THE ELECTRONICS, SCIENCE \& TECHNOLOGY MONTHIY JUNE 1990 £1.60
 OPERATION SUPERSCOPE A users guide

 \section*{ELECTRONICS

 \section*{ELECTRONICS TODAY INTERNATIONAL}

 TODAY INTERNATIONAL}}

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP100 Mk 11 Bi-Polar Output power 110 watts 0 KHz in 4 onms. Frequency Response 15 Hz okhz 3 dB, . H. D. 0.01%, S. N. R. -118 dB , Sens. to PRICE $£ 33.99+£ 3.00$ P\&P.

NEW SERIES II MOS-FET MODULES
OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 onms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor, >300, Slew Rate $45 \mathrm{~V} / \mathrm{US}$, T.H.D. Typical 0.002%, Input Sensitivity 500 mV , S.N.R 125dB. Size $300 \times 123 \times 60 \mathrm{~mm}$
(

OMP/MF200 Mos-Fet Output power 200 walts R.M. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N. R. -130 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $£ 62.99+£ 3.50$ P\&P.
OMP/MF300 Mos-Fet Outpul power 300 watts R.M.S. into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.0008%, Input Sensitivity 500 mV , S.N. -130 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE $£ 79.99+£ 4.50$ P\&P.

等
UU METER Compatible with our four amplifiers detailed above A very accurate visua display employing 11 L . E. D diodes (7 green, 4 red) plus an additional onioh indicator. Sophisticated logic control circuts for very last rise and decay tirmes Tough moulded plastic case, with tinted acrylic fro
PRICE $£ 8.50+50 \mathrm{p}$ P\&P.

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE S.A.E. (30p STAMPED) FOR COMPLETE LIST.

McKENRIE:- INSTRUMENTS, P.A. D ALL MCKENZIE UNITS 8 OHMS IMPEDENCE
 ALL McKENZIE UNITS 8 OHMS IMPEDENCE

 10 R 100 WATT C1010GP GUITAR VOICE ORGAN KEY RES FREO 70 Hz FRFO RESP TO 6 KHz . SENS, 100 dB BOARD, DISCO, EXCELIENT MID $10^{\circ} 200$ WATT C10200GP GUITAR, KEYBOARD, DISCO, EXCELLENT HIGH POWER MID. 10
AES, FREQ, 45 Hz , FREQ, RESP, TO TKHZ SENS, 103 OB , EXCELLENT H
R $122^{\prime} 100$ WATT C12100GP HIGH POWER GEN, PURPOS
RES FREQ 45 Hz . FAEQ, RESP, TO 7 KHz . SENS, 98 dB . $12^{\prime} 100$ WATT C12100TC TWIN CONE HIGH POWER WIDE RESPONS 12100 WAT C12100TC TWIN CONE, HIGH POWER WIDE RESPONSE,
RES, FREQ, 45 Hz FREO, RESP. TO 14 KHz SENS, 100 dB
$12^{\prime \prime} 200$ WATT C 12200 B HIGH POWER BASS, KEYBOAROS, DISCO, P $12^{\prime \prime} 200$ WATT C12200B HIGH POWER BASS, KEYBOAROS, DISCO, P.
RES, FREQ, 40 Hz . FREQ, RESP, TO KHz . SENS. 100 dB . $12^{\prime} 300$ WATT C12300GP HIGH POWER BASS LEAD GUITAR, KEYBOA
RES, FREQ 45 Hz FREO RESP TO KH I SENS 100 dB RES, FREQ, 45 Hz . FREQ, RESP, TO 5 KHz . SENS, 100 dB
$15^{\prime \prime} 100$ WATT C15100BS BASS GUITAR, LOW FREQUENCY $15^{\prime \prime} 100$ WATT C15100BS BASS GUITAR, LOW FREQUENCY, PA., DISCO $15^{\prime \prime} 200$ WATT C15200BS VERY HIGH POWER BASS RES, FREQ, 40 Hz ZREQ, RESP, TO 4 KHZ SENS, 99 dB $15^{\prime \prime} 250$ WATT C15250BS VERY HIGH POWER BASS
RES. FREQ 40 Hz FRFQ RESP TO 4 KHz SENS RES, FREQ, 40 Hz . $15^{\prime \prime} 400$ WATT C15400BS VERY HIGH POWER, LOW FREQUENCY BA RES, FREQ, 40 Hz . FREQ, RESP, TO 4 KHz . SENS, 102 dB ,
$1 \mathrm{~B}^{\prime \prime} 400$ WATT C 18404 BS EXTREMELY HIGH POWER, LOW FREQUEN RES, FREQ, 27 Hz FAEQ, RESP, TO 3 KHz SENS, 99 dB
EARBENDERS: - HI-FI, STUDIO, IN CAR, ETC. PRICE $£ 48.67$ PRICE $53759+83.50$ P PRICE $£ 37.59+£ 3.50$ P\&P PRA. VOICE, DISCO.
PRICE $£ 38.58+£ 3.50$ P\& P. PRICE $£ 65.79+£ 3.50$ P\&P PRICE DISCO ETC. PRIC
PRIC PRICE $£ 55.05+84.00$ P\&P PRICE $£ 75.10+£ 4.00$ P\&P PRICE $£ 82.54+£ 4.50$ P\&P

PRICE $196.47+£ 4.50$ P\&P PRICE $£ 172.06+£ 5.00$ P $\&$ P

BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED FOAM SURROUND
$8^{\prime \prime} 50$ WATT EB8-50 DUAL IMPEDENCE, TAPPED 488 OHM BASS, HI-FI, IN-CAR
$10^{\prime \prime} 50$ WATT EB10-50 DUAL IMPEDENCE, TAPPED 48 OHM BASS, HI-FI, IN-CAR $90+£ 2.00$ P\&P RFS, FREQ, 40 HZ FREQ, AESP, TO 5 KHz , SENS, 99dB $10^{\prime \prime} 100$ WATT EB10-100 BASS, HI-FI. STUDIO
RES, FREQ, 35 Hz FREQ. RESP, TO 3 KHz SENS, 96 dB $12^{\prime \prime} 60$ WAT EB12-60 BASS, HII-FI, STUDIO RES, FREQ, 28Hz FREQ RESP. TO 3KHZ SENS, 92 dB
$12^{\prime \prime} 100$ WATT EB12-100 BASS, STUDIO, HI-FI, EXCEILENT DISCO RFS FREO FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SUR ROUND
 RES, FREQ, 38 Hz . FREQ, RESP, TO 20KHz SENS, 94 dB $8^{\prime \prime} 60$ WATT EBQ-60TC (TWIN CONE) HI-FI, MULTI-ARAAY DISCO ETC RES, FREO, 40 Hz . FREO, RESP, TO 88 KHz SENS, B9dB $10^{\prime \prime}$. $10^{\prime \prime} 60$ WATT EB10-60TC (TWIN CONE) HI-FI, MULTI-ARR
RES. FREO, 35 Hz . FREQ. RESP TO 12 KHz SENS, 86 dB

TRANSMITTER HOBEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPO

3W FM TRANSMITER $80 \cdot 108 \mathrm{MHz}$, VARICAP CONTROLLED PROFESSIONAL PER FORMANCE, RANGE LP TO 3 MILES, SIZE $38 \times 123 \mathrm{~mm}$, SUPPLY 12 V (n $05 A M P$ PRICE $£ 14.49+\varepsilon 1.00 \mathrm{PaP}$

FI MICRO TRANSMITTER (BUG) 100-108MHZ VARICAP TUNED COMPLETE WITH $100-300 \mathrm{~m}$, SILE $56 \times$
$\mathrm{CB} .62+£ 1.00 \mathrm{PaP}$

3 watt FM
3 watt FM
Transmitter VERY SENS FET MIC, RANGE $8862+8100$ PAP. 46 mm . SUPPLY OV BATT, PRICE

*PRICES INCLUDE V.A.T. * PROMPT DELIVERIES* FRIENDLY SERVICE * LARGE S.A.E., 30 P STAMPED FOR CURRENT LIST. OMP VARISPEED TURNTABLE CHASSIS.

\star MANUAL ARM \star STEEL CHASSIS ELECTRONIC SPEED CONTROL $33845 \star$ VARI PITCH CONTPOL \star HIGH TOROUE SERVO NEON STROBE CALIBRATED BAL WEIGHT REMOVABLE HEAD SHELL $1 /{ }^{\prime 2}$ CARTRIDGEFIXINGS \star CUELEVER \star POWER $220 i 240 \mathrm{~V}$ $50,60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ » SUPPLED WITH MOUNTING CUT-OUT TEMPLATE

PRICE $£ 59.99+£ 3.50$ P\&P.
OPTIONAL MAGNETIC CARTRIIDCES
STANTON AL500
PRICE $£ 16.99+50 \mathrm{P}$ P\&
GOLDRING G850
PRICE $£ 6.99+500$ P\&
OMP MOS-FET POWER AMPLIFIERS, THOUSANDS PURCHASED
HIGH POWER, TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

NEW MXF SERIES OF POWER AMPLIFIERS THREE MODELS:- MXF200 (100\% + 100\%) MXF400 (200w + 200w) MXF600 (300m + 300w)

 distotion * Aluminum cases $*$ MXF600 Fan Cones t-0. USED THE WORLD OVER IN CLUES, PUES, CIMEMLS cISLOS E: SIZES:- MXF 200 W19 H3)
 PRICES: MXF200 $£ 171.35$ MXF400 SECURICOR DELIVEAYE12

THEVERYBEST WOUATV LNE:CLE

POWER RATINGS QUOTED IN WATS SME FOF ERO-CASNE
OMP 12-100 (100W 100dB) PRICE ETES x PET DAR

TWO SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS
 F-VCESOW IOPUTMPEOANCES

PIEZO ELECTRIC TWEETERS-MOTOROLA

PIEZO ELECTRIC TWEETERS - YOTOROU

 be added to existin ospeaker syse7s
SUPLIID WITH EACH TWEETER TYPE A KSNZEEA

THE ORIGINAL SURPLUS WONDERLAND!

MONITORS MONOCHROME MONITORS

THIS MONTH'S SPECIALI There has never been a deal llke this onel Prom NEC, normally selling at about $£ 1401$ These are over-engineered for ultre rellablity. 9 " green screen composite Input with etched non-glare screen plus switch able high/ow impedance Input and outpu for dalsy-chajning. 3 front controls and 6 at rear. Siandard BNV carring ledge. Periect as a maln or backup monitor and for quantity usersi £39.95 each (D) or 5 for $£ 185$ (G)

CALL FOR OUSCOUNTS ONHIGHER QUANTITESI Zenlth ZVM-1240-EA brand new 8 boxed $12^{\prime \prime}$ amber flat screen
with optlonal swlvel and tlit base. Sunflex illter with dark tint Standard TTL PC compatlble. 18 mhz bandwidth. Very attractiv "state of the art" tapered grey case. Standard 9 pin D plug connector. 240 volts complete with operalions manual. An ab solute gift at: $\quad \mathrm{E} 50$ (A) $10 / \mathrm{E} 500$ (G). Swivel/tlt bace $\mathrm{E4.05}$. Very high resolution, tully cased 14 " green or amber screen latest technoiogy at the very lowest prical Fully compatble and plug compatible with all IBM PCs and clones iltted with a high psolution, all at a glve away price. Has many extra features ncluding aux $+5 \& 12 v \mathrm{DC}$ outputs to power at least 2 disk drives, and boxed. State whether amber or green screen required. Amber79 Green...............69 (E) input. Adjustable for tilt. Requires 12 vdc. Brand new and boxed in perfect condition.
Motorola M1000-100 5° black $\&$ whity $£ 39$ each or 2 for $£ 75$ (F) Motorola M1000-100 5° black \& white compact chassis measur-
Ing only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$. Ideal for CCTV or computer applications. Accepts standard composite or Individual $\mathrm{H} \& \mathrm{~V}$ syncs. Needs 12 vdc at only 0.8 a . Some units may have minor
screen blemishes. Fully tested with 30 day guarantee and full
data.
Fully cased as above in attractive moulded desk standing
E29.00 (C) swivel. Dim
JVG
751 ultra compact chassis monitor for 12 vdc
0.7 a . Dim
11 $\times 14 \times 18 \mathrm{~cm}$. Simple DFY data induded to convert to composite video input Full data. BRAND NEW
$20^{\prime \prime}$ Black \& white monitors by Aztek, Cotron \& Natonal. All
(B) 20^{n} Black \& white monitors by Aztek, Cotron \& National. AAl
sollid state, fully cased monitors ldeal for all types of AV or CCTV solld state, fully cased monitors ideal for all types of AV or CCTV
applications. Standard composite video Inputs with integral audio amp and speaker. Sold in good used conolition-fully tested with 90 day guarantee. COLOUR MONITORS
Decca $16^{\prime \prime} 80$ budget range colour monitor. Features a PIL tube, beautitul teak style case and guaranteed 80 column resolution, leatures usually seen only on colour manitors costing 3 times our pricel Ready to connect to most computers or video outputs. 75Ω composite input with integrae audio amp a speaker. Fully lested surplus, sold in Iltie or hardly used condilton with 90 day tull RTB guarantee. Ideal for use with video recorder or our
Telebox ST, and other audio visual uses. $\operatorname{cP9}(\mathrm{E}) 3 / \mathrm{3} 2 \mathrm{Z} 75(\mathrm{G})$ HI-DEFNITION COLOUR MONITORS
Brand new Centronic 14* monitor for IBM PC and compatbles at a lower than ever prical Completely CGA equivaien. H1-res
Mitsubushit 0.42 dot plitch olving 669×507 pixels. Blg 28 Mhz Mitsubushi 0.42 dot pltch giving 669×507 pixels. Blg 28 Mhz
bandwidth. A super monitorin attractive styie moulded case.Full 90 day guarantee.

Only
$E 149$ (E)

$$
20^{\prime \prime}, 22^{\prime \prime} \text { and } 26^{\prime \prime} \text { AV SPECLALS }
$$

Superbly made UK manufacture. PIL all solld state colour monitors, complete with composite video a soundinpuls. Alirs.
ifve teak style case. Perfect for Schools, Shops, Disco, Clubs. In EXCELLENT Iltte used conditlon with full 90 day guarantee. 20"....£155 22"....£170 26"....£185 (F) COMPUTER SYSTEMS
TATUNG PC2000. Big brother of the famous Elinsteln. The TPC2000 Professional 3 plece system comprises: Quality high plinth unit containing Z80A CPU and all control circults. PLUS 2 Pilinth unit containing Z80A CPU and all conitrol dircuits. PLUS 2 other features include dual $8^{\prime \prime}$ IBM format disk drive support. Serial and parallel outputs, full expansion port, 64 K ram and ready to run sotware. Supplied complete wth CP/M, Wordstar and Basic. Brand new and covered by our famous 90 day guarantee and backup. Normal price of this unit is ov
Our price orly2999 (E)

V22 1200 BAUD MODEMS

We got a tremendous buy on further stocks of this popula 1200 baud modem - we can now bring them to you at half lae advertised price! Fully BT approved unit, provides standard V22 high speed data comm, which at 120 cps , can save your
phone bill and connect tme by a staggering 75% Uitra silm 45 mm high. Full featured with LED status incicators and remote error diagnostios, Sync or Async use; speech or data switching: built in 240 V mains supply and 2 wire connection to BT. Units
are in used but good condition. Fully tested prior despatch, with data and a full 90 day guarantee. What more can you ask for and at this pricell ONLY £69 (D)

FLOPPY DISK DRIVES
BARGAINS GALORE !
NEW $51 / 4$ Inch from 229.95 I
Massive purchases of standard $51 / 4^{\text {" }}$ drives enables us to present prime product at Industry beating low pricesi All units and are fully tested, alligned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector. and accept the standard 34 way co
SHUGART SA405, BRAND NEW TANDON TMI00-2A IBM compatble DS TANDON TM101-4 80 Track DS CANON,TEC etc.DS half helght.State 40 or $807 \quad$ ع75.95 B TEAC FD-SB-F. $40-80$ DS half height. BRAND NEW ${ }^{〔 75.00(B)}$ 31⁄2 INCH BRAND NEW AT E19.95II
Never before seen price for a $31 / 2^{\prime \prime}$ drive. Standard size belleved o be by Canon. Brand new and packaged - mint conditionl 40 rack SS, run from $+58+12$ vdc with standard power connec-

CHOOSE YOUR 8 INCHI
Shugart $800 / 801$ SS refurbished 8 tested Shugart 851 double sided refurbished \& tested Mitaublahl M2894-63 double sided switchable
 \section*{BRAND NEW
 \section*{BRAND NEW
 SPECAAL OFFERSII}

Dual 8" drives with 2 megabyte capaclty housed in a smart cas with bullt in power supplyl Only 8499.00 (F)
ideal as exterior dirives!
End of line purchase scoopl Brand new NEC D2246 8" 85 megabyte of hard disk storagel Full CPU control and Industry standiard SMD Interface. Ultra hi speed transier and access time leaves the good old ST506 interface standing. In mint condition

MAINS SUPPRESSORS \& FILTERS

The "Flitan" Irom Crotan Is a British made high current mains splke suppressor and RF filter in one, capable of hanoling up for your equlpment plug and a flying lead terminates in a quallty plug (to BS 1363A standard) to go to the malns sacket. There is an Intemal fuse plus one In the plug. Two LED Indicators, one orpower on and the other ilghts it the intemal fuse falls. Dims:6 plug version Fllt-C. Elther only $£ 15.95$ eech or 2 for E29.95 (B) plug version Filt-C. Elther only E15.95 eech or 2 for E29.95 (B) amps maximum. Comes complete with a bullt in malns cable (Engllsh coding), and a three pin miniature non-reverslble socket and a mating plug, to go to the equipment. Ideal for those who are bugged by RF interierence. Very compact. Dims 3-1/8"

IBM KEYBOARD DEALS

A replacement or backup keyboard, switchable for IBM PC, PC-XT or PC-AT. LED's for Caps, Scroll \& Num Locks. Standard Absolutely standard. Brand new \& boxed with manual and key template for user slogans on the function keys. Attractlve belge,grey and cream finish, with the usual retractable legs underneath. A generous length of curly cord, terminating in the 3 standard 5 pin DIN plug. A beautful clean plece of manufac turers surplus. What a deall

E 40 (B) $5 / 2225$ (D)
Brand new and boxed 84 key PC-AT keyboards in standard IBM grey with very attractive mottled finish and "clicky" solld feel keys. 10 function keys on side. English layout and $£$ sign. Green CALL FOR DISCOUNTS ON HIOHER QUANTITES!
RECHARGEABLE BATTERIES LEAD ACID
12 volte 12 volts 3 amplena long life. Type A300.
12 volts $\quad 12$ volts 3 amphours
8 volte
12 volte
Celtrs amp amours
12 volto
12 volte 24 amp hours. A200. RFE. 1.8 amp hours. RFE.
NICKEL CADMIUM
Quallity 12v 4 ah cell pack. Originally made for the Technicoiolor video company. Contalns 10 GE top quality D nicad cells in a mart robust case with a DC output connector. Ideal for portable Ex-equipment NICAD
Ex-quipment NICAD cells by GE. Removed from and in good, used condilion: $\begin{aligned} & \text { D slze 4ah } \\ & F \text { size 7ah }\end{aligned}$ equipment 4 for ES(B)
6 for $\mathrm{Es}(\mathrm{B})$

Hhwchl 10 pen A3 plotter - HPGL - New $£ 495$
$\& 470$ Tro -18 vdo bench PSU. 30 amps. New
DEC VAX11/750 inc. 2 Meg Ram DZ and full documentation brand new conditioni
Calcomp 109s lamge drum 3 pen plotter
Thurlby LA 160A logic analyser
Wayne Kerr RA200 aud source
VG Electronice 1033 Teletext Bridge
Tektronics R140' NTSC TV test signal standard.
Sony KTX 1000 Videotex system - brand new
DECLS11/02 CPU board
ADDS 2020 VDU terminals - brend new

ANALOG to DIGITAL and DIGITAL to ANALOG CONVERTERS

Brand now and boxed Amdek ADA-200 analog to digltal and digtal to analog converter packmost popular PC's; 2 channel Input $\&$ output by software selec tlon; Integral Input/output filters and address decoder, Input pre-amp; over-level defecter, trigger signal detecter cricult; expansion avallabillity and more. Input leval 25 mv to 50 vp pp. Max. samplling frequency Is 44 khz and input gain varlable to 200 tmes. Designed for use with almost any personal computer, allowing converslon of analog signals to digital data for processing by the computer phus conversion back to analog signals. The 26 page manual supplled Includes data on the correct connection to various CPU's Including the B080, Z-80, 6800,6502 and 6809 familles plus data and schematics for user modification of VO filter cut-oft frequencles. Complete with 50 way rbbon cable and edge connector to go to the computer and power cable. All for a fraction of the regular pricel $\quad \mathbf{8 9 . 9 5}$ (C)
POWER SUPPLIES dated. Many types ranging from $3 v$ to 10kv alwaye in stock. Fine Op-9610 20 watts switch mode. $+5 v$ @ $2 a .+$
 2a. -12v @ 0.1a. 6-1/4" $\times 4^{\prime \prime} \times 1-3 / 4^{\prime \prime}$. E19.95(B) $1 \mathrm{a}, \pm 15 \mathrm{v} @$ 1a. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. E24.95(C) @15a,-5v@1a, $112 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$ E49.95(C) $6 \mathrm{a},+12 \mathrm{v} @ 2.5 \mathrm{a},-12 \mathrm{v}$ @ 0.5a, -5v@0.5a, 8 system. +5v@

COOLING FANS

Please specify $\mathbf{1 1 0}$ or $\mathbf{2 4 0}$ volts for AC fane.

3 tnch	AC. $11 / 2^{\prime \prime}$ thick	E 8.50 (B)
$31 / 2$ Inch	AC ETRI silmmine. Only $1^{\prime \prime}$ thick.	\& 0.95 (B)
4 lnch	AC 110/240v 11/2" thick.	£10.95 (B)
4 linch	AC 11/2" thlck	£ 9.95 (B)
10 Inch	Round. $31 / 2$ thlok. Rotron 110v	ع10.95 ${ }^{\text {B }}$
62 mm	DC 1" thick.No.812 for 6/12v.814 24v.	E15.95(A)
92 mm	DC 12v. 18 mm thick.	E14.95(A)
4 lnch	DC 12v. 12w $112^{\prime \prime}$ thlek	E1250 (B)
4 Inch	DC 24v8w. $1^{\prime \prime}$ thick.	E14.50 (B)

THE AMAZING TELEBOX!
Converts your colour monitor Into a QUALTY COLOUR TVII

Brand new high quality, fully cased, 7 channel UHF PAL. TV tuner system. Unit simply connects to your TV aerial socket and colour video monitor tuming same into a fabulous colour TV. Dont worty your monitor does nt have sound, the TELEBOX even has an for Headphones or HI F system etc. Many other features: LED Status indicator, Smart moulded case, Malns powered, Built to BS safety specs. Many other uses for TV sound or video etc. Supplied BRAND NEW with full 1 year guarantee.
Telebox ST for composite video Input monitors.........e29.95(B) Telobox STL as ST but with integral speaker.............234.95(B)

BRAND NEW PRINTERS
 Epson MX-80 FTT One of the most popular pinters around

 B-diractional printing with full loglc seeking. 9×9 dot matrix forenlarged, bold, condensed etc. Standard parallel Intertace, Brand eniarged, bold, condensed etc. Standard parallel Interiace, Brand
label removed from front. Handles tractor,fanfold and Ind lidual Paper. OK with IBM PC and most others. A tremendous buy DED DPC21 minlature ball point pen printer plotier mechanism Includes characlers per fre. Complete with data sheet which Includes arcuit diagrams or simpla diver electronics....e4s(B) Centronice 150 serles. Alwsys known for their rellabity in
continuous use - real workhorses in any anviunmern. Fasi 150 cps with 4 fonts and choica of intertaces.
150-SN up to $9.5^{\prime \prime}$ paper...
150-8W up to 14.5° paper....................................
CALL FOR THE MANY OTHERS IN STOCK INCLUDING DAISY WHEELS.

> Visit our Shop - Tectinical help always on hand
plus many un-advertised specials. You can buy a colour television for as ilite as $£ 291$ Come and Join the gang at 215 Whitehorse Lane!

LARGE OUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

VOLUME 19 No 6

Paul Freeman: Editor
Helen Oughton: Deputy Editor
Mark Webb: Group Editor
lan Houston: Design

Cass Gilroy: Ad Manager
John Brasier: Classified Sales Jerry Fowler: Technical llustration Mannie Cefai: Photography

REGULARS

Page 40

	ABC	

ETI is normally published on the first Friday in the month preceding the cover dare. The contents of this publication including all articles, designs, plans, drawings and programs and belong to Argus Specialist Publications, All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications and any reproduccion requires the prior written consent of the Company © 1990 Argus Specialist Publications. All reasonable care is caken in che prepald legally responsible for errors. Where misrakes do occur a correction will normally be published as soon as possible afterwards. All prices and daca concained in advertisements are accepted by us in good faith as correct at the time of going to press. Neicher the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press

- Subscription rates - UK: $£ 19.20$. Europe: $£ 24$. 10 . Middle East: $£ 24.40$. Far Easc: $£ 26.80$. Rest: $£ 25.85$ or US $\$ 45.00$.

Argus House, Boundary Way, Hemel Hempstead HP2 7ST Tel: (0442) 66551 Fax: (0442) 66998

News

Open Channel

Blueprint

Photocopies

Subscriptions

Read/Write
A place to air your views and ideas.

Classified Ads

Tech Tips

More readers circuits for you to think about.

Courses

Next Month

Audio News

PCB Service

Ooo0000ps!

ASP Reader Services

Last Month

62
66

66

 66

Ad Index

Published by Argus Specialist Publications, Argus House, Boundary Way, Hemel Hempstead HP2 7ST. Tel: (0442) 6655I. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: OI-677 81II. Overseas and nonnewstrade sales by Magazine Sales Department, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST. Tel: (0442) 6655I. Subscriptions by Select Subscriptions Ltd., 5 River Park Estate, Berkhamsted, Herts HP4 IHL. Tel: (0442) 87666I. US subscriptions by Wise Owl Worldwide Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Project 3 Filmsetters, Whitstable. Printed by Acorn Web Offset Ltd, Bradford, W Yorks.

FEATURES/PROJECTS

Earth Current Signals

George Pickworth concludes his series on underground communication.

12

The Telephone

Kevin Kirk gives us a complete insight into this important piece of communicating equipment together with two mini projects for extension bells.

16

Tesla - The man
Nikola Tesla was a man with great vision. George Pickworth outlines the work of this remarkable man.

20

Operation

Superscope

Dennis Stanfield gives us a few extra details on how to use the oscilloscope featured in our February and March issues.

25

Modern Diode

 CircuitsIn the first of a new series, Ray Marston presents a comprehensive guide to that one-way semiconductor device.

Active Noise Reduction
Low frequency noise is a big problem inside the car, but active steps to are being taken to reduce this electronically. Helen Oughton reports.

33

Mixing Desk Review

With home sound recording being so popular and affordable, Paul Freeman reviews a budget audio mixer from Maplin.

Fecko Box

Whether it's a fuzz or echo box you want, Keith Brindley combines the two in this mini project

40

Fuses

Having a rough idea of the type of fuse to put into a circuit is not enough. Brian Kendle gives a blow by blow account.

Bug Spotter

Another little device to sniff out the bugs. A Paul Benton design.

48

Darkroom timer

John Linsley Hood presents a designer-built timer to give photographic perfection.

50

Hand Scanner

Andrew Armstrong reviews an A4 hand scanner for your computer.

The Tesla Coil

Nikola Tesla was mainly preoccupied with high voltage, high frequency coils, George Pickworth now covers the inventors experimental work in this area.

Testing Testing

This month, Mike Barwise gets down to component testing and fault-finding.

58

ELECTRONICS TODAY INTERNATIONAL

Page 52

Page 48

Page 33

NEWS
HI HO SILVER

Athe Electro Optics and Laser International show last month, 3 M were demonstrating the application of their Dry Silver process to digital images.

3M first developed the Dry Silver process in 1964. It provides a method of producing photographic images without the need for chemical solutions. The Dry Silver film or paper is exposed in a similar way to normal film. However, the image is developed simply by applying heat to the exposed film, causing chemical reactions to form a metallic silver image.

Dry Silver technology is now being applied to digital images, in the Lasertechnic 300D Digital Image Recorder. This receives and reconstructs digitally formatted images from any source, with a resolution of 2048 $\times 2048$ in eight values of grey. It may be used in similar applications to a normal laser printer, but produces an output of far higher quality.

Applications of the digital image processing include picture facsimile, meteorological imaging, materials evaluation, fingerprint identification, ultrasound and ocular medicine.

MAKING AN IMPACT WITH ELECTRIC POWER

The prospect of electricallypowered vehicles becomes more attractive with the development of a prototype electric sportscar by General Motors.

The Impact develops 85 kW (155 hp) of power, has a top speed of 160 kph and can accelerate from 0 to 100 kph in 8 seconds. It has an action radius of about 200 kilometers.

The Impact has a plastic body with a drag coefficient of 0.19 . Despite batteries weighing 395 kg , the car's unladen weight is less than 1000 kg , similar to that of a conventional midsize car.

The top speed of the car is normally governed electronically to 120 kph , allowing the car to
reach its maximum range.
In the development of the Impact, General Motors had the benefit of lessons they learned when developing the Sunraycer, their world record solar-powered car. Another advantage over other electric car development projects was that the Impact was designed from the outset as an electically-driven care, rather than as a conversion of a petroldriven car.

The development work was carried out by the GM Advance Development team in Detroit. GM has applied for twelve international patents for the new technology features on the Impact.

PHONES TO SURVIVE NUCLEAR ATTACK

Never mind that the Cold War is coming to an end. British Telecom intend to be prepared for any emergency, with telephone switchboards which will survive a nuclear strike.

BT has won a major contract for digital switchboards for use in emergencies. The special private branch exchanges (PBXs) could work even after a nuclear explosion.

Under the pounds 5 million contract, British Telecom will supply Mitel PBXs to more than 300 local authority emergency centres throughout England and Wales.

The equipment was required to withstand the electromagnetic pulse that follows a nuclear explosion. This pulse would have a catastrophic effect on any computerised equipment. To protect the PBXs, British Telecom incorporated steel enclosures together with line and power protection for all circuits.

Mr Roy Eaton, of the Home Office's Directorate of Telecommunications said: "The successful implementation of this work will provide a modern, resilient network which can provide communications not only for war emergencies but also for peacetime disasters."

But will there be anyone left alive to operate them?

HOME COMPUTER

The computerised home is on the way! Soon you will be able to control heating, lighting, security and appliances from a single console. Further develop-
ment will include such functions as shopping orders, health monitoring and working from home.

Credanet is an integrated home management system from Creda which allows control and management of appliances and equipment. It will also allow access to internal and external information and financial services. The system will operate through existing house wiring by mains borne communications.

A central controller communicates with other units, through transceivers in each appliance, or from a separate unit in place of the standard mains plug. The controller is a processor with built-in software for basic command and control functions. A touch panel integrated into the large display is used to select
operations for auto-control, from programming the heating for the evening to checking the security system.

The display can also be used to show tabular data, such as train timetables, share prices, personal diary, bank balances and so on.

A limited range of Credanet functions can be accessed when you are away from home via the national telephone network. No more holidays ruined by wondering whether you remembered to turn off the heating!

Temperature sensors linked to Credanet allow control of electric heaters either singly or for the whole house. Credanet will ensure that the heating is run to maximise efficiency and can be programmed to operate automatically either on a daily or weekly cycle. It will also store
special programmes, for instance when the house is unoccupied during holidays.

Credanet can also be used to control or monitor all security and safety devices, such as intruder detectors, contact alarms, vibration alarms, electric door locks or complete security systems. Smoke detectors can also be incorporated. Special programmes can be stored, for instance, for extra security while the house is empty.

All lighting can be controlled by Credanet, including dimming and varying lighting levels throughout the house. Programming can be automatic on a daily or weekly cycle and special programmes can be stored to operate when the house is unoccupied to give the impression of internal activity.

Many solvent manufacturers are finally yielding to pressure to reduce the omission of ozone destroying CFCs to the environment.

ICI has recently launched a range of low emission solvent cleaning plants. Called Cleanseal and Cleanzone, the plants will reduce use of chlorinated solvents by up to 50% when the system is in use, and by 64% when the system is idling. ICI's range of solvent products includes Propaklone, a non-CFC solvent ideal for surface mount applications, which can be used in existing cleaning plants.

Kerry Ultrasonics have introduced an automated ultrasonic cleaning system, the Aquaclens, specially designed to use DuPont's non-CFC solvent, Axarel 38. Axarel 38 (which used
to be known as KCD-9438) provides superior cleaning power to aqueous and CFC cleaning agents, and is bio-degradable.

Another range of non-CFC solvents is the Re-Entry range from Bush Boake Allen. The range is based on terpenes - biodegradable solvents derived from wood as a by-product of the paper industry. Their use requires no major redesign of existing cleaning equipment.

In addition to solvent cleaners, an aerosol photoresist which uses an ozone friendly propellant is now available from Electrolube. Electrolube RP50 is available in 75 ml and 200 ml aerosols, particularly suitable for small production in the laboratory or at home. For more information about RP50 contact Electrolube Ltd. Tel: 0734404031.

UK STANDARD FOR EUROPEAN TELEPOINT

Six major European PTTs and all four UK Telepoint network operators have signed a Memorandum of Understanding (MOU) to adopt the UK-developed Common Air Interface (CAI) as the basis for Telepoint (CT2) development across Europe.

Telepoint is a telephone communications system which allows outgoing calls to be made from portable phones, by sending radio signals to base stations attached to the national telephone network. Base stations are being established at motorway and trunk road services, in railway stations and in high streets. A call can be made within a range of about 200 m from the base station.

