% minimum $£ 1.50$

RALFE ELECTRONICS

 36 EASTCOTE LANE, GOUTH HARROW Middlesex HAE 8D日 Tal: 0814223593 Fax: 0814234009
"WANTED"

We are continually on the lookout to buy for stock 'High-end' equipment by brand names such as HewlettPackard, Tektronix, Marconi etc. and we would be grateful for the opportunity to offer for any items you may have available now or in the future.

MILLIONS OF QUALITY COMPONENTS AT LOWEST EVER PRICES

Plus Tools, Watches, Fancy Goods, Toys. Mail order only. UK only.

All inclusive prices NO post, or VAT etc to add on.

Send 34 p stamped self-addressed label or envelope for catalogue/clearance list.
At least 2,100 offers to amaze you.
Brian J Reed Electronics
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ

Tel: 081-393 9055

 RACAL DANA Syn Sig Gen $90984001-104 \mathrm{MHZ}$ RACAL DANA AF Power Metar 0104 RACALDANA 9341 Databridge Automatic measurements of L, C, R, 0 WAFNE KERR B424 RCL Meter LCD Display

 MARCON DICTAL EREOUENCY METERS

THOAN PSU O-40V:0.50 AAMOS Melered ARNELL PSU LOCE 0 20W, $0-25$ Amgs Metered EEEQUPMMENTCTI CurveTracer
MAFCONI IF2700 Unversal LCCR brdge bater/

wLDE: $80 r 9$ (whal's avaiablé)
Igas So Not; BX, SSX

Tmeare ,

 Pic 10100 - 100 MHz (es above wih more fincicns)
 MEIEOR 1000 FREQUENCY COUNTEH 16 HZ
 Al other Black Slar Equipnnenl avalable
LOSCOPE PROBES Swicchable $\times 1 \times 10$ (D\&D E3)

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Tel: 0734268041 Fax: 0734351696 Callers welcome $9 a m-5$ 30pm Mon-Fri (until 8pm Thurs)

Digital Circuit Tester

Daniel Brook constructs an invaluable piece of test equipment

In theory it should be easy to test digital circuits as any point can only be at one of two voltage levels, and for simple circuits the theory holds true. All that is required is a logic probe to display the high/low status of the point being tested.

However, simple gates rapidly get built up into counters, microprocessors etc. with buses of logic signals, and in these situations it can be difficult and/or impractical to test the system using only a single logic probe to find the value of a word on a typical 8-bit bus would require eight tests and a calculator (or a good memory and head for figures!)

Even using eight logic probes together, you would still have to convert the binary word to a base more manageable by the human brain.

The solution to this problem is BUSTEST. This project has eight TTL logic inputs, and will display the value at the inputs on three 7 segment displays. The display is switchable between octal, decimal and hexadecimal number bases, each of which can be useful, depending on the situation.

Fig. 1 Block diagram

Design Considerations

The unit must be fairly compact as it is a piece of test gear, simple to use (but still useful), and reasonably cheap. Also it must be 5 V TTL compatible as most complex digital systems fall into this category.

The obvious solution to the problem would seem to be to use a 7 -segment display driver IC such as the 4511 , but closer investigation shows that this approach won't solve the problem. This is because the 4511 and similar drivers only convert the 4 binary inputs to a single decimal digit, according to the BCD (Binary Coded Decimal) system, which isn't acceptable for this application.

More expensive driver ICs are available that will control

a number of digits, but these are designed to be used with microprocessors, and most will only produce output in one number base (usually hex or decimal).

Solution

The solution presented here uses an EPROM and a simple multiplexer circuit to directly drive each of the three digits that make up the display (see Figure 1). The EPROM acts like a look-up table to display the correct number in each display, according to the word on the input pins. By choosing a large enough EPROM, there is provision for switching between octal, decimal and hex number bases.

EPROM

The EPROM required is a 2764 device which needs to be programmed. Rather than present a lengthy hex dump of the EPROM contents, which would require a tedious amount of (error prone) typing in, I present a BASIC program. The program (Figure 4) was written in GW BASIC on a PC clone, and generates a binary file called 'BUSTEST.BIN'. This file contains the required EPROM contents, which can be loaded into a programmer and then used to blow the EPROM.

Alternatively, I can supply pre-programmed EPROMS (See Buylines).

Construction

Construction is fairly simple. Start first with the resistors (note that R6 and R7 are mounted vertically), then the IC sockets, capacitors, the connector (if required) and the
switch. The switch used is a small PCB mounting SPDT device with on-off-on action. i.e. the moving pole can touch either, or neither, of the two throws. This provides the switching between the three number bases.

Next fit the displays, which may be socketed if desired (remove pins 4,5 and 12 from a 14 pin DIL socket), and then the ICs. Note that IC2 is a CMOS device so take anti-static precautions when handling it.

Finally, you will need to connect some test leads (see Figure 3). Mini probe clips on short lengths of wire are ideal for general purpose use, or you can make up custom leads to suit your requirements. It is advisable to at least colour code the power leads, if not the test inputs as well. If you have fitted a connector to the PCB the leads will have to connect to the other half of the connector (the socket). Alternatively, solder the leads to PCB pins, or directly to the pads. The unit wasn't designed to be cased, although small boxes are available should you wish to enclose the unit. One final touch, whether you decide to case the unit or not, is to put a piece of red filter in front of the displays to improve their readability.

Testing

Before connecting up the circuit, check the board for solder shorts, make sure the components are in the correct

HOW IT WORKS

IC1, $11, \mathrm{R} 2$ and C 1 form an astable oscillator, running at approximately 42 kHz . This clock output is fed into IC2, a decoded decade counter. Three outputs from the decade counter switch on the displays via resistors $\mathrm{R} 3-5$ and transistors $01-3$ (see circuit diagram, Figure 2). To turn on a segment or segments in any particular display, the EPROM must sink current through the required segment and resistor. R8-14 limit the current through the LED segments and EPROM pins to about 5mA, but TTL can sink 16 mA max, so this is within limits.

The EPROM can only light segments in one display at any one time, but cycles through all the digits so quickly (as deternined by the clock) that persistence of vision makes us beleive that all the digits are on together.

The segments the EPROM tums on are determined by the lookup tables' programmed into the EPROM. The part of the table that is 'looked at' is, in turn, determined by the EPROM address. The address is partly made up from the input signals (D0-D7) which connect to AO-A7. The next two address bits, A8 and A9, select the table for the desired number base. Both lines are normally pulled high by R6 and R7, but one or other or none of the two can be set low by switch SW1.. When they are both high, decimal is selected. When A8 is low, octal is selected, and when A9 is low, hex is selected. The final three bits of the address come from the counter, IC2. When A11 is high, the EPROM outputs the code for DISP3. When A10 is high, the code for DISP2 is output, and when A12 is high the code for DISP1 is output.

IC2 outputs Q1, Q3 and Q5 control address lines A11,A10 and A12 respectively. IC2 outputs $00, \mathrm{Q2}$ and $\mathrm{Q4}$ are not used so that there is a gap between one display turning off and the next turning on.

Output Q6 resets the counter to begin the cycle again.

Fig. 2 Complete circuit diagram
places and that IC's are the right way round in their sockets. Assuming that all is okay so far, connect the power leads to a 5V DC supply, and ground all of the inputs. Flicking the switch between octal and decimal should produce three zeros, whilst in hex only two zeros should be displayed.

Now connect the inputs to +5 V . The display should show 377 for octal, 255 for decimal and FF for hex.

If the unit has worked so far, it is unlikely that anything is wrong, but to satisfy yourself you may wish to apply various

Fig. 3 Component overlay and lead connections
words to the unit and check the output.
If the unit has not yet shown signs of life, switch off and recheck the component positions and solder joins. If you have a 'scope, check there is a clock output from IC1 pin 3 and that this reaches IC2 pin 14. Also check that pins 1,2 and 7 of IC2 are being pulsed regularly.

If the unit still doesn't work, it is likely that the EPROM has not been programmed correctly or is of the wrong type it must be a standard TTL 2764, NOT a CMOS version. If you programmed your own EPROM, check that you have entered the program correctly, then erase and reprogram the EPROM.

In Use

Operation of the unit is very straight-forward. Remember to always connect the power supply lines before connecting any of the inputs D0-D7. D0 is the least significant bit (LSB) and D7 the most significant bit (MSB). The inputs should be connected to the circuit under test bearing this in mind, otherwise the output will make no sense.

If less than 6 bits are being tested, unused lines should be grounded (these will be at the MSB end of the inputs).

I will now briefly mention the merits of each of the three number bases:

Octal digits map to 3 binary digits, enabling easy conversion back to binary if required.

Decimal is the easiest base for us humans to manipulate, as it is the one we are most used to.

Hexadecimal digits map to 4 binary digits. With this in mind, it is possible to monitor two words of up to 4 bits, with
a separate digit displaying the value of each word. When used in this way, the left-hand digit shows the value on D4-D7 (D4 is LSB, D7 is MSB), and the right-hand digit shows the value on D0-D3 (D0 is LSB, D3 is MSB).

Program for Digital Circuit Tester

10 CLS

20 REM Program to build EPROM file for use with BUSTEST project.
30 REM Written in GW BASIC by D. BROOK 21/5/92.
40 OPEN "BUSTEST.BIN" AS \#1 LEN=1
50 FIELD \#1,1 AS DGC\$
60 FOR LOOP $=1$ TO 8192
70 LSET DGC $\$=$ CHR $\$(255)$
80 PUT\#1,LOOP
90 NEXT
100 PRINT "CREATED EMPTY FILE"
110 REM Read "character codes" for 7 segment displays into array DG(n)
120 REM where n is the value ($0-15$) of the corresponding character.
130 DIM DG(15)
140 FOR LOOP=0 TO 15
150 READ DG(LOOP)
160 NEXT LOOP
170 REM Do the MAJOR loop 3 times (for octal, decimal, then hex data). 180 FOR MAJOR=1 TO 3
190 IF MAJOR=1 THEN PRINT "FILLING IN OCTAL DATA"
200 IF MAJOR=2 THEN PRINT "FILLING IN DECIMAL DATA"
210 IF MAJOR=3 THEN PRINT "FILLING IN HEX DATA"
220 READ NUMBASE,LPA,LPB,LPC,MULB,MULC
230 REM Constants for loop set up.
240 REM Begin the MAJOR loop:
250 FOR DGTC=0 TO LPC
260 FOR DGTB=0 TO LPB
270 FOR DGTA $=0$ TO LPA
280 BASEREC=((DGTCMULC)+(DGTBMULB)+DGTA+NUMBASE) +1
290 REM Base record number set up.
300 REM Output code for digit A to the file.
310 LSET DGC\$=CHR\$(DG(DGTA))
320 REC=BASEREC+4096
330 PUT\#1,REC
340 REM Now output for digit B.
350 LSET DGC\$=CHR§(DG(DGTB))
360 REC=BASEREC +1024
370 PUT\#1,REC
380 REM Now output for digit C.
390 LSET DGC $\$=C H R \$(D G(D G T C))$
400 IF MAJOR=3 THEN LSET DGC $\$=$ CHR $\$(255)$
410 REC=BASEREC+2048
420 PUT\#1,REC
430 REM Check if loop should end (i.e. all 256 (including 0) records output).
440 IF ((DGTC*MULC)+(DGTB*MULB)+DGTA)=255 THEN
DGTC=LPC:DGTB=LPB:DGTA=LPA
450 NEXT DGTA
460 NEXT DGTB
470 NEXT DGTC
480 NEXT MAJOR
490 CLOSE
500 PRINT " ***** FINISHED FILE CREATION *****"
510 REM Character data ($0-15$):-
520 DATA $16,182,40,34,134,66,64,54,0,2,4,192,88,160,72,76$
530 REM Constants for OCTAL:-
540 DATA 512,7,7,3,8,64
550 REM Constants for DECIMAL:-
560 DATA 768,9,9,2,10,100
570 REM Constants for HEXADECIMAL:-
580 DATA 256,15,15,1,16,256
Fig. 4 Basic Program

Fig. 5 Display Pinouts

PARTS LIST

RESISTORS (All $1 / 4$ Watt, 5% or better)
R1, $6,7 \quad 10 \mathrm{k}$ (3 OFF)
R2-5,8-14 1k (11 OFF)
CAPACITORS
C1 2 n 2
C2 100n

SEMICONDUCTORS

IC1 NE555
IC2 4017BE
IC3 Programmed EPROM 2764 (not CMOS)
Q1-3 BC547 (3 OFF)
DISP1-3 common anode 7seg display (3 OFF)

MISCELLANEOUS

SW1 SPDT Toggle switch ON-OFF-ON (See text)
CON1 10 WAY PCB mount plug (If required)
PCB, IC sockets, probe clips, wire, plug to suit CON1, display filter,
case

BUYLINES

The 7-segment display is available from MAPLIN (Telephone 0702 55416]), order code FR36P. Other types may be suitable check the pin connections with Figure 5.

The switch used in the prototype is marked RS, but may be àvalabie from other suppliers. MAPLIN can supply a switch with suitable action, bul it will not fit on the PCB.

For a pre-programmed EPROM, send a cheque for $\& 6$ to: Daniel Brook, 119 Hale Drive, Mill Hill, London NW7 3EJ.

33 Range $31 / 2 \mathrm{diglt} \mathrm{mm}$ 24mm Large Display FEATURES: 5 Copocitance ranges. 6 - rastistance ronges to 20 M ohm Diode and transistor lest, ACJDC volts ranges, 5 ranges AC/DC current to 20 amps instructions
$\mathbf{5 2 5 . 9 5}$ incl VAT
TL3400
31 range $31 / 2 \mathrm{digit} \mathrm{mm}$ with 25 mm Large Display FEATURES: 4 Capacilance tanges. ACNOC volts.
ACDOC curpmet 1020 amps .8 restistance fanges

The DIV Line

A hybrid line amplifier by Jeff Macaulay

WTith the rapid demise of vinyl records the role of the preamplifier in an audio system is being re-evaluated. Most sources currently available and those likely to be encountered in the future are 'flat'. That is to say they require no frequency response equalisation but merely need to be matched to the power amplifier's input. Unfortunately, speaking from experience, I have yet to find two sources with the same output level or impedance charactaristics,

Output levels can vary from 50 mV or so to 1 V , a twenty to one range. Moreover the electronics providing the signal most definitly work better when fed into a high impedance. Even CD players operate better into such a load since the now
 line level amp is already in evidence.
However most of these are not 'state of the art' and this fact prompted the design described here
Before I delve too deeply info the actual mechanics of the circuit it is useful to look at the problem in more detail and the solutions used. First let's really get down to basics. T have

Fig. 1 Basic Amplifier Types
traditional 10 k passive pot can upset the operating mode of the final op-amp in the player. Shifting the output into class B with it's associated distortion.

With this in mind the question arises, how can one mix and match these sources with the existing power amps without compromising the input signal? The simplest solution is to produce a really high quality line level stage with switched gain and a high input impedance. At the output end of the circuit we require both a low impedance drive and a high overload level for driving the amp.

Placing a high impedance pot between the source and amp can provide an increase in performance but only when the signal level is already adequate.

Furthermore a pot in this position will mean that the signal to noise ratio of the output will depend on the slider position.The separate line amp is an altogether better

Fig. 2 Real and Ideal amplifier transfer characteristics
written on this topic before but it bears repeating. An amplifier, regardless of the technology employed produces an enlarged copy of the electrical signal presented to it's input. To do this it modulates an external power supply and thus doesn't contravene the laws of physics.

In actual fact there are only four basic types of amplifier and these are shown in Figure 1. The difference between them is defined by their input and output impedances. Figure 1 shows the possibilities as black boxes. Figure 1a shows the voltage amplifier. In order not to load the input voltage provided by the source the input impedance must be as high as possible, preferably infinite. On the output end we want a voltage output which is independent of the load impedance. This requires zero output impedance.

Figure 1b shows a current amplifier. Here we are unconcerned with the voltage provided by the source but we need to take maximum current from it. In consequence the input impedance must be very low, preferably zero.

Turning to the output we need here to provide a current output independent of the load impedance. For this reason the output impedance must be high, preferably infinitely so.

The other two amp types shown are rather oddities but very useful nontheless. Figure lc shows a voltage to current converter, high input and output impedances whilst Figure 1d shows the opposite. A current to voltage converter. Here the input impedance is low as well as the output impedance.

