

A subscription to your favourite magazine is the best way of making sure you never miss an issue.
And from now until 28th February 1991 you can get extra copies ABSOLUTELY FREE, by taking advantage of our special Christmas subscription offer. With a monthly title for example, this means you get 14 issues for the usual price of 12. Order your subscription today using the coupon below and you will receive the best in reading entertainment right into the 1990's. This offer is also open to subscribers wishing to extend/renew their current subscriptions.

Standard subscription rates
 Monithy ifiles (14 for the pice of 12)

A \& B Computing - for Archimedes Owners (includes disk) Aeromodeller
Citizens' Band
Clocks
Collecting Scale Models
ETI
Film Monthly
Ham Radio Today
Military Modelling
Model Boats
Model Railways
Photography
Popular Crafts
Radio Control Model Cars
RCM\&E
Radio Modeller
Scale Models International
Skeleton Crew
Steam Classic
Video Today
Video X
Which Video
Woodworker

UK	Europe	Middle East	Far East	Rest of World
		£		
£35.40	$£ 45.70$	$£ 46.30$	$£ 49.30$	$£ 51.30$
$£ 23.40$	$£ 28.20$	$£ 28.40$	$£ 30.20$	$£ 28.70$
$£ 19.20$	$£ 23.40$	$£ 23.70$	$£ 25.70$	$£ 24.90$
$£ 28.80$	$£ 35.20$	$£ 35.60$	$£ 38.65$	$£ 37.40$
$£ 19.20$	$£ 24.60$	$£ 24.90$	$£ 27.50$	$£ 26.50$
$£ 19.20$	$£ 24.10$	$£ 24.40$	$£ 26.80$	$£ 25.85$
$£ 18.00$	$£ 22.60$	$£ 22.90$	$£ 25.10$	$£ 24.25$
$£ 19.20$	$£ 24.00$	$£ 24.35$	$£ 26.70$	$£ 25.75$
$£ 19.20$	$£ 26.50$	$£ 27.00$	$£ 30.50$	$£ 29.10$
$£ 19.80$	$£ 26.20$	$£ 26.60$	$£ 29.65$	$£ 28.40$
$£ 19.20$	$£ 24.65$	$£ 25.00$	$£ 27.60$	$£ 26.60$
$£ 23.40$	$£ 30.50$	$£ 30.75$	$£ 33.45$	$£ 31.25$
$£ 19.20$	$£ 24.80$	$£ 25.20$	$£ 27.90$	$£ 26.80$
$£ 19.20$	$£ 24.45$	$£ 24.30$	$£ 27.30$	$£ 26.30$
$£ 18.00$	$£ 28.20$	$£ 28.90$	$£ 33.80$	$£ 31.90$
$£ 18.00$	$£ 24.10$	$£ 24.50$	$£ 27.45$	$£ 26.30$
$£ 19.20$	$£ 22.30$	$£ 24.60$	$£ 27.00$	$£ 26.00$
$£ 23.40$	$£ 28.90$	$£ 29.30$	$£ 31.90$	$£ 30.90$
$£ 18.00$	$£ 24.60$	$£ 25.05$	$£ 28.25$	$£ 27.00$
$£ 19.20$	$£ 24.75$	$£ 25.10$	$£ 27.80$	$£ 26.70$
$£ 21.00$	$£ 27.20$	$£ 27.60$	$£ 30.60$	$£ 29.40$
$£ 19.20$	$£ 26.00$	$£ 26.45$	$£ 29.75$	$£ 28.43$
$£ 19.20$	$£ 27.40$	$£ 27.90$	$£ 31.90$	$£ 30.30$

Altendie monithy filles (8 or the price of 6)

Radio Control Boat Modeller	$£ 9.60$	$£ 12.35$	$£ 12.50$	$£ 13.90$	$£ 13.30$
Radio Control Scale Aircraft	$£ 13.50$	$£ 16.65$	$£ 16.80$	$£ 17.95$	$£ 17.00$
Practical Wargamer	$£ 11.70$	$£ 14.80$	$£ 14.90$	$£ 16.10$	$£ 15.10$
Model Engineers' Workshop	$£ 15.00$	$£ 18.90$	$£ 19.20$	$£ 21.10$	$£ 20.30$

Formighty fille (26 for ithe price of 24)

Model Engineer

EDITORIAL

Editor Paul Freeman

CREATIVE

Art Editor Peter Kirby
Designer lain Houston
Technical illustracion Jerry Fowler Photography Mannie Cefai

ADVERTISEMENT SALES

Advertisement Manager Mark Linacre
Advertisement Sales Michele Donovan Advertisement Copy Control Marie Quilter

MANAGEMENT
Managing Director
Terry Pattisson
Circulation \& Promotions Manager Debra Stupple
Production Manager Tony Dowdeswell Group Editor Mark Webb

FEBRUARY 1991

$\begin{aligned} & \text { ISSN } \\ & 0142-7229 \end{aligned}$	ABC	Member of the Audit Bureau of Circulation
- Subscriptio Middle East: US\$48.00.	$\begin{aligned} & \text { es - UK: } \\ & \text { Far East: } \end{aligned}$	Europe: $\mathbf{C 2 4 . 1 0}$ Rest: 825.85 or

SRECMLISI PUBLIGATION

[^0]

Tech Tips

Features Index

News

News Stateside
13

PCB Service

PCB Foil
Patterns
62

REGULARS

Photocopies
16

Classified Ads

Courses

ETI Front Panel Service

 65

Ad Index

Next Month

Last Month

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead HP2 7ST. Tel: (0442) 6655I. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: 01-677 81II. Overseas and nonnewstrade sales by Magazine Sales Department, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST. Tel: (0442) 6655I. Subscriptions by Select Subscriptions Ltd., 5 River Park Estate, Berkhamsted, Herts HP4 IHL. Tel: (0442) 87666I. US subscriptions by Wise Owl Worldwide Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Project 3 Filmsetters, Whitstable. Printed by Acorn Web Offset Ltd, Bradford, W Yorks.

ELECTRONICS TODAY INTERNATIONAL

FEATURES/PROJECTS

Back to Basics
Simon Russell starts a new beginners series on the basics of electricity.

Anti-Theft Alarm

This alarm transmitter/receiving system could well fool the 'white goods' thief who wants to break the connection and run. Edward Barrow gives us permission to run the story.

21

Remote Control Timer

The third and final part in our series of a very comprehensive project to regulate your mains electrical functions. Kevin Browne finishes the construction.

Testing Testing

Our regular series of servicing equipment is approaching its end as Mike Barwise talks of displaying digital signals.

Wasted Energy

As the western world starts to come to its senses over the appalling lack of respect we have given to the planet, Paul Freeman takes an unusuallook at different ways to treat rubbish.

HDTV 5

James Archer looks at the American approach to modifying existing TV signals for higher technical quality of reception.

Page 34

The ETI SBC09

The second part of this microcontroller board features the firmware associated with the project. Mike Bedford continues the story.

50

The K2 Speaker Kit

Mike Fox describes the construction of a twin driver speaker kit.

Blueprint is a column intended to provide suggested answers to readers' electronics design problems. Designs are only carried out for items to be published, and will not be prototyped by the columnist Circuitspublished in Blueprint are believed to work, but may need minor alteration by the reader after prototyping. Individual correspondence will not be entered into, save as necessary to prepare items for publication.

First of all this month, some continuity. There was a lot of interest in the howlround problem a few months ago. One reader wrote to say that he had built the frequency shifter, and that it worked after a component value had been changed.

He further said that there was a 5 Hz sinewave output from the circuit, and that a bandpass filter on the output should cure this. There should be no 5 Hz output on a perfectly adjusted shifter, so, assuming that the unit has been properly adjusted, there must be a minor flaw in the design. Should time allow, or if the reader lends me his model, I will attempt to test a prototype and find out where I went wrong, and pass on the information. Meanwhile, I believe the reader intends to write a project using a development of this design, and including an output filter.

Fig. 1

In Practice

As a result of talking to various soundcrew personnel, I have learned a little more about the practical side of howlround reduction. As stated in the readers letter section, a microphone with a really flat frequency response gives a very noticeable improvement over ' $£ 15$ special' microphones.

Something else which helps considerably is to use a graphic equaliser, set by means of a pink noise generator and a very good quality flat response reference microphone coupled with a spectrum analyser. Maplin sell a complete unit, equaliser. spectrum analyser, and auto calibration all in one, which I have observed making a dramatic improvement by automatically notching out the room's worst resonance. The one I saw suffered from a slight hum,

Fig. 2
but no doubt small improvements to power supply or internal wiring would cure that. I am awfully tempted

Of course, a fully professional system would use three times as many frequency bands, and would probably use a separate spectrum analyser, but it would be very expensive.

I have also learned that a delay line can, despite my original doubts, improve the feedback situation slightly in some circumstances. The received wisdom is that, because a frequency shifter is not suitable for a singer, a very short delay can slightly reduce the tendency to feedback, and much less obtrusively than a frequency shift. It will not cure a major problem, but if a slight improvement is enough then its worth a try. And, Bucket brigade lines tend to be noisy, so the preferred answer is to use a 16 bit digital delay.

Timers

This month's readers question is about timing circuits. M Rogers of Stoke on Trent wants to make a novelty clock, and needs to pulse the electromechanical system at 1 pulse per 32.7272 seconds. He would like to achieve an overall accuracy of 10 seconds per week. He goes on to say that the techniques of generating arbitrary time intervals would interest many readers. My sentiments exactiv.

Arbitrary time/frequency generation is possible using RC timing elements. and selecting component values and using presets to obtain the exact period required. This principle can be extended using counters after the osciliator to extend the time period beyond that available from convenient values of resistors and capacitors. Of course, the precise R and C values can be chosen to make use of divide by 2η stages, so that clever design of digital circuitry is not required. It is impractical to make RC timed circuitry to the accuracy requested.so we can confine our consideration to circuits timed by crystals or other fixed frequency sources (eg the mains, standard frequency transmissions from Rugby). The general type of system we are looking at is shown in Fig 1.

There are four obvious approaches to the problem. The first is to choose a suitable frequency range for a crystal, say 1 MHz , then choose the nearest power of two to divide close to the required frequency $(0.030555623 \mathrm{~Hz}$ in this case), then work back from this to determine the exact crystal frequency required. Crystals of a specific frequency can be ordered from several sources, and this approach may be justified In some circumstances (a long production run). It does leave something to be desired as a one off technique, though.

The next obvious technique is to use a combination of divide by 2^{n} stages and binary rate multipliers to generate the frequency.

The third approach would be to calculate a convenient integer division value within the required tolerance or the range over which crystal oscillator frequencies can be adjusted by the use of external capacitance and remain stable. A figure of 0.05% variation is reasonable for most crystal oscillators, and as the specified tolerance is 0.0165%, the figure of 0.05% is the one to use.

The function of dividing by an arbitrary integer

may be accomplished in more than one way. The obvious method is to use a binary up counter, and a binary comparator to detect when the required number is reached, and then reset the counter to zero. If this is done synchronously, then the number to recognise is the one before the desired division ratio, because zero is included in the counting sequence. Asynchronous reset demands that the required division ratio is recognised, because the final number only occurs momentarily, until the reset to zero has propagated through the system.

Asynchronous counting is vulnerable to false resetting because of spurious intermediate count states, and is harder to debug using an oscilloscope or logic analyser, so I tend to eschew such questionable techniques. An example of a synchronous divider is shown in Figure 2. Note that the terminal count is only maintained for half a clock cycle, while the zero state is maintained for one and a half cycles.

Other means of integer division include the use of parallel loaded counters. If down counters are used then the number one below the division ratio is programmed into the parallel inputs synchronously on the next clock pulse after the zero count is reached. An example of this type of divider is shown in Figure 3.

The fourth obvious technique is to use a microprocessor to generate the required output pulses. The economical approach is to write a program loop having only one path, and count all the clock pulses in the entire loop. It should be possible to devise a loop of the correct duration to the nearest whole clock pulse in the required time period greater accuracy than the crystal will achieve in practice.

Other programming techniques are possible, including the use of multiple and various timer/ counter division periods. If you try this, do not forget to include the time required for the processor to service the timer/counter interrupt, and make sure that this time is not variable! A fifth, less obvious approach, would be to use a dual modulus divider. This is gratuitously complicated and mainly appropriate to frequency synthesisers for communications use.

Engineering Philosophy

To provide a complete design example I shall use the BRM (binary rate multiplier) technique. This may or may not be the best approach - one cannot always tell before doing the design. For a one off design I would choose whatever type of design used the ICs I had to hand, while for a production run I would do draft designs for each plausible approach and use the cheapest.

To start with we need an oscillator, so I have chosen the 4060 oscillator divider for this function. If a 100 kHz crystal is used, this must be divided by 3272720 to give one cycle per 32.7272 seconds. To

Binary rate multipliers are sometimes overlooked as a means of frequency division, and this is a shame because they can be surprisingly useful. They multiply an input frequency by a binary fraction - meaning halves, quarters, eighths, for as many bits as are used. People normally think of binary numbers as integers, but here we are using the digits after the 'binary point' which is to binary as a decimal point is to base ten.

The scheme to be used here is to divide by the largest multiple of 2 below 3272720 , which turns out

to be 2^{21} (2097152). The remaining division can be achieved by multiplying by 0.640798 . This is carried out by using a pair of 4 bit BRMs programmed to provide 164 pulses out for every 256 pulses in. This is 0.640625 , as near as 8 binary places can be to the ideal number, and is within a reasonable tolerance.

The logic in a binary rate multiplier is arranged to even out the pulse spacing as much as possible, but $164 / 256$ does not lend itself to perfectly even spacing. In order to minimise the output timing jitter, some of the total binary division required is positioned after the BRM to divide the timing jitter as well as the frequency. The initial oscillator/divider divides by 2^{14}, and the 4024 after the BRMs divides by a further 2^{7}, giving a total of 2^{21} as required.

The BRMs and final divider are shown in Figure 5. The output from the 4024 should be fed to whatever pulse shaping circuit, such as a monostable, is suitable to drive the electromechanical system. If a 555 is used in monostable mode, it will not need an extra output drive circuit because of its high current output.

Exactly what is the world coming to? The entertainments world, that is! City bankers muscling in on television stations, home and away. The stations themselves muscling in on each other. And, in an offbeat though as you'll see connected way, Japanese electronics manufacturers muscling in on Hollywood. What's it all about?

Let me explain. In Europe and in the UK, financial institutions are beginning to realise the attraction of owning part stakes in television stations. La Cinq for instance, the French station, is in difficulties and several UK banks looked at it with a view to purchasing a small stake - less the 10% allowing a say in the station's running.

Similarly, independent television stations in the UK are up for grabs now, as Governmental plans to re-allocate franchises are followed. It is not the fact existing franchises are being re-allocated which is of interest, it is the fact franchises will be sold more-orless to the highest bidder in a most unusual auction where concern must be expressed.

Bids are basically blind. Bidders have but one chance to offer what they think will secure purchase of a required franchise. Consequently bidders have no idea at all what to bid in real terms. It will be difficult, to gauge what other bidders could offer, so bids could be higher than they would be under an open auction.

One thing, and one thing alone, about the refranchising auction maintains a hope for fairness and future services. It is simply that part of the bid must be to show how station quality will be maintained, improved, or perhaps trimmed. As you'd expect, quality is difficult to define, being largely subjective. It is up to the Independent Television Commission, which is to re-allocate franchises between bidders, to define bid quality. Thus a financially lower bid, deemed of higher quality than a higher bid in monetary terms, could secure a franchise.

Bids for all franchises must be made by April. At this time it's not possible to say who is expected to bid, but we can make a few educated guesses. First, all existing franchise-holders will automatically bid for reallocation of their own franchises. However, new regulations allow franchise-holders to bid for other franchises simultaneously - never allowed before so large and financially secure existing franchiseholders like Central are expected to go for other franchises, too. It is not possible for franchise-holders to own a franchise for a bordering station, however. It's likely that large franchise-holders are only allowed to bid for small franchises along with their own.

Second, existing franchise-holders may join forces in consortia, which aim purely to maintain control over existing franchises. So, companies like Tyne Tees and Yorkshire could join together with the direct aim of maintaining a status quo.

Third, consortia may be formed between existing franchise-holders with the aim of bidding for other franchises. Greater financial securities of such consortia make this an attractive proposition.

A fourth scenario exists, in which franchises may be allocated to outsiders, ousting existing holders. These outsiders could be banks, communications providers, entertainments organisations, or more likely mixtures of all three.

Companies like Virgin are likely to be interested. People like the big RMs (Royal Majesties; Robert Maxwell and Rupert Murdoch) are bound to be interested. Indeed, if these don't express interests it will be surprising.

But, most important, foreign bidders are expected. These may be in the form of banks, simply wishing to buy small stakes in franchises, putting up the money required to finance bids. After all, if our banks can go for stations like La Cinq, why can't their banks go for ours? Bids may, be from stations abroad.

And finally, bids may be from national, international, or global entertainments organisations film production companies, Japanese electronics manufacturers, and so on. Weंve already seen how organisations like Sony have realised the importance of film production companies in Hollywood. Television stations are only a couple of steps removed.

One aspect of all this bidding for franchises, which must be of highest importance for the bidders, is expected earnings of franchises. Independent television stations make profits basically through sales of air-time in the form of advertisements. Normally fairly healthy profits are made through such sales (nearly $£ 2$ billion in 1989!), and over recent years profits have gone up somewhat more than inflation. Until last year, that is. Somewhat mystically. profits have started deteriorating (a fall of more than 6% over 1989's profits was expected for 1990, at the time of writing) and this serves to make franchises less attractive.

Now I may be a cynic, but even the most die-hard of believers must admit such a downturn of profits the year before re-franchisement auctioning looks just a contrived. Contrived or not, it is bound to deter potential new contenders for franchises, leaving the bidding clear for existing franchise-holders.

Couple this with the Government's delays in defining bidding procedures (revealed this January) and you have a massive deterrent against outside bidders. Until potential bidders know what to do they can't bid; and until they bid, they can't effectively run a television station.

So the Government's own delays and an advertising recession, contrived or otherwise, look set to help the existing franchise-holders maintain the status quo, exactly the opposite of Government intentions.

Millions of quality components at lowest ever prices. Plus Tools, Watches, Fancy Goods. Mail order only.

All inclusive prices NO post, or VAT etc to add on, UK only. All inclusive prices NO post, or VAT etc to add on, UK only.

Write or phone for catalogue/clearance list at least 1,800 offers to amaze you.

Brian J Reed Electrical 6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 0712235016 081-393 9055 081-303 9055

VELLEMAN KITS

Over 100 Project Kits in stock Send 50p for 1991 Catalogue + Price List RETAILERS WANTED
Why not be one of our many retailers who carry our top range of high quality kits (Discounts to be arranged) Send Details and Letterhead to:

> HIGH-Q-ELECTRONICS DEPT ETI, PO BOX 1481 LONDON NW7 4RF те: 0707263562

FAX: 081-209 1231
SCHOOLS AND COLLEGES WELCOME

British business faces ever growing international competition. If we are to succeed it is vital that today's young people will have the required technical and commercial skills. Over the last five years the Young Electronic Designer Award (YEDA) scheme has made an impressive contribution to doing just this, by encouraging young people to combine their technical skills creatively with an appreciation of the commercial demands of the marketplace.

The Young Electronic Designer Award scheme is organised by the YEDA Trust (a registered charity) and is open to students at secondary schools, polytechnics and universities throughout the UK and is built around an annual competition for three age categories: Junior (under 15); Intermediate (15-17 years inclusive) and Senior (18-25 years inclusive).

The future of YEDA is depen-

dent upon sponsorhip from commercial organisations which visibly aim to put something back into the community, provide incentives for tomorrow's workforce, play a positive role in reducing skills shortages and increase their corporate profile in educational and business circles.

The challenge is for students to produce an original electronic device of their own and has a useful application in everyday life.

A prestigious trophy and valuable cash prizes are presented
to the winners in each category and in the senior age group there are the prospects of course sponsorship and a job in electronics.

There are cash prizes of $£ 2,500$ for schools or colleges whose students have produced the most commercially and environmentally viable project. Every finalist also receives a certificate and wins a personal prize, as do their teachers.

Eighteen projects (six from each category) are chosen from a series of regional judging events
to appear in the national final held annually in London. The awards are made at a presentation dinner attended by finalists, their tutors and parents, representatives from the world of commerce, industry and education. The 1991 final is to take place at the Science Museum on 3 April, followed by a public exhibition on 4 and 5 April.

Further information contact: The Yeda Trust, 24 London Road, Horsham, West Sussex RH12 1AY, Tel: 0403211048.

NEW LIGHT FROM MAPLIN

The new Miniature Moisture Proof Torch from Maplin is made from an amazingly light and superstrong alloy usually used in aircraft construction. The rugged pocket-sized torch in diecast alloy has a knurled body and is finished in gloss black paint. The Maplin Torch uses two AAA type batteries (not included) to power a miniature highintensity 'krypton' bulb. This bulb
provides incredible light power (the unit comes complete with a spare bulb). The beam can be focused by adjusting the lamp holder which includes a chromed reflector and plastic lens cover.

The construction incorporates 'O' ring rubber seals to ensure that the torch is splash proof and immersion proof for a few seconds. The all-weather mini torch costs £3.95.

SKYPHONE

Racal Avionics has announced the certification of its aeronautical satellite voice and data system called SATFONE.

SATFONE, is said to provide the air traveller with a quality of voice communications he or she is familiar with in the home or the office.

SATFONE is a single full duplex, digital voice/data channel of $21,000 \mathrm{bit} / \mathrm{s}$ capacity. Signals
are relayed between the aircraft and the ground telecommunications network via the INMARSAT geostationary satellite constellation.

Racal has already received orders from SATFONE installations in a variety of aircraft types, including the Gulfstream III and IV, L-1011, A310-300, Boeing 707 and Boeing 747.

HDTV EOUIPMENI ORDERS

0rders for video delay lines and filters, specifically designed for HDTV applications, are flowing in for a Nuneatonbased manufacturer, BAL (UK) Ltd. The company specialises in video components and equipment for television studio applications and has taken some $£ 25,000$ worth of orders in the last two months from major
companies in Germany, Japan and the USA.

The HDF Series video filters have 0.2 dB frequencies from 22 MHz to 30 MHz , while the transition rates and group delay ripple specifications have been designed based upon the various proposed templates emanating from engineers developing advanced High Definition Television
systems at research centres around the world.

BAL's business development director Deprek Newport says: "We are delighted with the impact these new products are making in the market place. Some people may be under the impression that equipment for HDTV applications is still at prototype stage. Certainly, HDTV is in its infancy,
but this upsurge in orders for filters and delay lines seems to be a clear indication that HDTV systems are now entering production, and confirms BAL's aim to become a major player in this field from the outset."

Further information, contact BAL (UK) Ltd, Tel: (0203) 375827.

FLOWSWITCH

0smor Technologies Ltd, have gained Water Research Centre approval for their two Flowswitches PG15 and PS22.

Recommended for use with push-fit couplings in cold water installations, they can be mounted vertically or horizontally, and can be supplied with normally open or normally closed contacts. Made in Kemetal, an acetal resin resistant to a wide range of chemicals, they are not only suitable for use in water systems, but many other applications as well; an interesting one currently being exploited is for use in an air extraction scheme for spray-booths in car workshops.

Priced at $£ 10.75$ for the PG15 (15 mm fitting) and $£ 11.25$ for the PS22 (22mm fitting), there are generous discounts for quantity orders.

Contact: Osmor Technologies Ltd, Tel: 081-688 5148.

PROGRAMMABLEFUNCTION GENERATOR

Thurlby-Thandar have expan ded their large range of function generators by launching an advanced programmable model the TG1304

The TG1304 is based around an analogue voltage controlled main generator with a frequency range of 10 mHz to 13 MHz . Ad vanced microprocessor management of the generator and output circuitry has provided an extremely versatile instrument with a wealth of sophisticated features including crystal locked frequency stabilisation to 0.01% accuracy.

The TG1304 is priced at $£ 1,295.00$ in the UK. The company believes this places the new generator into a unique market position with a price similar to lower specification analogue controlled instruments and with
features in advance of many programmable generators costing considerably more.

The main generator output of the TG1304 can produce sine, triangle and square waveforms of up to 20 Vpk -pk EMF from a 50 R source impedance, as well as unipolar pulse waveforms. Symmetry and DC offset are fully variable.

A second independent generator, which operates at frequencies from 5 mHz to 50 kHz , can provide sine, triangle and square waveforms from a 600R auxiliary output. This generator
can be used as a source for amplitude and frequency modulation of the main generator. The two generators can also be summed to produce two tone signals such as are used for telephone dialling.

Full sweep capabilities (internal or external, linear or logarithmic) are provided. Parameters may be set and displayed in a wide choice of units such as frequency, period, up-time plus down-time, volts pk -pk, dBm , etc. All major parameters may be entered directly from the keypad, or stepped up or down using
auto-repeating keys or a continuously rotating knob.

Waveform versatility is further enhanced by triggering and gating using external or internal signals. With "burst mode" control and fully variable start/stop phase these functions can be used to produce a very wide range of waveforms such as haversines, variable transition time pulses, sine-edged (band limited) pulses, square waves with adjustable overshoot, counted tone bursts and gated variable frequency tone bursts.

All functions of the TG1304
are fully programmable both from the keyboard and from the GPIB (IEEE-488) interface. A backlit 48 -character alphanumeric display provides full status information and prompts for setting up the instrument. Non-volatile memory holds all of the current set-up information and enables the storing and recalling of up to 50 complete settings of the instrument.

The compact case has a small footprint for bench use and is half rack width 3 U height for rack mounted use.

Velleman Kits, of Belgium, have introduced 19 new kits to their 1990/91 line up taking their total number of high quality kits to in excess of 100 , including audio, automotive, lighting control, communication, security, computer control and industrial control kits.

Two of the new kits for the audio enthusiast and professional are a very high quality Digitally Controlled Pre-Amp and the Stereo Valve Amplifier.

As its name suggests the Digitally Controlled Pre-Amplifier is controlled totally by digital electronics and contains no potentiometers. All functions such as volume, tone controls, balance and input selection can be operated through push buttons and LED displays. The advantage is that everything can be operated via a separate remote control. Also a switched power outlet has

been provided, which allows you to switch the rest of your audio system on and off via the remote control. On top of all this ease of operation you can make use of a priority setting of your own pro-
gramming, which can be invoked at all times and which becomes the default setting upon power up.

Most of us cannot afford a high power, high quality amplifier
with valves. This kit changes that, so that now everybody can enjoy the sublime "valve sound". The sound of valves could not be surpassed up till now, neither by transistors of FET's. While developing the amplifier, special attention was given to the housing. Indeed, the values form an integral part so that your eyes also have something to enjoy. All components, including valves and ultra-linear output transformers (toroidal core) are supplied with the kit.

Technical data
Output Power $-2 \times 200 \mathrm{~W}$ MP, 2×95 WRMS in class $\mathrm{AB}, 2 \times$ 15 W in class A
Output impedence -4 or 8 R . Harmonic Distortion - 0.8\%
S / N ratio - 102 dB (A weighted)
A colour catalogue covering the full range of kits contact ESR Electronic Components, Tel (091) 2514363

UV-GMETER

This new UV-C Meter allows direct, accurate measurement of absolute UV-C radiation intensities for the first time.

The sensor head contains a photo-cell filtered to produce maximum sensitivity in the wavelength region $200-280 \mathrm{~nm}$.

Applications include:
Monitoring the output of all types of UV lamps.
Calculation of the transmission factors of glass, plastics and liquids.
Measurement of direct and reflected light from UV lamp installations for determination of safe working practices according to the Health and Safety Executive.

The unit is available from Uvalight Technology Ltd, Tel: 021-643 2463/2472.

VIDEOCRYPT FOR SUB TV

Against worldwide competition Thomson Consumer Electronics has been selected by BBC Subcription Television Ltd to provide VideoCrypt access control technology for its encrypted subscription television service, scheduled for launch in September 1991.

The new service, named BBC Select, will be transmitted during the unused night-time hours of both BBC television networks. Initially, the service will offer a range of up to 15 'niche' television services for special interest groups. The programmes be divided into four broad subject categories:

Professional, Business and Training (doctors, laywers, teachers); Leisure (music, gold, sailing); Community (Irish and

Asian); Education (languages, management and information technology).

The programmes will largely be produced by outside companies and the service financed by a combination of subscription income, advertising and sponsorship.

The VideoCrypt decoder, coupled with a News Datacom smart card, is said to provide secure encryption against piracy. Recognising that most subscribers are likely to record their selection for viewing later, a special feature of the decoder will be an automatic VCR switching capability.

The VideoCrypt decoders will be designed by Thomson Consumer Electronics and manufactured by its Ferguson Ltd subsidiary at Gosport Hants.

NEWSPAPERS ON COMPACT DISC

TThe Times and The Sunday Times are to be the first UK national newspapers to market the text of a full year's issues of both titles on a single compact disc.

The new disc, known as THOR, runs on a personal computer equipped with a compact disc player. Information can be located quickly with one or more subject words and will be of particular benefit to researchers, academics, journalists, lawyers, advertising agencies, librarians and the general public.

The first disc will be available in January 1991, and will hold The Times and The Sunday Times for the whole of 1990 . Every three months after that, subscribers will automatically receive an update disc containing all issues of The Times and The Sunday Times for the calendar year to date. Also during 1991, material for the years 1985-1989 will become available as a comprehensive archive is built from The Times and Sunday Times.

The CD-ROM technology used by THOR provides a storage capability of the equivalent of $250,000 \mathrm{~A} 4$ pages of dense text, on a single, compact disc Powerful search facilities within the THOR software, specially developed by The Open University, guide the user to specific stories and features, within either a full year or a given year date span, cross-referencing with other subjects when necessary.

Articles are arranged in familiar sections such as Home and Foreign News, Business, Sport, Obituaries and Letters. Users may search the entire database, or may focus on a single section. THOR displays the full text from features and articles on the computer screen and can then be either printed off on paper or transferred to a separate 'Cuttings File' on disc for later use.

THOR has been developed by The Times Network Systems Limited in association with Times Newspapers and The Open University.

SWITCHMODEPOWER

Skynet Electronic has launched a new range of 85W open frame, switched mode power supplies for portable computer systems, peripherals, robotics and instrumentation. With a wide universal input of 96 to 260 V AC, over a frequency range of 47 to 440 Hz , the SNP-318 series provides up to four outputs with a maximum of 85 W continuous power over a 2.7 kHz bandwidth.

Pulse width modulation, PWM, and high speed MOSFET design, provide an efficiency of 80% or more, with low minimum load requirements. Input line filtering and thermal protection is provided.

Additional specifications include: a switching frequency of more than 30 kHz , foldback overload protection at 150% of full load; and crowbar overvoltage trip points of $6.2 \mathrm{~V}+0.4 \mathrm{~V}$ or rated output plus 2 V .

For more information contact Skynet Electronic Co Ltd, Tel: 0256-810 810.

Special connector for cables

To couple serial communication cables through D-type connectors requires soldering pins to attach cable ends. A quicker approach uses a special connector with screw-on terminals. The connector attaches to a circuit board composed of

resistors and fuses, which permits multiple current paths. Shorting out the appropriate fuses provides a path matching the pin count of the manufacturer's device.

Called the CableMate 'D' connector it supports 25,15 , and 9 pin connectors and is the same size as standard devices. It requires no soldering and protects from electrical noise. Possible
equipment combinations include Modicon, Allen-Bradley, Texas Instruments, General Electric, Nematron, and IBM PC/AT.

Manufacturer is PC Industries Inc., Knoxville, Tennessee.

Third wire eliminated

A
new inductive proximity switch can provide either positive or negative switching, and is either normally open or closed. A new circuit within a universal DC proximity sensor provides three-wire performance using only two wires. The circuit allows the proximity switch to maintain a low voltage drop while on and low leakage current when off.

