ON THE ROAD
2-way Motorcycle Intercom Project

ON THE ALERT
Beginners’ Low Voltage Alarm

ON THE AIR
20m Radio Receiver Project

ON THE PULSE
Signal Generator Project

ON THE MAKE
Inventions and Patents

FREE PCB to construct FOUR surveillance devices

UK COPIES ONLY
OMP POWER AMPLIFIER MODULES

POWER AMPLIFIER MODULES

SUPPLIED READY BUILT AND TESTED.

NEW SERIES II MOS-FET MODULES

OMP/100 Mos-Fet Output Power 110 watts R.M.S. into 4 ohms, Frequency Response 15Hz - 300KHz, T.H.D. Typical 0.0003%, Input Sensitivity 550mV, S.N.R. 120dB. Size 300 x 155 x 100mm, Price £62.99 + £3.50 P&P.

OMP/300 Mos-Fet Output Power 300 watts R.M.S. into 4 ohms, Frequency Response 1Hz - 100KHz, T.H.D. Typical 0.0003%, Input Sensitivity 550mV, S.N.R. 120dB. Size 300 x 155 x 100mm, Price £79.99 + £4.50 P&P.

OMP MOS-FET POWER AMPLIFIERS, HIGH POWER, TWO CHANNEL 19 INCH RACK. THOUSANDS PURCHASED BY PROFESSIONAL USERS.

OMP100 Mk 11 Bi-Polar Power output 110 watts R.M.S. into 4 ohms, Frequency Response 15Hz - 300KHz, T.H.D. Typical 0.0003%, Input Sensitivity 550mV, S.N.R. 120dB. Size 300 x 155 x 100mm, Price £33.99 + £3.00 P&P.

STANTON AL500 GOLDRING G580

PRICE £16.99 + 50p P&P. STAMPED FOR COMPLETE LIST.

NEWMXF SERIES OF POWER AMPLIFIERS

THREE MODELS:— MXF200 (100w + 100w) MXF400 (200w + 200w) MXF600 (300w + 300w)

FEATURES:— Independent input stage for each group, low distortion, high power amplification, 7079 transistors. Recommended for high power systems. For high power, hi-fi quality, reliability and thermal protection. Used in world over in pubs, clubs, discos etc. PRICES INCLUSIVE OF £3.00 P&P.

HANDHELD TRANSISTOR RADIO

PRICE £3.00 P&P.

PHONE, TELEGRAPH, SHORT WAVE, TV, MARITIME, COSPAC, AIRCRAFT.

PRICE £5.00 P&P.

THOUSANDS PURCHASED FOR COMPLETE LIST.

CLASSIC ELECTRONICS.

STEREO DISCO MIXER

STEREO DISCO MIXER WITH x 5 + x 4 band & x 1 graphic equalisers and two 10 segment L.E.D. Vu meter. Many outstanding features, full size model. Adjusted to suit individual faders providing a useful combination of the following:-

3 Turntables (Mag). 3 Mics. 4 Line including CD Plug & Mic with talk over switch. Hi-Fi input. Circuitry. Full range 75mV. Size 300 x 290 x 40mm. Supply 220-240v.

Price £134.99 + £4.00 P&P.

IN CAR STEREO BOOSTER AMPLIFIER

COMPACT ELECTRONICS.

SPECIALIST LOUDSPEAKERS

MCX SERIES

AX 300 SERIES

WATTS

WANDERING WAVE TRANSDUCERS

ALL VIVERS ARE AVAILABLE INCLUDING FITTINGS, CROSS-OVER, HIGH POWER, HIGH FREQUENCY BULLET RINGS AND HOSES, LARGE S.A.E. (30) STAMPED FOR COMPLETE LIST.

ELECTRONIC TRANSFORMERS

PROBING TRANSMITTERS

HEDE-EE ZEN STUDIO, IN-CAR ETC.

SPEAKER PROBES

HI-FI, TV, VIBRATION, MICROPHONE.

FREQUENCY CHARTS.

SPEAKER INSTALLATION CHARTS.

SMALL, MEDIUM, LARGE. COMPLETE WITH CIRCUIT AND INSTRUCTIONS.

IN FM TRANSMITTER 6KHz - 9KHz JARGON CONTROL LED Professionally performer, Range up to 300m, 500Hz - 3kHz. SUPPLY 12V DC. 10 AMP.

IN FM MICRO TRANSMITTER (BG) 100-1100Hz CARCUT TUNED COMPLETE WITH VORN SENS. FETLING, RANGE 100-1100Hz, 500Hz - 3kHz SUPPLY 9V DC, 100mA.

IN FM TRANSMITTER 3 Watt FM Transmitter

IN FM TRANSMITTER 5 Watt FM Transmitter

IN FM TRANSFORMER 10 Watt AM, FM, TV.

IN ETHER VERTO TRANSFORMER 100 - 200 Watts, AM, FM, TV.

IN FM TRANSFORMER 10 Watt AM, FM, TV.
REGULARS

News

6

Subscriptions

8

Insight — Living On Mercury

13

Blueprint

13

Out On The Streets

13

Open Channel

10

Competition Results

33

Penta Show Report

11

PCB Service

35

Keynotes Column

Newsagents

60

The Omnichord 200M — a musical instrument with a difference. Chris Jenkins strums the strings

Oooooops!

12

ETI JANUARY 1990
FEATURES/PROJECTS

The Infinite Baffle
Jeff Macauley takes the baffling bits from the art of infinite baffle loudspeakers and presents a case of good design

14

Patents and the Art of Invention
Pat Alley thinks it's patently obvious that inventions should be protected. He writes copy on copyright and the minefield of patent application

18

CIRCUITS
Tech Tips
A selection of circuits supplied to us by the ingenious readers of ETI
Radio transmitter alarm
Battery charger
Bicycle light control
Touch-activated light switch

29

PROJECT
Low Voltage Alarm
Keith Brindley can spot a slipping potential without a probe or a prod. This beginners' project shows how.

46

ETI Index part 2
A complete list of all the features and circuits from the last twelve months of ETI

34

PROJECT
Motorcycle Intercom
The word is on the streets — in the form of Tim Oxtoby's rider-passenger 2-way logic-switched voice-activated heavily-hyphenated intercom.

36

PROJECT
Wavemaker FG
A function generator for those who need effective equipment on an easy outlay. Dominic Banham has his soldering iron on the pulse

42

PROJECT
Under Surveillance 5: Mini Bug Circuits
The free PCB on this month's cover is put to work to make two room bugs, a telephone bug and a cordless guitar pick-up. Paul Chappell squeezes them in

48

PROJECT
20m Radio Receiver
David Silvester twiddles his direct conversion receiver into the amateur band

54

ETI JANUARY 1990
THE HEAT IS ON

THEM

BASS VALUE

MELTDOWN

HANDY CAP

MIXING WITH MAPLIN

Drew warnings about the change in global ecology causing unthinkable catastrophes has begun to prompt thinking into ways of reducing man's excessive production of polluting substances. After all, the key to the 'green' revolution is to use less energy. Two important aspects arise from this — consume less or become energy efficient. Thoughts behind energy efficiency are now stronger than ever before. However, although the latest applied technology in this field has had the best intentions, it may just backfire through lack of in-depth knowledge about our style of living.

Two cases in point:

A hospital, interested in reducing wasted heat energy by better temperature control of buildings, installed an electronic heating management system. Automatic control came from computer, telephone line and sensors placed throughout the building. Such were the frustrations of the staff in not being able to obtain the warmth at the correct time that it didn't take long for nurses to control to override the system. They realised that by placing hot water bottles or ice packs on the wallplate sensors, they could supply their own heating needs more immediately.

The second case concerns a large school building that had similar electronic controlled treatment imposed upon it from County Hall, a building some 40 miles away. It quickly became apparent that the degree of control was insufficient for the size of the building. The system proved large thermal delays and temperature differences throughout the building. So the central regions became too hot and people opened windows in winter, whilst staff on the extremities couldn't cope with frozen conditions, and to resume their activities imported butane gas heaters. No doubt problems like these can be sorted out, but it does show the need to study all factors when short sighted ideas for better energy management ironically produce a greater usage of energy rather than less.

If anybody out there has an effective electronic energy management project that they have designed, ETI would like to hear about it.

Backnumber readers should note that the ETI-DCP special offer of Interspecs has now sold out. The Interspecs are still available as are the special offers featured in this issue. The I-Tron sound effects special offer has also now closed.
Polarised 3D RTGB TV

A new 3D stereoscopic monitor is now available from Tektronix. The 10m high-resolution screen is a Trinitron RGB colour monitor with a detachable liquid crystal stereoscopic modulator.

Producing a three dimensional image on screen requires two cameras, placed at eye distance apart, to return the signals to the monitor. The signals are then rapidly alternated on screen. The modulator mask separates the two images by circular polarisation for each eye.

To see the image, viewers wear a pair of passive glasses containing circularly polarised lenses. One of the advantages of this system is that many people can see the images at one time. They can enjoy flicker-free full colour pictures and the object can be observed at a greater angle than any other monitors could give previously.

Thin Films on TV

Hitachi has been previewing its latest liquid crystal display. The new 10m colour display will be in full production in 1991. The active 640 x 480 pixel matrix panel is designed to work in workstations and VDU terminals that require high resolution colour displays. The screen employs thin film transistor technology with integral colour filters to produce a high contrast, wide viewing and fast display writing capability. Three primary coloured adjacent dots produce a total of eight colours including black and white.

It contains built in video data conversion circuitry to handle CRT compatible signals, which means that these displays could mark the beginning of the end for conventional monitors.

Mini Mouse

Joysticks, trackerballs and mice have all had their part to play in the case of relaying information from point to point within the computer, but wherever motion occurs with these instruments, space is required. This could be a problem especially if you are an executive on a flight manipulating a mouse or trackerball with a lap-top computer.

Now an inventor has come up with a possible solution — a motionless mouse. It's a case where your fingers do the walking or moving.

About the size of a pocket diary, the sealed box requires a slight rocking of the finger to facilitate cursor movement. The surface is touch sensitive and so any lifting of the finger causes a reduction in sensitivity and a second finger can adjust the cursor to the nearest pixel. One sensor performs the action of four switches which includes changing sensitivity and emulating the switches on a mouse control. The right sensor is responsible for cursor movement on screen.

This latest design is expected to be of value in flight simulation at one end of the spectrum to games programs at the other. In situations where an extreme degree of alertness is required.

Three versions of the Magic Touchpad will be available they are joystick, quadrature and mouse emulators.

Further information contact Cullen on (0306) 885138.

Taking Flight

If you are stuck for a bench power supply, then perhaps Flight Electronics could meet your needs.

The range offers reliability and a wide choice of single, double and quadruple variable output units. The units can provide three and a half digit LCD/LED displays or the traditional analogue meters.

A single output model can supply 0-18V (0-20A), 0-30V (0-10A) and 0-60V (0-30A). This supply, with analogue meters costs £89.00 whilst the digital display will set you back £168.00.

Further information telephone Flight on (0703) 227721.

Picture This

Japanese camera manufacturers continue to develop the electronic film, a memory chip that stores the visual image.

The latest still cameras out for Christmas in Tokyo will store the picture digitally on a credit card sized piece of plastic.

Toshiba and Fuji Film have jointly developed the camera system incorporating the card. It can contain 12 photo images, stored digitally within 18 megabit chips in the plastic. Picture quality is said to be the most critical factor and in this case, picture resolution comes from a horizontal scan of 400 lines per frame.

The flexibility of storing a picture electronically means that up to 1000 pictures can be held on a 120 minute video cassette and displayed to all your friends via TV.

This latest technology can be combined with larger memory capacity to give computers the ability to hold not only text and data, but also picture information for documents and profiles.
A subscription to your favourite magazine is the best way of making sure you never miss an issue.
And from now until 28th February 1990 you can get extra copies ABSOLUTELY FREE, by taking advantage of our special Christmas subscription offer. With a monthly title for example, this means you get 15 issues for the usual price of 12.

Order your subscription today using the coupon below and you will receive the best in reading entertainment right into the 1990’s. This offer is also open to subscribers wishing to extend/renew their current subscriptions.

