ETI ELECTRONICS TODAY INTERNATIONAL

THE ELECTRONICS, SCIENCE & TECHNOLOGY MONTHLY
FEBRUARY 1992 £1.60

1.

AN ARGUS SPECIALIST PUBLICATION

BOOTSTRAPPING
A circuit idea reconsidered

COMETS
Relics of the Universe

INTUITIVE ELECTRONICS
A different angle on learning

AUDIO MIXING DESKS
The Digital approach

MAINS SWITCHED TIMER
THOUSANDS PURCHASED BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS

FOUR MODELS: MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)

ALL POWER RATINGS RMS. INTO 4 OHMS, BOTH CHANNELS DRIVEN

FEATURES:
- Three bass boosters (low, middle, high)
- Two bass boosters
- Level control
- Enhanced bass tone
- Standard 775mV input
- Open and short circuit protection
- Latest MOSFET for minimum distortion
- Dual aluminum cases
- MXF600 & MXF900 fan cooled with D.C. loudspeaker and thermal protection.

USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS DISCO ET CTC.

STUDIO DISCO MIXER

+ 20W.3R64

PLUS HIGH DISCRIMINATION

Both Sound USED Following

including Echo CD, Tape, Stereo

SPECIALIST CABRIO

500W SETS 12V - 150Bass, 800W 200Bass

SERIES OF POWER AMPLIFIERS

THOUSANDS PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos.Fet Output power 150 watts R.M.S. into 4 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor > 300, Slew Rate 50Vus.

OMP/MF 200 Mos.Fet Output power 200 watts R.M.S. into 4 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor > 300, Slew Rate 50Vus.

OMP/MF 300 Mos.Fet Output power 300 watts R.M.S. into 4 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor > 300, Slew Rate 50Vus.

OMP/MF 450 Mos.Fet Output power 450 watts R.M.S. into 4 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor > 300, Slew Rate 50Vus.

OMP/MF 500 Mos.Fet Output power 500 watts R.M.S. into 4 ohms, frequency response 1Hz - 100kHz -3dB, Damping Factor > 300, Slew Rate 50Vus.
FREE ISSUES

A subscription to your favourite magazine is the best way of making sure you never miss an issue. And from now until 28th February 1992 you can get extra copies ABSOLUTELY FREE, by taking advantage of our special subscription offer. With a monthly title for example, this means you get 14 issues for the usual price of 12.

Order your subscription today using the coupon below and you will receive the best in reading entertainment right into the 1990's. This offer is also open to subscribers wishing to extend/renew their current subscriptions.

Standard subscription rates ▶ ▶ ▶

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Middle East</th>
<th>Far East</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archimedes World</td>
<td>£35.40</td>
<td>£45.70</td>
<td>£46.30</td>
<td>£49.30</td>
<td>£51.30</td>
</tr>
<tr>
<td>Aeromodeller</td>
<td>£33.40</td>
<td>£28.20</td>
<td>£28.40</td>
<td>£30.20</td>
<td>£28.70</td>
</tr>
<tr>
<td>Citizens' Band</td>
<td>£18.20</td>
<td>£23.40</td>
<td>£23.70</td>
<td>£25.70</td>
<td>£24.90</td>
</tr>
<tr>
<td>Clocks</td>
<td>£28.80</td>
<td>£35.60</td>
<td>£38.65</td>
<td>£37.40</td>
<td>£37.40</td>
</tr>
<tr>
<td>ETI</td>
<td>£19.20</td>
<td>£24.10</td>
<td>£24.40</td>
<td>£26.80</td>
<td>£25.40</td>
</tr>
<tr>
<td>Film Monthly</td>
<td>£18.80</td>
<td>£22.60</td>
<td>£22.90</td>
<td>£25.10</td>
<td>£24.25</td>
</tr>
<tr>
<td>Ham Radio Today</td>
<td>£13.20</td>
<td>£20.30</td>
<td>£20.80</td>
<td>£23.30</td>
<td>£20.90</td>
</tr>
<tr>
<td>Military Modelling</td>
<td>£21.00</td>
<td>£26.20</td>
<td>£26.60</td>
<td>£29.65</td>
<td>£28.40</td>
</tr>
<tr>
<td>Model Boats</td>
<td>£19.80</td>
<td>£24.65</td>
<td>£25.00</td>
<td>£27.60</td>
<td>£26.60</td>
</tr>
<tr>
<td>Model Railways</td>
<td>£19.80</td>
<td>£30.50</td>
<td>£30.75</td>
<td>£33.45</td>
<td>£31.25</td>
</tr>
<tr>
<td>Photography</td>
<td>£23.40</td>
<td>£30.50</td>
<td>£25.80</td>
<td>£27.90</td>
<td>£26.80</td>
</tr>
<tr>
<td>Popular Crafts</td>
<td>£19.20</td>
<td>£24.80</td>
<td>£25.80</td>
<td>£27.90</td>
<td>£26.80</td>
</tr>
<tr>
<td>Radio Control Model Cars</td>
<td>£19.20</td>
<td>£24.45</td>
<td>£24.30</td>
<td>£27.30</td>
<td>£26.30</td>
</tr>
<tr>
<td>RC&M & Scale Modeller</td>
<td>£19.20</td>
<td>£29.40</td>
<td>£30.10</td>
<td>£35.00</td>
<td>£33.10</td>
</tr>
<tr>
<td>Radio Modeller</td>
<td>£19.20</td>
<td>£25.30</td>
<td>£25.70</td>
<td>£28.65</td>
<td>£27.50</td>
</tr>
<tr>
<td>Scale Models International</td>
<td>£18.00</td>
<td>£22.60</td>
<td>£22.80</td>
<td>£24.55</td>
<td>£23.10</td>
</tr>
<tr>
<td>Steam Classic</td>
<td>£19.80</td>
<td>£26.40</td>
<td>£26.80</td>
<td>£30.00</td>
<td>£28.70</td>
</tr>
<tr>
<td>Video Today</td>
<td>£19.20</td>
<td>£24.75</td>
<td>£25.10</td>
<td>£27.80</td>
<td>£26.70</td>
</tr>
<tr>
<td>Woodworker</td>
<td>£21.00</td>
<td>£29.50</td>
<td>£30.00</td>
<td>£34.00</td>
<td>£32.50</td>
</tr>
</tbody>
</table>

Alternate monthly titles (8 for the price of 6)

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Middle East</th>
<th>Far East</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Control Boat Modeller</td>
<td>£9.60</td>
<td>£12.35</td>
<td>£12.50</td>
<td>£13.90</td>
<td>£13.30</td>
</tr>
<tr>
<td>Radio Scale Aircraft</td>
<td>£13.50</td>
<td>£16.65</td>
<td>£16.80</td>
<td>£17.95</td>
<td>£17.00</td>
</tr>
<tr>
<td>Practical Wargamer</td>
<td>£11.70</td>
<td>£14.80</td>
<td>£14.90</td>
<td>£16.10</td>
<td>£15.10</td>
</tr>
<tr>
<td>Model Engineers' Workshop</td>
<td>£15.00</td>
<td>£18.90</td>
<td>£19.20</td>
<td>£21.10</td>
<td>£20.30</td>
</tr>
</tbody>
</table>

Fortnightly title (26 for the price of 24)

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Middle East</th>
<th>Far East</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Engineer</td>
<td>£33.60</td>
<td>£44.80</td>
<td>£45.55</td>
<td>£21.10</td>
<td>£48.80</td>
</tr>
</tbody>
</table>

Quarterly Title (6 for the price of 4) — negative

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Middle East</th>
<th>Far East</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent Flight</td>
<td>£10.00</td>
<td>£12.05</td>
<td>£12.20</td>
<td>£13.20</td>
<td>£12.80</td>
</tr>
</tbody>
</table>

Please commence my subscription to with the issue.
I enclose my cheque/money order for £.............................. made payable to ARGUS SPECIALIST PUBLICATIONS
or debit my access/Barclaycard number Card expiry date

Signature Name
Address Postcode

UK subscribers may pay for their subscription using Direct Debit — for further information telephone: 0442 876661 during office hours.

Please return this coupon with your remittance to:
Select Subscriptions Ltd. (ETI/16) 5 River Park Estate, Billet Lane, BERKHAMSTED, Herts. HP4 1HL, UNITED KINGDOM

ETI FEBRUARY 1992
Features & Projects

An Introduction To Audio Mixers 2
Mike Meechan looks at how digital circuitry has infiltrated the mixing desk for control, effects and audio circuits.

Comets
With the recent space mission to investigate Halley's comet still fresh our minds, Douglas Clarkson provides us with some interesting facts about the many comets in our universe.

Bootstrapping
An old circuit idea revived by S D Waddington.

Mains Switched Timer
A useful mains timer for a variety of control applications by David Ponting.

Thevenin and Star-Delta Transforms
If you have problems in finding the voltage, current or total resistance from a complex circuit then maybe this article is for you. A P Stephenson highlights an established method of simplifying circuits.

Circuit File
We present the second part on Instrumentation And Test Gear Basics by Ray Marston.

Intuitive Electronics
Mike Barwise is back with a new series. This month he provides us with an introductory concept, analogous to water flow, of how electricity behaves.

The Acoustdix Amplifier
A 20watt integrated amplifier for you to build by John Dix.

Tech Tips
The column for reader circuit ideas is here once again.
Editorial

By Paul Freeman

Spreading the word

A new series called Intuitive electronics by Mike Barwise starts this month. In his introduction, he makes several points about the clear divisions existing between the theorists whose distilled knowledge seems to be disseminated between a small number of individuals 'in-the-know' with hardly any notion of the practicalities of the subject compared to those that handle and develop circuits by a certain feeling.

It is true that in delving into a specific research area one has to create new terminology to explain new phenomena. The danger is that it can alienate the outside world who feel increasingly shut out, fearing the consequences. It's no wonder the public envisage research workers as mad eccentric professors. The tendency for the scientific community to push themselves further and further into ever tighter corners and risk isolation should be strongly resisted. Isolation could spell political suicide resulting in funds dwindling even further as politicians no longer understand the point of financing something that seems completely irrelevant to them.

Scientists have to publicly and loudly make their case in simple terms to take the will of the people with them. The lack of scientific news agencies and news dissemination makes the point clearly. The infrastructure does not exist to spread the good but simple word. Such agencies should be sponsored or financed by government money because pure research does not contain a profit motive and traditionally has not been commercially backed. If it is financed from industry then the public would also like to know about the original ideas as well as the final product.
Ur Government has recently licensed quite a number of operators to deliver television channels via multi-point video distribution services (MVDS), in a national trial. In case you haven't been avidly following my column over the months, I'll explain what MVDS is. In essence, it's a system where high-frequency (microwave) links are used to carry several television channels on a point-to-point type basis, between a central transmitter and outlying receiving dishes. I use the expression dishes here with reservations, though, because the normal image of a dish is usually thought of in satellite terms—that is, a 60 cm or so whopper, stuck on the side of a house. MVDS dishes, or at least those planned here, are much smaller—only 15 cm—and so can easily mount on a small chimney stack. Manufacturer, Marconi, describes these dishes as something like 'old-fashioned car headlights' in appearance which, I've got to admit, doesn't fill me with much of a desire to have one.

MVDS has been discussed in one form or another for a while now, and previously it looked as though the frequency to be chosen was to be much higher than that in this trial (12GHz). But as I've argued in the past a higher frequency, although more elegant and allowing more channels to be transmitted, isn't necessarily the best choice. At say, 30GHz, equipment is not easily available and is expensive anyway. A frequency of 12GHz, on the other hand, allows existing and cheap satellite receiver equipment to be adapted. In fact, not only does it mean satellite equipment can be used, but it can be used for the dual purpose of receiving both MVDS and satellite transmissions. So you don't need an extra box of trials on top of your telly to receive from both sources. Great!

However, there is a slight element of doubt in all this. It's as yet unproven that using the same frequency range isn't going to cause interference with existing satellite services. Hence the trial.

Quite naturally, MVDS is not seen as a supplement to services like cable, but more of a direct competitor. Because MVDS links are going to be substantially cheaper than a cable network it can only be expected that it will become very popular in areas where cost of cabling is too high. Indeed, MVDS may make the idea of cable unnecessary altogether.

I'll be reporting further in later issues of ETI.

In The Picture

Avid photographers will probably already know about two advances in photo-to-television technology. First, which is not so much of an advance, more an adaption and coming together of previously disparate technologies, is a fairly straightforward camera stand. An integral video camera and slide holder are held in a convenient unit which allows slides to be easily photographed by the video camera. A simple video output links the camera to a videocassette recorder and, hey presto, you've recorded your photographs to videocassette for later display on your television.

There's nothing particularly new in the idea except that in the unit I'm considering (the Tamron Photovix) you can videorecord slides and negatives. It also allows a selected part of your image to be enlarged by up to three times. Both are nice features which will interest many users, I'm sure.

Primarily a unit like this is aimed at amateur photographers who just want to fit together selected photographs onto videotape to present on their TV screen. It's a nice idea and I'm sure it will become very popular with photo-amateurs. However, it could have uses in some electronic publishing systems, too. It has limitations of course—it's a fairly low definition system (well, video cameras are low definition, aren't they?), and a video grabber system is needed by the computer. But it's a start and people who require such low definition images (newspapers, estate agents, collectors wanting a record catalogue and so on) will be overjoyed by the Photovix' ease-of-use and possibilities.

Electronic publishing users and professional photographers who need higher definition, on the other hand, will be even more pleased to hear about an application of compact disc which has been developed by Kodak and Philips. Resultant Kodak's Photo CD promises to be extremely popular and important in both areas.

Using CDs containing up to 100 high-definition photographs in digital format, photo CDs can be played in new CD players which are dual standard—they can play conventional audio CDs as well as photo CDs. Players are expected to be around the same price as current mid-range audio CD players, and will connect to a television for photographic replay, and amplifier for audio replay.

After developing your film in the usual way, you simply send the negative or slide to a photofinisher, who scans the image and records it onto disc. You don't need to fill a whole disc in one go, as discs can be returned to the photofinishers as often as you need, until the disc is full with its 100 images.

But, if some of you are awake, you'll be wondering how (without use of a video grabber system; complete with its inherent low definition) is this of any use to electronic publishing. Well, photo CDs will be playable on CD-ROM XA drives, too. So the digital image can be output directly as a TIFF file, stay, into your favourite page layout software, at a high definition (around twice that of high definition television!).

Photo CD players are expected to be launched around the middle of the year, and will have features such as random access viewing (I presume this means you can key in the number of the photograph you want to look at), zooming, panning, cropping and so on.

Keith Brindley
ETI NEWS

Omitec Electro-Optics is the first UK company to offer ion beam sputtering technology on a commercial basis.

Electro-Optics' new technology is used for manufacturing extremely low loss laser mirrors, specialised thin films for fibre optic and sensor applications or as a subcontract development facility.

Comments Derek Read, Operations Director for Omitec:
"Using our ion beam deposition techniques, we can produce very low loss high damage threshold laser mirrors as used in aviation ring laser gyros. R.L.G.s require laser mirror performance several orders of magnitude greater than that produced by conventional thin film deposition techniques."

For this kind of highly specialised coating, ion beam technology is the only known process to satisfactorily achieve the following requirements: low losses (less than 80 parts per million), extremely stable optical characteristics independent of temperature and environmental conditions.

The optical and mechanical properties of thin films are determined by a number of factors including the electrochemical nature of the material, its atomic or molecular structure, the properties and condition of the surface onto which they are deposited and the method of deposition.

In conventional thermal evaporation, the film structure is dependent on the energy of the molecules depositing onto the growing film which is related to substrate temperature and the evaporation temperature of the material.

Within the last decade alternative methods have been developed to increase this energy by orders of magnitude. Of these, ion beam sputter deposition and ion assisted deposition techniques have been targeted by Omitec as the emerging technology for the next generation of thin films.

Ion beam deposition is a materials based technology which imparts kinetic energy to growing films to produce materials of highly ordered structure which are virtually defect-free. With ion assisted techniques the energy is applied directly to the growing film and with ion beam sputter deposition the energy is applied to the target material itself. Omitec uses the latter technique to produce its low loss, high damage threshold laser mirrors.

Ring laser gyros are just one application of ion beam deposition, other applications include: ultra stable thin films, tribological coatings, supermodulus coatings, durable protective layers and abrasion resistant coating.

NEW DOD FX-54 ATTACKER PEDAL

A new DOD FX-54 Attacker pedal for guitarists is now available. This device is the first with a single-switch pedal giving two simultaneous effects.

The FX-54 Attacker combines smooth compression with a wide range distortion. This gives the guitarist an enormous variety of sounds to choose from. By lowering the distortion and increasing the compression, a tight bluesy sound like Eric Clapton or Larry Carlton can be achieved. Or increase the distortion and compression, a wide searing solo sound like Joe Satriani or Nuno Bettencourt appears. The compressor adds the sustain needed to simulate the feedback control found in tube amplifiers. Combined with the distortion, almost any modern or classic electric guitar tone can be had.

The pedal's controls consist of: a distortion control for varying the amount of internal gain, a tone control for simple equalisation, a compression control for adjusting the amount of signal to compression ratio, and a level control which sets the amount of effect signal. Retail price is £69.

For more information contact John Honby Skewes & Co Ltd, Tel: 0532 865381.
A fragile Graphophone recording, which could include the voice of Queen Victoria, is currently being examined by the Science Museum and the National Sound Archive.

Circumstantial evidence indicates that this recording is the one that was made by Sydney Morse at Balmoral Castle in 1888. It is known that on this occasion Queen Victoria was prevailed upon to utter a few words into a Graphophone. If the voice is that of Queen Victoria it will be the only known recording of her voice in existence.

The sounds are very scratchy and only a few words can be made out with any certainty. Approximately 40 words are apparent on the recording but only "Greetings . . . the answer must be . . . I have never forgotten . . ." can be distinguished.

The Graphophone cylinder is a rare example of an early wax-coated cardboard record of the type which competed for a time with the Edison solid wax Phonograph cylinders. Sydney Morse's son, Esmond, presented the cylinder to the Science Museum in 1929. The author Paul Tritton became aware of the cylinder's possible Royal connections while researching his book on the British audio engineer, Henry Edmunds.

Early attempts to discern evidence of voices on the recording using microscopy techniques were inconclusive. Recently the cylinder was played on the National Sound Archive's electric phonograph on which the cylinder was played, and a replica of the Bell-Tainter Graphophone.

Facilities are available for visitors to listen to copies of the recording at the National Sound Archive, 29 Exhibition Road, London SW7. For an appointment please telephone: 071 589 6603.

LVM PORTABLE POWER PACK

One of the most useful pieces of general purpose equipment to pass through our hands is the LV Motors Portable Power Pack. It solves all sorts of problems where a long lasting, powerful electricity supply is wanted in an awkward place, or with long life portability indoors and out in the field. It can be connected to a flat car battery and left for a couple of hours, after which time it will put enough in to get the car going.

You could certainly not do this with ordinary over the counter cells.

The LVM Portable Power Pack is switchable between 12v and 6v DC, has a capacity of 8 amp hours, recharges in 3 to 4 hours from the mains, the car battery, any other 12v source with over 1,000 recharges and weighs 1.8kg. It costs £72.00 incl VAT.

Contact LV Motors Ltd, Tel: 0462 896095.

WALL MOUNTED CONTROL

WM 302 is a new wall mounting solid state electricity meter with RS 232 Communications that is designed and manufactured by Northern Design in the UK. Ideal as a kw/kwh, single or dual tariff and Import/Export meter this latest unit also operates in a maximum demand mode for load shedding and control. All readings are shown on a two line liquid crystal display of 16 characters per line with a wide viewing angle.

Wall mounted, the WM 302 is suitable for 3 and 4 wire 3 phase unbalanced loads as well as single phase. Unaffected by input waveform, distortion the accuracy is better than 1%. Complying with all current safety standards this new product from Northern Design is housed in an environmentally protected case to IP54. Current sense is via internal ring or external split core, ring or clamp-on CTs at 5A RMS per phase. Standard output are volt free pulse and optical data.

Useful options include 1 Amp input current or other, 4 to 20mA output, balanced loads and RS 232 Communications.

Prices of the WM 302 (exc VAT) start at £249.00.

For further information please contact Fred Hutchinson of Quiswood Ltd on (0756) 799737.

CIRCUIT AND APPLICATION CENTRE AT SOUTHAMPTON

Philips Semiconductors has opened an Integrated Circuit & Application centre at Southampton, the first of its kind to be established within the company. It was formally opened by Kevin Kennedy, Chairman and Managing Director, Philips Electronics (UK), on Tuesday 22 October 1991.

The centre employs some 360 staff, the majority of whom are graduate engineers or equivalent. It represents an investment by Philips of some £6.8M and is one of the largest single concentrations of electronic engineering expertise in the UK.

The centre combines on one site the design, marketing and
logistics operations for microchips used in all types of consumer electronics equipment — television sets, VCRs, compact disc players etc. It also looks at how new developments in chip technology will enhance and improve the performance of such equipment.

Senior executives from leading UK based customers of Philips Semiconductors were invited to attend the opening ceremony, and to tour the centre, where a number of technical presentations were made. Also invited were senior managers of Philips who had been involved in the past with either the Integrated Circuit or Application laboratories.

ANALOGUE AND DIGITAL SCOPE

Offering the best of both worlds, the Tektronix 2210/02 digital oscilloscope is available from Carstorn for £1250.

Combining digital sampling with familiar full bandwidth analogue operation, the two channel unit samples at 20 megasamples per second, with 8-bit vertical resolution and 4k record length per channel. In non-storage mode the instrument offers 2210 bandwidth — or 2MHz useful storage bandwidth for single shot or repetitive signals.

The 4k record length provides the time resolution for viewed waveforms. The 2210/02 displays all 4k points on screen, and so the waveforms look conventional analogue displays. One screen of information can be saved in a reference memory for later evaluation or waveform comparison.

Display modes on the 2210/02 are record, roll, and triggered roll. Trigger modes include peak to peak automatic, normal, TV field, and single sweep.

The fully portable 2210/02 is supplied with two P6103 voltage probes. Supplied ex-rental, all units are fully tested to the manufacturer's specification before delivery.

For further information contact Graham Harris, Carstorn Electronics Limited. Tel: 081-977 0078.

ADC-10 ANALOGUE TO DIGITAL CONVERTER

The Pico ADC-10 is a self contained analogue to digital converter for use with IBM PCs and compatibles. It is connected to the printer port and required no extra power. Input is through a standard BNC connector. The ADC-10 has many uses, firstly using the integrated software package it can in many situations replace both an oscilloscope and a digital voltmeter. Additionally the ADC-10 can perform any functions that are only currently available on an expensive digital storage oscilloscopes such as saving waveforms to disk, or sending them to a printer. It is particularly suitable for displaying very low frequency trends (such as a battery discharge) which cannot be displayed on an oscilloscope due to the limitations of a CRT.

The main market is expected to be with electronic enthusiasts and educational establishments who tend to use the ADC-10 with the supplied software. In addition to this ADC-10s are being put to a wide range of uses in industry where users are customising the software, or writing their own.

Typical examples of its use are in monitoring temperature, pressure and strain gauges. Many commercial sensors have 0-5V outputs so can be plugged straight into the ADC-10, this is particularly useful for remote monitoring of sensors, since the ADC-10s small size makes it ideal for use with portable computers. Another popular application is digital voice recording.

The ADC-10 sells for £49, including the software and instruction manual.

For further information contact Pico Technology Ltd, Tel: 0954 211880.

4-CHANNEL 12-BIT A TO D

New from Burr Brown is a 4-channel monolithic sampling 12-bit analogue to digital converter (ADS7803), designed for applications which require low-power, wide input bandwidth, and exceptional dynamic performance.

The ADS7803 works from a single 5V supply, consumes only 10mW, and a low-power standby mode consuming just 50µW, makes it ideal for portable applications. With a fast maximum conversion time, including acquisition and multiplexer settling, of 8.5µsec, the device is fully microprocessor controllable via an on-
chip special function register. This allows it to be placed in lowpower mode between conversions.

Maximum channel-to-channel mismatch is ±0.25LSB, and dynamic characteristics are tested and guaranteed at input frequencies to 50kHz. Typical specifications include a signal to noise ratio of 70dB, and total harmonic distortion of −75dB. Channel separation at 500Hz is typically 92dB.

Applications will include circuits requiring wide input bandwidth, low power, excellent dynamic performance and multiple channels, such as in general purpose spectrum analysers and mobile data acquisition systems.

Conversion results are available in two bytes through an 8-bit state output bus. The two bytes can be read in either order, allowing the use of the ADS7803 in both big and little-endian systems. Output latches are provided, giving two alternative data availability schemes: in transparent mode, the high data byte can be read as soon as it is available; in latched mode, data can be read only when the conversion is complete, but stays valid until the end of the succeeding conversion cycle.

PORTABLE TV ANTENNA

Portasat is a lightweight, portable antenna which enables the owners of caravans, mobile homes and pleasure craft to continue to receive satellite TV programmes from Astra, ECS II and all higher power satellites, whilst on holiday. Deployed on a balcony or patio, Portasat also offers an alternative to occasional viewers who are unable or unwilling to have a permanent, wall-mounted antenna installation.