The European PTTs are from

France, West Germany, Belgium, Spain, Portugal and Finland. The agreement will boost the UK's Telepoint industry, which is already expected to have nearly four million users by 1995 . Development across Europe could double that estimate.

The new European agreement could provide export opportunities for two UK based manufacturers, PT and Orbitel, who are currently making Telepoint equipment designed to work to the CAI standard, and will put them in the forefront of Telepoint development in Europe. It will also allow Telepoint customers more choice of equipment, and the opportunity to use their Telepoint handsets abroad.

```
ZNNSHHARE
```

\qquad

```
    % Ea =m
```


Fax machines are increasingly being used in small offices and private homes, where the cost of installing and leasing an extra telephone line may be prohibitive. A new unit from Teletech International of Denmark allows a fax machine and a telephone to share the same telephone line.

The Teletech LINESHARE Model 11-0400 uses filtering and built-in software to determine the states of the attached devices and the telephone line. It has two modes of operation to support almost all automatic and manual fax machines. When a call is received, the unit listens for the calling tone of a fax machine. If the calling tone is detected, LINESHARE rings the attached fax
machine, otherwise it rings the phone.

If anyone attempts to make a phone call while a fax transmission is in progress, a busy signal will be heard. A 'silent' function directs all calls to the fax machine so that the phone doesn't ring at night, and switches both fax and phone onto the line if the LINESHARE loses power, so the phone doesn't cease to function during a power cut.

The LINESHARE is approved by the Danish Postal Authorities after parts of the new and still tentative MAP. 4 EEC standard, which is supposed to guide design and approval of all devices used to connect to the telephone systems of Europe.

Low cost touch technology is now available from Zenith Electronics for customers who want to incorporate touch systems into interactive applications such as banking terminals.

The lower price allows the system to be used in high volume applications where component costs are a critical factor, and because the system uses fewer parts, it should be more reliable.

The Zenith System allows up to 100 touch points per inch. A 'third dimension of pressure' is available, with up to 16 pressure
levels. The system is available on CRTs of 5 inch to 15 inch.

The system works by means of a constant amplitude mechanical wave, set up across the screen by arrays of piezo electric transducers and reflectors. A sofr object, such as a finger, attenuates the signal at a specific coordinate, affecting the return signal and allowing the exact position to be determined. The signals used to generate the waves are 16 cycle bursts of 4 MHz and the design of the system prevents interference with any other equipment.

Ever wished you could disguise your voice on the phone, so that you could tell unwelcome callers that you are out? Hong Kong manufacturer Ideatech Industrial have developed the VocalMask, a device that enables users to keep their immediate identity secret by scrambling and disguising their telephone voices.

In the event of potentially unwelcome calls, the device shields identity with an unrecognisable voice. However the user can revert to his or her normal voice at any time during the call by sliding a switch.

The VocalMask provides 16 levels of voice scrambling, allowing a woman to sound like a woman or vice-versa, and
changing a child's voice to that of an adult. Some advantages are obvious, for example, a woman on her own in a house could disguise her voice as a man's.

But one can foresee great potential for mis-understanding and embarrassment. Business callers may be rude to someone they think is a receptionist when in fact they are talking to a major client. And situation comedies are bound to seize on the mistakes which could be made by adulterous couples telephoning their lovers!

If you want more information about VocalMask, contact IdeaTech Industrial Ltd, Hong Kong. Tel: (010) 8527415440.

FAST FOURIER TRANSFORMS!

eCroy's digital oscilloscopes now perform real-time spectrum analysis using a Fast Fourier Transform (FFT) pack age. A multiprocessor design allows FFTs to be calculated 10 to 100 times faster than with conventional digital oscillo scopes. 1000-point FFTs are performed in less than 80 ms .

The result is a 'live' display that is updated as soon as a signal
changes. The display can give instantaneous information on frequency, magnitude, power and phase.

The 'live' response of the FFT package makes it useful for probing high-frequency digital and analogue circuitry, or for monitoring signals which rapidly change frequency such as radar, telecommunications, ultrasonics and acoustics.

HOME VIDEOS GET THE CHOP

I
t turns out that Camcorder users are becoming more creative and ambitious. Forget the wobbly, jumpy video of your cousin's wedding - many Camcorder users are now editing their films to produce professional looking programmes.

Research by Sony has re vealed that three quarters of Camcorder purchasers intend to edit their recordings. The research shows that there is a widespread understanding of the process of video editing which can turn raw footage into finished programmes.

The method adopted by 92% of Sony purchasers is to edit
material shot on 8 mm down onto VHS for replay

Sony's research also showed that people buy Camcorders for many different reasons; the most popular are travel at 90.5%, making family records at 72.1% and recording special events at 67.2%.

The research was carried out with recent purchasers of Sony's very small Camcorder, the CCD TR55, so it's not surprising that 77.2% of respondents said that they chose their Camcorder primarily on size. 61.1% chose primarily on weight and 41.1\% because of the three hour recording capability.

The New Cirkit Summer Catalogue

Cirkit Distribution Ltd.

Park Lane, Broxbourne, Herts EN10 7NQ Telephone (0992) 444111

OPEN
 CHANNEL प푼

If l've got the quote right, it was Humphrey Littleton who said 'Jazz is the only music that appeals equally to the heart, the mind and the feet'.

And first on the agenda this month is a discussion about the new community radio stations popping up around the country. It just so happens that one of the very first was Jazz FM in London.

These community radio stations (some 23 have either been licenced or are in the process of being licenced) are correctly known as incremental radio stations, simply because they are an increment to areas where local radio stations are already broadcasting. Effectively they are piggy-backed on top of existing services - hence the name incremental. So, for instance, they are cropping up in areas such as London (Jazz FM, Kiss FM, Melody Radio, South London Radio) which already have local radio. Areas such as remotest Scotland and Anywhereshire which do not have local radio at all, thus do not have community radio either.

This seems a unfair, but there is a reason. Once the Government realized that community radio stations should be given the go-ahead (and it was pushed into realizing this, simply because dozens of pirate community radio stations were going to pop up if nothing was done) then ways to licence them were sought. Eventually, this will be done by the new Broadcasting Bill, currently waiting for Royal Assent in Parliament. But, to sidestep this, and show that things were being done, the Government asked the Independent Broadcasting Authority to licence the incremental stations according to a loophole in the current law. Current law is that the IBA has to provide a range of broadcast radio services in each local radio area. And it's that word range which is the loophole. Apart from actual local radio stations, the IBA is allowed to authorize these incremental community radio stations.

When the Broadcasting Bill gets assent, though, we can expect some 300 to 400 community radio stations to appear in the ether over the next year or so. This will occur as the Bill is administered by a new radio regulatory body, the Radio Authority, set up by the Government with a new 'light touch' approach.

These community radio stations, although local in the true sense of the word, are perceived to serve the community in which they broadcast rather than just to make a profit. Obviously, though, none of these will be in the market to make a loss, so advertizing and/or support from local business and organizations will be used to pay for the initial set-up and
running of the stations. An example: London Greek Radio in Haringey, has been financed to the tune of $£ 500,000$ by local Greek businesses in the area.

Community radio stations will probably fall into one of two categories, the first being specific music stations, playing only one form of music (Jazz FM) and secondly, particular community service stations perhaps broadcasting specific programmes only in that community's language (London Greek Radio). Whatever happens, they all will have low power transmitters so they can only broadcast to a restricted area, and so they cannot interfere with other nearby transmitters. Frequencies are to be allocated on a cellular-tele-phone-type arrangement, eliminating inter-cell adjacent channel interference.

Anyone wishing to set up a community radio station along the new Broadcasting Bill lines is encouraged to first get in touch with the Community Radio Association (CRA), an independent organization which came to life back in 1983 to promote the interests of community radio stations. Many of the original pirate stations belonged to the CRA - since then they have become legitimized by the incremental adoption of existing law by the Government and the IBA. Information and advice is available from the CRA at 119 Southbank House, Black Prince Road, London SE1 7SJ. Telephone: 0715828732.

Tripping the Light Fantastic

 At the recent Electro Optics and Laser International exhibition at the National Exhibition Centre in Birmingham, the company Fibre Data was showing its system for transmission of audio signals to loudspeakers. It's nothing new, really; active loudspeakers coupled to a line-output pre-amped hi-fi centre. Things like this have been around for donkey's years.What is new, on the other hand, is the transmission medium between centre and active loudspeakers. Fibre Data has used cheap and cheerful polymer optical fibres to carry digital signals - arguably a bit of an overkill. Nevertheless, the idea represents the route top-of-the-range hi-fi systems are probably going to follow, whether the exact method used by Fibre Data is adopted (hence generating cash for the company) or whether the individual major hi-fi manufacturers design their own (more likely).

Public Image

In the USA, publicly-used fax machines have been situated in
airports and the like for a while now, but the idea is finally catching on in Britain. At least one UK company (Docu-Fax International) is selling fax machines which are self-service and paid for by credit-card.

Using Mitsubishi innards, the 'payfax' features a writing desk and voice assistance, and is said to be userfriendly. Hotels, garages and supermarkets are likely to be the prime sites for such machines.
situation where hardware is being sold at virtually give-away prices. In many cases handsets are being given away. Retailers are hoping to recoup costs in doing this simply by providing the service. In other words, give away the razors, but charge 'em for the razor blades. This can't go on for much longer under the current regime, simply because the razors cost too much.

Second factor is that the other

Condemned Cell

Finally, I'm going to make a prediction. It's based on a long-time observation of the cellular telephone structure in the UK. Currently, it seems that the system is growing at too fast a rate. Everyone (except me, that is) seems to want to drive down the motorway, posing as they talk into their cellular handsets (illegally, I might add). On a recent trip over a distance of about 70 miles on the M1, I counted no less than 15 drivers doing this.

Anyway, back to the point. The system is about to implode. I say this because of two factors. First is that retailers are being forced into the
mobile communications networks such as CT2 and PCN will be getting up and standing on their feet soon This will create even greater competition to the cellular system.

As to how long it will be before this implosion takes place, I can't say. It could be as long as two years. On the other hand, six months is a fair bet. Whatever happens, though, the system will come out leaner and better for it. There are too many people trying to make too much money out of it at the moment. Getting to a leaner system will inevitably though, cost the country a few jobs.

Keith Brindley

Blueprint is a column intended to provide suggested answers to readèrs' electronics design problems. Designs are only carried outfor items to be published, and will notbe prototyped by the columnist. Circuits published in Blueprint are believed to work, but may need minor alteration by the reader after prototyping. Individual correspondence will not be entered into, save as necessary to prepare items for publication.

We have an audio Blueprint this month:

Dear Sir,
I have attempted to design a third order passive low-pass 50 Hz filter to connect a sub bass woofer to my amplifier. I had to give up because I do not know how to deal with the complex impedance of a loudspeaker, which depends on both electrical and mechanical effects. Is there a method of design capable of handling such factors?
Ian Will, Jordan.
Yes, there is a way, but as Deep Thought (from The Hitch-hikers Guide To The Galaxy) said "You're not going to like it".

This problem is an illustration of the difference between engineers and physicists. The engineer avoids the use of long equations, which have to be fitted sideways on the paper, if at all possible. Forget the mathematically rigorous approach - engineers are usually maths users rather than producers. Normally the first approach is to try to find a design scheme which makes all the inconvenient variables negligible or irrelevant.

Failing this, the engineer with access to a computer would use a simulation tool such as Spice to model the effects of diverse parameters, which would probably be measured in the first case. Lacking Spice, other approaches might be to use a Smith Chart (normally used for microwaves) or to write a numerical simulation in Basic and let it run over lunchtime.

Crossover Units

As you imply in your letter, only one sub bass unit is needed for a stereo system, because little or no directional information is imparted to the ear by such low frequencies. The use of only one loudspeaker, however, requires a system to combine signals from both channels of the amplifier. Unless a lossy design employing resistors is used, this means that there is a low impedance between left and right amplifier channels at low frequencies. To minimise the circulating currents which would flow (to no good effect), internal filtering and cross connection are needed to run the stereo amplifier in mono as regards bass frequencies.

The problem then resolves itself to that of an ordinary crossover unit, but with most of the circuitry duplicated for left and right channels. This is a problem which loudspeaker designers solve adequately, usually by ignoring the complex nature of loudspeaker impedance and designing as if a resistive load is presented to the ports of the crossover unit. This is not as bad as it sounds, particularly if a second rather than third order filter is used.

Some crossover units incorporate
resistors to damp the filter response and make it less sensitive to impedance changes, but this wastes power, which you are short of at sub bass anyway.

There is a disadvantage to the crossover unit approach. The impedance seen by the loudspeaker is high at frequencies above the transition frequency. Any tendency for the loudspeaker to ring at third harmonic frequencies is not damped by the low output impedance of the amplifier. In my view the crossover unit approach is not the best one to use. Indeed, 1 do not fully approve of crossover units in general for the above reason and for others too long to go into here.

Extra Channel

Perhaps the best way to make the obscure loudspeaker impedance insignificant, without the need to know what it is beforehand, is to use an extra amplifier channel. The extra amplifier is fed with the bass signals from the two stereo channels, using filter pairs as shown in Figure 1. I have shown a second order design because too sharp a transition can cause response ripple around the transition frequency. The scheme here also avoids the lowest bass frequencies being fed to the normal stereo
flat to infinity, because it will not be asked to handle significant signals at above 100 Hz . On the other hand, the filter rolls off rather than cuts off abruptly, so that low level signals will be present at up to 100 Hz , and these

forbidden. Some MOSFET amplifier designs exhibit the figures which are by current hi-fi standards, partly because they have low total negative feedback, but the distortion is relatively unobjectionable. Such
must not be distorted.
Equally, because of mechanical non-linearity, the loudspeaker may attempt to generate harmonics of the signal, and the amplifier's negative feedback must do its part in keeping the output impedance low to damp such tendencies. This means that the amplifier circuitry should, ideally, respond at up to a kilohertz or more, and should not generate distortion at any frequency.

A small amount of harmonic distortion distributed over the waveform will be lost in the mechanical distortions of the system, but crossover distortion is absolutely

amplifiers would be quite suitable for the job

Damping Factor

To gain the best effect from a sub bass unit, the amplifier should be connected to the loudspeaker with the lowest resistance connection reasonable possible. Don't be fooled by expensive special loudspeaker cables - if you use a fairly short length of resonably thick wire (say 32/0.2) then the connectors will dominate the total resistance.

If it is practical to mount the amplifier on the back of the loud speaker cabinet, so that all connections are soldered and thus have a stable resistance, you can obtain a further improvement in damping factor and hence lower distortion by use positive current feedback to null part of the loudspeaker's own resistance as shown in Figure 3.

Finally, remember that the better the performance of the sub bass unit, the less it will sound like a normal loudspeaker. Most loudspeaker systems generate significant third (and higher) harmonic output when fed with a frequency signal, which fools the ear that there is more bass than is really present.

Andrew Armstrong
speakers, where they will cause generation of third harmonic (unless these speakers can respond properly to the sub bass, in which case an extra sub bass unit is not needed).

If it is unacceptable to modify the amplifier, the signal may be tapped from the loudspeaker outputs as shown in Figure 2, but this approach is second best because of the extra distortion present at the amplifier output as well as because the sub bass signals are still fed to the normal stereo speakers. In any event, a single sub bass signal should be generated from a point from a point after the volume control in the stereo amplifier.

The extra amplifier itself is intended for a limited function, and may be optimised for this. It does not need a frequency response which is

Fig. 3
HEnRY'S Edawian eioad,
45th ANNIVERSARY

METEX AND TEST LAB INSTRUMENTS

 YOU PAY TRADE PRIGES SHMALL MODELS WITH CONTINUITY TEST / \& With Capacilance + He tes. O wilh 200kHZ Frequency counter) METEX PROFESSIONAL* $31 / 2$ and $41 / 2$ digit Dmm's with hard carry case Large LCD Displays, with leads, ballery and instructions 20A AC/DC

M36108 3\% Digit 30 Pange 03° (*) $£ 46.04$ M36508 $3 / 2$ Digit 30 Range $03 \%(* * 0) ~ £ 51.26$ M46508 4/2 Digit 30 Range 0.05% with
Data Hold (+ +o

AUTO RANGE SERIES

$3 y_{4}$ Digit with Data Hold and Freq. Counter M8021mm Display 20 KHZ Counter $£ 46.04$ MB18 17 mm Display True Rms 400 KHZ Counter
M8188 Bargraph Version
NON-BARGRAPH ${ }^{*}$
M3800 32 Range 3% Digil 0.5% (t) M3630 30 Range $3 / 2019110.3 \%(++)$

M4600 30 Range $4 / 2$ Digit 0.05% with Ma360 30 Ran M4360 30 Range $4 / 2$ Digit 0.05% with ALSO STOCKED ${ }^{\circ}$
M3610. M3650. M4650. M3630B, M4630B STANDARD SERIES -with soft carry case $31 / 2$ digit 12 mm Displays M23158 17 Alange 10 ADC M23188 23 Range 10 ADC (+) M2335 31 Range 10A AC/DC (+) M232532 Range 10A AC/DC ($* *$) 4235532 Range 10A AC/DC $(+0)$ M2365 38 Range 10A AC/DC (+ *o)

TEST INSTRUMENTS

3000 LCR AC Bridge

M3002A AC Millivolt Meter' 1 MHZ
2020500 KHZ Function Generator
4162 AD 150 MHZ Fr Gen. Plus 6 Digit
Counter
2603AD 1 MHZ AI Gen. plus 6 Digit
Counter
TE200 150 MHZ Rf Gen
(450 MHZ Harmonic)
£103.20 TE220 1 MHZ Audio Generator $\begin{array}{ll} \\ 585.80 & 3300 \text { Autorange Digital Cap. Meler } \\ \mathbf{5 6 . 5 0} & 6100 \text { Signal Tracer/Injeclor }\end{array}$ 5250150 MHZ 7 Digit Frequency 172.86 Counter OST5M 5 MHZ Bench Scope $2430 / 24 V$ 0/3A Variable PS $2450 / 24 \mathrm{~V} 0 / 5 \mathrm{~A}$ Variable PSU E80.00 $\quad 1544 / 15 \mathrm{~V}$ 0/4A Variable FSU
"POCKET" TEST INSTRUMENTS

| Please supply photocopies of the following articles from ETI (complete in block capitals):
Month Year Page (if known)
Title ...
Month Year Page (if known)
Title ..
Month Year Page (if known)
Title ..

I enclose a cheque/postal order made out to ASP Ltd. to the value of $£ 1.50$ per photocopy ordered.
Total remittance $£$. Date .. |
\qquad
\qquad Postcode
Send the completed form and your remittance to:
ETI Photocopy Service
Argus House
Boundary Way
Hemel Hempstead
Herts HP2 7ST

EARTH CURRENT SIGNALLING Part 4: A practical syntonized communication system

In the final part of his series on ground communication, George Pickworth describes some of his recent experiments with syntonized communication.

Fig. 1 Schematic circuit for syntonized receiver.

Since the original trials described in ETI over the last three months, further experiments have been carried out with a tuned, or syntonized, earth current receiver. This can best be described as a tuned radio frequency (TRF) receiver with a tuning coil and capacitor designed for very low frequencies. The only difference from a TRF receiver is that it does not rectify, but selectively amplifies the input signals.

With the prototype receiver, both 1.5 and 3.0 kHz square wave tones (generated by the DC/AC converter) and sine waves (transmitted by the audio amplifier) were received loud and clear at 2000 m , with no interference from the 'clock pulses' and radio signals, which seriously limited the range of the original transformer input/high pass filter receiver. 50 Hz interference is reduced to a slight 'sharp' buzz under no-signal conditions, but this is almost inaudible when a signal is present. Indeed, by increasing the gain of the amplifier, much greater range should be possible.

The heart of the receiver (Fig. 1) is a 20 mH inductor tuned by either a 500 n or 150 n capacitor, selected by a switch. Fortunately the inductor tuned to almost exactly 1.5 or 3.0 kHz , using 20% tolerance capacitors on hand, but in any case, a precise frequency was not necessary for the preliminary trials. The inductor has a resistance of only about 1.5 R and with the component values shown, is so selective that even using the signal generator's slow motion drive, it is very difficult to peak at reasonance.

In order to peak the receiver at the transmitter
frequency, a triple gang 500p tuning condenser, salvaged from an old domestic radio, is connected with all three gangs in parallel, (total 1n5) across the fixed tuning capacitors. Transmitter frequency is set so that the signal peaks with the variable capacitor set midway.

To provide a fairly high impedance load, the tuner is connected directly to an LM 386 power amplifier IC: the volume control potentiometer is wired across the headphones. As it is difficult to peak up the signal subjectively from the audio signal, a DMM is connected in parallel with the amplifier IC where it serves as a signal strength meter. Under nosignal conditions, the meter reads 0 to 1.0 mV rising to 0.25 mV with a 3 kHz signal from the DC power converter. By incorporating a bank of capacitors selected by a rotary switch, a wide band receiver should be possible. Moreover, there seems to be no reason why an antenna should not be used instead of a base, to receive ELF Hertzian waves.

The inductor (Fig. 2) consists of about 500 turns of 1.0 mm enamelled wire, salvaged from an old car dynamo, wound on plastic solder reel, with taps every 100 turns. The 300 turn tap was found to be optimum for the base. The ferrite core is 18 mm diameter and 100 mm long. A few turns of insulating tape were wrapped around the ends of the core so as to make a snug fit with the hole through the bobbin.

Trials with variable inductance tuning (changing the position of the core relative to the winding) showed that the Q of the inductor dropped dramatically if the core was moved more than a few millimeters from the dead centre so this was abandoned in favour of the variable capacitor. Commercial ready-wound pot core inductors are unsuitable as they have no taps for connection to the base, but a custom wound coil on a large pot core seemed very suitable.

The receiver is well screened from both electric and magnetic fields, and to minimise any possible feedback from the headphones, the base is connected to the receiver by a 10 m length of co-axial cable.

Tuning the receiver to audio frequency earth currents was reminscent of the first radio receiver made by the author almost 60 years ago, but more significantly, this simple receiver demonstrated that syntonized earth current signalling at frequencies below 10 kHz is indeed feasible, and that opens up all manner of possibilities.

Subscribe

now
 here's 3 good reasons why!

ETI

Published Monthly — SUBSCRIPTION PRICE £19.20*

ETI is Britain's leading magazine for the electronics enthusiast and is renowned for its ability to keep pace with the leading edge of technology.
It has built its reputation with quality DIY projects giving detailed technical explanations, tutorial features on the world of electronics, and general features covering current affairs in science and technology.
A single source guide to electronics today - and tomorrow.

HAM RADIO TODAY

Published Monthly — SUBSCRIPTION PRICE £18.00*

HAM RADIO TODAY caters for both the experienced user and newcomer to amateur radio. With generally informative features, the latest news and practical projects, this magazine covers all the aspects of this growing field; an invaluable complement for any licenced radio amateur worldwide.

CITIZENS' BAND

Published Monthly — SUBSCRIPTION PRICE £18.00*

CITIZEN'S BAND is the only British CB magazine and covers a wide range of topics of interest to the newcomer and the experienced user. In each issue the latest equipment is reviewed, useful practical projects are detailed and all the national and international band news is featured.
Of particular interest to overseas readers are the QSL pages, articles on shortwave listening, and reports on UHF CB.
*Refers to subscriptions send post free to UK addresses. Overseas rates on application.

R
 EAD $\overline{\text { WRTTE }}$

Invasion Of Privacy

Your recent exercises on surveillance gadgets, and for that matter your adverts which include such materials, are antisocial invitations to invasion of privacy. Nobody who has legitimate need for such equipment would have the slightest difficulty in obtaining it, and you are not
therefore satistying any real public need.

When my family was young, they would certainly have been told that any secret use of such equipment would be anti-social and was not acceptable.

K B Wilson
Anglesey.

Cooking Up High Voltages

Idon't wish to seem ungrateful, but everybody does pieces on low voltage regulation and there are books you can buy as well.

How about something really useful for a change, namely high voltage regulation - over 35 volts of course, and up to 100 volts.

The reason is to get a really clean supply for HT in audio amps, despite using RF filters and
the like. You can get 70 volts of course, by using the outside rails of a split supply, but I would like a bit more if possible. Also a piece on the subject giving the basic theory, instead of burning components as we kitchen table DIY buffs have to do to break new ground!

So how about it, please?
Hugh Haines
Sunderland.

A Couple Of Oscillator Errors

I
n ETI April 90 some errors appear to have occurred on page 35 in some of the oscillator circuits. Oscillators can be series or parallel fed (with DC supply), thus the oscillator shown in Fig. 8 is a parallel fed Hartley and that in Fig. 10(a) is a parallel fed Colpitts

The circuit shown in Fig. 8 is certainly not an electron-coupled oscillator since there is no electron coupling. This term is applied to any type of oscillator in which there is electron coupling in the
device between the oscillator and its output. Thus it can only be applied to a tetrode or pentode value in which the screen grid acts as the anode (i.e. collector) and the oscillation is coupled to the true anode by the electron stream. The system thus behaves as a triode oscillator coupled to a pentode amplifier within the same pentode valve. There is no solid-state device which can behave in this manner.

In Fig. 10 the bias developed across the 1 kO source resistor

ELF Information Required!

D
uring a recent short trip to Ireland, I read one of your very interesting articles on Earth Current Signalling, which appeared in ETI March 90.

I was really pleased to find such a subject so clearly and accurately described. However my own experiments with earth current signals have raised some questions.

The article refers to "noises originating from miscellaneous static discharges and ELF radio transmitters". Listening to earth signals, I also noticed noises probably due to static discharges. I attributed other noises to current instabilities at the contact between soil and electrodes.

In my case the soil was clay and the electrodes were simply two carbon sticks of length 5 cm and diameter about 7 mm , taken from old torch batteries. The distance between electrodes was 50 m . (I did not use metallic
electrodes, because they constituted a rectifying contact with the soil. With metal electrodes, I received only the strong local MW transmitter!) The amplifier connected to the electrodes was a transistorised, broad band, audio amplifier without detector (voltage gain about 300). With this system I also received signals from the Omega navigation system on 10.2 kHz , but I never noticed any ELF signals.

Can anyone provide more information about ELF signals and ELF transmitters?

To my knowledge the USA ELF transmitter WTF was active in the 1970s. Is it operated at present? Are there other ELF transmitters active today? Do your know frequencies and time tables of such transmission or publications which report such data?

Ezio Mognaschi
Pavia, Italy.
goes nowhere unless the 100 k resistor from the gate has its bottom end connected to the OV line. Similarly in Fig. 11 the $5 p 0$ capacitor is blocking the gate of the first FET and should be replaced by a short circuit otherwise the bias produced by the 3 k 3 source resistor does absolutely nothing.

Finally the signal captions in Fig. 1(a) on page 14 appear to have been reversed.

To end on a more optimistic note, as they say, may I compliment you on a magazine which has improved out of all recognition since its early days.

R G Christian
Frodsham, Cheshire.

John Linsley Hood replies: I am grateful to Mr Christian for drawing attention to the errors in the drawings of Fig. 10 and Fig. 11 of my article in the ETI April90. The bottom end of the gate resistor in Fig. 10 should, of course be returned to the OV line, as also should the missing gate return resistor in Fig. 11.

He is also quite correct that an 'electron coupled' oscillator needs electrons, which means
that my circuit of Fig. 8 is incorrectly titled unless the amplifying device is a pentode or other multi-electrode valve, where the 'screen' grid can act as a virtual anode.

I realise, in retrospect, that I have been using this term, as a kind of gencric name for cathodesource or emitter-coupled oscillators since I was about eleven years old, without thinking of the precise meaning of the description. Presumably one could use a cascode coupled layout, of the kind I have shown below, to give a more nearly exact solid state version of this circuit, with the output isolated from the oscillator function.

I am not sure exactly what kind of circuits Mr Christian envisages for 'parallel' or 'series fed' Hartley or Colpitts designs, but the circuit layouts which Messrs. Hartley and Colpitts patented, and to which they gave their names were quite specific in their use of a tuned circuit between the anode and grid of an amplifying device, in their case a triode valve, with the centre tap of the coil, or of a pair of capacitors connected across this, taken to a point of low RF impedance.

$\mathbf{W}^{2}$$e$ in the UK Patent Office are concerned with the article by Marc Masson in your April issue in which he gives the impression that the Swiss Patent Office gives an easy route to a worldwide patent.

This is just not so. Moreover, there is a very real danger that the article may lead some of your readers unwittingly to fall foul of national security provișions.

First, there is no such thing as a world patent. To obtain patent rights in other countries you have to file and prosecute a patent application under the National Patent Laws of each country. A Swiss patent gives protection in Switzerland alone and a UK patent is effective only in the UK. Neither will have any influence whatever on how examination is carried out in other countries. There are also a European Patent Convention (EPC) and a Patent Co-operation Treaty (PCT) to facilitate obtaining protection in more than one country - Switzerland is a member of both, as is the UK. As members we all abide by the
same set of rules and again the Swiss office have no special position within the EPC and PCT that can simplify procedures.

In fact, the Swiss Patent Office has two levels of examination. Full examination is carried out in a small number of cases, for those inventions relating to textile products and processes and, not surprisingly, horology - this examination is not dissimilar to that in the UK. Marc Masson is alluding to those patents which are given a more limited examination. Since there is not as rigorous an examination they are relatively easy to obtain - but they do not give the same degree of protection to the inventor. Patent validity can never be guaranteed and granted patents can be shot down by competitors if they can show the inventor is not entitled to the monopoly claimed. So it is in the inventor's interest to have as watertight a patent as possible and the more thoroughly the application is examined the greater can be the assumption of validity.

As regards the national
security aspect, I think I need only quote from our own free handout literature on the subject, under the heading

NATIONAL SECURITY: IMPORTANT WARNING:
'Any person resident in the United Kingdom and wishing to apply abroad for a patent must first obtain permission from the UK Patent Office UNLESS they have already applied for a patent for the same invention in the United Kingdom. In the latter case, no application abroad should be made until at least six weeks after the UK filing'

I realise that this letter must seen somewhat negative. Generally we are delighted whenever attention is given to patents or any of the other intellectual property rights, but I think that Marc Masson's article illustrates the very real possibility of misleading the reader in this highly complex field. Patents often protect investments worth millions of pounds and mistakes cannot be afforded. Moreover, I
do not think that any reader who applied direct to the Swiss Patent Office and then found himself threatened with legal action on national security grounds would be too kindly disposed towards your publication.

It is our firm view that, despite the high costs involved, businessmen and industrialists should be encouraged to obtain professional help to assist in the filing of patents, etc.

Your readers might also like to know that the UK Patent Office is presently pursuing an awareness campaign, region by region, with a series of Roadshow seminars. To find out when we will be mounting a presentation close to them, your readers should contact the Head of Marketing and Information Services, The Patent Office, 66-71 High Holborn, London WC1R 4TP (Tel: 01-829 6512).

George Hamlyn Marketing \& Information

Services
The Patent Office
London

MAKING ELECTRONICS C.A.D. AFFORDABLE

"Excellent - EASY-PC does many things that our other $£ 3,000$ package doesn't!" "It's delightfully easy to use! A really usefull product."
"EASY-PC really deserves its BRITISH DESIGN AWARD"

Write or 'Phone for full details:-

Number One Systems Ltd.
Already used in :-
206 Colleges, Universities etc. 38 Government Establishments 37 British Telecom Depts.
and in thousands of companies in over 40 countries worldwide.

EASY-PC SCHEMATIC and DESIGN PCB CAD only £98.00
 1989

THE TELEPHONE HOW IT WORKS

> Kevin Kirk explains the circuitry behind telephones and gives some project ideas!

Virtually every home has a telephone it provides a vital part of everyday life. Yet few people know how it works, or even the principles behind it. So let's have a look at how telephones work - in the past and the present.

The Telephone

The original telephones were very simple; just a carbon microphone and electromagnetic earpiece with a battery in series (Figure 1). When one person spoke, the carbon granules in the mouthpiece vibrated, changing resistance which in turn changed
 the current in the line. Kirchoffs law tells us that the net current in a closed circuit is zero, so the same must also pass through the earpiece at the other end.

This unit works fairly well - as long as you don't both talk at the same time, and you don't care about mains pickup or interference. Also you can hear yourself when you speak, which makes you speak more quietly which can be a serious drawback. One answer is to stick the microphone on a stalk and the earpiece on a wire, so you can hold the earplece away from you ear when you speak.

A better solution is to cancel locally generated signals, without affecting the output level. We can now do this very elegantly using modern electronics, but when telephones were first starting to become popular, modern electronics weren't available. So the ever-resourceful nineteenth century engineers came up with an anti sidetone transformer. This was wired in such a way that the signals from the microphone were derived in antiphase to each other through the transformer, creating a common mode nulling effect (see Figure 2). The earpiece was wired onto the same transformer to convert the incoming series mode signals into sound. Nowadays we would use a duplexor. In its simplest form this consists of a op-amp wired up as shown in Figure 3. The transmitted signal
is applied in common mode to both inputs of the opamp, which tends to cancel out the signals on the output. The telephone line is connected onto the noninverting input of the op-amp so it is amplified. R2/R3 sets the gain (in this case R2 = R3 so gain is around 1) and R1 matches the impedance of the line (assuming a low impedance output from the previous stage).

Although relatively expensive, the original transformer had one other really useful feature: it could sink DC current while leaving the AC relatively untouched. This allowed the telephone company to sense when a customer picks up his phone. The cradle switch contacts close and the circuit draws DC current up to 40 mA . Figure 4 shows the circuit of a simplified exchange. When the user draws current, the relay corresponding to his line will pass current and come on. Each relay has two coils to maintain AC balance. To avoid affecting the operation of other telephones' relays, each line is decoupled via $2 \mu \mathrm{~F}$ non-polarised capacitors.