Call the Quadronorm proximity switch, it simplifies proximity
sensor wiring and reduces parts inventory by 75 per cent. Switches are available in four threaded, tubular configurations with $8,12,18$, and 30 mm diameters. Non-shielded versions have plastic bodies and a prewired cable. Sensing ranges are up to 10 mm for shielded models and up to 15 mm for the nonshielded design.

Manufacturer is Efector Inc., Exton, Pennsyluania.

Stingrays detect electric fields

An isolation amplifier that gives out a low-level nondistorted signal is allowing research workers to study the ability of stingrays to detect electric fields. It has been used at the Washington University School of Medicine in a machine that simulates the electric fields produced by female stingrays. In the ray, an electrochemical voltage exists between the mucus membranes in its mouth and surface membranes around its gills. The distribution of the gill membranes produces a complex multi-pole field that varies in
intensity as the ray opens and closes its mouth.

In operation, the isolation amplifier called AD210 eliminates signal distortion by galvanically isolating the signal from the power supply. It also interrupts ground loops and leakage paths and rejects common-mode voltage signals. The device features 2500 V isolation, $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift, and 120 dB commonmode rejection.

Manufacturer of the AD210 is Analog Devices of Norwood, Massachusetts.

> Toothless brushless dc motor

Ahigh-speed laboratory micro-centrifuge uses a special DC motor to accelerate smoothly to 13300 rpm in 8
seconds and to stop in 10 seconds without exceeding noise levels of 60 dB . In a conventional DC motor, the rotor seeks preferred
positions of minimum reluctance across from the teeth in the armature. This produces slot ripple in the output torque and makes precise positioning and speed control difficult. In addition, the effect is worse in brushless DC motors because of flux leakage which opposes current reversal in the windings during commutation.

Removing armature teeth also eliminates cogging and reduces leakage flux. A patented winding process and rare-earth magnets have made it possible to make this a toothless, brushless DC motor. Motor sizes range from subfractional to 2 hp .

The motor is made by Electric Indicator Co. Inc. of Norwalk, Connecticut, and used in a centrifuge made by International Equipment Co.

Last Word on Audioparts

I
am delighted to see the interest which my letter to your September issue has raised. John Linsley Hood is unhappy that my letter implied that his amplifier was not as good as it could have or should have been. Any amplifier can be improved by better parts, but whether it should be improved obviously depends on the effect of improvements on the overall cost. If the cost is placed to high, many people will not build it. Getting the balance right between components and circuit design is the skill which determines whether the amplifier will meet the quality the customer aspires to at a price he can afford. There are many people who want to improve on an already good design (who would want to start from a bad design?) and are prepared to spend extra on achieving that goal. This is why the Virtuoso preamp and power amp were
produced in both standard and upgraded versions.

I am complemented by his remark that the 'sound quality' of any audio design is the outcome of the skill of ... the individual designer. I have taken my SONIC LINK DM20 amplifier to many of the best specialist hi-fi shops to persuade them to sell it, yet it is still very rarely that I have heard any comparably priced amplifier with 'sound quality' equal to my own designs. I would not agree that any one designers products should show any family resemblence. I have recently completed the design of an upgraded version of the DM20 amplifier to sell at twice the retail price of the standard model. Wow! Does this sound different! If a designer's products all sound the same, then I would suggest that the designer is not adventurous or resourceful enough to seek out the
improvements in sound quality that are there to be gained; unless this is done for purely commercial reasons to keep existing customers happy.

The only rational way that sound quality can be measured is by a listening experience. Despite the many different types of music that people enjoy (or not), the different aspect of performance that they judge important, and other factors there is a very broad consensus of agreement on matters of sound quality. If this were not the case, selling hi-fi equipment would be impossible. Mr Linsley Hood's suggestions that one would need to do a series of fairly careful instrumental measurements to make sure that it was not worsened by the change' after making a component change really made me laugh. Imagine a situation at a restaurant where someone is asked by the waiter if he enjoyed
the food and gets out a selection of test tubes, places samples of the food therin, looks at the colour of his litmus paper and decides from that whether he enjoyed the food. Sounds like an idea for TV comedy sketches to me.

Finally, I would challenge any reader of ETI who is interested in achieving high quality sound to try out high quality components and cables in their equipment and judge the results for themselves. Changing components can be as rewarding as building from scratch, and the joy gained from hearing a greater insight into a musical performance is one which is well worth the effort.

Graham Nalty

Audiokits, Derby.

Shifty Design

Ihave built the frequency shifter circuit from Blueprint and have got it working. One of the problems with this design is the 5 Hz component in the output. You show a band-pass filter in the input. This will not be able to suppress the 5 Hz (sine wave type) frequency present in the output.

I would recommend a bandpass filter at the output of the unit The adjustments of the pre-sets are not difficult to make. An osilloscope helps with this.

I have drawn out stripboard layouts for the circuits and have
made a prototype. Would you be interested in a full project write-up?
Peter Kunzler,
Surbiton, Surrey
We certainly are interested in the project. Judging from the feedback we have had from readers on the subject of howlround, it will be most welcome. As most ETI readers will know, all projects are constructed and presented on printed circuit board and not stripboard.

Natural Sounds

It must be fifteen years now I have been reading your magazine. The articles and projects on audio subjects have been excellent. However, they have usually been biased towards the indoor use of equipment

Outdoor use is becoming more common, particularly in the
recording of wildlife sounds, from insects to elephants. An interest by your magazine in, microphones, analogue, and R-Dat recoders, windshields, reflectors and power packs would be greatly appreciated.

Peter Maskens,

Hornchurch, Essex.

Oscilloscope Safety

Whilst reading Simon Russell's article 'Repairing Oscilloscopes' (ETI Dec.), I could hardly fail to notice his continual attempts to impress upon the reader the dangers of working on high tension circuitry. This is of course sound advice, considering even a modest current can dispatch the hardiest of individuals if 'taken the wrong way'. I was therefore horritied to see that half way into his article, Mr Russell recommends that the vertical deflection control may be checked 'with a finger on the Y input. Even in the most trustworthy of instruments, there is
always the danger that a chance fault or component breakdown may render the inputs at line voltage and this danger can only be increased in the case of antiquated and clearly faulty equipment. As a first year medical student who is often involved in physiological experiments, may I strongly recommend to all readers that nobody should connect themselves or any other living material to the input of any mains driven equipment, unless this connection is made through an optical isolation amplifier.
G. Bullingham,

Harleston, Norfolk.

Toko Coils

Thank you for your comments. We will see what we can do for you. It would be nice for somebody experienced in outside broadcast and recording to offer handy tips on the subject. The offer is there. $-E d$.

Some people have had difficulty in getting the Toko Coils for the four-track cassette recorder project. The author has a supply - more on this next month.

THE ORIGINAL SURPLUS WONDERLAND！

MONITORS

MONOCHROME MONITORS
THIS MONTH＇S SPECIALI

［roThere has never been a deal like this one Brand spanking new \＆boxed monitors from NEC，normally selling at about $£ 140$ These are over－engineered for ultra rellability． $9^{\text {＂}}$ green screen composite input with etched non－glare screen plus switch able high／low Impedance input and output
for dalsy－chalning． 3 front controls and 6 at rear．Standard BNC carrying ledge．Petiect as maln or backup montor and for quantity usersi $£ 39.95$ each（D）or 5 for E 185 （G）

CALL FOR DISCOUNTS ON HIGHER QUANTITIES！ Zenth ZVM－1240－EA brand new \＆boxed $12^{\prime \prime}$ amber flat screen Standard TTL PC compatible． 18 mhz bandwidth．Very attractive ＂state of the art＂tapered grey case．Standard 9 pin D plug supplied）on 1 metre cord and malns cord terminatod swivel／tilt base．An absolute gitt at：£59（D） $10 / 5500$（G）．
Wang aductable for tilt．Pequires 12 vdc ．Brand new and boxed in perfect condition．Only £38 each or 2 for $£ 75$（F） Motorola $1100 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$ ．Ideal for CCTV or computer applications．Accepts standard composite or individual H \＆V syncs．Needs 12 vdc at only 0.8 a ．Some units may have minor screen blemishes．Fully tested with 30 day guaranlee a．0（C）
S20．00（C） Fully cased as above In attractive moulded desk standing wivel．Dim $12 \times 14.5 \times 26 \mathrm{~cm}$ ． $\times 14 \times 18 \mathrm{~cm}$ ．Simple DIY data included to convert to composite video lnput ．Full data．BRAND NEW E65．00（B）

COLOUR MONTTORS

Decca 16 ＂ 80 budget range colour montor．Features a PIL tube， beautiful teak style case and guarameed 80 column resolution， eatures usually seen only on colour monitors costing 3 times our pricel Ready to connect to most computers or video ou tputs． 552 composite input with integral audio amp \＆speaker．Fuiliy
ested surplus，sold in little or hardly used condition with 90 day full RTB guarantee．Ideal for use with video recorder or our
Telebox ST，and other audio visual uses． 299 （E） $3 / E 275$（G） $20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS
Superbiy made UK manufacture．PIL all solld state colour monitors，complete with composite video s sound inpuis．Attrac In teak stye case．Perec condition with full 90 day guarantee
$20^{\prime \prime} \ldots . . £ 1352^{\prime \prime} \ldots . . £ 15526^{\circ \prime} \ldots . . £ 185$（F）

HI－DEFINITION COLOUR MONITORS

Brand new Centronic 14^{*} monitor for IBM PC and compatibles at a lower than ever pricel Completely CGA equivalent．Hi－res
Mitsubushi 0.42 dot pitch giving 669×507 pixels．Big 28 Mhz Mitsubushi 0.42 dot pitch giving 669×507 pixels．Big 28 Mhz 90 day guarantee．Only $£ 129$（E）
NEC CGA IBM－PC compatible．High quallty ex－equipment fully tested with a 90 day guarantee．In an attractive two tone ribbed grey plastic case measuring $15^{\circ} \mathrm{L} \times 13^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{H}$ ．A terrific

SCoDP！14＂Colour
 Multisync／Multifunction

Never before has such a deal been struck to bring you this
quality Japanese manufactured multiaync，multifumction professional grade monitor at an unheard of low pricall The Electrohome ECM1311 with its host of inputs will connect to most computer systems including：IBM PC／XT／AT／PS2（CGA， EGA，PGA，VGA modes）Atari，Archimedes（both modes），Com－ modore，BBC and many more．Many other features include： RGB analog \＆TTL inputs，separate horizontal，vertical，com－ posite and sync on green inputs；auto 15 to 36 khz operation 0.31 mm tube dot pich；inted non giare eiched screen ant makere Hst price over $\mathbf{5 0 0 0}$ ！Each supplied with data，fully tested in Mst price over $\mathbf{E 9 0}$ ！Each suppiled with data，fully tested in used good condition with fuli 90 day RTB guaraniee．Cuantity Telebox．

an $£ 175$
 V22 1200 BAUD MODEMS

We got a tremendous buy on further stocks of this popular
Master Systems $2 / 12$ microprocessor controlled V22 full duplex 1200 baud modern－we can now bring them to you al haff lase advertised pricel Fully BT approved unit，provides standard V22 high speed data comm，which at 120 cps ，can save your phone bill and connect time by a staggering 75% Uitra simm 45
mm high．Full featured with LED status indicators and remote mm high．Full featured with LED status indcators and remote built in 240 v mains supply and 2 wire connection to BT．Units are in used but good condition．Fully tested prior despatch，with data and a full 90 day guarantee．What more can you ask for

ONLY £69（D）

IBM KEYBOARD DEALS

replacement or backup keyboard，switchable for IBM PC， C－XI or PC－AT．LED＇s for Caps，Scroll \＆Num Locks．Standard 84 keyooard layout．Made by NCR for the English \＆US markets． Absoutely standard．Brand new \＆boxed with manual and key emplate for user slogans on the function keys．Attractive beige，grey and cream finish，with the usual retractable legs unoemeath．A generous lengith of curly cord，lemminating in tie standard 5 pin DiN plug．A
urers surplus．What a deal

Brand now and boxed 4 koy PCOT BM gray with very attractive mottld fish and＂dllcly＂solidiand
 LEDs for Caps，Scroll \＆Num locks．E20．95（B）5／2135（D）

CALL FOR DISCOUNTS ON HIGAER OUANTHESI

FLOPPY DISK DRIVES

BARGAINS GALORE

NEW $51 / 4$ inch from $£ 29.95$ ！

Massive purchases of standard $51 / 4^{\circ}$ drives enables us to present prime product at industry beating low pricesl All units （unless stated）are removed from often brand new oquipment and are fully tested．aligned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$ ，are of standard size and accept the standard 34 way connector．

TANDO TMIOO－2A IBM compatible DS

CANON TEC etc DS hal height State 40 or 807 TEAC FD－55－F．40－80 DS half height．BRAND NEW $\mathrm{ET9.0}^{\prime 2}$ ＊SAEcéaで！
TEAC FD－55 half height serles in your choice of 40 track double sided 360 k or 80 track double sided 720 k ．Ex－equip－ ment fully tested in excellent condition with 90 day warranty． Order TE－36 for 360k £29．95（C）or TE－72 for 720k 239.85 （C） CHOOSE YOUR 8 INCHI
Shugart 800／801 SS refurbished \＆tested Shugart 851 double sided refurbished \＆tested Mitsubishl Mz994－63 double sided switchable

with bult in power supply

Only £499．00（F）
Ideal as exterior drives！
End of line purchase scoop！Brand new NEC D2246 8＂ 85 megabyte of hard disk storagel Full CPU control and industry standard SMD interface．Ultra hi speed transfer and access time leaves the good old ST506 interface standing．In mint condition and comes complete with manual．Only． \qquad

MAINS SUPPRESSORS \＆FILTERS

Roxburgh SDC 0212 amp mains RFI filter．Has an extra wide frequency range of 150 khz to 30 mhz ．Can type，solder lug connection．Quallty manufactured to BS 613 standards．Dims
 Roxburgh SDA $013 / 25$ ．Similar to above rated at $1-1 / 2 \mathrm{amps}$ ． Dims 1－1／2＂D $\times 1-3 / 4^{*} \mathrm{H}$ ．．．．E3．25 or 3 for $\$ 8.50(\mathrm{~A}) 10$ for $\sum 25(\mathrm{~B})$ Suppression Devices SD5 A10．Extra compact generai pur－ pose suppressor．Plastic moulded case with single bolt fixing and snap connectors．Rated at 230 vac 5 amps．Dims $1-3 / 4 \mathrm{~L}$
$\times 1-1 / 8^{1} \mathrm{~W} \times 5 / 8^{\prime \prime} \mathrm{H}$ ．．．．．．．．．． E 3.95 or 3 for E 10 （A） 10 for $£ 28$（B） $\times 1-1 / 8^{\prime \prime} \mathrm{W} \times 5 / 8^{\prime \prime} \mathrm{H}$ ．．．．．．．．． 53.95 or 3 for $£ 10(\mathrm{~A}) 10$ for $£ 28$（B）
Belling－Lee type L2127 3 amp mains RFI filters．Has a built in mains cable（English coding），and a three pin miniature non－re－ versible socket and a mating，plug，to go to the equipment．Ideal for those who are bugged by RF interference．Very compact． Dims $3-1 / 8^{\prime \prime} \times 2.5^{\circ} \times 1.5^{\prime \prime} \ldots \sum_{3} .95$ each or 3 for £10 (\hat{A})

RECHARGEABLE BATTERIES LEAD ACID

Maintenance free sealed long life．Type A300．

Main 12 volts 6 volts
 6 volts

6 volts $\quad 6$ volts $3 \mathrm{amp} / \mathrm{amours}$
12 volte
12 volts
Centre tappe
12 volts 38 ed 1.8 amp hours．RFE．£ 5.95 （A） NICKEL CADMIUM
Guality 12v 4ah cell pack．Originally made for the Technicololor ideo company．Contalns 10 GE top quality D nicad cells in a smart robust case with a
Ex－quipment NICAD cells by GE Removed from Eig．85（B） ex－equipment NICAD cell
cells by and In good，used condilion： $\begin{array}{ll}\text { D size 4ah } & 4 \text { for } \mathrm{E} 5(\mathrm{~B}) \\ \mathrm{F} \text { size 7ah } & 6 \text { for } \mathrm{EB}(\mathrm{B})\end{array}$

4 for $£ 5(\mathrm{~B})$

SPECIALINTEREST

Tektronix 1751 Waveform／Vector monitor Trio $0-18$ voc bench PSU． 30 amps．New
DEC VAX11／750 inc． 2 Meg Ram DZ and full docum entation，in brand new condition

Fuifita M3041 600 LPM band printer

DEC LS／02 CPU board
Galcomp 1036 large drum 3 pen plotter Thuriby LA 160B iogic analyser
1.5 kw i15v 60 hz power source

Tektronix R140 NTSC TV test signal standard．
Sony KTX 1000 Videotex system－brand new
ADDS 2020 VDU terminals－brand new
Sekonic SD $150 H 18$ channel Hybrld recorder
Trend 1－0－1 Data transmission test set

Fantastic deal for an entry machine or cheap enough to buy as a backup．Brand new and boxed colour（CGA）or mono（MGA） switchable PC－XT compatible，complete with MS－DOS 3.3 and GW Basic \＆manuals．8088－2 16 bit CPU with socket for 8087 co－processor． 512 K of RAM easily expandable on mother board 0640 K ．Clock with battery backup．Serial \＆parallel ports \＆one $5.25^{\prime \prime}$ DS 360K floppy disk．Twa half height bays on the front plus one Inside．Disk controller，power lead and ribbon cable are ready Installed walting for a second floppy．Option for an intemal 20 mb hard drive ready Installed，complete with Installed drive 20 mb hand drive ready instaled，complete with instalied drive card and ready to go．CGANGA card，switchable
footprint，dims．only $13.5^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D} \times 4.25^{\mathrm{*}} \mathrm{H}$ ．

Choose your own eonfiguration ！
XT1 System Computer $\&$ keyboard
XT2 System XT1 $+12^{\prime \prime}$ amber monitor add colour monitor add nternal fitted 20 mb HD add $\mathrm{E} 99^{\star}+$（E） XT4 System XT1＋Intemal fitted 20 mb HD add $\mathrm{E} 190^{*}+$ TT5 System XT $1+14^{\prime \prime}$ multisync VGA mon．add $£ 150^{*}$ Prices applicable when ordered with PC system．

PWOWER SUPPLIES

All PSUs 220－240vac input and are BRAND NEW unlesa stated．Many types ranging from $3 v$ to $10 k v$ always in stock． Power One SPL130． 130 watts．Link selectable for $12 \mathrm{v}(4 \mathrm{~A})$ or
$24 \mathrm{v}(2 \mathrm{~A}) .5 \mathrm{v} @ 20 \mathrm{~A} . \pm 12 \mathrm{v} @ 1.5 \mathrm{~A}$ ．Switch mode． $\mathrm{E50.95(B)}$ Astec AC－8151 40 watts．Switch mode．$+5 \mathrm{v} @ 2.5 \mathrm{a} .+12 \mathrm{v} @$ 2a．$-12 v @ 0.1 a .6-1 / 4^{\prime \prime} \times 4^{\prime \prime} \times 1-3 / 4^{\prime \prime}$ ．E18．95（B） Greendale 19ABOE 60 watts switch mode．＋5v＠6a，$\pm 12 \mathrm{~V}$＠ Conver AC130． 130 watt hi－grade VDE spec．Switch mode +5 v ＠15a，－5v＠1a，$\pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$

ع49．95（C）
Boshert 13090．Switch mode．Ideal for drives \＆system．＋5v＠
$6 \mathrm{a},+12 \mathrm{v}$＠2．5a，－12v＠0．5a，－5v＠0．5a．E29．95（B）
Famell G6／40A．Swich mode． 5 v ＠ 40 a ．Enca
Farnell $\mathrm{G} 24 / 5 \mathrm{~S}$ ．As above but 24 v ＠ 5 a ．
265．00（C）

COOLING FANS

Brand new high quality，fully cased， 7 channel UHF PAL TV tuner system．Unit simply connects to your TV aerial socket and colour If your monitor does＇nt have sound，the TELEBOX even has an integral audio amp for driving a speaker plus an auxillary output for Headphones or Hi Fi system etc．Many other features：LED Status indicator，Smart moulded case，Mains powered，Built to BS safety specs．Many other uses for TV sound or video etc Supplied BRAND NEW with full 1 year guarantee．
Supplied BRAND NEW with full 1 year guarantee．
Telebox ST for composite video input monitors．．．．．．．．e29．95（B）
Telebox STL as ST but with integral speaker．．．．．．．．．．$£ 34.95$（B） Telebox STL as ST but with integral speaker

229．95（B）
AGB T RGB Telebox also suitable for 1 BM muitisyinc monitors with RGB

BRAND NEW PRINTERS
TEC Starwriter Model FP1500－25 daisywheel printer renowned or its reliability．Diablo type print mechanism gives superb egistration and quality．On board microprocessor gives full Diablo／Qume command capability．Serial AS－232C with 136 £ 470 cpl In Pica， 163 in Elle．Friction or tractor feed．Full ASCII DED DP $\mathcal{E} 21$ miniature ball pon Dlablo compatible．．．．．．．Eise（E） E3900 DED DPG21 miniature ball point pen printer plotter mechanism 150 includes dircuit diagrams for simple driver electronics．．．．．．s49（B） \＆ 150 includes circuit diagrams for simple driver electronics，．．．．E49（B） 650 Centronics 150 series，Always known for their reliabity in cps with 4 fonts and choice of Interfaces at a fantastic 159－4 Serial up to $9.5^{\prime \prime}$ paper，fan fold tractor． $150-4$ Serial up to $9.5^{\prime \prime}$ paper，tractor，roll or $\mathrm{s} /$ sheet．．．．． 129.00 （E

CALL FOR THE MANY OTHERS IN STOCK

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE－CALL NOW！
DEPLA！

ALLENQUIRIES
081－679－4414
Fax－081－679－1927
Telex－894502
 standard Conditions of Sale and undess ctherwise stated guaranteed for 90 days．Alr guarantees on a roturn to base basia．We reservo ho nigint to change prices

I Please supply photocopies of the following articles from ETI (complete in block capitals):
Month

Year

Page (if known) 1
TitleI
Page (if known) Month Year I
TitlePage (if known)
Title1
I enclose a cheque/postal order made out to ASP Ltd. tothe value of $£ 1.50$ per photocopy ordered.
Total remittance $£ \ldots . . .$. Date I
Name 1
AddressI
Postcode1
Send the completed form and your remittance to:ETI Photocopy ServiceArgus HouseBoundary WayHemel HempsteadHerts HP2 7ST

Bare Board
£17.50 (plus postage and VAT)

SINGLE BOARD COMPUTER "SBC-1"

A computer doesn't have to look like you'd expect a computer to look It doesn't have to have a keyboard and a screen and floppy disks and so on.

The SBC-1 has the bare minimum of chips a 280 computer can have and still be a computer: A 4MHz Z80A-CPU chip, an EPROM chip (up to 32 K), a static RAM chip (up to 32 K) and a pair of 8255A i/O (inpu output) chips giving 48 individual lines to waggle up and down. There " 74 LS " or "HC' parts
A star feature is that no special or custom chips (ie PALs, ULAs, ASICs etc) are used - and thus there are no secrets. The Z80A is the fastest and best established of all the 8 -bit microprocessors - possibly the cheapest too!
Although no serial interface is included, it is easy for a Z80A to waggle one bit up or down at the appropriate rate - the cost is a few pence worth of code in the program: why buy hardware when software will do? Applications already identified include: Magnetic Card reader, mini printer interface, printer buffer, push button keypad, LCD aiphanumeric panel interface, 40 -zone security system, modem interface for auto sending of security alarms, code converter (eg IBM PC keyboard codes to regular ASCII), real time clock (with plug in module), autornatic horticultural irrigation controller:
By disabling the on-board Z80A.CPU this card will plug into our Interak I CP/M Plus disk-based development systems, so if you don't fancy hand-assembling Z80 machine code you don't have to!
The idea is (if you are a manufacturer) you buy just one development system and then turn out the cheap SBC-1 the program for youred. you can get on with massembluring your product leaving all your control problems to us

Greenbank
For more details write or phone us.
Greenbank Electronics, Dept. (ETI 02), 460 New Chester Road, Rock Ferry, Birkenhead, Merseyside L42 2AE. Tel: 051-645 3391

BRIAN PRICE Băhm ORGAN STUDIOS

 66 Ashchurch Drive, Wollaton, Nottingham NG8 2RA Telephone/Fax: 0602-28476633 years of experience in high quality organ and keyboard design behind every BÖHM Próduct

NEW FROM BÖHM FOR 1991 2000HDS SERIES ORGANS

* Latest Development of the 1000XLIO30XL Organs.
* Library of 508 Sounds for 4 Soundgroups in the NEWHDS (HighDigital SOUND System
* Sounds from the earlier PM system may also be used.
* Full Classical, Theatre and Combo Sounds may be loaded from Floppy Disc.
$\star 2 \times 61$ Note Keyboards, Touch-Sensitive.
* Both manual Split and have Second Touch.
- Choice of 13,18 or 25 note Pedal Boards, Touch Sensitive.
$\star 256$ Rhythms with Auto-Accompaniment.
- 32 Track Sequencer
* Al features fully programmable by the user or from Floppy Disc.
* New Smaller cabinet.
* New High-Fidelity Loudspeakers of Slim design.
* New Protessional Loudspeakers 200 and 400 Watts.
* Choice of Veneers for Cabinet and Loudspeakers.

Supplied in kit form or built by
 THE BÖHM SPECIALISTS

Part Exchange welcome. Please write or phone for brochures and Prices. Callers by appointment please or contact one of our agents.
Vernon Pursell, 66 Colcot Road, Barry, South Glamorgan, 0448-733277 Keyboard Services, 9 Kingswood Road, Kingswell, Aberdeen, 0224744585 Nick Stammers, Westline, Tenfields, Hatton Le Hole, T.\&W., 091-526-3589 lan Beech, 8 Ventnor Road, Southshore, Blackpool, 0253-401977 "Take Note," 35 Kennedy Avenue, Hoddesden, Herts, 0992-466153

Fig. 1 The structure of the atom.

The name 'electricity' is derived from the Greek word for amber, which is 'elektron'. The Greeks discovered that by rubbing a piece of amber it could be made to attract small objects - an experiment which has been repeated countless times since.

The explanation lies in the way in which matter is constructed. All materials are made of atoms; these atoms consist of a nucleus around which a number of electrons orbit (Figure 1). Each electron carries a negative electric charge. The nucleus contains one or more protons, each of which carries a positive electric charge. There may also be some neutrons in the nucleus, but as they are electrically neutral they will play no further part in our discussion.

In a normal atom, the number of electrons orbiting the nucleus is equal to the number of protons within that nucleus. The sum of the positive charges is therefore equal to the sum of the negative charges and the atom is electrically balanced, and carries no overall charge. If two different materials are rubbed together, the friction generates heat, which can cause the atoms in one material to give up electrons to the atoms in the other material. When an atom loses one or more electrons, it becomes positively charged, because there are more protons than electrons. Similarly, when an atom gains electrons, it becomes negatively charged, since there are more electrons than protons. A fundamental principle is that a surplus of electrons represents a negative charge, and a deficiency of electrons represents a positive charge.

The action of rubbing two dissimilar materials together therefore leaves one material with a positive charge and the other with a negative charge. Which material gives up electrons depends upon the types of material involved.

The second important principle is that like charges repel one another and unlike charges attract. If two bodies are charged and suspended in close proximity, this effect can be observed (Figure 2). If one body carries a positive charge and the other a negative charge, they will be attracted to each other. If both bodies carry a charge of the same polarity, either positive or negative, they will repel each other. The presence of positive and negative charges on a material is called static electricity.

When two bodies carrying opposite charges are brought into contact, electrons will move from the negatively charged material to the positively charged material in an attempt to balance out the difference in charge (Figure 3). This movement of electrons is a flow of electric current. If the two materials started with equal but opposite charges, then they will both
be left electrically neutral. It is not necessary for one body to be positive and the other negative, however - all that is necessary is for there to be a difference in charge between the two objects. If the two objects started with different negative charges, they would finish with equal negative charges, electrons flowing from the more negative material to the less negative material until the charges are balanced.

Conductors And Insulators

Most materials can be loosely categorized as a conductor or an insulator. Within each atom of a material, there exists a mutual attraction between the positively charged nucleus and the negatively charged electrons orbiting around it. The electrons in different materials orbit at varying distances from the nucleus, and the further away an electron is from the nucleus, the less the force of attraction. Electrons in the outer orbits of

conductor. The more tightly bound a material's electrons are, the more energy, or charge, is required to cause a current to flow. Good conductors include silver, copper, aluminium, zinc, iron and all other metals. Some good insulators are glass, dry air, rubber, and ceramics. Cables may be made by using copper conductors surrounded by rubber insulation - the rubber confines the electricity to the copper wires.

Maintaining A Flow Of Current

The momentary flow of current caused by two charged objects discharging cannot be put to much practical use. To cause a current to flow continuously through a wire it is necessary to maintain a difference in charge, or potential difference, between its two ends.

In a regular cell, chemical action is used to produce this potential difference (Figure 4). The chemicals inside the cell take electrons from the positive electrode and deposit them on the negative electrode. If a wire is connected across the two poles of the cell, electrons flow from the negative pole, through the wire, and into the positive pole.

The force supplied by the chemicals in moving electrons inside the cell to generate a potential difference is called electro-motive force, or EMF. Both EMF and potential difference are measured in units called Voits, abbreviated to V in common notation. (The symbol E is often used for EMF). The higher the voltage, the greater is the force generating a potential difference. A voltage is an EMF when no current flows and a potential difference when it is.

The actual quantity of an electric charge is measured in coulombs, one coulomb representing the charge of billions of electrons. It is the rate at which charge flows that is more commonly referred to. This rate of flow is measured in Amperes (abbreviated A, and often colloquially called amps). A current of one ampere represents one Coulomb of electrons passing a given point on a conductor in one second. When written in calculations, current flow is symbolized by I (the symbol C is already used for other purposes).

There are two fundamental requirements for a current to flow: there must be a source of EMF and there must be a complete loop, or circuit, for the current to flow. An electric switch simply breaks the
conductor to prevent current flowing through the whole loop.

Resistance

There is a relationship between voltage and current, for if a greater EMF is applied to the ends of a piece of wire, a greater current will flow from the potential difference now placed across it. The factor which determines how much current will flow for a given potential difference is called resistance.

Fig. 4 Chemical action in a cell.
The fewer free electrons a material possesses, the more it resists the flow of an electric current. Good conductors, like copper, therefore have a low resistance and good insulators, like rubber, have a very high resistance. The length of the material directly affects its resistance: if the length of a piece of wire is halved, so is its resistance. The cross-sectional area has an inverse effect upon resistance: increasing the area decreases the resistance. Temperature also has an effect, although not usually as great as the other factors. Most metals show an increase in resistance when heated, but few materials will decrease resistance as temperature increases up to a point.
CURRENT $=$
VOLTAGE
RESISTANCE $=$
RESISTANCE

$$
\frac{\text { VOLTAGE }}{\text { CURRENT }}
$$

VOLTAGE $=$ CURRENT \times RESISTANCE
Example:
If supplied e.m. f. is 12 V and resistance is 6Ω, then

$$
\text { current }=\frac{\text { voltage }}{\text { resistance }}=\frac{12 \mathrm{~V}}{6 \Omega} \xlongequal{2 \mathrm{~A}}
$$

Fig. 5 Relationship between voltage, current and resistance.

The symbol used to represent resistance is R and the unit of measurement is the Ohm, written as the Greek letter omega (Ω). For a given value of voltage, as resistance is increased, the current decreases. This is because the potential difference has to work harder against the increased resistance.

