

\star Manual arm \star Steel chassis \star Electronic speed control 33 \＆ 45 R．P．M．„Vari pitch control \star High lorque servo driven DC motor \star Transit screws \star
$12^{\prime \prime}$ die casl platter \star Neon strobe \star Calibraled $12^{\prime \prime}$ die cast platter \star Ne on strobe \star Calibrated balance weight \star Removable head shell $\star{ }^{1 / 2}$
cartridge fixings \star Cue lever $\star 220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ $\star 390 \times 305 \mathrm{~mm}$＊Supplied with mounting cut－out lemplate．

PRICE $861.30+$ £3．70 P\＆P
 PRICEE16．95＋50P PAP PRICEE7．15＋50P PAP
BTEFEO DISCO WIXER DJGE0C
STEREO DISCO MIXER with 2×7 band L \＆ R graphic equalisers with bar graph LED Vu melers MANY OUTSTANDING FEATURESS：－including Echo with repeat \＆ speed control，DJ Mic with tone control
$\&$ talk－over switch， 7 Channels with i talk－over switch，${ }^{7}$ Channels with
individual faders plus cross fade，Cue individual faders plus cross fade，cue
Headphone Monitor．Useful combination of the following inpuls：－ 3 tur ntables（mag），

Price £134．99＋E5．00 P\＆P

SIZE： $482 \times 240 \times 120 \mathrm{~mm}$

Join the Piezo revolution！The low dynamic mass（no voice coil）of a Plezo tweeter produces an improved transient response with a lower distorion level than ordinary dynamic tweeters As a crossover is not required
these units can be added to existing speaker systems of up to 100 watls（more it two are pul in series FhEE these units can be added to existing speaker sysiems of up to 100 wati
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER．

TYPE＇A＇（KSN1036A）3＂round with protective wire mesh．Ideal for M＇bookshell and medium sized Hi－fi apeakers．Price $\mathrm{C} 4.90-50 \mathrm{p}$ P\＆P．
TYPE＇B＇（KSN1005A） $31 /{ }^{\prime \prime}$ super horn for general purpose speakers disco and P．A．systems elc．Price §5．99＋500 P\＆P．
TYPE ${ }^{5} C^{\prime}$（KSN1016A） $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi－Fi sys－ tems and quality discos etc．Price C6．09－50p P后P．
TYPE＇D＇（KSN1025A） $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn．Upper frequency response retained extending down to mid－range（ 2 KHz ）．Suitable for high quality $\mathrm{HI}-\mathrm{Fi}$ systems and quality discos．Price $\mathrm{C9.99}$－50p P\＆P． TYPE＇E＇（KSN1038A） $3^{33_{4}}{ }^{\prime \prime}$ horn tweeter with attractive silver finish Irlm Suitable for Hi－Fi monitor systems etc．Price $\mathbf{8 5 . 9 9}+\mathbf{5 0 p}$ P\＆P． LEVEL CONTROL Combines，on a recessed mounting plate，level contro and cabinet inpul jack socket．85x85mm Price E4．10－50p P\＆P．

THE VERY BEST IN QUALITY AND VALUE
Made especially to suit today＇s need for compactness with high output sound levels，finished in hard wearing black vynide with protective
corners，grille and carrying handie Each unit incorporates a 12＂driver corners，grille and carrying handle Each unt incorporates a $12^{\prime \prime}$ driver
plus high frequency horn tor a full frequency range of $45 \mathrm{Hz-20kHz}$ ．
Both models are Both models are B Ohm impedance．SIze：H20＂x W15＂x D12＂ CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12－100WATTS（100dB）PRICE E163．50 PER PAIR OMP 12－200WATTS（200dB）PRICE E214．55 PER PAIR SPECIALIST CARRIER DEL $\{1250$ PER PAIR

PRICES： 150 W E49．99 250W E99．99 400W E109．95 P\＆P E2．00 EACH

THREE SUPEKA HICH POWER
CAR STEREO BOOSTER AMPLIFIER 150 WATTS $(75+75)$ Slereo， 150 W Bridged Mono 250 WATTS（125 400 WATTS 400 WATTS（200 Bridged Mono Features：
＊Stereo，bridgable mono \star Choice of high \＆Tow reve mputs π L a A leve
controls $\#$ Remole on－off $*$ Speaker a hormal grotisction．

OMP WOSFAI POUNER AMPLJFIER WDDULES SUPPLIED READY BUILT AND TESTED．

 These modules now enjoy a world－wide repulation for quality，reliability and pertormance al a realistic price Fourmodels are available to suit he needs ol the prolessional and hobby market i i Industry，Leisure，Instrumental and Hi－F models are available to suil the needs ol the prolessional and hobby market ite．Indusiry，Leisure，Insitrumental and Hi－F
etc when comparing prices，NOTE that all models include toroidal powe supply，integral heal sink，glass fibre PC B and
drive circuils lo

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP／MF 100 Mos－Fet Output power 110 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D typical 0.002% ，Input Sensitivity 500 mV ，S．N．R -110 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE $840.85+\varepsilon 3.50 \mathrm{PRP}$ PRICE E40．85＋ع3．50 P\＆P

OMP／MF 200 Mos－Fet Output power 200 watts R．M．S．into 40 hms ，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{uS}$ T．H D typical 0.001% ，Input Sensitivily 500 mV ，S．N R -110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE E64．35＋84．00 P\＆P
OMP／MF 300 Mos－Fet Output power 300 watts R．M S into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate 60V／uS TH．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N R 110 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE $584.75+55.00$ P品P

OMP／MF 450 Mos－Fet Output power 450 watts R．M．S into 4 ohms，frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ．Damping Factor >300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ TH．D．typical 0001% ，Input Sensitivity 500 mV ，S．N P 110 dB ．Fan Cooled，D．C．Loudspeaker Protection． Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE \＆132．85－\＆5．00 P\＆P
NOTE MOS－FET MODULES ARE AVAILABLE IN TWO VERSION PEC（PROFESSIONAL EQUIPMENT COMPATIGLE） 100 KH 775 mV ，BANO WIDTH 50 KHz ．OROER STANDARD OR PEC

Vu METER Compatible with our four amplifiers delailed above A very accurate visual display employing 11 L E Ds（ 7 green， 4 red）plus an additional on／o moulded plastic case，with acrylic tinled front Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE EB．70－50p P\＆P

LOUDSPE：RETE
LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREQUENCY BULLETS AND HORNS，LARGE（A4）S．A．E FREQUENCY BULLETS AND HORNS，
（50p STAMPED）FOR COMPLETE LIST．
（50p STAMPED）FOR COMPLET
\mathbf{P}－From McKenzie Prolessional Series
P－From McKenzie Prolessional S
S －From McKenzie Studio Series
MCKINEME－INSTRUMINIS，P．A．，DISCO，ETC
ALL McKENZIE UNITS B OHMS IMPEDANCE
8＂100 WATTP CB－100GP GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO． RES．FREQ． 80 Hz ，FREQ．RESP．TO 7KHz，SENS 96dB．PRICE E31．45
10＂100WATT S C10－100GP GUITAR VOICE KEYBOARD，DISCO，EXCELIENT Mi RES FREQ 72 Hz ，FREQ．RESP TO 6 KH Z，SENS 97 DB PRICE 38 ，

10＂200WATTS C10－200GP GUITAR，KEYB＇D，DISCO，EXCELLENT HIGH POWER MID RES．FREQ 69Hz，FREQ RESP TO 5KHz，SENS 97dB， 12＂100WATT PC12－100GP HIGH POWER GEN P
RES FREQ 49Hz，FREQ RESP TO 7KHz，SENS 98dB 12＂100WATT PC12－100TC（TWIN CONE）HIGH 12 R 200 WATT S C12－200B HIGH POWER RES FREO 45 Hz ，FREQ RESP TO 5 KHz ，SENS 99 dB 12 300WATT S C12－300GP HIGH POWER BASS RES．FREO 49 Hz ，FREQ RESP TO 7 KHz ，SENS 100 dB 15＂100WATT PC15－100日S BASS GUITAR，LOW FR RES FREQ 40Hz，FREQ RESP TO 5KHz，SENS 98dB，
15 ＂ 200 WATT P C15－200BS VERYHIGH POWER BA 15 ＂200WATT PC15－200BS VERY HIGH POWER BASS
RES．FREQ． 40 Hz ，FREQ．RESP．TO 3 KHz ，SENS 98 dB ． 15 ＂ 250 WATT S C15－250BS VERY HIGH POWER BASS RES．FREQ．39Hz，FREQ．RESP．TO 4 KHz ，SENS 99dB． 15 400WATTS C15－400ES VERY HIGH POWER，LO
RES FREQ． 40 Hz ，FREQ RESP TO 4 KHz SENS 100 d ． RES FREQ． 40 Hz, FREQ RESP TO 4 KHz ，SENS 100 dB
$1 \mathrm{~B}^{\prime} 500 \mathrm{~W}$ ITT S C1B－500日S EXTREMELY HIGH POW RES FREQ 27 Hz ，FREQ RESP TO 2 KHz ，SENS 98 dB

ARDS，DISCO，P

EYBO PRIC GAF：JTDJif5F MI－FI，STUDIO，IN－CAR，ETC
ALL EARBENDER UNITS B OHMS（Excepl EBe－50 \＆EB10－50 which are dual
BASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED SURROUND BASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED SURROUND B＇$^{\prime \prime} 50$ watt EB8－50 DUAL IMPEDENCE，TAPPED 4／8
RES．FREQ． 40 Hz ，FREQ．RESP TO 7KHz SENS 97dB． 10 50WATT E日10－50 DUAL IMPEDENCE，TAPPED 4／8 OHM BASS，HI RES FREQ． 40 Hz ，FREQ．RESP TO 5 KHz ，SENS， 99 dB 10 RES FREO 35 Hz FREO RESP TO 3 KHz SENS $96 d \mathrm{C}$ 12 ＇100WATT EB12－100 BASS，STUDIO，HI－FI，EXCELLENT DISCO RES．FREO 26 Hz ，FREQ RESP TO 3 KHz ，SENS 93 dB ． FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURROUND $5^{1 / 4}{ }^{\prime \prime}$ 60WATT EB5－GOTC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC RES．FREQ．63Hz，FREQ．RESP．TO 20KHz，SENS 92dB．
$6^{1 / 2^{\prime \prime}}$ 60WATT EB6－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC $6^{1 / 2}$ 60WATT EB6－60TC（TWIN CONE）HI－FI，MULTI－ RES．FREQ． 38 Hz ，FREQ．RESP．TO 20KHz，SENS 94 dB B＂ 6 OWATT EBB－60TC（TWIN CONE）HI－FI，MILTI－AR RES．FREQ． 40 Hz ，FREQ．RESP．TO 18KHz，SENS 89dB RES，FREQ 35 Hz ，FREQ．RESP．TO 12 KHz ，SENS 98 dB SCO ASS． CAR PRICE E53．21 PR，DISCO PRICE E40．35＋E3．50 P8 ONSE，PA，VOICE，DISCC
PRICE E41．39 +3.50 P\＆F PRICE E41．39＋E3．50 P\＆F
PRICE E71．91 PRICE，DISCO ETC PRICE $€ 59.05+$ ¢ 4.00 P\＆ PRICE ع80．57＋£4．00 P\＆F PRICE $£ 90.23$－ 4.50 P\＆F
PRICE E105．46－E4．50 PEE NCY BASS．
PRICE $£ 174.97$－E5．00 P\＆F
\qquad PAICE CB．90＋ $\mathbf{C 2 . 0 0 ~ P \& P}$
， IN －CAR． I，IN－CAR．
PRICE C13．65－E2．50 P\＆F PRICE C30．39－ 63.50 P\＆P PRICE 42.12 －€ 3.50 PaP

PRICE C9．99－E1．50 P\＆P PRICE E10．99－1．50 P\＆P
PRICEE12．99－E1．50 P\＆P PRICE $16.49-\varepsilon 2.00$ P\＆P

TRANE TIIIIER MOBBY KIIE

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIACUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS $3 W$ TRANSMITTER 80 －10BMHz，VARICAP CONTROLLED PROFESSIONAL
PERFORMANCE．RANGE UP TO 3 MILES，SIZE $38 \times 123 \mathrm{~mm}$ ．SUPPLY 12 V à $05 A M P$ PERFORMANCE．RANGE UP TO 3 MILES，SIZE $38 \times 123 \mathrm{~mm}$
PRICE $C 14.85+¢ 1.00$ P\＆P
FII MICRO TRANSMITTER $100-108 \mathrm{MHz}$ ，VARICAP TUNED，COMPLETE WITH
VERY SENS FET MIC，RANGE $100-300 \mathrm{~m}$ ，SIZE $56 \times 46 \mathrm{~mm}$ ，SUPPLY $9 V$ BATTERY．

Volume 21 No. 10 Det 1992

Features \& Projects

Rapid Fuse Checker 12
Mark Daniels provides the details for this simple project.
Universal I/O Interface for a PC 16Converting your computer to a sound sampler is just one of the many applications thisvery useful project can provide. Neil Johnson gives the details.
Coping With Radiation 24
Douglas Clarkson reports on one of the hazards of everyday living.
Heartbeat Monitor 30
Build this sensitive amplifier to keep an eye on your health. Shabaz Yousaf explains.
The AutoMate Mixing Desk Part 7 38
This month, Mike Meechan examines the subject of EQ and the reason for it.
A Flashy Wizard's Hat 48
Be the star of the party by building this novelty LED sequencer with our cover PCB.Andrew Armstrong reports.
Aerial Tuner Unit 52
Use this simple device to maximise the signal strength of incoming radio signalsDigital TV Part 554James Archer presents the final part in the latest ideas for Digital TV.

Page 16

What is the difference between a TV and a computing system? The differences should be easy to describe. This may have been the case in the past but nowadays the definition must vary according to the job the computer can perform. This software driven machine can calculate, present data, text and graphics on screen and provide synthetic and sampled audio. Most people might describe television as a box of moving pictures with sound. Very soon the differences will not be easy to describe because computers are now and will be using more animated high resolution 'pictures' coupled with sound and TVs are adopting larger memory storage for display of data (teletext) and picture-on-picture information for seeing 'whats on the other side'. Solid state recording of data is also a possibility.

The Multi-Media package

Promotions, PR and Ad-people have in the past used slide and overhead projectors and sound reinforcement to add to the effectiveness of their campaign. Now Multimedia systems are replacing those old tools. Like a travelling salesman with suitcase in hand, the technology can 'do-it-all' for them. TV, audio and computer technology have combined to produce their requirements. Although not new, (Who remembers Advanced Interactive Video?) the older technology suffered from bulky packages. Now, with laptops and CD ROMs the media boys are mobile thanks to the two technologies merging. Sa your TV of the future could well be a computer producing sound vision and data.

IIt's not often I get fan mail. but I did get one letter recently from a very reverend gentlemen from Port Elizabeth in South Africa. He refers to my comments in June's Open Channel, when I discussed a new dog coller which emits an ultra sonic signal whenever the dog barks. Then he goes on to describe Port Elizabeth as a city with a 700,000 strong human population and seemingly almost as many dogs. Apparently, each month in Port Elizabeth some 4,500 people are bitten by dogs. Indeed, in the course of his work, he himself has been bitten many times.

As an avid electronics enthusiast he built a project which is, in essence, an ultrasonic dog repeller - printed originally in a rival electronies magazine to ETI. He says it works well but is expensive. A cheapo design would he feels, be very popular.

It's an interesting thought. Most people in the UK now have access to such dog repellers and it's estimated that many of them are saved the trauma of dog bites with their use. It's also interesting to consider that use of an effective dog repeller renders useless the very fact why some people have dogs in the first place - to deter people from entering the property where the dog is kept. With an effective dog repeller, anyone: postman, policeman, burgler, vicar,tinker, taylor and so on, can gain acess without trouble from the dog.

I suppose it depends on what kind of state you live in democratic state, soap box state, soap opera state, police state - as to how dog repellers are viewed. It's probably not beyond the credibility of most ETI readers to learn that in South Africa, dog repellers have been banned by the police.

Perhaps some of our new readers could design a simple but effective dog repeller (shotguns are not acceptable!) in a sort of competition, over the next few months. Accent on novellty and portability please - maybe built-in to a human dog coller (which means the gentleman concerned has the perfect cover when questioned by the police why dogs avoid him). Send proto-types to me via the editor. I'll try them out on my dog to decide the best.

TV Times

Considerable rethinking has to be done by the Independent Television Commision (ITC), the body charged with the reponsibility of governing the Independent Television network. This is because the ITV companies around the regions are finding it increaswingly difficult to maintain profitable operation, given the restrictive controls forced upon them recently. Theoretically, ITV companies cannot merge and even cannot hold a large part of one another's shareholdings.

Yet television is becoming more of an open market. Under Governmentally imposed regulations ITV companies will see their market shares reduce, and they cannot do much to restrengthen their positions. Even worse, in just over a
year's time, foreign television companies will be able to buy into our ITV market, even though those foreign governments will not allow our companies to do the same with theirs.

Something has to give. Recently, Yorkshire Television and Tyne Tees Television were allowed to merge - in a deal agreed by the ITC to be a very special case. If this is a oneoff special case (and no further mergers allowed) then trouble is just around the comer. ITV companies in a supposedly free market are not free at all to do what is best for their business. Laws will have to be changed.

If this isn't a one-off then rules are going to be bent in finely tuned ways as the ITV companies' lawyers can dream up. If more than just a couple of loopholes are found in current legislation, then the whole thing is going to look like something of a mockery.

Trouble At Paddy Rise

Following on from my comments last month about the wonders of technology; filing my column in true roving reporter mode - from the far flung corners of the globe in computerised fax format, I've hit upon a snag. If you didn't catch ETI last month, I'll give you a rapid update: I'm on an extended working holiday, taking family and friends caravan, computer fax, deaf dog and fortunately pen and paper around the country and beyond for the summer or until the money runs out.

Things were fine while I was able to pitch the caravan on sites with an electric hook-up. Here there is power enough to switch on the caravan reading lamps, heat the water, chill the wine, shower the dog and most importantly boot up the computer to allow me to process a few words. Things were even better when the odd phone point could be located within reach of the computer. Then I could download all I'd written since the previous tumultuous meeting of Faraday's dream, Bell's nightmare and Babbage's joke.

But problems arose as the caravan headed evermore westward, mains electricity and telephone points became evermore scarce. Finally, around the time this column began to emit a glimmer of formulation in my mind, the twain began never to meet at all - if you follow my gist. Here on the western shores of Ireland, overlooking the Atlantic it's darm nigh impossible to get a caravan site with electricity at all, let alone find one with hook-up points. As for telephones, the locals would never allow those new fangled gadgets anywhere near the peat bogs in case the countryside becomes spoilt by progress.

So here I am relying on the original communications method complete with writer's cramp. So this month's column is by pen, paper and post. It is I supose a delicate reminder that technology only goes as far as we let it and we can stop it any time we want.

Keith Brindley

NEWVS

Ihe need to provide music for church services on board Royal Naval ships has inspired a Naval EngineerOfficer, SubLieutenant Jeff Crofts (22) from Bristol, to design and build the MIDI Accompanist, gaining him the top award in the Young Electronic Designer Awards (YEDA) competition.

The MIDI Accompanist relies on the MIDI (Musical Instrument Digital Interface) connection found on the back of most modern electronic keyboards. The MIDI Accompanist is a sequencer, as it is a dedicated unit that gives instructions on the MIDI Interface concerning the sequence of previously stored notes that are to be produced by the keyboard.

The MIDI Accompanist reads the music from cartridges that must be recorded and encoded, but allows the user flexibility in controlling how they are played back. The user can control the speed and can transpose the music while it is playing. Playback can also start with an optional introductional phrase.

The data is held on a 64 K byte PROM, which represents some 12000 notes in up to 200 sequences. The Accompanist is expandable to hold 4 such PROMs. The music is originally

played on a keyboard andrecorded on a PC using a commercial sequencer program. The music is edited then stored as MIDI files. These files are heavily compressed by a specially written PASCAL program, to produce a proprietary
file format. Information is added concerning how the music sequences should be replayed, and the complete cartridge is programmed.

Sub Lieutenant Crofts designed the instrument whilst
studying at the Royal Naval Engineering College (RNEC), Plymouth. For the second year running an RNEC entry has won the YEDA top award.

TOROIDSTOR THE MOST EXUREME EMMROMMEMS

7 ound-component specialist, Gardners of Christchurch offers a toroid transformer design ard manufacturing facility which produces high-performance coils for the most extreme operating environments.

Aerospace, military and transport represent typical areas of application for toroids which must endure severe ambient conditions, these include the outer limits of ' G ' forces, temperature swings, vibration and humidity.

Recent applications for specialised toroids include one for high G force aerospace instrumentation which required the use of an aluminium reinforced resin bonding technique.

Further information contact
Gardners Limited
Tel: (0202) 482284.

50 PTCE MEMCRY-CALGULE A ROWATCH

n what should be called the ultimate in function watches, the new multifunction LCD watch from Maplin is an extremely wellspecified digital watch which couples renowned Casio quality with a host of useful features. The normal timekeeping display shows the day of the week, date, year and the time in hours, minutes and seconds. A 'chronometer' function automatically compensates for leap-years and months of differing length. A 24hour stopwatch works to a resolution of $1 / 100$ second.

In addition to a switchable daily alarm and an hourly bleeper, there is a countdown alarm. Also featured is an extremely useful 8-
digit 4-function calculator with a watch face keypad. This keypad is also used to enter data into the 50-page telephone and scheduling memories. Each telephone memo 'page' cam comprise 8 letters and 12 numbers, while the scheduling facility will allow 5 letters per page. To prevent unauthorised people from gaining access to any information stored in the watch, a 'private' password function has been incorporated. Further security devices include a battery power fade display. Certainly a unit to watch out for.

The data bank watch costs £31.95 (including VAT) from Maplin Electronics.

GEMAND HIARHCS BY RV LINK

he Home Office is now using two videoconferencing systems supplied by PictureTel Corporation. The Model 400 is a complete videoconferencing system on wheels and can be rolled to any location. Once connected to a power point and a telephone
socket, it is ready to use.
The video calls are dialled like an ordinary telephone call, and cost around $£ 15$ for one hour.

Videoconferencing has already been used to give evidence in the UK civil court, in May 1992, and in a criminal trial, in 1991. The

General Council of the Bar and the Law Society are both regular users of PictureTel videoconferencing equipment. Videoconferencing is alreadyused for court hearings in the US.

PictureTel Corporation is headquartered in Danvers, Mass.,

USA, and established its European headquarters in the UK in May 1991. The company has been selling equipment in Europe since 1988. In 1991 PictureTel's turnover was $\$ 78$ Million

sing conventional telephone lines, a new portable navigation system will provide harbours with the facilities of conventional radar systems at a fraction of the usual cost. Marine pilots will now be able to view raw images transmitted from shore based radar stations independent of the ships own systems.

Entitled Pilotwatch, the system is designed and manufactured by DB Electronics of Merseyside for Gloucester Harbour Trustees, and will be in use during the
construction of the second River Sevem Bridge. The system will provide a full harbour radar picture of the area upstream and downstream of the new road bridge which crosses the Severn Estuary over the English Stones. Comprising eight portable displays and two radar stations, one on the English shore and one on the Welsh shore, remote controlled via telephone lines from a central operations room, Pilotwatch is the first fully integrated system for a harbour of any

FIRST RADAR WFTH PORTABLE DISPLAYS

size.
Pilots navigating the Severn will carry the portable receiver on board in its own briefcase and receive real time pictures broadcast over a VHF voice channel from the shore based radar stations enabling pilots to see construction activity on the far side of the bridge site long before they reach it - improving navigational safety particularly during poor visibility.

The Harbour Controller, in the operations centre receives a raw radar image transmitted over telephone lines without loss of integrity. Able to verify continuously the position of construction traffic, buoys, changing sandbanks, anchored vessels and uncontrolled inshore traffic the Controller is not dependent on what the ships are saying, he will see for himself. This also allows Controllers to assess accurate arrival times of visiting vessels.

DE Electronics developed Pilotwatch from its data compres-
sion image transfer technique which communicates real time images without loss of integrity. Capable of high resolution and positioning accuracy it transmits an eight colour image. All vessels in the VTS area share the same images from the same shore based antennae: Radar pictures can be broadcast from any number of radar stations, over a standard VHF channel to any number of portable receivers regardless of their position, direction or speed, something which no microwave based system can do.

It differs from conventional radar systems in that it does not use expensive microwave links. Instead, it severs the connection between transceiver and display and communicates the analogue "A scan" output from the IF amplifier. The encoding system uses a four dimensional, data compression algorithm to transmit the raw radar image to the original radar display.

PLUG-IN PC MULTIMEDIA BOARD MERGES VGA AND LIVE VIDEO

Arcom has released a powerful new multimedia adapter board for PCs which allows colour video and VGA signals to be combined into a single display. Integrating text/graphics and live/ still video windows provides the means to reduce hardware costs and improve user interface ergonomics in a wide variety of professional computer system applications including process control, security, image processing, positioning and automation. Designated PCVideo, the PCbus plugin is priced at $£ 740$.

The combined VGA/video display is very easy to control, providing a flexible building block for system designers. A camera, VCR or TV video source-in PAL, NTSC or SECAM format - may be software-selected from the board's three inputs. Video windows can be selectively displayed, scaled from full screen down to $1 /$ 64 size, and positioned in the VGA graphics/text display by either colour keying to the VGA signal, or by defining $\mathrm{X}-\mathrm{Y}$ coordinates. One live video window may be displayed, plus an unlimited number of captured - or framegrabbed - stills. Still images may
be accessed by the host PC CPU, enabling designers of vision recognition systems to employ image processing techniques. Still images may also be saved to disk, or loaded from disk to a window,for applications where archiving and recall is required. A library of C routines is provided with the board to facilitate software development.

The design of PCVideo is based around Chips \& Technologies' 82 C 9001 device for image capture and display, plus a Philips chipset to decode/matrix the composite video. Three quarters of a megabyte of video RAM is provided onboard to support the full colour operation. Memory accessing can be selected to operate in either linear or page modes, enabling designers to optimise the system's performance depending on which particular 80XXX-family CPU is resident in the host PC.

PCVideo is a half-size board with a 16 -bit interface, and plugs into any standard PCATbus expansion slot. The only additional connections required, apart from the three video inputs, are the VGA signal input and output, and a Feature connector in order to

Genlock the two displays.
In addition to the dual display function, Arcom has included a number of useful hardware facilities on PCVideo to simplify installation, configuration and maintenance. An advanced offset addressing scheme reduces the number of bytes required for PCVideo to just four, making it easy to install in the PC's limited free I/O space. Hex dials are pro-
vided to set this address, in preference to DIL switches. Monitor LEDs assist system integrators with system commissioning and diagnostics; one indicates the board has been selected, another that live video is present.

Further details contact:
Alan Timmins at
Arcom Control Systems Ltd,
Tel: (0223) 411200

SIEMENS IBM AND TOSHIBA TO DEVELOP NEW SEMICONDUCTORS

Three of the world's leading semiconductor companies
Siemens AG, IBM Corp., and Toshiba Corp. - have announced an alliance that will result in advanced semiconductor devices for the end of this decade and into the next century.

The three companies will cooperate in development of a 256 -million-bit dynamic random access memory (DRAM) and its process. This sophisticated submicron technology will be a basis for production of future generations of highly dense chips.

For customers, this agreement should accelerate availability of memory chips with 16 times more capacity than are available today, as well as other advanced computer components, such as microprocessors and chips for telecommunications.

Siemens and Toshiba will also conduct project-related activities at their own facilities. The development team will focus on the process technology for fabricating features only 0.25 microns wide - 400 times narrower than a human hair. (One micron is one millionth of a metre).

At the peak of the development phase, more than 200 researchers from the three companies will support the effort.

By teaming up, the three firms aim to speed up the multiyear dévelopment process and be first with quarter-micron technology in their products.
"The agreement enables the earliest availability of latest chip know-how for systems applications," stated Karlheinz Kaske, president and Chief Executive Officer, Siemens. "It contributes
to future applications in telecommunications and industrial fields far beyond the turn of the century, and assures our customers of our engagement in microelectronics."

DRAMs are fingemail-size silicon devices that store electronic data in products ranging from mainframe computers to home appliances. The 256 Mb DRAM, using quarter-micron technology, will be able to hold the entire works of William Shakespeare and Johann Wolfgang Goethe, as well as the Manyoshu, the Kokinshu, and the Tail of Genji. There would be still enough bits left to store a typical edition of the International Herald Tribune. The 256 Mb chip will follow the 64 Mb DRAM, now under development by several companies, and today's 16 Mb chip, which IBM was first to introduce
into a product earlier this year.
The DRAM development process is a technology driver. The knowledge and expertise gained in developing a new generation of memory chip can be applied to other, more sophisticated semiconductor devices, such as microprocessors and other logic devices.

The three-way alliance announced today is an outgrowth of separate, longstanding relationships among the companies. Siemens and IBM currently work together in 16 Mb DRAM manufacturing and 64 Mb DRAM development. Recently, IBM and Toshiba signed a flash memory technology agreement. Siemens and Toshiba have been collaborating in various semiconductor areas, including 1 Mb DRAMs, standard cells, and gate arrays.