The antenna consists of a flat, 1cm thick, circular zone plate of 60cm diameter which is mounted within a rectangular, tubular frame. Erection requires no specialist knowledge or tools. With the assembly lying flat on the ground, one edge of the frame can be raised; the antenna then pivots within the frame and can be secured at the correct angle for signal reception by a support strut. The assembly is then pointed in the direction of the satellite and any final adjustment made by a screw on the strut.

The total assembly weighs less than 4kg and folds away flat to a size of 75 × 62 × 2cm.

MITSUBISHI ELECTRIC has announced the launch of its 4Mbyte Flash memory card. The card will be generally available early 1992 in JEIDA Standard format although Mitsubishi has the technology to produce custom versions to any pinout requirement.

According to the latest In Stat survey into the fast developing memory card marketplace, the company was responsible for more than 41% of worldwide memory card sales in 1990.

The 4Mbyte Flash Memory card is made up of Flash EEPROMs, housed in TSOP, the packaging technology pioneered by Mitsubishi, providing high speed, non-volatile memory capabilities, for low power consumption applications.

Typical applications include replacements for floppy disk systems and to hold systems and applications software in palm top, notebook, laptop and other small computers, providing savings of weight and space, with greater resilience, increased ruggedness and higher reliability. Flash memory card technology is reckoned to be a big contender to eventually replace floppy and hard disk storage techniques. The ability of Flash devices to hold their memory content after power has been switched off also makes the cards suitable for use in industrial equipment.

Mitsubishi has also announced paper-thin packaging (PTP), the 0.5mm thick IC packaging technology which will make it possible to retain its leadership and manufacture cards with even higher memory capacities. DRAM cards of up to 96Mbytes, for example, will be available based on the technology using 16Mbit DRAMs.

For further information, contact Mitsubishi Electric UK Ltd, Ltd Telephone:0707-276 100.
New approach to welding flexible substrates

A new approach to forming metal contacts in electronic circuits could result from a novel elastic substrate. Using a new method, gold films have been welded together under normal room conditions by pressing them together with small applied loads.

With current technology, extreme physical conditions of one kind or another are required for bonding metals; soldering and welding require high temperatures while room-temperature welding requires extremely high pressures.

The key ingredient in the new process is a material called polydimethylsiloxane (PDMS), which can be formed into thin elastic membranes. When exposed to oxygen at high temperatures, PDMS forms a silicon dioxide layer suitable for electrical isolation. Metals do not adhere very well to the silicon dioxide layer, requiring the application of an exotic process called 'self-assembled monolayers' developed at Harvard University's chemistry department.

Chemists have found that certain complex organic compounds can 'self-assemble' into complex structures on the molecular level with a wide range of useful chemical and physical properties. A self-assembled structure is able to form a strong bond between the silicon dioxide and a thin gold layer vacuum-evaporated on top. The resulting composite material is so flexible that the gold layer completely removed and attached to another CPU if a user wants to use the same keyboard for all computing activities.

Lunar Design Inc., of Palo Alto, designed the computer housing for Trigem Corp., of Santa Clara. The housing, made of thermoplastic polyurethane and polypropylene components, is lightweight and durable. The only metal part is an aluminium shield for the CPU electronics. Plastic clutches and latches hold the screen firmly and keep it from falling over when it is used while going over bumps. The 386-SX-based computer runs continuously for three hours on a rechargeable battery.

Electronic drawing pad

Children can draw directly on a TV screen using an electronic drawing pad that hooks up to any colour television. The pad also connects to a VCR, so images can be animated and recorded. The micro-processors are similar to those used in adult-sized graphics programmes, but without being capable of storing designs. The wire-grid input pad is also similar to conventional graphics-input pads.

Called the Video Painter, it has 12 colours and five drawing tools, including a pencil and crayon. A library of over 50 colour objects includes vehicles, dragons, people, and animals, as well as three background scenes which can be animated. There are also six pre-programmed patterns and outlines can be filled in with rechargeable-battery system.

Rechargeable battery system

New laws may force US manufacturers of products such as cordless shavers with rechargeable batteries to redesign their products. The laws came into effect in 1993 in some states, and require all built-in, rechargeable batteries to be easily removable so consumers can recycle the batteries.

Batteries are often soldered into rechargeable products, so meeting legal requirements will require some complete product redesigns. Manufacturers will also have to consider that consumers may replace rechargeable batteries with non-rechargeable ones.

A recently introduced rechargeable-battery system, called IntelligLink, from Gates Energy Products, Gainesville, Florida, allows manufacturers to design removable, rechargeable batteries into their products.

IntelligLink uses special batteries that have a dimple in the cap on the positive terminal. The positive connector has two contacts, a centre contact point and an outer contact ring that mate with the battery. The outer ring allows the battery to be charged when the device is plugged into an electrical outlet. When a non-rechargeable battery is used, its flat terminal touches only the centre point and not the outer ring, so the charging circuit is bypassed and only the battery is discharged. If a conventional rechargeable battery is used, it will also only discharge and must still be recharged externally.

New insulation for aircraft cables

In a recent investigation it was found that fibreglass batting that surrounds wire bundle cables on airplanes was breaking down from hot engine air and vibrations. Without the batting, the electrical system experienced short circuits and sensor malfunctions. To eliminate the problems, it was decided to change to an insulating wrap made of silicon foam laminated with silicon-coated fibreglass. The new insulation was chosen because it is flameproof, fire retardant, virtually non-toxic, and light weight. In addition, it resists compression set and maintains integrity throughout out vibration testing.

The fibreglass-lamination adds durability and the foam can easily be bonded to other fabrics or substrates. This COHRiastic silicon foam, from the CHR Division of Furon Co., New Haven, Connecticut, can also be used for gasketing and sealing because it resists chemicals and moisture penetration. The foam is available in thicknesses ranging from 0.062 to 0.5 in.
UV Go-ahead Through Paper On Draught

I was interested in the various letters in the ETI December addition relating to PCB production at home. As a freelance designer in electronics, I make PCBs quite often for prototyping work. The artwork is produced on PC using Boardmaker II software, and printed out via a Mannesman Tally 905 laser printer in HP emulation mode.

For a long time I used to produce artwork on acetate paper and have a local printer make a disinfective copy for about £2. This gave a fully transparent acetate copy with very dense black image. However, as it involved a 20 mile drive each way, I experimented with various options to produce my own transparencies. Acetate was the first option, but I was unable to obtain a dense enough printout from the laser printer and large areas were not evenly black.

I then switched to draughting paper, which contrary to Mr Silvester’s analytical laboratory’s findings, is in fact UV transparent. The laser printer gives very good and even reproduction on it and the end result is both sharp and consistent. The same should apply to pen & ink drawings, although I gave up that method long ago. A good dot matrix printer will also yield usable results with a new ribbon. The software allows for reversed printing, so the image side is in direct contact with the unexposed PCB. The exposure time for the RS photoresist boards is 2 minutes. A critical factor not mentioned is the temperature of the sodium hydroxide developer which should be around 25°C. Too cold, and the board doesn’t clear properly, too hot and the whole coating may come off.

The drafting paper is RS part number 561-448 (A4 - other sizes available up to A0). I have to date made very many boards with consistent results and saved a lot of time and fuel in the process!

Gerry Taylor, High Humbleton, Northumberland.

Mr Taylor sent in a laser printed example of a PCB design on draughting film and it is indeed a very good reproduction. We also tried it out on photoresist board with UV light exposure and had no problem in getting a board out of it. Thank you for your very helpful suggestions Mr Taylor, no doubt others will benefit – Ed.

The Window — An Open And Shut Case?

The Blueprint article by Andrew Armstrong in the November issue of ETI addressed the problem of remotely sensing whether each of a number of windows were open or closed, using a single cable to connect the windows in a chain.

The published solution used a reed switch at each window to switch the output of a tone generator onto the common supply line. The frequency of each tone generator was different from the others and a detector for each was built into the base unit to drive the display.

The alternative solution proposed here, whilst returning to reed switches, has the advantages of a much reduced component count in the remote circuits. Furthermore all of them are identical and need no setting up.

The system operates by sensing the state of the switches in sequence. The base unit supplies a pulse train to the chain of remote circuits, each of which routes the first pulse it receives to its switch. All subsequent pulses are sent to the next circuit in the chain (see figures 1&2).

In this way, the first pulse goes to SW1, the second to SW2 and so on. The state of each switch is read by monitoring (in the base unit) the current in the power line to the chain.

A circuit for the base unit is not shown here, but the monitor output could be fed to a serial in/parallel out shift register, clocked by the pulsetrain and displayed as required.

Each remote circuit can be implemented using only one IC and very few other components as shown in Figure 3. A dual 2 line to 4 line decoder is cross coupled to provide the required switching and latching functions. The network R1-C1 is needed to remove glitches and ensure the correct state after powering up. The time constant should be a small fraction of the pulse period.

Nigel Smith, Weston-Super-Mare

Andrew Armstrong replies:

Well done for thinking it out Mr Smith. It looks like a very sensible idea. If you can provide more details, maybe ETI will run it as an article.
The Plot Thickens

Further to recent correspondence about PCB plotting, my own experiences may be useful. We have the 'Pads' Professional System with an HP 7475A (A3) plotter. This will give prints for photographic use, but for 'kitchen sink chemistry' one-offs, the standard films are not dark enough. Contact with Ardare computer supplies (051 639 7878) produced fast results and samples with the usual disclaimer. The medium supplied was either translucent paper or Vellum. Both are equally good. The pen was a Stedler (757PL GS) with cross groove nib and dense black ink (747). Excellent results are obtained but the plotted speed must be under 20cm/sec - I use 5cm/sec. A 2 line program in DOS is required to slow the system down from its default level of 38cm/sec. A processing time of 3 minutes on Farnell copper board gives excellent results.

Ed Dinning, Durham

Solution CROSSWORD No. 1

Across: 1 Sable. 4 Ammeter. 8 Band-gap. 10 Nifty. 11 Boolean algebra. 13 Calvados. 16 Nonce. 18 Hotel. 19 A-flutter. 21 Integrated D-to-A. 25 Usage. 26 Mailman. 27 Testing. 28 Array.

Down: 1 Strobe. 2 Baboo. 3 Ernie. 4 Argand diagram. 5 Tunnel-net. 6 Reference. 7 Maya. 9 Pole-splitting. 12 FET. 14 Attendant. 15 Valve-less. 17 Ohm. 20 Valley. 22 Dumka. 23 Tenor. 24 Null.

8031 CPU BASED CONTROL CARD

Why not give your next project computer control!

- Small Physical Size (HALF EUROCARD)
- 32 Bidirectional I/O Lines
- High Speed (CPU RUNNING @ 16MHz)
- Full Expansion with all important signals from mini DIN41612 connector
- Supplied with 8K RAM, 32K ROM with hexloader, Manual & Diagrams.

- 8031 CONTROL CARD £39 inc P&P
- QASM51 ASSEMBLER £39 inc P&P
- APRIL 8 ROM EMULATOR £65 inc P&P
- APRIL 16 ROM EMULATOR £140 inc P&P

For more information:

MEC MICROSYSTEMS
Mountbatten House
Fairacres
Windsor
Berkshire SL4 4LE
Tel: 0753 857181 Fax: 0753 860696
<table>
<thead>
<tr>
<th>Month</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>21</td>
</tr>
<tr>
<td>October</td>
<td>14</td>
</tr>
<tr>
<td>October</td>
<td>42</td>
</tr>
<tr>
<td>April</td>
<td>15</td>
</tr>
<tr>
<td>July</td>
<td>29</td>
</tr>
<tr>
<td>February</td>
<td>21</td>
</tr>
<tr>
<td>March</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>29</td>
</tr>
<tr>
<td>May</td>
<td>40</td>
</tr>
<tr>
<td>March</td>
<td>38</td>
</tr>
<tr>
<td>April</td>
<td>46</td>
</tr>
<tr>
<td>April</td>
<td>58</td>
</tr>
<tr>
<td>November</td>
<td>50</td>
</tr>
<tr>
<td>March</td>
<td>47</td>
</tr>
<tr>
<td>April</td>
<td>15</td>
</tr>
<tr>
<td>October</td>
<td>42</td>
</tr>
<tr>
<td>March</td>
<td>56</td>
</tr>
<tr>
<td>April</td>
<td>54</td>
</tr>
<tr>
<td>January</td>
<td>58</td>
</tr>
<tr>
<td>July</td>
<td>47</td>
</tr>
<tr>
<td>July</td>
<td>36</td>
</tr>
<tr>
<td>May</td>
<td>58</td>
</tr>
<tr>
<td>October</td>
<td>14</td>
</tr>
<tr>
<td>September</td>
<td>48</td>
</tr>
<tr>
<td>July</td>
<td>47</td>
</tr>
<tr>
<td>August</td>
<td>22</td>
</tr>
<tr>
<td>September</td>
<td>52</td>
</tr>
<tr>
<td>November</td>
<td>32</td>
</tr>
<tr>
<td>February</td>
<td>57</td>
</tr>
<tr>
<td>December</td>
<td>32</td>
</tr>
<tr>
<td>March</td>
<td>30</td>
</tr>
<tr>
<td>April</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model railway controller</th>
<th>Month</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model railway controller Pulsed width</td>
<td>August</td>
<td>36</td>
</tr>
<tr>
<td>Modulated LASER Transmitter Opto receiver</td>
<td>August</td>
<td>47</td>
</tr>
<tr>
<td>Nightfighter Light show Part 1</td>
<td>May</td>
<td>30</td>
</tr>
<tr>
<td>Part 2</td>
<td>June</td>
<td>29</td>
</tr>
<tr>
<td>Part 3</td>
<td>September</td>
<td>16</td>
</tr>
<tr>
<td>Part 4</td>
<td>October</td>
<td>32</td>
</tr>
<tr>
<td>Passive Direct Injection Box</td>
<td>November</td>
<td>22</td>
</tr>
<tr>
<td>Prototype designer power supply</td>
<td>December</td>
<td>20</td>
</tr>
<tr>
<td>Pocket geiger counter</td>
<td>March</td>
<td>47</td>
</tr>
<tr>
<td>Pulsed width train controller</td>
<td>October</td>
<td>46</td>
</tr>
<tr>
<td>Radio calibrator</td>
<td>September</td>
<td>48</td>
</tr>
<tr>
<td>Regulator discrete component</td>
<td>August</td>
<td>47</td>
</tr>
<tr>
<td>Remote control timeswitch Part 2</td>
<td>April</td>
<td>52</td>
</tr>
<tr>
<td>Part 3</td>
<td>December</td>
<td>46</td>
</tr>
<tr>
<td>Update</td>
<td>January</td>
<td>37</td>
</tr>
<tr>
<td>SBC 09 computer firmware Part 1</td>
<td>February</td>
<td>30</td>
</tr>
<tr>
<td>Part 2</td>
<td>May</td>
<td>56</td>
</tr>
<tr>
<td>Update</td>
<td>January</td>
<td>46</td>
</tr>
<tr>
<td>64k EPROM Emulator</td>
<td>February</td>
<td>50</td>
</tr>
<tr>
<td>SSB Receiver</td>
<td>March</td>
<td>56</td>
</tr>
<tr>
<td>Switched mode power supply</td>
<td>March</td>
<td>21</td>
</tr>
<tr>
<td>Switched mode power supply Lab Pack</td>
<td>November</td>
<td>47</td>
</tr>
<tr>
<td>Tachometer digital</td>
<td>December</td>
<td>32</td>
</tr>
<tr>
<td>Temperature sensor circuits</td>
<td>April</td>
<td>58</td>
</tr>
<tr>
<td>Temperature controller Part 1</td>
<td>June</td>
<td>43</td>
</tr>
<tr>
<td>Part 2</td>
<td>June</td>
<td>46</td>
</tr>
<tr>
<td>Thyristor Tester</td>
<td>July</td>
<td>42</td>
</tr>
<tr>
<td>Twenty metre receiver SSB</td>
<td>May</td>
<td>45</td>
</tr>
<tr>
<td>Video Test-card generator Part 1</td>
<td>March</td>
<td>21</td>
</tr>
<tr>
<td>Voltage reference generator circuits</td>
<td>December</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>38</td>
</tr>
</tbody>
</table>

20 YEAR PROJECT INDEX COMING SOON
<table>
<thead>
<tr>
<th>Month</th>
<th>Page</th>
<th>Feature Description</th>
<th>Month</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>38</td>
<td>Amateur microwave equipment</td>
<td>May</td>
<td>22</td>
</tr>
<tr>
<td>January</td>
<td>22</td>
<td>Approach and Landing</td>
<td>April</td>
<td>22</td>
</tr>
<tr>
<td>February</td>
<td>17</td>
<td>Back To Basics Pt 1</td>
<td>July</td>
<td>22</td>
</tr>
<tr>
<td>March</td>
<td>17</td>
<td>Pt 2</td>
<td>September</td>
<td>28</td>
</tr>
<tr>
<td>April</td>
<td>26</td>
<td>Pt 3</td>
<td>June</td>
<td>38</td>
</tr>
<tr>
<td>May</td>
<td>16</td>
<td>Pt 4</td>
<td>August</td>
<td>54</td>
</tr>
<tr>
<td>June</td>
<td>18</td>
<td>Pt 5</td>
<td>October</td>
<td>48</td>
</tr>
<tr>
<td>July</td>
<td>17</td>
<td>Pt 6</td>
<td>December</td>
<td>16</td>
</tr>
<tr>
<td>August</td>
<td>42</td>
<td>Pt 7</td>
<td>August</td>
<td>57</td>
</tr>
<tr>
<td>October</td>
<td>21</td>
<td>Pt 8</td>
<td>April</td>
<td>14</td>
</tr>
<tr>
<td>November</td>
<td>54</td>
<td>Pt 9</td>
<td>June</td>
<td>17</td>
</tr>
<tr>
<td>August</td>
<td>52</td>
<td>Behind the Hole in the wall (cash machines)</td>
<td>December</td>
<td>36</td>
</tr>
<tr>
<td>September</td>
<td>40</td>
<td>Cookers and Micros Alive, alive-o (Local operating networks)</td>
<td>June</td>
<td>57</td>
</tr>
<tr>
<td>October</td>
<td>52</td>
<td>Cosmic Rays</td>
<td>March</td>
<td>51</td>
</tr>
<tr>
<td>November</td>
<td>54</td>
<td>Digital pulse transmission</td>
<td>June</td>
<td>60</td>
</tr>
<tr>
<td>December</td>
<td>52</td>
<td>Electromagnetism and man</td>
<td>January</td>
<td>29</td>
</tr>
<tr>
<td>August</td>
<td>29</td>
<td>Fault-finding in electronic equipment Pt 1 Pt 2</td>
<td>January</td>
<td>52</td>
</tr>
<tr>
<td>September</td>
<td>40</td>
<td>Field Programmable Gate Arrays</td>
<td>September</td>
<td>35</td>
</tr>
<tr>
<td>August</td>
<td>51</td>
<td>Fire Detection Systems Pt 1 Pt 2 Pt 3 Pt 4</td>
<td>June</td>
<td>52</td>
</tr>
<tr>
<td>June</td>
<td>14</td>
<td>How’s Your Image? The Physics of hearing Lasers Laser Diodes</td>
<td>June</td>
<td>40</td>
</tr>
<tr>
<td>July</td>
<td>58</td>
<td>Laser Diodes</td>
<td>May</td>
<td>22</td>
</tr>
<tr>
<td>August</td>
<td>62</td>
<td>Light, Vision, Colour and Perception</td>
<td>April</td>
<td>22</td>
</tr>
<tr>
<td>October</td>
<td>56</td>
<td>Local Operating Networks</td>
<td>July</td>
<td>22</td>
</tr>
<tr>
<td>January</td>
<td>42</td>
<td>Loudspeaker damping</td>
<td>September</td>
<td>28</td>
</tr>
<tr>
<td>February</td>
<td>26</td>
<td>Magentron The</td>
<td>June</td>
<td>38</td>
</tr>
<tr>
<td>March</td>
<td>17</td>
<td>Making PCBs at home Pt 1</td>
<td>August</td>
<td>54</td>
</tr>
<tr>
<td>April</td>
<td>17</td>
<td>Medical Laser Systems</td>
<td>October</td>
<td>48</td>
</tr>
<tr>
<td>May</td>
<td>16</td>
<td>Negative Feedback</td>
<td>December</td>
<td>16</td>
</tr>
<tr>
<td>June</td>
<td>18</td>
<td>Mixing Signals</td>
<td>August</td>
<td>57</td>
</tr>
<tr>
<td>July</td>
<td>17</td>
<td>Nano-technology Towards Tomorrow</td>
<td>April</td>
<td>14</td>
</tr>
<tr>
<td>August</td>
<td>42</td>
<td>Op-Amp parameter display chart</td>
<td>June</td>
<td>17</td>
</tr>
<tr>
<td>October</td>
<td>21</td>
<td>Piezo Film technology</td>
<td>December</td>
<td>36</td>
</tr>
<tr>
<td>November</td>
<td>54</td>
<td>RIAA characteristics</td>
<td>June</td>
<td>57</td>
</tr>
<tr>
<td>August</td>
<td>52</td>
<td>RIAA further discussion</td>
<td>March</td>
<td>51</td>
</tr>
<tr>
<td>September</td>
<td>40</td>
<td>Repairing Oscilloscopes</td>
<td>June</td>
<td>60</td>
</tr>
<tr>
<td>August</td>
<td>51</td>
<td>Sony Dat Recorder</td>
<td>January</td>
<td>29</td>
</tr>
<tr>
<td>June</td>
<td>14</td>
<td>Sony Minidisc system</td>
<td>January</td>
<td>52</td>
</tr>
<tr>
<td>July</td>
<td>58</td>
<td>Supercomponents</td>
<td>September</td>
<td>35</td>
</tr>
<tr>
<td>August</td>
<td>62</td>
<td>Test Gear Basics Pt 1</td>
<td>June</td>
<td>52</td>
</tr>
<tr>
<td>October</td>
<td>56</td>
<td>Testing Testing Pt 10</td>
<td>November</td>
<td>40</td>
</tr>
<tr>
<td>January</td>
<td>42</td>
<td>Pt 11 Pt 12</td>
<td>January</td>
<td>55</td>
</tr>
<tr>
<td>February</td>
<td>34</td>
<td>Towards Tomorrow</td>
<td>February</td>
<td>38</td>
</tr>
<tr>
<td>March</td>
<td>42</td>
<td>Examining close stars at high definition</td>
<td>November</td>
<td>44</td>
</tr>
<tr>
<td>March</td>
<td>36</td>
<td>Nano-technology</td>
<td>June</td>
<td>17</td>
</tr>
<tr>
<td>June</td>
<td>17</td>
<td>Virtual reality</td>
<td>August</td>
<td>14</td>
</tr>
<tr>
<td>April</td>
<td>14</td>
<td>VLF Earth Loop Antennas Pt 1 Pt 2</td>
<td>April</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>37</td>
<td>Wasted Energy</td>
<td>May</td>
<td>37</td>
</tr>
<tr>
<td>February</td>
<td>38</td>
<td>Waves and particles</td>
<td>November</td>
<td>44</td>
</tr>
</tbody>
</table>

20 YEAR PROJECT INDEX COMING SOON
Introduction to Audio

Last month, we looked at the basic elements which comprise an average mixing console. This month, we'll delve into the aspects of the console which lend themselves readily to digital or computer control.

Should one ask a person not intimately involved with the music industry what their initial impression of a mixer is, a likely response might be that it looks very complicated because of all the controls. Ask an engineer and he might say that initial impressions are deceiving and it is basically a series of simple controls replicated many times. (This isn't quite true as I have struggled for some time to get a test tone out of a mixer with which I was completely unacquainted!) It is in this region that some kind of automation might be most useful. We shall consider a large desk with perhaps 64 inputs and 48 group outputs.

Assignable Desks

Each of the 64 inputs will have an associated gain control, EQ system, Aux Mix system, Group Routing system etc. We have only two hands with which to make adjustments of the various controls, so at best he/she can alter only two controls simultaneously. In order that the desk size is kept as compact as possible, all of the controls by necessity must be made small and positioned close to one another, thus increasing the risk of operational error and reducing the relative ease with which a particular function can be quickly located. If only one or two control settings can be altered simultaneously, this makes the 3000 or so other controls on the desk somewhat redundant.

It is this philosophy which forms the basis for the design of a so-called assignable desk. In a sound desk of this sort, we have one set of controls which can be assigned at a particular time to any one channel (by pressing a CHANNEL ASSIGN button adjacent to the relevant fader) and a set of channel faders, one per channel, which set the channel level. What we do to operate the desk is to set the operating parameters of each channel using this one set of controls. These controls will consist of all those normally found on an input channel (gain, EQ, routing, pan etc). We assign these control settings to each channel in turn, gradually working along the console channel by channel until each is set. The setting for each channel will normally be stored in battery backed-up RAM so that the channel configurations are memorised even when desk power is removed. In this way, the settings of one particular channel can be altered without affecting other channel control settings. This approach means that quite significant economies can be made in the number of pots, switches and indicators which are fitted to the desk, with consequent reduction in the complexity and cost. The drawback is that now we no longer have any visual feedback of the control settings for a particular channel because there are now only one set of control knobs whose setting may no longer bear any...
D Mixers

This is different from the previous example in that we actually do use a proper sound desk in the conventional sense. Mixing to a computer using this digital addition to the desk you use of some of the control rooms and the like would not actually work if you were to do it properly. This is a more extensive use of computer-assisted mixing.