There is a definite link between voltage, current, and resistance. Current flowing in a circuit is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit. The units of measurement are such that a current of 1 A will flow through a circuit with a resistance of 1Ω (now abbreviated to 1 R when dealing with electronic circuits) when a potential difference of IV is applied. This relationship (shown mathematically in Figure 5) is known as Ohm's Law. It will be seen that the

Fig. 6 The Ohms Law Triangle.
equation may be written three ways, allowing any one quantity to be calculated if the other two are known.

Ohm's Law is one of the most important electrical laws to memorize and understand, for it is used extensively. The equation is often illustrated in the form of a triangle (Figure 6). By covering the unknown value, the two remaining symbols show the formula needed to calculate it. The three equations are shown in the diagram.

Fig. 9 Schematic diagrams.

Electrical Measurements

It is now a good time to look at the units of measurement used in a little more detail.

When dealing with electronic circuits, it is very often not convenient to use whole units of measurement (amperes, volts, and ohms), for the values may be many thousands or thousandths of the whole unit. Standard prefixes are used to indicate such small or large values (Figure 7).

The prefixes shown may be applied to any unit, although some combinations are hardly ever used (voltages are seldom measured in megavolts and
resistances are seldom measured in micro-ohms, for example). It will be seen that from one prefix to the next there is usually a difference of 1,000 . A voltage of 1 kV is equal to $1,000 \mathrm{~V}$, and a current of 1 mA is equal to $1,000 \mu \mathrm{~A}$, for instance. There are other prefixes to represent even larger and smaller numbers, but the table shows the most common ones. The ability to convert between units of measurement is a very valuable asset, and a mathematical mind is useful when dealing with many electrical calculations.

Using the Ohm's Law formula, a common trick to use is substituting current and resistance values. The equation expects voltage to be measured in volts, current to be measured in amperes (so that a current of 25 mA should be expressed as 0.025 A), and so on. It quite often happens that one is dealing with values of current in the milliampere range and values of resistance in the kilo-ohm range. By simple mathematics, these values can be used together (as proven in Figure 8). Similarly, microamperes and megohms can be used together, because each represents a multiplication factor of $1,000,000$. Great care must be taken however, when using this technique.

Schematic Diagrams

The schematic, or circuit, diagram is used as a graphical representation of a circuit. Standard syrnbols are employed to show each type of component, and parts are generally numbered for reference in any accompanying text (see Figure 9).

The schematic does not necessarily show the exact layout of a circuit; it is only intended to show how the parts are connected together (an example of how the actual layout may differ is shown in Figure 10).

$$
\begin{aligned}
& \text { ADJUSTMENT OF VALUES IN CALCULATIONS } \\
& \qquad \begin{aligned}
\text { If } & =1 \times R \\
\text { I } & =50 \mathrm{~mA} \text { and } R=2 \mathrm{k} \Omega \text {, then } \\
E & =1 \times R=0.05 A \times 2,000 \Omega=\underline{100 \mathrm{~V}}
\end{aligned}
\end{aligned}
$$

By using mA and $k \Omega$

$$
E=1 \times \mathbf{R}=50 \mathrm{~mA} \times 2 \mathrm{k} \Omega=100 \mathrm{~V}
$$

By using $u A$ and $M \Omega$
$E=I \times R=50.000 u \mathrm{~A} \times 0.002 \mathrm{M} \Omega=100 \mathrm{~V}$
Fig. 8 Adjustment of values in calculations.
It is essential to be able to read a schematic diagram to do any sort of electrical or electronic work, and the symbols used will be introduced in this series as each type of part is encountered. One very important point to note is the way in which junctions and crossings are shown. It is not possible to draw anything but the simplest circuit without having to cross a line over another. Most printed diagrams show a small dot where a wire is connected to another, and a four-way joint is usually drawn staggered to avoid confusion. Notice the two different ways of showing crossing wires.

Note that the symbol for resistance is used to indicate a component called a resistor, a fixed amount of resistance inserted intentionally into the circuit. Although all wires have a certain amount of resistance, it is usually so low as to be of no consequence.

Next month we examine the link between electricity and magnetism.

Fig. 10 Layout of schematic diagrams.

REAL POWER AMPLIFER For your car，it has 150 watts output Frequency rosponse 20 HZ to 20 KHZ and a signal to noise ratio better than 6000 ．Has buitton short circuit protection and adjustable input level to suit youe exsting car stereo．so needs no pre－amp． Works into speakers ref 30P7 described below．A real bargain atonly E57．00 Order ref 57P1．
REAL POWER CAR SPEAKERS．Sterso pair ourtput 100 w each 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ woofer $2^{1 "}$ mid range and 1＇＇tweeter．Ideal to work with the amplifier described above．Price per pair $£ 30.00$ Order ret 30P7
PERSONAL STEREOS Customer returns but complete with a pair of stereo headphones very good value at $£ 3.00$ ref $3 P 83$ ．We also have customer returned units with a built in FM radio at $£ 6.00$ re 6P34
2KV 500 WATT TRANSFORMERS．Suitable for high voltage 10.00 ref 10 Pg 3

MACROWAVE CONTROL PANEL Mains operated，with touch switchas Complate with 4 digit display，digital clock，and 2 relay outputs one for power and one for pulsed power（programmabie）． ideal for all sorts of precision 6 imer applications etc，$£ 6.00$ ref 6 P18 ABRE OPTIC CABLE Stranded optical fibres sheathed in blach PVC．Five metre length $£ 7.00$ ref 7P29
12V SOLAR CELL． 200 mA output ideal for

§ 15.00 ref 15 P42

PASSIVE INFRA－RED MOTION SENSOR． Complete with day light sensor，adjustable fights on umer（ 8 secs -15 mins）， 50 ＇range with a 90
deg coverage．Manual overide facility．Com－ plete with wall brackets，bulb holders etc．Brand now and guaranteed $£ 25.00$ ref 25P24．
Pack of two PAR38 bubs for above unit $£ 12.00$

ref $12 P 43$

VIDEO SENDER UNIT．Transmit both audio and video signals from either a video camera，video recorder or computer to any standard TV set within a 100^{\prime} rangel（tune TV to a spare channel）． $12 v$ DC op．$£ 15.00$ ref $15 P 39$ Suitable mains adaptor $£ 5.00$ re SP191
bug is mains driven）．E18．00 ret 18P10
MINATURE RADIO TRANSCEIVERS
walkie talkies with a range of up to 2 kilometres Units 解期 ef 30P12
FM CORDLESS MICROPHONE Small hand held unit with a 500^{\prime} rangel 2 transmit power levels reqs PP3 battery．Tun－ abio to any FM receiver．Our price E15 rel $15 P 42$
bands FM AM and WDX
ans，FM，AM and LWDX／local switch，tuning＇eye＇mains 率 £34．00 ret 34P
WHSPER 2000 LSTENHNG AID．Enables you to hear sounds hat would otherwise be inaudible！Complete with headphones Cased．£5．00 nof 5P179．
CAR STEREO AND FM RADIO．Low cost stereo system giving 5 watts per channel Signal to noise ratio better than 45 db ，wow and utter less than 35% ．Neg earth． 525.00 rol 25 P 21
LOW COST WALIKIE TALKIES．Pair of battery
operated units with a range of about 150，Our price E8．00 a pair ret 8 P50
CHANNEL GRAPHIC EQUALIZER plus a 60 watl
power ampl 20－21KHZ 4－8R 12－14v DC negative eath Cased of 25P14．
NICAD BATTERYS．Brand new top qualiy． $4 \times$ AA＇s $£ 4.00$ ref
 TOWERS INTERNATHONAL TRANSISTOR SELECTOR GUIDE．The ultimate equivalents book．Latest edition $£ 20.00$ ref OP32
CABLE TIES． $142 \mathrm{~mm} \times 32 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref 3P104．Bumper pack of 1,000 ties $£ 14.00$

BUILD AN IBM COMPATIBLE PC！

AT 12 meg turbo 286 mother board．	£11500	pci
1 meg memory for above board．	£55．00	pc2
4 meg memory for above board．	E214．00	pc3
AT keyboard	£49，00	pc4
AT power supply and pc case（complete）	£115．00	pe5
AT controller card with $2 \times$ serial， $1 \times$ parallel Floppy and hard controller＋mono		
Display driver．	£7400	pc6
$12 \mathrm{meg} 31 / 2^{\prime \prime}$ dise drive．	£7400	7
1.44 meg $51 / 4^{\prime \prime}$ drive．	£6600	pc8
Amber monitor 12 ＇	£99．00	pc9
40 meg hard disc．	£270．00	pcio
100 meg hard disc．	£59500	pc11

minimum system consisting of mother board， 1 meg of memory， case，power supply， 1.44 meg floppy，interfaces，and monitor is £795，00 inc VAT（ 40 meg＋floppy＋mono 286）

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} \times 9$＂SAE FOR A FREE COPY

GEIGER COUNTER KIT．Complete with tube，PCB and all compo－ ents to build a battery operated geiger counter．£39．00 ref 39P1 FM BUG KIT．New design with PCB embedded coil．Transmits to ny FM radio．9v battery req＇d．$£ 5.00$ ref 5P15
Thannel will drive a small speaker cased unit，mains powered 8 channel will drive a small speaker directly or could be fed into HI FI CONPOSITE VIDEO KITS
COMPOSITE VIDEO KITS．These convert composite video into
separate H sync，V sync and videc． $12 v$ DC．$£ 8.00$ ref $8 P 39$
SINCLANR C5 MOTORS $12 v 29 A$
SINCLANR C5 MOTORS．12v 29A（full load） $3300 \mathrm{rpm} 6{ }^{\prime \prime} \times 4^{\prime \prime} 1 / 4^{n}$ 2／P shaft．New．£20．00 ref 20P22．
As above but with fitted 4 to 1 inline reduction box（ 800 mm ）and SMCLAIR C5 WHEELS
wheel $£ 6.00$ ref 6 P20，16＂wheel $£ 6.00$ ref 6 P21
ELECTRONIC SPEED CONTROL KIT for 55 motor PCB and a
oomponents to build a speed controller（ $0-95 \%$ of speed）
Uses pulse width modulation．$£ 17.00$ ref 17 P 3 ．
SOLAR POWERED NICAD CHARGER．Gharges 4
AA nicads in 8 hours．Brand new and cased $£ 600$ ref
6P3
MOSFETS FOR POWER AMPLIFIERS ETC． 100 watt mosfet pair 2SJ99 and 2SK343 \＆ 400 a pair with pin out info ref 4P51．Also avaliable is a 2 SK4 43 and a 2 S 1118 at $£ 4.00$ ref 4 P 42
10 MEMORY PUSH BUTTON TELEPHONES．These are＇cus－ tomer retums＇so they may need slight attention．BT approved．£6 00 tomer retums＇so they may need slight atte
12 VOLT BRUSHLESS FAN $41 / 2^{\prime \prime}$ squa
boat，car，caravan etc $£ 800$ each ref 8 P 26 ．
acorn data recorder ALF503．Made for BBC computer but suitable
for others．Includes mains adapter，leads and book E1500 ref 5P43
VIDEO TAPES．Three hour superior quality tapes made under icence from the famous JVC company．Pack of 10 tapes $£ 2000$ ref OP20
ELECTRONIC SPACESHIP．Sound and im
reverses when it hits anything Kit with complete reverses when it hits anything．Kit with complete
assembly instructions $£ 10.00$ ref 10 P 81 ．

PHUPS LASER 2MW HELIUM
LASER TUBE BRAND NEW FULL SPEC

LASER TUBE BRAND NEW FULL SPEC
E40．00 REF 40P10．MAINS POWER SUPP
40．00 REF 40P10．MAINS POWER SUPPLY KIT E20．00 REF 20P33 READY BUILT AND TESTED LASER IN ONE CASE 875.00 REF 75P4．

SWITCHED MODE POWER SUPPLY（Boshert）+5 at $15 A,+12$ at $3 A_{1}-12$ at $2 A_{1}+24$ at $2 A^{2} 20$ or 110 v input Brand new $£ 20.00$ ref
SOLDER 22SWG resin cored solder on a $1 / 2 \mathrm{~kg}$ reel Top quality． E400 a reel ref 4P70
600 WATT HEATERS．Ideal for air or liquid，will not corrode，lasts or years．coiltype construction 3＂x2＂mounted on a 4＂dia metal plate or easy fixing．£3．00 ea ref $3 P 78$ or 4 for $£ 10.00$ ref 10P76．
TIME AND TEMPERATURE MODULE A clock，digital ther－ mometer（Celcius and Farenheit（ $0-160 \mathrm{deg}$ F）programmable too hot and too cold alarms Runs for at least a year on one AA battery E9．00 nef 9P5．
Aemote temperature probe for above unit $£ 3.00$ re1 3P60 GEARBOX KITS．Ideal for models etc．Contsins 18 gears $\langle 2$ of ach size） $4 \times 50 \mathrm{~mm}$ axles and a powerfur $9-12 \mathrm{v}$ motor．Al he gear atc are push fit．$£ \Im .00$ for complete kit ref 3 F93．
ELECTRONIC TICKET MACHNES These units contain a magnetic card reader，two matrix printers，motors，sensors and oads of electronic components etc．（ $12^{\prime \prime} \times 12^{1 " \times} \times 7^{7}$ ）Good value al 1200 ref 12P28．
JOYSTICKS．Brand new with 2 fire buttons and suction feet these units can be modified for most computers by changing the connector atc．Price is 2 for $£ 500$ ref SP174
QUALTY PANEL METERS．50uA movement with 3 differen scales that can be brought into view with a lever！ $\mathbf{y} 300$ each rel
CAR IONIZER KIT．Improve the air in your car！clears smoke and helps to reduce fatigue Case required．$£ 12.00$ ref 12 P 8
METAL DETECTOR．Fun light weight device for bur－
E10．00 ref 10P101．
GV 10AH LEAD ACID sealed battery by yuasha ex
equipment but in excellent condition now only 2 for £10 00 ref 10p95．
12 TO 220 V INVERTER KIT．As supplied it will 8 handle up to about $15 w$ at 220 v but with a larger transtormer it will handle 100 watts．Basic kit $£ 1200$ ref 12P17．Larger transformer £1200 ref 12P41．Basic kit E12 00 ref 12P17．Larger tansiomer VERO EASI WIRE PROTOTYPING SYSTEM Ideal for design－ ing projects on etc．Complete with tools，wire and reusable board IICROWAVE TURNT
ICROWAVE TURNTABLE MOTORS．Complete with weight sensing electronics that would have varied the cooking time．Ideal for
window displays etc．$£ 500$ ref SP165 TC SWITCHED MODE POWER S
TC SWICH 220 v or 110 v inpur giving $5 v$ at $2 A_{1}+24 v$ at $025 A_{1}+12 v a t 0$ ．15A and +90 v at $04 A E 12.00$ fi2P27
CAMERA FLASH UNITS Require a $3 v$ DC supply to flash．$£ 200$ aach ref 2 P38 or 6 for $£ 1000$ ref 10P101（ideal multi－flash photog TELEP
ELEPHONE AUTODIALLERS．Theseunits，when triggered will utomatically dial any telephone number Originally made for alarm panels．日T approved． $\mathbf{\Sigma 1 2 0 0}$ ref 12P23（please state telephone no eq＇d）
25 WATT STEREO AMPLFIER ic STK043．With the addition of handtul of components you can build a 25 watt amplifier $£ 4.00$ ret P69（Circuit dia included）
MINATURE DOT MATRIX PRINTER assembly 24 column 5 v （similar to RS type）£1000 each ref 10P9
UNEAR POWER SUPPLY．Brand new 220 v input +5 at $3 \mathrm{~A}_{,}+12$ at 1A， $\mathbf{1 2}$ at 1A．Short circuit protected E 1200 ref 12P21． MANS FANS Snail type construction．Approx 4 ＂$\times 5$＂mounted on a metal plate for easy fixing．New $£ 500$ 5P166
POWERFUL IONIZER KIT．Generates 10 times more ions than commercial units！Complete kit including case $£ 18.00$ ref 18 P 2.

> BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT DEPT ETI TELEPHONE 0273203500
> MAL ORDER TERMS：CASH PO OR CHEQU WITH ORDER PLUS E2．50 POST h3n

FAX 027323077
han

Superhet Req＇s PP3 battery $\& 1.00$ ref BD716
HIGH RESOLUTION MONITOR． 9 ＂black and white Philtips tube in chassis made for OPD computer but may be suitable for others C ，
SURFACE MOU
UPCB less mount KIT．Makes a high gain snooping amphifier o SURFACEMOUNT SOLDER
project E1200 ref 12P18
CB CONVERTORS．Converts a car radio into an AMCB receive
Cased with circuit diagram $£ 4,00$ ref 4 P48
FLOPPY DISCS．Pack of $1531 / 2^{\prime \prime}$ DSDD $£ 1000$ ref 10 P88 Pack of $1051 / 4^{n}$ DSOD $£ 500$ ref 5P168
SONIC CONTROLLED MOTOR One click to start，two elick to
reverse direction， 3 chick to stop！$£ 300$ each ref 3 P137
FRESNEL MAGNFYING LENS $83 \times 52 \mathrm{~mm}$ £1．00 ref BD827．
cd display． 41,2 digits suipplied with connection data $£ 300$ ref $3 P 7$
or 5 for $£ 1000$ ref 10P78
TRANSMITTER AND RECEIVER These units were designed
for nurse call systems and transmit any one of 16 different codes
The transmitier is cased and designed to hang round the neck
£1200 a pair ref 12 P 26
ALARM TRANS：
ALARM TRANSMATTERS．No data avaliable but nicely made complex transmithers $2 v$ operation，$£ 400$ each ret 4P8
100 M REEL OF WHTE BELL WRE figure 8 pattem ideal for intercoms，door bels etc $£ 3$ S a reel ref 3 P107
信
shed etc as it delects movernemt and turns a light on for a presettime
（light included）．Could be used as a sensor in an alarm system 14.00 each ref 14PB．

CLAP UGHT．This device tums on a lamp at a finger＇snap＇etc E400 each ref $4 P 82$
ELECTRONIC DIPSTICK KIT．Contains all you need to build a
electronic device to give a 10 level liquid indicator $£ 500$（ex case） UNIVERSAL BATTERY CHARGER．Takes AA＇s，C＇s，D＇s and P3 nicads holds up to 5 batteres at once Now and cased，main perated $£ 600$ ref 6 P36
ONE THOUSAND CABLE TES！ $75 \mathrm{~mm} \times 24 \mathrm{~mm}$ white nylor cable tes only $E 500$ rel SP181
Hl－FI SPEAKER．Full range 131 mm diameter 8 ohm 60 watt $63-20$ khz excellent reprduction．$£ 1200$ ref 12 P 33

ASTECSWITCHED MODE POWER SUPPLY． $80 \mathrm{~mm} \times 165 \mathrm{~mm}$ （PCB size）gives +5 at $3.75 A_{1}+12$ at $1.5 A_{1}-12$ at 0.4 A Brand new £1200 rof 12 P39

VENTILATED CASE FOR ABOVE PSU with IEC filtered socket and power switch $£ 500$ ref 5P190
IN CAR POWER SUPPLY．Plugs into cigar socket and gives
$3,4,5,6,7,5,9$ and 12 v outputs at 800 mA ．Complete with universal spider plug $£ 500$ ref 5P167．
CUSTOMER RETURNED switched mode power supplies．Mixed type，good for spares or repair $£ 2.00$ each ret 2P292
DRILL OPERATED PUMP．Fits any drill and is self priming E3 00 ef 3P140
PERSONAL ATTACK ALARM．Complete with built in torch and vanity mirror Pocket sized req＇s 3 AA batteries $£ 300$ raf 3P135 POWERFUL SOLAR CELL 1 AMP ． 45 VOLTI only $£ 500$ re SP192（other sizes avaliable in catalogue）
SOLAR PROJECT KIT．Consists of a solarcell，special DC motor
plastic fan and turntables etc plus a 20 page book on solar energy Pice is 58.00 ref $8 P 5$
RESISTOR PACK． 10×50 values（ 500 resistors）all $1 / 4$ watt 2% metal film，$£ 500$ ref 5P170
CAPACITOR PACK 1.100 assorted non elactrolytic capacitor
£200 ref 2P286
CAPACITOR PACK 2． 40 assorted electrolytic capacitors $£ 200$ ref 2P287

UUICK CUPPA？ 12 v immersion heater with lead and cigar lighter lug E300 ref 3Pg2
LED PACK． 50 red leds， 50 green leds and 50 yellow leds all 5 mm E800 ref 8P52

12 ＂HIGH RESOLUTION MONITOR．AMBER SCREEN BEAUTIFULLY CASED NEEDS 12V AT1A TTLINPUT（SEP SYNCS）．£22．00 REF 22P2．

RADIO CONTROLLED CAR．Sigle channel R／c buggy with for－ ward reverse and turn controls，off road tyres and suspension 1200 ref 12P40
FERRARI TESTAROSSA．A tue 2 channel radio controiled car with forward，reverse， 2 gears plus turbo Working headlights 2200 ref 22P6
SUPER FAST NICAD CHARGER．Charges 4 AA nicad＇s in less an 2 hours！Plugs into standard 13A socket Complete with 4 AA cad batiores $£ 1600$ ref 16 Ps
ULTRASONIC WIRELESS ALARM SYSTEM．Two units，one sensor which plugs into a 13A socket in the area you wish to protect The other，a central alarm unit plugs into any other socket elsewere in the building．When the sensor is triggered（by body movement etc）the alarm sounds Adjustable sensitivity Price per pair $£ 20.00$ ref 20 P 34 Additional sensors（max 5 per alarm unit） 11.00 ref 11P6

TOP OUALTY MICROPHONE．Unidirectional electret con－ denser mic 600 ohm sensitivity $16-18 \mathrm{khz}$ bull in chime complete and mic clip $£ 1200$ ret 12 P 42 WASHING MACHINE PUMP．Mains operated new pump Not self priming $£ 500$ ref 5P18
BM PRINTER LEAD．（D25 to centronics plug） 2 metre parallel 5500 ref 5 P186
OUICK FIX MAINS CONNECTOR．Ideal for the fast connection of mains equipment．Neon indicator and colour coded connectors 7.00 re1 7P18

COPPER CLAD STRIP BOARD． $17^{7 \prime} \times 4$＂of 1 ＂pitch＂vero＂board STRIP sheet ref 4P62 or 2 sheets for $£ 7.00$ ref 7P22
TRIP BOARD CUTTING TOOL，$£ 200$ ref 2P352
$31 /$ 2＇$^{\prime \prime}$ disc drive 720 K capacity made by NEC $£ 6000$ ref 60P2
V LOUDSPEAKERS． 5 watt magnetically screened 4 ohm $55 \times$ 125 mm £3 00 a pair ref $3 P 109$
VV LOUDSPEAKERS． 3 watt 8 ohm magnetically screened $70 \times$ SOmm $£ 300$ a pair ref 3P108
OROIDAL TRANSFORMER．24v5A encapsulated 4 ＂dia $£ 5.00$ ef 5P34

$$
\begin{aligned}
& \text { NOTE: } \\
& \text { IC1 }=\text { CD40106 } \\
& \text { IC2 }=\text { CD4078 } \\
& \text { D1-5 }=\text { 1N914 }
\end{aligned}
$$

Fig. 1 Circuit diagram of Transmitter

Before you skip over this project summing it up hastily as just another alarm project just lend me your ears for the length of the introduction. This system differs from other mainstream varieties by two virtues. Firstly the sensors detect the movement of specific treasured pieces of equipment to another
shown in Figure 3. The first of the sensors uses the principal that a wire carrying a mains supply will act as an aerial and so transmit a certain amount of 50 Hz signal. To pick this signal up a coil made of a series of turns of a fine copper wire wound around the mains lead in question is sufficient. The returned signal is the familiar 50 Hz mains hum that audio buffs spend hours

?

Edward Barrow shows you how to construct this simple but effective alarm.

house (ie burglary). The sensors are small and unobtrusive. Secondly there is no physical link between these sensors and the actual bit that makes all the noise. So the law breaker cannot turn off the alarm by putting his foot through the sensor or transmitting circuit after the alarm is triggered. Also the siren can be placed well out of harms way at another end of the room thus preventing your alarm unit meeting a similar fate with the other foot of the intruder.

Even the transmitting device is small in size and so can be powered from a single PP3 battery. Also because of the detachable nature of the sensor the transmitter can be effectively hidden out of view. Even if the burglar finds the transmitter he will usually take one of two actions besides resorting to physical violence. Firstly he might cut the sensor wires, this action would trigger the alarm. Or secondly he might look to disable the transmitter by turning off the power which needs lots of time as there is no power switch. Two types of sensors are catered for within a single transmitter board. The first detects if a particular piece of equipment unplugged from the mains or if the power cord is cut, this is particlarly good for midi hifis. The second detects if a particular piece of equipment is physically moved but it is not actually physically in contact with it. This is more useful for TVs and videos.

Transmitter theory

In this section it is best to treat each of the sensors separately and also the transmitter and receiver sections respectively. In trying to follow the circuit's operation it is best to glance at the schematic diagram
trying to minimise, here it is sufficient to drive a CMOS gate. The output of this gate will now be a 50 Hz square wave. If the mains voltage is switched off in the mains lead, then this signal received by the gate will disappear and so give us warning of any tampering.

The second sensor is quite simple in concept and relies on a magnet-reedswitch combination to sense the displacement of your precious video. A small magnet, placed on the bottom of your video provides the required field to close a pair of reed contacts mounted inconspicuously close by. If an intruder decides to forcefully evict your video then the partnership described above breaks down and the change in state of the reed switch relays the information to the transmitter circuit.

These sensors are linked to the main alarm by two ultrasonic transducers. These are analogous to a speaker and a microphone but they operate outside the audible part of the spectrum, around about 40 kHz . To generate signals in this circuit we used

Fig. 2 Circuit diagram of Receiver and power supply
inverting schmitt triggers. These devices act as normal CMOS inverter gates but they have one major difference, the input levels required to switch the output are different when the input is rising. Here it is about 5.8 volts and different again when falling, about 4.5 volts. It is this hysteresis that allows them to be used as oscillators. All that is needed is some feedback provided by a resistor and some delay provided by a capacitor. Its operation is shown in Figure 4. The frequency of the output can be easily derived and is given by the equation; $f_{\text {out }}=2 / R C$.

There is one problem in using just a pure tone to trigger the main alarm, that is other spurious sources might give similar tones and so trigger the alarm. To reduce the possibility of this occuring, the output tone is modulated with a secondary tone of about 100 Hz (see Figure 5). It is the presence of this secondary tone that is used to trigger the alarm. The transmitter board was designed to draw small currents so it could be driven from a single PP3 volt battery. This would last about five months. One solution to the problem of flat batteries is to use a mains driven power source, eg a small one used for Walkmans and portable stereos, and have a battery as a backup if this is unplugged. Two simple modifications are given in Figure 8

Receiver

Moving over to the receiver part of the project, the almost non-existent signal is amplified and then
rectified to remove the 40 kHz . This operation is tailored to leave the 100 Hz secondary tone intact. Before any further amplification, the signal is decoupled to remove any DC elements and then it is rectified to give a usable DC signal. This DC signal needs to be changed to a binary one as an alarm is a binary device, on or off. The natural choice for the job is a comparator but this needs some form of memory to prevent the alarm being switched off by the burglar putting his foot through the transmitter or to stop a signal being transmitted, thus stopping the alarm. A D-type flip/flop with its data input held high and its clock input connected to the comparator stays in the positive latched state once triggered and can only be reset by using the clear direct pin. A simple transistor switch buffers the output of the. flip/flop and in turn energises the coil of a relay. A simplified timing diagram shows the theoretical stages to produce this binary decision (Figure 6).

The particulars of the type and wiring of the sounder has been left to your ingenuity as only you know your particular needs. An on board power supply has been included to provide the circuit with the $+12 \mathrm{~V}-0-12 \mathrm{~V}$ regulated DC supply needed and only needs a 12 V twin secondary winding transformer to complete it.

Three of each type of sensor is catered for on each transmitter, so to get a single output from all six of them they need to be gated. Here we use an 8 input NOR gate so if one of the sensors is triggered then its

output goes low. The chain of events that follows starts with a schmitt trigger configured as an oscillator with an output frequency of 100 Hz . A diode is used to switch this oscillator depending on the output of the NOR gate, low is on, and high is off. This operation is quite simple if the output of the NOR gate is high, the diode is forward biased and so conducts, holding the oscillator's input high. This stops any oscillation. When the NOR's output is low, the diode is reverse biased and leaves the oscillator to do its oscillating. The net link in the chain uses a similar technique to modulate the 40 kHz carrier with the 100 Hz tone. A diode is used to switch on and off the carrier's oscillator, which is again a simple schmitt trigger oscillator.

HOW IT WORKS

A suitable aerial can be made out of fine enamelled wire of about 20 turns around the mains lead in question. A small load resistor is required to make the difference sizeable between mains flowing or not. A value of 10 M is about right. The high impedance nature of CMOS gates means that it this resistor is left out the gate will still pick up stray mains signals and so think life is hunky dory when it is not as mains is not flowing in the lead. The outout of this gate should be a clean 50 Hz square wave and after rectification and further buffering this provides the necessary digital signal to go to the next stage.

The operation of the reedswitch type sensor needs little explaining. When the magnet and the switch are in close contact then the switch contacts close making a circuit. No frills are necessary to convert this to a digital signal, just a pull up resistor to $+V$ to tie the input high if the circuit is broken. Mounting the switch and practical operation is dealt with in the 'In Use' section.

Fig. 4 Oscillator waveforms

Assuming there is some 40 kHz signal modulated with a 100 Hz signal in the air, then this is picked up by the receiver. Two common emitter amplifiers in series provide enough signal gain. A diode-capacitor combination provide the first rectification. The load resistor R17 must be carefully chosen so the low pass filter action removes the 40 kHz carrier but leaves the 100 Hz signal intact. In this case the low pass frequency chosen is about 400 Hz . Further amplification by IC4a is configured to give a high pass action with maximum gain of 50 at 100 Hz , and brings his remnant signal to well above noise levels. In order to reduce the probability of accidental triggering, a bandpass filter is used to remove any stray tones and is set to a resonant frequency of 100 Hz .

Yet another rectification this time an active one with a little gain finally gives a DC signal which has sufficient discrimination between back ground signals and the one produced by the transmitter to leave the conditioning field. A comparator extracts this informaton from the output signal giving a yes or no answer to the 'Are you being burgled' question. Once this comparator has said yes, the D-type flip/flop stores the information and can only be reset by closing the reset switch.

Fig. 5 Pulsed 40 kHz waveform
To make this unit have independent capability, a relay has been built in which can handle sufficient current to drive an extremely loud air horn. The output of the flip/flop has not been used to switch the relay coil directly as it would sink too much current. Instead a transistor switch does the dirty work providing the necessary current gain. The reverse biased diode is there for a reason, it stops your transistor from being destroyed. When the transistor switches off the relay coil this self same coil tries to keep the current flowing through it by using its collapsing magnetic field to create very high reverse voltage across the coil. This leads to semiconductor breakdown and hence the reverse diode is there to conduct this charge.

Testing

As always, firstly check power is being received by the IC sockets before committing them to their sockets. This is the case for both boards. The reader will need access to an oscilloscope as testing the 40 kHz oscillator as it can not be done by listening tests with headphones for obvious reasons. If you are prepared to be trusting about the 40 kHz oscillator or rely on an AC meter, then the rest of this project can be tested by audio means and with the aid of a meter. In the case of the transmitter board, we get the circuit in oscillating mode by leaving all the sensors unconnected. Now the first oscillater IC1f, should be giving a output square wave of 100 Hz . This should be modulating the second oscillator ICle, which has

Fig. 6 Timing diagrams

Fig. 7 Transmitter in position with electrical appliance
an output frequency of 40 kHz . More is said about checking the frequency of this in the 'Setting Up' section.

