Build this FLASHING WIZARD'S HAT using the PCB given away with this issue.

Please tell your retailer if the PCB is missing.

UNIVERSAL I/O INTERFACE FOR PC

HEARTBEAT MONITOR
AERIAL TUNER UNIT
RAPID FUSE CHECKER
LIVING WITH IONISING RADIATION
DIGITAL TV
THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W)
MXF600 (300W + 300W) MXF900 (450W + 450W)
ALL POWER RATINGS RMS. INTO 4 OHMS, BOTH CHANNELS DRIVER FEATURES:

PRICE $61.30 + $3.70 P&P
STANTON AL500MH GOLDRING G950
PRICE $115.00 + $5.50 P&P
SPECIALIST CARRIER DEL. 72-10 EACH

Stereosonic Amplifiers - Turntables - Dimmers - Loudspeakers - 19 inch stereo rack amplifiers

THOUSANDS PURCHASED BY PROFESSIONAL USERS

OVP MOS-FET POWER AMPLIFIERS.
HIGH POWER; TWO CHANNEL 15 INCH RACK AMPLIFIERS

SUPPLIED READY BUILT AND TESTED.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OVP/MF 100 Mos-Fet Output power 110 watts RMS. Into 4 ohms. Frequency response 1Hz - 100kHz (3dB). Damping Factor 300, Slew Rate 50uVs. T.H.D. typical 0.002%. Input Sensitivity 500mV. S.N.R. -110 dB. Size 300 x 123 x 60mm. PRICE $40.85 + $3.50 P&P

OVP/MF 200 Mos-Fet Output power 200 watts RMS. Into 4 ohms. Frequency response 1Hz - 100kHz (3dB). Damping Factor 300, Slew Rate 50uVs. T.H.D. typical 0.002%. Input Sensitivity 500mV. S.N.R. -110 dB. Size 300 x 155 x 100mm. PRICE $64.35 $4.00 P&P

OVP/MF 300 Mos-Fet Output power 300 watts RMS. Into 4 ohms. Frequency response 1Hz - 100kHz (3dB). Damping Factor 300, Slew Rate 50uVs. T.H.D. typical 0.002%. Input Sensitivity 500mV. S.N.R. -110 dB. Size 300 x 330 x 175 x 100mm. PRICE $117.75 + $5.00 P&P

OVP/MF 450 Mos-Fet Output power 450 watts RMS. Into 4 ohms. Frequency response 1Hz - 100kHz (3dB). Damping Factor 300, Slew Rate 50uVs. T.H.D. typical 0.002%. Input Sensitivity 500mV. S.N.R. -110 dB. Size 300 x 330 x 175 x 100mm. PRICE $220.25 + $5.00 P&P

Note: Mos-Fet modules are available in two versions: Standard - input Sens 500mV, Band width 100kHz. Pro Power Module, Exceptional performance Monitor Spekeret 775mV, Band width 50kHz. Order standard or Pro.

Vu Meter Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 LED's (green, red) plus an additional on/off indicator. Suitable for both a.c. and d.c. control. Delivery approx. 1 week. Price £13.25 + £4.00 P&P

Loudspeakers Large selection of specialist loudspeakers available, including cabinet fitting, speaker grilles, cross-overs and high power, high frequency horn assemblies and large (A4) S.A.E. (50 stamped) for complete list.

McKenzie Instruments, P.A., Disco etc.
ALL MCKENZIE UNITS 6 OHMS IMPEDANCE
100 WATT PB1-100GP. GUITAR, DISCO, EXCELLENT MID. RES. FREQ. 400, RESP. FREQ. TO 7Kz, SENS 99dB. PRICE $31.45 + $2.00 P&P
150 WATT C1-150GP GUITAR, DISCO, EXCELLENT MID. RES. FREQ. 400, RESP. FREQ. TO 8Kz, SENS 99dB. PRICE $36.00 + $2.50 P&P
200 WATT PC1-200GP GUITAR, DISCO, EXCELLENT MID. RES. FREQ. 400, RESP. FREQ. TO 8Kz, SENS 99dB. PRICE $38.00 + $2.50 P&P
150 WATT PB1-150GP HIGH POWER GEN. PURPOSE, LEAD GUITAR, DISCO. RES. FREQ. 400, RESP. FREQ. TO 7Kz, SENS 96dB. PRICE $36.00 + $2.50 P&P
300 WATT PB1-300GP HIGH POWER GEN. PURPOSE, LEAD GUITAR, DISCO. RES. FREQ. 400, RESP. FREQ. TO 7Kz, SENS 96dB. PRICE $40.90 + $3.50 P&P
150 WATT C1-150GP TWIN CONE. LOW FREQUENCY, POWER, WIDE RESPONSE. P.A. VOICE, DISCO, RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $58.00 + $4.00 P&P
200 WATT C1-200GP TWIN CONE. HIGH POWER BAD. KEYBOARD, DISCO, P.A. RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $61.90 + $4.50 P&P
300 WATT C1-300GP TWIN CONE. HIGH POWER BAD. KEYBOARD, DISCO, ETC. RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $62.90 + $4.50 P&P
400 WATT PB1-400GP TWIN CONE. HIGH POWER BAD. KEYBOARD, DISCO, ETC. RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $80.90 + $5.00 P&P
500 WATT PB1-500GP TWIN CONE. HIGH POWER BAD. KEYBOARD, DISCO, ETC. RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $104.60 + $5.50 P&P
600 WATT PB1-600GP TWIN CONE. HIGH POWER BAD. KEYBOARD, DISCO, ETC. RES. FREQ. 300, RESP. FREQ. TO 1KHz, SENS 99dB. PRICE $147.95 + $6.00 P&P

Earbenders Hi-Fi Studio Intal Etc.
ALL EARBENDERS UNITS 8 OHMS. These units are dual impedance. Price £3.50 (8ohm) £4.00 (4ohm)
8 WATT EBB-08 500 IMPEDANCE. TAPPED 4/8 OHM BAD, H.F. IN-CAB. RES. FREQ. 800, RESP. FREQ. TO 1KHz, SENS 98dB. PRICE £9.50 + £2.50 P&P
15 WATT EBB-08-015 IMPEDANCE. TAPPED 4/8 OHM BAD, H.F. IN-CAB. RES. FREQ. 800, RESP. FREQ. TO 1KHz, SENS 98dB. PRICE £13.60 + £2.50 P&P
15 WATT EBB-08-015 IMPEDANCE. TAPPED 4/8 OHM BAD, H.F. IN-CAB. RES. FREQ. 800, RESP. FREQ. TO 1KHz, SENS 98dB. PRICE £13.60 + £2.50 P&P
15 WATT EBB-08-015 IMPEDANCE. TAPPED 4/8 OHM BAD, H.F. IN-CAB. RES. FREQ. 800, RESP. FREQ. TO 1KHz, SENS 98dB. PRICE £13.60 + £2.50 P&P
15 WATT EBB-08-015 IMPEDANCE. TAPPED 4/8 OHM BAD, H.F. IN-CAB. RES. FREQ. 800, RESP. FREQ. TO 1KHz, SENS 98dB. PRICE £13.60 + £2.50 P&P

The very best in quality and value
Made especially to suit today’s need for compactness with high output sound levels. Finished in hard white black vinyl with protective corners, grille and carrying handle. Each unit incorporates a 12" driver, plus high frequency horn for a full frequency range of 40Hz-20kHz. Both models are 8 ohm impedance. Size: 592 x 15 x 212-

CHOICE OF TWO MODELS

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OVP 12-100WATTS (100G) PRICE £163.50 PER PAIR
OVP 12-200WATTS (200G) PRICE £214.50 PER PAIR

SPECIALIST CARRIER DEL. £15.50 PER PAIR

In-Car Stereo Booster Amps

THREE SUPER HIGH POWER CAR STEREO AMPLIFIERS
150 WATT (75 - 75) Stereo, 150w Bridged Mono 250 Watts (125 - 125) Stereo, 250w Bridged Mono 400 Watts (200 - 200) Stereo, 400w Bridged Mono

ALL POWERs INTO 4 OHMS

Price: £140.00 + £5.00 P&P

Stable, bridged mono + Choice of level input high level or low level, + remote on/oFF + Speaker & thermal protection.

DELIVERY INCLUDED V.A.T., PROMPT DELIVERY, FRIENDLY SERVICE, LARGE (A4) S.A.E. STAMPED FOR CATALOGUE.

Prices: £150.00 + £5.00 P&P

DELIVERY INCLUDED V.A.T., PROMPT DELIVERY, FRIENDLY SERVICE, LARGE (A4) S.A.E. STAMPED FOR CATALOGUE.

www.americanradiohistory.com
Features & Projects

Rapid Fuse Checker
Mark Daniels provides the details for this simple project.

Universal I/O Interface for a PC
Converting your computer to a sound sampler is just one of the many applications this very useful project can provide. Neil Johnson gives the details.

Coping With Radiation
Douglas Clarkson reports on one of the hazards of everyday living.

Heartbeat Monitor
Build this sensitive amplifier to keep an eye on your health. Shabaz Yousaf explains.

The AutoMate Mixing Desk Part 7
This month, Mike Meechan examines the subject of EQ and the reason for it.

A Flashy Wizard’s Hat
Be the star of the party by building this novelty LED sequencer with our cover PCB. Andrew Armstrong reports.

Aerial Tuner Unit
Use this simple device to maximise the signal strength of incoming radio signals

Digital TV Part 5
James Archer presents the final part in the latest ideas for Digital TV.

Contents

Regulars

Open Channel .. 4
News ... 5
News Stateside ... 9
PCB Service ... 44
Photocopy Service .. 46
PCB Foils .. 62

Editorial

by Paul Freeman

What is the difference between a TV and a computing system? The differences should be easy to describe. This may have been the case in the past but nowadays the definition must vary according to the job the computer can perform. This software driven machine can calculate, present data, text and graphics on screen and provide synthetic and sampled audio. Most people might describe television as a box of moving pictures with sound.

Very soon the differences will not be easy to describe because computers are now and will be using more animated high resolution ‘pictures’ coupled with sound and TVs are adopting larger memory storage for display of data (teletext) and picture-on-picture information for seeing ‘whats on the other side’. Solid state recording of data is also a possibility. The Multi-Media package

Promotions, PR and Ad-people have in the past used slide and overhead projectors and sound reinforcement to add to the effectiveness of their campaign. Now Multi-media systems are replacing those old tools. Like a travelling salesman with suitcase in hand, the technology can ‘do-it-all’ for them. TV, audio and computer technology have combined to produce their requirements. Although not new, (Who remembers Advanced Interactive Video?) the older technology suffered from bulky packages. Now, with laptops and CD ROMs the media boys are mobile thanks to the two technologies merging. So your TV of the future could well be a computer producing sound vision and data.
It's not often I get fan mail, but I did get one letter recently from a very reverend gentleman from Port Elizabeth in South Africa. He refers to my comments in June's Open Channel, when I discussed a new dog collar which emits an ultra sonic signal whenever the dog barks. Then he goes on to describe Port Elizabeth as a city with a 700,000 strong human population and seemingly almost as many dogs. Apparently, each month in Port Elizabeth some 4,500 people are bitten by dogs. Indeed, in the course of his work, he himself has been bitten many times.

As an avid electronics enthusiast he built a project which is, in essence, an ultrasonic dog repeller - printed originally in a rival electronics magazine to ETI. He says it works well but is expensive. A cheapo design would he feels, be very popular.

It's an interesting thought. Most people in the UK now have access to such dog repellers and it's estimated that many of them are saved the trauma of dog bites with their use. It's also interesting to consider that use of an effective dog repeller renders useless the very fact why some people have dogs in the first place - to deter people from entering the property where the dog is kept. With an effective dog repeller, anyone - postman, policeman, burgler, vicar, tinker, taylor and so on, can gain access without trouble from the dog.

I suppose it depends on what kind of state you live in - democratic state, soap box state, soap opera state, police state - as to how dog repellers are viewed. It's probably not beyond the credibility of most ETI readers to learn that in South Africa, dog repellers have been banned by the police.

Perhaps some of our new readers could design a simple but effective dog repeller (shotguns are not acceptable!) in a sort of competition, over the next few months. Accent on novelty and portability please - maybe built-in to a human dog collar (which means the gentleman concerned has the perfect cover when questioned by the police why dogs avoid him). Send proto-types to me via the editor. I'll try them out on my dog to decide the best.

TV Times

Considerable rethinking has to be done by the Independent Television Commission (ITC), the body charged with the responsibility of governing the Independent Television network. This is because the ITV companies around the regions are finding it increasingly difficult to maintain profitable operation, given the restrictive controls forced upon them recently. Theoretically, ITV companies cannot merge and even cannot hold a large part of one another's shareholdings.

Yet television is becoming more of an open market. Under Governmentally imposed regulations ITV companies will see their market shares reduce, and they cannot do much to restrengthen their positions. Even worse, in just over a year's time, foreign television companies will be able to buy into our ITV market, even though those foreign governments will not allow our companies to do the same with theirs.

Something has to give. Recently, Yorkshire Television and Tyne Tees Television were allowed to merge - in a deal agreed by the ITC to be a very special case. If this is a one-off special case (and no further mergers allowed) then trouble is just around the corner. ITV companies in a supposedly free market are not free at all to do what is best for their business. Laws will have to be changed.

If this isn't a one-off then rules are going to be bent in finely tuned ways as the ITV companies' lawyers can dream up. If more than just a couple of loopholes are found in current legislation, then the whole thing is going to look like something of a mockery.

Trouble At Paddy Rise

Following on from my comments last month about the wonders of technology; filing my column in true roving reporter mode - from the far flung corners of the globe in computerised fax format, I've hit upon a snag. If you didn't catch ETI last month, I'll give you a rapid update: I'm on an extended working holiday, taking family and friends caravan, computer fax, deaf dog and fortunately pen and paper around the country and beyond for the summer or until the money runs out.

Things were fine while I was able to pitch the caravan on sites with an electric hook-up. Here there is power enough to switch on the caravan reading lamps, heat the water, chill the wine, shower the dog and most importantly boot up the computer to allow me to process a few words. Things were even better when the odd phone point could be located within reach of the computer. Then I could download all I'd written since the previous tumultuous meeting of Faraday's dream, Bell's nightmare and Babbage's joke.

But problems arose as the caravan headed evermore westward, mains electricity and telephone points became evermore scarce. Finally, around the time this column began to emit a glimmer of formulation in my mind, the twain began never to meet at all - if you follow my gist. Here on the western shores of Ireland, overlooking the Atlantic it's darn nigh impossible to get a caravan site with electricity at all, let alone find one with hook-up points. As for telephones, the locals would never allow those new fangled gadgets anywhere near the peat bogs in case the countryside becomes spoilt by progress.

So here I am relying on the original communications method complete with writer's cramp. So this month's column is by pen, paper and post. It is I suppose a delicate reminder that technology only goes as far as we let it and we can stop it any time we want.

Keith Brindley
The need to provide music for church services on board Royal Naval ships has inspired a Naval Engineer Officer, Sub Lieutenant Jeff Crofts (22) from Bristol, to design and build the MIDI Accompanist, gaining him the top award in the Young Electronic Designer Awards (YEDA) competition.

The MIDI Accompanist relies on the MIDI (Musical Instrument Digital Interface) connection found on the back of most modern electronic keyboards. The MIDI Accompanist is a sequencer, as it is a dedicated unit that gives instructions on the MIDI Interface concerning the sequence of previously stored notes that are to be produced by the keyboard.

The MIDI Accompanist reads the music from cartridges that must be recorded and encoded, but allows the user flexibility in controlling how they are played back. The user can control the speed and can transpose the music while it is playing. Playback can also start with an optional introductional phrase.

The data is held on a 64K byte PROM, which represents some 128000 notes in up to 200 sequences. The Accompanist is expandable to hold 4 such PROMs. The music is originally played on a keyboard and recorded on a PC using a commercial sequencer program. The music is edited then stored as MIDI files. These files are heavily compressed by a specially written PASCAL program, to produce a proprietary file format. Information is added concerning how the music sequences should be replayed, and the complete cartridge is programmed.

Sub Lieutenant Crofts designed the instrument whilst studying at the Royal Naval Engineering College (RNEC), Plymouth. For the second year running an RNEC entry has won the YEDA top award.

ETI OCTOBER 1992

Gardners of Christchurch offers a toroid transformer design and manufacturing facility which produces high-performance coils for the most extreme operating environments.

Aerospace, military and transport represent typical areas of application for toroids which must endure severe ambient conditions, these include the outer limits of ‘G’ forces, temperature swings, vibration and humidity.

Recent applications for specialised toroids include one for high G force aerospace instrumentation which required the use of an aluminium reinforced resin bonding technique.

Further information contact Gardners Limited
Tel: (0202) 482284.
In what should be called the ultimate in function watches, the new multifunction LCD watch from Maplin is an extremely well-specified digital watch which couples renowned Casio quality with a host of useful features. The normal timekeeping display shows the day of the week, date, year and the time in hours, minutes and seconds. A 'chronometer' function automatically compensates for leap-years and months of differing length. A 24-hour stopwatch works to a resolution of 1/100 second.

In addition to a switchable daily alarm and an hourly bleeper, there is a countdown alarm. Also featured is an extremely useful 8-digit 4-function calculator with a watch face keypad. This keypad is also used to enter data into the 50-page telephone and scheduling memories. Each telephone memo 'page' can comprise 8 letters and 12 numbers, while the scheduling facility will allow 5 letters per page. To prevent unauthorised people from gaining access to any information stored in the watch, a 'private' password function has been incorporated. Further security devices include a battery power fade display. Certainly a unit to watch out for.

The data bank watch costs £31.95 (including VAT) from Maplin Electronics.

The Home Office is now using two videoconferencing systems supplied by PictureTel Corporation. The Model 400 is a complete videoconferencing system on wheels and can be rolled to any location. Once connected to a power point and a telephone socket, it is ready to use.

The video calls are dialled like an ordinary telephone call, and cost around £15 for one hour. Videoconferencing has already been used to give evidence in the UK civil court, in May 1992, and in a criminal trial, in 1991. The General Council of the Bar and the Law Society are both regular users of PictureTel videoconferencing equipment. Videoconferencing is already used for court hearings in the US. PictureTel Corporation is headquartered in Danvers, Mass., USA, and established its European headquarters in the UK in May 1991. The company has been selling equipment in Europe since 1988. In 1991 PictureTel's turnover was $78 Million.

Pilots navigating the Severn will carry the portable receiver on board in its own briefcase and receive real time pictures broadcast over a VHF voice channel from the shore based radar stations enabling pilots to see construction activity on the far side of the bridge site-long before they reach it - improving navigational safety particularly during poor visibility.

The Harbour Controller, in the operations centre receives a raw radar image transmitted over telephone lines without loss of integrity. Able to verify continuously the position of construction traffic, buoys, changing sandbanks, anchored vessels and uncontrolled inshore traffic the Controller is not dependent on what the ships are saying, he will see for himself. This also allows Controllers to assess accurate arrival times of visiting vessels.

DE Electronics developed Pilotwatch from its data compression image transfer technique which communicates real time images without loss of integrity. Capable of high resolution and positioning accuracy it transmits an eight colour image. All vessels in the VTS area share the same images from the same shore based antennae: Radar pictures can be broadcast from any number of radar stations, over a standard VHF channel to any number of portable receivers regardless of their position, direction or speed, something which no microwave based system can do.

It differs from conventional radar systems in that it does not use expensive microwave links. Instead, it severs the connection between transceiver and display and communicates the analogue "A scan" output from the IF amplifier. The encoding system uses a four dimensional, data compression algorithm to transmit the raw radar image to the original radar display.
Arom has released a powerful new multimedia adapter board for PCs which allows colour video and VGA signals to be combined into a single display. Integrating text/graphics and live/still video windows provides the means to reduce hardware costs and improve user interface ergonomics in a wide variety of professional computer system applications including process control, security, image processing, positioning and automation. Designated PCVide, the PCbus plug-in is priced at £740.

The combined VGA/video display is very easy to control, providing a flexible building block for system designers. A camera, VCR or TV video source - in PAL, NTSC or SECAM format - may be software-selected from the board's three inputs. Video windows can be selectively displayed, scaled from full screen down to 1/64 size, and positioned in the VGA graphics/text display by either colour keying to the VGA signal, or by defining X-Y coordinates. One live video window may be displayed, plus an unlimited number of captured - or frame-grabbed - stills. Still images may be accessed by the host PC CPU, enabling designers of vision recognition systems to employ image processing techniques. Still images may also be saved to disk, or loaded from disk to a window, for applications where archiving and recall is required. A library of C routines is provided with the board to facilitate software development.

The design of PCVide is based around Chips & Technologies' 82C9001 device for image capture and display, plus a Philips chip set to decode/matrix the composite video. Three quarters of a megabyte of video RAM is provided onboard to support the full colour operation. Memory accessing can be selected to operate in either linear or page modes, enabling designers to optimise the system's performance depending on which particular 80XXX-family CPU is resident in the host PC.

PCVide is a half-size board with a 16-bit interface, and plugs into any standard PCATbus expansion slot. The only additional connections required, apart from the three video inputs, are the VGA signal input and output, and a Feature connector in order to Genlock the two displays.

In addition to the dual display function, Arom has included a number of useful hardware facilities on PCVide to simplify installation, configuration and maintenance. An advanced offset addressing scheme reduces the number of bytes required for PCVide to just four, making it easy to install in the PC's limited free I/O space. Hex dials are provided to set this address, in preference to DIL switches. Monitor LEDs assist system integrators with system commissioning and diagnostics; one indicates the board has been selected, another that live video is present.

Further details contact: Alan Timmins at Arom Control Systems Ltd, Tel: (0223) 411200

SIEMENS, IBM AND TOSHIBA TO DEVELOP NEW SEMICONDUCTORS

Three of the world's leading semiconductor companies - Siemens AG, IBM Corp., and Toshiba Corp. - have announced an alliance that will result in advanced semiconductor devices for the end of this decade and into the next century.

The three companies will cooperate in development of a 256-megabit dynamic random access memory (DRAM) and its technology. This sophisticated submicron technology will be a basis for production of future generations of highly dense chips.

For customers, this agreement should accelerate availability of memory chips with 16 times more capacity than are available today, as well as other advanced computer components, such as microprocessors and chips for telecommunications.

Siemens and Toshiba will also conduct project-related activities at their own facilities. The development team will focus on the process technology for fabricating features only 0.25 microns wide - 400 times narrower than a human hair. (One micron is one millionth of a metre).

At the peak of the development phase, more than 200 researchers from the three companies will support the effort.

By teaming up, the three firms aim to speed up the multyear development process and be first with quarter-micron technology in their products.

"The agreement enables the earliest availability of latest chip know-how for systems applications," stated Karlheinz Kaske, president and Chief Executive Officer, Siemens. "It contributes to future applications in telecommunications and industrial fields far beyond the turn of the century, and assures our customers of our engagement in microelectronics."

DRAMs are fingernail-size silicon devices that store electronic data in products ranging from mainframe computers to home appliances. The 256Mb DRAM, using quarter-micron technology, will be able to hold the entire works of William Shakespeare and Johann Wolfgang Goethe, as well as the Manyoshu, the Kokinshu, and the Tail of Genji. There would be still enough bits left to store a typical edition of the International Herald Tribune. The 256Mb chip will follow the 64Mb DRAM, now under development by several companies, and today's 16Mb chip, which IBM was first to introduce into a product earlier this year.

The DRAM development process is a technology driver. The knowledge and expertise gained in developing a new generation of memory chip can be applied to other, more sophisticated semiconductor devices, such as microprocessors and other logic devices.

The three-way alliance announced today is an outgrowth of separate, longstanding relationships among the companies. Siemens and IBM currently work together in 16Mb DRAM manufacturing and 64Mb DRAM development. Recently, IBM and Toshiba signed a flash memory technology agreement. Siemens and Toshiba have been collaborating in various semiconductor areas, including 1Mb DRAMs, standard cells, and gate arrays.

ETI OCTOBER 1992
PATTERN RECOGNITION TECHNOLOGY ACHIEVED BY NEURAL NETWORKS

One of the first applications of Neural Computer Sciences' powerful new PC-based neural network package called NeuralDesk, is likely to result in the widespread availability of intelligent, fully-automatic, signal recognition systems. The application is by Domain Dynamics, who have used the package to automate the recognition of data from the output of its signal processing technique, TESPAR (Time-Encoded Signal Processing And Recognition). Currently available in the form of two circuit boards, TESPAR is capable of being converted to a single piece of silicon - opening up a host of applications such as recognition of individual voices or signatures for security purposes, or machinery health monitoring.

TESPAR provides an efficient means of capturing and storing a single elemental 'signature' of acoustic activity, which then provides a reference for recognising patterns. The technology solves long-standing problems in pattern recognition and has recently been licensed by numerous major corporations.