For our application we need Figure 1a. A voltage amplifier. Figure 2 shows the ideal input output charactaristics of such an amp. As you might expect this is a straight line whose slope is proportional to the voltage gain. Curve b gives a more realistic transfer charactaristic which gently curves. What can be done to minimise the non linearity? First we can restrict the output voltage to small level. As John Linsley-Hood once remarked in these pages a small enough section of any curve approaches a straight line. The curve assumes a class A output stage. If we were to operate in class B the non linearity would increase with decreasing signal level.

Curve B also illustrates the linearity conundrum faced by designers. If we restrict the output level sufficiently distortion reduces approximately in proportion. Theoretically with zero out we have zero distortion. However although this is a sure fire way of reducing non linearity of all kinds it leads us into unacceptable noise

Fig. 3 Circuit of Hybrid line $\operatorname{amp}(R 12,13 \& 14$ are off-board components)

levels. An altenative is to build an amplifier capable of huge signal excursions. This achieves the same results by the back door, so to speak.

This is essentially the reason that a high overload ratio is of vital importance when secking to design for maximum linearity. Too often this aspect of design is relegated to the back burner and high overall linearity is sought by other means. In particular the overuse of negative feedback. Feedback has been given a bad name in some quarters recently. Certainly if an attempt is made to rescue a poor design by this means it is possible to run into difficulties.

If on the other hand the design is made linear to start with and has an adequate bandwidth negative feedback will improve matters both objectively and subjectively.

Anotber factor which has an important bearing on the final performance of any amp is the power supply to which it is attached. If the voltage level varies with the drive level, sadly a common oecurance, the transfer charactaristic can look more like an ellipse than a straight line with attendant dire sound. Again, if ripple, RF noise on the supply line are allowed to reach the output the sonic consequences are disasterous,

Please note nothing which I have described involves any form of metaphysics, super components, grain orientated wire, just simple physics! Having described the problem I will now present my solution. I don't beleive that it's the ultimate circuit, there's simply no such thing but it's the best sounding line amp that I've ever designed or used. The basis for the circuit is a single dual triode valve. I've used one per channel.

The particular valve features a low anode impedance, wide frequency response and large signal swings at adequate current for the application in mind.

The circuit is shown in Figure 3 of one channel, the other being identical. Being a valve circuit it uses a high operating voltage. This need not be dangerous providing that simple safety rules are applied. I'll come back to this aspect of things later in the article. The circuit acts as a super buffer with high input impedance and programmable gain via SW1. Output impedance is less than 100R so that long cables can be driven with ease.

The circuit configuration employed uses a series feedback connected pair of triodes. In many ways this is a classic valve circuit dating back to the 1940 's. It's virtues are many with very few vices. Implemented with high performance RF triodes it has a bandwidth that extends well above 20 kHz before the application of feedback. Distortion levels, with a standard line level output, 775 mV , are well below 0.1%, again before the application of negative feedback.

One of these days the semiconductor industry will provide a device with the virtues of a valve. The average valve is ten times more linear than an equiverlent transistor stage and has an input impedance of approximately 100 Megohms. Although VFET charactaristics come closest they haven't yet cracked the problem of large input capacitances which tends to negate the advantages of the high DC input impedances of these devices. All this leaves the valve as the premier device for this particular application and this is why they are being used.

Astute readers will however notice the presence of semiconductor devices in this circuit. These are not however used directly in the signal path but are rather employed in a supporting role. To provide the output stage with a constant current source. This enables the amplifier to provide far larger symetrical signal swings than would be available with a simple resistor anode load. If a resistor were to be used it would appear to be in parallel with the load reducing the signal swing.

The Circuit

Turning to Figure 3 the signals are applied to the voltage divider resistors selected by SW1. The reasoning behind this is to provide the amp with a uniform input voltage of about 70 mV . Regardless of the actual input level. R1 maintains the input impedance constant at 100 k . Signals from the input attenuator are directly applied to the grid of V1a. One half of the dual triode. This is operated with a low level of anode current to ensure that the overall feedback loop connected from the output to the cathode resistor R2 won't load the output stage unduly.

The valve is used in the common cathode mode, analogeous to the common emmitter mode in a transistor amplifier and thus gives a fair measure of voltage gain. The valve operates very much like a J-FET. To provide correct bias the grid voltage need to be negative with respect to the cathode. In fact the stage will only work correctly when the grid is negative, distortion levels increase dramatically if the grid is taken positive. Luckily setting the correct anode current can be achieved by selecting an appropiate sized resistor for the cathode circuit, R2.

The output signal from the valve is generated across R6. R11 and C 1 form a very effective decoupling filter which removes any noise and ripple from the supply voltage. The signal is coupled to the other stage, built around V1b, via the

DC blocking capacitor C2. A good quality polypropolene type is used here for it's wide frequency response.

The output stage itself requires some explaining. As I mentioned earlier I decided to use a constant current source for the anode load of this stage. This prevents loading but it also defines the anode current. Because of device to device variation it is necessary to provide a DC feedback loop around the stage. This is the function of R10, R3 and R9. R10 and R11 provide shunt feedback to stabilise the operating point. C5 completely removes any AC signals fed back by R9 by decoupling the junction of R10 and R3 to ground.

The anode current of V1b is set by the resistor R7 which is in the constant current source formed by Q1,Q2,R7 and R8. The operation of this is quite conventional. On switch on, R8 biases Q2 hard on. It's collector current increases until approximately 0.6 V is generated across R 7 . This then turns on Q1 which stabilises the current to a level defined by $0.6 /$ R7 amps. With the component values used this is $12 \mathrm{~mA} /$ channel.

Lastly the amp's output voltage is supplied to the outside world via the DC blocking capacitor C3 to RV1. Overall negative feedback is applied to the cathode of V1a via R5. The voltage gain being set by the ratio of R5 to R2.

Power Supply

The most difficult area of valve design is the power supply. Apart from the fact that some of the electrolytics are

Fig. 5 Case drilling detail
hard to find resistors tend to pose a problem as well. At high voltages surprisingly large levels of power dissipation occur. Put into simple language things can tend to get hot!

Large electrolytics of adequate voltage rating are thin on the ground and so other methods of smoothing the power supply must be sought. The most obvious answer is to use a floating voltage regulator of the LM317 type. These work well but have a low output impedance which requires care while commisioning. Furthermore they cannot stand more than 40 V between the input and output terminals and will
turn themselves off if adequate heatsinking is not provided.
The circuit diagram of the power supply is also shown in Figure 3. Here the HT voltage is full wave rectified by Dl4 and the resulting raw DC is smoothed by C4. To avoid overdissipation of IC1, the 317 T regulator, Q3 is used as a 'power dump'. This component is biased from ZD1 and R21 and prevents high voltages being applied across the chip. Advantage is taken of the current flow through R14 to provide on indication via LED D9. IC1 needs to float and this is achieved by utilising the fact that the adjust pin must be
1.25V below the output for proper operation.

R15 sets the quiescent current of ICl at approximately 4 mA and the adjust pin is lifted of ground by this current flowing through the parallel resistors R16 to R19.

Construction And Testing

Most of the components are mounted on the PCB panel, see overlay. The most important thing to watch is that you have inserted the electrolytics the correct way round. If anything is liable to produce problems a reversed electrolytic will. None of the other components require commemt, Just follow the overlay. The two Q1's and ICl require mounting on a heatsink. Small finned types are used for these devices. Note the two way PCB mounting plugs. Use Veropins for the HT input as these are added to the circuit last

Having completed the board attention can be turned to the mechanical aspects of the design. Figure 5 shows the mechanical drilling detail of the unit. Once the holes have been drilled the case can be finished to taste. I chose to spray mine matt black. Legends were then applied with white rub down lettering and fixed with clear spray varnish. Both the latter items were obtained from my local art shop.

Having finished the case the inevitable self adhesive rubber feet were applied to the bottom of the case. Now the real work can commence! Fit the transformer and PCB into the case and also the pots and sockets.

Note that the heater and input wiring, shown in Figure 6 terminate in 2 way PCB plugs that mate with the sockets on the board. In the first instance dont wire the HT leads in.

The reason is that to ensure safety it is important that the
valve heaters light up. With the valves on the HT supply is rapidly discharged by the circuit's current when the power is removed. Otherwise a potentially dangerous HT voltage will linger across C 4 .

Testing the unit consists of two stages. First with the HT supply from T1 and the mains earth lead unconnected switch on the unit. After a few seconds the valve heaters should start to glow. If not switch off and find your wiring error. Assuming all is well here the second stage of the testing can commence. First a number precautions. When testing the HT rail switch your testmeter to a range which will clearly show 300 V DC. Ensure that you have made the connection between system earth and the case. Lodge the negative testmeter probe securely in the case so that it makes a connection with the metal work. Second always keep one arm behind your back when testing.

Attach the HT leads to the Veropins on the board. Take a deep breath and switch on. Take the positive test lead and hold it against the metal tab of IC1. Keep the other hand behind your back! You should read 300 V , a few volts either way is inconsequential. remove your test lead and switch off. Reapplying it to IC1 tab should show the voltage decaying rapidly. In any event don't touch the circuit until this voltage has decayed below 100 V .

Having got this far the next stage is to actually try the unit out. First connect the mains earth, your inputs and outputs.

Power up again. After a few seconds warm up sweet music should emmanate from your system! If you have wired the circuit up as described no further problems should be encountered and all that remains is to enjoy!

PARTS LIST RESISTORS

R1	47 k
R2	15 k
R3	8 k 2
R4	470 R
R5	150 k
R6	390 k
R7	62 R
R8,	100 k
R9,10	1 M
R11	180 k
R12	1 M
R13	100 k
R14	100 R
R15	270 R
R16,17,18,19	270k
R20	18k
RV1,2	$10 \mathrm{k} \log$ pots

CAPACITORS

C1	$47 \mu / 450 \mathrm{~V}$
C2	$100 \mu / 1000 \mathrm{~V}$
C3	$10 \mu / 450 \mathrm{~V}$
C4	$100 \mu 450 \mathrm{~V}$
C5	$10 \mu / 25 \mathrm{~V}$

SEMICONDUCTORS

V1	CV2493
Q1	2N5058
Q2,3	TIP49
D1-4	1N4007
IC1	LM317T
ZD1	12V/400mW
D5	Panel LED

MISCELLANEOUS
B9A PCB valve base
4 small heatsinks
T1 220V 150 mA 6 V 1 A secondary transformer
PCB
Case
4P 3W rotary switch
Knobs
Octal phono socket

Specifications

The following measurements were made on the prototype unit, loaded with a 10 k pot
S / N ratio -101 dB unweighted below 775 mV (input shorted)
THD $\quad<0.005 \%$ at $1 \mathrm{kHz}, 775 \mathrm{mV}$ out
Frequency response -3 dB at 0.8 Hz and 150 kHz
Clipping level +39.5 dB above 775 mV (74 V RMS)

Automatic Audio Response Measuring System

Ralph Mantel continues his report from Germany on a convenient way to check the response from a loudspeaker.

The complete circuit diagram from MEPEG is shown in Fig.8a and b. The complete system, with the exception of the mains transformer, is constructed on a single eurocard.
As stated MEPEG uses a parallel (centronics) port and the loudspeaker output of the PC. The loudspeaker output is used solely for generating the measuring signal. All control functions are achieved solely through the parallel port.

Construction

The construction of the boards should not cause any problems, only the connections to the PC tone generator should perhaps be described in some detail.

The loudspeaker output from the PC tone generator should be connected to the 9 pin Sub D socket on the rear of

HOW IT WORKS

ICt is a low noise input amplifier with'an amplification of 1 for normal use and 30 lor microphone use. The amplification is automatically controlled by the computer via relay RLY2. $\mathrm{A} 5, \mathrm{ZD1}$ and $\mathrm{ZD2}$ provide over voliage protection up to 70 V . Direct connection of the microphone is via a XLR socket. The microphone used is an asymmetrical electret condenser microphone which requires a DC voltage to funclion correctly. This voltage is fed $t 0$ the microphone via R1/R2. Inserting the microphone plug in the XLR socket on input 2 shoris pin 1 with pin 2 via a bridge in the socket The signal therefore is imposed on the DC supply line and fed to the input amplifier. If required, input one can be used to observe the microphone input signal using an oscilloscope. Resistor RCal is used as a calibration resistor during impedance measurements (e.g. TH/SM parameters) and is connected using RLY1 automatically by the computer when required.

IC2IC3 form a zero loss full way rectifier which rectifies the AC input vollage to a $D C$ voltage. $I C 2$ works as an inverting one way recififier, the negative hall waves of the input signal being short circuiled by D4. The circuit is then extended using IC3 as a sumator. Here, the negative half wave and the 'complete' signal voitage via R13 are added together lo lorm our full way reclifier. The resulting $D C$ voltage is integrated by $C 10$ and using $P 2$ this $D C$ voltage is set to the same level as the effective input signal lovel. The Selection of the OPs is very critical as the circuit must work over a large voltage range lineatly and without loss. The accuracy of this circuit is dependent primarily on the diodes used and the stew rate of the OPs. ICA works as a normal inverter. IC5 and IC6 work as an V/F converter (Voltagel frequency-converter)[6]. The voltage on the inverting input of IC5 is converied into a proporional frequency in the ratio of 1 to 2 ; i.e. an input of 1000 mV would result in a frequency of 2000 Hz on pin 3 (output) of IC6. The resolution would be 0.5 mV . Pin 3 of iC6 is an 'open collector' and is connected directiy to pin 10 on the parallel port. This pin carries 5 V under 'no signal' conditions. Every negative puise (change from +5 to 0) on this pin starts a system interupl in the compuier. The time between two interupts is exactly the period of the inpul frequency. The time is measured by the computer using an assembler routine. The computer theretore has the value of the input signal as a proportional frequency (Fig. 9). The advantages of this so called serial A/D conversion are a)the accuracy over a wide range and b)the high resoution (see Table 1) for a reiatively Iow cost.

Measuring signal generation is achieved using the computers intemal sound generator, For our circuit the signal to the normal intemal loudspeaker is diverted to IC7. The connection is, however, made by PLY5 and only after the system has been switched on. When the measuing system is switched off the loudspeaker is available for normal use by the computer. Bolh
square wave signal on top. This square wave is directed 'hrough 1 IC 7 to $\mathrm{iC8}$. This IC works as a frequency divider and reduces the generator frequency by a factor ol 10 . This frequency is fed to pin 1 and 13 of IC8 and is used in the frequency range <150Hz. for controling the Phase Locked Loop (IC9, (C1O) i.e. for signal generation. From 150 Hz relay RLY3 swilches the original frequency back in to pin 14 on IC9. This process is necessary in the lower frequencies in order to obtain a sufficiently high resolution. For example a computer is not able to generate a frequency of say 20.47 Hz so this trequency is generated from 204.7 Hz divided by 10.1 C 9 and IC 10 work as a Phase Looked Loop (PLL) and form the actual sine wave generation part of the circuit. The detailed function of a PLL cannot be described here. However sufficient to say that IC9 compares the signal from the PC on pin 14 with the signal from IC10 (VCO) on pin 3. According to the frequency difference (phase difiference) between these two signals there appears on pin 13 an 'error signal' which is then integrated via a low pass fiter (R32, C22, R33) and is used as a control signal for IC10. In other words the square wave signal from the PC fed to pin 14 ol $1 \mathrm{C9}$ is used 10 generate a sine wave of the same frequency at pin 2 of IC1O. Every frequency change at pin $14 \mathrm{IC9}$ has an equivalent frequency change at the output of IC10 (pin 2). Further, pin 1 of IC9 contains a "lock' signal which is used via pin 12 of the parallel por to signal that the PLL is locked on. i.e. a check is made to ensure that the output of IC10 is similar to the input of IC9 (pin 14); it this is not the case, the program gives an error message.

The capacitors on IC10 pins 5 and 6 control the frequency range of the $V C O$. In the range $20-150 \mathrm{~Hz}$ both relays are de-energised i.e. C26 Is in circuif. In the range $150-1500 \mathrm{~Hz}$ RLY3 is switched by the PC and C 25 is then in use. The other contacts on RLY3 switch the input frequency on pin 14, ic9 as already described. From 1500 Hz RLY4 is activaled and connects C 24 in series with C25 resuling in a drop in the total capacity. By this method the $V C 0$ is kept in its oplimal voltage range. Trimmers P6 and P7 are used to fine tune the lorm and symmetry of the sine wave output signal. By careful adjustments it is possible to obtain a distortion figure of <1\%. A description of remaining components around IC9 and 10 is not necessary for an understanding of the overall crecuit.

The output frequency on pin 2 of IC10 is connected via IC11a to the various outputs. P8 sets the signal amplitude. IC11b via R106 provides a constant current output which is essential for all impedance measurements e.g. Thiele/Small. The output via R106 will generally be used for all other measurements that do not require a powertul output. The power output is achieved using IC12 and can be used for example to directly drive a loudspeaker. Speciications can be seen in Table 1 .