PATTERN RECOGNITION TECHNOLOGY ACHEIVED BY NEURAL NETWORKS

0ne of the first applications of Neural Computer Sciences' powerful new PC-based neural network package called NeuralDesk, is likely to result in the widespread availability of intelligent, fully-automatic, signal recognition systems. The application is by Domain Dynamics, who have used the package to automate the recognition of data from the output of its signal processing technique, TESPAR (Time-Encoded Signal Processing And Recognition). Currently available in the form of two circuit boards, TESPAR is capable of being converted to a single piece of silicon - opening up a host of applications such as recognition of individual voices or signatures for security purposes, or machinery health monitoring.

TESPAR provides an efficient means of capturing and storing a single elemental 'signature' of acoustic activity, which then provides a reference for recognising patterns. The technology solves long-standing problems in pattem recognition and has recently been licensed by numerous major corporations.

The circuitry is processorbased and digitizes sample data, for example a person speaking, into special codes which represent the waveform. The code system creates a new digital language for describing and comprehending acoustic information. It outputs these numerical codes as matrices. From these
samples, a singlè statistically-relevant reference or archetype-matrix is generated, regardless of the length of data analysed. Up to now, comparing this reference to new data in order to recognise patterns has involved the use of statistical correlation techniques. The reference data provided by TESPAR is extremely compact, a couple of hundred bytes, it is ideal for use in embedded and realtime systems, and Domain Dynamics has been searching for a means of automating the matching process. Neural Computer Sciences' neural network provides the solution in an efficient way.

The neural network provides a means of automatically comparing new data with the reference matrix and quickly distinguishes between the input which, although slightly different to the reference, is an acceptable match, and data which varies slightly. As the circuitry required to embed a neural network is quite modest, Domain Dynamics expects to be able to produce a single-chip neural network plus TESPAR solution within one-two years. Very high volume applications such as ul-tra-smart cards for biometrics recognition including signature indentification, and smart locks, are just two potential end applications of this combination of technologies.

Domain Dynamics is now working with NCS to develop neural network-based matching systems which are geared for sim-

ple real-world use. For example, one likely product for condition monitoring is based on a 'traffic light' principle. This would use the neural network to drive three LEDs which provide a continual status indication of machinery health. The neural network is trained using recorded data of the machinery, and could be programmed to light a green, yellow
or red LED depending on how far data deviated from the norm. This could be used to protect expensive or safety-critical machinery such as turbines for power generation or aircraft engines.

For further details please contact:

Nick Hallwood,
Neural Computer Sciences,
Tel: 0703667775

LIVING WITH LASERS

Lasers can be used to correct dshortsightedness, remove birthmarks, drill teeth, make holograms and eavesdrop on other people's conversations. 'Living With Lasers'an exhibition that looks at the widespread use of laser technology in daily life, opened on 15 July, at the Science Museum. It is the second in the 'Science Box' series of rapid response exhibitions on contemporary science, sponsored by Nuclear Electric plc.

Professor David Phillips, Head of Chemistry at Imperial College, who opened the exhibition said "When the first laser was built in 1960 it was termed a 'solution in
search of a problem'. Since then lasers have found and solved an incredibly diverse range of scientific problems and continue to spawn new areas of research. This exhibition highlights just some of these remarkable and still evolving advances".

Street theatre-style performances and drama workshops where children become a laser beam are among the "Living With Lasers" special events that have taken place over the summer. Holography lasers in medicine and whether or not Star Trek's matter transporters will come true are just some of the lecture topics that will be explored.

The 'Living With Lasers' exhibition explains why laser light is different from ordinary light. It also covers applications of laser technology in Communications, Medicine and dentistry, at home, at the office or in the shops.

The exhibition also has a laser light display and a specially commissioned hologram.

Special drama events for "Living With Lasers" have been developed by the Science Museum in conjunction with Floating Point Science Theatre (FPST). Streettheatre style performances provide a light-hearted introduction to the applications of lasers using mime. Visitors find out through
audience participation how a laser decodes a bar-code. Children's drama workshops explore how light is generated; how laser light is absorbed by tattoos and port wine birthmark stains; and what makes laser light different from ordinary light. Members of FPST are all qualified scientists or engineers as well as mime/physical performers. They specialise in combining science and art to create exciting and fun events.

Living with Lasers is on until 30th September 1992 at the Science Museum in Exhibition Road, London

NEWS
Stateside...
Experimental neural microchip

Anexperimental neural microchip thatcan process 100,000 patterns/second, independent of the size of the patterns, has been announced by Bill Communications Research Corp.

Development of the custom chip took four years. The company previously had published scholarly papers about the experiment but went public with the details of the chip after making certain performance improvements.

The chip uses 992 synaptic connections (496 bidirectional connections) among 32 on-chip neurons. The synapse array consumes the bulk of the silicon real estate.

Each synapse digitally stores 5 -bit weights ranging from - 15 to +15 . To speed processing over methods that convert analogue inputs into digital ones, Bellcore's approach enforces the effect of the synaptic weights by multiplying the analogue voltage inputs by each weight and outputting the
result as analogue current.
Unlike previous versions of the experimental microchip, the new version can be cascaded to literally any network size. The 128-pin device's expandability derives from its having half its pins dedicated for data paths that can lead to adjacent chips in a cascade.

The learning method is termed a relaxation technique because inputs to the internal neural network stimulate it to a higher energy level before allowing it to relax into its lowest energy state. The lowest energy state defines the output of a standard engineering I/0 function. The learning method then detects the error in that output state (compared with the known correct output) and adjust its internal synaptic weights
until each input is relaxed into the desired output. After all of the I/O pairs have been learned, the neural network can be inserted into working systems.

The new chip uses feedback connections for speedier detection of errors during the learning phase and for quick retrieval of static patterns after learning.

Bellcore plans eventually to integrate the silicon into its existing telephone-switching systems with custom 'glue' microchips. It cited several telecom applications for the chip, including network management, operations, tel-ephone-call routing, cellularphone frequency assignment, data compression and voice recognition.
the unit's detector and collimator. By adding a selectable acquisition mode, customizable for specific IC technology, the designers slashed acquisition times by up to a factor of 10 . Enhancing the detector and acquisition software also improved speed, as well as the HX's waveform accuracy.

IDA software also determines the best place to place a probe, speeding diagnostics even further. The result is that users need only modest skill and little knowledge of a chip's design.

Virtual reality

Virtual reality is now attracting the attention of major electronics companies seeking to tap the technology's potential for future products as well as research applications. Virtual laboratories would make it possible not only to simulate a design or condition but also to interact with it and control the simulation while it is running.

At IBM's T.J.Watson Research Centre, six researchers are exploring scientific uses for virtual reality. The general theme of the work is the creation of a virtual laboratory.

In the past, problems that resisted algorithmic solutions required physical models to test possible solutions. But highspeed computers have allowed simulations to serve as precursors to actual models.

Now, a new breed of specialised input and output devices from helmet-mounted displays to
electronic body suits are available.

Virtual reality could allow scientists to bring their native perceptual abilities to bear on a problem instead of just applying their intellects.

Real-time interactive simulations could greatly simplify the running of interative solutions. For instance, researchers could tune parameters on-line as a simulation runs to control the streamline solutions.

IBM hopes to realise its idea of computational 'steering' to solve problems more intuitively and more easily than in a conventional laboratory. "When you enter a virtual laboratory, the first thing you might do is attach an electronic version of test probes to the simulation running there in order to interact with the current experiment," said Larry Koved, IBM researcher.

Another goal of the virtual laboratory is to allow researchers to interact within a simulation. "When people work on these types
of problems, they tend to work together in groups. But they may be in different locations - or looking at the same information in a different fashion," Koved said.

Car design is one discipline in which engineers must resolve ergonometric and electrical issues; for example, dashboard knobs must not only activate the correct functions, but they must also be within a driver's reach. Virtual reality could simplify the resolution of such divergent problems. "Each engineer could give the other a tour of their results even if they are in different geographical locations," Koved said.

Ultimately, some applications - such as database visualisation may become more important than theirphysical correlates. "In some cases, the simulation itself will become the object of the collaboration, and since its only representation is in the medium, you will have to bring multiple people into it to explain it to them," Koved said.

Koved's group has constructed
several demonstrations of its virtual laboratory concept. The latest is a three-dimensional system called Rubber Rocks, that represents each participant's perspective on separate computer screens. Participants deflect spontaneously appearing rocks away from themselves and toward the other players before the rocks explode.

It takes seven IBM RS/6000 workstations to run Rubber Rocks with two players (more participants require additional RS/6000s to render the graphic representation). One RS/6000 simulates bouncing rubber rocks, two manage communications, another reads electronic glove and headtracking gear, and the last recognizes spoken commands

PC-AT 386 20-DX FULLY LOADED FOR E499!

MONITORS

MONOCHROME MONITORS

Installed VGA card
20 Mhz DX processor 2 megs RAM. Exp 10 meg 40 meg hard drive 1.2 meg 5-1/4" floppy 32 K cache exp. 64 K The MP386 quality made by Mitsubishi to last a litetmel Brand new with sottware plus Super PC-Oulck Disk Accolerator for

£499

THIS MONTH'S SPECIAL There has nover been a deal like this onel Erand spanking new \& boxed monitors Irom NEC, normally selling al about £140 These are over-engineered for ultra rellability. $9^{\circ "}$ green screen composite nput with etched non-glare screen phus switchable highllow impedance input and and 6 at rear. Standard BNC sockets. Beaufiful high contrast screen and attractive case. Ath carrying iedge. Perfect as a main or backup monitor and for quantly usersl $£ 39.95$ each (D) or 5 for $£ 185$ (G) COLOUR MONITORS
HL-DEFINITION COLOUR MONITORS

WHEN 59 - ONLY £100 THE 30GGHT WIT
 14° Philipa Model CM9873 VGA mul

 tisync all the way up to 34 Khz with 640 $x 480$ resolution. This one has every solect CGA, EGA or VGA tha! Two switithes enable you to prolessional monitor, sound is also provided, with a volume control. There is also a special "Text" switich for word a volume spreadsheets and the like, Compatible with wituaty ass pulers Including IBM PC's, Ámiga, Atari, BBC, Archimedes etc. Good used condition (possibla minor screen bums) 90 daySekanic SD $150 H 18$ channel Hybrid recorder
HP 7580A A1 B pen tigh speed drum plotier
Kenwood DA-3501 CD tester, laser plickup simulato

BRAND NEW PFINTERS

No Break Uninterruptable PSU's Brand now and boxed 230 volis unintermptabie power supplies 1085-AHBH is 1 kva. Both have sealed lead acid batteres. MUX are imternal, MUD has them in a malching case. गimes from interrupt are 5 and 15 minutes respectively. Complete with full

Power One SPL200-5200P 200 w

guarantes. $15^{n} \times 14^{4} \times 12^{\prime \prime}$. Only......................................150(E) KME $12^{2 \prime}$ high definition colour monitors. Nice ight 0.28° dot pich for superb clarly and from ary 15 cose pastic styling. Operates with RGB anajog and composite sync source, AthRGB anaiog and composite syne such as Alan, Commodone Aniga. Acom Ararlimedes \& 88c. Measures only $13.5^{\circ} \times 12^{\circ} \times 11^{\circ}$ Also
runctions as qualily $T V$ with our concililion with golily TV with our RGB Tetobox. Excellent used condillion with go day guaramee. In nice two tone beige and Brown case. Only ..E149 (E) Brand new Centrontc 144° monitor for IBM PC and compathos at a lower than ever pricel Completely CGA equivalent. Hi-res Mitsubishil 0.42 dot plich giving 669×507 puels. Big 28 with bandwidth. A super monitor in attractive shyle moulded cass Full

NEC CGA 12 IBM-PC compatible. High quality ex-equipment fully tested with a 90 day guarantee. In an attractive two tone Hbbed grey plastic case measuring $15^{\circ " L} x$ $13^{\circ} \mathrm{W} \times 12^{\prime \prime} H$. The front cosmetlc bezel has been removed for contractual $£ 79$ (E)
reasons. Only $200^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECLALS
BBC Model B type computer on a board. A major purchase
allows us to offer you the PROFESSIONAL verslon of the BBC allows us to offer you the PROFESSIONAL version of the BBC system on large networked systems the archltecture of the BBC board has so many similarties to the regular BBC model B that we are sure that with a blt of experimentation and Ingenulty many usefuil apphications witi be found for thls boardll It is supplled complete with a connector panel which brings all the VO to ' D ' $\pm 12 \mathrm{v}$ DC. The APM consists of a slngle PCB with most malor ± 12 v DC. The APM consists of a slngle PCB with most major 6502, RAM and an SAA5050 teltiens to list but include a 6502, RAM and an SAA5050 telbiext chlp. Three 27128 have no data On the custom operating sysiem on wirich we have no data, On appllcallon of DC power the syslem boots and pravides diagnostic informations on the video outout. On board DIP switches and jumpers select the ECONET address and anable the lour exra EPRIOM sockets for user software, Appx difms: main board $13^{\circ} \times 10^{\circ}$. VO board $14^{\prime \prime} \times 3^{\prime \prime}$. Supplied testod

Ony $£ 29.95$ or 2 for $£ 53^{\text {ar }}$

SPECIAL INTEREST

Tho 0.18 volc bench PSU. 30 amps. New
Futisu M3041 600 LPM band printer
DEC LSVOR CPU board
Thode \& Schwarz SBUF IV lest transmilter
25-1000mhz. Complete with SBTF2 Modulator
Cloomp 1036 large drum 3 pen plotter
Thurlby 14160 B logic analyser
1.5 kw 115 v 60 hz power source

Amton Pllar 400 Hz 3 phase frequency converler 75 Kw
Newton Dertby 400 Hz 70 Kw converter
ADDS 2020 VDU prolection on the 5 v pulput AC inplaled with ovar voltagg Pe. Dims $13 \times 5 \times 2.5$. Fully guaranteed RFE. Power One SPL 130. 130 watts. Selectable for $12 v(4 A)$ or 24 Astec AC-815t 40 watts Switch mode. New. £59.95(B)
 Greendsle 19ABOE 60 walts swich node. +5 v @ $6 \mathrm{a}+12 \mathrm{v}$ (a) Convor ACis. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $E 2405$ (C @ $15 \mathrm{a} .5 \mathrm{v} @ 1 \mathrm{a}+12 \mathrm{vat}$ hr grade VDE spoc. Switch moda.+5 Boshen 13090.Switch mode.Ideal for drives \& system. $+5 \mathrm{v@}$ 6a $+12 v @ 2.5 a,-12 v @ 0.5 a,-5 v @ 0.6 \mathrm{~b}$ Farnell GGj40A. Switch mode. $5 v$ (6) 40 a Encased

BBC Model B APM Board
 £100 CASH FOR THE MOST NOVEL

dEMONSTRATABLE APPLICATION! supertry made UK manufacture. PIL ah soild state colour live leak styile case. Perfect for Schools shoundinputs. Attrac In leak style case. Perfect for Schools. Shops.Disco, Clubs.

CALL FOR PRICING ON NTSC VEASIONSI

Superb Quality 6 foot 40u

19" Rack Cabinets

Massive Reductions

Virtually New, Ultra Smart!

 Less Than Half Price!> Top quality 19" rack cabinets mado in UK by Optima Enclosures Lid. Units feature designer, smoked acrylic lockable front door, full height lockabie hall louvered back door and removable sida parnals. Fulti aut justable Internal Ixing struts, ready punched tor any configuratablon of equipment mounting plus ready
0 mounted integral 12 way 13 amp socket switched mains distituE2050 Hon strit make these racks some of the mest versatile we have E 150 ever sold. Racks may be stacked side by side and therefore ع8500 are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{\mathrm{D}} \mathrm{D} \times 22^{\mathrm{W}} \mathrm{W}$. Order as: \& 650 Rack 1 Complete with removable side panels....... 27275.00 (G) £ 950 Rack 2 Less side paru!ssi45.00 (G) E 995
POA

POA

$A C .162 \% 1 \mathrm{hck}$
$A C 230 \mathrm{v} .18 \mathrm{~mm}$
$92 \mathrm{~mm} A C 230 \times 18 \mathrm{~mm}$ thick

 To inch AC round. 3 k 2 h hick. Rot
$A C$ round. $31 / 2$ thick. Rotron 110 V
As above but 230 valt As above but 230 volts
Nicroline 183. NLQ 17×17 dot matrix. Full width.
10 inch DC 1" thick No. 812 for $6 / 12 \mathrm{v} 81424 \mathrm{v}$. DC 5 v . Paps 18105 G 4 w . 38mm. RFE. OC $12 \mathrm{~V}, 18 \mathrm{~mm}$ thick.
DC $12 v .12 \mathrm{w}+112^{4}$ thlck
8.95 B E1295(A) £10.95(B) ع10.95 (B) $24.85(8$ 15.95 (A ع19.95(A) E14.95(A) $E 1250 \mathrm{~B}$
E 14.50 B

DC 24 v 8 w . 1 thlek.

CALL IN - OPEN: MON-FRI 8.30-5.00 SAT 10.00-5.00

When an appliance, or an electronics project, fails to work the fuse is often the first component for investigation since its main function is to fail in preference to other, more expensive components. Many of the smaller fuses encountered in electronic equipment are glass types which may easily be checked visually.

Or can they? The higher current rated ones certainly can in most instances, but fuses rated at 250 mA or less have a very fine wire which can be very difficult to see, even under ideal viewing conditions.

When a ceramic cartridge fuse is suspected to be faulty a visual check will normally reveal nothing conclusive, so the trusty old multimeter is then used to chase the fuse around the bench until a conclusive result is obtained. Unfortunately, the multimeter will produce the same results for a defective fuse as it does when you fail to get a good contact with the test probes! The results can be inconclusive, and the testing is certainly time consuming; an alternative piece of dedicated test equipment is thus very desirable.

The unit described in this article is both inexpensive and simple to use. The results obtained by using the Rapid Fuse Checker are virtually 100% conclusive as a visual indication is given for both good and defective fuses.

Design Criterea

A cursory glance at the circuit diagram for the Rapid Fuse Checker will reveal that no ICs are used in the construction of the unit! Perhaps not surprisingly, the device could have been designed around a single IC and a handful of passive

Rapid Fuse
 By Mark Daniels

Fig. 1 Circuit diagram of Rapid Fuse checker

HOW IT WORKS

The complete circuit diagram for the Rapid Fuse Checker is given in Figure 1. As noted above, the circuit is based around three discrete transistors, Q1 to Q3. The MOSFET, Q3 is operated in common source mode, rather akin to the common emitter mode of its more familiar bipolar cousin, providing current and voltage gain. Being an insulated gale device, the MOSFET requires only a voltage on its gate terminal to turn it on; the gate draws no current (well, very litte

components. The decision to use discrete devices in this application was not taken lightly as it offers significant advantages over any design using op-amps, or general purpose ICs.

The observant reader will already have noticed the complete absence of any on/off switch in the design; this is no accident as the device has been designed to use only minimal
anyway) as it is isolated from the drain and source terminals by an extremely thin insulating oxide layer.
Resistor, R1 serves to protect the gate from static discharges (the same kind that can damage CMOS ICS), as the gate is connected to the outside world via a touch pad. For the MOSFET 10 conduct between its drain and source terminals its gate leminal needs to be taken to a positive voltage, greater than its threshoid voltage, which for the $2 N 7000$ is around 3 volts. A human body may make the connection between the gate and positive rail, as the current requirement is very low, approximately 300 nA through R 1 , and the extra resistance interposed will make little difference.
With Q3 turned on a current may flow through the red LED, D3 and its current limitting resistor, R3 to ground causing the LED to light. The difference that the resistance of human flesh makes becomes significant when applied to the circuitry around the bipolar transistors, due to their inherent lower sensitivity.
The bipolar devices are operated in common emitter mode. so
current when in standby mode, thus obviating the need for any switch.

Checking the op-amp data tables in any catalogue will reveal that even the lowest power MOSFET op-amps require around lmA supply current, even under quiescent conditions. When it is taken into consideration that the capacity of an alkaline PP3 battery is only 550 mA hr (zinc carbon types are even less!) a continuous drain as high as 1 mA becomes very significant, draining the battery in just three weeks.

Construction

All components are assembled on a small singlesided glassfibre printed circuit board. The copper foil pattern and corresponding component overlay are shown in Figure 2.

To simplify later assembly and testing fit four solder pins where the leads connect to the board and solder them in place. Then fit all the resistors, which should be fitted close to the board. The two bipolar transistors, Q1 and Q2 should be fitted next.

The MOSFET may now be fitted with great care as it requires some very careful handling. MOSFETS are static sensitive and MUST be kept in their protective packaging until ready for insertion into the board. It is suggested that the MOSFETs pins be pushed into a small piece of conductive foam, of the type static sensitive ICs sometimes come packaged in, before fitting it to the board. The foam may then
require only a small base voltage of approximately 0.65 volts to turn them on; however, the voltage is not applied to their bases directly, but via a zener diode, D 2 which does not become conductive until the voltage across it exceeds 5.6 volts.
R5 is the load resistor for the zener diode and ensures that the zener has to pass a current of approximately $2 m A$ to conduct: thus the bipolar transistor cannot be tumed on by a current which is limitted by the resistance of a human body. Q2 shorts the anode of D 3 to 0 volts, thus ensuring that even though the MOSFET will be conductive the LED has no voltage across it and therefore does not Hluminate. At the same time Q1 supplies current to the other LED, D1 causing it to light.
It should be obvious that only one or other of the LEDs may be lit at any one time, depending on the resistance across the test pads. Note that something has to be connected for any indication to be possible, and that neither LED will light with the test pads open circuit.
be ripped away after ALL connections to the device have been soldered and it is ascertained that R1 has been fitted in its correct position. With R1 connected across its gate and source terminals the MOSFET is adequately protected and no longer requires special handling.

Fit the two LEDs to the board, ensuring correct positioning and orientation. For the recommended case the tops of the LEDs should stand about 22 mm above the PCB surface, so that when fitted in the case they may locate into appropriately drilled holes in the top side of the enclosure.

The battery connector may now be fitted and connected to a 9 volt battery for initial testing of the completed PCB Neither LED should glow until a connection is made across the two remaining PCB pins. If a suitable meter is available the current consumption of the device may be checked to ensure that it is no greater than a few microamps, anything greater will cause rapid depletion of the battery.

Placing a finger tip across the two remaining PCB pins should cause the red LED to light brightly, the green one remaining firmly off (unless the LEDs have been swapped over, in which case the green one will light). To light the green LED short the pins together with a piece of wire or similarly conductive material, the red LED should NOT illuminate this time.

Once everything is working OK assemble the board and touch pads to the case, allowing a small gap between the touch pads so that most fuses may easily be accomodated. Label the case up and put the unit into service.

Fault Finding

For those who are unfortunate enough to have completed assembly and not obtained positive test results it is unlikely that much is wrong. Check first that all components are in the correct positions and that the polarity of D1 is correct. The orientation of the transistors is fairly obvious and unlikely to cause problems.

The LEDs, however, are another matter entirely as the encapsulation gives little indication as to polarity, but if you look through the semi-transparent plastic the cathode may usually be identified as the larger chunk of metal. If you are uncertain, reverse the connections to the LEDs anyway, it almost certainly will do no harm and may even solve the problem.

The MOSFET may be a completely different ball game, however, and if any risks were taken with it during construction the chances are that they did not pay off, the only solution then is CAREFUL replacement of the device with a new one.

In Use

Operation of the completed Rapid Fuse Checker could not be simpler; simply hold the fuse to be tested by its end caps and place it across the test pads of the unit. A green light for go, put the fuse back in circuit, or a red light for nogo, place the fuse in the bin! The red light indicates that the fuse has been successfully tested, in so far as the connections made with its endcaps were good.

If the fuse is too large to fit across the test pads (see photograph) an alternative method of testing is to use the "Red Light Method", touch one of the touch pads with one hand and holding the fuse in the other hand by one terminal touch its other terminal to the second test pad. With this method the red LED lights for a good fuse, neither for a blown one.

Some care is necessary when using this method as a ruptured fuse may still be sufficiently conductive (due to metal sprayed by the arc onto the inner walls of the cartridge) to light the red LED, in which case a supplementary test with the trusty old multimeter may be in order.

Fig. 2 Component Overlay

PART LIST

RESISTORS (All 0.25W 5\% Carbon Film)	Q2 BC182L
R1 10M	Q3 2N7000
R2 680	
R3 680	MISCELLANEOUS
R4 100	B1 PP3 9 volt Battery
R5 330	Triangular Touch Pads (2 off)
	PCB Pins (4 off)
SEMICONDUCTORS	PP3 Battery Clip
D1 5 mm Green LED	Handheld Plastic Case
D2 BZX88C.5V6	6BA Nuts and Solder Tags For Touch Pads Screws and Spacers for
D3 $5 m m$ Red LED	Mounting PCB Printed Circuit Board
Q1 BC182L	

EASY-PC PCB and Circuit Diagram CAD

Forget using tapes and lightbox! Create your Circuit Boards using CAD - like the professionals.

- Runs on PC/XT/AT etc. with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design Schematics Single and Double sided and Multilayer boards including Surface Mount.
- Standard output includes

Dot Matrix / Laser / Inkjet Printer, Pen Plotter, Photo-plotter and N.C. Drill.

- Extremely powerful.
- Very easy to use.
- Not copy protected.

EASY-PC

Technical support is free, for life!

Over 13,000 Installations in 70 Countries Worldwide!

Beginner or advanced hobbyist

EBBO ${ }^{\circ}$

is the right system

Once hobbyists had to buy "professional" Solderless Breadboards paying "professional" prices, but now there is EBBO, a total Breadboarding System at a hobbyist's price.
EBBO can be as simple or as ambitious as you want it to be, the only limit is your own imagination or skill.

Send for detailed colour catalogue and price list:-
AP Products Ltd
28 Gold Street.
Saffion Walden, Escex CB los J.E
Tel : 7799526602 Fax: 0799521408

Fig. 1 Specification of IBM PC Interface Card

Design \& Development by Neil Johnson

 succeeded with the ZX81, I did design and build a simple interface board for my next computer, a VIC20. I also began to get into assembler programming as the only alternative was BASIC, which was too slow for my tastes. After severalother add-ons, I didn't progress much further until I began my engineering degree at Surrey University. During the first term I treated myself to a PC-AT clone, with a 286 under the bonnet. Coupled with a harddisk and VGA screen I had a fairly powerful system. Now my dreams could be realised!

My eyes aglow I opened up the lid of my new machine and, after the initial excitement at seeing the shiny new motherboard, felt slightly dismayed at the lack of userfriendly hardware connections. Oh sure there were the customary printer and serial ports, but to actually get to the bones of the system, namely the system busses, a special plug-in board would have to be fitted. After flipping through several PC magazines I soon reached the conclusion that to buy such a board would cost the equivalent of eating for a term. But hang on a minute, I'm studying for a degree in electronics engineering, surely I should be able to design and build a simple interface card for a PC ? After all, it was only a double sided edge connector in there.

So, with pint in one hand and mighty pen in the other, I set about laying down the basic requirements of such a board. After several months at this, interspersed with lectures, studying, exams, parties, exams and more parties, I finally had some sort of specification. This was further refined until the final specification was drawn up, outlined in Figure 1. Just a few comments. The starting addresses (base addresses) have a $\$$ symbol in front of them to signify that these are hexadecimal (base 16) numbers. The analogue input and output levels have been specified to be compatible with most audio mixers that have effect send/return loops. Hence another feature of this board is that it can enable the computer to be used as a digital effects unit in a home recording system. Although an upper frequency limit of 7 kHz has been specified, mainly because of the highest rate my PC could sample, it is very easy to raise or lower this, more details later. By the way, the Nyquist rate is twice that of the highest frequency component of the sampled signal. This should then provide enough information to be able to successfully reconstruct the original signal. The output of the converter is similarly filtered to remove any nasty aliasing and other noise that will undoubtedly be present.

The Design

The block diagram of the InterCard (short for INTER face CARD) is shown in Figure 2. The most important block is the Logic \& Convertor since this is where all the address decoding and PC bus interfacing will take place. The analogue signals connect to the Analogue Output Amplifier, which includes some sort of filtering, and the Analogue Input Amplifier, which also includes filter circuitry. The whole board derives its power from the PC bus via the Supply Decoupleblock, which includes several capacitors to decouple
specify a particular block of I/O memory. Also at this stage the Address Enable line (connection All) is examined, as this will be LOW when a processor address is present on the address bus. The Input/Output Read (IOR
) and Input/ Output Write (IOW \backslash) lines and buffered by IC6b and IC6c, with IC6d ANDing both of them to enable IC1 only if an Input/Output operation is being performed.

The output of IC1 is then used to enable IC2 and IC5a. IC2 is an octal bus transceiver with 3 state outputs, making it an ideal data bus buffer. The direction of data flow is deter-
the supply rails.

The most important decision to make in this project was about the type of convertor to use. Since I have been happy with the results of successive approximation convertors for several years, this was obviously the type to use (also being the most common they also tend to be the cheapest).