Standard subscription rates

<table>
<thead>
<tr>
<th>Monthly titles (15 for the price of 12)</th>
<th>UK</th>
<th>Europe</th>
<th>Middle East</th>
<th>Far East</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B Computing</td>
<td>£21.00</td>
<td>£30.30</td>
<td>£30.60</td>
<td>£34.10</td>
<td>£31.25</td>
</tr>
<tr>
<td>Aeromodeller</td>
<td>£23.40</td>
<td>£28.20</td>
<td>£28.40</td>
<td>£30.20</td>
<td>£28.70</td>
</tr>
<tr>
<td>Antique Clocks</td>
<td>£27.00</td>
<td>£32.40</td>
<td>£32.60</td>
<td>£34.70</td>
<td>£33.00</td>
</tr>
<tr>
<td>Citizens Band</td>
<td>£18.00</td>
<td>£21.95</td>
<td>£22.10</td>
<td>£23.60</td>
<td>£22.35</td>
</tr>
<tr>
<td>Commodore Disk User</td>
<td>£33.00</td>
<td>£39.00</td>
<td>£39.30</td>
<td>£41.60</td>
<td>£39.70</td>
</tr>
<tr>
<td>Electronics Today International</td>
<td>£18.00</td>
<td>£22.20</td>
<td>£22.40</td>
<td>£24.00</td>
<td>£22.70</td>
</tr>
<tr>
<td>Film Monthly</td>
<td>£16.80</td>
<td>£21.40</td>
<td>£21.30</td>
<td>£22.90</td>
<td>£21.60</td>
</tr>
<tr>
<td>Ham Radio Today</td>
<td>£18.00</td>
<td>£22.50</td>
<td>£22.40</td>
<td>£24.00</td>
<td>£23.00</td>
</tr>
<tr>
<td>Micro Music</td>
<td>£21.00</td>
<td>£28.00</td>
<td>£28.30</td>
<td>£30.90</td>
<td>£28.80</td>
</tr>
<tr>
<td>Military Modelling</td>
<td>£18.00</td>
<td>£24.80</td>
<td>£25.10</td>
<td>£27.65</td>
<td>£25.50</td>
</tr>
<tr>
<td>Model Boats</td>
<td>£18.00</td>
<td>£22.40</td>
<td>£22.50</td>
<td>£24.20</td>
<td>£22.80</td>
</tr>
<tr>
<td>Model Railways</td>
<td>£16.80</td>
<td>£22.70</td>
<td>£22.90</td>
<td>£25.10</td>
<td>£23.30</td>
</tr>
<tr>
<td>Photography</td>
<td>£23.40</td>
<td>£30.50</td>
<td>£30.75</td>
<td>£33.45</td>
<td>£31.25</td>
</tr>
<tr>
<td>Popular Crafts</td>
<td>£18.00</td>
<td>£23.30</td>
<td>£23.50</td>
<td>£25.40</td>
<td>£23.80</td>
</tr>
<tr>
<td>Radio Control Model Cars</td>
<td>£17.40</td>
<td>£22.30</td>
<td>£22.50</td>
<td>£24.35</td>
<td>£22.80</td>
</tr>
<tr>
<td>RCM&E</td>
<td>£16.80</td>
<td>£22.80</td>
<td>£23.00</td>
<td>£25.30</td>
<td>£23.40</td>
</tr>
<tr>
<td>Radio Modeller</td>
<td>£16.80</td>
<td>£22.40</td>
<td>£22.60</td>
<td>£24.80</td>
<td>£23.00</td>
</tr>
<tr>
<td>Renovate</td>
<td>£18.00</td>
<td>£22.60</td>
<td>£23.00</td>
<td>£24.80</td>
<td>£23.30</td>
</tr>
<tr>
<td>Scale Models International</td>
<td>£18.00</td>
<td>£21.45</td>
<td>£21.60</td>
<td>£23.35</td>
<td>£21.90</td>
</tr>
<tr>
<td>Video Today</td>
<td>£18.00</td>
<td>£23.20</td>
<td>£23.40</td>
<td>£25.35</td>
<td>£23.70</td>
</tr>
<tr>
<td>Video X</td>
<td>£18.00</td>
<td>£22.35</td>
<td>£22.50</td>
<td>£24.15</td>
<td>£22.80</td>
</tr>
<tr>
<td>Which Video?</td>
<td>£18.00</td>
<td>£22.35</td>
<td>£22.50</td>
<td>£24.15</td>
<td>£22.80</td>
</tr>
<tr>
<td>Woodworker</td>
<td>£18.00</td>
<td>£25.20</td>
<td>£25.40</td>
<td>£28.10</td>
<td>£25.90</td>
</tr>
<tr>
<td>Your Amiga</td>
<td>£23.40</td>
<td>£29.00</td>
<td>£29.20</td>
<td>£31.40</td>
<td>£29.60</td>
</tr>
<tr>
<td>Your Commodore</td>
<td>£23.40</td>
<td>£31.00</td>
<td>£31.30</td>
<td>£34.20</td>
<td>£31.80</td>
</tr>
</tbody>
</table>

Alternate monthly titles (8 for the price of 6)

<table>
<thead>
<tr>
<th>Monthly titles</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Control Boat Modeller</td>
<td>£8.70</td>
<td>£11.30</td>
<td>£14.40</td>
<td>£14.25</td>
<td>£41.55</td>
</tr>
<tr>
<td>Radio Control Scale Aircraft</td>
<td>£13.50</td>
<td>£16.65</td>
<td>£16.80</td>
<td>£17.95</td>
<td>£47.00</td>
</tr>
<tr>
<td>Practical Wargamer</td>
<td>£11.70</td>
<td>£14.80</td>
<td>£14.90</td>
<td>£16.10</td>
<td>£15.10</td>
</tr>
</tbody>
</table>

Fortnightly title (28 for the price of 24)

<table>
<thead>
<tr>
<th>Fortnightly title</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Engineer</td>
<td>£31.20</td>
<td>£40.20</td>
<td>£40.50</td>
<td>£43.90</td>
<td>£41.10</td>
</tr>
</tbody>
</table>

Please commence my subscription to .. with theissue.
I enclose my cheque/money order for £.......................... made payable to ARGUS SPECIALIST PUBLICATIONS or debit my Access/Barclaycard number Card expiry date

Signature ... Name ..

Address ... Postcode ...

Please return this coupon with your remittance to:
Infonet Ltd. (ETF1/3) 5 River Park Estate, Billet Lane, BERKHAMSTEAD, Herts HP4 1HL United Kingdom

ETI JANUARY 1990
The purpose of the timer is to permit a blind person to set a tape recorder to record a radio programme while he/she is out. This is easily done by someone who can see, using a plug-in digital timeswitch costing under £20, but this is no use if you can’t read the display. There are many ways to tackle this sort of problem, but most of them can be ruled out by the circumstances in which it is being designed. For example, a product designed for mass production could work like ordinary digital timers, but replace the digital readout with a speech synthesizer. To make it small enough, one would probably use surface mount ICs, perhaps holding the data on a windowless EPROM. There’s unlikely to be enough market to justify mask programming, though market research would confirm or deny this.

It would be possible to check each digit of a readout by having a button under each digit which would cause the equipment to emit a series of coded beeps—perhaps sending each digit in Morse. The setting process would be difficult and there would be the temptation not to check the setting always.

Any solutions involving even more fancy technology, perhaps with custom chips, would be too ambitious for the intended project so I suggested that a simple interval timer should be used, with one row of rotary switches setting the time delay before it switches on, and a second row setting the time. The switches could be arranged to have pointer knobs to indicate the setting by touch. This could be double checked from time to time by counting clicks from the stop.

This would of course, only allow the setting of one time period during the day. However, it would be easy to set and could be designed using standard components. The complexity of this type of circuit would not be so great that prototypes should be seriously uneconomical.

Timing

The implication of the question is that the circuit should operate on the mains, and should switch a mains load. If this is the case, then the mains frequency should be used for timing purposes. If the load to be switched is only low-current, then a triac can be used to switch it. Because of the prototype nature of any project to be produced, it would probably be advisable to use opto-isolated triac drivers and a miniature mains transformer to power the circuit in order to isolate all the electronics from the mains. If this were to be developed into a mass-produced item and properly production engineered, it would be possible to incorporate suitable double insulation to render the unit safe without opto-isolation, and with the power supply drawn from a dropper resistor from the mains. This, however, would be a second step after the basic development had been carried out.

The actual timing of the clock pulses derived from the mains can be done using ordinary CMOS counter/divider ICs. The obvious method would be to use one set of counters and use binary comparators to determine the switch on and off times. However, a little thought shows that a slightly simpler solution is to use down counters, clocked (say) once per minute, and connected to switch the output when they reach zero. This reasoning gives rise to the block diagram shown in Fig. 1.

Starting with the switches, if one were to stick with the maximum 24 hour time period, only one of the switches would need as many as ten positions, though it may be convenient to extend the time delay to 29 hours 59 minutes. It would seem reasonable to limit the ON period to 9 hours 59 minutes, since periods of over 1½ hours are not likely to be required very often.

It would be useful if BCD switches were available, but all the BCD switches found so far would not be suitable for setting by a blind person. The switches fall into two main categories: PCB-mounting presets adjusted by a screwdriver, or thumbwheel switches, generally with the numerical indication behind a window. Unless a suitable switch can be found, it would seem necessary to use good old fashioned ten-way rotary selector switches. The output from these switches can be turned into binary-coded-decimal either by the use of a standard CMOS chip for the job, or in the case of switches not covering the full range of 0 to 9, it may be simpler and cheaper to use CMOS random logic. Whatever the detail of it, encoding logic is needed between the switches and the counters.

The counters themselves need to be parallel loadable down counters, capable of being cascaded and having an output indicating that they have reached zero count. The 4029 in its downcount mode meets this requirement, and is the obvious choice. Each digit of the counters can use a similarly connected 4029. The different count number for each stage is determined in the programming logic. Fig. 2 shows an example of the method of connection. Just two stages are cascaded here, but this can be extended as far as necessary. The gate and flip-flop around each 4029 are to permit the counter to count round to reload its maximum number and start counting down again when it reaches its terminal count. It must not reset to start immediately that it reaches zero because the counter must be held low for long enough to allow the next counter to count. The flip-flop causes the 4029 to reset on the positive clock edge after the one which sets the TC output to 0. The OR gate permits the counters to be set regardless of the state of the clock waveform.
Although this technology appears to be the norm these days, it's interesting to find out that only 15% of sale points currently have EPOS technology of any description. This situation is rapidly changing and has been forecast to double next year.

New and innovative EPOS equipment looks set to feature in the near future. One example is the electronic shelf edge display (I suppose we could acronymise this to ESED, although I've never seen it done yet) which is reckoned to have the biggest potential of all new EPOS equipment. In this, electronic displays mounted on the edge of display shelves in super markets will automatically display information such as goods prices, weights, contents and so on. A central computer transmits display information to the displays, so that changing a product's price or other information, simply becomes a matter of typing it in at the keyboard. For the retailer, the advantages include staff reduction and great flexibility in display positioning. For the consumer on the other hand, advantages include the possibility of actually being able to find how much the product costs for once (if you're a regular supermarket shopper, you'll know how frustrating it is when you find unpriced goods you want to know the cost of).

Many systems are in development as you'd expect, using many telecommunications methods to transmit the necessary information from computer to shelf edge display. Cable, fibre optics, infra-red beams are all going to be common in the years ahead. But one system which deserves note for its cleverness will use a radio signal to transmit data. The obvious advantage which such a system gives over all the other methods is ease of installation — no need for cable routing and the messy installation work which goes with it!

Ah ha, I hear you say! But what about the necessary radio licence to operate the system. Well, that's where the system is doubly clever — a licence is not required. This is because a loop aerial is used (a simple loop of wire), attached to the ceiling of the outlet, to transmit longwave radio signals. And because the required transmissions are then so weak, they are contained totally within the building, the system neatly sidesteps any licence requirements. Interestingly, the idea is not new. If my memory serves me correctly, it was first used in the world's first radio-paging system around thirty years ago in a London hospital (here my memory doesn't serve me because I can't remember the hospital's name), to enable doctors to be 'bleeped' in much the same way they are still being bleeped nowadays when emergencies occur. Loop aerials haven't been used in radio-paging systems, though, for many a year. Curiously nostalgic to see them being used again for such a high-tech venture.

Mobile Personal Cones

Watching the hoo-hah which has been going on over mobile personal communications such as CT2 and PCN, I get the feeling that there's something up we ought to be aware of. CT2 is of course the cryptic name given to second generation cordless telephones of the telepoint ilk, while PCNs are the new personal communications networks proposed by the DTI to come somewhere between CT2 and cellular telephone systems. Look to November's ETI, where I compare and contrast all three, if you're in any doubt about which one is capable of.

Our Government's idea in forging ahead with these systems has obviously been to open the market out for British companies to compete with the advantage that they have had more experience than foreign ones. What has happened is that many European companies have simply ignored the British push for these networks. As far as CT2 is concerned, there is a large and growing European contingent against our adopted standard, instead opting for the more advanced digital European cordless telephone (DECT) standard. With PCNs, it looks as though most European companies are simply not considering their value at all — it was interesting to note that none of the large European mobile communications manufacturers even bothered to apply to the DTI for an operating licence.

There are two ways of looking at this. The first, which I've seen proposed by other commentators, is the rest of Europe is using Britain as a sort of free evaluation service, to exploit while making sure their own markets are not damaged. Thus, we go ahead with things like CT2 and PCNs, generating a lot of work for our own companies, and when things are proven — or more specifically, disproven — they go ahead with optical systems, leaving ours in the doldrums. This scenario I find a little disturbing, and I don't subscribe to it. I just can't believe that Europe's leading telecommunications companies would use such devious and underhand methods of gaining an edge over ours. It all smacks too much of Big Brother and I don't believe that such an organised situation could arise, simply to undermine British companies. I prefer a second way of looking at the situation. In this, I propose that the fault is our own, or at least our Governments. In the haste to try to give our companies the European market edge, our telecommunications liberalisation procedures have simply been pushed ahead too quickly. Now, our companies are out on a limb — and the limb looks as though it could break.