Fig. 8 a \& b Complete circuit diagram of system

Fig.8b
the computer as shown in Figure '10. The PC speaker is usually connected to the motherboard via a 4 pin plug. Pin I carries the signal (positivepole) and pin 4 is the negative pole. Normally it is a simple matter of de-soldering the positive wire from the loudspeaker and connecting this wire to the Sub D socket. The return connection from the generator card (tout) is only needed when the loudspeaker is to remain in use. If this is the case the connection is then to be made to the de-soldered connection on the speaker as shown in Figure 10. If the speaker plug is not marked + and - the signal carrying pin can easily be determined by connecting one of the wires up and testing to see if the signal generator card functions. If this is not the case simply swop the wires on the speaker connection over and retry. This trial and error method will not damage the circuit.

The connection between MEPEG and the PC is via a 25 pin Sub D plug, i.e. a normal parallel interface configuration. The individual pin connections are shown in Figure $8 \mathrm{a} / 8 \mathrm{~b}$.

The connecting cables from the two interfaces should have a maximum length of 2 m .

Adjustment

Before any adjustments can be made the circuit board, must be working satisfactorily and be connected to the PC. Also the software must be installed and running on the PC as the programm is used in the adjustment process. (See section on software installation).

A voltmeter, oscilloscope and if available distortion measuring equipment are necessary for adjusting the system.

With output 2 connected to input 1 adjustment of PR6 and PR7 can be made. The programm must firstly be started with
<MEPEG> and from the main menu <begin> selected. We then arrive in the measuring menu and should then select No. <6-Voltmeter $>$. The programm then asks :

Do you use measuring microphone $(\mathrm{y} / \mathrm{n})$?
To which you should answer $<\mathrm{n}>$.
If the circuitry is functioning, MEPEG generates a 1 kHz signal and the programm is in voltmeter mode. If the card is not correctly connected to the PC an error message will most probably appear. The amplitude of the sound wave signal at output 2 is set to 5 Vpp using PR8. Trimmer PR7 is set to

Fig. 9 Input signal as a proportional frequency
midway and using PR6 the signal is adjusted to minimum distortion. If distortion measuring equipment is not available the adjustment must be made 'by eye'. Set PR6 to 200 ohms and using PR7 adjust the wave for optimal symmetry using an oscilloscope.

With the help of a voltmeter adjust the 1 kHz signal on output 2 to 1000 mV (output 2 still connected to input 1). Then adjust the output of IC3 to 1000 mV DC using PR2. (Remember to change the voltmeter range from AC to $\mathrm{DC}!$).

Now disconnect the generator signal from input 1 and short circuit it to earth. Using PR3 adjust the output of IC 3 to 0 mV (Offset). The generator output 2 is then again connected to input 1 . The generator signal should now be adjusted to 10 mV . Now adjust trimmer PR4 until the measuring bar on the screen <Vmess> also shows 10 mV . Then using the voltmeter set the generator signal to 4000 mV . Then adjust PR5 until the screen measuring bar shows 4000 mV . On completion of these adjustments MEPEG is calibrated and ready for use. Now press $<$ Esc $>$ to leave the voltmeter mode and return to the main menu.

Software

No great computer expertise is required to use MEPEG. As mentioned in the introduction the majority of functions are fully automatic, only measuring functions and parameters need be entered by the user. The programm catches most errors which occur due to incorrect use or incorrect entries. Problems with the hardware are also detected e.g. measuring beyond the allowed range or PLL not locked on, all of which could lead to inaccurate results. The program works with a temporary store which is able to store up to 30 measured curves and associated data. This temporary store, unlike many other programms, is held on the Hard/Floppy drive. This has the advantage of not occupying valuable memory and also should the system crash the data is not lost. The temporary store is cleared before and after each session.

The minimum configuration for the use of MEPEG is an IBM* or 100% compatible AT computer running DOS 2.0* or higher with an EGA or VGA graphic card. Colour or monochrome monitors may be used although by colour the
associated graphic card should have at least 128 Kb of memory. A parallel interface, LPT1, on port $\& H 378$ is also required. If a second interface is available it is possible to measure on LPT1 and print on LPT2. If this is not the case measurement and printing are both via LPT1. The software has been tested on several different IBM compatible computers with the above configuration and should therefore run on most PCs without problem.
The following files are contained on the original disk;

Setup.exe	Program to set the hardware configuration
Compen.dat	Compensation file for the microphone
Ralf.exe	File for main Program
Runmepeg.bat	Batch file for system startup
Mepeg.exe	Main program

Several demonstrations are also available.
The DOS routine 'Graphics' is used to enable screen hard copies to be printed. Runmepeg.BAT loads 'Graphics' before starting the main programm. Hardcopies are therefore available on all printers this routine supports; typically Epson or IBM compatible 9 or 24 pin dot matrix.

Installation

All important settings with regard to hardware and the installation of the software are carried out by the programm $<$ SETUP.EXE $>$. Insert the disk in drive $<A>$ or $$ and start the installation by typing SETUP and pressing 'return'. (For safety reasons only use the original disk for installation purposes !!). The setup program is self explanatory and requires no further explanation. When all the necessary parameters have been entered the system software is automatically installed. 'Setup' suggests $<\mathrm{C}:$ MMEPEG $>$ as target
directory, but this can of couse be changed by the user Finally 'setup' writes a further file 'setup.dat' in which all the necessary parameters are stored.

NOTE: it is essential that the SETUP is run before starting the main programm. The main programm will not function correctly if this is not done.

Main Program

After succssful completion of the installation we find ourselves in the chosen target directory. All data operations i.e. the storing and loading of curves are carried out in this directory. The temporary store is also contained in here.

With <Mepeg> we start the main program and come to the main menu.
Main menu Functions
The menu contains the following functions:
Begin
With for Begin a measuring sesson is started and the
parameters. The requests are clear and require no further explanation. (Function 1-3 ask for a 'reference frequency'. As already explained, using this frequency the system calculates the ' 0 Decibel line reference value'). After all entries are complete the measurement procedure starts. The user can follow the measurment on the screen.

Load

<L> for load, shows the contents of the current directory and allows files to be loaded into the temporary store. Only MEPEG files i.e. files with the *.MPG extension are shown. The last curve to be loaded using this command is the 'actual' curve and is immediately available for use. i.e. it does not have to be recovered from the temporary store again.

Save

<S> for Save, saves curves and their asociated data to the current directory. File names can be specified by the user and are given the *.MPG extension.

Quit

Fig. 10 PC connections via sub D socket
measuring menu appears in which measuring functions can be selected and parameters entered. If the temporary store contains a curve the following message is given:

Do you want to enter new Parameters (y / n)
If this is answered with $<\mathrm{N}>$ then the existing functions, parameters and reference values are kept and used in the new session. By a series of measurements (e.g. sound level measurement) this eleviates the need to enter the values every time.

Then the measuring procedure is immediately started.
If the question is answered with $\langle Y\rangle$ then the user can enter new parameters etc.

The measuring menu then appears offering the following functions:

```
1-Level measurement
2-Spl measurement
3-Nearfield measurement
4-Impedance measurement
5-Th/Sm measurement Thiele/Sm
6-Voltmeter
%-Generator Coltmeter mode
```

The individual measurement functions and their properties have already been described in part 1. Depending on which function is chosen the user is asked for certain
<Q> for Quit to exit MEPEG. The"contents of the temporary store are deleted and all unsaved curves are lost. MEPEG does however check if the user wants to save any data before leaving the program!!

Plot diagram

<P> for Plot diagram plots a curve on the screen. The curve can be either from the last measurement or from disk. On the lower right of the screen is a small menu with the following options:

Copy

<C> for Copy sends a hard copy of the current screen to the printer

Text
$<\mathrm{T}>$ for Text enables the user to add a comment to the diagram (up to 28 characters).

Res
$<\mathrm{R}>$ for Resolution enables the scale of the Y axis to be changed. See Table 1 for the various possibilities

Gcrv

<G> for Get curve allows different curves to be loaded from the temporary store either into the current diagram, for comparision purposes. If several curves are shown in the same diagram the parameters shown apply the last curve to be loaded.

Esc
With Esc the current measurement functions can be interupted i.e. to leave the graphic mode.

Fig. 11 Power supply

Difference

Using < D $>$ for Difference it is possible to calculate the difference between curves currently in the temporary store. The available curves are shown in a window on the left of the screen and can be selected using the cursor keys. The selected curves are shown in the window on the right. The difference calculation is only possible with curves which have been measured under the same conditions i.e. with the same measuring functions and parameters. During this process the origional cuves remain unchanged. After every difference calculation the user is asked if he wishes to save the resulting curve in the temporary store. If the answer is yes the user is prompted for a name for the curve. If the user answers no, the cuve is nevertheless saved in the temporary store under the filename "Nname".

Average

<A> for Average calculates the average of the curves currently in the temporary store. The usage is the same as for 'Difference'

Octave

<O> for $1 / 3$ octave calculates the $1 / 3$ octave response curve from a sound level or level curve measured in High resolution mode. During this process the origional curve remains unchanged. Again, see 'difference' for use of this function.

Get curve

$<G>$ for Get curve loads a chosen curve from the Temporary Store. This replaces the curve currently in use. (NB. the curves in the temporary store are saved in the current directory with the file extension *.STR. In the event of a possible system crash the files can be found here !!).

New

$<\mathrm{N}>$ for New deletes all the curves currently in memory and the temporary store and re-reads the compen. dat and setup.dat files. This function is used primarily by a "Renew" of the temporary store. A renew is automatically requested by the programm when there are more than 30 curves in the store. Before this is carried out there is of course the possiility of saving one or more curves.

* IBM is the recognised Trademark of International Business Machines
* MS-DOS is the recognised trademark of Microsoft Corporation

Bibliography:

Low-Frequency Loudspeaker Assesment by Nearfield Sound-Pressure Measurement: D.B.Keele jr. in: Journal of the Audio Engineering Society (JAES), Vol.22, No.3/1974.

Loudspeaker Measurements and Their Relationship to Listeners Preferences: F.E.Toole Partl, in JAES, Vol.34, Nr.4/1986: Part2, in JAES, Vol.34, No.5/1986.

Direct-Radiator Loudspeaker System Analysis: R.H.Small in: JAES, No.6/1972.

Hifi-Lautsprecher: H.Sahm, Franzis Verlag.
Frequenzweichen fur Hifi-Lautsprecher: J.Panzer Franzis Verlag.

Applicationsschrift zum U/F-Umsetzer 4151: Raytheon Company, USA.

Halbleiter-Schaltungstechnik: U.Tietze/Ch.Schenk, 9 Auflage, S. 954 ff, Springer Verlag.

Acknowledgement: Thank you to C.A Taylor for his support through this whole project.

Communications Link by RS232

A project where 'Device Shall Speak Unto Device'. Commentary by Keith Garwell

At the Newchapel Observatory and Natural Sciences Centre, Stoke on Trent, we have several small micros (Dragons in fact!) performing various jobs round the site and we soon had a requirement to pass data from these micros to a central machine. Unfortunately the micros had no communications interface.

Due to my general interest in electronics I often thought it would be useful if I could couple my own IBM PC lookalike to other equipment. To digitisers, controllers, and because of an interest in amateur theatre even to a theatre

Fig. 1
lighting system.
However to me the PC is an expensive device and I am rather loath (though a competent computer engineer) to meddle with or modify its innards.

A certain amount of cogitation later I concluded that the serial interface on the PC was the best means of connection provided that the speed at which data had to be passed was
not too large. There was then no need to modify anything and the serial interface is well protected, electrically, from accidents. It also has the advantage that only three wires are needed between the PC and the device in question. From this came the idea of adopting a standard for myself and the Centre and producing a 'standard' interface board. The end product enables 240 bytes of data per second to be sent in either direction.

The serial interface is known as RS232 and there is a complete official specification for it. Which is perhaps a roundabout way of saying it's quite popular and there are many instances of it. It also means that, in this case, whatever applies to an IBM PC or look-alike will also apply to any other computer filted with this interface.

The Early Years

The origin of RS232 is ancient and goes back to the days when the only means of communication was by way of a morse key, sounder, battery, and a single wire with earth return. For further information see any wild west film!
With the diversification of business the morse key became too slow and so ways of speeding up communication

TYPE HEAD ROTATES UNTLL PREVENTED BY EXTENSIONS STRIKING ONE OF LEVERS
developed. In the first instance the morse dots and dashes where punched onto paper tape by operators working together. The paper tape was then used by mechanical senders to transmit the information at a much higher speed, still via
a single wire and earth return. At the far end the sounder was replaced by a mechanical device which wrote or punched the data onto paper tape again.

Meanwhile back at the ranch the typewriter had appeared. So why couldn't the pressing of keys at one end of a line be made to operate the type at the far end. Eventualy it could and became the world famous Creed teleprinter.
Apart from a pair of contacts at the sending end and an electromagnet at the receiving end the device was entirely mechanical. The mechanics in principle were relatively simple but in practice exceedingly intricate. Very briefly, at the sending end pressing a key released five bars running the

START BIT

Fig. 3 C no parity
length of the keyboard and which carried a code for each key one of which is shown in Figure 1. The final position of the ends of the bars corresponded to the key code. Following this action a set of cams rotated once causing the code at the bar ends to be applied to a pair of contacts in sequence. Thus five consecutive makes/breaks identified the character. The completed rotation of the camshaft restored the bars to their original position ready for the next key to be pressed.

To complete the sequence and to start the mechanism at the far end, before the five codes were sent, a start break was performed. (The contacts at the transmitter were normaly closed so that at rest current flowed through the line. This enabled the operators to check that the wire was still intact before sending the message). To ensure the receiver mechanism was always given time to complete its task a delay was inserted between each character by the transmitter equal in duration to at least the length of a data bit. Nowadays known as the stop bits.

At the receiving end an electromagnet responded to the interruptions in the line current. The first break started a camshaft rotating. During this rotation the following five bits of the code either allowed or inhibited a small rotation of five rings. See Figure 2a for the face view and Figure $2 b$ for the side view. The rings had slots on their inner edge which corresponded to the key codes. Because of the rotary movement, at one particular point in the circle the slots all lined up allowing a lever to move outward into the slots. Figure 2b. The lever stopped the type head rotating so that the correct character was aligned with the paper and on the next rotation of the mechanism the character was pressed against the paper. The characters received were thus printed one step behind the characters being sent.

Each character was therefore represented by a code consisting of start bit, five data bits and two stop bits. To allow for all letters of the alphabet plus numbers and
punctuation two special shift characters were used. After sending one of these characters all the printed characters changed until the second character was sent.

Later to increase the distance over which messages could be sent the single battery system was replaced by a dual positve and negative supply with change over contacts at the transmitter and a polarized electromagnet at the receiver. Other enhancements included electromagnetic repeaters and with the advent of amplifiers, voice frequency keying.

The teleprinter was the mainstay of the telegram service in the 40s printing onto a sticky paper tape which could be stuck onto a telegram form.

During WW2 a page printing version was very popular with the meteorelogical service as used by the forces. An American version was produced known as a Teletype which employed a different mechanical system (presumably to avoid infringement of Creed patents). It took up less table space than the Creed machine and became popular with early computer systems particularly as the computer operators machine.

The start bit, 5 data bits, and stop bit system of serial data transmission was soon adopted as a standard. To extend the print repertoire the number of data bits was extended, and error detection added. Thus was borne todays RS232.

Todays RS232

This is a more sophisticated system having more data bits to extend the available codes plus if required a bit intended to enable errors in transmission and reception to be detected.

As before the start bit is just that, it indicates the start of the character and can be followed by either $5,6,7$ or 8 data bits. These in turn can optionally be followed by the error detection bit, known as the parity bit. Finally either $1,1.5$ or 2 stop bits. One and a half bits sounds odd but in fact means a duration of 1.5 bits.

Now let's look at an example in further detail. The letter C can be represented by the binary code 01000011 . The data is sent in reverse order to how it would normaly be written ie with the least significant bit first. A dual voltage supply is used and the quiescent condition is negative.Figure 3 shows

how the C would appear on an oscilloscope in the normal sense with positive at the top using eight bits, one stop bit and without parity. (Let's not complicate the issue too soon).

The start bit is thus positive going followed by the first data bit which is a 1 and is thus negative. Then the next data data bit which is a 1 and is thus negative. Then the next data
bit a 1 also. Next the four zeroes as positive then bit 7 a 0 and finaly the stop bit which returns the line to its original condition as negative.