After hunting through numerous catalogues, I eventually arrived at two possible candidates. The first was the old favourite Ferranti ZN series of convertors which I have used in past projects. The second was a really nifty device, an AD7569, made by Analogue Devices and available from Verospeed. This device has a built in track and hold circuit, 8 bit analogue to digital converter, 8 bit digital to analogue converter, output buffer and a smattering of control logic, complete with 3 state data bus. A phone call to Analogue Devices and a data sheet was sent to me through the post. I must admit here and now that this was the most meaningful data sheet for a converter I had ever read. For one thing it actually told you the highest

mined by the state of the DIR input (pin l) connected to the IOR\ line. Thus the internal data bus is connected to the PC's data bus only when the InterCard is being accessed, otherwise there will occur a situation, known as a 'bus contention', when two outputs try to drive one signal line. This can cause problems if one output is low and the other is high, the result being a short circuit.

IC5a is a 2-to-4 line decoder which converts the lowest two address signals into four enable signals. The first and second enables are used solely for the converter, the first one for accessing the converter data bus and the second enable to start the A-to-D conversion process. The other two enable lines are used by the external 8 bit interface port as $\mathrm{I} /$ O block enables IO 2 , for port A , and IO3 IC7b. IC7c and IC3 connect the external 8 bit port connector to the data bus. The direction control for IC3, another octal bus transceiver, is derived from the IOR\signal, but this time is enabled by
frequency sine wave this widget could successfully sample, in this case 200 kHz quite ample for sampling audio. As you've probably gathered by now, Analogue Devices won hands down. Not only does this one chip save the bother, and expense, of buying separate devices to do the track/hold, A-to-D and D-to-A, but also reduces the component count, board space and power consumption. Now on with the rest of the circuitry. To start with, the digital side of things. Firstly the address lines must be decoded to tell the InterCard when to wake up and do something. With reference to Figure 3, IC1 is an 8 bit magnitude comparator whose output, pin 19 , only goes LOW when the P inputs are the same as the Q inputs. In this case the P inputs are connected to the address bus and the Q inputs are hardware selected, including SW1, to

NORing the two digital port enable signals via IC7c. Hence 1 C 3 is only activated when one of the two external 8 bit ports is being accessed. The digital ports are connected to the outside world via SK1, a 25 way female D-connector. Figure 4 shows the pinout of the digital connector. Now we move on to the digital side of the converter.

When the converter is enabled, by taking its Chip Select line low (pin 16), the convertor's internal data bus can be read from or written to. If the $\mathrm{RD} \backslash$ line is taken low, the data from the A-to-D converter is made available, while if the $\mathrm{WR} \backslash$ line is taken low, data is transferred into the D-to-A converter. To start the A-to-D conversion the Start input (pin 18) must be taken HIGH. This is accomplished by NORing the IOW \backslash line and the second enable signal, performed by

Fig. 3 PC Interface board Logic and Converter

IC7d. Once the converter has been started, it will take 8 clock cycles to complete the conversion. The clock can either be externally supplied or the internal clock generator can be used. In this circuit the internal clock is used. The frequency is determined by Rl and Cl , which in this case is approximately 5 MHz (the conversion time being around $2 \mu \mathrm{~s}$). The Range input is held high to select the $0-2.5$ volt range for both the A-to-D and D-to-A convertors. The device can also operate in bipolar mode, i.e. 2.5 to +2.5 V , but the data is converted to 2 's complement, which tends to complicate matters and also means that the board cannot be used with most programs that can use D-to-A boards (but then I know of a Windows program that expects the data to be in 2 's complement form, so it just goes to show that you can't always win). To recap, the interface to the PC bus has been designed as has the external 8 bit digital port. Also the digital side of the converter chip has been covered. Another important aspect, especially since this circuit uses both digital and analogue circuitry, is supply decoupling (Figure 5). All of the logic chips use a standard +5 V supply, obtained from the PC Bus, and each one has their own decoupling capacitor connected close to their supply connections. These 100 n ceramic capacitors help reduce noise getting into or out of the logic chips, especially when one or more outputs change state causing glitches on the supply rails. In general 100 n per chip is a safe overhead to work to, although some designers use 10 n per chip or 100 n per five chips. The only problem then is that the inductance of the circuit board tracks must also be taken into account. The +12 V and -12 V supplies for the analogue circuitry are also decoupled, by Cl 0 and $\mathrm{Cl1}$, to help reduce noise from the supply rails affecting the analogue signal. The large electrolytic capacitor, C 9 , provides major smoothing of the local +5 V . supply, helping reduce the effects of the inductance of the PC bus.

The first analogue circuit block is the input buffer/filter (Figure 6). Assuming this board is to be used for audio signals, the input comes from J 1 , a PCB mounting phono socket. I chose to use phono sockets for three reasons. One, there are very few moving parts to break. Two, the physical connection between plug and socket is nice and strong, and three, there are plenty of wiping contacts to help maintain a good signal path. The signal enters the first active stage based
around IC8d configured as an inverting op-amp circuit with a maximum gain of around 2.4 , tailing off to 0 at high frequencies. The upper 3 db point is set by the value of C 12 , whose value is derived from the equation :

$$
\mathrm{f}=\quad \frac{1}{2 \pi \mathrm{R} 7 \mathrm{C} 12} \quad \text { where } \pi=3.1415
$$

Thus to change the 3 db point to, say, 10 kHz the value of C12 would need to be changed to around 10 n . The filtered audio signal then passes through a signal clipper, based on R8 and diodes D1 to D4. Any voltage greater than $+/-1.2$ volts ($=2$ diode drops) will either turn on D1,D2 or turn on D3,D4, conducting surplus current to ground. In ideal circumstances this stage would not be needed, but since the converter chip costs just over ten pounds, a few pence spent here is worth it for the added safety. Finally the filtered and clipped signal is fed to a level shifter based around IC8a. C13 and R9 couple the AC signal to the noninverting input of IC8a together with a constant DC offset via RV1 and R10. The gain of this stage can be finely adjusted by RV2 within the range 1.0 to 1.1 (see later for setting up details). The amplified, level shifted signal is finally fed to the analogue input of the converter chip, IC4.

Pin	Function
1	Data 7 (MSB)
2	Data 6
3	Data 5
4	Data 4
5	Data 3
6	Data 2
7	Data 1
8	Data 0 (LSB)
9,10	$+5 V$
11	Read (active LOW)
12	Write (active LOW)
13	Port B select (active LOW)
1424	GND
25	Port A select (active LOW)

The last circuit block to design is the analogue output buffer/filter (Figure 7). Ideally the output of the converter would like to see a pure 2 k 0 resistor, 2 k 2 being the nearest preferred value. The signal is then buffered by IC 8 b before being fed to the filter. C14 removes the constant DC offset, introduced at the input, and together with R15 sets the lower 3 dB point of this amplifier at around 10 Hz . IC 8 c amplifies the signal by about 1.4 times at low frequencies tailing off to 0 at high frequencies. Again the

Fig. 4 Digital Port Comnections

Fig. 6 Analogue input amplifier

Proceed as usualby starting with all of the resistors and diodes followed by the capacitors. There are no wire links on this PCB one thing I just can't stand, especially on a double sided board. Again check for any solder blobs across adjacent tracks and remove them now! Continue with the IC sockets, presets, phono sockets and D-connector. For better mechanical strength, glue the phono sockets to the PCB with Araldite (or any other epoxy resin based glue) and allow to set. The DIL switch, SW 1, can be fitted into its socket, but don't insert any
upper 3db point is determined by R16 and C15 and can be changed as explained above. The audio signal is sent back out to the real world through phono socket J2. Sometimes, when I'm wearing my designers hat, I feel envious of the constructor simply because when the inevitable circuit board is needed all the constructor has to do is order one from the supplier, whereas the designer has to start from scratch, going through several stages of prototyping, from the ubiquitous breadboard to wirewrap boards and, sometimes, several versions of the PCB before the finished product is ready. Anyway, enough of my rantings and back to the project. Now where was I?.... Oh yes, construction.

Construction

Assuming you have a nice clean predrilled PCB in front of you and a full set of components, you should be ready to start. First of all spend a few minutes giving the PCB a good visual inspection to make sure there are no broken or, horror of horrors, shorted tracks. Spending a few minutes now could save hours later. Once you're happy that everything seems to be OK you can start populating the board with components as shown in Figure 8. Begin by soldering in all of the through board links, needed since this is NOT a throughplated PCB. You can either use the proper links for this task (available from Maplin) or use the legs of resistors from previous projects, which could be a bit cheaper since there are 102 of them to fit. Once this is done check again for any solder blobs that could be shorting tracks. With a project of this type, which will eventually be plugged into a piece of expensive equipment, being careful is a must unless you want to see your PC die a strange death (as mine nearly did once).
of the ICs yet. The card edge plate needs two holes drilled into it to accomodate the two phono sockets. Refer to Figure 9 for the drilling details. Once the plate is ready it can be bolted to the PCB with the D-connector mounting bracket. Then give the board a final thorough inspection before going any further. Correcting any faults at this stage can save a lot of worry. Now it's time to enter the innards of your beloved PC.

With the PC turned off, carefully open up the case using whatever method as necessary (my PC has a lid like a car

Fig. 9 Card end plate drilling details
bonnet, released by two side catches). Ideally this card will be used in an 8 bit slot, although it will fit into a 16 bit slot. Remove the dummy plate for your chosen slot, being careful not to drop the screw into your PC. Making sure that you've earthed yourself, firmly but gently insert the InterCard into a slot. Once it is pushed home, check for any visible signs of problems, e.g. motherboard components fouling the PCB, and if possible correct them. Take a deep breath and turn on your PC. If everything is OK it should boot up as normal. If not, turn off IMMEDIATELY and carefully exam your board. Assuming you have no problems carefully remove the

Top	Mid	Bottom	Base Address
1	1	1	$\$ 300$
0	1	1	$\$ 304$
1	0	1	$\$ 308$
0	0	1	$\$ 30 C$
1	1	0	$\$ 310$
0	1	0	$\$ 314$
1	0	0	$\$ 318$
0	0	0	$\$ 31 C$

Fig. 10 DIL Switch Settings

InterCard, insert ICl and repeat the process of fitting the card in the PC and turning on the power. Continue this procedure for IC2, IC3, IC5, IC6, IC7 and IC8 in that order. This may seem to be a long winded method, but at least if anything goes wrong you will know where the problem is, namely with the last chip you inserted. Notice that I didn't mention IC4. That's because there is some setting up to be done before this chip is inserted.

Setting Up

With the card in your PC and powered up, carefully connect an oscilloscope to pin 23 of the IC socket of IC 4 and adjust RV2 fully anticlockwise to set the gain of the level shifter to 1.0 . Now slowly adjust RV1 until exactly 1.25 volts is present. The next stage involves a signal generator connected to the input. If you do not have a signal generator, leaving RV2 in its anti-clockwise position should be OK. However if you do have a signal generator apply a 1 kHz sinewave, at about 1.5 V RMS, to the input and adjust RV2

Offset	Data
0	AtoD/DtoA Converter Data
1	AtoD Converter 'Start Conversion'
2	Externa3 8 Bit Port A
3	External 8 Bit Port B

Figure 11 : Address Offiset Table
until the amplitude of the signal on the 'scope screen is exactly 1.25 volts peak-to-peak. You may have to adjust RV1 again to restore the 1.25 V DC shift. Once the settings have been completed, turn off the PC, remove the PCB and insert IC4. Finally, there is the DIL switch to set. You can ignore the bottom switch as it is not used in this design. The top three switches determine whereabouts in the I/O map the board can be found. The actual base addresses are shown in Figure 10. In theory, you should be able to fit up to seven more interface cards like this, if you should wish to and you have enough slots. Choose the base address you want your card to be found at and set the appropriate switches. Re-insert the InterCard into your PC, fix the card edge plate to the case with its screw and refit the lid. You should now have a fully working InterCard.

Next month I'll move on to the software aspect of this project, with a few example programs in both BASIC and C, and conclude with some ideas for future developments.

Fig. 8 Component overlay

Language	Time to complete execution
Assembler	3 seconds
C	3 seconds
Pascal	12 seconds

Figure 12 : Program Timings

BUYLIVES

There should be no difficulty in oblaining most of the components ior this project. The AD7569 is available from Verospeed (0703644555) order code 25362385E, as are all of the HCT chips, the TL.074, the phono sockets (order code 22757732H) and a ready punched card end plate (order code 42759693 J). Their catalogue is recommended and is tree. The right angled PCB mounting Dconnector is availabie from Maplin (order code FG27E). The rest of the components can also be purchased from most suppliers. The

PCB is available from the usual sources.
If you want a copy of a disk with the C source code and executable programs, as well as a few other programs for this card, send a cheque or postal order for 5.00 to : Neil Johnson, 2 Chapel Field, Dixter Road, Northiam, East Sussex, TN31 6PQ. At the moment.I I can supply $51 / 4^{\prime \prime}$ and $31 / 2^{\prime \prime}$ disks in both normal and high density (please specity what you want) but atter July 1993 III only be able to supply $51 / 4^{\prime \prime}$ high density (1.2MB) disks.

Great news for fishbeepers!

 AOURाim AQUARIUM

is the NEW monthly fishkeeping magazine offering the best in the world of aquatics for beginners and experts alike.

There are expert
tips, step by step guides and dazzling pictorial displays of aquarium fish in 100 pages bursting with glorious colour detail. And it's only $£ 1.75$.

Why not order a copy from your newsagent? You'll be glad you did!

A AUTONA LTD

 *AUDIO MODULESネ

AL 12580-125W AMPLIFIER

A rugged high powered module that is laeal for use in discos \& P A. Systems where powers of up to $125 \mathrm{~W}, 4$ ohms are required. The heavy duty output transistors ensure stable and reliable performance. It is currently supplied to a large number of equipment maufacturers where rellaowity and performance are the main: considerations, whilst for others its low price is the major factor. Operating from a supply voltage of $40-80 \mathrm{~V}$ into loads from $4-16$ ohms.

AL 2550-COMPACTLOW-COST 25W-AMPEIFIER

One of our most popular audio modules with tens of
inousands installed tideal for domestic applications
where low distortion and compact size are $\quad \mathbf{~} 6.55$ the prime requirements. Used with supply \qquad淂:

MM 100-BUDGET 3-INPUT MXER

With a host of features including 3 individual level controls, a master volume and separate bass and treble control, it provides for inputs for microphone, magnetic pick-up and tape, or second pick-up. \&selectabie), and yet costs; considerabhy less than competitive units. This module is ideal for discos and public address units and operates from 45 V - 70 V .

MH 100 COUTAR MXXR $^{\text {MUN }}$

As MM100 with two guitar + 1 microphone input intended for guitar amplifier applications

COENRETE AUBTO RAME FMOM TOW-126W SENO FOR DETAILS TODAY

SECURITY EQUIPMENT

 MINIATUAE : ASSIVE INFRA RIED SENSOR RP33Switchable Dual range, detects intruders up to 6 or 12 metres Quantity This advanced sensor operates by detedting thebody $\begin{array}{ll}\text { discounts } & \text { heat of an intruder moving within the detection fied, } \\ \text { start at } 3 & \text { Slow ambient changes such as radiators. etc. ane }\end{array}$ $\begin{array}{cc}\text { start at } 3 & \text { Slow ambient changes such as radiatus, etc. ank } \\ \text { units ignored. Easily installed in a room or hallviay. Providing }\end{array}$ reliable operation from a 12 V supply, it is ideal for use with the CA 1382 or equivalent high quality control unit?
VAT Size $80 \times 60 \times 40 \mathrm{~mm}$
$\$ 17.95$

PICTIAL ULTRASONIC DETECTOR-US 5063
Crystal controlled movement detedtion module operating at 50 kHz with an effective range 40 to 20 f . Suitable for operation in household or vehilcle security systerns. 12 V oparation and built-in timng makes il suitable for a

ABVANCED CONTROL UNTT-CA 1382

Automatic Loop Test 85 wirch On *Automatic Siren Ae-Set A Audible Entry/Exit Warning Euzzer * Two Separate Loop inpuls +24 -hr Circuits * Easily installed. Full instructions Suppied. This advanced control panel provides effective and reliable control for all securty installations, yel its operation is sheer simplicity for all members af the farmily, and is supplied with two keys. Housed in a stee
 ase with an attractive moulded front panel, it compares
with units costing twice the price
TTROL TNIT-CA 12.50

LOW COST COMTROL UNIT-CA 1250

This tried and tested control unit provides the finest value for money in control sustems, with mant thousands protecling touses all over the coumtry,
A suilable steel enclosure is avallable separatery

50FT TNFRA-RED BEAMFR 1470

The IR1470 consists of a separate transmitter and receiver providing a beam of up to 50 t which, when interrupted, operates a relay in the receiver which in turn may be used to control external equipment. The system requires only 65 mA from a12V supply. Size:(each unit) $82 \times 52 \times 57 \mathrm{~mm}$

PLUS FULL RANGE OF SECURITY ACCESSORIES FOR COMPLETE HOME PROTECTION
TELEPHONE FOR FREE LITERATURE TODAY

DEPT ETI-10

51 POPPY ROAD PRINCES RISBOROUGH BUCKS HP179DB
TEL: $(08444) 6326$
FAX: $(08444) 7120$

Order by Credil Card for immedtate despatch

Add VAT. Carriage only $£ 150$ Export 10% minimum $£ 1.50$

The brief history of Radioactivity in the modern age is strewn with painful reminders that man is in many ways only a babe in arms when it comes to the safe and responsible use of key powers of Nature. This brief outline of radiation and the sequences of events and discoveries which have shaped the present day appreciation of ionising radiation tries to put in perspective aspects with relate to scientific, military, economic and environmental viewpoints. It is quite natural, that the middle two of these seldom find sympathy with the environmental factors. Scientists, also, in the main are too busy discovering to be going about ensuring that their discoveries are used to best effect.

About Ionising Radiation

The anxiety about ionising radiation stems from its effect on living systems on all living organisms in the plant and animal kingdom and of course including man himself. Ionising radiation's risk relates to its effect principally on cell nuclei whereby cells can be destroyed and/or their DNA structure degraded with the risk of forming 'rogue' cancerous cells.

By no means are all of the questions about radiation induced damage are known. It is considered in the case of Xrays and gamma rays that the chain of events begins when the high energy photon ejects an electron from a target atom creating in the process an ion/electron pair. The electron is thought to attach itself to a neighbouring molecule forming a free radical which can attack biologically important target molecules in its vicinity, resulting in chemical change due to the breaking of chemical bonds. The translation of the bond damage to biologic effect can take years or decades to manifest as symptoms.

The so called 'Target Theory' of radiobiology is very much built on this 'targeting' of sensitive sites within the tissue being irradiated.

The effects of ionising radiation upon delicate living systems such as homo sapiens are complex in the extreme and this has tended to confuse the public in their appreciation of radiation. The world has known about X-rays and radiation for about 100 years and for at least the first half of this interlude has had grossly insufficient understanding to weigh up risks and dangers.

X-rays and Gamma Rays

While photons of light of several electron volts energy are not energetic enough to produce ionisation of matter along their path when they interact with matter, when energies increase to around $50,000 \mathrm{eV}(50 \mathrm{keV})$ then they have sufficient energies to produce this effect. These are so called soft X-rays. At higher and higher energies these photons (gamma rays) become more and more able to produce ionising effects and so induce damage to living systems.

Particle Radiation

Gamma rays can be considered to be 'massless'. There is a broad range of charged particles with mass which because of their high energies can induce ionisation effects in matter. Alpha particles which are positively charged Helium nuclei is one example and high energy electrons, beta radiation, is another. Often contamination by materials emitting these particles is more dangerous since the contaminants tend to be taken up within the tissues of the body itself, eg in the bones and specific internal organs.

Units of Radiation: Assessment of Risk

The public is more and more seeking simple answers about exposure to ionising radiation. This section tries to present in a simple way concepts relating to exposure.

The units of radiation are expressed as described previously in terms of absorbed dose and dose equivalent. The unit of absorbed dose the Gray (abbreviation Gy) relates to a

TYPE OF RADIATION	WEIGHTING FACTOR
Photons, all energies	1
Electrons, muons, all energies	1
Neutrons <10keV	5
Neutrons $10 \mathrm{keV}-100 \mathrm{keV}$	10
Neutrons $100 \mathrm{keV}-2 \mathrm{MeV}$	20
Neutrons $2 \mathrm{MeV}-20 \mathrm{MeV}$	10
Neutrons $>20 \mathrm{MeV}$	5
Protons $>20 \mathrm{MeV}$	5
Alpha particles,heavy nuclei	20

Table 1: Radiation weighting factors associated with
types of radiation.
deposition of 1 Joule of energy due to ionising radiation in a kilogram of tissue. This unit, however, does not introduce the concept of the relative risk of the radiation. Table 1 indicates the so called radiation weighting factors used to 'weight' incident energy deposited to perceived risk.

The corresponding dose equivalent is expressed in Sieverts (abbreviation Sv). These are the new standard units used by the radiation community. They relate to the old units of rad and rem.

The values below shows the equivalence of the two systems of units for reference.
$1 \mathrm{rad}=100 \mathrm{ergs}$ per gram of tissue
$1 \mathrm{rad}=100 \infty 10^{7} \propto 10^{3} \mathrm{~J} / \mathrm{kg}=0.01 \mathrm{~Gy}$
$100 \mathrm{rad}=1 \mathrm{~Gy}$
100 rem = 1 Sievert
Many doses are in fact defined in milli Sieverts (mSv).
The type of tissue irradiated is an important factor in determining risks. Table 2 indicates a simplified description of the relative risk weighting factors of the human body. Where an individual is irradiated by radiation of some type,

RISK WEIGHTING FACTORS	
TISSUE OR ORGAN	FACTOR
Testees or overies	0.25
Breast	0.15
Red Bone Marrow	0.12
Lung	0.12
Liver	0.06
Thyroid	0.03
Bone surfaces	0.3
Remainder	0.24
Whole body total	1.00

Table 2: Table of risk weighting factors of tissue and organs within the human body with regard to fatal malignancy
the radiation has first to be weighted by its radiation weighting factor and then the exposure of the various compartments of the body has to be assessed as outlined in Table 2. The sum of the total weighted exposures is expressed as the effective dose equivalent. This is used as an indication of relative risk of fatal malignancy and can be derived for individuals experiencing a broad range of types of radiation exposure.

Estimations of Annual Exposure to Radiation

It is important to obtain a perspective in the way in which the exposure of the public at large is described and how local conditions in the environment can change this. Figure 1 shows the annual average exposures to radiation of members of the UK population assuming a total exposure of 2.5 mSv of which 13% comes from artificial sources. Shown in this way, the menace to society is very much natural causes.

Figures compiled for the US population indicate an exposure of about 1.9 mSv with a very much higher artificial
component of about 45% largely introduced by medical exposures.

What these averaged figures do not indicate is the relatively high variation in background radiation from location to location. There is considerable variability in the natural background of the soil or rock. While the normal background in the USA is in the region of 0.27 to 1.3 mSv per year, local conditions can increase this to significantly higher levels.

On the Atlantic Coast of Brazil about 200 miles north of Rio de Janeiro, the coastal resort of Guarapari boasts exposure levels as high as 15 mSv in its main street. Levels on the beaches are even higher. There are other natural 'hot spots' in countries including India, France and Switzerland.

There has been increasing interest in recent years in preventing exposure to high revels of Radon gas. In the UK the average dose attributable to Radon is estimated to be about 1.0 mSv though values can be significantly higher in areas either built on granite or where houses are built of granite. In the USA Radon gas is considered to cause the deaths of between 5000 to 20000 individuals within the global total of 136,000 fatal lung cancers each year.

Natural radioactivity within the body is largely attributable to Potassium 40. About $15,000,000$ such atoms disintegrate within the average individual every hour releasing high energy beta rays and some gamma rays. In the same time interval approximately 7000 Uranium atoms will disintegrate in the body, releasing alpha particles.

Around 200,000 gamma rays from the soil and building materials will also pass through an individual each hour.

Table 3 shows how the mean annual dose due to cosmic rays in mSv varies with altitude. Regular aircraft passengers are bound to receive on increased radiation dose.

HEIGHT ABOVE SEA LEVEL	MEAN DOSE IN mSv/yr
Zero	$0.2-0.4$
1500 m	$0.4-0.6$
3000 m	$0.8-1.2$
12000 m	28
$36-600 \mathrm{~km}$	$70-150$
Interplanetary space	180250
Van Allen radiation belt	<15000

Table 3: Details of mean dose exposure due to Cosmic Rays for various heights above sea level. Interplanetary space travel does have its hidden drawbacks.

Medical Exposure

While natural exposure cannot in many instances be avoided, there are other types of exposure which are avoidable. Table 4 lists the typical doses associated with routine X-ray diagnoses.

The truth of the matter is with regard to Medical Exposures that values for individuals will vary widely over those individuals who receive no X-rays and those who have a relatively large number of X-ray examinations.

The medical profession argue that the increased risk of X ray exposure is more than compensated for by the benefit to the patient of the examination. In the majority of cases this

EXAMINATION	DOSE PER EXPOSURE(mSv)
AP lumber spine	0.9 per film
AP chest	0.02 per film
PA skull	0.06 per film
Lateral Abdomen	0.5 per film
Lateral Pelvis	1.1 per film
Barium meal	3.8 mean per examination
Barium Enema	7.7 mean per examination
CAT scan	20 typical abdomen

Table 4: Typical radiation doses for a range of X-ray exposures.
will be the case but there is certainly room to improve procedures to minimise exposure to the patient.

Looking more closely at this problem area, even a 'standard' X-ray eg of the chest can be undertaken with a wide range of administered doses. Where films of low sensitivity are used, additional exposure is required to produce the required clarity of pictures. One simple method of reducing exposure is to use rare earth 'screens' to enhance the developed image on the photographic plate.

The increasing availability of CAT scanners which produce images of 'slices' through the body is tending to increase the dose of X-rays which patients receive. This will no doubt lead towards moves for dose reduction based on improved technology of tubes and sensor arrays.

Public awareness of radiation exposure may in time prompt patients to ask of radiographers what dose of radiation they are likely to receive as a result of X-ray examinations. Where these are within bounds of normality then the patient would probably allow them to proceed. Where they are clearly unreasonably high, then the patient may be unwilling to undergo the exposure.

Estimations of Relative Risk

Based on data from the survivors of the Japanese atomic devices, a fatal risk estimate has been devised which seeks to relate exposure to risk of fatal cancer risk. There is a problem of determining if the risk of radiation exposure is proportional, non linear or has some threshold effect as shown in Figure 2. At present a simple proportional model is assumed. For low dose rates the risk calculated to 40 years is calculated to be 1 in 70 per Sv . Thus an additional exposure of 1 mSv will carry the risk of $\operatorname{lin} 70 \infty 1$ in 1000 produces 1.4 in 100,000 of a fatal cancer.

For hereditary disease, a risk factor of 1 in 50 per Sv is considered to apply.

These figures apply over the whole population. The influence of genetic resilience or weakness with respect to doses of ionising radiation which could give some people more or less tolerance of ionising radiation is difficult to quantify.

Risks Elsewhere

In estimating risks elsewhere, Table 5 shows a summary of relative risk values within other industries.

This would seem to show that radiation workers are not greatly disadvantaged in terms of risk of developing cancers when compared with risks generally in other industries. What is not shown is the risk of hereditary disease being carried on to other generations. This must always be viewed with considerable caution.

OCCUPATION	RISK OF DEATH PER				
YEAR		$	$	Sea fishing	200×10
:---:	:---:				
Coal Mining	14×10				
Construction	10×10				
Metal Manufacture	6×10				
Radiation workers (1.1mSv/yr average)	3.7×10				
Textiles	1.0×10				
Timber,furniture	0.3×10				
Clothing and footware	0.6				

Table 5: Table of relative annual risks of death in UK occupations, including potential cancers due to occupation exposure of radiation workers

Early Days

Wilhelm Röentgen discovered X-rays on the 8th of November 1895 as he was passing current through a Crook's tube. A screen of Barium platinocyanide glowed at the opposite end of his laboratory in the dark when the tube was activated. He gradually deternined the amazing new properties of X-rays such as their ability to pass through various substances and not others. Perhaps one of the most memorable early photographs taken was that of his wife's hand. His results were widely published in late December and workers all over the world began to repeat his experiments. This was indeed the beginning of man's 'unnatural' exposure to ionising radiation.

Clinicians were quick to appreciate the application of Xrays to medical investigations and they quickly became used in a large number of centres. The novelty of X-rays led to their use in many areas which by today's standards would be considered reckless and irresponsible. They were widely used as treatment, for example, of baldness and infertility.

Today's extreme caution with regard to minimising the dose of radiation was totally unknown. Even in the first year of X-rays, there were consistent reports of 'effects'. The significance of these were not appreciated until years later. The outbreak of World War I shelved reservations about the hazards of X-rays and at the same time led to a very large increase in their use. It was not until 1924 that international agreement was achieved on units of measurement of ionising radiation. The unit of the Röentgen, R, was established as that amount of radiation which would produce a given number of charged ions in a specific volume of air. It was quite common in the early days of X-rays for machines to be calibrated in terms of erythema dose, the dose at which reddening of the skin would develop. Patients 'used' as radiation markers in this way must have received dangerous doses of radiation.