Keith Brindley
Penta
Penta Show Report
Radford's MRA50 valve monoblock

If you are serious about designing top quality hi-fi electronics, you will need to be good at designing valve circuits.

That seems to be the message which flows most strongly from Britain's largest exhibition of hi-fi equipment held each year at the Heathrow Penta hotel in West London. Not only were there quite a number of manufacturers and suppliers of valve-based electronics, but also many manufacturers of turntables and loudspeakers who preferred to demonstrate the sonic virtues of their designs using valve amplification. On top of that, the only supplier of electronic components exhibiting was valve specialist supplier PM Components. Certainly the overall impression was that the importance of valves in hi-fi equipment overshadowed the technical advances in digital engineering.

Moving into the digital field, the most interesting exhibit was the Wadia Digital 2000 decoding computer which offered 64x oversampling in converting digital signals to analogue. The advantages, one learns after filtering the relevant information from their brochure, are that noise generated in between the steps is well above 2MHz and hence beyond the operating frequency of audio amplifiers and that the digital filter which causes distortion in real music signals is eliminated. Their second model the Digital 1000 offers 16x oversampling, on a par with the new Cambridge Audio CD3.

One pertinent observation is that CD technology is becoming accepted amongst the leading analogue engineers who have used their knowledge and experience to improve it. Woodside Electronics, famous for remanufacturing the old Radford Valve amplifiers of times past, has introduced its own WS1 compact disc player at just under £1000 and the PAC1 digital-to-analogue converter at just under £500. Another leading analogue specialist is Delta Precision Audio whose amplifiers are based around its high performance 500MHz hybrid op-amp microcircuit. Its CD converter, again at just under £500, is based on Pulse Density Modulation. It eliminates the problems of matching resistors and from this technology low level performance is theoretically superior. One might well wonder how much more successful the launch of CD might have been designed by competent analogue engineers.

Digital Audio Tape recorders are making more waves on the legal and political front than on the musical or electronic fronts, but I did see one DAT recorder, the R-1 exhibited by Teac.

Still on digital engineering Meridian Audio's new D600 loudspeaker includes a remote controlled preamp capable of accepting digital or line level analogue input signals, electronic crossover and three power amplifiers directly driving the three drive units. These are designed for the 'Total system' concept of providing hi-fi sound in several rooms of a house from a master control system. This is moving away from the concept of hi-fi as a Rack system plus two boxes at one end of the room.

Also on the same tack was KEF with its in-wall loudspeakers. The loudspeakers are mounted on a baffleboard which fits into a recess in the wall less than four inches deep. Because of the excellent baffle provided by the wall a low frequency subwoofers is included in the range, and this extends down to 32Hz. It would be useful addition to most standard hi-fi systems.

Surround sound was demonstrated by Dynavector with its SSA504 4-channel amplifier. By using three separate delay lines, the first of which is fed to the front channels, Dynavector claims to provide a more convincing and realistic experience of a concert hall.

Graham Nalty

CD DIGITRAP
Clean up your CD sound for even more in just 30 seconds
Hear 30 times more detail otherwise lost within the CD digital noise.

The SAGE AUDIO 'DIGITRAP' is not just another filter or outboard DAC but a revolutionary new form of digital filter. The DIGITRAP simply plugs into your CD's audio output socket then the digitrap outputs feeds directly into your amplifier's input sockets.

- TOTALLY PASSIVE (no power required)
- PATENT APPLIED SAGE DESIGNED 'CYCLIC' FILTER
- TOP QUALITY AUDIOPHILE COMPONENTS
- GOLD PLATED IN/OUT CONNECTIONS
- COMPLETE WITH CONNECTING LEADS
- SILVER LOADED SOLDERED CONNECTING LEADS
- SIMPLE TO FIT BY ANYONE IN JUST SECONDS
- LIFETIME PERFORMANCE GUARANTEE
- 7 DAY MONEY BACK GUARANTEE

The DIGITRAP passes all audio signals totally unattenuated whence the digital quantization noise inherent in the output of ALL CD players is attenuated by up to 30dBs by the action of a patent applied 'CYCLIC' digital filter. The result, ultra clean sound quality totally free from digital quantization noise, holds up to 30 times more detail from signal levels otherwise buried in digital quantization hash.

DIGITRAP 1 Basic unit suitable for all CD players up to 4 times oversampling £39.95

DIGITRAP 2 High performance unit for all CD players from 0 to 32 times oversampling £59.95

Postage and packing £2.50 per order UK, overseas £6

Such is our confidence in the DIGITRAP to clean up all the digital noise that we are offering a 7 day, full retail price money back guarantee if you are not completely satisfied with it.

To order, simply send a cheque or postal order to SAGE AUDIO Electronics, Construction House, Bingley, Yorks BD16 4JH, England. Overseas orders please enclose a bankdraft in sterling including postage, alternatively travellers cheques or Eurocheques. Further information can be obtained by sending a 9x4 SAE, overseas please enclose 3 international reply coupons.

720K 3.5" DRIVES £34.95 + VAT

3.5" DRIVES Excellent Japanese, low component, case chased drives. Ex almost new systems; boxed, full 6 month guarantee; 10 track double-sided; £34.95 (car. £3). Ten or more £500 or more £900. Grade C/B in box £1, 5.25" 36-bit IBM pc £4.99 (car. £1.00). Power and data connectors to suit £0.99p (car. free). Box ten 3.5" discs £9.95 (car. £1.50).

EPSON 12" TTL MONO MONITORS (SHEET Elliott) High resolution, IBM and Hercules compatible. TTL. Complete with leads for direct connection to any other PC. £46.50 (car. £6.50).

WANG 12" AMBER MONITORS TTL and composite video types available £44.95 (car. £5.50).

WANG PM005 12" COLOUR MONITORS 50kHz analogue RGB input, high definition, suitable for Amiga, BBC etc. £99.50 (car. £6.50).

RASCAL V22 MODEM MPS1222 Microprocessor-based modem providing full duplex communication at 1200, 600 and 300 baud to V.22 bis line (PSTN), auto answer but needs telephone dialling to dial, BT approved, manual included. Uncased card with front panel £19.95, seven cards in rack £165 (car. one £35.00, seven £15).

HARD DISC DRIVES from £55.

5.25" 720K PANASONIC FLOPPY DISC DRIVES 80 track, £34.95 (car. £3.50).

POWER SUPPLIES Formet H180 cased 180 Watt PSU +5V at 2A, +12V at 2A, +5V at 1A (carr. £30) and +5V at 1A. Power supply can be derived from line. £250. KSCM 120 Watt cased +5V at 2A, +12V at 5A and +5V at 2A. £250. KSCM 240 Watt cased +5V at 2A, +12V at 5A and +5V at 2A. £250.

OLIVETTI D200 DAISYKITCHEN PRINTER 25ppm. Centronics, full features, £95.50 (car. £6.50).

HITACHI COLOUR MONITORS from £295 for 14" VGA.

SCITEC 'Scribble' Keyboards supplied with Wripp Serial Units, no data available £5.95 (carr. 13p).

ACCESS and VISA accepted. Add VAT to all items

Matmos Ltd., Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Sussex RH16 2LX
Telephone: (04447) 2901 or 3860 · Fax: (04447) 4258

ETI JANUARY 1990
Chris Jenkins strums the sonic strings of his MIDI-equipped ...er... thing

Product: Suzuki Omnichord 200M
Price: £250
Supplier: KES Music Services, 26 Elms Road, Harrow and Wealdstone, Middlesex HA3 6BQ
Tel: 01-954 8176

The Omnichord is a unique musical device, proving that while MIDI is usually associated with keyboard instruments, the same communication standard can apply equally well to different forms of controllers. After all, a keyboard is basically just a series of switches, and any digital system which can provide the right input can be used to generate MIDI.

Alternative controllers like MIDI guitars, percussion pads and wind instruments are now well established, but some designers are looking at completely new types of controller — Jean-Michel Jarre's famous Laser Harp and EMS's Soundbeam for instance. The closest acoustic equivalent of the Omnichord is the autoharp, which lets you strum strings while selecting the key with a series of buttons. As we'll see, however, the Omnichord has also inherited a fair amount from the idea of the home organ.

History
The Suzuki Omnichord first appeared a couple of years ago, and has sold well into the educational, leisure and domestic markets. Several variations on the original non-MIDI version are still available, but it's taken a surprisingly long time for the designers to take the obvious step of adding MIDI. A prototype was shown at the British Music Fair in June, and the MIDI Omnichord 200M should be available in time for Christmas.

The great thing about the Omnichord is that it allows non-musicians to create enjoyable music and, via MIDI, to use all the facilities of modern synthesizers and other instruments.

The oddly-shaped Omnichord can be played sat on your lap or slung round your neck. Powered by batteries or a 12V mains adaptor, it has a small built-in speaker but obviously benefits from amplification via its quarter-inch jack audio output socket.

The basic idea is simple. Like a home organ, the Omnichord has a series of single-finger chord buttons, a rhythm unit and automatic bass patterns. Instead of a keyboard, there's a touch-sensitive sonic strings strip. Running your fingertip over this strip produces a four-octave glissando of notes in the correct chord — in other words, it's impossible to play a wrong note.

Features
The 36 chord buttons are arranged in three strips — majors, minors and sevenths. By pressing them in combination you can produce 84 different chords. When you switch the Omnichord 200M on, it defaults to sync start mode; press a chord button and the chords, bass and drum machine start playing at the speed set by the tempo knob. The chord sound is a simple organ texture, the bass a little better, but the drum sounds are fairly punchy. PCM samples.

There are ten different rhythms, selected with a row of pressbuttons, ranging from rock to disco, march, waltz, bossanova and so on. It would be nice to have a larger selection, or more fills or variations, but no such luck. However, there are different chord and bass patterns matching the different rhythms.

The sonic strings sounds are better. There are ten, including guitar, synth, bell and flute. You can alter the sustain time and add a tremolo effect for more variation, and each section has its own volume balance control.

Once you've experimented with different styles of playing the Omnichord — strumming, tapping, or pressing the Sonic Strings — you can get into the more complex functions. In the chord memory section you can activate record, then use the chord buttons and enter key to create a sequence of up to 51 chords, pressing delete if you make a mistake. Go into playback mode and you can play the chords back in sequence just by tapping the playback pad, or using an optional footswitch.

The Chord Memory can be partitioned into four sections, and these songs selected using dual-function chord buttons. For a live performance you could store up to four short songs and not even have to remember what chord buttons to press.

By selecting the melody feature you can actually pick out specific notes on a one-in-a-half-octave 'keyboard' laid out among the chord buttons, rather than strumming the Sonic Strings.

MIDI
All this is ideal for, say, singers who want accompaniment but can't play a conventional keyboard or guitar. However, the really fascinating applications arise when you start using the Omnichord 200M's MIDI facilities.

The MIDI implementation is pretty basic. Melody notes are transmitted on channel 1, bass on 2, chords on 3, drums do nowt. Obviously there's no MIDI velocity transmitted, which is understandable, but it would have been nice to see MIDI patch change control or timing clock output implemented — after all, it would only have been a matter of rewriting the software, not changing the hardware.

Used in conjunction with a multi-timbral synth module like the Yamaha TX81Z, Roland D110 or Casio V28M, the Omnichord becomes a very flexible controller. Select some appropriate sounds, assign them to the correct MIDI channels and play away. You have all the power of MIDI sounds under your control, without any musical skill required to play them.

Of course, MIDI music data from the Omnichord could also be recorded into a computer-based sequencer, then edited and replayed on your synth modules. If you just want to strum a few chords in an experimental manner, put your sequencer in record and Omnichord away — unlike a guitarist, you'll have a useful record of your musical doodlings.

Despite its MIDI limitations the Omnichord is a fascinating prospect. Ask your local music shop for a demo if you're sceptical.
Mercury Communications is a British Telecom's only real competitor in the UK arena of telecommunication, unless you are lucky enough to live in Hull (where the local company offers unlimited local time for one unit and various other goodies). Elsewhere you choose between traditional BT and new dynamic Mercury.

Mercury has been concentrating its efforts on business and industrial customers. The opportunity is there, however, for punters such as you and I to use its pristine networks to talk to Auntie Floss in Glasgow and Martin Smith in Croydon. Should we bother?

Well Mercury call rates are significantly below those of British Telecom for all national (between 15-20% saving) and international (up to 14%) calls. Only on local connections do BT outperform Mercury. So why hasn't the entire British public rushed to take a Mercury account? Where are the roundabouts that balance the slides?

The biggest single problem with Mercury operation is that there is no such thing as a Mercury Line. The only way for a private householder to connect with the Mercury network is to have BT put in a line then apply for a Mercury authorisation code to change networks at the local exchange.

This means that Mercury users have to pay basic standing charges to both companies. So at what point does it become profitable to switch to Mercury?

The Cost Equation

The telephone can be regarded as an investment — the money saved by removing BT's equipment rental charge will in any case pay for the aforementioned Hollywood 10 pretty pronto.