Just to sidetrack the issue for a moment. Why did I choose 01000011 to represent the letter C? Answer. For the very good reason that the most commonly used character code is the ASCII code. In which the initials stand for American
Standard Code for Information Interchange. Strictly speakthe ASCII code. In which the initials stand for American
Standard Code for Information Interchange. Strictly speaking this code is a seven bit code but is frequently used as an
eight bit. The eighth bit being used for special purposes. For instance in the IBM PC and all its look-alikes the eight bit is used for special characters such as foreign language characters and graphics characters ie. characters used for drawing.

Error detection and parity

With RS232 a parity bit is available and follows the most significant bit of the data. Parity can be either odd or even and it works like this.

The parity bit is generated by the electronics in such a way that the number of ones in the combined data plus parity is either odd or even.

Fig. 5 A odd parity

As an example again suppose the letter C is being sent represented by eight bits. If parity is declared as odd then in the case chosen the ninth bit, the parity bit, would be a 0 ie. in the nine bits there are 3 ones and the remainder are zeros. See Figure 4.

If the letter A was being sent the parity bit would be a 1 because the eight bit code for A is 01010001 which only has two ones. See Figure 5.

At the receiving end the electronics will count the number of ones in each character as they are received. If parity is odd then the ones count for each complete character received must be odd also. If this is not so then an error signal is given.

Reception And Stop Bits

At the receiver, the electronics will detect the leading edge of the start bit. It then waits for one and a half bit times before strobing the input. The strobe should therefore come exactly in the middle of the first data bit. It then waits for one bit time and strobes again putting the second strobe in the middle of the second bit and so on as shown in Figure 6. After the 8th strobe the electronics is reset during the stop bit to wait for the next start bit.

It is important to appreciate that although the start bit must not occur before the expiration of the stop bit time ie. there is a minimum delay before the next character - there is no maximum delay.

The stop bit is intended to prevent characters running in to each other and to allow time for the electronics and the line to recover before the next character.

Baud Rates

Although we have just been discussing duration of the pulses or bits the more usual consideration is frequency. RS232 allows for a wide variety, from 100 bits per second to 9600 and the bit rate is termed as so many Baud. After a well known character who was big in data transmission!

The standard Baud rates for RS232 are 110, 150, 300, $600,1200,2400,4800$, and 9600 . The actual rate at which characters are sent will depend on the Baud rate and the number of bits per character. For instance 1200 Baud, 7 data bits, no parity, and one stop bit will give 1200/9 or 133 characters per second. 1200 Baud, 8 data bits, parity and 2 stop bits would be 1200/12 or 100 characters per second.

The shape of the pulses will be distorted by the electrical properties of the connecting line and these in turn will
depend upon the length and type of line. The Baud rate chosen is therefore a trade-off between freedom from errors and the time available for transmission.

There is also a further point of significance, namely the accuracy of timing of the electronics. Consequently RS232 links are usually crystal controlled. From Figure 6 it can be seen that for 8 bits no parity the permissable error before the 8 th bit is misread is plus/minus 0.5 after an interval of 8.5 which is 1 in 17 or just under 6%.

Plugs and Sockets

As well as standardising the methods of transmission the plug and socketry is also included in the specification. The standard'is a 25 pin D type connector which at the processor is male ie. its a plug. The pin out of which is as follows. (The pins not mentioned are not used).

1. Frame or screen.
$\begin{array}{ll}\text { 2. } \mathrm{Tx} & \text { Transmit, the serial ouput. } \\ \text { 3. } \mathrm{Rx} & \text { Receive, the serial input. }\end{array}$
2. $\mathrm{Rx} \quad$ Receive, the serial input.
3. RTS Request to send.
4. CTS Clear to send.
5. DSR Data set ready.
6. Signal ground The common line.
7. DCD Data carrier detected.
8. DTR Data terminal ready.
9. RI Ring indicator.

It will be seen from the above that only three connections are actualy needed for the data exchange. Pins 2 and 3 data transmit and receive, and pin 7 the common line which is ground, 0 volts, or earth, call it what you will.

The remainder are handshaking signals intended for use principly between a computer and a modem. Modem stands for modulator/demodulator and is a device which at the

sending end converts the DC signals to voice frequencies suitable for sending over a telephone line, radio link etc. Thats the modulator. At the receiving end the voice frequencies are converted back to the DC signals. Thats the demodulator.

An alternative connector frequently used these days particularly on physicaly small machines eg. portables, is a 9 pin D type connector. The pin-out is usualy as follows.

[^1]
The Chips

The chip chosen to convert the parallel to serial data and vice versa is the IM6402, readily available and compatible with industry standards. These devices are known as UARTs ie. Universal Asynchronous Receiver Transmitters. The data bits, commonly known as the word length can be 5, 6, 7 or 8 bits. Parity can be odd, even or none, and there can be one, one and a half or two stop bits. The chip is a 40 pin DIL. As well as its use as a terminal unit for equipment of all sorts it can also be used in conjunction with a microprocessor for which reason it is possible to switch all its output signals to a high impedance state.

Figure 7 shows the pin layout with names and I am sure a quick run through their purpose will do no harm. Starting at pin 1 . High level is +5 volts, low level is 0 v .

1 VDD the positive supply 5 volts.
2 NC not connected.
3 VSS the negative supply, ground or 0 volts.
4 RRD Read Register Disable. A high level on this line forces the receiver outpuls to a high impedance state.
5-12 RBR8 to RBR1 the Receive Buffer Register ie. the receiver output. The least significant bit is RBR1.
13 PE Parity Error a high level on this pin indicates a parity error has been detected.
14 FE Framing Error a high level indicates an invalid stop bit.
15 OE Overrun Error a high level indicates receive data not read soon enough.
16 SFD Status Flags Disable a high level applied to this pin forces the status lines PE, FE, OE, DR and TBRE to a high impedance state.
17 RRC the Receive Register Clock, this input should be driven at 16 times the Baud rate.
18 DRR (N) Data Received Reset a low level here clears the receiver output.
19 DR Data Received a high level indicates a character has been received
20 RRI Receive Register Input ie the incoming serial data. And going back up the other side -
21 MR Master Reset a high on here resets everything except the receive buffer register.
22 TBRE Transmit Buffer Register Empty ie ready for the next character.
23 TBRL (N) Transmit Buffer Register Load a low here trans fers data from the input terminals to the buffer register.
24 TRE Transmitter Register Empty a high indicates data has been sent.
25 TRO Transmitter Register Output ie. the serial data.
26-33 TBR1 to TBR8 Transmit buffer register ie. input to transmitter.
34 CRL Control Register Load a high level here loads the control register.
35 PI Parity Inhibit a high level selects no parity.
36 SBS Stop Bit Select a high selects 1.5 stop bits for 5 bit data and 2 stop bits for all others. A low selects 1 stop bit.
37\&38 CLS2 and CLS1 Character Length Select. The appropriate combination of levels on these pins select $5,6,7$ or 8 data bits.
39 EPE Even Parity Enable a high level selects even parity providing pin 35 is low. Low selects odd parity.
40 TRC Transmitter Register Clock this should be 16 times the transmitter Baud rate.

The remaining 3 chips used are quite common and familiar to most I would imagine.

The clock oscillator is a TLC555 the CMOS version of the 555 and is used to generate both transmitter and receiver clocks.

A 4011 CMOS quad NAND gate is used for generating some of the control signals, see 'How it works'.

A CA3401 op-amp is used for converting the 0 v and +5 v signals to -12 v and +12 V .

The Power Supply

The power requirements are quite small. About 10 mA at 5 V for the chips and the same for the ± 12 volt supplies for the line driver. The smallest commonly available mains transformer is usualy 100 mA which is rather more than enough! In fact remarks about sledge-hammers and nuts would be justyfied. So before embarking on a power supply for the conversion board (just CB in future) consider any options such as sharing a supply. Another option is to run from a single 12 V supply. See below.

Conventional power

If a mains supply is going to be used to drive the RS232 board only, then the simplest arrangement is shown in Figure 9. Using a 12-0-12 transformer with half wave rectification to produce a peak output of 12×1.4 ie. approx 17 volts. This leaves plenty of headroom to drive two 100 mA 12 V regulators eg. $\mu \mathrm{A} 78 \mathrm{~L} 12$ and $\mu \mathrm{A} 79 \mathrm{~L} 12$. In addition the +5 V ($\mu \mathrm{A} 78 \mathrm{~L} 05$) comes off the +12 V . Don't forget the capacitor on the negative rail is upside down ie. its positive leg is connected to 0 V .

The current output of such a simple arrangement can be full wave rectification and using larger capacitors. The new configuration of transformer secondary, diodes and capacitors is shown in Figure 10 otherwise its the same as Figure 9.

DC to DC convertors

Because the current consumption of the

Fig. 76402 UART Connections board is so small there are alternatives to conventional power supplies. Indeed in my case the boards are all run from a +12 volt battery supply. This involves DC to DC conversion.

Various DC to DC voltage convertors are available. The RC4190 micropower switching regulator will convert almost anything to anything! (Maplin UR15R). The TBA820(Maplin WQ63T) which we all know is a small audio power amplifier can also be configured as a voltage convertor. Figure 11 shows how to use it to generate ≈ 12 from +12 . This is how we use the device. The 5 V comes off the +12 via a 100 mA regulator as before. In Figure 11 the TBA820 operates as a high frequency (40 kHz) square wave power oscillator. At pin 5 a peak to peak voltage of 12 V is available which is inverted by the the two diodes and capacitor following. The diodes in these circuits are all 1 N 4148.

Building the Conversion Board

Assembly (Refer also to the copper design and component placement)

Immediately it's decision time. How is the board to be fitted with plugs and sockets? It's easy for plug and socketry to cost as much as all the electronics put together so it's as well to give some consideration to the problem.

As we made several of these boards for various purposes we decided on a 'standard' board which would be fitted with

HOW IT WORKS

The Conversion Board

Our general requirement for RS232 links was fairly specific. It had to be as simple as possible and of course raliable. No great distances are involved, 100 metres being the absolute maximum The final choice was 2400 Bd, no parity, 8 data bis and 1 stop bit At 2400 Bd this allows a character rate of 240 cps . As there is no allowance for any sort of retransmission or handshaking parity would be pointless as nothing could be done it a parity error did occur. 8 data bits was the maximum possible and allowed for the transmission of standard 8 bit bytes. This format has proved very reliable in pracice. Its not at all uncommon to transfer 20 to 30 Kbyte chunks of data and louch wood so far without error

Sending

Figure 8 shows the schematic with data llow as far as possible from left to right. The P numbers on the lines are the pin numbers on the board connector. First the transmit side, 8 bit data input to serial output which is sutitable for converting standard Centronics printer data to serial data. At the top left the 8 data lines $T 1$ to 8 go 10 pins 26 to 33 on the 6402 IC. TXS is the line which strobes the data in, and would be connected to the Centronics strobe line. Busy is relumed by inverting, via IC4, the signal on pin 22 of the 6402 which is transmit buffier empty, the inverse condition will be transmit butter full which gives busy.

On the output side the serial data is on pin 25 of IC1. This is inverted by connection to the inverting input of the op-amp IC3. The non-inverting input of which is reference to the mid point of the 5 voti supply by the two 470 resistors. The supplies to IC3 are +12 voits on pin 7 and -12 volts on pin 4. Pin 6 therefore gives an inverted version of the serial ouput at ± 12 volts. The 3×3 resistor just acts as a current limiting resistor to the serial output TX OUT.

Receiving

In the case of the receiver serial data appears on the left at RX \mathbb{N}. By means of the 10k resistor and the two clamping diodes the inpul is restricted to 0 volts and +5 volts. This is inverted by another section of iC4 to feed the serial input of the 6402 at pin 20.

The 8 bits of serial data will appear in parallel on pins 5 to 12 of IC1 thence to R1 to R8 of the output highway. The data ready signal appeaning at pin 18 is delayed by the resistor capacitor combination R6 and C1 and inverted by another section of IC4 to generate the data received reset signal at pin 18. This signal is also provided at the ouput as RXDR receiver data received. Wonking in this way data received at the serial input appears on the parallel highway and remains there untij the next character is received.

Clock generation

At the botlom of figure 8 and to the left is the clock generator: This is a CMOS 555 IC2 in a standard arrangement generating a nearly symetrical square wave. The 10 k preset potentiometer allows for setting the frequency (see setting up and testing). The ciock generator runs at 38.5 kHz which is 16 times the Baud rate.

Miscellaneous

Af the bottom and to the right. A 100 n capacior is connected across the 5 volt power supply ralls. The forth section of IC4 is spare its inputs connected to 5 volts to hold the ouput down to Or. These connections can be cut if the NAND gate is required for any pupose.

Finally the foilowing pins set the operational parameters for the 6402. Pin 35 to 5 V to give no parity. Phs 37 and 38 to 5 V to give 8 bits. Parity is not being used but pin 39 must be connected somewhere and its convenient to connect it to +5 V . Pin 36 is connected to Ov to give 1 stop bit.

Pins 13,14 and 15 are not used and not connected.

a multi-pin plug. The components list identifies this item and the pin numbers are shown on the board schematic drawing. (Numbered Pl to P32). A corresponding mother board is fitted with the mating 32 way socket at one end and a convenient board for the purpose is a 39 way by 39 holes, 4 x 4 inches. Maplin JP49D. We also run ours from a single

12 V supply, so additionaly we build a small power supply board which connects with the 12 V and 0 V and carries a 5 V regulator and an inverter for the -12 V based on the TBA820 mentioned earlier. This power supply board is built on a small piece of strip-board and connected to the mother board via gold-plated PCB connectors. Maplin WQ15R and WQ16S.

This arrangement is very convenient and flexible. Additional boards for other circuitry can be made and fitted via the same style of 32 way plugs and sockets or such other sockets as necessary wired from the mother board. However this is a bit over the top if the board is dedicated to converting a Centronics printer output to RS2322 with its own power supply. In which case it would be easier and cheaper to mount the conversion board along with its power supply and wire it directly to the board along with a Centronics socket and RS232 socket. (See later under usage for pin connections).

So, if you are going to fit the 32 way plug, do it first. The end of the PCB will need trimming to make a good fit. To do this temporarily insert the pins in the board. The plug should be on the same side as the other components. Mark the piece to be trimmed with pencil and mark the fixing holes. Then remove the plug and saw off the unwanted portion of the PCB with a fine hacksaw. A Junior is the easiest.

Fit and solder the remainder of the components with the exception of the 10 k preset. The 4 links can be bare or covered wire. Bare is obviously cheaper unless you would have to buy some specially in which case use covered! The diodes must be the right way up. Facing the component side of the board with the plug on the
right, then the left hand diode should have its band at the top and the right hand diode its band at the bottom.

The 10 k square 22 tum Cermet preset is actually intended for vertical mounting but is best fitted on its back with the adjusting screw at the outside edge of the board. Only two connections need be made using the centre lead and one of the others. Bend them to fit the holes marked 1 and 2 on the placement drawing and leave the other lead alone. Glue the preset to the board using 'UHU', 'Clear Bostic' or similar adhesive. Hold it in place until the glue sets with a paper clip, clothes peg, or whatever is handy. This done, the board is ready for testing.

Part 2 Next Month

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX - 0316672611
The supplier to use if you're looking for \star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST \star * COMPETITIVE VAT INCLUSIVE PRICES *
\star MAIL ORDER - generally by RETURN OF POST \star * FRIENDLY SERVICE *

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD

Tel: (0480) 433156
Fax: (0480) 214488

The Greening of the Cair

by Douglas Clarkson

The car is probably a superb example of something that 'just happened' - meaning it was a process of social and economic change which from very humble beginnings developed in an unpredictable way to become a very major element in the economies of the developed world. The car has become an indispensable element of modern life but in seeking to provide freedom to the individual, it is becoming a collective problem in relation to use of resources and pollution of various types.

Car manufacture has been an industry sector which has received a lot of encouragement over the years from governments. They have been encouraged to set up new production facilities - manufacturers have been quick to do so. Govemments have been unenthusiastic to restrict the role of the car in respect of environmental factors - they sense this as an adoption of principles of economic downtum. Manufacturers like to consider that they adopt an 'everything we do is driven by you' attitude towards car development. The customer gets precisely what they want - nice wheel trim - reclining seats -electric power windows - nippy acceleration and a top speed of 120 mph .

The private individual and environmental pressure groups may identify features that they wish to be included in car design -but have little in the way of collective 'clout'. Environmental groups have a role in influencing public opinion and to focus on the 'green' car lobby.