Nowadays we don't normally use transformers. Instead we tend to use an electronic circuit which mimics a coil. These circuits are called gyrators. Figure 5 shows a typical circuit.

The Automatic Exchange

The original exchanges had operators on switchboards. When you picked up your telephone the relay would send a signal to an operator. The operator would answer the call and manually connect the caller to the person he wanted to talk to, via a jack plug and socket system.

This was fine in the days when only about twenty people in town had a phone. You've all seen the films where the filmstar picks up the phone and asks Mary

on the switchboard to get him Fred, who instantly answers. Mary, of course, used to listen in on all the calls and would probably pass on the gossip and business news to interested parties to their mutual benefit.

Almon Strowger, a funeral director in Kansas city found out that a close friend's funeral was to be handled by a rival funeral director, whose sister was the telephone operator. Putting two and two together, he deduced that many calls destined for him were being passed on to his rival. So he thought out a way of automatically routeing a call, which he patented in 1889. This consisted of a series of uni-selectors which were activated from a dial on the telephone. When the dial was turned, a pair of contacts called muting contacts would be closed and another pair would be pulsed. (The muting contacts were closed for two reasons. Firstly to short the local transformer to prevent dialling pulses reaching the earpiece. Secondly, to prevent large voltages being induced by
the transformer by the abrupt removal of the DC current. This could cause spurious ringing on the line which could be construed as multiple dial pulses or cause some bell tinkle on parallel connected phones.) On the transistor gyrator, we use a Zener diode to quickly turn on the transistors when the voltage is first applied, effectively shorting out the 'coil'. When the transistors are on, the voltage across Q 2 is around 5 V , so the Zener turns off and the circuit goes back to being a coil. You could of course just short the lot out with a relay.
1990). The Zener diode ensures that the voltage does not rise above a safe level for operation of the IC.

The rectified AC (there is no smoothing capacitor after the bridge) will produce a warble effect. The tone may be changed by changing R2. The current is low so it should not affect any other phones on the circuit.

If you want an outside bell for when you are at the bottom of the garden, the circuit of Figure 10 might be more in your line, using a bell transformer and bell of your choice. Please keep the Telecom side and your side of the opto as far apart as possible.

Fig. 2 Early Telephone With Anit-Sidetone Transformer

Fig. 3 Duplexor Circuit

The dialling itself is outlined on Figure 6. Note the asymetric pulse waveform. This was originally done because relays take longer to drop out than they do to make. The interdigit pause signals the end of one digit and the start of another.

There is another form of dialling, much used in the USA and slowly catching on here. This is called Dual Tone Multi Frequency (DTMF) dialling. It uses a pair of tones to indicate a digit to be dialled, allowing the system to be very fast (a pulsed digit can take up to 1 second to send plus inderdigit delays). DTMF is especially suited to computerised diallers. A typical dialler is shown in Figure 7a. With its attendant tones it can take input either from a keypad or via a suitable isolated interface from a computer. Figure 7 b shows how the unit works.

The Bells! The Bells!

Now we've covered dialling out, what about ringing in? Bell tinkle was mentioned earlier and can be a problem even if you short out the transformer, because the voltage rises fairly quickly, passing through the DC blocking capacitor in the bell circuit. This may be stopped by connecting the white and blue wires from the telephone together via a 100R resistor during dialling to short out the bell. A relay or opto triac could be used for this.

The bell circuit itself is a simple system, consisting of a bell wired in series with a $1 \mu \mathrm{~F}$ capacitor. This ensured that the bell itself couldn't draw DC current, which would appear to the exchange as though the phone had gone off hook. The ring current (or call arrival indication as it is called in British Standards) is derived from a voltage source of 63 to 100 V at either 16.67 Hz or 25 Hz with a cadence of: 400 mS on; 200 mS off; 400 mS on; 2 s off.

Your Own Extension Bell

It is fairly simple to rig up an extension bell (see Figure 8). This circuit can be plugged into any extension socket and will bleep in time to the ring signal. The operation of the circuit is straight forward. The AC ring signal is passed via Cl and the current limiting resistor R1 into the bridge rectifier. The output of this provides the voltage required to power a small oscillator formed by IC1 (similar to the low voltage alarm in ETI January

Fig. 4 Simple Telephone Exchange

To help you, we include PCB layouts for these circuits. The circuit draws slightly more current and is the equivalent of 1.5 REN (the maximum REN on line is 4 , a telephone is usually 1).

A Do It Yourself Phone

A real must for the enthusiastic reader! You can put together the circuits described so far, add a single readily available chip from Texas Instruments plus a few odds and ends, and bingo - a telephone! (Figure 12). You can make it in the form of a Royal Doulton teapot or an elephant's foot, to become the envy of your friends.

The circuit needs a little explanation. This is no ordinary telephone, it's a computer-dialled telephone. And by replacing SW1 with an approved relay (for example the OMRON G4D-287P-BT2) which could be connected to a computer output via a suitable transistor, you can make your telephone really

Fig. 7a DTMF Dialler

Fig. 7b Pulse Train

Fig. 8 Extension Bell Circuit

Fig. 9 Extension Bell Component Overlay

computer controlled.
The tone dialler is very similar to the one we looked at earlier but as it is designed primarily for computer applications, its inputs are not multiplexed. Instead, all inputs accept a simple low $=$ on.

The input is a serial input to minimise the number of opto isolators. It works in the following way. At the start of the cycle the input on D (data) is high. The clock is taken high and then low again. This initial high starts the timer, creating a timing 'window' which lifts the permanent reset from the 4015. Consequently the first high bit is now clocked into the shift register. A sequence of 1 s with $2 \times 0 \mathrm{~s}$ is clocked into the 4015 , 1 bit per clock transition. The 2×0 s correspond to a pair of tones, which represent a number, \# (hash) or \star (star). Table 1 shows this sequence.

Table 1: Tone output table

	$C 1$ (D1)	C 2 (D2)	C3 (C3)
R1 (D4)	1	2	3
R2 (D5)	4	5	6
R3 (D6)	7	8	9
R4 (D7)	\star	0	$\#$

For example, if you want to send a 5 , bits D2 and D5 should be low and all other bits high. Eight bits must always be sent because when the first bit (bit DO) gets to Q3 of IC3:A, the tone dialler is turned on.

The tone dialler will stay turned on until the timer times out and resets IC3, which in turn will switch off the output from IC2.

The timing should be adjusted so that the time window is long enough to allow all eight bits to be clocked in plus 100 mS , so the tone is on for 100 ms . The computer controls the off timing and it too should be set to around 100 ms .

We won't go into great detail about connecting the phone to a computer. However, you can easily connect it to a BBC (or Master) user port, using one control line as data and the other as a clock. The Advanced User Guide for your computer will tell you how. Similarly, with a bit of ingenuity you could connect the phone to a PC via the serial port.

The component values around IC1 have been chosen to match with the average line, so they shouldn't be changed. The possible exceptions to this are the resistors R9 and R10 and the earphone. These components may be replaced by a 600Ω isolating transformer, feeding a small amplifier to drive a pair of headphones. You could even use a speaker, if you site it carefully to avoid feedback into the microphone input. Another option is to feed the signal into a tape recorder so you can record all your calls.

DO also drives a P channe! MOSFET which will turn off the voice circuit whilst dialling so you don't get deafened by the outgoing tones.

IMPORTANT

You cannot connect any equipment to a British Telecom telephone line unless it has been approved by British Approval Board for Telecommunications (BABT) and you risk prosecution if you do. To obtain approval, your equipment must not interfere with the network. This means it must comply with barrier regulations, and its impedance must match the system, with correct output levels and no out of band spectral components.
British Standards BS6305, BS6301 and BS6789 give the relevant information.
You must take great care NEVER to mix BT signals and your signals without a barrier - if you are not sure then don't: Remember that a lot of people rely on the network for a living and they would not appreciate it if you wipe out an exchange by connecting up something you shouldn't.

BUYLINES

The chips mentioned above are all available from Farnell Electronic components (telephone 0532 636311).

PARTS LIST

RESISTORS (all $1 / 2 \mathrm{~W}$	5%)
R1	2 k 2
R2	47 k
R3	47 k
R4	2 k 2
R5	100 k

CAPACITORS

Cl	470 n
C 2	10 n
$\mathrm{C3}$	470 n
C	
	1μ

SEMICONDUCTORS

BR1	WOO4
D1	1N4148
IC1	4011
OP1	4 N26
O1	BC212L
RLA1	$12 \mathrm{~V},>120 \mathrm{R}$
ZD1	12 V
ZD2	62 V

Fig. 11 External Bell Component Overlay

Fig. 12 ETI Telephone

NIKOLA TESLA The Man

> In the first of two articles, George Pickworth introduces us to the brilliant eccentric who often failed to capitalise on his genius.

Born in 1856 in Smiljan, Croatia, Tesla paved the way for many of the technological developments of modern times. He is most widely remembered as the inventor of the Tesla Coil and for winning the titanic struggle between Edison's direct current electric power system and the TeslaWestinghouse polyphase alternating current system. In 1917 Tesla was awarded the Edison Medal, the highest honour that the American Institute of Electrical Engineers could bestow and in 1956, his centennial year, the International Electrotechnical Commission named the unit of magnetic flux density the tesla (T) which was later adopted as part of the International System (S.I).

Early in the history of electrical power, it was realised that costs could be saved if generating plants were sited near coalfields or where water power was available. However, with the Edison DC systems, the only way to raise the voltage high enough for long distance transmission was to use low voltage motors to drive higher voltage dynamos (rotary converters). Similar converters were needed to reduce the voltage to a level suitable for distribution to users.

Not only were rotary converters expensive, requiring considerable maintenance, but arcing between the commutator sectors limited operation to about a thousand volts. Although AC transformers would be more elegant and less costly than rotary
converters, at that time there were no industrial electric motors that would run on AC . In fact, Edison publicly announced that such a motor was an impossibility. Nonetheless, AC systems using transformers were used in the USA as early as 1880, but only for electric lighting.

While training for a career in electrical engineering at Graz Technical University in Austria, Tesla became involved with DC dynamos and motors. He conceived a way to run motors on AC using a simple slip ring system instead of troublesome commutators. Later, when studying at Budapest, Tesla visualised the principle of the rotating magnetic field and developed plans for an induction motor. This was the first step in the successful utilisation of AC power. However, it was not until Tesla was working for the Continental Edison Company in Paris, that he actually constructed, outside working hours, his first induction motor.

In 1884, Tesla arrived in New York with just four cents in his pocket, a few of his poems and calculation for a flying machine. He found employment with Thomas Edison, but the two inventors were so far apart in background and methods that their separation was inevitable. From that time, Tesla worked alone and continued to develop and patent his polyphase AC system. In May 1885, George Westinghouse, head of the Westinghouse Electric Company, bought the patent rights for Tesla's system of AC generators, transformers and motors. This transaction precipitated the huge power struggle between Edison and Tesla-Westinghouse.

Safety

Edison continued to promote his DC system, and to denigrate the $A C$ system, spreading public fears that $A C$ was dangerous. To allay these fears Tesla gave exhibitions featuring current flowing through his body to light lamps. Perhaps the most bizarre story is that when the Electric Chair was first approved for execution in the USA, AC was used, but it took several attempts to kill the unfortunate victim who was burnt first before being electrocuted. News of the incident was circulated in the mass media, and did much to convince the public that AC was actually safer than DC.

The first major demonstration of AC power was in 1893 when Westinghouse used Tesla's system to light the World's Columbian Exposition at Chicago. This success was an important factor in winning the contract to install the first power machinery in Niagara Falls, which bore Tesla's name and patent number. The project carried power to Buffalo by 1896.

Despite the many obvious advantages of high voltage $A C$ power lines, if the length of the line equals a quarter wavelength at the operating frequency (1500 km at 50 HZ), it presents a high impedance and is useless for power transmission. A DC transmission line was therefore used to take power from Cabora Basa in Mozambique to Johannesburg and similar high voltage DC power lines are used in the USSR. Modern technology made brushless rotary converters a reality. Moreover, a high voltage DC system requires only two conductors, only one of which needs to be highly insulated. The other can be buried in the ground, significantly reducing the cost of the line.

In 1889, Tesla established his own laboratory at Colorado Springs where he experimented with shadowgraphs similar to those used later by Wilhelm Rontgen when he discovered X-rays. Tesla's countless other experiments included work on a carbon button lamp and various other kinds of lighting. Unfortunately, Tesla made no financial gain from many of his fundamental discoveries, most of which had no immediate practical use.

The Tesla Coil

From 1891 to 1893, Tesla gave lectures in Europe on high voltage, high frequency currents which he produced by means of a resonant transformer which he invented in 1891 and which came to be known as the Tesla coil. Essentially, a Tesla coil consists of a long helical coil, normally mounted vertically. A 'capacity hat, typically a large ball, is electrically connected to the upper end of the coil. The lower end of the coil is normally earthed. Capacitance between the turns, and the effect of the capacity hat, gives the coil a specific resonant frequency. When the coil is energised at that frequency, a high voltage develops between the hat and earth. The effect is analagous to the high voltage which occurs at the nodes of an Hertzian wave antenna, and demonstrated the need for high voltage insulators when the nodes of a wire antenna occur at the ends.

The traditional way to excite small Tesla coils (designed for experiments and demonstrations), was to use a spark system. Hertz had shown in 1888 that the discharge of a Leyden Jar (capacitor) across a spark gap was not simply a levelling of the potential between the two plates, but 'a continuous forward and backward surging' (oscillation) until a state of rest was achieved. Sustained oscillations could be maintained by having a continuous spark. The exciter was in effect a spark radio transmitter which could be tuned by using Leyden Jars and induction coils and was normally an integral part of the Tesla coil.

With low power Tesla coils and radio transmitters, a spark voltage of 20 kV to 40 kV was normally generated by vibrator type induction coils, but high powered spark transmitters often used 50 kV to 100 kV transformers using mains electricity or an engine driven alternator. The spark system was capable of generating considerable power, and 2.0 kW for some of the shipboard installations was not unusual. The only limiting factor seems to have been physical constraints, particularly with regard to the spark gap and the insulation of the capacitors. However, Tesla excelled in finding solutions to these kinds of problems.

Spark radios and demonstration Tesla coils generally operated with in the 0.5 to 3 MHz range. With large coils it might have been difficult to obtain resonance at frequencies much above 3 MHz , but there would have been few problems with resonance at frequencies of tens of kHz . As an alternative to the spark system it would therefore have been feasible for Tesla to excite very large coils by means of high frequency alternators: these devices were successfully used as radio transmitters before the First World War. Although the upper frequency limit for high power devices is generally considered to be about 20 kHz , one machine was claimed to generate 'considerable power' at 100 kHz (but this is doubted by the author).

Resonance

In 1889 at a gathering of the Royal Institute of Electrical Engineers, Tesia set out the essential elements of radio communications, covering antenna and ground circuits and most significantly, tuned receiving circuits. (Credit for successfully tuning the transmitter and receiver to the same frequency, syntonization, is attributed to Sir Oliver Lodge).

Unfortunately, lack of commercial interest and arguments over technical points by those who had little understanding of Tesla's work prevented his scheme from being developed.

Tesla was fascinated by electrical resonance. In 1899 he announced what he called his most important discovery - 'terrestrial stationary waves'. He claimed that these proved that the Earth could be used as a conductor, which would be as responsive as a tuning fork to electrical vibrations of a certain frequency and this could 'split the earth like an apple'. At one time Tesla was convinced that he had received signals from another planet but this was greeted with derision by editors of scientific journals. Tesla was a godsend to reporters seeking sensational copy but was a problem for editors who were uncertain about how seriously to treat these reports.

Tesla believed that by using the principle of electrical resonance it was possible to transmit power over long distances without transmission lines. With this objective, he began to experiment with very large

Tesla coils in various configurations and installations, some of which were several hundred feet tall. By means of such large coils he was able to create 'lightning' with the discharge spanning more than 100 feet. However, the author is sceptical about Tesla's claims that power could be transmitted over long distances without transmission lines, despite contempory accounts of 200 lamps being lit by power radiated from a large installation at a distance of 25 miles. The manner in which the power would be transmitted is obscure.

The 'capacity hat' of a Tesla coil produces a strong electric field while the actual coil creates a strong magnetic field. Even with a small demonstration coil these fields will light up a flourescent tube held near the coil, and Geissler tubes, the forerunners of flourescent tubes, were available to Tesla. By the same token the magnetic field of a large Tesla coil may well have lit up incandescent lamps connected to resonant induction coil a short distance away. This effect can be observed today with a suitable device placed fairly close to a powerful broadcasting station, but readers are warned against doing this.

World-Wide Broadcasting

Returning to New York in 1900, Tesla began to construct what he called a 'world-wide broadcasting tower' on Long Island. This was done with $\$ 150,000$ capital put up by the financier Pierpoint Morgan. The object

渭

Replica of original
Tesla coil, lighting fluorescent tube.
was to transmit news reports, stock reports, pictures and weather warnings on a world-wide basis. Tesla's tower would presumably have incorporated features described by him during his 1892 lectures on radio communication. However, because of labour problems and a financial panic, Morgan withdrew his support and the project was abandoned. It was Tesla's greatest defeat. If the tower had been successfully completed and had been found to work it would have predated the British Empire VLF Communication Transmitter at Rubgy by 35 years.

It would be pure speculation to suggest that Tesla planned to operate a VLF world broadcasting tower or that alternators were to be used: large spark devices would have been just as applicable. Nonetheless, these frequencies were within the limits of high power high frequency alternators, and a fascinating feature of the project is that in 1900, no-one, with the possible exception of Tesla, conceived that frequencies between 10 and 20 kHz (VLF) were ideally suited for reliable global communication. Moreover, as already explained, high frequency alternators were successfully used as radio transmitters before WW1. Indeed a superheterodyne receiver using a alternator as the local oscillator was the most sensitive receiver available and mixing took place in the headphones.

In December 1901, Marconi successfully transmitted and received transatlantic signals, demonstrating that Hertzian waves are able to follow the curvature of the earth.

The main problem with VLF communication is the efficient conversion of high frequency electric currents into Hertzian waves. Apparently, this is only possible when the current flows linearly along a conductor. So unless Tesla had discovered an alternative method of coupling his coils to the 'ether',
extremely long antennae would be required. Marconi exploited Hertzian waves using a spark transmitter. By operating on a frequency of around 1.0 MHz , efficient radiation of Hertzian waves was possible with an antenna of practical size.

With the abandonment of the 'world broadcasting' project, Tesla directed his attention to turbines and many other projects, but because of shortage of funds, his ideas remained as notes which are still studied by engineers for unexploited ideas. In 1915 Tesla applied for an injunction against Marconi, but this was denied largely because there were few who understood the significance of his work. A review of this decision in 1943 held that Marconi's patents were invalid because they had been anticipated by Tesla.

After his death, the custodian of alien property impounded his papers, laboratory notes, letters, and honours: these were eventually inherited by his nephew and later housed in the Nikola Tesla Museum in Belgrade. However, stories are rife that many of his notes were destroyed because his discoveries were too dangerous to be made public. These were fuelled by Tesla's claims that he had invented a death ray and that the earth could be split like an apple.

31

Further reading:
Inez Hunt and Wanetta W Draper: Lightning in his hand: The life story of Nikola Tesla (1964).

Nikola Tesla Museum: Nikola Tesla: Lectures patents articles (1956).

Nikola Tesla Museum: Experiments with alternate currents of high potential and high frequency (1904).

Please supply ELECTRONICS TODAY INTERNATIONAL BINDERS (a) $£ 6.80$ each inc. p\&p.

Total $£ \ldots \ldots$.......(Please make cheques/postal orders payable to A.S.P)
NAME .
ADDRESS

ONE POUND BARGAIN PACKS

All packs are 11 each. Note the figure on the extreme left is the ack ref number and the nexl ligures is the quantily of items in epack finally a shor description.

13A Spurs provide a lused oullettoa aningmai
such as a clock uus not be witithed off clamps
$61 / 2^{\prime \prime}$ sp speaker. Rel BD137 + 50 p.
30 walt reed switches, it's surprising what you can make 25 watt loud speaker two unit cross-overs
Nicad constanl current charges adaptlo charge almost any nicad batlery
Humidity switches, as the air becomes damper the membrane strelches and operates a microswilch
$13 A$ rocker switch three lag soon/off, or change over with 13A rocker switch three lag so onloff, or change over with
centre off
24 rime
switch, ex-Electricity Board, automatically adjust lor lengthening and shorlening day.
BD49 5 Neon valves, with series resistors, these make good nigh lights
Mini un wegivecircuild dagram for this Onepulseinto motor, moves switch through on po
8067 1 Suck or blow operated pressure switch, or it can be operated by any low pressure variations such as waler level in water tanks
BD103A 1 6v750MA power supply, nicely cased with input and output eads stripper boards each contains a 400v 2A bridge rectifie and 14 other diod

condensers etc

astic boxes approx. $3^{\prime \prime}$ cube with square hole through lop BD134 10 Motors for model aeroplanes, spin to start so needs no BD139 6 Microphone inserls - magnetic 490 ohm also act as speakers
Reed relay kits you get 16 reed switches and 4 coil sets with notes on making clo relays and other gadgets Safety cover for $13 A$ sockets - prevent those inquisitive little fingers getting nasty shocks
ED180 6 Neon indicators in panel mounting holders withlens
BD193 65 amp 3 pin flushmounting sockets makes alow costdisco Mains solenoid very powerful has $1^{1 "}$ pull or could push if modified
BD201 8 Keyboard switches - made for computers but have many other applications
BD211 1 Electricclock mainsoperated put this in a box andyou need never be late
BD221 5 12v alarms make a noise about as loud as a car horn Slighlly solid but OK
BD242 $26^{n} \times 4^{n}$ speakers 4 ohrm made from Radiomobile sovery good quality
BD252 1 Panostat, conlrols oulpul of boiling ring from simmer to boil Leads with push on 1_{4} lags - a must tor hook ups -
BD263 2 Oblong push swilches for bell or chimes, these can mains BD268 1 Mini 1 watt amp for record player. Will also change speed Mini t watt amp for record player. Will also change speed
of record player motor Mild steel boxes ap
standard eleclrical Tubular dynamic mic with optional table rest
$\begin{array}{lll}\text { BD305 } & 1 & \text { Tubular dynamic mic with optional table rest } \\ \text { BD400 } & 4 & \text { Books Useful for beginners. Describes amplifiers, test }\end{array}$
BD653 2 equipment and kit sets $\begin{array}{lll}\text { Miniature driver translormers Ref LT44, 20k to } 1 \mathrm{k} \text {, centre }\end{array}$
8 tapped $\quad 2 \quad 35$ volt relays, each with two pairs changeover contacts 35 volt relays, each with two pairs changeover contac
4.7 uf , non-polarised block capacitors, pcb mounting There are over 1,000 items in our catalogue. If you want a complete copy please request this when ordering.
TOASTERS 2 slice toasters - may need slight altention only. Only £3
PERSONAL STEREOS Again customer returns but complete and with stereo head phones. A bargain at only £3 each. Our ref 3 P83
MAINS OPERATED MICROWAVE CONTROL PANEL WITHTOUCH SWITCHES This has a 4-digit display with a buill-in clock and 2 relay outputs, 1 tor power and 1 for pulsed power level. Could be used Ior all sorts of timer control applications. Only $£ 6$. Ref
6 P 18
EQUIPMENT WALL MOUNT, Multi-adjustable metal bracket for speak, elc, 2 for 15 Our ref 3 P152
STABILISED POWER SUPPLY KIT. +-+ N2 $20 A$ Contains PCE, transtormer and all components excluding case, etc Our price is $£ 20$.
Ret 20 P 25 . Ref 20P25.
KEYBOARDS. Brand new uncased with 84 keys plus PCB with several ICs. Only £3. Rei 3P89
SUB-MIN TOGGLE SWITCH. Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrome dolly fixing nuts 3 for $£ 1$. Order ref BD649
COPPER CLAD PANEL. For making PCB Size approx 12 in long $\times 81 / 2 \mathrm{in}$ wide. Double-sided on fibreglass middle which is quite thick (about $1 / 16$ in) 50 this would support quite heavy componentsand could even
form a chassisto holdamainstransformer, efc. Price $£ 1$ each. Ourref BD 633

POWERFULIONISER

Generates approx. 10 times more IONS than the ETI and similar circuits. Will relresh your home, office, workroom etc. Makes you feel
better and work harder - a complete mains operated kit, case better and work harder - a complete mains operated kit, case
included. $£ 18$. Our rel 18P2.

REAL POWER AMPLIFIER. For your car, it has 150 watts output Frequency response 20 hz to 20 Khz and signal to noise ratio better than 60d/b. Has builk in short circuit protection and adjustable inputlevel lo suil
your existing car stereo, so needs no pre-amp. Works into speakers ret. 3bP7 your existing car stereo, so needs no pre-amp. Works into speakers
described below. A real bargain at only $£ 57.00$ Order ref: 57 P 1.
REAL POWER CAR SPEAKERS. Stereo pair output 100w each. 4-Ohm impedence and consisting of $61 / 2^{\prime \prime}$ wooter, $2^{\prime \prime}$ mid range and 1 " tweeter. Each set in a compact purpose builtshelf mounting unit. Ideal to work with the amplifier described above. Price per pair $£ 30.00$. Order ref:
30 F .

STEREO CAR SPEAKERS. Nol quite so powerful - 70w pe channel $3^{\prime \prime}$ wooler $2^{n \prime}$ mid range and 1^{n}. Noter Again in a super purpos buill shelf mounting unit. Price per pair: $£ 36.00$. Order ref: 28 P 1 .
VIDEO TAPES These are three hour tapes of superior quality, made under licence from the farmous JVC Company. Offered at only $£ 3$ each. Our ef 3 P63. Or 5 for $£ 11$. Our ref $11 \mathrm{P3}$. Or for the really big user 10 for $£ 20$. Our ref 20P20.

ELECTRONIC SPACESHIP. Sound and impact controlled, responds to claps and shouts andreverses when thits anything. Kit with really detailed instruc lions. Ideal present tor budding young
electrician A youngster should be able to assemble but you may have to help with Ihe on the pcb Complete kit \&10. Our ref 10P81.

12" HIGH RESOLUTION MONITOR. Amber screen,

 beautifully cased for free standing, needs only a 12 v 1.5 amp supply. Technical data is on its way but we understand these are $T L$ input. Brand new in maker's cartons. Price: £22. Order ret 22P2.COMPOSITE VIDEO KITS. These converl composite video inlo separale h-sync, v-sync and video Price $£ 8$ Our ret 8 P 39
BUSH RADIO MIDI SPEAKERS. Stereo pair. BASS reflex system, using a full range 4 in driver of 4 ohms impedance. Mountedin very systern, using a luil range 4 in driver of onms impecance, Mounterdinvery
nicely made black fronted walnut finish cabinets. Cabinet size approx $81 /$ in nicely made black tronted walnut finishcabinets. Cabinet size approx $8 /$ in
wide, 14 in high and $3 /$ in deep. Fitted with a good length of speaker flex and wide, 1 in high and normal audio plug. Price \&5 the pair. Our ref 5P141.
$31 / 2 \mathrm{in}$ FLOPPY DRIVES. Westill have two models in stock: Single sided, 80 track, by Chinon. Thisis in the manufacturers metal case withlead and BO FEC Thisisuncased Price 59950 reterence 60P2 Bolh ided, 80 new. Insured delivery £3 on each or both

SINCLAIR C5 WHEELS

Including inner tubes and tyres. $13^{\prime \prime}$ and $16^{\prime \prime}$ diameter spoked polycarbonate wheels finished in black Only $£ 6$ each. $13^{\prime \prime}$ ref 6 P20.
$16^{\prime \prime}$ ref 6 P 21 .

REMOTE CONTROL FOR YOUR COMPUTER. With thisouffit you can be as much as 20 feet away as you will havea joystick thal con transmit and receive to pluginto and operate your computer and TV This is also justright it you want to use it with a big screen TV. The joystick has twofire buttons and is of a really superior quality, withtour suctioncups for additional control and one handed play. Price \&15 for the radiocontrolled pair. O
ASTEC PSU. Mains operaled swilch mode, sovery compact. Oulpuls: $+12 \mathrm{v} 2.5 \mathrm{~A},+5 \mathrm{v} 6 \mathrm{~A}, \pm 5 \mathrm{~V} .5 \mathrm{~A}, \pm 12 \mathrm{v} .5 \mathrm{~A}$. Size: $71 / 4 \mathrm{in}$ long $\times 43 / 8 \mathrm{in}$ wide \times 23/4in hight Cased ready for use. Brand new. Normal price $£ 30+$, our price only $£ 13.00$. Our ref 13P2
VERY POWERFUL 12 VOLT MOTORS. 1/3rd Horsepower. Made to drive the Sinclair C5 electric car but adaptable to power ago-kart,
a mower, a rail car, model railway, atc Brand new Price $£ 20$ Our ret 20 P 22

PHILIPS LASER

This is helium - neon and has apower rating of $2 m \mathrm{~W}$. Completely sale so long as you do not look directly into the beam when eye damage could result. Brand new, full spec, $£ 35$. Mains operated power supply for this tubegives 8 kvstriking and 1.25 kv at 5 mA Arunning. Complele

ORGAN MASTER is a three octave musical keyboard It is beautifully made, has tuil size (piano size) keys, has gold plated contacts and is complete withribbon cable and edge connector. Can be used with
many computers request information sheet Brand new, only £15 plus £3 many computers, request information sheet. Brand new, only 15 plus \&

FULL RANGE OF COMPONENTS at very keen prices
are available from our associate compnay SCSCOMPONENTS You
may already have their catalogue, if not request one and we will send are available from our associaeco ip noy sequest one and we will send
may already have their catalogue,
it FOC with your goods

HIGH RESOLUTION MONITOR. gin black and white, used Philips lube M24/306W. Made upin alacquered trame and has open side Made lor use withOPD computer bul suilable for most others. Brandnew, £20. Rel 20P6
12 VOLT BRUSHLESS FAN. Japanese made The popular square shape $4 / 2.2 \mathrm{in} \times 41 / 2 i n \times 1 / 3 / 4$ in). The electronicalilyruntans nol only consh type motors do. ideal for cooling computers, etc, or for a caravan. \&Q each. Our ref BP26
MINI MONO AMP on $p, c \mathrm{c}$, size $4^{\prime \prime} \times 2^{\prime \prime}$ (app.) Fitled Volume control. The amplifier has three lransistors and we estimate
the output to be $2 W$ rms. More technical data will be included with the amp Brand new, perlect condition, offered at the very low
price of $£ 1.15$ each, or 13 for $£ 12$.

NEW MAINS MOTORS. 25 walt 3000 rpm made by Framco approx $6^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ priced at only $£ 4$. Ret 4 P 54
SHADED POLE MOTORS. Approx $3^{\prime \prime}$ square available in 24 V AC or 240V AC, both wilh threaded output shaft and 2 fixing bolts. Price is £2 each.
MICROWAVE TURNTABLE MOTORS. Complete with weight sensing electronis that would have varied the cooking time Ideal for window displays etc. Only £5. Ref 5P165
SURFACE MOUNT KIT. Makes a super high gain snooping amplifier on a PCB less than an inch square! 57 . Rel 7 P 15
INDUCTIVE PROXIMITY SWITCHES. Made by Honeywell these units are brand new and offered al only $£ 12$ each which is a fraction
of their normal price $10-36 \mathrm{~V}$ DC model ref 12 P 19 or main version 12P20

J\& NBULLELECTRICAL

Dept. ETI, 250 PORTLAND ROAD, HOVE BRIGHTON, SUSSEX BN3 5QT.
MAILORDERTERMS: Cash, P.O or cheque with order. Please add $£ 250$ service charge. Monthly account orders accept from schools and public companies Access \& Barclaycard orders are accepted - minimum £5

Phone (0273) 734648 or 203500 . Fax 23077

POPULARITEMS - MANY NEW THIS MONTH JOYSTICKS tor BeC, Alari, Dragon, Commodore, elc. All ESeach Ail brand new, state which required
TELEPHONE TYPE KEY PAD. Really first class rear mounting unit White ettereringon black buttons. Has conductive rubber contacts with by 55 mm cutout and has a 10 IDC connector. Price £2. Ref 2P251.
SUB-MIN PUSH SWITCHES Nol much bigger than a plastic ransistor but double pol AA CELLS. Probably the most popular of the rechargeable NICADtypes 20 WATT 40
20 WATT 4OHM SPEAKER With buill in tweeler. Really well made unit which has the power and the quality for hi-fi. $61 / 2$ in dia. Price $£ 5$ Our ref 5P155 or 10 for $£ 40$ ref 40 P.
MINI RADIO MODULE Only 2in square with ferrite aerial and solid dia tuner with own knob. It is a superhet and operates from a
OULGINMAINS PLUG AND SOCKET
BULGIN MAINS PLUG AND SOCKET. The old faithful 3 pin with screw lerminals. The plug is panel mounled and the sockel is cable
mounled. 2 pairs lor $£ 1$ or 4 plugsor 4 sockets for $£ 1$. Our ref BD715, BD715P or BD715S.
MICROPHONE. Low cosi hand heid microphone with onloff switch in handle, leadterminates in one 35 plug and one 2.5 plug. Only $£ 1$. Ref BO 711 . MOSFETS FOR POWER AMPLIFIERS AND HIGH CURRENT DEVICES 140 v 100 w pair made by Hilachi. Ref 251 K 413 and its component $25 \mathrm{Ji118}$ Only £4 a pair. Our re
TIME AND TEMPERATURE LCD MODULE. A 12 hour clock, a Celcius and Fahrenheit thermometer, a too hot alarm and atoo cold alarm. Approx $50 \times 20 \mathrm{~mm}$ with 12.7 mm digits. Requires one AA baltery and ref 6P12.