Then there is the Mercury subscription cost — happily almost negligible at £8.62 for a whole year. Of course on top of that you'll be paying BT line rental every quarter but if you abandon BT altogether you may get a 'low usage' reduction on this.

Most people settle on the cost-effective option of using both networks now available to you. Select BT for local calls and the Mercury button for further afield.

So balancing the two sides of the equation, you only need to save £8.62 a year for Mercury to pay for itself. With Mercury's present call rates you can reckon that if your bills at the moment are about £60 a quarter, with a reasonable percentage being national calls. If you regularly make international calls then get on Mercury instantly. The savings make Mercury a positive boon.

Making A Call

Mercury calls do take a little longer, increasing the connection time by about half as much again compared with going straight through BT. Calling Nottingham from London through a non-System X exchange into Mercury and out the other end (pause for breath somewhere around Watford Gap) took me 27 seconds last night, the same number through Telecom was 19 seconds. The extra time might be a bind for business callers that never put the phone down (those water shares might have fallen a pound or so in those eight seconds) but at home on a Sunday by the fire it makes little odds.

Things That Go Eeeek In Your Ear

However the Mercury dialling tone (it sounds when you hit the Mercury blue button) is a positive irritant. A high-pitched whistle sufficient to give your average pet poodle a Rottweiler the shakes. Pour quo? as they say on the Minitel network. A buzz would be sufficient, the Mercury eeeek just hurts. You learn to dial holding the phone at arm's length — every once in a while you forget and get your ear blasted. Why didn't they choose a soothing boon? It's annoying but sit back and think of the money you're saving.

Spot The Swine

I'll tell you the reason I went on Mercury in the first place. I live in Ealing and, nice area as it is, we've not yet on a digital exchange. Consequently itemised billing is not an option. Living, as I do, with anything up to eight highly-communicative maniacs, this can be something of a problem.

Mercury not only gives you itemised billing but introduces the sensational concept of cost centres. This is absurd, one assumes, primarily at the business sector to identify the swine that's making calls to Miami. The system is equally useful in a house such as my own.

When you register you get the choice of having two digit or three digit cost centres, or ignoring the system. You dial the cost centre immediately after pressing the Mercury button, before you dial the main number. The bill arrives split into cost centres and everyone pays their share. No arguments. It helps.

Out on the Streets

In our ceaseless endeavours to ensure the smooth and seamless distribution of ETI, we would like to hear from any readers who have had difficulty finding our illustrious mag in the high street.

If you — or your local newsagent stocks our competitors or other specialist titles but not ETI, we would be grateful if you could let us know using the coupon on the left.

Bear in mind that ETI comes out on the first Friday of the month and a natural break occurs at the end of each period.

LIVING ON MERCURY

Pay the Bill

Perhaps it's because its still in its infancy but Mercury is extraordinarily helpful when it comes to accounts, bills and generally parting with the lula. One time when someone was leaving the maison chez-moi, we needed an interim bill to get their share paid before they left. Mercury assessed the account and faxed me the results in 48 hours (try that on BT and take a major holiday while you wait). Also I neglected to pay the last Mercury bill on time (purely as research for ETI you understand). Three months later I still hadn't received a reminder from Mercury. Courtesy taken to the degree of incompetence some might say, but they caught up with me eventually...

The Signals Are Clear

There are a lot of rumours around that connecting Mercury through BT and back again you are appalled s/n, that you get wrong numbers constantly, that you get nothing even more often. Nah. We've never had any problems. True, the guys in the house that modem to work always choose to go through BT but they admit they have no proof, they just minimise their connections.

In conclusion, my household and I utterly recommend Mercury to anyone who uses their phone as more than a household ornament. You save money, you solve arguments, you gain the status symbol and you annoy BT. Who could ask for anything more?

Clement Cross

There remain parts of the country not yet able to join the Mercury network. To check if this means you — or for other Mercury information — contact Mercury on free-phone (0800) 424194.

OUT ON THE STREETS

NEWSAGENT'S NAME

NEWSAGENT'S ADDRESS

NEWSAGENT'S TELEPHONE No.

ETI IN STOCK

rarely □ never □

OTHER ELECTRONICS MAGAZINES IN STOCK?

yes □ no □

OTHER SPECIALIST MAGS AVAILABLE eg computers, radio, CB etc

yes □ no □

SEND TO: THE EDITOR, ETI, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

ETI JANUARY 1990
Jeff Macauley turns to infinite baffle enclosures and presents the case for optimum design

In any reasonably-sized library you will be confronted with shelves heavy with electronic textbooks covering every imaginable aspect of electronics. Yet if you try to find out how to design a speaker all you get is a rough description of the various enclosure types. No mathematical guidance and precious few practical examples to follow. This state of affairs is even more surprising considering that the UK's main Hi-Fi claim to fame has been the quality of our speaker systems.

The formulae and methods detailed here are not the work of any one man, they represent the fruits of research by many-too-many to mention in fact. I have written this article (and the other on reflex enclosures) so they might stimulate others to design and build. All the equations presented here are within the reach of a scientific calculator coupled with a basic knowledge of algebra.

Right, to business. Having discussed reflex speaker systems it's time to take a look at the alternative. Probably the simplest form of speaker enclosure available to the home constructor is the closed box of infinite baffle. Many readers must have made one of these by simply building a conveniently sized box and mounting a speaker in it. If you're very lucky you might get a passable result this way but the best way to design an enclosure is by using a little maths.

No Case, No Bass

Before delving into the design procedure in detail it is just as well to go back to basics. First consider what happens when you use a speaker without any cabinet. The first thing you notice is a complete lack of bass. This is because the wavelengths of bass frequencies are very long compared to the diameter of the speaker. Since the rear of the cone is radiating bass in antiphase with the front of the cone, an acoustic short circuit occurs — the front and rear (diffracted) radiation cancel each other out reducing the amplitude. Higher frequency sounds have a wavelength small compared to the driver diameter, are diffracted less, and less cancelling occurs. The critical frequency (below which the response rolls off) occurs where the diameter of the cone is equal to a half wavelength of the radiated sound. One obvious solution to the problem is to mount the speaker on a large flat board — a baffle (Fig. 1). The rear radiation from the cone then has further to travel to reach the front and the low frequency response is thus extended. Again bass roll-off occurs at a frequency where the minimum dimensions of the baffle is equal to a half wavelength.

You don't see many open baffle speakers these days and you can see why when you calculate minimum dimensions for a baffle to respond to say 40Hz. This comes out at 14.1ft (4.29m)! However the baffle mounting just described has some advantages over a conventional speaker. For example the rate of roll-off is a gentle 6dB/octave down to the speaker's resonant frequency. Also there are no internal box resonances to contend with.

If you take the baffle and fold it into a box you get the infinite baffle (IB) enclosure. This method of mounting has the advantage that the rear radiation is prevented from reaching the front. However, the idea does impose restraints of its own, the most serious being that the enclosed volume of air in the cabinet makes the speaker's surround look stiffer and raises the resonant frequency. Below the resonant frequency the response of the speaker will roll-off rapidly at 12dB/octave. The rise in resonant frequency explains why even speakers with a free air resonance around 25Hz cannot respond adequately
below 50Hz when mounted in a reasonable case.

When discussing reflex speaker theory in ETI January 1989 I used the theory of Theile and Small to predict enclosure response. The same theory also describes IB designs. An IB can be represented as an equivalent circuit, in this case a second order high pass filter. The main differences between filters of the second order, apart from their roll-off frequencies is the Q. As in tuned circuit theory the Q determines the peaking or otherwise of the filtering pass band.

Figure 2 shows the effect of various values of Q on a high pass filter's response. To make things clear I have superimposed the curves for the same turnover frequency. The first thing to notice is that a Q of greater than 0.707 shows a peak in the response. The 0.707 Q curve corresponds to the Butterworth filter which has the flattest curve for the least amount of ripple in the pass band. Low Q curves show a substantial amount of roll-off but very low ripple. These curves are representative of the response obtained in an IB enclosure simply by adjusting the volume. How then do you obtain a useful result in practice?

Once again the answer can be obtained by applying filter theory and to do this effectively we need to know the speaker's parameters Vna, Qn, and Qa. These should be included in the speaker data sheet.

Vna is the equivalent volume of air such that its compliance equals that of the speaker. Frequency f is the free air resonant frequency of the driver and Qa is the effective Q of the resonance, again measured in free air.

In a practical cabinet what Q should be aimed for? Well for starters it rather depends on the kind of musical representation you like. A Q of 0.7 is held by many to be the optimum and has the property that the resonant frequency measured in the case is equal to the -3dB point. As you might expect from inspection of the Q = 0.5 curve, the -3dB point here is substantially above the resonant frequency. The higher Q curves will give better results on rock material producing an (artificial) bass emphasis. Many highly regarded speakers have been designed with higher values than 0.707. However anything above 1.2 should definitely be avoided if realistic reproduction is your aim.

The Maths

In order to understand how to proceed let's take our old friend the B110 as an example. The published parameters for this driver are Vna = 0.83cu ft, Qn = 0.31 and f = 37Hz. To design to a given Q we make use of the equation:

\[Q = \frac{f}{Q} \]

where Q is the desired response curve and f is the resonant frequency of the driver mounted in the cabinet. So for a Q of 0.7 we can rearrange equation 1 to:

\[f = \frac{Q}{Q} \times 37 \times 0.7 / 0.31 = 83Hz \] To find the corresponding cabinet volume we must use make up of a second equation:

\[V_a = \frac{Q}{Q} \]

where V_a is the required cabinet volume. Putting figures into the equation for the B110, V_a = 0.83/(0.37/0.31^2 - 1) = 202 cu ft.

As I previously mentioned the -3dB point varies with the chosen Q. Here we can explode a popular myth about IBs that the response extends downward with increasing cabinet volume. What does happen is that the resonant frequency measured in the assembled cabinet gets lower with increasing volume. This is not the same thing as the -3dB point. However knowing the resonant frequency of your driver in the cabinet is a useful check, if only to show whether the speaker's published parameters are correct.

To find f we can use the following equation,

\[f = \frac{Q f}{Q} \]

The -3dB point can be determined from applying the equation:

\[f = \left(\frac{1}{Q} - 2 + \sqrt{\frac{1}{Q} - 2} \right)^2 + 4 \]

To illustrate the result of increasing cabinet size we can construct Table 1, using the B110 with decreasing Q.

Several interesting things can be seen from examination of this table. Firstly as the cabinet volume is decreased the -3dB point goes lower until Q = 0.707, there after the -3dB point rises again. Secondly the Q of the cabinet decreases with increasing volume and tends towards a limit (Q) when the cabinet has an infinite volume.

Frequency fc decreases with an increasing cabinet volume, the limit being that when the cabinet is infinitely large.

Lastly, above Q = 0.707 there is a peak in the response, f, in the table of amplitude pk dB. To complete this section f and pk can be determined from the following equations:

\[pk = \sqrt{\frac{1}{Q} - 1} \]

\[f = 20 \log_{10} \left(\frac{Q}{Q} \right) \]

In essence this is all there is to IB design, however there are some useful extra techniques that can help you reach your design target. It is possible to tweak both Q and f within limits to achieve a given response. To understand how we must again go back to basics.

At resonance the speaker cone can be modelled as a mass suspended on a spring. In our model the cone mass is the mass and the compliance of the suspension is the spring. If the mass is pulled downward and then released the system will oscillate at its natural frequency (f). The time the system takes to come to rest is determined by the losses in the system (Q). Both the resonant frequency and the Q can be modified by adding more mass to the system. This both lowers the resonant frequency whilst increasing the Q. The moving mass of the cone is usually in the order of 10-30 grammes. Hence small mass increases can have quite an effect on the system's characteristics. The price that has to be paid is a lowering of efficiency.