Secretarial

Fig. 3 Typical Fader system in a digital desk

Computer-Assisted Mixing

More boring tasks, which have to be undertaken and using the computer's speed and memory retention facilities wherever these can be applied to improve performance.

More boring tasks include improving the computer's speed and memory retention facilities wherever these can be applied to improve performance.
Tape Machine Control

This is obviously great use in a multi-track recording situation where, as discussed in Part 1, it is unlikely during the Recording part of the process that more than one or two tracks will be 'laid' at any one session and yet all 8, 16 or 32 tracks must be recorded exactly time coincident with one another and in exact synchrony. The ubiquitous SMPTE (Society of Motion Picture and Television Engineers) Timecode is recorded on one track of the multitrack and the computer can then control all as parts of tape transport control to an accuracy of within one frame of the timecode. This allows tape drop-ins and dropouts of great precision.

Digital Desks

A truly digital desk is one where, apart perhaps from the Mic Inputs, all signal control, routing and manipulation is done in the digital domain. One must ask the question, ‘Why go to the trouble of having a digital desk at all?’ when many analogue desks perform admirably well.

Assisted Mixing

Here, the computer remembers any movement of the fader during track starts by scanning the fader at the start position. It notes down the changes and can then make adjustments. TRIM on replay then adjusts the fader relative to an absolute value and so it mimics the first mix. One notable disadvantage is that the fader position does not reflect the gain through the system. (Other systems use different approaches, either motorised, servo-controlled faders which give control from machine to operator where manually touched or moved or a system where any fader movement is interpreted as relative to the previous setting although the fader may be in the same physical position).

Consequently, at any time and for each control there must be some sort of indication of the setting of a particular control since the physical setting of it does not necessarily reflect its electrical effect. This indication normally takes the form of LED’s which show information normally available by inspection of its physical setting, ie a bargraph arrangement of LED’s which may show gain.

Although the desk is in essence still an analogue desk because all the signals present in the console remain in the analogue domain and are processed and manipulated and mixed in this domain, no analogue signals pass through any of the controls. The outputs from the controls will be DC control voltages or pulses used to clock up/down counters, and will be pots or shaft encoders respectively. DC voltages will be used to control VCA’s and related devices. Since these controls too can now have no pointer since their physical orientation may or may not bear any resemblance to its electrical effect in a circuit, they must also incorporate some means of easy and quick discernment of their actual setting. Again, LED’s are the usual choice.

Total Recall

No, not a sci-fi movie or even a hint of Arnold Schwarzenegger! The computer scans all of the controls (pots, switches etc) and remembers the settings. These can then be displayed on a VDU and individual control settings more readily scrutinised although the desk must be reset manually.

To justify the extra cost and complexity of going digital, the desk must have a performance, in terms of noise, distortion, crosstalk and ease of use, better by an order of magnitude than its analogue counterpart. The original question still remains unanswered.

To understand the answer, most readers will have to look no further than the corner of their own living rooms. Yes, the gleaming usually black, always more expensive than we ever imagined, domestic hi-fi stack: the present-day proliferation of high fidelity formats such as R-DAT, compact disc and the like means that the paying public — upon whom custom the record companies and artists depend for survival — is much more critically aware of noise and distortion and all of the other factors which spoil or impair their listening enjoyment. Gone are the halcyon days when record company executives could rest smugly on their laurels, content in the knowledge that noisy recording or other sonic imperfections are unlikely to be noticed by Mr or Mrs Average on whose Fidelity Radiogram Midil the recordings were likely to be played. Since this age of the digit has heralded the need for previously unheard of quiet between tracks, there is now a tireless and impossible quest for aural perfection as manufacturers of sound equipment strive to out-do one another in terms of facilities and performance.

Digital desks give the designer and engineer much greater scope to improve noise, crosstalk and distortion performance while making it more operationally friendly. Allowing electronics to do the tedious and repetitive tasks frees the mixing engineer to allow his or her creativity full rein. Mixes need not be ruined by one careless mistake. They can be stored real time or snap-shot, allowing the engineer to endlessly experiment, without losing the inspiration of the original. Pause to consider the vast number of ‘different’ remixes available of any chart song….

If we can digress briefly and explain about Analogue/Digital conversion (and its complement), the wonders of digital desks will become more readily apparent.
Analogue to Digital Conversion

Sampling Frequency
The frequency response of the ear is readily accepted to extend from 20Hz to 20kHz, although most people's hearing starts to roll off above about 15kHz (especially in those people of more mature years). With reference to the Nyquist's criterion, we must sample the audio signal at more than twice the highest frequency present if any aliasing problems are to be avoided. For audio extending to 20kHz, this means a sampling frequency of more than 40kHz. The two sampling frequencies used in digital audio are 44.1kHz and 48kHz.

The former is used for compact discs and also in digital recording systems where the audio will be recorded on video tape, making use of an adaptor such as the Sony FL1 which formats the audio in such a way that it is compatible with the process used to store video information on magnetic tape. The 44.1kHz is mathematically locked to this concept and relates to the way in which the audio is inserted into the active lines of a television picture. We shall avoid digressing further and accept that there will be 3 samples per line for 588 lines of a 25Hz (PAL) UK picture.

48kHz is the standard used by professionals since it readily lends itself to both the EBU (European Broadcasting Union) standard for the 32kHz used in VHF FM transmitter chains (a 3:2 ratio) and for PAL UK recording (using the system outlined above). 1920 samples per picture can be fitted. The ratios are also correct for recording using the NTSC 60Hz standard.

Bits and Pieces
Now that we have chosen a sampling frequency, how many bits resolution do we want? Really, it depends upon what dynamic range is necessary at a given point in the signal path.

It is easily shown that dynamic range equates to:

\[(6 \times n)\text{dB}\]

where \(n\) is the number of bits per sample. The multiplier is 6 since there is a 6dB increase in range for a twofold increase in the number of bits. Therefore a 12-bit digital signal will have a 72dB dynamic range. This is an over-simplification since we have assumed a perfectly noise-free signal, which, even in the digital domain, is a practical impossibility. It is accepted that the weighted signal/noise ratio of a digital signal is:

\[(6 \times n) - 11\text{ dB}\]

We can now consider all of the above in the context of a digital sound desk. A microphone input may need to have an effective sensitivity down to -120dBu or thereabouts. This equates to 22-bit resolution, which is far beyond the capabilities of any analogue to digital converters on the market. Instead of direct conversion of the analogue Mic signal, it is amplified and this higher level signal is then converted to a 16-bit digital sample. 22-bit accuracy is maintained by incorporating a 3-bit range code into the sample, this effectively compressing the signal to 13 bits with the three range bits indicating in what one of eight possible ranges the sample lies in. This is similar in many ways to the digital companding used in systems such as NICAM.

As previously noted, all of the facilities available on an analogue desk should be available on the digital counterpart. These facilities must include EQ, Routing, Fading, Gain Control, Special FX and Mixing. We shall deal with each in turn.

EQ
This is performed using digital filters. Even a very brief discussion on the workings of digital filters would involve a multi-part article on its own, and besides, it is beyond the scope of an article such as this to tread such deep water. In any event, there are numerous good books available on the subject, packed to the covers with complicated maths and analysis, and interested readers may wish to delve more deeply into the subject. As far as this introduction is concerned, it is sufficient to say that transversal or finite impulse
Response filters are normally employed for the task, since these are more inherently stable than infinite impulse response types, and, as with their analogue cousins, various filter responses can be achieved by cascading different sections, different sections in this context meaning adders, multipliers and delays. The diagrams show a very simple digital filter function.

Routing

This is achieved using Time Division Multiplexing techniques wherein samples are allocated unique timeslots for source and destination, and so a change in the ordering of the bitstream of these timeslots effects a change of routing for a given sample. This is a more satisfactory and reliable method of routing than in an analogue desk, where the multitude of switches and connectors are prone to wear and consequent noisy operation.

Fading

Fading is achieved using multiplication techniques. We shall assume for all instances that it is a multiplication process and consider that for coefficients of less than one that the process is still multiplication and not division, as is the usual convention. The fader output is a DC voltage proportional to its relative position. This analogue voltage is converted to digital form and the resultant number used to multiply the digital audio sample. For a unity output from the fader, the audio sample value will remain unaltered after passing through the multiplier.

Gain Control

This is identical in all respects to fading, with the output from the gain control knob being converted to digital form and used to multiply the sample.

Special FX

This may encompass effects such as reverberation, delay, pitch-changing etc. In delay, the samples are simply written into fast memory, and read out of this memory when needed.

Mixing

This is simply the binary addition of samples and is similar in many respect to the way that sources are mixed in an analogue desk.

The major problem in a digital sound desk is not in the implementation of any of the above functions (most of which can be done with relative ease) but in completing the processing task in the very short time available. If we consider gain control where a typical 16 bit audio sample is to be operated on (multiplied) by a 12 bit gain setting sample number, k. This multiplication of 12 bits by 16 bits renders a 28 bit product. The mixing bus must therefore be capable of handling 28 bit numbers. It must also do all of the processing required in one period of the sampling frequency, ie 1/48,000th second and we must also consider that there may be 30 or 40 different operations to contend with at any one time on a typical input channel. This is further complicated by the number of input and output channels present in the console, all of which are contending with one another for the processor’s attention. It should be easy to see that any processor must perform millions of complex calculations every second that the console is in use. This is beyond the capabilities of almost all processors and so a dedicated maths co-processor is allocated the task of number-crunching while another processor does the housekeeping.

Finally, no article on mixers would be complete without the mention of MIDI or Musical Instrument Digital Interface. This is a Yamaha proprietary synchronous serial data interface protocol, similar in some aspects to RS 232 but operating at 19,200 baud and using different methods of handshaking etc. As far as mixers are concerned, it is used on some, via an interface connection, to control all of the desk automation facilities which will normally include Channel Mute, Fader Level and Group Routing. Control is instigated from a central sequencer which may also control a tape machine with a MIDI interface card and musical instruments such as synthesisers.

Doing It Yourself

There are numerous occasions now where some form of audio mixer would come in handy, be it for creating a soundtrack/commentary for video recorded material using a camcorder, for house parties or for aspiring bedroom mixing engineers/musicians. There are a wealth of units available, but now that we have discussed in simple terms some of the ins and outs of mixers, I would hope that some of our readership will attempt the challenge of designing one from scratch.

The apparent complexity of a desk is minimised if we try to keep uppermost in our minds that any console, no matter how large or small, is simply a collection and vast repetition of small, inter-connected analogue circuits (I think that I can rightly assume that no-one is likely to attempt to construct a digital desk!)

Once the basics of an input channel module are understood, for example, it becomes much easier to analyse, understand and even design other modules such as monitor, group and master, since these modules will also use many of the circuits and concepts already apparent in the unit already scrutinised. Again, as we mentioned earlier, there may exist more elegant or higher performance techniques of circuit design to implement a given function, but the overall philosophy remains the same, any radical deviations from the norm usually involving expensive custom-designed IC’s or cunning circuits which themselves are probably the subject of patent protection.

Whatever the circuit, it should perform well, operate reliably, preferably use a minimum of mechanical or electro-mechanical components, and use a minimum of expensive or difficult to get hold of hardware. If this sounds reminiscent of normally-employed good electronic design practice, well it is although it takes on new significance if we remember especially that any extra cost incurred in the implementation of one function will be replicated many times over when the console is considered as a whole.

It is very tempting to think, “Ah, using such-and-such a switch or component or whatever gets me out of a jam, looks better, performs better or whatever”, when another approach, although more difficult in terms of time, slightly less expensive etc may suffice. This is a very difficult temptation not to succumb to, especially since the said item may only add perhaps £1.00 or so to the cost of that particular circuit. Multi-
plied, as we said, perhaps some 50 or 100 times, this small increase in cost becomes slightly more significant, and again, this is for just one circuit. A similar scenario may be re-enacted 100 times in the design of a whole desk. The ideal design is always a compromise between what is best for the job, what can I accept, what do I really want and most importantly, what can I afford. A bit like everyday life really, ... It is also similar in many aspects to hi-fi, sports, photographic or any hobby equipment where even a slight increase in performance in terms of durability, reliability etc usually brings a twofold increase in cost.

The idea of a 'noise budget' is also worth some contemplation as using 0.01% resistors, for example to create a front-end noise performance which far exceeds that of the remainder of the desk (because it uses devices such as the 741 as Mix Amps) is obviously somewhat wasteful of effort and resources and very bad practice. If this sounds elementary, my dear Watson, it is intriguing to ponder why, some years ago, one commercial manufacturer produced a mixer excellent in all aspects but for the fact that it used said low performance devices in critical parts of the circuit.

With the present abundance of readily obtainable, inexpensive, custom audio IC's, careful consideration must be given to whether or not the designer uses these in his/her design. Time and effort spent designing circuits using discrete components can be saved in enormous quantities if a no-nonsense, custom IC is used in place, perhaps with the added bonus of performance equal to or surpassing that of the discrete approach. If this sounds contradictory to what was said not three paragraphs back, it is because we as amateur designers have the freedom to design purely for performance, with little or need for commercial viability. Indeed, the author suffered a similar quandary when the recent introduction of just such an IC rendered his burning the candle at both ends design obsolete since it needed just a handle of ancillary parts and out-performed it to boot. Audio circuit design is fascinating in that nothing is ever cut and dried and whereas with the design of digital circuits, it is invariably possible to dispense with the breadboarding stage, analogue circuitry has endless scope for tweaking and experimentation which can sometimes realise a design which is very close to text book specification.

Any serious investigation of audio mixer design would, of necessity involve much complicated mathematics and analysis. It is obviously beyond the scope of an article such as this to delve as deeply into the subject, and in any case, if this were not so, any text would serve merely to scratch the surface since there exist in print many good and lengthy volumes on this subject. IC manufacturers' Data Sheets also provide an invaluable source of information and inspiration and no design work should be undertaken before the contents of these have been thoroughly digested. I hope that this series of articles has served to whet the appetites of budding audiophiles and perhaps will inspire some of our readers to experiment and pursue his/her own designs to completion.

Fig.7 Typical input module

A method which I have found to be of great use is firstly to study mixer manufacturers' information sheets which detail the facilities available on a given console within their range and then to devise circuitry for the functions which are of interest. This is better than having a circuit and then trying to fit it to a function. I used this philosophy to great effect when designing the Nightfighter (ETI September '91) There is immense satisfaction to be had from pursuing a concept through circuit design, prototyping and development to fruition.

I mentioned in Part 1 that there would be a listing of the different kind of mixing consoles available, their functions and the use to which they are normally put. We shall conclude the series with that list;

Multitrack Consoles

We have looked at these extensively, but for completeness, we shall say that these are used in the creation of multi-track recording, with some of the cleverer desks able, through the use of Channel Flip buttons which bypass the Group Routing Matrix, to be used directly as stereo consoles. Consoles are extremely flexible, with many of the Tape Returns and Monitor Inputs able to be used as Mix Inputs during mixdown. This is done using Subgroup switching. Stereo desks are also
produced in similar formats and may be used for stereo drama productions or for the recording/broadcasting in stereo of a concert.

Transmission Consoles

This type will be used in radio stations and may be either self-operated or used in a Control Room/Studio environment. The self-operated desk is similar in many respects to the disco mixer with which many of you will be acquainted, the presenter (or DJ) using the console himself, adjusting levels and doing the programme presentation. There may be studio operators assisting him by cueing and starting records, tapes and jingle cartridges or these may be remotely started by him/her using remote start buttons on the desk control surface.

The second type is more prevalent within professional broadcasting organisations, the presenter or presenters seated in a sound-proofed, miked studio adjacent to the control room. The control room houses the console and all other studio equipment and the desk operator deals with all technical aspects of the programme, adjusting levels, starting record decks etc to cue, switching mixes on, dealing with any outside contributors like phone-in guests, outside sources such as reporters, and newsroom feeds. The desk will be well-equipped with outside source selection panels, cue and clean-feed mix facilities, talkback facilities and studio monitoring facilities (which control studio and cubic loudspeaker feeds and cut or dim these when a microphone is live, thus preventing howlround).

Live Music Mixers

These will be used extensively by bands and musicians. Again, they are similar in many aspects to a multitrack or stereo desk, but with Pan, EQ, etc all available although the desk will be similar, too, in many ways to the transmission desk in that it will have extensive monitor and cue mix facilities for the origination of foldback and stage monitor mixes.

TONICS FOR TIRED TRANSDUCERS

Cost-effective speaker upgrade kits

AUDAX TITANIUM TWEETER UPGRADE Change your 1" dome tweeters for these Titanium units and enjoy crisper, cleaner response. Suitable for replacing tweeters up to 91dB sensitivity. Kit includes constant impedance level controls so that you can adjust for optimum results without any crossover modifications.

- **£43.90**
- **+P&P £4.00**

ELAC METAL DOME TWEETER UPGRADE As kit above but using the Elac tweeter which has had such rave reviews. To replace units up to 95dB sensitivity. Order METAL 25DT30 (114mm round plate) or METAL 25DT29 (120dBmm).

- **£62.50**
- **+P&P £4.00**

SEAS METAL DOME TWEETER UPGRADE (H400417) As the above kit but having a sensitivity rating of 91dB as opposed to 92dB. Order the Elac unit.

- **£57.00**
- **+P&P £4.00**

SEAS METAL DOME TWEETER UPGRADE Direct replacement for the 3½ (19mm) unit used in so many small speakers. Sensitivity 88dB (94mm round plate)

- **£41.90**
- **+P&P £4.00**

CONCERTO UPGRADE CROSSOVER Replacing the DN12 network in speakers employing the Kef B10. B110, T27 combination. This crossover greatly improves detail and definition.**

- **£56.95 pair**
- **+P&P £2.50**

WACOUSTIC PANELS inhibit panel resonance and limit cabinet-induced colouration. (Foam sandwiched between two layers of bitumin.) Self adhesive. Size: 270x200x16mm. **£16.00 set.** Set of 8 (will treat pr. of small/mid. speakers).

- **+P&P £4.00**

Wilmslow Audio

DIY Speaker catalogue £1.50
post free (export £3.50)
Open Tuesday to Saturday, 4 demonstration rooms available.

HENRY'S AUDIO ELECTRONICS

404 EGGWARE ROAD, LONDON W2 1ED
Tel: 071-724 3566/071-724 1831 FAX: 071-724 0821

DISCOUNTS FOR QUANTITY AND EDUCATIONAL

Fig.9 Typical digital filter
PCB SERVICE
February

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price (inc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9103-3</td>
<td>SSB Radio Receiver</td>
<td>£1.80</td>
</tr>
<tr>
<td>E9103-4</td>
<td>Active Loudspeaker board</td>
<td>£2.50</td>
</tr>
<tr>
<td>E9104-1</td>
<td>Testmeter Volt</td>
<td>£3.25</td>
</tr>
<tr>
<td>E9106-3</td>
<td>Power Probes Injection Box</td>
<td>£4.00</td>
</tr>
<tr>
<td>E9104-3</td>
<td>EPROM Eraser</td>
<td>£4.75</td>
</tr>
<tr>
<td>E9104-4</td>
<td>Digital Tachometer</td>
<td>£5.50</td>
</tr>
<tr>
<td>E9105-1</td>
<td>Modulator Laser (2 boards)</td>
<td>£6.62</td>
</tr>
<tr>
<td>E9105-2</td>
<td>Thyristor Tester</td>
<td>£7.20</td>
</tr>
<tr>
<td>E9105-3</td>
<td>Frequency Plotter</td>
<td>£8.80</td>
</tr>
<tr>
<td>E9106-1</td>
<td>Laser Receiver</td>
<td>£10.60</td>
</tr>
<tr>
<td>E9106-2</td>
<td>Temperature Controller - Power Supply</td>
<td>£13.10</td>
</tr>
<tr>
<td>E9107-1</td>
<td>Temperature Controller - Main Board</td>
<td>£15.80</td>
</tr>
<tr>
<td>E9107-2</td>
<td>Temperature Controller - Probe PCB</td>
<td>£17.90</td>
</tr>
<tr>
<td>E9107-3</td>
<td>The Foot Tapper - Volume Control (double sided)</td>
<td>£21.80</td>
</tr>
<tr>
<td>E9107-4</td>
<td>The Consort Loudspeaker board</td>
<td>£23.90</td>
</tr>
<tr>
<td>E9108-1</td>
<td>Pulsed Width Train Controller</td>
<td>£25.90</td>
</tr>
<tr>
<td>E9108-2</td>
<td>Model Speed Controller - Main Board</td>
<td>£29.00</td>
</tr>
<tr>
<td>E9108-3</td>
<td>Model Speed Controller - Power Supply</td>
<td>£32.20</td>
</tr>
<tr>
<td>E9109-1</td>
<td>Geiger Counter</td>
<td>£35.80</td>
</tr>
<tr>
<td>E9109-2</td>
<td>Hemisphere Waveform Generator Board</td>
<td>£37.90</td>
</tr>
<tr>
<td>E9109-3</td>
<td>Hemisphere Pulse Generator Board</td>
<td>£40.70</td>
</tr>
<tr>
<td>E9109-4</td>
<td>Hemisphere Power Supply Board</td>
<td>£42.00</td>
</tr>
<tr>
<td>E9109-5</td>
<td>Nightfighter Main Processor Board</td>
<td>£45.00</td>
</tr>
<tr>
<td>E9110-1</td>
<td>Freeze Alarm</td>
<td>£47.50</td>
</tr>
<tr>
<td>E9110-2</td>
<td>Document Saver</td>
<td>£50.00</td>
</tr>
<tr>
<td>E9110-3</td>
<td>Prototype Designer</td>
<td>£52.50</td>
</tr>
<tr>
<td>E9110-4</td>
<td>Nightfighter - Sound to Light (double sided)</td>
<td>£55.00</td>
</tr>
<tr>
<td>E9110-5</td>
<td>Nightfighter - Ramp Generator Board</td>
<td>£57.50</td>
</tr>
<tr>
<td>E9110-6</td>
<td>Nightfighter - Cyclic Crossfade</td>
<td>£60.00</td>
</tr>
<tr>
<td>E9110-7</td>
<td>Nightfighter - Strobe Board (double sided)</td>
<td>£62.50</td>
</tr>
<tr>
<td>E9110-8</td>
<td>Nightfighter - 8 Channel Triac Board</td>
<td>£65.00</td>
</tr>
<tr>
<td>E9111-1</td>
<td>Digital Code Lock</td>
<td>£67.50</td>
</tr>
<tr>
<td>E9111-2</td>
<td>Switched Mode Power Supply</td>
<td>£69.00</td>
</tr>
<tr>
<td>E9111-3</td>
<td>Nightfighter Mode Selection (double sided)</td>
<td>£71.50</td>
</tr>
<tr>
<td>E9111-4</td>
<td>Nightfighter - Display Board (double sided)</td>
<td>£74.00</td>
</tr>
<tr>
<td>E9111-5</td>
<td>Nightfighter - Bass Beat Trigger (double sided)</td>
<td>£76.50</td>
</tr>
<tr>
<td>E9111-6</td>
<td>Nightfighter - Sequence Select (double sided)</td>
<td>£79.00</td>
</tr>
<tr>
<td>E9111-7</td>
<td>Nightfighter - Master Controller PSU</td>
<td>£81.50</td>
</tr>
<tr>
<td>E9111-8</td>
<td>Nightfighter - Output Switch (double sided)</td>
<td>£84.00</td>
</tr>
<tr>
<td>E9112-1</td>
<td>Nightfighter Sensor Switch Master Control (double sided)</td>
<td>£86.50</td>
</tr>
<tr>
<td>E9112-2</td>
<td>Nightfighter Sensor Switch Channel Control (double sided)</td>
<td>£89.00</td>
</tr>
<tr>
<td>E9112-3</td>
<td>Nightfighter Sensor Switch Sound Trigger</td>
<td>£91.50</td>
</tr>
<tr>
<td>E9112-4</td>
<td>Nightfighter Connector Board</td>
<td>£94.00</td>
</tr>
<tr>
<td>E9112-5</td>
<td>Nightfighter Sensor Switch PSU</td>
<td>£96.50</td>
</tr>
<tr>
<td>E9112-6</td>
<td>Nightfighter 8-Channel Input Interface</td>
<td>£99.00</td>
</tr>
<tr>
<td>E9112-7</td>
<td>Power On and Overload Regulator</td>
<td>£101.50</td>
</tr>
<tr>
<td>E9201-1</td>
<td>Laboratory Power Supply</td>
<td>£104.00</td>
</tr>
<tr>
<td>E9201-2</td>
<td>Test Card Generator Board</td>
<td>£106.50</td>
</tr>
<tr>
<td>E9201-3</td>
<td>LED Star (double sided)</td>
<td>£109.00</td>
</tr>
<tr>
<td>E9201-4</td>
<td>Enlarger Timer Main PCB (double sided)</td>
<td>£111.50</td>
</tr>
<tr>
<td>E9201-5</td>
<td>Enlarger Timer Selector Board (double sided)</td>
<td>£114.00</td>
</tr>
<tr>
<td>E9201-6</td>
<td>Enlarger Timer Switch PCB</td>
<td>£116.50</td>
</tr>
</tbody>
</table>

TO: ETI PCB SERVICE, READERS' SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:

- Quantity
- Ref. no.
- Price Code
- Price
- Total Price

Post and packing £0.75
Total enclosed £

Please send my PCBs to: (BLOCK CAPITALS PLEASE)

Name
Address
Postcode

CHEQUES SHOULD BE MADE PAYABLE TO ASP Ltd.
For a variety of reasons comets have always caused humanity to speculate about their origin and what they may portend. While most of the phenomena of astronomy fit naturally into known and measurable cycles, and some comets take on the characteristic of an ‘old faithful’, other comets of the so-called ‘wild’ type can enter the solar system in a totally unpredictable way. This greatly upset the ancients who preferred to be able to predict the appearance of any skyward phenomena.