Since the energy crisis of the early 1970's, pressure groups have been steadily growing. Although the USA took little part in the early technology of the car, it has in fact forced the pace of key elements of 'green' car policy which relate to emission levels as outlined in Figure 1. This is because the USA was the first to witness high levels of car exhaust pollution.

Aspects of Emission Control

The topic of emission control deals with one specific undesirable feature of the car. While it is a useful and necessary step forward, it is not the end point of the process of a 'green' car policy. It is appropriate, however, to examine the various types of offending emissions from cars and see how they can be minimised.

Lead in Petrol

Petrol is normally produced by refining crude oil. In the internal combustion engine, fuel tends to ignite before the gas mixture is fully compressed. This is because the work done in compressing the gas is transferred as thermal energy to the gas molecules themselves (adiabatic compression). The use of Lead Tetra Ethyl prevents this pre-combustion and provides a more efficient combustion of the petrol/air mixture.

Fig. 1 Sequence of US emission standards which have been introduced to date.

Year	Amount of lead (thousands of tons)
1982	6.8
1983	6.9
1984	7.2
1985	6.5
1986	2.9 (unleaded available)
1987	3.0
1988	3.1
1989	2.6

Table 1: Variation of lead released in UK on yearly
basis basis

The total amount of lead released is probably still moving downwards. While this is the overall picture, it does not take into account instances of high deposition in inner city areas where traffic densities are alarmingly high. If the UK was divided into a 100 by 100 grid, there would be some squares with alarmingly high lead concentrations.

There is regional variation within the EEC however, on the level of uptake of unleaded petrol. Within (West) Germany the level is approaching 80%, within France around 25% and within the UK around 40%. Interestingly, the significant early days of the car unfolded in Germany.

The bulk of the research into lead uptake in the population has been undertaken by the academic community and not by government agencies. Lead and its effect on individuals is a very complex field. Lead compounds were removed from petrol in the USA during the 1970's. The levels of lead in the general USA population was observed to fall. At the same time, the level of 30 micrograms per decilitre which was once considered 'safe' has been identified with neurobehavioral defects in children and increased blood pressure levels in adults.

There is also evidence that lead which has accumulated in the bones can be 'leached' out as a result of changed metabolic conditions. Thus it may be the case that lead accumulated in the bones of a pregnant mother can be released with potential toxic effects on both the fetus and the mother. There is also indication that increased levels of lead is associated with cardiovascular diseases.

All in all, and perhaps later rather than sooner, lead from petrol is a diminishing but still relevant concem.

Carbon Monoxide

Carbon monoxide is a product of incomplete combustion which reduces the ability of the bloodstream to carry oxygen. If sufficiently high levels are breathed in, the consequences can be fatal. The invisible gas is heavier than air and it can accumulate when stagnant air masses are in contact with cold ground surfaces. The pollutant is a greater risk to individuals who already have an impairment of their heart/lung system - eg angina sufferers or chronic bronchitics. The level of 9.5 parts per million over an 8 hour period is generally taken as
a level which if exceeded can result in adverse effects for high risk individuals and also impair the performance of 'normal' individuals - cause drowsiness or loss of concentration.

Ozone

While there are worries about ozone depletion in the upper atmosphere there are also worries about environmental pollution caused by ozone. Ozone is considered to inflame and scar the airways of the lung - bringing about a reduction of lung capacity which is both short term and long term in its effect. Indeed, in the worst affected areas of California, reductions in lung capacity of some 50 to 75% have been observed in some individuals. During most normal activities, such a loss of capacity may not be noticed though this will significantly reduce the level of exercise that the individual could sustain.

In the USA the 'threshold' level is considered to be 0.12 parts per million.

Children would appear to be more vulnerable to air pollution in general, because they tend to breath more through their mouths. The human nose, it appears, is able to remove up to 90% of pollutants from inhaled air. Confirmation of the reduced lung capacity of children due to Ozone pollution was obtained when a study of children who grew up in the Los Angeles basin revealed that they had a reduced capacity of between 10 and 15% when compared with equivalent children in a 'clean' environment.

Paradoxically, athletes who on average breath more than the average individual can damage their lungs when they exercise in an ozone rich environment. There is also some evidence from animal experiments that ozone can impair the immune system.

In the USA the top of the poll of worst offenders in 1989 was, not surprisingly, Los Angeles with a tally of 137.5 days in which the level was above the 0.12 ppm standard.

If in the UK, freedom of information is not a problem, where are the comparable statistics for UK ozone level pollution?

Oxides of Nitrogen

Nitric oxide and nitrous oxide are formed during the combustion process. Where they are present in high concentrations they can appear as a yellow-brown hue in the sky. They are considered to be respiratory irritants and cause lower resistance to infection.

Fine Particulates

Everyone will be aware that exhausts from vehicles discharge smoke particles into the atmosphere. In relation to air pollution this aspect is termed - 'fine particulates'. It has been shown that such particles can lead to lung cancer and contribute to respiratory illness. Medical researchers consider that this form of pollution in association with other agents may be responsible for the rise in incidence of asthma within the population in the UK.

Carbon Dioxide

The role of carbon dioxide as a polluter is constantly under review in an assessment of how it will influence global warming. This 'pollutant' is very much for the collective health of the planet and not the immediate health of a cyclist pedalling through rush hour traffic in London. In various ways, government in the developed world have pledged to
establish emission by the year 2000 at 1990 levels.
This policy pledge will certainly be the final hurdle to cross to perfect the ultimate non-polluting mode of transport. In the short term it relates to making vehicles more fuel efficient and in the longer term finding alternate fuels and developing radical new technologies to source energy.

Hydrocarbons

Fuel for the internal combustion engine does not completely burn. Unburnt hydrocarbons are released into the environment and react with other pollutants and sunlight. Surprisingly large volumes of hydrocarbons are also released into the atmosphere by spillages at petrol stations. There should perhaps be notices of petrol pumps warning customers to minimise any spillages.

Table 2 shows the relative contributions of road transport in the UK to various emissions. Power stations produce an equal amount of nitrogen oxide emissions and industry is responsible for around 52% of hydrocarbon emissions. Thus road transport is not wholly to blame for poor air quality in the UK.

Catalytic Clean Up

Assuming that
the legacy of lead pollution is if not altogether vanquished then on the wane, attention is focusing on the key pollutants of carbon monoxide, ozone and oxides of nitrogen. One solution has been to try and develop 'lean burn engines' where the pollution problem would be treated at source - within the engine itself. While progress has been made in this regard - most manufacturers have opted for a 'bolt on' catalytic converter 'cure'.

Various catalytic converters have been developed. The two way (oxidation) catalyst of Palladium and Platinum treats only the two pollutants carbon monoxide and hydrocarbons. The unit requires to be heated initially to over $300^{\circ} \mathrm{C}$ - necessitating location of the unit close to the engine.

The open-loop (unregulated) three-way catalyst is primarily intended as an 'aftermarket' device which does not integrate with the engine or the fuel system of the car. A platinum catalyst oxidises hydrocarbons and carbon monoxide while a Rhodium catalyst reduces oxides of Nitrogen to simple atomic nitrogen.

The closed-loop (regulated) three way catalyst functions in a more complex way. In this system the air fuel ratio is maintained at a value of 14.7 to 1 . This allows for optimum oxidation of hydrocarbons and carbon monoxide and in addition ensures optimum removal of nitrogen oxides. This control system is usually only available on more expensive cars with complex engine management systems.

Cars equipped with catalytic converters run the risk of 'poisoning' them with leaded fuel which acts to block the pores of the active surfaces. Consequently, the fuel inlet ports of such cars are restricted to accommodate only the slimmer nozzle of unleaded petrol pumps. There is also typically a small loss of engine performance associated with a catalytic converter -typically around 3%.

Action on Emissions

The initiative for cleaning up the car has mainly stemmed from directives in the USA where pollution in Southern

Table 3: Typical use of eniergy within an Iaternal combustion vehicle. Only a relatively small part goes to propel the verhicle.

California has been an acute problem for over 30 years. Figure 1 shows the sequence of US emission standards which have been introduced to date. The reduction in emission levels is largely achieved through the use of more efficient engines and catalytic converters,

More recent legislation in the USA will further reduce nitrous oxide emissions by 60% (to $0.4 \mathrm{~g} / \mathrm{mile}$) and hydrocarbons by 40% (to $0.25 \mathrm{~g} /$ mile). These changes were initially scheduled between 1994 and 1996, though California and various other states will implement them from 1993.

The anticipated expansion of cars in the Los Angeles area would, around the turn of the century, continue to cause pollution problems even with the more stringent emission levels. Rather than lower emission levels still further based on conventional car technology, future plans relate to the phasing out of all polluting vehicles. In this process the following categories of vehicle are specified:-

TLEV - transitional low emission vehicle
LEV - low emission vehicle
ULEV - ultra low emission vehicle
ZEV - zero emission vehicle
Between 1994 and 2010 it is proposed to change the mix of these vehicles so that there is a steady progression towards ZEV types of transportation. This focuses attention on what will be on the streets of Los Angeles in 2010. The question also arises - what will be on the streets of Europe at this time? There is no comparable plan such as the TLEV to ZEV transition which is scheduled for California. Based on the

Function	Percentage Loss
Alternator/cooling fan	9%
gearbox	6%
difterential	4%
drivetrain	5%
rolling resistance	18%
air resistance	40%
direct drive	18%

People, however, are only beginning to look at the environmental impact of the car. Progress is being made. The phasing out of lead in petrol is a blessing - but one which should have come sooner. The reduction of emissions from car exhausts is also good - although it will be some time before the benefits of this filter through to the general public as the 'fleet average' levels diminish to safer levels. It is particularly surprising, that the effect of such emissions on the health of the population seems to have been researched at a level out of all proportion to its importance. Why is this?

Reducing CO_{2} Emissions

General Aspects
Attention is now being directed towards the ultimate greening of the car - the reduction or the elimination of Carbon Dioxide emissions in order to slow the effect of global warming.

There has been a significant switch in emphasis recently to view the carbon dioxide emissions as the most sinister in the long term. While some governments remain on the sidelines to wait and see how new technologies emerge, others are taking an active part in developing solutions which
could in the not too distant future reap immense commercial rewards.

In this initiative, there are a range of options ranging from stabilising or reducing emissions to establishing zero net emissions. Within Europe, Germany has adopted the more ambitious plan than the UK of reducing CO_{2} emission by 25% between 1990 and 2000. By comparison, the UK has plans only to stabilise emission between 1990 and 2005.

The drive towards more fuel efficient cars is certainly a step in the right direction - and fuel economies of cars are generally rising. In the USA the so called CAFE scheme (Corporate Average Fuel Economy) has raised its standards averaged over groups of manufactured cars from 18.0 US mpg in 1978 to 27.5 USmpg in 1990. Various Bills in the US, however, to improve on this rating have been defeated.

Diesel engines offer the best fuel efficiency. Urban cycle efficiencies of 48.6 mpg can be achieved for cars such as the Rover Montego 2.0 DSLX Turbo. Public worries about pollution, however, still limit their widespread uptake by the public. It is likely, however, that fuel efficiency figures will continue to rise based on 'incremental' development. More fundamental advances may also help achieve improved performances. It seems unlikely, however, that even significant rises in fuel efficiency will diminish total levels of CO_{2} emissions since road traffic is itself rising rapidly - both in the developed world and also in the developing world.

There is no doubt that the real underlying need for fuel efficiency is the need to reduce CO_{2} emissions. The countries in the world such as Germany who have taken a more progressive line on meeting targets for reducing such emissions have at the same time provided a real market stimulus for developing the technologies to meet the perceived challenges.

Vehicle Design

Table 3 shows typical way in which energy is consumed in petrol driven vehicles. Usually only some 28% of energy in the petrol is converted to power at the crankshaft.

This indicates that some 42% of the energy available for mechanical motion is dissipated in losses within the vehicle (gearbox, drivetrain etc). There would seem ample opportunity to reduce this figure using technology of new materials and engineering.

For many years engineers have been trying to develop continuously variable transmissions which would provide improved fuel efficiency. Recently a device described as an infinitely variable transmission (IVT) has been developed by Epilogics Inc. in Los Gatos, California. Rotary motion on one side is converted to oscillatory motion and back to rotary motion at the output shaft. Such a system of continuous gearing is being investigated by various companies in the USA. It is known, that the motor racing industry is keenly aware of the potential benefits of such technology. It is possible, this technology will first be proved on the Grand Prix race tracks of the world before it is available for the family car.

The coefficient of aerodynamic drag (Cd) is an indication of the level of air resistance of a specific design. Citroen cars have a history of low Cd values. The Citroen Activa prototype has a $C d$ value of 0.25 while most modem cars have values of around 0.32 .

Vehicles of smaller mass will accelerate more rapidly (acceleration is force divided by mass). Thus a vehicle with a
5% reduction in mass will have a similar improvement in acceleration performance and contribute to improvement in fuel economy. There has been a tendency, however, to increase the weight of modern cars with the array of refinements and adornments which now accompany most cars.

Alternative Fuels

The use of fuels produced from crops such as sugar cane and sunflower seeds has been undertaken in countries such as Brazil and South Africa for reasons of economic necessity. It is unlikely, that such methods of production would contribute any useful amount of fuel to the world economy.

The use of Hydrogen has long been considered as an altemative fuel. The only product of its combustion in air is water. The hydrogen can either be provided in liquid form or stored in a metal hydride cartridge which releases the gas when it is heated. A development car produced by the Sanyo Electric Company in Japan has created a car which uses a phosphoric acid fuel cell which runs off hydrogen and air. Solar radiation or the output from the fuel cell can directly charge the nickel cadmium batteries which in tum drive a brushless DC motor. The energy density, of such a hydrogen fuel cell is about 3.6 watts per pound which is less than one third than that of current lead acid battery technology.

In the USA, the American Hydrogen Association lobbies for the increased use of hydrogen in the energy infrastructure

Fig. 2 Design of car with integral fuel cell and Ni-Cd batteries.
of the world. The president of this group, Roy McAlister, Professor of Thermodynamics at Arizona State University anticipates that in the future solar power will be used to produce Hydrogen from sea water - apparently the Saudi Arabia plan to produce 25% of the world's energy requirements from Hydrogen.

One of the schemes which is being evaluated in the USA is one which involves the use of Methanol in a mixture 85% methanol and 15% petrol (M85). The value of methanol as a 'greenhouse friendly' gas, depends very much on its origin. Methanol can in fact be synthesised from a range of feedstocks such as natural gas, coal, sugar cane or even wood. Natural gas is in many respects a waste product of oil extraction when it is flared off at sites too remote for pipeline collection.

The use of methanol, would require some changes to both systems of distribution and use within vehicles. M85 has less calorific value than petrol. About one gallon of petrol is equivalent to 1.6 gallons of M85. This will require that fuel
tanks in vehicles should be larger and also the distribution system for the fuel will need additional capacity compared with petrol. The M85 mixture, however, has a tendency to corrode present fuel system components.

Battery Technology

There is no doubt that technology is inching towards battery vehicles which can draw on non polluting sources of power. The fundamental breakthrough in battery storage technology, has yet to be announced. It may be, that such a breakthrough has already taken place and that the ink is nearly dry on the patent applications.

There is no doubt, that relatively large sums are being spent on developing battery technology. In the USA the major motor manufacturers General Motors, Ford and Chrysler have formed a co-operative group to develop battery technology. There is also intense activity in Japan and Europe.

The types of battery currently being developed include Nickel-Cadmium, Zinc-Bromine and Sodium-Sulphur. The Sodium-Sulphur battery which is being developed by ASEABrown Boveri (ABB) of Switzerland and Chloride in the UK has the advantage of four times the energy density of lead acid batteries. One drawback, however, is that the chemicals require to be at temperatures between $299^{\circ} \mathrm{C}$ and $329^{\circ} \mathrm{C}$. This requires that some of the energy stored in the battery is required to bring the battery to its optimum operating temperature.

One major development in electric vehicles was that of the 'Impact' sports car developed by General Motors. While using conventional lead acid batteries, the car used a compact and efficient DC to AC voltage converter which allowed use of more efficient AC motors. The 'Impact', is still created in the traditional image of the car - stylish, assertive and trendy. Table 4 indicates the performance of a range of electric cars. The 1990's will no doubt see increasing numbers of electric vehicles on the road.