To put some maths to the problem the resonant frequency of a driver is determined by the cone mass M and the surround's compliance Cm such that:

\[f = \frac{1}{2 \pi \sqrt{C_m M}} \]
Listing 1. Computer listing for enclosure optimisation

30 REM *SET UP SCREEN**
100 c14=CHR$(27)"E"+CHR$(97)"S"'
110 t0=7.1088
120 PRINT "This program calculates 9D enclosures given driver parameters";
130 FR
140 REM*CHOICE PRINTER**
150 PRINT "To continue press any key" WHILE IFE=247:VEN
160 PRINT "To print";CHR$(27)"C"
170 REM*SELECT DRIVER DATA**
180 IFE=50:PRINT "Driver Name" ;a$
190 IFE=51:PRINT "Free air resonant frequency;fs";fs
200 IFE=52:PRINT "Driver Name" ;a$
210 IFE=53:PRINT "Print the driver data sheet.";
220 IFE=54:PRINT "Return to previous menu";
230 IFE=55:PRINT "Exit program";
240 PRINT "To continue press any key" WHILE INKEYS="":VEND
250 c14=CHR$(27)"E"+CHR$(27)"H"
260 REM*CHOOSE ENCLOSURE SIZE, OR NOT!!**
270 IF=50:PRINT "Total Q;gte"," Qe5";qts
280 IF=51:PRINT "Vas;vas"," Vbps;vbp"," Sp1;1W/lm"," Vpeak db"," Fs;fs"," Qts"," Vas";vas
290 IF=52:PRINT "Drill holes;D"," D1=2.41"," D2=1.95"," D3=1.48"," D4=1.06"
300 IF=53:PRINT "Calculated Q of infinite baffle speaker parameter M0."
310 IF=54:PRINT "Calculated Q of parallel speaker parameter Mc."
320 IF=55:PRINT "Calculated Q of series speaker parameter Qe."
330 PRINT "To continue press any key" WHILE INKEYS="":VEND
340 REM**CALCULATE DRIVER PARAMETERS**
350 PRINT "To enter another driver enter an";
360 IF=50:PRINT "Total Q;gte"," Qe5";qts
370 IF=51:PRINT "Vas;vas"," Vbps;vbp"," Sp1;1W/lm"," Vpeak db"," Fs;fs"," Qts"," Vas";vas
380 IF=52:PRINT "Drill holes;D"," D1=2.41"," D2=1.95"," D3=1.48"," D4=1.06"
390 IF=53:PRINT "Calculated Q of infinite baffle speaker parameter M0."
400 IF=54:PRINT "Calculated Q of parallel speaker parameter Mc."
410 IF=55:PRINT "Calculated Q of series speaker parameter Qe."
420 PRINT "To continue press any key" WHILE INKEYS="":VEND

The values of Cc and M can be obtained from the driver data sheet. Rearranging this equation

\[M_1 = \frac{1}{C_m \left(2\pi f_{dc}\right)^2} \]

where \(f_{dc} \) is the desired resonant frequency and \(M_1 \) is the moving mass required. The amount of mass to add is \(M - M_1 \). Blu-tac works quite well in this application!

Note that this procedure will also affect the \(Q_e \) of the driver. From equation 1, \(Q_{e5} \) is a constant for any given driver. The new \(Q_{e5} \) (\(Q_{e5} \)) can be found from:

\[Q_{e5} = Q_{e5} / f_{dc} \]

Having changed the driver's characteristics use the formulae to obtain your desired performance.

Another useful wheeze is to simply change the \(Q_e \) of the driver. This can be simply achieved by adding a resistor in series with the speaker. Here again the cost is a loss of efficiency.

To achieve this, let's take a practical example. Let's suppose we have built the B110 into a 0.512 cu ft enclosure to give us a Q of 0.5. To change the Q to 0.7 and hence lower the cut-off frequency we proceed as follows. First we need to know the electrical Q of the driver (\(Q_e5 \)) and the mechanical Q (\(Q_{e5} \)). These can be obtained from the data sheet. For the B110 \(Q_{e5} \) is 0.33 and \(Q_{e5} \) is 6.7. We also need to know the voice coil resistance \(R_c \). 7.1R. This last parameter is easily measured with a multimeter.

\[Q_{e4} = \frac{Q_{e5}}{f_{dc}} \]

\[Q_{e5} \] is dependent upon the drive signal impedance.

As an aside the speaker parameter \(Q_e5 \) are quoted when the driver is fed from a zero impedance source. If you use a modern transistor amplifier with low impedance speaker leads this assumption will produce accurate results. However

Table 1. B110A in infinite baffle enclosures

<table>
<thead>
<tr>
<th>Q</th>
<th>Vb</th>
<th>f</th>
<th>f3</th>
<th>fp</th>
<th>Pk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.0427</td>
<td>167</td>
<td>118</td>
<td>179</td>
<td>3.5</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0500</td>
<td>155</td>
<td>112</td>
<td>168</td>
<td>2.97</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0592</td>
<td>143</td>
<td>105</td>
<td>158</td>
<td>2.41</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0716</td>
<td>131</td>
<td>99</td>
<td>147</td>
<td>1.83</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0824</td>
<td>119</td>
<td>93</td>
<td>138</td>
<td>1.25</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1117</td>
<td>107</td>
<td>89</td>
<td>130</td>
<td>0.68</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1466</td>
<td>95</td>
<td>85</td>
<td>122</td>
<td>0.21</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2025</td>
<td>84</td>
<td>84</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3022</td>
<td>72</td>
<td>86</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5183</td>
<td>60</td>
<td>92</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
if you are the proud owner of a valve amplifier with a sizeable output impedance, 0.5Ω say, then the equations will be altered. The speaker design is less well damped. This is surely the reason that many cognoscenti think that the bass response from valve amps is a little boomy. However the cause is not the amplifier per se but the speaker which has been designed on the assumption of zero output impedance.

To get back to the business in hand:
\[Q_{esl} = Q_0 (R + R_v) / R, \]
where \(R_v \) is the voice coil resistance and \(R \) is any resistance in series with the driver. \(Q_0 \) is the new value of \(Q_{esl} \).

Also \[Q_{esl} = \frac{1}{Q_{ms}} \text{ eqn 8} \]

So \(Q_{esl} \) is proportional to \(Q_{ms} \) which itself is proportional to \(R \). From equation 1:

\[f = Q_0 f_0 / Q = 37 \times 0.5 / 0.31 = 59.7 \text{ Hz} \]

\[Q_{esl} = Q_0 f_0 / f = 0.7x37 / 59.7 = 0.43 \]

\[\frac{1}{Q_{esl}} = \frac{1}{Q_{ms}} \frac{1}{Q_{ms}} \]

\[= 1 / Q_{esl} = (1 / 0.43) - (1 / 6.7) = 2.178 \]

\[Q_{esl} = 1 / 2.178 = 0.459 \]

Now \(Q_{esl} = Q_0 (R + R_v) / R_v \), so

\[R = (7.1 \times 1.39) - 7.1 = 2.76 \Omega \]

A 2R7 will do. The result will be to extend the

-3dB point from 92Hz to 60Hz since with a Q of 0.7

\[f = f_0 = \frac{Q}{2π} \]

Finally a word about compound woofer systems. There are basically two different ways to implement such a system. Firstly you can simply mount two identical drivers in the same case and wire them up in parallel (Fig. 3a). With this arrangement all the equations will work but remember that \(V_{in} \) is doubled compared with one unit. In practice this means double the enclosure size for a given bass extension. In fact if you use n identical drivers in a cabinet then the effective \(V_{in} \) of the combination is n times that of a single unit.

The other way of using two speakers is to place one behind the other as shown in Fig. 3b. This is the famous 'isobaric' principle as used in the Linn Scara for example. It is covered by a world patent but this doesn't mean that we can't tell you about it. The advantage of using two speakers in this way is that the \(V_{in} \) is effectively halved. This means that the bass extension is doubled for a given volume, or alternatively you can get the same results with a half-sized cabinet as you would using a single driver. A short tunnel is used to acoustically connect the drivers together. Experimenters in the States have found that some deterioration in the midrange occurs. This can be cured though by putting a choke in series with the inner speaker.

Although the equations presented enable good designs to be produced without problems, I have included a computer program (Listing 1) to do the hard work. As with the 'Optibox' program presented with the reflex article this was written for an Amstrad 8255 but can easily be converted to other machines and should run as is on any IBM compatible machine.

Again, when converting to other dialects of BASIC remember the following: Line 120 is used to set a clear screen instruction. The 'while inkeys$ = wend instruction simply pauses the program until a key is pressed. Other machines will have equivalent instructions.
PATENTS

AND THE ART OF INVENTION

Necessity is the mother of invention. So the saying goes and there are plenty of people to vouch for it. You do not have to be a brilliant scientist to invent something. Some of the biggest money-spinners have been in low tech areas. You do not necessarily have to be an expert in the field of your invention. It is often the free thinking but inexperienced newcomers who have the gall to try and achieve some goal contrary to methods used by experts steeped in tradition.

Conceiving the idea unfortunately is not enough. First you have to recognise that your ‘baby’ has the potential of being classed as an invention. The idea then has to be put into practice and it must work.

Then comes the hard part — trying to convince the right people to back it. Assuming you get to this stage you are still not out of the woods because now comes the Licensing Agreement. Since this will bear the fruits of all your endeavours it is perhaps the most important step of the whole procedure. Very few inventors end up as rich men. In fact many end up much poorer. It is with this in mind the following information is given.

The Invention

An invention must be something tangible, not merely an idea or a discovery. For example if one day you discovered that adding some herb to a dash of butter formed ice crystals this would most probably be discounted as a patent. However if you put it to some good use by making an ointment to simultaneously employ as a cold compress and skin lubricant to prevent soreness then it most probably would be patentable.

An invention must not be obvious to an expert in that field. For example a solution to a particular problem circuit (solutions is what inventing is all about) may be provided by negative feedback. In this case a patent is unlikely to be allowed since the solution would be classed as obvious unless the method of applying the feedback has virtues which may not be immediately apparent or are greater than might have been expected from the component parts.

Such an historical example was the push-pull amplifier where the particular method of combination exceeded the mere conventional coupling of two active devices.

Incidentally obviousness is not only very subjective but must be applied at the time it was novel. An invention must be novel. That means it must be new and unpublished. At one time something invented far afield could be introduced later into the UK by another person as an invention. However, with today’s vastly improved forms of communication the novelty of such a patent would be destroyed and if by some mischance it was awarded it could be attacked on these grounds later.

This illustrates the point that the granting of a patent does not prevent it being declared invalid afterwards on more than one grounds. Publishing details of an invention before it is patented can be grounds for invalidating novelty. You may get away with it if it is published in a file marked ‘Confidential’ within the close confines of company. Even this may be doubtful if the person attacking the patent can give evidence that it was circulated to someone outside the
facts December 1978 disclosing submit in original final form. you present priority of details of the protected. extremely informative. At (if British Technology information 'Introducing Patents British Patent Office themselves. A on the procedure but follow procedure Provisional can also privileged circle (such as himself). The spoken word can also destroy novelty. There is only one insurance policy against falling foul of any of those rules and that is to submit a provisional patent as soon as the invention is thought of.

Provisional Patent
To take out a provisional patent is a fairly simple procedure and (unless you are a commercial enterprise and expense is not too important) you do not need the services of a patent agent at this stage if you follow a few simple rules. Many pages could be written on the procedure but who better to explain it than the British Patent Office themselves. A phone call or a letter from you will bring its free publication 'Introducing Patents — A Guide for Inventors' winging its way through the post to land on your doormat. The information is clearly written, easily understood and extremely informative. At the same time write to the British Technology Group for its publication 'Help for the Inventor'.

The cost of taking out a provisional patent is currently £15 and for this modest sum your invention (if indeed it is deemed later to be an invention) is protected. Its priority dates from the time you submit details of the provisional patent to the Patent Office.

A few tips. Although at the time you submit the application you may not have finalised the exact form of the invention, or indeed even how you intend to present it, make a full disclosure of all you have accomplished so far. If nothing else this establishes a priority date of all that information and in later years may prove crucial — as it did in my own case.

Once a provisional patent has been submitted you have one year (with a three month extension for a UK patent) in which you get your invention into its final form. In the interim you may have modified the original ideas or made new discoveries not discovered in your original application. For a further £15 you can submit an additional provisional patent.

This is important as can be illustrated by my own personal experience. I submitted an application on 1st December 1978 disclosing facts A, in February 1979 facts B, in May 1979 facts C and in August 1979 facts D before making a final application on 30 November 1979 citing the four provisional patents. The patent was subsequently granted. In 1981 a competitor's patent came to light similar to my own, a more common occurrence today as new technology across a broad front stimulates similar ideas in others as a solution to old problems.

The competitor had not bothered with provisional patents but had submitted his final patent in June 1979 — it was subsequently granted. This can happen where two similar patents are being processed at the same time by different examiners and is yet another reason why a patent may be invalidated after it is granted. Fortunately for me the competitor's patent did not progress so far as my own and all that he claimed was based on information A + B which I had already disclosed in my provisional applications of December 1978 and February 1979. So although his patent was granted before mine, my priority took precedence. A copy of my patent was sent to the competitor by my sponsor company.

Note you must never threaten an 'infringer', even with legal action. Sending a copy of your patent is acceptable and considered a fair warning that legal action is likely to follow. Shortly afterwards my competitor allowed his patent to lapse having spent thousands of pounds in getting it. Both my sponsor company and I were quite relieved that what could have ended up in costly litigation had been resolved.

On reflection the chances are that my competitor actually discovered the invention before me but perhaps decided to develop it in secret in case this took longer than 12 months. This could have been the reason why he was able to dispense with a provisional patent and go straight into the final patent stage in June 1979. This illustrates the virtues of submitting a provisional patent at the earliest opportunity.

Another reason for early submission is that most would be inventors need to find a sponsor company to help develop it and which will later manufacture it under license to you. Without a provisional patent most commercial companies will not be interested, not so much because you have no protection but because it may compromise them. They cannot be sure you have not written to others, deemable as publication
which may be used later to attack the invention's novelty. On the other hand armed with a provisional patent you can safely divulge details of your invention.

If the company is not interested and sends a rejection letter, you can assume it is genuine even if you feel they will be sorry afterwards. (The classic example of this is Mr. Ron Hickman who left several well-known companies gnashing their teeth after turning down his Workmate which Black and Decker didn't). With a provisional patent you can also be most reassured that the company won't pinch your idea. For them to develop your idea without your licence is the road to ruin. Not only will they bear the expense of development but could end up later having to pay you heavy damages for infringement. For this reason if companies are interested and feel your idea even has a tinge of merit they will often pay you for a short term exclusive right to investigate it further.