The word comet comes from the Greek kometes meaning ‘hairy one’, derived presumably from the tail observed with such visitors. In the clear and unpolluted skies of the ancient world, comet gazing with the naked eye would have been easier than in today’s modern world where there is so much light pollution.

Within the world of science, comets have always had their great enthusiasts who have observed new comets and proposed theories for their origin and lifecycles. It is only recently that aspects of their research have been seen to be directly relevant to the development of life on earth. One theory suggests that the greater part of the water on planet earth originated from vast numbers of comets which collided with the earth since its formation. There are also revolutionary theories that comets over long life cycles round the sun and in deep space can synthesise complex organic molecules which are important building blocks in the evolution of carbon based life forms. There are even theories that comets can distribute self replication organisms such as bacteria and viruses between star systems.

Newtonian mechanics

While aspects of these ideas will be considered later, comets can be relatively well understood on the basis of objects subject to Newtonian mechanics. The dominant influence on comets while in the solar system is the gravitational attraction of the sun. Figure 1 shows the different types of orbit which comets can occupy while either ‘passing through’ or lodging within the solar system. While the planets occupy elliptical orbits which are usually close to circular, comets can travel along elliptical (short and long period), parabolic and hyperbolic orbits.

Kepler reviewed the extensive and highly accurate observational data of Tycho Brahe in order to formulate his three laws relating to planetary motion. The first of these was that planets move in an ellipse with the sun at one focus. His second law indicated that a straight line connecting the planet with the sun (the radius vector of the planet) sweeps through equal areas in equal intervals of time. In figure 2 the various sectors C1-C2, C3-C4 and C5-C6 which are of equal areas are swept out in equal times. This implies that objects in elliptical orbit travel more rapidly when they are closer to the sun. The law also applies to comets in elliptical motion round the sun.

His third law states that the squares of the periods in which the planets describe their orbits are proportional to the cube of their mean distance from the sun. This third law can be simply shown for an object in a circular orbit.

![Possible orbits of comets](image)

The nature of comets by Douglas Clarkson.
energy, to determine whether a comet will be bound within the solar system or be able to escape from it. The energy per unit mass can be described as:

\[0.5 V^2 \text{ (kinetic energy)} - \frac{GM}{r} \]

where \(V \) is the velocity of the comet, \(M \) the mass of the sun and \(r \) the distance of the comet from the sun. If this value is greater than zero the comet is unbound and its path is a hyperbola. If it is zero then its path is a parabola. If its value is negative, the comet is bound and it moves around the sun in an ellipse. If therefore a comet interacts with the gravitational fields of planets it can gain or lose ‘energy’, resulting in modification of orbits accordingly.

<table>
<thead>
<tr>
<th>Value (R) (AU)</th>
<th>Value (T) (earth years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2.83</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>22.6</td>
</tr>
<tr>
<td>10</td>
<td>31.6</td>
</tr>
<tr>
<td>12</td>
<td>41.6</td>
</tr>
<tr>
<td>15</td>
<td>58.1</td>
</tr>
<tr>
<td>20</td>
<td>89.4</td>
</tr>
<tr>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>164</td>
</tr>
<tr>
<td>40</td>
<td>253</td>
</tr>
<tr>
<td>50</td>
<td>353.6</td>
</tr>
<tr>
<td>60</td>
<td>464.8</td>
</tr>
<tr>
<td>70</td>
<td>585.7</td>
</tr>
<tr>
<td>80</td>
<td>715.5</td>
</tr>
<tr>
<td>90</td>
<td>853.8</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 1: Values of radius of orbit (AU) and computer value of orbital period.

Comet Trajectories

Modern computers can readily calculate the orbit of a comet from a set of observational data. The problem is significantly complicated by perturbations arising from interaction from the major planets of the solar system. Some interactions will act to speed them up or slow them down in their cycles or even perturb their path significantly. While comets such as Halley's may have cycles of the order of 76 years, perturbation during each cycle require to be determined before the exact appearance of the comet can be predicted.

Figure 3 shows the interaction between Brook's comet and Jupiter in 1886 which changed its period or revolution from 29 to 7 years. There is in fact a 'Jupiter set' of comets which have been perturbed by Jupiter so that they occupy orbits around the sun within its orbit. (Jupiter's mass is approximately 300 times that of the earth.)

In the description of elliptical orbit comets, the value of the perihelion gives the 'closest' distance from the sun, the aphelion being the 'furthest' distance from the sun. Table 2 below gives values of a range of selection of famous periodic comets to give an indication of their general characteristics.

<table>
<thead>
<tr>
<th>Name</th>
<th>first seen</th>
<th>period (yrs)</th>
<th>perihelion (AU)</th>
<th>aphelion (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halley</td>
<td>240 BC</td>
<td>76.09</td>
<td>0.59</td>
<td>35.33</td>
</tr>
<tr>
<td>Lexel</td>
<td>1770</td>
<td>5.6</td>
<td>0.67</td>
<td>5.65</td>
</tr>
<tr>
<td>Encke</td>
<td>1786</td>
<td>3.3</td>
<td>0.34</td>
<td>4.09</td>
</tr>
<tr>
<td>Fayebergues</td>
<td>1811</td>
<td>30.94</td>
<td>1.04</td>
<td>423.66</td>
</tr>
<tr>
<td>Pons-Winnecke</td>
<td>1819</td>
<td>6.34</td>
<td>1.25</td>
<td>5.61</td>
</tr>
<tr>
<td>Great Comet</td>
<td>1843</td>
<td>512.57</td>
<td>0.006</td>
<td>129.09</td>
</tr>
<tr>
<td>Donati</td>
<td>1858</td>
<td>1950</td>
<td>0.58</td>
<td>311.55</td>
</tr>
<tr>
<td>Tebbut</td>
<td>1861</td>
<td>409.11</td>
<td>0.82</td>
<td>109.4</td>
</tr>
<tr>
<td>Cruis</td>
<td>1862</td>
<td>758.37</td>
<td>0.008</td>
<td>166.32</td>
</tr>
<tr>
<td>Humason</td>
<td>1962</td>
<td>3000</td>
<td>2.133</td>
<td>406.91</td>
</tr>
<tr>
<td>Nevis-Seki</td>
<td>1965</td>
<td>679.88</td>
<td>0.008</td>
<td>183.94</td>
</tr>
<tr>
<td>Bennett</td>
<td>1970</td>
<td>1680</td>
<td>0.54</td>
<td>281.16</td>
</tr>
</tbody>
</table>

Note: AU = 1 astronomical unit = distance of earth from sun
(Pluto is approximately 55 AU from the sun.)

Table 2: Details of some 'famous' comets.
The periodic comets which pass close to the sun and suffer sublimation of their materials, are of necessity transient phenomena in the life cycle of the solar system.

Origin and Distribution of Comets

As to number of comets in the vicinity of the solar system, within several hundred AU, values of between 100,000 to 150,000 have been postulated though the number may be several millions. Comets not only occupy the zone of volume as far as the outer planets of the solar system but also extend far out to where the sun appears only as a faint star in the crowded firmament.

Comets only become visible when the heat from the sun sublimates particles from their surface. This usually happens at a distance of 3 AU. Thus comets in orbit round the sun which do not venture closer than this value corresponding to between the orbit of Mars (1.5 AU) and Jupiter (5.2 AU) cannot at present be detected. Their distribution is unknown.

It has been suggested that a vast reservoir of comets exist in the region of the solar system which, owing to perturbations, either pass through relatively unscathed or are captured by planetary interactions. The so called Oort cloud is believed to be a vast reservoir of ancient comets which have remained outside the orbit of the major planets of the solar system. This cloud margin is considered to extend out as far as 50,000 AU or 1000 times greater than the known extent of the solar system. Little is known about these comets in terms of distribution and trajectories. When comets from this region are perturbed and fall towards the sun, they are as it were messengers from the time of the birth of the solar system.

Perhaps there is some intuitive awareness that comets do play an intriguing role in cosmic cycles and that this accounts for their aura of mystery. As to what the perturbing effects could be which gives rise to the inward flight of such material towards the centre of the solar system, possible agents are passing stars or clouds of gas and dust. Comets could in fact be the leftover material from the evolution of the solar system.

In terms of distances in the solar system, it is useful to describe this in terms of light years. One AU is approximately 9 light ‘minutes’ (time taken for light to travel from the sun to earth). The distance to 50,000 AU is approximately 0.8 light years. The distance to the nearest star Alpha Centauri is 4.3 light years. The perturbing material in this region is highly unlikely to be observed directly and so probably will remain a mystery.

What must be obvious from the orbit and period data is that comets in orbit in this external region of the solar system must have exceedingly long orbital periods. An object orbiting at 10,000 AU will have an approximate period of a million years and one at 50,000 at the probably extremity of the Oort cloud of 11 million years.

Influence of Comets on Planetary Bodies

The effect of comets on the major planets of the solar system is an issue of scientific debate. Data from the Dynamics Explorer 1 satellite indicated that each year as many as 10,000,000 mini comets weighing as much as 100 tons vapourise in the earth’s atmosphere each year. (A comet of 10 tonnes mass assuming a density of 300kg/m³ has a diameter of about 4 metres.) This rate of collision would produce in a period of 10,000 years an approximate increase in the world’s ocean depth of 25mm. Moreover, in an assumed lifetime of 4.5 billion years of the earth, this mechanism could account for all the water in the world’s oceans. Thus water, the life giving element on planet earth, could have an altogether cosmic origin.

The planets Neptune and Uranus are thought to have extensive amounts of ice/water due to the cometary impact theory over a prolonged time scale.

High flying aircraft such as the U-2 have been able to detect so called Brownlee particles in the upper atmosphere which are thought to be produced by comets which graze the upper atmosphere and melt ‘gracefully’, releasing their burden of embedded dust particles in the process.

Comet tails are known to contain a range of solid particles as frozen material sublimes as a result of solar radiation incident on its surface. Where, for example, the earth passes through the path of such cometary debris, this can lead to significant meteor activity. Table 3 outlines the major meteor showers associated with previous comet transits in the vicinity of the earth.

<table>
<thead>
<tr>
<th>Shower name</th>
<th>Average date of maximum</th>
<th>Associated comet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyrid</td>
<td>April 22</td>
<td>1861 (Thatcher)</td>
</tr>
<tr>
<td>Draconid</td>
<td>October 9</td>
<td>Giacobini-Zinner</td>
</tr>
<tr>
<td>Perseid</td>
<td>August 12</td>
<td>Swift-Tuttle</td>
</tr>
<tr>
<td>Leonid</td>
<td>November 17</td>
<td>Temple-Tuttle</td>
</tr>
<tr>
<td>Geminid</td>
<td>December 14</td>
<td>3200 Phaethon</td>
</tr>
</tbody>
</table>

Table 3: Terrestrial meteor showers associated with cometary tails.

The activity of a particular shower depends on an extensive number of parameters and may vary considerably from year to year. Also meteor showers associated with a comet are likely to be brightest during the first encounter.

Interest has centred recently on the mini planet Chiron which occupies an orbit between Saturn and Uranus. It is considered that this object, with an icy nucleus of some 350 kilometers, could in fact be a giant comet. Calculations show that several thousand years hence its orbit could be perturbed by Saturn so that it could fall towards the sun as a spectacular comet.

Figure 4 shows an estimation of the frequency of extinction of biological species. A cycle of 26 million years appears to be evident. Is this due to perturbations in the cloud of comets in the solar system? Fortunately we do not appear to be close to a ‘natural’ biological extinction.

Famous Comets

Halley’s comet is certainly the best known comet in the solar system. Being first observed in 240 BC by the Chinese, it has been a faithful companion in its orbit which is shown in Figure 5, extending out between the orbit of Neptune and Pluto. In its orbit, Halley’s comet moves in a direction about the sun, that is counter to the motion of the planets. The photo at the start of the
article shows a picture taken during the 1986 transit.

Halley had observed the bright comet of 1680 while in Paris and also the appearance of what was to be Halley's comet in 1682. These observations were to trigger a keen interest in comets for the rest of his life.

When in 1684 Halley ventured to Cambridge to seek out the wisdom of Sir Isaac Newton in an attempt to predict the nature of the gravitational force exerted by the sun on bodies in its orbit, Newton indicated that he had solved the problem some 17 years previously but had not bothered to tell anyone of his discovery of the inverse square law of gravity. It was in many ways the enthusiasm and the ability of Halley to find sufficient funds which led to the publication of Newton's Principia by the Royal Society in 1687. Thus celestial

Fig. 5 Projected orbit of Halley's comet on the plane of the earth's orbit around the sun.

comets in many ways led to the Newtonian Model of the universe gaining acceptance and heralding the mechanistic era of Newtonian Science.

In 1986 the European Space Agency (ESA) successfully undertook a close encounter mission using the Giotto satellite with Halley's comet. The Soviet VEGA spacecraft also sent back valuable information. Figure 6 shows how the Giotto spacecraft fly past took the satellite across the so called 'bow wave' of material sent out by the solar wind from the comet. The distance of closest approach was of the order of 50 000 km.

The Giotto mission was so called after the painter Giotto di Bondone who around 1303 painted the Adoration of the Magi, showing a comet over Bethlehem. He probably was influenced by an appearance of Halley's comet in 1301.

Figure 7 shows details of Giotto flight path and how it nearly intersected with Halley's comet. Thus the comet was winging its way out of the solar system and the two were closing with their combined velocities rather like two express trains travelling in opposite directions.

The surface of the comet consisted mainly of a black inactive crust. Vapour was seen to stream from two volcanic-like vents on the comet surface and from a number of smaller fissures. This was presumably water vapour sublimating from its core. The comet was 'peanut' shaped approximately fifteen by eight kilometres long and appeared to be tumbling in space with a period of either 2.2 days or 7.3 days.

Instruments on board Giotto were able also to analyse the chemical compounds present in the emerging tail. Water vapour accounted for over 80% of the emission, with additional contribution from carbon monoxide (10%), carbon dioxide (5%), methane (1%) and ammonia 1%.

The Giotto mission, taking place amid the acclaim of the Voyager missions to the outer realms of the solar system, was perhaps not fully appreciated at the time. Not to have attempted such a mission would have left a considerable gap in the knowledge and understanding of the solar system— a gap that would not have been filled until around the year 2061.

In many ways the Giotto spacecraft, shown in Figure 8, was a revolutionary space vehicle. In the final brief encounter with the comet lasting a few minutes, the spacecraft had to compute and navigate its own trajectory since the return time for ground control signals was around 17 minutes. In the 'close encounter' the comet and Giotto were moving in opposite orbital directions.

One novel experiment on board Giotto was a piezo-electric dust particle counter which consisted of a PVDF piezoelectric film which registered a voltage 'pulse' when impacted by minute dust particles. This experiment was able to count not only the number of impacts per second but also the distribution of signal values which in turn was a function of the impact energies of the dust particles. Thus it provided a valuable running commentary on the nature of dust particles thrown off in the advancing bow wave of the comet.

It is planned to use the Giotto craft to intercept the
comet Grigg-Skjellerup on 10th July 1992. The craft has already been sent into an orbit that will enable a close encounter to take place.

Tails and Head of Comets

The nucleus of comets which may typically be no more than 10 to 100 km in size, cannot be observed from earth. In fact the Giotti mission determined in the case of Halley's comet that the surface of the nucleus was as black as soot and therefore would reflect very little light. It is only the 'head and tail' of a comet that can be observed, as previously indicated this usually begins to be observed at a distance of about 3 AU from the sun. The head or 'coma' of the comet is that part immediately in front of the nucleus while the tail is that part which streams out behind it. Different mechanisms are thought to give rise to the light given off by the coma and the tail.

Figure 10 shows the simplified interaction of the solar radiation in driving back gas and dust driven off from the comet. It should be stated there are still aspects of the complex interaction between the solar influences and the comet which are poorly understood.

Frozen gases which 'sublime' escape into the vacuum of space and in the process freed dust particles are driven out into space. In the case of Halley's comet, the visible bow wave extends out a distance of about 30,000 km from the nucleus.

The brightness of the tail of the comet is determined by a range of factors. The major ones include the closeness of the comet to the sun, the closeness of the comet to the earth and the volume and nature of the material cascaded by the process of solar heating into the coma and tail.

So called 'Sungrazer' comets produce highly visi-
ble tails as they approach the sun. The great comet of 1843 approached the sun as close as 0.006 AU - about half a million miles which is less than a solar diameter. Such comets, daring to venture so close to the sun must be a short lived phenomenon. They could only survive a few such close transits.

Halley's comet which has been seen to make 28 returns since it was first observed in 240 BC by the Ancient Chinese, is known to have a 'conditioned' outer surface which acts to 'insulate' the core of the comet from the sun's activity. 'Wild' comets, which have not experienced a close solar transit are more susceptible to losing aggregated material and therefore tend to produce more luminous tails. These new-comers, therefore, put on a better show for us.

'Wild' comets which have lodged in deep space for long periods of time (perhaps billions of years) are understood to consist of amorphous ice formed by the condensation of tiny grains or snowflakes. Such structures are exposed to cosmic ray energies and stellar light. Laboratory experiments have shown that when such structures are heated from low (deep space) temperatures to those experienced within 2 to 3 AU from the sun (about 150°) stored energy in the ice structure was suddenly released. This would in the vacuum conditions of space cause a sudden blow off of material from the comet's tail.

Separate experiments have also shown that damage to ice crystal structures caused by simulated cosmic ray radiation can be released when the ice is warmed from 20 Kelvin to about 30 Kelvin. Thus this release of energy would presumably take place at distances greater from the sun than 3 AU when the tail usually becomes visible. It is thought, that the Kohoutek comet of 1973 which brightened at unusually great distance from the sun was one of these 'primordial' comets.

Under exceptional conditions, comet tails can be observed over vast distances. The great comet of 1843 was estimated to have a tail 300,000,000 km long. Light produced in the tails of comets can essentially be produced from the reflection of light from dust particles and from fluorescence of ionised atoms and molecules. The process of light scattering from particles is relatively straightforward. Some of the dust particles, however, are exceedingly small like cigarette smoke particles. Some are indeed too small to reflect light. In the process of fluorescence, photons of light are absorbed by discrete ions, atoms or molecules in the tail of the comet and radiate in turn photons of lower energy. While the origin of the light is essentially straightforward, the direction of the tail of the comet is subject to a range of complex factors. Previously comet tails were described as types I, II or III where type I was the most straight and type III showed the most 'bending'. This classification was initially introduced by the Russian scientist Bredikhin in 1903. This model of classification is gradually passing out of use as additional modes of comet tail formation and evolution are being discovered.

Solid dust particles which are initially travelling outwards from the comet are bombarded by photons of light which in time transfer their momentum to the particles and reverse their direction, sweeping them behind the comet.

The tail of ions given off by the comet appears to line up with the direction of the Solar Wind - a stream of positive ions sent out by the sun at speeds of 400 km/second. The sun and its associated solar wind is responsible for establishing a magnetic field throughout the solar system. The interaction between this field and the solar wind particles tends to bend round the ions of the comet into the direction of the solar wind particles.

The sun is itself rotating with a period of 26.9 days. This causes a rotation in the tails of solar wind particles sent out into the solar system and it also causes the rotation of magnetic field vectors in the solar system. When the tail of a comet passes through such a boundary, a discontinuity will be visible in the comet tail.

Thus comets are useful 'windsocks' for determining the path of the solar wind and detecting magnetic field boundaries in the solar system. While these large magnetic sectors change slowly in time over months, changes can also take place in the tails of comets due to extreme changes in the activity of the Solar Wind.

The coma of the comet is that area opposite from its tail. It is an area where clouds of material blown off from the comet interact and become dissociated, releasing light energy in the process. The paths of ions are then swept round the nucleus and into the cometary tail. Dust particles released into and around the coma area will also reflect light.

If the ultraviolet spectrum of the coma is observed, this is usually observed to extend out considerable distances from the comet - as much as 10,000,000km. This effect is produced by ionisation of Hydrogen which being a very light atom escapes from the comet with greater velocity and forms its larger interaction cloud. Usually visible comets vary in size between 100,000 and 1,000,000km.

The recent encounter with Halley's comet has provided valuable new insights into the realm of comets. There are many points about them which still remain a mystery. Perhaps the greatest of these is their origin and distribution within the solar system and indeed other star systems.

Also, the role of comets as catalysts in the evolution of carbon based life in the solar system is a subject of considerable but tantalising debate. There is no doubt that the 'chemical soup' of a deep space comet is fundamentally different from that of the earth's primordial oceans. If the earth's oceans originated from comet bombardment, then the old adage all life began in the sea needs a subtle re-interpretation.
A

n undergraduate friend recently asked
me to examine a rather archaic cathode
ray oscilloscope which had belonged
her Grandfather and had remained
confined to a cupboard since his
death;
The problem then,
to design
and calibrate
a variable
timebase
oscillator suitable
for driving
the,
x-plates of the cathode
ray tube.
At
first such an
exercise
appears
twil,
however the fact that the
timebase
has
be
of
a sawtooth
formation
prompts
further
reflection.

The characteristic shape of a
dsawtooth waveform is responsible
for the horizontal movement of the
electron beam in all forms of
cathode ray tube utilizing a raster

required is connected from the output node to the bottom
end of the additional bias resistor R3. This
provides positive feedback, but because the gain of the
emitter-follower is less than unity, the circuit will not
oscillate. The R3 - C1 combination will however, act
as a much higher impedance to AC signals. As one end
of R3 changes in voltage, the opposing end moves by

Skill designs and techniques.

ETI FEBRUARY 1992
an almost identical amount in the same direction. The effective AC signal across R3 is thus very small and it appears, quite neatly, as if R3 is pulling itself up by its own bootstraps.

I was correct in trusting my initial conjecture, a basic sawtooth generator consists simply of a capacitor which is charged by means of an input load resistor and then discharged by a periodic step voltage. As the capacitor is charged, the voltage across it increases exponentially. Correspondingly, the voltage across the input load decreases. The output is approximately linear, provided that only a small portion of the charging signal characteristic is utilized. Consequently a square wave input is introduced to discharge the capacitor periodically. Such a signal is generated with ease using a simple astable multivibrator.

A simple sawtooth generator employing a bootstrap is shown in Figure 4. The output is derived from an emitter-follower capacitively coupled via the bootstrap capacitor C2 to the input load resistor R2. As the output voltage rises, the voltage at the node between R2 and R1 also rises; the voltage across R2 and hence the charging current is therefore maintained substantially constant, consequently a near linear sawtooth waveform is produced.

Astute readers may by now bemoan the fact that it has taken several paragraphs to realise a relatively primitive circuit which with hindsight, I should have produced readily. This fact apart, by discussing bootstrapping, a brief but interesting excursion has been made into an area of electronics which many text books neglect, contributing no real explanation of function or purpose.

After the addition of a linearising network, appropriate amplifier and calibration, a variable version of the simple sawtooth generator was implemented in the cathode ray oscilloscope with a high degree of success and I understand that a thrilled student is using it as standard piece of her laboratory kit. A full commissioning has been arranged in the student bar!
Sooner or later all of us who are involved in this hobby of electronics, will want to make printed circuit boards by the 'photographic' method; and those of us who have already tried will soon tell the rest that getting the correct exposure for the pre-sensitized circuit board is an absolute must.

I have been making printed circuit boards by this technique for many years now and during that time I have looked for an accurate timer which had certain features I needed; and I have searched in vain. What I wanted was a small device which could be set to count down very accurately and repeatably a given number of seconds, preset in advance; I wanted it to turn on a mains socket when the timing countdown started, and turn it off at the end of the preset period, and I wanted the alternative of turning the socket on until after the preset time had elapsed; I wanted a 'hold' function so that the timer could be stopped in mid countdown, with the socket on or off, as desired; and I wanted a reset button which could bring the countdown to an end while the timing period was in progress.

Nothing on the market met the above requirements. I could buy egg-timers, whose accuracy was very doubtful; I could buy photographic clocks, which had some of the features I wanted, but not all. And in any case, they were expensive.