The circuitry is processor-based and digitises sample data, for example a person speaking, into special codes which represent the waveform. The code system creates a new digital language for describing and comprehending acoustic information. It outputs these numerical codes as matrices. From these samples, a single statistically-relevant reference or archetype-matrix is generated, regardless of the length of data analysed. Up to now, comparing this reference to new data in order to recognise patterns has involved the use of statistical correlation techniques. The reference data provided by TESPAR is extremely compact, a couple of hundred bytes, it is ideal for use in embedded and real-time systems, and Domain Dynamics has been searching for a means of automating the matching process. Neural Computer Sciences' neural network provides the solution in an efficient way.

The neural network provides a means of automatically comparing new data with the reference matrix and quickly distinguishes between the input which, although slightly different to the reference, is an acceptable match, and data which varies slightly. As the circuitry required to embed a neural network is quite modest, Domain Dynamics expects to be able to produce a single-chip neural network plus TESPAR solution within one-two years. Very high volume applications such as ultra-smart cards for biometrics recognition including signature indentification, and smart locks, are just two potential end applications of this combination of technologies.

Domain Dynamics is now working with NCS to develop neural network-based matching systems which are geared for simple real-world use. For example, one likely product for condition monitoring is based on a 'traffic light' principle. This would use the neural network to drive three LEDs which provide a continual status indication of machinery health. The neural network is trained using recorded data of the machinery, and could be programmed to light a green, yellow or red LED depending on how far data deviated from the norm. This could be used to protect expensive or safety-critical machinery such as turbines for power generation or aircraft engines.

For further details please contact:
Nick Hallwood,
Neural Computer Sciences, Tel: 0703 667775

LIVING WITH LASERS

Lasers can be used to correct shortsightedness, remove birthmarks, drill teeth, make holograms and eavesdrop on other people's conversations. 'Living With Lasers' an exhibition that looks at the widespread use of laser technology in daily life, opened on 15 July, at the Science Museum. It is the second in the 'Science Box' series of rapid response exhibitions on contemporary science, sponsored by Nuclear Electric plc.

Professor David Phillips, Head of Chemistry at Imperial College, who opened the exhibition said: 'When the first laser was built in 1960 it was termed a 'solution in search of a problem'. Since then lasers have found and solved an incredibly diverse range of scientific problems and continue to spawn new areas of research. This exhibition highlights just some of these remarkable and still evolving advances'.

Street theatre-style performances and drama workshops where children become a laser beam are among the "Living With Lasers" special events that have taken place over the summer. Holography lasers in medicine and whether or not Star Trek's matter transporters will come true are just some of the lecture topics that will be explored.

The 'Living With Lasers' exhibition explains why laser light is different from ordinary light. It also covers applications of laser technology in Communications, Medicine and dentistry, at home, at the office or in the shops.

The exhibition also has a laser light display and a specially commissioned hologram.

Special drama events for "Living With Lasers" have been developed by the Science Museum in conjunction with Floating Point Science Theatre (FPST). Street-theatre style performances provide a light-hearted introduction to the applications of lasers using mime. Visitors find out through audience participation how a laser decodes a bar-code. Children's drama workshops explore how light is generated; how laser light is absorbed by tattoos and port wine birthmark stains; and what makes laser light different from ordinary light. Members of FPST are all qualified scientists or engineers as well as mime-physical performers. They specialise in combining science and art to create exciting and fun events.

Living with Lasers is on until 30th September 1992 at the Science Museum in Exhibition Road, London.
Development of the custom chip took four years. The company previously had published scholarly papers about the experiment but went public with the details of the chip after making certain performance improvements.

The chip uses 992 synaptic connections (96 bidirectional connections) among 32 on-chip neurons. The synapse array consumes the bulk of the silicon real estate. Each synapse digitally stores 5-bit weights ranging from -15 to +15. To speed processing over methods that convert analogue inputs into digital ones, Bellcore's approach enforces the effect of the synaptic weights by multiplying the analogue voltage inputs by each weight and outputting the result as analogue current.

Unlike previous versions of the experimental microchip, the new version can be cascaded to literally any network size. The 128-pin device's expandability derives from its having half its pins dedicated for data paths that can lead to adjacent chips in a cascade.

The learning method is termed a relaxation technique because inputs to the internal neural network stimulate it to a higher energy level before allowing it to relax into its lowest energy state. The lowest energy state defines the output of a standard engineering I/O function. The learning method then detects the error in that output state (compared with the known correct output) and adjusts its internal synaptic weights until each input is relaxed into the desired output. After all of the I/O pairs have been learned, the neural network can be inserted into working systems.

The new chip uses feedback connections for speedier detection of errors during the learning phase and for quick retrieval of static patterns after learning.

Bellcore plans eventually to integrate the silicon into its existing telephone-switching systems with custom 'glue' microchips. It cited several telecom applications for the chip, including network management, operations, telephone-call routing, cellular-phone frequency assignment, data compression and voice recognition.

Virtual reality

Virtual reality is now attracting the attention of major electronics companies seeking to tap the technology's potential for future products as well as research applications. Virtual laboratories would make it possible not only to simulate a design or condition but also to interact with it and control the simulation while it is running.

At IBM's T.J. Watson Research Centre, six researchers are exploring scientific uses for virtual reality. The general theme of the work is the creation of a virtual laboratory.

In the past, problems that resisted algorithmic solutions required physical models to test possible solutions. But high-speed computers have allowed simulations to serve as precursors to actual models.

Now, a new breed of specialized input and output devices from helmet-mounted displays to electronic body suits are available.

Virtual reality could allow scientists to bring their native perceptual abilities to bear on a problem instead of just applying their intellects.

Real-time interactive simulations could greatly simplify the running of interactive solutions. For instance, researchers could tune parameters on-line as a simulation runs to control the streamline solutions.

IBM hopes to realise its idea of computational 'steering' to solve problems more intuitively and more easily than in a conventional laboratory. "When you enter a virtual laboratory, the first thing you might do is attach an electronic version of test probes to the simulation running there in order to interact with the current experiment," said Larry Koved, IBM researcher.

Another goal of the virtual laboratory is to allow researchers to interact within a simulation. "When people work on these types of problems, they tend to work together in groups. But they may be in different locations - or looking at the same information in a different fashion," Koved said.

Car design is one discipline in which engineers must resolve ergonomic and electrical issues; for example, dashboard knobs must not only activate the correct functions, but must also be within a driver's reach. Virtual reality could simplify the resolution of such divergent problems.

"Each engineer could give the other a tour of their results even if they are in different geographical locations," Koved said.

Ultimately, some applications - such as database visualisation - may become more important than their physical correlates. "In some cases, the simulation itself will become the object of the collaboration, and since its only representation is in the medium, you will have to bring multiple people into it to explain it to them," Koved said.

Koved's group has constructed several demonstrations of its virtual laboratory concept. The latest is a three-dimensional system called Rubber Rocks, that represents each participant's perspective on separate computer screens. Participants deflect spontaneously appearing rocks away from themselves and toward the other players before the rocks explode.

It takes seven IBM RS/6000 workstations to run Rubber Rocks with two players (more participants require additional RS/6000s to render the graphic representation). One RS/6000 simulates bouncing rubber rocks, two manage communications, another reads electronic glove and head-tracking gear, and the last recognises spoken commands.

More Stateside Next Month
1992 Summer issue of Display News - now available - send large SAE - PACKED with bargains!

THE ORIGINAL SURPLUS WONDERLAND

COMPUTER SCOOPS

PC-AT 386-20DX FULLY LOADED FOR £499!

- 20 MHz DX processor
- 2 megs RAM, Exp. 10 meg
- 40 meg hard drive
- 1.2 meg 5-1/4" floppy
- 32X cache exp. 64K

Installed VGA card
Enhanced 102 key k/board
Complete with MS-DOS 3.3
2 serial 1 parallel ports
8 free slots - 6 off 16 bit!

- £499 (F)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

A COMPLETE IBM PC COMPAT SYSTEM FOR ONLY £999!!

- Complete with IBM compatible keyboard.
- IBM compatible mouse.
- IBM compatible printer.
- IBM compatible PCCard.
- IBM compatible modem.
- IBM compatible software.

Power on Product supplied complete with 12" monitor, keyboard, 256K RAM, 640K HD, 3.3 Mbyte internal disk drive, 128K extra in Expansion card. (sold separately).

- £999 (E)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

POWER SUPPLIES

Power One S3PL00-2000P 200 watt (250 W max). Semi open frame with top-of-the-line components and highest quality, comparable to top-of-the-line units costing many times more.

- £159.95 (E)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

FLOPPY DISK DRIVES

5¼" from £22.95 - 3¼" from £21.95!

- Masaya R-178D-5-D (stand alone and with DWE 5300)
- Toshiba QML5D-5-D (stand alone and with DWE 5300)

All drives to plug into host computer with built-in power supply (ideal for drives) £499.00 (F)

- Dual 5¼" drives with 2 years capacity backed up in a single host computer.
- Centronics, Commodore, Epson compatible.
- With built-in power supply!

- £229.00 (E)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

MONITORS

A NEW SPECIAL!

- Telebox MDF-5250 38cm 15" Diagonally measured with MS-DOS 3.3
- Complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

Models offer RGB connectors for VGA, Centronics and,"add-on" peripherals.

- £299.95 or £253 (F)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

SUPPLIES

- Floppy Diskettes
- £22.95 (E)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

NO BREAK UNINTERRUPTABLE PSU's

Brand new Model 3300 and Model 3200 Uninterruptable power supplies from Okuma. With National Brushless fans and 1 year warranty.

- Model 3300 (1.5 KVA) available now for £299.95 (E)
- Model 3200 (2.5 KVA) available now for £329.95 (E)

- £299.95 or £253 (F)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

COOLING FANS

- Delta 10-20c VDC brush less fan £21.44 (E)
- Multifan M300-600 600 VDC brush less fan £295.00 (E)
- OPI BM-250 250 WATT CPU cooler £257.50 (E)
- Rhoine & Schwartz SEUB TV test transmitter £250.00 (E)
- Complete with SB20 FRD Monitor £495.00 (F)
- Thomec L1800 ic logic analyzer £299.95 (E)
- Aptron Piller 400 HZ phase change frequency test unit £780.00 (E)
- Tektronics 3432-2-7 2.7 GHz wave analyzer £895.00 (E)
- Kenwood DA-3501 CD player £30.00 (F)
- AD5 250W DTH TV test transmitter £350.00 (F)

- £21.44 or £19.95 (F)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.

BRAND NEW PRINTERS

- Microlab 18L 18 dots x 17 dots dot matrix, Full width £139 (E)
- Qume LetterPro 20 dot matrix, Qume GS-1 interface £395 (F)
- Centreon 102-29 2 x 9 dot matrix, Full width £239 (E)

- £139 (E)
- In stock and available to order.
- The Display PC-System sold complete with 12" monitor, 84 key keyboard, 56K-64K-1104 floppy disk drive, 128 RAM, 2 serial and 1 parallel ports.
When an appliance, or an electronics project, fails to work the fuse is often the first component for investigation since its main function is to fail in preference to other, more expensive components. Many of the smaller fuses encountered in electronic equipment are glass types which may easily be checked visually.

Or can they? The higher current rated ones certainly can in most instances, but fuses rated at 250mA or less have a very fine wire which can be very difficult to see, even under ideal viewing conditions.

When a ceramic cartridge fuse is suspected to be faulty a visual check will normally reveal nothing conclusive, so the trusty old multimeter is then used to chase the fuse around the bench until a conclusive result is obtained. Unfortunately, the multimeter will produce the same results for a defective fuse as it does when you fail to get a good contact with the test probes! The results can be inconclusive, and the testing is certainly time consuming; an alternative piece of dedicated test equipment is thus very desirable.

The unit described in this article is both inexpensive and simple to use. The results obtained by using the Rapid Fuse Checker are virtually 100% conclusive as a visual indication is given for both good and defective fuses.

Design Criteria

A cursory glance at the circuit diagram for the Rapid Fuse Checker will reveal that no ICs are used in the construction of the unit! Perhaps not surprisingly, the device could have been designed around a single IC and a handful of passive components. The decision to use discrete devices in this application was not taken lightly as it offers significant advantages over any design using op-amps, or general purpose ICs.

The observant reader will already have noticed the complete absence of any on/off switch in the design; this is no accident as the device has been designed to use only minimal components. Anyway, as it is isolated from the drain and source terminals by an extremely thin insulating oxide layer.

Resistor, R1 serves to protect the gate from static discharges (the kind that can damage CMOS ICs), as the gate is connected to the outside world via a touch pad. For the MOSFET to conduct between its drain and source terminals its gate terminal needs to be taken to a positive voltage, greater than its threshold voltage, which for the 2N7000 is around 3 volts. A human body may make the connection between the gate and positive rail, as the current requirement is very low, approximately 300nA through R1, and the extra resistance interposed will make little difference.

With Q3 turned on a current may flow through the red LED, D3 and its current limiting resistor, R3 to ground causing the LED to light. The difference that the resistance of human flesh makes becomes significant when applied to the circuitry around the bipolar transistors, due to their inherent lower sensitivity.

The bipolar devices are operated in common emitter mode, so...

Construction

All components are assembled on a small single-sided glassfibre printed circuit board. The copper foil pattern and corresponding component overlay are shown in Figure 2. To simplify later assembly and testing fit four solder pins where the leads connect to the board and solder them in place. Then fit all the resistors, which should be fitted close to the board. The two bipolar transistors, Q1 and Q2 should be fitted next.

The MOSFET may now be fitted with great care as it requires some very careful handling. MOSFETs are static sensitive and MUST be kept in their protective packaging until ready for insertion into the board. It is suggested that the MOSFETs pins be pushed into a small piece of conductive foam, of the type static sensitive ICs sometimes come packaged in, before fitting it to the board. The foam may then be ripped away after ALL connections to the device have been soldered and it is ascertained that R1 has been fitted in its correct position. With R1 connected across its gate and source terminals the MOSFET is adequately protected and no longer requires special handling.

Fit the two LEDs to the board, ensuring correct positioning and orientation. For the recommended case the tops of the LEDs should stand about 22mm above the PCB surface, so that when fitted in the case they may locate into appropriately drilled holes in the top side of the enclosure.

The battery connector may now be fitted and connected to a 9 volt battery for initial testing of the completed PCB. Neither LED should glow until a connection is made across the two remaining PCB pins. If a suitable meter is available the current consumption of the device may be checked to ensure that it is no greater than a few microamps, anything greater will cause rapid depletion of the battery.

Placing a finger tip across the two remaining PCB pins should cause the red LED to light brightly, the green one remaining firmly off (unless the LEDs have been swapped over, in which case the green one will light). To light the green LED short the pins together with a piece of wire or similarly conductive material, the red LED should NOT illuminate this time.

Once everything is working OK assemble the board and touch pads to the case, allowing a small gap between the touch pads so that most fuses may easily be accomodated. Label the case up and put the unit into service.

Fault Finding

For those who are unfortunate enough to have completed assembly and not obtained positive test results it is unlikely that much is wrong. Check first that all components are in the correct positions and that the polarity of D1 is correct. The orientation of the transistors is fairly obvious and unlikely to cause problems.

The LEDs, however, are another matter entirely as the encapsulation gives little indication as to polarity, but if you look through the semi-transparent plastic the cathode may usually be identified as the larger chunk of metal. If you are uncertain, reverse the connections to the LEDs anyway, it almost certainly will do no harm and may even solve the problem.

The MOSFET may be a completely different ball game, however, and if any risks were taken with it during construction the chances are that they did not pay off, the only solution then is CAREFUL replacement of the device with a new one.

In Use

Operation of the completed Rapid Fuse Checker could not be simpler; simply hold the fuse to be tested by its end caps and place it across the test pads of the unit. A green light for go, put the fuse back in circuit, or a red light for nogo, place the fuse in the bin! The red light indicates that the fuse has been successfully tested, in so far as the connections made with its endcaps were good.

If the fuse is too large to fit across the test pads (see photograph) an alternative method of testing is to use the "Red Light Method", touch one of the touch pads with one hand and holding the fuse in the other hand by one terminal touch its other terminal to the second test pad. With this method the red LED lights for a good fuse, neither for a blown one.
Some care is necessary when using this method as a ruptured fuse may still be sufficiently conductive (due to metal sprayed by the arc onto the inner walls of the cartridge) to light the red LED, in which case a supplementary test with the trusty old multimeter may be in order.

EASY-PC PCB and Circuit Diagram CAD

Forget using tapes and lightbox! Create your Circuit Boards using CAD - like the professionals.

- Runs on PC/XT/AT etc. with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design Schematics Single and Double sided and Multilayer boards including Surface Mount.
- Standard output includes Dot Matrix / Laser / Inkjet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Extremely powerful.
- Very easy to use.
- Not copy protected.

Over 13,000 Installations in 70 Countries Worldwide!

For full info' please write, phone or fax:

Number One Systems Ltd.

The Electronics CAD Specialists.

Technical support is free, for life!

Only £98.00!

Plus P&P+VAT

REF: ETI, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.

Telephone: 0480 61778 (7lines) Fax: 0480 494042 ACCESS, AMEX, MASTERCARD and VISA Welcome.
Beginner or advanced hobbyist

EBBO®
is the right system for you

Once hobbyists had to buy "professional" Solderless Breadboards paying "professional" prices, but now there is EBBO, a total Breadboarding System at a hobbyist's price. EBBO can be as simple or as ambitious as you want it to be, the only limit is your own imagination or skill.

Send for detailed colour catalogue and price list:-
AP Products Ltd
28 Gold Street,
Saffron Walden, Essex CB10 1EJ
Tel: 0799 526602 Fax: 0799 527408

ETI OCTOBER 1992
Universal Interface Card for the PC

'Intercard 1'

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>8 bit half card + card end plate</td>
</tr>
<tr>
<td>Memory Location</td>
<td>In I/O map, region 300-31F (prototype board)</td>
</tr>
<tr>
<td>Memory Required</td>
<td>4 consecutive addresses, allowing 8 possible starting addresses, i.e., 300, 304, 308, 30C, 310, 314, 318, and 31C</td>
</tr>
<tr>
<td>Busses</td>
<td>8 bit Data bus, 8 bit Address bus + Read/Write and enable signals</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>Two 8 bit bi-directional ports + Read/Write</td>
</tr>
<tr>
<td>Analogue Input</td>
<td>600 ohm nom. impedance, 320mV rms</td>
</tr>
<tr>
<td></td>
<td>Filtered: 10Hz - 7KHz</td>
</tr>
<tr>
<td>Analogue Output</td>
<td>Low Impedance, 2.6V rms</td>
</tr>
<tr>
<td></td>
<td>Filtered: 10Hz - 7KHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>At least 14KHz, to satisfy Nyquist rate</td>
</tr>
<tr>
<td>Other</td>
<td>It would be nice to have available a +5V supply for testing of small digital circuits or driving opto couplers/isolators</td>
</tr>
</tbody>
</table>

Design & Development by Neil Johnson

Ever since my first humble beginnings in the world of computing on a ZX81 (and proud to own up to it!) I've always wanted to be able to connect a computer to the 'real world'. Although I never succeeded with the ZX81, I did design and build a simple interface board for my next computer, a VIC20. I also began to get into assembler programming as the only alternative was BASIC, which was too slow for my tastes. After several other add-ons, I didn't progress much further until I began my engineering degree at Surrey University. During the first term I treated myself to a PC-AT clone, with a 286 under the bonnet. Coupled with a hard disk and VGA screen I had a fairly powerful system. Now my dreams could be realised!

My eyes aglow I opened up the lid of my new machine and, after the initial excitement at seeing the shiny new motherboard, felt slightly dismayed at the lack of user-friendly hardware connections. Oh sure there were the customary printer and serial ports, but to actually get to the bones of the system, namely the system busses, a special plug-in board would have to be fitted. After flipping through several PC magazines I soon reached the conclusion that to buy such a board would cost the equivalent of eating for a term. But hang on a minute, I'm studying for a degree in electronics engineering, surely I should be able to design and build a simple interface card for a PC? After all, it was only a double sided edge connector in there.

So, with pinto in one hand and mighty pen in the other, I set about laying down the basic requirements of such a board. After several months at this, interspersed with lectures, studying, exams, parties, exams and more parties, I finally had some sort of specification. This was further refined until the final specification was drawn up, outlined in Figure 1. Just a few comments. The starting addresses (base addresses) have a $ symbol in front of them to signify that these are hexadecimal (base 16) numbers. The analogue input and output levels have been specified to be compatible with most audio mixers that have effect send/return loops. Hence another feature of this board is that it can enable the computer to be used as a digital effects unit in a home recording system. Although an upper frequency limit of 7kHz has been specified, mainly because of the highest rate my PC could sample, it is very easy to raise or lower this, more details later. By the way, the Nyquist rate is twice that of the highest frequency component of the sampled signal. This should then provide enough information to be able to successfully reconstruct the original signal. The output of the converter is similarly filtered to remove any nasty aliasing and other noise that will undoubtedly be present.
The Design

The block diagram of the InterCard (short for INTErface CARD) is shown in Figure 2. The most important block is the Logic & Converter since this is where all the address decoding and PC bus interfacing will take place. The analogue signals connect to the Analogue Output Amplifier, which includes some sort of filtering, and the Analogue Input Amplifier, which also includes filter circuitry. The whole board derives its power from the PC bus via the Supply Decouple block, which includes several capacitors to decouple the supply rails.

The most important decision to make in this project was about the type of converter to use. Since I have been happy with the results of successive approximation converters for several years, this was obviously the type to use (also being the most common they also tend to be the cheapest).

After hunting through numerous catalogues, I eventually arrived at two possible candidates. The first was the old favourite Ferranti ZN series of converters which I have used in past projects. The second was a really nifty device, an AD7569, made by Analogue Devices and available from Verospeed. This device has a built-in track and hold circuit, 8 bit analogue to digital converter, 8 bit digital to analogue converter, output buffer and a smattering of control logic, complete with 3 state data bus. A phone call to Analogue Devices and a data sheet was sent to me through the post. I must admit here and now that this was the most meaningful data sheet for a converter I had ever read. For one thing it actually told you the highest frequency sine wave this widget could successfully sample, in this case 200kHz quite ample for sampling audio. As you've probably gathered by now, Analogue Devices won hands down. Not only does this one chip save the bother and expense of buying separate devices to do the track/hold, A-to-D and D-to-A, but also reduces the component count, board space and power consumption. Now on with the rest of the circuitry. To start with, the digital side of things. Firstly the address lines must be decoded to tell the InterCard when to wake up and do something. With reference to Figure 3, IC1 is an 8 bit magnitude comparator whose output, pin 19, only goes LOW when the P inputs are the same as the Q inputs. In this case the P inputs are connected to the address bus and the Q inputs are hardware selected, including SW1, to specify a particular block of I/O memory. Also at this stage the Address Enable line (connection A11) is examined, as this will be LOW when a processor address is present on the address bus. The Input/Output Read (IOR) and Input/Output Write (IOW) lines are buffered by IC6b and IC6c, with IC6d ANDing both of them to enable IC1 only if an Input/Output operation is being performed.

The output of IC1 is then used to enable IC2 and IC5a. IC2 is an octal bus transceiver with 3 state outputs, making it an ideal data bus buffer. The direction of data flow is deter-

![Fig.2 PC Interface board Block diagram](image)

mined by the state of the DIR input (pin 1) connected to the IOR line. Thus the internal data bus is connected to the PC's data bus only when the InterCard is being accessed, otherwise there will occur a situation, known as a 'bus contention', when two outputs try to drive one signal line. This can cause problems if one output is low and the other is high, the result being a short circuit.

IC5a is a 2-to-4 line decoder which converts the lowest two address signals into four enable signals. The first and second enables are used solely for the converter, the first one for accessing the converter data bus and the second enable to start the A-to-D conversion process. The other two enable lines are used by the external 8 bit interface port as I/O block enables I02, for port A, and I03, for port B, buffered by IC7a and IC7b. IC7a and IC3 connect the external 8 bit port connector to the data bus. The direction control for IC3, another octal bus transceiver, is derived from the IOR signal, but this time is enabled by NORing the two digital port enable signals via IC7c. Hence IC3 is only activated when one of the two external 8 bit ports is being accessed. The digital ports are connected to the outside world via SK1, a 25 way female D-connector. Figure 4 shows the pinout of the digital connector. Now we move on to the digital side of the converter.