Collecting Your Just Reward

So how do you go about making your fortune once you have this great idea. First submit a provisional patent then send a short resume of what you have invented to all the companies you feel may be interested, starting with the big names. To compile such a list may involve hours of research down at the library studying directories such as Kompas or reference to trade magazines and making general enquiries.

That is the hard way. A much easier and very cost effective way is to join the Institute of Patentees and Inventors. The Institute has several useful functions. Besides sending a periodic journal it gives general advice to inventors. If you wish it will evaluate your invention including an assessment of its value — a special advisory panel exists for this purpose. The Institute also has many company members able to provide a link between inventors and manufacturers. Most useful is that for a nominal fee the Institute will include abbreviated details of your invention in a periodic bulletin circulated to hundreds of manufacturers. Replies from interested manufacturers are passed straight on to you. Compare this service with those of professional companies set up to help inventors exploit their inventions but demanding hundreds and sometimes thousands of pounds up front from the inventor, with no guarantee of success.

Let us assume for purposes of illustration that you receive say four replies from interested companies. By this time it is all possible you should have built a working model of your invention. This is not absolutely essential if it is acceptable as being outside the realms of a one man effort but without something to demonstrate that your invention will work (no matter how Heath Robinson its construction), your invention is still no more than an idea. Having replied to the letters expect each company to make arrangements to send a representative along for a demonstration. If your model is portable they may ask for a demonstration at their works.

The story from now on can only be given as representative of what may happen — it can make many twists and turns but the sequence of events here is reasonably typical and covers the essential details. Don't expect any fireworks when each company representative visits you. Most are middle management, technically orientated and report directly to a director of the company. Whilst they are not in a position to give any immediate decisions, normally by the time he leaves you will have a shrewd idea as to whether his company will be contacting you again. Whether you tell him of the other interested companies is up to you. Personally I do simply to keep everything above board.

Within about two weeks of the first visit you will either receive a very nice rejection letter or requesting typically an exclusive six month licensing agreement option for a sum of £X.

There is then nothing to stop you phoning the other companies informing them but be prepared for some very forceful characters of at least director status to phone you back accusing you of being unfair. They'll be unaware that you had approached others or tell you not to waste his time and to come back to him when you have decided how much you want for a six month option. Another may offer you the same sum for a three month option and yet another may tell you that whatever the others offer he will better it. Such sentiments are par for the course and serve as a warning not to expect any bouquets from outside your immediate family.

What you have is the makings of a potentially successful commercial product and what you have achieved so far is to establish that all the companies are sufficiently interested in your invention to check out its viability and perhaps have market research carried out.

However you now have a decision to make as to which company to go along with. It is at this point you appreciate how lucky actors are in having an agent to negotiate on their behalf. A 'resting' actor could easily well be at least offering a sum of £X, inventor, proud to have invented something acknowledged by his peers, will invariably under-sell it for fear of rejection. An agent is as hard-nosed as those he or she deals with, is well aware of the going rate and above all is not swayed by emotion. Alas inventors are not so well served as the artist. As already explained the few 'agents' who do exist are not only want huge payments up front but also an exorbitant percentage of the royalty in perpetuity.

The decision as to which company to go along with is crucial one since once the option period is over the time is nigh for the final patent application to be submitted. For this you will definitely need the services of a patent agent. You will also need the services of a good solicitor, preferably that of a commercial lawyer well versed in Heads of Agreement. Anticipating this:

- Try negotiating a three month option to allow time for another company to take an option if the first chosen company decides not to proceed after the option period.
- Ask the company if they are prepared to underwrite the costs of your patent agent and commercial lawyer. Traditionally the inventor will not use the sponsor company's patent agent. The patent will be taken out in the name of the inventor who will then be expected to grant an exclusive long term manufacturing licence to the company in way of a Heads of Agreement.
- Find out what resources each company will put into assessing your patent. Will it also include development work in an effort to get the strongest patent possible?
- You could enquire if the interested companies are willing to take a non-exclusive option agreement at a much reduced cost (overall you would be no worse off financially) on the basis that one or two may drop out once they have assessed development costs and researched the market. Expect most companies to reject this idea since few are prepared to risk costly R&D only to be rejected later in favour of another company. Also this tactical move could be a dangerous one from the inventor's standpoint. If the invention proves to have great commercial potential one or more of the rejected companies, having now been wound
up, may be tempted to continue development and attempt to find a way round the patent. Indeed the underlying reason for most infringement actions is not that 'infringers' resent paying royalties to the inventor but stems from the inability to obtain a licence from an inventor tied by an exclusive contract to another manufacturer.

- Obviously the size and resources of each company is important. You may also ask each one what down payment they are prepared to offer if the option agreement progresses into a long-term licensing agreement. Also what royalty percentage they have in mind and on what price (manufacturing cost, manufacturer's price to the trade) will it be based on. This allows you to compare like with like.

- In the case of infringement ask each company what its policy is as to which party will bear the cost of commencing infringement action or defending an action against the validity of your patent. (Note that the granting of a patent is not an absolute guarantee the product will not infringe someone else's patent). On no account should the inventor bear these costs but it is best left that either party can take action as it sees fit at the time with the understanding that whichever party bears the costs enjoys the fruits of a successful action.

Assuming at least one of the companies gives all the right answers then you have your agent and commercial lawyer, both of whom will be able to advise you. An 'Option Agreement' is normally drawn up by the licensee company's solicitor modified as necessary by the inventor on advice from his professional advisers. This agreement is typically a short document running to no more than two or three pages. It starts by identifying the parties to the agreement, the registration number of the provisional patent and the right of the company to enjoy an exclusive option for a limited period for the sum agreed. A typical period may be anything from three to six months and the sum anything from £2000 upwards depending on the maximum amount the company is prepared to spend. Typically the document will then go on to record that at the end of the period the agreement automatically terminates but that if meantime the company wishes to exercise its option it can negotiate an exclusive license. Note the operative word is 'negotiate' so there are no pre-conditions.

Assuming the company decides to exercise its option, there is a bout of hard bargaining which may go on until well after you have submitted your final patent application. There are not typical royalty figures other than to say that if the invention is a large piece of machinery costing several thousand pounds and with a small sale, the licensor may seek 15% to 20%. If on the other hand the item is small, inexpensive and sold in very large numbers then anything from 1% to 5%, all figures usually being calculated on a fixed price (ex-works).

These figures are subject to compensating factors such as whether the licence is exclusive, do patents cover more than one country, is there a down payment, is there a minimum annual royalty (you normally insist on this so as to keep the company on its toes),

The size of the company will also figure in the equation. Expect a lower percentage from a large company, compensating this with a larger volume of sales.

You may also negotiate for a higher percentage depending on the commercial quality and strength of your patent(s). Forecasting these can be very difficult. For example who would have thought that a small workhorse table with a wooden vice called Workmate would turn out to be perhaps the most successful commercial invention in modern times. As to the strength of a patent this can only be definitively qualified once it has survived one or more infringement actions through the courts (once again the Workmate took on all comers). However there is in my opinion one method of gauging the strength by implication, centring on claim 1 of your final patent. It will be appreciated that a principle cannot be patented, only the apparatus itself based on the principle. However by the time a good patent agent has cleverly worded claim 1 he will to all intents and purposes have patented the principle. If there is no prior art (earlier patents in that field which will be made known to you) and the patent examiner allows this very wide claim 1 then you can assume you have a strong patent. However the more prior art there is, particularly if the patents are still currently in force, the more extensively your claim 1 has to be altered and added to on insistence of the examiner. You can assume your patent to be weaker.

Finally out of all the bargaining and negotiation a 'Heads of Agreement' document is formulated which can run to thirty or forty pages in order to cover every likely exigency.

So with all that completed you should be able to sit back in your patent (sic) leather armchair and let the royalties trickle or flood in. Unless of course you've had another idea in the meantime

ADDRESS

British Patent Office

State House

66-71 High Holborn

London EC1R 4TP

Enquiries 01 829-8910

Institute of Patentees and Inventors

Staple Inn Building South

335 High Holborn

London WC1V 7PX

Tel: 01 247-7812

British Technology Group

101 Newington Causeway

London SE1 6BU

Tel: 01 403 6666
HART AUDIO KITS
YOUR VALUE FOR MONEY ROUTE TO ULTIMATE hi-fi

This is the ideal companion tuner to the BOW Audio Design Amplifier in any ultimate hi-fi system with case size front panel and switchable volume pitchers unlike for stereo, like the BOW Audio Design Amplifier this is your ideal kit + £4 per minute for a low wattage kit + 50 designs by John Lindsey Woodup make this combination of Hi-Fi quality FM tuner and stereo decoder phenomena from "Electronics-World International" and the Synchordyne AU receiver described in "Wireless World". Novel circuit features in the FM section include ready built output, fully equalled front end, phase locked loop demodulator with a response down to DC and advanced tamper and hold stereo performance together making a tuner which sounds better than the best of the high-priced exotic bits but, thanks to HART engineering, remains very easy to build and set up. The Synchordyne section with its selectable bandwidths provides the best possible results over long and medium wave channels, so necessary in these days of split programming. If you want the very best in new FM listening then this is the tuner for you, since all components are selected by the buyer to give the very best sound this tuner is not cheap, but in terms of its sheer sound quality it is invaluable for money. Scrols for all 80 bands AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

ALPS PRECISION LOW-NOISE STEREO POTS
Square type range of famous precision audio pots all 2gang 2gong stereo format, with 20mm long long dia. steel shafts. These are the smoothest rotary type with no inserts. Now you can throw out those noisy pots + £50 any time. For all needs AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

Circuit

Circuit Distributors
Park Lane, Broxbourne, Herts EN10 7NJ.
Telephone (0993) 441111.

SPY AND CONSTRUCTION KIT

A range of high quality kits as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All in stock now, fully documented, complete construction and setting-up details, foreignd P3 switches and all components. All transmitters are fully tuneable and can be monitored on a normal VHFRadio or locked for higher security. Build-up service available if required.

MTX Micro-miniature audio transmitter. 17mm x 17mm. 9V operation. 100m range £12.95
VT500 Hi-power audio transmitter. 250mA output. 20mm x 40mm. 9V-12V operation. 2-300m range £15.95
VOX75 Voice activated transmitter. Variable sensitivity. 30mm range £12.95

HART KITS are a fantastic range of kits, these being very different from other similar offerings, all being high quality, leading component circuits. Despite the high-quality components used, prices are kept low by eliminating the unnecessary overheads and therefore the cost of our kits is lower than our nearest rival. Circuit is the ideal company to supply you with our kits, giving you the very best service and advice at all times. All kits supplied with dual power supply, mains and 9V battery can be purchased separately and their cost is £2.50 each. For further details, telephone or write for our FREE LISTS.

The telephone number for our Kits department is 0827 714476. Full catalogue available on receipt of 50p stamp. Trade inquiries welcome.

Only £1.50 inc p&p

HART AUDIO KITS

YOUR VALUE FOR MONEY ROUTE TO ULTIMATE hi-fi

This is the ideal companion tuner to the BOW Audio Design Amplifier in any ultimate hi-fi system with case size front panel and switchable volume pitchers unlike for stereo, like the BOW Audio Design Amplifier this is your ideal kit + £4 per minute for a low wattage kit + 50 designs by John Lindsey Woodup make this combination of Hi-Fi quality FM tuner and stereo decoder phenomena from "Electronics-World International" and the Synchordyne AU receiver described in "Wireless World". Novel circuit features in the FM section include ready built output, fully equalled front end, phase locked loop demodulator with a response down to DC and advanced tamper and hold stereo performance together making a tuner which sounds better than the best of the high-priced exotic bits but, thanks to HART engineering, remains very easy to build and set up. The Synchordyne section with its selectable bandwidths provides the best possible results over long and medium wave channels, so necessary in these days of split programming. If you want the very best in new FM listening then this is the tuner for you, since all components are selected by the buyer to give the very best sound this tuner is not cheap, but in terms of its sheer sound quality it is invaluable for money. Scrols for all 80 bands AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

ALPS PRECISION LOW-NOISE STEREO POTS
Square type range of famous precision audio pots all 2gang 2gong stereo format, with 20mm long long dia. steel shafts. These are the smoothest rotary type with no inserts. Now you can throw out those noisy pots + £50 any time. For all needs AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

Circuit

Circuit Distributors

Circuit KIT CONSTRUCTORS CATALOGUE

A range of high quality kits as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All in stock now, fully documented, complete construction and setting-up details, foreignd P3 switches and all components. All transmitters are fully tuneable and can be monitored on a normal VHFRadio or locked for higher security. Build-up service available if required.