REMOTE TEMPERATURE PROBE FOR ABOVE. £

 Our ref 3P60A REAL AIR MOVER. Circular axial fan moves 205 cubic foot per min whichis aboultwiceas much as our standard 41/2infans Lownoise mains operated 6
ref 10 P71.
600 WATT AIR OR LIQUID MAINS HEATER. Small coil heater made for heating air or liquids. Will not corrode, lasts for years, coil size 3 in \times 2in mounted on a metal
3 P78 or 4 for $£ 10$ Our ref 10 P 76
EX EQUIPMENT SWITCHED MODE POWER SUPPLIES. Various makes and specs but generally $\pm 5, \pm 12 v$, ideal bench supply. Only $£ 8$ Our ref 8P36.
ACORN DATA RECORDER. Made for Electron or BEC computer but suilable for others includes mains adaptor, leads and book, $£ 12$. Ref 12P15
PTFE COATED SILVER PLATED CABLE. 19 strands of 45mm copper, will carry up to $30 A$ and is virtualy indestructable, Avail able in redorblack. Regularprice is over $£ 120$ per reel, our price only $£ 20$ for 100 m
reel. Ref 20 P 21 or 1 of each for $£ 35$. Ref 35 P2 Makes absolutly superb speaker cable!
NEW PIR SENSORS. Infared movement sensors will swilchuplo 500 w mains. UK made, 12 months manufacturers warranty 15 -20m range witha0-10mintimer, adjustable wall bracket, daylighl sensor. Only $£ 20$. Rel 20P24
Also available same spec as above but will switch 1000 watts, $£ 24,00$. Ret
MITSUBISHI $31 / 2$ in DISC DRIVES. Brand newdrives, $1 / 2$ he double sided, double density, warranted Our price $£ 60$ Ref 60P5 SPECTRUM PRINTER INTERFACE. Add a centronics interfac
4P52.
GEIGER COUNTER KIT. Includestube, PCB and all components to build a 9 V operation geiger counter. Only $£ 39$ Ref 39P1,
SPECTRUM SOUND BOX. Add sound to your Spectrum with this device; just plug in Complete with speaker, volume control and nicely boxed Asnip at only 24 . Ou
BBC JOYSTICK INTERFACE. Converts a BBC jotstick port to an Atari type port. Price $£ 2$ Our rel 2 P26
TELEPHONE EXTENSION LEAD. 5M phone extension lead with plug on one and socketo
leads for only £19! Ref 19P2.
leads or only $£ 19$! Rel 19 P 2
LCD DISPLAY. $41 / 2$ in digits supplied with connection dala $£ 3$. Rel3P77
or 5 for $£ 10$ Ret 10P78 or 5 for $£ 10$ Ref 10P78
CROSS OVER NETWORK. 8 ohm 3 -way for iweeler midrange and woofer. Nicely cased with connections marked. Only $£ 2$. Ourret 2 P255 or 10 for £15 ref 15P32
REFERSING LIGHT ALARM. Fits to car reversing light and sounds when reversing. Only £2 Our rel $2 P 248$
BASE STATION MICROPHONE. Top quality uni-directional electret condenser mic 600 r impedance sensitivity $16-18 \mathrm{KHz}-68 \mathrm{db}$ built in chime, complee with mic stand bracket, £ 15 , Ref 15 P 28.
MICROPHONE STAND. Very heawy chromed mic stand, magnetic base. 4 in high. $£ 3$ if ordered with above mic. Our ref 3 P80.
SOLAR POWEREDNI-CAD CHARGER. 4 Nicad AA battery charger charges 4 batteries in 8 hours. Price $£ 6$. Our rel $6 \mathrm{P3}$
MAINS SOLDERING IRON. Price $£ 3$ Our ref 3P65.
SOLDERING IRON STAND. Price $£ 3$ Our ref 3 P66
SHARP PLOTTER PRINTER. New 4 colour printer originally intended lor Sharp computers but may be adaptable lor
Complete with pens, paper, etc. Price $£ 16$. Our ref 16 P 3
KIT to convert the above Printer to Centronics parallel. £4, Rei 4P.
CAR IONIZER KIT. Improve the airin your car, clears smoke and helps prevent fali
NEW FM BUG KIT. New design with PCB embedded coil 9v NEW PANEL METERS 515
NEW PANEL METERS. 50UA movement with three dif
that are brought into view with a lever. Price only $£ 3$ Rer $3 P 91$.
that are brought into view with a lever. Price only $£ 3$ Ree $3 P 81$.
STROBE LIGHTS. Fit a standard Edison screw light fitting 240 v 40 min lash rale, avalable in yellow, blue, green and sockel Pice
ELECTRIC SPEED CONTROL KIT. Suitable for controlling our powerful $12 v$ motors. Price $£ 17$. Rel 17 P 3 (healsink required).
EXTENSION CABLE WITH A DIFFERENCE. It is ilat on one side, making iteasy to ixx and look idy. 4 core, suitable for alarms, phones etc. Our price only £ 5 tor 50 m reel. Rel 5P153
METAL PROJECT BOX. Ideal for battery charger, power supply

THE RTC MONITOR II

100 WATT SPEAKER KIT $\mathbf{~} 60.00+£ 3.50$ P\&P (pai

 RESPONSE: $55 \mathrm{~Hz}-20 \mathrm{kHz}$BASS POLYMER CONE D: 22 cm
DOME TWEETER: 14 mm
OVERALL SIZE
(HWD): $382,252,204 \mathrm{~mm}$
RECOMMENDED AMP POWER 10-100 watts per channel The performance stan dard achieved in this compact design is distinctively superior to any-
thing else available at the thing else available at the price. The drive units
used are of sophisticated
 design and have been
carefully integrated with a
Stereo performance is exceptionally good with well focussed sound stage and sharp resolution of detail. Distortion throughout the frequenc range is low even at quite high power input an this gives a great sense of dynamic range and openness especially when used in bi-wired mode.
Supplied with:- 2 READY CUT BAFFLES, ALL CROSSOVER COMPONENTS, 2 BASS MID RANGE, 2 DOME TWEETERS, HOOK UP WIRE GRILLE CLOTH, SCREW TERMINALS AND SCREWS

GOODMANS 60W CAR GRAPHIC

As new condition but have been returned by customers or shops, so they may need some attention. Hence the get the seventh one free. Postage $£ 2.90$

LCD DIGITAL MULTI TEST METER AC DC Volts resistance and DC Amps. Most of these units are and sold with all taults at $£ 11.00$ each. Postage $f 1.00$. Made by Ross Electronics).

ROSS PUSH BUTTON RADIO

Mains and battery operated. High quality VHF/FM
Medium and Long Wave reception.
6 pushbutton selected
preset stations.
Fully retractable telescopic
aerial.
eadphone/earphone
Size $230 \mathrm{H} \times 150 \mathrm{~W} \times 65 \mathrm{D}$
Aet RE-5500
Aef RE-5500
Listed price over $\mathbf{£ 3 0 . 0 0}$.
Price $£ 14.95$
£2.80 P\&P

SHURE HIFI STEREO MAGNETIC CAR-

TRIDGE Fitted with an elliptical diamond stylus supplied with fitting kit and instructions. A good quality unit made to sell for well over twenty pounds due to scoop purchase, we are able to offer these at a fraction of the manufacturers price. All units are brand new and boxed. $£ 7.20$ each. If you order in multiples of five you get one free. Postage $£ 1.30$ (Made in U.S.A.
KOSS STEREO HEADPHONES High quality light weight stereo headphones fitted 3.5 mm jack with adaptor to $6,4 \mathrm{~mm}$ jack. Ideal use Hifi or personal stereos made to sell for nine pounds. Our price for this unit $\mathbf{£ 4 . 2 5}$ Postage 60p

TV SOUND TUNER KIT

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are quite common and that really is quite sad, as the TV companies do their best to transmit the highest quality sound. Given this background a compact independent TV tuner that connect direct to your Hi-Fi is a must for quality reproduction The unit is mains operated. This TV SOUND TUNER offers full UHF coverage with 4 preselected tuning controls. All parts including Varicap tuner, mains transformer, PCB with IC's, capacitors and coils etc., to build the unit illustrated above; without case and scale.
$\mathbf{f 1 1 . 5 0}+\mathbf{£ 2 . 3 0 ~ P \& P}$
 BUY 20 GET 1 FREE
Please state pack(s) required

No. Oty, per pack

BP015B

BP016
BP017
8 8019
BP020
BP021
BP022
BP023
${ }^{8 P} 023$
BP025
BP026
$8 P 027$
BP027
BP030
BP031
BP032
BP033
BP033A
BP033A
BP034
BP034A
$8 P 0348$
8 -0348

8 8P036
BP 038
BP 039
BP041 $\quad 32$ Double phono sockets, Paxolin mounted
BP042 2 Large VU meters JAPAN made
BP043 30 LV miniature bulbs, wire ended, new untest
BRA 2 Sonotone stereo crystal cartridge with 78 and BP045A L styli JAPAN made
BP046 4 6-0 Cassette Record and play heads
BPCA7 $\quad 124 \mathrm{~V} 0.3 \mathrm{VA}$ mains power supply Prand UK made
BP049 10 OC made by MULLARD
0 OC44 transistors. Remove paint from top and i becomes a photo-electric
UK made by MULLARD
$8 P 05030$ Low signal transistors n.p.n., p.n.p. types
614 watt output transistors. 3 complimentary pairs in T066 case (Ideal replacement for AD161 and 162s)
BP052A 1 Tape deck pre-amp IC with record/replay switching No LM1818 with diagram,
5 watt audio ICs. No TBA800 (ATEZ)
BP053 55 watt audio ICs. No TBA800 (ATEZ)
BP054 10 Motor speed control IC5, as used with most cassette and record player motors
Digital DVM meter I.C. made by PLESSEY
BP056 4.7 segment 0.3 LED display (red)

BP059 1 Power supply PCB with $30 \mathrm{~V} 4 \mathrm{~V} / \mathrm{A}$ transformer MC7818CT IC \& bridge rectifier: Size $4^{\prime \prime} \times 2^{3 / 4} 4^{\prime \prime}$
BP061 $\quad 5.6 .35 \mathrm{~mm}$ Mono jack plugs
BP063 $\quad 5 \quad 6.35 \mathrm{~mm}$ stereo switched jack sockets
BP064 12 Coax chassis mount sockets
13 mtr Euro-mains lead with chassis socket

MULTIBAND RADIO
VHF 54-176 MHz + AM CB BANDS $1-80$ Listen to: AIR TRAFFIC CONTROL, AIRCRAFT, RADAR

PUBLIC UTILITIES
 RADIO AMATEURS AND

MANY MANY MORE POSTAGE $£ 2.85$

SQUELCH CONTROL 'RUBBER DUCK AERIAL"

HAND HELD WALKIE TALKIES

deal for sports or any outdoor activities. Built-in call button and separate volume control. Range 1.2 km maximum. 49 MHz crystal control superhet circuit with builtin condenser mic. and speaker. Unit supplied with vinyl carrying case and personal earphone.

£32.90 a pair

$+\mathbf{£ 2 . 6 0}$ P\&P
RADIO AND TV COMPONENTS ACTON LTD 21 HIGH STREET, ACTON, LONDON W3 6NG MAI ORDER TERMS PDSTAE ORDERS and or CHEOUES wuth ordtis

An easy to build amplifier with a good specification. All the components are mounted on the single P.C.B. which is already punched and backprinted.

- 30W $\times 2$ (DIN 4 ohm)
- CD/Aux, tape I, tape II, tuner and phono nputs.
- Separate treble and bass
- Headphone jack

Size (H.W.D.) $75 \times 400 \times 195 \mathrm{~mm}$
Kit enclosed: case, P.C.B., all components, scale and knobs $\mathbf{£ 3 6 . 8 0}$. post E 3.50
(Featured project in Everyday Electronics April 1989 issue). Reprint Free with kit

AMPHONIC $125+125$ POWER AMPLIFIER

125 watt per channel stereo power amplifier with independent volume controls, professiona $19^{\prime \prime}$ rack mount and silent running cooling fan for extra reliability
Output power 125W RMS max. per channel Output impedance 4 to 16 ohms
(max. power into 4 ohms) Sensitivity 450 V at 22 K ohms Protection Electronic short-circuit and fuses Power $220-240 \mathrm{~V}$ a.c. 50 Hz Chassis dim $435 \times 125 \times 280 \mathrm{~mm}$

$£ 142+£ 7.00 \mathrm{p} \mathrm{\& p}$

STEREO DISCO MIXER MX7770

4 -channel stereo disco mixer with built-in 5 -band graphic equalizer capable of mixing a total of 8 line, phono or mic inputs, switchable on the front panel. Controls include cross fade between channels 1 and 2 , headphone cue, DJ mic talkover, channel level markers and stereo/mono switch. Twin 12 LED bargraph display. Output to amp, tape and headphones
Input sensitivity......Mic. 0.3 mV , Phono 3 mV , Line 150 mV
Input impedance Mic. 600 . Phonno 47 k . Input impedance Mic. 600 . Phono $47 \mathrm{k} \Omega$, Line 47 kS Max, input level......... Mic. 30 mV , Phono 140 mV , Line 5 V
Output impedance. Output impedance Rated output.
Hum and noise
Frequency respons
Mic.
Phono..................................... $50-2000 \mathrm{~Hz}$
Line.......................... $20-30000 \mathrm{~Hz}$

Equalizer section: Control frequencies
$.60 \mathrm{~Hz}, 250 \mathrm{~Hz}, 1 \mathrm{kHz}, 3.5 \mathrm{kHz}, 12 \mathrm{kHz}$ Control range 2 kHz
Power $\begin{array}{r}380 \times 270 \times 96 \mathrm{Vm} \\ \hline\end{array}$
$£ 86.95+£ 5.80$ р $\&$ p

BELT-DRIVE OUICKSTART VARISPEED DISCO TURNTABLE

\star Quick start ideal for scratching

* Pitch control
* Pop-up target lamp
* Strobe lamp
* Counterweighted tubular tone arm with plug-in headshell
* Full manual control
* Remote star/stop
$\star 7.5 \mathrm{~kg}$

SUPERSCOPE REVISITED

This follow-up to the Superscope project published in ETI this February and March should give beginners an insight into how an oscilloscope works in general and how to get the best out of the Superscope in particular

We initially thought that anyone who felt competent enough to construct such a complex project would have enough knowledge and expertise to make an overview of procedures unnecessary. However the project has proved attractive to many beginners in electronics and we have had many queries and requests for further details.

Clearing Up Some Queries

Lets get a few points out of the way first.
There were a few errors and omissions in the original articles. Those we have found are listed in the Oops! column in this issue.

A number of readers have asked for details of front panel layout. This is shown in the above photograph. A front panel is now available from the ETI Front Panel Service.

We have been asked why not use a more modern tube as these generally have a brighter sharper trace. There are two reasons.

Firstly, to obtain a brighter trace much higher HT voltages are required, of the order of several thousand volts for most post-deflection-anodes. The generation of such voltages with the associated safety considerations is unsuitable for all but the most competent. The fact that so many novice constructors have been attracted to this project reinforces this view;
we wouldn't want to lose any of you
Secondly, more modern tubes are generally about two or three times the price of the 'surplus' type tubes recommended, defeating the low-cost attraction of this project.

If you wish to experiment, the design of the unit lends itself readily to adaptation. In view of the hand wound transformer it would not be wise to try to generate too high an AC voltage from the transformer. Increasing the voltage by chaining multiplier PDA requires virtually no current. However, you are on your own. Please do take care with these very high tension voltages, they are lethal.

Oscilloscope Basics

Those of you who are familiar with oscilloscope techniques can skip this bit. For those who are not, this is necessarily a brief resumé of the basics of oscilloscope operation.

The 'scope is the most useful tool available to the electronics technician for testing equipment. It is capable of performing a wide range of measuring functions (such as voltages, and frequencies directly, and other parameters indirectly) and provides a realtime visual display of what is actually happening to a signal in the circuit. How is this achieved?

All the circuitry within a scope has the sole purpose of moving a bright spot horizontally or vertically across the face of the cathode ray tube (CTR) under the control of the timebase (X -axis) and the input signal (Y-axis).

Consider first the X -axis. If the spot races across the tube face fast enough the eye sees a horizontal line or trace rather than a moving spot. If, when the trace

In response to popular demand, Dennis Stanfield follows up his Superscope project with some instructions how to use it!
reaches the right-hand side of the tube face, we cause it to fly back the left-hand side even faster still and repeat the process, a seemingly static horizontal line is maintained across the screen. If the control of the Y -axis is now varied at a suitable rate by an input signal, those variations will be superimposed on the trace causing vertical deflections in it as dictated by the input signal.

A cathode ray tube (see Fig.1) is in effect a very large thermionic valve. However the stream of electrons emitted from the hot cathode, instead of being attracted to the anode and allowing current flow as in a normal valve, is actually guided and focussed by several anodes to produce a narrow beam. When these hit the phosphorescent material on the inside face of the tube, it phosphoresces at the point of impact. The voltages applied to the anodes must be progressively more positive to ensure attraction of the electrons into a stream and their focussing into a narrow beam.

The moving of the beam is performed by the X and Y plates which are arranged in two symmetrical pairs (see Fig 1). These plates are also positively charged. When the charge on each plate of a pair is identical the beam passes straight down the middle

Fig. 1. Oscilloscope Basics

between them and hits the centre of the screen (manufacturing tolerances aside). But if there is an imbalance, with one plate more positive than the other, the electron beam is bent towards the more positive plate by electrostatic attraction. This causes the spot to move up, down or across the tube depending on which plate is the more positive. The reverse effect is caused by making one plate more negative with respect to its partner.

While a workable 'scope could be made by holding one plate of each pair at a constant voltage and varying the potential in the other, this causes nonlinearity in the spot deflection because of the variations in the strength of the electrostatic field. Instead, the plates are driven in anti-phase so that as one becomes more positive the other becomes more negative with respect to their quiescent mean charge. This also has the advantage of requiring a reduced driver voltage as the voltage swing is effectively doubled.

The rate at which the spot moves horizontally across the screen is controlled by the period of the sawtooth waveform applied to the X driver by the time base. Although on the Superscope the timebase drive to the X amp is unbalanced, the action of the differential output stage produces a balanced output to the tube, the collector voltage of one of the output transistors (and hence the plate voltage) rising as the
other falls and vice-versa.
In contrast the. Y amp is driven by a balanced input requiring a lesser voltage swing to drive each transistor, the sum of the two input voltages (in antiphase) times the gain giving the required output voltage swing.

Now we've got various signal traces marching across the screen, how do we make some sort of an intelligible display out of this rubbish? The answer is to trigger the sawtooth (ramp) generator to start its ramp cycle at a particular point on each repetition, (or set of repetitions) of the input waveform. Each trace is identical to the one which preceded it and a steady, viewable trace is built up on the screen. The trigger point is selected by adjustment of the variable trigger control.

What happens during the time that the spot is flying back to the start point? Is the trace drawn in reverse? No, the flyback is made to happen as fast as possible. It would be barely visible, but a negative going blanking pulse is sent to the CRT grid, cutting off the electron beam and rendering the flyback completely invisible.

Using The Superscope

First and foremost let me make it clear that this project is not suitable, under any circumstances, for testing equipment whose chassis is live to the mains; such as the majority of television sets in use in this country.

It is assumed that you have followed the set-up procedures described in the second article and that you are in possession of a fully operational 'scope and are now wondering what to do with it.

Whilst not as bomb-proof as older valve-based input amplifiers, those in the Superscope are reasonably robust. Inputs from most semiconductor based circuitry are unlikely to cause damage at virtually any input attenuator setting within reason. Unless you are displaying a very low frequency signal or a DC input mode selectors should be set to $A C$. This removes any $D C$ offset from the input and avoids the trace being moved about (or off) the screen when switching between attenuation ranges.

- Displaying A Trace

Input a signal into either of the Y channel inputs and switch the trigger select to that channel. Set the timebase to a range which will allow 5-10 cycles of the waveform to be displayed. Adjust the trigger control to stabilise the trace. You may find that at certain input frequencies the arrival of the retrigger point occurs just as the trigger flip-flop reset pulse is ending. This may lead to some jitter in the display. Moving up or down one timebase range will cure this problem.

A better solution would have been to allow some front panel fine adjustment of the ramp period but unfortunately space is at a premium, especially on the timebase front panel. As the problem is an infrequent one however, a compromise was acceptable. If you want to make a modification to include fine tuning of the ramp period (and can find space for it) you could break the connection between RV302 and R304 and connect a very low valve potentiometer of up to about 470 ohms between the two flying leads. (One lead will go to one end of the potentiometer track and the other lead to the wiper). When calibrating the timebase do so with the wiper of the new pot at one end or other of its track and mark that setting 'CAL' This is common to most 'scopes and explains the timebase fine adjustment found on many.

- Dual Trace Mode

In dual trace mode you have the choice of chopping each trace into two or tracing each input on alternate
traces. The former, which is really only useful at audio frequency inputs, causes the beam to draw a minute part of Y1 trace followed by a similarly minute part of the Y 2 trace, and so on across the screen. As ramp speed is increased the discrete bits of each trace become separate and the display takes on the appearance of a pair of dashed lines across the screen. Chopped mode does ensure simultaneous channel displays whereas in alternate mode one of other trace is always out of date by one ramp period (not that that causes any difficulty in most cases). In normal use alternate mode is usually left switched in. At very slow timebase ranges the dual traces would actually be seen to alternate so chopped mode is enabled automatically.

With inputs to both Y channels a stable trace for each will only be achieved if their frequencies are identical or harmonically related. With unrelated frequencies one channel (the trigger channel) will lock and the other will run through at a rate dependant upon their dissimilarity. Dual mode is useful for example for comparing the output of a circuit to its input signal. Distortions, phase shifts and so on, may be detected in this way. It must be noted that above about 5 MHz square waves will begin to be reshaped as the high level harmonics of the fundamental come up against the end-stops of the deflection amplifier's gain and slew rate capabilities.

- Taking Measurements

Frequency measurements may be made using the formula $1 / \mathrm{T}$ where T is the time taken for one whole signal cycle as measured off the display. For example if the timebase setting is $1 \mu \mathrm{~s} / \mathrm{Div}$ and each cycle takes 2.5 divisions, then the frequency is:

$$
\frac{1}{2.5 \times 10^{-6}}=400 \mathrm{kHz}
$$

Voltage measurements may be read directly making due allowance for reduction in gain for the increased frequencies as set out in specifications in ETI February 90. Remember that you will be reading peak-to-peak values of $A C$ signals. $D C$ measurements are made by switching the input mode selector to ground and, with relevant Y shift, setting the trace to the datum line. If the mode selector is then moved to DC and the input applied, the deflection of the trace times the input attenuator setting gives the voltage. The direction of movement gives the polarity: positive is up and negative is down.

Current and resistance measurements are indirectly possible by the thoughtful application of that ever faithful friend Ohm's Law. For example, by displaying the voltage produced by an unknown current through a known resistor or by a known current through an unknown resistor.

As with all oscilloscopes (apart from some of the very high tech laboratory types) the accuracy of measurement is not as good with a dedicated frequency or volt-meter. However, it is more than adequate for workshop purposes and those meters cannot show you pretty pictures of the actual signal. A typical $£ 400-£ 500$ commercial 'scope will have an accuracy of about $\pm 3 \%$ or so. Careful calibration of the Superscope should give an accuracy within at least shouting distance of that.

One could write a book about the many and varied uses to which an oscilloscope can be put and in fact a number of authors have. ETI's current 'Testing Testing' series contains much useful and relevant information and is recommended for further reading.

31

- ONE OF THE LARGEST RANGES OF COMPONENTS IN THE UK
- FAST AND EFFICIENT SAME DAY PERSONAL SERVICE
- VERY COMPETITIVE PRICES; QUANTITY DISCOUNTS AVAILABLE
- DISCOUNT VOUCHERS INCLUDED
- NO MINIMUM ORDER

FILL IN THE COUPON AND POST IT WITH YOUR CHEQUE, PO ETC FOR $£ 1.50$ TO RECEIVE YOUR 1990 CRICKLEWOOD ELECTRONICS CATALOGUE

CRICKLEWOOD ELECTRONICS 1990 COMPONENTS CATALOGUE

PLEASE SEND \qquad COPIES OF THE 1990 CRICKLEWOOD ELECTRONICS CATALOGUE AT f1. 50 TO:
NAME
ADDRESS
\qquad
\qquad
\qquad NICS CATALOGUE AT
Cricklewood Electronics Ltd 40 CRICKLEWOOD BROADWAY, LONDON, NW2 3ET Tel: 081-450 0995/452 0161

Fax: 081-208 1441 Telex: 914977

MODERN DIODE CIRCUITS

> Ray Marston starts a new series exploring the functions of diode circuits, with a general look at diodes and their applications.

The solid-state diode is the most fundamental element used in modern electronics, and is available in a variety of forms, including those of signal detector, rectifier, zener (voltage reference) diode, noise-generator diode, varicap (variable capacitance) diode, light-sensitive diode (photodiode), and lightemitting diode (LED). In the first part of this series we'll look at the basic characteristics of diodes and then show a variety of ways of using standard diodes and rectifiers.

Basic Diode Characteristics

The solid-state diode is a two-terminal device that passes current easily in one direction, but blocks it in the other. Figure 1 shows (a) the conventional symbol and (b) the basic structure of the modern solid-state 'junction' diode. The diode is formed from a single p-

Fig 1. (a) Symbol and (b) structure of solid-state diode.
n junction. The p terminal is known as the anode and the n terminal as the cathode.
Figure 2 illustrates the basic characteristic of the diode. When it is forward biased (with the anode positive relative to the cathode), the diode acts like a low resistance and readily passes current, but when it is reverse biased (with the anode negative relative to the cathode) it acts like a high resistance and passes nearzero current. This action is implied by the basic diode symbol, which resembles an arrow pointing in the direction of easy current conduction.

Fig 2. Diode conduction when (a) forward and (b) reversed biased.

Conventional junction diodes are made from either germanium or silicon. Figure 3 compares the basic characteristics of the two types of device when operated at a nominal room temperature of $20^{\circ} \mathrm{C}$. Note the following important points.

1. A forward biased junction diode passes little forward current (I_{f}) until the applied forward voltage $\left(V_{f}\right)$ exceeds a certain 'knee' value (typically 150 to 200 mV in germanium diodes, 550 to 600 mV in silicon types). When a diode is operated beyond its knee value, small increase in V_{f} cause large increase in I_{f}. The device's forward dynamic impedance $\left(Z_{f}\right)$ is inversely proportional to applied voltage.
2. The Z_{f} of a silicon diode has a typical value (in ohms) of $25 / \mathrm{I}$, where I is measured in mA ; so $\mathrm{Z}_{\mathrm{f}}=25 \mathrm{R}$ at $1 \mathrm{~mA}, 2.5 \mathrm{R}$ at 10 mA , and 0.25 R at 100 mA . The Z_{f} of a germanium diode is greater than that of a silicon type; consequently its V_{f} usually exceeds that of silicon type at I_{f} values greater that a few tens of mA .

Fig 3. Basic characteristics of germanuim (Ge) and silicon (Si) junction diodes (at $20^{\circ} \mathrm{C}$).
3 . When a diode is reverse biased by more than one volt or so it passes a reverse leakage current $\left(\mathrm{I}_{\mathrm{r}}\right)$ that is almost directly proportional to the reverse voltage $\left(\mathrm{V}_{\mathrm{r}}\right)$ value. At normal room temperatures I_{r} values are measured in microamps in germanium devices and in nanoamps in silicon devices. I_{r} is highly temperature dependent, and typically doubles for each $8^{\circ} \mathrm{C}$ increase in junction temperature.
Because of their low knee voltage values, germanium diodes are used almost exclusively in lowlevel signal detection applications. The great majority of junction diodes are silicon types, and can be used in many general-purpose applications. Diodes that have high reverse voltage and forward current ratings are usually called rectifiers.

Special Diode Characteristics

Ordinary silicon diodes have several special characteristics in addition to those we have already looked at. The most important of these are illustrated in Figures 4 to 7 .

If a silicon diode is increasingly reverse-biased it eventually reaches a point where the reverse current

Fig 4. Zener diode symbol and characteristics.
suddenly starts to increase. Any further increase in V_{r} causes a sharp rise in I_{r}, as shown in Figure 4. The voltage at which this action occurs is known as the avalanche or zener value of the device, and is sharply defined. Some silicon diodes are specially manufactured to exploit the zener effect, and can be used
as reference voltage generators. Such devices are depicted by the circuit symbol shownin the diagram.

All zener diodes have impedances that inherently fluctuate in a rapid and random manner, and so can be used as excellent white-noise sources.

If a silicon diode is forward biased via a constantcurrent generator, its V_{f} value varies with junction temperature at a rate of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, as shown in Figure 5, so if $V_{f}=600 \mathrm{mV}$ at $+20^{\circ} \mathrm{C}$, it falls to 440 mV at $100^{\circ} \mathrm{C}$ or rises to 740 mV at $-50^{\circ} \mathrm{C}$ Silicon diodes can be used in this way as temperature-to-voltage converters.

If a silicon diode is reverse biased from a highimpedance source (as shown in Figure 6) its junction

Fig 5. Thermal characteristics of a silicon diode at $I_{f}=1 \mathrm{~mA}$.
capacitance will decrease (from perhaps 17 pF at -1 V to maybe 10 pF at -8 V) as the reverse bias is increased. Some silicon diodes are specially manufactured to exploit this voltage-variable-capacitor effect. They are known as varicap or Varactor diodes, and are depicted by the circuit symbol shown in Figure 6.

When p-n junctions are reverse biased, their leakage currents and impedances are inherently optosensitive. They act as very high impedances under dark conditions and as low impedances under bright ones. Normal diodes have their junctions shrouded in opaque material to stop this unwanted effect, but some are specially manufactured to exploit it. These are called photodiodes, and use the symbol shown in Figure 7a. Some of these photodiodes are designed to respond to visible light, and some to infra-red (IR) light.

(a)

(b)

Fig 7. Symbols for (a) photodiode and (b) LED.
in Figure 7b
Finally, one other important type of p-n junction device is the Schottky diode. These devices use the standard diode symbol, but offer a very fast switching action and develop forward voltages that are almost half as great as conventional silicon diodes. They can be used to replace germanium diodes in many signal detector applications, and can operate at frequencies up to tens or hundreds of GHz .

Half-wave Rectifier Circuits

The simplest application of the diode is as a half-wave rectifier. Figure 8 shows a transformer-driven circuit of this type (with the diode's input voltage $\mathrm{V}_{\text {in }}$ specified in volts rms) together with relevant output waveforms. If this circuit is used with a purely capacitive load it acts as a peak voltage detector and the output $\left(V_{p k}\right)$ equals $1.41 \times V_{\text {in }}$, but if used with a purely resistive load it acts as a simple rectifier and gives an rms output of $0.5 \times \mathrm{V}_{\text {in }}$. If it is used with a resistively-loaded capacitive load (as in simple power

Fig 6. Varactor (varicap) diode symbol and typical characteristics.
supply applications) the output is rippled and has an rms value somewhere between these two extremes. In capacitively-loaded circuits the diode needs a peak reverse-voltage rating of at least $2.82 \times \mathrm{V}_{\text {in }}$; if purely resistive loading is used the rating can be reduced to $1.41 \times V_{\text {in }}$.

If this circuit is used to power purely resistive loads they will consume only a quarter of maximum power, since power is proportional to the square of applied rms voltage. However, very few loads are purely resistive, and Figures 9 to 11 show how the basic half-wave rectifier circuit can be adapted to give 2-level power control of lamps, electric drills, and soldering irons that are operated from the AC power lines. In each of these circuits the rms voltage fed to the load equals $V_{\text {in }}$ when S_{1} is in position 3 , or 0.5 $\times V_{\text {in }}$ when S_{1} is in position 2.

The Figure 9 circuit uses a lamp load, which has a resistance roughly proportional to its filament temperature. When it is operated at half the maximum voltage its resistance is only half the maximum, so the lamp operates at about half maximum power and

Fig 8. Circuit and waveforms of transformer driven half-wave rectifier.

Another useful type of junction diode device is the LED, or light emitting diode, which is made from materials such as gallium phosphide or gallium arsenide and which may be designed to emit either red, green, yellow or infra-red light when suitably forward biased. These devices use the symbol shown
burns at half-brilliance with S_{1} in the DIM position.
The Figure 10 circuit uses the universal motor of an electric drill as its load. Such motors have an inherent self-regulating speed control capacity, and because of this the motor operates (when lightly loaded) at about 70% of maximum speed when S_{1},
is in the PART position.
The Figure 11 circuit uses a soldering iron heating element as its load, and these have a resistance that increases moderately with temperature. When the iron is operated at half voltage its resistance is slightly reduced, so the iron operates at about one third of maximum power when S_{1} is in the SIMMER position. This keeps the iron heated but not to such a degree that its bit deteriorates.

Note that in all these circuits D_{1} can be any type that has a current rating matched to the load requirement and with a peak reverse-voltage rating of at least $1.41 \times V_{\text {in }}$.

Full-wave Rectifier Circuits

Figure 12 shows how four diodes can be connected in the form of a bridge and used to provide full-wave rectification from a single-ended input signal. The output waveform of this circuit has twice the frequency of the input, so this circuit can also be used as a simple frequency doubler.

The best known application of full-wave rectifi cation is in DC power supply circuits, which provide DC power outputs from AC power line inputs. These consist of a little more than a transformer which converts the AC line voltage into an electrically isolated and more useful $A C$ value, and a rectifier-filter combination that converts this new AC voltage into smooth DC of the desired voltage.

Figures 13 to 16 show the four most useful basic power supply circuits. The Figure 13 circuit provides a DC supply from a single-ended transformer and bridge rectifier combination, and gives a performance virtually identical to that of the centre-tapped

Fig 12. Bridge rectifier/frequency-doubler circuit.

Fig 9. Lamp burns at half brightness in DIM position.