Enter Radioactivity

The news of the discovery of X-rays led more or less directly to the discovery of Radioactivity emissions of radiation from atoms. Henri Becquerel was looking for emissions of X-rays from a range of substances when in February 1896 he discovered that a photographic plate had been exposed by rays from a Uranium salt. This area of work was taken up by Marie Curie for her doctoral dissertation leading to the discovery of Radium in December 1898.

Radium was again given widespread publicity it was almost immediately heralded with all sorts of 'magical' properties and with an almost total level of ignorance of its properties began to be used for medical and also consumer applications. This was the point in time where science was widely regarded as the saviour of mankind its discoveries would herald a brighter and healthier future for all.

It was not until more extensive deposits were discovered in North America around 1910, however, that the use of Radium became widespread. In the medical world, Radium was used for a broad range of conditions, although not exclusively to cancer related treatment. In the consumer marketplace the use of Radium laced products creams, spa waters, bracelets and so on, persisted at least until the 1930's. It was not until man made radio-isotopes became available in the 1940's that the use of Radium declined. With the availability of a wide range of more suitable radioisotopes, Radium became more of an historical curiosity.

Fig. 2 Models of proportional, non linear or a threshold effect of risks due to radiation dose.

Assessing Risks

Thus up till the time of the second world war, the main sources of manmade ionising radiation were from exposures to X-rays and from Radium. One group of workers who were chronically exposed to Radium, however, were those individuals who painted dials of instruments with a 'Radium cocktail' which would glow in the dark. It was the deaths of numerous 'dial painters' in the USA which focused both public and scientific attention on the problem and which led, though painfully slowly, to the setting of maximum uptake levels of Radium. This intake value was initially set in 1941 in the USA at 0.1μ Curie where:

1 Curie $=3.7 \infty 10^{10}$ disintegrations per second.

Enter Fission and Fusion

Until the development of the atom bomb, nothing new had been introduced in the field of radioactivity to alter the slow but natural decay of natural atoms to natural decay products. Radium had been extracted as a natural but highly radioac-
tive element. With the development of projects such as the Manhattan Project and the construction of a number of nuclear reactors where a range of radioisotopes could be fabricated. New highly radioactive and toxic elements such as Plutonium were being created within nuclear reactors by bombarding Uranium with neutrons. So, when the uncontrolled chain reaction was unleashed, a wide range of completely new radioactive compounds could be released into the environment. The intense blast of gamma radiation at the instant of detonation was also an unknown quantity.

The initial momentum for introducing radiation standards for occupational exposure during the war came from a need to protect a large and diverse work force. Instead of a few thousand workers world wide being involved, the Manhattan Project was to involve hundreds of thousands of workers in a range of chemical and industrial production lines. The end point of the project the creation of an intense glowing fircball out of which would fall a host of radioactive elements was not considered as the real risk. Even after the devastation of Hiroshima and Nagasaki the aspect of radiation fallout was not given high prominence. The way was left for time to write its own catalogue of human suffering instead. This is an area of science which is still yielding up secrets.

Working with Plutonium

In many respects the foundation of modern radiation protection services were established during the Manhattan Project where very large teams of workers had to be monitored and leaks of radiation identified and dealt with. There is an aura of 'safe working practices' now spread over the Manhattan Project which may or may not be well placed.

There is considerable amazement still felt by British Scientists in the way in which work was undertaken on the bomb project by their American colleagues. One tragic but revealing incident took place in a classroom where the principle of fusion was being demonstrated by moving two half spheres of Plutonium together on a mechanism driven by a screwdriver. The demonstrator was showing that as the two spheres were moved closer, the radiation given off by the Plutonium increased. At one point the screwdriver slipped and the spheres suddenly jerked closer together. A blue light radiated from the spheres and the demonstrator instinctively separated them with his hands to prevent an uncontrolled chain reaction taking place. A major nuclear accident had been averted though the demonstrator received a fatal dose of radiation and died in extreme agony a short time later.

British scientists indicate that such a "demunstration' should never have been allowed in the first place. Critical masses of fission material should never be allowed into any such environment. The Manhattan Project was also undertaken under the conditions of utmost secrecy.

The Manhattan Project certainly led to significant advances in quantifying radiation. While the Röentgen unit had obvious relevance for X -ray and gamma radiation, the British Physicist Herbert Parker working on the project developed units of radiation which could be related to exposure of a broader range of radiation sources. The rad was developed as a measure of energy of radiation deposited in one gram of human tissue. The biological effectiveness of radiation varies considerably with the type of radiation. A revised unit, the Rem, was devised as an indication of the relative effect of radiation on the individual. A dose of 10 Rads of gamma radiation was set equivalent to 10 Rems of biologically
weighted radiation though one Rad of Alpha radiation was then set equivalent to 10 Rems indicating that it was potentially more dangerous. This is because the Alpha radiation has more significance for causing cell damage etc. Details of modern units of radiation (the Gray and the Sievert) are given in an earlier section.

'Brighter than a Thousand Suns'

In the final stages of the Manhattan Project, the question of fallout became more and more pressing as predictions of the amount of radiation released were made. This was the first time, also, that the Military would have to consider (or not consider) the general public in their equations.

The best scenario was to detonate the bomb when weather conditions were favourable, the wind was in the correct direction and it wasn't raining. In any case on Presidential orders the first device code named Trinity was detonated on July 16th 1945 in time for the first day of the Potsdam Conference attended by Stalin whose spies probably observed its bright flash in the desert.

Fortunately most of the fallout fell in isolated areas where the main victims were grazing animals. At this stage all operations were undertaken at a very high security level the public had absolutely no idea what was taking place.

When the first bomb was dropped on Hiroshima, the device was described simply on the basis of its massive explosive power. Any reference to possible radiation danger was omitted. It was only in time that the full horror would be revealed. This was also the point in time at which the world was informed of the Manhattan Project and the existence of a new power in the world.

Enter the Atomic Age

If the nuclear industry had had a somewhat secretive childhood, it certainly experienced a more open period of adolescence and maturity. In the immediate post war age, nuclear energy was hailed as a bringer of all good things the energy crisis could be overcome once and for all. It is now known that there were strategic goals to be achieved in the West's nuclear arms programme which would require fission materials such as Plutonium to be produced as the by-product of a civilian nuclear power initiative. Perhaps there was an unwritten agenda to implement nuclear power stations to underpin any future requirement for bomb making products. In any event, it was the British who opened the World's first commercial nuclear reactor at Calder Hall in 1956.

Thus nuclear installations began to pass from purely military control to civilian control and the numbers of people working in such installations grew significantly. There were very good reasons for extracting large reserves of uranium wherever they could be discovered. Extensive prospecting was encouraged in the USA in the carly 50 's and numerous deposits were identified and mined. It is quite obvious that at a time when national priorities were focused by the Cold War, the working conditions of Uranium miners were a scandal. After drilling holes in rock to place explosive charges, the miners would return to a smoke filled mine and help extract the ore. Water was drunk from underground springs and food was rapidly contaminated in the dusty conditions. While elsewhere the radiation hazards of such mine workings were clearly identified, the Authorities were quite happy to exploit the health of the miners as long as supplies of Uranium were forthcoming. There was extensive
data on file from Uranium mines in Europe relating to hazards of working in such environments.

The Unfolding Scenario

The sheer scale of resources plowed into atomic and nuclear research military and civilian has been stupendous. One of the reasons for the collapse of the Soviet Empire was its over commitment to developing nuclear weapons. The world seems to be drawing back from a superpower confrontation though the risk has not been removed.

Recent disclosures about the Soviet nuclear anms project have been most revealing. Based in Myak in the Urals, the equivalent of the USA's Manhattan project succeeded in contaminating extensive areas of the countryside through reckless waste disposal. One waste store exploded in the 1950's, sending contamination over a widespread area. Today large parts of this area are still highly contaminated and childhood cancers abound.

The Three Mile Island incident, although not as serious as the Chernobyl incident, was a a hair's breadth from developing into something more devastating. Although there was plenty of 'high tech' at Three Mile Island, it was almost impossible for anyone to understand what was happening once dozens of alarms started to compete for attention. At Chernobyl, it is claimed the design of the reactor was intrinsically unsafe and that poor supervision and working practices prevailed.

What has been demonstrated is that the there has been a gradual reduction in the 'safe' levels of radiation exposure since World War II. During this time, radiation workers, military personnel and members of the public have been exposed to levels of radiation high enough to significantly increase the chances of developing fatal cancers and also carrying forward genetic damage to future generations.

With the benefit of hindsight, things could have been undertaken differently. In terms of what can be undertaken now to reduce exposures, there are two strategies which spring to mind. One is to reduce the incidence to Radon exposure in dwelling homes and the other is to reduce the exposure to medical X-rays. Clearly this does require strategic planning. It could have been appropriate to have included minimum levels of radiation exposure for standard X-ray procedures in the recently announced Patient's Charter in the UK. The other is to consider the long term role of the nuclear power industry and decide if it should be retained and if so what policy changes for its existence require to adopted.

Conclusion

Assessment of the effects of radiation on man needs a healthy sense of perspective. There are clearly identified ways of both measuring radiation doses and predicting the potential risk that it may or may not present. Risk factors may well be modified as greater understanding is developed.

There have always been two facets of radiation, one black and one white. There needs to be a better understanding of the basic nature of radiation and how it can influence health so that individuals can be sufficiently educated about this important subject and make their own informed judgements.

Further Reading:

Living with radiation, National Radiological protection Board, 1991, ISBN 085951320 3, available in UK through HMSO bookshops.

BARGAINS-10 New Ones This Month

SUPER MULITMETER Ex British Telecom, this is a 19 -range 20k o.p.v. top grade instrument, covers Ac \& DC voltages, current and resistance, very good condition, fully working and complete with leads $£ 8$, keather carrying case $£ 2$ extra (Batteries are not inciuded but readily available)
MULTI-CORE CABLES all with 8 A 230 V cores so suitable for disco and other special lighting effects. With earthcable woven screen and thick pvciouter. 3 core, 30p per metre, 16 core 50 p per metre, 18 core, 80 p per metre, 25 core, $£ 1$ per metre and 36 core, $£ 1.50$ per metre
VARIAC an infinitely variable unit gives any voltage from 0-230 a.c at $1 / 2 \mathrm{~A}$ Obviously an invaluable piece of equipment which should be in every workshop and probably would be except that the usual price for this is $£ 35$ plus VAT. Now is your chance to but one, brand new, at $£ 15$ including VAT, Order Ref 15P42B ULTRA THIN DRILLS Actually 0.3 mm . To buy these regular cost a fortune However, these are packed in half dozens and the price to you is $£ 1$ per pack, Order Ref. 797B
YOU CAN STAND ON IT! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx. $10 \%^{\prime \prime} \times 43^{\prime \prime} \times 6^{\prime \prime}$ high. These are complete with snap closure lip annd shouider length carrying strap. Taken from used equipment but in good condition, price £2. Order Ref. 2P283B
BUILD YOUR OWN NIGHT LIGHT, battery charger or any other gadget that you want to enclose in a plastic case and beable to plug into a 13 A socket. We have two cases, one $3^{1} / 2 \times 2^{1 / 4} \times 1^{3 / 1 / " ~ d e e p, ~} £ 1$ each Order Ref. 845 The other one is $21 / 2 \times 2 \% \times 1 \%^{\prime \prime}$ deep, 2 for 11 , Order Ref, 565 .
SAFETY LEADS curly coil so that they contract but don't hang down. Could easily save a child from being scalded. 2 core, 5 , extends 103 m , I 1 , Order Ref 846,3 core, 13A extends to $1 \mathrm{~m}, \mathrm{\Sigma} 1$ each, Ordar Rei, 847,3 core, 13A, extends to 3m, £2 each, Order Ref. 2P290
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc outpul is voltage regualted intended for high class equipment, this is mounted on a PCB and also mounted on the board but easily removed, are 212 V relays and a Piezo sounder. £3, Order Ref. 3P80B
ULTRA SONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $£ 1.50$ the pair, Order Ref. 1.5P/4. 100W MAINS TRANSFORMER normal primary 20-0-20 at $25 A, £ 4$, Order Ref 4 P 24 , 40V at 25 A , £4, Order Ref 4P59.50V ar 2A, £4. Order Ref 4P60 PHILIPS 9" HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still In maker's packaging; offered at less than price of tube alone, only £15, Order Ref. 15P1 16 CHARACTER 2-LINE DISPLAY sçreen size 85 mm 36 mm , Alphan umericc LCD dot matrix module with integral micro processor made by Epson, their Ref. 16027 Ar, £8 Order Ref. 8P48
INSULATION TESTER WITH MULTI METER internally generates voltages which en ables you to read insulation directly on megohms. The multimeter has four ranges, $\mathrm{AC} / \mathrm{DC}$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range These instruments are ex British Telecom but in very good condition, tested and guaranteed OK, probably cost at least only $\mathbf{£ 7 . 5 0}$, with leads, carry caşe $£ 2$ extra, Order Ref. 7.5P/4
MAINS 230 V FAN best make "PAPST" 4% square, metal blades, $\mathbf{\varepsilon 8}$, Order Ref 8P8.
2MW LASER Helium neon by Phillips, full spec £30, Order Ref. 30P1 Power supply for this kit form with case is $£ 15$, Order Ref. 15P16, or in larger case to house tube as well £18. Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order Ref. 69P1
$\mathbf{1 / 3 ~ H P ~} 12 \mathrm{~V}$ MOTOR - THE FAMOUS SINCLAIR C5 brand new, $£ 15$, Order Ref 15P8
SOLAR CHARGER holds 4AA nicads and recharges these in 8 hours, in very neat plastic case, $\mathbf{\Sigma 6}$, Order Ref. 6P3
FERRITE AERIAL ROD 8 " long $\times 3 / 8$ diameter, made by Mullard. Complete with 2 coil formers 2 for $£ 1$, order Ref 832B
AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circuits, 4 for $\mathrm{\Sigma} 1$, Order reff. 818 B
FIELD TELEPHONES juśl right for building sites, rallies, horse shows, etc., just oin two by twin wire and you have wo way calling and talking and you can join into regular telephone lines if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete with shoulder slung carrying case £9.50, Order Ref 9 5P/2
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks 230 V in and 230 V OU 150 watt upright mounting $\mathbf{\varepsilon 7 . 5 0 \text { Order Re } . ~}$ $7.5 \mathrm{P} / 5$ and a 250 W version is $£ 10$. Order Ref 10P79
MINI MONO AMP on PC8. Size 4 " $\times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 watt into 4 ohm speaker using 12 V or 1 Watt into 8 ohm using 9V. Brand new and perfect, only $£ 1$ each. Order Ref. 495 .
AMSTRAD POWER UNIT 13.5 V at 19 A encased and with leads and output plug, normal mains input, £6, Order Ref. 6P23. ATARI 65XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only £19.95, Order Ref. 19.5P/5B
80W MAINS TRANSFORMERS two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A , Order Ref. 3P106 the other 40V 2 A. Order Pel. 3P107, only £3 each.
PROJECT BOX is approx $8^{\prime \prime} \times 4^{\prime \prime} \times 4^{1} / 2^{\prime \prime}$ metal sprayed grey, louvred ends for ventilation otherwise undrilled. Made for GPO so best quality, only $£ 3$ each, Order Ref. 3P74
12V SOLENOID has good η_{2} pull or could push if modified, size approx $1 / k$ " long x 1" square, \&1, Order Ref. 232.
WATER VALVE 230V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc. £1 each, Order Ref. 370
BUILDING YOUR OWN PSU, battery charger, night light, or any other gadget that you want to enclose in a plastic case and be able to plug into a 13 A socket? We

THIS MONTH'S SNIP

 is a6, 9 or 12 vDC Japanese-made fan, this is approx 93 mm square, a +6v draws only 100 mA Brushless so no parts to wear out, wont interfere with your computer Price only £4, Order Ref. 4P65 Mains power supply unit to operate this at variable so make it a good desk fanonly E 2
have two cases, one $31^{\prime \prime} \times 214^{\prime \prime} \times 13^{3 \prime}$ " deep, $\Sigma 1$ each, Order Ref. 845 . The other one is $2 y_{2} \times 21 /{ }^{\prime \prime} \times 13 / 4$ deep, 2 for $£ 1$, Order Ref. 565
500V BRIDGE MEGGER developed for GPO technicians the Ohmeter18B is the modern equivalent of the bridge megger 9 V battery operated, it incorporates a 500 V generator for insulation testing and a null balance bridge for very accurate resistance measurement. Ex B.T. in quite good condition with data \& tested. Yours for a fraction of the original cost, $£ 45$, Order Ref 5P167
15W 8 OHM 8" SPEAKER \& 3" TWEETER made for discontinued high quality music centre, gives real hi-fi, and only £4 per pair, Order Ref. 4P57. 3V SOLAR PANEL price £3 Order Ref. 5P189
3 GANG. 0005 MFD TUNING CONDENSER with slow motion drive Beautifully make by Jackson Brothers and current list price is probably around $£ 20$. Yours for 85. Order Ref 5P189

STEREO HEADPHONES extra lightweight with plug, $£ 2$ each Order ref. 2P261
BT TELEPHONE LEAD $3 m$ long and with B.T. flat plug ideal to make extension for phone, fax, etc. 2 for $£ 1$, Order Ref. 552 WATER PUMP very powerful with twin outlets, an ideal shower controller, mains operated, $£ 10$, Order Ref 10P74. Ditto but with a single outlet, same price \& order ref. Please specify which one you require
0-1 MA FULL VISION PANEL METER $2^{3}{ }^{3}{ }^{\prime \prime}$ square, scales 0-100 but scale easily removed for re-writing £1 each, Order Ref. 756
PROJECT BOX a first-class, Japanese two-part moulding size $95 \times 66 \times 23 \mathrm{~mm}$. held togethêr by 2 screws, take a battery and a PCB and is ideal for many'projects. To name just a lew. the washer bottle monitor, the Quicktest and the model railway auto signal,described in September's issue of E.E. This is nicely inished and very substantial. You get 2 for $£ 1$, Order Ref. 876
HOLDIT MAGNETIC BASE embedded is a circular metal shallow disc, diameter approx. $65 \mathrm{~mm}\left(2 k^{\prime \prime}\right)$, is the most powerful magnet. We have yet to find anyone who can remove this with his fingers. Ideal for adding extra shelves inside a metal case or to glass without drilling Its uses, in fact, are innumerable Price £2 each Order Ref 2P296
AMSTRAD EXPANSION BUS BOARD - their part no 270901. Brand new, jus one IC is missing from its socket, contains a terrific quantity of very useful parts There are 4×32 way edge connector sockets with gold-plated contacts, 7 crystals over 40 ICs many of which are plug-in types. There are 5 micro processors Japanese-made, 8 socket connectors with gold-plated pins and hundreds of other small parts Yours for $\mathbf{1} 10$, Order Ref. 10P94
WANT A SPARE $3^{\prime \prime}$ DISC DRIVEFOR YOUR AMSTRAD? We have, unused and believed O.K., Amstrad 3" disc drives that are all complete except for fron t bezel. It shouldn't be too difficult to take the bezel off your old one and fit it to this. Price $\mathbf{£ 1 5}$ each Order ref. 15P45
OPD DUAL MICRO DRIVE UNIT this is a twin unit, each unit having its own motor, record/playback head and PCB with all electronics. In addition to being a direct replacement in the OPD, this can also be used with the Spectrum or the QL We have a copy of the procedure necessary and will gladly supply a photostat of this if you require it when you purchase the unit The price is $£ 5$, Order Ref 5P194.
12V 2A MAINS TRANSFORMER upright mounting with mounting clamp Price £1.50, order Ref. 15 P 8 AM/FM MAINS RADIO CHASSIS with separate LCD module to display date and time This is complete with loudspeaker and is main powered but it is not cased and, as yet, we have no information on how to wire it up. So, if you want a challenge, here it is! By way of recompense we will give the first customer to send us the connection details a 255 credt voucher. The price of the Am/Fm radio chassis with LCD module is $£ 3.50$. Order Ref 3.5P5 All purchasers will receive connection details directly we have them
2, 3 AND 4 WAY TERMINAL BLOCKS the usual grub screw types. Parcel containing a mixture of the 3 types, giving you 100 ways for $£ 1$, Order Ref. 875 . $12 / 24 V$ DC SOLENOID constructed so that it will push or pull, plunger is a combined rod and piston. With 24 v is terrifically powerful but is still very good at 12 v and, of course, with an y intermediate voltage with increasing or decreasing power. It has all the normal uses of a solenoid and an extra one, if wired in series with a make and break, this could be a scribing tool for marking plastics and. soft metals. We welcome other ideas and will give a $£ 25$ credit voucher for any used. Price £1, Order ref. 877.
2M 3-CORE LEAD termin ating with flat pin instrument socket, $£ 1$, Order Ref. 879 Ditto but with plug on the other end so that you could use this to extend an instrument lead $\mathbf{£ 1 . 5 0}$. Order Ref. 1 5P10

JUST ARRIVED
 a 5" 20W 4ohm, mid-range

 speaker, £3, Order Ref. 3P145 and a matching 4 hom 20 W tweeter, £1.50, orde Ref. 1.5 Pg also FM radio mike handheld $\mathbf{£ 8 . 5 0}$, Order Ref. 8.5P2. order or ring and quote credit card number Add $£ 3$ post and packing. Order over $£ 25$ post free. You can order until 9pm Mon-Fri on 430380M \& B ELECTRICAL SUPPLIES LTD 12 Boundary Road, Hove, Sussex BN3 4EH Telephone (0273) 430380
Fax or phone (0273) 410142

Heartheat/Audio Listener

This heartbeat listener project also doubles as an audio amplifier, so will find plenty of uses on the workbench. Whenswitched to HEARTBEATmode, the circuit will amplify the low-frequency heartbeats to a level suitable for medium impedance headphones (for example, Walkman-type headphones or earphones). The louder heartbeats - for instance after jogging- will also trigger an LED which will pulse in sympathy.

The device has a small built-in loudspeaker which is useful when using it as an audio amplifier, but really headphones will be needed when listening to heartbeats. The actual heartbeat sensor is a piezo-electric transducer which has the advantage of a relatively high output, which means that the amplifier gain does not have to be excessive.

The Circuit

Figure 1 shows the complete circuit diagrams. The audio amplifier is based around the integrated circuit IC1. This is the TBA820M - possibly the oldest audio amp IC widely available nowadays, and is connected in its standard configuration. The output drives the loudspeaker and LED.

Power for the circuit is obtained from a PP3 9V battery or from an external source connected to SK3, which is a 3.5 mm

A sensitive amplifier to listen to your heartbeat by Shabaz Yousaf.

jack socket. If you have one of the popular battery eliminators, then this can be used. The current used by the circuit is about 10 mA , but this figure can rise to several hundred milliamps at peaks in the audio level and also depends on the load connected to the headphone socket.

Construction

The circuit I constructed on a single sided fibreglass PCB designed for a perfect fit in the recommended case. Start by soldering the smaller components, such as the resistors and capacitors. Orientate the IC and 'minicon' connectors the correct way round, as shown on the component overlay in Figure 2. Finally, trim the battery clip leads to approximately 60 mm and solder it on to the PCB - the red lead is positive.

The next stage is to prepare the 'minicon' sockets by crimping leads to them. If you do not have the correct tools for the job, a small pair of pliers will have to suffice. The leads can be trimmed and the ends soldered to the controls,

Fig. 2 Component overlay
LEDs, sockets and loudspeaker, as detailed in Figure 3.
If you are using the recommended case then the hole drilling dimensions are indicated in Figure 4. If a whole range of drill bits to suit each switch or socket are not to hand, then it may be worthwhile purchasing a reaming tool, which can be used to widen a pilot hole to the required diameter. A pattern of holes will be needed for the loudspeaker. The

HOW IT WORKS

IC1 is arranged with a conventional amplifier with switch SW2 in the AUDIO position. When changed to heartbeat, the resistor in the GAIN lead (pin 2) is short-circuited for higher gain. At the same time capacitor C 6 is paralleled with C 5 to alter the frequency compensation characteristics of IC1. This has the effect of cutting high frequencies, and increasing the gain of lower frequencies. The output is taken from pin 5 via a conventional DC blocking capacitor to the loudspeaker. The LED is directly driven by a transistor configured for current gain. It was found that directly using the voliage at the output pin 5 to drive the transistor base was adequate, and no blocking capacitors and gain control were required.

Once trimmed, the plastic can be sprayed with paint. Coat the plastic rim of the piezo element with glue, taking care not to let any drip onto the actual element. Glue the surfaces together. The final result should be professional looking.

Testing

Plug the heartbeat sensor and a pair of headphones into the relevant sockets, and switch on. Provided a battery or power supply is connected, the power 'on' LED should be lit. Ensure the HEARTBEAT/AUDIO switch is in the AUDIO position, and speak into the heartbeat sensor. You should hear your own voice through the headphones. If not, adjust the volume control RV1. Now, flick the switch to the HEARTBEAT Position. Holding the microphone by the rim, press it against your heart firmly while keeping the air hole clear. The sensitivity of the piezo sensor means that it can be used effectively even through a shirt. If you can't find your heartbeats, it may help to jog on the spot for aminutetoget some stronger pulses. This should also trigger the LED D1.

For constant heartbeat monitoring on the move, the sensor can be held in place with dressmakers elastic band (about $1.5^{\prime \prime}$ wide, used around the hip with dresses) with the two ends sewn together to form an elastic hoop which goes around the chest. The heartbeat listener could be clipped to the waist by adding a belt clip to the casing, from an old radio, for example.

recommended case is quite small and there is only enough room for a $1.6^{\prime \prime}$ loudspeaker but if you are using a larger case, a more substantial loudspeaker can be used to great effect.

The switches and sockets are screwed into place, but the LEDs and loudspeaker will have to be glued with an impact adhesive such as UHU. The PCB can now be plugged in and slotted into position.

For the piezoelectric sensor, a Tandy piezo element was used because this has a plastic rim which is useful for holding the microphone against the heart with. The element is supplied with two wires already soldered to it. These are removed, and a length of screened lead is soldered instead, Soldering to the element must be done with the minimum of heat to prevent any damage to the piezo-electric crystal. The end of the lead is terminated with a 3.5 mm mono jack plug. For a professional look, the back of the piezo element can optionally be covered with a small piece of acrylic trimmed to shape with a Stanley knife and file. A small hole is required in the centre of the acrylic, to keep the inside at the same air pressure. A cheap source of acrylic is the clear part of a cassette cover. Yes! You can finally put Kylie Minogue's hits to good use! Chuck away the cassette and keep the cover!

Fig. 4 Dimensions for drilling case

PARTS LIST

BUYLINES

All components are commonly available. Maplin sell the 'minicon' connectors. as do many other retailers. The piezo element is available from Tandy, part no. 273-091. The case was purchased from Electrovalue, code B505.

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH 16 5DX - 0316672611

> The supplier to use if you're looking for --
> \star A WIDE RANGE OF COMPONENTS AIMED AT THE HOBBYIST \star
> \star COMPETITIVE VAT INCLUSIVE PRICES \star * MAIL ORDER - generally by RETURN OF POST \star * FRIENDLY SERVICE *

4

Open: Monday-Thursday 9.15-6.00
Friday 9.15-5.00 Saturday 9.30-5.00

VISA

Guarantee your home delivery of ELEETRONICS TODAY INTERNATIONAL at no extra cost to you, SUBSCRIBE NOW

- make SURE of your post-free* copy.

Get inside every issue!
*U.K. only.

Please commence my subscription to ELCTPONICS TODAY INTERNATIONAL with the issue. if renewal please quote subsenption number). \qquad
lenclose my cheque/MO for $£$, or please dębit my Access/Visa
 Card No

Expiry Date.
Signature.
Name
Address mine \qquad

Post Code
SUBSCRIPTION RATES: UK £23.40, Europe £29.50, Sterling Overseas $£ 31.00$, US Dollars $\$ 56$ Please return coupon to: Arguis Subscription Senices, QUEENSWAY, REDHILL, SURREY RH 11 QS
Phense note you mady neseive further information about offers and senve particular mearest to ypy.

Reader Survey

It's survey time again and your chance to win one of 20 prizes supplied by Maplin Electronics and ETI

Although some of the questions here may not seem to relate directly to the magazine, please complete the whole questionnaire. Your answers not only help us to steer the editorial content of the magazine in the direction you want but they also help us to build up an overall profile of readers to present to advertisers who require such data to select

1. If you could make one improvement to ETI, what would it be!
suitable magazines for their products.
No names and addresses will be disclosed to any third party and all information will be treated in the strictest confidence.