To test the reciever, the transmitter board should be left transmitting. It is best not to point the transducers together as this is an unrealistic situation. So on the test bench, point the two transducers directly away from each other. The collector of Q 2 , if viewed on an oscilloscope on high gain, should be some periodic patches of green fuzz (the modulated 40 kHz signal), and a large DC offset. On the other side of D6, most of the green fuzz should have gone leaving the periodic waveform. The output of IC3a should show the amplified form of the input. There is no cause to panic if your periodic wave is not in a recognisable format as the signal sent out by the transmitter.

The output of the bandpass filter (IC3d), should consist of a similar waveform and after rectification by D7 this should settle to an almost DC signal. Again do not be alarmed (no pun intended) if it is not a stable DC signal. Check the comparator is working by adjusting RV3 across its range so that its output is forced to switch. This also tests the D type flip/flop as on the positive edge of this transition the output (0) should change to the high state and so energise the relay. This is reset. by the switch SW2. One problem which I encountered when building the prototype was with the orientation of the diodes, so be warned!

In Use

As with other alarms, the over-riding concern is inconspicuousness The greatest thought must be given to the positioning of the sensors and transmitter. The method I used for concealing the reed switches was to drill a recess in which they were mounted flush to the wood face of the cabinet. The connecting wires were run similarly through the wood base to the transmitter positioned under the base of the cabinet (see Figure 7).

If fine copper wire is used to pick up a mains signal then the coil and link wire can be easily concealed. It is best to put the sensor coil high up the mains cable so that if the burglar cuts the mains cable in question and lives, then you are certain of the alarm working. The connecting wires were terminated into a block. This means if that particular sensor input was not being used then it could be easily shorted out with a link wire. Note this must be done if an input is not being used so as to tie the gate to an off state.

The receiver needs access to the mains to drive its power supply but its positioning is not to crucial as it will be well away from the scene of the crime. It is important to have both ultrasonic transducers facing each other and in large rooms with not to many objects blocking its line of vision. There is a limit to the range of the transducers so don' try the impossible like separating the two with bricks and mortar or placing the receiver 4 miles down the road. Try many different positions with the transmitter on and look for maximum signal strength in the same manner as you did when adjusting the 40 kHz oscillator.

The choice of switches for the receiver has been left up to your discretion. The more safety conscious of you might want to use key switches as power and
reset switches so only you have the power to switch off the alarm. In my prototype an ordinary toggle switch and a push switch was used as the power and reset switch respectively. If the alarm is going to be a permanent fixture then it might be an idea to hard wire the mains to it. Please note that the unit was not designed to cope with mains failures. This causes two effects. Firstly, it triggers the transmitting circuit owing to a lack of mains voltage in the leads being monitored. Secondly the receiver will not function as it is mains powered. This can be overcome by using a battery back-up but the problem remains that you will be woken up at the whim of the electricity boards. But rationally speaking, it is rare that you will be burgled at the same time as a mains failure takes place.

Construction

The logical approach applies here as with all circuits. IC sockets were used on the proto-type and are as always recommended. Take the usual precautions when handling the three CMOS chips. Solder the link wires and small components like resistors and diodes first. Secondly the IC sockets and presets and finally the regulators and capacitors.

The size of the transmitter is important so try to use the smallest box that it would fit in. Remember that the ultrasonic transducers both need free access to open air, so help their cause by either drilling a series of grill holes or one single large one and mounting the transducer firmly next to it.

Fig. 8 Power supply options
When selecting a sounder, bare in mind that if it requires a modest amount of current, it may be driven from the unregulated $D C$ power supply of the receiver board.

Setting Up

Before connecting up the sensors to the transmitter board the presets need to be adjusted. Firstly arrange for a similar set-up to that given in the 'Testing' section. The first task is to adjust the 100 Hz oscillator. This is done so the modulation frequency closely matches the resonant frequency of the bandpass as it is easier to change the former as opposed to the latter. If an oscilloscope is being used then adjust RV1 so the output of IC3b is maximum or if a meter is being used then adjust so the output of the rectifier built around D7 is maximum.

Secondly the 40 kHz oscillator has to be set. This is done in a similar way to the previous one. RV2 is adjusted while monitoring the output of the rectifier built around D6 with a meter. The important difference is that the object is to achieve a minimum DC voltage as D6 is reverse biased.

The only other preset that requires tweaking is RV3 this requires the transmitter and the receiver to be placed in their most likely future position, so it is best to consult the 'In Use' section first. Now adjust RV3 so the output of IC3b goes high. Turn off the
power on the transmitter and make sure the comparator returns to the negative state.

BUYLINES

The ultrasonic transducers used in this circuit have no specific code letters or numbers but similar types are widely available from mainstream distribution like Maplin. Also, purpose built reed switches and magnets for alarms encapsulated in plastic and surface mounted can be bought from Maplin. The relay was equivalent to Fujitsu FBR611 or Omron G2R117PV and was bought from Rapid Electronics. Other components should present no problems.

PARTS LIST

TRANSMITTER

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$)	
R1,2,3	10 M
R4,5,6,7,8,9	1 M
R10	680 k
R11	68 k
RV1	100 k
RV2	10 k

CAPACITORS	
C1,2,3,6	$2 u 2$ tantalum
C4	10 n polyester
C5	330 p
C7	$22 u$ elect
C8	$15 n$ polyester
C9	1n disc

SEMICONDUCTORS

IC1	CD40106
IC2	CD4078
D1,2,3,4,5	1N914

MISCELLANEOUS
PP3 Battery Connector
Ultrasonic transmitter
RECEIVER
RESISTORS

R12	100k
R13,14,21,27	12 k
R15	120 R
R16	2 k 2
R17	68 k
R18,28	220 k
R19	2 k 7

R20	150 k
R22,23	100 k
R24,25	10 k
R26,29	15 k
R30,31	20 k
R32	5 k 6
RV3	10 k

Fig. 9 Component overlay of transmitter

CAPACITORS	
C10	2 u 2 tant
C11	2 n 2 polyester
C12	10 n
C13	100n
C14,15	$15 n$
C16	10u
C17,18	100u/25V
C19,20,	22u elect
C21,22	In disc
SEMICONDUCTORS	
IC3	LM324
164	CD4013
01,2,3	BC109C
REGI	78.12
REG2	79 L12
D6,7,8,9	1 N914
BR1	W08 Bridge Rectifier
MISCELLANEOUS	
SW4	Power switch
SW5	Reset switch
Ultrasonic	
Receiver	
TR1	12-0-12V 0.5 A transformer

Fig. 10 Component Overlay of Receiver

HIGH GRADE COMPONENT PARCELS

EVERYTHING

 MUST GO!
UNIVERSAL
 EVERYTHING PARCEL

Uless otherwise stated, all the clearance parcels we offer contain brand new, top grade components. If some of the offers look too good to be true, all I can say is that the optimists will get some stunning bargains, the cynics will never know what they've missed, so everybody will be happy! All offers apply only while still, be the first to hear about any new or, better
There are contains some of μ st about any component you care to name! (couplers, LEDs of all shapes and sizes, inftants, presets), opto devices ectifers) and displays), semiconductors (transistors, diodes, ICs, battery connectors, mixed of other odds and ends (relays, VDRs, neons, components - ancuifiti tu yei a worksion packs). A stunning range of ridiculously low price.
The components are of excellent quality, in packs originally intended to sell at $£ 1$ each. To make sure you get a good variety, the 20 -pack will have at most five of any one poo any one pack, the 100 pack parce our choice.
PARCEL 18: 100 PACKS for $£ 10$ + VAT

INTEGRATED CIRCUITS

This parcel contains nothing but ICs. The mixture offers TTL and CMOS logic, interface ICs, linear, data converters, op-amps, special functions, and so on. Some of the ICs are pre-packed with data sheets, some (TTL, CMOS, op-amps) we expect you to identify for yourself, others will be covered by the free data pack provided, and the rest you'll have to identify under your own steam. If you know your ICs you'll be in for a few nice surprises.
PARCEL 3A: 100 ICs for £12! + VAT PARCEL 3B:
500 ICs for $£ 49$! + VAT

TANTALUM CAPACITORS

A nice range of tants in values up to 47 uF . Lots of useful caps, and we're not mean with the most expensive ones. A fine selection.

PARCEL 4A: 100 TANTS for $£ 6.80$ + VAT PARCEL 4B: 500 TANTS for $£ 29!+$ VAT

RELAYS

All kinds of relays: plug-in, PCB mounting, low voltage (down to 3 V coils), miniature, reeds, heavy duty contacts, signal contacts, you name it. A fantastic selection.
You'll be back for more!
PARCEL 16A:
50 RELAYS for $£ 12$ + VAT
PARCEL 16B
200 RELAYS for $£ 38$ + VAT

LEDs

All shapes, sizes and colours of LEDs. Round ones in various sizes, rectangular ones, red, green, amber and yellow ones, clear and tinted lenses, all sorts. PARCEL 7A: 100 LEDs for $£ 5.90$ + VAT PARCEL 7B: 500 LEDs for $£ 24.90$ + VAT

CAPACITORS

An exciting selection of capacitors. There are ceramics for decoupling and general use, Polystyrenes for high performance circuits, dipped and moulded polyesters in values from a few nF up to $2.2 \mu \mathrm{~F}$ (very expensive!), tants and aluminium electrolytics - just about any capacitor you'll ever need. Don't miss this one!
PARCEL 8A:
1000 CAPACITORS for $£ 6.50$ + VAT PARCEL 8B: 2500 CAPACITORS for $£ 14.90$ + VAT

UK Orders:
Please add $£ 2.50$ towards postage and packing and 15% VAT

Europe and Eire:
Please add $£ 6.00$ carriage and insurance. No VAT Outside Europe: Please add $£ 12.00$ carriage and insurance. No VAT

AIR IONISERS

By means of points raised to a very high voltage, ionisers re-structure the air you breathe, turning ordinary air molecules into potent negative ions. The effects of breathing in these ions can be quite startling. Almost everybody reports that it makes them feel good, and there is now strong evidence that it can also improve your concentration, make you more healthy and alert, make you sleep better, and even raise your IQ.

THE MISTRAL AIR D IONISER

The ultimate air ioniser. The Mistral has variable ion drive, built-in ion counter and enough power to drive five multi-point emitters with ease. Its nine main drive stages, five secondary drives and four booster stages give an immense 15 billion ions per minute output - enough to fill the largest room in a matter of seconds.

The parts set contains everything you need to build the Mistral: components, PCB, case, emitter and full instructions. If you're keen to increase the output still further, there's an optional eight-point internal emitter set to give extra ionising capability, and an almost silent piezo-electric ion fan to drive the ions away froii the emitter and into the room.

MISTRAL IONISER PARTS SET $£ 32.66$

$$
\begin{aligned}
& \text { INTERNAL EMITTER PARTS SET } \\
& \text { (optional) £3.22 } \square \\
& \text { ION FAN (optional) £11.27 }
\end{aligned}
$$

\triangle PROPHET PF3

The Prophet performs its own special miracle on the dashboard of your car. First reports are most impressive: driving becomes a positive pleasure, easier to stay alert on long motorway journeys, a child cured of travel sickness. The ion effect is not to be underestimated. Don't forget the experiments either: there's the smoke trick, trifids, the living emitter, and more. The Prophet can be used anywhere with a supply of 9 V to $12 \mathrm{~V} D \mathrm{C}$, so don't restrict it to the car alone!
PROPHET PF3 PARTS SET £21.39

THE Q-ION

Check out the ion levels around your house. The Q-lon will measure the output of any ioniser, test the air to see where the ions are concentrating, help you set up fans and position your ioniser for best effect, and generally tell you anything you want to know about ion levels in the air. The readout is in the form of a bar graph which moves up and down as the Q-lon snifts the air in different parts of the room. Readings up to 10^{10} ions per second, positive or negative.
Q-ION COMPLETE PARTS SET $£ 21.16$

IONISER EXPERIMENTS

* The Vanishing Smoke Trick

Light up a cigarette and gently puff smoke into a glass jar until the air inside is a thick, grey smog. Carefully invert the jar over the ioniser so that the emitter is inside. Within seconds the smoke will vanish! This is one of the best demonstrations of an ioniser's air cleaning action and with a large jar the effect is quite dramatic.

* Triffids

Connect a length of wire from the ioniser emitter to the soil in the pot of a houseplant. One with sharp, pointy leaves is best. Hold your hand close to the plant and the leaves will reach out to touch you! In the dark you may see a faint blue glow around the leaf tips - this works better with some plants than with others, so try several different types. The plants don't object to this treatment at all, by the way, and often seem to thrive on it.

* The Electric Handshake

Wear rubber soled shoes. Touch the ioniser emitter for a few seconds until your body is thoroughly charged up. When your hair stands on end, that's just about enough. Then give everyone you meet a jolly electric handshake. Just think, you could lose all your friends in a single evening! (A meaner trick still is to charge up a glass of water or a pint of beer. Even your family won't speak to you atter that!!

\checkmark KIRLIAN CAMERA

Bioplasmic fields, auras, or just plain corona discharge? No matter how you explain them, the effects are strange and spectacular. Can you really photograph the missing portion of a torn leat? Can you really see energy radiating from your finger tips? Most researchers would answer 'yes' to both questions.
Our Kirlian photography set contains everything you need to turn the Mistral into a Kirlian camera, your bedroom or spare room into a darkroom, and to expose, develop and print Kirlian photographs (photographs made with high voltage electricity instead of light). The set includes exposure bed, safelight bulb, developing and fixing chemicals, trays, imaging paper and full instructions. A Mistral ioniser parts set is also required.
KIRLIAN CAMERA SET $£ 19.78 \square$

ORDERING

All prices include VAT
UK orders: please add $£ 1.15$ postage and packing. Eire and overseas: please deduct VAT and add £5.00 carriage and insurance,

ACCESS
Phone 06003715 for immediate attention to your Access order.

TK

GUARD DOG KIT

One of the best burglar deterrents is a guard dog and this kit provides the barking without the bitel Can be connected to a doorbell. pressure mat or any other intruder detector and produces random threatening barks. Includes mains supply and horn speaker.
XK125
£21.95

DL8000K 8-way sequencer kit with built-in opto-isolated sound to light input. Only requires a box and control knob to complete£39.95 DL1000K 4-way chaser features bi-directional sequence and dimming 1 kW per channel ... $£ 23.95$ DLA/1 (for DL \& 1000K)
optional op-to input allowing audio beat/light response 95 DL3000K 3-channel sound to light kit, zero voltage switching automatic level control and built-in mic. 1 kW per channelE19.55 XK139 Unidirectional chaser zero voltage switching and built-in audio
input ... £12.95
POWER STROBE KIT
Produces an intense
light pulse at a
variable frequency
of 1 to 15 Hz
Includes high quality
PCB, components
connectors, 5 W s strobe tube and assembly instructions. Supply: 240 V ac. Size: $80 \times 50 \times 4$ XK124 STROBOSCOPE KIT, £17.25

PROGRAMMABLE ELECTRONIC LOCK KIT

Keys could be a thing of the past with this new high security lock. Secure doors to sheds, garages, even your home or prevent the unauthorised use of computers, burglar alarms or cars. One 4-digit sequence will operate the lock while incor rect entries will sound an alarm. The number of in-
 correct entries allowed before the alarm is triggered is selected by you. Further entries will be ignored for a time also set by you. Only the correct sequence will open the lock and switch off the alarm. The sequence may easily be changed by entering a special number and code on the supplied keyboard. Kit includes; keyboard, alarm buzzer, high quality PCB and all electronic components. Supply 5-15V DC. Will drive our Latch Mechanism (701150@ £16.50) or relay directly. XK131
$£ 19.95$

UR HOUSE

 EVERY SUNDAY MORNINGwhen you're nicely tucked up in bed? Why waste money with your old timeswitch when you could programme the CT6000 to switch your heating on and of at precise times (including different times at weekends) and even allowforyourregularoutingstowalkthe Th
he CT6000 ClockTimer Kitwhich is easyloassemble and programme is ideal lor conlrolling any electrical appliances which need to be switched on and off a set times of a daily or weekly basis. The clock is mains powered i with battory backup) and has a 24Ht LED display (so you can read it in the understairs cupboard) with days of the week and status indicator, four outpuls which can drive relays or triacs or a special kit (XK114) which fifsinside the box and contains a PCB , lerminal blocksandonerelay with 3 A⒉24VV changeover conlacts. Up to 3 extra relays can be accommodated on the XK114ifir equired.
The kit which comes compleele with box, predrilled and printed front panel, circuil board, components and full assembly instructions measures $16 \times 10 \times 5.5 \mathrm{cms}$.
CT6000K Clock/Timer Kit $£ 59.95$
Optional Parts XX114RelayKit $£ 6.90,701312$ Relay $£ 1.38,303$ 1049V Rechargeable Battery $£ 5.20$

VOICE RECORD/

PLAYBACK KIT

This simple to construct and even simpier to operate kit will record and playmany uses - seatbelt or light reminder in the car, welcome messages to visitors at home or at work, warning messages in factories and public places. In fact anywhere where a spoken message
is announced and which needs to be chanced from time to time. Also suitable tor toys - why not convert your daugher's $£ 8$ doll to an $£ 80$ taking doll!!
\qquad 1-5 secs normal spe......... $76 \times 60 \times 15 \mathrm{~mm}$ XK129
$£ 25.95$

SUPER-SENSITIVE MICROBUG

\qquad

2000
Only $45 \times 25 \times 15 \mathrm{~mm}$. including built--in mic. $88-100 \mathrm{MHz}$ (standard FM ratio). Range approx. 300 m depending on terrain. Powered by 9V PP3 (7 mA). Ideal for surveillance, baby alarm etc.

f6. 35

VERSATILE REMOTE
 CONTROL SYSTEM

 depending on the keyboard selicted tor MK18 transmitter MK12 recelver has 16 logi outputs and operates trom 12 to 24 V dc. or 20 OV
ac. via the transformer suptied The M Cl ac via the transformer supplied The MK1
requires a 9 V battery and keyboard. Great for controling lights, TVs, garege doors etc. MK12 IR Receiver. MK18 Transmitter.... MK9 4-Way Keyboard..
MK10 16-Way Keyboard. 601133 Box for transmitter

Kit contains a single chip microprocessor. PCB, displays and all electronics to produce a digfital LED readout of weight in Kgs or $\mathrm{Sts} / \mathrm{Lbs}$. A PCB link selects the scale-bathroom/two types of kitchen scales. A low cost digital ruler could also be made. ES1

TK ELECTRONICS
13 Boston Road London W7 3SJ Tel: 081-579 9794 Fax: 081-566 1916

ORDERING INFORMATION All prices INCLUDE VAT. Free P\&P on orders over $£ 60$ (UK only) otherwise add £1.15. Overseas Customers divide total order by 1.15 then add P\&P: Europe $£ 3.50$, elsewhere $£ 10.00$. Send cheque/PO/Visa/Access No. with order. Giro No. 529314002. Local Authority and educational institutions orders welcome. Mail order Mon-Fri 10am-5pm. Shop Open: TuesdayThursday $10 \mathrm{am}-5 \mathrm{pm}$. Saturday $10 a \mathrm{~m}-4 \mathrm{pm}$.

ORDERS: 081-567 8910

Tech-Tips

Electronic Watering Meter

There is a need for a small simple electronic watering meter for the visually handicapped. There are about one million people in the UK with some sight deficiency. As a large proportion of these are elderly they may also be 'hard of hearing' and have a reduced sense of touch.

A watering meter can be made to measure the dampness of the soil in a plant pot or in gardens giving audible indication of soil state. Reduction in hearing in the elderly tends to occur over 3000 Hz and below 300 Hz which would exclude a pulse system and favour a tone system sine or square wave.

I examined a commercial piece of equipment which was based on a pulse system and found the clicks were inaudible as was the output from the transducter, a piezo electric crystal.

This design overcomes these problems by using an LM386 325 mW power amplifier and 45 mm Loudspeaker. The sound generator consists of a ramp function unit which uses a resistor and the soil as the resistive part of the charging element and a $4 \mu 7$ capacitor to provide the capacitive element. A unijunction 2N4871 provides the discharge element and a transistor 2N3704 buffer completes the active components in the design in Figure 1.

The circuit was built on vero board - a good enough system for a one off although a PCB would
be more robust. The box used for the prototype was the size of a hearing aid although any Project Box would do just as well. The size of this would depend on the loudspeaker used. The lower size is governed by getting the speaker and PP9 battery in. The upper size by how convenient it is to hold in the hand. The ON/OFF switch is a microswitch in the original but a push-to-make would do just as well, as the unit should only be on when a reading is being taken.
P.D.Somerville,

West Sussex.

MICRO-PRESSURE CAR ALARM

This new type of alarm is triggered by a unique pressure sensing system. As any vehicle door is opened air is drawn out, causing a minute drop in air pressure. A sensor detects this sudden pressure change and sets of the alarm. A sophisticated arrangement of electronic filters and timers provide features to match more expensive ultra-sonic systems.
\&\% 1 Micro-pressure intruder detection.
$\star 2$ Operates on all doors and tallgate.
$\star 3$ No door switches needed.
\& 4 Automatically armed 1 minute after leaving vehicie.
\& 510 second entry delay with audlble warning.
\& 6 Sounds horn intermittently for 1 minute
$\& 7$ Easy fitting - only 3 wires to connect - no holes to drill.
i* 8 Compact design can be hidden below dashboard.
\& 9 All solid state Power MOSFET output - no relays.
\& 10 Adjustable sensitivity.
MICRO-PRESSURE ALARM £21.75 D.I.Y. PARTS KIT £15.75

M/CRO-PRESSURE TRIGGER MODULE

This module adds MICRO-PRESSURE sensing to any volt drop operated alarm simply by connecting two wires across the vehicle's 12 v supply.
MICRO-PRESSURE TRIGGER £14.90 D.I.Y. PARTS KIT £10.85

VOLT DROP CAR ALARM

This alternative alarm uses the popular voltage drop method of triggering, Based on the timers of the micro-pressure alarm it offers features 4 to 10 above but relies on the existing door switch operation for triggering.
VOLT DROP ALARM £20.55 D.I.Y. PARTS KIT £14.55

TOTAL ENERGY DISCHARGE IGNITION

Our unbeatable Extended C.D.I, system retains the contacts for easy fitting. The contacts operate at low current whilst the 12 v supply is converted to 370 V for a super power spark with improved starting, performance and economy TOTAL ENERGY DISCHARGE IGNITION £26.25 D.I.Y. PARTS KIT £20.95 All D.I.Y. PARTS KITS include clear, easy to follow instructions, quality components, P.C.B. and case. Everything needed is included, right down to components, P.C.B. and case.
solder and heatsink compound.
solder and heatsink compound.
All prices now include post, packing and VAT on U.K, orders. Same prices apply to all European countries. For delivery outside Europe please add $£ 3$. Telephone orders accepted with VISA or ACCESS payment.
Order direct (quote ref. D12) or send for more details from :-

SURVDII ANCD PRONBSSIONAL, QUADITY KITS

A range of high quality kils as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All kits come fully documented with concise assembly and setting-up details, fibreglass PCB and all components. All transmitters are fully tuneable and can be monitored on a normal VHF radio or tuned higher for greater security. Buildup service available if required

MTX Micro-miniature audio transmitter. $17 \mathrm{~mm} \times 17 \mathrm{~mm}$. 9 V operation. 1000 m range ... $£ 12.95$ VT500 Hi-power audio transmilter, 250 mW output, $20 \mathrm{~mm} \times 40 \mathrm{~mm}, 9-12 \mathrm{~V}$ operation, $2-3000 \mathrm{~m}$ range .. VXT Voice activated transmitler. Variable sensitivity. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range. £18.9
SCRX Sub-carrier scrambled audiotransmitter, Cannot be monitored without decoder fitted to radio. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range ... £21.95
SCDM Sub-carrier decoder unit for monitoring SCRX. Connects to radio earphone socket. Provides output for headphones. $32 \mathrm{~mm} \times 70 \mathrm{~mm}, 9-12 \mathrm{~V}$ operation $\mathbf{£ 2 1 . 9 5}$ HVX400 Mains powered audio transmitter. Connects directly to 240 v AC supply. $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range.
XT89 Crystal controlled audiotransmitter. High performance. 100 mW output. Supplied with xta for 108 MHz , Others available to $116 \mathrm{MHz}, 85 \mathrm{~mm} \times 28 \mathrm{~mm}$. 9 V operation. $2-3000 \mathrm{~m}$ range $£ 36.95$ OTX180 Narrow band FM crystal controlled audio transmitter. 180 MHz frequency. Requires Scanner receiver or our QRX180 kit(seeCal) $20 \mathrm{mmx} \times 77 \mathrm{~mm}$ 9V operation. 1000 m range $£ 39.95$ TKX900 Tracker/Bleeper transmitter. Transmits continuous stream of audio pulses Variable tone and rate. Powerful 200 mW output. $63 \mathrm{~mm} \times 25 \mathrm{~mm}$. 9 V operation. $2-3000 \mathrm{~m}$ range $£ 21.95$ ATR2Microsizetelephone recording interface. Connects between telephone lines (anywhere) and cassette recorder. Tape switches automatically with use of phone. All conversations recorded Powered from line. $10 \mathrm{~mm} \times 35 \mathrm{~mm}$
£12.95
TLX700 Milro miniature telephone transmitter. Connects to line (anywhere) switches on and off with phone use All conversations transmitted. $20 \mathrm{~mm} \times 20 \mathrm{~mm}$. Powered from line. 1000 m range

CD600 Professional bug detectorllocator. Variable sensitivity. Multicolour bar graph readout o signal strength with variable rate bleeper. Secondmode AUDIOCONFIRM distinguishes between localised bug transmission and normal legitimate signal such as pagers, cellular etc $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation, £49.95

UK customers please send cheques. PO's or registered cash. Please add £1.50 perorder for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draftorEurocheque and add £5.00 perorderforshipment. Credit card orders accepted on 0827 714476. Trade enquiries welcome.

Send 2×1 st class stamps for the new 1991 Catalogue.

0827714476

REMOTE CONTR

Assembling the PCB is fairly straightforward - though carefully check the orientation of the isolating transformer T2 (see Figure 17). As with the transmitter PCB, it is advisable for safety reasons to insulate the leads of capacitors C 1 and C 2 with sleeving and manufacture a plastic cover for the fuse. I again used sockets for all the IC's.

Complete the wiring of the remote switch unit as shown in Figure 23. The wiring to the plug and socket must be 240 V rated.

Setting The Links And Switches

There are 4 links, LK9-LK12, the setting of which determines the security code of the system. This code (in the range 0 to 15) is set to the SAME value for every remote switch connected to the system. Table 7A details the link settings.

The eight DIL switches SW1-SW8 are used to identify the individual remote switching units. Each unit on a system should have a unique setting, unless it is required for two remote units to respond to the same control commands. Switch settings should be in the range 0 to 99 (see table 7 B).

Remote Switch Unit Testing

First, carefully check the PCB for short circuits and bad soldering, paying particular attention to the 240 V side of the circuit. Temporarily secure the PCB in the box. Connect up the power, REMEMBER that parts of the PCB are at 240 V so great care should be taken. Push the toggle switch in the ON direction, the relay should operate and the LED light. Then flick the switch in the OFF direction. The relay should release and the LED extinguish.

To set up a remote switching unit it is necessary to connect it to the mains supply. It is VERY STRONGLY advised to temporarily mount the PCB in its box, and cover the live section of the circuit with an insulating material to prevent fingers from inadvertently touching a mains connection

Adjustment of the remote switch unit is easy. I have built into the timeswitch software, a 'Set Up' program. To access this program, proceed as follows: Connect the timeswitch control unit to the mains supply, the '(C) 1990.. message should be displayed on the LCD display. Press the 'ENTER' key, and the display will change to 'Secure code 00'. Using either of the two 'ARROW' keys, change the secure code to correspond to the settings chosen for the links LK9 to LK12 in the remote switching unit. Press the 'ENTER' key again, and the display will then change to show the time and date. At this point press both 'SYSTEM SET keys together, to enter the set up mode. 'SET UP MODE' should then be displayed.

Once the timeswitch control unit is in the set up mode press the 'ENTER' key. The display will show 'Output No? 00'. Change the output number, using either of the 'ARROW' keys, until the number displayed corresponds to settings selected by the DIL switches SW1 to SW8 in the remote switching unit. Press the 'ENTER' key to confirm this selection. The display will change to 'Select Cnt Tone'. By again using an 'ARROW' key the display can be changed to show either 'Cnt Tone', 'Cnt Code' or 'XON/OFF. Select the continuous tone (Cnt Tone) mode, and press the 'ENTER' key. The control unit will now superimpose a continuous 180 kHz carrier tone on the mains supply.

Connect up the remote switch unit to the mains nearby. Attach a digital meter or a 'scope to the junction of capacitor C3 and C4. With a plastic trimming tool, carefully adjust the core of the transformer T2 until the maximum carrier tone is detected. This will be somewhere in the region of 8 mV on a meter, or 0.5 V peak to peak on a scope.

Once you are satisfied with the adjustment of T2, press the CANCEL' key on the control unit. The display will revert to 'SET UP MODE':
Press the 'ENTER' key twice, to get the display back to 'Select Cnt Tone'
This time, however, select the continuous

3

OL TIMESWITCH

code option (Cnt Code). The control unit will now send a continuous stream of control codes to the remote switch unit. Monitor pin 17 of IC2. It should be low. If this is not the case, the setting of the DIL switches and links LK9 to LK12 may not agree with the setting input into the control unit software.

When this test proves satisfactory, cancel the test with the 'CANCEL' key. Then select the third test, transmit ON and OFF (XON/OFF) on the control unit. This time the control unit sends alternate ' ON ' and 'OFF' control signals to the remote switch unit.

The Initial Power Up.

When power is first connected to the timeswitch unit, it performs various self checks. If these checks are satisfactory the display shows a continuously scrolling copyright message. It is only at this point in the program that entry can be made to the calibrate mode (by pressing both SYSTEM SET keys together). Assuming that calibration of the system has been completed successfully as described earlier in the text, there should be no further need to enter the calibrate mode.

By careful adjustment of the variable resistor VR17, the relay can be made to operate and release at approximately 15 second intervals. This adjustment requires a bit of patience, as at least 30 seconds have to elapse between each adjustment.

This now completes the set up of the remote switch. Cancel the test on the control unit, by pressing the 'CANCEL' key. Finally leave the set up mode and return to the normal time display, again by pressing the 'CANCEL' key.

Final Assembly

Assemble the PCB and transformer in a suitable box. The plug and socket can either be mounted on the front and back of the box with small nuts and bolts, or alternatively, fitted to the ends of short trailing leads.

Setting Up The Timeswitch

Key functions.

Programming the various functions of the timeswitch is done via the six control keys. Each key has a number of different functions, depending upon the menu shown on the display module. The basic key functions are as follows:

The 'SYSTEM SET' keys. These keys are used together, to enter the system calibration or remote switch set up mode.

The 'ARROW' keys. These keys are used to step through the various options shown on the display module. When setting the time, the keys increase or decrease the displayed time, one count at a time. If a key is held pressed for more than 2 seconds the displayed time is rapidly advanced or retarded until the key is released. The 'ENTER' key is used to confirm a selection. The 'DELETE' key is used to cancel a selection.

If any key (other than the SYSTEM SET keys) is pressed when the copyright message is showing, the display will change to show current time. Initially this time is set to 00:00 Monday 1st January 1990.

It is probably a good idea at this stage to fit the standby battery. This will preserve the time, and any programs you may enter, if the power is accidentally disconnected.

Setting the Time and Date.

To set the system time and date, first press the TIME SET (DOWN ARROW) key to enter the time setting mode. The display will change to the hours and minutes, with the hours shown between two arrow syn.bols. These arrows indicate the part of the display which is being edited at the moment i.e. the hours. Press either of the ARROW keys to change the hours display to the current time. Note that holding an ARROW key pressed for more than 2 seconds will cause the display to advance rapidly.