When the converter is enabled, by taking its Chip Select line low (pin 16), the converter's internal data bus can be read from or written to. If the RD line is taken low, the data from the A-to-D converter is made available, while if the WR line is taken low, data is transferred into the D-to-A converter. To start the A-to-D conversion the Start input (pin 18) must be taken HIGH. This is accomplished by NORing the IOW line and the second enable signal, performed by
Fig. 3 PC Interface board Logic and Converter
IC7d. Once the converter has been started, it will take 8 clock cycles to complete the conversion. The clock can either be externally supplied or the internal clock generator can be used. In this circuit the internal clock is used. The frequency is determined by R1 and C1, which in this case is approximately 5MHz (the conversion time being around 2µs). The Range input is held high to select the 0-2.5 volt range for both the A-to-D and D-to-A convertors. The device can also operate in bipolar mode, i.e. 2.5 to +2.5 V, but the data is converted to 2's complement, which tends to complicate matters and also means that the board cannot be used with most programs that can use D-to-A boards (but then I know of a Windows program that expects the data to be in 2's complement form, so it just goes to show that you can't always win). To recap, the interface to the PC bus has been designed as has the external 8 bit digital port. Also the digital side of the converter chip has been covered. Another important aspect, especially since this circuit uses both digital and analogue circuitry, is supply decoupling (Figure 5). All of the logic chips use a standard +5V supply, obtained from the PC Bus, and each one has its own decoupling capacitor connected close to their supply connections. These 10nF ceramic capacitors help reduce noise getting into or out of the logic chips, especially when one or more outputs change state causing glitches on the supply rails. In general 10nF per chip is a safe overhead to work to, although some designers use 10nF per chip or 100nF per five chips. The only problem then is that the inductance of the circuit board tracks must also be taken into account. The +12V and -12V supplies for the analogue circuitry are also decoupled, by C10 and C11, to help reduce noise from the supply rails affecting the analogue signal. The large electrolytic capacitor, C9, provides major smoothing of the local +5V supply, helping reduce the effects of the inductance of the PC bus.

The first analogue circuit block is the input buffer/filter (Figure 6). Assuming this board is to be used for audio signals, the input comes from J1, a PCB mounting phono socket. I chose to use phono sockets for three reasons. One, there are very few moving parts to break. Two, the physical connection between plug and socket is nice and strong, and three, there are plenty of wiping contacts to help maintain a good signal path. The signal enters the first active stage based around IC8d configured as an inverting op-amp circuit with a maximum gain of around 2.4, tailing off to 0 at high frequencies. The upper 3db point is set by the value of C12, whose value is derived from the equation:

\[
 f = \frac{1}{2\pi R7C12} \quad \text{where } \pi = 3.1415
\]

Thus to change the 3db point to, say, 10kHz the value of C12 would need to be changed to around 10n. The filtered audio signal then passes through a clipper, based on R8 and diodes D1 to D4. Any voltage greater than +/-1.2 volts (= 2 diode drops) will either turn on D1,D2 or turn on D3,D4, conducting surplus current to ground. In ideal circumstances this stage would not be needed, but since the converter chip costs just over ten pounds, a few pence spent here is worth it for the added safety. Finally the filtered and clipped signal is fed to a level shifter based around IC8a. C13 and R9 couple the AC signal to the non-inverting input of IC8a together with a constant DC offset via RV1 and R10. The gain of this stage can be finely adjusted by RV2 within the range 1.0 to 1.1 (see later for setting up details). The amplified, level shifted signal is finally fed to the analogue input of the converter chip, IC4.

The last circuit block to design is the analogue output buffer/filter (Figure 7). Ideally the output of the converter would like to see a pure 2k0 resistor, 2k2 being the nearest preferred value. The signal is then buffered by IC8b before being fed to the filter. C14 removes the constant DC offset, introduced at the input, and together with R15 sets the lower 3db point of this amplifier at around 10Hz. IC8c amplifies the signal by about 1.4 times at low frequencies tailing off to 0 at high frequencies. Again the
Construction

Assuming you have a nice clean predrilled PCB in front of you and a full set of components, you should be ready to start. First of all spend a few minutes giving the PCB a good visual inspection to make sure there are no broken or, horror of horrors, shorted tracks. Spending a few minutes now could save hours later. Once you’re happy that everything seems to be OK you can start populating the board with components as shown in Figure 8. Begin by soldering in all of the through board links, needed since this is NOT a throughplated PCB. You can either use the proper links for this task (available from Maplin) or use the legs of resistors from previous projects, which could be a bit cheaper since there are 102 of them to fit. Once this is done check again for any solder blobs that could be shorting tracks. With a project of this type, which will eventually be plugged into a piece of expensive equipment, being careful is a must unless you want to see your PC die a strange death (as mine nearly did once).

Proceed as usual by starting with all of the resistors and diodes followed by the capacitors. There are no wire links on this PCB one thing I just can’t stand, especially on a double sided board. Again check for any solder blobs across adjacent tracks and remove them now! Continue with the IC sockets, presets, phono sockets and D-connector. For better mechanical strength, glue the phono sockets to the PCB with Araldite (or any other epoxy resin based glue) and allow to set. The DIL switch, SW1, can be fitted into its socket, but don’t insert any of the ICs yet. The card edge plate needs two holes drilled into it to accommodate the two phono sockets. Refer to Figure 9 for the drilling details. Once the plate is ready it can be bolted to the PCB with the D-connector mounting bracket. Then give the board a final thorough inspection before going any further. Correcting any faults at this stage can save a lot of worry. Now it’s time to enter the innards of your beloved PC.

With the PC turned off, carefully open up the case using whatever method as necessary (my PC has a lid like a car bonnet, released by two side catches). Ideally this card will be used in an 8 bit slot, although it will fit into a 16 bit slot. Remove the dummy plate for your chosen slot, being careful not to drop the screw into your PC. Making sure that you’ve earthed yourself, firmly but gently insert the InterCard into a slot. Once it is pushed home, check for any visible signs of problems, e.g. motherboard components fouling the PCB, and if possible correct them. Take a deep breath and turn on your PC. If everything is OK it should boot up as normal. If not, turn off IMMEDIATELY and carefully examine your board. Assuming you have no problems carefully remove the
InterCard, insert IC1 and repeat the process of fitting the card in the PC and turning on the power. Continue this procedure for IC2, IC3, IC5, IC6, IC7 and IC8 in that order. This may seem to be a long winded method, but at least if anything goes wrong you will know where the problem is, namely with the last chip you inserted. Notice that I didn’t mention IC4. That’s because there is some setting up to be done before this chip is inserted.

Setting Up

With the card in your PC and powered up, carefully connect an oscilloscope to pin 23 of the IC socket of IC4 and adjust RV2 fully anticlockwise to set the gain of the level shifter to 1.0. Now slowly adjust RV1 until exactly 1.25 volts is present. The next stage involves a signal generator connected to the input. If you do not have a signal generator, leaving RV2 in its anti-clockwise position should be OK. However if you do have a signal generator apply a 1kHz sinewave, at about 1.5V RMS, to the input and adjust RV2 until the amplitude of the signal on the ‘scope screen is exactly 1.25 volts peak-to-peak. You may have to adjust RV1 again to restore the 1.25V DC shift. Once the settings have been completed, turn off the PC, remove the PCB and insert IC4. Finally, there is the DIL switch to set. You can ignore the bottom switch as it is not used in this design. The top three switches determine whereabouts in the I/O map the board can be found. The actual base addresses are shown in Figure 10. In theory, you should be able to fit up to seven more interface cards like this, if you wish to do and you have enough slots. Choose the base address you want your card to be found at and set the appropriate switches. Re-insert the InterCard into your PC, fix the card edge plate to the case with its screw and refit the lid. You should now have a fully working InterCard.

Next month I’ll move on to the software aspect of this project, with a few example programs in both BASIC and C, and conclude with some ideas for future developments.

Table 10 DIL Switch Settings

<table>
<thead>
<tr>
<th>Top</th>
<th>Mid</th>
<th>Bottom</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$300</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$304</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$308</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$30C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$310</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$314</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$318</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$31C</td>
</tr>
</tbody>
</table>

Figure 10: Address Offset Table

<table>
<thead>
<tr>
<th>Offset</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AtoD/DtoA Converter Data</td>
</tr>
<tr>
<td>1</td>
<td>AtoD Converter 'Start Conversion'</td>
</tr>
<tr>
<td>2</td>
<td>External 8 Bit Port A</td>
</tr>
<tr>
<td>3</td>
<td>External 8 Bit Port B</td>
</tr>
</tbody>
</table>

Figure 8: Component overlay

Figure 12: Program Timings

<table>
<thead>
<tr>
<th>Language</th>
<th>Time to complete execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler</td>
<td>3 seconds</td>
</tr>
<tr>
<td>C</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Pascal</td>
<td>12 seconds</td>
</tr>
</tbody>
</table>
Great news for fishkeepers!

AQUARIUM is the NEW monthly fishkeeping magazine offering the best in the world of aquatics for beginners and experts alike. There are expert tips, step by step guides and dazzling pictorial displays of aquarium fish in 100 pages bursting with glorious colour detail. And it's only £1.75.

Why not order a copy from your newsagent?
You'll be glad you did!
AUDIO MODULES

AL 12580-125W AMPLIFIER
A rugged high powered module that is ideal for use in disco's & P.A. Systems where powers of up to 125W, 4 ohms are required. The heavy duty, output transistors ensure stable and reliable performance. It is currently supplied to a large number of equipment manufacturers where reliability and performance are the main considerations, whilst for others its low price is the major factor. Operating from a supply voltage of 40-80V it draws from 4-16 ohms.

AL 2550-COMPACT LOW-COST 25W AMPLIFIER
One of our most popular audio modules with fans of thousands installed. Ideal for domestic applications where low distortion and compact size are the prime requirements. Used with supply rails of 20V-50V into loads of 8-16 ohms.

MM 100-BUDGET 3-INPUT MIXER
With a host of features including 3 individual level controls, a master volume and separate bass and treble control, it provides for inputs for microphone, magnetic pick-up and tape, or second pick-up (releacable), and yet costs considerably less than competitive units. This module is ideal for disco and public address use and operates from 45V-70V.

MM 100G CIGAR MIXER
As MM100 with microphone input intended for guitar amplifier applications.

COMPLETE AUDIO RANGE FROM LOW-COST TO HIGH END
SEND FOR DETAILS TODAY

SECURITY EQUIPMENT

MINIATURE PASSIVE INFRARED SENSOR-RP33
Switchable Dual range, detects intruders up to 6 or 12 metres.

- This advanced sensor operates by detecting the body heat of an intruder moving within the detection field.
- Slow ambient changes such as radiators, etc. are ignored. Easily installed in a room or hallway. Providing reliable operation from a 12V supply, it is ideal for use with the CA 1362 or equivalent high quality control unit.
- Supplied with full instructions.

DIGITAL ULTRASONIC DETECTOR-LS 5063
Graphical controlled movement detection module operating at 50kHz with an effective range up to 20m. Suitable for operation in no-sight or vehicle security systems. 12V operation and built-in timing makes it suitable for a wide range of applications.

ADVANCED CONTROL UNIT-CA 1382
Automatic Loop Test & Switch On • Automatic Siren Re-Set • Audible Entry/Bell Warning • Buzzer • Two Separate Loop Inputs • 34 hr Circuits • Easily installed. Full instructions Supplied.

LOW COST CONTROL UNIT-CA 1250
This tried and tested control unit provides the ideal value for money in small domestic installations, with thousands protecting houses all over the country. A suitable steel enclosure is available separately.

SOFT INFRA-RED BEAM-IR 1470
The IR1470 consists of a separate transmitter and receiver providing a beam of up to 50ft, which, when interrupted, operates a relay in the receiver which in turn may be used to control external equipment. The system requires only 65mA from a 12v supply. Size (each unit) 82 x 52 x 57mm.

PLUS FULL RANGE OF SECURITY ACCESSORIES FOR COMPLETE HOME PROTECTION

TELEPHONE FOR FREE LITERATURE TODAY

HAND HELD 40 PIN DIGITAL IC TESTER
Spot the fault instantly and save pounds with the latest in the range of professional IC diagnostic hardware from ABI.
- TTL / CMOS / memory / LSI Interface capability
- Search facility
- Identification unknown / unmarked devices
- Detection of intermittent faults

INTRODUCTORY PRICE
£245

A RANGE OF SMALL PLASTIC BOXES, CASES AND POTTING BOXES AVAILABLE IN ANY QUANTITY.
SEND FOR FREE CATALOGUE

SLM (MODEL) ENGINEERS
CHILTERN ROAD, PRESTBRURY, CHELTENHAM, GLOS GL52 5JQ
FAX: 0242 226288
Coping with Radiation

by Douglas Clarkson

The brief history of Radioactivity in the modern age is strewn with painful reminders that man is in many ways only a babe in arms when it comes to the safe and responsible use of key powers of Nature. This brief outline of radiation and the sequences of events and discoveries which have shaped the present day appreciation of ionising radiation tries to put in perspective aspects with relate to scientific, military, economic and environmental viewpoints. It is quite natural, that the middle two of these seldom find sympathy with the environmental factors. Scientists, also, in the main are too busy discovering to be going about ensuring that their discoveries are used to best effect.

About Ionising Radiation

The anxiety about ionising radiation stems from its effect on living systems on all living organisms in the plant and animal kingdom and of course including man himself. Ionising radiation’s risk relates to its effect principally on cell nuclei whereby cells can be destroyed and/or their DNA structure degraded with the risk of forming ‘rogue’ cancerous cells.

By no means are all of the questions about radiation induced damage are known. It is considered in the case of X-rays and gamma rays that the chain of events begins when the high energy photon ejects an electron from a target atom creating in the process an ion/electron pair. The electron is thought to attach itself to a neighbouring molecule forming a free radical which can attack biologically important target molecules in its vicinity, resulting in chemical change due to the breaking of chemical bonds. The translation of the bond damage to biologic effect can take years or decades to manifest as symptoms.

The so called ‘Target Theory’ of radiobiology is very much built on this ‘targeting’ of sensitive sites within the tissue being irradiated.

The effects of ionising radiation upon delicate living systems such as homo sapiens are complex in the extreme and this has tended to confuse the public in their appreciation of radiation. The world has known about X-rays and radiation for about 100 years and for at least the first half of this interlude has had grossly insufficient understanding to weigh up risks and dangers.

X-rays and Gamma Rays

While photons of light of several electron volts energy are not energetic enough to produce ionisation of matter along their path when they interact with matter, when energies increase to around 50,000 eV (50 keV) then they have sufficient energies to produce this effect. These are so called soft X-rays. At higher and higher energies these photons (gamma rays) become more and more able to produce ionising effects and so induce damage to living systems.

Particle Radiation

Gamma rays can be considered to be ‘massless’. There is a broad range of charged particles with mass which because of their high energies can induce ionisation effects in matter. Alpha particles which are positively charged Helium nuclei is one example and high energy electrons, beta radiation, is another. Often contamination by materials emitting these particles is more dangerous since the contaminants tend to be taken up within the tissues of the body itself, eg in the bones and specific internal organs.

Units of Radiation: Assessment of Risk

The public is more and more seeking simple answers about exposure to ionising radiation. This section tries to present in a simple way concepts relating to exposure.

The units of radiation are expressed as described previously in terms of absorbed dose and dose equivalent. The unit of absorbed dose the Gray (abbreviation Gy) relates to a

<table>
<thead>
<tr>
<th>TYPE OF RADIATION</th>
<th>WEIGHTING FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photons, all energies</td>
<td>1</td>
</tr>
<tr>
<td>Electrons, muons, all energies</td>
<td>1</td>
</tr>
<tr>
<td>Neutrons <10keV</td>
<td>5</td>
</tr>
<tr>
<td>Neutrons 10keV-100keV</td>
<td>10</td>
</tr>
<tr>
<td>Neutrons 100keV-2MeV</td>
<td>20</td>
</tr>
<tr>
<td>Neutrons 2MeV-20MeV</td>
<td>10</td>
</tr>
<tr>
<td>Neutrons >20MeV</td>
<td>5</td>
</tr>
<tr>
<td>Protons >20MeV</td>
<td>5</td>
</tr>
<tr>
<td>Alpha particles, heavy nuclei</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1: Radiation weighting factors associated with types of radiation.
deposition of 1 joule of energy due to ionising radiation in a kilogram of tissue. This unit, however, does not introduce the concept of the relative risk of the radiation. Table 1 indicates the so-called radiation weighting factors used to 'weight' incident energy deposited to perceived risk.

The corresponding dose equivalent is expressed in Sieverts (abbreviation Sv). These are the new standard units used by the radiation community. They relate to the old units of rad and rem.

The values below show the equivalence of the two systems of units for reference.

1 rad = 100 ergs per gram of tissue
1 rad = 100J/kg = 0.01 Gy
100 rad = 1 Gy
100 rem = 1 Sievert

Many doses are in fact defined in milli Sieverts (mSv).

The type of tissue irradiated is an important factor in determining risks. Table 2 indicates a simplified description of the relative risk of tissue factors of the human body. Where an individual is irradiated by radiation of some type, the radiation has first to be weighted by its radiation weighting factor and then the exposure of the various compartments of the body has to be assessed as outlined in Table 2. The sum of the total weighted exposures is expressed as the effective dose equivalent. This is used as an indication of relative risk of fatal malignancy and can be derived for individuals experiencing a broad range of types of radiation exposure.

Estimations of Annual Exposure to Radiation

It is important to obtain a perspective in the way in which the exposure of the public at large is described and how local conditions in the environment can change this. Figure 1 shows the annual average exposures to radiation of members of the UK population assuming a total exposure of 2.5mSv of which 13% comes from artificial sources. Shown in this way, the menace to society is very much natural causes.

Figures compiled for the US population indicate an exposure of about 1.9mSv with a very much higher artificial component of about 45% largely introduced by medical exposures.

What these averaged figures do not indicate is the relatively high variation in background radiation from location to location. There is considerable variability in the natural background of the soil or rock. While the normal background in the USA is in the region of 0.27 to 1.3mSv per year, local conditions can increase this to significantly higher levels.

On the Atlantic Coast of Brazil about 200 miles north of Rio de Janeiro, the coastal resort of Guarapari boasts exposure levels as high as 15mSv in its main street. Levels on the beaches are even higher. There are other natural ‘hot spots’ in countries including India, France and Switzerland.

There has been increasing interest in recent years in preventing exposure to high levels of Radon gas. In the UK the average dose attributable to Radon is estimated to be about 1.0mSv though values can be significantly higher in areas either built on granite or where houses are built of granite. In the USA Radon gas is considered to cause the deaths of between 5000 to 20000 individuals within the global total of 136,000 fatal lung cancers each year.

Natural radioactivity within the body is largely attributable to Potassium 40. About 15,000,000 such atoms disintegrate within the average individual every hour releasing high energy beta rays and some gamma rays. In the same time interval approximately 7000 Uranium atoms will disintegrate in the body, releasing alpha particles.

Around 200,000 gamma rays from the soil and building materials will also pass through an individual each hour.

Table 3 shows how the mean annual dose due to cosmic rays in mSv varies with altitude. Regular aircraft passengers are bound to receive an increased radiation dose.

<table>
<thead>
<tr>
<th>HEIGHT ABOVE SEA LEVEL</th>
<th>MEAN DOSE IN mSv/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>1500m</td>
<td>0.4-0.6</td>
</tr>
<tr>
<td>3000m</td>
<td>0.8-1.2</td>
</tr>
<tr>
<td>12000m</td>
<td>28</td>
</tr>
<tr>
<td>36-600km</td>
<td>70-150</td>
</tr>
<tr>
<td>Interplanetary space</td>
<td>180250</td>
</tr>
<tr>
<td>Van Allen radiation belt</td>
<td><15000</td>
</tr>
</tbody>
</table>

Table 3: Details of mean dose exposure due to Cosmic Rays for various heights above sea level. Interplanetary space travel does have its hidden drawbacks.

Medical Exposure

While natural exposure cannot in many instances be avoided, there are other types of exposure which are avoidable. Table 4 lists the typical doses associated with routine X-ray diagnoses.

The truth of the matter is with regard to Medical Exposures that values for individuals will vary widely over those individuals who receive no X-rays and those who have a relatively large number of X-ray examinations.

The medical profession argue that the increased risk of X-ray exposure is more than compensated for by the benefit to the patient of the examination. In the majority of cases this
will be the case but there is certainly room to improve procedures to minimise exposure to the patient.

Looking more closely at this problem area, even a `standard' X-ray of the chest can be undertaken with a wide range of administered doses. Where films of low sensitivity are used, additional exposure is required to produce the required clarity of pictures. One simple method of reducing exposure is to use rare earth 'screens' to enhance the developed image on the photographic plate.

The increasing availability of CAT scanners which produce images of `slices' through the body is tending to increase the dose of X-rays which patients receive. This will no doubt lead towards moves for dose reduction based on improved technology of tubes and sensor arrays.

Public awareness of radiation exposure may in time prompt patients to ask of radiographers what dose of radiation they are likely to receive as a result of X-ray examinations. Where these are within bounds of normality then the patient would probably allow them to proceed. Where they are clearly unreasonably high, then the patient may be unwilling to undergo the exposure.

Estimations of Relative Risk

Based on data from the survivors of the Japanese atomic devices, a fatal risk estimate has been devised which seeks to relate exposure to risk of fatal cancer risk. There is a problem of determining if the risk of radiation exposure is proportional, non linear or has some threshold effect as shown in Figure 2. At present a simple proportional model is assumed. For low dose rates the risk calculated to 40 years is calculated to be 1 in 70 per Sv. Thus an additional exposure of 1mSv will carry the risk of 1in70 or 1in1000 produces 1.4 in 100,000 of a fatal cancer.

For hereditary disease, a risk factor of 1 in 50 per Sv is considered to apply.

These figures apply over the whole population. The influence of genetic resilience or weakness with respect to doses of ionising radiation which could give some people more or less tolerance of ionising radiation is difficult to quantify.

Risks Elsewhere

In estimating risks elsewhere, Table 5 shows a summary of relative risk values within other industries.

This would seem to show that radiation workers are not greatly disadvantaged in terms of risk of developing cancers when compared with risks generally in other industries. What is not shown is the risk of hereditary disease being carried on to other generations. This must always be viewed with considerable caution.

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>DOSE PER EXPOSURE (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP lumber spine</td>
<td>0.9 per film</td>
</tr>
<tr>
<td>AP chest</td>
<td>0.02 per film</td>
</tr>
<tr>
<td>PA skull</td>
<td>0.06 per film</td>
</tr>
<tr>
<td>Lateral Abdomen</td>
<td>0.5 per film</td>
</tr>
<tr>
<td>Lateral Pelvis</td>
<td>1.1 per film</td>
</tr>
<tr>
<td>Barium meal</td>
<td>3.8 mean per examination</td>
</tr>
<tr>
<td>Barium Enema</td>
<td>7.7 mean per examination</td>
</tr>
<tr>
<td>CAT scan</td>
<td>20 typical abdomen</td>
</tr>
</tbody>
</table>

Table 4: Typical radiation doses for a range of X-ray exposures.

<table>
<thead>
<tr>
<th>OCCUPATION</th>
<th>RISK OF DEATH PER YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea fishing</td>
<td>200 x 10</td>
</tr>
<tr>
<td>Coal Mining</td>
<td>14 x 10</td>
</tr>
<tr>
<td>Construction</td>
<td>10 x 10</td>
</tr>
<tr>
<td>Metal Manufacture</td>
<td>6 x 10</td>
</tr>
<tr>
<td>Radiation workers (1.1mSv/yr average)</td>
<td>3.7 x 10</td>
</tr>
<tr>
<td>Textiles</td>
<td>3.6 x 10</td>
</tr>
<tr>
<td>Timber, furniture</td>
<td>1.0 x 10</td>
</tr>
<tr>
<td>Clothing and footwear</td>
<td>0.3 x 10</td>
</tr>
</tbody>
</table>

Table 5: Table of relative annual risks of death in UK occupations, including potential cancers due to occupation exposure of radiation workers

Early Days

Wilhelm Röntgen discovered X-rays on the 8th of November 1895 as he was passing current through a Crook's tube. A screen of Barium platinocyanide glowed at the opposite end of his laboratory, in the dark when the tube was activated. He gradually determined the amazing new properties of X-rays such as their ability to pass through various substances and not others. Perhaps one of the most memorable early photographs taken was that of his wife's hand. His results were widely published in late December and workers all over the world began to repeat his experiments. This was indeed the beginning of man's 'unnatural' exposure to ionising radiation.

Clinicians were quick to appreciate the application of X-rays to medical investigations and they quickly became used in a large number of centres. The novelty of X-rays led to their use in many areas which by today's standards would be considered reckless and irresponsible. They were widely used as treatment, for example, of baldness and infertility.

Today's extreme caution with regard to minimising the dose of radiation was totally unknown. Even in the first year of X-rays, there were consistent reports of 'effects'. The significance of these were not appreciated until years later. The outbreak of World War I shelved reservations about the hazards of X-rays and at the same time led to a very large increase in their use. It was not until 1924 that international agreement was achieved on units of measurement of ionising radiation. The unit of the Röntgen, R, was established as that amount of radiation which would produce a given number of charged ions in a specific volume of air. It was quite common in the early days of X-rays for machines to be calibrated in terms of erythema dose, the dose at which reddening of the skin would develop. Patients 'used' as radiation markers in this way must have received dangerous doses of radiation.
Enter Radioactivity

The news of the discovery of X-rays led more or less directly to the discovery of Radioactivity emissions of radiation from atoms. Henri Becquerel was looking for emissions of X-rays from a range of substances when in February 1896 he discovered that a photographic plate had been exposed by rays from a Uranium salt. This area of work was taken up by Marie Curie for her doctoral dissertation leading to the discovery of Radium in December 1898.