So, the alternative was to make a timer. (And incidentally, this timer not only serves to time the exposure of printed circuit boards, but is equally invaluable in the darkroom where it will accurately and repeatably time the exposure of photographic enlarging paper. So if your interests are under the red light in the darkroom, or even boiling an egg to an accuracy of 0.1%, then this project is also for you!)

It is possible to obtain some pretty esoteric integrated circuits that will perform many of the functions I wanted to build into this circuit, but, like most of you reading this article, rarely do I have access to anything...
other than standard, off-the-shelf components. So I wanted to use only those which were easily available to everybody. In consequence, with 13 integrated circuits in this project it may seem a little over-designed. However, all the components are standard, off-the-shelf, and inexpensive. So don’t let the component count put you off.

The Time Base Circuit

Since this timer was going to switch a mains socket on and off, it seemed obvious that the circuit should be mains (rather than battery) driven. In consequence I decided that the time base pulses to drive the clock should be derived from the mains frequency of 50Hz by dividing this down until a one second pulse was achieved.

Time Base Circuit

Be careful! Each of two principal circuit boards has live mains applied to it, in this case to point A. Resistors R1a and R1b (use two of 5M each rather than one of 10M since the voltage limit of a single resistor is exceeded by the 240 volt mains) ensure that the current flow is strictly limited into the inverting input of IC2, a standard 741 operational amplifier. The non-inverting input is held at 6 volts by the voltage divider R2 and R3. Used in this way the 741 is just a voltage comparator and, as the sinusoidal input from the mains passes through the 6 volt level on each wave, the output switches sharply between about 2 volts and 11 volts, providing a precise square wave at pin 6.

![Image of circuit diagram](image)

This is the kind of input that the next IC likes to receive and the 50 Hz square wave is fed into pin 14, which is one of the clock inputs of IC3. This, and the next three ICs in the chain are all CMOS type 4017 counters.

In general, as each pulse is counted, one of ten pins on the 4017 goes high. The no-pulse-counted, or ‘zero’ pin is 3. This is high before any clock pulses are counted; and, while it is high, all the other nine ‘number’ pins are low. As soon as the counter detects the rising edge of the first square wave, the ‘zero’ pin 3 goes low and the ‘one’ (which is pin 2) goes high.

Don’t forget that one clock pulse includes both the high, and the adjacent low section of the square wave, and the next clock pulse does not start until the next rising edge. When that happens, the ‘one’ pin 2, goes low and the ‘two’ pin 4, goes high. And so on.

But in our Time Base Circuit, diode DI effectively joins pin 1, which is number ‘five’ in the count, with pin 15, which has the special function of re-setting to low all the counter outputs except ‘zero’ pin 3, which resets high. Pin 15 is normally held low by resistor R5. From the timing diagram, it is possible to see that after the fourth wave is counted, ‘five’ pin 1, goes high very briefly, taking reset pin 15 high as well; this resets to low all counters (including ‘five’ pin 1 — this is the reason why this pulse is so short), with the exception of the ‘zero’ pin 3, which resets high during the fifth wave, and the cycle repeats itself.

In other words, (by which I mean that if you find my poor explanation totally meaningless, don’t worry about it), although 50 clock pulses are going into the counter IC3 every second, the output from ‘one’ pin 2, provides only one pulse for every five going in, i.e. ten every second; and the original frequency has been divided by five.

Consequently the frequency into the clock input, pin 14, of IC4 is 10Hz. This IC is also a type 4017 but now used in a different way. None of the ‘zero’ to ‘nine’ pins is connected to the reset pin 15, and the output is taken from pin 12. This is the IC’s ‘carry-out’ pin. If, for example, you were going to add up thirteen separate pulses, the answer would be three units, carry forward one ‘ten’. And that function is exactly what ‘carry-out’ pin 12 provides: one pulse out for every ten counted.

So, with the frequency into IC4 being ten pulses per second, the frequency out of pin 12 is one pulse per second, ie very accurate pulses of one second duration.

All we need now is a down counter which can be set to start at the time required in seconds, feed this counter with our one second pulses, arrange for the counter to stop when it reaches zero, and we are well on the way to achieving our design goal.

However, when I was working on the design, and having got as far as this in my thinking, it occurred to me that the addition of only two more 4017 counters and a single-pole-double-throw switch would allow minutes to be counted as well as seconds. So IC5 merely repeats the functions of IC3, except that it now divides by six the 60 pulses per minute coming out of IC4, out-putting 10 per minute to IC6, which divides them by ten, to produce its output of one pulse per minute. And you now have two timers for almost the price of one. The first will count down in seconds, and
the second will count down in minutes. Now the function of switch SW2 should be obvious: with the switch in position S, pulses one second long are fed to the rest of the circuit; when this switch is in position M, pulses which are one minute long go forward.

The only other components I have not yet explained are the de-coupling capacitors C3 and C6 (which are there to take switching spikes out of the power supplied to these four ICs), the diodes D2 and D4, and those components around the commoned pins 13 on each of the counters.

In general, when pin 15 on a 4017 is taken high, all the counters on the chip are 'zeroed' and held that way as long as pin 15 is kept high. In our circuit, pins 15 on IC4 and IC6 will follow whatever value the control input C has. That same pins 15 on IC3 and IC5 are normally kept low by resistors R5 and R6, but will always go high via diodes D2 and D4 when input C goes high (as well as being switched by the other diodes D1 and D3).

Consequently, we want to arrange the logic driving input C so that it is taken and held high at the end of each timed interval and then, whenever a new timing period is required, all the counters start from zero. So, logic in the rest of the circuit is used to take point C high (that is pins 15 on IC4 and IC6 directly, and on IC3 and IC5 via diodes D2 and D4) so that the clock stops at the end of the timed interval and is always ready to start from zero when the next timing period is started.

Pin 13 on the 4017 is an alternative clock input, allowing the 4017 to count pulses starting with the falling edge of each wave. This pin can also be used (as it is here) as a clock-enable control when the 4017 will only count clock pulses into pin 14 if pin 13 is held low. In this circuit, 'low' is the 'normal' state of all pins 13 via resistor R4, switch SW1 being open. When SW1 is closed, each pin 13 is taken and held high, causing all the counters to stop exactly where they were in their count. Releasing SW1 allows the counters to continue their count from exactly the position they were in when SW1 was closed. The capacitor C4, is there to take some of the 'bounce' out of the operation of this switch, so that spurious pulses are not counted. This is the 'Hold' function.

The printed circuit board for the Time base Circuit and the positions of its components are shown in Figure 3.

A three printed circuits illustrated in this article are all designed to be made on double sided board. Making full, double etched boards with through connections is really quite difficult and so the three in this project use the second side of each board only as an earth plane. Points showing where pins must be used to join the earth plane to the etched side are indicated in each diagram. Where links are to be fitted, dotted lines are drawn and care must be taken to see that these links are not shorted to the earth plane.

On the Time Base printed circuit board, there are two positions where pins (just short pieces of wire such as those trimmed from resistors and capacitors when they are fitted into the boards) are soldered to both sides: one is where the ground supply joins the board and the other is at the 'top' end of IC3, earthing pin 8. The components R3, R4, R5, R6, C5 and C6 have one of their leads soldered to both sides of the PCB. There is one wire link, allowing pin 16 of IC5 to be connected to the positive supply.

The rest of the circuit, shown as Figure 4, drives the counters and displays. It may seem rather complicated but it really is not. If you are like me and tend to be put off when you see a project where the resistors are beginning to be numbered in the forties, do not despair. Most of the resistors are grouped either in three lots of seven and simply current-limit each individual LED segment of the displays, or in three lots of four, serving the purpose of holding low until otherwise switched, the various sections of the thumbwheel switches.

The central part of this circuit is built around three CMOS integrated circuits, type 4510. The 4510 is a counter which will count up or down. It has a binary-coded decimal (BCD) number input and a similarly coded number output which increments up or decrements down (depending on which direction the IC has been set to count) on each pulse sent into the clock input, pin 15.

BCD thumbwheel switches are special switches which have either ten positions with numbers 0 to 9, or sixteen positions with numbers 0 to 9 and A, B, C, D, E, and F, showing individually on the front face of the switch and depending on its position. Any particular number or letter can be reached by rotating the switch to the digit desired.

For the purposes of this circuit, only ten position BCD thumbwheel switches should be used. Each switch has five contacts, usually labelled '0', '1', '2', '3', and '4'. The all the digits from 0 to 9 can be represented using only 4 binary digits.

The following table gives the codes.

<table>
<thead>
<tr>
<th>Number</th>
<th>'0'</th>
<th>'1'</th>
<th>'2'</th>
<th>'3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For a thumbwheel switch to output these codes, the C, or Common on the switch is connected high (to the 12 volt rail in this circuit). Now, for example, with the switch in the number 5 position, contact '1' is connected to 12 volts, as is contact '3'. So, wherever there is an A in the right columns of the above table, that contact is switched to the 12 volt supply. Unfortunately where the table shows a 0, that contact is just an open circuit. So each of the four contacts '0', '1', '2', and '3' on every switch has to be held low using four resistors. I had enough room on the contact boards of each of the three thumbwheel switches to mount four, 1/8 watt, 100k resistors there. (See photograph.)
The four-digit binary codes produced by each thumbwheel switch are fed into pins 4, 12, 13 and 3 on the corresponding 4510 counter IC. Be very careful that these pins are each wired to the correct '8', '4', '2', '1' contact on each thumbwheel switch.

When the coded input number is loaded into the counter (see later) the same coded numeral is output from the 4510 at pins 2, 14, 11 and 6. This number can only be revealed when its BCD is decoded into a seven-segment code by a special IC: in this case the 4543. This IC will not only decode the four binary digits into a seven-segment code to light up the correct form of the numeral on the display, but has enough current capacity to illuminate the segments.
bility to drive this seven-segment display directly. With appropriate wiring the same IC will drive common cathode as well as common anode displays. The circuit diagram shows the correct wiring for use with the common anode displays I used. Not all seven-segment displays have the same pin outs as one another, so do check the pin outs on the ones you have chosen to use before wiring-in the current-limiting resistors.

Incidentally, do not make the mistake I did and try to build this device in a box too small. I just happened to have a box 3 1/2 x 5 x 1 7/8 inches (see the various photographs) but with my clumsy fingers and quite a lot of fairly large components, this was really too small, the construction producing considerable anguish and sucking of teeth before it was finished. Nevertheless, it is a good plan not to include the current limiting resistors (R11 to R17, R22 to R28, and R33 to R39) on the printed circuit board itself, but use them instead as the way of connecting the board to the individual seven-segment displays.

See Figure 5 for an enlargement of the interconnections from a 4543 drive/decoder IC to the seven segment display I used. Note that pins 14 and 15 on the 4543 have to be reversed if the straight run of each segment, a, b, c, d, e, f, g, is to be achieved.

So, when any digit from 0 to 9 is set up on each of the thumbwheel switches, its BCD code will appear at pins 4, 12, 13, 3 on the associated 4510 IC and this number can be loaded into the counter by briefly taking pin 1 high. In this circuit, all the pins 1 are usually held low by resistor R40, but pressing the LOAD switch, SW3, will take them all high, loading each thumbwheel digit into the corresponding counter. The IC will then reproduce this same digit on pins 2, 14, 11 and 6. Thence it will appear on the seven segment display via the 4543.

Pin 10 determines whether the 4510 counts up or down, and when it is held low, as here, it only counts down. Pin 5 is a count-enable control, which must also be kept low.

When the first pulse enters a counter through the clock pin 15, its output is decremented by one. With each succeeding pulse, the display will show one less. When it reaches zero, the next display will be 9, but before that happens and while displaying 0, a ‘borrow-

one’ pulse (high to low to high) will appear at pin 7. This allows the three 4510 counters, to be cascaded using the pin 7 output of one as the clock input of the next. With two, three or more of the counters cascaded, you can set any number on the thumbwheel switches, load that number into the counters and thence the displays. When the clock is set going it will count down from that number all the way to zero; and unfortunately continue on through 999,998,997... etc., if you do not stop the clock at 000... That is one of the reasons for IC13.

When the ‘hundreds’ counter reaches 0, the output from pin 7 on IC12 goes low, and stays low until the number being displayed is 0. Some time later, the ‘tens’ counter, IC 11, counts down to 0, when the output from its pin also goes low and stays there while displaying 0. At this time only the ‘units’ display has any figure other than zero and this counter continues to count backwards to 0 when its pin 7 goes low.

Now for the first time all three inputs into pins 3, 4, and 5 of the first NOR gate of IC13 are simultaneously low and so its output at pin 6 goes high. This is the ‘C’ connection on the Time Base circuit which takes all the 4017 master reset pins 15 high, thus zeroing and holding at zero the three counters, IC3, 4, 5 and 6.

With IC13 pin 6 high, all the inputs into the second NOR gate (here used just as an inverter) are high, so its output is low. Hence, in this state, field effect transistor, Q1 is off and so is the relay. Depending on the position of the ALTERNATIVE switch SW5, power is, or is not, supplied to the mains socket, indicated by the neon being lit or not. The diode across the coil of the relay is to short-circuit any potentially dangerous voltage (damaging that is for the FET, Q1) which will be back induced in its coil when the relay is switched off. IC13 has a third, triple input NOR gate which is unused in this project. To stop it ‘floating’ and switching randomly (a state which can produce the strangest of spurious outcomes in the other two gates) the input pins 1, 2, and 8 should all be tied low or high via either
voltage rail as convenient. Only when the displays are showing 000 will the relay be off. For all other displays the relay will be on and the timer will be counting down towards 000, unless the HOLD switch has been operated, when the timer will ‘freeze’, but leave the relay on. At this time, power to the socket can be turned off or on as required using the ALTERNATIVE switch.

If you wish to bring a timing sequence to an end, without waiting for the timer to reach 000, then the END button SW4 can be pressed. This is connected to all pins 9 on the 4510 ICs, and to resistor R41, which normally holds these pins low. But when SW4 is pressed, all the pins are taken high, zeroing the 4510 counters. Simultaneously, point C will go high, zeroing the 4017 counters.

Figure 6 shows the printed circuit board and the layout of the components for the Counter and Display Circuit.

On this PCB, there are 13 places where pins need to be used to join etched tracks on one side to the earth plane on the other. There is one each for the joined pins 7 and 8 on IC7, IC8 and IC9, three for pins 5, 8 and 10 on each of IC10, IC11 and IC12, and one at the point where the 0 volt lead is connected to the board. In addition, the components C7, C8, C9, C10 and Q1 must have one of their leads soldered to both sides of the board. There are eight links; one joining pins 1 and 6 on each 4543, two joining the pins 9 on the 4510 ICs, one joining pin 15 on IC11 to pin 5 on IC13, one joining pin 15 on IC12 to pin 4 on IC13, and one joining all the power supply pins 16 on the 4510s to the 12 volt supply.

The Power Supply.

The power supply used in this project is absolutely standard in design and needs little explanation.

The incoming mains is connected to the primary of the transformer, T1. The LIVE side of the mains is also connected to the common contact on the ALTERNATIVE switch and to point A on the Time Base PCB. In your design of this project you may feel that it would be safer to mount resistors R1a and R1b directly on the mains transformer where they can probably be well insulated, rather than have a LIVE connection straight onto the Time Base PCB. Either way, BE CAREFUL.

You may think it safer and simpler to produce the 50Hz square wave directly from the transformer’s secondary. This is certainly safer but will give very poor time-keeping. As the ICs switch the displays of the various digits, enough spikes appear on the secondary supply at the transformer to make clock pulses generated in this way highly unreliable.

The NEUTRAL side of the mains is not only connected to the primary of the transformer but also to the Neon and the neutral terminal of the Mains Socket. The 14 volt AC output from the transformer (you can probably get away with using a 12.6 volt transformer if it will supply at least 1 amp) is bridge rectified and then smoothed by C1 to about 16.1/2 volts DC. This is connected to a volt regulator IC, type 7812, which will supply a constant 12 volts at up to 1 amp. This design does not require as much as 1 amp but it is surprising how much current the displays consume, so reckon that you will need at least 1/2 amp to run the project and that means that the voltage regulator IC1 will get quite hot and needs a heatsink. The printed circuit design that I have shown uses the copper on the ground plane of the double-sided board to provide the necessary heatsinking.

Capacitor C2 is there to make certain that high frequency oscillations which can occur when using this type of voltage regulator are decoupled to earth. If the power supply board in your design is a long way from the other boards (more than 6 inches, say) then the Coupler and Display Board should also have a reservoir capacitor of about 220 microfarads connected between the supply voltage at its entry point and earth. A similar capacitor is already included on the Time Base PCB.

There are no pins or links needed on the power supply PCB, but the middle pin of IC1 and one lead of C2 can be soldered to both sides of the board. IC1 does not need to be insulated from the earth plane of this board because its tab is connected to the middle pin anyway.

Building And Setting Up

Building this project should present few difficulties and no setting up is required.

It is good technique to check out the power supply before connecting it to the other circuit boards. Make sure that the output is a clean, ripple-free 12 volts, and then connect the supply to the two other PCBs. At this stage none of the chips should be plugged into its socket. First check that each IC socket is receiving the 12 volt supply at the appropriate pin, (pin 7 for the 741, pin 14 for the 4025 and pin 16 for the rest) and check that all the other pins which should be ‘high’ are, and those which should be ‘low’ are.
When those tests are completed, fit the integrated circuits.

All the test books point out the dire warning that CMOS devices expire maliciously and silently unless they are handled with great care. My own experience is that CMOS chips seem rather more difficult to destroy now than they did some years ago when there were no internal protection circuits to discharge the static charges that build up on the user’s body. However, these ICs should be treated with respect and not taken out of their protective sleeves or conducting foam plastic until they are to be plugged in and used; and try not to over-handle their pins.

Check first the Time Base PCB. If you have an oscilloscope you should find that pulses of exactly one second duration are reaching the S position of switch SW2 and if your oscilloscope has two channels, check that the signal at the M position of SW2 changes from high to low and then low to high every 30 counts of the one-second pulses reaching S.

Now make the inter-board and display connections.

Because the circuit boards do most of the work of wiring up, the biggest potential error is in misconnecting the BCD coded inputs and outputs to and from the 4510 ICs. One misplaced connection can produce such strange figures on the displays that it is difficult to trace errors. So in carrying out this wiring up it is better not to copy what you have done with the previous 4510 but to work out the connections afresh for each of these counters.

Once all the inter-connections are complete, take your courage in both hands and plug in to the mains. If the earlier checks have been carried out there should be few problems. There are no setting up procedures, nor potentiometers to adjust.

When first switched on the displays should register 000 and therefore the relay should be off. The mains socket may be on or off (check the neon), depending on the position of the ALTERNATIVE switch, SW1. Set the thumbwheel switches to some convenient three digit number, say 123, and press the LOAD button, SW3. You should hear the relay close and the displays should now show 123. The timer will start counting down towards zero if the HOLD switch, SW1, is in its open position. If the timer is not counting down, operate the HOLD switch when timing should begin. Pressing SW4 should bring the timing sequence to a premature conclusion, and you should hear the relay drop out when the display shows 000. Alternatively, allowing the timer to count all the way down to 000, should produce the same result; the relay will drop out, and the display will hold at 000.

Some Final thoughts

This timer is particularly suitable for darkroom work where, during enlarging, the experienced photographer will often use the same exposure time for each negative, varying the iris to achieve correct exposure. With the enlarger plugged into the timer’s mains socket, simply pressing LOAD each time a print is to be made will repeatedly turn the enlarger on for the number of seconds set. But changing the time period as required is just as easy.

Using a double pole double throw ALTERNATIVE switch and a second changeover set of relay contacts would enable the timer to turn off the enlarger light (and the safe-light off) while timing out, and turn the enlarger off and the safe-light on at the end of each period.

One other relatively minor modification that my photographic friends have suggested to me as a useful feature for them is the possibility of the timer being set up to time periods to one tenth of a second.

Making this change is rather simple. Just take the time base output from pin 2 on IC3 as the input into the Counter and Display Circuit at point B, and the third digit of the display will now represent tenths of a second. Now by lighting the LED decimal point between the second and third digits (simply connect the appropriate pin on the display to earth via a 470R resistor), the timer can be set to display time and time any period up to 99.9 seconds.

Although I think this design meets all the requirements I had for my purposes, I suppose the major disadvantage of a timer set up in this way is that it does not decode and display time in the way we normally expect, in minutes and seconds. Specialist chips are available to do this but they are not easily obtainable and they are expensive. So, in consideration of my intention to make this project with off-the-shelf components, I decided that the difficulty of calculating, for example, that 0.4 minutes is 27.0 seconds, was not too high a price to pay for construction simplicity and component availability. I hope you agree.
HART AUDIO KITS – YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the opportunity to build the very best engineered hi-fi equipment there is, designed by the experts at HART and built by the best component suppliers available.

DURABILITY AND PERFORMANCE:
You are not just building high performance audio equipment you are building in a soundproof, climate controlled environment so that you get the best from your equipment for as long as possible. Every component is checked and tested before being used in your kit. Only the best components are used, ensuring that your kit is the best it can be.

CHOICE OF KITS:
We offer a choice of budget to high end kits so you can choose the kit that is right for you. Each kit is designed to be as easy to build as possible so that even if you are a beginner you can still build a high quality kit.

QUALITY COMPONENTS:
We use only the best components from leading manufacturers to ensure that your kit performs as well as possible.

DESIGN:
Our kits are designed with the latest in high end audio technology so that you can enjoy the best possible sound.

COMPUTER CORNER:
The following are a selection of our new range of very competitively priced, high quality, computer systems. Due to our long standing relationship with the manufacturers, we have secured the most competitive prices in the UK and the West End.

HART MODEL AT-286/16MB COMPUTER

* **Computer Kit:**
 * **AT-286:** AT compatibility
 * **16MB RAM:** Enough memory to deal with the most complex problems
 * **512K FST Hercules Monitor:**
 * **Multisync Colour Graphics (Built in):**
 * **144MB Hard Disk Drive:**
 * **14" Hard Disk Drive:**
 * **2MB Multisync Colour Graphics Card:**
 * **SYSTEMatic 125:**
 * **COMPUTER HARDWARE:**
 * **COMPUTER SOFTWARE:**
 * **Sound Card:**
 * **CD Player:**
 * **CD ROM Drive:**
 * **CD ROM:**
 * **CD ROM Drive:**

LUXURY VERSION:
A high end version of the above including extra components to make the kit even more powerful.

OPTIONAL EXTRAS:
HART Computers can be custom made to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.

AUDI O KITS

* **HART 40MB AT-286/16MB EL**
 * **Computer Kit:**
 * **AT-286:** AT compatibility
 * **40MB RAM:** Enough memory to deal with the most complex problems
 * **512K FST Hercules Monitor:**
 * **Multisync Colour Graphics (Built in):**
 * **250MB Hard Disk Drive:**
 * **250MB Hard Disk Drive:**
 * **250MB Multisync Colour Graphics Card:**
 * **SYSTEMatic 125:**
 * **COMPUTER HARDWARE:**
 * **COMPUTER SOFTWARE:**
 * **Sound Card:**
 * **CD Player:**
 * **CD ROM Drive:**
 * **CD ROM:**
 * **CD ROM Drive:**

LUXURY VERSION:
A high end version of the above including extra components to make the kit even more powerful.

OPTIONAL EXTRAS:
HART Computers can be custom made to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.

TRANSPARENT OPERATIONS:
HART Computers can be configures to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.

TRANSPARENT OPERATIONS:
HART Computers can be configures to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.

TRANSPARENT OPERATIONS:
HART Computers can be configures to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.

TRANSPARENT OPERATIONS:
HART Computers can be configures to fit your personal requirements. Simply select the items you need from our standard specification and the kit will be built to your specifications.

DRIVE SIZES:
We offer a range of hard disk drives from 2MB to 1250MB. The standard kit comes with a 2MB drive. Larger drives can be added for an additional cost.
Voltage drops and currents in complex networks can usually be found by applying Ohm's and Kirchhoff's laws. College students spend many an absorbing hour using these two basic tools to unravel circuit diagrams which, as the course progresses, become more and more formidable. By the time the dreaded exams loom, over-enthusiastic lecturers may be presenting diagrams which could easily be mistaken for the work of Picasso during his middle period.

Ohms law is indispensable but relying too heavily on Kirchoff alone can often lead to time consuming, and sometimes even unnecessary, work. There are several other analytical tools which can cut down the work and, more importantly, lead to a better understanding of circuit behaviour. Thevenin's Transform and the Star/Delta Transform are two of the most useful examples of such additional tools.

Thevenin's Transform

Some circuits are easier to analyse and understand if they can be redrawn in a way which temporarily eliminates an awkward component in order to arrive at an intermediate solution. A powerful circuit dodge, known as a 'Thevenin Transform', employs this two-stage approach.

The object is to reduce a circuit, however complex, to the three element form shown in Figure 1. The three elements resulting from a Thevenin transform are referred to as:

a) The equivalent source emf, E.
b) The equivalent source resistance, r_s.
c) The load, R_L.