Fig 10. Drill motor runs at 70% of maximum speed in PART position.

Fig 11. Soldering iron operates at $1 / 3$ power in SIMMER position.

Transformer Rectifier Selection

The three most important parameters of a transformer are its secondary voltage, its power rating, and its regulation factor. The secondary voltage is always quoted in rms terns at full rated power load, and the power load is quoted in terms of volt-amps or watts. Thus, a 15 V 20 VA transformer gives a secondary voltage of 15 V rms when its output is loaded by 20 V . When the load is removed (reduced to zero) the secondary voltage rises by an amount implied by the regulation factor. So the output of a 15 V transformer with a 10% regulation factor (a typical value) rises to 16.5 V when the output is unloaded.

Fig 14. Basic single-ended PSU using centre-tapped transformer.
transformer circuit Figure 14. The Figure 15 and 16 circuits each provide split or dual DC supplies with nearly identical performances. The rules for designing these circuits are quite simple and we'll look at these rules next.

The rms output voltage of the transformer secondary is not the same as the DC output voltage of the complete full-wave rectified power supply. As shown in Figure 17, the DC output is in fact 1.41 times greater than that of a single-ended transformer, or 0.71 times that of a centre-tapped transformer (ignoring rectifier losses). Thus, a single-ended 15 V rms transformer with 10% regulation gives an output of about 21 volts at full rated load (just under 1A at 20 VA rating) and 23.1 V at zero load. When rectifier losses are taken into account the output voltages will be slightly lower than shown in the graph. In the tworectifier circuits of Figures 14 and 16 the losses are about 0.6 V and in the bridge circuits of Figures 13 and 15 they are about 1.2 V . For maximum safety, the rectifiers should have current ratings at least equal to

Fig 15. Dual (split) PSU using centre-tapped transformer and bridge rectifiers.
the DC output currents.
So the procedure for selecting a transformer for a particular task is quite simple. First, decide the DC output voltage and current that you need; the product of these values gives the minimum VA rating of the transformer. Then consult the graph of Figure 17 to find the transformer secondary rms voltage that corresponds to the required DC voltage.

The Filter Capacitor

The filter capacitor converts the full-wave output of the rectifier into a smooth DC output voltage. The two most important parameters are its working voltage, which must be greater than the off-load output value of the power supply, and its capacitance value, which determines the amount of ripple that will appear on the DC output when current is drawn from the circuit.

As a rule of thumb, in a full-wave rectified power supply operating from a $50-60 \mathrm{~Hz}$ power line, and output load current of 100 mA , will cause a ripple waveform of about 700 mV peak-to-peak to be developed on a $1000 \mu \mathrm{~F}$ filter capacitor. The amount of ripple is directly proportional to the load current and inversely proportional to the capacitance value, as shown in the design guide of Figure 18. In most practical applications, the ripple should be kept below 1.5 V peak-to-peak under full load conditions. If the ripple must be very small, the basic power supply can be used to feed a 3 -terminal voltage regulator IC, which can easily reduce the ripple by a factor of 60 dB or so at low cost.

Rectifier Ratings

Figure 19 summarises the characteristics of the three basic types of rectifier circuit and gives the minimum PIV (peak inverse voltage) and current ratings of the
individual rectifiers. The full-wave circuit (using a centre-tapped transformer) and the bridge circuit (using a single-ended transformer) each give a typical full-load output voltage of about $1.2 \times \mathrm{E}$ and need diodes with minimum current ratings of $0.5 \times$ I (where 1 is the load current value), but the bridge circuit's PIV requirement is only half as great as that of the full wave circuit.

In the next part of this series, we will look at voltage multipliers, clamps and logic networks.

Fig 16. Dual (split) PSU using centre-tapped transformer and four rectifiers.
I

CIRCUIT	Vin (rms)	NO-LOAD OUTPUT	FULL-LOAD OUTPUT	RECTIFIER RATINGS	
			PIV	CURRENT	
HALF WAVE	E	$1.41 \times \mathrm{E}$	E	$2.82 \times \mathrm{E}$	I
FULLWAVE	$\mathrm{E}+\mathrm{E}$	$1.41 \times \mathrm{E}$	$1.2 \times \mathrm{E}$	$2.82 \times \mathrm{E}$	0.5×1
BRIDGE	E	$1.41 \times \mathrm{E}$	$1.2 \times \mathrm{E}$	$1.41 \times \mathrm{E}$	0.5×1

Fig 19. Rectifier circuit characteristics.

Fig 17. Transformer selection chart. Decide on the required loaded DC output voltage (say 21 volts), then read across to find the corresponding secondary voltage (15 V single-ended or 30 V centre-tapped).

Fig 18. Filter capacitor selection chart, relating capacitor size to ripple voltage and load current in a full-wave rectified $50-60 \mathrm{~Hz}$ powered circuit.

TECH TIPS

BATTERY CONDITION INDICATOR

This device indicates the state of charge of a battery by the colour of a dual LED. The LED can serve both as a battery indicator and as a power indicator light for battery/ mains equipment. The circuit is primarily intended for small portable battery powered instruments that are seldom switched on for hours on end but are only occasionally used. In this application the power consumed by the circuit is less important than the need to avoid inaccurate readings that would result from a weak battery.

The complete circuit diagram is shown here. Component values are those calculated for a 9 V battery supply. The reference voltage across 2D1 is applied to the inverting input of IC1 and the non-inverting input of IC2, both of which are wired as voltage comparators. With a supply exceeding 8 V the pin 3 potential of IC 1 is higher than the reference voltage and the green LED is lit. The pin 2 potential of IC2 will also be higher than the reference and therefore the red LED will be off. As the supply voltage falls, these potentials gradually move toward the reference voltage. Resistor R2 produces an overlap in the response of the voltage comparators to the falling supply voltage. First, IC2 output changes state and the red LED is lit. This results in a yellow light which indicates a middle aged battery. A further fall in the supply voltage to 7.3 V causes IC 1 output to change state and the green LED is extinguished leaving only the red, which indicates that the battery needs replacing
The response of this circuit to the falling supply is that after a of approximately 10% the LED goes from green to yellow, and goes from yellow to red after a further 10% drop.

The difference in the values of current limiting resistors R5 and R6 allows for the slightly larger forward voltage drop across the green LED.

In order to make a first approximation of the component values component tolerances can be ignored.

Note that the red light is extinguished at a high supply voltage (E_{h}) and the green one is switched off at a lower supply voltage (E_{j}). Note also that the voltage across $R 3$ will be equal to the reference voltage $\left(\mathrm{E}_{\mathrm{r}}\right)$ at the point where the red LED is about to make a transition. If 1 mA is allowed through R 3 under these conditions then the value of R 3 will be E_{r} kilohms.

Now the same current of 1 mA must flow through $R 1$ and R2 also. Therefore R1 $+R 2+R 3=E_{b}$ kilohms. Let this total resistance value $=R_{t}$

When the supply potential drops to E_{i}, the reference voltage E_{T} appears at the junction of R1 and R2. Now the current (I) flowing through the resistors is E_{V} / R_{t}

The voltage drop across $R 1$ is $E_{1}-E_{r}$ and therefore the current through R1 is $\left(\mathrm{E}_{\mathrm{I}}-\mathrm{E}_{\mathrm{r}}\right) / \mathrm{R} 1$. But this is the same current as I above. Consequently:

$\mathrm{E}_{\mathrm{l}} / \mathrm{R}_{\mathrm{t}}=\left(\mathrm{E}_{\mathrm{l}}-\mathrm{E}_{\mathrm{t}}\right) / \mathrm{R} 1$

therefore:
$R 1=R_{t}\left(E_{1}-E_{r}\right) / E_{1}$
and also since the value of $R 3$ is known then;
$\mathrm{R} 2=\mathrm{R}_{\mathrm{t}}-(\mathrm{R} 1+\mathrm{R} 3)$
Component tolerances can give results that differ somewhat from those calculated, particularly the value of R2. The best method of construction is to breadboard the circuit first and make any adjustments to the component values by trial and error before final assembly.

A design for a lower voltage indicator would require a smaller reference diode in order to keep the op-amp input levels away from the supply potentials.

The individual LED currents are between 13 mA and 15 mA . Attempts to take more will cause the opamp output voltage to drop. Typical 741 output voltages at this level of current consumption are approximately 3 V lower than the supply voltage.

Note that the circuit can be built using either two op-amps, or alternatively a 1458 dual 741 may be used for a more compact circuit board.

> A S Hughes, Holywell, Clwyd.

SIMPLE LOGIC PROBE

I
t takes only one integrated circuit, two LEDs and few resistors to implement this logic probe. The probe was designed to provide basic two level tests. The circuit uses a 747 dual op-amp, as shown below.

The reference levels are adjusted such that there is no output between 2 V and 2.7 V , and both LEDs are off. If the input to the probe at point P is below 2 V the green LED comes on indicating a logic low state. If the input is above 2.7 V the red LED is on indicating a logic high state. The inoperative window voltage levels can be adjusted, if required, by altering the reference levels at the inputs to the inverting and noninverting amplifiers, pins 7 and 2 respectively.

The supply voltage, V_{cc}, for the probe can be provided by clipping it to the supply rails of the circuit under test.

The potentiometer circuit shown to the left of the logic probe circuit was used to test the probe for proper operation. Applying the probe input P to the points A and B causes the red LED to come on, and touching P at points C and D results in the green LED to be lit.

J R Nowicki Marlborough, Wilts.

Active Noise Cancellation

If you drive regularly, you are likely to have been annoyed sometimes by the noise your car makes at certain speeds. Listening to your favourite music or radio program is fine at low speeds but on the open road at higher speeds, the problem starts. Low frequency noise, or boom, drowns the output from your speakers. Do you slow down and take longer on your journey, or continue with no entertainment but the boom of your engine?

Almost all vehicles are susceptible to low frequency boom in the passenger compartment, no matter what sound deadening material the manufacturer uses.

Control of low frequency noise and vibration by conventional methods can be very difficult. This feature looks at the causes of low frequency boom, and then explains an alternative technique which Lotus Engineering has developed to combat the problems of vehicle noise.

The Problem Of Noise

Noise in general is now recognised as a major pollutant in our lives. New legislation came into effect this year enforcing improved standards of noise in industry and in transport. The 'Noise at Work Regulations' are part of an EEC directive, and come under the Health and Safety at Work act in this country, defining noise levels for an eight hour working day.

Vehicle noise is no exception. People are spending more and more time daily in their vehicles, in the course of their work, or travelling to and from work. The car becomes a sanctuary in which the driver can listen to music or radio programs.

But most vehicles today are susceptible to low frequency noise or boom in the passenger compartment, which becomes severe at certain critical speeds. Noise control and comfort are becoming more important to the car owner. With increasing controls on speed in many countries, in-car comfort will gain in relative importance, while the car's top speed becomes less important.

Hitherto, noise control has been a low priority, a sort of 'bolt-on' refinement for the car manufacturer. However, manufacturers are now under increasing pressure to include effective and integral noise control as part of the overall design of a vehicle.

New environmental concerns exacerbate the problem. Car manufacturers are under pressure to reduce the wastage of resources and cut down harmful emissions into the atmosphere. Their response to this problem will be a drive to produce light-weight vehicles with smaller, more fuel-efficient engines containing three or four cylinders. Such engines are inherently noisier, with greater vibration levels. Lighter vehicles also possess lower natural attenuation of sound, and it will be significantly harder for the noise control engineer to maintain noise levels at current standards.

Lotus Engineering has conducted research on low frequency noise in a range of cars, from a sportscar to an average family saloon. The research took place in semi-anechoic chambers, described in more detail later. Briefly, a semi-anechoic chamber
is a room with echo-free walls and ceilings and a normal floor to simulate reflections from a road surface.

The research showed that boom occurs in the passenger area at twice the engine frequency, typically between 70 Hz and 200 Hz . The frequency at which boom is worst depends not only on the type of car, but on the position of the person within the car. It is typically worst at about 4000 rpm . The main sources of the noise are the engine and powertrain. Tyre contact with the road also makes a significant contribution.

Conventional sound deadening techniques work only at particular frequencies, and not across the full range produced by the engine. Suppressing boom below 200 Hz by conventional methods is costly and adds significantly to vehicle weight, contrary to current weight and cost saving programmes. The problem is made more complicated because boom is generated from a number of sources such as engine mounts, drive-train, induction and exhaust manifolds as well as mechanical components (see Fig. 1).

Reduction in the stiffness of rubber engine mountings might help reduce noise, but would result in an unacceptable lack of control of engine movement, particularly in poor conditions.

Another solution which has proved impractical is the use of twin contra-rotating balanced shafts which rotate at twice the engine speed. These are dependant on certain engine speeds, and only deal with structural inputs through the engine mounts.

Adaptive Noise Cancellation

Adaptive Noise Cancellation is an alternative solution which gets round these problems. It uses electronic feedback to generate sound of the same frequency as the boom, but in antiphase with it. The boom is cancelled before the human ear can detect it happening. Adaptive Noise Cancellation can achieve noise reductions of around 20 dB in a typical family car.

Car designers are now turning their thoughts to giving us a quieter ride. Helen Oughton reports on the latest active noise cancellation techniques.

Fig. 2 Simple principle of noise cancellation by addition of anti-phase sound

Fig. 2 provides a simplified illustration of how Adaptive Noise Cancellation works. Sound is a series of pressure waves which the ear can detect and the brain can interpret. If two sources of sound are in antiphase, the high-pressure peaks from one source coincide with the low-pressure troughs from the other, and vice versa. The peaks cancel out the troughs, and no sound is detected by the ear.

Lotus Engineering has been involved with developing Adaptive Noise Cancellation techniques in association with Southampton University's Institute of Sound and Vibration Research (ISVR) since 1986.

These techniques have achieved significant improvements in vehicle noise, with noise reductions of up to 25 dB being acheived within 0.1 s of the frequency being reached. As this is too quick for the ear to detect, the passengers would only notice an apparently quieter car.

Currently the system is limited to frequencies up to a maximum of 400 Hz . Higher frequency cancellation is less easy to achieve due to the acoustic behaviour of the passenger compartment. However, higher frequencies can be suppressed using lightweight absorbtion materials.

A Noise Cancellation System

The Adaptive Noise Cancellation system developed by Lotus Engineering and ISVR includes microphones, an amplifier and loudspeakers, and a processor to control and generate the antiphase noise. Wide response microphones and loudspeakers are essential as low frequencies are involved.

A typical system uses eight electret microphones, carefully positioned within the roof lining of the passenger compartment to provide feedback to the processor (Fig. 3). Four loudspeakers and an amplifier with 10 to 20 watts RMS per channel capacity can be integrated with the in-car entertainment system.

A digital signal processing (DSP) microprocessor provides the intelligence required to cancel noise throughout the vehicle. The microprocessor is linked to the car's ignition system to sense engine speed. It
combines this information with the input from the microphones to calculate and generate a suitable output at each loudspeaker. The output is in antiphase with the noise from the engine and car body, to minimise the sound pressure throughout the passenger compartment.

The DSP microprocessor used in the Lotus and ISVR system is a Texas Instruments TMS 320 series processor. It is anticipated that the complete computer will be reduced to one chip within three years, costing about \$12-15.

As well as reducing noise produced by the engine, Adaptive Noise Cancellation can be used very effectively to cancel road noise below 250 Hz . Suspension sensors detect the vibration before it is a noise. The DSP computer anticipates the noise and provides the correct cancelling waves. Again, the antiphase noise can be output through the in-car entertainment system's speakers.

Lotus have recently announced collaborative ventures with two West German companies.

Blaupunkt, who manufacture in-car entertainment systems, are now licenced to manufacture Lotus anti-noise systems. This will speed the integration of noise control with the in-car entertainment system, and will enable the rapid introduction of active noise systems into mass production.

The other company with which Lotus are collaborating is Carl Freudenberg. The aim is to develop an active engine mount and control system. An electrical transducer will be integrated into the mount to cancel the vibrations being passed through it. This gives a reduction in vibration while maintaining the stiffer mounts required for optimum control of engine movement.

Will Adaptive Noise Cancellation eventually become a standard feature on the average family car? Taking into account current requirements for smaller, more economical cars, and the trends towards more peaceful, comfortable lives for the 90 s , the signs are that vehicle manufacturers will be under pressure to take noise reduction very seriously.

EXCESSIVE NOISE

N^{o}
oise can often by annoying, especially if it keeps us awake at night or disturbs our concentration. However, at high enough levels for long periods, it can actually damage our hearing, It has long been recognised that in heavy industries such as steel making and shipbuilding workers were going deaf. Our ears are not designed to receive continuous loud noise from machinery, aircraft, rack concerts and personal hi-fi systems.

Inside the ear, sound passes down the ear canal to the ear drum, which converts the variation in pressure into vibrations. These pass through the middle ear to the cochlea, which contains about 30,000 very fine hair cells surrounded by fluid (Fig. 4). The hair cells convert the vibration into electrical signals in the nerves, which are interpreted by the brain as sound. When the ear is subjected to excessive noise the hair cells are destroyed, and never recover. Successive doses of noise gradually destroy more and more cells until a permanent hearing loss is noticed.

The first cells to be lost are those that work at about 4 kHz . When the ear is severely impaired, all frequencies are affected, leading to a loss in comprehension of speech or music.

Hearing loss is a slow process. When we come out of a very noisy room, we may notice a slight ringing in our ears, but it soon goes away, and we do not realise the damage that has been caused until it is too late. Because we build up an understanding of

Fig. 4 Construction of the Ear
different types of noise and speech, we may not notice the early signs of hearing loss.

Research has recommended a maximum level of $90 \mathrm{db}(\mathrm{A})$ Equivalent Noise Level (Leq) for an eight hour day, though there is still some risk of impairment and $85 \mathrm{db}(\mathrm{A})$ has been adopted by the EEC as the level at which action should first be taken. $85 \mathrm{db}(\mathrm{A})$ is still loud - if you were standing only 2 m away from someone, you would have to shout to make them hear.

These levels have been adopted by the new Noise At Work regulations, which now come under the Health and Safety at Work Act in Britain. Above $90 \mathrm{db}(\mathrm{A}) \mathrm{Leq}$, all reasonable efforts must be made to reduce the noise, and hearing protection must be issued.

SEMI-ANECHOIC CHAMBERS

Avital tool to the noise control engineer is the semianechoic chamber. The chamber combines simulation of road noise conditions and isolation of noise sources, with the advantages of a stationary vehicle on a rolling road in controlled conditions. It makes testing faster and more accurate than could be acheived on a test track.

Semi-anechoic chambers are used to simulate the sound behaviour of a vehicle on a road. Anechoic means 'no refections', and anechoic chambers are designed to minimise reflections from any surface. On the other hand, the semi-anechoic chambers used for vehicle noise research allow reflections from the floor, but not from any other surface.

Noise measurements made in rooms with hard walls will include the sound reflected from the walls, as well as that radiated directly from the source. In a real situation, noise from a vehicle will be reflected only from the hard road surface. Noise radiated in other directions will be dissipated without reflection.

Reflected noise is removed by absorption at the walls and ceiling by the used of long, glass-fibre wedges. The depth of the wedges determines the lowest frequency level for which the absorbtion effect is valid - this is known as the cut-off frequency. Below this frequency, some reflection will occur, but at a dimished level.

There are many advantages in using a semianechoic chamber. Testing vehicles on a test track is limited by weather conditions, and it is impossible to control the test environment in terms of temperature, air flow and road surface. The noise emitted by a vehicle will be affected strongly by these variables.

The chamber also allows problems to be investigated while the vehicle is stationary on a rolling road, allowing the engineer access beneath and around a vehicle while it is effectively driving along. Vehicle noise may be transmitted through its structure, or transmitted through the air. The environment of a semi-anechoic chamber allows the engineer to isolate sound transmission paths, for example, by removing the steering wheel - hardly practical on the test track!

Smaller semi-anechoic chambers form an integral part of engine test bed procedure, pin-pointing those parts of the engine which-produce most noise and which will produce most benefit if redesigned or modified. Fig. 1 shows the results of some of these tests.

Lotus Engineering has used two types of semianechoic chamber in their research. The vehicle chamber contains a rolling road capable of speeds up to $250 \mathrm{kph}(155 \mathrm{mph})$. Its size is $9.8 \mathrm{~m} \times 6.8 \mathrm{~m}$, and it has a cutoff frequency of 70 Hz (below which some reflection will occur). This is acheived by using 1.1 m glass fibre wedges. The smaller engine cell is $6.8 \mathrm{~m} \times$ $5.8 \mathrm{~m} \times 3.8 \mathrm{~m}$, and has a cut-off frequency of 150 Hz . Data from the cells is analysed using specially designed software, DATS, written by Prostig Computer Consultants Ltd.

F
ollowing closely behind the launch of the SY77 synthesiser workstation comes the TG55 from Yamaha, a rack mounted MIDI controlled tone generator that contains many of the features to be had in the SY77 featured in the audio news section last month.

The rack contains 74 preset samples in ROM. Quality is as good as CD reproduction as samples are again 16 bit quantised.

Additional sampled sounds can be accessed via external wavecards.

Sampled waves can be mixed and blended by a digital filter system and voices can be edited in the usual variety of ways including volume, detuning and panning.

Apart from all the usual expressive effects obtained through the keyboard, Yamaha introduce velocity switching. This
effect brings different elements to the musical foreground depending on how hard the keyboard is played. The TG55 contains 34 effects programs giving a multiplicity of reverb effects through to distortion. A complete drum set accompaniment is also available with another 64 voices.

The TG55 rack-mount tone generator retails at $£ 749.00$.

Apersonal stereo about the same size as cassette case, to be carried in your pocket, has been launched by Panasonic in April.

The new S series cassette players offer full remote control, ldd display, the now familiar extented bass system, Dolby noise reduction and a clock. The remote control facility allows you to play, stop, and all the rest of the mechanical functions from one button. This makes it easier to operate while still in your pocket. The clock enables two timesettings to be programmed with an alarm function. Auto-reverse playback will save you having to turn the cassette over.

IIf you have the musical ideas and the MIDI software to record them, you're only one step away from a professionally recorded song, thanks to the Engine Factory's new Micro Productions service.

They will tidy up the raw data, select the right sounds for the job, arrange, produce and mix a CD quality production onto cassette, DAT or HiFi Video, all for a lot less than the equivalent work would cost in a conventional studio.

Maplin are offering a range of bass guitar amplifiers at a variety of power outputs from 15-75 watts for practice purposes or local performance.

The 15 watt version comes in a tough wooden cabinet with loudspeaker and a 3 channel equaliser. At the top end, the 75 watt amp contains reverb, three channel equaliser and a 'bright' switch to give greater signal presence. Pre-amp out and power amp in are

Great care has been taken in providing clients with an extensive, up to the minute range of sounds, from such industry standard machines as the Akai S1000 (16 Bit Stereo Sampler) and the Korg M1 (Al Synthesis Workstation). In fact over 200 sound sources are available at the click of a mouse, within a single track.

Further information and a demo cassette call The Engine Factory on 081-650-1033.

available via jack sockets on the back.
The 15 watt version costs $£ 54.95$ and 75 watts of guitar power will cost you $£ 169.95$.

Compact Disc players are getting cheaper Sony's new discman, a budget portable CD player enters the competitive field.

Weighing only 450 g , and with a frequency response of $20-20 \mathrm{kHz}$, this new player consumes only 1.2 watts of power.

In line with more bass appeal now demanded by the headphone brigade, the portable has a three position bass switch to give a varied degree of boost to the headphones. If normal playback is required through the home hi-fi, a 1 volt line out jack is supplied.

The D22 contains all the normal musicsearch functions along with the option of infra-red remote control.

The Sony D22 carries a price tag of £149.99.

MAPLIN AUDIO MIXERS

Paul Freeman introduces the new range of budget mixers from Maplin, and takes a detailed look at the 12 channel version.

Arange of budget mixers has been launched by Maplin this year featuring 6,8 and 12 channel inputs into two channel stereo out. Over the last ten years, the explosive growth in the availability of music-making equipment at prices that many people can afford has been such that the demand for a decent mixing desk has become apparent. Maplin may be filling this gap with its range of budget mixers. Here well have a look at the 12 channel version.

Although mixing desks come in a variety of shapes and sizes they all have the same basic facilities. What can vary is the quality of sound output and the number of channels coming in and going out.

This mixing desk, the largest of the Maplin range of three, is just under 750 mm long and over 400 mm deep. All twelve channels are identical in their front panel appearance, but the first ten have microphone or line inputs, and the last two, with higher impedance, have phono inputs only. Now what about the control line up?

We'll start at the top and work down each input channel. The first control is a line/microphone selector to switch the input from microphone to anything less sensitive at line level. Below this selector comes a gain control to preset the input level. This can be useful if your input signals vary wildly in level. Adjustment here will then balance the main fade controls.

The statutary treble and bass controls give $\pm 12 \mathrm{~dB}$ at 100 Hz base end and $\pm 12 \mathrm{~dB}$ cut and boost at the top end (10 kHz).

Next comes the all-essential pan control, which divides your mono signal into left, right and centre of the stereo field output. The effect send is below the pan pot, sending a proportion of the input signal to an effects box. The effects box can modify the sound in some way. It could be reverb, echo, chorus, phasing or flanging.

The cue control, or pre fade listen (PFL) as it is more professionally known, comes next down the chain of knobs to twiddle. This adjusts the volume of
the incoming signal to the headphones only. It goes without saying that it will not affect what goes out from the stereo output jack. There is a switch to change the headphones from console-out to PFL at the master output end of the desk.

Just above the principal channel fader, an overload LED gives a handy and quick indication of overdrive to the input amplifier. The LED cuts in at around +4 dB .

This completes the line up for each channel. There are a few general points to bear in mind
about the first ten channels. All op-amps are of a TL072 type and these were presumably chosen as they have an equivalent input noise of $18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Each input channel has a cascade of five op-amps from the mic or line before reaching the mixing bus. The signal then has to go through another two opamps per stereo channel before it arrives at a record output. The more the signal has to go through the greater the overall noise contribution, so it is in the interests of the designers to keep the number of cascaded op-amps as low as possible.

All microphone inputs are unbalanced via a choice of input connectors, XLR or $1 / 4$ inch jack, on the back of the desk. A DJ mic input is available via an XLR connector on the top of the console. This mic signal goes through only 4 op-amps from input to record out.

At the right hand end of the mixing desk as on all desks are the output controls, controlling anything downwind of the mixing bus. Firstly there is a DJ mic fader with a talk-through muting switch just above. This cuts line levels by 12 dB for the purposes of talk through.

Next comes a studio speaker monitor level and above this an equaliser bypass switch. While we are

SPECIFICATIONS

INPUT SENSITIVITY	
Mic	3 mV into 10 K
Phono	3 mV into 47 K
Line	150 mV into 100 K
Return	775 mV into 100 K
OUTPUT LEVEL	
Master	1.5V/600R
Max	8V/600R
Monitor	1.5V/600R
Record	0.775 V 600 R
Send	1.5V/600R
SIN RATIO	
Mic	70dB
Phono	70dB
Line	80dB
DISTORTION	
Less than 0.1\% (At rated output)	
FREQUENCY RESPONSE	
2 OHz 20	$<0.5 d B$

EQUALISER

Centre frequency $60 \mathrm{~Hz}, 150 \mathrm{~Hz}, 400 \mathrm{~Hz} 1 \mathrm{kHz}, 2.4 \mathrm{kHz}, 6 \mathrm{kHz}, 15 \mathrm{kF}$
Boosticut range $\pm 12 d B$ at centre frequency

TONE CONTROL

Bass $\pm 12 \mathrm{~dB}$ at 100 Hz
Treble $\pm 12 \mathrm{~dB}$ at 10 KHz

HEADPHONES

Impedance 4-50R can be used

RELAY DELAY TIME

Approx 2 second's
PEAK INDICATOR
5 V .6 V at master level setting maximum
CROSSTALK
Master 50dB
Monitor 50dB
Record 50dB
Send 50 dB
on the subject of graphic equalisers, the desk comes with a seven-channel graphic equaliser for each output giving $\pm 12 \mathrm{~dB}$ of cut or gain at each centre frequency. Equalisers can be effective if stray resonances occur during each recording in the studio but the advantages come at the price of introducing more noise into the chain. Centre frequencies are given in the specifications at the end of this review.

On the far right-hand side is a headphone jack and level control, a master/cue switch and effect send and return controls. Finally the two output level master faders with VU meters complete the line up.

One must accept that this is budget mixer and as a result there are limitations. The first and foremost is one of noise contribution. The quoted signal-tonoise ratio of 70 dB for mic inputs and 80 dB for line

inputs is about right compared to the measured value but better figures could be achieved with careful design and choice of components. One also has to be careful of how many live' inputs there are feeding into the output bus high fader levels otherwise the noise may become unacceptable. I've always had reservations about introducing graphic equalisers into the signal path, but I was pleased to hear that the noise contribution made by the graphic was at an acceptably

low level and in my mind could give a worthwhile contribution if required. A 50 dB crosstalk figure between channels would be a worrying feature if complete single channel drive was needed, but this is an unlikely event in a live and complete stereo sound field. Personally I would prefer the headphone output jack to be on the front vertical panel of the desk instead of on top with the wire trailing across the desk to get in the way, but having said that the Maplin range of audio mixers represents good value for money and they could find a place in the home studio in what has now become a boom industry.
The retail prices are:

6 channel	$£ 279.95$
8 channel	$£ 399.95$
12 channel	$£ 499.95$.

Got a guitar? Keith Brindley explains how to create your own fuzz and echo effects using the ETI Fecko Box.

and interference.
A more reliable method uses a magnetic tape system, similar to a conventional cassette or reel-toreel tape recorder. Usually it comprises a tape loop coupled with a recording head and one or more separate playback heads. Any signal recorded is replayed later from the playback heads. The finite speed of tape as it moves from the record head to the playback heads defines the time delay between the original sound and the echo. The main drawback of the tape loop method is simply the bulky mechanics, although long delays are possible.

Electronic methods of creating echo may be analogue or digital in nature. Digital echo is created by converting the original analogue signal into a digital signal, writing it into a digital store, then reading it from the store and finally reconverting to analogue for replay.

Over the last few years, however, it has been normal to create echo and hence reverberation using the analogue delay line principle, in which the original signal is sampled and each sample is passed along a line of storage capacitors. At the end of the line the samples are recombined to give a delayed echo. The number of storage capacitors and the speed with which the samples are passed along the line defines the delay. Analogue delay lines of this type are often called bucket-brigade delay lines. The ETI Fecko Box uses this method.

Delay obtained in this sort of echo generation system is limited to around 20 or 30 ms . This is virtually inaudible as a single repeat, however, and so by feeding back the echo to the input again, echoes of the original sounds are re-delayed such that a reverberation effect is obtained.

The output signal amplitude of the Fecko Box can be preset between zero and about 3 V , so the Fecko Box may simply be connected in-line between your guitar and your usual guitar amplifier. With a larger output amplitude, a direct input (DI) to a mixing desk (or even your hi-fi amplifier's line input) can be made.

Construction

The component overlay for the project is shown in Figure 2. The printed circuit board requires just one link. After inserting and soldering the link, solder in all passive components. Leave the two potentiometers until last, because otherwise they may make the board a bit tricky to handle.

Although it's by no means essential to use integrated circuit sockets, it's probably advisable as integrated circuits IC1 and IC2 are sensitive to static, and unless adequate precautions are taken, they may be damaged when soldered. PCB pins are a good idea, as they make off-board connection considerably more straightforward when the board is inserted in the case.

Insert and solder in diode D1, then insert all integrated circuits into their sockets (or solder directly to the board, if you prefer). Finally, insert and solder the two potentiometers. This completes construction of the PCB.

Although you do not need to use any particular case, it's probably a good idea to use a metal case, earthing it to 0 V to help prevent interference from external sources. Make sure the input ground connection is isolated from 0 V .

Power (that is, OV) should be switched onto the board when a plug is inserted into one of the jack sockets - a fairly standard practice on guitar effects boxes. However, to ensure input isolation, switching should occur via the output jack socket. Make sure you use screened leads to connect the input and output between jack sockets and printed circuit board.

Fig. 2 Component overlay for the Fecko Box

Fig. 3 Block diagram of the Fecko Box

Setting Up

Initially, set all presets to mid-position with the exception of RV6 which should be set fully clockwise (viewed from the component side of the board). Set the two potentiometers fully anti-clockwise. With these settings, the project should give an output for any suitable signal input.

To set up the project for minimum distortion and maximum signal-to-noise ratio, you ideally need a signal source of around 1 kHz at 100 mV and an oscilloscope. However, you can obtain a suitable approximation from a signal direct from your guitar, an amplifier to amplify the outgoing signal (your hi-fi system will do nicely) and a pair of ears. An oscilloscope is by no means essential. The idea is to adjust the amplifying stages of the project for maximum gain without distorting the signal due to limiting. This may seem an odd requirement for what is effectively a distorting effect, but there will be times when you want an undistorted guitar sound.

Using the oscilloscope to monitor the output of op-amp IC1a, use preset RV1 to adjust the gain so that the output signal is a maximum without being clipped due to limiting. Without an oscilloscope, just listen to the output of the project - when it clips, you'll hear it.

Next, turn potentiometer RV2 slowly clockwise. At the same point you will observe on the oscilloscope clipping on one side of the signal. The further RV2 is turned clockwise, the greater the extent of clipping. With RV2 fully clockwise, adjust preset RV3 to give a maximum amount of clipping without total loss of signal output. Turn the potentiometer fully anticlockwise (clipping should be totally eliminated). You will need to adjust presets RV1 and RV3 again, when your guitar is fully connected.

The following procedure need only be carried out once. Monitor the output of op-amp IC1c with the oscilloscope. Adjust preset RV5 for maximum gain
without clipping. Next, turn potentiometer RV4 fully clockwise. Slowly turn preset RV6 anticlockwise. At some point the circuit will start to oscillate - turn preset RV6 back to stop oscillation. Turn potentiometer RV4 fully anticlockwise again.