Radium was again given widespread publicity it was almost immediately heralded with all sorts of 'magical' properties and with an almost total level of ignorance of its properties began to be used for medical and consumer applications. This was the point in time where science was widely regarded as the saviour of mankind its discoveries would herald a brighter and healthier future for all.

It was not until more extensive deposits were discovered in North America around 1910, however, that the use of Radium became widespread. In the medical world, Radium was used for a broad range of conditions, although not exclusively to cancer related treatment. In the consumer marketplace the use of Radium laced products creams, spa waters, bracelets and so on, persisted at least until the 1930's. It was not until man made radio-isotopes became available in the 1940's that the use of Radium declined. With the availability of a wide range of more suitable radio-isotopes, Radium became more of an historical curiosity.

Assessing Risks

Thus up till the time of the second world war, the main sources of manmade ionising radiation were from exposures to X-rays and from Radium. One group of workers who were chronically exposed to Radium, however, were those individuals who painted dials of instruments with a 'Radium cocktail' which would glow in the dark. It was the deaths of numerous 'dial painters' in the USA which focused both public and scientific attention on the problem and which led, though painfully slowly, to the setting of maximum uptake levels of Radium. This intake value was initially set in 1941 in the USA at 0.1 μCurie where:

\[1 \text{ Curie} = 3.7 \times 10^{10} \text{ disintegrations per second.}\]

Enter Fission and Fusion

Until the development of the atom bomb, nothing new had been introduced in the field of radioactivity to alter the slow but natural decay of natural atoms to natural decay products. Radium had been extracted as a natural but highly radioac-
weighted radiation though one Rad of Alpha radiation was then set equivalent to 10 Rems indicating that it was potentially more dangerous. This is because the Alpha radiation has more significance for causing cell damage etc. Details of modern units of radiation (the Gray and the Sieve) are given in an earlier section.

‘Brighter than a Thousand Suns’
In the final stages of the Manhattan Project, the question of fallout became more and more pressing as predictions of the amount of radiation released were made. This was the first time, also, that the Military would have to consider (or not consider) the general public in their equations.

The best scenario was to detonate the bomb when weather conditions were favourable, the wind was in the correct direction and it wasn’t raining. In any case on Presidential orders the first device code named Trinity was detonated on July 16th 1945 in time for the first day of the Potsdam Conference attended by Stalin whose spies probably observed its bright flash in the desert.

Fortunately most of the fallout fell in isolated areas where the main victims were grazing animals. At this stage all operations were undertaken at a very high security level the public had absolutely no idea what was taking place.

When the first bomb was dropped on Hiroshima, the device was described simply on the basis of its massive explosive power. Any reference to possible radiation danger was omitted. It was only in time that the full horror would be revealed. This was also the point in time at which the world was informed of the Manhattan Project and the existence of a new power in the world.

Enter the Atomic Age
If the nuclear industry had had a somewhat secretive childhood, it certainly experienced a more open period of adolescence and maturity. In the immediate post war age, nuclear energy was hailed as a bringer of all good things the energy crisis could be overcome once and for all. It is now known that there were strategic goals to be achieved in the West’s nuclear arms programme which would require fission materials such as Plutonium to be produced as the by-product of a civilian nuclear power initiative. Perhaps there was an unwritten agenda to implement nuclear power stations to underpin any future requirement for bomb making products. In any event, it was the British who opened the World’s first commercial nuclear reactor at Calder Hall in 1956.

Thus nuclear installations began to pass from purely military control to civilian control and the numbers of people working in such installations grew significantly. There were very good reasons for extracting large reserves of uranium wherever they could be discovered. Extensive prospecting was encouraged in the USA in the early 50’s and numerous deposits were identified and mined. It is quite obvious that at a time when national priorities were focused by the Cold War, the working conditions of Uranium miners were a scandal. After drilling holes in rock to place explosive charges, the miners would return to a smoke filled mine and help extract the ore. Water was drunk from underground springs and food was rapidly contaminated in the dusty conditions. While elsewhere the radiation hazards of such mine workings were clearly identified, the Authorities were quite happy to exploit the health of the miners as long as supplies of Uranium were forthcoming. There was extensive data on file from Uranium mines in Europe relating to hazards of working in such environments.

The Unfolding Scenario
The sheer scale of resources plowed into atomic and nuclear research military and civilian has been stupendous. One of the reasons for the collapse of the Soviet Empire was its over commitment to developing nuclear weapons. The world seems to be drawing back from a superpower confrontation though the risk has not been removed.

Recent disclosures about the Soviet nuclear arms project have been most revealing. Based in Minsk in the Urals, the equivalent of the USA’s Manhattan project succeeded in contaminating extensive areas of the countryside through reckless waste disposal. One waste store exploded in the 1950’s, sending contamination over a widespread area. Today large parts of this area are still highly contaminated and childhood cancers abound.

The Three Mile Island incident, although not as serious as the Chernobyl incident, was a a hair’s breadth from developing into something more devastating. Although there was plenty of ‘high tech’ at Three Mile Island, it was almost impossible for anyone to understand what was happening once dozens of alarms started to compete for attention. At Chernobyl, it is claimed the design of the reactor was intrinsically unsafe and that poor supervision and working practices prevailed.

What has been demonstrated is that the there has been a gradual reduction in the ‘safe’ levels of radiation exposure since World War II. During this time, radiation workers, military personnel and members of the public have been exposed to levels of radiation high enough to significantly increase the chances of developing fatal cancers and also carrying forward genetic damage to future generations.

With the benefit of hindsight, things could have been undertaken differently. In terms of what can be undertaken now to reduce exposures, there are two strategies which spring to mind. One is to reduce the incidence to Radon exposure in dwelling homes and the other is to reduce the exposure to medical X-rays. Clearly this does require strategic planning. It could have been appropriate to have included minimum levels of radiation exposure for standard X-ray procedures in the recently announced Patient’s Charter in the UK. The other is to consider the long term role of the nuclear power industry and decide if it should be retained and if so what policy changes for its existence require to be adopted.

Conclusion
Assessment of the effects of radiation on man needs a healthy sense of perspective. There are clearly identified ways of both measuring radiation doses and predicting the potential risk that it may or may not present. Risk factors may well be modified as greater understanding is developed.

There have always been two facets of radiation, one black and one white. There needs to be a better understanding of the basic nature of radiation and how it can influence health so that individuals can be sufficiently educated about this important subject and make their own informed judgements.

Further Reading:

www.americanradiohistory.com
BARGAINS – 10 New Ones This Month

SUPER MULTIMETER Ex British Telecom, this is a 19-range 20k ohm.p.v. p.r.g. instrument, carrying a £20 full year guarantee, can be used to check telephones, voltage regulators, and not just for testing. It is fully working and complete with leads £8, Heathcote carrying case £2 extra (Batteries are not included but readily available). Make your own 2A 230V 2.5A 470V set that is suitable for disco and other special lighting effects. With earthable screen and thick pvc outer, 3 of 30, 30 metre, 16 core 50p metre, 18 core 85p metre, 25 core 1.25p metre, £5.50, Order Ref. 839.

VARIAC an infinitely variable unit gives any voltage from 0-230 a.c. at 3A. Obviously an invaluable piece of equipment which should be in every workshop and probably would be worth £30.00 for this is £35 plus VAT. Now is your chance to buy one, brand new, at £15 including VAT, Order Ref. 15P42.

ULTRA THIN DRILLS Actually 0.3mm. To buy these regular cost a fortiori £2.00, these are packed full dozens and the price to you is £1 per pack, Order Ref. 797B.

YOU CAN STAND ON IT! Made to house GPO telephone equipment, but perfect for anything. This being used to keep small tools. Internal size approx. 10 3/4" x 4 3/4" x 6" high. These are complete with snap close lid and shoulder-strap which together with used equipment and used lead, are available at a reduced price. £2, Order Ref. 2P2B8.

BUILD YOUR OWN NIGHT LIGHT, battery charger or any other devices in a plastic case and be able to plug into a 13A socket. We have two cases, one 3 x 2 1/2" x 1 1/2" deep, £1 each Order Ref. 845. The other is 2 x 2 x 2 1/2" x 1 1/2", 2 for £1, Order Ref. 565.

LATERAL FILE 2 LINE DISPLAY, 2 sizes, 85 x 36mm, Alphanumeric LCD dot matrix module with integral micro processor made by Epson, their Ref. 16027A, £9.95.

INSULATION TESTER WITH MULTI METER internally generated 1000V so that you are able to read insulation directly on megohms. The multimeter has four ranges, AC/DC volts, 3 ranges DC milliamperes, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom but in very good condition, tested and guaranteed OK, probably cost at least £50 each for only £7.50, with leads, carry case £2 extra, Order Ref. 75 P 75 P 4.

MAINS 230V Fan make best £APAP* 4 square, metal blades, £8, Order Ref. 8P8.

20W LASER Helium neon by Phillips, full spec, £30, Order Ref. 30 P 1. Power supply included which is £15, Order Ref. 15P16, or in a metal tube house tube as well £18, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube £68, Order Ref. 68P1.

1 HP 12V MOTOR – THE FAMOUS SINCLAIR CD brand new, £15, Order Ref. 15P8.

SOLAR CHARGER holds 4AA nicads and recharges these in 8 hours, in very reasonable conditions £3, Order Ref. 3P3.

FERRITE AERIAL ROD 8" long x 3/8 diameter, made by Mullard. Complete with 2 coil formers for 2, £1, Order Ref. 825P.

ACCESSORY, CABLE CAPS 2-20 pin ideal for precision tuning UHF circuits, 4 for £1, Order Ref. 818P.

FIELD TELEPHONES just right for building sites, railways, horse shows, etc., just plug in and away you go, good quality and calling and you can add in regular telephone lines if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete with shoulder strap carry case £3.50, Order Ref. 9P9 P 2.

MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230V in and 230V out. 150 watt upright mounting. £7.50, Order Ref. 7P79.

MINI MONO AMP on PC8 size 4 x 2" with front panel holding volume control and with spare hole for switch or tone control. Only £2, Order Ref. 8P2. IT Voucher. The price of the Amp/AMF radio chassis with LMD module £3.50, Order Ref. 3 P 5. All purchasers will receive concert details directly we have the time.

12 VOLT A BLOCK and 4 WAY TERMINAL BLOCKS the usual grub screw type. 30A containing a mixture of the 3 types, giving you 100 ways for £1, Order Ref. 875. 12/24V DC SOLENOID constructed so that it will push or pull, plunger is a common rod and piston. A very small but perfectly formed. This £2, Ex. British Telecom £3.95, Order Ref. 875.

12V and, of course, with any intermediate weld with increasing or decreasing power. It all use the usual all the usual solenoids and an extra one, if wired in series with a make and break, this would be a superb circuit for marking plastics and soft metals. We welcome other ideas and will give a £25 credit voucher for any used. Price £1, Order Ref. 877.

2M 3-CORE LEAD terminating with flat pin instrument socket, £1, Order Ref. 879.

Ditos but with plug on the other end so that you would be able to connect this out in any instrument lead £1.50, Order Ref. 1P10.

Just arrived

A 5" 20W 4 Ohm, mid-range speaker, £3.25 Order Ref. 3P145 and a matching 4 horn 20W tweeter £3.95 Order Ref. 3P146 also FM radio mike £8.50 Order Ref. 8.5P2.

Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add £3 post and packing. Order over £25 post free. You can order until 9pm Mon-Fri on 430380

M & B ELECTRICAL SUPPLIES LTD
12 Boundary Road, Hove, Sussex BN3 4EH
Telephone (0273) 430380
Fax telephone (0273) 410142

29

www.americanradiohistory.com
Heartbeat /Audio Listener

A sensitive amplifier to listen to your heartbeat by Shabaz Yousaf.

This heartbeat listener project also doubles as an audio amplifier, so will find plenty of uses on the workbench. When switched to HEARTBEAT mode, the circuit will amplify the low-frequency heartbeats to a level suitable for medium impedance headphones (for example, Walkman-type headphones or earphones). The louder heartbeats - for instance after jogging - will also trigger an LED which will pulse in sympathy.

The device has a small built-in loudspeaker which is useful when using it as an audio amplifier, but really headphones will be needed when listening to heartbeats. The actual heartbeat sensor is a piezo-electric transducer which has the advantage of a relatively high output, which means that the amplifier gain does not have to be excessive.

The Circuit

Figure 1 shows the complete circuit diagrams. The audio amplifier is based around the integrated circuit IC1. This is the TBA820M - possibly the oldest audio amp IC widely available nowadays, and is connected in its standard configuration. The output drives the loudspeaker and LED.

Power for the circuit is obtained from a PP3 9V battery or from an external source connected to SK3, which is a 3.5mm jack socket. If you have one of the popular battery eliminators, then this can be used. The current used by the circuit is about 10mA, but this figure can rise to several hundred milliamps at peaks in the audio level and also depends on the load connected to the headphone socket.

Construction

The circuit I constructed on a single sided fibreglass PCB designed for a perfect fit in the recommended case. Start by soldering the smaller components, such as the resistors and capacitors. Orientate the IC and 'minicon' connectors the correct way around, as shown on the component overlay in Figure 2. Finally, trim the battery clip leads to approximately 60mm and solder it on to the PCB - the red lead is positive.

The next stage is to prepare the 'minicon' sockets by crimping leads to them. If you do not have the correct tools for the job, a small pair of pliers will have to suffice. The leads can be trimmed and the ends soldered to the controls, LEDs, sockets and loudspeaker, as detailed in Figure 3.

If you are using the recommended case then the hole drilling dimensions are indicated in Figure 4. If a whole range of drill bits to suit each switch or socket are not to hand, then it may be worthwhile purchasing a reaming tool, which can be used to widen a pilot hole to the required diameter. A pattern of holes will be needed for the loudspeaker. The

Fig. 1 Circuit diagram

Fig. 2 Component overlay
HOW IT WORKS

IC1 is arranged with a conventional amplifier with switch SW2 in the AUDIO position. When changed to heartbeat, the resistor in the GAIN lead (pin 2) is short-circuited for higher gain. At the same time capacitor C6 is paralleled with C5 to alter the frequency compensation characteristics of IC1. This has the effect of cutting high frequencies, and increasing the gain of lower frequencies. The output is taken from pin 5 via a conventional DC blocking capacitor to the loudspeaker. The LED is directly driven by a transistor configured for current gain. It was found that directly using the voltage at the output pin 5 to drive the transistor base was adequate, and no blocking capacitors and gain control were required.

Once trimmed, the plastic can be sprayed with paint. Coat the plastic rim of the piezo element with glue, taking care not to let any drip onto the actual element. Glue the surfaces together. The final result should be professional looking.

Testing

Plug the heartbeat sensor and a pair of headphones into the relevant sockets, and switch on. Provided a battery or power supply is connected, the power 'on' LED should be lit. Ensure the HEARTBEAT/AUDIO switch is in the AUDIO position, and speak into the heartbeat sensor. You should hear your own voice through the headphones. If not, adjust the volume control RV1. Now, flick the switch to the HEARTBEAT Position. Holding the microphone by the rim, press it against your heart firmly while keeping the air hole clear. The sensitivity of the piezo sensor means that it can be used effectively even through a shirt. If you can’t find your heartbeats, it may help to jog on the spot for a minute to get some stronger pulses. This should also trigger the LED D1.

For constant heartbeat monitoring on the move, the sensor can be held in place with dressmakers elastic band (about 1.5” wide, used around the hip with dresses) with the two ends sewn together to form an elastic hoop which goes around the chest. The heartbeat listener could be clipped to the waist by adding a belt clip to the casing, from an old radio, for example.

Fig. 3 Interconnection diagram

Fig. 4 Dimensions for drilling case
PARTS LIST
RESISTORS (all 1/4 watt)
R1 56R R2,4 220R R3 100R RV1 47k log pot
CAPACITORS
C1 10µF/16V C2,4 220µF/16V C3 47µF/16V C3,8 47µF/16V C5 220µF
C6 1nF Ceramic C7 220nF multilayer C8 220µF/16V
SEMICONDUCTORS
IC1 TBA820M IC2 BC548C
RESISTORS
R1 47k R2,4 220R R3 100k R4 56R R5 100k
R6 220R R7 56R R8 100k R9 220R
MISCELLANEOUS
SK1 3.5mm stereo jack SK2 3.5mm mono jack with 2 break contacts SK3 3.5mm jack with 1 break contact
SW1 SPOT toggle SW2 OP2 toggle LS1 8R 1.6" miniature speaker
PL1-4 3way minicon pig and socket PL5,6 4way minicon plug and socket
case, mono jack plug, piezo element, stereo headphones, impact adhesive, piece of plastic (cassette cover), foam

OMNI ELECTRONICS
174 Dalkeith Road, Edinburgh EH16 5DX - 031 667 2611

The supplier to use if you’re looking for —
★ A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST ★
★ COMPETITIVE VAT INCLUSIVE PRICES ★
★ MAIL ORDER - generally by RETURN OF POST ★
★ FRIENDLY SERVICE ★

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00

PCB Layout Design
Artwork PCB layouts professionally designed using the latest CAD packages. Design layouts supplied as HPGL, GERBER, EXCELLON files on 5.25/3.5" hi/lo density disks. Designs can also be provided in a range of WP & DTP formats for your technical manuals. We provide a high quality service at competitive rates with a fast turn around.

Send A5 SAE for our free Technical Procedures Guide.

Oakleaf Technology
100 Linslade Street
Swindon SN2 2BN
ENGLAND
TEL: +793 642856

DON'T MISS OUT!

Guarantee your home delivery of ELECTRONICS TODAY INTERNATIONAL at no extra cost to you, SUBSCRIBE NOW - make SURE of your post-free* copy.

Get inside every issue!

*U.K. only.

BUYLINES
All components are commonly available. Maplin sell the 'minicon' connectors, as do many other retailers. The piezo element is available from Tandy, part no. 273-091. The case was purchased from Electrovalue, code 855.

GET IT DELIVERED!

Please commence my subscription to ELECTRONICS TODAY INTERNATIONAL with the issue (if renewal please quote subscription number). I enclose my cheque/M.O. for £... made payable to ASP. or please debit my Access/Visa...

Card No. Expiry Date

Signature Name

Address... Post Code

SUBSCRIPTION RATES: UK £23.40, Europe £29.50, Sterling Overseas £31.00, US Dollars $56

Please return coupon to: Argus Subscription Services, QUEENSWAY, REDHILL, SURREY RH110S.

Please note you may receive further information about offers and services which may be of particular interest to you.

CREDIT CARD HOTLINE 0737 768611

ETI OCTOBER 1992
Reader Survey

It’s survey time again and your chance to win one of 20 prizes supplied by Maplin Electronics and ETI

Although some of the questions here may not seem to relate directly to the magazine, please complete the whole questionnaire. Your answers not only help us to steer the editorial content of the magazine in the direction you want but they also help us to build up an overall profile of readers to present to advertisers who require such data to select.

1. If you could make one improvement to ETI, what would it be?

2. Please indicate what you think of the following aspects of ETI’s coverage:

<table>
<thead>
<tr>
<th>Poor</th>
<th>Average</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginners’ Projects</td>
<td>029</td>
<td>030</td>
<td>031</td>
</tr>
<tr>
<td>Advanced Projects</td>
<td>032</td>
<td>033</td>
<td>034</td>
</tr>
<tr>
<td>Audio Projects</td>
<td>035</td>
<td>036</td>
<td>037</td>
</tr>
<tr>
<td>Music Projects</td>
<td>038</td>
<td>039</td>
<td>040</td>
</tr>
<tr>
<td>Radio Projects</td>
<td>041</td>
<td>042</td>
<td>043</td>
</tr>
<tr>
<td>Home Improvement Projects</td>
<td>044</td>
<td>045</td>
<td>046</td>
</tr>
<tr>
<td>Bio-electronic/Health Projects</td>
<td>047</td>
<td>048</td>
<td>049</td>
</tr>
<tr>
<td>Test Equipment Projects</td>
<td>050</td>
<td>051</td>
<td>052</td>
</tr>
<tr>
<td>Security/Alarm Projects</td>
<td>053</td>
<td>054</td>
<td>055</td>
</tr>
<tr>
<td>Car Electronics Projects</td>
<td>056</td>
<td>057</td>
<td>058</td>
</tr>
<tr>
<td>Robotics Projects</td>
<td>059</td>
<td>060</td>
<td>061</td>
</tr>
<tr>
<td>Robotics Projects</td>
<td>062</td>
<td>063</td>
<td>064</td>
</tr>
<tr>
<td>Photography</td>
<td>065</td>
<td>066</td>
<td>067</td>
</tr>
<tr>
<td>Novelty/Gimmick Projects</td>
<td>068</td>
<td>069</td>
<td>070</td>
</tr>
<tr>
<td>Basic Elementary Theory</td>
<td>071</td>
<td>072</td>
<td>073</td>
</tr>
<tr>
<td>Advanced Electronic Theory</td>
<td>074</td>
<td>075</td>
<td>076</td>
</tr>
<tr>
<td>General Science/Technology</td>
<td>077</td>
<td>078</td>
<td>079</td>
</tr>
<tr>
<td>News</td>
<td>080</td>
<td>081</td>
<td>082</td>
</tr>
<tr>
<td>Product Reviews</td>
<td>083</td>
<td>084</td>
<td>085</td>
</tr>
<tr>
<td>Letters</td>
<td>086</td>
<td>087</td>
<td>088</td>
</tr>
<tr>
<td>Open Channel/etc</td>
<td>089</td>
<td>090</td>
<td>091</td>
</tr>
<tr>
<td>Design/Circuit ideas</td>
<td>092</td>
<td>093</td>
<td>094</td>
</tr>
<tr>
<td>Competitions</td>
<td>095</td>
<td>096</td>
<td>097</td>
</tr>
<tr>
<td>Others (please specify)</td>
<td>098</td>
<td>099</td>
<td>100</td>
</tr>
</tbody>
</table>

3. Would you like to see a greater or lesser proportion of ETI devoted to the following?

<table>
<thead>
<tr>
<th>Less</th>
<th>The same</th>
<th>More</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginners’ Projects</td>
<td>029</td>
<td>030</td>
</tr>
<tr>
<td>Advanced Projects</td>
<td>032</td>
<td>033</td>
</tr>
<tr>
<td>Audio Projects</td>
<td>035</td>
<td>036</td>
</tr>
<tr>
<td>Music Projects</td>
<td>038</td>
<td>039</td>
</tr>
<tr>
<td>Radio Projects</td>
<td>041</td>
<td>042</td>
</tr>
<tr>
<td>Home Improvement Projects</td>
<td>044</td>
<td>045</td>
</tr>
<tr>
<td>Bio-electronic/Health Projects</td>
<td>047</td>
<td>048</td>
</tr>
<tr>
<td>Test Equipment Projects</td>
<td>050</td>
<td>051</td>
</tr>
<tr>
<td>Security/Alarm Projects</td>
<td>053</td>
<td>054</td>
</tr>
<tr>
<td>Car Electronics Projects</td>
<td>056</td>
<td>057</td>
</tr>
<tr>
<td>Robotics Projects</td>
<td>059</td>
<td>060</td>
</tr>
<tr>
<td>Robotics Projects</td>
<td>062</td>
<td>063</td>
</tr>
<tr>
<td>Photography</td>
<td>065</td>
<td>066</td>
</tr>
<tr>
<td>Novelty/Gimmick Projects</td>
<td>068</td>
<td>069</td>
</tr>
<tr>
<td>Basic Elementary Theory</td>
<td>071</td>
<td>072</td>
</tr>
<tr>
<td>Advanced Electronic Theory</td>
<td>074</td>
<td>075</td>
</tr>
<tr>
<td>General Science/Technology</td>
<td>077</td>
<td>078</td>
</tr>
<tr>
<td>News</td>
<td>080</td>
<td>081</td>
</tr>
<tr>
<td>Product Reviews</td>
<td>083</td>
<td>084</td>
</tr>
<tr>
<td>Letters</td>
<td>086</td>
<td>087</td>
</tr>
<tr>
<td>Open Channel/etc</td>
<td>089</td>
<td>090</td>
</tr>
<tr>
<td>Design/Circuit ideas</td>
<td>092</td>
<td>093</td>
</tr>
<tr>
<td>Competitions</td>
<td>095</td>
<td>096</td>
</tr>
<tr>
<td>Others (please specify)</td>
<td>098</td>
<td>099</td>
</tr>
</tbody>
</table>

4. Indicate which of the following equipment you use:

<table>
<thead>
<tr>
<th>Own</th>
<th>Don’t own but regularly use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Computer</td>
<td>101</td>
</tr>
<tr>
<td>Professional Computer</td>
<td>103</td>
</tr>
<tr>
<td>Hi-fi</td>
<td>105</td>
</tr>
<tr>
<td>Electronic Musical Instrument</td>
<td>107</td>
</tr>
<tr>
<td>MIDI Equipment</td>
<td>109</td>
</tr>
<tr>
<td>PA/Recording equipment</td>
<td>111</td>
</tr>
</tbody>
</table>

5. Do you buy ETI for:

 - Projects only
 - Features only
 - Both

6. Do you read any of the following magazines:

 - Never
 - Occasionally
 - Regularly

 - Practical Electronics
 - Everyday Electronics
 - Elektor Electronics
 - Maplin Magazines
 - Electronics & Wireless World
 - Music Technology
 - Home & Studio Recording
 - Hi-fi News & Record Review
 - New Scientist
 - Scientific American
 - Practical Wireless
 - Ham Radio Today
 - Electronics Product News
 - Electronics Equipment
 - News/New Electronics
 - Electronic Product Review

7. If read, please indicate what you think of the following magazines:

 - Not as good as ETI
 - As good as ETI
 - Better than ETI

 - Practical Electronics
 - Elektor electronics
 - Everyday Electronics
 - Maplin Magazine

8. Which of the following do you buy and how frequently?

 - Never
 - Sometimes
 - Regularly

 - Electronic Components
 - Complete Electronic Kits
 - ETI PCBs
 - Stripboard/Wirewrap etc
 - Cases/Case Materials
 - Tools
 - PCB making Equipment/Materials
 - Pre-programmed ROMs
 - Computer Software

End

For your chance to win one of 20 prizes supplied by Maplin Electronics and ETI, please return your completed Reader Survey to ETI, Readers’ Survey, 19-21 Sidwell Road, London W6 9AG, on or before October 10th.