As an incentive for your hard work, all entries received by 10 th October will be entered in the draw for the 20 prizes given by Maplin Electronics and ETI.
2. Please indicate what you think of the following aspects of ETI's coverage:

Product News Industry Technology News Advanced Projects
Basic Projects
General Features
Tutorial Features
Product Reviews
Product Reviews

Poor	Average	Good	Excellent
$\square 001$	$\square 002$	$\square 003^{\prime}$	$\square 004$
$\square 005$	$\square 006$	$\square 007$	$\square 008$
$\square 009$	$\square 010$	$\square 011$	$\square 012$
$\square 013$	$\square 014$	$\square 015$	$\square 016$
$\square 017$	$\square 018$	$\square 019$	$\square 020$
$\square 021$	$\square 022$	$\square 023$	$\square 024$
$\square 025$	$\square 026$	$\square 027$	$\square 028$

3. Would you like to see a greater or lesser proportion of ETI devoted to the following.

	Less	The same	More
Beginners' Projects	$\square 029$	$\square 030$	$\square 031$
Advanced Projects	$\square 032$	$\square 033$	$\square 034$
Computer Projects	$\square 035$	$\square 036$	$\square 037$
Audio Projects	$\square 038$	$\square 039$	$\square 040$
Music Projects	$\square 041$	$\square 042$	$\square 043$
Radio Projects	$\square 044$	$\square 045$	$\square 046$
Home Improvement Projects	$\square 047$	$\square 048$	$\square 049$
Bio-electronics/Health Projects	$\square 050$	$\square 051$	$\square 052$
Test Equipment Projects	$\square 053$	$\square 054$	$\square 055$
Security/alarm Projects	$\square 056$	$\square 057$	$\square 058$
Car Electronics Projects	$\square 059$	$\square 060$	$\square 061$
Robotics Projects	$\square 062$	$\square 063$	$\square 064$
Photographics	$\square 065$	$\square 066$	$\square 067$
Novelty/Gimmick Projects	$\square 068$	$\square 069$	$\square 070$
Basic Elementary Theory	$\square 071$	$\square 072$	$\square 073$
Advanced Electronic Theory	$\square 074$	$\square 075$	$\square 076$
General Science/Technology	$\square 077$	$\square 078$	$\square 079$
News	$\square 080$	$\square 081$	$\square 082$
Product Reviews	$\square 083$	$\square 084$	$\square 085$
Letters	$\square 086$	$\square 087$	$\square 088$
Open Channel/etc	$\square 089$	$\square 090$	$\square 091$
Design/Circuit ideas	$\square 092$	$\square 093$	$\square 094$
Competitions	$\square 095$	$\square 096$	$\square 097$
Others (please specify)	$\square 098$	$\square 099$	$\square 100$

4. Indicate which of the foilowing equipment you use:

Own | Don't own but |
| :---: |
| regularly use |

Photographic/Darkroom Equipment	$\square 113$	$\square 114$
Ham Radio/CB	$\square 115$	$\square 116$
Satellite TV	$\square 117$	$\square 118$
Video Camera	$\square 119$	$\square 120$
Security/Alarmn System	$\square 121$	$\square 122$
Oscilloscope	$\square 123$	$\square 124$
Multimeter	$\square 125$	$\square 126$
Other test gear	$\square 127$	$\square 128$
5. Do you buy ETI for:		
Projects only	Features only	Both
$\quad \square 501$	$\square 502$	$\square 503$

6. Do you read any of the following magazines:

Never	Occasionally	Regularly
$\square 129$	$\square 130$	$\square 131$
$\square 132$	$\square 133$	$\square 134$
$\square 135$	$\square 136$	$\square 137$
$\square 138$	$\square 139$	$\square 140$
$\square 141$	$\square 142$	$\square 143$
$\square 144$	$\square 145$	$\square 146$
$\square 147$	$\square 148$	$\square 149$
$\square 150$	$\square 151$	$\square 152$
$\square 153$	$\square 154$	$\square 155$
$\square 156$	$\square 157$	$\square 158$
$\square 159$	$\square 160$	$\square 161$
$\square 162$	$\square 163$	$\square 164$

Electronics Product News/
Electronics Equipment
News/New Electronics/
Electronic Product Review ■165 ■166 ■167
7. If read, please indicate what you think of the following magazines
Not as good As good Better

Practical Electronics	$\square 168$	$\square 169$	$\square 170$
Elektor electronics	$\square 171$	$\square 172$	$\square 173$
Everyday Electronics	$\square 174$	$\square 175$	$\square 176$
Maplin Magazine	$\square 177$	$\square 178$	$\square 179$

8. Which of the following do you buy and how frequently?

Never Sometimes Regularly

Electronic Components	$\square 180$	$\square 181$	$\square 182$
Complete Electronic Kits	$\square 183$	$\square 184$	$\square 185$
ETI PCBs	$\square 186$	$\square 187$	$\square 188$
Stripboard/Wirewrap Etc	$\square 189$	$\square 190$	$\square 191$
Cases/Case Materials	$\square 192$	$\square 193$	$\square 194$
Tools	$\square 195$	$\square 196$	$\square 197$
PCB making Equipment/Materials	$\square 198$	$\square 199$	$\square 200$
Pre-programmed ROMs	$\square 201$	$\square 202$	$\square 203$
Computer Software	$\square 204$	$\square 205$	$\square 206$

Floppy Disks	$\square 207$	$\square 208$	$\square 209$
Electronic Books	$\square 210$	$\square 211$	$\square 212$
Data Books	$\square 213$	$\square 214$	$\square 215$
Second Hand Equipment	$\square 216$	$\square 217$	$\square 218$

9. Please indicate what you think of the services offered: Poor Average	Good		
PCB Service	$\square 219$	$\square 220$	$\square 221$
Photocopy Service	$\square 223$	$\square 224$	$\square 225$
Foil Patterns	$\square 227$	$\square 228$	$\square 229$
Buylines	$\square 231$	$\square 232$	$\square 233$
Subscriptions	$\square 235$	$\square 236$	$\square 237$
Back numbers	$\square 239$	$\square 240$	$\square 241$
10. Have you used:			
	Yes	No	
Our PCB service	$\square 243$	$\square 244$	
Photocopy service	$\square 245$	$\square 246$	

11. If you own or regularly use a computer, please indicate which it is:
Spectrum $\square 247$

BBC Micro/Master/Electron $\square 248$
Commodore 64/128 $\quad \square 249$
Amstrad CPC $\quad \square 250$
Amstrad PCW $\square 251$
IBM PC Compatible $\quad \square 252$
Atari ST $\quad \square 253$
Amiga
Archimedes
$\square 254$

Cortex
Apple Mac
■ 255
$\square 257$
Other (please specify) $\square 258$
12. How many ETI projects have you built in the past 12 months?

None	$\square 259$
$1-3$	$\square 260$
$4-6$	$\square 261$
$7-12$	$\square 262$
More thant 12	$\square 263$

13. Do you find ETI projects		
	Yes	No
Reliable	$\square 264$	$\square 265$
Easy to build	$\square 266$	$\square 267$
Useful	$\square 268$	$\square 269$
Instructive	$\square 270$	$\square 271$
Technically understandable	$\square 272$	$\square 273$
Work first time	$\square 274$	$\square 275$

14. Do you modify ETI project designs?	
Not At All	$\square 276$
A Few Mods	$\square 277$
Many Mods	$\square 278$
15. Do you prefer to build ETI projects from complete kits when they	
are available?	
Yes $\square 279$	No $\square 280$
16. Do you make your own PCBs?	
Never	$\square 281$
Sometimes	$\square 282$
Always	$\square 283$
17. Have you used our cover PCB to construct a project?	
Once 284	Sometimes $\square 285$
Always $\square 286$	Never

18. What type of projects would you like to see using our cover PCB?
19. Do you primarily build electronics projects

To save money on commercial goods
$\square 28$
As a satisfying pastime $\quad 282$
As an instuctional exercise
$\square 290$
20. As far as electronics design and construction is concerned, do you consider yourself:

Novice	$\square 291$
Proficient	$\square 292$
Accomplished	$\square 293$
Expert	$\square 294$

21. Estimate the value of your electronics test gear and construction equipment as new:

Under $£ 25$	$\square 295$
$£ 25-£ 100$	$\square 296$
$£ 101-200$	$\square 297$
$£ 201-£ 500$	$\square 298$
$£ 501-£ 1000$	$\square 299$
$£ 1000-£ 2000$	$\square 300$
£2000-£4000	$\square 301$
over $£ 4000$	$\square 302$

22. How much do you estimate you have spent on equipment and components during the past 12 months?

Nothing	$\square 303$
Under $£ 25$	$\square 304$
$£ 25-£ 50$	$\square 305$
$£ 51-100$	$\square 306$
$£ 101-£ 200$	$\square 307$
$£ 201-£ 500$	$\square 308$
£501-£1000	$\square 309$
over £1000	$\square 310$

23. Are you responsible for recommending/specifying electronic equipment in your job?
Yes $\square 311$
No■ 312
24. How long do you keep your copies of ETI for:
Less than one month $\square 313$

One month $\square 314$
Three months $\square 315$
Six months $\square 316$
A year or more $\quad \square 317$
25. If kept, how often do you refer back to issues of ETI?

Once a week or more
$\square 318$
About once a month $\quad \square 319$
Once every three months $\square 320$
Less often
$\square 321$
Never
$\square 322$
26. How long do you spend reading your copy of ETI?
Over 2 hours $\square 32$
1%-2 hours $\square 324$
$1-1 \%$ hours $\square 325$
$1 / 2$-1hour
Less than $1 / 2$ hour
$\square 326$
27. How long have you been an ETI reader?

Less than three months
3-6 months
7-12 months

- 5
$2-5$ years
Over 5 years

28. How often do you buy ETI?

Occasional issues
Most issues $\square 330$
Every issue ■331
29. How much of ETI do you read?

Read only some articles

Read most articles	$\square 333$
Read all articles	$\square 334$
30．With regard to the advertisers in ETI do you？	
Read or look through most or nearly all the ads	$\square 335$
Read or look through some of the ads	$\square 336$
Just read or look through the occasional ad	$\square 337$
Very rarely／never look at the ads	$\square 338$

31．Thinking specifically about the advertising content，would you please rate the two main types of advertisement：

	Display	Classifieds
Very useful	$\square 339$	$\square 340$
Useful	$\square 341$	$\square 342$
Not very useful	$\square 343$	$\square 344$

32．Which of the following would you most like to see featured with the magazine？（one box only）．

Cover mounted gifts	$\square 345$
Additional supplements	$\square 346$
Competitions	$\square 347$
Money saving offers	$\square 348$
Other（please specify）	349
33．Does anyone else read your copy of ETI？	
No only myself	$\square 350$
One or two other people	$\square 351$
Three or four other people	$\square 352$
More than four other people	$\square 353$

34．If your copy of ETI is read by other people，please give details of their age and sex：

Person 1 Person 2 Person 3

Age：			
$9-14 \mathrm{yrs}$	$\square 354$	$\square 355$	$\square 356$
$15-24 \mathrm{yrs}$	$\square 357$	$\square 358$	$\square 359$
$25-34 \mathrm{yrs}$	$\square 360$	$\square 361$	$\square 362$
$35-44 \mathrm{yrs}$	$\square 363$	$\square 364$	$\square 365$
$45-54 \mathrm{yrs}$	$\square 366$	$\square 367$	$\square 368$
$55-64 \mathrm{yrs}$	$\square 369$	$\square 370$	$\square 371$
Over 64 yrs	$\square 372$	$\square 373$	$\square 374$
Sex：			
Male	$\square 375$	$\square 376$	$\square 377$
Female	$\square 378$	$\square 379$	$\square 380$

35．Are you aware of the scheduled publication date of ETI？
Yes $\square 381 \quad$ No $\square 382$

36．If the answer to the last question is YES，do you normally attempt to purchase the magazine on that day？
Yes■ 383 No■ 384

37．How do you normally obtain your copy？
Chance purchase $\square 385$
Newsagent shop collection $\square 386$
Newsagent home delivery 387
Subscription $\square 388$
Passed on copy
－ 389
38．If you are a subscriber，on which date did you receive this issue？

39．If you are a subscriber，how long have you subscribed to this magazine？

$1-6$ months	$\square 390$
$7-12$ months	$\square 391$
$1-2$ years	$\square 392$
$3-5$ years	$\square 393$
$6-10$ years	$\square 394$
Over 10 years	$\square 395$

40．If you do not obtain your copy by subscription，is it due to one of the following：
Subscription too expensive
$\square 396$

Not every issue required
ㅁ 397
Not aware subscription service available
41．Are you aware that to subscribe to this magazine in the UK costs the same as purchasing it in a shop？
Yes口 399
No $\square 400$
42．Would you like to receive further details on taking a subscription？ Yes口 401

No■ 402
43．If you do not subscribe，from which type of newsagent do you most often obtain your copy？

High Street Shop	$\square 403$
Estate shop	$\square 404$
Comer shop	$\square 405$
Other（please specify）	$\square 406$

44．Please tick any hobby／interests you may have besides Electronics：

Model Railways：	$\square 408$
Model Engineering：	$\square 409$
Model Cars：	$\square 410$
Model Boats：	$\square 411$
Model Aircraft：	$\square 412$
Steam Locomotives：	$\square 413$
Radio／CB：	$\square 414$
Computers：	$\square 415$
Fish keeping：	$\square 416$
Woodworking：	$\square 417$
Handcrafts：	$\square 418$

45．Please tick the box which represents the annual total of your gross income：

Under $£ 6,500$	$\square 419$
$£ 6,501-£ 8,000$	$\square 420$
$£ 8,001-£ 10,000$	$\square 421$
$£ 10,001-£ 12,500$	$\square 422$
$£ 12,501-£ 15,000$	$\square 423$
$£ 15,001-£ 19,000$	$\square 424$
$£ 19,001-£ 25,000$	$\square 425$
Over $£ 25,000$	$\square 426$
46. What is your age？	$\square 427$
Under 15 yrs	$\square 428$
$15-18$ yrs	$\square 429$
$19-21$ yrs	$\square 430$
$22-24$ yrs	$\square 431$
$25-34$ yrs	$\square 432$
$35-44$ yrs	$\square 433$
$45-54$ yrs	$\square 434$
$55-64$ yrs	$\square 435$
Over 64 yrs	

47．Which of the following newspapers do you read？
The Times
The Daily Telegraph $\square 437$
The Financial Times $\square 438$
The Guardian $\square 439$
The Independent $\square 440$
The Daily Express $\square 441$
The Daily Mail $\square 442$
The Daily Mirror $\square 443$
The Sun ロ444
Today $\square 445$
None of the above $\square 446$
48．Which of the following Sunday newspapers do you read？
The Sunday Times 447
The Observer $\square 448$
The Sunday Telegraph $\square 449$
The Sunday Express $\square 450$
The Mail on Sunday $\square 451$
The Sunday Mirror $\square 452$
The People $\square 453$

The News of The World
$\square 454$
$\square 455$
Today
$\square 456$
None of the above
49. What is your marital status?

Married
Single
Divorced
50. Sex:

Male 461
51. Are you a member of a book club?

Yes■ 463
52. Are you a member of a record club?

Yes $\square 465$
No 466
53. Are you:

In full time employment In part time employment

■ 467
Not employed at present
$\square 468$
Retired
$\square 469$
Student - full-time
$\square 470$

Student - part-time
\square
54. If in full-time employment, please state your occupation:
55. If a student what subjects do you study?
56. If you have children, please indicate their age given in the ranges: First Second Third Fourth

Age $1-3 \mathrm{yrs}$	$\square 473$	$\square 474$	$\square 475$	$\square 476$
$4-8 \mathrm{yrs}$	$\square 477$	$\square 478$	$\square 479$	$\square 480$
$9-12 \mathrm{yrs}$	$\square 481$	$\square 482$	$\square 483$	$\square 484$
$13-16 \mathrm{yrs}$	$\square 485$	$\square 486$	$\square 487$	$\square 488$
Over 16 yrs	$\square 489$	$\square 490$	$\square 491$	$\square 492$
Male	$\square 493$	$\square 494$	$\square 495$	$\square 496$
Female	$\square 497$	$\square 498$	$\square 499$	$\square 500$

Thank you for completing the ETI readers' survey. To qualify for entry in the free draw for one of 20 prizes from Maplin Electronics and ETI you must fill in your name and address below, pull out the centre pages, fold as shown and post to arrive not later than 10th October 1992
Name
Address \qquad

To post, fold on the dotted line A. Fold again at B and C and tuck B into the flap formed by C. A

c

ARGUS BOOKS PUBLISHING FOR THE SPECIALIST

THE FULL RANGE OF ARGUS BOOKS are available from all good book and hobby shops or contact Argus Books direct for a 1992 Complete List.

COMPLETE LIST, Argus Books, Argus House, Boundary Way, Hemel Hempstead, Herts. HP2 7ST OR PHONE 044266551 EXT. 203

Fig. 1 Synthesising the reactive properties of an inductor using 'bootstrapping techniques'

> This month, Mike Meechan looks at everything that you've ever wanted to know about EQ but were afraid to ask.

Continuing from last month, in this chapter of our slowly unfolding tale of the pursuit of audio excellence within the AutoMate mixing console, we shall expand our examination of 'sound' equalisation. In this section, our finale or pièce de resistance will be an examination of the comprehensive equalisation circuitry of this console.

I mentioned last month, albeit briefly, the subjective versus scientific/objective argument. Both the topic of EQ and that of its predecessor, the op-amp in any high quality audio pathway, are hotly disputed subjects within such a sphere of argument and discussion.

I should perhaps say that EQ is probably one of the only subjects within the realm of audio engineering where I am more partial to the 'subjective' cause. Not especially from the point of not wishing to include such circuits for fear of derision etc but that which says if it sounds good, do it and be damned. It is a difficult viewpoint to rationalise and put
on paper but I shall try anyway.'
For absolute accuracy in sound reproduction, the replay should sound identical to the original recording. Superficially this means a concert performed in the Carnegie Hall, should sound as it was when recorded at this venue when one replays it on a record deck, CD player or whatever in one's typical $20^{\prime} \times 12$ suburban living room.

Is this then a true and accurate rendition of what it sounded like when first performed in the concert hall? To my mind, it is not. For it to sound like that, it would be necessary for it to be replayed in a room of similar dimensions and acoustic treatments.

It also implies absolutely perfect recording and reproducing apparatus and correct positioning of microphones etc. This is the prevailing situation when the source material is completely naturally produced, ie from acoustic instruments with no artificial electronic means of sound reinforcement before it reaches the ears of the attending concert-goers.

Accurate Recording - Synthesis or Analysis

Once the factor of sound reinforcement is introduced, (a typical rock concert) the errors are compounded by a very large order of magnitude. The audience will hear instrument sounds which, although perhaps not heavily processed or enhanced in anyway will have passed through an electronic reproduction/reinforcement system. Even if the amplifiers were completely perfect, the sound would inevitably be coloured in some manner by the loudspeakers. The extreme might be in a concert group choosing to use valve amps with the 'wick' turned up, so to speak. They will then produce the overdriven, soft-clipped second and other low order harmonic distortion products associated with this type of amplifier - the type so beloved by the rock fraternity. In this instance, we would then be trying to simulate a distorted sound, no matter how pleasing to the ear this might be. Any recording of this would, in the interests of accuracy, be trying to simulate this 'processing', no matter how subtly it might have been applied

Returning to the interests of absolute accuracy, should the recorded musical piece sound like it is being replayed in the Camegie Hall (which is artificial and a travesty of the accuracy requirement since the room is NOT the Carnegie Hall) or should it sound like a bunch of musicians crammed into one's living room?

If all of this sounds a little oblique and removed from the subject of equalisation, we should remember what I said last month about modern-day recording techniques. The final stereo master isn't an accurate representation of what the artist sounded like in the studio but one of how the sound engineer/producer wished or hoped that it should sound. There must always be some trade-off between accuracy and 'pleasantness', for want of a better word. This relates to EQ in the manner in which it must also sound natural and musical. Having designed a filter network, it's of little consolation to point to reams of transfer functions, pages of beautifully executed equations and sheets of smoothly-drawn
curves when the finished product sounds rough or discordant or unnatural but theory suggests otherwise. Some compromise and much subjective testing is necessary.

Equalisation by Empirical Means

Some very poor examples of EQ networks abound in equipment and textbooks alike. These include so-called 'shelving' equalisers which do not have a true shelving characteristic in operation, circuits with component values badly chosen so that tumover frequency wanders with the setting of the boost/cut control, or chosen so that the control has little effect for much of the angular rotation about the 'flat' position but all at the extremes of control setting. The list goes on.

The AutoMate equalisation stages were designed with much thought given to subjective effects and particularly to the effect upon typical programme material, be that material of an instumental or vocal nature.

(A) PASSIVE LC, SECOND ORDER, LOW PASS FILTER AND RESPONSE

(D) ACTIVE RC FILTER WITH RESPONSE IDENTICAL TO A

Fig. 2 Evolution and development of an active filter (high low pass)

(A) EMITTER FOLLOWER NOW REPLACED BY OP-AMP -CLASSIC UNITY-GAIN SALLEN \& KEY LOW PASS FILTER

(B) GAIN IS INTRODUCED VIA R3 AND R4 AND Rs AND Cs ARE NOW EQUAL THIS IS THE EQUAL COMPONENT VALUE SALLEN-KEY
(OR VOLTAGE-CONTROLLED VOLTAGE SOURCE)
Fig. 3 Evolution and development of an active filter (continued)
the terminal can, however, effect a cure.
The synthesised inductor now looks like the network in Figure lb with the bootstrap resistor now manifested as a loss resistor in series with the inductor. Effectively, this produces behaviour which is akin to that encountered when winding resistance 'impedes' upon a circuit's ideal electrical characteristics. A finite R_{s} causes the inductor to have a lower Q than at first might have been expected from a theoretical example. The parallel RC network is a High Pass Filter. Figure 1c shows the effect of buffering this network, with the RC components now replaced by the high impedance which the buffer input presents to the network.

This configuration of components now begins to look more like a typical filter circuit. Figure 2 and 3 show the complete evolution of a low pass type.

Genesis of an Active Filter

Now that we have leamed how to synthesise inductive properties, let us look at a real example. At this juncture, it should be noted that an active filter realisation of a passive inductive network is rarely expected to replace it on a one for one basis. Rather, the overall mathematical or transfer response is considered and the active filter section used to simulate or synthesise its passive counter-

With all of the afore-mentioned firmly in mind, we can now look at the various types of filters and equalisers to be found within a console. Some notion and appreciation of what is required and of some of the problems or advantages which the use of the op-amp will cause or cure in this area of ciruit design should have been gained. Most importantly, any applied equalisation should sound natural with great care taken to-ensure that its application is in fact to create a given effect, or to either remove unwanted sounds from the signal or to add that which is lacking. It should rarely be used as an effect or 'toy' in its own right.

Last month, we had a very brief look at simple, passive filter networks and closed Part 6 by mentioning one method of simulating inductance by devious electronic means. Realising an inductor by electronic means can be performed using a device called a gyrator although as such, it is of little use to us as student designers of the tunable variety. This is because the network dynamic impedance changes with changing frequency ie different Q values as frequency is altered. The GIC (or General Impedance Converter), happily, is not the only way of synthesising inductances.

Grabbed by the Bootstraps

One of the simplest - and for this reason, one of the most popular - is the 'bootstrap', so-called because of the way that bootstrapping is used to create inductance. Bootstrapping as a circuit design technique works whether the source voltage is steady-state ar alternating. This is because any phase or difference in potential creates a potential difference across the resistor which, in tum, causes a current to flow. By making this bootstrapping action frequency dependent, we can synthesise an inductor. See Figure 1a. It has one shortcoming - nothing's perfect, to paraphrase Joe E. Brown in 'Some Like It Hot'. At HF there is a parallel impedance between the terminal and ground. Buffering this chain from
part. Last month, mention was made of the many response curves possible with this type of circuit. Not only can we control the product of the inductor (or its active counterpart) and the capacitor but also the RATIO of one to the other. If the capacitor is made very large in value and the inductor very small, the load resistor $R L$ will not load the L_{C} network very much and the network behaves as a series resonant circuit on the verge of oscillation. At some frequencies at or near resonance, the circuit will exhibit gain or peaking and will yield an underdamped response. Balancing the ratio of all three components gives a flatter response with no peaking or gain and is knownas the critically-damped curve. Unbalancing again, but with the bias this time toward large L and small C means that R_{L} dominates and a droopy, highly or overdamped response is created.

Setting the damping by altering the L-C ratio determines only the SHAPE of the response curve and the filter performance near $\mathrm{f}_{\text {cutoff }}$ and that this frequency is set solely by the product of the two components. Cascading two sections to give higher order filter networks also gives faster roll-off (as we might expect) but with very high damping because the two resistors cause the network to be lossy.

Damping is so bad, in fact, as to make the network almost unusable in most instances. Bolstering this lack-lustre performance can be achieved by injecting energy into the network.

Adding an emitter follower eliminates any output loading effects since the follower has unity gain, high $Z_{\text {in }}$, and low $\mathrm{Z}_{\text {ou }}$ With this circuit, gain and damping are now independent of R although the overall damping performance still leaves a lot to be desired.

Further improvements occur if we coninect the capacitor to the output of the emitter follower rather than to ground. In this way there is positive feedback or bootstrapping from output back to the middle of the RC filter. This feedback
improves the response and allows a reduction in damping to the point where we can then achieve any acceptable response that we might wish for. This is analogous to controlling the response in the totally passive section by altering the inductorcapacitor ratio. The feedback method delivers energy to the network only near the cut-off frequency - this localised feedback is caused by the reactance of the feedback capacitor being too high to affect LF and by $\mathrm{V}_{\text {out }}$ being too small to be worth feeding back at HF . Consequently, the feedback does what it is supposed to do ONLY where it is supposed to do it ie near $\mathrm{f}_{\text {cutoff }}$

Changing the ratio of the two capacitors changes the damping whilst the RC product sets $f_{\text {culoff }}$ Damping of a second-order filter is defined as being a measure or index of its tendency towards oscillation. For example, practical damping values range from 2 to 0 , with zero damping being the value for an oscillator, 1.414 being a critical value which gives maximum flatness without overshoot and a damping value of 2 being that yielded when two identical and isolated RC networks are cascaded. Highly damped filters combine to produce a smooth response with good overshootand transient properties - important in high quality audio applications - whilst slightly damped ones combine to produce a filter response which is lumpy but with sharp rejection characteristics.

Hooked on Classics

It is only very slightly removed from the classic equal component Sallen and Key filter which just happens to be the easiest-to-design and easiest-to-use single op-amp filter you can possibly obtain. This is particularly true if one has to tune it over a frequency range or alter or trim its damping. Replacing the simple emitter-follower with an op-amp yields this classic filter. The Sallen and Key is a simple circuit to explain.

We have two cascaded RC sections driving an op-amp which unloads the circuit from any output and feeds back just the right amount of signal near the cut-off frequency to bolster response. In this way, the desired damping and shape can be achieved. Low pass and high pass transfer functions can be exchanged by swapping the positions of the resistors and capacitors. Despite the attractions of such a simple circuit, the unity-gain Sallen and Key is not without its failings. Damping and frequency cannot be independently adjusted and variation of the filter break frequency requires that we alter two different-value resistors simultaneously. A further, less obvious limitation is that low pass and high pass realisations cannot be achieved by the simple interchange of resistive and capacitive elements since upper components are always in a $1: 1$ ratio whereas the lower ones are in a $4 / \mathrm{d}$ ratio. The break frequency of the circuit is set by the PRODUCT of the resistors and capacitors while the damping is controlled so by the RATIO of the capacitors, values of which are not easy to calculate.

Altering this basic configuration yields a more civilised and refined version, a circuit known as the Voltage Controlled Voltage Source (VCVS) or the equal-component-value Sallen and Key filter. At a magic gain value 3-d, resistor values are identical, capacitor values are identical and consequently the circuit can be easily tuned. Equal value components throughout mean that we can switch easily between low and high pass types if so required and by using only a simple switching arrangement. Damping is adjusted

RESPONSE	RF1,2	RD1	GAIN EOUT/EIN	GAIN (dB)	Damping
Highly damped	12k7	10k5	1.3	2.3	1.732
Compromise	11k3	16k9	1.4	3.0	1.564
Flattest amp	10k	22k 6	1.6	4.1	1.414
Slight dips	9k3	30k9	1.8	5.2	1.216
1-decibel dip	8k66	37k4	2.0	6.0	1.045
2-decibel dip	8k45	43k2	2.1	6.4	0.895
3 decibel dip	8k45	48k7	2.2	6.8	0.767

RESISTOR SCALING TABLE FOR EQUAL COMPONENT HPF SALLEN-KEY 12dB/OCTAVE (SELECT RESISTORS FOR DESIRED RESPONSE). VALUES SHOWN FOR $\mathbf{1 k H z} f$ cutoff to Change frequency, scale capacitors suitably-doubling capacitance HALVES FREQUENCY AND VICE VERSA.

Fig. 4 Achieving desired in-band and out-of-band responses for Salien-Key second order high pass filter
by setting the gain which is always moderately positive. Gain affects ONLY damping, which is rather nice from our point of view, but it must be less than 3 or the circuit becomes an oscillator. This is because the damping at this value becomes negative. The ratio of the two resistors on the inverting input sets the gain and damping and as the absolute value of these is non-critical; they are normally set such that the parallel resistance equals the resistance seen from the non-inverting input to ground.