The instructions for performing a Thevenin transform, when expressed in the rigid language favoured by academics, can be a trifle off-putting. It is easier to understand with the aid of an example, such as the one shown in Figure 2a, and 2b. If the load is deemed to be the 5Ω resistor in Figure 2a then Figure 2b is the transformed version. Three steps are involved:

Step 1. Identify the load terminals and consider the load removed. The voltage across the open-circuited terminals is the equivalent EMF source, E.

Step 2. The equivalent source resistance, r_s, is now the total resistance measured across the load terminals if the original voltage source is replaced by a short circuit.

Step 3. Redraw the circuit using only the two new elements and restore the load back to its terminals.

After the transform, the load resistance will be unaware that it now rests in a different circuit because the current through it and the voltage across it will be the same as before. That the process is valid — and also time saving — is shown by calculating the load voltage and current in both circuits.

Using the original circuit shown in Figure 2a:

Total resistance, $R_T = R_1 + (R_2 R_3)/(R_2 + R_3) = 13.33 \, \text{ohms}$
2 ohms so the current through R/3 amp.

Resonant Circuit Example

To emphasise that thevenin can be used equally well in A/D networks, Figure 4a is showing a series circuit consisting of an inductance, L, having resistance R in series with a capacitance, C. When the circuit is resonant, a voltage is developed across the capacitor equal to Q times the supply voltage — where Q is the circuit magnification factor. Unfortunately, this voltage is little more than hot air — it is there until it is asked to do some work! As soon as it senses a load across its terminals, the voltage could plunge downwards, and become a mere shadow of its former glory.

Although calculating the on-load voltage is not difficult it can involve a nauseating orgy of notation. However, if only the load voltage is required, much of the tedium can be avoided by employing the thevenin transformed version, shown in Figure 4b. Using the same three steps used in the first example, the equivalent EMF is QVs and the equivalent source impedance turns out to be a PARALLEL resonant circuit which is a pure resistance of value L/CR (called the 'dynamic impedance'), Z_d.

When the load is now connected, the voltage across it can easily be found because, as Figure 4c shows, it is the output from a simple voltage divider. The following calculations, based on Figure 3 show the conditions before and after the load is connected.

Open-circuited output:

\[Q = 1 / R \sqrt{L/C} = 70.7 \]

Output voltage = \[Q \times V_s = 707 \text{ volts} \]

Output with load connected:

Thevenin equivalent EMF E = 707 volts.

Thevenin equivalent source impedance = L/CR = 100k

Output voltage is therefore about \(1/10 \text{th of } 707 = 70.7 \text{ volts} \).

Anyone doubting the power of a thevenin transform should try calculating this output voltage on load without it! Apart from finding the on-load output voltage, it is usually more important to determine the lower load resistance permissible if the high open-circuit voltage is to be maintained. To ensure this, the load should be at least ten times higher than the equivalent source resistance. As Figure 4c shows, this would require a load of at least 1 Megohm.

Thevenin Solution Of Bridge Network

Figure 3 shows a bridge with resistor values which throws it off-balance. Only when such a bridge is balanced will the current through the thym be zero. In this case however, some current will flow. The problem is — how much current? The solution requires a certain amount of juggling with Kirchhoff and simultaneous equations. As shown in Figure 3b, thevenin again, can help. By applying the same three steps, the equivalent EMF is 1 volt and the equivalent source resistance is 1/3 ohms. When the 1/3 ohm load is restored, the total resistance is

The Delta Star Transform

Figure 5a shows a three terminal 'delta' network, so-called because it resembles the Greek letter of that name. This network can be quite difficult to crack when it forms part of a larger network. The delta-star transform is a useful dodge for changing to the equivalent 'star' form as shown in Figure 5b.

Rules for converting

- First add up the value of all three resistors in the delta form and call this T.
- The equivalent 'star' resistor is then the product of the two adjacent delta resistors divided by T.

Figure 6 shows a worked example of such a trans-
The value of T in the delta form is $2 + 3 + 5 = 10$. So, applying the rule to find the equivalent star form:

- $R_1 = (2 \times 3) / 10 = 0.6 \text{ ohm}$
- $R_2 = (3 \times 5) / 10 = 1.5 \text{ ohm}$
- $R_3 = (2 \times 5) / 10 = 1.0 \text{ ohm}$

Now, if a sealed 'black box' contained one of these forms with its three terminals brought out, it would be impossible to tell by any external testing methods, whether the black box contained a delta or the equivalent star form!

Using Delta/Star in Bridge Networks

Figure 7 shows an unbalanced bridge network and the problem is to find the total resistance across the terminals A and B. At first sight, this may seem like a straightforward exercise involving parallel and series resistors. But, after a few abortive attempts it is soon realised that the awkward resistor in the middle is a serious obstacle. The difficulty vanishes if one of the deltas is converted to the equivalent star form. Either of them can be taken but a glance at the example reveals that the left hand delta has the easier figures — the value of T works out to a nice round value of ten. Figure 7b shows the star equivalent of the left hand delta, drawn in dotted lines for emphasis. By applying the rules given above, the star values work out to:

- $R_1 = (3 \times 5) / 10 = 1.5 \text{ ohm}$
- $R_2 = (5 \times 2) / 10 = 1.0 \text{ ohm}$
- $R_3 = (3 \times 2) / 10 = 0.6 \text{ ohm}$

The resultant network is now free of that awkward resistor which was in the middle. Figure 7c shows the final steps — which, hopefully require no explanation—leading to the 2.5 ohm result.

CAR ALARM KITS

MICRO-PRESSURE CAR ALARM

This new type of alarm is triggered by a unique pressure sensing system. An alarm is activated when the pressure in the system drops to a minimum level, thus triggering the alarm. A sensor detects this sudden pressure change and sets off the alarm. An electronic timer is used to ensure the alarm will not continue indefinitely.

- Automatically armed 40 seconds after leaving vehicle.
- 10 second delay with audible warning (0.5 second available)
- Sounds 20 seconds after ignition is turned on.
- Simple fitting - only 3 wires to connect - no holes to drill.
- Controlled by ignition switch, hidden switch or coded remote control.

MICRO-PRESSURE ALARM

- Parts kit £15.95
- Assembled £22.35

NEW CODED IN REMOTE CONTROL

Our latest addition allows control of our alarms from outside the vehicle. Both transmitter and receiver use a chip designed especially for car security systems with 50,000 code combinations. You can even set your own code, with several vehicles on the same code or several transmitters for one vehicle if required.

- High frequency security system.
- Audible high pitch alarm.
- Key-ring transmitter with long life miniature alkaline battery.
- High power through bi-reflector with range up to 500 metres.
- Low profile dash top receiver/decoder.
- Flashing high intensity red L.E.D. warns off intruders.
- Green L.E.D. shows alarm is off.

Use the coded transmitter and receiver with our Micro-Pressure or Volt Drop alarm to form a coded remote controlled system.

CODE TRANSMITTER

- Parts kit £13.95
- Assembled £17.95

CODE RECEIVER

- Parts kit £14.90
- Assembled £18.90

VOLT DROP CAR ALARM

- Parts kit £16.95
- Assembled £20.95

120dB PIEZO SIREN

- Parts kit £10.95
- Assembled £14.95

MICRO-PRESSURE TRIGGER

- Parts kit £22.75
- Assembled £26.75

EXTENDED CODER (IGNITION)

- Parts kit £3.95
- Assembled £7.95

All the above include cable, connectors and clear easy to follow instructions. All kits include case, fitted, everything down to the last washer, even solder. All prices now include post, packing and VAT on U.K. orders. Same prices apply to all European countries. For delivery outside Europe please add £3.00.

Telephone orders accepted by VISA or ACCESS payment. Order direct (please quote ref. ET2) or send for more details from:

DATONG ELECTRONICS LIMITED

Clayton Wood Close
West Park
Leeds LS16 8OE
Tel: 0532 744822
Fax: 0532 742872

For products you can rely upon to give amazing results

For information on Active Antennas, RF Amplifiers, Converters, Audio Filters, the Morse Tuter and Speech Processors send or telephone for a free catalogue and select data sheets as required.

All our products are designed and made in Britain. Orders can be despatched within 48 hours subject to availability.

VISAN AND ACCESS WELCOME
BBM MODEL B APRIL

$100 CASH FOR THE MOST NOVEL DEMONSTRATIVE APPLICATION!

BBM Model B type computer on a board. A major purchase allowed us to give you the PROFICIENT computer at a parts only price. Used as a front-end graphics system, the computer on the board and the BBC board has so many similarities to the regular BBC Model B that we are sure that with a bit of experimentation and immunity many users will be able to use this board. The PROFICIENT computer is complete with a connector panel which brings all the i/o to 'D' and BNC type connectors - all you have to do is plug it in and 12 V DC. The ACP consists of a single PCB with most logic ic's included. The ic's are too numerous to list but include a 590, RAM and a 9502 processor chip. Three 12752 EPMOS contain the custom operating system on which we have worked. On application of DC power the system boots and provides diagnosis. Signals from the Dip switches and jumpers select the ECOM address and enable the extra four EPROM sockets for user software. Appar- dices: main board 13" x 10", I/O board 14" x 3". Supplied with circuit charts and communication entry form.

Only $29.95 or 2 for $53. (B)

MONITORS

MONOCROME MONITORS

THIS MONTH'S SPECIAL!

There is a 34% reduction on the model A 9 inch Brand spanning new & boxed monitors from NEC, normally selling at about $140. Great for clerical and small engineering use for ultra- reliability, 9 inch green screen composite input resolution, full size monitor with built-in high sensitivity input and output for daisy-chaining, 3 front controls and all rear, Standard BNC socket, remote control including a carry case and carrying ledge. Perfect as a main or backup monitor and for quantity use. $39.95 each or 5 for $185. (B)

CALL FOR DISCOUNTS ON HIGHER QUANTITIES!

DEC 16" 1995 budget range colour monitor. Features a PLL, tзв, brightness and contrast controls and will accept both composite and component video signals. Often features usually seen only on colour monitors costing 3 times cost. Comes complete with cables. $100.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

TADON TM10-2A IBM compatible DB $30.95

CHAS-HACKETT 2.5" fast hard drive $75.00

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.

CHOSER H-10 3.5" removable hard drive $69.00

NEW 5" NECH from $29.95

Massive prices of standard 5" drives enable us to offer this brand new drive for $29.95. (unless stated) are removed from often brand new equipment and are fully tested and shipped to you with a 90 day warranty and guarantee from £5 & 12v, are of standard size and accept the standard 5" large format interface. $29.95.
HIGH POWER CAR SPEAKERS. Stereo pair output 10W each 4ohm impedance and complete with white grille and 1" tweeter. Ideal to work with this amplifier described above. Price per pair £14.95 + P & P.

2KV 500 WATT TRANSFORMERS Suitable for high voltage equipment. Complete with a microwave oven etc. 250W $10 A/C 190P.

MICROWAVE CONTROL PANEL. Mesh operated, with touch sensitive switches. Display section showing digital clock, and it relays operating mode and power for powered (programmable) ovens. Price £22.00 + P & P.

COLOURED FIBRE OPTIC CABLE. Standard optical fibres sheathed in black plastic. 10m lengths £7.95 + P & P.

PAVING INSA-RED MOTION SENSOR. Complete with a concealed adjustable lights timer (6Sec-15 mins), 50°C -10°C operating range, deck coverage Max. Manual override facility. Complete with 10m cable £26.95 + P & P.

BARGAIN NIGADS AA SIZE 200MAH 12V PACK OF 10 CABLE Connections. Part No. 10000. £38.00 + P & P.

FIBRE OPTIC TRANSMITTER. Complete with a standard working 130A adapter (Bag is in mains driven). £26.00 + P & P.

MINI RADIO TRANSCEIVERS. A pair of small walkie talkies with 2 buttoned pages. Ultrasonic operation. 2 x 1.5V batteries. Complete with new and guaranteed. £25.00 + P & P.

FM TRANSIT TRANSMITTER. Available in a standard working 130A adapter (Bag is mains driven). £26.00 + P & P.

FM CORDLESS MICROPHONE. Small handheld unit with a loudspeaker in the base. Requires 2 x 1.5V batteries. Tunable to any FM radio receiver. Our price is £10.95 + P & P.

12 BAND COMMUNICATION RECEIVERS. Shortwave from 500kHz to 20Mhz. £26.95 + P & P.

WIRELESS LISTENING AIDS. Enables you to hear sounds that would otherwise be inaudible. Complete with headphones. Case £25.95 + P & P.

CAR STEREO AND FM RADIO. Low cost stereo system giving you the choice of 20 stations in the car. Superb reception, £60.00 + P & P.

MDG V2DUNGEON TALK PHONE. Pair of battery operated units with a range of 500ft. Our price £25.00 + P & P.

2X COLOURED GRAPHIC EQUALISERS. Plus a 50 watt power amp. £20.00 + P & P. £14.50 in £12.00 + P & P.

NICECD BATTERIES. Brand new top quality. 4 x AA £4.00, 4x AA + £4.00, 4x A £4.00. £1.95 in £1.25 + P & P.

TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalent book. Latest edition £20.00 + P & P.

1982 CATALOGUE AVAILABLE NOW.

IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN OR ORDERING USE A 6" X 9" SAXE FOR A FREE COPY.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated Geiger counter. £9.00 + P & P.

FM BUG KIT. New design with PCB integrated coil. Transmits to every AM radio station and to FM stations. £4.95 + P & P.

FM BUDD and superior 5V operation. £14.00 + P & P.

COMPOSITE VIDEO KITS. These kits convert composite video into separate left and right channel signals for use in stereo TV, VHS and video. 12V, £30.00 + P & P.

SIMULCIR CIOS 12V 23A full load 3000 rpm 4"x4" 1/4" shaft. Now £22.00 + P & P.

SIMULCIR C WHEELS 1.5 or 1.6" dia including sealed bearing and lid. With 5mm split, spoked rim polished carbon fibre. 15 wheel black, £30.00 + P & P.

ELECTRONIC SPEED CONTROL KIT for 8mm Nino, PCB and all components to build a speed control for RC vehicles. £12.00 + P & P.

ICAS NIGADS CHARGER, charges 4 AA cells in 4 hours, Brand new never used. £20.00 + P & P.

12 VOLT BRUSHLESS FUN! 1/2" square brand new ideal for your car. £7.95 + P & P.

ACORN DATA RECORDER ALGOF. Made for BBC computer but suitable for others. Includes mains adapter, leads and book. £14.95 + P & P.

VIDEO TAPES. Three hour superior quality tapes made under licence for the famous ANC company. Pack of 10 tapes £90.00 + P & P.

PHILIPS LASER, 2MW NEON HELIUM LASER TUBE, NEW FULLY TESTED. £60.00 + P & P.

MAINS POWER SUPPLY KIT £25.00. £25.00 + P & P.

SIMULCIR R10/200. £15.00 + P & P.

SIMULCIR C WHEELS for 1.5" dia including sealed bearing and lid. With 5mm split, spoked rim polished carbon fibre. 15 wheel black, £30.00 + P & P.

ELECTRONIC SPEED CONTROL KIT for 8mm Nino, PCB and all components to build a speed control for RC vehicles. £12.00 + P & P.

ICAS NIGADS CHARGER, charges 4 AA cells in 4 hours, Brand new never used. £20.00 + P & P.

12 VOLT BRUSHLESS FUN! 1/2" square brand new ideal for your car. £7.95 + P & P.

ACORN DATA RECORDER ALGOF. Made for BBC computer but suitable for others. Includes mains adapter, leads and book. £14.95 + P & P.

VIDEO TAPES. Three hour superior quality tapes made under licence for the famous ANC company. Pack of 10 tapes £90.00 + P & P.

PHILIPS LASER, 2MW NEON HELIUM LASER TUBE, NEW FULLY TESTED. £60.00 + P & P.

MAINS POWER SUPPLY KIT £25.00. £25.00 + P & P.

SIMULCIR R10/200. £15.00 + P & P.

SIMULCIR C WHEELS for 1.5" dia including sealed bearing and lid. With 5mm split, spoked rim polished carbon fibre. 15 wheel black, £30.00 + P & P.

ELECTRONIC SPEED CONTROL KIT for 8mm Nino, PCB and all components to build a speed control for RC vehicles. £12.00 + P & P.

ICAS NIGADS CHARGER, charges 4 AA cells in 4 hours, Brand new never used. £20.00 + P & P.

12 VOLT BRUSHLESS FUN! 1/2" square brand new ideal for your car. £7.95 + P & P.

ACORN DATA RECORDER ALGOF. Made for BBC computer but suitable for others. Includes mains adapter, leads and book. £14.95 + P & P.

VIDEO TAPES. Three hour superior quality tapes made under licence for the famous ANC company. Pack of 10 tapes £90.00 + P & P.

PHILIPS LASER, 2MW NEON HELIUM LASER TUBE, NEW FULLY TESTED. £60.00 + P & P.

MAINS POWER SUPPLY KIT £25.00. £25.00 + P & P.

SIMULCIR R10/200. £15.00 + P & P.

SIMULCIR C WHEELS for 1.5" dia including sealed bearing and lid. With 5mm split, spoked rim polished carbon fibre. 15 wheel black, £30.00 + P & P.

ELECTRONIC SPEED CONTROL KIT for 8mm Nino, PCB and all components to build a speed control for RC vehicles. £12.00 + P & P.

ICAS NIGADS CHARGER, charges 4 AA cells in 4 hours, Brand new never used. £20.00 + P & P.

12 VOLT BRUSHLESS FUN! 1/2" square brand new ideal for your car. £7.95 + P & P.
Instrumentation & Test Gear Basics

November's opening part of this mini-series began by introducing the reader to modern instrumentation and test gear terminology, and ended by looking at basic types of generator circuit. This month's episode picks up from where we left off.

'Indicator' Accuracy

The next major category of test gear is the 'indicator', which usually consists of some type of analogue or digital meter. Before looking at the various types of indicator, mention must be made of the system of specifying the accuracy of meters.

The accuracy of analogue meters (i.e. moving coil types, etc.) is specified by the statement that the actual meter reading is 'accurate to within ± x% of the FSD value of the meter'. By convention, this statement is usually abbreviated to the simple but rather ambiguous statement that the meter has an 'accuracy of x%', the remaining qualifying parts of the full statement being accepted (by practical engineers) as implicit and self-explanatory. Thus, if a meter has a specified accuracy of 3% (a typical value) and has a FSD (full scale deflection) value of 10V, as shown in Figure 1, it is implied that the meter has a true input in the range 9.7 to 10.3 volts when it reads 10V, and in the range 0.7 to 1.3 volts when it reads 1V. Note in the latter example that meter errors may be as high as 30%.

Digital meters usually give three or more digits of readout, as shown in Figure 2. A simple 3-digit type can give a maximum reading of 999. Most general-purpose digital voltmeters (DVMs) can give a maximum reading of 1999, and are known as 3½-digit DVMs; high-precision types can give a maximum reading of 19999 and are known as 4½-digit DVMs. Their precision is fully specified by the statement that their reading is 'accurate to within ± x% of the actual reading, ± x% digits'. By convention, this statement can be abbreviated to a simple statement that the meter has an 'accuracy of x' percent, ± x' digits'. Thus, if a 3½-digit 19.99 volt meter has an 'accuracy of 0.5% ± 2 digits (a typical value), as shown in Figure 3, it is implied that its readings are accurate to within 0.7% at 10V, and to 2.5% at 1V.

Indicator Types

The following 'indicator' types of test gear are in common use:

ANALOGUE METERS.

These are designed to give a visual representation of a monitored parameter value by moving a pointer or a dot or bar of light a proportionate distance across a graduated scale. Figure 4 shows examples of a 7 volt reading given on 10 volt meters using (a) moving pointer and (b) and (c) ten-LED bar-graph and dot-graph 'moving light' displays.

The reader should note that analogue meters have two major advantages over digital types. The first is that they give clear indications of measurement variations (digital displays present a confused jumble of numbers under this condition), making them uniquely well suited to applications such as 'peak point' and 'null point' indicating. The second great advantage is that they can be inscribed with both linear and non-linear scales, enabling, for example, a single meter to read both linear and dB voltage values.

In instrumentation and test gear applications, the most widely used type of analogue meter is the 'moving coil' type. These are actually current-indicating meters in which the test current flows through a coil and causes the meter's pointer to deflect by a proportional amount. The coil has a finite resistance, and the performance of the meter can thus be depicted by presenting it as shown in Figure 5; in this instance the meter has an FSD sensitivity of 100μA and an internal resistance of 10000R, and

Ray Marston presents the second part of his new 'test gear' mini-series.
thus has 100mV generated across its terminals at FSD. The sensitivity of the Figure 5 meter can be effectively reduced (so that it needs a greater current to give a FSD reading) by shunting the meter's terminals with a suitable resistor (Rx), as shown in Figure 6. Alternatively, the meter can be made to act as a DC voltage indicator by wiring it in series with "multiplies" resistor Rx, as shown in the '10V FSD' meter circuit of Figure 7; here, the 100μA meter has, by definition, a basic sensitivity of 10kV/V, so Rx (which equals the sum of Rx and the meter's internal resistance) needs a value of 100k. The meter can be made to indicate AC current values by feeding them to the meter via a bridge rectifier; Figure 8 shows how the meter can be made to indicate AC voltage values by feeding them to the meter via a multiplier resistor (Rx) and a bridge rectifier.

ANALOGUE MULTIMETERS. These consist of a good-quality moving coil meter with a wide span of switch-selected AC and DC voltage and current ranges, plus a battery-powered addition that enables the meter to indicate a wide range of resistance values. When using a simple multimeter, always consider its effect on the circuit underneath; Figure 9 illustrates this point. Here, the R1-R2 divider gives an unloaded output of 5V, but when the meter is connected across the output its 100k Rm value shunts R1 and reduces its effective value to 50k, thus reducing the output voltage to the 3.3V value indicated by the meter.

DIGITAL VOLTmetERS (DVMs). These are usually 3½ or 4½ digit instruments with a LED or LCD readout and a FSD sensitivity of 199.9mV (or 199.99mV) and an input impedance of 100 Megohms; they are readily available in 'module' form, and need a nominal supply voltage of 5V (LED types) or 9V (LCD types). They can easily be made to read various FSD values of AC or DC voltage or current, or resistance, etc., by connecting the inputs to the meter via simple 'conversion' circuitry.

DIGITAL MULTIMETERS. These combine a DVM module and a variety of switch-selected 'conversion' circuits, to make a highly versatile and accurate battery-powered general-purpose test meter that can outperform the ordinary analogue multimeter in many respects.

OSCILLOSCOPES. These are complex instruments that enable waveforms, etc., to be displayed in real-time form on a cathode ray tube's (CRT's) flat TV-like screen, which is fitted with a calibrated graph-like grid. The CRT is fitted with an electron gun that enables a sharp spot of light to be generated on the screen; this spot can be moved up and down the screen (on the 'Y' axis) by signals applied to a pair of 'Y' plates, or left and right across the screen (on the 'X' axis) by signals applied to a pair of 'X' plates. The spot intensity can be varied via signals applied to a 'Z' grid, thus giving 'Z' axis control.

Figure 11 shows, in simplified block diagram form, the basic elements of an oscilloscope (or 'scope, as it is usually called). The external test signal that is to be displayed is fed to the 'scope's high-impedance input attenuator and passed on to the CRT's 'Y' plates via a wideband amplifier and a push-pull driver. Part of the amplified signal is tapped off to activate a 'trigger' generator, which synchronously fires a 'time base' generator that feeds a linear sawtooth waveform to the CRT's 'X' plates via a push-pull driver; the time base generator also activates a 'bright up' generator that gives 'Z' axis control of spot intensity. These elements act together to draw a 'trace' a graphic display of the input waveform, with the 'Y' axis tracing the vertical movements on a volts-per-centimetre basis, and the 'X' axis tracing the horizontal left-to-right movements on a microseconds-per-centimetre basis.

In practice, the sensitivity of most simple modern scopes can be varied, in calibrated steps, from about 5mV/cm to 5V/cm in the 'Y' axis, with a bandwidth extending from DC to 20MHz, and from 0.5μs/cm to 0.5s/cm in the 'X' axis. Some scopes have bandwidths that extend to 100MHz or more, and others have multi-trace facilities that enable waveforms from two or three different parts of a circuit to be displayed simultaneously.

Composite' Test Gear Types

The following 'Composite' types of test gear are in common use:

L-C-R BRIDGES. These combine a passive 'bridge' network and an energising generator and a balance indicator, to form a stand-alone test set that can be used to measure values of inductance (L), capacitance (C), and resistance (R). Figure 12 shows the basic elements of a resistance-measuring 'Wheatstone' bridge unit: the actual bridge (R1-R2-R3-Rx) is energised by a low-frequency (typically 50 to 1000Hz) oscillator, and the bridge's output signal is monitored via a null-indicating logarithmically-scaled meter.
The bridge's action is such that its output is zero when the ratio of R_1/R_2 equals that of R_3/R_4, and under this condition the bridge is said to be 'nullled' or 'balanced.' Thus, at balance, the R_3 value equals that of R_2 multiplied by the ratio R_3/R_4. In practice, variable resistor R_3 is fitted with a calibrated scale, and the value of R_3 can be varied in switch-selected decades, to give a 'decade value multiplier' action; the R_3 value is found by simply adjusting R_3 and R_4 until the bridge is balanced, and then reading off the R_3 value and multiplying it by the R_3 factor. The bridge can be adapted to measure values of inductance or capacitance by replacing parts of the Wheatstone bridge with reactive, rather than resistive, elements.