No names and addresses will be disclosed to any third party and all information will be treated in the strictest confidence.

As an incentive for your hard work, all entries received by 10th October will be entered in the draw for the 20 prizes given by Maplin Electronics and ETI.

Suitable magazines for your products.

END
Floppy Disks □ 207 □ 208 □ 209
Electronic Books □ 210 □ 211 □ 212
Data Books □ 213 □ 214 □ 215
Second Hand Equipment □ 216 □ 217 □ 218

9. Please indicate what you think of the services offered:

<table>
<thead>
<tr>
<th>Poor</th>
<th>Average</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 219</td>
<td>□ 220</td>
<td>□ 221</td>
</tr>
<tr>
<td>□ 223</td>
<td>□ 224</td>
<td>□ 225</td>
</tr>
<tr>
<td>□ 227</td>
<td>□ 228</td>
<td>□ 229</td>
</tr>
<tr>
<td>□ 231</td>
<td>□ 232</td>
<td>□ 233</td>
</tr>
<tr>
<td>□ 235</td>
<td>□ 236</td>
<td>□ 237</td>
</tr>
<tr>
<td>□ 239</td>
<td>□ 240</td>
<td>□ 241</td>
</tr>
</tbody>
</table>

10. Have you used:

Yes □ 243 No □ 244
Photocopy service □ 245 □ 246

11. If you own or regularly use a computer, please indicate which it is:

Spectrum □ 247
BBC Micro/Master/ Electron □ 248
Commodore 64/128 □ 249
Amstrad CPC □ 250
Amstrad PCW □ 251
IBM PC Compatible □ 252
Atari ST □ 253
Amiga □ 254
Archimedes □ 255
Cortex □ 256
Apple Mac □ 257
Other (please specify) □ 258

12. How many ETI projects have you built in the past 12 months?

No □ 259
1-3 □ 260
4-6 □ 261
7-12 □ 262
More than 12 □ 263

13. Do you find ETI projects

Yes □ 264 No □ 265
Reliable □ 266 □ 267
Easy to build □ 268 □ 269
Useful □ 268 □ 269
Instructive □ 270 □ 271
Technically understandable □ 272 □ 273
Work first time □ 274 □ 275

14. Do you modify ETI project designs?

Not At All □ 276
A Few Mods □ 277
Many Mods □ 278

15. Do you prefer to build ETI projects from complete kits when they are available?

Yes □ 279 No □ 280

16. Do you make your own PCBs?

Never □ 281
Sometimes □ 282
Always □ 283

17. Have you used our cover PCB to construct a project?

Once □ 284 Sometimes □ 285
Always □ 286

18. What type of projects would you like to see using our cover PCB?

19. Do you primarily build electronics projects

To save money on commercial goods □ 288
As a satisfying pastime □ 289
As an instructional exercise □ 290

20. As far as electronics design and construction is concerned, do you consider yourself:

Novice □ 291
Proficient □ 292
Accomplished □ 293
Expert □ 294

21. Estimate the value of your electronics test gear and construction equipment as new:

Under £25 □ 295
£25-£100 □ 296
£101-200 □ 297
£201-£500 □ 298
£501-£1000 □ 299
£1000-£2000 □ 300
£2000-£4000 □ 301
over £4000 □ 302

22. How much do you estimate you have spent on equipment and components during the past 12 months?

Nothing □ 303
Under £25 □ 304
£25-£50 □ 305
£51-£100 □ 306
£101-£200 □ 307
£201-£500 □ 308
£501-£1000 □ 309
over £1000 □ 310

23. Are you responsible for recommending/specifying electronic equipment in your job?

Yes □ 311 No □ 312

24. How long do you keep your copies of ETI for:

Less than one month □ 313
One month □ 314
Three months □ 315
Six months □ 316
A year or more □ 317

25. If kept, how often do you refer back to issues of ETI?

Once a week or more □ 318
About once a month □ 319
Once every three months □ 320
Less often □ 321
Never □ 322

26. How long do you spend reading your copy of ETI?

Over 2 hours □ 323
1½-2 hours □ 324
1-1½ hours □ 325
½-hour □ 326
Less than ½ hour □ 327

27. How long have you been an ETI reader?

Less than three months □ 328
3-6 months □ 329
7-12 months □ 330
1-2 years □ 331
2-3 years □ 332
Over 5 years □ 333

28. How often do you buy ETI?

Occasional issues □ 334
Most issues □ 335
Every issue □ 336

29. How much of ETI do you read?

Read only some articles □ 337

Read most articles
Read all articles

30. With regard to the advertisers in ETI do you?
Read or look through most or nearly all the ads
Read or look through some of the ads
Just read or look through the occasional ad
Very rarely/never look at the ads

31. Thinking specifically about the advertising content, would you please rate the two main types of advertisement:

<table>
<thead>
<tr>
<th>Display</th>
<th>Classifieds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

32. Which of the following would you most like to see featured with the magazine? (one box only).
Cover mounted gifts
Additional supplements
Competitions
Money saving offers
Other (please specify)

33. Does anyone else read your copy of ETI?
No only myself
One or two other people
Three or four other people
More than four other people

34. If your copy of ETI is read by other people, please give details of their age and sex:

<table>
<thead>
<tr>
<th>Person 1</th>
<th>Person 2</th>
<th>Person 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-14 yrs</td>
<td>□ 354</td>
<td>□ 355</td>
</tr>
<tr>
<td>15-24 yrs</td>
<td>□ 357</td>
<td>□ 358</td>
</tr>
<tr>
<td>25-34 yrs</td>
<td>□ 360</td>
<td>□ 361</td>
</tr>
<tr>
<td>35-44 yrs</td>
<td>□ 363</td>
<td>□ 364</td>
</tr>
<tr>
<td>45-54 yrs</td>
<td>□ 366</td>
<td>□ 367</td>
</tr>
<tr>
<td>55-64 yrs</td>
<td>□ 369</td>
<td>□ 370</td>
</tr>
<tr>
<td>Over 65 yrs</td>
<td>□ 372</td>
<td>□ 373</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>□ 375</td>
<td>□ 376</td>
</tr>
<tr>
<td>Female</td>
<td>□ 378</td>
<td>□ 379</td>
</tr>
</tbody>
</table>

35. Are you aware of the scheduled publication date of ETI?
Yes □ 381
No □ 382

36. If the answer to the last question is YES, do you normally attempt to purchase the magazine on that day?
Yes □ 383
No □ 384

37. How do you normally obtain your copy?
Chance purchase □ 385
Newsagent shop collection □ 386
Newsagent home delivery □ 387
Subscription □ 388
Passed on copy □ 389

38. If you are a subscriber, on which date did you receive this issue?
□ □ □ / □ □ □

39. If you are a subscriber, how long have you subscribed to this magazine?
1-6 months □ 390
7-12 months □ 391
1-2 years □ 392
3-5 years □ 393
6-10 years □ 394
Over 10 years □ 395

40. If you do not obtain your copy by subscription, is it due to one of the following:
Subscription too expensive □ 396
Not every issue required □ 397
Not aware subscription service available □ 398

41. Are you aware that to subscribe to this magazine in the UK costs the same as purchasing it in a shop?
Yes □ 399
No □ 400

42. Would you like to receive further details on taking a subscription?
Yes □ 401
No □ 402

43. If you do not subscribe, from which type of newsagent do you most often obtain your copy?
High Street Shop □ 403
Estate shop □ 404
Corner shop □ 405
Other (please specify) □ 406

44. Please tick any hobby/interests you may have besides Electronics:
Model Railways: □ 408
Model Engineering: □ 409
Model Boats: □ 410
Model Aircraft: □ 411
Steam Locomotives: □ 412
Radio/CB: □ 413
Computers: □ 414
Fish keeping: □ 415
Woodworking: □ 416
Handicrafts: □ 417

45. Please tick the box which represents the annual total of your gross income:
Under £25,000 □ 418
£25,001-£34,999 □ 419
£35,001-£49,999 □ 420
£50,001-£69,999 □ 421
£70,001-£99,999 □ 422
£100,001-£149,999 □ 423
£150,001-£199,999 □ 424
£200,001-£299,999 □ 425
£300,000 or over □ 426

46. What is your age?
Under 15 yrs □ 427
15-18 yrs □ 428
19-21 yrs □ 429
22-24 yrs □ 430
25-34 yrs □ 431
35-44 yrs □ 432
45-54 yrs □ 433
55-64 yrs □ 434
Over 64 yrs □ 435

47. Which of the following newspapers do you read?
The Times □ 436
The Daily Telegraph □ 437
The Financial Times □ 438
The Guardian □ 439
The Independent □ 440
The Daily Express □ 441
The Daily Mail □ 442
The Daily Mirror □ 443
The Sun □ 444
Today □ 445
None of the above □ 446

48. Which of the following Sunday newspapers do you read?
The Sunday Times □ 447
The Observer □ 448
The Sunday Telegraph □ 449
The Sunday Express □ 450
The Mail on Sunday □ 451
The Sunday Mirror □ 452
The People □ 453

ETI OCTOBER 1992

35

www.americanradiohistory.com
To post, fold on the dotted line A. Fold again at B and C and tuck B into the flap formed by C.
ETI BOOK OFFER

Here's a FIRST you can't afford to miss

E.T.I. have managed to arrange a super pre-publication offer for its reader

ELECTRONIC PROJECTS FOR GUITAR

R.A. Penfold

★ Make your own effects at a fraction of the cost ★
★ Assumes no previous knowledge of electronics ★
★ Complete instruction on assembly ★ Easy setting up - no test gear required ★

If you're a guitarist with more sense than money, you’ll find this book a goldmine. It’s a collection of 16 guitar and general purpose effects units that you can build yourself at a fraction of the shop price.

And even if you don’t know one end of a soldering iron from the other, don’t worry, many of the projects are suitable for anyone new to project building. And once you’ve built one, the rest will be plain sailing.

Each project has an introduction, an explanation of how it works, a circuit diagram, complete instructions on strip-board layout and assembly, as well as notes on setting up and using. So if you need a guitar tuner or a preamp, a headphone amplifier or a distortion unit, a compressor or DI box, or any of the other units described in this book, this is the place to start.

Well what are you waiting for?

Projects included
★ Guitar preamplifier ★
★ Headphone amplifier ★
★ Soft distortion unit ★
★ Compressor ★ Auto-wah ★
★ Waa-waa pedal ★

Projects included
★ Expander ★ Treble booster ★
★ Dynamic treble booster ★
★ Dynamic tremolo ★ DI box ★
★ Thin distortion unit ★
★ Guitar tuner ★

Telephone orders 0442 66551 (24 HRS)

ARGUS BOOKS PUBLISHING FOR THE SPECIALIST

THE FULL RANGE OF ARGUS BOOKS are available from all good book and hobby shops or contact Argus Books direct for a 1992 Complete List.

COMPLETE LIST, Argus Books, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST
OR PHONE 0442 66551 EXT. 203

ARGUS BOOKS

1992 COMPLETE LIST

ETI OCTOBER 1992
Continuing from last month, in this chapter of our slowly unfolding tale of the pursuit of audio excellence within the AutoMate mixing console, we shall expand our examination of ‘sound’ equalisation. In this section, our finale or pièce de résistance will be an examination of the comprehensive equalisation circuitry of this console.

I mentioned last month, albeit briefly, the subjective versus scientific/objective argument. Both the topic of EQ and that of its predecessor, the op-amp in any high quality audio pathway, are hotly disputed subjects within such a sphere of argument and discussion.

I should perhaps say that EQ is probably one of the only subjects within the realm of audio engineering where I am more partial to the ‘subjective’ cause. Not especially from the point of not wishing to include such circuits for fear of derision etc but that which says if it sounds good, do it and be damned. It is a difficult viewpoint to rationalise and put on paper but I shall try anyway.

For absolute accuracy in sound reproduction, the replay should sound identical to the original recording. Superficially this means a concert performed in the Carnegie Hall, should sound as it was when recorded at this venue when one replays it on a record deck, CD player or whatever in one’s typical 20’ x 12’ suburban living room.

Is this then a true and accurate rendition of what it sounded like when first performed in the concert hall? To my mind, it is not. For it to sound like that, it would be necessary for it to be replayed in a room of similar dimensions and acoustic treatments.

It also implies absolutely perfect recording and reproducing apparatus and correct positioning of microphones etc. This is the prevailing situation when the source material is completely naturally produced, ie from acoustic instruments with no artificial electronic means of sound reinforcement before it reaches the ears of the attending concert-goers.

Accurate Recording - Synthesis or Analysis

Once the factor of sound reinforcement is introduced, (a typical rock concert) the errors are compounded by a very large order of magnitude. The audience will hear instrument sounds which, although perhaps not heavily processed or enhanced in anyway will have passed through an electronic reproduction/reinforcement system. Even if the amplifiers were completely perfect, the sound would inevitably be coloured in some manner by the loudspeakers. The extreme might be in a concert group choosing to use valve amps with the ‘wick’ turned up, so to speak. They will then produce the overdriven, soft-clipped second and other low order harmonic distortion products associated with this type of amplifier - the type so beloved by the rock fraternity. In this instance, we would then be trying to simulate a distorted sound, no matter how pleasing to the ear this might be.

Any recording of this would, in the interests of accuracy, be trying to simulate this ‘processing’, no matter how subtly it might have been applied.
Returning to the interests of absolute accuracy, should the recorded musical piece sound like it is being replayed in the Carnegie Hall (which is artificial and a travesty of the accuracy requirement since the room is NOT the Carnegie Hall) or should it sound like a bunch of musicians crammed into one’s living room?

If all of this sounds a little oblique and removed from the subject of equalisation, we should remember what I said last month about modern-day recording techniques. The final stereo master isn’t an accurate representation of what the artist sounded like in the studio but one of how the sound engineer/producer wished or hoped that it should sound. There must always be some trade-off between accuracy and ‘pleasantness’, for want of a better word. This relates to EQ in the manner in which it must also sound natural and musical. Having designed a filter network, it’s of little consolation to point to reams of transfer functions, pages of beautifully executed equations and sheets of smoothly-drawn curves when the finished product sounds rough or discordant or unnatural but theory suggests otherwise. Some compromise and much subjective testing is necessary.

Equalisation by Empirical Means

Some very poor examples of EQ networks abound in equipment and textbooks alike. These include so-called ‘shelving’ equalisers which do not have a true shelving characteristic in operation, circuits with component values badly chosen so that turnover frequency wanders with the setting of the boost/cut control, or chosen so that the control has little effect for much of the angular rotation about the ‘flat’ position but all at the extremes of control setting. The list goes on.

The AutoMate equalisation stages were designed with much thought given to subjective effects and particularly to the effect upon typical programme material, be that material of an instrumental or vocal nature.

Fig.2 Evolution and development of an active filter (high low pass)
With all of the afore-mentioned firmly in mind, we can now look at the various types of filters and equalisers to be found within a console. Some notion and appreciation of what is required and of some of the problems or advantages which the use of the op-amp will cause or cure in this area of circuit design should have been gained. Most importantly, any applied equalisation should sound natural with great care taken to ensure that its application is in fact to create a given effect, or to either remove unwanted sounds from the signal or to add that which is lacking. It should rarely be used as an effect or ‘toy’ in its own right.

Last month, we had a very brief look at simple, passive filter networks and closed Part 6 by mentioning one method of simulating inductance by devious electronic means. Realising an inductor by electronic means can be performed using a device called a gyrator although as such, it is of little use to us as student designers of the tunable variety. This is because the network dynamic impedance changes with changing frequency as different Q values as frequency is altered. The GIC (or General Impedance Converter), happily, is not the only way of synthesising inductances.

Grabbed by the Bootstraps

One of the simplest - and for this reason, one of the most popular - is the ‘bootstrap’, so-called because of the way that bootstrapping is used to create inductance. Bootstrapping as a circuit design technique works whether the source voltage is steady-state or alternating. This is because any phase or difference in potential creates a potential difference across the resistor which, in turn, causes a current to flow. By making this bootstrapping action frequency dependent, we can synthesise an inductor. See Figure 1a. It has one shortcoming - nothing’s perfect, to paraphrase Joe E. Brown in ‘Some Like It Hot’. At HF there is a parallel impedance between the terminal and ground. Buffering this chain from the terminal can, however, effect a cure.

The synthesised inductor now looks like the network in Figure 1b with the bootstrap resistor now manifested as a loss resistor in series with the inductor. Effectively, this produces behaviour which is akin to that encountered when winding resistance ‘impedes’ upon a circuit’s ideal electrical characteristics. A finite R_s causes the inductor to have a lower Q than at first might have been expected from a theoretical example. The parallel RC network is a High Pass Filter. Figure 1c shows the effect of buffering this network, with the RC components now replaced by the high impedance which the buffer input presents to the network.

This configuration of components now begins to look more like a typical filter circuit. Figure 2 and 3 show the complete evolution of a low pass type.

Genesis of an Active Filter

Now that we have learned how to synthesise inductive properties, let us look at a real example. At this juncture, it should be noted that an active filter realisation of a passive inductive network is rarely expected to replace it on a one for one basis. Rather, the overall mathematical or transfer response is considered and the active filter section used to simulate or synthesise its passive counterpart. Last month, mention was made of the many response curves possible with this type of circuit. Not only can we control the product of the inductor (or its active counterpart) and the capacitor but also the RATIO of one to the other. If the capacitor is made very large in value and the inductor very small, the load resistor R_L will not load the L_n network very much and the network behaves as a series resonant circuit on the verge of oscillation. At some frequencies at or near resonance, the circuit will exhibit gain or peaking and will yield an underdamped response. Balancing the ratio of all three components gives a flatter response with no peaking or gain and is known as the critically-damped curve. Unbalancing again, but with the bias this time toward large L and small C means that R_n dominates and a droopy, highly or overdamped response is created.

Setting the damping by altering the L-C ratio determines only the SHAPE of the response curve and the filter performance near f_{oov} and that this frequency is set solely by the product of the two components. Cascading two sections to give higher order filter networks also gives faster roll-off (as we might expect) but with very high damping because the two resistors cause the network to be lossy.

Damping is so bad, in fact, as to make the network almost unusable in most instances. Bolstering this lack-lustre performance can be achieved by injecting energy into the network.

Adding an emitter follower eliminates any output loading effects since the follower has unity gain, high Z_{in}, and low Z_{out}. With this circuit, gain and damping are now independent of R although the overall damping performance still leaves a lot to be desired.

Further improvements occur if we connect the capacitor to the output of the emitter follower rather than to ground. In this way there is positive feedback or bootstrapping from output back to the middle of the RC filter. This feedback
improves the response and allows a reduction in damping to the point where we can then achieve any acceptable response that we might wish for. This is analogous to controlling the response in the totally passive section by altering the inductor-capacitor ratio. The feedback method delivers energy to the network only near the cut-off frequency - this localised feedback is caused by the reactance of the feedback capacitor being too high to affect LF and by V_{ac} being too small to be worth feeding back at HF. Consequently, the feedback does what it is supposed to do ONLY where it is supposed to do it ie near f_{oot}. Changing the ratio of the two capacitors changes the damping whilst the RC product sets f_{out}. Damping of a second-order filter is defined as being a measure or index of its tendency towards oscillation. For example, practical damping values range from 2 to 0, with zero damping being the value for an oscillator, 1.414 being a critical value which gives maximum flatness without overshoot and a damping value of 2 being that yielded when two identical and isolated RC networks are cascaded. Highly damped filters combine to produce a smooth response with good overshoot and transient properties - important in high quality audio applications - whilst slightly damped ones combine to produce a filter response which is lumpy but with sharp rejection characteristics.

Hooked on Classics

It is only very slightly removed from the classic equal component Sallen and Key filter which just happens to be the easiest-to-design and easiest-to-use single op-amp filter you can possibly obtain. This is particularly true if one has to tune it over a frequency range or alter or trim its damping. Replacing the simple emitter-follower with an op-amp yields this classic filter. The Sallen and Key is a simple circuit to explain.

We have two cascaded RC sections driving an op-amp which unloads the circuit from any output and feeds back just the right amount of signal near the cut-off frequency to bolster response. In this way, the desired damping and shape can be achieved. Low pass and high pass transfer functions can be exchanged by swapping the positions of the resistors and capacitors. Despite the attractions of such a simple circuit, the unity-gain Sallen and Key is not without its failings. Damping and frequency cannot be independently adjusted and variation of the filter break frequency requires that we alter two different-value resistors simultaneously. A further, less obvious limitation is that low pass and high pass realisations cannot be achieved by the simple interchange of resistive and capacitive elements since upper components are always in a 1:1 ratio whereas the lower ones are in a 4:1 ratio. The break frequency of the circuit is set by the PRODUCT of the resistors and capacitors while the damping is controlled so by the RATIO of the capacitors, values of which are not easy to calculate.

Altering this basic configuration yields a more civilised and refined version, a circuit known as the Voltage Controlled Voltage Source (VCVS) or the equal-component-value Sallen and Key filter. At a magic gain value 3-d, resistor values are identical, capacitor values are identical and consequently the circuit can be easily tuned. Equal value components throughout mean that we can switch easily between low and high pass types if so required and by using only a simple switching arrangement. Damping is adjusted by setting the gain which is always moderately positive. Gain affects ONLY damping, which is rather nice from our point of view, but it must be less than 3 or the circuit becomes an oscillator. This is because the damping at this value becomes negative. The ratio of the two resistors on the inverting input sets the gain and damping and as the absolute value of these is non-critical; they are normally set such that the parallel resistance equals the resistance seen from the non-inverting input to ground.

The unity-gain and the equal-value-component versions of the Sallen and Key are definitely the most workable. The gain of the latter type is normally fixed at 6dB although values can be manipulated to yield other values. We are already aware that damping determines filter shape. For this filter, there are seven shape options - best delay, compromise, flattest amplitude, slight dips, 1dB dips, 2dB dips and 3dB dips. They are sometimes better known as Bessel,
Butterworth and Chebyshev types. See Figure 4. In essence, we trade sharper cut-off outside the frequency range of interest for worst transient response inside. As it transpires, the flattest response is the one which also gives 4dB of gain.

Of course, aside from amplitude response, other important features of a filter are the the steepness of the skirts or the uniformity of time delay versus frequency. Up until now, we have concerned ourselves primarily with effects in the frequency domain and specifically what happens in the passband, the transition region -skirt - and the stopband. The other factor of great importance in the frequency domain is the phase shift of V_{out} relative to V_{in}. Phase is important because a signal entirely within the passband of a filter will emerge with its waveform distorted if the time delay of different frequencies in going through the filter is not constant. Constant time delay corresponds to a phase shift increasing linearly with frequency. See Figure 5.

Filters can also be described in terms of their time domain properties; rise time, overshoot, ringing, and settling times and good performance in this domain is of particular importance where the input waveform is step or pulse-like in nature. Overshoot and ringing are both self-explanatory terms for some of the undesirable properties of filters. See Figure 6.