There is increasing interest in utilising solar energy as the energy source for powered vehicles. The World Solar Challenge which was first run in Australia in 1987 between Darwin and Adelaide proved that solar powered vehicles need to be taken seriously. The winner of the race was the General Motors SunRacer which completed the distance at an average speed of 66 kmh and which achieved a top speed of 113 kmh . This success was due in part to the use of a high

Make	Range	Top Speed	Acceleration
GM Impact	192 km	$160 \mathrm{~km} / \mathrm{h}$	$0-50 \mathrm{~km} / \mathrm{h}$ in 4.2 secs
Volkswagen Jetta CitySTROMer	120 km	$105 \mathrm{~km} / \mathrm{h}$	$0-50 \mathrm{~km} / \mathrm{h}$ in 12 secs
BMW 3-series	115 km	$100 \mathrm{~km} / \mathrm{h}$	$0-50 \mathrm{~km} / \mathrm{h}$ in 12 secs

efficiency 'Magnequench' electric motor manufactured by GM Delco Remy division.

The race was subsequently held again in 1990. The winner this time was an entry from the Biel School of Engineering in Switzerland. Their vehicle used high efficiency solar cells and were developed at the University of New South Wales using a laser technique to etch the cell surface and so increase its active area.

By the late 1980's, efficiencies for Silicon cells and those made using Gallium Arsenide were in excess of 20%. Subsequently a Gallium Arsenide device which operates in conjunction with a focusing element has achieved an efficiency of 37%. To provide an element of historical perspec-

Table 4 , Pertomance of varlous electric. cars
tive, efficiency values were around 1% in the 1930 's and 6% in the mid 1950's.

Assuming a vehicle surface area of 5 square metres on a partially sunny day with a solar radiation of $0.5 \mathrm{kw} / \mathrm{m}^{2}$ and with cells with 30% efficiency, there would be approximately 0.75 kW of power available. For a vehicle of 1000 kg and assuming 75% efficiency in the electric motors, this will produce speed of about 35 kmh in 10 seconds. Such vehicles, must surely operate with significant battery reserves within the vehicle to augment conditions of poor solar radiation.

In fact it makes more sense to use the larger surface areas of the roofs of domestic houses to capture solar energy than the relatively small area of a motor vehicle. Where such areas can be utilised for solar power collection values of areas can be quite significant eg around 20 square metres. Assuming 6 hours of sun on average at $0.5 \mathrm{kw} / \mathrm{m}^{2}$ and at 30% collection efficiency, this equates to 65 MJ of energy or 18 kWh (kilo watt hours). The cost of this amount of energy through the National Grid is $£ 1.33$ at a cost of $7.37 \mathrm{p} / \mathrm{kwh}$. Already in Switzerland, this process of charging vehicles from solar panels on buildings is becoming common.

Reference should also be made to 'flywheel technology' where the energy of a spinning disk is used to propel a vehicle. Such devices usually operate within a vacuum environment and utilise ultra low resistance bearings. The materials used require to be ultra strong to prevent fracturing due to the large centripetal forces. While such vehicles have been demonstrated, no major car manufacturer has so far adopted this method of energy storage.

Summary: Due to a combination of technological advance
and the need to reduce car emissions still further (particularly CO_{2}), the 1990 's will no doubt see the beginning of the end of polluting vehicles. The whole process, however, will need a switch in investment on a colossal scale if this is to come about. With the public increasingly willing to be responsible in their use of the resources of Planet Earth it should be increasingly easy to convince the industrialists that the models in their showrooms are going to experience major changes in design and function. Why not write to them and communicate your views to them?

Further Reading:

The Green Car Guide, Paul Nieuwenhuis, Peter Cope and Janet Armstrong, Green Print, 1992.

Useful addresses:

Air Resources Board, PO Box 2815, 1102 Q Street, Sacramento, CA 95814, USA.
Electric Vehicle Association of Great Britain Ltd., 13 Golden Square, Piccadilly, London, W1R 3AG.
Electric Vehicle Council, 1111 19th Street NW, Washington DC 20036, USA.
Energy and Environment Research Unit, Faculty of Technology, The Open University, Milton Keynes, MK7 6AA. General Motors Environmental Activities, 30400 Mound Road, Warren, Michigan, 48090-9015, USA.
Greenpeace, 30-31 Islington Green, London, N1 8XE.
National Society for Clean Air and Environmental Protection, 136 North Street, Brighton, BN1 1RG.

ORDERS RECEIVED AFTER 14/12/92 CANNOT BE GUARANTEED FOR XMAS DELIVERY HOW TO ORDER BY POST

$\square 085242924 \times$ SCANNERS 2 INTERNATIONAL
1854860062 SCANNERS 3rd EDITION
1854860542 AVIATION ENTHUSIAST'S HANDBOOK
1854869282 ETI BOOK OF ELECTRONICS
lease ensure that all cheques are ma
are made payable to
Bailey Distribution and, together with the completed form send to:
Bailey Distribution Ltd, Units 1a/1b Learoyd Road, Mountfield Road Industrial Estate, New Romney, Kent TN28 8xU.
I enclose my remittance of $£$
Postage \& Packing FREE

TO ORDER BY

 PHONETel: (0679) 66905 and quote Mastercard/ Visa.
Allow up to 28 days for delivery.

When you subscribe to E.T.I. for 1 year...

Digital Electronics Projects for beginners contains 12 projects suitable for the beginner to build with the minimum of equipment. They cover a wide range of topics, from instrumentation to home security and a few "fun" devices too.

And it's

 FREE when you subscribe to ETI!Subscribe for yourself or as the ideal year round Christmas present for a friend. The Right Choice - a year of the best in electronics, a superb free gift and home deliverypost free!

Subscription Rates:

1 Year

UK £23.40
EUROPE £29.50
STERLING OVERSEAS $£ 31.00$
US $\$$ DOLLARS $\$ 62.00$

CREDIT CARD HOTLINE 044266551
(EXTENSION 210)

Terms \& Conditions
This offer closes 31st December 1992 and is open to current $E T /$ subscribers who wish to renew or extend their subscription. To guarantee receipt of your gift before Christmas, orders MUST be received by 4th December 1992 Please allow 28 days for delivery This promotion cannot be used in conjunction with any other offer

Please tick and complete.

\square I would like to suscribe to ETI for.one year and receive my ifee book Digital Electronic Projects \square I would like a gift subscription to EII for one year for a friend. Send gift to \square ME \square FRIEND

PLEASE COMPLETE IN BLOCK CAPITALS

Addres's
Add́ress

. Post Code.
Post Code...i.
\square New suscriber Renewal

Flease commence my subscription with the issue. I enclose my chequelmo for \mathbf{E}. made payable io ASP or please debit my Access/Nisa card No \square
Signature.
Expiry Date
Return to Subscriptions Dept.. Argus Speciatst Publications. Argus House. Boundary Way. Hemet Hempstead. Herts HP2 7ST. Thank you for your order (ETI/DEC 92)

You may receive further information gbout offers and services whichmay be of particutar interest to you

SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

Features

- Runs under Windows 3.0 or 3.1.
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- Loads ISIS SUPERSKETCH and DESIGNER files directly.

CADPAK - Two Programs for the Price of One.

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

РСВ II

High performance manual PCB layout package for DOS. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Graphical User Interface with intuitive "point and do" operation gives unparalled ease of use.

ISIS and ARES - The Professional's Choice

ISIS DESIGNER

from £275
ISIS DESIGNER forms the ideal front end of your CAD system, providing schematic capture, netlisting, bill of materials and electrical rules checks.

DESIGNER + adds advanced design managment features and is one of the most advanced DOS based schematics programs on the market.

ARES

from $£ 275$
The ARES range of advanced PCB design products links with ISIS DESIGNER and other schematics programs. Working from a netlist, ARES helps you get it right first time with each connection automatically verified against the schematic.

ARES AUTOROUTE adds multi-strategy autorouting, whilst for the ultimate in performance, ARES 386 goes up to 400% faster with unlimited design capacity.
 fax 0274481078 for demo pack. Combination, multi-copy and aducational discounts avallable. Prlees axe P\&P and VAT.

PCB Noils

The PCB foil patterns presented here are intended as a guide only. They can be used as a femplate when using tape and transfer for the creation of a foil,

Mains Inverter

MIDI Keyboard August '92
The PCB overlay is correct but in Figures 1a, 1c 3 and 4 all references to NC (normally closed) should read as referring to NO (normally open), and vice versa. On circuit diagram, R3 should go to +5 V , and R 4 to 0 V .

Pin	PL2 Connection	PL3 Connection
10	Highest NO busbar	Highest NC busbar
9	Next NO busbar	Next NC busbar
8	$" "$	$"$
7	$"$	$"$
6	$"$	$"$
5	$"$	$"$
4	$"$	$"$
3	$"$	$"$
2	Lowest NO busbar	Lowest NC busbar
1	$+5 V$ to pull ups	$+5 V$ to pull ups

It is necessary to connect each common key contact to the common line through adiode (1 N 4148), anode to the key contact, cathode to the common line to provide extra isolation.

Aerial Tuner Unit Oct '90
The circuit diagram in figure 1 should not show a connection between inductor L 1 and the screened case. Follow the wiring diagram in Figure 3 as this is correct.

Digital Circuit Tester

[^2]

 PCB Service ELECTRONICS TODAY INTERNATIONAL

 December

 December}

Price code	Price (inc.
	VAT)
C	£1.80
D	£2.50
E	£3.25
F	£4.00
G	£4.75
H	£5.50
J	£6.62
K	£7.20
L	£8.80
M	$\mathfrak{£ 1 0 . 6 0}$
N	£13.10
0	£15.80
P	£17.90
Q	£21.80
R	£23.90
S	£25.90
T	£29.00
U	£32.20
V	£35.80
W	$\mathbf{£ 3 7 . 9 0}$
X	£40.70

E9212-1 Digital Circuit Tester F
E9212-2 Communications Link by RS232 L
E9212-FC Mains Inverter E

PCBs for the remaining projects are available from the companies lists in Buylines.

Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This notonly identifies the board
but also tells you when the project was published. The first two numbers are the year, the next two are the month.

Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required

Such orders will not be processed until payment is received

E9109-5 NighfighterMain Processor Board
DocumentSaver
E9110-4

Digital Code Lock

ETI PCB SERVICE, READER'S SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:

Quantity Ref. No. Price Code Price Total Price

Post \& Packing
Total Enclosed
Please send my PCBs to:
Name

E9107-4	The ConsortLoud
E9108	Pulsed Width Train Controlier
E910	Model SpeedController-Main Board
E91	Model Speed Controller-Power Supply
E9109-1	GeigerCounte
E9109	Hemisync Waveform Generator B
E9109-3	Hemisync Pulse Generator Board
E9109-4	Hemisync Power Supply Board
E9109-5	Nighfighter Main Processor Board
E9110-1	Freeze Alarm
E9110-2	DocumentSaver
E9110-3	PrototypeDesigner
E9110-4	Nightfighter - Sound to Light (2 sided
E9110-5	Nightfighter-Ramp Generator Boar
E9110-6	Nightfighter-Cyclic Crossfade(2 sided)
E9110-7	Nightfighter-Strobe Board (2sided)
E91	Nightfighter - 8 Channel Triac Board
E9111-1	Digital Code Lock
E9111-2	Switched Mode Po
E9111-3	NightfighterMode Sel

$\begin{array}{ll}\text { E9107-4 } & \text { The Consort Loudspeaker ... H } \\ \text { E9108-1 } & \text { Pulsed Width Train Controller }\end{array}$
E9108-2 Model Speed Controller-Main BoardF
E9108-3 Model Speed Controller-PowerSupplyF
Geiger Counter .. E
E9109-3 Hemisync Pulse Generator Board
E9109-4 Hemisync PowerSupply BoardC
O
-................

E9110-5 Nightfighter-Ramp Generator Board F
Nightfighter-Cyclic Crossfade(2 sided) M
E9110-8 Nightfighter-8 Channel Triac BoardN

E9111-3 NightfighterMode Selection(2 sided) ..
E9111-4 Nightfighter-Display Board (2 sided).......................... M
E9111-5 Nightfighter - Bass Beat Trigger (2 sided)

E9111-6 Nightfighter-Sequence Select (2sided)
H K
E9111-8 Nightfighter-Master Çontroleer PSU
E9111-8 Nightfighter-Master Çontroleer PSU
E9111-8 Nightfighter-OutputSwitch (2 sided) M
Nightfighter Sensor Switch MasterControl (2 sided) L
E9112-2 Nightfighter Sensor Switch Channel Control (2 sided) L
E9112-3 Nightlighter Sensor Switch Sound Trigger H
E9112-4 NightfighterConnector Board F
E9112-5 NightfighterSensorSwitch PSU K
E9112-6 Nightfighter8-Channel Inpu Interface (2 sided) P
E9112-7 PowerOnand Overload Regulator P
E9201-1 Laboratory Power Supply F
E9201-3 LED Star (2 sided) M
E9201-4 Enlarger Timer Main PCB (2 sided) L
E9201-5 Enlarger Timer Selector Board (2 sided) K
E9201-6 Enlarger Timer Switch PCB E
E9203-1 MIDI Switcher-Main Board L
E9203-2 MIDI Switcher-Power Suply E
E9203-3 Sine Wave Generator (surface mount) F
E9204-1 Auto Car Lights F
E9205-2 E
E9206-FC Stereoamplifier G
E9206-2 Xenon flash trigger Main Board J
E9206-3 Xenon flash trigger Flash Board F
E9206-4 Scanner for audio generator D
Improved Rear Bike Lamp D
E9207-2 Mini Baby Bug Monitor.
C
C
E9207-3 Ultrasonic Audio Sender (2 hoards) H
E9207-4 Camera Add-on unil (4 boards) 0
E9207-5 AutoMate 5V/48V Mixer power supply J
Auromare Precision 17 V powersupply F
E9208-1 Dynamic Noise Limiter F
E9208-2 Touch Controlled Intercom (2 boards) H
E9208-3 MIDI Keyboard K
E9208-FC Battery charger F
E9209-1 Intercom for light aircraft H
E9209-2 Alarm protector C
E9209-3 Temperature controller M
E9209-FC 45W Hybrid power amp F
E9210-1 Universal I/O Interface for PC (2 Sided) N
E2910-2 Rapid Fusc Checker E
E9210-3 Heartheat/Audio Listener \ldots
E9210-FC Wizards Hat E
E9211-1 Electronic Die E F

CHE Luey Hughes
Send your requirements to
ETIClassified Department, ASP, Argus House Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 60p per word (+VA) (minimum 15 words) Semidisplay: (minimum 2.5 cms) E15.00 per single column centimetre (+VAT) I Per Electromart E24.00 (+VAT)

FOR SALE

Metal detector boards with data, has tuner, mode, discrimitate, headphone fack on/ott/volume and push button facilities......................... 87.95 ea Dictaphone cassette, mech/record erase playback heads. 6 V solenoid, motor, hall phect switch 52.00 es 35 mm Camere returns with Auto Flash/ Wind on atc.......... .ts es or 2 for $£ 10$ TV/Pniter stands $\$ 2.85$ ea Bicc-Voro Easiwire construction kit 2.85
construction kit 14.9580 use
c14.95 palr PCB with Lithlum Battery. 2732,34 IC's + Transisto Fuse. Cryata,
R's 4 C's
. $84.950{ }^{0}$ Dot matrix LCD 10×2 lines $8.75 \mathrm{ea}^{*}$ with Dotis i4.85 40 chasacter - 1 Hine dot matrix display wilh data 14.95 ea
2 digit 16 segment VF display
with date 2.25 en'
4 digit Intelifigent dot matrix display 18.00° 17 segment VF dispiay with driver
board and dala. 52.89 en*
B digit liquid erystal display1.75 ea. 4 digit LCD with
7211 driver chip 52.500^{20}
Dightal clock display
Dightai clock display
11 key membrane keypad $\leqslant 1.50$ es Keyboard $392 \mathrm{~mm}=180 \mathrm{~mm} / 100$ keys on board + LCD +74 HCOS
$80 C 49$ easily removable.
.54 .95
18" 3 U sub rack enclosures.
12V stepped motor board with slotted

1000 mixed $1 / 4$ watt 1% resistors 54.95 ea 250 etectrolyic axiat4radial caps ca.95 on 200 off mixed polyester caps.
100 Mixed trimmer caps popular values
.57 .95
. 84.95°
Iransiormers $/ R$'s 4 Cs/leadsE8. 96 1000 oft mixed $\mathrm{M}+\mathrm{Cs}$ leads Caps
 Audio Casserte Cleaning De-magnetizing Kit
$.51 .50^{6}$
Car Burgiar alam vibration auto entry/
sxit delayE5.
Single zone blarm panel auto entry/
exit deiay housed in domestic light
socke: $\mathbf{\Sigma 9 . 9 5}$ en
P.C. P.S.U. 50 watt $115-230 \mathrm{~V}$ input +5 V .4A-12V 2.5A output with built-in fan IEC inletton off …....................
STC P.S.U. 240 V input 5 V GA outpul (converts to 12 V 3A detsils available)
240 V input 5 V iOA output (converts to I2V 5 A no detalls). 300 line 240 V in 0 -28V B2VA out transtormer 5275 Translormer +PCB gives 27.5 Y 32 VA with ranstormer+P for 5 or 12 V regulator, will power skt for 5 or $12 V$ regulaior, will power Utrasonic transducer (Iransmit 3 recelve) soundor, 50 po $9 V$ DC electromechanical sounder ... 50p $24 V$ DC atactromechenicel sounder removeable in two positions. DIL switches PCB MT 3/4/6 way 5 SPCO SIL resd relay 12 V 2PCO or 4 PCO continental rais 12V 10A PCB MT (to make contact
rslay
3 to 12 V electro magnetic Accoustic
transducer with data 75p
2.4578/8.8329/21.10 MHZ
cryatais
2A 100 V .
31b Mixed components pack
25 oft mixed relaya
40 off mixed toggle switches.
40 off mixed foggle switch 50 off mixed swiches, togole, rocker micro, slide $\ldots \ldots \ldots \ldots \ldots$ $0.39,0.15,1,3.30 \mathrm{H} 100$ en 100 for 87.50 50 Mixed lerminal blocke295 250 ofl 16/22/24/40 way IC SktsE4.56 Crystal Oscilators $10 / 24 / 48 \mathrm{MHz} \mathrm{El} .00 \mathrm{em}$ Spider Pug Leads. 100 of Phono plugs (red/bikjgroy) ix.50 GUANIY DASCOUNIS AMABL-RCNE RAMO COMPOLSNTS, SBU.S, OISK DNVES ETC, LSTS

TO BELOIN ADONESS

Dept ETI, COMPELEC,
14 Constable Road. St Ives,
Hunlingdon, Cambs PE176EO Tel/Fax: 0480300819

TRADE DISPOSAL SALE

Due to emigration/retirement a dealer in components \& equipment has entire stock for disposal. Mostly new components (every type) and various sh equipment. Available in job lots of our selection, ideal for radio rallies, shops, mail order, etc. Various size lots from $£ 80$ (fill a car). £200 (Transit van), £450 (Luton van), Cash \& Carry only. Rock bottom price with excellent profit margin $(300 \%, 400 \%$, Plus) for quick clearance. Bring your ehicle \& cash - you won't be disappointed!