MTX Micro-miniature audio transmitter. 17mm x 17mm. 9V operation. 100m range £12.95
VT500 Hi-power audio transmitter. 250mA output. 20mm x 40mm. 9V-12V operation. 2-300m range £15.95
VOX75 Voice activated transmitter. Variable sensitivity. 30mm range £12.95

HART KITS are a fantastic range of kits, these being very different from other similar offerings, all being high quality, leading component circuits. Despite the high-quality components used, prices are kept low by eliminating the unnecessary overheads and therefore the cost of our kits is lower than our nearest rival. Circuit is the ideal company to supply you with our kits, giving you the very best service and advice at all times. All kits supplied with dual power supply, mains and 9V battery can be purchased separately and their cost is £2.50 each. For further details, telephone or write for our FREE LISTS.

The telephone number for our Kits department is 0827 714476. Full catalogue available on receipt of 50p stamp. Trade inquiries welcome.

Only £1.50 inc p&p

HART AUDIO KITS

YOUR VALUE FOR MONEY ROUTE TO ULTIMATE hi-fi

This is the ideal companion tuner to the BOW Audio Design Amplifier in any ultimate hi-fi system with case size front panel and switchable volume pitchers unlike for stereo, like the BOW Audio Design Amplifier this is your ideal kit + £4 per minute for a low wattage kit + 50 designs by John Lindsey Woodup make this combination of Hi-Fi quality FM tuner and stereo decoder phenomena from "Electronics-World International" and the Synchordyne AU receiver described in "Wireless World". Novel circuit features in the FM section include ready built output, fully equalled front end, phase locked loop demodulator with a response down to DC and advanced tamper and hold stereo performance together making a tuner which sounds better than the best of the high-priced exotic bits but, thanks to HART engineering, remains very easy to build and set up. The Synchordyne section with its selectable bandwidths provides the best possible results over long and medium wave channels, so necessary in these days of split programming. If you want the very best in new FM listening then this is the tuner for you, since all components are selected by the buyer to give the very best sound this tuner is not cheap, but in terms of its sheer sound quality it is invaluable for money. Scrols for all 80 bands AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

ALPS PRECISION LOW-NOISE STEREO POTS
Square type range of famous precision audio pots all 2gang 2gong stereo format, with 20mm long long dia. steel shafts. These are the smoothest rotary type with no inserts. Now you can throw out those noisy pots + £50 any time. For all needs AM only and FM only versions are available as well as the full AM/FM mode, with any upgradeable up to full Sirius. For further details see our full illustrated list.

K406PM FM Only Version, total cost of all parts is £131.90
Our Special Discount Price for complete Kit Only is £106.92
K406AM/FM Full AM/FM version, Discount Price for complete Kit is £148.08

Circuit

Circuit Distributors

Circuit KIT CONSTRUCTORS CATALOGUE

A range of high quality kits as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All in stock now, fully documented, complete construction and setting-up details, foreignd P3 switches and all components. All transmitters are fully tuneable and can be monitored on a normal VHFRadio or locked for higher security. Build-up service available if required.

MTX Micro-miniature audio transmitter. 17mm x 17mm. 9V operation. 100m range £12.95
VT500 Hi-power audio transmitter. 250mA output. 20mm x 40mm. 9V-12V operation. 2-300m range £15.95
VOX75 Voice activated transmitter. Variable sensitivity. 30mm x 43mm. 9V operation. 100m range £12.95

HART KITS are a fantastic range of kits, these being very different from other similar offerings, all being high quality, leading component circuits. Despite the high-quality components used, prices are kept low by eliminating the unnecessary overheads and therefore the cost of our kits is lower than our nearest rival. Circuit is the ideal company to supply you with our kits, giving you the very best service and advice at all times. All kits supplied with dual power supply, mains and 9V battery can be purchased separately and their cost is £2.50 each. For further details, telephone or write for our FREE LISTS.

The telephone number for our Kits department is 0827 714476. Full catalogue available on receipt of 50p stamp. Trade inquiries welcome.
 TEST GEAR

Continuing our story of measurement, Mike Barwise examines signal analysis

Testing Testing

Last month we looked at plotters and oscilloscopes which produced an output (on paper or on a screen) while the signal under examination was present at the test gear inputs. This kind of equipment can all be classed as real-time instrumentation: the display is produced while the measured event is taking place.

Real-time instrumentation suffers generally from one major drawback: it is very difficult to use when the signal you want to look at consists of a single unexpected event such as a short pulse. The reason for this is twofold: firstly, it is difficult to get the event itself to start the recording quickly enough to ensure that early information is not lost, and secondly, particularly when using a scope, the record will be well-nigh invisible as it consists of a single passage of the bright spot which will fade away almost immediately. The pen recorder comes off better in this respect, but it is a very slow recorder (it has a low bandwidth).

This raises the final question concerning real-time instrumentation: how do you select gear to match your expected signal? The immediately obvious criterion of signal amplitude is only one of the two basic criteria. If your expected signal is in the nV (10^-9V) range you need considerable amplification (to make it bigger) to be able to see it, and if it is in the kV (10^3V) range you need a lot of attenuation (to make it smaller), so you don't blow up your scope.

Real-time Bandwidth

The second and less immediately obvious of the two basic selection criteria is bandwidth. Here we have to go back to some fundamentals (albeit superficially). All waveforms other than sine waves consist of the sum of a set of sine waves of different frequencies. The sine wave is effectively the graph of the trigonometrical sine function. Its peculiar property in this strange world is that its varying rate of change accords best with the way things want to move. The curve consists of alternate acceleration and deceleration at the optimum rates for continuous smooth motion taking account of inertia. It follows that the sine wave is the easiest curve to draw with a pen on a moving arm or a moving electron beam.

I think we are all familiar with inertia: it takes more effort to get your wheelbarrow moving from rest than it does to keep it going once you are moving (it also takes more effort to get out of bed than it does to stay out once you have got up, this is also inertia of a kind). The sine wave is thus the waveform which can be followed safest by any given piece of equipment. In fact, the electron beam of a scope can move very fast indeed: the normal limiting factor is the slew rate of the signal amplifiers in the scope.

The normal terminology for speed in test gear is bandwidth at -3dB. Let's look at what this means. When we considered active rectifiers, we used the term slew rate for the maximum speed at which the output of an amplifier can change its voltage when attempting to follow a changing input. Referring to Fig. 1a & b, we see two sine waves of equal frequency but different amplitude (voltage swing peak to peak). If you look at the sloping portion of any cycle, you will see that the angle to the horizon is greater for the large

ETI JANUARY 1990
amplitude signal than for the small amplitude signal. The angle of this slope represents the rate of change of voltage: the steeper it is, the faster the voltage is changing.

Now let us consider Fig. 1c & d. In this case, the amplitude of both sinusoids is the same, but the frequency of one is greater than that of the other. Once again we see that the angle of the sloping face of the waveform is greater for the higher frequency. The slew rate limit of our scope signal amplifier effectively defines a critical steepness of the sloping portion of any waveform appearing at the amplifier output. The net result of this is that if you attempt to amplify a signal with a combination of frequency and amplitude which would cause the maximum slew rate of the amplifier to be exceeded, the signal will be modified by the amplifier until it conforms to the imposed limit. As the amplifier cannot change the signal frequency, it does the only thing left to it: it reduces the signal amplitude until the signal gradient does not exceed the slew rate. In brief, excessively fast signals are attenuated.

OK. That's fine, but what is all this 3dB nonsense? The Bel (named after the guy responsible for your huge phone bills) is a unit of power difference (gain or loss). 1 Bel equals a power difference of 10x. This is (as in many other cases) rather too large a unit to be useful — it is defined in basic electronic units, rather like the excessively large Farad). To bring things into reasonable proportion, the deciBel (dB) is used. The easy thing to remember is that 1dB equates to a change of double or half. Remembering that power equals voltage multiplied by current (P = V x I) it is quite easy to work out that doubling the power in a circuit of a given resistance means multiplying the voltage by $\sqrt{2}$ (1.4ish) and halving the power means multiplying the voltage by $1/\sqrt{2}$ (about 0.7). Minus 3dB means a power reduction of 50%, so the voltage swing on your scope screen will be about 0.7 of the swing at the scope input when you reach the frequency specified.

The -3dB bandwidth limit of your scope is not, therefore, an absolute cutoff point. Any good quality scope will trigger at a considerably higher frequency. The bandwidth limit simply tells you when voltage measurements start to get a lot less precise.

For example, my Hameg (nominally 60MHz at -3dB) is actually 3dB down at about 65MHz, and will trigger reliably to more than 82MHz. The manual provided with the scope actually gives a table of expected amplitude multipliers at frequencies up to about 80MHz.

So far so good: now for the bad news. All this bandwidth information assumes that your signals are pure sinusoids (which they practically never are). For any other waveform of the same basic frequency, the steepest parts of the rising and falling edges will be steeper. However, the problem is a little more complicated than this. A non-sinusoidal waveform, as we have suggested, consists of the sum of a set of sinusoids of different frequencies. Let’s take the nastiest regular waveform: the square wave (Fig 2a).

The perfect square wave (actually impossible to generate) has a rise time of zero: its edge gradient is 90º. This means that the signal voltage changes from maximum positive to maximum negative in no time at all, which can’t be done. If this was all there was to the problem we would expect a waveform out of our scope similar to Fig.2b. However, the real result looks more like Fig.2c. Why?

You can, in fact create a square wave by adding together the following sinusoids in the specified proportions:

$$f \times 1 + 3f \times \frac{1}{3} + 5f \times \frac{1}{5} + 7f \times \frac{1}{7} + \cdots$$

where:

- f - the lowest frequency sinusoid (Hz)
- $3f, 5f, 7f$ etc... = higher component frequencies
- $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$ etc... = amplitude of these frequencies

As you can see, the proportion of each higher frequency component gets smaller and smaller, and there comes a point where the addition of the next component makes little practical difference to the quality of the square wave for normal purposes. However, at least five components will be needed to guarantee a good waveform. The fifth component is 9f, so here is the bottom line: if you want to look at square waves on your scope in terms of their shape, it must have a —3dB bandwidth at least 10 times the fundamental frequency of your square wave. In the real world, with practice, you can get away with about half this as a minimum (5f), which is good news for the piggy bank, but extreme caution must be exercised when deciding which wobble is real and which is caused by the scope (artefact). Your cheap 20MHz (-3dB) scope can therefore be used reliably for up to 2MHz square waves, and with caution to 4MHz, but certainly not at higher frequencies unless you don’t care about the shape of the displayed waveform.

Spectrum Analysers

That covers my preliminary comments on real-time instruments, except for one: the spectrum analyser. So far, all our instruments have drawn graphs with voltage as one axis and time or voltage as the other. The spectrum analyser draws a slightly different kind of graph: one axis represents power and the other, frequency. The purpose of the spectrum analyser is to break down complex waveforms into their component sinusoids. We could, for example, have determined how imperfect our square wave was by using the spectrum analyser. The basic real-time instrument (Fig.3) consists of a set of very precise band-pass filters, each of which is fed in parallel by the signal, and each of which feeds an integrator which delivers an output voltage proportional to the power at its input. The resultant voltages are displayed as a bar chart (or more rarely, as a curve) which shows the relative amplitude of each frequency component present. It is however, much cheaper (if quite a bit slower) to produce the same result using maths on a recorded signal waveform. This is done using a mathematical function called the Fourier transform on digitised data.

Digital Alternatives

The increasingly common alternative to real-time instruments is the use of digitisers and off-line analysis...
tools (sadly, not called bogus-time instruments). The oscilloscope and spectrum analyser are not the only instruments to go digital. There is also a wide range of purely digital instrumentation such as bus analysers, logic analysers and so on, which are essentially digital and have no analogue counterparts.

Let us examine first the digital oscilloscope and spectrum analyser. The input to both devices is passed through an analogue to digital converter which converts the varying voltage input into a sequence of parallel binary words which can be stored in a conventional computer-type memory device.

From the user's point of view, these digital instruments are both functionally similar to their real-time counterparts. However, the digital approach has both advantages and limitations which are different from those of the analogue instruments. The major advantage is that the signal to be analysed is captured as digital information before anything else is done to it. The digital record may be stored permanently (on magnetic disk) and manipulated in a number of ways to allow any desired presentation of results. The distinction between the oscilloscope and the spectrum analyser, for example, ceases to be meaningful where you can afford a single digital instrument capable of presenting displays in both time domain and frequency domain from the same captured signal. Any manipulation of your signal which can be performed using electronic circuits can be simulated by suitable mathematical manipulation of the digitised signal data.

There is an important limitation which applies to all digitisers. We have discussed the assumption that any waveform can be considered as the sum of a set of sinusoids. If you want to digitise a signal, you have to take samples of it at some constant rate. The faster you sample compared to the signal frequency, the more detail you record and the slower you sample, the less detail. As you sample slower and slower, there comes a point where you can no longer reconstruct the original waveform from the data you captured.

Looking at Fig 4a, the signal is a pure sinusoid, and we are sampling at the same frequency as the signal. All we can reconstruct with certainty from the digitised data is a straight line; the signal has disappeared! Obviously we must sample at a faster rate. Let's try twice the frequency (2f). Figures 4b to 4e show the result.