As it transpires, filter design can be optimised for maximum flatness of passband response at the expense of a slow transition from passband to stopband. Alternatively, by allowing some ripple in the passband characteristic, the transition from passband to stopband can be steepened considerably. As already mentioned, a third criterion that may be important is the ability of the filter to pass signals within the passband without distortion of the waveform caused by phase-shifts. There exist different filter designs to optimise each of these characteristics or combinations of them. Rational filter design begins with a set of requirements on passband flatness, attenuation at some frequency outside the passband and whatever else matters.

For audio work, rate of attenuation is an important consideration. To understand this point, we should designate all of the aforementioned circuits as ‘filters’ rather than as ‘tone controls’. In normal applications, they will be employed to have effect at either the LF or HF end of the audio spectrum and will typically be second or third order filters, that is with rates of attenuation of 12 or 18dB per octave. Psychoacoustic research has shown that rates of attenuation in excess of 6dB/octave lead to some degree of colouration in the in-band audio signal. As the rate of attenuation increases, so the degree of colouration worsens also. This is of less significance at the extreme ends of the audible spectrum - where they are most likely to be used - but some degree of restraint must still be exercised. This is because fast rates of out-of-band attenuation cause severe modifications to the transient response of the in-band audio signal - ringing type time-related components are introduced. Again, Figure 6 shows these filter-inherent transient problems. In the turnover area of the filter, the relationship between instrument fundamentals and their harmonics is of paramount importance. Any temporal disturbances in this area will be perceived as unnatural-sounding, especially if the fundamental is attenuated with respect to the harmonic (or vice-versa). Although the Butterworth type, with its maximally-flat response, has in fact been employed within the AutoMate, it is not quite as attractive as it might first have appeared since we are always accepting some variation in passband response. A filter characterised by a flat amplitude response may have large phase shifts and attendant overshoot problems, as already discussed. Conversely, the Bessel type’s constancy of time delay is achieved at the expense of an amplitude response which has an even lazier roll-off rate than the Butterworth.

Another worthwhile approach to the problem of realising a filter with a uniform time delay is to use an all-pass filter (also known as a delay equaliser) which have constant amplitude response with frequency. See Figure 7. Phase shifts can thus be tailored to individual requirements and this approach can yield a design which vastly improves upon the time delay constancy of ANY filter. (More of the importance...
of this type of filter a little later). Compromise is the order of the day and the Butterworth-type is the true compromise filter with audibly-acceptable performance in both the frequency and time-domains. Figure 8 shows the basic Sallen and Key modified to become a multiple feedback type with a bandpass response.

A simple one or possibly two op-amp type filter such as this is a good basis for a design of filter to be used at the extremes of the frequency range. Having said this, one should mention that with a single op-amp type of filter, component spread problems, sensitivity problems or restrictions to available gain as Q rises beyond a certain value are all problems which can present themselves to the unwary. Figure 9 shows the effects of component spread.

True high performance, tunable filtering demands a more complicated circuit with three or possibly four op-amps. In most normal filter applications, a need for this type seldom arises since all that is usually required of the circuit is a filtering action which is fixed at one particular frequency or can be manually tuned.

Next month we move onto more complex filter sections.

These types lend themselves more readily to inclusion within a mixing console.
<table>
<thead>
<tr>
<th>Price Code</th>
<th>Price Code (inc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>£1.80</td>
</tr>
<tr>
<td>D</td>
<td>£2.50</td>
</tr>
<tr>
<td>E</td>
<td>£3.25</td>
</tr>
<tr>
<td>F</td>
<td>£4.00</td>
</tr>
<tr>
<td>G</td>
<td>£4.75</td>
</tr>
<tr>
<td>H</td>
<td>£5.50</td>
</tr>
<tr>
<td>I</td>
<td>£6.67</td>
</tr>
<tr>
<td>J</td>
<td>£7.20</td>
</tr>
<tr>
<td>K</td>
<td>£8.80</td>
</tr>
<tr>
<td>L</td>
<td>£10.60</td>
</tr>
<tr>
<td>M</td>
<td>£13.10</td>
</tr>
<tr>
<td>O</td>
<td>£15.80</td>
</tr>
<tr>
<td>P</td>
<td>£15.80</td>
</tr>
<tr>
<td>Q</td>
<td>£17.90</td>
</tr>
<tr>
<td>R</td>
<td>£21.50</td>
</tr>
<tr>
<td>S</td>
<td>£23.90</td>
</tr>
<tr>
<td>T</td>
<td>£25.90</td>
</tr>
<tr>
<td>U</td>
<td>£32.20</td>
</tr>
<tr>
<td>V</td>
<td>£35.80</td>
</tr>
<tr>
<td>W</td>
<td>£37.90</td>
</tr>
<tr>
<td>X</td>
<td>£40.70</td>
</tr>
</tbody>
</table>

ETI PCB SERVICE

TELEPHONE ORDERS may be made on (0442) 66551

ACCESS or VISA

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9107-4</td>
<td>The Consort Loudspeaker</td>
<td>H</td>
</tr>
<tr>
<td>E9108-1</td>
<td>Pulsed Width Train Controller</td>
<td>E</td>
</tr>
<tr>
<td>E9108-2</td>
<td>Model Speed Controller - Main Board</td>
<td>F</td>
</tr>
<tr>
<td>E9108-3</td>
<td>Model Speed Controller - Power Supply</td>
<td>F</td>
</tr>
<tr>
<td>E9109-1</td>
<td>Geiger Counter</td>
<td>E</td>
</tr>
<tr>
<td>E9109-2</td>
<td>Hemisync Waveform Generator Board</td>
<td>G</td>
</tr>
<tr>
<td>E9109-3</td>
<td>Hemisync Pulse Generator Board</td>
<td>F</td>
</tr>
<tr>
<td>E9109-4</td>
<td>Hemisync Power Supply Board</td>
<td>C</td>
</tr>
<tr>
<td>E9109-5</td>
<td>Nightfighter Main Processor Board</td>
<td>O</td>
</tr>
<tr>
<td>E9110-1</td>
<td>Nightfighter Main Processor Board</td>
<td>O</td>
</tr>
<tr>
<td>E9110-2</td>
<td>Decimator</td>
<td>E</td>
</tr>
<tr>
<td>E9110-3</td>
<td>Prototype Designer</td>
<td>J</td>
</tr>
<tr>
<td>E9110-4</td>
<td>Nightfighter - Sound to Light (2 sided)</td>
<td>L</td>
</tr>
<tr>
<td>E9110-5</td>
<td>Nightfighter - Ramp Generator Board</td>
<td>F</td>
</tr>
<tr>
<td>E9110-6</td>
<td>Nightfighter - Cyclic Crossfade (2 sided)</td>
<td>M</td>
</tr>
<tr>
<td>E9110-7</td>
<td>Nightfighter - Strobe Board (2 sided)</td>
<td>J</td>
</tr>
<tr>
<td>E9110-8</td>
<td>Nightfighter - 8 Channel Trim Board</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9111-1</td>
<td>Digital Code Lock</td>
<td>L</td>
</tr>
<tr>
<td>E9111-2</td>
<td>Switched Mode Power Supply</td>
<td>E</td>
</tr>
<tr>
<td>E9111-3</td>
<td>Nightfighter Mode Selection (2 sided)</td>
<td>J</td>
</tr>
<tr>
<td>E9111-4</td>
<td>Nightfighter - Display Board (2 sided)</td>
<td>M</td>
</tr>
<tr>
<td>E9111-5</td>
<td>Nightfighter - Base Beat Trigger (2 sided)</td>
<td>L</td>
</tr>
<tr>
<td>E9111-6</td>
<td>Nightfighter - Sequence Select (2 sided)</td>
<td>H</td>
</tr>
<tr>
<td>E9111-7</td>
<td>Nightfighter - Missir Control (PSI)</td>
<td>P</td>
</tr>
<tr>
<td>E9111-8</td>
<td>Nightfighter - Output Switch (2 sided)</td>
<td>M</td>
</tr>
<tr>
<td>E9112-1</td>
<td>Nightfighter Sensor Switch Master Control (2 sided)</td>
<td>L</td>
</tr>
<tr>
<td>E9112-2</td>
<td>Nightfighter Sensor Switch Channel Control (2 sided)</td>
<td>L</td>
</tr>
<tr>
<td>E9112-3</td>
<td>Nightfighter Sensor Switch Sound Trigger</td>
<td>H</td>
</tr>
<tr>
<td>E9112-4</td>
<td>Nightfighter Connector Board</td>
<td>F</td>
</tr>
<tr>
<td>E9112-5</td>
<td>Nightfighter Sensor Switch PSI</td>
<td>K</td>
</tr>
<tr>
<td>E9112-6</td>
<td>Nightfighter 8 Channel Input Interface (2 sided)</td>
<td>F</td>
</tr>
<tr>
<td>E9112-7</td>
<td>Nightfighter - Power On and Overload Regulator</td>
<td>P</td>
</tr>
<tr>
<td>E9201-1</td>
<td>Laboratory Power Supply</td>
<td>F</td>
</tr>
<tr>
<td>E9201-2</td>
<td>Test Card Generator Board</td>
<td>M</td>
</tr>
<tr>
<td>E9201-3</td>
<td>LED Star (2 sided)</td>
<td>C</td>
</tr>
<tr>
<td>E9201-4</td>
<td>Enlarger Timer Main PCB (2 sided)</td>
<td>L</td>
</tr>
<tr>
<td>E9201-5</td>
<td>Enlarger Timer Switchboard (2 sided)</td>
<td>K</td>
</tr>
<tr>
<td>E9201-6</td>
<td>Enlarger Timer Switch PCB</td>
<td>E</td>
</tr>
<tr>
<td>E9203-1</td>
<td>MIDI Switcher - Main Board</td>
<td>L</td>
</tr>
<tr>
<td>E9203-2</td>
<td>MIDI Switcher - Power Supply</td>
<td>E</td>
</tr>
<tr>
<td>E9203-3</td>
<td>MIDI Switcher - Power Supply</td>
<td>E</td>
</tr>
<tr>
<td>E9204-1</td>
<td>Auto Car Lights</td>
<td>F</td>
</tr>
<tr>
<td>E9205-1</td>
<td>Billboard</td>
<td>E</td>
</tr>
<tr>
<td>E9205-2</td>
<td>Pong Control</td>
<td>F</td>
</tr>
<tr>
<td>E9206-1</td>
<td>Stereo Amplifier</td>
<td>G</td>
</tr>
<tr>
<td>E9206-2</td>
<td>Xenon flash trigger Main Board</td>
<td>G</td>
</tr>
<tr>
<td>E9206-3</td>
<td>Xenon flash trigger Flash Board</td>
<td>F</td>
</tr>
<tr>
<td>E9206-4</td>
<td>Scanner for audio generator</td>
<td>D</td>
</tr>
<tr>
<td>E9207-1</td>
<td>Improved Rear Bike Lamp</td>
<td>D</td>
</tr>
<tr>
<td>E9207-2</td>
<td>Mini Baby Bag Monitor</td>
<td>C</td>
</tr>
<tr>
<td>E9207-3</td>
<td>Ultrasonic Audio Sender (2 boards)</td>
<td>N</td>
</tr>
<tr>
<td>E9207-4</td>
<td>Camera Add-on unit (4 boards)</td>
<td>O</td>
</tr>
<tr>
<td>E9207-5</td>
<td>AutoMate 5V/48V Mixer power supply</td>
<td>J</td>
</tr>
<tr>
<td>E9207-6</td>
<td>AutoMate Precision 17V power supply</td>
<td>J</td>
</tr>
<tr>
<td>E9207-7</td>
<td>Surround Sound Decoder</td>
<td>F</td>
</tr>
<tr>
<td>E9208-1</td>
<td>Dynamic Noise Limiter</td>
<td>P</td>
</tr>
<tr>
<td>E9208-2</td>
<td>Touch Controlled Intercom (2 boards)</td>
<td>H</td>
</tr>
<tr>
<td>E9208-3</td>
<td>MIDI Keyboard</td>
<td>K</td>
</tr>
<tr>
<td>E9208-4</td>
<td>Battery Charger</td>
<td>F</td>
</tr>
<tr>
<td>E9209-1</td>
<td>Intercom for light aircraft</td>
<td>H</td>
</tr>
<tr>
<td>E9209-2</td>
<td>Alarm protector</td>
<td>C</td>
</tr>
<tr>
<td>E9209-3</td>
<td>Temperature controller</td>
<td>M</td>
</tr>
<tr>
<td>E9209-4</td>
<td>45W Hybrid Power amp</td>
<td>F</td>
</tr>
</tbody>
</table>

ETI OCTOBER 1992

PCB Service October

E9109-1 Universal I/O Interface for PC (Double-Sided Board) .. N

E9110-2 Rapid Fuse Checker .. E

E9120-3 Heartbeat/Audio Listener .. E

E9200-FC Wizards Hat .. E

PCBs for the remaining projects are available from the companies listed in Baylines. Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the board but also tells you when the project was published. The first two numbers are the year, the next two are the month. Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required. Such orders will not be processed until payment is received.
ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3. The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

Features
- Runs under Windows 3.0 or 3.1.
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- Loads ISIS SUPERSKETCH and DESIGNER files directly.

ISIS - Intelligent Schematics

ISIS SUPERSKETCH (from £69)
A superb entry level schematic drawing package offering all the editing features of ISIS DESIGNER but without the netlisting, bill of materials and electrical rules check features.

Extended device library available for an additional £30.

ISIS DESIGNER (£275)
Provides all you need to create and edit schematics prior to further processing with ARES or other EDA software. Through the provision of user definable menu options and a special script language, ISIS acts as a 'framework' from which you can control all your CAD software.

ISIS DESIGNER+ (£475)
This top of the range schematics package adds hierarchical design, automatic annotation/packaging, ASCII data import and Design Global Annotation to make it one of the most advanced schematics packages available for DOS.

ARES - Advanced Routing

PCB II (£69)
Our Graphical User Interface makes this PCB drafting package exceptionally easy to learn and use. Advanced features include Auto Track Necking, Gerber viewing, curved tracks, and DXF export.

ARES (£275)
This package offers multi-layer, netlist based PCB design together with Power Plane Generation, EMS memory support and back-annotation to ISIS DESIGNER+.

ARES AUTOROUTE (£475)
Adds a multi-strategy auto-router to ARES to provide the ultimate in design automation. Special strategy management features allow all design rules to be defined in ISIS so there is very little setting up to do.

Also available as ARES 386 - a 32 bit version offering up to 400% faster operation, virtually unlimited design capacity and 1024x768 graphics support.

Call us today on 0274 542868 or fax 0274 481078 for a demo pack. Combination, multi-copy and educational discounts available. Prices ex P&P and VAT.

14 Marriner's Drive, Bradford, BD9 4JT.
HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disc drives, multimeters, oscilloscopes, scientific instruments, connectors, component bridges, frequency counters, signal generators, computers.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEK 465M 9Hz DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>TEK 465M 6-2 DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>Scope 4062 2mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>Scope 4062 4mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 9Hz TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 6-2 DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 9Hz DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 4mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 9Hz DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 4mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 9Hz DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 2mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
<tr>
<td>JEM 465M 4mW DUAL TRACEl</td>
<td>7/5</td>
<td>$290</td>
</tr>
</tbody>
</table>

Please supply photocopies of the following articles from ETI (complete in block capitals):

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title

I enclose a cheque/postal order made out to ASP Ltd. to the value of £1.50 per photocopy ordered.

Total remittance £ Date

Name

Address

Postcode

Send the completed form and your remittance to:
ETI Photocopy Service
Argus House
Boundary Way
Hemel Hempstead
Herts HP2 7ST

ETI OCTOBER 1992
Low cost data acquisition for IBM PCs & compatibles...

All our products are easy to install - they connect directly to either the printer or serial port and require no power supply. They are supplied with easy to use software which collects data for either display or print-out.

ADC-10
- 8-bit resolution
- one channel
- 10-25k samples per second
- Oscilloscope/Voltmeter software
- 0-5 V input range
- Connects to printer port

£49

ADC-11
- 10-bit resolution
- 11 channel
- 5-10k samples per second
- Data logger software
- 0-2.5 V input range
- Connects to printer port

£75

ADC-16
- 8, 12, 16-bit resolution + sign
- 8 s/e or 4 differential inputs
- 216 or 300 8-bit samples per second
- ± 2.5 V input range
- Data logger software
- Connects to serial port

£99

All prices exclusive of V.A.T.

PICO TECHNOLOGY LTD
Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 7QJ

Tel: 0954 - 211716 **Fax:** 0954 - 211880

www.americanradiohistory.com
Flashy Wizard's Hat

Andrew Armstrong constructs a party hat to shine above the rest.

This is a novelty project which sequences four chains of LEDs round a hat. Its primary use is to excite comment at the sort of parties to which respectable constructors are not supposed to be invited. The project was initially designed as a one-off for a fancy dress party, and was inspired partly by my wish to experiment with the decorative potential of LEDs. It proved a success, and has been popular with friends who borrow it regularly.

The chimney at the top is purely an engineering addition. Lifelong study of electronic engineering has consistently indicated that electronic components cease to run if the smoke's let out of them. Once this smoke mixes with the air, you cannot extract it and reinsert it into the components, which, lacking their working fluid, never function again. A chimney is provided just in case the smoke is driven out by some overload or breakdown.

On a more pedestrian level, the chimney houses the potentiometer which is used to adjust the clock rate of the sequencer.

PCB Construction And Testing

Assembly of the PCB should present no problems. The ICs should be inserted last, using anti-static precautions. As a temporary measure to enable testing, four LEDs should be connected to the output, and the preset potentiometer should be connected, though it will need to be disconnected again to route the wire through the chimney. A power supply or battery in the range 4V to 6V should be connected to the power terminals of the PCB. Take great care to connect the supply the right way round, because the PCB does not incorporate any protection.

As soon as the power supply is connected the LEDs should sequence, with one LED on at a time. If this does not happen, check that the LEDs are connected the right way round, then look for unsoldered connections and for tracks shorted by solder blobs. This is a simple circuit, and the possibilities for malfunction are limited, so it should soon be working.

Hat Construction

The hat was made from reasonably firm cardboard covered with black cloth. There are three cardboard sections: the brim, the sides and the crown. The sides were fashioned from a strip of card about six inches wide by eighteen inches long, wrapped around the head of the destined wearer and overlapped until it fitted comfortably above his ears! This was then marked for size and an overlap of about 1 inch glued. The inner edge of the brim, cut from a flat piece of card, was determined using the glued side-piece as a template but this cylinder must be 'tried' onto the wearer and held in shape by
hand while somebody draws around it firstly to make certain that the fit to the head is still accurate after gluing, and secondly because the wearer's head is unlikely to be perfectly cylindrical! Our heads are usually deeper front-to-back than they are from side-to-side, and so the 'sides' must either hold, or be held into, the right shape while the inner edge of the brim is being drawn. It is a good idea to make an initial template on a piece of stout paper, cut it and try it for fit, and if necessary try again before drawing and cutting the card.

The width of the brim itself is, of course, a matter of taste. Ours is about 1.5 inches.

The crown was cut from a circular section, and overlapped until it formed a cone of the right size to fit within the glued side-cylinder.

Before any of these sections were attached together, they were covered with black cloth. The cloth we used is a fairly thick jersey (slightly stretchy) fabric, stretched lightly over the card sections inside and out, and sewn into place with black button thread (which wears better than machine thread). The fabric on the inner side of the sidepiece and the crownpiece was also tacked down with a craft adhesive, to keep it taut. Use this method sparingly so that the glue does not soak into the fabric and mark it.

The sections of the hat were then sewn firmly together, taking the needle through the cloth of both sections being fastened. The brim and side sections need a 'seam' inside and out. The crown section, which doesn't take any strain, may only need a 'seam' outside. My fabric consultant actually made a narrow roll of fabric and placed it over the join to neaten it a little, so there is a row of stitches on each side of this piping. This stitching has survived a good many years of use without collapse.

The chimney is simply a small cylinder of the same fabric-covered card, sewn into a hole cut out of the crownpiece.

The shape and style of the hat is, of course, a matter of personal preference. Those of you not versed in fabric technology may wish to consult someone who is. My wife was responsible for the shell construction of the hat, although she looks perplexed when she inspects it now.

You might prefer to fix and finish the sections using some method other than fabric-covering and needlework, but the cloth imparts a nice gloss, and also turned out to be helpful for fixing the batteries and wiring inside the hat.

Final Assembly

The first thing to fit into the hat is the LEDs. There are four rows in this design, and the placing was done simply by starting each row on roughly opposite sides of the hat and then measuring the 'drop' of each row with a short ruler and

HOW IT WORKS

This circuit in Figure 1 uses a shift register to generate the moving sequence. Two parts of IC1, the three input NOR gate, are connected to a standard CMOS clock circuit. Clock pulses from this clock the shift register, whose first three outputs are fed to the third part of the NOR gate.

When there is a logic 1 in any of the first three stages of the shift register, a 1 is not needed at the serial input. When the first three stages contain logic 0, a 1 is fed to the first stage at the next clock pulse. At the same time, a 1 in the last stage would be dropped off the end of the register.

The current drive from the output of CMOS gates is insufficient to drive LEDs, so transistors are used to provide adequate drive. The LED current is set by one current limiting resistor, R7, because only one chain is on at a time.

The inputs to the second shift register are connected to 0V. It would be possible, on an expanded PCB layout, to cascade the second shift register by feeding its D input from the Q5 output of the first part. This would generate an 8way sequence, but would need a gate with seven inputs to generate the serial input signal for the first register. Either an 8 way NOR gate would be used, with one input grounded, or diode logic could be added to the present circuit. In either case, an eight way adaptation of this design would require a new PCB layout, or a Veroboard layout.

ETI OCTOBER 1992
able, with positive going to the switch and negative to the charging socket. No more connections to the PCB should be required. Finally check all the wires going to the PCB, because a wire hanging on by one strand, will be difficult to replace later, then sew the PCB to the hat using the three holds down each side to pass the thread through. You may have to drill these holes out to a couple of millimetres, and angle them, to allow a needle to pass through at a suitable angle to ‘catch’ the cloth lining of the hat.

The final job is to fit the batteries. Any 12 volt power source will do the job, but it is recommended that you use nickel cadmium button batteries. We have mounted these in pairs, each pair held together by a piece of heatshrink sleeving. The batteries were mounted flat, as shown in Figure 4, rather than as a stack, to allow easier fitting and better balance. The pairs of batteries were mounted at equal intervals round the interior of the hat, as low down as possible without contacting the wearer’s head, to keep the centre of gravity low. They were held in place with doublesided adhesive pads.

Charging

The Nickel-Cadmium batteries chosen for this project have a capacity of 170mAhours. They should be charged at 17mA for 12 hours to charge them up from flat, then they should run the LEDs for approximately 8 hours. As long as they are at least partly charged, nickel cadmium batteries do not deteriorate rapidly in storage, but they may lose charge at a rate of up to 30% per month, so must be recharged periodically.

To avoid the need to remember this, it may be useful to leave them on trickle charge permanently. A suitable charger circuit with a switch for slow trickle charge or normal overnight charge is shown in Figure 3. This very simple circuit may conveniently be built on a piece of Vero board.

PARTS LIST

RESISTORS
- R1: 1M
- R2: 10k
- R3,4,5,6: 4k7
- R7: 220R
- RV1: 470k

CAPACITORS
- C1: 10µF/16V
- C2: 220n

SEMI-CONDUCTORS
- BC182
- RV1: 470k

AMBER
- LED1,2,3,4: 0.2" RED
- LED6,7,8: 0.2" GREEN
- LED9,10,11,12: 0.2" YELLOW
- LED13,14,15,16: 0.2" AMBER

MISCELLANEOUS
- 10 off 170mAh Ni/Cad button cells, RS/Electromail part no 591168
- PCB, wire.

CRICKLEWOOD ELECTRONICS

CRICKLEWOOD ELECTRONICS LTD, 40 CRICKLEWOOD BROADWAY, LONDON NW 2 3ET

Tel: 081 452 0161 Fax: 081 208 1441

SEND NOW FOR THE CRICKLEWOOD ELECTRONICS COMPONENT CATALOGUE

ONE OF THE BEST RANGES AVAILABLE

Please send me my free copies of Cricklewood Electronics Catalogue
AMAZING ADAPTER BUG
Built into a standard 13A adapter, plugs into any 13A socket and transmits to a normal FM radio. Directly powered from the mains the unit will transmit conversations etc indefinitely. Price is £25.00 ref M26P.1

WALKIE TALKIES 1 MILE RANGE
Pair of small pocket sized walkie talkies complete with cases etc. They will operate (subject to buildings etc) up to 1 mile apart. 2 FP3 9v batteries required. £30.00 ref M30P1.

CAR STEREO AND SPEAKERS
Complete system comprising of stereo cassette player, stereo FM radio plus AM band, Pair of good quality speakers all for just £19.00 ref M19P1.

AMBER MONITORS
12" high res screen 12v 1A supply needed. Hercules/TTL input is sep. HDD and VCR sync plus video required. Brand new and housed in an off white plastic case. £22.00 ref M22P1.