Tel: 0214464346

Semiconductor Clearance!!
 Wentulop reevpersation wible e to offer a timind qumany

 $+1$.

AT LAST HERE IT IS "The World of Bug \& Mini Transmitters' Dozens of circuits in one book Limited edition only 1,000 copies available. Special Offer only $£ 7.95$ inc P\&P Cheques, Postal orders to: Gainsford Electronics, 71 Gainsford Road, Southampton, SO2 1AW

TOP QUALITY \star NEW \star EX-SOCKET \star D/SOLD \star COMPONENTS

DAAM'S	DRAM'S				
8118.	ex sock	0.47			
4164. 41256	ex sock	0.47	41256	NEW	0.71 1.77
41256 41464.	ex sock	0.71	$41 \mathrm{C} 1000$		1.78 1.18
STATIC'S		1.18	STATIC'S		
6167LP-8			6116		0.59
6264LP	ex sock ex sock	0.71 1.18	62256LP	ex sock	2.35
MISC			MISC		
			D765AC	ex soc̆k	
A031AH	ex sock ex soc	3.53	80C85A	ex sock	1.18
81 C 55	ex sock	0.71	AY-3-8910	ex sock	1.18
8237A	Ex NEW	1.71	8250 N	ex sock	1.41
8255A	ex sock	1.18	8753 H	ex sock	2.35
Z80ACPU		1.18	87554	NEW	3.53
8748H	ex sock	2.94	8749 H $\mathrm{Y} 20-8$	ex sock	2.94
Z80BGPU	NEW	1.41	V20-8	NEW	3.53

USAP allomers only. Please send cheques PO's or reg' cash, Please add 1.20 tor P.P. Goods despatched ASAP allowing tor cheque clacrenca ALL
Peese make components are includting VAY.

UNIT 6 FORBES COURT, BILIINGTON PUAD, BURNLEY, LANCS,
OB4 $5 U E$ TELTAX $\overline{02 Q 2} 24670$
 NOIO:- ALL PRICES ARE SUBUECT TO AVALLAGIUTY AND CHANGE WITHOUT NOTICE, 028228070

© COOKE INTERNATIONAL $=$

 TEST INSTRUMENTS AUTUMN CLEARANCE BARGAINSScopex 456 Single Beam Scopes
Telequipment D61 Portable Scopes DC-15Mhz
Fluke 8300 A Digital Viltmeters
Racal 835 Universal Timer/Counters DC.15Minn $\quad £ 95.00$
H.P. 612 A UHF Signal Cenerstors 450 - 230 Mhz

Advance P.S.U. $0-60$ V 0-1A
H.P. 1402 A Dual Trace Amp DC. 20 Mhz

Marcom TF 1245 Magnification " Q^{\prime} Meter
Marconi TF 1246 Oscillators for above
± 95.00 £9.00 S.A.E. for lists. Computers, monitors etc. In stock. Phone for details.

All prices exclude VAT \& Carriage. Oper MonFri 9am-5pm Saturday by arrangement Fordingbridge Slte, Main Road, Barnham, Bognor Regis West Susser PO22, OEB.

CATALOGUE $1.00+25 p$ P\&P	
${ }^{3}$	
3xthetrem	
$5 \times 12 \mathrm{nman}$	$\underline{4.40}$
${ }_{12 \times 12}$	${ }_{68}$
spocie ontin Conpuser grede capacitors with screw terminals 38000ut 20v	
Brocos 10	
incul	
JPG ELECTRONICS	

FREE I.C. AMPLIFIER module!! Built \& directions - return ad + £1 p.p. K.I.A. 1 Regent Road, llkley. Stereoamps \& controls, sockets - Reg/PSU - 60W/£10.

YURN YOUR SURPLUS
TRANSISTORS, ICS ETC INTO CASH immediate settlement
We also welcome the opportunity
to quote for complete factory clearance. Contact:
COLES-HARDING \& CO. Sandall Road, Wisbech, Cambs PE13 2PS
BUYERS OF SURPLUS INVENTOR ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax: 0945475216

EDUCATIONAL

STUDY ELECTRONICS ON A 'PC'. Ovar 80 tully intoractive, menu driven, graphics screens, containing charts, graphs, circutt diagrams, formulae and theory. With user inputs and calculated outputs. Covers subject from electron flow, through analysis of AC and DC circuits, to semi-conductors. £39.95 + $£ 2.00$ p\&p. Credit Card orders 0376 514008. SAE for details
E.P.T. Educational Software, Pump House, Lockram Lane, WItham, Esser CM8 2BJ

KITS

NEW VHF MICROTRANSMITTER
KIT tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY \&5.95, assembled and ready to use $£ 9.95$ inclusive P\&P. Credit card orders telephone 021411 1821, Fax: 0214112355. Cheques/PO's to: Quantek Electronics, (Dept ETI) 3 Houldey Rd, Birmingham, B31 3HL. Send S.A.E. for details of this and other kits. - Callers welcome.

ETI HYBRID AMP KITS:- Sept 92 Cover $£ 169.99$, Output Transformers for above £79.99, ETI Hybrid preamp kit £89.99, PE 80W/CH Mascode kit £189.99. All are designer approved. Add £5 to cover postage. O/Seas add £25 airmail. Enquirers SAE or IRCS. Cheques, P.O.'s to Hobtek, The Cottage, 8 Bartholomews, Brighton BN1 1HG.

Are you looking lor Irue quality. Micro, FM. Transmitter Kit. The superd all new model Vancisp tuned, a,plitier steje, Omn! Directional Mic, Poller Thed. Fibre Glass PCB Tue 1 mile range gV DC 55.0 inc pp. Mini Nicro Kit. As sbove onty $1 / 2$ size $25 \times 15 \mathrm{MM}$. 11/2 VDC. Walch bettery, $1 / 2$ mile zange foiler Tinad PCA s8.es the pa immediate next day despaich from stock,
Woumartry od, Swanisea SA5 4ST

HEATHKIT. U.K. spares and service centre/Educational Products Distributor. Cedar Electronics, 12, Isbourn Way, Winchcombe, Cheltenham GL54 5NS Tel. (0242) 602402.

TEST EQUIPMENT

LOGIC ANALYSER
Tum your OC Compatible into e powertul Lógic Analyser. Full graphics display, Max 16 Channets, 4 combinational triggers, auto cafibration Excellent value. Includes S.A.E. Ior detalls.
J.P. Shay (Depl ETI) 211 Alnmworth
Road, Radciffo, Manchestor M26 0EE

COMPONENTS

"ELECTRO COMP"

WE CLEAR

Electronic Components - Semiconductors
Computer Equipment • Electronic Test Equipment Populated Boards
In fact anything with an electronic bias
JOB LOTS, FACTORY CLEARANCE A SPECIALITY Decision normally within 24-36 hours

LOOKING FOR COMPONENTSI! As an ex Industrial buyer for 25 years I won't sell you reject or faulty product!] Only top quality components at the right price!! No Mail Order only production quantities!!
SNAGS only one. My terms are C.O.D. Deliveries normally made within 48 hours
Phone or Fax your list or enquiry to: 063546496
ELECTRO|COMP 36 Talbot Close, Newbury, Berks RG13 1UA

AVON

L.F. HANNEY

Your Electric Component Specialist for Avon, Wilts \& Somerset.
77 Lower Bristol Road, Bath, Avon.
Tel: 0225424811

MANCHESTER

THE ELECTRONIC SHOP
Electronic components, test equipment, telephone accessories, computer accessories, microphones, disco lighting, speakers, turn tables, mixers, meters, stylus 29 Hanging Ditch, Manchester M4 3ES Telephone \& Fax 0618341185

SERVICE MANUALS

Avallable for Most Equipment TV, Video, Audlo, test etc. Any Age, Make or Model Write or Phone for Quotation. MEURITRON (ETI)
8 Cherry tree Road, Chinnor, Oxon, OX9 4QY.
Tel:- (0844) 351694.
Fax:- (0844) 352554

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street Tel: 05123609820512360154

47 Whitechapel

Tel: 0512365489
Llverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

FOR SALE

 ARIAS
Passive Bandpass Responses $25-80 / 100 \mathrm{~Hz}$ Sensitivities 87 -94dB. 250+ Watt Rating No separate amplifiers required. Also
Active Centre Bass Designs Active Stereo Designs All in our SUB-BASS Leaflet 30p (stamps) + 28p SASE FALCON ELECTRONICS (Dept ETI) Tabor Houes, Mulbarton, Nortolk NR14 erT (0508) 78272

COURSES

Start training now for the following courses. Send for our brochure without obligation or Telephone us on 0626779398
 ETI/1292

Name

- Telecomms Tech C\&G 271 - Radio Amateur Licence C\&G
\square Micro-
processor - Introduction to Television

Radio \& Telecommunicatlons Correspondence'School 12 Moor View Drive, Teignmouth, Devon TQ14 9UN

FOR SALE

Falcoí DIY SPEAKERS

Send for our FAEE price list PL20. Al we ask for is a large SAE (Europe - 3 intemational reply coupons) SYSTEM DESIGNS (Tora Kira); Focal, KEF Constructor, Seas, etc
FOCAL KEFAUCONO: FOCAL, KEF, Audax, Coles, Peerless Seas, Stare, Elac Metal Do
Scansoeak, etc so Group/Disco Un CROSSONER NETWORKS Active s Pessive Components. Accassories, Folyproplenie Caps. AUDIO AMATEUR PUELICATIONS Speaker Bulider, Audio Amateur a Glass Audlo \& lots of books Full detalla from FALCON ELECTRONICS (Dept ETI) Tabor House, Mulbartion Norfolk NR14 E.JT (0508) 78272

ETI

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55 p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address

Signature Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No. \square
\square Expiry Date..........................

FOR SALE \square COMPONENTS \square PLANS \square OTHERS STATE

EDITORIAL
Editor Paul Freeman
CREATIVE
Art Editor Peter Kirby
Designer Iain Houston
Technical Illustration Tony Burlinson
Photography Manny Cefai
ADVERTISEMENT SALES
Advertisement Manager Mark Linacre
Advertisement Sales Michele Donovan
Advertisement Copy Control Marie Quilter
Key Accounts Manager Donna Wells

MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ETI is normally published on the first Friday in the month preceding the cover dale. The contents of this publication including all articies, plans, drawings and programs and all copyright and all other intellectual property righs therein belorg to Argus Soecialisi Publucations. All rights conferred by the Law of Copynght and other imellactuat properiy rights and by virtue of iniernational coopynght corventions are specifically reserved to Argus Specialisi Publications and reproduction requies the prior withen consent of the company 21990 Argus Specialis: Publications. All reasonable care is taken Inthe preparation of the magazine contents, bul the fublishers cannot be held legatly responsible lor errors. Where mislakes do occut, a correction will normally be pubbisted as scon as possitue ahterwards All prices and data contained in advertisments are arcepted by us in good lath as correct at the time of going lo press. Ne ther the advertisers nor the publishers oan be held responsible. however, lor any vartations affecting proce of availaioling whioh may occur atter the pubtication has closed for press
Subsciption rates. . UK £23. 40 Europe $£ 2950$ Sterling Overseas $£ 31.00$ US Dollars Overseas $\$ 62.00$

Pubsishad by Argus'Speciatist Publications, Argus House. Boundary' Wayy, Hemel Himpslead HP2 7ST. Telepnone (0442) 66551. UK newssrade dislinbution by SM Disimbution Lidi, 6 newham Court hoad, London SW16 2PG Telephone 0816678111 . Oversoas and nonnewsitrade sales by Magazine Salus Dopanment. Argus House Boundary Way, Henel Hompsteae. HP2 7ST, Telephone (042) 66551 . Subscriptions by Argus Subcription Services, Cwi Worldwide Publications, 4314 West 238th Sureet. Torrance, CA90505 USA. Teleptione. (310) 3756258 . Typeseting and origination by Ehony, Torrance, CA90505 USA. Telephone Lid. Bristaik

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fax (0442) 66998

In our Christmas issue we have an interesting selection of projects for you. The next two cover PCBs will form the basis of a four channel infra-red remote controlled switching system. The receiver, presented next month is built to fit into a 'lightswitch-sized' box and is designed to work with commercially available touch dimmers. The transmitter will follow on in the February issue.

Something completely different on the project front for next month is a Macro-Heliograph receiver. A what? - you say! It's a device to detect very low frequency/very low power sound waves emanating from your garden using sunlight. There's nothing quite like it!

We also have an EPROM Programmer project for you to construct. Then there will be no fear of tackling projects containing EPROMs. Also as it is Christmas, the seasonal fading fairy lights could adorn your tree. See the January issue for details. Out on Friday December 4th.

Last Month

ur November issue featured:
Nanotechnology
The Ten Year Capacitor Auto Protection
AutoMate Pt7b
Audio Response Measuring System Basic Multimeter Circuits Universal I/O Interface for the PC Pt2 Electronic Die for Board Games Differential Calculus
Back issues can be obtained from Argus Subscription Services. Address in column to left

ADVERTISERS' INDEX

AUTONA,
\qquad
CIRKIT F

CRICKLEWOOD ELECTRONICS ... 47
DISPLAY ELECTRONICS 30
ESR ELECTRONCS :..................... 11
HALCYON ELECTRONICS 21
HENRY'S 35
HENSING TECHNOLOGY 53
J\&N BULL 22
JAY TEE ELECTRONICS 53
JPGELECTRONICS 35
LABCENTRE 60
M\&B IBC
MAPLINELECTRONICS OBC
NUMBERONESYSTEMS 13
OMN ELECTRONICS 53
PICO TECHNOLOGY 15
RALFE ELECTRONCS 31
REED ELECTRONICS 31
S.L.M. MODEL ENGINEERING 21

- £1 BARGAIN PACKS -

In fact, cheaper than $£ 1$ because if you buy 10 you can choose one other and receive it free!