When the correct hours is shown in the display, press the ENTER key. This will confirm the hours setting, and move the indicating arrows on the display to the minutes display. Set the minutes to the correct time, again using the ARROW keys. Press the ENTER key.

Carry on setting the DAY, DATE, MONTH and YEAR in the same way, using the ARROW keys to select the choice and the ENTER key to confirm the choice. After the year has been set, and the ENTER key pressed, the display will revert to the normal time display. Note that it is possible to set a non existent date, (30th February). The system will automatically correct this at midnight - making the next day the 1st of March.

Fig. 23 Remote Switch Unit Wiring

IC Number	+5 V PIN	OV PIN
2	8	1
3	8	1
4	14	7
5	11	29
6	28	14
7	24	12
8	20	10
9	14	7

Table 6 IC Voltage Supplies

Displaying the Seconds.

To change the display mode from the normal time and date display to hours, minutes and seconds, press the DISPLAY SECONDS (UP ARROW) key. To syncronize the seconds press both SYSTEM SET keys together. The seconds count will be zeroed to the nearest minute. To return to the normal display mode, again press the DISPLAY SECONDS (UP ARROW) key.

Programming a Switching Operation.

There are two different types of switching program to choose from. There are fixed programs, which will turn an output ON and then OFF at a fixed time. There is also the option of random programming, where you define a period of time and the system automatically switches the chosen output ON and OFF a number of times at random intervals, between the times you have selected.

Programming Fixed Programs.

From the normal display time mode, press the PROGRAM SET (CANCEL) key to enter the program mode. The display will show 'Output number?' Select the number of the remote switching unit that you wish to control using the ARROW keys, in the same way as before. Again use the ENTER key to confirm your choice. Next, set the 'switch on' time, and the 'switch off time, confirming your choice with the ENTER key. Then, again using the ARROW keys, select the day(s) when switching is to take place. The choice is between any single day, everyday, weekdays (i.e. Monday to Friday) or weekend (i.e. Saturday and Sunday). Again confirm your choice with the ENTER key.

The display will then show either 'fixed period' or 'Random period': Select 'fixed period 'using the ARROW keys, and confirm the choice with the ENTER key. Finally, the display will show either once only' or 'repeat. If you require the switching to take place every week at the same time, select 'repeat: Selecting once only' will cause the program to cancel itself automatically after execution. The final press of
the ENTER key will return the display to the normal time display mode. A switching operation has now been programmed.

Randon Switching Operations.

Setting a random switching program is very similar to setting a fixed program. The 'ON from', 'UNTIL' times are set to define the period in which you wish random switching to take place. The maximum period you can set is 23 hours 59 minutes i.e. all day. When you reach the selection point 'Fixed Period' or 'Random Period', select 'Random Period'. Confirm this choice, and the display will then show 'Number of periods?' This is the number of complete ON/OFF periods to be switched within the times you have specified earlier. Up to 15 periods can be generated from one program.

When setting the start and stop times for a random program you must allow a minimum of 10 minutes for each random period. (If the number of random periods is set to 5 , the time interval between start and stop times must be a minimum of 5×10 minutes - 50 minutes). If the time interval is set to less than this, an error will occur when the program execution is attempted. This program will then be automatically deleted from the memory.

Displaying The Switching Programs

To display the switching programs, press the DISPLAY PROGRAM (ENTER) key to enter the display program mode. The display will then show 'Show All Data?' The ARROW keys can be used to change this option. The three choices are:

- Show All Date. This will display all the switching programs
- Show One Day. This will display only programs for one selected day.
- Show One Output. This will display programs for one selected output number.

Select the desired option, and press the enter key. Choose the specified day or output if required, again using the ARROW keys. Confirm with the ENTER key.

The first program in the memory is now found and displayed. using the ARROW keys, the display can be scrolled left or right to read the various parameters of the program. To select the next program, press the ENTER key. Once the last program has been displayed, the display will revert to the normal display.

Delete A Program

To delete a program, first display the program to be deleted, as explained above. Press the CANCEL key, the display will then show 'ENT to Delete'. Press the ENTER key to delete the program, or press the CANCEL key again to revert to the display a program mode.

System Errors

If the software program detects an error whilst executing a program, the display will show an error message instead of the normal time display. The timeswitch will still continue to function normally, however the program which caused the error will either be ignored or deleted automatically.

There are four error displays. The first two. 'Transmit Queue Full' and 'Job Queue Full', occur when more than 16 switching operations are requested to be performed in any one minute. The first 16 operations are processed normally, any remainder are ignored.

The third error is 'Memory Full'. This can occur either when you attempt to insert more than 255 programs in the system, or during a random program operation, when the total number of programs stored would exceed 255.

The final error display, "Short Period, occurs during random program operation. when the time interval between the start and stop times is insufficient to allow the specified number of switching periods to be executed. (i.e. 10 minutes must be allowed for each random period). If this error occurs, the program which caused the error is automatically deleted from the memory.

Once an error has occurred, the display will continue to show the error until the ENTER key is pressed. The display will then revert to the normal time display mode.

Power Failure

If mains power failure occurs, the timeswitch is no longer able to control the remote switching units. However by using the standby battery the current time and all the stored programs are preserved in the memory. The current states of all the remote switches at the instant of power failure is also stored in the memory. This record is updated whenever a switching operation should have been performed.

Once the power is restored, the control unit waits for 30 seconds, then checks through its memory for any remote switch unit which should be in the ON state. It then sends out a series of control signals, to set each remote switch to its correct state. This operation can take up to 50 seconds, after which the timeswitch resumes normal operation.

Alternative System Configuration

It is possible to replace the mains transmission link with either a directly wired connection or another trans mission system, such as ultrasonic or radio. Figure 24 shows how this may be done.

The unused outputs from IC8 may be wired as shown in Figure 25. This will allow direct control of up to 7 switching relays. The operation of these relays is controlled by outputs 0 to 6 in the software program. (See table 8.)

Reference

The following reference material has been used in the preparation of this project:
Date sheets - EPSOM EA-D LCD displays. EPSOM (UK) Ltd. Tel: 019028892
Data sheets - UM3750 encoder/decoder. Maplin Electronics. Tel: 0702554161.

Z80 - Machine Language Programming Made Simple For Programming. your Sinclair. Melbourne House Publishers.
A free copy of the Hex dump program is available for constructors by sending an SAE to ETI.

PARTS LIST

REMOTE SW RESISTORS R1,10 R2,3,7 R4,6 R5 R8,9,11,12 R13,14,15 R16 R17 R18 RV17	PCB N 5\% 100k 10k 47k 15k 4 k 7 1k 20k 56k 22k 100k	Fig. 25 Directly wired output		
CAPACITORS$\mathrm{C} 1,2$	220n 250V AC working (2 off) (Maplin JR350)		Output Number	$\begin{gathered} \text { IC8 } \\ \text { Output PIN } \end{gathered}$
C3	47n p	ester	0	16
C4,8,10,11		ceramic	1	15
C5	10 ndi	ceramic	2	12 9
C6	220μ	\checkmark elect	4	6
C7	Indis	eramic	5	5
C9	10y/2	elect	6	2

SEMICONDUCTORS

$\begin{array}{ll}\text { D1 } & \text { 1N914 } \\ \text { D2,3,4,5,6 } & \text { 1N4001 }\end{array}$
01,2,3,4,5,6 BC108
IC1 $\quad 78 L 05100 \mathrm{~mA}$ reguiator +5 V
IC2 UM3750 EncoderiDecoder IMaplin UK77.J IC3 74LS74 dual D type flip flop
LED 5 mmRed
Table 8 IC8 Outputs

> This month Mike Barwise looks at displaying digital signals

TESTING

Fig. 1 Analogue and digital signal comparison.

When we looked at voltage measurement of analogue signals, we saw that there were two types of values to be measured: constant (DC measurements) and timevarying (AC) signals, and that different approaches and equipment are used for each. Let us look at these in turn in the context of digital signals, to see how the techniques and equipment compare.

Constant analogue signals can exhibit any value between a defined maximum and a defined minimum: the range of intermediate absolute values is infinite. A meter with high resolution is thus required, typically with a resolution of at least 1%. Constant digital signals exhibit two (or at most, three) ranges of values where the range is the important factor and the absolute value within that range is relatively unimportant. This is shown in Figure 1. The significant choices in digital testing are: HIGH, LOW, UNDEFINED. A beneficial consequence of this is that voltage readings may be made with much lower resolution in digital systems than in analogue. Static (DC) logic

Fig. 2 Three state logic indicator (TTL).
signals can be monitored using equipment as crude as a little lamp: on = high, off = low. A slightly more sophisticated version is given in Figure 2. This circuit provides a full logic indication for TTL: valid HIGH, valid LOW and UNDEFINED (or TRI-STATE OFF). It actually consists of two indicators. The first uses an NPN transistor in common collector mode (collector to $\mathrm{V}+$) as a switch providing current to an LED. As the emitter is offset from GND by the combined V_{f} of the LED and the rectifier diode (total about 2.4 V), the NPN transistor will only conduct significantly when its base is raised to about +3 V with respect to GND $\left(V_{\text {fLED }}+V_{\text {fDIODE }}+V_{\text {beNPN }}\right)$, which indicates a thoroughly acceptable TTL logic HIGH. The second indicator consists of a PNP transistor, also in common collector mode (collector to GND). This transistor conducts when its base is more NEGATIVE when $\mathrm{V}+$

TESTING

by the same amount (about 3V). The logic LOW threshold indicated will thus depend on the supply voltage, and for a valid TTL LOW, V+ should be in the region of 3.5 V to accomplish a logic LOW indication of about 0.5 V . This is accomplished by a suitable supply voltage regulator, which should be an adjustable one (set on test), as $V_{\text {fLED }}$ varies quite a lot with batch and LED current. There is of course, a range of voltages between +0.5 V and +3 V (undefined logic state for TTL) where neither transistor is in significant conduction, and this is indicated by both LEDs off. As both transistors are never on at the same time, they can share a common input resistor.

This is fine for static logic levels, but most realworld, interesting signals are time-varying, both in analogue and in digital systems. In the analogue context, the oscilloscope is used to display a waveform (graph of voltage vs. time) and the display is locked on the screen by triggering the 'scope trace at a critical voltage threshold which is guaranteed to occur only occasionally in the waveform.

Fig. 3 Typical sequential logic system.
This approach cannot possibly work for us when displaying digital signals, as ALL LEGAL SIGNALS SWING BETWEEN THE SAME VOLTAGES. There will thus be no unique voltage level in the signal which can be used as a trigger threshold in the familiar (analogue) sense. To lock a digital signal on the 'scope screen, we have to find some other approach. The most obvious theoretical starting point is that in dynamic digital systems, events tend to happen in sequential cascade: a signal somewhere near the start of the circuit initiates another event, which initiates the next, and so on through the system (Figure 3). If we could find the first event and use it as the 'scope trigger, we could lock onto an image of what follows. This is perfectly true, but (as usual) in the real world, things are not always quite so simple.

A basic assumption in the majority of sequential logic systems is that the fastest signals are at the input end. Clocked elements generally perform as divider stages which reduce signal rate, so outputs tend to be slower than inputs. In a repetitive system such as a simple counter chip (counts 0 to 15 and back to 0) it is therefore possible to trigger the 'scope from the slowest signal in the system, e.g. the ripple carry or overflow output of the chip, and display the input or other signals which occur on the following system cycle.

Unfortunately, this approach breaks down when the system under test has a random or very long sequence, which is a very common situation, particularly when microprocessor systems are being investigated. Under these conditions, the event you wish to observe may be so long after the available trigger signal (derived from a single output of the circuit) that it does not occur during the 'scope sweep time. We have to look for a technique which will allow for this. The basic approach is to trigger the system

Fig. 4 Various logic combinations.
from a set of simultaneous inputs which only coincide occasionally.

The ordinary analogue 'scope is not suitable for this, because, whereas the analogue measurement system triggers on single vertical axis events (voltages) which are as near as possible in time to the events of interest, the digital requirement is for triggers derived from multiple co-incident horizontal axis events (pulse positions). This requires a lot more signal inputs and an entirely different set of control circuits from those in the conventional scope, and is why the wealthy among us spend lots of loot on Logic Analysers. What would be nice, is some kind of add-on to the ordinary 'scope, which would turn it into a logic analyser at lower cost. Let's investigate how to do this.

The logic analyser takes advantage of the low resolution required of the vertical (voltage) information in digital systems, by storing the information in digital memory as single set or unset bits. This has two implications: firstly, one-off events and nonrepetitive signals (which are much more common in digital systems than in analogue) can be trapped and stored permanently for display whenever you like, and secondly, very long sequences can be trapped and displayed screen-by-screen at a large scale which might otherwise be beyond the resolution of the 'scope screen.

The simplicity of the logic analyser input channel (a fast digital buffer) and the cheapness of wide digital memory allow a very large number of channels to be incorporated in one instrument. 32 or 64 channels is quite common now. I'm sure that an analogue 'scope with more than two channels would come in useful, but the complexity of the channel electronics has always effectively prohibited it, though there are a few very expensive analogue 'scopes with three or four channeis

The large number of input channels of the logic analyser allows us to implement our ideal method of locking onto wanted events. Let us continue to investigate our simple (4 bit) counter chip for the moment. It would be nice to display a 'scope trace starting from, shall we say, the all-zeros state of the counter. The trigger event would then correspond to the logical AND of four LOW signals at the counter outputs (0000b). A four input positive logic OR gate would be the best device to pick off this trigger (Figure 4a). Now let's say we wanted to irigger our 'scope when the counter outputs stood at 6 . The required combination would be the logical AND of 0110b, which would require quite a different gating circuit (Figure 4b). For every different TRIGGER WORD we would require a totally different logic circuit.

Obviously, although our principle is good, we need a more versatile implementation than simple INVERT/AND gating. The device which comes to our aid is the exclusive or gate (XOR) (Figure 4c). The truth table shows that the output is 1 when the inputs are different and 0 when they are the same. Our signal is applied to one input, and the other is used for control. It will be obvious, particularly in very wide (eg 32 bit) input sets, that not all signals will be wanted to control the trigger. We therefore need, in addition to recognition of HIGH and LOW, a DONT CARE, which allows a given input to be ignored for the purposes of the trigger. Left to itself, the control input of the XOR gate can only be taken HIGH or LOW. If it is taken HIGH, the gate output will be HIGH when the signal input is LOW, and if the control input is taken LOW, the gate output will be HIGH when the signal input is HIGH. Now comes the clever bit! If we connect the control input of the gate to its own signal input, they will be at the same logic level at all times, and the gate output will always be low. This condition implies negative logic, so we reverse the definitions of the other two alternatives, resulting in: control LOW, signal LOW, output LOW. control HIGH, signal HIGH, output LOW. and accomplish our AND combination in negative logic (using an OR gate) as shown in Figure 5. A threeposition switch on the control input to each XOR gate allows any signal line to contribute to the trigger when HIGH or LOW, or not to contribute at all.

This little gadget alone (with suitable signal buffering) will allow us to display two digital traces on our 'scope in real time (while the test is in progress), starting at a point defined by the trigger word, which can be as wide as we like. However, two traces do not give us very much of the information available. Our next task is to see how we can display more than this. It is not going to be possible in real time, as the scope is only capable of looking at its own two traces in this mode, but if we capture the information in a RAM chip, we can then look at many more traces, one after the other. This leads to a dissociation of the capture and display phases of the measurrement task, which is typical of logic analysers. The capture phase is outlined in Figure 6. The trigger logic releases a disable in the clock feed to a binary counter which supplies

Fig. 5 Trigger selector (3 inputs shown).

sequential addresses to a RAM chip. The logic levels appearing at the chip data inputs are latched into the chip by the clock signal (derived from, say, a master clock which drives the circuit under test), and the same clock then advances the counter so that the next RAM location is available for the next store operation. When the counter overflows, the carry out operation disables the clock feed, thus stopping the system with the RAM full of data. This is a very simple system, and is common to all digitisers.

The display phase of the operation is a little more complicated, and depends on the display device in use. If the captured data were sent to a microcomputer, the digital information would be read into a port, and software graphics commands used to draw traces on the screen. The 'scope needs a different approach. The basis of it is the method by which the single electron gun displays two traces on the screen. In the simple ALTERNATE mode, a multiplexer in the scope signal path displays a trace of channel 1 signal followed by a trace of channel 2 signal, and so on alternatively. A combination of the time taken for the phosphor to fade and human persistance of vision gives the impression of two simultaneous continuous traces. The traces can be positioned differentially in the vertical axis by means of an offset voltage added to each by the scope electronics as it is displayed. Now, there is no reason why this system should not

Fig. 7 Logic analyser trace generator for analogue 'scope.

Paul Freeman takes a sideways look at extracting energy from waste

The idea of taking energy from waste suggests there is a fundamental fault in our manufacturing and industrial base. For it causes us to state the obvious; the waste should not be there in the first place. Leaving essential packaging aside, for nobody wants to receive damaged goods, the vast majority of operational processes create unwanted products. But to demand that this should not happen is not easy. The laws of physics state that no such machine or useful energy convertor can boast of being 100% efficient, meaning you never get as much out as you put in. We can try to minimise the waste by making our machines as efficient as we possibly can, thereby cutting the cost of consumed energy and reducing the waste that nobody wants.

Daily waste products have increased dramatically over the last thirty years for a variety of reasons and is fast becoming a big problem. Products have been manufacturered without any regard to the effect that the excess waste packaging has on the environment which has given us the problems arising today.

Consumer pressure resulting from media awareness has forced manufacturers to bow to consumer demand. Conservation is now treated as a resource and not so much of a saving particularly by the utility companies like electricity, gas and water.
Fig. 1 Collecting hot water waste from baths, showers, washing machines and dish washers for removal of the heat before it goes down the drain

It needs a lot of energy to bring it to the boil! In fact, water is a most peculiar substance. According to other similar chemical substances, it shoud be a gas at room temperature. Thank goodness it isn't.

One way to extract the heat from water and thus deprive the rats in the sewer of a nice warm bath is to store it in a central site at ground level (Figure 1). All hot water wastes from baths showers, sinks washing machines and dishwashers, could be fed into the tank. If space is at a premium it could be an idea to build the storage tanks around the bath if space permits with control electronics to discharge the water at room temperature down the drain. If the tank is within the house, heat can be extracted naturally through the use of cooling fins or if heat is to be removed more quickly, a heat exchanger could be installed. The natural place for an insulated tank with heat exchanger is at ground level so all hot outlets can be gravity fed.

Cooling water down from a bath from say 60 Celcuis to 10 Celcius could extract about 42 MJ of energy. This is the equivalent of the 1 kw fire on for 700 minutes.

A heat exchanger could be the basis for a warm air ducting system in the house, taking in the cooler air and returning warm.

Another serious consideration in these days of changable climatic conditions is whether the water is discharged into the sewer anyway. In the summer months when the garden is dry, the cooled water could drain out through a divertor valve under gravity or pumped into leaky ground pipes to water your prize plants (Figure 2). Control electronics would detect a preset water temperature from a thermal probe and open a valve to discharge the water into the sewer or on to the garden. (Here is a nice little practical electronics project for readers to put together for publication in ETI).

Solid Wastes

For years now domestic household waste has been dumped in Land-fill sites and covered over when it's full without any regard for collective problems that
arise as a result of mass indiscriminate dumping. The problem of 'leeching' is a very serious one if the site was not lined in the first place. Rainfall washes through the site and deposits toxic chemicals into underground water channels that eventually build up concentra tions in our drinking water.

Organic waste products produce gas on these tips. The mixture of methane and carbon dioxide eventually finds its way up to the top and escapes. A few landfill sites once finished have had this resource tapped to power local machinery either on the site or close to. This controlled method of drilling into the rubbish to release and use the gas is by far the safest thing to do, otherwise if left, methane has been known to build up just below the surface providing a real risk of explosion, particularly if houses have been built on old sites.

Some new dumping sites have been prepared by lining the hole with plastic sheet. This prevents leeching and ensures that the eventual gas supply, once tapped can only come out of the bored hole.

Mixed solid wastes are more of a problem and becomes an expensive exercise when a substantial investment has to be made in sorting machinery. Whilst this cannot be avoided, it can at least be reduced by pre-sorting our rubbish at source. This is not common practice in Britain as yet but the time may be coming when commercial, environmental and even legal pressures will require us to do so. We might start by returning to incentive schemes. Large scale producers of waste like hotels or industry could gain a reduction in their business rate if they adopt such a policy. They could also benefit from lower energy bills after a payback period on bought treatment plants to recycle waste and /or Combined Heat and Power units. CHP not only provides much needed heat and electricity but can also benefit from exported electricity to the National Grid sold on the open market (See ETI May 90). Incentives should also apply to the individual like guaranteed cash return for collected glass bottles.

Sadly, Britain lags behind many countries in the recycling stakes. Holland has three bins for collecting glass, metal and the rest of the rubbish. The effort

involved in taking your sorted rubbish to specialised skips is too much to bear for a lot of Britains so it might make sense to sort right at the point of disposal. Future Utility rooms in modern houses might have a hi-tech disposal unit that ends up with three or more shutes for waste materials, bagged and ready for collection. For those with a really lazy disposition, a single chute for all waste could be available with electronic sorting.

Rubbish treatment is a complex and at present somewhat expensive operation to sort completely mixed rubbish into its component parts IF the vast

Fig. 3 Experimental woodchip pile providing hot water

majority of household rubbish has already been sorted and then collected, the cost of reprocessing could be reduced. Reprocessed bio-fuels are created at some plants by pelleting the burnable waste and bagging it. The heat or calorific value of pelleted waste is only about half that of coal and so would require a greater storage volume. Burning the recycled fuel in a more efficient manner will go some way to compensate for this difference. Sulphurous emissions are also below 10% of the emissions from coal.

Incineration of household waste is a contentious issue. Whilst providing heat for nearby housing estates and generating electric power is an arguement for conservation and recycling energy, it still can produce plenty of airborn pollutants if not dealt with in the proper way. There have been many complaints over smells, and sooty smuts landing everywhere resulting from low temperature burning. Even more worrying are the toxic gases that are colourless and odourless. Again these can be dealt with if incinerated a higher temperatures.

So much for conflagration of waste, but what about less violent methods of treating rubbish?

Biological activity has very often been neglected in the part it can play to reclaim some of the sun's energy. Getting rid of garden refuse is now considered to be a weekend chore in todays urban garden, with miriads of journeys to take the garden clippings to the
dump. Your friendly dustman will not take such things. So in view of the all-embracing tiny garden, where having a bonfire can be antisocial and dangerous, an alternative might be to shred up the twigs, branches, leaves and household organic waste for quick composting to redistribute back on the land. This is the natural way to put back energy into the soil. Another alternative, if there is a big pile of waste chippings from lopped branches is to make use of the liberated heat generated inside. Useful heat can be extracted from generated inside from the moist pile of chippings by embedding a copper water pipe in the form of a coil or layered zig-zagging throughout the body of the heap (Figure 3). The greater the metallic surface area the water can pass through using as long a pipe as posible with heat conducting fins, the hotter will be the outcoming water. When all the heat energy has been extracted, the pile can be composted and fresh waste can be added.

Another area that might be considered is the use of chemical enhancement of bio-degredation, extracting the heat at a faster rate and producing a valuable by-product called wood alcohol or methylated spirits. There is a huge potential market for methanol as it has been shown that a car engine can run on this, the most simple of alcohols. A point to bear in mind here is firstly the expense of the chemical used might defeat the object of the exercise and an excess of any reactive compound be it organic or otherwise might produce unwanted pollution.

During the war and for many years after, another collecting system was in operation. The Rag-andBone man would principally give you a small financial return for unwanted garments or rags. The recycled rags were used mainly for the manufacture of good quality paper when combined with wood pulp. This trading died in the late sixties as we entered the throwaway age. The fact remains in the 90 s , old clothes just go to the scrap heap. If you are a caligrapher and handy with quil or ink pen you might have tried to make your own paper or parchment from rags.

Gaseous Waste

Domestically speaking, loosing a lot of hot air is indeed a problem unless arguements prevail in the household. The retention of warm air in the house has been greatly discussed over the years by the usage of insulation and it we will not delve into it further.

The principal source of hot gas waste is from gasfire boilers and real grate fires. Great efforts have been made over the years by boiler manufacturers to improve the efficiency of such machines and it is true to say the waste heat output has been vastly reduced. But the real test is whether you consider the heat output could be reduced. Could the output benefit from a heat exchanger to lower the temperature of output flue gases without impeding the flow of burnt gases from the boiler? The same goes for open fires, the chimney lining and brick acts as a storage radiator throughout the use of the fire. Heat is slowly lost to the chimney cavity and out the top. Could a heat exchanger be used in the chimney breast to remove the waste heat by warming cool air from the room on one side and passing it out on the other? A difference in temperature and therefore pressure is required to get air to move in the first place.The greater the differences, the greater the movement of air will be.

Space has not permitted us to go further but the ideas presented here are intended as a guide to stimulate further thought and by taking a sideways look at the problem may cause technology to leap ahead by three paces instead of the developmental one.

The Earth needs all the friends it can get. And it needs them now.

For thousands upon thousands of years our planet has sustained a rich diversity of life. Now, one single species - humankind is putting the Earth at risk.

People the world over are suffering the effects of pollution, deforestation and radiation. Species are disappearing at a terrifying rate. The warming of the atmosphere threatens us all with devastating changes in climate and food production.

But it needn't be like this - we know enough to reverse the damage, and to manage the Earth's wealth more fairly and sustainably. But the political will to bring about such a transformation is still lacking.

And that's exactly where Friends of the Earth comes in.

IT'S TIME YOU JOINED US

HIGH DEFINITION TELEVISION

James Archer reports on the American approach to High Definition TV

Large numbers of viewers in the United States of America already have a choice of twenty to thirty different television programme channels available to them, from cable distribution systems and off-air receivers. For this reason there has not been the commercial pressure towards direct-to-home satellite broadcasting introduced in other parts of the world

With the large number of channels already available it is no surprise there is currently no real demand for direct to home satellite broadcasting in the USA. This is surprising as US viewers were the first in the

(b) UTILISE AN EXTRA 3 MHz ChANNEL ADDITIONAL TO THE
i b UTILISE AN EXTRA 3MHz CHANNEL ADDITIONAL TO THE
EXISTING GMHz CHANNEL, TO CARAY AN AUGMENTATION SIGNAL
Fig. 2 The four main Spectrum usage options for ATV
world to install 'backyard' dishes to eavesdrop on the output of distribution satellites carrying programming intended for cable operators. The satellite route to HDTV therefore seems an unlikely way of bringing improved quality television pictures to the USA, and it is not surprising the emphasis in the USA has been different. This, has led the Americans to seek ways of providing higher quality and widescreen pictures over their existing terrestrial networks, both off-air and cabled. Rather than use the terms HDTV or EDTV, American broadcasters prefer the more generic term ATV,Advanced Television, and this has been defined as a collective term embracing IDTV (Improved Definition TV), EDTV (Enhanced Definition TV) and HDTV.

In 1983 the Advanced Television Systems Committee (ATSC) was formed from manufacturers, broadcasters, cable and satellite operators, and the film industry, with the aim of coordinating and developing voluntary national standards for Advanced Television Systems. The work of this group has covered both, studio production and transmission.

The major American requirement is to provide enhanced and higher definition pictures in a way that is as completely compatible with existing receivers.

All television broadcasting in the USA is regulated by the Federal Communications Commission (FCC), and in 1987 they formed an Advisory Committee regarding an Advanced Television Service (ACATS).

The FCC said it must be compatible with existing NTSC standard receivers, or must provide for the existing standard transmissions to be duplicated on another channel. Existing viewers must be able to continue to watch and no existing sets should be made obsolete. The FCC also said that any additional spectrum, required for Advanced Television services must be found in the existing VHF and UHF television broadcast bands. This could prove difficult to implement in many areas without interference being caused to existing transmissions.

Studies are continuing to see how spectrum usage might be improved by rearranging some exist-
ing allocations, and whether new TVs with improved selectivity and better interference rejection capabilities would make it possible to use previously avoided channels owing to interference

A TV transmitter network generally consists of a large number of different transmitting stations situated around the country, and since the amount of radio-frequency spectrum that is allocated to television broadcasting is invariably restricted, several transmitters in different locations have to share the same channels. If transmitters are far enough apart then channel sharing is possible without interference, but in practice the distance is not great enough sometimes giving rise to 'co-channel interference'. Unfortunately, domestic receivers are built with economy in mind, rather than to the highest possible technical standards, and it is found that certain channels can cause interference if used within a certain distance of another transmitter.

Overcoming The Taboos

The FCC has had an improved performance experimental TV specially built. This receiver has high selectivity, carefully designed filter circuitry throughout, and special precautions have been taken to reduce the local oscillator radiation. The results suggest that if future receivers are built in this way all the taboo channels might be usable for ATV, but could take a considerable number of years to phase out older poor quality receivers.

The spectrum usage options for ATV

The rule for ATV spectrum usage, laid down by the FCC was that no system would be allowed to use more than an extra 6 MHz of bandwidth on top of the 6 MHz already used by normal NTSC signals. Four alternative methods by which ATV might be introuced were suggested by the FCC:

- Provide an NTSC compatible ATV service within the standard 6 MHz of the normal 6 MHz channel. This might sound impossible, getting 'something for nothing' but it must be remembered that the NTSC system does have a great deal of redundancy in it, and there are techniques which could be perfectly practicable.
- Utilise an extra 3 MHz channel additional to the existing 6 MHz channel, to carry an augmentation signal.
- Utilise an extra 6 MHz channel additional to the existing 6 MHz channel, as an augmentation signal. - Utilise an extra 6 MHz channel to carry a noncompatible ATV signal, simultaneously broadcasting the same programmes in NTSC on the standard 6 MHz channel.

There are various other features to be considered if the three possible systems using augmentation channels are used. The simplest form of augmentation channel might be one where the additional spectrum is provided next to the normal spectrum allocation of that television station. This might not always be possible, if the optimum use of the spectrum is to be made, and even if they are, it is likely much of the present broadcast spectrum will need to be reorganised and reallocated first. It may be necessary to augment UHF television stations using other frequencies in the UHF band, and to use VHF augmentation channels for VHF stations. It could involve more complexity for both transmitters and receivers if the augmentation channel had to be in a different band from the main channel, say VHF augmentation with a UHF station. This is by no means impossible, and is one scenerio being considered

Fig. 2 (continued)

The FCC invited comments on its initial decisions and many organisations have submitted many different proposals.

Standardisation in America

The insistance of compatibility from the FCC means the USA will take a very different path towards higher quality television systems than either the Japanese or the Europeans.

Although it goes without saying that in Europe standardisation is considered to be a good thing, and although only partially achieved, there are real differences in attitudes to standardisation in the USA. Having a single standard for television broadcasting in the United States, can have many advantages, including the provision of more programming for viewers and lower priced sets but there are also potential disadvantages. It is felt that the choice of a statutory inflexible standard might reduce consumer choice, and might prevent or delay the introduction of improved technology in the future. The FCC has for some years now tended to shy away from any standardisation processes for new radio and television services, its aim being the admirably democratic and capitalistic one of letting the market decide' which new systems would be successful. This idea seemed to reach its peak with the introduction of no fewer than five different technical systems for the introduction of stereophonic sound to medium wave radio channels. The FCC adamantly refused to come down in favour of just one standard, with the result that at least three systems were marketed. Being incompatible with one another, a driver moving from one State to another would need to have access to different decoders. So it is not surprising that stereo on medium wave has not been established.

In the case of ATV, the FCC has encouraged manufacturers and broadcasters to participate in the work of the advisory committee which it set up to consider ATV policy issues, and voluntary standards bodies such as the American National Standards Institute (ANSI), the Advanced Television Systems

Committee (ATSC), and the Electronics Industry Association (EIA) have all been asked for their views. From this it seems the FCC may eventually be prepared to endorse a mandatory or at least a recommended ATV standard, although by no means certain. They wish to preserve flexibility in the standards setting process, and in particular it wishes to ensure that even if a standard is finally recommended, methods of introducing further improvements should be considered.