12V SOLAR PANEL
Ideal for trickle charging car batteries etc. Panel is made from amorphous silicon, is waterproof and comes with fly leads. Size is 30cm x 30cm x 4mm. £15.00 ref M15P1. Other sizes stocked.

C64 TAPE STREAMER
Originally made for the Commodore 64 Computer but may be adaptable for other machines. Unit is supplied with its own operating system, and two tapes. Approx 20 minutes faster than normal tape systems! £25.00 ref M25P1. Extra tapes are available at £4.00 each ref M4P1 or 10 for £25.00 ref M25P2.

PC POWER SUPPLIES
Brand new units made by Aztec either 110v or 240v input giving 5v at 15A, 12v at 5A, 5v at 3.9A and 12v at 5A. Fully cased with on/off switch and built in fan. £15.00 ref M15P2. Also available is a 200 watt version at £22.00 ref M22P2. Both types have standard PC fly leads.

40 PAGE CATALOGUE AVAILABLE CONTAINING OVER 1,500 SIMILAR PRODUCTS FREE ON REQUEST!

EMERGENCY LIGHTING SYSTEM
Complete system give up to 3 hours light from an integral 10AH sealed lead acid battery. The battery is kept fully charged by the mains, as soon as the mains fails the two powerful lamps are switched on and remain on until power is restored. Maintenance free, £19.00 complete with battery ref M19P2.

AMSTRAD 464 COMPUTERS
Customer returned units complete with a monitor and circuit diagrams. These units are generally not working and are not returnable. Price is £35.00 ref M35P1.

AMSTRAD 6128 COMPUTERS
Customer returned units complete with a circuit diagram and built in 3" disc drive. These units are generally not working and are not returnable. Price is £29.00 ref M29P1.

CORDLESS MICROPHONE
Small hand held battery operated microphone that transmits to a standard FM radio, good range. Our price £15.00 ref M15P3.

VIDEO SENDER
Transmits video images from a video recorder or camcorder to anywhere in the house! Can also be used to transmit from camcorder to video recorder, no more trailing wires! £15.00 (ex p/p), ref M15P4. £20.00 (inc p/p) ref M20P1.

BUILT BUG
Built and tested superior FM bug 100m range, fits in match box all you need is a 9v battery and an ordinary FM radio! £14.00 ref M14P1.

ULTRASONIC ALARM SYSTEM
Complete alarm system that comprises a detector that simply plugs into a 13A socket in the area you wish to protect and a receiver which plugs into a 13A socket where you wish the alarm to sound. You could put one in the garage and one indoors or perhaps protect your neighbours house etc. Fully adjustable sensitivity. £25.00 for complete system ref M25P3.

TALKING TELEPHONE COIN BOXES
Phone bill too high? try one of these and save. Fully programmable for different call rates, changecards, time of day etc. accepts 10p, 50p and £1.00 coins. Phone box actually speaks to you with built in voice synthesiser. Wav or desk mounting. Two types available 1 with built in lock at £29.00 ref M29P2 the other with no lock but easily adaptable is just £23.00 ref M23P1. Unit takes 4 C cells and is used in conjunction with an ordinary phone. Supplied with full instructions, BT approved.

STEAM ENGINES
Ever wanted one? brand new units made by the famous Mamod company complete with fuel, burner etc. £30.00 ref M30P1. Other models stocked. Including traction engine at £59.

PC CASES
Full size off white metal cases ideal for building your own PC four drive bays, attractive plastic front panel. £24.00 ref M24P2.

VIEWDATA SYSTEMS
Made by Tyranda these contain every thing you need to start dialing into databases and bulletin boards such as Prestel etc just plugs into a standard tv or monitor. Complete with modem, infrared remote controlled keyboard and console. £20.00 ref M20P2.

SPECTRUM +2 COMPUTERS
Refurbished popular computer with built in cassette deck and 128K of memory £30.00 each ref M30P1. £35.00 ref M35P4.

SPECTRUM +3 COMPUTERS
Refurbished popular computer with built in disc drive and 128K of memory £45.00 each ref M45P1. £50.00 ref M50P5. We also have some requiring attention at £25.00 (non returnable) ref M25P4.

EPROMS
Clean erased eproms at bargain prices! 27C64 pack of 10 for £7 ref M7P1, 27C256 pack of 10 for £9 ref M9P1, 27C512 pack of 10 for £10 ref M10P1.

WINDUP SOLAR POWERED RADIO
Compact unit with built in charger and solar panel just a few turns of the handle powers the radio for some time! Our price is just £14.00 ref M14P2.

BUGGING TAPE RECORDER
Contains voice activated switch so only actual conversations are recorded! takes a standard audio cassette and uses AA batteries. £20.00 ref M20P3.

TALKING ALARM CLOCK
Wakes you up by telling you the time also speaks the time at the push of a button! battery operated £14.00 ref M14P3.

BROADBAND RADIO RECEIVER
Covers VHF 54-176 mHz (CB, air FM, TV, P9, W8 etc) hand held unit with squelch control and carrying strap. £15.00 ref M15P6. Superb value.

12 BAND WORLD COMMUNICATIONS RECEIVER
Mains or battery operated covers 9 short wave bands plus FM, LW and AM bands. Exceptional value at £19. ref M19P4.

SINCLAIR CS MOTORS
12v 28A (full load) complete with 4 to 1 reduction gearbox giving 800 rpm output. Motor measures 8" x 4" with toothed pulley output. £40 ref M40P1. We also stock 13" wheels with tyres of each ref M9P1, 16" at £6.00 ref M6P2 and an electronic speed controller kit at £17 ref M17P1.

BULL ELECTRICAL
250 PORTLAND ROAD Hove Sussex BN3 5GT TELEPHONE: 0273 230350 MAIL ORDER TERMS: CASH ON CHEQUE WITH ORDER PLUS £3.90 POST PLUS VAT.
PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
NEXT DAY DELIVERY £8.00
SHOP OPEN MONDAY TO SATURDAY 9:00AM TO 5:30PM (OPEN LATE ON WEDNESDAY & THURSDAY)

NOTE: SOME OF OUR PRODUCTS MAY NOT BE LICENSED FOR UK USE

www.americanradiohistory.com
Aerial Tuner Unit

Shabaz Yuosaf describes how to get the best possible reception from your radio.

An Aerial Tuning Unit (or ATU for short) is a very useful device for getting the best results with a badly matched antenna. For example, an aerial will not give good results if used on the CB bands and vice-versa, but with an ATU placed between the aerial and receiver (or transmitter), quite decent results are achieved.

The ATU described here is very simple to construct, and costs far less than a commercial unit. It can be used throughout a wide part of the radio spectrum (SW to FM and beyond) but was originally designed for use with a CB.

The Circuit

Figure 1 shows the circuit diagram. It is built inside a metal case, which acts as a screen. Inductor L1 is an air coil, wound around a 1" former. The inductor has to be variable, so it is tapped at various points with thin wire, and these are connected to switch SW1 which is a 1-pole 11-way rotary switch. This gives 11 taps along the inductor. The recommended variable capacitor CV1 is a dual gang 365p per section type, but only one gang is used here. The exact capacitance does not matter, so any variable capacitor suitable for AM radios can be used. Indeed, an old AM receiver can be a very useful source for such a variable capacitor. The entire circuit is assembled in a smart vinyl-covered aluminium box which certainly won’t look out of place among your other equipment.

Construction

Coil construction is the trickiest part of the assembly, and for this a former of about 1" diameter will be required. A suitable former can be made by using the tube in which solder is often supplied. The top is cut off, leaving a tube about 2" long. Two small holes are drilled at each-end of the tube, and these serve to secure the ends of the coil, see Figure 2. The coil is constructed from 18 gauge enameled wire, wound round the former 19 times. The tappings are made by scraping the enamel on the winding and soldering a short length of insulated wire to it. The tappings must be made on windings 0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19. Now, following the wiring diagram shown in Figure 3, these tappings are soldered to the switch SW1.

Holes are now drilled in the case to accommodate the components.

The switch and variable capacitor are mounted on the front of the case, and the chassis socket at the rear. Another hole at the rear will be needed for the CO-AX input cable. A strain relief or rubber grommet will be needed to prevent the cable from rubbing against the metal. The photograph shows the positioning of all the components. The braid from the cable is connected to the case with a nut and bolt.

The end of the cable is terminated with a connector, depending on the equipment the ATU is to be used with. If it is for CB use, this means a PL259 plug. If you have never assembled this type of plug, you might find the photograph helpful. Finally, the lid is fitted and screwed on.
Testing
Before connecting the ATU up to your equipment, check the input and output connectors with a multimeter set to ohms. The resistance between ground and input, and ground and output should be infinity. If all is well, connect up the ATU. The ATU is tuned for maximum signal strength measured, say, on an S-meter.

NYLONS OF QUALITY COMPONENTS AT LOWEST EVER PRICES

Mail order only. UK only.

All inclusive prices
NO post, or VAT etc to add on.

Send 34p stamped self-addressed label or envelope for catalogue/clearance list.
At least 2,100 offers to amaze you.

Brian J Reed Electronics
6 Queensmead Avenue, East Ewell
Epsom, Surrey KT17 3EQ
Tel: 081-393 9055

Hressing Technology

Cromwell Chambers, 8 St. Johns Street,
Huntingdon, Cambs. PE18 6DD
Tel: (0480) 433156
Fax: (0480) 214489

TEST EQUIPMENT

Supply
Replacement Parts
Supply of Service &
Operators Manuals

Components

Distributor for:
WAUGH INSTRUMENTS, RAMSTED LTD, KRENZ ELECTRONICS, PANTHER

Hurry-Order now while stocks last!

DT3800 DIGITAL MULTIMETER

JUST COMPARE THESE FEATURES AND PRICE!

- 3½ DIGIT MAX. "1999" READ-OUT
- 30 RANGES SINGLE ROTARY SWITCH
- TRANSITOR hFE TEST
- 10 AMP FACILITY (20 AMP LIMITED DURATION)
- AUDIBLE CONTINUITY TEST
- 0.5% BASIC ACCURACY (DC VOLTS)
- POCKET SIZE (JUST 170 x 87 x 30mm)
- COMPLETE WITH BATTERY
- INTEGRAL STAND - SHROUDED LEADS - INSTRUCTIONS & CARRYING CASE

Name
Address
Postcode
 Please send me quantity
I enclose cheque/P.O.

COMO DRILLS
THE MILL, MILL LANE, WORTH, DEAL, KENT CT14 9PA
Tele: 0304 612112

PARTS LIST

CAPACITORS
C1 100p
VC1 365p dual gang

MISCELLANEOUS
L1 19 turns of 18swg enamelled copper wire around 25mm diameter former
SW1 1/30"
Coaxial cable, coaxial UHF chassis socket

LEDs 3mm or 5mm red or green 6 each, yellow, 1 each high intensity red or green, 7mm 30p each
Cable tie 10p each, £0.95 per 1000, £49.90 per 1000
Clipping motor 4 phase 7V 5 step
DS205 £0.65
SLA1557 stepping motor driver chip £3.95
FM Transmitter kit, good quality sound £8.90
High quality photo resist copper clad epoxy glass boards

Dimensions
3½inchs £1.90
3½ inches £2.40
12 x 2 inches £1.90
12 x 2 inches £2.37

Rechargeable Batteries
AA (HP) 90p each
AA 700mAh £1.95
AA 750mAh £1.95
D 1300mAh £1.95
D 1600mAh £1.95
AAA (HP) 1100mAh £1.75
AAA 700mAh £1.75
C 1100mAh £1.70
S 800mAh £1.70

Sub-C with solder tag £0.50

Nokia 3210 microprocessor £0.95

Standard charger, charges 4 AA cells in 4 hours £3.95

6 to 18 hour (1.4A) £3.95
(650mA) £1.45

6 to 18 hour (1.2A) £3.95

Special offers--please check for availability

F 50p each
D 70p each

50p each

Each

£1.35

£1.45

£1.95

£1.95

£3.95

£1.95

£3.95

£1.95

£1.95

£3.95

£0.85

£1.10

£2.25

£1.35

£1.45

£0.85

£1.35

£1.95

£0.85

£0.95

£1.10

£2.25

£1.35

£1.45

£0.85

£1.35

£1.95

£0.85
Satisfactory video resolution. As I said earlier, with the present digital technology it’s not feasible to convert the signals to digital form at IF, around 40MHz. Although it is possible for present-day monolithic analogue digital conveters with 8 bit resolution to digitise signals at these frequencies there seems little chance of their being produced at domestic equipment prices for a few years yet. Semiconductor manufacturers who are experts in the fabrication of such state of the art devices generally say that it is far more difficult to add one bit of resolution linearity to an analogue to digital converter than it is to double the amount of memory that can be stored on a chip. It is generally expected, therefore, that the video A/D converter will be placed after the video demodulator. This means that the video analogue-digital conveter will have to deal with a signal of less than 6MHz bandwidth, and since a typical receiver video demodulator will provide 1-2 volts of signal at its output, there should be plenty of signal to drive the ADC.

When we come to deal with sound in the receiver the frequency-modulated audio intercarrier sound signal is at 6MHz for UK receivers. The audio signal has a very wide dynamic range, however, and we have seen from our compact disc players and NICAM transmissions that high-fidelity sound processing requires around 14 bits per sample, although acceptable sound can be achieved with 10 bits and a companding process such as is used in the NICAM...
system. Digitisation before demodulation of the analogue FM sound with adequate resolution would therefore prove difficult, and it is far more practicable to place the audio AD convertor after the sound modulator. Remember that this ITT chip set came onto the market several years before NICAM transmissions began, and so the design was intended to deal with the standard analogue FM sound channel, or two channels in countries where dual channel FM stereo is used; the NICAM signals have their own special decoder chips in today's receivers.

The third section of the receiver that we can usefully digitise is the deflection control and synchronisation circuitry, so let's have a look at the circuit requirements. First let us look at the order of timing accuracy that we are likely to need for the circuits that deflect the electron beam. If we make the reasonable assumption that the smallest horizontal displacement that we can recognise on a 26 inch diagonal television screen is about 1/10 of a millimetre, this would correspond to 10 nanoseconds.

Just to show you that I haven't made the figure up, let's do the maths.

A typical so-called 26 inch (diagonal) screen might have a visible line length of just under 21 inches, say 520mm for the purposes of our example.

The active line time, that is the time during which the scanning spot is carrying picture information, is 52 microseconds.

Therefore the total deflection in 52µsecs i.e. 52,000 nanoseconds is 520 mm. Thus a deflection of 520 mm corresponds to 52,000 nsecs, and the minimum displacement of 0.1 mm corresponds to a time of 10 nsecs.

Since we have to cope with 5200 elements (i.e. a 520mm screen width with each element 0.1 mm long) across the screen, we need to deal with 13 bits per sample since 13 bits implies 2 to the power of 13 samples = 8192, which can comfortably cope with 5200 elements. Notice that 12 bits per sample would not be enough, since this would only give $2^{12} = 4096$ samples, which would not be sufficient.

Video Processor

The A-D and D-A conversion of video signals is carried out on one chip, the video codec, or coder/decoder. The analogue digital decoder is of a type that uses 2^n comparators in parallel, where n is the number of bits.

As can be seen from the diagram, the signal to be digitised is applied to one input of all the comparators, and the other input of each of the comparators is fed with a carefully defined fraction of the reference voltage. Somewhere down the chain of comparators one of the comparators will have a signal applied to its input that is the same as the fraction of the applied reference voltage on its other input, and this will cause its output to go 'high'. This signal will then be fed to logic circuits which will provide an appropriate digital number as the output.

The engineering of such devices is complex, since to convert to an eight bit resolution signal it is necessary to use (2^n) i.e. 255 comparators. Multiple comparators contain large numbers of circuit elements, and this number doubles as the number of bits per sample increases by one; this sort of design therefore makes it important to reduce the number...
of bits used, and so the number of comparators, and for this reason the ITT chip 'cheats', using only 7 bits of resolution but appearing to give 8 bits.

This is achieved by biasing the reference voltage of the A-D converter during alternate horizontal sweeps by a voltage corresponding to half the least significant bit. This technique converts a luminance value that is in the middle of the two 7-bit steps into the lower value during one sweep and into the higher value during the next. The idea is that your eye will then average the two, and the effect will be that the picture appears to have been resolved with 8 bits per sample.

The comparators in the A-D converter have their output in the form of a Gray code. From the table you will see that the Gray code has the property that only one of the four digits ever changes each time instead of one or more if normal binary coding were being used. This reduces the possibility of voltage spikes giving rise to false data, and is thus an advantage for video analogue-to-digital conversion.

Once it has been digitised, then, the first block of the video-processor changes the signals from Gray code to normal binary, and then the signal is passed through filtering circuits which extract the luminance and chrominance signals.

Since one of the major reasons for going digital in the receiver was to do away with adjustable coils and capacitors used in analogue models, digital filtering techniques have been used, which comprise delay, adder, and multiplication circuitry which can output signals of the correct shape.

The luminance filter has a variable frequency response that allows the response to be artificially peaked, increasing the amplitude of the high-frequency content of the luminance signals, especially on any 'edges' within the picture, providing a subjectively sharper picture.

The contrast multiplier box then sets the amplitude of the luminance signal and its level is clipped, to prevent overloads, before being fed back to the DAC part of the video codec chip.

Now let's look at the chroma circuitry on the block diagram. The first step is that the amplitude of the chroma is controlled by the automatic colour-control circuitry, which keeps the amplitude of the reference burst at a pre-set level. Remember that the amplitude of the burst controls the saturation of a PAL signal, so this will ensure constant saturation independent of any variations that take place in the filters. Absence of the burst on monochrome signals will actuate the colour-filter.

The colour data is then fed to the decoder, which gives colour difference outputs. As you know, the PAL sub-carrier is amplitude modulated with the BY and R-Y signals, known as U and V when appropriately weighted, and using phase-synchronous demodulation of the subcarrier, phase errors lead to reduced saturation. In the digital receiver such problems are eliminated by phase-locking the sampling clock to the colour reference burst which is sent by the transmitter at the start of each line.

It is interesting to note here that we don't need the usual PAL glass delay line, since the necessary delay can be obtained by passing signals in and out of blocks of Random Access Memory on an integrated circuit chip; this is a very good example of the sort of advantages that digital techniques can bring to receiver designers.

We obtain phase lock by comparing the signal with the R-Y signal of the burst, and the relative phase difference between the burst and the sampling clock is used to adjust a Voltage Controlled Oscillator (VCO) in the colour decoder. The Y, B-Y and R-Y signals are routed back to the D-A converters on the video codec, which are of the R-2R ladder network type, shown in Figure 26.

The digital signal, four bits in the case of the simple circuit shown in our diagram, is used to set the four switches, one for each bit, to the appropriate state, either off or on. The reference voltage shown comes from a constant voltage source, and the switches steer the current to earth via the appropriate number of resistors. The DAC is effectively a multiplier, producing as its output a current which is the product of the reference voltage and the digital number which has been applied to the switches.

Once back in analogue form the signals are separated into R,G,B signals which drive the ordinary video-amps whose outputs feed the tube guns.

Notice that R,G,B, signals are fed back to the video processor chip, which monitors the beam currents and automatically adjusts to pre-set levels. The black and peak white reference levels are also controlled by the video processor, which sends out test signals during the frame flyback period and then adjusts the gain and bias of the video amplifiers.

In receivers which have the 'picture in picture'(PIP) capability, the small images are usually produced quite independently of the main picture, since the different size of the images makes it impossible to show the pictures with normal timings, the small size of the picture meaning that the active line and field times of the small picture are much shorter than those of the normal image. Reflecting on this, I started to think how one might achieve the PIP effect using only analogue technology, and rapidly came to the conclusion that it would be virtually impossible to obtain the necessary timing accuracy for the synchronisation signals. No doubt this is why PIP only became available on digital receivers! The PIP signals are obtained by first of all decoding the incoming composite PAL picture signal, and turning it into the Y,U, and V components, so as to avoid the horrendous problems that could occur if we tried to process the PAL colour signal with the video signal timings being so much altered, using the only synchronisation available, the 10 cycles of subcarrier reference burst at the beginning of each normal picture line. Once in YUV form the video signal to be turned into a PIP is sampled so that roughly every third picture element along a line is kept, the rest being thrown away, and two out of every three horizontal lines are also discarded. This leaves a picture with about 88 lines, every line consisting of just over 200 samples (picture elements).

In terms of picture area, the PIP is about one ninth of the original, since we have kept only about one third of the horizontal picture elements and one third of the lines. If you
have ever tried to look at a test card as a PIP you will know that it is almost impossible to see any detail; now you can see why! This reduced information picture is then quantised to only 6 bits, and the available 26 levels give 64 levels of luminance or colour. Y U and V signals are fed to the PIP memory in time division multiplex, different sampling frequencies being used for luminance and colour difference. To display the PIP the signals are read out from the memory store, converted back to analogue form and then finally re-coded into PAL before being fed into the receiver video circuitry.

Returning to the ITT chipset, after our little digression to PIP, it is important to remember that the 7 bit output of the video A-D converter contains the line and frame synchronisation information as well as the chroma and luma data, so this same signal is also fed to the deflection processor IC.

Deflection Processor Circuits

The first thing that happens to the signal is that it is fed to a black-level clamp which provides a video bias signal which keeps the black level of the video at a fixed voltage in the video amplifier; this ensures that full use is made of the whole conversion range of the video ADC.

To separate the syncs from the video a level is chosen halfway between black level and the bottom of the sync pulse. In order to increase the reliability of the sync timing, several pulses are integrated to give a timing reference for the line oscillator. Line flyback pulses are then fed back into the deflection processor and a phase comparator detects the relative phase between the horizontal flyback circuit and the line sync pulse. The output from the comparator is used to control a divider that counts down to 15,625 kHz. This can be done to the required accuracy of one-quarter of a cycle of subcarrier (about 56nS), since the system clock frequency runs at four times sub-carrier frequency, about 17.72MHz.

A ‘gate-delay chain’ is used to enhance the resolution by delaying the sync pulse by a variable amount. Provision is made to automatically change the time constant of the circuit so that the receiver can deal with non-standard sources such as video games or VCR’s.

The line sync pulses produced by the chip are used to drive a conventional line output stage and deflection coils. The frame, or vertical oscillator is a resettable counter, reset by each incoming frame sync pulse. It has a variable width acceptance window so that it can cope with nonstandard signals if required. When a standard signal is received it operates in its socalled ‘locked-mode’, which takes account of the fact that broadcast TV signals have line frequency, frame frequency and colour sub-carrier locked together in precise ratios. The deflection processor therefore derives its line and frame frequencies by dividing down from the received colour subcarrier frequency, and this makes the deflection circuits proof against interfering signals or fading. The frame syncs provided by the counter are fed to a deflection correction circuit which provides for East-West raster correction, and the output drives a pulse-width modulator circuit. The modulator outputs are then amplified by a class O amplifier before being filtered to provide sawtooth and parabolic field frequency outputs which then drive conventional OIP stages.

Audio Processor Circuits

Let’s look now at the audio processor chip, which was designed from the start to deal with two-carrier stereo-sound signals of the type that has been used in West Germany for some years; NICAM decoder chips are now available for use in countries like the UK which use this improved digital sound transmission system.

The inputs to this chip, from the audio demodulator are two channels of audio and the pilot tone, which in this system is used to indicate one of three states, mono, stereo or bilingual, where left and right hand channels carry different languages. The pilot tone is usually a weakish signal of narrow bandwidth, needing high-Q filters to satisfactorily process it. This is another area where digital techniques are useful, since it proves easier to make such filters digitally, and digital filters need no tuning to the correct frequency because the resonant frequency depends only on the crystal-controlled clock.

Each of the three signals goes through its own A-D converter section after passing through a conversion filter which maximises resolution and filters out any noise. Satisfactory digital audio needs 14 bits of resolution, and once the signals are in digital form the ALU, arithmetic logic.

ETI October 1992 www.americanradiohistory.com
unit, controls all filter coefficients so as to give any desired audio characteristics. The audio processor's serial bus allows the control computer to alter tone control characteristics or perform mono/stereo/bi-lingual switching.

The Control Computer

In order to tie together the work of all these different chips we need a computer, so the last of our chips, not surprisingly, is called the control computer, and this passes instructions between all the other digital processors. Such an approach gives great flexibility and allows a vast range of features to be included.

Any normal analogue command (increase sound, decrease brightness, alter contrast, etc.) needs first to be translated into digital numbers so that these digital signals can control the various signal-processing ICs. The control computer needs to be able to control the tuner on the receiver which it does with a phase-locked loop frequency synthesizer, and it also allows features like auto channel search and channel indication. The computer has to cope with signals received from an Infra Red receiver controlled by a remote-controlled handset.

Commands from the control computer are transferred to the other digital processors via a 3-bit digital bus, which is fairly slow, but quite adequate. As an example it takes around 100μs to transfer one byte of address information to a data store.