Now you need a guitar signal. Repeat the steps of adjusting the gain of op-amp ICla and clipping levels, using presets RV1 and RV3 and potentiometer RV2. Now preset RV7 to give the required output signal amplitude.

And that's it. Turning potentiometer RV2 clockwise gives fuzz. Turning potentiometer RV4 gives reverberation.

One final adjustment to project performance may be made by adjusting preset RV8, which controls the frequency of the oscillator stage built around integrated circuit IC3. With preset RV8 fully anticlockwise the oscillator frequency will manifest itself as an audible whistle in the output. Turning RV8 clockwise increases the frequency till it goes above hearing range. You can also adjust RV8 to give an optimum frequency response, suited to an individual guitar. It's worth nothing that, as you adjust RV8, you cause the project to generate the well-known and common phasing effect.

Fig. 4 Output signals of fuzz boxes (a) normal fuzz circuit (b) Fecko Box fuzz circuit

HOW IT WORKS

A block diagram of the whole projectis shown in Figure 3. Three main parts are apparent. The first amplifier (buitt around op-ampl|Cla) has a controlled bias arrangement, such that the output signal may be clipped by a varying amount to create a fuzz effect.

The usual way of creating fuzzis to overdive an amplifier so that Clipping occurs at both sides of the amplifier's output signal FFigure 4a). The Fecko Box operates in a sightly unusual manner by clipping only one side of the signal (Figure 4b). This is performed by varying the bias to the non-inverting input of the op amp via potential divider chain R1, RV2 and RV3, offsetting the output DC level. The potentiometer RV2 provides front-panal control of fuzz, varying from zero to maximum, while preset RV3 is used to set the maximum amount. Preset RV1 sets overall gain for the amplifiet. Note that input is referenced to the biss potential, not OV, and so care should be taken to isolate input leads from any OV potential, such as the case.

Time delay is created in the Fecko Box with a bucket-brigade delay line, the principle of which is shown in Figure 5 using buckets of water as an analogy. The first stage of the analogy (Figure 5al sees alternate lodd) buckets filled with specific amounts of water. At the second stage (Figure 5b) the buckets are tipped, pouring water from them into the next leven) buckets in the line. in the final stage (Figure 5c) the odd buckets are empty and even buckets now hold the specific amounts. Next the even buckets are tipped into the pexex odd buckets, and so on. Effectively, water is passed along the line, bucket by bucket.

In a bucket-brigade delay line an analogue signal is stored as charges on a line of capacitors the chip designers decided the problems of water leaking from buckets might create a bit of a mess!) But the principle is similar: Sampling and signal delay is performed by the integrated circuit 1 IC2, while the clock function of IC3 times the transter of charges from capacito to capacitor along the line. The frequency of the clock signal is determined by components R18, R22, C14 and RV8. The preset RV8 allows adjustment.

When sampling of an analogue signal occurs, it is necessary to provide pre-and post-sampling fittering. This is carried out by circuits associated with op-amps ICid pre-sampling fiter) and ICic (postsampling filter). Both are straightforward low-pass filters, with cutoff frequencies around 7 kHz .

Op-amp IC1b and the associated components form an audio mixer, mixing signals from the first amplifier and the time delay. The potentiometer RV4 and the preset RV6 define the amount of delayed signal, such that the preset is used to set the amrount just before oscillation (due to feedback) occurs.

Overall output level is determined with preset RV7, Any amount of signal amplitude between zero and around 3 V can be obtained.

PARTS LIST

CAPACITORS

C1,2,3,4,6,10,12,13	$447,10 \mathrm{~V}$ radial electrolytic
C5,11,17	220 p ceramic
C7	100 n polyester

BUYLINES

Most, if not all, parts are obtained from mail order companies. Integrated circuits IC2 and IC3 may be obtained from Electromai lpart numbers 631-288 and 631-3011.

PROGRAMMABLE ELECTRONIC LOCK KIT

Keys could be a thing of the past with this new high security lock. Secure doors to sheds, garages, even your home or prevent the unauthorised use of computers, burglaralarms or cars. One 4-digit sequence will openthelock while incorrect entries will sound an alarm. The number of incorrectentries allowed before the alarm is triggered is selected by

you. Further entries will be ignored for a time also set by you. Only the correct sequence will open the lock and switch off the alarm. The sequence may easily be changed by entering a special number and code on the supplied keyboard. Kit includes: keyboard, alarm buzzer, high quality PCB and all electronic components, Supply: $5-15 \mathrm{Vd.c}$, Will drive our Latch Mechanism ($701150 @ £ 18.98$) or relay directly.
XK131
£19.95

DISCO LIGHTING KITS

DL8000K 8-way sequencer kit with built-in opto-isolated sound to light input. Only requires a box and control knob to complete £39. 95 DL1000K 4-way chaser features bi-directional sequence and dimming 1 kW per channel . . $£ 23.95$ DLZ1000K Uni-directional version of the above. Zero switching to reduce interierence DLA/1 (for OL \& DLZ1000K) optional op-to input allowing audic beat/ight response L3000K 3 -channel sound to light kit, zero voltage switching automatic level control and built-in mic. 1 kW per channel $£ 19.55$ POWER STROBE KIT Produces an intense light pulse at a variable frequency of 1 to 15 Hz . Includes high quality PCB connectors 5 Ws strobe tel onnectors, 5 Ws strobe tube and assembly instructions. Supp
240 V ac Size $80 \times 50 \times 45$ 240 VaC . Size: $80 \times 50 \times 4$ XK124 STROBOSCOPE KIT. $£ 17.25$

$\square \quad \square^{\prime}$

Includes all components (+ trans former) for a sensitive IR receiver with 16 logic outputs ($0-15 \mathrm{~V}$) which with suitable interface circuitry (relays, triacs, etc details supplied) can switch up to 16 items of equipment on or off remotely. Outputs may be atched to the last received code or momentary (on during transmission) by specitying the decoder IC and by speciring the decoder ic and on stabised supply is availabie power external circuits. Supply: 240 V AC or 15-24V DC at 10 mA . Size: (exc transformer) $9 \times 4 \times 2 \mathrm{cms}$. Companion transmitter is the MK18 which operated from a 9V PP3 battery and gives a range of up to 60 ft . Two keyboards are available-MK9 (4-way) and MK10 (16-way).
MK12 IR Receiver
(inc. transformer) £19.55 MK18 Transmitter MK9 4-way Keyboard MK10 16-way Keyboard 601133 Box for Transmitter. 57.95

VOICE RECORD/ PLAYBACK KIT

 This simple to construct and even simpler to operate kit will record and playback short messages or unes It has many uses - seatbe or lights reminder in the car welcome messages to visitors at home or at work, warning
messages in tactories and public places, in fact anywhere where a spoken message is announced and which needs to be changed from time to time. Also suitable for toys - why not convert your daughter's $£ 8$ doll to an $£ 80$ talking doll!!
Size -
Message time
C 25.95

E ELECTRONICS
 13 BOSTON RD. LONDON W7 3SJ TEL: 01-567 8910. FAX: 01-566 1916 ORDERING INFORMATION:

All prices INCLUDE VAT. Free P \& P on orders over $£ 60$ (UK only), otherwise add $£ 1.15$. Overseas Customers divide total order by 1.15 then add P \& P: Europe $£ 3.50$, elsewhere $£ 10.00$. Send cheque/PO/Visa Access No. with order. Giro No. 529314002 . Local Authority and educational institutions orders welcome. Shop Open: Tuesday-Thursday 10 am-5 pm . Saturday $10 \mathrm{am}-4 \mathrm{pm}$.

19" RACK MOUNTING EQUIPMENT CASES

This range of $19^{\prime \prime}$ rack cases features salin black finished 16SWG (15mm) steel front panels (no fixing holes visible) with ine rear box assembly constructed from 20SWG (9 mm) stee. The standard units are $10^{\prime \prime}(254 \mathrm{~mm})$ deep NEW FOR $199019^{\prime \prime}$ project cases only $4^{\prime \prime}(101 \mathrm{~mm})$ deep and are available in the following popular sizes

PROJECT CASES		
e	Height	Pri
PU1	$13 / 4^{\prime \prime}(44 \mathrm{~mm})$	£16.5
PU2	$31 / 2^{\prime \prime}(88 \mathrm{~mm})$	£1850
PU3	$51 / 4^{n}(133 \mathrm{~mm})$	£20.50
PU4	$7^{\prime \prime}(178 \mathrm{~mm})$	£22 50
PU6	101/2" (226mm)	£26.50
EQUIPMENT CASES		
U1	$13 / 4^{n}$ (44 mm)	£20 7
U2	$31 / 2^{\prime \prime}(88 \mathrm{~mm})$	£24.1
U3	$51 / 4{ }^{\prime \prime}(133 \mathrm{~mm})$	£27.60
U4	$7^{\prime \prime}(178 \mathrm{~mm})$	£29

Delivery included (UK only).
All prices include VAT
BLANKING PANELS, RACKING CONSOLES and FACK CABINETS are also available
Please send SAE for details.
Tel: 0275823983 for Access/Visa Sales orcheque
with order to:
RACKZ PRODUCTS
PO Box 1402 Mangotsfield, Bristol, England, BS17 3RY

Wizard Kit-Packs
 THIS MONTH'S WIZARDRY

THE WIZARD PRECISION MAINS FILTER
250 volts AC 13 amp , On off switch, 4 IEC output sockets, Merlin made case and USA Potter
 LOOK AT THE SPEC ON THIS WIZARD BENCH POWER SUPPLY
Variable DC Voltage 3.5 to 22 voits at 8 amps continuous rating, twin meters volts and amps轻 GEC STEP case. Built and tested.
Record/PIAEO CASSETTE UNIT
service manual

> THE WIZZARD POWER CUBE
> Specification
> 20 Amp Hour Dryfit Battery; 2 Inbuilt Mains Charge 3 RF Filtered; 4 Solar Cell Input (Cells optional); 5 Compact Size/Portable; 6 Merlin Made

MORE DATA - Send a 19 p Stamp for Latest List
Ring the Wizard on 0225706886 Fax 0225708594 for more information or a visit to the works PAYMENT Access, Cheque, PO and Cash Post and packing on components $£ 150$ or $£ 1.00$ for orders over $£ 20,00$. Please add VAT to total

MERLIN SYSTEMS
Merlin Way, Bowerhill Trg Est, Melksham, Wiltshire SN12 6TJ

TONICS FOR TIRED TRANSDUCERS Cost-effective speaker upgrade kits

AUDAX TITANIUM TWEETER UPGRADE.

Change your $1^{\prime \prime}$ dome tweeters for these Titanium units and enjoy crisper, cleaner response. Suitable for replacing tweeters up to 91 dB sensitivity. Kit includes constant impedance level controls so that you can adjust for optimum results without any crossover modifications.
order TITANIUM 100 (100mm round plate)
£43.50 pair or TITANIUM $12 \times 9(120 \times 90 \mathrm{~mm}) \quad+p \& p £ 3.00$

ELAC METAL DOME TWEETER UPGRADE.

As kit above but using the Elac tweeter which has had such rave reviews. To replace units up to 89 dB sensitivity order METAL 25DT30 (104mm round plate) E63.50 pair or METAL 25DT29 (120×90mm plate)
+p\&p £3.00

SEAS METAL DOME TWEETER UPGRADE

Direct replacement for the $3 / 4^{\prime \prime}$ (19 mm) unit used in so many small speakers. Sensitivity 88 dB (94 mm round plate) $\quad £ 41.90$ pair

+ p\&p £3.00

CONCERTO UPGRADE CROSSOVER

Replacing the DN12 network in speakers employing the Kef B139, B110, T27 combination, this crossover greatly improves detail and definition. (Screw terminal connections) $£ 48.95$ pair $+p \& p £ 3.00$
WACOUSTIC PANELS inhibit panel resonance and limit cabinetinduced colouration. (Foam sandwiched between two layers of bitumin.) Self adhesive
Size: $270 \times 200 \times 16 \mathrm{~mm}$
Set of 8 (will treat pr. of small/med. speakers) $£ 16+p \& p £ 3$

- telephone credit card orders
 WILMSLOW AUDIO LTD
 NEW ADDRESS AFTER SEPTEMBER 25 TH

Wellington Close, Parkgate Trading Estate, Knutsford, Cheshire WA16 8DX. Tel: 056550605 Closed all day Mondays
DIY Speaker Catalogue $£ 1.50$ post free (export $\$ 6$)

Brian Kendal shows there is more to fuses than meets the eye

 he fuse is probably the least understood component in common use today. Furthermore, the popular belief that it is merely a piece of wire which melts when the current passing exceeds the quoted rating is not only inaccurate but, under certain circumstances, a danger to the equipment which it is supposed to be protecting.

Ideal Protection

Before looking further into the operation of fuses themselves, let us consider what protection circuitry would be necessary if they had never been invented.

Firstly, the current flowing in the circuit would have to be continuously monitored. The most effective way of achieving this would be by means of a current transducer, the output of which would be fed to a microprocessor via an analogue-to-digital converter.

The micro would need to determine whether excessive current flow was due to a natural variation, for example: the initial surge due to capacitors charging on switch-on, or due to a fault condition. This of course, would be incorporated in the software which numerically integrates the current, giving a measure of the thermal stresses in the protected circuit, match this against a map of the safe operating area of the particular circuit.

Assuming that this can satisfactorily be achieved, on detection of a fault condition, the output signal must then open the faulty circuit. This would most conveniently be achieved by a small power amplifier driving a circuit breaker capable of breaking the maximum fault current, which in mains circuits may well be in excess of several hundred amperes.

Such a protection circuit could doubtless be developed and, when placed on the market, sell for several hundred pounds. In practice, the designer
would not even consider such a complex solution instead he or she fits a miniature fuse.

Surprising as it may seem, the miniature fuse performs all the functions described previously and at a cost of only a few pence as long as the correct type and rating has been specified in the first place.

Fuse Characteristics

Most users select a fuse according to its rated current (I_{n}) believing that above this level the fuse will blow, thus safeguarding the circuit. This is a misconception, for the rated current is that which the device will carry continuously without degradation. Thus if the normal current in a circuit is 500 mA , then that is the rating of fuse which should be fitted. To cause the fuse to blow, the current will have to be much higher than this. The lowest current which will cause the fuse to melt is called the minimum fusing current $\left(I_{m}\right)$ and its ratio to I_{n} is called the fusing factor. Typically the fusing factor is in the order of 1.5-2.0. Thus a 500 mA fuse will normally fail at a current between 750 mA and 1.0 A

Considerable difficulties are experienced in determining $I_{\text {m }}$ and the fusing factor, but these are circumvented by specifying current levels at which the fuse should not (or should) break within a given time. These levels are called the conventional non-fusing current and conventional fusing current respectively.

A typical specification for this is the BS 4265 requirement for miniature fuses which requires that the fuse under test should not fail when tested for one hour at $1.5 \mathrm{I}_{\mathrm{n}}$

A fuse's country of origin is important. For example, in the United States, standards require that miniature fuses should break within one hour at 1.35 I_{n}. In view of this, fuses from European and U.S. sources are not generally interchangeable.

A further consideration in the specification of a fuse for a particular purpose is the time necessary for operation when subjected to a high fault current. For example: a time delay or anti-surge type will take far longer to break than a fast acting fuse. Fast acting fuses to BS 4265 (Cat F) must break within 20 ms at 10 I whilst anti-surge types (Cat T) must take from 20 to 300 ms . Super-fast-acting and super-time-lag types are also available.

Fuse Rating	Max volt drop at I_{n}	
(BS 4265)	Ftype	Ttype
50 mA	7 V	3.5 V
500 mA	1 V	900 mV
1 A	200 mV	150 mV
5 A	130 mV	100 mV

Table 1 Some typical fuse values

In the design of a fused circuit, consideration must also be given to the DC resistance of the fuse itself. As a fuse is a heat operated device, those intended for very low current ratings must necessarily have a relatively high resistance. The maximum permitted voltage drop is strictly controlled by standards of which some typical values are shown in Table 1.

From this it will be seen that the maximum voltage drop across a 50 mA type F fuse is 7 V . However, as the conventional fusing current for these fuses is $2.1 \mathrm{I}_{\mathrm{n}}$, a circuit voltage of 14.2 V could be required to cause operation. As the supply voltage may well only be at this level, the fuse could hardly be blamed for failing to give adequate protection!

After The Break

Another misconception is formed by the belief that once the wire melts, that is the end of the operation. Nothing could be further from the truth, for the failure of the wire is only the prelude to the most important part of the operation - the arcing period.

As the fuse element disintegrates, current flow does not cease immediately but continues through an electric arc. The duration of this arc (known as the arcing time) is very dependent on the parameters, and particularly the inductance, of the circuit to which it is attached. So important is this, that the period is often further broken down to itemise the period immediately prior to melting, referred to as the prearcing time.

When the arc is established, it effectively inserts a high resistance within the circuit, rapidly decreasing the current which eventually falls to zero. It is possible to design the fuse such that the arc voltage greatly exceeds that of the supply with the result that the fault

current is rapidly eliminated with consequent reduction of the stresses imposed on the circuit. This is usually achieved by embedding the fuse element in a sand filler which constricts the arc diameter, considerably increasing its resistance and giving rise to the rapid current limiting action required.

Fuse Safety

The installation of a fuse is the cheapest and most effective circuit protection available today. To achieve this, a fuse with the correct characteristics and of the correct rating has to be chosen. It is hoped that this short article has given constructors an insight into the design and characteristics of fuses, enabling a choice which will provide both economic and effective circuit protection.

19" RACK CASES

* Suitable for instruments, high quality amplifiers and many other applications that demand strenglh and prolessional finish \star Newimproved construction and finish \star Black anodised aluminium front panels \star Separate
lrontmounting plate, no fixing screws visible on the front and the side of the enclosure \star Heavygauge frontpanel is of brushed aluminium finish enhanced with iwo professional handles \star With ventilalion slits and plastic leel \# Rear box manufactured from 1.1 mm steel finishedin black Rack mounling or free standing Comes in quick assembly flat package

CRICKLEWOOD ELECTRONICS LTD 40CRICKELWOODBROADWAY, LONDONNW23ET

Tel: 081-4520161 Fax: 081-2081441

OUT ON THE
STREETS
Th our ceaseless endeavours to ensure the smooth and seamless distribution of ETI, we would like to hear from any readers who have had difficulty finding our illustrious mag in the high street,

If your local newsagent stocks our competitors or other specialist titles but not ETI, we would be grateful if you could let us know using the coupon on the left

Bear in mind that ETI comes out on the first Friday of the month and a natural break occurs at the end of each period.

We do. The Advertising Standards Authority ensures advertisements meet with the strict Code of Advertising Practice.

So if you question an advertiser, they have to answer to us.

To find out more about the ASA, please write to Advertising Standards Authority. Department X. Brook House. Torrington Place, London WC1E 7HN.

This space is donated in the interests of high standards in advertisements.

NEWSAGENT'S NAME

NEWSAGENT'S ADDRESS

NEWSAGENT'S TELEPHONE No.
ETI IN STOCK
OTHER ELECTRONICS MAGAZINES IN STOCK?
rarely

1

OTHER SPECIALIST MAGS AVALLABLE
eg computers, radio, CB etc

no
SEND TO: THE EDITOR, ETI,
ARGUS HOUSE, BOUNDARY WAY,
HEMEL HEMPSTEAD HP2 7ST

Price	Price (inc. code
	VAT)
C	$£ 1.80$
D	$£ 2.50$
E	$£ 3.25$
F	$£ 4.00$
G	$£ 4.75$
H	$£ 5.50$
J	$£ 6.62$
K	$£ 7.20$
L	$£ 8.80$
M	$£ 10.60$
N	$£ 13.10$
O	$£ 15.80$
P	$£ 17.90$
Q	$£ 21.80$
R	$£ 23.90$
S	$£ 25.90$
T	$£ 29.00$
U	$£ 32.20$
V	$£ 35.80$
W	$£ 37.90$
X	$£ 40.70$

E8506-5 EPROM Prog MKII0
E8507-1 Noise Gate
E8507-1 Noise GateH
E8508-1 RCL BridgeN
E8508-2 EX42/BBC InterfaceE
E8508-3 EPROM EmulatorL
E8509-1 Spectrum EPROM CardF
E8509-2 Direct Injection BoxE
E8510-9 Sunrise Light BrightenerK
E8511-1 MTE Waveform GeneratorH
E8511-2 MillifaradometerH
E8511-3 Cymbal Synthd
E8511-5 Chorus Effect H
E8511-7 Enlarger Exposure MeterF
E8511-9 Second Line of DefenceM
E8512-1 Specdrum ConnectorF
E8512-2 MTE Pulse GeneratorH
E8512-3 SpecdrumL
E8601-2 WalkmateL
E8601-3 MTE Counter-timer M
E8602-1 Digibaro
E8603-2 Programmable Logic Evaluation Board ..OR
E8603-3 Sound Sampler Analogue BoardR
E8604-1 JLLH PA PSU H
E8604-2 Matchbox AmplifierC
E8604-3 Matchbox Amp Bridging Version C
E8604-4 MTE Analogue/Digital Probe M
E8605-1 Microlight IntercomE
E8605-2 Baud Rate ConverterM
E8605-3 Baud Rate Converter PSU BoardC
E8605-4 Portable PAH
E8606-1 MIDI-CV Converter BoardH
E8606-2 MIDI-CV Converter PSU D
E8606-3 Troglograph F
E8606-4 80m Receiver H
E8606-5 Sound Sampler R
E8607-2 Upgradeable Amp, MC stage (Stereo) G
E8607-3 BBC Motor Controller F
E8608-1 Digital Panel MeterG
E8608-2 Upgradeable Amp, MM stage (mono)H
E8609-1 Mains ConditionerE
E8609-2 Experimental Pre-amp F
E8609-3 Upgradeable Amp, Tone Board (mono) ..
E8609-4 Upgradeable Amp, Output Board (mono)HF
E8610-1 Audio Analyser Filter Board
E8610-2 Audio Analyser Display Driver K
E8610-3 Audio Analyser Display H
E8610-4 Audio Analyser Power Supply F
E8611-1 Audio Switcher (2 bds) H
E8611-2 PLL Frequency Meter (4 bds) Q
E8611-3 Upgradeable Amp PSU J
E8611-4 Call Meter, Main Board 0
E8611-5 Call Meter, Interface Board N
E8612-1 Bongo Box J
E8612-2 Biofeedback Monitor (Free PCB)E
E8701-1 RGB Converter F
E8701-2 Mains Controller D
E8701-3 Flanger H
E8701-4 Audio Selector Main Board M
E8701-5 Audio Selector PSU H
E8701-6 Tacho-DwellF
E8702-1 Ratemeter Main Board K
E8702-2 Ratemeter Ranging Board F
E8702-3 Photo Process Controller (3 bds)

PCB SERVICE June
E9006-1 Dark Room Timer G
E9006-2 Telephone Extension Bell C
E9006-3 Telephone External Bell D
E9006-4 Fecko Box G
E9006-5 Bug Spotter E

PCBs for the remaining projects are available from the companies listed in Buylines.
Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the board but also tells you when the project was published. The first two numbers are the year, the next two are the month

Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required. Such orders will not be processed until payment is received.

E	Analogue Computer Main Board (2 bds) .. M
E8809-1	Spectrum EPROM Emulator M
E8809-2	Frequency Meter (2 bds) P
E8809-3	Travellers' Aerial Amp E
E8810-1	Gerrada Marweh Bikebell
E8810-2	Peak Programme Meter (2bds)
E8810-4	TV-to-RGB Converter E
E8810-5	Electron RGB Buffer
E8811-1	NiCd Charger
E8811-2	Chronoscope (3 bds)
E8811-3	Digital Transistor Tester
E8812-1	Doppler Speed Gun (2 bds)
E8812-2	Small Fry Mini Amp
E8812-3	Thermostat
E8812-4	Burglar Buster Free PCB
E8812-5	Burglar Buster Power/relay Board
E8812-6	Burglar Buster Alarm Board C
E8812-7	Burglar Buster Bleeper Board
E8901-1	EPROM Programmer mother board
E8901-2	Variat-Ion updated Main Board
E8901-3	Variat-Ion Emitter Board
E8901-4	In-car Power Supply
E8901-5	Granny's Hearing Booster
E8902-1	Compressor/Limiter/Gate
E8902-2	Ultrasonic Horn
E8902-3	Stepper Motor Driver Board
E8902-4	Quest-lon (2bds)
E8903-1	Intelligent Plotter Solenoid Board
E8903-2	MIDI Programmer
E8903-3	Balanced Disc Input Stage
E8903-4	Digitally Tuned Radio
E8904-1	Camera Trigger
E8904-3	Intelligent Plotter Main Board O
E8904-4	Kinetotie Tie Board N
E8904-5	Kinetotie Control Board
E8905-1	Guitar Tuner
E8905-2	Camera Trigger Ultrasonics (2 boards)
E8905-3	Bench Power Supply (2 boards)
E8906-1	PC edge connector
E8906-2	MIDI converter CPU
E8906-3	MIDI converter keyboard
E8906-4	MIDI converter control
E8906-5	AF signal generator
E8906-6	Mini bleeper
E8906-7	Caravan heater controller
E8907-1	MIDI Patch Bay
E8907-2	Priority Quiz Switch
E8907-3	Camera Trigger Infra-reds (2 boards)
E8907-4	Aerial Amplifier main board E
E8907-5	Aerial Amplifier power supply
E8908-1	Intercom master station
E8908-2	Intercom slave station
E8908-3	Intercom power mixer
E8908-4	Digital joystick-to-mouse conversion H
E8909-1	Twin Loop Metal Locator
E8909-2	Trembler movement detector D
E8909-3	Field power supply (spec 3) C
E8909-4	Micro monitors active filter
E8909-5	Chronoscope auto-reset C
E8910-1	Multimeter H
E8910-2	MIDI Mapper M
E8911-1	Smoke Alarm main board F
E8911-2	Smoke Alarm power supply F
E8911-3	Frequency Meter (3 boards) O

\downarrow \square \square

E8911-4 Serial Logic Scope L
E8912-1 Mains Failure Alarm D
E8912-2 Surveilance PCBE
E8912-3 Slide/Tape Synch E
E8912-4 Pedal Power K
E8912-5 Digital Noise Generator
J
E9001-1 20 metre Receiver
L
E9001-2 Wavemaker FGF
E9001-3 Motorcycle Intercom C
E9002-1 EPROM Emulator N
E9002-2 Superscope Mother Board M
E9002-3 Superscope CRT Driver Board K
E9002-4 Superscope Timebase BoardK
E9003-1 Superscope Y1 input board J
Eguus-2 Superscope Y2 input board
E9003-3 Superscope switch generatorE
E9003-4 Business power amp board
E9003-5 Business power supply board J
E9003-6 Business pre-amplifier board L
E9003-7 Water hole G
E9003-8 Super Siren D
E9003-9 Val's badge F
E9004-1 Bass Amplifier DC Protection F
E9004-2 Bass Amplifier Graphic Equaliser L
E9004-3 Bass Amplifier Micro N
E9004-4 Quad Power Supply 0
E9005-1 Business Display O
E9005-2 Phone Lock and Logger F
TELEPHONE ORDERSmay be made on(0442)66551

TO: ETI PCB SERVICE, READERS' SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:
Quantity Ref. no. Price Code Price Total Price

BUG SPOTTER

If you think you're under surveillance this one's for you. A Paul Benton design

So you think you've got something to hide? You think you're being bugged and you want to find out - then build the ETI Bug Spotter and you can tell 'em to bug off! The project is simply a sensitive transmitter detector, capable of detecting transmitters of as little as 10 mW or so over a distance of around 15 feet, making it an easy task to find bugs and deal with them accordingly.

A sensitivity control is included, enabling the operator with practice to pinpoint a hidden transmitter. Also, by a small modification, instead of the

Fig. 2 Component overlay of the project

LED indicator a small meter may be connected. Although this doesn't necessarily upgrade the project's performance, it does make it look more technica!!

Current requirements of the Bug Spotter are minimal, around 4 mA on standby and 10 mA when activated, therefore it may be powered from a 9V PP3 type battery for quite a while.

The whole project, with the exception of the meter if used, is mounted on a PCB measuring around $35 \times 60 \mathrm{~mm}$, making it easy to fit into a small box.

Construction

Figure 1 shows the circuit of the ETI Bug Spotter, while component overlay of the PCB is shown in Figure 2. The coil is made by carefully winding six turns of 24 gauge enamelled copper wire to a diameter of $\frac{3}{16}$ inch. Use a drill bit as a former. To ensure a good soldered joint, the ends of the wire must be scraped clean of all traces of the enamel, using a craft knife (be careful here) or abrasive paper. Make sure diode and IC polarities are followed. Otherwise construction is straightforward.

Although preset resistor RV2 may be omitted and a wire link inserted in its place, its function is described in the following section. The aerial may be a few feet of ordinary flexible insulated hook-up wire, but a telescopic sectional aerial may be preferred. In general, the longer the aerial, the better.

Testing And Use

After ensuring all components and wiring are correct, connect a battery to the project. If the variable feedback resistors are set at maximum resistance (RV2 set anti-clockwise, RV1 set clockwise) the Bug Spotter is now at full sensitivity. On this setting the LED may flicker on and off as the project is moved, perhaps for no apparent reason. lt's necessary to carefully turn down the coarse control RV2 until random triggering ceases. This is best done in darkness: turn RV1 until the LED goes completely out, using RV2 as a fine control to get the LED just at the verge of coming on. Setting the LED on threshold prolongs battery life.

If readers prefer increased sensitivity at lower frequencies (say 27 to 50 MHz) to pinpoint CB or 6 metre amateur transmissions and so on, soldering a 5.5 to 65 p variable capacitor across the coil or increasing the number of turns of the coil will change bandwidth. If, on the other hand, coverage of the VHF/UHF spectrum is desired, removal of C 1 and
a few turns from the coil should do the trick.
Note that although the prototype features a preset as RV1, a panel mounting potentiometer fitted to the case with a pointer-style knob is preferable.

To use your project adopt a slow sweeping action and traverse the room slowly. If nothing registers do the same again keeping the aerial in a different plane. Note that most bugs have a vertical aerial - because car aerials are vertical! It's surprising what a difference

HOW IT WORKS

Local radio signals are picked up by the aerial and fed to the tuned circuit, comprising coil L and capacitor $C 1$, presenting a high impedance to the incoming signal. The signal is now fed through coupling capacitor C 2 to the rectifier circuit D 1 and $D 2$. Resulting DC voltage is fed to the non-inverting input of $\operatorname{IC1}$. IC output from pin 6 swings from virtually OV to around 5 V as a signal is detected, thereby supplying current to the LED and illuminating it

Sensitivity of the circuit is governed by the amount of opamp feedback, and is therefore controlled by three resistors R2, RV1 and RV2. The larger the resistance between pins 2 and 6 , the greater the gain. A word of warning however: If the resistance is increased more than that specified, interfering radiations such as mains hum will trigger the Bug Spotter

If a meter readout is desired then a well-damped meter is recommended, as the project is handheld. As the sensitivity of the specified meter is $250 \mu \mathrm{~A}$ full scale deflection, it needs a series resistance to allow it to be used with the full voltage swing output of the IC which may be up to around 5 volts. As a preset resistor is used for this purposeit should be obvious that even more sensitivity may be obtained by decreasing the value of the preset. Be warned; this may well result in wrapping the meter needle around its end stop if a strong signal is subsequently detected!
it makes if the transmitter aerial and Bug Spotter aerial are oppositely polarised (say, one flat and one sticking up). In such conditions a bug can be as little as 12 inches away yet not register. Once the aerials are in the same plane, though, the LED seems to glow red hot! Be warned, patience and practice make perfect Once a signal is found, and don't forget the bug may be 8 metres or more away, keep turning down the sensitivity until the transmitter is located
PARTS LIST

RESISTORS (all $1 / \mathrm{W}$ 5\%)	
R1,3	470R
R2	22 k
RV1	1M
RV2	47 k miniature horizontal preset
RV3	22 k miniature horizontal preset (optional)
CAPACITORS	
Cl	$5 p 6$ ceramic
C2	330 p ceramic.
C3	In ceramic
C4	100 n ceramic
SEMICONDUCTORS	
\|Cl	3140
D1,2	OA90
LED1	Red LED
MISCELLANEOUS	
Meter -	Maplin LB80B loptionall
PCB, battery clip, w	wire, insulated wire. Telescopic aerial loptio

BUYLINES

All parts are eassily obtainable. You should have no problems. Mail order companies or local outlets will all be able to supply specified components or direct equivalents.

71

SINGLE BOARD COMPUTER "SBC-1"
A computer doesn't have to look like you'd expect a computer to look. It doesn't have to have a keyboard and a screen and floppy disks and so on.
The SBC-1 has the bare minimum of chips a 280 computer can have and still be a computer: A 4MHz Z80A-CPU chip, an EPROM chip (up to 32 K), a static RAM chip (up to 32 K) and a palr of 8255A I/O (input output) chips giving 48 individual lines to waggle up and down. There are one or two additional "glue" chips included, but these are simple '74LS" or "HC" parts.
A ster feature is that no special or custom chips (le PALs, ULAs, ASICs etc) are used - and thus there are no secrets. The Z80A is the fastest and best established of all the 8-bit microprocessors - possibly the cheapest tool
Although no serlal interface is included, It is easy for a Z80A to waggle one bit up or down at the appropriate rate - the cost is a few pence worth of code in the program: why buy hardware when software will do? Applications already identifled include: Magnetic Card reader, min printer interface, printer buffer, push button keypad, LCD alphanumeric panel interface, 40 -zone security system, modem interface for auto sending of security alarms, code converter (eg IBM PC keyboard codes to regular ASCII), real time clock (with plug in module), autornatic horticultural irrlgation controller.
By disablling the on-board Z80A-CPU this card will plug into ou Interak I CP/M Plus disk-based development systems, so if you

The idea is (if you are a manufacturer) you buy just one development system and then turn out the cheap SBC-1 systems by the hundred. If you are really lazy we can write the program for you and assemble the SBC-1 cards so you can get on with manufacturing your product, leaving all your control problems to us.