In 1988 the FCC said that it felt that it might be too early to adopt ATV transmission standards, and asked those in the industry to consider the pros and cons of adopting one standard, and the best timing for such action. A suggestion was made that it might be better not to set firm standards, but to encourage compatibility amongst ATV systems and perhaps just to provide regulations limiting the amount and type of interference that any new ATV standard could cause to any other transmission. In this scenario the market would be left to decide how to cope with several standards, perhaps in the hope that a de-facto standard might emerge.

Another suggestion, considered by the FCC from the Massachusetts Institute of Technology was for the industry to adopt so-called open architecture receivers where the additional cost of providing dual standard TV might well be quite small. If this development were to prove technically and economically practicable, it might be preferable to setting standards.

The field for the introduction of ATV in America is therefore wide open, with most of the possible systems in with at least a chance of succeeding. More than twenty different systems have been submitted to the FCC for consideration, some fairly similar to each other, and we shall examine a number of these. Before embarking on a tour of the various ATV systerns, it is worth mentioning that the first HDTV system to gain any sort of a foothold in the USA was the Japanese 1125/60 system, which, thanks to a great deal of lobbying by a few manufacturers and a couple of broadcasters, was actually accepted as the approved HDTV standard by the Advanced Television Systems Committee. The Society of Motion Picture and Television Engineers (SMPTE) also favoured this system for HDTV production, and published a studio standard SMPTE-240M, which has since been updated. During the latter half of 1989 the SMPTE began further work to try to reach an agreed studio standard for the USA.They stressed that they would be looking at a wide range of different systems, including a proposal by the National Broadcasting Company (NBC), giving 1050 lines (i.e. 2×525 lines) and a field rate of 59.94 Hz , which is likely to prove much more compatible with NTSC than the $1125 / 60$ system. Incredible as it now seems, in the mid-1980s it even appeared the Americans would be supporting the Japanese 1125/60 System in the

CCIR deliberations as to the world standard for HDTV. All this changed when US industry woke up to the fact that adopting a Japanese HDTV system might have disastrous long term effects on the US equipment suppliers. Several powerful manufacturers made their disagreement known, and this led to the work which was to result in the eventual FCC rulings on ATV. The Japanese manufacturers have not entirely given up hope of getting the $1125 / 60$ system into the USA, however, and a number of manufacturers of production equipment for HDTV have formed an organisation, 'The HDTV 1125/60 Group', whose primary purpose is to enhance programme production opportunities by actively supporting and promoting the $1125 / 60$ system as the production standard for programme origination and exchange between HDTV broadcasters. There are currently a number of facilities houses in the USA which use the 1125/60 standard for high-quality productions. In addition to these uses of the $1125 / 60$ system, the Japanese have made several different proposals as to how various narrow-band forms of MUSE could be used to satisfy the FCC criteria, so they have obviously not yet given up the struggle.

At present, it is difficult to make predictions about either the technical aspects or the timing for the introduction of advanced television in the United States, but it seems certain that some form or forms of ATV will be transmitted within the next few years. The Advanced Television Test Centre (ATTC) has been set up in Virginia, and its engineers made a start at the beginning of 1990 testing some of the 23 systems that have so far been proposed. Several different types of test will be carried out on each system, where possible:

- Measurements and objective tests to assess the detailed characteristics of system.
- Tests to determine the amount of interference to - other users caused by the particular system.
- Radio propagation tests.
- Tests over terrestrial and cable TV paths.
- Subjective tests to determine how viewers perceive the quality of the pictures, and whether problems of compatibility are noticed.

Proposed American ATV systems

We will first of all give brief technical details of some of the many systems and ideas for ATV which have been proposed, although not all have actually been submitted to the FCC, and then try to make some comparisons, and to draw some conclusions.

Advanced Compatible Television

Towards the end of 1987 a team of engineers at the David Sarnoff Research Centre, a contract research organisation, with the cooperation of RCA , NBC, GE, Thomson and others, proposed what is claimed to be a fully compatible system which can provide High Definition Television and which can transmit its signals using only a standard 6 MHz wide NTSC channel. To understand how engineers can manage to squeeze a quart into the pint pot of the 6 MHz wide channel, it is useful to remember that in the NTSC system, colour was added to the black and white signals without using any more bandwidth, using a frequency interleaving technique. Effectively, the ACTV system, and several of the other proposed systems, manage to squeeze even more information into the basic channel, and this extra information can be used to improve the quality of the transmitted pictures.

Once the initial headline-grabbing hype of 'HDTV in a 6 MHz channel' was overcome, and fuller details of the system became available, it became apparent that ACTV is actually an evolutionary family

Fig. 4 Coding system used for ACTV-I (single channel NTSC) - compatible enhanced television system
of three systems, and that only the first two of the steps towards HDTV can actually be introduced within the constraints of a standard 6 MHz channel.

All the ACTV signals can be viewed on existing receivers as well as ACTV receivers, so the basic compatibility of the system is very good.

ACTV-I NTSC compatible EDTV

The so-called 'introductory system', ACTV-I, is not in fact the simplest possible system, as we shall see later, but its signals can be sent along a normal 6 MHz bandwidth TV channel. ACTV-I cannot provide full HDTV quality, and is more correctly described as an EDTV system, but it can take a wide aspect ratio 1050 line interlaced picture or a 525 -line sequentially scanned picture as its source, and provide both higher quality widescreen pictures for viewers equipped with new receivers, and normal $525 / 60$ interlaced pictures for viewers with standard NTSC receivers. Figure 4 shows the basic operating principles of ACTV-I.

A 1050 -line 59.94 Hz interlaced picture is recommended as the ideal source signal for ACTV, but to use this signal for ACTV-1 purposes it must first be converted to a 525 -line progressively scanned image, since this type of signal is the best type to process for transmission over the normal $525 / 59.94 / 2: 1$ transmission network, and it also allows various processing algorithms to be used to derive a signal which contains information about the vertical temporal detail in the pictures. The first process in ACTV-I, as can be seen from Figure 4, is to split the widescreen high-definition picture into four different components. The first component, the main signal, is a signal with the same aspect ratio and bandwidth as a standard NTSC signal; the other three components contain extra information which can be used to provide the viewer with a wider aspect ratio picture and better resolution, when used with the main signal. The extra three components are carried along with the main signal channel on sub-channels, in a similar way to which the colour information modulates a subcarrier. This is added to the black and white signals to provide compatible NTSC colour pictures. Figure 5 shows how this is done, and indicates the positions in the spectrum of various additional signals.

Obtaining Component 1 - The Main NTSC signal

The 525 -line progressively scanned source picture, with its widescreen aspect ratio of 16:9 (an improvement on the initially submitted $5: 3$), is horizontally scanned in the normal line-time period of $52 \mu \mathrm{~s}$. Since the widescreen picture has been scanned in the same time that is normally taken to scan a $4: 3$ picture, the horizontal bandwidth and the amount of detail available on a horizontal line is increased. The source picture is converted to a standard 525 line YIQ (i.e component format) interlaced signal, which forms the basis of the first component.

The YIQ signals are filtered to limit the bandwidth of the luminance information in this first component to 5 MHz , and the colour-difference information to 600 kHz , which are actually slightly better than the resolutions available on standard NTSC pictures. The high-frequency information above 5 MHz , in practice a band from stretching from $5-6 \mathrm{MHz}$, is separated out, and, as we shall see later, is used to form component three of the ACTV system.

To actually form component one, the first step is to select the central 4:3 part of the original widescreen picture; this is done, line by line, and then the central part of each line is expanded until it takes up $50 \mu \mathrm{~s}$ almost the full 52μ s active line time utilised by an NTSC receiver. A signal expanded in the time domain will require less bandwidth, and so will comfortably fit into the normal NTSC bandwidths for transmission. The remaining two microseconds of the 52μ s line time are used to carry some of the information that was previously carried in the 'side-panels' of the 16:9 picture. these were discarded to form the $4: 3$ picture. Since this information is carried only for lus at the start and finish of each line, and since most conventional TV displays overscan, a standard NTSC receiver should display only a standard 4:3 picture; the extra infor mation at the edges of the picture will be ignored.

In the case of a widescreen receiver, this will have circuitry which can take the information in the one microsecond wide strips and expand it to display the side panels along with the $4: 3$ picture. The amount of information which can be squeezed into the timecompressed $1 \mu \mathrm{~s}$ strips is however limited; compressing the side panels by a factor of six results in the maximum

$$
\begin{aligned}
& \text { frequencies that can be carried within the standard } \\
& \text { bandwidth NTSC channels being about } 700 \mathrm{kHz} \text { for } \\
& \text { luminance and } 83 \mathrm{kHz} \text { for chrominance. Because of } \\
& \text { this, it is notpossible to carry all the information about } \\
& \text { the side panels in the } 1 \mu \mathrm{~s} \text { strips, so the side panel } \\
& \text { information has to be separated into two frequency } \\
& \text { bands, knownas the lows' and the highss. Only the low } \\
& \text { frequency information about the side panels can be } \\
& \text { carried in the lus strips, but thesefrequencies carry the } \\
& \text { direct current component of the television picture and } \\
& \text { most of the energy of the signal. } \\
& \text { The 4:3 aspectratiopicture and the low-frequency } \\
& \text { parts of the compressed side panels can now be NTSC } \\
& \text { encoded, after filtering, and the result fits into the } \\
& \text { normal luminance and chrominance regions of the } \\
& \text { NTSC spectrum. } \\
& \text { In order to ensure that the join between the side } \\
& \text { panels and the normal } 4: 3 \text { picture willnot be visible on } \\
& 5: 3 \text { displays, the transmitted centre panel information } \\
& \text { is actually made to overlap the side panels, so that a } \\
& \text { very narrowstrip covering the area where the join takes } \\
& \text { place is actually transmitted twice, This extra infor- } \\
& \text { mation can be used by the decoder in the receiver to } \\
& \text { provide a smooth transition betweentheedges and the } \\
& \text { main picture, so no hard edge is visible. }
\end{aligned}
$$

which will be described in the next section, without causing interference to the main NTSC signal.

Component three - extra horizontal detail

The scanning of the $16: 9$ picture in 52μ s means that more horizontal resolution would be available than for a standard NTSC signal. The first two components have only transmitted luminance information up to 5 MHz , so in order to allow the widescreen receiver to make use of the potentially greater resolution it is necessary to find a method of carrying information about the luminance detail contained in the band of frequencies between about 5 MHz and 6.1 MHz . After selecting the information within this band by appropriate filtering, the extra luminance detail for the whole of the 52μ s widescreen line is time compressed by the small amount necessary to squeeze it into the $50 \mu \mathrm{~s}$ which is used to carry the centre panel of the picture. Thisreduction gives better resolution in the side panels as modulation here causes undesirable effects. The result is an extra 1 MHz of horizontal resolution can be obtained over the whole image Component three contains very little low frequency information and is therefore a low energy signal, so that it can be compressed in amplitude and quadrature modulated

Fig. 5 The RF Spectrum occupied by the various components of an ACTV-I system

An incidental advantage of the filtering process that takes place with ACTV pictures is that ordinary NTSC receivers actuallyshow an improvement in the picture quality; the cross-colour and cross-luminance effects are reduced, and some increase in resolution is also claimed.

Component 2 - the high frequency parts of the side panels.

If the displayed side panels were to contain only the low-frequency information transmitted so far, there would be a noticeable resolution difference between the centre and the edges, so some method has to be found of transmitting the side panel 'highs'. The luminance frequencies between 700 kHz and 5 MHz corresponding to the side panels and the chrominance frequencies from 83 kHz to 600 kHz are filtered, and the chrominance is quadrature modulated onto the luminance signal at 3.58 MHz . The side panels take up about 6μ sat each end of the $16: 9$ widescreen picture and are then expanded in time to fill the part of the active line that is used by the centre panel, about 50 us long. The time expansion causes the bandwidth requirement for these side-panel highs to be reduced to about 1 MHz . It was found by experiment that if component two was expanded to fill the whole of the $52 \mu \mathrm{~s}$ line period, as might seem the obvious thing to do, the resolution of the edge panels was reduced. Figure 4 shows how component two is made up. Because component two is a low energy signal it can be compressed in amplitude and quadrature modulated onto a new subcarrier, together with component three,
onto a separate subcarrier at 3.1 MHz , together with the component two signals. Figure 5 shows the effect of this, which is to include a low-amplitude sub-band containing the information about components two and three within the spectrum of the main signal. The subcarrier frequency of 3.1 MHz is an odd multiple of half the linerate and waschosen so that the energy from the signals relating to components two and three interleaves into gaps in the spectrum of the main signal, and the subcarrier is made to invert its phase on alternate lines. Allihisensurestheextra information can be carried along with the main signal without having any effect on normal NTSC receivers. Effectively the extra subcarrier is hidden in a small portion of the spectrum normally given over to colour signals, but instead this region is dedicated to carrying the high resolution luminance detail. This technique was first developed by Dr. Fukinuki of Hitachi Research Laboratories, and this hidden region is sometimes called the 'Fukinuki hole'.

Component four - the vertical temporal helper signal

It was explained earlier that one source standard for
the ACTV system uses a 525 the ACTV system uses a 525 -line continuously scanned display, and we saw this must be reduced to a 525 -line interlaced display if the pictures are to be sent along a standard 6 MHz bandwidth radio frequency channel. It is then possible to include line doubling circuitry to convert the incoming interlaced signals into a progressively-scanned display. Invariably this gives less than perfect results on some moving
parts of the image, and so component four has been introduced to provide a so-called 'helper' signal to transmit extra vertical-temporal information which a suitable receiver can use to increase the amount of vertical detail present, especially in moving images. For this system to work perfectly the helper signal would enable the receiver to restore the vertical detail in moving parts of the picture that was lost in the original conversion to an interlaced display. In practice the algorithm that the receiver will use to reconstruct the image is known, and it is therefore possible to work out at the source when certain parts of the moving picture will displayed erroneously by the receiver. The fourth component, the helper signal, can be used to transmit an error signal which carries enough detail to enable the receiver to correct the display. The helper signal could also be used to send control signals to switch in appropriate motion adaptive processing circuitry at the receiver.

Since the helper signal consists only of error signals, the information sent will be small, so a relatively narrow bandwidth signal can be used. The helper signal currently used as Component four is restricted in frequency to 750 kHz , and is transmitted in phase quadrature with the main vision carrier.

The Composite Signal - A Summary

The ACTV system relies on carrying extra components, in addition to the normal luminance and chrominance signals, within a standard NTSC signal. If this happens in a compatible way, the extra signals must be invisible to the viewer with an NTSC receiver. In addition, the extra components must be readily extractable from the total signal by an ACTV receiver.

Figure 5 has been demonstrated to work well, but there are many possible detailed modifications which could be made to alter the balance between the above requirements. In particular, the helper signal could take different forms, and it may even be possible to add several more such signals for future use. There is even room to accommodate an additional digital audio signal, shown in Figure 5.

Demonstrations have shown that the requirement for the extra components to be invisible on a normal NTSC receiver is generally well met. We saw earlier that the compressed side panels will be hidden by the normal receiver overscan, so component one provides no difficulties. Components two and three are quadrature modulated onto a carefully selected subcarrier whose frequency and phase alternation have been chosen for minimum visibility.

Component four, the helper signal, has been arranged so it quadrature modulates the vision carrier, and the inevitable pattern is spatially correlated with the main vision signal. On older NTSC receivers the helper signal is difficult to perceive because of the way it is placed spatially with respect to the vision signals, and in modern receivers using synchronous radio frequency detectors the helper signal can actually be removed before it reaches the display.

The American approach

 to HDTV will continue
next month

舄

FIELD ELECTROOIICS

T/A ELECTROPARTS

$T V+$ VIDEO - ELECTRONIC SPARES
IMPORT - EXPORT
342 PINNER ROAD. HARROW, MIDDLESEX HA1 4LB Tel 081-861 4286/081-4275778 Fax 081-861 4271

Competitive Prices
Sompetitive Price

Quality Components

PLEASE WRITE FOR CATALOGUE ENCLOSING 50p A4 SAE
Active Noise Reduction
Aircraft landing beacons
Cable TV
Combined Heat and Power
Constant Current Sources
Cross-over networks
Data Communications

Digital 90 Speaker kit review
Earth Current Signalling

Electric Eye
 Elements of Radio

Encrypting TV Signals
Energy
Harnessing the Wind
Power from the Sea
Solar Power
European Patents
Equaliser Review
Fluorescents
Fuses
Hand scanner Review
High Definition TV

Infinite Baffle, The
Loudspeakers
Digital 90 Review
Electrostatic design

The infinite Baffle
Making Waves
Microwaves

Mixing Desk Review
Modern Diode Cicuits

	Month	Page				Month	Page
	June	33				Part 4	September

RTVC HAVE DONEIT AGAIN

 We have secured all stocks of nearly new factory refurbished units with manufacturer approval, at unrepeatable prices. We also offer a 6 month guarantee with all units (this only applies to products marked \star on this page.)

Alba digital auto reverse push button AM/FM LW car stereo with separate bass/treble control APPSS on tape 25 watts per channel output, with line output for car components use
$\star £ 79.40+£ 2.30 \mathrm{pp}$

Sparkomatic Phoenix Digital auto reverse AM/FM/LW car stereo, with tape volume and balance control. 9 watts output per channel
$\star £ 52.40+£ 2.80 \mathrm{pp}$

Sparkomatic Auto reverse AM/FM car stereo with tone, volume and balance contro $\star £ 44.20+£ 2.80 \mathrm{pp}$

IN-CAR STEREO BOOSTERS

In-Car Stereo Hi-power booster ampifiers 400 W output. 200W $\times 2$ inputs for low power car stereos and phono inputs short circuit protecf110.95 + £2 pp

150W output 75×2
inputs as abov
£46.00
£2.00 pp

IN CAR WOOFERS

612" 40W Nominal, 60W Max, 4 ohm Goodmans woofer
8 " 60 W Nom 90 W Max, 4 $£ 9.95+£ 1.90 \mathrm{pp}$ 8" 60 W Nom. 90 W Max, $4-5$ ohm Richard Allen
 len woofer len woofer
$10^{\prime \prime} 150 \mathrm{~W}$ nom, 300W max $51.50+$ R 3.50 pp 10"150W nom, 300W max 4-5 ohm Eminence sub woofer $\mathbf{£ 4 3 . 5 0 + £ 3 . 5 0 \text { pp }}$ 12" 100 W Nom 250 W Max, $4-5$ ohm Richard Allen woofer $\mathbf{£ 4 3 . 5 0}+\mathbf{£} 4 \mathrm{pp}$
$12^{\prime \prime} 150 \mathrm{~W}$ nom 300 W max 4.5 hm Eminence sub woofer $\mathbf{£ 4 5 . 0 0}+£ 4 \mathrm{pp}$
$15{ }^{1 / 2}$ 200w Nom 400W Max. $\mathbf{~} 45.00+£ 4 \mathrm{pp}$ Allen woofer $\mathbf{£ 6 0 . 0 0}+\mathbf{£ 5} \mathbf{p p}$

TWEETERS AND MID RANGE FOR

IN-CAR USE

$41 / 2^{\prime \prime}$ 100W 4-5 ohm sealed back mid-range. Goodman $\mathbf{£ 5 . 5 0 + £ 1 . 5 0 ~ p p ~}$ 2 $1 / /^{\prime \prime} 65 \mathrm{~W} 4-5$ ohm Ferro fluid cooled dome tweeter with housing. Audax
(12" 100 W 8 . $\mathbf{£ 5 . 0 0 + £ 1 . 2 0 ~ p p ~}$ for 4-8 ohm use
£6.90 $+£ 0.80$ pp

IN CAR 3-WAY 200W STEREO

 CROSSOVER NETWORKElectronicly divides the sound output from car stereos into bass, mid and treble speakers crossove points 800 Hz and $5 \mathrm{KHz}(6 \mathrm{~dB}$ per oct $) ~$
imp Size $200 \times 135 \times 55 \mathrm{~mm} \mathrm{f} \mathbf{1 9 . 5 0}+\mathbf{£ 1 . 8 0} \mathbf{~ p p}$
$30+30$ WATT GRAPHIC EQUALISER BOOSTER AMPLIFIER

Improve the sound and output of your low power car stereo unit with this 60 watt graphic equaliser booster. It has 10 slider controls so can accurately select the tonal quality of the music and a fader control to adjust the front to back volume; LED power display and stereo headphone jack
$\mathbf{£ 2 4 . 2 0}+\mathbf{£ 1 . 8 0} \mathbf{p p}$
As illustrated above with 7 slider controls
$\mathbf{£ 1 9 . 9 0}+\mathbf{£ 1 . 8 0} \mathbf{p p}$

ACOUSTIC REAR PARCEL SHELF To get the best sound from your car woofers, replace your rear hatchback parcel shelf with one of these 14 mm thick fibreboard units, tallor made for your cat supplied with grille cloth and fixings. When ordering please state make. model, and year of Reg
$\mathbf{£ 3 9 . 8 0}+\mathbf{£ 6} \mathbf{p p}$

AUSTIN ROVER SHELF SPEAKERS

15 watt speaker. Moulded in black plastic housing for vertical or horizontal use, contains $41 / 2^{\prime \prime}$ Goodmans drive unit with a good size magnet $\quad \mathbf{E 6 . 9 5}$ pair $+£ 2 \mathbf{~ p p}$

HIFI WOOFERS

$10^{\prime \prime}$ round 100 watt Goodmans Hifl woofer 2' coil, paper cone, foam rubber surround $4^{1 / 2} 2^{\prime \prime}$ magnet, frame size $10^{7}{ }^{\prime \prime}$ $\operatorname{imp} 892 \quad \mathbf{f 1 7 . 5 0}+\mathbf{f 2 . 8 0} \mathbf{p p}$ 8 round 100 watt Audax Hifi woofer. ${ }^{1 " \text { coil with }}$ surround $4^{1} \mathrm{~s}^{\prime}$ magnet, die cast chassis. size $9 \% / 4^{\circ} 8 \Omega$ surround 4 i magnet, die cast chassis $\mathbf{~} \mathbf{3 4 . 9 0}+\mathbf{£ 4} \mathbf{p p}$
 polypropylene cone, rubber surround. $3 \%^{\prime \prime}$ magnet, chassis size $8^{3}{ }^{3}$ " square $8 \Omega \mathrm{imp} \quad \mathbf{£ 1 9 . 7 0}+\mathbf{£ 2 . 5 0} \mathbf{~ p p}$ $8^{\prime \prime}$ chassis rize 70 watt Peerless Hifi woofer 1^{1} coil, treated paper cone, foam rubber surround. $31 / 4{ }^{3}$ magnet, $8 \Omega \mathrm{imp}$ $\mathbf{~} \mathbf{1 2 . 5 0 + £ 2 . 5 0 \mathrm { pp }}$ cone. rubber surround $4^{\prime \prime}$ magnet $88 \mathrm{imp} \mathbf{£ 9 . 8 0}+\mathbf{£ 3} \mathbf{~ p p}$ $51 / a^{\prime \prime} 35$ watt Goodmans Hifi woofer. $1^{\prime \prime}$ coil, treated paper cone, nuber surround, $3 / 2$ magne, 8Ω $\mathrm{imp} \quad \mathbf{£ 7 . 2 0}+\mathbf{£ 2 . 5 0} \mathbf{~ p p}$ $41 / 2$ " square 35 watt Audax Hifi woofer, 1 in coil, paper cone, rolled surround. $2^{\text {³ }}{ }_{4}^{\prime \prime}$ magnet, $88 \mathrm{Simp} \mathbf{£ 7 . 5 0 + £ 2 . 5 0}$ pp

HIFI TWEETER AND MID RANGE
$4^{3} \mathrm{~s}^{\prime \prime}$ square 100 watt Goodmans sealed back mid range, 1^{11} coil. treated paper cone, 23 magnet, 8Ω 1 mp . $\mathbf{~ s q u a r e ~} 75$ watt Audax sealed back mid tange $\mathbf{£ 5 . 5 0} \mathbf{~ p p}$ 4^{4} square 75 watt Audax sealed back mid range ${ }^{3}{ }^{\circ}$ " coil treated paper cone. Ferrofluid cooled coll, chassis size $3^{3} \mathrm{e}^{\prime \prime}$
$8 \Omega \mathrm{imp}$ $8 \Omega \mathrm{imp}$
$\mathbf{£ 7 . 9 5 + £ 1} \mathrm{pp}$ $4^{\prime \prime}$ round 130 watt Peerless $1^{\prime \prime}$ metal dome Hifi wweeter $^{3} 1^{\prime \prime}$ coil, $2^{3_{4} "}$ magnet, rec crossover freq
 $4 / a \times 2 / a^{\prime \prime} 75$ watt ${ }^{3}$. but with $3^{5}{ }^{5}$ " face plate $\quad \mathbf{f 6 . 9 0}+\mathbf{5 1 . 3 0} \mathrm{pp}$

MOTOROLA PIZO CERAMIC TWEETERS Convert electrical energy into sound without the use of Convert electrical energy into sound without the use of
voice coils and magnet assemblies. No moving mass hence excellent transient response and low distortion with high efficiency levels as they cannot reproduce bas sounds. No ctossovers are required
$31 / 2 "$ square, 50 watt Pizo super horn $\mathbf{£ 5 . 9 5 + 7 5 p p}$
$3^{3} \mathrm{a}^{4}$ " round, 50 watt Pizo horn tweeter $\mathbf{f 5 . 7 5}+75 \mathrm{pp}$
$2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion 400 watt Pizo $\mathbf{f 1 1 . 9 5 + £ 1 p p}$

MULTIBAND RADIO VHF $54-176 \mathrm{MHz}+$ AM CB BANDS $1-80$ isten to: AIR TRAFFIC CONTROL $\mathbf{f 1 7 . 9 5}$ AIRCRAFT, RADAR, POSTAGE RADIO AMATUERS AND £2.85 MANYMANYMORE 'RUBBER DUCK AERIAL'

ROSS PUSH BUTTON RADIO

Mains and battery operated
High quality VHF/FM.
6 push button selected
preset stations.
Fully retractable telescopic
aerial
Headphone/eatphone
jack socket
Size $230 \mathrm{H} \times 150 \mathrm{~W} \times 65 \mathrm{D}$
Ref RE-5500
Brand new
$\mathbf{£ 1 4 . 9 5 + \mathrm { f } 2 . 8 0 \mathrm { pp }}$

4.5' ROSS MONO TV

 WITH AM/FM RADIO
$45^{\prime \prime}$ Ross mono Television with AM/FM Radio for battery or mains use, supplied with mains adaptor/charger, 12 v car plug with lead, earphone, stand and extension aerial socket. battery component
holds $8 \times$ UM2 batt, Alkaline or NiCads (batts not included). Control holds 8 UM2 ban, Alk io adio
$+\mathbf{E 4 9 . 9 5}+\mathrm{E4} 10 \mathrm{pp}$
RADIO AND TV COMPONENTS ACTON LTD 21 HIGH STREET. ACTON. LONDON W3 6NG MAIL ORDER TERMS POSTAL ORDEBS and or CHEQUES with orders

2 CHANNEL HAND HELD

 WALKITALKIESIdeal for sports or any outdoor activities. Built-in squelch and activities Buit-in squelch and volume control range 1.5 Km maximum; 27 MHz 2 channe crystal controlled superhet circuit with built-in condenser mic and $\begin{array}{lr}\text { speaker. Size } 172 \times 60 \times \\ 33 \mathrm{~mm} & \mathbf{£ 3 9 . 9 0}+1.50 \mathrm{pp}\end{array}$

VIDEO SENDER

With this handy unit you can transmit the out put of your home video, video camera or satel lite equipment over-the-air to a receiving television within a range of 100 ft . Simply connect the video and audio output of your equipment into this unit and a $10-138 \mathrm{~V}$ dc power supply extra $\mathbf{£ 3 . 7 5}$ size $122 \times 70 \times 21 \mathrm{~mm} \mathbf{f 1 8 . 9 5 + 1 5 5 p p}$

VHF RADIO TRANSMITTERS

100 mW mini bug. Built on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band 9VDC 2 Watt transmitter kit, supplied with fibre glass 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to
build. $12-24 \mathrm{~V}$ DC. $\mathbf{£ 7 . 5 0}+£ 0.70 \mathrm{pp}$ build. $12-24 \mathrm{~V}$ DC. $\mathbf{£ 7 . 5 0}+\mathrm{£0.70} \mathrm{pp}$
25 Watt Transmitter kit Fully tuneable over the FM band. Kit comprises double sided pcb dia grams and all components, including heat sink Supply voltage $12-18 \mathrm{~V}$ DC. $\mathbf{f} 67+f 1 p p$ Transmitters listed on this page are not licensable in the UK.

$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specifica tion. All the components are mounted on the single PCB which is alreadv punched and back printed
$30 W \times 2$ (DIN 4 ohm
CD/Aux, tape I, tape II, tuner and phono in puts.
Separate treble and bass

- Headphone jack

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$.
Kit enclosed: case. PCB, all components, scale and knobs
$\mathbf{f 3 6 . 8 0}+\mathfrak{£} 3.50 \mathrm{pp}$.
(Featured project in Everyday Electronics, April
1989 issue). Reprint Free with kit.
QUICK START BELT-DRIVE
VARI SPEED DISC TURNTABLE
Quick start, ideal for scratching
Pitch control

- Target lamp
- Counter weighted tubular
tone arm with plug-in head shell
* 2 -speed full manual control
- Remote start stop
* 7.5 Kg
$\mathbf{£ 1 1 2 . 9 0}+\mathrm{f} 7 \mathrm{pp}$
AMPHONIC $125+125$ POWER AMPLIFIER

25 watt per channel stereo power amplifier with inde pendent volume controls, professional 19 rack mount and silent running cooling fan for extra reliability
Output power
Output impedance
Sensitivity
ax. per channel
power into 4 ohms
Protection
Chassis dim ort-circuit and fuses $220-240 \mathrm{Vach} 50 \mathrm{~Hz}$ $220-240 \mathrm{Vac} 50 \mathrm{~Hz}$
$435 \times 125 \times 280 \mathrm{~mm}$ $\mathrm{f} 142+\mathrm{f} 7.00 \mathrm{pp}$

GEMINI 2200 DISCO MIXER

This versatile little mixer has a high reputation with DJ's Its simplicity and quality sound reproduction makes it ideal for bedroom or high power gigs. headphone circuit with high power output \bullet Talk switch VU meters
Specification: 5 n ratio mic less than 1 mv (745 dB) Phono: 0.4 mV less than (755 dB) Talkover -12 dB Power AC220-240 at 3 watts - Size $10^{3} 9^{\prime \prime} \times 8 \frac{1 / 2 "}{} \times 2 \frac{1 / 2 "}{}{ }^{\prime \prime}$. Weight $41 / 2 \mathrm{lbs}$

THE ETI SBC 09

Fig. 1 Software Development Cycle

Mike Bedford continues with his micro-controller board

Last month we published hardware details of the SBC-09, a Motorola 6809 based control board. This month we intend to guide the reader in the method of developing firmware for this control computer. In particular we shall take a look at the architecture and instruction set of the 6809 microprocessor, which is necessary for assembler programming. We shall also describe the 6821 PIA from a programming point of view. It is assumed the reader of this article already has some programming experience (even BASIC) but perhaps knows nothing of firmware development. The article will be most readily understood by those with some assembler experience (of any processor) but with perseverence it is thought that this is not an absolute prerequisite. Reference 1 is recommended for those who find this tough going and would like instruction in 6809 assembler programming starting
with the basics.
described above is just not possible since the target system (ie the one on which the program will run) will be a minimal design capable of only what is necessary for its control application and this won't include the ability to run editors and assemblers. The implication is that the firmware must be developed on a separate system which is normally referred to as the development system. The simplest development cycle is illustrated as Figure 2. You'll notice the assembler/compiler box is now labelled cross-assembler/ cross-compiler. If the development system happens to be based around the same processor as the target board then a straight assembler or compiler would be used. In the general case it will be the cross-equivalent, this being the name given to an assembler or compiler which runs on one processor but generates code for another. The snag with the development cycle in Figure 2 is that it requires an EPROM to be erased and reprogrammed for each itteration. This is slow and frequent unplugging and plugging of the EPROM into the target will result in un-reliability due to socket wear.