DISTORTION-FACTOR METERS. These instruments enable the inherent distortion of a sine wave signal to be accurately measured in terms of total harmonic distortion (THD), and are used in checking the linearity performance of audio amplifiers, etc. They consist of an ultra-low-distortion sine wave generator, a high-performance twin-T (or similar) adjustable notch or 'rejector' filter, and an electronic millivoltmeter that gives a reading of true RMS values, all interconnected as shown in Figure 13. Here, the sine wave generator is first set to the desired test frequency (usually 1kHz) and its output is fed to the input of the test amplifier; the output of the amplifier is connected to the input of the notch filter. The output level of the amplifier is then set to some convenient reference value (e.g., 1V), which is read on the built-in meter with SW, set to position '1'; SW, is next set to position '2' to monitor the output of the notch filter, which is then tuned about the 1kHz test frequency to give the minimum possible meter reading. Under this condition the notch filter totally rejects the fundamental 1kHz test signal, and only its harmonics reach the RMS reading meter, which thus gives an accurate reading of THD (e.g., a reading of 1mV corresponds to 0.1% of the filter input signal, and thus represents a THD value of 0.1%).

Electrical 'Standards' Types

Every professional electronics laboratory should hold a selection of electrical 'standards', which can be used to check the fundamental accuracy of other types of test and measuring gear. These are high-quality, high-accuracy units that (ideally) carry a certificate of calibration, which is periodically checked against national or international standards. All 'standards' should be held in a thermally regulated environment. Standards are in common use for the checking and measurement of the following parameters: ATTENUATION, CAPACITANCE, FREQUENCY, INDUCTANCE, RESISTANCE, and VOLTAGE. The attenuation standard usually takes the form of a switched, precision, attenuator box. Capacitance, inductance, and resistance standards can take the form of individual components, or switch-selected components in 'boxes'. Frequency standards may take the form of a thermally stabilized crystal oscillator, or a special radio receiver that is tuned to a dedicated 'reference standard' broadcast station. Voltage reference may take the form of a 'standard' cell, or a modern precision voltage-reference IC circuit.

Basic Test Gear Circuit Elements

Virtually all practical instrumentation and test gear circuits are made up one or more of the following basic types of circuit element, which will be described in detail in future parts of this series.

ATTENUATORS and FILTERS. These passive networks are used to correctly condition or adjust the amplitude or quality of signals reaching the inputs of indicating instruments, or coming from the outputs of generators.

BRIDGES; these passive networks come into balance only under sharply defined conditions of impedance matching, and can be used in a variety of test gear applications for measuring parameters such as resistance, inductance, or impedance, or as the basis of precision sine wave generators and THD meters.

ANALOGUE and DIGITAL METERS; these can be used as the basis of a whole range of single- and multi-range 'indicator' instruments, to give accurate readings of all types of voltages and currents, as well as frequency, resistance, and other parameters.

WAVEFORM GENERATORS; these form the basis of many types of test gear; a vast range of waveform types can be directly generated or synthesised.

Finally, POWER SUPPLY circuits have almost universal application; they can be used to provide simple 'rough' voltages or ones that are precision regulated to provide a specific voltage, almost irrespective of output loading conditions.
Practical all elementary introductions to electronics start on day (or page) one with the concept of the electron. Neat little diagrams of atoms like solar systems in mini-ature soon alternate with descriptions of mechanisms and phenomena such as energy bands and holes, which cannot be observed first-hand, and must be taken on faith in the authority of the tutor or writer.

It is almost always overlooked that most of the fundamental concepts in electronics have reasonably usable analogies in everyday mechanisms with which most of us are familiar. These mechanisms may operate with or on media other than the movement of electrons in wires (water, gas, mechanics etc.), but their various processes can in many cases be described quite accurately, using a small collection of very similar equations which operate equally in many branches of physics.

This series is an attempt to break out of the confines of electronics in isolation by showing how it fits into physics as a whole. We will discuss some of the similarities between practical electronic phenomena and their mechanical counterparts, and demonstrate how different types of systems can be described in the same basic mathematical terms. Before we dive in, it’s probably instructive to look at some historical background, and attempt to answer the questions: what is PHYSICS anyway, and how did its current fragmentation come about? What follows is necessarily a brief resume of an enormous and fascinating subject. I would strongly recommend the interested reader to follow up the references at the end of this month’s text.

Most of us tend to view the totality of Science as including three separate subjects: Chemistry, Biology and Physics. Physics in turn is seen as a set of isolated sub-spheres: Motion, Heat, Light, Waves, Electricity and so on. These divisions have been drummed into us by the education establishment for longer than anyone can remember, inculcating a viewpoint which denies the interconnectedness of the amazingly complex real world. I am reminded of the remark by eminent psychophysiological Robert Ornstein that, in spite of overwhelming evidence of the essential interaction in the living organism, Psychology and Physiology are dissociated by the medical profession, solely because they tend to be studied in two different buildings on the university campus.

Breaking The Law?

When comparing systems, I tend to consciously avoid the use of any expression such as ‘obey the same physical laws’, because I believe that this approach is counter-productive. The idea of breaking a Physical Law is difficult to dissociate from the concept of robbing a bank or mugging someone.

In reality, there is no such thing as a physical law. All we have is a constantly shifting ground of best guesses, each of which seems to predict the behaviour of some natural phenomenon more or less reliably within the limits of our observational capacity.

Not so long ago, the Earth was considered not only flat, but to be at the centre of the whole Universe. Very recently, it was believed that a clever enzyme called Swivelase was responsible for the untwisting of the DNA double helix in preparation for cell division. Right now, in Nucleonics, we have Fermions and Bosons, which can be sub-divided into Quarks, Photons and Gluons, which can be further sub-divided ad nauseam, and these are not even realities you might pick up with a pair of (very small) tweezers, but possibilities that the reality might be there at a given instant. There is even a revolving object called a Glueball which is postulated under certain conditions. To me, it is reminiscent of those horrid wet blotting paper missiles we used to flick round the classroom as bored schoolboys. The point of all this is that our models of the world depend entirely upon our observations at a given time, which in turn depend on our preconceptions. Even our innate senses are highly selective, and sensory perception depends mainly on previous experience. When we make observations beyond the resolution of our unaided senses, our instruments are entirely the product of existing expectations concerning the things we wish to observe.

Just considering the nucleonics example, a whole area of superpowered theoretical physics and computing, expertise is now solely concerned with mapping the interactions of this multiplicity of theoretical ping-pong balls, which may, or may not, even be there. It has however been perfectly possible to develop quite sophisticated electronic (and other) components and systems without recourse to such theories for a very long time, and I have a suspicion that Occam’s Razor might be brought to bear on the problem with advantage.

Narrow Specialisation

Occam’s Razor can be summed up as the principle that the simplest of several alternative explanations of any phenomenon is the most likely to be right.

In the 16th century, it was possible, with diligence, to study the totality of knowledge of the civilised world. To a great extent, the position remained unaltered until the start of the Industrial Revolution. This milieu tended to breed individuals with radically differing out-
ETI

February 1992

conflicting input, even from within the group (a basic attribute of human behaviour). This can even result in the heretic being expelled from the field, or having their funding cut.

An interesting sidelight on these changes is the language of scientific papers over the last few centuries. Until the late 19th century, papers were written in the everyday language of generally educated people (mostly Latin until about 1670) and phenomena were described by analogy with familiar objects which were mostly observable without special equipment. Since about 1880, the language has gradually, but at an accelerating rate, become more turgid and specialised, and the descriptions increasingly mathematical, until modern scientific papers are almost unreadable by ordinary mortals. This has more or less kept pace with the division of science into ever narrower specialisms as the volume of knowledge has increased.

It would be superficially convincing to suggest that the problem of communication of technical information results from (a) the number of modern specialisms, and (b) the upsurge of commercial science, which demands an element of secrecy. However, I think a more valid reason is the invisible nature of most of the phenomena which bear on our current technology. A machine with visible moving parts tends to become more familiar than a system which performs in secret. Even if the observers are not wholly informed, they can make assumptions about the working of the visible machine by application of common sense, whereas the ‘black box’ has to be explained by an ‘Expert’ for even a marginal understanding to be obtained.

A system consisting of several black boxes thus has to be explained by several experts talking different technical languages. The result can often be apparent conflict of information. A beautiful example of this came to light during World War II. At the time the V2 rocket sites were starting to be visible in aerial photographs, the allied rocketry development team apparently disregarded the information, on the grounds that the only possible rockets were solid fuelled, and the rocket—shaped things in the photos were too big to get off the ground if they were solid fuelled. Their calculations were perfect. The only error was the assumption that there was no other kind of rocket motor.

Most people now use a huge array of increasingly complex technologies (about which they know practically nothing) to perform everyday tasks. The user’s need for basic operational skills, and the narrowness of the specialisms which engender the product, have led to a two-tier information system: a light-hearted superficial treatment for the ordinary reader, and the almost impenetrable jargonesque of the inner circle of the informed. Between these two extremes, there is virtually no information available.

The upshot of this essentially cultural divide (in our terms) is the development of two schools in electronics. The first is that of the Technically Trained, who know exactly how to use a resistor, but haven’t a clue how it works, and the second, the Scientifically Educated, who know exactly how a resistor functions, but couldn’t use one to save their lives.

The purpose of this series, then, is to bridge the gap between these two standpoints: to explain the secret workings of electronics in terms of visible parallels, and, thereby, banish the mystique. It must be remembered that most of the following descriptions are compromises. Many analogies will work in part, and many phenomena and mechanisms will require different analogies for different detail.

Making A Start

There is one basic premise that has to be taken on trust for our version of science to work at all. This is the concept of ENERGY, and the principle that energy is neither created nor destroyed by any process, but is simply converted from one form to another. There have been many attempts to demonstrate this principle experimentally, all of which have more or less worked, within the fairly crude limits of experimental error.

As to what energy is anyway, that is the $64000 question for physicists, but we don’t really care. The ordinary notion of ‘having lots of energy’ today is really quite close in our terms. It means, more or less, that you have the capacity to do lots of work. Energy, therefore, is, roughly, the capacity to do ‘work’ or to change things.

For our purposes, we consider the existence of two types of energy: the energy transferred during work, which we call kinetic energy (from the Greek for ‘movement’), and the energy stored in something as a result of work, but not yet being used (potential energy). The mechanism of transactions (interactions between ‘things’) consists of the interchange of energy by conversion between kinetic and potential forms or vice versa.

The normal textbook example is the raising of a weight against the force of gravity, which imparts to it some potential energy. This is then converted back into kinetic energy when the weight falls. Although this is perfectly true, and will have to be used later in our discussion, it is not perfectly obvious.

A clearer first insight is obtained by considering petrol. Dead plants and animals are exposed to heat and pressure for millions of years, absorbing in the process an enormous amount of kinetic energy (the remains get hot and squashed). The energy of this heat and pressure is converted into the potential energy of chemical changes in the material. Thereafter, petrol will sit around quite innocently for ages with no visible energy exchange until you light that match. In setting the petrol on fire, you are reversing the process, by converting chemical potential energy into kinetic energy.
(the emission of light and heat, and the force which throws you across the room), but unless you do, the potential energy in a given volume of petrol does not 'leak away'; it cannot be lost except in a transaction with something else (in this case with the oxygen in air).

If that is not enough for you, the concept is brought home in a very familiar way by the common school report comment: "shows great potential", which implies "hasn't used any of it yet", in other words, kinetic energy is the energy of change and potential energy is the energy of stasis.

In most transactions, the energy is converted in more than one way simultaneously. Assuming you only want one type of conversion, you then describe the system as having losses. A filament lamp, for example, converts less than 10% of the electrical energy supplied into light. The remainder is converted to heat, which is not useful in a lamp. The heat therefore represents a loss to us, although the total energy of the heat and the light coming out still equals the total electrical energy going in. This concept of losses will be very important later on in our discussion.

In At The Deep End

Water is a very good analogy for the basics of electrical energy. If you can ignore electricity's lack of 'wetness', they have many features in common at a fundamental level. Both water and electricity are incomparable, so a very simple water system (Figure 1) can be used to explain some of the basic terms in electronics.

The water in each tank has potential energy proportional to the height of the water surface above ground, which we call the head or water pressure. The valve is closed for now, so the water is not going anywhere, but there is a difference in potential energy or POTENTIAL DIFFERENCE between the two lots of water in the two tanks because their water levels are different. The absolute height above the ground of the two tanks does not affect the potential difference between them, which is purely a function of the difference in their water levels. In the same way, an electrical potential difference can exist between any two points at any absolute potentials with respect to ground. The difference in depth of the water is what determines the pressure difference, which is measured in N/m² or pounds per square inch (depending how ancient you are) for water and in VOLTS for electricity.

As the potential difference is due solely to the difference in water levels, it is possible to produce the same potential difference using almost any two different volumes of water (or to alter the potential difference without changing the relative or absolute volumes of water), simply by changing the dimensions of the tanks (Figure 2). The volume of water is an absolute quantity of matter: a finite number of molecules. In the same way, an electrical CHARGE is a finite number of electrons, a quantity of electricity. The charge of water is measured in litres or gallons, and the electrical charge is measured in COULOMBS.

Now let's open the valve. Immediately there will be a flow of water between the two tanks. This will continue until the level in the tanks has equalised. Everyone whose drains have ever blocked knows to their cost that water finds its own level. This flow of water can be measured in litres per second, and directly equates to the electric CURRENT (a flow rate of electrons), which we quote in Coulombs per second (Amperes). The flow rate depends on the difference in pressure in the two tanks. Each tankful is trying to flow towards the other tank under the influence of an absolute pressure, and they are pushing in opposite directions. The net flow depends on the sum of the two pressures, one of which is negative with respect to the other.

Down To Earth

We have so far considered relative pressures as existing between two variables: the water levels in the two tanks. Each in reality exhibits an absolute pressure, and it is the difference between these absolutes which we have so far discussed. This absolute is the difference between one variable and something which never changes (a reference). In terms of water, absolute pressure (head) is measured with respect to sea level. This works because sea level is defined to be the same everywhere, making it an acceptable reference. Why is this?

When we opened the valve between our two tanks, we saw that the difference in water levels disappeared quickly as water flowed from one tank to the other. The time taken for the levels to equalise depends on the rate of flow in the connecting pipe. As we will discuss in detail later, the flow rate depends on the size of the pipe: the bigger the pipe, the quicker the levels will equalise. Supposing the pipe is infinitely large, any difference in level will be equalised instantly, so there will never be any difference in level. This is the scenario which describes the condition within a single tank: all point in the tank are connected to each other by 'infinitely large pipes', so there can never be a difference in level between any point in the tank and any other. The sea amounts to a gigantic 'tank', so the same applies.

For electrical purposes GROUND is the absolute reference point, for the same reason: it is at about the same electrical level (potential) anywhere on the planet. The earth's surface is considered to offer no impediment to the motion of electric currents (just like the infinitely large pipe offered no impediment to the flow of water), so the whole surface must remain at the same potential.

We have now defined the most basic attributes of electrical energy in very simple terms:

- **Potential Difference** or relative pressure, measured in Volts;
- **Ground**, an arbitrary reference potential with respect to any other, which is the same everywhere, quoted as 0 Volts.
- **Charge** or absolute volume, measured in Coulombs;
- **Current** or flow rate, measured in Coulombs per second or Amperes.

Next month, we will start to investigate the relationships between them.

References

Although amplifiers can be made with nominally the same performance specification, there appears to the human ear to be subtle differences between them, which are extremely difficult to associate with scientific measurement. Various reasons for this have been offered and the point has often been made that the majority of studies and measurements are based on continuous sine wave considerations, whereas speech and music consist of complex waveform components including transients. Certainly, any amplifier design must be founded on a good understanding of the basic scientific/electronic principles involved and once achieved, judicious changes can then be made on the basis of listening tests.

Thus, if the starting point of a design is to be based on standard recognised performance specifications, how important are they to the listening pleasure? Harmonic distortion can be reduced to levels in modern amplifier designs but the subjective effect of spurious harmonic content depends on the order of the harmonics. Higher order harmonics are more objectionable than lower order, even harmonics and in some instances a change in harmonic structure simply changes the character of the sound of an instrument slightly, even perhaps to make the overall subjective effect more attractive to the listener. On this basis, the writer feels that a reasonable approach is to aim to keep total harmonic distortion below 0.1% over a range of listening levels up to about 20W RMS. In particular, the characteristic less than 0.01% at 25W RMS and only exceeded by lower, listening levels, is very much to be avoided. This is usually symptomatic of a large amount of negative feedback being present under the high loop gain conditions at high signal levels. This is significantly reduced at low input signal levels where the output devices present some non-linearity and a reduction in gain in the Class AB and Class B area of operation. It has also been claimed that once application of negative feedback can have a deleterious effect on the transient response. Transients are an important feature of speech and music, and good transient response must therefore be the aim in a good amplifier design.

Initial approach to the design

What now emerges is a requirement for a good transient response and a reasonably low figure for the total harmonic distortion, without the application of excessive amounts of negative feedback. With a well balanced push-pull amplifier design even order harmonic distortion is minimised and this reduces the need for large amounts of negative feedback. Transient response is dependent on a good high frequency response, particularly in the output devices and some amplifier designers/manufacturers make a point of obtaining a special, probably expensive, supply of well matched devices with the correct frequency response. For the impecunious constructor an alternative approach has to be adopted. To achieve well balanced devices and avoid selection and/or special bias adjustments, there is no need to search further than the nearest list of integrated circuit power amplifiers. Good matching and good thermal coupling between devices are all part of the integrated circuit manufacturing process. The total harmonic distortion curves plotted against output power have to be studied to select a type that does not exhibit incredibly low distortion.
How it Works

It can be seen from the circuit diagrams for the main and preamplifiers (Figures 1 and 2) that the circuitry is based on the standard operational amplifier configuration shown below.

The amplifier of gain A has a differentially coupled input stage such that the output voltage V_o is A times the difference between the two input voltages. Thus

$$V_o = AV_i - \frac{V_{i+}}{R_1 + R_2}$$

Rearranging

$$V_i = \frac{V_o - \frac{V_{i+}}{R_1 + R_2}}{A}$$

and when A is very large, R_1 is negligible and

$$V_i = 1 + \frac{V_o}{R_2}$$

dependent solely on the ratio of two resistors.

Inserting a capacitor in series with R_1 has the effect of increasing the negative feedback applied to the inverting input as the frequency decreases (because the reactance increases with decreasing frequency) until at DC a 100% feedback is applied. This helps to stabilise the DC operating conditions of the circuit. The point at which the amplifier gain starts to decrease is when the reactance of the capacitor becomes comparable with R_1.

A capacitor in series with R_2 reduces the negative feedback as the frequency decreases and this is used in the preamplifier for the low frequency RIAA equalisation. A further resistor connected across the resistor capacitor combination removes the bass boost at very low frequencies and determines the absolute value of maximum gain in this region.

The high frequency RIAA equalisation in the preamplifier is determined by a simple RC low pass filter section at the output (R_2 and C_2 in preamplifier circuit Figure 2). The main amplifier is based on two operational amplifier type circuits connected in a bridge.

Amplifier 1 has a gain of $1+R_1/R_2$ and amplifier 2 has a gain of -1 because the input signal is applied to the inverting input. The output voltage across the loudspeaker $V_o = V_o = 2V_o$, because of the unity gain of amplifier 2. Thus the gain of the amplifier as a whole is $2+R_1/R_2$.

Detailed Design

The first step is to select the power amplifier integrated circuit. Looking through the various options, one that stands out in terms of availability is the TDA 2030. It is a well established design, bandwidth (up to 140kHz claimed), convenient voltage rating, power output, cost. This has a nominal power output capability of around 10 watts, which theoretically can be increased by a factor of 4 by bridge connection (see How it works). The next step concerns the type of component in the signal and negative feedback paths and there is agreement among many designers that electrolytic capacitors should, where possible, be avoided. Such a consideration governs the choice of resistor values when readily available non-electrolytic capacitors have maximum values in the region of 2µF. A typical example relates to the values of R_{13} and C_{14} in the circuit diagram.

Fig.1 Main amplifier circuit

Fig.2 Pre-amplifier circuit

figures at full power only to increase substantially at the lower levels. Finally, the frequency response has to be considered to ensure a good transient response. Unfortunately a good high frequency response tends to be associated with the lower power members of the integrated circuit power amplifier family and considerations have to be given to ways of increasing their power output. One quite effective way is to use two amplifiers in a bridge connection.
main amplifier circuit (Figure 1) where these components represent part of the negative feedback network from the inverting input down to the common line. The reactance of C14 increases as frequency decreases thereby increasing the negative feedback and decreasing the amplifier gain. It is important to ensure that over the required operating frequency range the amplifier gain is constant and at the design value. Thus if 15Hz is the lowest frequency to be handled by the amplifier, then a value of 4k7 for R13 will give a -3dB point at this frequency. Similarly R5 in the preamplifier (Figure 2) is chosen at 1k8 to give a -3dB point of 40Hz as part of the RIAA recommended pick-up playback response. As shown in the How it works section, the rest of the low frequency equalisation is also based on a capacitor in series with one of the feedback resistors (R6 and C6 in the preamplifier circuit diagram, Figure 2). A further design consideration is the desirability quoted by many designers that the gain of the main amplifier should be such that high signal level sources such as tuners, tape recorders, and compact disc players can be fed directly to its input terminals.

The value of R14 (150k in Figure 1) was chosen so that a power output of 20W RMS into an 8R loudspeaker load could be achieved with not more than 250mV input signal level.

It is also claimed that improved sound is obtained if there is no overall phase inversion from any input of the complete amplifier to the output and it can be seen from the circuit diagram that all inputs are connected to non-inverting input terminals in the amplifier. Another consideration is the thermal stability of the semiconductor devices and any effect this may have on the sound. Efficient heat sinking is important if for no other reason than to minimise the chance of thermal runaway occurring and presenting undesirable levels of DC across the loudspeaker terminals. Efficient heatsinks are provided for each amplifier in this design and the devices are clamped directly to them. To do this pin 3 has to be connected to 0V of a single ended +30V supply and to ensure that the device output pins 4 are at mid-supply the non-inverting inputs are connected by 100k resistors (R15 and R20) to the potential divider R17, R18 (Figure 1). A further advantage of the bridge amplifier connection gives a direct connection to the loudspeaker load and yet adopting a single-ended supply. A standard twin secondary mains transformer is used to feed each amplifier from an independent bridge rectifier, reservoir capacitor DC source (BR1, BR2, C1 and C2 on PSU, PCB in
Finally, the differential drive to the loudspeaker provided by the bridge connection means that there is increased isolation from unwanted waveforms present on the supply lines. These waveforms can arise from supply interference effects or what is even more interesting, interaction between the output transistor current swing waveforms and the spurious reactive elements in the power supply components. Absence of these effects results in an audible improvement in amplifier performance.

The Complete Circuit

Having indicated the salient features of the main and preamplifiers the interconnection diagram between the input signals, preamplifier and main amplifier is shown in Figure 4.

A tape record-out facility is provided such that any of the signal sources, excluding tape playback, can be recorded whilst listening to the same source or any of the others. A simple treble-cut filter, resistor R11, and capacitors C9, C10, and C11, is provided to reduce noise and distortion from a lower fidelity source.

The volume control is a ganged switch with 12 positions and resistors R25 to R35 giving 6dB changes in volume over a 60dB range from full output to zero. This type of control was chosen after careful listening tests in comparison with a standard ganged poten-
Testing and Use

Having double checked component installation and ensured that there are no solder bridges between printed circuit conductors it remains to plug in the various signal sources and a pair of loudspeakers. If a test meter is available, then the circuit can be checked for short circuits and if all is well, the mains supply can be switched on. The DC supply across the reservoir capacitors should be in the region of 30V with no signals applied and the constructor should then be greeted by high quality sound as the volume control is advanced from zero. Prototype amplifiers have been built and demonstrated to a wide sample of listeners working through a wide variety of loudspeakers. The clarity of sound has been appreciated by the listeners and extremely good results are obtained from the author’s own design of loudspeaker, the QWL.

Specification

Each amplifier driven, power output equals 25W RMS for a 20ms tone burst at 1kHz. Amplifier distortion better than 0.1% at a power output of 20Wms. Amplifier power bandwidth 20Hz-50kHz. Main amplifier input sensitivity 250mV for 20W output. Pickup sensitivity 6.2mV for 20W output.

Construction

The input sockets, selector switches, volume control switches, preamplifiers and main amplifiers are all mounted on the main printed circuit board the component overlay of which is shown in Figure 6. The power supply board is mounted separately in the case and a component overlay is shown in Figure 7. The location of the major components and boards in the finished case is shown in Figure 8. The mains wiring with power switch, neon indicator and spike suppressor can be assembled using Figures 5, 6 and 8 whilst the remaining wiring uses the harness and spade and receptacle connectors on the circuit boards and the loudspeaker terminals.