The unity-gain and the equal-value-component versions of the Sallen and Key are definitely the most workable. The gain of the latter type is nommally fixed at 6 dB although values can be manipulated to yield other values. We are already aware that damping determines filter shape. For this filter, there are seven shape options - best delay, compromise, flattest amplitude, slight dips, ldB dips, 2 dB dips and 3 dB dips. They are sometimes better known as Bessel,

(LOG) FREOUENCY \longrightarrow

(LINEAR) FREQUENCY

Butterworth and Chebyshev types. See Figure 4. In essence, we trade sharper cut-off outside the frequency range of interest for worse transient response inside. As it transpires, the flattest response is the one which also gives 4 dB of gain.

Of course, aside from amplitude response, other important features of a filter are the the steepness of the skirts or the uniformity of time delay versus frequency. Up until now, we have concerned ourselves primarily with effects in the frequency domain and specifically what happens in the passband, the transition region -skirt - and the stopband. The other factor of great importance in the frequency domain is the phase shift of $\mathrm{V}_{\text {out }}$ relative to $\mathrm{V}_{\text {in }}$. Phase is important because a signal entirely within the passband of a filter will emerge with its waveform distorted if the time delay of different frequencies in going through the filter is not constant. Constant time delay corresponds to a phase shift increasing linearly with frequency. See Figure 5.

Filters can also be described in terms of their time domain properties; rise time, overshoot, ringing, and settling times and good performance in this domain is of particular importance where the input waveform is step or pulse-like in nature. Overshoot and ringing are both self-explanatory terms for some of the undesirable properties of filters. See Figure 6.

As it transpires, filter design can be optimised for maximum flatness of passband response at the expense of a slow transition from passband to stopband. Alternatively, by allowing some ripple in the passband characteristic, the transition from passband to stopband can be steepened considerably. As already mentioned, a third criterion that may be important is the ability of the filter to pass signals within the passband without distortion of the waveform caused by phase-shifts. There exist different filter designs to optimise each of these characteristics or combinations of them. Rational filter design begins with a set of requirements on passband flatness, attenuation at some frequency outside the passband and whatever else matters.

For audio work, rate of attenuation is an important consideration. To understand this point, we should designate all of the aforementioned circuits as 'filters' rather than' as 'tone controls'. In normal applications, they will be employed to have effect at either the LF or HF end of the audio spectrum and will typically be second or third order filters, that is with rates of attenuation of 12 or 18 dB per octave. Pyschoacoustic reserach has shown that rates of attenuation in excess of $6 \mathrm{~dB} /$ octave lead to some degree of colouration in
the in-band audio signal. As the rate of attenuation increases, so the degree of colouration worsens also. This is of less significance at the extreme ends of the audible spectrum where they are most likely to be used -but some degree of restraint must still be exercised. This is because fast rates of out-of-band attenuation cause severe modifications to the transient response of the in-band audio signal - ringing type time-related components are introduced. Again, Figure 6 shows these filter-inherent transient problems. In the turno-

ver area of the filter, the relationship between instrument fundamentals and their harmonics is of paramount importance. Any temporal disturbances in this area will be perceived as unnatural-sounding, especially if the fundamental is attenuated with respect to the harmonic (or viceversa). Although the Butterworth type, with its maximallyflat response, has in fact been employed within the AutoMate, it is not quite as attractive as it might first have appeared since we are always accepting some variation in passband response. A filter characterised by a flat amplitude response may have large phase shifts and attendant overshoot problems, as already discussed. Conversely, the Bessel type's constancy of time delay is achieved at the expense of an amplitude response which has an even lazier roll-off rate than the Butterworth.

Another worthwhile approach to the problem of realising a filter with a uniform time delay is to use an all-pass filter (also known as a delay equaliser) which have constant amplitude response with frequency. See Figure 7. Phase shifts can thus be tailored to individual requirements and this approach can yield a design which vastly improves upon the time delay constancy of ANY filter. (More of the importance
of this type of filter a little later). Compromise is the order of the day and the Butterworth-type is the true compromise filter with audibly-acceptable performance in both the frequency and time-domains. Figure 8 shows the basic Sallen and Key modified to become a multiple feedback type with

These types lend themselves more readily to inclusion within a mixing console.

To be continued...

Fig. 7 Delay equaliser (constant all pass phase shifting filter)
a bandpass response.
A simple one or possibly two op-amp type filter such as this is a good basis for a design of filter to be used at the extremes of the frequency range. Having said this, one should mention that with a single op-amp type of filter, component spread problems, sensitivity problems or restrictions to available gain as Q rises beyond a certain value are all problems which can present themselves to the unwary. Figure 9 shows the effects of component spread.

True high performance, tunable filtering demands a more complicated circuit with three or possibly four op-amps. In most normal filter applications, a need for this type seldom arises since all that is usually required of the circuit is a filtering action which is fixed at one particular frequency or can be manually tuned.

Next month we move onte more complex filter sections.

Fig. 9 Effect of component tolerance on active filter performance)

(A) SINGLE-AMPLIFIER, MULTIPLE-FEEDBACK BANDPASS

FILTER IN ITS MOST BASIC FORM

(B) MODIFIED VERSION OF SINGLE OP-AMP TYPE WHICH REDUCES GAIN BUT RAISES INPUT IMPEDANCE

(C) INPUT BUFFER ADDED TO ACHIEVE SAME EFFECT AS IN (B) BUT WITHOUT LOSS OF GAIN

(D) POSITIVE FEEDBACK INTRODUCED TO INCREASE FILTER 0

Fig. 8 Bandpass filter development using a single op-amp (multiple-feedback filter)

Price code	Price (inc. VAT)
C	£1.80
D	£2.50
E	£3.25
F	£4.00
G	£4.75
H	f5.50
J	¢6.62
K	£7.20
L	f8.80
M	£10.60
N	£13.10
0	£15.80
P	£17.90
Q	£21.80
R	£23.90
S	£25.90
T	£29.00
U	£32.20
V	£35.80
W	£37.90
X	£40.70

E9107-4 TheConsor Loudspeaker H
E9108-1 Pulsed Widh Truin Controller E
E9108-2 Model Speed Controller-Main Board F
E9108-3 Model Speed Controller-Power Supply F
E9109-1 GeigerCounter E
E9109-2 Hemisync Waveform Generator Board G
E9109-3 Hemisync Puise Generator Board F
29109-4 Hemisyne Power Supply Board C
E9109-5 Nighfighter Main Processor Board 0
E9110-1 Freeze Alarm
E9110-2 Document Saver E
E9110-3 PrototypeDesigner J
E9110-4 Nightfighter - Sound to Light (2 sided) L
E9110-5 Nightfighter-Ramp Generator Board F
E9110-6 Nightfighter - Cyclic Crossfade (2 sided) M
9110-7 Nighttighter-Strobe Board (2 sided)
Nightfighter - 8 Channel Triac Board J
ETI PCB SERVICE, READER'S SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST
Please supply:
Quantity Price Total Price

Ref. No. Price Code

Price

Total Price
Post \& Packing $£ 0.75$
Total Enclosed E
Please send my PCBs to:
Name

\qquad
Address
Postcode
E9111-1 L
E9111-2 Switched Mode Power Supply E
Nightfighter Mode Sclection(2sided) J
E9111-5 Nightfighter-Display Board (2 sided) M
E91:11-6 Nightfighter - Bass Beat Trigger (2 sided) H
E9111-7 Nightfighter-Master Controller PSU K
E9111-8 Nightfighter-Output Switch (2 sided) M
E9112-1 Nightfighter Sensor Switch Master Control (2 sided)
L
L
E9112-2 Nightfighter Sensor Switch Channel Control (2 sided) L
E9112-3 Nightfighter Sensor Switch Sound Trigger. H
E9112-4 Nightfighter Connector Board F
E9112-5 Nightfighter Sensor Switch PSU K
E9112-6 Nightfighter 8-Channel Input Interface (2 sided) P
P
E9112-7 Power On and Overload Regulator P
E9201-1 Laboratory PowerSupply F
E9201-2 Test Card Generator Board M
E9201-3 LED Star (2 sided) L
E9201-4 Enlarger Timer Main PCB (2 sided)
N
N
E9201-5 Enlarger Timer Selector Board (2 sided) K
E9201-6 Enlarger Timer Switch PCB E
E9203-1 MIDI Switcher- Main Board L
E9203-2 MIDI Switcher- Power Suply \ldots
E9203-3 Sine Wave Generator (surface mount)
E9204-1 Auto Car Lights \ldots
E9205-1 Bat Detector... \ldots
E9205-2 Pond Controller F
E9206-FC Stereoamplifier G
E9206-2 Xenon flash trigger Main Board J
E9206-3 Xenon flash trigger Flash Board\ldots
E9206-4 Scanner for audio generator D
E9207-1 Improved Rear Bike Lamp D
E9207-2 Mini Baby Bug Monitor C
E9207-3 Ultrasonic Audiō Sender (2 boards) H
E9207-4 Camera Add-on unit (4 boards)
E9207-5 AutoMate $5 \mathrm{~V} / 48 \mathrm{~V}$ Mixer power supply J
E9207-6 AutoMate Precision 17 V powersupply J
E9207-FC Surround Sound Decoder F
E9208-1 Dynamic Noise Limiter F
E9208-2 Touch Controlled Intercom (2 boards) H
E9208-3 MIDIKeyboard K
E9208-FC Battery charger F
E9209-1 Intercom for light aircraft H
E9209-2 Alarm protector C
E9209-3 Temperature controller M
E9209-FC 45W Hybrid power amp F

SCHEMATIC DRAWING FOR WINDOWS

ISIS ILLUSTRATOR combines the high functionality of our DOS based ISIS products with the graphics capabilities of Windows 3 . The result is the ability to create presentation quality schematics like you see in the magazines. ILLUSTRATOR gives you full control of line widths, fill styles, fonts, colours and much more. When the drawing is complete, transferring it your WP or DTP program is simply a matter of cutting and pasting through the Windows Clipboard.

ISIS - Intelligent Schematics

ISIS SUPERSKETCH (from £69)

A superb entry level schematic drawing package offering all the editing features of ISIS DESIGNER but without the netlisting, bill of materials and electrical rules check features.

Extended device library available for an additional $£ 30$.
ISIS DESIGNER (£275)
Provides all you need to create and edit schematics prior to further processing with ARES or other EDA software. Through the provision of user definable menu options and a special script language, ISIS acts as a 'framework' from which you can control all your CAD software.

ISIS DESIGNER+ (£475)

This top of the range schematics package adds hierarchical design, automatic annotation/packaging, ASCII data import and Design Global Annotation to make it one of the most advanced schematics packages available for DOS.

Features

- Runs under Windows 3.0 or 3.1 .
- Full control of drawing appearance including line widths, fill styles, fonts, colours and more.
- Curved or angular wire corners.
- Automatic wire routing and dot placement.
- Fully automatic annotator
- Comes complete with component libraries; edit your own parts directly on the drawing.
- Full set of 2D drawing primitives + symbol library for logos etc.
- Output to Windows printer devices including POSTSCRIPT and colour printers.
- Loads ISIS SUPERSKETCH and DESIGNER files directly.

ARES - Advanced Routing

PCB II (£69)
Our Graphical User Interface makes this PCB drafting package exceptionally easy to learn and use. Advanced features include Auto Track Necking, Gerber viewing, curved tracks, and DXF export.

ARES (£275)

This package offers multi-layer, netlist based PCB design together with Power Plane Generation, EMS memory support and back-annotation to ISIS DESIGNER + .

ARES AUTOROUTE (£475)

Adds a multi-strategy auto-router to ARES to provide the ultimate in design automation. Special strategy management features allow all design rules to be defined in ISIS so there is very little setting up to do.

Also available as ARES 386-a 32 bit version offering up to 400% faster operation, virtually unlimited design capacity and 1024×768 graphics support.

Please supply photocopies of the following articles from ETI (complete in block capitals):
Month Year Page (if known) , Title .. Month Year

Page (if known)
Title
Month
Year
Page (if known)
Title
I enclose a cheque/postal order made out to ASP Ltd. to the value of $£ 1.50$ per photocopy ordered.
Total remittance $£$....... Date
Name
\qquad
\qquad
\qquad
Send the completed form and your remittance to: ETI Photocopy Service Argus House Boundary Way Hemel Hempstead Herts HP2 7ST

HALCYON ELECTRONICS

Test equipment, video monitors, amateur radio gear, printers, power supplies, communications, disk drives, multimeters, oscilloscopes, scientific instruments, connectors, componemt bridges, frequency counters, signal generators, computers.
TEK 455 50MH2 DUAL TRACE DEL T/B TEK 465.1OMH ZDUAL TRACE DEE T/B SCOFEX 10 OX SHHZ OUAL TRACE SCOPEX GR-SEI LSSG I TRACE LOHG PERS BECKUAN SORO Z ZMHZ DUNL TRACE CROTECH 3 O3OO TRACE 1 SWH LE COUP TESTE OATA PRECISION SDCO WTTM EII PUGGN AND 581 DISX OFIVE LINT.
GOULD OSSOODA AMHZ2 TRACE DEL TR HAMEG 2OG-5 XOHH2. 2 TRACE COMP TESTER HOMEG 2SO 2OUH2 DUN TRACE
HITMCH YCOO'S IOUHZ DEGITRL STORAGE HTTACHI Y YZZ SOMHE OUML TRACE HP. 130 M X.Y D:SPLYY
LEAOER LBOXS NLGNMENT SCOOE
TEK SLIN IOOKHZ SPCCT ANAL WITH 5110 WF
Z SAAQN, SBITN TME BASE
 QUSD LEVEL TGROOOMP THZ.SMHZ OSC SINSO EISO LEVEU TG152 3HZ-SOOKHZ OSC SiNSQ

[249 LEVELL TM3 MICFO VMETEA 3MH2
F TUSETUSE TUNEHUNITS BRANO NEW OERTLING VZO Sing Le Pan BaLANCES 2OGGM ESSSS MGONFRHG BENCH LUUPS FROMES 5
Wes MaNHPTMG BENCH LALIPS E49 SAGE 2HAY CO-MX SWITCAES SAN212 N CON E19 LOI IRER SONAR SCANNER SUFFACE UNIT E398 BOK 1013 EFO 2305 LEVEL AECOPDEF C2S5 UPA CAVOERM CDOP.TM TESTER E99 GOLULD BRUSH 2OO G-TEN CHART RECORDEA tsy SONY HiCZ 10 COLOUR CAMERA MARCON MARINE KESTRE 3
LOGIC ANALYSERS VARIOUS

SUMMER

 CLEARANCEPHLIPS PM340 SAMPLING SCOPE TELEOUPNENT D755 SOWH:Z2 TRACE OE TM TEKTAONX 7 TOOWN, DF1, 7001 LOCIC ANAL

TEK 515:5 58 SERIES PUUGINS
AJAX LEADER MARINE TA $180-1004$ E-4 1 II CONSTANT YOLTAGE TRANSFS ISONA-2KV WANOLGGOTERMAN SPM-2 SEL LEVEL WETER MARCCNI TF2331 DISTM FACTOA MEEER BBC - $B 1$ MASTER COMPNEES SBL BO NASTER CMMNUERS GLACON TFZ330 FWMAN MODULATION METE EETRONXX ZA PROG DATACOMMS TESER VARIABLE OUTPUT PSUSNW I LV TEKTRONX 52 252TA PN VISCOPES

MANY UNLISTED ITEMS AT GREATLY REDUCED PRICES FOR CALLERS ONLY

£125 AVOCZ457/5LCR COMPONENT COMPAAATOR E25 ANALYTICA BALANCES WITH WELGHTS
 FTOO S48 DECADERCNI OOXES FTOM EID KAYE DEE PNELMO WN EXP UNIT 390×2800 tim CS9 VACLUM PLMPS TYP LOOMAAR IZBLMMINI POA CALISRATION STANOARDS CNMB E1/ CO COSSOR CAME3S VAF NAYICOM SF SIG GEN E175 COSSOR CAMS 11 ILSNOR AUDIO SIG GEN From re9 TOPAZ $01007-197.5 \mathrm{KVA}$ 1201240-1201240 150 OL E195 KINGSHML NSISAO 15V AOA PSU CASED 23 MARCONI TF233O WAVE ANALYSEA From tio Hip 618G 62sa 623A SIG GENS

LIST AVALLABLE, BUT TOOO'S OF UNLISTED BARGAINS FOR CALLERS QUALITY ELECTHONIC EQUIPMENT BOUGHT. ALL PRICE EXC. OF P\&P AND VAT 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383

New for 1992

* New MOSFET Amplifiers

improved range of SMOS modules
30W, 30+30W, 60W, 120W
$\star 20$ watt Class A Amplifier * Low profile PCB Transformers a range of encapsulated transformers 4VA, 6VA, 10VA, 18VA, 24VA, 30VA
Write or phone for data and prices... which include details of standard range of toroidal transformers and audio modules.

No price increase for 1992

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Trelephone: (0227) 375254. Fax: (0227) 3651.04

All our products are easy to instafl - they connect directly to either the printer or serial port and require no power supply. They are supplied with easy to use software which collects data for either display or print-out.

8, 12, 16-bit resolution + sign
4 8 s/e or 4 differential inputs

All prices exclusive of V.A.T.

- 8 -bit resolution
one channel
10-25k samples per second
. Oscilloscope/Voltmeter software
(1) 0-5 V input range

Connects to printer port

(6) 10 - bit resolution
(11 channel
5-10k samples per second

- Data logger software
- 0-2.5 V input range
*) Connects to printer port

PICO TECHNOLOGY LTD

Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 7QJ

Andrew Armstrong constructs a party hat to shine above the rest．

This is a novelty project which sequences four chains of LEDs round a hat．Its primary use is to excite comment at the sort of parties to which respectable constructors are not supposed to be invited．The project was initially designed as a one－off for a fancy dress party，and was inspired partly by my wish to experiment with the decorative potential of LEDs．It proved a success，and has been popular with friends who borrow it regularly．

The chimney at the top is purely an engineering addition． Lifelong study of electronic engineering has consistently indicated that electronic components cease to run if the smoke is let out of them．Once this smoke mixes with the air， you cannot extract it and reinsert it into the components， which，lacking their working fluid，never function again．A chimney is provided just in case the smoke is driven out by some overload or breakdown．

On a more pedestrian level，the chimney houses the potentiometer which is used to adjust the clock rate of the sequencer．

PCB Construction And Testing

Assembly of the PCB should present no problems．The ICs should be inserted last，using anti－static precautions．As
a temporary measure to enable testing，four LEDs should be connected to the output，and the preset potentiometer should be connected，though it will need to be disconnected again to route the wire through the chimney．A power supply or battery in the range 4 V to 6 V should be connected to the power terminals of the PCB．Take great care to connect the supply the right way round，because the PCB does not incorporate any protection．

As soon as the power supply is connected the LEDs should sequence，with one LED on at a time．If this does not happen，check that the LEDs are connected the right way round，then look for unsoldered connections and for tracks shorted by solder blobs．This is a simple circuit，and the possibilities for malfunction are limited，so it should soon be working．

Hat Construction

The hat was made from reasonably firm cardboard cov－ ered with black cloth．There are three cardboard sections：the brim，the sides and the crown．The sides were fashioned from a strip of card about six inches wide by eighteen inches long， wrapped around the head of the destined wearer and over－ lapped until it fitted comfortably above his ears！This was then marked for size and an overlap of about 1 inch glued． The inner edge of the brim，cut from a flat piece of card，was determined using the glued side－piece as a template but this cylinder must be＇tried＇onto the wearer and held in shape by

hand while somebody draws around it firstly to make certain that the fit to the head is still accurate after gluing, and secondly because the wearer's head is unlikely to be perfectly cylindrical! Our heads are usually deeper front-to-back than they are from side-to-side, and so the 'sides' must either hold, or be held into, the right shape while the inner edge of the brim is being drawn. It is a good idea to make an initial template on a piece of stout paper, cut it and try it for fit, and if necessary try again before drawing and cutting the card.

The width of the brim itself is, of course, a matter of taste. Ours is about 1.5 inches.

The crown was cut from a circular section, and overlapped until it formed a cone of the right size to fit within the glued side-cylinder.

Before any of these sections were attached together, they were covered with black cloth. The cloth we used is a fairly thick jersey (slightly stretchy) fabric, stretched lightly over the card sections inside and out, and sewn into place with black button thread (which wears better than machine thread). The fabric on the inside of the sidepiece and the crownpiece was also tacked down with a craft adhesive, to keep it taut. Use this method sparingly so that the glue does not soak into the fabric and mark it.

The sections of the hat were then sewn firmly together, taking the needle through the cloth of both sections being fastened. the brim and side sections need a 'seam' inside and out. The crown section, which doesn't take any strain, may only need a 'seam' outside. My fabric consultant actually made a narrow roll of fabric and placed it over the join to neaten it a little, so there is a row of stitches on each side of this piping. This stitching has survived a good many years of use without collapse.

The chimney is simply a small cylinder of the same fabriccovered card, sewn into a hole cut out of the crownpiece.

The shape and style of the hat is, of course, a matter of personal preference. Those of you not versed in fabric technology may wish to consult someone who is. My wife was responsible for the shell construction of the hat, although she looks perplexed when she inspects it now.

You might prefer to fix and finish the sections using some method other than fabric-covering and needlework, but the cloth imparts a nice gloss, and also turned out to be helpful for fixing the batteries and wiring inside the hat.

Final Assembly

The first thing to fit into the hat is the LEDs. There are four rows in this design, and the placing was done simply by starting each row on roughly opposite sides of the hat and then measuring the 'drop' of each row with a short ruler and
the offset roughly by eye. I found that if I got one 'slope' as I wanted it, and then located the other LEDs on that level, opposite and at 90° to the first one, it came out looking right. As to colour: the spiral arrangement is uphill/clockwise, so I arranged LEDs of the same colour uphill/anticlockwise where a red LED is in the bottom of one row, it is second from the bottom in the next row, and so on. All the LEDs of one colour are wired to light up together. The four colours used are red, green, orange and yellow. A later addition was one blue LED in place of one of the orange ones just as a talking point.

I made the holes for the LEDs with a small drill then and there. You might like to mark the spots with a piece of chalk or something similarly non-permanent if you are not certain of your placement. All the LEDs are mounted in led mounting clips. These little collars, held down by a dob of glue, are essential to stabilise the fabric and stop it from fraying (and

Fig. 2 Component Overiay
to neaten the hole). When drilling, try and make the hole in the outer fabric as neat (and small) as possible, as it will give a bit. The LEDs are then inserted from inside the shell.

The next job is to wire up the LEDs, as neatly as possible, running the wires round together in the track of the LEDs, leaving space clear to mount the rest of the works. Then connect the sets of LEDs to the PCB, fit the preset pot in the top of the chimney, and wire that to the PCB, then test the assembly so far by applying 12 volts to the power connections of the PCB. You can either use a lab power supply, or the batteries destined for permanent use. When everything works, a charging socket and a switch should be connected to the power connections of the PCB as shown in the circuit diagram. Connections for the batteries should now be avail-

HOW IT WORKS

This circuit in Figure 1 uses a shift register to generate the moving sequence. Two parts of IC1, the three input NOR gate, are connected in a standard CMOS clock circuit. Clock pulses from this clock the shift register, whose first three outputs are fed to the third part of the NOR gate.

When there is a logic 1 in any of the first three stages of the shift register, a 1 is not needed at the serial input. When the first three stages contain logic 0 , a 1 is fed to the first stage at the next clock pulse. At the same time, a 1 in the last stage would be dropped off the end of the register,

The current drive from the output of CMOS gates is insufficient to drive LEDs, so transistors are used to provide adequate drive. The LED
current is set by one current limiting resistor, R7, because only one chain is on at a time.

The inputs to the second shift register are connected to OV. It would be possible, on an expanded PCB layout, to cascade the second shift register by feeding its D input from the Q3 output of the first part. This would generate an 8way sequence, but would need a gate with seven inputs to generate the serial input signal for the first register. Either an 8 way NOR gate would be used, with one input grounded, or diode logic could be added to the present circuit. In either case, an eight way adaptation of this design would require a new PCB layout, or a Veroboard layout.
able, with positive going to the switch and negative to the charging socket. No more connections to the PCB should be required. Finally check all the wires going to the PCB , because a wire hanging on by one strand, will be difficult to replace later, then sew the PCB to the hat using the three holds down each side to pass the thread through. You may have to drill these holes out to a couple of millimetres, and angle them, to allow a needle to pass through at a suitable angle to 'catch' the cloth lining of the hat.

Fig. 3 Battery charging circult

Fig. 4 Battery detail

The final job is to fit the batteries. Any 12 volt power source will do the job, but it is recommended that you use nickel cadmium button batteries. We have mounted these in pairs, each pair held together by a piece of heatshrink sleeving. The batteries were mounted flat, as shown in Figure 4, rather than as a stack, to allow easier fitting and better balance. The pairs of batteries were mounted at equal intervals round the interior of the hat, as low down as possible without contacting the wearer's head, to keep the centre of gravity low. They were held in place with doublesided adhesive pads.

Charging

The Nickel-Cadmium batteries chosen for this project have a capacity of 170 mAh Aurs. They should be charged at 17 mA for 12 hours to charge them up from flat, then they should run the LEDs for approximately 8 hours. As long as they are at least partly charged, nickel cadmium batteries do not deteriorate rapidly in storage, but they may lose charge at

a rate of up to 30% per month, so must be recharged periodically.

To avoid the need to remember this, it may be useful to leave them on trickle charge permanently. A suitable charger circuit with a switch for slow trickle charge or normal overnight charge is shown in Figure 3. This very simple circuit may conveniently be built on a piece of Vero board.

\section*{PARTS LIST
 RESISTORS
 | R1 | 1M |
| :--- | :--- |
| R2 | 100 k |
| R3,4,5,6 | 4 k 7 |
| R7 | 220 R |
| RV1 | 470 k |}

CAPACITORS

C1 $\quad 10 \mu / 16 \mathrm{~V}$
C2 220n

SEMICONDUCTORS

Q1,2,3,4 BC182

LED $1,2,3,4$	$0.2^{\prime \prime}$ RED
LED5,6,7,7	$0.2^{\prime \prime}$ GREEN
LED9,10,11,12	$0.2^{\prime \prime}$ YELLOW
LED13,14,15,16	$0.2^{\prime \prime}$ AMBER

Optionally a blue LED may be used but note that the viewing angle is limited.

IC1	4025
IC2	

IC2 4015

MISCELLANEOUS

10 off 170 mAh Ni/Cad button cells, RS/Electromail part no 591168 PCB , wire.

					E	$C T R \bigcirc$
		CABIE \& Wire				
		SPEAKERS				

AMAZING ADAPTER BUG

Built into a standard 13A adapter, plugs into any 13A socket and transmits to a normal FM radio. Directly powered from the mains the unit will transmit conversations etc indefinitly Price is $£ 26.00$ ref M26P1

WALKIE TALKIES 1 MILE RANGE
Pair of small pocket sized walkie talkies complete with cases otc. They will operate (subject to buildings etc) up to 1 mile apart 2 PP3 9 v batteries required. $£ 30.00$ ref M30P1

CAR STEREO AND SPEAKERS
Complete system comprising of stereo cassette player, stereo FM radio plus AM band, Pair of good quality speakers all for just $£ 19.00$ ref M 19P1

AMBER MONTTORS

$12{ }^{\prime \prime}$ high res screen 12v 1A supply needed. HerculesiTTL input ie sep HOR and VER sync plus video required. Brand new andhoused in an off white plastic case. $£ 2200$ ref M22P1.

12V SOLAR PANEL

Ideal for trickle charging car batteries etc. Panel is made from amorphous silicon, is waterproof and comes with fly leads. Size is $30 \mathrm{~cm} x$ $30 \mathrm{~cm} \times 4 \mathrm{~mm}$. $£ 15.00$ ref
 M15P1. Other sizes stocked

C64 TAPE STREAMER

Originally made for the Commodore 64 Computer but may be adaptable for other machines. Unit is supplied with its own operating system, and two tapes Approx 20 times faster than normal tape sys-
 ternsl $£ 25.00$ ref M25P1.
Extra tapes are available at $£ 4.00$ each ref M4P1 or 10 for £25.00 ref M25P2.

PC POWER SUPPUES

Brand new units made by Aztec either 110 v or 240 v input giving 5 v at $15 \mathrm{~A}, 12 \mathrm{v}$ at $5 \mathrm{~A},-5 \mathrm{v}$ at . 3 A and -12 at .5A Fully cased with on/off switch and built in tan. $£ 15.00$ ret M15P2 Also available is a 200 watt version at $£ 22.00$ ref M22P2 Both types have standard PC fly leads.

40 PAGE CATALOGUE AVAILABLE CONTAINING OVER 1,500 SIMULAR PRODUCTS FREE ON REQUEST!

EMERGENCY LIGHTING SYSTEM

Complete systern give sup to 3 hours light from an integral 10AH sealed lead acid battery The battery is kepl fully charged by the mains, as soon as the mains fails the two powertul lamps are switched on and remain on until power is restored. Maintenance free. $£ 19.00$ complele with battery. ref M19P2

AMSTRAD 454 COMPUT.
ERS
Customer returned units complete with a monitor and circuit diagrams. These units are generally not working and are not returnable. Price is $£ 35.00$ ret M35P1.