Greenbark or phone us

For more details write or phone US: Rock Ferry, Birkenhead, Merseyside L42 2AE. Tel: 051-645 3391

> John Linsley Hood describes a practical darkroom timer with some very useful functions.

DARKROOM TIMER

0ne of the more useful electronic gadgets in the photographic darkroom is a circuit to switch on a photographic enlarger for a precise and reproducible length of time, and quite a number of circuits have been described, from time to time.

My re-involvement in this topic arose because a friend of mine had just brought himself a super new enlarger, and I had suggested, helpfully, that he might do himself a favour by pensioning off his old clockwork timer and get himself an electronic one. The old timer had to be mechanically rewound to the chosen time interval every time it was used. So I offered to build him one.

Now, most of the published circuits seem to have been designed by electronic engineers who are not themselves photographers, and in any case, were either rather primitive in their functioning, or were more complicated than I wished

In particular, I wanted the time interval to be set by a rotary switch, with the intervals in an exponential series, such as $1,1.4,2,2.8,4,5.6,8,11,16,22,32$, and 44 seconds, rather than a linear time scale controlled by a simple rotary potentiometer. The reason for this is two-fold. Firstly, one is possibly adjusting the time interval in the dark, or in the dim lighting, and it is easier to count clicks than to see a dial calibration. Secondly, linear scales are inappropriate for photographic exposure, where a one second
change in time makes a big difference to a two second exposure, but has a negligible effect at say, 22 seconds.

The time-interval series I suggested above, being identical to the aperture stop series in a camera lens, has the characteristic that each increment, up or down, is equivalent in time to one half stop in exposure. So in the case of a monochrome or colour print, 16 seconds gives a print which is a bit light in tone, 22 seconds will give a small but noticeable increase in print density, and vice versa. This density increment will be the same for all of the adjacent time intervals.

A further useful feature, not found on the bulk of timer designs, commercial or DIY, is a switched 'safelight' output, so that the safelight will go off automatically when the enlarger is switched on, a useful feature when focussing.

Circuit design

For rather greater freedom in supply rail operation, coupled with a high input impedance to the RC timing circuit, a FET-input op amp was chosen, coupled to a bipolar transistor as a relay actuating system, rather than the CMOS 555 type of timer in the conventional circuit. A high gain op amp will switch over on a differential input voltage swing of a few millivoits, so giving a rapid on/off transition. The circuit used is shown in Fig. 1.

Fig 1 Circuit of darkroom timer

HOW IT WORKS

The timing interval is determined by the rate at which capacitor Ci charges through the switched resistor string, (R1-R11).

When the normally-closed 'reset' push-switch (SW2) is released, the non-inverting input of IC 1 is taken to a potential of OV , and its output falls to near zero volts, this cuts off Q1, and the normally energised relay ($\mathbb{R} L A 1$) drops out, switching the enlarger lamp on, and the safelight off,

C 1 then charges up towards the +22 V rail until the non-inverting input of IC1 exceeds the voltage on its other input, (adjustable by the 10k trim pot, (RV1)), when IC1 output swings +ve again, and Q1 is again turned on, actuating the relay, and switching off the enlarger lamp. D1 prevents the voltage on C 1 and IC 1 non- inverting input, from exceeding 16V. The TL071 has an internal output current limiting circuit of about 9 mA which allows the simple zener diode coupling

to 01.

The precise time intervals given by the various switch settings on SW1 can be adjusted by the trim potentiometer firstly in the 16 second position and provided that C 1 has a reasonably low leakage value, all the other settings should be reasonably accurate. SW3 switches the enlarger lamp on via the relay.

The whole unit was built in a plastic box which has fixing lugs to allow it to be mounted on the darkroom wall. C1 should be a good quality 25 V working electrolytic capacitor to keep the timing as accurate as possible. Resistors R1-R11 are wired between the tags of the 12-way rotary switch SW1 for convenience. The total dissipation of the unit is less than 1 W , so it remains very cooi in use. The component overlay for the PCB layout is shown in Fig. 2.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W}$ metal fim)	
R1	4 k 7
R2	6 k 8
R3	8k2
R4	12k
R5	18k
R6	27k
R7,16	33k
R8	56 k
R9	68k
R10	100k
R11	150k
R12	47R
R13,17	10k
R14	111
R15	3 k 3
RV1	10k preset
CAPACITORS	
C1	$150 \mu / 25 \mathrm{~V}$ electrolytic
C2	$100 \mu / 16 \mathrm{~V}$ electrolytic
C3	$1000 \mu / 25 \mathrm{~V}$ electrolytic
SEMI CONDUCTORS	
1 Cl	TL071
01	BC337
D1,2	\|N4148
D3,4	IN4002
201	$15 \mathrm{~V} / 400 \mathrm{~mW}$
ZD2	4 V 71400 mW
MISCELLANEOUS	
SW1	Single pole/12 way rotary
SW2	Single pole change over push switch
SW3	Single pole change over
SW4	SPST
TR1	15-0-15V secondary/3W PCB mounting
RLAI	24V-1200R SPCO 10A

Fig. 2 Component overlay of timer showing off-board connections

71

electronize

Car Electronics

MICRO-PAESSURE CAR ALARM
This new type of alarm is triggered by a unique pressure sensing system . As any venicle door is opened, air is drawn out, causing a minute drop in air pressure. A sensor detects this sudden pressure change and sets off the alarm.
A sophisticated arrangement of electronic filters and timers provide features to match ultra-sonic systems but at a fraction of the cost
\& 1 Micro-Pressure intruder detection.
亡2 Operates on all doors and tailgate.
\& 3 No door switches needed.
4 4 Automatically armed 1 minute after leaving vehicle
\& 510 second entry delay with audible warning.
\& 6 Sounds horn intermittently for 1 minute
\& 7 Easy fitting - only 3 wires to connect - no holes to drill
\& 8 Compact design can be hidden below dashboard.
\& 9 All solid state Power MOSFET output - no relays.
MICRO-PRESSURE ALARM KIT
$£ 12.95$
ASSEMBLED READY TO FIT
£18.95

VOLT DROP CAR ALARM

Our latest alarm using the popular voltage drop method of triggering. Based on the timers of the micro-pressure alarm it offers features 4 to 9 above but relies on the existing door switch operation for triggering.
VOLT DROP ALARM KIT $£ 11.75$
ASSEMBLED READY TO FIT
£17.75

TOTAL ENERGY DISCHARGE IGNITION

Our long established Extended CDI system retains the contacts to allow easy fitting whilst the electronics removes the adverse effects, The unique spark generating system still out performs the latest all electronic systems
TOTAL ENERGY DISCHARGE IGNITION £18.95
ASSEMBLED READY TO FIT
ع24.90
All Electronize kits include clear, easy to follow instructions, quality components and everything needed, right down to solder and heatsink compound
Order direct
(Please quote Ref. D07 and add
or send for more details from:- \quad \&1 post and packing per item.)
ELECTRONIZEDESIGN tel 0213085877
2 Hillside Road, Four Oaks, Sutton Colditield, B74 4DQ

E HAVE THE WIOEST CHOICE OF USED OSCILLOSCOPESIN THE COUNTRY	
TEKTRONIX OSCILLOSCOPE 2235 Dual Trace 1001MHZ Delay Sweep	Mele's
	FEEDBACK
PHILIPS OSCILLOSCOPE PM3217 Dual Trace 50MHz Delay	(P8P¢7) [200
Sweep	AFIRON 7045 Multimeter 47/2 digil LED 30 ranges
GOULD 0S300 Oscilloscope Dual Trace 20MHz	
GOULO 1421 Digital Slorage Dual Trace 20MHZ $£ 150$	LOGIC PROBE Lype 3300A TTUCmos (PdP E3) E19
HP.1740A Dual race 100MHZ Delay Sweep Trig . $£ 400$	FARNELL Oscillator LFM3 10HZ-10MHZ SineiSquare $£ 200$
TELEQUIPMENT DG3 Dual Trace 50M Mz Delay Sweep £	RACAL 9915 Freq Counter 10HZ-520MHZ (Crystal Oven) P 150
GOULD OS3000A Dual Trace 40MHZ Delay Sweep TV Trig £ 3^{300}	RACAL9900 Series Universal Counter Timers from .- 1150
TELEQUIPMENT D755 Dual Trace 50MHZ Delay Sweep £275	CONI ATIENUATORS TF2162 DC-1MHZ 600 ohm 0.111dB
COSSOR CDU150 Dual Trace 35MHZ Delay Sweep	(P8P¢7)
GOULD OS 1100 Dual Trace 30MH2 TV Trig	FIELD ATTENUATOPS 50 ohm DC-250MHZ0.100dB/600 ohm
SE LABS SMM11 Dual Trace 1	DC-1MHZ (New Price E135). ${ }^{\text {a }}$ (PaP £4) only 550
TRIOCS1566A Dual Trace 20M	NELL GU500ISOLA
H P.1220A Dual Trace 15MHZ TV Trig E175	240 Vin 240 V
GOULD OS255 Dual Trace 15MHZ TV Trig PHILIPS PM3233Dual Beam 10MHZ TV Trig	3ampsocket
	VABIACSzamps fromE20 (PaP E5) 8 amps trom ¢30 (PaP¢7)
GOULD O5250日 Dual Track 15MHZ V Trig	AVOMULTIMETERS (PSP E10anlunis)
TEKTRONIX 2215 Dual Trace 60MHz Sweep Delay with manual, probes, troni cover, pouch	Ayo $8 \mathrm{~s} ; 9 \mathrm{~s}$ and Ministry Versions. With Batleries \& Leads Irom £50 TEST LEADS lor Avos Red \& Black with 2 croc Clips $\& 2$ prods (P\&P £3) £5 Black EVER READY Case for Avos Un-used BATTERIES 15 Volls (P8PE4) E 15 £3 each. 10 Ior $£ 25$ (P\&P exira)
BLE	
MARCONITF2015 AM/FM 10-520MHzSig Gen wilh TF2171 E450 MARCON ITF2015 wilhoul Synchroniser TF2171	AVOTRANSISTOR ANALYSER Mk2. CT446 suilcase style. With
MARCON ITF2016AMFMM 10KHZ.120MHZ Sig Gen wilh	Pbwer Melee TF893A $20 \mathrm{HZ}-35 \mathrm{KHZ}$. 20 mW -10W. Wilh
ARCON I TF2016 withoul Synchroniser TF2173	
MARCON MOD Melers TF2300, TF2300B; TF2303 Irom	
H. P. 620 B Signal Generabor 7 - 11 GHZ	Withmanual only £30 (P\&P ¢ 7)
KP 818C Signal Generalor 38-7.6GHz	UEVEOUIPMEKT
H.P. 616 E Sigan Generator 1.8-4.2GHZ	HAMEG OSCILLOSCOPE HM 005 Triple Trace 100 MHZ D
WOELKE WOW \& Flutter Meter ME108	Timebase 1726
LEADER LMVI86A Two Channel Millivolmeler 5 HZ -500KHZ $100 \mathrm{vv}-300 \mathrm{~V}$	MEGG OSCILLOSCOPE HM 604 Dual Trace 60MHZ De
FEEDBACKFG601 Sig Gen 0001HZ-1 MHZ Sine/Sq/Tr	
MARCON Aulomalic Cislortion Meler TF2337A	
400HZ or 1 KHZ Measures down 10001\% $£ 100$	HAMEG OSCILLOSCOPE HM2053 Dual Trace 20MHZ D gilal
LEVELLOSCILLATOASTG152TG200 Series, fromMARMARCON TF2TOO UNIVERSALLCR	hamegose
	other models avalable - all oscilloscopes supplied with 2 probes
SADELTA MC321 COLOUR BAR GENERATORRF Bands $1,3,4 \&$ Video 8 Funclions Sound Carrier.Unused (P\&PE7)	
	BLACK STAR EOUIPMENT (P\&P al unils £5)
SADELTA COLOUR BAA GENERATOH PAL MC'O1. 8	
	APOLLO $100-100 \mathrm{MHZ}$ (As above wih more lunclions) E295 $^{\text {en }}$
Battery Charger Adaptor Unused (PSPE4)	METEOR 100 FREOUENCY COUNTEA 100MHZ E109
Cabipsp 4)	UNTER 600MHZ E135
LABGEAR CROSSHATCH GENERATOA Type CMEOOS808	
	All other Black Slar Equipment avalable
TRIO RF SIG NAL GENERATOR Type SG402 100KHz 30MHz Unubed (PRP £87) anly £50	
MICROVITEX WB MONITOR $14^{\prime \prime}$ COLOUR 190	HUNG CHANGDMM 70303/2digit Hand held 28 ranges including 10AmpACDCD. 1\%ACC (P8P £4) 539.50
TELEPHONES	
Yes teal dial type lelephones Inal don'I slide arcund lhe desk Type no. 746 supplied with slandard BT plug (used). Quanlily discount only $£ 5$ (pap e3)	Carrying Case tor above
	OSCILLOSCOPE PROEES Swichable x; x10 (P\&P £3) 11
used equipmenl - with 30 days MALL SAMPLE OF STOCK SAE or CARAIAGE all units $£ 16$ VaT 10	anlee Manuals supplied if possible hone for lissls. Please check availabilily belore ordering dded to Tolal of Goods \& Carriage

VIs 110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Tel: 073468041 . Fax: 0734351696 . Callers welcome 9 am-5.30pm Mon-Fri (until 8pm Thurs)

> An increasing range of low cost scanners is now on the market. Andrew Armstrong reviews one of these, and the software used to drive it.

HAND SCANNERS A Review Of The A4Scan

With the increasing popularity of desktop publishing for small personal computers, there has been an increasing incentive to provide an economical means to digitise small images, logos, and so on, to allow them to be printed as part of a desk top published document.

The professional way to do this is by using a flatbed laser scanner, with a resolution of perhaps 600 dpi (dots per inch) or better. This approach is far too expensive for the small business or the amateur, so the hand scanner was developed. Several companies produce hand scanners for use with IBM PCs and clones. They all work on similar principles, but the functions and features on offer vary.

Hand Scanner Technology

The normal hand scanner package consists of the scanner itself, looking something like a large and oddly shaped mouse, an interface card which fits a PC or AT expansion slot, and a disk of software to drive it. Most scanners have switched resolutions of $100 / 200 / 300 / 400$ dpi, and a switch to select letter or photo mode. In letter mode, the scanner digitises images or text in terms of black and white. In photo mode, a dot dither pattern is applied to provide a grey scale by means of dot density variation, rather like image printing in a newspaper. Generally, more than one dot dither pattern is provided, and the user can experiment to find the one which best suits the image to be digitised.

The scanner itself uses an array of LEDs to illuminate the image to be digitised, and an array of charge coupled devices (ccds) to sense the image. To digitise an image, the scanner button is held down while the scanner is moved steadily over the page. A

Roller on the base of the scanner drives a shaft encoder which detects the motion, and samples the output from the ccd array at even distances. At minimum resolu-
tion the scanner can digitise a strip about four inches wide, but the strip is narrowed if the resolution is switched to a higher level

All the lower cost scanners work in monochrome, though there is at least one colour scanner available. This is more expensive, has lower resolution, and (of course) needs memory for its image files, but if you need colour then there is no choice.

Scanner Choice

I only have a black and white printer, so that a colour scanner would be of little use. I had wanted a scanner for some time and the incentive became stronger when I needed to digitise small diagrams for use in handbooks and datasheets. I went to the PC User show in late 1989 to look for a suitable scanner.

Several were on display. Some were being demonstrated to interested customers. Some were simply on show' ('Surely you dor't actually want to see it work, sir?'). All offered much the same facilities, and cost a shade under $£ 200$.

I almost missed the Supertech stand, because it was obscured by the crowd of people around it Supertech distribute the A4Scan, sold with Image72 picture editing software. It offers the full range of facilities normally found on hand scanners including three switched dither patterns.

The demonstration was certainly impressive. Two identical scanners were on show, one being used for optical character recognition, and one to digitise images. The most impressive part of the demonstration was the ease with which images, once digitised, could be manipulated. A picture slightly too wide to scan in one strip was digitised in two strips, and put together into one coherent image on screen by means of simple mouse-driven manipulations. It was equally easy to flip, rotate, invert, or even make a negative of the image (like a photographic negative)

In Practice

The scanner was easy to install In my computer (a Tulip AT Compact 2), and was functioning after about 10 minutes. Though the scanner works in monochrome, the software allows you to add Colour
scanned monochrome image by image editing. However, the image files are larger, and less file storage formats are available, so I chose to use only black and white. The monochrome image editing software can save and load every image file format I have encountered to date, including widely used ones such as .IMG, TIF, and CUT.

At this stage, software compatibility problems appeared. All functions are selected by using the cursor to select icons on the left of the screen. However, when I started up the software, the cursor was confined to the top square of icons. Selecting and then cancelling a disk access function cleared the problem, and it did not recur until the software was reloaded. This is probably a BIOS compatibility problem, because a friend who brought the same model of scanner has no problem on his computer.

The scanning and image manipulation functions work almost as well in real life as in the demonstration. Line drawings, logos and the like digitise well. Photographs with a medium contrast range are also very suitable, though very low or high contrast ranges cause problems.

There are limits on what you can do. My desktop publishing software, Finesse 2.0 , needs images to be in the IMG format. There is a limit to the image area (approximately a quarter of the area available) which can be stored as a IMG file, though I am not sure whether this is a limitation on the software buffer size, or on the file format. Complex image manipulations, such as rotate or slant, cause the computer to think very hard, and some resolution is lost. The image is very slightly elongated on the printout from my printer, which I suspect is an error in the 24 -pin printer driver routine. Compressing the image vertically on screen to compensate for this is successful, but again some detail may be lost.

I was disappointed, but not very surprised, to find that other IMG files, saved under GEM and nominally of a format compatible with the software, could not be edited. Attempts to load such files resulted in a picture rather like a television with a misadjusted line hold.

These snags are not serious, however. My scanner has done a lot of good work, of which two examples are shown here. The photograph was digitised in two strips for the proprietor of the local printed circuit board company, after he had failed to get acceptable results with his scanner. 'Good grief, he said, 'your scanner makes mine look like a toy'. The Image 72 software also contributes to the high quality results. The digitised photograph is used on laser printed leaflets publicising the installation of a laser photoplotter.

The other example is of a graph used in the magazine Ham Radio Today. (Fig. 1). The original was hand drawn, and though accurate, it was unsuitable for publication. Postal delays had left no time for the technical artist to redraw it, so I digitised it in three strips, and spent just under two hours tidying it up, to produce the result shown. I am no artist, and could not have drawn it by hand to the required quality in that time. The text in the body of the graph was added by the image software.

Optical Character Recognition

I brought the optional OCR (optical character recognition) software with my scanner. This did not perform as impressively as the image manipulation, though it did work, and OCR is not easy. The OCR software includes its own scanning routine, and it is also supposed to be possible to save files in OCR format from the image scanning program. Following the instructions carefully, I could never get this to work. The stored image of the text always looked like a

Fig. 1 A 'tidied' scan of hand drawn graph.
television with maladjusted line hold, just as when trying to read IMG files stored by other software.

The OCR's own scanning routine allows only limited means of tidying up this picture, so that a very clean original is needed to give a clean enough image for OCR to work.

It is supposed to be possible to convert an A4 page to ASCII using this software, by scanning the page in strips and matching the edges on screen. In practice, this was very difficult, and would have been easier if the image scanning program's $O C R$ save had worked correctly.

Two sample fonts are provided with the software, as well as sample OCR files to convert to ASCII. These worked very well, but it was difficult to achieve similar results with scanned text. There is a facility to learn new typefaces, and this even covers proportional spaced fonts (very unusual in low cost software). Some success was achieved using this function, but it could not be made to work quite well enough to be faster than retyping.

The user interface was a little unfriendly, and it was not always possible to back out of a mistake. I think, however, that relatively minor improvements in the overall software would make it much more useful.

The instruction books were written in a language somewhere between English and transliterated Chinese, but were usually comprehensible after a little thought. It would be nice, however, to see a proper English manual, with more explanation in some areas.

My overall assessment is that the image scanning system is good value and very useful, despite the snags. About the optional OCR, I am less certain.

You can contact Supertech Systems Ltd at: The Business Centre, Kay Street, Bury Lancs BL9 6BU. The A4Scan with OCR costs $£ 199.95$. (They are no longer sold separately).

2

In the second of two
articles George
Pickworth describes
Tesla's best known
work, the Tesla Coil.

NIKOLA TESLA

While Hertz's demonstration with sparks across the gap of his resonator comfirmed Maxwell's electromagnetic wave theory, Tesla gave a highly visual demonstration by lighting up a Geissler tube without the use of connecting wires. This Philadelphia demonstration of the Tesla Coil, during his 1893 address to the Franklin Institute of Philadelphia and the National Electric Light Association of St Louis, is considered by many as the first significant step towards realising the potential of Hertzian waves.

The system used by Tesla at that historic address was very similar to the syntonous spark radio system. It was later developed by Sir Oliver Lodge to become the standard system used until the invention of the triode valve in 1911, and spark transmitters continued to be used on ships until about 1935. The only real difference between Tesla's equipment and commercial spark radio sets is that Tesla used a Geissler tube as an indicator and a random length of wire as an antenna, while Marconi used headphones and a

(b)

Fig. 1 A typical spark set (a) Transmitter (b) Receiver.
rectifier to give an audible signal.
Early receivers used a wide range of rectifiers but the liquid type was most sensitive. Variable tuning capacitors were a later innovation. Tuning was done in early days simply by tapping the tuning coil (Fig. 1).

Tesla did not use a resonant wire antenna in his radio systems and so missed the opportunity to produce a commercial radio system before Marconi. Tesla developed what he called magnifying transmitters. These used enormous, high-frequency resonant transformers (the Tesla coil itself) and capacity type antennae, typically metal spheres on top of tall towers. However, like resonant antennae, the magnifying transmitters were energised at their resonant frequency and many of Tesla's techniques were 'copied' by later workers, including Marconi and Fessenden. However, whereas Tesla operated his
magnifying transmitters at frequencies in the tens of kHz , Marconi used frequencies around 1.0 MHz which allowed resonant antennae to be of practical size!

Experiments had shown that a waveguide between the earth and the ionosphere formed a good conducting path at frequencies between 3 kHz and 30 kHz , and this may be why Tesla neglected higher frequencies. Tesla believed that lower frequencies would not only provide reliable world-broadcasting, but make wireless transmission of electric power possible. Householders would extract electricity from the 'ether' using a simple rod antenna and a tuning device similar to a hat used for radio. Tesla first attempted to raise an antenna into this 'waveguide' by means of hydrogen-filled balloons. However, he later abandoned this approach in favour of terrestial installations using tall. towers,

High Voltage

It seems that Tesla was convinced that capacity antennae would radiate power effectively at frequencies below 30 kHz , provided that extremely high voltages were applied. Magnifying transmitters could generate millions of volts. He built many experimental magnifying transmitters in various sizes and configurations to provide data for the construction of very large installations.

Fig. 2 Laboratory Type Spark-excited Tesla Coil.
In 1899 the large 50 kHz Colorado Springs magnifying transmitter and tower were completed. A slender, 145 foot tower rose above the wooden building which housed the actual transmitter. A 30 inch metal sphere on top served as a capacity antenna. The primary winding carried 1100 A , so it is not surprising that the transmitter overloaded the Colorado power supply system and caused a blackout. This provided reporters with sensational copy about a mysterious force that Tesla had unleashed! (See Fig 3).

The Colorado magnifying transmitter undoubtedly gave spectacular displays of sparks and corona discharges that lit up the prairie sky and caused sparks across lightning arrestors 12 miles away. However, it is now known that capacity antennae are extremely inefficient at converting electric currents into electromagnetic (Hertzian) waves and most of the power was dissipated by coronary discharges. Whatever useful information the Colorado tower experiment had provided remains obsure, but Tesla predicted that the earth resonates at 6,18 and 30 Hz , and frequencies approaching the earth's resonance
would be most effective for transmission of electric power.

Marconi used a spark transmitter which generated only a fraction of the power of the magnifying transmitter but operated at a higher frequency, and a simple but highly efficient resonant wire antenna, to send his first transatlantic signal. Despite this, Tesla planned even bigger magnifying transmitters designed to operate at frequencies between 3.0 and 30 kHz . Work commenced on the ill-fated Wardenclyffe Tower on Long Island in 1901 but was abandoned in 1903. This installation was intended for world broadcasting and transmission of electric power across the Atlantic, and had a 250 foot tall tower with a 100 foot diameter hemisphere on top, but financier Morgan withdrew his support before the tower was finished.

By then it was apparent to backers and financiers that the future for broadcasting was with simpler transmitters, essentially the same as the devices used by Tesla but with resonant antenna systems. The magnifying transmitter was abandoned but smaller Tesla coils found many applications in laboratories where high voltages were required. Tesla's theory on VLF communication was proved basically correct but his dream of 'wireless' transmission of electric power never came to fruition. Having said that, projects to generate electric power in space and 'beam' it to earth now seem feasible.

The earliest practical application for Tesla coils was diathermy, advocated by Tesla before the turn of the century. In more recent years their principle role has become that of a high voltage line transformer in TV sets. The traditional Tesla coil still remains a classic scientific instrument.

Fig. 3 Colorado Magnifying Transmitter.

Fig. 4 Rotating Contact Breaker. (Readers are advised not to construct such a device).

Excitation

Let's have a closer look at how the Tesla coil works. We'll start with the exciter, which delivers $A C$ at the resonant frequency of the coil.

To all intents and purpose the parameters governing exciters for magnifying transmitters are the same as if the exciter were used directly as a radio transmitter. By the same token, a Tesla coil can be considered as a scaled down magnifying transmitter.

Fig. 5 Wehnelt Interrupter.
make/break device and its associated capacitor. The simplest and earliest make/break system used the magnetic field of the coil's own core in an arrangement similar to that of a buzzer. However, the closed period is longer than the open period to allow the magnetic flux to build up within the coil.

Improved results were obtained with independent contact breakers. While the buzzer principle was most widely used, another common device was a triangular piece of metal rotating at high speed, dipping into a trough of mercury. (See Fig 4).

Electrochemical devices were also used and the Wehnelt interrupter was the most simple. This allowed operation at frequencies up to several thousand Hertz, much higher than was possible with mechanical devices. While a high frequency make/break resulted in a stronger spark and better overall performance, it had no effect on the transmitter frequency. (See Fig 5).

The spark transmitter was unsuitable for telephony, so from about 1910 Professor Fessenden experimented with high speed interrupters which

directly energised the anenna. These were unsatisfactory as the system had inherent mechanical problems and arcing occurred across the contacts. Moreover the tone was very rough and could not be modulated with speech. On the other hand, high frequency alternators could be used directly for radio transmission by simply connecting the alternator to a resonant antenna. In its simplest form, tuning coils and capacitors were not required, and the sine waves could be modulated with speech signals by inserting a power microphone in the antenna lead. (See Fig 6).

Although Tesla had made 30 kHz alternators before 1895, he did not capitalise on this technique. The best alternators had an upper frequency limited of less than 100 kHz , requiring very long antenna, but the system was highly practicable and the Fessenden transmitter, operating at about 50 kHz , was used in the USA for broadcasting before World War 1. During the war, a 200 kW alternator transmitter was installed at the Marconi Worldwide Wireless Station at New Brunswick, New Jersey to replace the original highpower spark transmitter.

A Replica Of A Traditional Demonstration Tesla Coil

In the course of producing this article, I built a demonstration Tesla coil, keeping as close as possible to the coil used by Tesla during his 1891 to 1893 UK Lecture Tour.

A 240 V to 10 kV spark transformer was available
and was used for the project. However, an induction coil and a Wehnelt interrupter, (Fig 5) could have been used to generate the spark current as this device is very efficient and easily made from plastic containers. The needie valve is not essential.

The spark gap consisted of two brass rods mounted on insulators to give an adjustable gap of $1 / 4$ to $1 / 2$ an inch, and is connected to the spark transformer by a car ignition cable. Commercial spark radio transmitters often used rotating spark gaps as they reduced erosion and gave a more pleasant note in the receiver. Very high power installations used sparks up to 14 inches in length.

The secondary (high voltage) winding, which sets the resonant frequency, consisted of 500 turns of 1.5 mm armature wire. It is close wound so that the windings occupy about 750 mm of a 900 mm length of 70 mm diameter plastic pipe. A 100 mm diameter copper ballcock float was attached to the top and connected to the upper end of the winding while the lower end was connected to a large screw terminal. The capacity between the turns and the effect of the copper ball determines its resonance frequency. No capacitors were used.
The inductance of the coil was calculated using:
$H(\mu H)=d^{2} n^{2} / n 18+L 40$
where d is the diameter of coils in inches, n number of turns and L the length of the winding inches.

The secondary winding had an inductance of 1.7 mH . As it is impractical to calculate or measure the self capacitance of the coil and the effect of the copper ball, this was estimated to be about 200 pF , indicating that the resonant frequency would be about 300 kHz . This was confirmed using a grid dip meter.

The 200 mm diameter primary (exciter) winding, on the outside of the secondary, consisted of 12 turns,
but normally only 6 turns are brought into the circuit; the optimum tap being found by experiment. As the calculated inductance of the primary winding was only $3.75 \mu \mathrm{H}$, the balance of inductance necessary to make the exciter oscillate at 300 kHz with 2 n 0 Leyden Jars was provided by the spark transformer in series with the Leyden Jars.

High voltage 2 n 0 capacitors are scarce and expensive and as the Tesla coil was to be as authentic as practical, a pair of replica Leyden Jars were used to tune the primary winding. They were made by coating the inner and outer surfaces of large glass pickle jars with aluminium foil. Their capacitance turned out to be almost exactly 1 n 0 each. (Fig 7).

Warning

Although this Tesla coil generates very high voltages, the current is low and should not present a serious hazard, nonetheless the spark current is derived directly from AC mains. Construction should only be attempted by those who have skill and experience with very high voltage equipment, as this Tesla coil is intended primarily for colleges and institutions.

Also the coil resonates at approximately 300 kHz , so where there is any possibility of it causing radio interference, the device should only be operated in a room with a Faraday screen. However the coil does not seem to cause interference to television or FM broadcasts.

Fig. 7 Leyden Jar.

C.A.D. SOFTWARE MADE EASY

ISIS

An exceptionally easy way to capture circuit diagrams on your PC. Once the design is on the computer, you can generate a parts list, perform an electrical rules check, extract a netlist for simulation or PCB design, print hard copy on a wide range of printers and plotters, or else export it to a DTP package to create professional quality documentation.

ISIS SUPERSKETCH from only £69

An exciting new product for people who want to draw professional looking circuit diagrams quickly and easily. It contains all the drawing features of the full-blown ISIS such as Automatic Wire Routing and the Auto Name Generator so it is much easier and faster to draw schematics than by hand or with a general purpose CAD program.

PC-B PRO/AR PCB DESIGN

User friendly PCB layout software with optional auto-router. The layout editor (PC-B PRO) handles 2 copper layers plus overlays and solder resists whilst the auto-router ($\mathrm{PC}-\mathrm{BAR}$) will route single or double sided boards on a 25 or 50 thou grid. Together with ISIS, you have an integrated design system that really puts your computer to work.

PRICES
Supersketch + basic library .. $£ 69$ Supersketch + full library£99 ISIS* 5399 PC-B PRO*
PC-B PRO/AR* .. £2999 $\underset{~}{\text { E229 }}$ *Discounts for combinatioris.

> Mike Barwise gives some methods for component testing, and starts looking at fault finding in real circuits.
留岂

Voltage measurement, described in ETI April 1990, is by far the most common use of multimeters, but they do have other uses. The obvious and common alternative functions are current and resistance, and many modern digital instruments also have various component test functions.

Measuring current

We'll first look at current measurement. Whereas when measuring voltage, the meter was connected in parallel with the circuit under test, to measure current directly, the meter must be placed in series with the circuit. This means that you must break the circuit to insert the meter. This is not always possible, particularly if you are taking measurements on a high density printed circuit board, but sometimes there is no other convenient way of taking current measurements.

When do we need to measure current in this way? As explained last month, you can determine a current flowing in a known resistor by measuring the voltage drop across it and applying Ohm's law. This works fine when:

1. You have a known resistor in the right place in the circuit under test (when designing your own circuits, you can build them in).
2. The value of the test resistor is very small compared with your volt meter resistance.
3. The current to be measured is fairly small.

When you must measure currents in the order of several amps derived from low voltage sources (less than about 50 V), the value of the series test resistor must become extremely small to avoid unwanted voltage drops under normal working conditions. Such small test resistor values can lead to very large measurement errors if small amounts of stray resistance are not taken into account during measurement. Under these conditions, direct current metering using a series-connected meter is the best option. Once again, well designed circuits will have removable links for testing currents. Remember that the series current meter has a resistance of a fraction of one ohm, so it will be almost instantly destroyed by connecting it across a source of voltage. Never do this!

Measuring Resistance

Coming on to resistance measurement, there is one very big difference. Voltage and current measurements are essentially measurements of working conditions. Resistance measurement is really a kind of component test.

There are two main approaches to resistance measurement: either a constant voltage is applied across the component under test and the resulting current measured, or a constant current is passed through the component, and the resulting voltage drop is measured. Most modern digital meters use the latter method, while archetypal analogue meters such as the AVO 8 would measure the former. In either case, the voltages and currents involved are pretty small (to avoid component damage) and the metering system detects very small differences.

Because you are applying known conditions to the component under test it is very important that there are no other voltages or currents present. Resistance measurement is essentially made on components out of circuit.