An important role of the computer is to carry out the regular alignment checks and adjustments of the receiver that the use of digital techniques makes possible. The central element here is a non-volatile EEPROM which is loaded with alignment data in the factory when the receiver is first lined up, and from then onwards the computer can ensure that these optimum alignment values are maintained even as the receiver circuitry ages. The receiver owner can store settings of brightness, contrast and volume, and tuning settings for his favourite stations in the EEPROM.

Digital techniques in receivers don't have to stop there. Receivers of the future will have ghost-cancellation circuits with adaptive equalisation to cope with varying degrees of 'ghostliness', and already there are several different techniques in use. These receivers measure the displacement of the ghost image by measuring the time difference between a specially inserted pulse or series of pulses and its reflection, and then automatically adjust the digital filters to provide the necessary video delay to achieve cancellation. Japanese ICs which can eliminate a small number of reasonable static reflected signals are already on the market, but European receiver manufacturers have so far considered that the improvement in picture quality that can be produced by these circuits does not yet justify their inclusion in receivers. Much work on ghost-cancellation is currently being carried out in Europe, however, as part of the wider project to generally improve and extend the working life of the PAL television system. The ghost cancellation systems being studied include 'receiver training' signals in the vertical blanking interval of the picture signal, which consist of multi-frequency 'chirp' signals, which should allow the receivers to cope actively with a wide range of varying ghost signals.

We are just beginning to have the technological capability to economically build complete digital frame stores into our receivers; this could allow all sorts of signal processing improvements to be made to our pictures, including the reduction of noise and cross-colour effects and the elimination of flicker, and there are already several receivers on the market which provide displays which refresh the screen at the rate of 100 fields per second.

Once digital transmissions actually begin, then digital receivers will really become useful. No analogue to digital converters will be required, which will simplify the overall receiver circuitry considerably, but counteracting this will be the need for extremely high speed integrated circuits to deal directly with the incoming digital signals. Whilst it is true that these could be at data rates as high as 1000 Mbit/s if real time, uncompressed HDTV signals were to be used, it is far more likely that some of the data compression techniques now being used experimentally will reduce the data rates to much less than a tenth of the raw data rate, and ICs are now under development that will readily cope with this type of signal.

Digital television - research work in related fields

The research work and investigations to determine the best methods for transmitting digital television signals have not needed to start from scratch. Much research work into different aspects of digital communications technology has already been carried out in Europe, and the results from several existing European collaborative research projects are likely to be directly applicable to future digital transmission systems.

It is eight years since the first European collaborative re-
search project to consider the digital coding of HDTV picture signals for transmission purposes began. The COST 206 (CO-operation européenne dans le domaine de la recherche Scientifique et Technique) project studied problems related to the subsampling and interpolation of digital picture signals, and examined the difficulties of practically implementing the circuitry required. Much was learned about the high-speed digital architectures needed for such signal processing, and this led to the successful development, in large scale integrated circuit form, of an HDTV coder/decoder. This coder-decoder equipment provided contribution-quality signals for transmission at a data rate of 560 Mbit/s.

Although such high data rates can readily be used by broadcasters, there will also be the need for lower bit-rate local digital delivery systems, perhaps even to the home, via optical fibres and broadband ISDN networks. Part of the work involved in the EUREKA-95 project was to develop a system for digitally coding and distributing various types of MAC signals at bit rates of up to 140 Mbit/s.

Since 1986 a group of experts from the CMTT has been developing an algorithm to reduce the bit rate required for the distribution of television signals digitised in accordance with

pictures, the CMTT group agreed that this was the path to take, and their work has shown that good results can be achieved at 34 Mbit/s, although some small distortions can be noted on certain critical picture material. This 34 Mbit/s system, which is currently going through the ETSI standardisation process, is primarily for use over inter-studio contribution links.

The work just described applies to standard definition 625 line television pictures, but as HDTV develops in Europe there will be similar needs to distribute the signals at far more modest bit rates than the 1 Gbit/s of the source pictures. Another European project, HIVITS (High quality Videophone and high definition Television Systems) is involved in developing hardware to implement similar coding techniques for HDTV, and one system, which was successfully demonstrated last year, used a number of subsystems working in parallel, the HDTV data being cleverly shared out amongst the various subsystems. HIVITS is a project of the RACE programme (Research & development in Advanced Communications technologies in Europe), a wide ranging European collaboration whose objective is to introduce a broadband communications network throughout

CCIR Recommendation 601 from 216 Mbit/s to 34 Mbit/s, one of the lower levels of the digital distribution hierarchy used by European PTTs. The need to reduce the bit rate from over 200 Mbit/s to 34 Mbit/s represents a reduction factor of about 6, and the task proved to be quite difficult. Early attempts used systematic subsampling techniques, but these introduced distortion on many different types of picture, and the later work has concentrated on coding techniques based on the Discrete Cosine Transform (DCT). Because DCT-based pictures are essentially made up of 'blocks', and early implementations of the technique for telephone videoconferencing had made the blocks obvious, there was some initial reluctance to use DCT. As further work in broadcast research laboratories showed that the techniques were not too complex for use with standard 625-line TV

Europe during the 1990s.

Another part of the HIVITS project is to investigate coding formats which would be appropriate to the final link in the distribution chain - the link to the home. Digital systems can provide great flexibility, and an ideal system would permit various bit rates to be supplied, in order to satisfy the need for different resolutions; although the viewer might want the best possible HDTV resolution when watching a film, he will need only a fraction of this resolution, and a miniscule amount of data, when using his videophone. The HIVITS researchers are looking at coding methods that can provide the necessary flexibility and that will allow data to be readily transcoded from one transmission channel to another, so that the same basic data could provide a domestic viewer with perfectly adequate standard TV pictures, whilst

Fig. 29 Block diagram of the control computer chip.

www.americanradiohistory.com
offering the local cinema the chance to use full resolution HDTV to display the film. This upwards and downwards compatibility of data and pictures is at the heart of the HIVITs work, and combinations of different coding methods are currently being investigated.

Another European project EUREKA-256, has developed digital coding techniques particularly suited to the transmission of HDTV signals via satellite. Using a DCT-based system similar to that used in the 34Mbit/s proposed ETSI standard, but using four separate 34Mbit/s modules, the transmitted bit rate was 70Mbit/s, and QPSK coding was used. An early version of the coding algorithm, which did not include motion compensation, was used to transmit World Cup matches from Italy via the Olympus satellite, using 1250/50 and 1125/60 HDTV sources on different occasions. Later versions of the coding system, which do include motion compensation, have been used successfully for HDTV transmissions via Eutelsat and TDF-1, and the project is the digital transmissions that we shall be seeing in a few years time.

Convergence - today's 'buzz-word', tomorrow's technology?

Those working on digital television research began with fairly well-defined and focused aims, trying to develop a system that would produce television pictures of a quality better than anything previously seen. As the work has developed, however, it has become obvious that the same sort of technologies being developed for television use could have applications over a much wider field. It was soon realised that the techniques which have been developed for digital television, including digital image processing, data compression and bit-rate reduction, could also be used for processing all sorts of different audiovisual information. Computer graphics, computer games, compact disc storage of audio and video, digital still-image photography, and document scanning were readily identified as applications which could benefit from some commonality in the way in which the data representing, but without thought shows just how far these same technologies could lead. The current buzz-words for all this are 'convergence' and 'media fusion' - all the different technologies are converging towards a common goal and common technologies.

Libraries, art galleries, record archives of the world, unite!

The one simple truth that is starting to shine forth from all this digital research is that virtually anything that we class as 'information', no matter how broadly we base this definition, can ultimately be represented by no more than a complex stream of digits. Just think about it: books, letters, voice messages, pictures, whether from a newspaper, by Matisse, or from your own favourite computer graphics package, music from Sting to Stravinsky, photographs, videotaped programmes, teletext pages, all can be turned into digital code and stored, processed and treated like any other digital signal. At its simplest, we could regard the processing and storage of any signal of this type as merely an information handling problem - something librarians and museum curators have been familiar with for decades. Once this fairly sobering fact has been realised, it makes little sense to have completely different digital coding and storage systems for every new product that comes along, engineers effectively re-inventing the digital wheel (there's a nice thought - there just has to be a future article on that topic somewhere!) for every different project. How much more sensible if all the various new developments that are being worked on could use the same basic coding and information processing technologies, using a common family of digital chips which could be cheap and readily available because they are suitable for use across a wide range of fields, not specifically built for the latest 'Sanyitsu' wonder gadget. The advantages of common hardware are clear, but the benefits of media fusion could range much wider. In the field of 'software', different media are
currently non-interchangeable. How frustrating if you are left with a complete set of Beethoven symphonies on vinyl, but you have only a CD player, or if you have ‘books of the world’ on microfiche, but no fiche reader! How much better things would be if software produced for one medium could be used directly on another; how useful if an image from the latest TV programme could be printed out directly for use in a colour magazine, or if a current article on education from The Times could be sent directly down the telephone to the teachers at schools throughout the country. How useful (although perhaps annoying!) if your ‘voice message’ could appear as a subtitle on the television programme that the person you are trying to reach is watching, wherever he may be. All these things are perfectly possible today, but the different hardware and software technologies used prevent their being used widely.

Although it will be enormously difficult to bring together the manufacturers and standards makers of the world, ‘media fusion’ is something that will not go away, and the pressures towards common standards for dealing with information in its widest sense are already growing. The Japanese have made a start by organising a Digital Video Committee, and Figure 30 shows how they are recommending that a single ‘Integrated Video Coding Technology’ should be developed as the heart of an information system based on video media.

The committee has been asked to look into how video technologies should be orientated towards the 21st Century, and how the integration of various standards concerned with video coding technologies should be achieved. Some of the world’s major standardisation bodies, including the CCIR (Comite Consultatif International de Radio Communications), the CCITT (Comite Consultatif International Telegraphique et Telephone) and the 150 are also keenly aware of the need to set standards for these convergent technologies, and although such standards are probably still some years away, the mere fact that their importance has been recognised gives us some reason to be optimistic about future developments.

The way forward
To sum up then, digital transmission really does seem to be the way forward. The advantages that it can give in terms of enhanced picture quality, reduced interference and more channels, mean that its eventual introduction is a certainty. The big problem at the moment is that the systems which we are able to demonstrate in the laboratories utilise vast amounts of computer processing power, and we cannot really foresee that our laboratory computers will be replaced by a few inexpensive chips within less than perhaps five years.

We have ranged widely in this series on digital television, moving between the fairly dense thickets of digital processing techniques and the comparatively open spaces of free-thinking looks into the digital future. There are numerous hazards ahead, and still a great deal of work to be done, especially in developing the large scale integration of image processing circuitry, so that we can have access to cheap chips. Continuing work on international standardisation is also vital, even though history has shown that progress in this area can be painfully slow. Whatever the problems, however long or short the timescale, there is absolutely no doubt in my mind that digital television transmission will make it in the end!
PCB Foils

The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer the creation of a foil.

Heartbeat/Audio Listener

Rapid Fuse Checker

45watt Hybrid Power Amp Sept '92
C3 in Fig.2 and the parts list shows a voltage of 63V. This should be a 400µ/450V capacitor. C4 should be 220µ/63V.

Dynamic Noise Limiter August '92
Fig.4 R5,6,7 should be labelled 100R as in the Parts list. IC3,4 in the Parts list are for the other channel and IC5 should be a 7812 regulator. The component overlay in Fig.5 shows the foil displaced to the left by 8mm. The correct version was reproduce in the September issue. In Fig. 4 Q1 collector should not be connected to S1 and TL072 input. It should be connected to the supply line above. ie to regulator,C6 and R1. The regulator should be labelled IC5. In Fig.5, C6 should be labelled C7 and vice versa.

Wizard Flashy Hat Foil
For Sale

K.I.A. SALE! P.A. AMPLIFIERS 100 watt 240v/230v. Slider - Mixers £7 - Slider - Powersupplies £3 - 1 Regent Road, Ilkeg LS29 9DZ Catalogue + 30 components + cassette 60p.

The Reporter
Model T26

UNIT D
318 HIGH ROAD
BENFLEET
ESSEX SS7 9SH
TELEPHONE: 0258 793861

Metal detector records data, has tuner, mode, discriminators, headphones, transistor output, VU meters, etc. £95 ea.

Falcon DIY Speakers
Send for our FREE price list PI20, All we ask for is a large 5d (£2 or £2 bill (air) overseas, (Europe = 3 international reply coupons)

System Design (Real Kits): Focal, KEF, Constructor, End, etc.

Voice: FOCAL, ACOUSTIC, PA, Pa...
SHERWOOD
Data Systems

... The single board computer people
The Archer

2 serial ports 4 counter timers 32 digital I/O lines
4 memory slots Watchdog timer Expansion bus
Watchdog timer Battery Backup Powerfail interrupt
Option Switches

SPECIAL OFFERS

2 serial ports 4 counter timers 32 digital I/O lines
4 memory slots Watchdog timer Expansion bus
Watchdog timer Battery Backup Powerfail interrupt
Option Switches

SHERWOOD
Data Systems Ltd.
Tel: 0494 46464

TOP QUALITY * NEW * EX-SOCKET * D/SOLD * COMPONENTS

DRAM's
8118 ex sock 0.47
4164 ex sock 0.47
41256 ex sock 0.71
41464. de/so1 0.18

STATIC's
6116LP ex sock 0.71
6264LP ex sock 1.18

MISC
AM7510DC ex sock 3.53
8031AH ex sock 0.71
81536 ex sock 0.71
8237A NEW 1.18
8255A ex sock 1.18
Z80ACPJ ex sock 1.18
8744H ex sock 2.94
Z80BPL NEW 1.41

FOR SALE

UK Customers only. Please send cheques P.O.'s or ring cash. Please add 1.20
for P&P. Goods despatched ASAP allowing for cheque clearance. All above
components are including VAT.
Please make cheques PAYABLE TO: "MAIL ELECTRONICS"

WE ALSO STOCK NEW: CAPS, DIODES, REGULATORS, IC SOCKETS
EPROMS, XALOS, OSC. CMOS, 74, LS, HC, HCT, ALS TRANSISTORS,
LINEARS, AND ALL AT LOW, LOW PRICES. RING TODAY 0262 26670
Note: ALL PRICES ARE SUBJECT TO AVAILABILITY AND CHANGE
WITHOUT NOTICE.

SPECIAL OFFER TO ETI READERS!
only £17.99 (Inc P&P)
A must for all student's and hobbyists joining
NC-commission electronic components with
THE VIDEO
ELECTRONICS FOR THE HOBBYIST
(An excellent 90 minute video using computer-
graphic simulations).
Send cheque/P.O payable to:
Or-line VIDEO MARKETING (DEPT EV.3)
The Cottage, Tredworth Farm, Bradstoke,
Wiltshire, SN10 1GQ

TURN YOUR SURPLUS TRANSISTORS, IC'S ETC INTO CASH
AND INCREASE SETTLEMENT
We also welcome the opportunity to quote for complete factory clearance
Contact:
COLES-HARDING & CO.
103 South Brink
Wisbech, Cambs. PE14 ORJ

NEW C tuổi 4/8/84

WANTED

WE REPAIR
AUDIO EQUIPMENT
Send 45p for catalogue
K. Tel: P.O. Box 172A, Burtonon
Buxton, Derbyshire, SK17 7NN.
Tel: 081 227 2097 Mobile: 0531 875185

SPECIAL Catalogue at £1.00 inc P&P

STUDY ELECTRONICS ON THE BBC MICRO. An interactive
approach to learning. Four program titles available 'Introduction to
Electronics Principles', 'Electronic Mathematics', 'Digital Techniques'
and 'Programming for Electronics'. Programmes include theory,
examples, self test questions, formulae, charts and
circuit diagrams. User inputs and calculated outputs £29.95 each
+ £2.00 p&p. Cheque or postal order to E.P.T. educational software,
Pump House Lockam Lane,
Witham Essex. CM8 2BZ. Please state BBC-'B' or Master series and
disc size.

COMPONENTS

"ELECTROCOMP"
WE CLEAR
Electronic Components + Semiconductors
Computer Equipment + Electronic Test Equipment
Populated Boards
In fact anything with an electronic bias
JOB LOTS, FACTORY CLEARANCE A SPECIALITY
Decision normally within 24-36 hours

LOOKING FOR COMPONENTS!! As an ex Industrial buyer for 25 years I
won't sell you reject or faulty product!! Only top quality components at the
right price!! No Mail Order only production quantities!!
SNAPS only one, My terms are C.O.D. Deliveries normally made within 48 hours
Phone or Fax your list or enquiry to: 0635 46496
ELECTROCOMP 36 Talbot Close, Newbury, Berks RG13 1UA

COURSES

ELECTROCOMP 36 Talbot Close, Newbury, Berks RG13 1UA

COURSES

Start training now for the following courses. Send for our brochure —
without obligation or Telephone us on
0626 779398

ETI/1092

Name
- Telecomms Tech C&G 271
- Radio Amateur Licence C&G
- Micro-
ays And
- Introduction to

Radio & Telecommunications Correspondence School
12 Moor View Drive, Teignmouth, Devon TQ14 9UN

ETI OCTOBER 1992

64

www.americanradiohistory.com
TO ADVERTISE IN ELECTROMART TELEPHONE 0442 66551

BINDERS
Keep your copies in first class condition

Keep your collection of ELECTRONICS TODAY INTERNATIONAL in mint condition with these specially commissioned binders. The price is just £6.95 which includes postage and packing*.

How to order
Send cheque/P.O to A.S.P. BINDERS OFFERS, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

*UK ONLY—OVERSEAS PLEASE ADD £1.50

TELEPHONE ORDERS (24 HRS) 0442 66551

ELECTRONICS TODAY INTERNATIONAL
CLASSIFIED ADVERTISEMENT DEPARTMENT
ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words. Semi-display £14.00 per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address
Signature
Daytime Tel. No:
Date

PLEASE DEBIT MY ACCESS/BARCLAYCARD No. Expiry Date

□ FOR SALE □ COMPONENTS □ PLANS □ OTHERS STATE

ETI OCTOBER 1992
EDITORIAL
Editor Paul Freeman

CREATIVE
Art Editor Peter Kirby
Designer Iain Houston
Technical Illustration Peter Holland
Photography Manny Cefal

ADVERTISEMENT SALES
Advertisement Manager
Mark Linacre
Advertisement Sales
Michele Donovan
Advertisement Copy Control
Marie Quilter
Key Accounts Manager
Donna Wells

MANAGEMENT
Managing Director
Terry Pattisson
Circulation & Promotions Manager
Debra Stupple
Production Manager
Tony Dowdeswell
Group Editor
Stuart Cooke
Group Advertisement Manager
Claire Jenkinson

ISSN 0142-7229
ABC Member of the
Audit Bureau of
Circulation

ETI is normally published on the first Friday in the month preceding the cover date. The contents of
this publication including all articles, plans, drawings and programs and all copyright and all
other intellectual property rights therein belong to Argus Specialist Publications. All rights
conferred by the Law of Copyright and other Intellectual property rights and by virtue of
International copyright conventions are specifically reserved to Argus Specialist Publications
and reproduction requires a prior written consent at the company (01990) Argus Specialist
Publications. All reasonable care is taken in preparation of the magazine contents, but the
publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction
will normally be published as soon as possible afterwards. All prices and data contained in
advertisements are accepted by us in good faith as correct at the time of going to press. Neither
the advertisers nor the publishers can be held responsible, however, for any variations
affecting price or availability which may occur after the publication has closed for press.

"Subscription rates..."UK £23.00 Europe £25.50 Sterling Overseas £21.00 US Dollars Overseas
$55.00

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead
HP2 7ST. Telephone (0442) 66551. UK Newspaper Distribution by SM Distribution Ltd. 6
Leigham Court Road, London SW16 3PD. Telephone 0181-687 6111. Overseas and non-
newspaper sales by Magazine Sales Department, Argus House, Boundary Way, Hemel
Hempstead, HP2 7ST. Telephone (0442) 663551. Subscriptions by Argus Subscription Services,
ETI, Queenway House, 2 Greenway, Hoddesdon, Herts. 1026. US subscription by Mike
Cee Worldwide Publications, 3414 West 25th Street, Torrance, CA90405 USA. Telephone
(213) 676-2558. Typography and origination by Eley, Lissadell, Connolly. Printed by Wilshire
Ltd. Bristol.

ETI OCTOBER 1992

ADVERTISERS' INDEX

ABI .. 23
AP PRODUCTS 15
AUTONA 23
BX ELECTRONICS 16
CITADEL PRODUCTS 23
CRICKLEWOOD ELECTRONICS 50
DISPLAY ELECTRONICS 10
ESR ELECTRONICS 11
HALCYON ELECTRONICS 46
HEISING TECHNOLOGY 33
JAN BULL 51
JAY TEE ELECTRONICS 46
JPG ELECTRONICS 22, 53
M & B 29
LAB CENTER 45
MAPLIN ELECTRONICS OBC
MFA 53
NUMBER ONE SYSTEMS 14
OAK LEAF TECHNOLOGY 32
OMNI ELECTRONICS 32
PIDO TECHNOLOGY 47
REED ELECTRONICS 53
S.L.M. MODEL ENGINEERING ... 23
STEWARTS 61
WILMSLOW AUDIO 61
Total Programming Solutions From Citadel

PC82 Universal Programmer £449.00
- Universal programmer—the complete designers kit.
- Over 1,500 devices—call for list on FREE disk.
- EPROM, EEPROM, Flash, BPROM, GAL, PAL, MPU etc.
- Serial EEPROM, EPROM, MACH, MAX, MAPL, CMOS, EPAL.
- Device testing—74XX, 40XX, 45XX, DRAM, SRAM.
- PAL vector test.
- Clear menu driven software
- Text mode only, suits any video card.
- 40 pin Zero insertion force socket.
- Device testing—74XX, 40XX, 45XX, DRAM, SRAM.
- Small half card to install in PC may be left in place.
- Secure round cable and locking D connectors.
- Proven reliability—over 100,000 units sold.
- Programmer pod size—260 x 140 x 38mm

Adapters for the PC82 From £85.00
- Extend programming facility for special devices.
- Allows alternative socket types eg PLCC
- Multi-gang adapters for fast programming of EPROMS, GAL, PAL and popular CPU types.

Features All Programmers
- For the IBM PC, install the interface card and programming socket, load
 the menu-driven software and you have a complete design system at
 your fingertips. The programmers will run on any compatible IBM
 machines such as XT, AT, ‘386 or ‘486. Whether it be an Amstrad or
 Commodore 64 the system will work. All features are software driven and
 supported on 5½" disks, these may be copied onto your hard disk using the
 DOS copy command. All control of the programmer, program type, number
 and selection of a suitable speed algorithm. Blank check, read & modify, verify,
 programme, auto programme, security blow etc.

File Conversion Facilities
- 8-EX to BIN File conversions for Intel, Motorola
 and Tektronics.
- 2-way/4-way Bin file splitter for 16/32 bit data.
- Dumpfile to Console, modify and re-programme.

For further information and your FREE PC82
Simulation and device disk.

M25 Bulk Fast Eraser £199.00
- Same advanced UV source as the M1 but 4 lamps.
- Very large capacity 64 x 32 pin chips or one double Eurocard.
- All other features as M1.
- Low profile steel case finished in powder coat
- Size 365 x 240 x 65mm high.

M1 Fast Eraser £99.00
- Advanced UV source.
- Typical erase time three minutes.
- LED display of set time and countdown.
- End of time indicated by beep and display.
- Large capacity 13 x 28 pin devices.
- Sturdy construction, plated steel & aluminium.

PC86 Handy Pocket Device Tester £99.00
- Tests and identifies virtually all TTL & CMOS.
- Test many DRAM and SRAM memory chips.
- LCD display of type number and results.
- Battery operated (PP3) and completely self-contained.
- Zero insertion force test socket.
- Dimensions 90 x 140 x 30mm.

PC84-1 to -8 ROM Programmers From £139.00
- Low cost EPROM programmer—devices up to 1Mb CMOS and NMOS.
- One to eight gang versions.
- To program 2716 to 271000.
- 32 pin Zero insertion force sockets.

Order Information
Please include £7 for carriage by overnight courier (£20 for exports) and
VAT on all UK orders. ACCESS, VISA or CWO. Official orders welcome
from Government bodies and local authorities.

Free Demo Disk
Citadel Products Ltd
DEPT ETI, 50 HIGH STREET,
EDGWARE,
MIDDLESEX HA8 7EP

Phone Samantha
Now On:
081 951 1848
081 951 1849

www.americanradiohistory.com
Order your copy of the New MAPLIN Catalogue on sale NOW!

Pick up a copy from any branch of WHSmith or Maplin for just £2.95 (in the UK) or $31.50 (outside the UK).

Over 700 product packed pages with hundreds of brand new products.

On sale now, only £2.95

Available from all branches of WHSmith and Maplin shops nationwide. Hundreds of new products at super low prices!