AMSTRAD 6128 COMPUT-

Efs
Customer returned units complete with a circuit diagram and built in $3^{\prime \prime}$ disc drive. These
 units are generally not working
and are not returnable. Price is $£ 2900$ ref M29P1.

CORDLESS MICROPHONE

Small hand held battery operaled microphone that transmits to a standard FM radio, good range. Our price $£ 15.00$ ref M15P3.

VIDEO SENDER

Transmits video pictures from a video recorder or cam corder to any television in the housel. Can also be used to transmit from cam corder to video recorder, no more trailing wires 1 £15.00 (ex psu) ref M15P4 £20.00 (inc psu) ret M20P1.

BUILT BUG

Built and tested superior FM bug 100 m range, fits in match box all you need is a 9 v battery and an ordinary FM radio! $£ 14.00$ ref
 M14P1.

ULTRASONIC ALARM SYSTEM

Complete alarm system that comprises a delector that simply plugs into a 13A socket in the area you wish to protect and a receiver which plugs into a 13A socket where you wish the alarm to sound. You could put one in the garage and one indoors or perhaps prolect your neigbours house etc. Fully ad-
justable sensitivity. E 25.00 for complete sys-
 tem ref M25P3.

TALKING TELEPHONE COIN BOXES
Phone bill too high? fit one of these and save Fully programmable for different call rates, chargebands, lime of day etc. accepts $10 \mathrm{p}, 50 \mathrm{p}$ and $£ 1.00$ coins. Phone box actually speaks to you with buill in voice synthersiser. Wall or desk mounting. Two types available 1 with built in lock at £29.00 ref M29P2 the other with
 no lock but easily adaptable is just $£ 2300$ rel M23P1. Unit takes
4 C cells and is used in conjunction with an ordinary phone. Supplied with full instructions, BT approved.

STEAM ENGINES

Ever wanted one? brand new units made by the famous Mamod company complete with fuel, burner etc £30.00 ref M30P 1 .
Other models stocked.
including traction engine at
£59.

BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX BNS SET TELEPHONE 272203500 MAL OFDER TERMS: CASH PO OR CHEOUY WITH ORDER PLUSESNOPOST PLUSVAT. PLEASE ALLOW 7 - 10 DAYS FOR DELJVERY

NEXT DAY:DELVERY ED.00

PC CASES

Full size off white metal cases ideal for building your own PC four drive bays, attractive plastic front panel. £24.00 ref
 M24P1.

VIEWDATA SYTEMS

Made by Tandata these contain every thing you need to start dialling into databases and bullitin boards such as Prestel etc just plugs into astandard tv or monitor Complete with modem, infrared remote controlled keyboard and console. $£ 20.00$ ref M20P2

SPECTRUM +2 COMPUTERS
Aeriurbeshed popular computer with built in cassette deck and 128K of memory 232.00 each ref M32P1 PSU 515.00 ref M15P4
We also have some requiring attention at $£ 19.00$ (non returnable) ref M19P3

SPECTRUM +3 COMPUTERS
Relurbished popular
computer with built in disc drive and 128 k of memory $£ 45.00$ each ret M45P1 PSU £15.00 ref M15P5. We also have have some re quiring attention at $£ 25.00$ (non returnable) ref M25P4.

EPROMS

Clean erased eproms at bargain prices 27 C 64 pack of 10 for $£ 7$ ref M7P1, 27C256 pack of 10 for £9 ref M9P1, 27C512 pack of 10 for $£ 10$ ref M10P1.

WINDUP SOLAR POWERED

RADAO

Compact unit with built in hand
charger and solar panel just a
few turns of the handle powers
the radio for some timel Our
price is just $£ 14.00$ ref M14P2

bugging tape recorder

Contains voice activated switch so only actual conversations are recordedl takes a standard audio cassetle and uses AA batteries. £20.00 ref M20P3

TALKING ALARM CLOCK
Wakes you up by telling you the time also speaks the time at the push of a buttonl Battery operated £ 14.00 ref M14P3

BROADBAND RADIO RECEIVER

Covers VHF 54-176 mhz (CB, air FM, TV, PB, WB etc etc) hand held unit with squelch control and carrying strap. £ 15.00 ref M15P6 Superb value.

12 BAND WORLD COMMUNICA-

TIONS RECEIVER

Mains or battery operated covers 9 short wave bands plus FM, LW and AM bands.
Exceptional value at $£ 19$. ref M19P4

SINCLAIR C5 MOTORS

12v 29A (full load) complete with 4 to 1 reduction gearbox giving 800 rpm output Motor measures $8^{\prime \prime} \times 4^{\prime \prime}$ with toothed pulley output. $£ 40$ ref M40P1. We also stock $13^{\prime \prime}$ wheels with tyres at $£ 6$ each ref M6P1, 16" at $£ 6.00$ ref M6P2 and an electronic speed controller kit at $£ 17$ ref M17P1.

Aerial Toner Unit

Shabaz Yuosaf describes how to get the best possible reception from your radio.

,n Aerial Tuning Unit (or ATU for short) is a very useful device for getting the best results with a badly matched antenna. For example, an aerial will not give good results if used on the CB bands and vice-versa, but with an ATU placed between the aerial and receiver (or transmitter), quite decent results are achieved.

The ATU described here is very simple to construct, and costs far less than a commercial unit. It can be used throughout a wide part of the radio spectrum (SW to FM and beyond) but was originally designed for use with a CB.

The Circuit

Figure 1 shows the circuit diagram. It is built inside a metal case, which acts as a screen. Inductor L1 is an air coil, wound around a 1 " former. The inductor has to be variable, so it is täpped at various points with thin wire, and these are connected to switch SW1 which is a 1 -pole 11-way rotary switch. This gives 11 taps along the inductor. The recommended variable capacitor CV1 is a dual gang 365 p per section type, but only one gang is used here. The exact capacitance does not matter, so any variable capacitor suitable for AM radios can be used. Indeed,
an old AM reciever can be a very useful source for such a variable capacitor. The entire circuit is assembled in a smart vinyl-covered aluminium box which certainly won't look out of place among your other equipment.

Construction

Coil construction is the trickiest part of the assembly, and for this a former of about $1^{\prime \prime}$ diameter will be required. A suitable former can be made by using the tube in which solder is often supplied. The top is cut off, leaving a tube about $2^{\prime \prime}$ long. Two small holes are drilled at each-end of the tube, and these serve to secure the ends of the coil, see Figure 2. The coil is constructed from 18 gauge enamelled wire, wound round the former 19 times.

19 TURNS 18SWG ENAMELLED COPPER WIRE, 25 mm DIA.

Fig. 2 Construction of coil

The tappings are
made by scraping the enamel on the winding and soldering a short length of insulated wire to it. The tappings must be made on windings $0,1,2,3,4,6,8,10,13,16,19$. Now, following the wiring diagram shown in Figure 3, these tappings are soldered to the switch SW1.

Holes are now drilled in the case to accomodate the components.

The switch and variable capacitor are mounted on the front of the case, and the chassis socket at the rear. Another hole at the rear will be needed for the CO-AX input cable. A strain relief or rubber grommet will be needed to prevent the cable from rubbing against the metal. The photograph shows the positioning of all the components. The braid from the cable is connected to the case with a nut and bolt.

The end of the cable is terminated with a connector, depending on the equipment the ATU is to be used with. If it is for CB use, this means a PL259 plug. If you have never assembled this type of plug, you might find the photograph helpful. Finally, the lid is fitted and screwed on.

Testing

Before connecting the ATU up to your equipment, check the input and output connectors with a multimeter set to ohms. The resistance between ground and input, and ground and output should be infinity. If all is well, connect up the ATU. The ATU is tuned for maximum signal strength measured, say, on an S-meter.

BUYLINES

The variable capacitor was purchased from Cirkit, cat.no. $06-05250$. The switch is a fairly common device, and was bought from Tandy. The case was obtained from Maplin, order no. LFO2C.

PARTS LIST

CAPACITORS
C1 100p
VC 365 dual gang
MISCELLANEOUS
L1 19 turns of 18 swg enamelled copper wire around 25 mm diameter former
SW1 1 pole 11 way
Coaxial cable, coaxial UHF chassis socket

MILLIONS OF QUALITY COMPONENTS AT LOWEST EVER PRICES

Plus Tools, Watches, Fancy Goods, Toys. Mail order only. UK only.

All inclusive prices
NO post, or VAT etc to add on.
Send 34 p stamped self-addressed label or envelope
for catalogue/clearance list.
At least 2,100 offers to amaze you.
Brian J Reed Electronics 6 Queensmead Avenue, East Ewell Epsom, Surrey KTi 7 3EQ

Tel: 081-393 9055

Hurry-Order now while stocks last!

 DT3800 pigitat JUST COMPARE THESE FEATURES AND PRICE!- 31/2 DIGIT MAX. ‘1999’ READ-OUT
- 30 RANGES-SINGLE ROTARY SWITCH
- tRANSISTOR hFE TEST
- 10 AMP FACILITY (20 AMP LIMITED DURATION)
- AUDIBLE CONTINUITY TEST
- 0.5\% BASIC aCCURACY (DC Volis)
- POCIEESIZE ZUST
 - COMPLETE WITH 9 BATTERY: NTECRALL STALD. SHROUDED HADS . INSTRUCTIONS \& CARRYING CASE

Name
Address
Postcode
Please send me quantity .DT3800 Multimeter (s) I enclose cheque/P.O.

THE MILL, MILL LANE, WORTH, DEAL, KENT CT14 OPA DRELLS

Tele 0304612132

Hesing Technology

Cromwell Chambers, 8 St. Johns Street, Huntingdon, Cambs. PE18 6DD

Tel: (0480) 433156 Fax: (0480) 214488

TEST EQUIPMENT SYSTEM CONSULTANCY

Supply
Maintenance
Commissioning

Repl;acement Parts
Supply of Service \& Operators Manuals Components

Distributors for:
WAUGH INSTRUMENTS, RAMTEST LTD, KRENZ ELECTRONICS, PANTHER

Figure 21 A single TV hue showing the total and the active line periods

More of the latest ideas in television from James Archer

satisfactory video resolution. As I said earlier, with the present digital technology it's not feasible to convert the signals to digital form at IF, around 40 MHz . Although it is possible for present-day monolithic analogue digital convertors with 8 bit resolution to digitise signals at these frequencies there seems little chance of their being produced at domestic equipment prices for a few years yet. Semiconductor manufacturers who are experts in the fabrication of such state of the art devices generally say that it is far more difficult to add one bit of resolution linearity to an analogue to digital converter than it is to double the amount of memory that can be stored on a chip. It is generally expected, therefore, that the video A / D converter will be placed after the video demodulator. This means that the video analogue-digital convertor will have to deal with a signal of less than 6 MHz bandwidth, and since a typical receiver video demodulator will provide 1-2 volts of signal at its output, there should be plenty of signal to drive the ADC .

When we come to deal with sound in the re-
 o much for the advantages of Digital TV, now let's see what can be done practically, and which bits of the television receiver we can sensibly digitise. You will remember from the first part of this series that the Nyquist theorem states that the sampling frequency for a signal must be twice its bandwidth if we are to avoid problems. We also saw that we need 8 bits per sample for
ceiver the frequency-modulated audio intercarrier sound signal is at 6 MHz for UK receivers. The audio signal has a very wide dynamic range, however, and we have seen from our compact disc players and NICAM transmissions that high-fidelity sound processing requires around 14 bits per sample, although acceptable sound can be achieved with 10 bits and a companding process such as is used in the NICAM
system. Digitisation before demodulation of the analogue FM sound with adequate resolution would therefore prove difficult, and it is far more practicable to place the audio AD convertor after the sound modulator. Remember that this ITT chip set came onto the market several years before NICAM transmissions began, and so the design was intended to deal with the standard analogue FM sound channel, or two channels in countries where dual channel FM stereo is used; the NICAM signals have their own special decoder chips in today's receivers.

The third section of the receiver that we can usefully digitise is the deflection control and synchronisation circuitry, so let's have a look at the circuit requirements. First let us look at the order of timing accuracy that we are likely to need for the circuits that deflect the electron beam. If we make the reasonable assumption that the smallest horizontal displacement that we can recogrise on a 26 inch diagonal television screen is about $1 / 10$ of a millimetre, this would correspond to 10 nanoseconds.

Just to show you that I haven't made the figure up, lets do the maths.

A typical so-called 26 inch (diagonal) screen might have a visible line length of just under 21 inches, say 520 mm for the purposes of our example.

The active line time, that is the time during which the scanning spot is carrying picture information, is 52 microseconds.

Therefore the total deflection in $52 \mu \mathrm{secs}$ i.e. 52,000 nanoseconds is 520 mm . Thus a deflection of 520 mm corresponds to $52,000 \mathrm{nsecs}$, and the minimum displacement of 0.1 mm corresponds to a time of 10 nsecs.

Since we have to cope with 5200 elements (i.e. a 520 mm screen width with each element 0.1 mm long) across the screen, we need to deal with 13 bits per sample since 13 bits implies 2 to the power of 13 samples $=8192$, which can comfortably cope with 5200 elements. Notice that 12 bits per sample would not be enough, since this would only give 2^{12} $(=4096)$ samples, which would not be sufficient.

Video Processor

The A-D and D-A conversion of video signals is carried out on one chip, the video codec, or coder/decoder. The analogue digital decoder is of a type that uses 2^{n} comparators in parallel, where n is the number of bits.

As can be seen from the diagram, the signal to be digitised is applied to one input of all the comparators, and the other input of each of the comparators is fed with a carefully defined fraction of the reference voltage. Somewhere down the chain of comparators one of the comparators will have a signal applied to its input that is the same as the fraction of the applied reference voltage on its other input, and this will

Fig. 23 The principles of a simple analogue to digital convertor.
cause its output to go 'high'. This signal will then be fed to logic circuits which will provide an appropriate digital number as the output.

The engineering of such devices is complex, since to convert to an eight bit resolution signal it is necessary to use (2^{8-1}) i.e. 255 comparators. Multiple comparators contain large numbers of circuit elements, and this number doubles as the number of bits per sample increases by one; this sort of design therefore makes it important to reduce the number

Fig. 24 Video processor IC block diagram

Binory System	Grey Code Voriant
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	1010
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

of bits used, and so the number of comparators, and for this reason the ITT chip 'cheats', using only 7 bits of resolution but appearing to give 8 bits.

This is achieved by biasing the reference voltage of the AD converter during alternate horizontal sweeps by a voltage corresponding to half the least significant bit. This technique converts a luminance value that is in the middle of two 7-bit steps into the lower value during one sweep and into the higher value during the next. The idea is that your eye will then average the two, and the effect will be that the picture appears to have been resolved with 8 bits per sample.

The comparators in the A-D convertor have their output in the form of a Gray code.From the table you will see that the Gray code has the property that only one of the four digits ever changes each time instead of one or more if normal binary coding were being used. This reduces the possibility of voltage spikes giving rise to false data, and is thus an advantage for video analogue-to-digital conversion.

Once it has been digitised, then, the first block of the video-processor changes the signals from Gray code to normal binary, and then the signal is passed through filtering circuits which extract the luminance and chrominance signals.

Since one of the major reasons for going digital in the receiver was to do away with adjustable coils and capacitors used in analogue models, digital filtering techniques have been used, which comprise delay, adder, and multiplication circuitry which can output signals of the correct shape.

The luminance filter has a variable frequency response that allows the response to be artificially peaked, increasing the amplitude of the high-frequency content of the luminance signals, especially on any 'edges' within the picture, providing a subjectively sharper picture.

The contrast multiplier box then sets the amplitude of the luminance signal and its level is clipped, to preventoverloads, before being fed back to the DAC part of the video codec chip.

Now lets look at the chroma circuitry on the block diagram. The first step is that the amplitude of the chroma is controlled by the automatic colour-control circuitry, which keeps the amplitude of the reference burst at a pre-set level. Remember that the amplitude of the burst controls the saturation of a PAL signal, so this will ensure constant saturation independent of any variations that take place in the filters. Absence of the burst on monochrome signals will actuate the colour-filter.

The colour data is then fed to the decoder, which gives colour difference outputs. As you know, the PAL sub-carrier is amplitude modulated with the BY and R-Y signals, known as U and V when appropriately weighted, and using phasesynchronous demodulation of the subcarrier, phase errors
lead to reduced saturation. In the digital receiver such problems are eliminated by phase-locking the sampling clock to the colour reference burst which is sent by the transmitter at the start of each line.

It is interesting to note here that we don't need the usual PAL glass delay line, since the necessary delay can be obtained by passing signals in and out of blocks of Random Access Memory on an integrated circuit chip; this is a very good example of the sort of advantages that digital techniques can bring to receiver designers.

We obtain phase lock by comparing the signal with the R Y signal of the burst, and the relative phase difference between the burst and the sampling clock is used to adjust a Voltage Controlled Oscillator (VCO) in the colour decoder.

The Y, B-Y and R-Y signals are routed back to the D-A converters on the video codec, which are of the R-2R ladder network type, shown in Figure 26.

The digital signal, four bits in the case of the simple circuit shown in our diagram, is used to set the four switches, one for each bit, to the appropriate state, either off or on. The reference voltage shown comes from a constant voltage source, and the switches steer the current to earth via the appropriate number of resistors. The DAC is effectively a multiplier, producing as its output a current which is the product of the reference voltage and the digital number which has been applied to the switches.

Once back in analogue form the signals are separated into R,G,B signals which drive the ordinary video-amps whose outputs feed the tube guns.

Notice that R,G,B, signals are fed back to the video processor chip, which monitors the beam currents and automatically adjusts to pre-set levels. The black and peak white reference levels are also controlled by the video processor, which sends out test signals during the frame flyback period and then adjusts the gain and bias of the video amplifiers.

In receivers which have the 'picture in picture'(PIP) capability, the small images are usually produced quite independently of the main picture, since the different size of the images makes it impossible to show the pictures with normal timings, the small size of the picture meaning that the active line and field times of the small picture are much shorter than those of the normal image. Reflecting on this, I started to think how one might achieve the PIP effect using only analogue technology, and rapidly came to the conclusion that it would be virtually impossible to obtain the necessary timing accuracy for the synchronisation signals. No doubt this is why PIP only became available on digital receivers! The PIP signals are obtained by first of all decoding the incoming composite PAL picture signal, and turning it into the Y, U, and V components, so as to avoid the horrendous problems that could occur if we tried to process the PAL colour signal with the video signal timings being so much altered, using the only synchronisation available, the 10 cycles of subcarrier reference burst at the beginning of each normal picture line. Once in YUV form the video signal to be turned into a PIP is sampled so that roughly every third picture element along a line is kept, the rest being thrown away, and two out of every three horizontal lines are also discarded. This leaves a picture with about 88 lines, every line consisting of just over 200 samples (picture elements). In terms of picture area, the PIP is about one ninth of the original, since we have kept only about one third of the horizontal picture elements and one third of the lines. If you

Fig. 27 The deflection processor chip
have ever tried to look at a test card as a PIP you will know that it is almost impossible to see any detail; now you can see why! This reduced information picture is then quantised to only 6 bits, and the available 26 levels give 64 levels of luminance or colour. Y U and V signals are fed to the PIP memory in time division multiplex, different sampling frequencies being used for luminance and colour difference. To display the PIP the signals are read out from the memory store, converted back to analogue form and then finally recoded into PAL before being fed in to the receiver video circuitry.

Returning to the ITT chipset, after our little digression to PIP, it is important to remember that the 7 bit output of the video A-D converter contains the line and frame synchronisation information as well as the chroma and luma data, so this same signal is also fed to the deflection processor IC

Deflection Processor Circuits

The first thing that happens to the signal is that it is fed to a black-level clamp which provides a video bias signal which keeps the black level of the video at a fixed voltage in the video amplifier; this ensures that full use is made of the whole conversion range of the video ADC.

To separate the syncs from the video a level is chosen halfway between black level and the bottom of the sync pulse. In order to increase the reliability of the sync timing, several pulses are integrated to give a timing reference for the line oscillator. Line flyback pulses are then fed back into the deflection processor and a phase comparator detects the relative phase between the horizontal flyback circuit and the line sync pulse. The output from the comparator is used to control a divider that counts down to $15,625 \mathrm{kHz}$. This can be done to the required accuracy of one-quarter of a cycle of subcarrier (about 56 nS), since the system clock frequency runs at four times sub-carrier frequency, about 17.72 MHz .

A 'gate-delay chain' is used to enhance the resolution by delaying the sync pulse by a variable amount. Provision is made to automatically change the time constant of the circuit so that the receiver can deal with non-standard sources such as video games or VCR's.

The line sync pulses produced by the chip are used to drive a conventional line output stage and deflection coils.

The frame, or vertical oscillator is a resettable counter, reset by each incoming frame sync pulse. It has a variable width acceptance window so that it can cope with nonstandard signals if required. When a standard signal is received it operates in its socalled 'locked-mode', which takes account of the fact that broadcast TV signals have line frequency, frame frequency and colour sub-carrier locked together in precise ratios. The deflection processor therefore derives its line and frame frequencies by dividing down from the received colour subcarrier frequency, and this makes the deflection circuits proof against interfering signals or fading. The frame syncs provided by the counter are fed to a deflection correction circuit which provides for East-West raster correction, and the output drives a pulse-width modulator circuit. The modulator outputs are then amplified by a class D amplifier before being filtered to provide sawtooth and parabolic field frequency outputs which then drive conventional o / p stages.

Audio Processor Circuits

Let's look now at the audio processor chip, which was designed from the start to deal with two-carrier stereo-sound signals of the type that has been used in West Germany for some years; NICAM decoder chips are now available for use in countries like the UK which use this improved digital sound transmission system.

The inputs to this chip, from the audio demodulator are two channels of audio and the pilot tone, which in this system is used to indicate one of three states, mono, stereo or bilingual, where left and right hand channels carry different languages. The pilot tone is usually a weakish signal of narrow bandwidth, needing high-Q filters to satisfactorily process it. This is another area where digital techniques are useful, since it proves easier to make such filters digitally, and digital filters need no tuning to the correct frequency because the resonant frequency depends only on the crystalcontrolled clock.

Each of the three signals goes through its own A-D converter section after passing through a conversion filter which maximises resolution and filters out any noise.

Satisfactory digital audio needs 14 bits of resolution, and once the signals are in digital form the ALU, arithmetic logic

unit, controls all filter coefficients so as to give any desired audio characteristics. The audio processor's serial bus allows the control computer to alter tone control characteristics or perform mono/stereo/bi-lingual switching.

The Control Computer

In order to tie together the work of all these different chips we need a computer, so the last of our chips, not surprisingly, is called the control computer, and this passes instructions between all the other digital processors. Such an approach gives great flexibility and allows a vast range of features to be included.

Any normal analogue command (increase sound, decrease brightness, alter contrast, etc.) needs first to be translated into digital numbers so that these digital signals can control the various signal-processing IC's. The control computer needs to be able to control the tuner on the receiver which it does with a phase-locked loop frequency synthesizer, and it also allows features like auto channel search and channel indication. The computer has to cope with signals received from an Infra Red receiver controlled by a remotecontrolled handset.

Commands from the control computer are transferred to the other digital processors via a 3-bit digital bus, which is fairly slow, but quite adequate. As an example it takes around 100μ s to transfer one byte of address information to a data store.

An important role of the computer is to carry out the regular alignment checks and adjustments of the receiver that the use of digital techniques makes possible. The central element here is a non-volatile EEPROM which is loaded with alignment data in the factory when the receiver is first lined up, and from then onwards the computer can ensure that these optimum alignment values are maintained even as the receiver circuitry ages. The receiver owner can store settings of brightness, contrast and volume, and tuning settings for his favourite stations in the EEPROM.

Digital techniques in receivers don't have to stop there. Receivers of the future will have ghost-cancellation circuits with adaptive equalisation to cope with varying degrees of 'ghostliness', and already there are several different techniques in use. These receivers measure the displacement of the ghost image by measuring the time difference between a specially inserted pulse or series of pulses and its reflection, and then automatically adjust the digital filters to provide the necessary video delay to achieve cancellation. Japanese ICs
which can eliminate a small number of reasonable static reflected signals are already on the market, but European receiver manufacturers have so far considered that the improvement in picture quality that can be produced by these circuits does not yet justify their inclusion in receivers. Much work on ghost-cancellation is currently being carried out in Europe, however, as part of the wider project to generally improve and extend the working life of the PAL television system. The ghost cancellation systems being studied include 'receiver training' signals in the vertical blanking interval of the picture signal, which consist of multi-frequency 'chirp' signals, which should allow the receivers to cope actively with a wide range of varying ghost signals.

We are just beginning to have the technological capability to economically build complete digital frame stores into our receivers; this could allow all sorts of signal processing improvements to be made to our pictures, including the reduction of noise and cross-colour effects and the elimination of flicker, and there are already several receivers on the market which provide displays which refresh the screen at the rate of 100 fields per second.

Once digital transmissions actually begin, then digital receivers will really become useful. No analogue to digital convertors will be required, which will simplify the overall receiver circuitry considerably, but counteracting this will be the need for extremely high speed integrated circuits to deal directly with the incoming digital signals. Whilst it is true that these could be at data rates as high as $1000 \mathrm{Mbit} / \mathrm{s}$ if real time, uncompressed HDTV signals were to be used, it is far more likely that some of the data compression techniques now being used experimentally will reduce the data rates to much less than a tenth of the raw data rate, and ICs are now under development that will readily cope with this type of signal.

Digital television - research work in related fields

The research work and investigations to determine the best methods for transmitting digital television signals have not needed to start from scratch. Much research work into different aspects of digital communications technology has already been carried out in Europe, and the results from several existing European collaborative research projects are likely to be directly applicable to future digital transmission systems.
It is eight years since the first European collaborative re-
search project to consider the digital coding of HDTV picture signals for transmission purposes began. The COST 206 (CO-operation europeene dans le domaine de la recherche Scientifique et Technique) project studied problems related to the subsampling and interpolation of digital picture signals, and examined the difficulties of practically implementing the circuitry required. Much was learned about the highspeed digital architectures needed for such signal processing, and this led to the successful development, in large scale integrated circuit form, of an HDTV coder/decoder. This coder-decoder equipment provided contribution-quality signals for transmission at a data rate of $560 \mathrm{Mbit} / \mathrm{s}$.

Although such high data rates can readily be used by broadcasters, there will also be the need for lower bit-rate local digital delivery systems, perhaps even to the home, via optical fibres and broadband ISDN networks. Part of the work involved in the EUREKA-95 project was to develop a system for digitally coding and distributing various types of MAC signals at bit rates of up to $140 \mathrm{Mbit} / \mathrm{s}$.

Since 1986 a group of experts from the CMTT has been developing an algorithm to reduce the bit rate required for the distribution of television signals digitised in accordance with
pictures, the CMTT group agreed that this was the path to take, and their work has shown that good results can be achieved at $34 \mathrm{Mbit} / \mathrm{s}$, although some small distortions can be noted on certain critical picture material. This $34 \mathrm{Mbit} / \mathrm{s}$ system, which is currently going through the ETSI standardisation process, is primarily for use over inter-studio contribution links.

The work just described applies to standard definition 625 line television pictures, but as HDTV develops in Europe there will be similar needs to distribute the signals at far more modest bit rates than the $1 \mathrm{Gbit} / \mathrm{s}$ of the source pictures. Another European project, HIVITS(HIgh quality VIdeophone and high definition Television Systems) is involved in developing hardware to implement similar coding techniques for HDTV, and one system, which was successfully demonstrated last year, used a number of subsystems working in parallel, the HDTV data being cleverly shared out amongst the various subsystems. HIVITS is a project of the RACE programme (Research \& development in Advanced Communications technologies in Europe), a wide ranging European collaboration whose objective is to introduce a broadband communications network throughout

CCIR Recommendation 601 from $216 \mathrm{Mbit} / \mathrm{s}$ to $34 \mathrm{Mbit} / \mathrm{s}$, one of the lower levels of the digital distribution hierarchy used by European PTTs. The need to reduce the bit rate from over $200 \mathrm{Mbit} / \mathrm{s}$ to $34 \mathrm{Mbit} / \mathrm{s}$ represents a reduction factor of about 6 , and the task proved to be quite difficult. Early attempts used systematic subsampling techniques, but these introduced distortion on many different types of picture, and the later work has concentrated on coding techniques based on the Discrete Cosine Transform (DCT). Because DCTbased pictures are essentially made up of 'blocks', and early implementations of the technique for telephone videoconferencing had made the blocks obvious, there was some initial reluctance to use DCT. As further work in broadcast research laboratories showed that the techniques were not too complex for use with standard 625 -line TV

Europe during the 1990s.
Another part of the HIVITS project is to investigate coding formats which would be appropriate to the final link in the distribution chain - the link to the home. Digital systems can provide great flexibility, and an ideal system would permit various bit rates to be supplied, in order to satisfy the need for different resolutions; although the viewer might want the best possible HDTV resolution when watching a film, he will need only a fraction of this resolution, and a minuscule amount of data, when using his videophone. The HIVITS researchers are looking at coding methods that can provide the necessary flexibility and that will allow data to be readily transcoded from one transmission channel to another, so that the same basic data could provide a domestic viewer with perfectly adequate standard TV pictures, whilst
offering the local cinema the chance to use full resolution HDTV to display the film. This upwards and downwards compatibility of data and pictures is at the heart of the HIVITS work, and combinations of different coding methods are currently being investigated.