A major source of error in measuring small resistances is the cumulative resistance of test leads, meter sockets, range select switch contacts and so on, generally referred to as stray resistance. All reasonable analogue resistance meters which work on the constant voltage principle, have a zero adjust to allow for the drop in voltage of the battery as it ages. This can, of course, also be used to null stray resistance. Very good digital resistance meters, working on the constant current basis, also have a null control for stray resistance. However, most of those under $£ 150$ don't. Allow for this by taking a preliminary reading with the test leads shorted together on the resistance range you are going to use, and then subtract this result from the result of your measurement.

For really accurate measurement of resistance, particularly of small values, a bridge circuit (Figure 1) is used. The fixed resistors are selected to a very close tolerance, and the variable resistor is equipped with a precisely calibrated scale. The bridge is effectively a pair of potential dividers in parallel, with a bipolar (centre zero) current meter connected between their midpoints. The difference between the voltages at the midpoints of the two potential dividers determines both the direction and the size of the current flowing through the meter connected between them. The unknown resistor (the component under test) is inserted into the bridge, and the variable resistor is adjusted until the meter indicates zero current flow. The two arms of the bridge are then exactly matched (the potential at both ends of the meter is the same). and as the two fixed resistors are equal, the variable and the unknown must also be equal, and the value of the unknown resistor can be read off the scale.

Commercial resistance bridges are available with precision in the order of $\pm 0.5 \%$, but they are very expensive. Older bridges can be picked up secondhand quite cheaply, but these tend to read to about $\pm 1 \%$, as they date from the days of general use 10% 20% resistors, when even 5% components cost the earth (late 1960s-early 1970s). These days, when 5\% is the cheap standard component and 1% resistors at 0.3 W only cost about 5 p , the ordinary digital meter resistance range will serve for most purposes, as you very rarely need to select resistors to better than 1%.

Component Tests - Checking Diodes And Transistors

The analogue multimeter normally stops at voltage, current and resistance, but with the advent of compact microcontrollers, many digital meters perform a whole range of useful additions. The most common are

Fig. 1 The Resistance Bridge
diode test and transistor h_{FE}. These features are very nice if they happen to be on your meter, but you can get by without them by using your ingenuity. Let's see what they do.

First, the diode test. You plug in your diode in the forward biassed direction, and the meter passes a small constant current through it and gives you a value for its forward voltage. If you plug it in back to front, a good diode will give you an open circuit indication. By far the most useful part of this test is the check whether the diode is duff, indicated by open circuit or short circuit in both directions. The forward voltage of any diode is very dependent on both the diode current and temperature, and as you don't know what current the meter passes through it, the reading does not reflect the forward voltage in your circuit very well at all. The resistance ranges of your digital meter also use a constant current for measurement, so using the lowest resistance range will equally well verify whether the diode is good or blown, although the numerical reading in the display will not be meaningful.

The transistor $h_{\text {FE }}$ test works in a similar way: a small constant base-emitter current is passed, and the normalised collector current is displayed. However, once again, provided you know what transistor you are dealing with (given by the type number), you are really interested in whether the transistor is functional. The makers' data sheet gives you the h_{FE} range (typically very wide, for example the BC184L has an $\mathrm{h}_{\text {FE }}$ of 250-850, and the TIP31A has an h_{FE} of $10-50$), and you choose something in the right order. Thereafter most good transistor circuit design is founded in making the effects of h_{FE} spread as insignificant as possible by clever biasing and feedback, so that components do not have to be
individually selected during circuit manufacture. The exact figure for a given device is thus not very important.

How do you tell whether a transistor is duff or not? Figures 2(a) and 2(b) show the theoretical diode equivalent' of NPN and PNP transistors by wiring up diodes (the common connection has to be one piece of silicon), but you can look for the virtual diodes with the low-resistance range of your digital meter. Either one may be open-circuit or short-circuit in a blown transistor. It pays of course, to test each 'diode' both in forward and reverse bias (by switching round the meter leads).

A final word of caution: you should not use an analogue meter with constant voltage resistance measurement for these semiconductor tests. Too much current would flow in small-signal devices, and you would probably destroy good semiconductors during the test. The current supplied by the digital meter (constant current test) is very small: a few $\mu \mathrm{A}$.

A Real Problem

Now we get down to some real problems. We will look at a succession of genuine fault finding and measurement scenarios. In each case we will discuss the best choice of equipment and its most suitable application as fully as possible.

This month's circuit is a simple megaphone amplifier to be driven by a cheap dynamic (moving coil) microphone, and capable of delivering about 2 W into a 4R load a 12 V supply (Figure 3). It should work fine, but there is some fault or other in the individual on your bench, because it has been sent in for repair. Your job is to find the fault and correct it. This is the typical repair workshop scenario: you've never seen this amplifier before, but you must get it working by yesterday morning.

Your first task is to work out what the circuit should do. Then you can compare what it actually does with what you expect to find at the point where it is misbehaving. The report from the typical nontechnical user just says 'does not work properly', so this does not help you.

Step one is to simplify the problem. Break the total circuit down into stages: sub-blocks with specific functions. You can then perform first-level tests at a much more general level: a big time saver.

Figure 3, shows that the circuits surrounding the first two transistors (Q1, Q2) are remarkably similar. Each consists of an input coupling capacitor, a base

\square [\longmapsto品

Fig. 3 Megaphone Amplifier Circuit
bias potential divider, an emitter feedback resistor and a collector load resistor. Each circuit is in fact a standard and basic common emitter amplifier with emitter feedback, and each constitutes a voltage gain stage of the amplifier circuit. The transistors are small low-wattage devices, which confirms the immediate expectation of small signals (a microphone input). You would expect the voltage gains of the two stages to multiply. The inter-stage capacitors isolate the input and output bias voltages (DC) from preceding and following circuits.

The next active component in line is another small transistor: Q8. This is wired as an emitter follower or voltage follower. It acts as a unity gain voltage amplifier and a current amplifier with a gain limited only by the inherent current gain (h_{FE}) of the transistor. This is part of the third stage, the driver, consisting of Q8, Q4, and associated passive components. Q8 is AC coupled to Q4 to prevent disruption of the base bias to Q4. The final stage of the amplifier is the output stage, consisting of Q3, Q5, Q6, Q7. This is what actually supplies the massive current to the loudspeaker.

You can now look in more detail at each stage in turn, to determine a set of testable values (voltages, because they're easy to measure) at various points in each stage. When you test the amplifier, you will look for these values to determine where they are off specification.

Start with the input stages. The voltage gain of each stage is defined by the ratio of the collector and emitter resistors. In this circuit, in both stages, the ratio is $15: 1$, resulting in a voltage gain of 15 per stage. As there is no dissociation of AC and DC signals (the emitter resistor is not bypassed by a capacitor) the AC and DC gain are both the same. The DC standing (quiescent) voltage on the transistor collector is normally assumed to be about half the supply rail voltage. This would allow equal positive and negativegoing swings at the output of the stage (symmetrical clipping) for large output signals

The collector voltage is arrived at by determining the emitter resistor drop and multiplying it by the ratio of the emitter and collector resistors. This works by Ohm's law and the assumption of the same current in both resistors (ignoring the base current), which is perfectly adequate for non-critical systems using high h_{FE} transistors.

The emitter resistor drop is always a nominal 0.7 V less than the base voltage with respect to ground and you set up the base voltage by adjustment of the base bias potentiometer. In this case, with a gain of 15 and a supply of $\pm 12 \mathrm{~V}$, for a collector voltage of $\pm 6 \mathrm{~V}$ we would need about 0.4 W across the emitter resistor and 6 V across the collector resistor. This leaves around 5.5 V quiescent across the transistor (CE), and would theoretically allow a safe output swing of $\pm 4.5 \mathrm{~V}$ or so for large input signals

You are obviously not interested in very large signals here: the microphone will deliver about 10 mV peak-to-peak if you really shout. This will yield 150 mV peak-to-peak at the output of the first stage, and a maximum of 2.25 V peak-to-peak at the output of the second, which is about a quarter of what the system is capable of. An emitter voltage of 0.4 V is about the minimum allowable, the normal limits being from 0.6 V to around 3 V .

Stability will suffer most from this low emitter voltage: the ideal emitter voltage should be large compared to $V_{B E}$ to reduce the effects of temperature dependent change in $V_{B E}$. This low emitter voltage is forced on us in this circuit by the supply voltage and stage gain requirements but what is its upper limit? The maximal positive-going output voltage is about 1.2 V more than quiescent at the second stage output,
and as the two stages use indentical components, their set-up will be about the same. Supposing an emitter voltage of $\pm 0.6 \mathrm{~V}$, the quiescent voltage across the collector resistor will be around $\pm 9 \mathrm{~V}$ resulting in about $\pm 3 \mathrm{~V}$ at the collector with respect to ground. This leaves around 2.4 V across the transistor (CE), which on maximal negative-going cycles will drop to about 1.2 V . This is about the bottom limit in any conventional silicon transistor in this circuit (the lowest voltage drop you can get: the transistor will never be turned fully ON or in saturation).

There is one point to note: although the stage gains are both 15 , giving a theoretical total of 225 , the total real AC voltage gain of the pre-amplifier (stages one and two combined) measured at the output end of R12 is a bit less than this. You would expect a figure of around 180 in fact. This is because R9, R8 and VR4 form a potential divider via C 1 for AC signals, which effectively reduces the output signal by about 20%.

So, to sum up on the voltage pre-amplifier: in a correct setup we should find an emitter voltage in the range of 0.4 V to 0.6 V and a collector resistor drop of about 6 V to 9 V . Centre points, say, of $\mathrm{V}_{\mathrm{E}} 0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RC}} 7.5 \mathrm{~V}$, both with a $\pm 20 \%$ tolerance, which result in a comparatively large spread in V_{C} at 3 V to 6 V . Output clipping of negative-going cycles will onset at input signals greater than 10 mV peak-to-peak for higher emitter bias levels than 0.4 V . Overall AC voltage gain should be around 180 .

The driver and output stages must be considered as one unit, due to the feedback from output to input via R5. Working conditions are as follows: Q4 must have a base voltage of about $\pm 0.7 \mathrm{~V}$ with respect to ground, as this is its inherent $V_{B E}$ and its emitter is connected to ground. This 0.7 V must therefore be impressed across the resistance formed by R4 and VR3 in series, the current supply for which comes from the output via R5. The same current must therefore flow in R5 as in the base resistance of Q 4 (R4, VR3) so the voltage drop across R5 must be 0.7 V multiplied by the ratio of R4+VR3 to R5. At the output of our driver stage we want the quiescent voltage to be midway between the supply rails (for maximal output voltage swing in both directions). This is $\pm 6 \mathrm{~V}$ for $\mathrm{a} \pm 12 \mathrm{~V}$ supply rail. As the output end of R 5 rests at $\pm 6 \mathrm{~V}$, and as ($\mathrm{R} 4, \mathrm{VR} 3$) drops 0.7 V , there must be about 5.3 V quiescent across R5. Under these conditions, both Q6 and Q7 should just be conducting.

The quiescent current through them is set by adjusting VR1 to provide a variable stand-off voltage across Q3 between the bases of Q6 and Q7. This setup can be used for thermal compensation. The V_{BE} of Q6, Q7 and Q3 drop all with temperature rise, so the ratio between them stays roughly the same if all three transistors are at the same temperature. You will find them all bolted to the same heatsink under normal circumstances

Q8 is an emitter-follower current amplifier. It provides a unity gain voltage output which follows the collector of Q2, but with a massive increase in current availability. This is the same as saying it has a very high input impedance and a very low output impedance. Although in principle, Q2 could provide enough current to supply the base of the driver (Q4), Q8 is needed because otherwise the Q4 base resistor of about 160 R would work with R10 (1 k 5) as a potential divider on the output of Q2. This would reduce our hard-earned voltage gain by a factor of around 10. This would nullify the effect of the second pre-amp stage and give an overall gain of around 12. As it is, from the point of view of the collector of Q2, Q8 looks like very high value resistor in the lower half of the potential divider, so the output signal is not appreciably attenuated. C3 obviously isolates the bias
voltage of Q 4 base from the quiescent voltage of Q 2 collector.

At first, it looks odd that the upper (NPN) transistor of the output push-pull pair (Q6) is driven in Darlington configuration with Q5, and the lower transistor (PNP) Q7 is not. The Darlington is obviously a means of enhancing the drive current to a transistor with very low $h_{\text {FE }}$ (TIP31 $h_{\text {FE }}$ 10-50). Q7 (TIP32) is a matched complementary transistor with the same range of $h_{\text {FE }}$, so why doesn't it need a Darlington drive as well? The answer is, it's got one. Q6 conducts on positive-going half cycles, and requires a source of current into its base (base more positive than emitter) which it gets via Q5 and R6 from the positive supply rail. Q7 conducts on negative-going half cycles and requires a sink of current out of its base (base more negative than emitter) which it gets via Q4 the driver transistor. Q4 thus acts as the Darlington comrade of Q7. Neat isn't it? Saves us a transistor!

Summing up on our power stage: there should be $\pm 0.7 \mathrm{~V}$ with respect to ground on the base of Q 4 +6 V at the emitter junction of Q6, Q7, and between about 1 V and 1.2V between the bases of Q5 and Q7. The last components to note are C 4 , which blocks the otherwise heavy DC current from the emitters of Q6, Q7 (at +6 V) to ground through the load, and C5, which acts as a bandwidth limiter for high frequencies by shorting them to ground before they get amplified. The system bandwidth limits are therefore defined at the low end by the ratio of stage input capacitor reactance to stage input impedance. The stage input impedance is more or less the resistance of the upper and lower resistors of the base bias potential divider in parallel. At the frequency where the capacitor has a reactance equal to the stage input impedance, the signal will be -6 dB . The upper limit of bandwidth is defined by the ratio of $C 5$ reactance to the sum of $R 1$,

VR2. When both are equal, the input signal will be -6 dB .

Now you know what to look for, you can start testing the amplifier. First, you need to check whether anything is catastrophically blown up. The input should be shorted to ground to eliminate stray pickup (it's OK because the input is AC coupled!), and the power supply connected. With no output load, the power is switched on. If your power supply has a current meter, watch it like a hawk! If not, put a finger across the power transistors and keep your nose in shape. If, within no more than 15 seconds, you smell something hot, or your finger feels warm switch the power off. There is a major short circuit somewhere, and you cannot test the amplifier any further under power. Let's assume this test proves good. The amplifier draws a current of around 10 to 15 mA and nothing gets hot. The next step uses the digital multimeter to check for the DC potentials we worked out. You can't use the AVO 8 here. Although it has adequate resolution, it has a resistance of $20 \mathrm{k} \Omega$ on the range needed to measure the pre-amp transistor base potentials. This would spoil the readings as it would be in parallel with about 10k (for example, R1 + VR2). We must work from the input forwards to the output, and remember that the figures we calculated are approximate. Tolerances of up to $\pm 20 \%$ are quite likely, so we are working to less than 2 significant digits. Don't take too much notice of the least significant digits when using the digital meter. Of course, all your readings should be rigorously recorded. Make no adjustments now. Just record what you find. One of the best ways is to write the values in on a copy of the circuit diagram. This will take a bit of time, so I will leave you doing it until next month, when we will examine the results and consider what is wrong with the amplifier.

31

HART AUDIO KITS -

YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very besl engineered hiff equipment there is, designed by the leaders in their fleld, using the best components that are available.
a HART KIT you have direci access to the friendly HART service, you not dealing through, or paying tor any middolemen.
Every HART KIT is nol just a new equipment acquisition bul a valuable investment in knowledge, giving you guided hands-on experience of modern eleclionic lechiniques
or write for our FREE LISTS giving full delails of all our Kits, components and special offers Here are a few selected items

AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic amplifier is the flagship of our range, and the ideal powerhouse For your ultimate hi-tif system. Fealured on Ihe Iroml cover of the May issue of Electronks loday International this complete siereo power amplifier ofters World passlve fronl end giving switched inputs, volume and balance controis Tape, CD players, or indeed any 'ilal' inpul may lherefore be directly connecied lo bypass lone conl'rols or give a 'sland-alone' laciilily. The ampl fier can also be supplied in 'slave' and 'monobloc' versions withoul the passive inpul stage and power meter. Ali versions fit within the standard $420 \times 260 \times 75 \mathrm{~mm}$ case 10 malch our 400 Series
Tuner range ALL power supplies are slabilised, the heavy currenl supplies using the same mosfet devices as the amplifer. The power supply, using a toroidal transtorer, is in fact a complete module conlained wilhin a heavy gauge aluminium chassisfheatsink and fitted with IEC mains input and oulpul sockets At the circuitry is on a proper prinled circcuil wilh low-resisiance blade connectors for the six
slabilised DC oulputs HART KITS slabilised DC oulputs. HART KITS don't leave you Io fasten a lew capacitors to
Ihe floor ol the main chassis and wire the power supoly the hard way! Remember with a HART KIT you gel Ihe performance you want al lhe price quoted through proper engineering design and the right components. We do not insult your intelligence by offering a kit at whal seems a tair price and then tell you that you have lo spend three times as much to get an upgraded modell俍 Our Discounl Price for the Complet K100S Stereo Slave Version, with plain Front Plate
K100M 'Monobloc' mono version K1100M 'Monobloc' mono version, with plain Front Pla
...... 5365.98 RLH10 Reprinls of latest 'Audio Design Amplifier' articles
 \&270 Reprints and consiruction manual can be purchased separately and their cost Credited against subsequent kit purchase.
All versians are supplied with dual orimary mains Iranstormers for use on 220/240
 or $110 / 115 \mathrm{~V}$ mains Monobioc price does nol inciude ine construcion manual
SPECIAL OFFER extended until he end ol February he K 1100 kit will be supplied SPECIAL OFFEA extended until he end ol February he kT100 kit will be sup
wilh the new ALPS low noise precision pots ai NO EXTRA CHARGE.

INSLEY-HOOD 400 SERIES SUPER HIGH QUALIT

AM/FM TUNER SYSTEM

This is the ideal companion tuner to the 80W Audio Design Amplifier in any ultimate hi-fi system with case size, front plate layout and even control your route to $£ K+$ performance for a few tenths of the costl Two designs by John Linsiey Hood make up this combination of his ultra high quality FM tuner and stereo decoder described in "Electronics Today International" and the Synchrodyme AM receiver described in "Wireless World". Novel circuit teatures in the FM section include ready built preto DC and advanced sample and hold sterer decoder together making a tuner which sounds better than the best of the high-priced exotica but, thanks to HART engineering, remains very easy to build and set up. The Synchrodyme section with its selectable bandwidth provides the best possible results from Long and Medium wave channels, so necessary
in these days of split programming. If you want the very best in real H.-FI listening then this is the tuner for you. Since all components are selected by the designer to give the very best sound this tuner is not cheap, but in terms of its sheer sound quaity it is incredible value for money. To cater for all needs AM only and FM only versions are availabie as well as the full AM/FM model, with any unit being upgradable at any time. For further details see our fuil illustrated lists.
K400Fm FM Only Version, total cost of all parts is $£ 211.90$
Our special Discount Price for complete Kit Only K400AM/FM Full AM/FM version, Discount Price for
complete Kit

STUART TAPE RECORDER CIRCUITS

Complete stereo record, replay and bias circuil system for reel-to-reel recorders These circuils will give studio quality with a good tape deck allow a lhird head monitoring system to be used where the deck has this fitted. Standard 250 mV input and output levels. These circuits are ideal lor bringing thal old valve tape recorder back to life. Suitable stereo hoads are available at very reasonable prices.
K900W Stereo Kit with Wound Coils and Twin Meter Drive $£ 90.68$ AJS1 Reprints of Original Descriptive Articles $\quad . . .$. LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
Complete record and replay circuits for very high quality low noise steren cassette recorder. Circuits are suitable for use with any high quality cassette deck. Switched bias and equalisation to cater for chrome and
ferric tapes. Very versatile and easy to assemble on plug-in PCBs. erric tapes. Very versatile and easy to assemble on plug-in PCBs.
Complete with full instructions. Comple Stereo Record/Playe
 RLH1 \& 2 Reprints of Original Ärlicles $£ 2.70$ Our latest lists also give details of our ranges of specialist high quality AUDIO CONNECTOAS and LEADS, cassette decks and seasonal special offers. Write or telephone for your FREE copy. (Overseas 2 IRCs please or 5 for Airmail.)

Do your tapes lack trebie? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than newt machines and our TC1 Test Cassette helps you set the azimuth spot on As we are the actual importers you get prime parts at lower prices, compare our prices with other suppliers and see! All our heads are suitable for use with any Dolby syslem and are normally available ex stock. We also stock wide HS16 Sendust Alloy Stereo Head. High quality head with excellent trequency response and hyperbolic face for good lape to head contacl HC40 NEW RANGE High Beta Permalloy Stereo head. Modern space save design for easy fitling and lowe cost. Suitable for chrome metal and lerric tapes, truly a universal replacement head for hi-flidecks to car piayers Ind at an incredible price too!
HX100 Special Offer Sieroo Permalloy Head
HO551 4-Track Record \& Play Permalloy Heat for Head players or quadraphonic recording
1524 Standard Erase Head
SM165 2/2 AC Erase Head, Standard Mount
HS9510 $2 / 4$ Stereo DC
HS9510 $2 / 4$ Stereo DC Erase Head Mount … $\quad \$ 2.59$ H0751E 4/4 AC Erase Head tracks compatible with H0551.... 88.70 We can supply card reader heads tor OEMs at very keen prices REEL TO REEL HEADS
999R $2 / 4$ Record/Play 110mH. Suits Stuart Tape Circuils $£ 13.34$ $2 / 4$ Erase Head 1mH. Universal Mount. Suits Stuart

TAPE RECORDER CARE PRODUCTS HART TCI TEST CASSETTE

HART TCI TEST CASSETTE Our famous triple purpose test cassette.
Sets tape azimuth, VU level and tape speed Sets tape azimuth, VU level and tape speed
DEMI Mains Powered Tape Head Demagnetiser, prevents
nois.
E playpack due to residual head magnetisation....................... $£ 4.08$ DEM115 Electronic, Cassette Type, demagnetiser £8.61 Our new WINTER '89 List is FREE. Send for your copy now. Overseas Airmail.
We now accept inland and overseas orders by post or telephone on all Access/Masterchange and Visa credit cards.
Please add part cost of carriage and insurance as follows: NLAND:
Orders up to
OVERSEAS:
OVERSEAS:
Please see the ordering iniormation
with our lists.

Quad Power Supply (April 1990)
In the parts list, IC2 should be 7905 and IC 4 should be 7912 .

Oscilloscope (February 1990)
TS2 should have 550 turns, giving 110 V rms.
Motorcycle Intercom (January 1990) D1-D12 should be IN4148

Wavemaker FG (January 1990)
R24 (82 k) should be shown instead of the wire link below R29 on the Component Overlay (Fig 2). R9 on the Circuit Diagram (Fig 1) should be R31, and should be connected to the -12 V rail. The resistor connected to IC2a pin 4 on Fig 1 should be R9.

And some we've printed before

Navigate (April 1990)

Fig. la Maximum/minimum signal captions should be reversed.

Oscilloscope (February 1990)

Fig. 3. does not show the polarity of diodes D105,6. The cathodes point up the page Diodes D304 is a 1 N4148. Capacitors in the deflection amplifiers parts list are incorrectly numbered and should be C205, 206, 213 and not C105, 106, 113.

Text refers to inductors L203, 204; these should be L201, 202. Inductors L101, 102, 201.202 are wound on 100 k 0.5 W resistors The value of R201 should be 820 R. The PCB track connecting RV301 to R313 should be extended to the pad of link 17. The foil on page 60 , for the motherboard is at 95% of full scale.

Eprom Emulator (February 1990)
Under the construction heading, the bracket should include and read: so for example the $\$ 0000-\$ 1$ FFF and $\$ 8000-\$ 9$ FFF blocks are an illegal pair. The 18 th line should read: If you are thinking of using non adjacent blocks. Fig. 5 shows a label LK9, it should be LK3

Motorcycle Intercom (January 1990)
On the circuit diagram, R2 and R6 should be 100 k . not 100 R . Pins $1 \& 5$ of ICl should not be connected to earth. Pin 2 should be connected directly to the junction of R2 \& 3not to earth too. Capacitor C10 should be an electrolytic with positive uppermost. Junction of R39 \& 20 should be labelled $1 / 2 \mathrm{Vcc}$. All references to $0 V 5$ should read $1 / 2 \mathrm{Vcc}$. On the PCB overlay, R2 and R6 should be transposed. Similarly. R8 \& 9 should be transposed.

Low Voltage Alarm (January 1990)
Resistor R1, shown in the circuit diagram as 1 kO . should be 4 k 7 as in the Parts List. Pins 9 \& 11 of ICl on the PCB should be linked. This is incorporated in PCBs from the ETI PCB Service

[^0]
PCB FOIL PATTERNS

Dark Room Timer

Fecko Box

Telephone Extension Bell

Telephone External Bell

20 metre Receiver (ETI January 1990) copper side

CLASSIFIED
John Brasier
044266551 Ext 250
Send your requirements to:
ETI Classified Department, ASP, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST.
Lineage: 50p per word (+ VAT) (minimum 15 words)
Semi Display: (minimum 2 cms)
£13.50 per single column centimetre + VAT
Ring for information on series bookings/discounts.
All advertisements in this section must be prepaid
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

INTRODUCTORY OFFER assembled 4ch mic triggered chaser, 750 w per channel, £17. Four channel, eight programme chaser 1000 w per channel, $£ 33$. Both zero volts. B.L. Lighting, Unit 2, Rear 1 Heath Street, Dartford, Kent DA1 2LD. P\&P incl

CALL
 044266551 TO ADVERTISE

SURVEILLANCE

SURVEILLANCE \& COUNTER
 SURVEILLANCE EQUIPMENT
 WE MANUFACTURE AND SUPPLY

 TOP QUALITY SURVEILLANCE AND SECURITY EQUIPMENT including VHF Transmitert Automatic Telephone Recorders, Recording Briefcases Bug 7 Detectork. Counter-Inp Units We also dtar a complete range of accessoriesincluding microcassette reconders. microp
receiver. casseties and batleries
CCTV AND SECURITY
SYSTEMS SPECIALISTS
Write or phone for a delailed catalogue to: ESKAN ELECTRONICS LTD. DEPT. ET, 172 CALEDONIAN ROAD, LONDON, NI $071-278$ 1768 $=$

EQUIPMENT

- Series X Miner Kitit. up to 1.000 inputs, 6 auxiliaties, versions for PA , recording, radio disco Frome $£ 9.9$	
- Crcuils for: noise gates, compressors, exciters, lape machines. mixers	
- 100 mm laders, swilches	WE REPA
- Send 40p lor calalogue	AUDIO EQUIPMEN
Send 40p for catalogue to:	
K. Tek, P.O. Box 172A, Surbiton, Surrey KT6 6HN. Tel: 081-399 3990	

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0684-73127.

WANTED

Turn your surplus transistors, ICs etc, into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES HARDING \& CO
103 South Brink Wisbech, Cambs. NOW ESTABLISHED OVER 15 YEARS

Tel: 0945584188 Fax Number: 0945588844

VERY SPECIAL OFFER

Special Offers

1N4148......... 2p
1N4001....... 3p
$10 \mathrm{uF} / 16 \mathrm{~V} . .4 \mathrm{p}$
100uF/25V ... 6 p
5 pin DIN plug (180^{\prime}) 15p
5 pin DN plug (domino) .. 18p
25 way D plug 39p
3.5n DS/DD bulk disks by TDK etc 70p
most printer ribbons ex stock

Please telephone for other items, and special offers

Please add 25 p if order is under $£ 2$

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Whar Industrial Estate, Dymock Road Ledbury, Herefordshire, HR8 2HS

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only £1.00. Components and P.C.B's available. Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL

PCB'S

Sample Our Quality With AFREE
PRINTED CIRCUIT BOARD
Single Double Sided Ciruuts or Plated Through Hole White to:
PaYNE ELECTROPRINT LTD
Marcus Road, Dunkeswell,
Nr Honiton, Devon EX14 0RA

> TO ADVERTISE IN ETI CONTACT JOHN BRASIER ON 044266551

PRINTED CIRCUIT BOARD de signs and elec/mech draughting For a fast efficient service, give us a call on: 081-443 1381.

KITS

NEW VHF MICROTRANSMITTER kit, tuneable $80-115 \mathrm{MHz}, 500$ metre range, sensitive electrel micro phone, high quality PCB. SPECIAL OFFER complete kit ONLY £5 assembled and ready to use $£ 8.95$ post free. Access/Visa orders tele-phone021-411 1821. Cheques/PO's to: Quantek Electronics Ltd, (Dept ETI), 45a Station Road, Northfield, Birmingham B31 3TE.

Panel Engraving Service

Now you can give your projects a more professional finish by using the ETIFront panel service. If you have difficulty with drilling clean holes and producing good quality labels for your treasured projects then this service is a must for you. We will supply complete front panels for selected projects featured in ETI in a variety of base colours and coloured type according to your choice. The material used is a tough laminated plastic of extremely durable quality. It can be used as a glue on front-piece to a metal back plate or even as a front panel in its own right, the decision is yours. We believe the prices quoted areextremely good value for money and indeed hard to beat.
All you do is fill in the coupon stating clearly the code number, your name and address and your remittance made payable to: A.S.P. Reader Services.
For the choice of colour you must add two letters to the end of the code. They are these: BW - Black panel, white lettering, RW - Red panel, white lettering, WB - White panel, black lettering, WR White panel, red lettering.
The ultimate in personal service must be to offer a front panel made to your design requirements and this does not have to be limited to electronic projects. It could be a design for a clockface, a door-panel insignia, even your own logo. Now we can offer that facility too. Send us by letter or Fax, a neat dimensioned millimetre drawing of your panel design and we will be happy to give you a quote for a coloured front panel. On acceptance of the quote just send in the artwork and we'll do the rest. There's a minimum charge of $£ 10.00+$ VAT for this custom service but we reckon it's worth it.
Here are some recent popular projects to start this brand new service on its way, the prices are inclusive of VAT and postage and packing:
P9005-1 The Business Bass Amp £16.95
P9003-1 Superscope CRT Panel £ 3.95
P9003-2 Superscope X shift Panel $£ 2.95$
P9003-3 Superscope T/base £ 4.95
P9003-4 Superscope Y1 Input £ 4.00
P9003-5 Superscope Y2 Input £ 4.00
P9003-6 Superscope All 5 boards $£ 17.95$
P9001-1 Wavemaker FG £ 5.00
P8910-1 Multimeter $£ 5.95$

TELEPHONE ORDERS
 © 044266551 포

ETI Reader Services, Argus House, Boundary Way, Hemel Hempstead, Herts, HP2 7ST

Please supply P9005-1				Qty © $£ 16.95$	
Please supply P9003-1			Colou	I..............	Qty © £ 3.95	
Please supply P9003-2			Colou	r	Qty (4) 2.95	
Please supply P9003-3			Colou	Qty © £ 4.95	
Please supply P9003-4			Colou	Qty © £ 4.00	
Please supply P9003-5			Colou	r	Qty(1) £ 4.00	
Please supply P9003-6			Colou	F	Qty © £ $£ 17.95$	
Please supply P9001-1			Colour	Qty\|e	£ 5.00
Please supply P8910-1 Colour					Qty@ £ 5.95	
Cheques/P.O. payable to A.S.P. or debit my Access/Visa						
					Total $£$	
Signature						
Name						
Addre						
ETI Reader Services, Argus House, Boundary Way, Hemel Hempstead, Herts, HP2 7ST						
Allow 28 days for delivery						

Next month, we've got a whole lot of interesting projects for you. We've got a guitar headphone amp to let you practice without disturbing everbody else in the house, and a new digital frequency meter. And if you have problems making difficult decisions, then our Decision Maker project may be just what you're looking for.

We'll be continuing our series on testing with some more about solving real problems, and a project to build a transistor tester. We'll also be featuring the second part of our series on the functions and uses of diodes, and we'll be looking at the problem' of extracting signals from noise.

Could wind farms become features of our landscape? In the July issue, we take a look at the technology and practical implications of harvesting wind energy.

Our Audio section will bring you the latest news and reviews of audio technology, and we also review the Tsien Board Maker, the computerised PCB design system.

Don't miss the July issue of ETI. The magazine will be on the streets from 1st June.

The above articles are in preparation but circumstances may prevent publication

LAST MONTH

In May, we launched our new audio section, and full colour centre pages. We completed the Business Bass Amp, and eatured a project for a compact active speaker. We investigated a system for cutting fuel bills in commercial buildings, and presented a project for cutting phone bills. We gave you the final part of our series on radio, and reviewed two graphic equalisers. We also looked at the political and economic future of cable TV, and at how to take out one patent for several European countries.

If you missed the May issue, a limited number of back copies are available from Select Subscriptions (address on contents page).

ADVERTISERS' INDEX

OBC
BK ELECTRONICS...................... IFC CIRKIT HOLDINGS......................... MAPLIN ELECTRONICS.....
CRICKIEWOOD ELECTRONICS
CRICK EWOOD ELECROWCS 45 RACKZ PRODUCTS .
CRICKLEWOOD ELECTRONICS.... 45 RACKZ PRODUCTS15
DISPLAY ELECTRONICS................. 3 RADIO \& TV COMPONENTS24
ELECTRONIZE DESIGN 51 RISCOMP 49
GREENBANK ELECTRONICS....... 51
HART ELECTRONICS. 61 SUMA DESIGNS... 22
HENRYS AUDIO 11 TKELECTRONICS 43
J \& N BULL ELECTRICAL 23 TSIEN UK LTD IBC
LAB CENTRE 57 WLMSLOW AUDIO 43

[^0]: Virtuoso Power Amplifier (November 1989)

 In the circuit diagram: the base of Q49 should go to R46, and not R47. Bases of Q45, 43 should be connected. R44 should be 220 k .