2×25 W CROSSOVERS for 4 ohm loudspeakers Order

$2 \times$ NICAD CONSTANT CURRENT CHARGERS easily acaptable to charge almost any nicad battery. Order Ref ecap
10 m

10 m TWIN SCREENED FLEX white pvc cover Order

 Fei. 122$2 \times$ WHITE PLASTIC BOXES with lids, approx $3^{\prime \prime}$ "cube
Et has square hole through the centre so these are ideal for ight operated switch Order Ref. 132
$2 \times$ REED RELAY KITS you get 8 reed switches and 2 so sets with notes on making relays and other gadgets. Drer Ref 148
x BIG PULL SOLENOID mains operated: Has $y^{\prime \prime}$ pull, 2ser Ref 87
x BIG PUSH SOLENOID mains operated Has ${ }^{18 "}$ push Cre- Ref 872
\times MINI MONO AMP $3 W$ into 4 ohm speaker or $1 W$ into \times MIN STEREO 268
\times MIN STEREO 1 W AMP Order ref 870
x IN-FLIGHT STEREO UNIT is a stereo amp Has two -osttuseful mini moving coil speakers. Made for BOAC : Essengers Order Ret 29
$1 \times$ MAGNETIC SECRET SWTICH does not look like a Istch and is supplied with a separate magnet to to IErate it Order Ref 873
$1 \times 0-1 \mathrm{~mA}$ PANEL METER full vision face 70 mm square Sealed 0-100 Order Ref 756.
$2 \times$ LITHIUM BATTERIES 25 V penlight size Order Ref
2×3 M TELEPHONE LEADS with BT flat plug. Ideal for
E-one extensions, fax, etc Order Ref 552

- $x 12$ V SOLENOID has good ${ }^{\prime \prime}$ " pull or could push it
- ectied Order Ref 232
$4 \times$ IN-FLEX SWITCHES with neon on/off lights saves
EX61AMAINS TRANSFORMERS upright mounting
- ixing clamps OrderRef 9
- 2×30 WATT REED SWTICHES It's surprising what , ou can make with these - burglar alarms, secret Eches, relay, etc Order Ref 13
ix HUMIDITY SWITCHES, as the air becomes damper - - embrane stretches and operates a micro switches. ef. 32
ミx 13A ROCKER SWITCH three tags so on/off, or rengeover with centre off, Order Ref 42
x FLAT SOLENOIDS you could make your multi tester $E \approx A C$ amps with this Order Ref 79
$\div \times$ SUCK OR BLOW OPERATED PRESSURE SWITCH
ars can be operated by any low pressure va
$i \times 6 \mathrm{~V} 750 \mathrm{~mA}$ POWER SUPPL $Y_{\text {, }}$ nicely cased with
$-\pi=$ ns input and $6 v$ output leads Order Ref 103 A
$2 \times$ STRIPPER BOARDS, each contains a 400 V 2 A
zrige rectifier as well as dozens of condensers, etc Order Ref 120
$12 \times$ VERY FINE DRILLS for pcb boards etc Normal cost Boout 80p each Order Ref 128
$5 \times$ MOTORS FOR MODEL AEROPLANES, spin to start sc needs no switch. Order Ref 134
5 x MICROPHONES INSERTS magnetic 400 ohm also
Ext as speakers Order Ref. 139
$6 \times$ NEON INDICATORS in panel mounting holders with
Ens Order Ref. 180,
$1 \times$ MAINS SOLENOID very powerful as " k " pull or could zush it modified Order Ref 199.
$1 \times$ ELECTRIC CLOCK mains operated, put this in a box and you need never be late Order Ref. 21
$4 \times 12 \mathrm{~V}$ ALARMS makes a noise about as loud as a car -orn All brand new. Order Ref. 221
$2 \times\left(8^{\prime \prime} \times 4^{\prime \prime}\right)$ SPEAKERS 16 ohm 5 watts so can be joined n parallel to make a high wattage column. Order Ref 243 .
$1 \times$ PANOSTSAT controls output of boling ring from Simmer up to boil. Order Ref 252
$2 \times$ OBLONG PUSH SWITCHES for bell or chimes, these can switch mains up to 5 A so could be foot switch if fitted in pattress Order Ref 263
$50 \times$ MIXED SILICON DIODES Order Ref 293
1×6 DIGIT MAINS OPERATED COUNTER standard size but counts in even numbers Order Ret. 28 $2 \times 6 \mathrm{~V}$ OPERATED REED RELAYS one normally on, other normally closed Order Ref 48
$1 \times$ CABINET LOCK with 2 keys Order Ref 55
$1 \times$ MA GNETIC BRAKE for stopping motor or rotating tool. Order Rel. 66
$1 \times$ SHADED POLE MAINS MOTOR \% stack so quite powertul. Order Ret. 85
2×5^{-1} ALUMINIUM FAN BLADES COUId be fitted to the above motor. Order Ref. 86.
$1 \times$ CASE $3 \% \times 2 \mathrm{k} \times 1 \mathrm{k}$ with 13 a socke pins. Order Ref. 845.
$2 \times$ CASES $24 \times 2 \% \times 1 \%$ with 13 A pins. Order Ref. 565 .
$4 \times$ LUMINOUS ROCKER SWITCHES $10 A$ mains. Order Ret. 793.
$4 \times$ DIFFERENT STANDARD V^{2} MICRO SWITCHES Order Ref. 340 .
$4 \times$ DIFFERENT SUB MIN MICRO SWITCHES. Order $4 \times$ DiFFE
Rel. 313 .
RIGHTWEIGHT STEREO HEADPHONES mOving coil so superior sound. Order Ref. 896.
LOUDSPEAKER 6% " 4 OHM 12 Walt max. Order Re?

BARGAINS-GALORE

DRY BATTERIES CAN BE RECHARGED but not with a normal dc charger, it must be a periodic current reversal type We can supply the kit, with data $£ 9$. Order Ref 9P10
SOLAR ENERGY EDUCATIONAL KIT - an ideal present for electronics students, it shows how to make solar circuits and electrical circuits, how to increase the voltage or current, how to use solar power to work a radio, calculator, cassette player and to charge nicad batteries The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal frame to hold it to complete a free-standing electric fan A really well written instruction manual
HEAVY DUTY FLEX 3 core 15 A , grey outer, 10 m for $£ 2.50$, HEAVY DUTY FLEX 3 core 15A, grey outer, 10 m for $£ 2.50$,
Order Ref 25 P 33 core 20 A , white outer, 10 m for $£ 3$, Order Rel
 3P109 2 core 20A, 15 m for $£ 3$, Order Ref 3P110
HIGH POWER SWITCH MODE PSU normal mains input 3 outputs:- +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and -12 V at " AA Completely enclosed in plated steel case Brand new Our special offer price of $£ 9.50$ extended until 31 st August Order Ret 95 P 1
MULTI-CORE CABLES all with BA 230V cores so suitable for disco and other special lighting effects. With earthcable woven screen and thick pvc outer 3 core, 30p per metre, 16 core 50p per metre, 18 core, 80p per metre, 25 core, $\varepsilon 1$ per metre and 36 core, $£ 1.50$ per metre
ULTRA THIN DRILLS Actually 03 mm . To buy these regular costa fortune. However, these are packed in half dozens and the price to you is $£ 1$ per pack, Order Ref 797 B
YOU CAN STAND ON IT! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx $10 k^{\prime \prime} \times 4 k^{\prime \prime} \times 6^{\prime \prime}$ high These are complete with snap closure lip and shoulder ength carrying strap Taken from used equipment but in good Order Ref. 2P283B
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regualted intended for high class equipment, this is mounted on a PCB and also mounted on the board but easily removed, are 212 V relays and a Piezo sounder $£ 3$. Order Ref $3 P 80 \mathrm{~B}$
ULTAA SONIC TRANSDUCERS 2 metal cased units, one rransmits, one receives Built to operate around 40 kHz Price 100W MAINS TRANSFORMER normal primary 20-0-20 at 25 A £4 Order Ref 4 P 24 40V at 25 A , £4. Order Ref 4P59 50 V ar 2A \&4, Order Ret 4P60
PHILIPS 9 " HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still in maker's packaging offiered at less than price of tube alone, only $£ 15$, Order Ref - 5 P 1
16 CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$, Alphanumericc LCD dot matrix module with integral; micro processor made by Epson, their Ref 16027Ar, £8, Order Ret 8 P 48
INSULATION TESTER WITH MULTI METER internally generates voltages which enables you to read insulation directly on megohms The multimeter has four ranges, $A C / D C$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range These instruments are ex British Telecom but in very good condition. tested and guaranteed OK, probably cost at least $£ 50$ each yours for only $£ 7.50$, with leads, carry case $£ 2$ extra, Order Ref 75P/4
MAINS 230 V FAN best make "PAPST" 4% square, metal blades, £8. Order Ref 8 P 8
2MW LASER Helium neon by Phillips, full spec $£ 30$, Order Ref 30P1. Power supply for this kit form with case is $£ 15$, Order Ref 15P16. or in larger case to house tube as well $£ 18$, Order Ref 48 P 2 . The larger unit, made up, tested and ready to use, complete w th laser tube $\mathbf{~ 6 6 9 ,}$ Order Ret 69P1
$1 / 3 \mathrm{HP} 12 \mathrm{~V}$ MOTOR - THE FAMOUS SINCLAIR C 5 brand new E15, Order Ref 15P8
SOLAR CHARGER holds 4AA nicads and recharges these in 8 hours, in very neat plastic case, $£ 6$, Order Ref 6 P3
FERRITE AERIAL ROD $8^{\prime \prime}$ long $\times 3 / 8$ diameter, made by Mullard Complete with 2 coil formers 2 for $£ 1$, order Ref 832 B AIR SPACED TRIMMER CAPS $2-20$ pf ideal for precision tuning UHF circuits, 4 for $\varepsilon 1$, Order ref. 818 B
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out 150 watt upright mounting, £7.50, Order Ref 7.5P/5 and a 250 W version is $£ 10$, Order Ref 10P79
5RPM MAINS DRIVEN This is a shaded pole motor $\varepsilon 5$, Order Ref 5 P54
POWER SUPPLYUNIT mains in, dc out, cased 45 V 100 mA A1 Order Ret 1046 V 200 mA £1, Order Ref $1036 \mathrm{~V} 700 \mathrm{~mA} £ 1$, $\begin{array}{ll}\text { Order Ref } 103 \mathrm{~A} & 24 \mathrm{~V} 200 \mathrm{~mA} \text { ' } £ 2 \text {, Order Ret. } 2 P 4 \quad 12 \mathrm{~V} 2 \mathrm{~A} \varepsilon 6 \text {, }\end{array}$ Order Ref 6P23
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input, $\mathbf{E 6}$, Order Ref 6 P23 ATARI 65 XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only E19.95, Order Ref $19.5 \mathrm{P} / 5 \mathrm{~B}$
80 W MAINS TRANSFORME
80W MAINS TRANSFORMERS two available, good quality both with normal primaries and upright mounting, one is 20 V 4 A ,
Order Rel 3 P 106 the other 40 V 2 A . Order Ref. 3 P 107 , only $£ 3$ Order Rel. 3P106 the other 40V 2A. Order Ref. 3P107, only £3 each
PROJECT BOX is appro $\times 8^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime \prime}$ " metal sprayed grey, louvred ends for ventilation otherwise undrilled Made for GPO so best quality, only £3 each, Order Ref $3 P 74$
WATER VALVE 230 V operated with hose connctions, ideal for auto plant spray or would control air or gas into tanks etc £1each, Order Ref 370
BT POWER SUPPLYUN
BT POWER SUPPLY UNIT output 9.5 V AC at 600 mA , in black plastic case with 13A plugs to go straight into socketand approximately 3 metres of twin output lead. Price $\mathbf{£ 1 . 5 0}$ Order Ref 1.5P7,
BUILDING YOUR OWN PSU, battery charger, night light, or any other gadget that you want to enclose in a plastic case and be able to plug into a $13 A$ socket? We have two cases, one 3 㘳" $\times 2 \xi^{\prime \prime}$

500 V BRIDGE MEGGER developed for GPO technicians the Ohmetert 8 B is the modern equivalent of the bridge megger. 9 V battery operated, it incorporates a 500 V generator for insulation lesting and a null balance bridge for very accurate resistance measurement Ex 1 . in quile good condint with data \& tested. Yours for a fraction of the original cost, $\mathbf{£ 4 5}$, Order Ref XPER
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs, of $250-0-250 \mathrm{~V}$ at 75 mA and $6,3 \mathrm{~V}$ at 3 A £5 Order Ref 5P167
15W 8 OHM $8^{\prime \prime}$ SPEAKER \& $3^{\prime \prime}$ TWEETER made fo discontinued high quality music centre, gives real hi-fi, and only £4 per pair, Order Ref 4P57.
3V SOLAR PANEL price £3, Order Ref. 5P189
WATER PUMP very powerful with twin outlets, an ideal shower controller, mains operated, $£ 10$, Order Ref 10P74 Ditto but with a single outlet, same price $\&$ order ref. Please specify which one you require
$0-1$ MA FULL VISION PANEL METER 2% " square, scales 0 100 but scale easily removed for re-writing $£ 1$ each, Order Ref 756
U METER illuminate this from behind becomes on/o indicator as well, $1 \mathrm{k} / \mathrm{k}$ square, 75p each, Order Ref 366
EDGE-WISE PANEL METER ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in led, $500 \mu \mathrm{~A} f$ sdd, scaled 0 5, £1 each, Order Ref 131.
THIS MONTH'S SNIP is a Japanese-made 12 v DC or batter operated, brushless axial fan 93 mm square, its optium is 12 bit performs equally well at only 6 V and its current then is only 100 mA so it could be made into a hand-held dry battery operated cooler Or, on your desk operated by a $p, s u$ or in the car using the lighter socket Snip price only £4, Order Ref P65 Mains po
MOVEMENT ALARM goes off, with the slightest touch Ideal to protect car, cycle, doorway, window, stairway, etc etc. o protect car, cycle, doorway, window, stairway, etc etc. battery not supplied) Order Ref.2P282
PROJECT BOX a first-class, Japanese two-part moulding size $95 \times 66 \times 23 \mathrm{~mm}$ held together by 2 screws, take a battery and PCB and is ideal for many projects To name just a few, the washer bottle monitor, the Quicktest and the model railway auto signal, described in September's issue of E E This is nicely finished and very substantial. You get 2 for $£ 1$, Order Ref 876
HOLD IT MAGNETIC BASE embedded is a circular metal shallow disc, diameter approx $65 \mathrm{~mm}\left(21 / 2^{2}\right)$, is the most powerful magnet. We have yet to find anyone who can remova metal his fingers Ideal for adding extra shelves insid are metal case or to glass without drilling Its use
AM/FM MAINS RADIO CHASSIS with separate LCD module to display date and time This is complete with loudspeaker and s main powered but it is not cased. Price £3.50, Order Ref 3 5P5.
2,3 AND 4 WAY TERMINAL BLOCKS the usual grub screw ypes Parcel containing a mixture of the 3 types, giving you 100 ways for $£ 1$, Order Ref 875
$12 / 24 \mathrm{~V}$ DC SOLENOID constructed so that it will push or pull, plunger is a combined rod and piston. With 24 v is terrifically powerful but is still very good at 12 v and, of course, with any intermediate voltage with increasing or decreasing power, It has all the normal uses of a solenoid and an extra one, if wired in series with a make and break, this could be a scribing tool for marking plastics and soft metals we welcome other ideas and will give a $£ 25$ credit voucher for any used Price $£ 1$, Order ref 877
2 M 3
2M 3-CORE LEAD terminating with flat pin instrument socket, £1, Order Ret 879 Ditto but with plug on the other end so that ou could use this to extend an instrument lead $£ 1.50$, Order Ref 15 P 10
20W 5" 4 OHM SPEAKER mounted on baffle with front grille, 23. Order Ref, 3P145. Matching 4 ohm 20W tweeter on separate baffle, $£ 1.50$, Order Ref, 1.5P9

LIMITED SUPPLY ITEMS

current issul If y receive this and the next three issues posted to you free o charge

Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and
packing. Order over $£ 25$ post free.

M \& B ELECTRICAL SUPPLIES LTD
 12 Boundary Road, Hove, Sussex BN3 4EH
 Telephone (0273) 430380
 Fax or phone (0273) 410142

BUYERYS GUIDE TO ELECTRONIC GOMPONENIS 1998

Over 700 product packed pages with hundreds of brand new products. On sale now, only £2.95
Available from all branches of WHSMITH and Maplin shops nationwide. Hundreds of new products at super low prices!

[^0]: CALLIN-OPEN: MON-FRI 8.30-5.00 SAT $10.00-5.00$

[^1]: 1. DCD
 2. Rx
 3. Tx
 4. DTR
 5. Signal ground
 6. DSR
 7. RTS
 8. CTS
 9. RI
[^2]: RS232 Interface