Another European project EUREKA-256, has developed digital coding techniques particularly suited to the transmission of HDTV signals via satellite. Using a DCT-based system similar to that used in the $34 \mathrm{Mbit} / \mathrm{s}$ proposed ETSI standard, but using four separate $34 \mathrm{Mbit} / \mathrm{s}$ modules, the transmitted bit rate was $70 \mathrm{Mbit} / \mathrm{s}$, and QPSK coding was used. An early version of the coding algorithm, which did not include motion compensation, was used to transmit World Cup matches from Italy via the Olympus satellite, using $1250 / 50$ and $1125 / 60$ HDTV sources on different occasions.

Later versions of the coding system, which do include motion compensation, have been used successfully for HDTV transmissions via Eutelsat and TDF-1, and the project is
the digital transmissions that we shall be seeing in a few years time.

Convergence - today's 'buzz-word', tomorrow's technology?

Those working on digital television research began with fairly well-defined and focused aims, trying to develop a system that would produce television pictures of a quality better than anything previously seen. As the work has developed, however, it has become obvious that the same sort of technologies being developed for television use could have applications over a much wider field. It was soon realised that the techniques which have been developed for digital television, including digital image processing, data compression and bit-rate reduction, could also be used for processing all sorts of different audiovisual information. Computer graphics, computer games, compact disc storage of audio and video, digital still-image photography, and document scan-

Fig. 30 Media Fusion by Integrated Video Coding Technology (Courtesy MPT NEWS, Japan). ning were readily identified as applications which could benefit from some commonality in the way in which the data representing, but deeper thought shows just how far these same technologies could lead. The current buzzwords for all this are 'convergence' and 'media fusion' - all the different technologies are converging towards a common goal and common technologies.

Libraries, art galleries, record archives of the world, unite!

The one simple truth that is starting to shine forth from all this digital research is that virtually anything that we class as 'information', no matter how broadly we base this definition,
continuing with the aim of developing suitable digital coding for a proposed digital HDTV satellite broadcasting service at $20-22 \mathrm{GHz}$. This will more complex coding and modulation schemes.

Again planning to use digits for television, but for conventional 625 line TV rather than HDTV, is VADIS (Video Audio Digital Interactive System), a European project which is aimed at developing the enabling technology required to allow full 625 line resolution pictures to be carried at around bit rates of $5-10 \mathrm{Mbit} / \mathrm{s}$. This implies data compression by factors of 20 to 40 times compared with the $216 \mathrm{Mbit} / \mathrm{s}$ of the digital source pictures. If such compression can be achieved reasonably economically, and the cost is important, then near studio quality digital pictures could be carried over telecoms networks and on terrestrial UHF channels as well as satellites, and domestic digital videorecorders providing excellent picture quality could become a reality. VADIS originally began as a project of the 150 MPEG (Moving Picture Experts Group) group, but now continues as a European Community project, EUREKA 625.

The in-built flexibility that digital systems provide means that the same stream of digits can be used to carry standard TV, HDTV, and even radio programmes, and the experience gained in all aspects of digital broadcasting from these many different European projects will act as a strong foundation for
can ultimately be represented by no more than a complex stream of digits. Just think about it: books, letters, voice messages, pictures, whether from a newspaper, by Matisse, or from your own favourite computer graphics package, music from Sting to Stravinsky, photographs, videotaped programmes, teletext pages, all can be tumed into digital code and stored, processed and treated like any other digital signal. At its simplest, we could regard the processing and storage of any signal of this type as merely an information handling problem - something librarians and museum curators have been familiar with for decades. Once this fairly sobering fact has been realised, it makes little sense to have completely different digital coding and storage systems for every new product that comes along, engineers effectively reinventing the digital wheel (there's a nice thought - there just has to be a future article on that topic somewhere!) for every different project. How much more sensible if all the various new developments that are being worked on could use the same basic coding and information processing technologies, using a common family of digital chips which could be cheap and readily available because they are suitable for use across a wide range of fields, not specifically built for the latest 'Sanyitsu' wonder gadget. The advantages of common hardware are clear, but the benefits of media fusion could range much wider. In the field of 'software', different media are
currently non-interchangeable. How frustrating if you are left with a complete set of Beethoven symphonies on vinyl, but you have only a CD player, or if you have 'books of the world' on microfiche, but no fiche reader! How much better things would be if software produced for one medium could be used directly on another; how useful if an image from the latest TV programme could be printed out directly for use in a colour magazine, or if a current article on education from The Times could be sent directly down the telephone to the teachers at schools throughout the country. How useful (although perhaps annoying!) if your 'voice message' could appear as a subtitle on the television programme that the person you are trying to reach is watching, wherever he may be. All these things are perfectly possible today, but the different hardware and software technologies used prevent their being used widely.

Although it will be enormously difficult to bring together the manufacturers and standards makers of the world, 'media fusion' is something that will not go away, and the pressures towards common standards for dealing with information in its widest sense are already growing. The Japanese have made a start by organising a Digital Video Committee, and Figure 30 shows how they are recommending that a single 'Integrated Video Coding Technology' should be developed as the heart of an information system based on video media.

The committee has been asked to look into how video technologies should be oriented towards the 21 st Century, and how the integration of various standards concerned with video coding technologies should be achieved. Some of the world's major standardisation bodies, including the CCIR (Comite Consultatif International de Radio Communica-
tions), the CCITT (Comite Consultatif International Telegraphique et Telephonique) and the 150 are also keenly aware of the need to set standards for these convergent technologies, and although such standards are probably still some years away, the mere fact that their importance has been recognised gives us some reason to be optimistic about future developments.

The way forward

To sum up then, digital transmission really does seem to be the way forward. The advantages that it can give in terms of enhanced picture quality, reduced interference and more channels, mean that its eventual introduction is a certainty. The big problem at the moment is that the systems which we are able to demonstrate in the laboratories utilise vast amounts of computer processing power, and we cannot really foresee that our laboratory computers will be replaced by a few inexpensive chips within less than perhaps five years.

We have ranged widely in this series on digital television, moving between the fairly dense thickets of digital processing techniques and the comparatively open spaces of freethinking looks into the digital future. There are numerous hazards ahead, and still a great deal of work to be done, especially in developing the large scale integration of image processing circuitry, so that we can have access to cheap chipsets. Continuing work on international standardisation is also vital, even though history has shown that progress in this area can be painfully slow. Whatever the problems, however long or short the timescale, there is absolutely no doubt in my mind that digital television transmission will make it in the end!

PCB Foils

The PCB foil patterns presented here are intended as a guide only. They can be used as a template when using tape and transfer the creation of a toil

Heartbeat/Audio Listener

Rapid Fuse Checker

45watt Hybrid Power Amp Sept '92

C3 in Fig. 2 and the parts list shows a voltage of 63 V . This should be a $\mathbf{4 0 0} \mu / \mathbf{4 5 0 \mathrm { V }}$ capacitor. C4 should be $220 \mu / 63 \mathrm{~V}$.

Dynamic Noise Limiter August '92
Fig. 4 R 5,6,7 should be labelled 100 R as in the Parts list. IC3,4 in the Parts list are for the other channel and IC5 should be a 7812 regulator. The component overlay in Fig. 5 shows the foil displaced to the left by 8 mm . The correct version was reproduce in the September issue. In Fig. 4 Q1 collector should not be connected to S1 and TL072 input. It should be connected to the supply line above. ie to regulator, C6 and R1. The regulator should be labelled IC5. In Fig.5, C6 should be labelled C7 and vice versa

 044266551

Send your requirements to:
ETIClassified Department, ASP, Argus House,
Boundary Way, Hemei Hempstead, HP2 7ST
Lineage: 60p per word (+ VAT) (minimum 15 words)
Semi display:(minimum 2.5 cms)
£15.00 per single column centimetre (+ VAT) 1 Per Electromarl $124.00(+$ VAT)
$\}$ Insertion
Ring for information on series bookings/discounts.
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

RARTRIDGE ELECTRONICS

 - Auto - Manual Control - D. T.M.F. or L.D. /DialingOUTSIDE BROADCAST UNTT
EASY TO CARRY
FLIGHT CASE BROADCAST OVER
STANDARD PHONE NETWORK

REPORTER
 Model T26

UNTT D
318 HIGH ROAD
BENFLEET
ESSEX SS7 5HB
TELEPHONE: 0268793381

Falcoñ DIY SPEAKERS

> Send tor our FREE price list PL2
All we ask tor is a large SAE All we ask for is a large SAE
stamp) or $\$ 2$ bill (air) Overseas,
> (Europe - 3 international reply coupons)
> SYSTEM DESIGNS (Tota Kits):
> Focal, KEF Constructior, Seas, etc
> FOCAL, KEF, Audax, Coles, Peerless,
> Seas, Slare, Elac Metal Dome,
> Scanspeak, atc.
> Also Group, Disco Units.
> Active \& Passive Components,
> Accessories, Polypropytene Caps.
AUDIO AMATEURPUELICATIONS
> BACK ISSUES:
> Speaker Builider, Audlo Amateur \& Glass. Audio \& lots of books
> FALCON ELECTRONICS (Dept ETI) Tabor House, Mulbarton, Norfolk NR14 BJT, (0500) 78272
K.I.A. SALE!! PA. AMPLIFIERS 100 watt $240 \mathrm{v} / £ 20$. Slider - Mixers £7 - Slider - Powersupplies £3 1 Regent Road, Ilkley LS29 9DZ Catalogue + 30 components + cassette 60p

DIGITAL RECORDER, records up to 20 secs, of speech, or music on one 1.. devices can be cascaded for longer duration. Also device can be
controlled by extermal logic P.C. Controlied by externa ogic P.C. messages can be stored on one I.C Ideal for home security systems, door announciator and general analogue recorded information, device can be re-recorded thousand of times even it unit is switched off the information is permanently retained in memory. complete kit of parts or $\$ 4995 \mathrm{p}$ fully
 Macaulay Road, Luton Beds. LU4 OLP, Mall Order only.
AT LAST HERE IT IS "The World of Bug \& Mini Transmitters' Dozens of circuits in one book Limited edition only 1,000 copies available Special Offer only $£ 795$ inc P\&P Cheques, Postal orders to: Gainsford Electronics, 71, Gainsford Road, Southampton, SO2 1AW

KEYBOARDS FOR MIDI CONVERSION (ETI, August) Several available, plus organ components, SAE for details, F Wright 23 Merrion Close, Sunderland Tyne/Wear

COMPONENTS

Technical and Scientific Supplies

OSCILLOSCOPE - Battery Portable. Thandar SC110A. Used, manual. 1 only MULTMETER - Thandar TM351. 28 ranges. Used, with manual. 1 only POWER SLJPPL. Y. $\pm 25 \mathrm{v}$ dc 2 AA , unreg. from mains. - RS 591 -843. Boxed REED RELAYS, Ex-equip. Alma CPRI. IK coil $1 p$. Operates $6-15 v$. Tested REED RELAYS. Ex equip. Alma CRGC. 7300 hm 1 p c/o 7 -15v Tested DIODES 1 N4 148 ex-equip. Tested
2N3705 TRANSISTOAS NPN 350 mW TO92 ex-equip
BNC fixed sockets. Ex-equip. Mostly gold plated contacts/insulators BNC fixed sockets. Ex-equip. Mostly gold plated contac
LEAD-THROUGHS, ceramic, threaded mounting for 635 mm hole AC MAINS STABILISERS, various in stock (carriage extra!) \qquad M/CW. These £ 69
$£ 42$ without manuals but are tested before despatch.

Valves, components, instruments, enquiries welcome.
Prices include VAT at $\mathbf{1 7 . 5 \%}$.
Please add $£ 3$ per order for post and packing.
PO Box 19, Hythe, Southampton, Hampshire SO4 6XQ. Tel:- (0703) 848 666. Fax:- (0703) 897079

P.C. P.S.U. 50 watt $115-230 \mathrm{~V}$ input 5 V $4 A \rightarrow 12 V 2.5 A$ output with bullt-in fan. IEC inletton off9.95 8a STC P.S.U. 240 V input $6 \mathrm{~V} 6 A$ output (converts to 12V 3A detalis
availabia) 10 V input 10 B output (convorts $\mathbf{5 5} .05$ an 12 V 5 A no details) (converts to 12V 5A no details)
.$\$ 5.95 \mathrm{ea}$ 600 line output iransformers $£ 1.2580$
240 V in 0-28V 62 VA out transformer $£ 275$ Transformert PCB gives 2w7.5V 32VA with skt for 5 or 12 V regulator, will power fioppy drive7.75 ea
Uitrasonic transducer (transmitreceive)
3 to 16 V Piezoelectric soundiers . 1.50 pair 9V DC alectromechanical sound 24 V DC electromechanical sounder 2A 250 V keyswitch 3 position key removeable in two positions. OlL switches PC8 MT 3/4/6 way $5 V$ SPCO SiL reed relay
5V 2PCO DIL minieture retay 12 V 2 PCO or 4 PCO continental60p 12 V 10A PCB MT (to make contact) relay.
3 to 12 V electro magnetic accoustic
transducer with data.
2.457 ,
crystals.
Bridges 25
Bridges
2 A 100 V
$31 b$ Mixed components pack
25 ofl mixed relays \qquad 40 of mixed foggle switches 59.85 50 off mixed switches, toggie, rocke midero, slide
miniature axfai chokes $0.1,0.18,0.12 .0 .33$. $0.39 .0 .15,1,330 \mathrm{H} 10 p$ ea 100 for $£ 7.50$ 50 Mixed lerminal blocks
250 oft 16/22/24/40 way IC Skts.... 54.95 Crystal Osciliators $10 / 24 / 48 \mathrm{MHz} \$ 1.00$ ea Spider Plug Laads

WE ALSO gUY ALL FORMS OF ELECTRONIC COMPONENTS, P.S.U.'S, DISK DRIVESETC; LISTS TO BELOW ADORESS
 LEEAS ADO ROCO PGP EXCERT HENS WARMS

Dept ET, COMPELEC,
14 Constable Road, St Ives, Huntingdon, Cambs PE17 6E0

Tel/Fax: 0480300819

KITS

NEW VHF MICROTRANSMITTER
KIT tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB , SPECIAL OFFER complete kit ONLY £5.95, assembled and ready to use $£ 9.95$ inclusive P\&P. Credit card orders telephone 021411 1821, Fax: 0214112355. Cheques/PO's to: Quantek Electronics, (Dept ETI) 3 Houldey Rd, Birmingham, B31 3HL Send SAE, for details of this and other kits - Callers welcome.

FAX YOUR ADVERT 044266998

MICROTRANSMITTERS

Telephone Bugs, Electronic Defence, Alternative Technology Plans, Kits, Locksmithing information and tools. 4×1 st class stamps for catalogue. ACE (T1), 53 Woodland Way, Burntwood, Staffs

KITS AND COMPONENTS

MOSFET AMP KIT.

(MAPLIN CAT NO LP56L) 150 Walls into 4 ohm
s 16.45 (+ 75 p p\&p per order) PRINTECH
158 Wrenthorpe Lane, Wrenthorpe Waketleld, W. Yorkshire WF2 OPF

SPECIAL OFFERS

SHERWOOD Data סystems

. The single board computer people The Archer

2 serial ports 4 memory slots Watchdog timer

4 counter timers 4 counter timers
Battery Backup

32 digital I/O lines Expansion bus Powerfail interrupt

On board mains psu Various daughter cards

Options

Debug Monitor Option Switches

Tel: 0494464264

SPECIAL OFFER TO ETI READERS

only £17.99 (inc P\&P)
A must for all students and hebbyists learning

THE VIDEO

ELECTRONICS FOR THE HOBBYIST (An excellent 90 minute video using computergraphic simulations)

> Send cheques/PO payable to

ON-LINE VIDEO MARKETING (DEPT EV.3) The Cottage, Tredown Farm, Bradstone, Milton Abbot, Tavlstock, Devon PL19 OQT,

COMPONENTS

"ELECTROCOMP"

WE CLEAR

Electronic Components - Semiconductors
Computer Equipment • Electronic Test Equipment Populated Boards In fact anything with an electronic bias
JOB LOTS, FACTORY CLEARANCE A SPECIALITY Decision normally within 24-36 hours

LOOKING FOR COMPONENTS!! As an ex Industrial buyer for 25 years won't sell you rejecl or lautty productll. Only top quality components at the right price!! No Mail Order only production quantities!!
SNAGS only one. My tems are C.O.D. Deliveries normally made within 48 hours
Phone or Fax your list or enquiry to: 063546496
ELECTROCOMP 36 Talbot Close, Newbury, Berks RG13 IUA

FOR SALE

TOP QUALITY + NEW \dagger EX-SOCKET $*$ D/SOLD \dagger COMPONENTS					
DRAM'S			DRAM'S		
8118.	ex sock	0.47	4164	NEW	0.71
4164.	ex sock	047	41256	NEW	1.77
41256 41464	ex sock	071	41 C 1000	de/sol	1.18
41464.	de/sol	1.18	STATIC'S		
STATIC'S			6116 NEW	NEW	
$6167 \mathrm{LP}-8$	ex sock	071	62256 LP	ex sock	2.35
6264LP	ex sock	118	MISC		
MISC			D765AC		
AM7910DC	ex sock	3.53	80C85A	ex sock	1.18
8031 AH	ex soc	071	AY-3-8910	ex sock	1.18
81 C 55	ex sock	0.71	825 ON	ex sock	1.41
8237A	NEW	1.18	8753H	ex sock	2.35
8255 A	ex sock	1.18	8755A	NEW	3.53
Z80ACPU	ex sock	1.18	8749 H	ex sock	2.94
8748H Z80BCPU	ex sock	2.94 1.41	V20-8	NEW	3.53

UK Customers only. Please send cheques PO's or reg' cash. Piease add 1.20 for P+P. Goods despatched ASAP allowing for cheque clearance. ALL above components are including VAT
Please make cheques PAYABLE TO: "MAIL ELECTRONICS"
UNIT 6 FORBES COURT
BILLINGTON ROAD
BURNLEY, LANCS, BB1 5UB
WE ALSO STOCK NEW: CAPS, DIODES, REGULATORS, IC SOCKETS EPROMS, XTALS, OSC', CMOS, 74, LS, HC, HCT, ALS. TRANSISTORS. LINEARS. ALL AT LOW,LOW PAICES. RING TODAY 028226670 Note :- ALL PRICES ARE SUBJECT TO AVAILABILITY AND CHANGE WITHOUTNOTICE

EQUIPMENT

WANTED

TURN YOUR SURPLUS NSISTORS, ICS ETC INTO CASH immediate settlement We also welcome the opportunity to quote for complete factory clearance
Contact:
COLES-HARDING \& CO. 103 South Brink
Wisbech, Cambs. PE14 ORJ
BUYERS OF SURPLUS INVENTORY ESTABLISHED OVER 15 YEARS Tel: 0945584188
Fax: 0945475216

COURSES

STUDY ELECTRONICS ON THE BBC MICRO. An interactive approach to learning, Four program titles available Introduction to Electronics Principles': 'Electronics Mathematics', 'Digital Techniques' and now'Programming for Electronics' Programs include theory, examples, self test questions, formulae, charts and circuit diagrams. User inputs and calculated outputs. £29,95 each + E2.00 p\&p. Cheque or postal order to EP.T educational software Pump House Lockram Lane Witham Essex. CM8 2BJ Please state BBC 'B' or Master series and disc size.

COURSES

| Start training now for the following
 courses. Send for our brochure -
 without obligation or Telephone us on
 0626779398 | ETI/1092 |
| :---: | :---: |$|$| Telecomms | |
| :---: | :---: |
| Tech C\&G 271 | |
| Name | Radio Amateur
 Licence C\&G |
| Micro-
 processor
 Introduction to
 Television | |
| Radio \& Telecommunications Correspondence School
 12 Moor View Drive, Teignmouth, Devon TQ14 9UN | |

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street
Tel: 05123609820512360154
47 Whitechapel
Tel: 0512365489 Liverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

SERVICE

 MANUALSAvallable for Most Equipment. TV, Video, Audlo, test etc. Any Age, Make or Model. Write or Phone for Quotation. MAURITRON (ETI) 8 Cherry tree Road, Chinnor, Oxon, OX9 40Y. Tel:- (0844) 351694.
Fax:- (0844) 352554

TO ADVERTISE IN ELECTROMART TELEPHONE 044266551

MANCHESTER

THE ELECTRONIC SHOP
Electronic components, test equipment, telephone accessories computer accessories, microphones, disco lighting. speakers, turn tables,
mixers, meters, stylus.
29 Hanging Ditch,
Manchester M4 3ES Telephone \& Fax 0618341185

BINDERS

Keep your copies in first class condition Keep your collection of ELECTRONICS TODAY INTERNATIONAL
in mint condition with these specially commissioned binders. The price is just £6.95 which includes postage and packing* How to order Send cheque/P.O to ASP. BINDERS OFFERS,
 Argus House, Boundary Way, Hemel Hempstead HP2 7ST *UK ONLY - OVERSEAS PLEASE ADD £1.50

TELEPHONE ORDERS (24 HRS) 044266551

ETIELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words.
Semi-display $£ 14.00$ per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name
Address.
Daytime Tel. No:
Signature
Date
PLEASE DEBIT MY ACCESS/BARCLAYCARD No.
 Expiry Date

FOR SALE COMPONENTS
PLANS
\square OTHERS STATE

EDITORIAL Editor Paul Freeman

CREATIVE
Art Editor Peter Kirby Designer Iain Houston Technical Illustration Peter Holland Photography Manny Cefai

ADVERTISEMENT SALES
Advertisement Manager
Mark Linacre
Advertisement Sales
Michele Donovan
Advertisement Copy Control Marie Quilter
Key Accounts Manager
Donna Wells
MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager
.Debra Stupple
Production Manager
Tony Dowdeswell Group Editor Stuart Cooke
Group Advertisement Manager Claire Jenkinson

ETI is normally published on the first Friday in the month preceding the cover date. The contenis of this pubtication including all articles, plans, drawings and programs and all copyright and all Olher imbeliectual property itghts therein belong to Argus Speciatist Publications. All rights conferred by the Law of Copyright and other Intellectual property nights and by virue of international copynght cotventiens are specrically reserved to Argus Specialisl Publications and reproduction requires the prior witten consent of the company ©1990 Argus Speciatist pubications. Al reasonable care is taken inthe preparation of the magazine contents, but the pubishers cannot be hedd iegally responsibie lor errors Where mistakes do octur, a correction advertisments ars accepted by us in good taith as correct at the time of and dala contained th the advertisers nor the publishers can be hetd tesponsible, however for any variations atfecting price or availability which may occur aher the publication tias closed tor press.

Subsciption rates...UK £23.40 Europe £29.50 Sterling Overseas £31.00 US Dollars Overseas $\$ 62.00$

Publisherd by Argus Speciafist Pubications. Argus Hóuse, 8 oündary Way, Hêmel Hempsiead HP2 7ST. Telephone (0442) 66551, UK newstrade distribullon by SM Distribution Ltd, 6 Leigham Coun Road. London SW18 2PG. Telephone 081-667 8111. Overseas and nonnewstrade sales by Magazine Sales Department, Argus House. Boundery Way. Hemel newstrade sales by Mempstead. HP2 7ST. Telephone (0442) E8551. Subscrtplions by Argus Subcription Services, ETI, Queensway House, 2 Qubensway, Fledhill, Surrey RH1 1OS. US subscriptons by Wise Owl Woridwide Publications, 4314 West 238th Street. Torrance, CA90505 USA Te ephene (213) 3756258 Typesetuing and orlgination by Ebomy, Liskeard, Corrwall. Printed by Willshipe Lid. Bristol.

[^0]
n the rising tide of thefts, we publish next month a
favourite amongst ETI projects - a Car Alarm. Using the the PCB given away on the front cover, why not construct this hide-away circuit to protect your car.

If you are a games fanatic then try building our electronic die.

On the audio scene we look at an international project for measuring hi-fi audio responses. We also look at the software for the Universal I/O interface card and if you temeber 'The Hemisync' from August '91 then we have a quick-build version to see if the idea works.

All this and more in your November edition of ETI in the shops on 2nd October.

The above anticles are in preparation but circumsilancos thay prevent publication

Lact Month

ur September issue featured:
Interom for light aircraift
45W Hybrid Valve/Transistor Power Amp
Alarm Protector Unit
Window Opener
Temperature Controller
AutoMate Mixing desk Part 6
Digital TV Part 4
Why Waveguides
Back issues can be obtained from Argus Subscription Services. Address in column to left.

ADVERTISERS'INDEX	
…n.. 23	
AP PRODUCTS 15	LAB CENTER 45
AUTONA .. 23	MAPLIN ELECTRONICSOBC
BK ELECTRONICSIFC	MFA
CTTADEL PRODUCTS ${ }^{\text {IBC }}$	NUMBER ONE SYSTEMS 14
CRICKLEWOOD ELECTRONICS 50	OAK LEAF TECHNOLOGY 32
DISPLAY ELECTRONICS.................... 10	OMN ELECTRONICS 32
ESR ELECTRONICS 11	PICO TECHNOLOGY 47
HALCYON ELECTRONICS 46	REED ELECTRONICS 53
HESING TECHNOLOGY 53	S.LIM, MODEL ENGINEERING 23
Jan BuLi 51	STEWARTS 61
JAY TEE ELECTRONICS 46	
JPG ELECTRONICS 22,53	

TOTAL PROGRAMMING SOLUTIONS FROM CITADEL

£449．00
－Lniversal programmer－the complete designers kit．
－O．er 1,500 devices－call for list on FREE disk．
－EPROM，EEPROM，Flash，BPROM，GAL，PAL，MPU etc．
－Serial EEPROM，EPLD，MACH，MAX，MAPL，CMOS
－İvice testing－ $74 \mathrm{XX}, 40 \mathrm{XX}, 45 \mathrm{XX}$ ，DRAM，SRAM
－IE，ice testing－ $74 \mathrm{XX}, 40 \mathrm{XX}, 45 \mathrm{XX}$ ，DRAM，SRAM
－ミ－- ll half card to install in PC may be left in place
－ミニニure round cable and locking D connectors

ADAPTERS FOR THE PC82

From $£ 85.00$

- 三ィニnd programming facility for special devices．
- 土．civs alternative socket types eg PLCC．

U．－i－gang adapters for fast programming of EPROMS，GAL，PAL and popular CPU types．

FATURES ALL PROGRAMMERS

$=---$ IBM PC，install the interface card and programming socket，load －＝menu－driven software and you have a complete design system at tin ingertips．The programmers will run on any compatible IBM万a－－ines such as XT，AT，＇386 or＇486．Whether it be an Amstrad or ＝－－\quad aq the system will work．All features are software driven and sucrelied on $5 \frac{1}{4^{\prime \prime}}$ disks，these may be copied onto your hard disk using the I－copy command．All control of the programmer，programme に－こees etc are menu driven by selecting manufacture，type number，and $\because=-$ ion of a suitable speed algorithm．Blank check，read \＆modify，verify， ＝－gramme，auto programme，security blow etc．
FEE SOFTWARE UPDATES as new devices become available．

FLE CONVERSION FACILITIES

－－EX to BIN File conversions for Intel，Motorola and Tektronics
－ 2 way／4 way Bin file splitter for $16 / 32$ bit data．
－Dumpfileto Console，modify and re－programme．

For further information and your FREE PC82

M25 BULK FAST ERASER

£199．00
－Same advanced UV source as the M1 but 4 lamps．
－Very large capacity 64×32 pin chips or one double Eurocard
－All other features as M1．
－Low profile steel case finished in powder coat
－Size $365 \times 240 \times 65 \mathrm{~mm}$ high．

M1 FAST ERASER
Advanced UV source．
Typical erase time three minutes．
LED display of set time and countdown．
End of time indicated by beep and display．
Large capacity 13×28 pin devices．
Sturdy construction，plated steel \＆aluminium
Small footprint only $65 \times 225 \times 100 \mathrm{~mm}$ high．

PC86 HANDY POCKET DEVICE TESTER
$£ 99.00$
Tests and identifies virtually all TTL \＆CMOS．
Test many DRAM and SRAM memory chips
LCD display of type number and results
Battery operated（PP3）and completely self－contained
Zero insertion force test socket
Dimensions $90 \times 140 \times 30 \mathrm{~mm}$.

PC84－1 to－8 ROM PROGRAMMERS From $£ 139.00$

－Low cost EPROM programmer－devices up to 1 Mb CMOS and NMOS．
－One to eight gang versions．
－To program 2716 to 271000.
－ 32 pin Zero insertion force sockets

ORDER INFORMATION

Please include $£ 7$ for carriage by overnight courier（ $£ 20$ for exports）and VAT on all UK orders．ACCESS，VISA or CWO．Official orders welcome from Government bodies and local authorities．

BUYER'S EUIDE TO ELEGTRONIC GOMPONENTS 1998

Over 700 product packed pages with hundreds of brand new products.

On sale now, only $£ 2.95$

[^0]: Argus House, Boundary Way, Hemel Hempstead HP2 7ST Telephone (0442) 66551 Fảx (0442) 66998