At the expense of some extra hardware, these problems can be overcome by adopting the alternative firmware development cycle illustrated in Figure 3. In actual fact a further quantum leap in convenience is achieved by use of a processor emulator instead of an EPROM emulator. This eases software debugging by allowing break points to be set, memory to be examined and/or modified and registers to be examined to mention just a few features. Since these cost many thousands of pounds, it will remain a dream for nearly all home enthusiasts and we shall therefore say nothing more about it. The EPROM emulator shown in Figure 3, is more affordable. This

Fig. 2 Firmware Development Cycle using EPROMS

Firm Development

Before complicating things by getting into the realm of firmware, let's have a quick reminder of the steps involved in software development in general. Figure 1 shows the development cycle for programming in assembler or a compiled language and will be familiar to those who have programmed any computer in just about anything other than BASIC which is a special case, being an interpretted language (usually). Actually many of the modern generation of compilers and assemblers (eg Turbo Pascal for the PC) tend to camoflague this process, presenting an integrated environment for editing, compiling (or assembling) and running the program but, this is what actually happens.

Turning now to firmware development for a control board, the type of development cycle
is an expansion board which attaches to the development system where it appears like ordinary memory, so the object code can be written to it. Once this loading has taken place, the target system, into which a pod from the emulator is plugged, 'sees' this same data as if it were in an EPROM plugged into the target. The need for EPROM erasing and blowing is now obviated during development and the code only goes into a real EPROM once all the bugs have been ironed out.

The PC As A Development System

Although other machines could probably be used, depending on the availability of suitable crossassemblers, it is the intention here to give some advice for those wishing to use an IBM PC, PC/AT or compatible as the development system. This decision was made on grounds of software availability.
increasing use of PCs amongst electronics enthusiasts plus the fact that this is what the author uses!

The first software tool required is a screen text editor. The only editor which comes with MS-DOS as part of the system is EDLIN. This is basic, to say the least, being only a line editor and is very tedious for anything other than perhaps editing the odd 5 line .BAT file. Most readers will have invested in a word processor for their PC. This will undoubtedly present a full screen display but will, unfortunately, have a nasty habit of adding a whole manner of headers and embedded control characters into the text of the resultant file.

What is needed is usually referred to as a text editor and produces an output file containing only what the user typed in - an essential if it is to be read by an assembler or compiler.

Although full commercial text editors are available, I would be inclined to recommend one of the numerous shareware products available at a much lower price. A couple of basic PC text editors I have already used are ED and EDIT (a couple of very original name!!!. More comprehensive offerings listed in the shareware catalogues include EDWIN, QEDIT and NYEDIT.

Turning now to 6809 cross assemblers and compilers, C and PASCAL compilers are only available commercially at a not insignificant price. A crossassembler, is available as public domain software and is therefore expected to be the preferred language for most users. Various cross-compilers are available from Grey Matter at 4, Prigg Meadow, Ashburton, Devon TQ 13 7DF - Tel: (0364)53499. The public domain assembler is on a disk of Motorola cross-assemblers (which also includes the rest of the 6800 family, the 6502 and the RCA 1802/1805) and is available from most of the numerous public domain/shareware suppliers. For those who don't already use shareware, the supplier used by the author is S.M.S. at 19, Carshalton Road, Camberley, Surrey - Tel: (0276) 681864.

The two hardware tools required are an EPROM programmer and an EPROM emulator unless you have a limitless supply of blank EPROMs, an EPROM eraser is also required. The December 1989 issue of ETI contained a review of EPROM programmers for the PC. To summarise the findings, the Sunshine Electronics EW-901BN was recommended as a good buy for the home user at $£ 89+$ VAT. It is available from Chipboards Ltd., 65, High Street, Bagshot, Surrey GU19 5AH - Tel: (0276)51441. EPROM emulators for the PC are an extremely rare breed and there is almost certainly nothing available commercially at a price to interest the amateur. This being so, next month's ETI will feature a constructional article on a PC EPROM emulator capable of emulat ing all 27 -series devices up to the 27512 . The following month we will describe the construction of a safe EPROM Eraser with electronic timer.

6809 Architecture

Table 1 shows the 6809's internal registers. These are described briefly in this section.
Table 1: 6809 Registers

Index Registers - X, Y

These 16 bit registers are used in indexed addressing to point to memory.

Stack Pointers - U,S

These 16 bit registers are used to manipulate the user and hardware stacks respectively by use of push and pull instructions. The hardware stack is used automatically by the hardware during interrupts and subroutine calls. Either stack may be used for user

Fig. 3 Firmware Development Cycle using an Emulator

Table 1
data. Both these registers may also be used as general purpose index registers.

Program Counter - PC

This 16 bit register is automatically updated by the processor to point to the next instruction to be executed

Accumulators - A,B,D

A and B are 8 -bit accumulators which in certain cases may be considered to be a single 16 -bit accumulator called D. A is the most significant byte and B the least significant byte of D. These registers are used in arithmetic instructions and for data manipulation.

Direct Page Register - DP

This 8 bit register is used in the direct addressing mode which is used because of its efficiency in terms of both speed and memory usage. In this addressing mode, only the least significant byte of the address of the data is given in the instruction, the most significant byte having already been loaded into the DP register. Clearly this is only effective if a number of addresses within the same 256 byte block are to be accessed.

Condition Code Register - CC

This register consists of 8 processor status flags. The C bit indicates that a previous instruction resulted in a Carry from an accumulator. The V bit indicates that a previous instruction resulted in an oVerflow from an
accumulator. The Z bit indicates that a previous instruction resulted in Zero. The N bit indicates that the result of a previous instruction was Negative. If the I bit is set, the processor will not recognise interrupts on the IRQ pin. This bit is automatically set by $\overline{\mathrm{RES}}, \overline{\mathrm{NMI}}$, SWI, $\overline{\text { FIRQ }}$ and IRQ. The H bit indicates that the result of a previous instruction was a Half carry. This is a carry from bit 3 and is used by the DAA instruction, If the F bit is set, the processor will not recognise an interrupt on the FIRQ pin. This bit is automatically set by RES, NMI, SWI and FIRQ.
The E flag is used by the RTI instruction to determine whether the Entire set of registers was stacked on entry to interrupt (ie $\overline{\mathrm{RQ}}$) or whether just the PC and CC was stacked (FIRQ).

Interrupts

Table 2 shows the 6809 interrupt vectors. These vectors are the addresses of the code which is executed when the corresponding condition occurs. It is the responsibility of the programmer to ensure that each of these locations contains a valid address. Each interrupt is briefly described in this section.

Vector Address		Vector Description
MSByte	LS Byte	
FFFE	FFFF	RES
FFFC	FFFD	NMI
FFFA	FFFB	SWI
FFFB	FFF9	IRQ
FFF6	FFF7	FIRQ
FFF4	FFF5	SW12
FFF2	FFF3	SW13
FFF0	FFF1	Unused

Table 2: Vector Addresses

RES

This vector is executed when the $\overline{\mathrm{RES}}$ pin on the processor is held low for more than 1 bus cycle. On the SBC-09 this happens at power on and accordingly this vector should point to the initialisation code.

NMI

This vector is executed when the $\overline{\mathrm{NMI}}$ pin on the processor (Non-Maskable Interrupt) undergoes a negative transition. This level of interrupt is not used on the SBC-09.

FIRQ

This vector is executed when the $\overline{\mathrm{FIRQ}}$ pin on the processor (Fast Interrupt Request) is held low so long as it is not masked by the CC register. This level of interrupt is not used on the SBC-09.

IRQ

This vector is executed when the $\overline{\mathrm{IRQ}}$ pin on the processor (Interrupt Request) is held low so long as it is not masked by the CC register. On entry to the interrupt routine, all registers are stacked and further $\overline{\mathrm{IRQs}}$ are prevented by setting the 1 bit in the CC register. IRQ will be re-enabled on exit from the interrupt routine due to the un-stacking of the CC register and it would be unwise to un-mask it implicitly within the routine. This interrupt may be generated by the 6821 on the SBC-09.

SWI, SWI2, SW13

These vectors are executed as a result of the three software interrupt instructions SWI, SWI2 and SWI3 and may be considered as analagous to subroutines. All registers are stacked and SWI (but not SWI2 or SWI3) mask IRQ and FIRQ. Clearly the masked IRQ will be un-masked (so long as it was in this state before execution of SWI) on exit from the interrupt routine due to unstacking the CC register.

Addressing Modes

The 6809 has a number of addressing modes which may be used with its instruction set.

Whereas some instructions only allow a single addressing mode, the availability of a comprehensive range of addressing modes provides flexibility in many of the instructions.

Each of the addressing modes are described in this section.

Implied Addressing

In this addressing mode, the operand is inherent in the instruction. For example the instruction ASK (Add B to X) can only operate on these registers.

Immediate Addressing

This addressing mode allows a constant value given in the instruction (actually it is stored immediately following the Op-code) to be used as the operand. E_{g}. LDA \# $\$ 80$ causes the value hexadecimal 80 to be loaded into A.

Extended Addressing

Here the operand is the address of the data to be used in the instruction. Although a numeric value can be used it is more common to use a previously defined label which will be substituted by the assembler. Eg. LDA FRED causes the data at address FRED (a label previously defined) to be loaded into A.

Extended Indirect

This is similar to extended addressing but has a further level of indirection. In other words the operand is the address of the address of the data. Eg. LDA (FRED) will cause the data at the address at address FRED to be loaded into A.

Direct Addressing

This is similar to extended addressing except for the fact that only the least significant byte of the address of the data is given, the most significant byte having previously been loaded into the DP register. This addressing mode is used as it executes more quickly and the instruction takes up one less byte. There are various types of assembler syntax for this mode. Eg. in LDA >L1, the ">" forces the assembler to direct addressing. Giving only a 1 byte address obviously forces direct addressing and use of the SETDP assembler directive will cause syntax which would otherwise result in extended addressing to generate a direct addressing instruction if the address given is within range of the DP register.

Register Addressing

Here the instruction acts on one or more registers. Eg. TFR A,B transfers the contents of accumulator A to accumulator B.

Indexed Addressing

This addressing mode uses an index register (usually X or Y) to generate the address of the data. In its most basic form, the index register contains the address of the data. Eg. LDA, X causes the data at the address in X to be loaded into A . The second category of indexed addressing uses a constant offset. Eg. LDA 2,Y causes the data at the address generated by adding 2 to the contents of Y to be loaded into A. The third category uses an accumulator as an offset. Eg. LDA A, X causes the data at the address generated by adding A to X to be loaded into A. The final category allows the index register to be post incremented or pre-decremented. Eg. LDA , X + has the same effect as LDA , X except that the index register X is incremented after the load. LDA , -Y causes the index register Y yo be decremented before the load. Double increments or decrements may also be used. Eg LDA,Y++.

Index Indirect Addressing

This addressing mode is the same as indexed addressing but has a further level of indirection. Eg LDD $(, X++)$ causes the data at the address pointed to be X to be loaded into D following which X is incremented by 2 .

Relative Addressing

This addressing mode is used in branch instructions and is so called because it causes a branch to an address generated as an offset from the current PC address. Eg. BRA FRED causes a branch to the label FRED. Actually the assembler will have calculated the offset from the current address and used this as the operand.

Program Counter Relative

Here the PC is used as a pointer register with a constant offset. This provides a means of writing position independant code. Eg. LDA FRED.PCR causes the data at the address obtained by adding the contents of the PC to FRED to be loaded into A. Program Counter Relative Indirect is also available.

Instruction Set

A full definition of the instruction set would list each instruction showing the op-codes and number of clock cycles for each addressing mode available as well as giving a formal definition and showing which condition codes are affected. This would take up a lot of paper and as such we are going to abreviate this somewhat. We will tabulate all the instructions in categories, describing their action. indicating the addressing modes available and showing the condition codes affected. At the end we will then explain a few of the more tricky ones. For those readers who really do need to know the additional information, a programming card or data book should be obtained from Motorola (or other 6809 manufacturers) but these don't come cheap.

Table 3 is the instruction set summary and this needs some explanation as a number of abbreviations have been used to save space.

Addressing Modes Available		1 Implied or Register
	D	Direct
	E	Extended
	\#	1 mmediate
	X	Indexed. Indexed Indirect, PC Relative and Indexed Indirect
	R	Relative
Definition	A.B.D.S.U., X, Y,	Registers
	PC.CC	
	M	Memory
	EA	Effective Address
	+	Arithmetic Add
	-	Arithmetic Subtract
		Arithmetic Multiply
	V	Logic OR
	θ	Logic Exclusive OR
	,	Logic AND
	\bar{X}	Complement of X
	:	Concatenation
	\rightarrow	Transer into
Condition Codes Atlected	.	Not Affected
		Set or Cleared According to Result
	0	Cleared
	1	
	U	Undefined
	c	CC Affected as Direct Result
	E	Same as "C' if CC is specified

And finally, a word of explanation about a few of the less obvious instructions:

Branches

In Table 3, the mnemonic for each branch instruction had (L) in front of it. To take (L)BEQ as an example, this signified two instructions, namely $B E Q$ and

Address	Register
0	Peripheral Register A or Data Diection Register A
1	Control Register A
2	Perpheral Register B or Data Direction Register B
3	Control Register B

Table 4: 6821 Registers
The data direction register controls whether each bit of the corresponding port is an input or an output. Bit 0 (the least significant) controls PA0 (or PB0) through to bit 7 which controls PA7 (or PB7). In each case setting a 0 causes the pin to be an input whereas setting a 1 causes it to be configured as an output.

The peripheral register similarly has bits 0-7 mapped onto PA0-PA7 (or PB). In this register, for any pin configured as an output, the value written to the corresponding bit will control the signal level on the pin. For any pin configured as an input, the value read from the corresponding bit indicates the signal level on the pin. Reading this register clears any interrupt generated by that port.

The control register is rather more complex and is illustrated in Table 5.

$\begin{gathered} \text { Bit } 7 \\ \text { (M.S.B.) } \end{gathered}$							$\begin{array}{r} \text { Bit } 0 \\ (\text { (L.S.B) } \end{array}$
IRQA 1	R10A2	CA2 Direction	CA2 Transition	CA2 Interrupt	DDRA Access	CA1 Direction	CA1 Interrupt

Table 5: 6821 Control Register
 Bit Designations

1RQA1 and IRQA2 are read only bits. They indicate that an active transition has taken place on CAl or CA2 respectively if configured as an input. These bits are typically used to determine the source of an interrupt and are reset once the register has been read.

CA2 Direction is used to configure CA2 as an interrupt input or à output. A 0 represents input and a 1 output.

CA2 Transition has a diferent function depending on whether CA2 is an input or an output. For an input, a 0 indicates that the active transition (ie the one which generates an interrupt) is high to low whereas a 1 represents low to high. For CA2 as an output, a 0 indicates that it is a handshake output (this is complex and we won't go into it here) whereas a 1 indicates that it is a normal output.

CA2 Interrupt has a different function depending on whether CA2 is an input or an output. For an input, a 0 disables the generating of an interrupt as a result of an active transion on CA2 (but IRQA2 is still set) whereas a 1 enables this. For CA2 as an output, the value written here controls the signal level on the pin.

DDRA Access is used to control whether the register at address 0 (address 2 for port B) is the Peripheral Register or the Data Direction Register. 0 gives the Data Dire Register, 1 gives the Peripheral Register.

CA1 Transition and CA1 Interrupt are similar to the corresponding CA2 bits but in the case of CA1, this pin can only be an input.

A Programming Example

The last five paragraphs contain concentrated information which is really for reference by those who already have some background knowledge rather than for reading through from start to finish. To bring this article to a close we will present the source of the object code given last month which was used in
conjunction with the practice interface card for testing the SBC-09. Although this article is not intended as a tutorial on 6809 programming, it is anticipated the reader will gleam quite a lot by studying this listing. Please note that the syntax of the assembler used (the shareware product suggested earlier) conforms to a UNIX standard and is therefore different to Motorola's syntax. The documentation supplied on disk clarifies this. It is further suggested that the would be 6809 programmer enters the source onto a computer, crosscompiles it, blows an EPROM (or uses an EPROM emulator) and tests it on the SBC-09, firstly in an unmodified form and then attempts to make changes to it. The following alterations are suggested:

1. When counting is enabled, read the DIP switches and use their setting to control how the LEDs count. Eg. upwards, downwards, in steps of two etc.
2. Use one of the DIP switches to control the speed of counting.
3. Cause the other push button to generate an input. Use this interrupt to reset the LEDs to a known state.
4. Write a new program from scratch. Start with all LEDs off. Each time an interrupt occurs, add the value on the DIP switches to a running total, displaying the results on the LEDs.
5. Design an application specific interface card and write some firmware to do something really useful. When you've got it working let us know here at ETI. It may result in your name in lights!

ETI SBC-09 control computer test program

equ	IOarea,	$X^{\prime} 8000$;/0 area
equ	PIA,	IOarea	;682I PIA
equ	PortA,	PIA	;Port A
equ	DDRA,	PortA	;Data direction register A
equ	CRA,	PortA +1	;Control register A
equ	PortB,	PIA +2	;port B

.equ	DDRB,	PortB	;Data direction register B
equ	CRB,	PortB +1	;Control register B
.equ	EPROM,	X'C000	;Start of 27128 EPROM
.equ	RAM,	X'0000	;Start of RAM
.equ	stack,	RAM $+\mathrm{X}^{\prime} 100$;Top of stack
.equ	Running,	Stack +1	:Counting in progress
.org	X'FFFO		;Vectors - end of EPROM
	.dw	Init	;Reserved
	.dw	Init	;SWI3 (unused)
	dw	Init	;SW12 (unused)
	.dw	Init	;F1R0 (unused)
	. d w	IRS	; IRQ
	.dw	Init	;SWII (unused)
	dw	Init	;NMI (unused)
	.dw	Init	;Reset
org	EPROM		Code - start of EPROM
IRO:	TST	PortA	;Read PortA to clear IRQ
	COM RTI	Running	;Complement counting flag Return
Init:	LDS	\# stack	;Initialise stack pointer
	CLR	Running	:Running not enabled
	CLR	CPA	;Select DDRA instead of PortA
	CLR	DDRA	;Set PortA to all inputs
	LDA	X'05	;Code for PortA instead of
	STA	CPA	;DDRA and interrupt on CAI
	CLR	CRB	;select DDRB instead of PortB
	LDA	\# X'04	;Set PortB to
	STA	DDRB	;all outputs
	LDA	X'04	;code for PortB instead of
	STA	CRB	;DDRB and no interrupts
	CIR	PortB	:Turn all LEDs off
	ANDCC	X'EF	;Enable interrupts
Count:	TST	Running	;Counting flag enabled?
	BEO	Count	;If not loop
	INC	PortB	;Increment the LEDs
	BSA	Delay	;Wait a while
	BRA	Count	;Loop back to start
Delay:	LDY	\# X'2000	;Delay loop initial value
Delay1:	LEAY	-1,Y	; Decrement
	BNE	Delay 1	;Loop if not zero
	RTS		;Return

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART kits give you the
pportunity to build the very best opportunity to build the very best engineared hifi equipment there is, designed by the leaders in their field, using the best components that are available.
With a HART kit you not only get more performance for your money but also the added free bonus of your own hands-on experience of modern electronic assembly. The HART combination of innovative circuit techniques, sound engineering design and protessional grade components is your recipe for success in the quest for affordable ultimate audio fidelity.
Telephone or write for your FREE LISTS giving full details of all our Kits, components and special offers. Featured this month is the:AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hili system This kit is yourway to get iK performance for a few tenths of the cost!
Featured on the front cover of 'Electronics Today International' this complete stereo power amplifer offers WorldClassperiormance allied to the famous HART quality and ease of construction. John Linsley
Hood's comments on seeing a complete unit were enthusiestic:Hood's comments on seeing a complete unit were enthusiastic:"The axternal view is that of a thoroughly professional piece of audio gear, neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is redolent of quality, both in components and in layout:"
Each power amplifier channel has its own advanced double sided PCB and noless than four power mosfets, directly mounted on the board for consistent predictable performance. The sophisticated
power supply features not lessthan sixseparate voltage rails, all fully power supply features not less than six separate voitage rails, all fully
strabilised, and the complete unit, using a toroidal transformer is strabilised, and the complete unit, using a toroidal transformer, is
contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockets, To make assembly veryeas withlEC mains input and output sockets. To make assembly very easy
ail the wiring is even pre-terminated, ready for instant usel

The standard amplifer comes with the option of a sterec LED power meter and a versatile passive front end giving switched inputs, and using ALPS precision, low-noise, volume and balance controls. All inputs are taken to gold plated Phono sockets and outputs to heavy duty 30 amp binding posts. These are also available gold plated as an optional extra.

Anothernew option is the relay switchedfrontendstage which even gives a tape input and output facility. This means that for use with tuners, tape and CD players, or indeedany other 'fiat' inputs the power amplifier may be used on its own, without the need for any externat signal handling stages. For your special system requirements our 'Slave' and 'monobloc' versions without the passive input stage and power meter are also available
All amplifiers fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. The case and front plate are finished in textured matt black with white lettering and all parts are precisionig. punched for accuracy.

K1100 STANDARD Amplifier Kit. Total cost of all parts is $£ 503.56$ SPECIAL DISCOUNT PRICE ONLY 8428,02 If Bargraph Power Meter not required

Deducf $£ 32.81$ If Relay Input System required Deduct $£ 32.81$ K1100G Option with Gold plated speaker terminals Add $£ 4.40$

K1100S SLAVE Amplitier Kit. Total cost of all parts is £382.85 SPECIAL DISCOUNT PRICE ONLY £325.42

K1100M MONOBLOC Amplifier kit. Total cost of all parts is $£ 297.65$ SPECIAL DISCOUNT PRICE ONLY £253.00

All HART kits are designed to the very highest standards for easy home construction, and can be built by anyone with reasonable manual ability. If you are still not convinced how easy it is to build it yourself with a HART kit you can order the Instruction Manual to read for yourself and we will refund the cost when you buy your kit!

1100 CM Construction Manual. $20+$ pages of step by step assembly instructions, circuit diagrams and full parts identification list $£ 5.50$

RLH11 Reprintsof the latest 1989 articles \qquad $£ 1.80$

Our FREE LIST has further details of this kit as well as our range of super quality tuners. ALPS precision pots and lape recorder circuits. Send for your copy.

high ouality replacement cassette heads

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better thannew Standard inductances and mounting make fitting easy on nearly all machines and our TC1 Test Cassette helps you set the at lower prices, compare our prices with other suppliers and parts ourheads are suftable for use with any Dolther suppliers and see! All ourneads are suitable for use with any Dolby system and are normally home construction and industrial users HS16 Censtruction and industrial users
HS16 Sendust Alloy Stereo Head. High quality head with excellent trequency response and hyperbolicface forgood tape to head contac
HC4O NEW RANGE High Beta Permalloy Stereo Head. Modern space save design for easy fitting and low cost. Suitable for chrome detalandlerrictapes, truly a universal feplacement head from hi-fi decks to car players and at an incredible price tool $\mathbf{E 6 . 6 0}$ HX100 Special Ofter Stereo Permalloy Head $\mathbf{\varepsilon 2}$ HRP373 Downstream Monitor Stereo Comlbination Head $£ 44.39$ HO551 4-TRACK Record \& Play Permalloy Head for auto-reverse car players or quadrophonic recording -.......................... £16.79
TAPERECORDER CARE PRODUCTS
HART TC1 TEST CASSETTE. Our farnous triple purpose test cassetie. Sets tape azimuth, VU leveland tap speed $£ 5.36$ DEM1 Mains Powered Tape Head Demagnetiser, prevents noise on playback due to residual head magnetiser £4.08 DEM115 Electronic, Cassette Type, demagnetiser £8.61 Our new AUTUMN/WINTER '90 List is FREE Sendforyour copy now. Overseas customers welcome please send 2IRCs to cover surface post, or 5 for Airmail.
We now accept inland and oveseas orders by post or telephone on all Access/Mastercharge and Visa credit cards.
Please add part cost of carriage and insurance as follows INLAND: Orders up to $£ 20-£ 1$; Orders over $£ 20-£ 250$; Next day - $£ 9$ OVERSEAS: Please see the ordering information with our lists.

Peerless CC FORCE

4.

Wilmslow Audio's NEW range of speaker kits from Peerless.
This new range of four kits utilise CC technology drive units for optimum performance.
The kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly).
Pictured here the Force 6, a large floor standing design.

Dimensions:
$800 \times 275 \times 335 \mathrm{~mm}$
Response:
$32 \mathrm{HZ}-20 \mathrm{KHZ}$
AMP Suitabllity: $30-120 \mathrm{w}$
Impedence: 8 ohms
Price
carr.ins.
 Basic forms.

Wilmslow
 Audio

Wellington Close, Parkgate Trading Estate Knutsford, Cheshire WA16 8DX
Tel: (0565) 650605

THE K2 LOUDSPEAKER KIT

Selecting loudspeakers for a hi-fi system can be a traumatic experience, particularly if you are in the habit of reading hi-fi magazines, which,over recent years, have regarded the loudspeaker end of a system as the least important link in the chain. The emphasis has been placed on signal retrieval at the record deck or CD player. This has led to the ridiculous situation
where people are literally encouraged to spend a small fortune on record decks, tone arms, cartridges and esoteric amplifiers. Then, almost as an after thought, a pair of budget loudspeakers, are bought which in most cases, are incapable of delivering the full range of frequencies you've paid through the nose to produce. No one would disagree with the importance of the front end of a system, after all, you want to hear everything that is on the recording. Why then restrict the output by using poor loudspeakers?

This situarion has resulted in many speaker manufacturers scrambling to produce ever cheaper budget products, with little money being invested in quality drive units, a pair of two-way speakers retailing for approximately $£ 150$, will contain drive units worth a total of about $£ 5$ in each cabinet. Trying to buy a decent pair of speakers to suit your system can become a nightmare, faced with the conflicting views of reviewers in each of the different hi-fi magazines, the necessarily restricted range of products stocked in local hi-fi shops and manufacturers constantly changing the model you're likely to buy, sometimes twice a year. So that you end up with a Mk 1 which before very long is valueless, because eveyone wants the Mk 3 which has just come out and is 'better' than the highly praised version you had the misfortune to buy! This 'flavour of the month' philosophy drives the hi-fi world, urging people to buy not necessarily better products, indeed, in many cases inferior articles costed down to the bone. In our view, a good loudspeaker, properly designed say in 1985, should STILL be a good loudspeaker in 1995 and beyond. All this bodes ill for the potential customer, vainly seeking a decent product at a reasonable price in a minefield of confusing advice and possibly inferior products.

The practical solution to this problem is to build your own speakers and given that you are capable of some simple woodwork and can use a soldering iron, the rest is relatively easy, especially if some thought

A twin driver loudspeaker kit by Mike Fox

Fig. 1 Cutting dimensions for each speaker cabinet.

has been put into the design to produce a product which is easy to make and when completed, will produce satisfyingly accurate, clean, dynamic quality sound at a fraction of the price you would pay in a hi-fi shop for an equivalent model.

The Kord K2s were designed with this in mind, having compact size, using good quality components, they will enhance any hi-fi system. The sound quality is excellent, offering open and detailed uncoloured sound, with surprisingly extended bass response for their size, tightly contolled transients and a sparkling top end performance on all types of music, from rock through to classical, the better the system, the better they'll sound! The K2's compare more than favourably with speakers costing around the $£ 250 / 300$ mark.

Fig. 3 Speaker Grille Frame.

CUT-OUT CENTRE AS SHOWN - SAND EDGES - THEN STRETCH DARK BROWN STAPLE ON BACK OF FRAMME. FIX TO CABINET USING VELCRO IN EACH TO CORNER \& MIDDLE OF EDGES

SPEAKER GRILLE
FRAME
MATERIAL $6.5 \mathrm{~mm}(1 / 4 \mathrm{in})$ PLY

Design

The Kord K2 is a two way compact sized reflex or ported design, which, if well designed, gives enhanced bass output with lower distortion than an equivalent sealed cabinet of the same size. Cabinet size was determined by the fact that most homes nowadays do not want massive speakers cluttering up the place. The aim was to provide a really good quality compact design which would compare with, or better, any equivalent speaker on the market, the emphasis
being on quality. After many hours of testing, measurement and listening that aim has been achieved, the K2 is a loudspeaker, with a ruler flat frequency response. No more need be said. The K2 will demonstrate it's capabilities better than any words!

The design employs a very good quality 165 mm . doped paper cone bass/midrange unit with a cast magnesium alloy chassis and a first class, carefully matched 19 mm polyamide soft dome tweeter. With simplicity of construction in mind, it was necessary to select not only two matching drive units but also suitable roll-off characteristics to enable the use of a very simple crossover. In addition, the bass/mid ' Q ' had to be suitable for reflex loading. Many units were tested and found wanting until the final selection was made. The chosen drive units proved ideal for the purpose, combining the correct roll-off, near matching sensitivity and excellent sound quality.

The crossover is a simple 6 dB /octave system, set at 4 kHz , employing an inductor (choke) in the low frequency section, to assist the bass/mid roll-off, with a resistor and capacitor in the tweeter section (Figure 4). The capacitor Protects the tweeter, whilst the resistor corrects for a slight imbalance in the efficiency of the two units, by attenuating the tweeter and reducing if's output by -1.4 dB . Good quality air cored inductors and polyester capacitors are included in the crossover, as these have a direct bearing on ultimate sound quality. An added bonus of simple crossover networks is that, the less components used, the less any subsequent inefficiencies in the system The efficiency rating for the completed system is a high 88.6 dB SPL at 1 metre/ 1 watt, which means a higher output per watt than less efficient designs.

The cabinet for the K2 (See Figure $1 \& 2$) is a straighforward box, manufactured from 15 mm . MDF board, a very rigid, dense material, which obviates the need for quite a lot of internal bracing. One sheif brace is used in each cabinet (Figure 1) to give additional rigidity and help to keep cabinet vibration from adding it's own colouration to the sound output. Cabinet dimensions are $408 \mathrm{~mm} \mathrm{H} \times 217 \mathrm{~mm} \mathrm{~W} \times 267 \mathrm{~mm}$ D with a volume of 15.75 litres, this being the optimum size for a reflex design, based an Thiele parameters for the particular drive unit employed. Without going into unnecessary details, this volume gave by far the best results, the cabinet being tuned
to 43 Hz wth excellent transient response. The port tubes are mede from 54 mm dia. plastics tube (Tube ID 50 mm) ftied into the front baffle of the cabinets and glued in with Evostik, flush with the panel, the port opening inside the box left unobstructed. Do not under ary circumstances alter the length of the port tube, as this determines the resonant frequency of the cabinet.

Amplifer connections at the rear of the cabinet are good quality insulated terminals which accept either 4 mm . plugs or bare wire. Finally, to give the speakers a professional finish, it was decided to provide the option of making grilles (Figure 3). They are relatively easy to make and may just prevent probing fingers from damaging the drive units, however, for the best results in use, we recommend taking the grilles off, all grilles do have a degrading effect on the high frequencies.

correct depth (The thickness of the speaker flange) and work to the line. It is preferable to rebate, but not vital if you don't feel up to it. The question of finishing the cabinets is up to your individual taste, if you are ambitious, it can be veneered, or much simpler, covered by a laminate such as formica and of course a painted finish is always an option.