Detailed board construction starts with installation of all the wire links and low profile components finishing up with the switches and input sockets. The printed circuit boards are held by self adhesive plastic stand-off pillars and the power amplifier integrated circuit tabs are fastened to the already installed heat sinks using the instructions supplied with the component packs. Case assembly is straightforward, taking care to ensure that all joints meet neatly before tightening the self-tapping screws. It is important not to overtighten these assembly screws.

BUYLINES

The Acousida BC40 Bridge Connected Amplifier can be obtained in complete or partial kit form from:

Martech Systems (Weymouth) Ltd.
Unit A2/3
Marabout Industrial Estate
Dorchester
DT1 1YA

The complete kit consisting of all the items specified in the parts list costs: £153.83 (inc. VAT and P & P).

The following partial kits are also available:

Pack A (Items 1 to 38) (Components Pack) £72.76
Pack B (Items 39 to 45) (Amplifier PCB Pack) £41.95
Pack C (Items 40 to 54) (PSU Pack) £38.43
Pack D (Items 55 and 56) (Case Pack) £41.95
Pack E (Items 57 to 63) (Ancillaries Pack) £32.55

All the above prices are inclusive of VAT and Post and Packing within the UK.
Parts List

RESISTORS (All 25W Metal Film)
- R1, 25, 101, 125: 47k
- R2, 102, 103: 27k
- R4, 104: 1M
- R5, 105: 1k8
- R6, 15, 17, 18, 20, 106, 115, 117, 118, 120: 100k
- R7, 107: 1M2
- R8, 11, 12, 108, 111, 112, 114, 117, 119, 120, 124: 220k
- Polycarb 10%
- C2, 18, 118: 22u 50V Electrolytic
- C4, 15, 22, 105, 115, 122: 100u 63V Ceramic
- C4, 15, 21, 104, 116, 121: 160u 50V Electrolytic
- C5, 15, 22, 105, 115, 122: 100u 63V Ceramic
- C4, 15, 21, 104, 116, 121: 160u 50V Electrolytic
- C6, 106: 3n3 Polycarb 10%
- C7, 107: 10n Polycarb 5%
- C8, 108: 1u Poly 10%
- C9, 109: 33n Polycarb 5%
- C11, 111: 16n Polycarb 6%
- C12, 17, 19, 20, 24, 112, 117, 119, 120, 124: 220u Polyester 10%
- C10, 110: 22n Polycarb 5%
- C13, 113: 100p Polycarb 10%

SEMICONDUCTORS
- IC1, 101: NE5534A
- IC3, 4, 103, 104: TDA2030
- D1-4, 101-104: 1N4001

MISCELLANEOUS
- Switch PCB Rotary 2p 5W
- Switch PCB Rotary 2p 12W
- Wafar 1P 12W
- Terminals PCB Mount; Socket 8-pin DIL; Heat-sinks; Amplifier PCB

POWER SUPPLY UNIT PCB COMPONENTS
- PSU PCB; Screw Terminals; Transformer 80VA 22V; Fuseholder; Fuse 3.15A 240V; Bridge Rectifier; Transient Supressor; Neon

CASE ASSEMBLY
- Case; Pack of Screws

ANCILLIARIES
- Wiring Harness; Input Connectors; LS Connectors; PCB supports; Earth Terminal; Rear Plate; Knobs

- 100's of price reductions throughout the catalogue
- 200 pages
- Latest new products
- £££'s worth of discount vouchers
- On sale from 14th November at most large newsagents or directly from Cirkit

Cirkit

CIRKIT DISTRIBUTION LTD
Park Lane, Broxbourne, Hertfordshire, EN10 7NQ
Telephone (0992) 444111 Fax (0992) 464457

£1.70 plus 30p postage
Tech Tips

Model Railway Track Section Controller

I was recently asked by a railway modeller friend if I could design a simple circuit that would operate as an automatic track section controller. The circuit here is my solution to this problem.

A section of track has an 'Entrance' and an 'Exit', a signal placed at the 'Entrance' tells the driver if he can or cannot enter the section. Also, the signalman has the option of manually blocking a section so that, for instance, track maintenance can safely take place.

The circuit to implement this design has therefore two functions to perform: to count trains as they enter and leave the track section and to provide a manual control of the section.

Firstly, the counting. Since the maximum allowable number of trains in the section is one, only one bistable is made from two NOR gates (IC1a,b) connected as shown. When a train passes the signal, placed at the 'Entrance', the track detector SW2, next to the signal, senses the train and sets the bistable. This de-activates RLA1. The track signal, connected to one set of contacts of RLA1, will change to 'Danger'; the other set used for track isolation. This stops any further trains entering this section. Only when the train leaves the section, triggering SW1 placed at the 'Exit', will the bistable be reset, RLA1 activated, the signal set to 'Clear' and allow another train to enter the section.

The manual control for the signalman is simply effected by permanently setting the bistable via SW3, located in the 'Signalbox' connected to a 'Signal Lever'. D1 and C1 form a simple power supply for IC1 enabling this circuit to run from either a 12V DC or 16V AC supply.

The whole circuit can be built on stripboard or purpose-made PCB. The two track sensors, SW1 and SW2, are Reed switches placed under the track and SW3 is a microswitch operated by a signal lever. We found that some loco's permanent magnets were suitably located to trigger the sensors while on others small magnets had to be fixed on the underside of the loco's.

Several of these circuits can be connected in series to provide section control of a longer length of track. Provided that all the circuits operate from the same supply, SW1 of the first circuit can be the SW2 of the second circuit and the SW1 of the second circuit can be the SW2 of the third circuit and so on.

Neil Johnson,
Northiam, Sussex.

Dry Soil Alarm

Here is a solar powered dry soil alarm. It might particularly be useful for the blind as well as the sighted. The circuit is based around a standard CMOS 4001 chip and taking a very small amount of current. A very low frequency oscillator pulses and triggers an audible oscillator, the output transducer being a piezo sounder. If required, I have a supply of solar panels available (see classified ads in this issue).

R Keyes,
Newport, Gwent.

ETI FEBRUARY 1992
Multi-level bit computer

In the future, when computers change from binary bits to multilevel bits, the circuit presented here can be used as a memory cell with faster operational amplifiers. The number nine is carried by one multilevel bit and four binary bits will be required for the same work. Is this an analogue computer? No. This is a digital one (memory output is Pin 1 of IC2d. For the present time we can use the circuit as voltmeter with memory (10 volts range).

The voltage to be measured is applied to the input and across the voltage divider R1 and R2 and is fed to IC1a, an LM324 operational amplifier. The same voltage applied to the input is presented to the output of the operational amplifier IC1a and is applied to the voltage comparators by SW1. When the voltage at the positive input of each comparator is greater than the reference voltage at the negative input, the respective output turns on for high level. The LED connected between high level and low level output is energised.

The resistor R40 contains the sum of the currents coming from the high level outputs and respective resistors (R26 to R35) and the current comes from +15V by R36. The resulting voltage of R40 is applied to IC2d. The output voltage of IC2d is 1V for each high level output of the comparators more 0.5V approximately due R36. This output is feedback to the comparators by resistor R41. In this way the voltage measured is memorized.

Adjust R38 for stable memorization. When LED 8 is on, turn off SW1 and LED 8 must stay on. When LED 1 is on, it indicates an input between 1 volt and 2 volts and so on.

Renato L.M. de Azevedo,
Sao Paulo, Brazil.
Coaxial Cable Tester

This is a useful device to have to hand wherever coaxial cables are in use. The tester gives a visual indication of continuity for both inner and outer conductors, indicating a short between the two, and also signals poor conductivity for either.

When the test button is pressed, current flows through R6 and R7, D3, cable outer conductor, R4 and D4. D4 illuminates to show 'OUTER CONTINUITY'. At the same time, current also flows through R6 and R7, R2 and D1, cable inner conductor, and D5. D1 illuminates to show 'INNER CONTINUITY'.

If the inner and outer conductors are shorted, the current flows through R6 and R7, D3, from outer to inner of the shorted cable, and D5. The LEDs D1 and D4, and resistors R2 and R4 are effectively bypassed.

However, the current flow increases from a normal total value of around 10mA to about 80mA. The voltage drop across R6 turns Q3 on, and thus the 'CABLE SHORT' indicator is on.

Transistors Q1 and Q2 monitor the voltage drop across the cable inner and outer respectively, together with the associated diodes D3 and D5. If the resistance of either conductor is greater than about 20R, the appropriate indicator will illuminate.

Diodes D3 and D5 must be germanium, not silicon, for their lower forward drop. Remember, if using a conductive housing for the tester, insulate the coaxial connectors or use isolated types.

S Roberts, Bude, Cornwall.
PCB Foils

Mains Switched Timer
Counter/Driver solder side

Counter/Driver Topside ground plane

Mains Switched Timer
Time Base solder side

Time Base top side ground plane

Mains Switched Timer
Power Supply

ETI FEBRUARY 1992
CLASSIFIED

Rebecca Daborn
0442 66551 Ext 313

Send your requirements to:
ETI Classified Department, ASP, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST.

Lineage: 60p per word (+VAT) (minimum 15 words) Semi display: (minimum 2.5cms) £15.00 per single column centimetre (+VAT) per insertion

Ring for information on series bookings/discounts.

All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

KITS

TK FOR Kits

DISCO SEQUENCER

Four channels loop to link each to drive Kopf lights, Pin-spots etc. Effective/inductive load with 10 effective eye-catching sequences. Variable speed and sequence change frequency AND built-in audio input. Ideal for mobile or permanent display. Complete Kit less box.

XK141

26.95

SINGLE CHANNEL INFRA RED REMOTE CONTROL

A simple yet highly versatile infra red remote control kit with a multitude of uses in the home or car. Operates from 9-15v dc or 300v ac and switches a 3A relay on and off alternately each time the transmitter is pressed. Great for lights, TV, alarm controls.

XK115

9.95

SEND 50p and SAE for our latest CATALOGUE which includes details on more exciting kits such as Programmable Lock, Voice Record/Play back, Touch Dimmers, Temperature Controller and components.

SUPERSENSITIVE MICROBGM

Any 4x20mm tube including built-in mic. 8x-100 KHz.

XK10

9.95

For more channels use our popular universal receiver. Available in MK9 4-way keyboard, MK10 6-way keyboard, MK15 16-channel receiver.

MK15

9.75

KITS, VHF/FM Microtransmitter.

15x25mm, £5.95, built £9.95. "Stinger" Shocker, uses PFP3.

NEW VALVE AMP KITS!

PE Moscode amp 100W/CH DC coupled 1184. ETI Hybrid preamp, full facilities £92.99. PE Hybrid Class A headphone amp, cathode follower output £73.00. All kits are easily built and offer audible superior performance. Prices are inclusive. Hobtek, The Cottage, 8 Bartholomews, Brighton BN1 1HG.

For sale

SOLAR PANELS 100mm x 60mm 2.5V 0.2Wp £1.40. 6 for £8. 12" x 6" 12V or 6V 1.4Wp £8.50. 12" x 12" 12V 3Wp £15.00. 36" x 12" 12V 5Wp £23.50. Prices include U.K. VAT. Include P&P.

Orders to Bob Keyes GW4 IED. 4 Glanmor Crescent, Newport, Gwent. NP9 8AX.

Schematic Drawing Utility

Drive your own personal circuit diagrams on the Amstrad CPC128 or PCW 8256 computer with our easy to use design utility. Offers high quality printed output of drawings, up to 30 inches square on a standard dot matrix printer. Comprehensive symbol library containing many commonly used circuit symbols. Symbol library can be edited and added to. All this and more for only £20.99 fully inclusive.

For further details send SAE to:
CD/Soft Systems, 18 Ley Crescent, Tidesley, Manchester M29 7RD

PLANS

ELCTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue SAE to Plantcentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

WANTED

Turn your surplus transistors, ICs etc, into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES HARDING & CO. 103 South Brink Wisbech, Cambs. NOW ESTABLISHED OVER 15 YEARS Tel: 0945 584188 Fax Number: 0945 588844

NEW VHF MICROTRANSMITTER

KIT tuneable 80-135MHz, 500 metre range sensitive elecet micro phone, high quality PCB. SPECIAL OFFER complete kit ONLY £5.95 assembled and ready to use £9.95 post free. Access/Visa order telephone 021-411 1821. Cheques/POs to: Quantek Electronics Ltd, Kits Dept (ETI), 3 Houndley Road, West Heath, Birmingham B31 3AL. Tel: 021 596947. Details on this and other kits.

CONSORT SPEAKER KIT as July '91 E.T.I. £188 inclusive. All parts available separately. Memex Electronics Ltd, 1 Icknield Close, Ickleford, Hitchen, Herts SG5 3TD.

ETI FEBRUARY 1992
SALES

VARIOUS VOLTAGE TRANSFORMERS

INPUT 220V/240V AC 50/60

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>P&P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5SKVA 2.5 amp max</td>
<td>£29.00</td>
<td>£2.15</td>
<td>(E28.85 inc VAT)</td>
</tr>
<tr>
<td>1SKVA amp max</td>
<td>£37.40</td>
<td>£4.25</td>
<td></td>
</tr>
<tr>
<td>2SKVA 10 amp max</td>
<td>£54.00</td>
<td>£5.48</td>
<td></td>
</tr>
<tr>
<td>3SKVA 15 amp max</td>
<td>£71.50</td>
<td>£6.24</td>
<td></td>
</tr>
<tr>
<td>5SKVA 25 amp max</td>
<td>£91.34</td>
<td>£8.50</td>
<td></td>
</tr>
</tbody>
</table>

BOFFINS SPECIAL

UNIQUE OFFER

Surplus Precision Medical Unit, Memory in excellent condition. Designed primarily to accept a precise readout of room temperature from a central control. *Limited offer* end 31st December. *Free delivery* on orders of £50 or more.

WIDE RANGE OF XENON FLASHLIGHTS

Giant Boulder Extractor Unit

Solid State Unit

Input 230V/400V AC. *Limited offer* ends 31st December.

GEARED MOTORS

HEAVY DUTY MOTOR

Microswitch

Pit 15 amp unit, includes plastic end, 60mm. *Limited stock* available. *Exclusive offer* ends 31st December.

Mercers Muff

Bi-Rad Lenses

Send for our FREE price list P/L0. *Limited stock* available. *Exclusive offer* ends 31st December.

SERVICE TRADING CO.

57 BRIDGEMAN ROAD, CHISWICK, LONDON W4 5BB

01-995 1560

ACCOUNT CUSTOMERS MIN. ORDER £10

MISSISSIPPI ITEMS

All prices exclude V.A.T. and carriage. Please check availability before ordering.

We also purchase and exchange components. Any quantity considered. Cables welcome.

ELECTROMART

LIVERPOOL

PROGRESSIVE RADIO

87/83 Dale Street Tel: 051 236 0982

47 Whitechapel Tel: 051 236 5489

LIVERPOOL 2

THE ELECTRONICS SPECIALISTS

Open: Tues-Sat 9.30-5.30

LIVERPOOL

ALL PARTS

TV & Video spare emporium

Pitfile for best price on spares

Visit our new and secondhand parts store, where we offer all parts available

Dept ETI, COMPEL, 14 Constable Road, St. Ives, Huntingdon, Cambs PE17 6E0

Tel/Fax: 0480 3003619

SERVICE TRADING CO. (E.T.I.)

57 BRIDGEMAN ROAD, CHISWICK, LONDON W4 5BB

01-995 1560

ACCOUNT CUSTOMERS MIN. ORDER £10

ETO FEBRUARY 1992

BINDERS

Keep your copies in first class condition

Keep your collection of Popular Crafts in mint condition with these specially commissioned binders. The price is just £8.95 which includes postage and packing*.

How to order
Send cheque/P.O. to A.S.P. BINDERS OFFERS, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST

TELEPHONE ORDERS (24 HRS) 0442 66551
*UK ONLY — OVERSEAS PLEASE ADD £1.50

SPECIAL CHRISTMAS OFFER*
BUY 2 AND SAVE 20%

Please supply
F.C. binders £8.95 each inc. p&p

OVERSEAS PLEASE ADD £1.50 P + P

Total £

(please make cheques/postal orders payable to A.S.P)

NAME

ADDRESS

Or debit my

ACCESS/VISA Signature

Signature

Please allow 25 days for delivery

ELECTRONICS TODAY INTERNATIONAL
CLASSIFIED ADVERTISEMENT DEPARTMENT
ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPTSTEAD HP2 7ST

Rates: Lineage 55p per word + VAT minimum 15 words.

Semi-display £14.00 per single column cm plus VAT. No reimbursement for cancellations. All ads must be pre-paid.

Name

Address

Signature

Daytime Tel. No:

Date

PLEASE DEBIT MY ACCESS/BARCLAYCARD No. Expiry Date

FOR SALE COMPONENTS PLANS OTHERS STATE

ETI FEBRUARY 1992
ETFEBRUARY1992

If you have problems interconnecting all your MIDI equipment like drums, synths, samplers and computers then the MIDI switcher, a project featured next month, could be the answer.

We have another surface mount project in store. This time it is a Voltage controlled general purpose oscillator packed into a very tiny box.

Also originally designed for atmospheric measurements within astronomy, we present a High resolution voltmeter or Earth charge recorder.

Our features include the latest information on Digital Audio Broadcasting (DAB) the proposed future of radio reception. Intuitive Electronics and its investigation on the fundamental connections between charge, potential and current and finally more on Test-gear basics.

Why not order your copy now and collect it on 7th February.

The above articles are in preparation but circumstances may prevent publication

Our January edition contained:

Introduction to audio mixers
Faraday: Thinker and Experimenter
Making PCBs at home Pt 2
Lab Power Supply Pt 2
Photo Enlarger timer
Test-card generator Pt 2

A limited supply of back numbers are available from Select, address in column to left.

ADVERTISERS' INDEX

B&K ELECTRONICS	IFC	HENRY'S ELECTRONICS	22
CRICKET HOLDINGS	56	JAN BULL	44
CRICKLEWOOD ELECTRONICS	31	MAPLIN ELECTRONICS	OBC
DISPLAY ELECTRONICS	43	MEC MICRO	13
DIXON	42	NUMBER ONE SYSTEMS	59
ELECTRONIZE DESIGN	42	OMNI ELECTRONICS	31
ELECTROVALUE	60	RADIO & TV COMPONENTS	IBC
HALCYON	60	REED ELECTRONICS	31
HART ELECTRONICS	39	WILMSLOW AUDIO	22

Argus House, Boundary Way, Hemel Hempstead HP2 7ST
Tel: (0442) 66551 Fax: (0442) 66998
MAIL ORDER
£1 BARGAIN PACKS BUY 20 GET 1 FREE
Please state pack(s) required.

<table>
<thead>
<tr>
<th>No.</th>
<th>QTY per pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP018</td>
<td>1</td>
</tr>
<tr>
<td>BP017</td>
<td>3</td>
</tr>
<tr>
<td>BP019</td>
<td>20</td>
</tr>
<tr>
<td>BP020</td>
<td>4</td>
</tr>
<tr>
<td>BP022</td>
<td>5</td>
</tr>
<tr>
<td>BP023</td>
<td>2</td>
</tr>
<tr>
<td>BP025</td>
<td>4</td>
</tr>
<tr>
<td>BP026</td>
<td>4</td>
</tr>
<tr>
<td>BP027</td>
<td>30</td>
</tr>
<tr>
<td>BP028</td>
<td>10</td>
</tr>
<tr>
<td>BP031</td>
<td>1</td>
</tr>
<tr>
<td>BP032</td>
<td>4</td>
</tr>
<tr>
<td>BP034</td>
<td>1</td>
</tr>
<tr>
<td>BP036</td>
<td>3</td>
</tr>
<tr>
<td>BP034A</td>
<td>2</td>
</tr>
<tr>
<td>BP036A</td>
<td>1</td>
</tr>
<tr>
<td>BP035</td>
<td>6</td>
</tr>
<tr>
<td>BP046</td>
<td>6</td>
</tr>
<tr>
<td>BP047</td>
<td>30</td>
</tr>
<tr>
<td>BP048</td>
<td>2</td>
</tr>
<tr>
<td>BP049</td>
<td>2</td>
</tr>
<tr>
<td>BP050</td>
<td>2</td>
</tr>
<tr>
<td>BP051</td>
<td>4</td>
</tr>
<tr>
<td>BP054</td>
<td>2</td>
</tr>
<tr>
<td>BP055</td>
<td>1</td>
</tr>
<tr>
<td>BP056</td>
<td>1</td>
</tr>
<tr>
<td>BP057</td>
<td>300</td>
</tr>
<tr>
<td>BP060</td>
<td>1</td>
</tr>
<tr>
<td>BP061</td>
<td>5</td>
</tr>
<tr>
<td>BP065</td>
<td>5</td>
</tr>
<tr>
<td>BP066</td>
<td>5</td>
</tr>
<tr>
<td>BP067</td>
<td>1</td>
</tr>
</tbody>
</table>

Postage £3 per order

ROADSTAR OF LOW COST 100W 40 AMP CAR SPEAKERS. Fitted with duale polepair passive cone and foam rubber surround, Large 70mm magnet for good bass and treble response. Supplied complete with grills, fixing screws and instructions.

OFFER PRICE £11.70 per pair
They weigh 1.60kg. Postage £3.50 each to 2p £1.75 paid POSTAL ORDER UNDER 1% PRICE OFFER

AUSTRALIAN MAYFAIR 15 watt PCD SPEAKERS. Midrange Murray housing for vertical or horizontal use. Fitted with a good mains 10cm speaker.

£4.95 pair plus £3.00 or £4.50 paid post paid UK only

BBS STEREO RECORD PLAYER DECK
Manual auto operation, 3 speed (78, 45, 33). 240V, 50Hz, manual wiper, unused but stored.

£10.50 6P 10P £8.75 2 for £18.00 P&P £3.75

STEREO AND TV COMPONENTS ACTON LTD
253 EDGWARE ROAD LONDON W2 18N
Discover for yourself at the Club's Showroom. On sale in hi-fi stores across the country.

What is it?
Audiophile grade equipment at sensible prices. All tested and quality assured by the club.

ACCESS. VISA. Mastercard. European Credit Card (ECC). We also keep in stock precision record players and turntables.

Phone 071 7238432 or 081 9928430 223 Edgware Road London W2 18N Closed Sat.

AMPHONIC 125 - 125 POWER AMPLIFIER
125 watt per channel stereo power amplifier with independent volume controls, professional 'rock mount' and removable cooling fan for extra reliability. Output power 125W RMS per channel Output impedance 4 ohms Sensitivity 1mV, 100kHz, 5% THD, x 2 at 4 ohms.

£77.50 2 for £155.00

30 + 30 WATT AMPLIFIER KIT
An easy to build amplifier with a good specification. All the components are mounted on the single PCB which is already punched and back-drilled.

£77.50 2 for £155.00

30 + 30 WATT AMP KIT

MULTIBAND RADIO

VHF 54-176MHz MULTI-BAND AM
Listen to: AIR TRAFFIC CONTROL, AIRCRAFT RADAR, PUBLIC UTILITIES, RADIO AMATEURS AND MANY MORE.

ROSS PUSH BUTTON RADIO

Mains and battery operated. High quality VHF FM. Medium and Long Wave reception. 6 push button selected preset stations. Fully retunable telescopic aerial. High Quality earphone/earphone jack socket.

Includes 30 x 40W 0.66W 2.85W 30W x2 (DIN 4 ohm)
CD/Aux. tape, magnet recorder, preamp., battery operated.
Separate treble and bass, 9V (H.W.D.) 74 x 400 x 195mm. Kit enclosed. Case, PCB, all components, scale and instructions. £45.00 or £9.50 set. (Parted project in Everyday Electronics, April 1968 issue). Reprint Free with kit.

OFFER £15.00

VIDEO SENDER

With this handy unit you can transmit the output of your home video, video camera or satellite receiver over the air to a receiving television system within a range of 100ft. Simply connect the video and audio output of your equipment into this unit and a 10-13V dc power supply extra £3.75 size 122 x 70 x 21mm

VHF RADIO TRANSMITTERS

100W mini bug. Built on a neat little glass pcb with condenser mic. Fully tunable over the FM band. 9V DC £5.50 or £900 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. 12 24V £4.50 or £70.00 20 Watt Transmitter kit. Fully tunable over the FM band. Kit comprises double sided pcb diagrams and all components, including heat sink. Sockets voltage 12-18V DC. £51 or £35. Transmitters listed on this page are not licensable in the UK.

SPECIAL OFFER

DTMF TONE DIALLER

Suitable for remote control of telephone answering machines, garage doors, appliances etc. requiring DTMF signals over telephone lines. Please and tell us when ordering.

Please add 2% to all our prices due to the increase of the VAT rate to 17.5%
1992 BUYER'S GUIDE TO ELECTRONIC COMPONENTS

Maplin

Over 600 product packed pages with more than 600 brand new products.

On sale now, only £2.75

Available from all branches of WHSMITH and Maplin shops nationwide. Hundreds of new products at super low prices!