In conclusion, atter you have assembled the crossover, complete with leads for the drive units, do not leave it lying around loose in the cabinet, otherwise it will cause some unwanted rattles when the speaker is operating, fix it to either the back or side panel, then twist any loose leads together and cleat them to the sides, also, ensure that the port tube is clear of any obstruction before finally fitting the drive units. Solder the leads on to the drive units as shown in Figure 4. The tweeter is then secured by four 3 mm self tapping screws and the bass/mid. unit by four 4 mm self tap screws. It will be necessary to drill small pilot holes for the screws, then secure both units tightly.

All that remains is to couple it into your system via. reasonably good speaker leads, such as 13 amp cable, then switch on and listen to the sound quality. For best results we recommend using solid metal stands, with good floor contact. The tweeter should be placed at ear level when sitting down and give yourself a pat on the back for doing a good job.

PARTS LIST

Wood (M.D.F.) Cutting List For One Cabinet.	
$2 \mathrm{ff} 376 \mathrm{~mm} \times 186 \mathrm{~mm} \times 15 \mathrm{~mm}$ M.DF.	Front baffle \& back panel
$2 \mathrm{off} 376 \mathrm{~mm} \times 267 \mathrm{~mm} \times 15 \mathrm{~mm}$ M. D. .F.	For side panels
$2 \mathrm{ff} 267 \mathrm{~mm} \times 217 \mathrm{~mm} \times 15 \mathrm{~mm}$ M.D.F.	For top \& bottom panels
1 off $382 \mathrm{~mm} \times 217 \mathrm{~mm} \times 6.5 \mathrm{mmPly}$	For Grille frame lif required)
PARTSUST	
2 off 165 mm Bas/Mid. Drive units	2 off 0.42 mH , chokes
2 off $19 \mathrm{mmH.F}$. Drive units	2 off 3.3 ucaps .
4 off lnsulated terminals	2 off 1R5 resistors
4 off 48A. solder tags	2 off port tubes
8 off 4 mm self tap screws	cable
8 off 3 mm self tap screws	
2 off wadding	

BUYLINES

The cost of the set of parts for a pair of K 2 speakers is E113including VAT and carriage.

The woodwork is NOT included in this kit, however, if you feel unable to make cabinets, an easy to assemble flatpack cabinet kiti is available at extra cost. Complete ready built cabinets may also be produced in the near future. Contact Kord for details at Kord Audio Products Ltd, 7 The Green, Nettleharn, NrLincolnLN22 NA. Te: 0522 585261 or 750702.

Fig. 5 Frequency Response curves.

E9102-1 Remote Control Timeswitch - Receiver Board F
E9102-2 Anti-theft Alarm (2 boards) H

PCBs for the remaining projects are available from the companies listed in Buylines.
Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the board but also tells you when the project was published. The first two numbers are the year, the next two are the month
Terms are strictly payment with order. We cannotaccept official orders but we can supply a proforma invoice if required. Such orders will not be processed until payment is received.

E9002-3	Superscope CRT Driver Board
E9002-4	Superscope Timebase Board
E9003-1	Superscope Y1 input board
E9003-2	Superscope Y2 input board
E9003-3	Superscope switch generator
E9003-4	Business power amp board
E9003-5	Business power supply board
E9003-6	Business pre-amplifier board
E9003-7	Water hole
E9003-8	Super Siren
E9003-9	Val's badge
E9004-1	Bass Amplifier DC Protection
E9004-2	Bass Amplifier Graphic Equalise
E9004-3	Bass Amplifier Micro N
E9004-4	Quad Power Supply O
E9005-1	Business Display
E9005-2	Phone Lock and Logger
E9006-1	Dark Room Timer
E9006-2	Telephone Extension Bell
E9006-3	Telephone External Bell D
E9006-4	Fecko Box
E9006-5	Bug Spotter
E9007-1	Guitar Practice Amp
E9007-2	Digital Frequency Meter
E9007-3	Footstep Alarm
E9007-4	Transistor Tester
E9007-5	Decision Maker
E9008-1	AC Millivoltmeter
E9008-2	Temperature Controller
E9008-3	FM Generator
E9009-2	Slide Projector Controiler
E9009-2	Ultimate Diode Tester
E9009-3	The Entertainer
E9010-1	Component Tester
E9010-2	Active Contact Pickup
E9010-3	R4X Longwave Receiver
E9011-1	The Autocue (2 boards, 1 double sided) ... N
E9011-2	Infra-lock transmitter (2 boards) K
E9011-3	Infra-lock receiver
E9011-4	Four-track cassette recorder (record/playback one channel)

PCB SERVICE February
E9011-5 Four-track cassette recorder (Bias/erase oscillator boardE9012-1 Infra SwitchF
E9101-1 Remote Control - Main Board J
E9101-2 Remote Control - Display Board H
E9101-3 Remote Control Timswitch - Transmit board E
E0101-4 SBC of Micro-Controller Board F
E9101-5 SBC of Practice Interface Board F
E9101-6 5 in 1 Remote Sensing Switch E

TO: ETI PCB SERVICE, READERS' SERVICES,
ARGUS HOUSE, BOUNDARY WAY,
HEMEL HEMPSTEAD HP2 7ST

Price	Price (inc.
code	VAT)
C	$£ 1.80$
D	$£ 2.50$
E	$£ 3.25$
F	$£ 4.00$
G	$£ 4.75$
H	$£ 5.50$
J	$£ 6.62$
K	$£ 7.20$
L	$£ 8.80$
M	$£ 10.60$
N	$£ 13.10$
O	$£ 15.80$
P	$£ 17.90$
Q	$£ 21.80$
R	$£ 23.90$
S	$£ 25.90$
T	$£ 29.00$
U	$£ 32.20$
V	$£ 35.80$
W	$£ 37.90$
X	$£ 40.70$

Please supply:
Quantity Ref. no. Price Code Price Total Price

Post and packing $£ 0.75$
Total enclosed £

Please send my PCBs tox (block capitais please)
Name
Address

TELEPHONE ORDERS may be made on (0442) 66551
ACCESS or VISAFEI|

NEW LOW PRICES ON MICRO PANELS!!

24209 Panel $360 \times 210 \mathrm{~mm}$ covered in
high quallty chips: $8085 \mathrm{AHC}, 8255,8257$ high quallty chips: $8085 A H C, 8255,8257$
$8251 A \times 2,8253-5,8275,8202 A, 2732$ $8251 A \times 2$, $8253-5 ; 8275 ; 8202 A_{1}$ 27ther
2716 all in sockets; $18 \times 4116-2+$ other mainly LS chips + min switches, LED's oscillator, large tants, 3×50 way double sided edge connectors. Amazing value o which could plug Into the above board on this one: $36 \times 4116-20$. Also B085AC 8202 \& 2716 in sockets +55 other etc.
Price_...E6.95
24223
80186 2422380186 Panel $346 \times 280 \mathrm{~mm}$ 'Benchmark 186' panel packed with high class chips. Just look at what you get!!
8018616 bit 8 MHz microprocessor 8018616 bit 8 MHz microprocessor: $\begin{array}{ll}16 \times 4164-12 \text { RAMS; } 2 \times 6116-3 ; & 2 \times 2732 \\ \text { EPROMS: } & 2 \times 8255 A P-5 ; \\ \text { B } 259 A C-2\end{array}$ 68455P. 146818P. 7201 C all in sockets Over BO LS chlps, 4 xtals, back up battery 2×25 way ' D ' sockets etc, etc!! Total chip value alone must exceed $\mathbf{£} 150$ and remember all the large chips are in sockets
24356
E25.00
310 Microprocessor panel bytes RAM) in sockets, 2×2716 EPROM $5 \times$ P8243 $1 / 0$ expanders, also 18 other chips,
Price
4 WAVEBAND RADIO 28891 Superd 4 waveband radio by Ross, model RR5, Covers FM $88-108 \mathrm{MHz}$
MW $518-1610 \mathrm{kHz}$ LW $150-275 \mathrm{kHz}$ SW $5,7-18.1 \mathrm{MHz}(16.5-52.6 \mathrm{~m})$. Nicely styled
case measuring $210 \times 145 \times 70 \mathrm{~mm}$ with case measuring $210 \times 145 \times 70 \mathrm{~mm}$ with clear scale markings. Telescopic aerial,
headphone socket.
volume, tone head tuning socket. and wawn controls. ON/OFF switch switch switch Mains/battery. (Takes cells), Orig
our price.

COMPONENT PACKS

LOTS MORE IN OUR CATALOGUE! K531 Precision Resistor Pack - High quality, close tolerance R's with an extremely varied selection of values mostly $1 / \% \mathrm{~W}$ and $1 / 2 \mathrm{~W}$, tolerances from 0.1%
meters, test gear etc
Price 250/£3.00; 1,000/£10.00 K538 Dlode Pack - untested small signal before seen!!
Price/1,000
K537 IC Pack - a mix of linear and $\mathbf{2} .50$ chips, from 6 to 40 pin. All are new and marked, but some may not be full spec. Price/100
K539 LED Pack. Not only round but many shaped LEDs in this pack in red, vellow, green, orange and clear Fantast

100/モ5.95; 250/£11.7
Price
K575 Plastlc Power Pack. Mainly TO126 and TO220 transistors, SCRs, Triacs etc offering
BD types
BD type
50/£7.50
K581 copper clad board pack. We have now obtained further supplles of offcuts, all reasonable sizes. May includ fibre. Pack of approx 20059 ins

Price

K582 Polystyrene Caps. An amazing range of values from a few pF to 0.01 Tolerances $1-20 \%$. Voltages to 500 V Pack of 200
K580 Metal Oxide resistors, TR4 $\mathbf{8} .0$ by Electrosil by Electrosil. Wide range of values, value pack of 200.
Price K5ai a selection of toggle swi 1990 Catalogue. includes single pole to 4 pole sub min, and min. Pack of $50, £ 30.00$ at catalogue prices.

MOTOR + GEAR PACK

K579. This pack contains 10 assorted battery powered motors (mostly 3V) + 90 gears etc; $16-60 \mathrm{~mm}$
Price.
INDICATOR PACK
K700 Big variety of neons in this pack Round, square and oblong, clip and screw fix. Red, Green, Amber and Clear sultable reslstors included. Really great value mains are Price ... 20/E2.50

1991 CATALOGUE

YOU GET A GREAT DEAL MORE WHEN YOU DEAL WITH GREENWELD!

The 1991 Greenweld Catalogue is out NOW!

* Many substantial reductions
* Quantity pricing for bulk buyers
* 132 pages of value-packed goods
* Next 6 updates plus lists included in price
* Easy to use order form
\star 1st class reply paid envelope
\star Our famous Bargain List
Price to include Catalogue, current bargain list and next 6 lists. All supplied with reply paid envelope E2.50 (UK \& BFPO) E5.00 Overseas

SWITCH MODE POWER SUPPLIES

over the years, we ve had many different switch mode power supplies, of the fintest unit is without doubt one Astec, it is a totally enclosed steel cased Astec, it is a totally enclosed steel cased nas incorporated in it a switched and fused IEC malns inlet inside, the PCB is $160 \times 80 \mathrm{~mm}$ with output pins fitted on one end A connector to these pins to extend the outputs to the exterior of the case is provided.
Specification:
Input:
Outputs

BM41012

Total Wattage:
5 V 3.75 A
12 V 1.5 A
12 V 0.4 A
E14.95;
nother Astec model
partially cased the overall size being $160 \times 104 \times 45 \mathrm{~mm}$ The PCB measures $160 \times 100 \mathrm{~mm}$. Input and Outputs are on flying leads, all colour coded. There is also an additional IEC socket to extend mains to another unit
pecification
$\begin{array}{ll}\text { Input } & 115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\end{array}$
outputs
Total Wattage +12 V 0.15 A
Price E6.95; $\quad 100+5.21$
Also still available: An Astec 'bare board' model. The PCB is standard Eurocard size, $160 \times 100 \mathrm{~mm}$, Input and outputs are on right angle PCB pins. This is a very compact mo
specification:
Model Number ac8151-01
input $\quad 115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Outputs

5V 2.5 A
12 V 2 A
Total Wattage 40W
Price E12.95; $\quad 100+8.91$
28887 Made by STC, this $160 \times 100 \mathrm{~mm}$ PCB is attached to an aluminlum chassis $165 \times 102 \times 65 \mathrm{~mm}$ and has a single 5 V 6A output. Supplied with connection details, we can offer these at fraction of their normal cost!
Total Wattage
5 V 0.5 A
50 W
E 17.95
VISTEL II VISUAL TELEPHONE
Total communication for deaf people - this brilliant piece of equipment has a full
OWERTY keyboard and 40 character screen. Text editor. 9,500 character memory OWERTY keyboard and 40 character screen, Text editor, 9,500 character memory interface Modem support v21/23/25 These are new and boxed but because the makers are bankrupt, there's no guarantee. Originally sold for over $£ 500$. A comprehensive 143 page instruction manual is provided. (Manual only-send $\dot{\text { E }} 12$
£10 refunded on return).
our special price

E150.00

BBC SOFTWARE

Special Price to schools

for Classroom Pack !

For BBC 'B'
24326 Music Master recorder tutoring
system, was £52.78
our price. \qquad
24328 Mupados Recorder Tutor with stereo cassette containing 52 tunes and handbook. Originally $£ 30.94$

Our price

\qquad . $£ 7.95$
Micro Maestro turns computer screen Into a muslc stand! Supplied with audio cassette Original price £17.25
24332 Keyboard
24333 Concert pitch
\square .84 .95
24334 B ${ }^{\circ}$

ELECTRONIC COMPONENTS

BREADBOARDS

FREE,

breadboard sold this month! K574 wire link pack with about 250 links for use with breadboard or PCB's. G708 Protobloc 1.400 tlepoints, size $80 \times 60 \mathrm{~mm}$. Takes up to 316 pin chlps,
Price ... $\mathbf{\Sigma 2} .50$ 6711 protobloc 2 has a total 840 tie points. Will accommodate up to 716 pin devices. Size $172 \times 64 \mathrm{~mm}$.............. E3.95 G712 As above, but mounted onto a rigid base plate complete with 34 mm terminals for power connections. mounting bracket which clips into the base is also provided to accept a variety
of components including switches and pontentiometers, etc E6.95 a rigld baseplate with 3 coloured terminals, for power connectlons C756 3 of type 6711 and an additlona strip of 100 tie points mounted onto a rlgid base plate with 4 coloured terminals. Overall size $242 \times 195 \mathrm{~mm}$. All prices include VAT fexcept bulk
components); P\&P E2.00 per order. MIn
Credit card E5. No cWd min. official
orders from Education welcome; min invoice charge £10.00. by cheque, postal order, cash, Including forelgn currency bank notes, book tokens, Access, Visa,
Connect,
our stores have enormous stocks of Our stores have enormous stocks of
components and our trade counter is
open from $9-5.30$ from Mon-sat. Come Tel: (0703) 236363
Fax: (0703) 236307

GLUE GUNS

87-0400 Hot melt glue

 gun. Electronically controlled heating element which melts the long stick of glue when inserted. Trigger feed. Mains operated. Normally sells for $£ 8.60$Our price £4.95 Glue sticks - pack of 10 $£ 1.00$
NI-CAD BATTERIES
Regular stocks: AAA E1.20; AA 99p; C E2.20; EX E2.30; PPS E3.95
24150 Ex mobile radio battery, damaged) contains $8 \times A A \quad$ size rechargeable Nicads. These can be Each cell rated 1.2 V 600 mA

Price 24149

E $\mathbf{E 3 . 0 0}$
24149 As above but $84 \times 66 \times 33 \mathrm{~mm}$. There are again 8 cells but they are
longer than $A A$ size, belng 73 mm long Each cell rated 12 V 900 mA .
Price ... $\mathbf{E 4} 50$ Half AA Nlcads avallable In 3 styles. charge 25 mA for 16 hr . ends.
Price
21810 Cell enclosed in black heat.......................00
with wires attached at both ends
21811 Pack of 4 cells, enclosed in E1.00 heatshrink with wires attached in black ends.
Price... ES. 95
z1830 Saft 40 RF310 back up Nicad battery PC mounting on $70 \times 22.5 \mathrm{~mm}$ centres Rated 3.6 V . $10 \mathrm{mAH}(20 \mathrm{~mA})$. Overall size $76 \times 28 \times 8 \mathrm{~mm}$.
21829 Nicad 25 mm dia $\times 34 \mathrm{~mm}$.............................. 20 rated 96 V 500 mA . PC mounting long price.. $£ 2.00$ 21719 Back-up battery 4 .8V 110 mA PCB byEmmerich. Normally E3.76. Price.
21720 Lithium Manganese coin cell Extremely thin, just $1.6 \mathrm{~mm} \times 20 \mathrm{~mm}$ da model 2016 Normally $£ 1.67$
21409 PC mounting deac 6 V70p
21409 PC mounting deac 6 V 100 mA
Rating made by Memec $30 \times 15 \times 27 \mathrm{~mm}$ List £4.65.
List £4. 6
E 1.50

TAPE DECKS

28885 Telephone answering machine believed to have been used as an alarm
system. Steel chassis $245 \times 220 \times 35 \mathrm{~mm}$ contains PCB $228 \times 145 \mathrm{~mm} \times 35 \mathrm{~mm}$ 8 -track cassette unit. The output from he tape head is fed into an MC3301 quad op-amp. The PCB also has 10 CMOS gates, ${ }^{3}$ relays, lsolator transformer, connector for BT line, 12 V suppiy etc aiso plug and socket arrangement for Auto/Manual and Bell delay.
24307 8-track cassette mech........................... 100 Sturdy steel chassis $132 \times 126 \times 50 \mathrm{~mm}$. Contalns 12 V motor solenoid tape head and mechanical bits to change track Price...E2.50 24274 Micro cassette mechanism
$100 \times 74 \times 35 \mathrm{~mm}$ as used in dictaphones answerphones as used in dictaphones, optical sensing and hall effect swlteh solenoid and motor.

BULK COMPONENTS (AII + VAT IN THIS SECTION)

Our 16 page Bulk Buyers List is out now send for your copy.
243336 wav DIN lead to open end 100 . 104
28 Cpu 's bzilos
5V 5A TO3 Regulator
12V 5A TO3 Regulator
HM6116LP-4RAM
200V 25A Bridge Rectifier

TIPP32
$4,700 \mu \mathrm{~F} 63 \mathrm{~V}$ cans
BDW94 Darlington

PCB FOILS

Fast Professional Quality Output at an Affordable Price Write, 'Phone or Fax for full details:Number One Systems Ltd.

Over 6000 Installations!
REF: ETI, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND. Telephone: 048061778 (6 lines) Fax: 0480494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611
New
catalogue
available
NOW

A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE WILL COST $£ 1.50$ - TO INCLUDE VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY, PLEASE SEND YOUR REMITTANCE WITH YOUR NAME, ADDRESS AND TELEPHONE NUMBER REQUESTING A COPY OF THE 1990/91 OMNI CATALOGUE.
\square Open: Monday-Friday 9.00-6.00 Saturday 9.00-5.00

19" RACK MOUNTING EQUIPMENT CASES

This range of 19^{n} rack cases features satin black finished 16 SWG (1.5mm) steel front panels (no fixing holes visible) with the rear box assembly constructed from 20SWG (9 mm) steel. The slandard units are $10^{\prime \prime}(254 \mathrm{~mm})$ deep NEW FOR 1990 19" project cases only $4^{\prime \prime}$ (101mm) deep and are available in the following popular sizes:

	PROJECT CASES	
Type	Height	Price
PU1	13/4" $(44 \mathrm{~mm}$)	$£ 16.50$
PU2	$31 / 2^{\prime \prime}(88 \mathrm{~mm})$	$£ 18.50$
PU3	$51 / 4^{\prime \prime}$ (133 mm)	£20.50
PU4	$7^{\prime \prime}$ (178mm)	£22,50
PU6	101/2" (266mm)	£26.50
EQUIPMENT CASES		
U1	$13 / 4^{\prime \prime}$ (44 mm)	£20.70
U2	$31 / 2^{\prime \prime}$ (88 mm)	£24.15
U3	$51 / 4 / 4$ (133mm)	£27,60
U4	$7^{\prime \prime}$ (1788 mm)	£29,90

PO Box 1402 Mangotsfield, Bristol, England, BS17 3RY

CLASSIFIED
James Trott
044266551 Ext 250
Send your requirements to:
ETI Classified Department, ASP, Argus House,
Boundary Way, Hemel Hempstead, HP2 7ST.
Lineage: 55 p per word (+ VAT) (minimum 15 words) Semi Display: (minimum 2 cms)
£14.00 per single column centimetre (+ VAT) Electromart £22.00 per insertion (+ VAT)
Ring for information on series bookings/discounts.
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

NEW VHF MICROTRANSMITTER KIT tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB, SPECIAL OFFER complete kit ONLY £5.95, assembled and ready to use $£ 9.95$ post free. Access/Visa order telephone 021-411 1821. Cheques/P.Os to: Quantek Electronics Ltd, Kits Dept (ETI), 45A Station Road, Northfield, -Birmingham B31 3TE. S.A.E. for details of this and other kits.

EXTENDER CARDS

PCB CAD software, Protel PCB + Autorouter Professional Package, £500 + VAT ono. Centronics PP8 laser printer, 1.75 Meg , little used, bargain, $£ 600$ + VAT ono. 4 prs 30W outdoor speakers, $£ 100$ + VAT. 0626772353.

SOLAR PANELS. $100 \mathrm{~mm} \times$ $60 \mathrm{~mm}, 2.5 \mathrm{~V}, 0.2 \mathrm{~W}, £ 1.30 .6$ for $£ 7.00$. $6^{\prime \prime} \times 6^{\prime \prime}, 6 \mathrm{~V}, 0.7 \mathrm{~W}, £ 5.00 .12^{\prime \prime} \times 6^{\prime \prime}$, 12 V or $6 \mathrm{~V}, 1.4 \mathrm{~W}, £ 8.00 .12^{\prime \prime} \times 12^{\prime \prime}$, $12 \mathrm{~V}, 3 \mathrm{~W}, £ 14.00 .36^{\prime \prime} \times 12^{\prime \prime}, 12 \mathrm{~V}$ $5-6 \mathrm{~W}$, £20.00. Prices include UK P\&P. Complete panels available up to $12 \mathrm{~V}, 12 \mathrm{~W}, \mathrm{POA}$. Orders to, Bob Keyes GW4IED, 4 Glanmor Cres, Newport, Gwent NP9 8AX.

CALL 044266551 TO ADVERTISE

WANTED

Turn your surplus transistors, ICs etc, into cash. Immediate settlement

We also welcome the
opportunity to quote for complete factory clearance. Contact:
COLES HARDING \& CO.
103 South Brink
Wisbech, Cambs. NOW ESTABLISHED OVER 15 YEARS Tel: 0945584188 Fax Number: 0945588844

FM Transmitter Kits

 Also a Telephone Bug Detector Kit Ready buil FM transmiler $\mathbf{E 6 5 0}$ includ ing Posi \& PackingThese are Commerrial Klls - We also stock a selaecliono These are Commercial Kils - We elso stock a selecilon of
Scanning Recelvers, so telephone tor lateel siock or ask for
a free calaliogua

97 LEIGH RD, ATHERTON, GT. MANCHESTER Telephone Atherton (0942) 891140 Mail Order Only

SPECIAL OFFERS

Rates: 55 p per word (+ VAT) min 15 words. Semi Display $£ 14.00$ per insertion per single column cm . Electromart $£ 22.00$ + VAT per insertion. Send to ETI Advertising Dept, ASP, Argus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST.
FOR SALE
\square KITS \square PLANS
COURSES
\square OTHER (PLEASE STATE)

Courses

MAKE YOUR INTERESTS PAY!
More than 8 million students throughotu the worid have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your cholce.
(Tick one box only!)

Electronics	\square	Radio, Audio and TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	\square	Radio Amateur Licence Exam (Ciry \& Guilds)	\square
Electrical Engineering	\square	Car Mechanics	\square
Electrical Concracting/ Installation	\square	Computer Programming	\square
$\mathbf{G C E}$ over 40 'O' and 'A' level subjects	\square		

Name Address P. Code Internetional Corespondence Schooit, 312314 High SL. Suttion. Surfey SM1 1 PR

Start training now for the following courses. Send for our brochure without obligation or Telephone us on 0626779398
(Ref: ETI/02/91)
Name \qquad \square

Telecomms Tech C\&G 271 - Radio Amateur Licence C\&G \square Microprocessor - Introductionto Television

Radio \& Telecommunications Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 9UN

MISCELLANEOUS

KITS, plans, etc, for surveillance, protection (sonic and HV), "007" gear. Send $2 \times 22 p$ stamps. For list ACE(TI), 53 Woodland Way, Burntwood, Staffs.

> ASK
> JAMES TROTT FOR MORE DETAILS

CALL 044266551

NATIONAL $\begin{array}{lllllllll}\mathbf{C} & O & L & L & E & G & E & O & F \\ \mathbf{T} & E & C & H & N & O & L & O & G\end{array}$

PACKAGED SHORT COURSES

The National College of Technology (NCT Ltd) offers a range of packaged short courses in analogue electronics, digital electronics, fibres and optoelectronics and programmable logic controllers for study at home or at work. The advantages are that you may.

- commence at any time - work at your own pace - have a tutor (optional) and there is no travelling involved. BTEC certificates are available subject to the conditions of the award. These highly popular packed courses contain workbooks, a cassette tape, circuit board and components necessary to provide both theoretical and practical training.
Whether you are a newcomer to electronics or have some experience and simply need updating, there is probably a packaged short course ready for you. Write or telephone for details, quoting ETI to:

NCT Ltd, Bicester Hall
5 London Road, Bicester, Oxon OX6 7BU or telephone (0296) 613067 Ext. 202

Abstract

Frosyone PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

WIND Power Guide Catalogue, UK suppliers, list of DIY, plans, generators, inverters, etc, $£ 2.90$. Jemmett Engineering, 58 Peareswood Gardens, Stanmore, Middlesex HA7 1NX.

Panel Engraving Service

Now you can give your projects a more professional finish by using the ETI Front panel service. If you have difficulty with drilling clean holes and producing good quality labels for your treasured projects then this service is a must for you. We will supply complete front panels for selected projects featured in ETI in a variety of base colours and coloured type according to your choice. The material used is a tough laminated plastic of extremely durable quality. It can be used as a glue on front-piece to a metal back plate or even as a front panel in its own right, the decision is yours. We believe the prices quoted are extremely good value for money and indeed hard to beat.
All you do is fill in the coupon stating clearly the code number, your name and address and your remittance made payable to: A.S.P. Reader Services.
For the choice of colour you must add two letters to the end of the code. They are these: BW - Black panel, white lettering, RW - Red panel, white lettering, WB - White panel, black lettering, WR White panel, red lettering.
The ultimate in personal service must be to offer a front panel made to your design'requirements and this does not have to be limited to electronic projects. It could be a design for a clockface, a door-panel insignia, even your own logo. Now we can offer that facility too. Send us by letter or Fax, a neat dimensioned millimetre drawing of your panel design and we will be happy to give you a quote for a coloured front panel. On acceptance of the quote just send in the artwork and we'll do the rest. There's a minimum charge of $£ 10.00+$ VAT for this custom service but we reckon it's worth it.
Here are some recent popular projects to start this brand new service on its way, the prices are inclusive of VAT and postage and packing:
P9005-1 The Business Bass Amp $£ 16.95$
P9003-1 Superscope CRT Panel £ 3.95
P9003-2 Superscope X shift Panel £ 2.95
P9003-3 Superscope T/base £ 4.95
P9003-4 Superscope Y1 Input £ 4.00
P9003-5 Superscope Y2 Input £ 4.00
P9003-6 Superscope All 5 boards $£ 17.95$
P9001-1 Wavemaker FG \& 5.00
P8910-1 Multimeter
£ 5.95
P9007-1 Decision Maker £ 8.95
TELEPHONE ORDERS 044266551 포

ET1 Reader Services, Argus House, Boundary Way, Hemel Hempstead, Herts, HP2 7ST

The March issue of ETI can boast a variety of subjects to tantalise your thoughts and turn some of them into practical reality. For keen radio listeners, we present a project to make a simple SSB radio and radio calibrater.

Tripping the light fantastic, ETI enjoys a series of articles on the LASER giving you the oportunity to build one and try out on a variety of suggested applications. Also on the light theme you can construct a micro-controlled light show to amuse the family.

For audio interests, we have an article on the ins and outs of RIAA equalisation.

American developments in TV technology remains in the forfront of our HDTV series and we continue our beginners electricity course. And finally in the computing world, we present a 64 K EPROM Emulator for PC comatible machines. Sounds like fun for the 90s so rush out and order a copy.

ETI appears on the first Friday in February that's the 1st.

The above anticles are in preparation but circumstances may prevent publication

LAST MONTH

What did you miss in the January issue? This festive edition of the mag contained features on the technology behind aircraft landing systems,the first domestic DAT recorder from Sony and HDTV, the all American way. Projects included the second article on the remote controlled timer, a micro-controller board and a five in one device for detecting mains in cables. There were some festive Tips for Christmas and the second of two articles on Repairing Oscilloscopes.

A limited supply of back numbers are available from Select Subscriptions.

ADVERTISERS' INDEX

BK ELECTRONICSIFC J\&NBULL20
BRIAN PRICE ELECTRONICS 16 OBC
CIRKIT HOLDINGS
CRICKLEWOOD ELECTRONICS. NUMBER ONE SYSTEMS................. 63
OMNI ELECTRONICSDISPLAY ELECTRONICS63
ELECTRONIZE
RACKZ PRODUCTS. 63
R \& TV COMPONENTS 49ELECTRO PARTS
REED ELECTRONICS SPECIALIST SEMICONDUCTORS .. 26,27 8
FRIENDS OF THE EARTH STEWARTS OF READING 47
GREENBANK ELECTRONICS 16 SUMA DESIGNS 29
GREENWELD ELECTRONICS TK ELECTRONICS 28
HART ELECTRONICSTSIEN UK LTD.IBC
HENRYS AUDIO ELECTRONICS... 56 WILMSLOW AUDIO 56

Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price.

NEW VERSION

In the new version V2.23, full consideration has been given to allowing designers to continue using their existing schematic capture packages as a front end to BoardMaker. Even powerful facilities such as Top Down Modification, Component renumber and Back Annotation have been accomodated to provide overall design integrity within the links between your schematic package and BoardMaker.

Equally, powerful features are included to ensure that users who do not have schematic capture software can take full advantage BoardMaker.

V2.23 of BoardMaker is still a remarkable £295.00 and includes 3 months free software updates.

Full analogue, digital and SM support - ground and power planes - 45 degree, arced and any angle tracks with full net-based Design Rule

HIGHLIGHTS

- Net list input from OrCAD, Schema, etc
- Top down modification
- Forward and back annotation
- Component renumber
- Simultaneously routes up to eight layers
- Fully re-entrant gridless autorouting
- Powerful component placement tools
- Extensive Design Rule Checking
- Full complement of CAM outputs
- Full support and update service
- Reports generator
- PostScript output
- SMD support
- Effortless manual routing

NEW AUTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you might route it youself manually.

This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc) in ONE PASS while respecting ALL design rules.

GRIDLESS ROUTING

No worrying about whether tracks will fit between pins. If the tracks widths and clearances aliow, BoardRouter will automatically place 1.2 or even 3 tracks between pins.

FULILY RE-ENTRANT

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting.

$\$ 495$

BoardMaker and BoardRouter are priced at $£ 295.00$ each. As a special introductory offer, they can be bought together for only $\$ 495.00$ which puts sophisticated PCB CAD software within the reach of all engineers. This price includes 3 months free software updates and full telephone technical support.

Don't just take our word for it. Call us today for a FREE Evaluation Pack and judge it for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories 181A Huntingdon Road
Cambridge CB3 0DJ
Tel 0223277777
Fax 0223277747

[^0]: Argus House, Boundary Way, Hemel Hempstead HP2 7ST Tel: (0442) 66551 Fax: (0442) 66998