If we are unlucky enough to sample at exactly the zero crossings of the signal, we get nothing out just as before (Fig 4b). However, when we start sampling at some point on the waveform which is not a zero-crossing the reconstructed waveform is correct in frequency but reduced in amplitude (Fig 4c). Indeed, we would have to be lucky enough to sample exactly at the positive and negative peaks of the waveform (4d) to ensure that both frequency and amplitude are correctly recorded. If we had chosen a sampling rate of less than f, things would have been much worse (Fig 4e). In this case, the amplitude information would not necessarily be lost, but the recovered frequency would have come out wrong. In fact, any component with a frequency greater than half the sample rate results in a false record at a lower frequency, called
an alias term.

For reliable digital recording of the frequency of a sinusoid, we must sample at a frequency of 2f or greater. This is referred to as the Nyquist limit and it applies to the highest frequency sinusoid present in any complex signal. You can calculate the frequency of an alias term by finding the difference between the real component and the Nyquist frequency of the digitiser, and then subtracting the difference from the Nyquist frequency. If we sample at 100kHz, the Nyquist frequency is 50kHz. A signal component at 70kHz will then produce an alias term of (50–20)kHz, or 30kHz. It follows that we can no longer push our instrumentation to its maximum limits as we could when using the analogue or real-time scope. In fact, as most complex signals have a very high real bandwidth, it is standard practice to include in digital test gear a low pass filter at the input. This ensures that no signal component which would violate the Nyquist limit is allowed to reach the digitiser. The reduction in accuracy resulting from the removal of the higher frequency components of the waveform is not such a problem as the distortion which would be caused by the presence of the low frequency alias terms if the low-pass filter was not used.

The major drawback of digital analysis equipment is price. Currently, fast A/D converters are very expensive. The digital equivalent of a 20MHz analogue (real-time) scope (a very basic cheap scope) would require at least a 50MHz A/D converter. This is quite a costly component (£30–40), but a decent professional's instrument of 60MHz bandwidth or thereabouts requires a 150MHz A/D which would set you back about £250 at present. Remember also, that the scope needs one A/D per channel, so the A/D converter bill for a digital version of my 65MHz scope would be about the same as the total bill for the analogue version. Fast devices get cheaper all the time, but so do test gear bandwidth expectations, so the overall situation stays much the same.

Displaying Your Data

Having digitised your signal at the required rate, what do you do with the string of numbers you've got? The answer is: all sorts of things. Once you have your data stored permanently (or semi-permanently), you can do an enormous variety of manipulations on it. The data can be used to create a conventional voltage/time graph, a Fourier transform can be applied to it to generate a frequency/power graph, you can digitally filter it to remove some frequency components, rescale any part of it, compare the digital records of two signals ... the list is endless. This is the major power of digital instrumentation, and it is effectively impossible to perform such a range of manipulations using real-time gear.

There are two alternative approaches to digital instruments with screen displays. They are vector plotting and raster scanning. Vector plotting produces the kind of screen image you get on a real-time scope. The trace is drawn as a continuous line from start to finish. However, as your data are samples separated by finite (short) time intervals, you would just get a string of dots if you used your data in its basic form. Vector plotting displays therefore, use quite horrendously complex predictive drawing algorithms (PDA): a load of maths is done on the data before displaying to allow your gear to join up the dots. It is not enough to just use straight lines: if you remember those kiddies' draw by numbers books, the pictures looked awful. The PDA works out the optimum curve needed to join the dots smoothly. These systems are expensive.

The raster scan approach is that used on your TV and computer screen. No attempt is made to join up the dots. They are just presented on the screen. Cheaper systems use this method, as does an increasing range of virtual test gear — little (or bi) boards that plug inside your personal computer. Although the screen image is not so pretty, it is generally just as reliable as the vector graphic system with PDA.

Figure 5 shows the internals of a general digital scope-type instrument. A final point to note about signal processing is that whereas up to now, software has been used to perform data manipulation, new departures in hardware digital signal processors (microprocessors optimised for the mathematics associated with digitised signals) are becoming commonplace. Software is slow by comparison, and is ceasing to be cheaper day by day. It is now possible to hard wire a chip to perform in sub-millisecond timescales a data manipulation that could take ten seconds using conventional software on your microcomputer. DSP devices are therefore likely to take over the whole range of precision digital instrumentation in the very near future, with the possible exception of the low end of the educational (toy computer) market.

Next month we will look at signal sources, which are used to provide the known values (constants) in experiments, and at precision backups to scopes such as frequency meters, power meters and the like.
This simple to construct and even simpler to operate kit will record and playback short messages or tunes. It has many uses – seabeat or lights running on the car, welcome messages to visitors at home or at work, warning messages in factories and public places, in fact anywhere where a spoken message is announced and which needs to be changed from time to time. Also suitable for toys – why not convert your daughter’s £8 doll to an E80 talking doll?

Size: 78 x 60 x 15 mm
Message time: 1 – 5 secs normal speed, 2 – 10 secs slow speed

XK129
£22.50

BEGINNERS KITS

These kits are simple to build even for the complete novice. Kits include ALL components, printed circuit and full instructions and are powered by a 9V battery (not supplied).

SK1 DOORCHIME – plays For Bob’s when button is pressed. £3.90
SK2 WHISTLE SWITCH – switches a relay on and off in response to a whistle. Switch your TV or radio on and off by whistling. £3.90
SK3 SOUND GENERATOR – police, ambulance/engine siren plus machine gun sounds at the touch of a switch. Just right for your BMX bike. £3.90
XK113 MW RADIO – based on the TW27, the smallest portable radio set. £5.90
XK118 TEN EXCITING PROJECTS FOR BEGINNERS. This kit contains a solderless breadboard, components and a booklet with instructions to enable the absolute novice to build ten fascinating projects, including a light operated switch, intermittent burglar alarm and electronic lock. Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section on component identification and function is included, enabling the beginner to build the circuits with confidence.

£19.50

DISCO LIGHTING KITS

DON'T CHASE AROUND FOR A LIGHT SEQUENCER FOR YOUR DISCO – THE DL8000K IS ALL YOU NEED.

The DL8000K is an 8-way sequencer kit complete with an EPROM containing LIGHTING – YESTERDAY! different flashing and chasing patterns which can be selected by means of two selector switches. The speed of the sequence can be controlled by a potentiometer from off to full brightness. £13.50

DL8000K – A lower cost CHASER with zero voltage switching and underdamped sequence £11.80

DL8002K – 3-channel SOUND-O-DIGHT with zero voltage switching and underdamped sequence £12.00

DL1000K – 6 channel SOUND-O-DIGHT. £11.60

DL3000K –鉄 a high speed sequencer with zero voltage switching and underdamped sequence £12.00

The DL8000K is 8 channel and is suitable for use with any equipment which will accept 5V, 2mA or less at 5V. £21.00

Titan Lighting KITS

IVORY – £10.90
WARM WHITE – £12.90
PURE WHITE – £25.90

XXK124 POWER STROBE KIT

Designed to produce intense light pulses in the variable frequency of 1-5 Hertz this kit also includes circuitry to trigger the light from an external voltage source (eg audio amplifier) via an opto-isolator making it ideal for use in cine films. Instructions are also supplied to modify the unit for manual triggering via a push button or as a slave unit in photographic applications. The unit operates directly from the 240v mains supply although it is possible to modify the unit if a different voltage is required. £16.00

XXK124A – Viking £15.00
XXK123B – £16.00
XXK123A – £13.00
XXK123 – £12.00
XXK122 – £10.50
XXK121 – £8.50
XXK120 – £5.00
XXK119 – £3.50
XXK118 – £2.50

SOLID STATE RELAY BARGAIN

Zero voltage switching – no rapid interference. 2.5KV terminals to earth isolation. 4 KV terminals to mains isolation. 3V to 32V input voltage easily converted to TTL or CMOS logic. 24V to 240V mids load voltage Inactive load switching. Built-in snubber network 10A max. -44 with no hysteresis at 40°C. £22.50

XK121
£15.95

MICROPROCESSOR TIME

Kit controls 4 outputs independently switching on off at 16 preset times over a 24-hour cycle. LED display of timed delay easily programmed. Includes box. £19.00

XXK114 Relay kit for C76000 includes PCB, connectors and one relay. Will accept up to 4 relays. 3A/240V or 10A/12V £5.75

XXK113 Box for Transmitter £3.50

XK128 Receiver £7.00

XK127 Receiver £8.00

XK126 Transmitter £17.50

XK125 Transmitter £5.50

XK124 Transmitter £2.60

ELECTRONIC LOCK KIT

Don't lock yourself out! This high security lock kit will secure doors to sheds, garages or your front door and the built-in alarm will deter would be intruders. Scores of uses including area access preventing unauthorised use of machinery or even disabling your car. One correct 4 digit code (out of 5000) will open the lock. Incorrect entries sound the alarm and disable the keypad for up to 3 mins. Kit includes 12-way wipper and operates from 9 to 15V (50A) supply. Will drive relay or two 150 lock mechanisms.

XXK121
£15.95

ORDERING INFORMATION. All prices exclude VAT. Free p&p on orders over £50 (UK only), otherwise add £1+VAT. Overseas p&p: Europe £3.50, elsewhere £10.00. Send cheque/PO/Barclaycard Access No. with order to Giro No. 529314002. Local authority and export orders welcome. Goods by return subject to availability.

ORDERS: 01-5678910 24 HOURS
Battery Charger Alert

A. H. Robson
Northumberland

The purpose of this circuit is to give a warning signal when a battery under charge is replenished. During charging, the current is at first high but drops with time. By inserting a short length of copper wire in one of the leads and coiling it round a thermistor, the drop in temperature to a certain level will signal that charging is complete.

Seven turns of 22 gauge enamelled copper wire are wound round the thermistor, the latter having a resistance of about 5kΩ at 20°C. The thermistor is connected to one arm of a 555 IC potential divider circuit with a balancing preset resistor in the other.

When activated, this circuit triggers an oscillator to give an intermittent buzzer alarm. With a partly exhausted battery connected to the charger, adjust the preset to give zero output. When the charger ammeter indicates that charging is nearly complete, or bubbles start to rise in the electrolyte, adjust the preset again to just trigger the alarm. The device is now set.

A single probe single throw reed relay is suitable for this circuit. 555 ICs may be substituted for the 555s at greater initial cost, but they will consume less power.

A Radio Transmitter Alarm

Paul Benton
Staffordshire

The radio transmitter alarm was originally designed for a company who wanted to monitor an area that they believed to be in danger of receiving 'unwanted visitors.' They had been suffering a loss of stock that, in terms of nuisance value, was costing the company considerable time and effort.

The requirements were that the alarm would be silent and that the security personnel could monitor the illegal entry at a distance of 400 metres. This meant that with no apparent security in the vicinity, the pilfering would take place but security would know of this activity. The thieves could then be caught red-handed as soon as they left the building. A further requirement was ease of fitting the alarm, since the security guards did not wish to wire up a complicated system (an activity which would have pre-warned members of the offending team).

The circuit can be constructed on stripboard, all components being readily available. Once the approximate centre frequency is found, the frequency may be altered by gently stretching or compressing coil L.

The range of the transmitter will vary on length and positioning of aerial, terrain, receiver quality and battery. Range will be typically ½ mile.

The variable resistor R4 enables the user to adjust the amount of modulation to the transmitter. Greater modulation will increase the apparent range, but will give rise to an RF signal much richer in spurious frequencies.

Note that it is illegal to operate or install any radio transmitter without obtaining a licence from the DTI (UK).
A dynamo is a convenient, cheap and ‘always available’ source of power for bicycle lights, but suffers from the drawback that when the bike is stationary, there are no lights. Batteries on the other hand provide a continuous light output, but need replacing frequently.

The circuit described combines the advantages of both by switching the lights to the dynamo when its output is high enough, and to batteries when the dynamo output falls below a preset limit, for instance while stationary at a junction. In this way, battery life is greatly extended, and the dynamo’s drawback of ‘no motion no light’ is overcome.

There are many ways to achieve the action described. The present circuit uses a 741 IC as voltage comparator, driving a relay via a power boosting transistor. Although circuits using diodes, thyristors, or transistors as switches are conceivable, a relay circuit was chosen for this application to avoid voltage losses in the low voltage (6V) system, which would reduce light brightness. The current drain of the relay is small compared with that of the lights.

As a safety feature, if either batteries or circuit should fail, or the unit is turned off, the lights operate as normal from the dynamo, but if the dynamo fails or is turned off, the lights run directly from the batteries. The circuit therefore also acts as a lighting backup system.

In action, the dynamo output is rectified and smoothed by D1 and C1, and the voltage compared with a reference provided by D2. Sensitivity can be adjusted if necessary with R1, while the positive feedback resistor R2 introduces hysteresis into the circuit to prevent relay judder. Other components are conventional.

Although 6V is too low for a 741 IC, no problems have been experienced in practice. An alternative would be to use a pin compatible low voltage IC namely the 251 at slightly greater cost.
Touch Activated Light Switch

This circuit was designed to allow a bedside lamp to be controlled through successive operation of a touch sensitive pad, an arrangement which could benefit the elderly or infirm. The use of a suitable mains switching relay along with a mains transformer of split bobbin design ensures that total electrical isolation exists between the user and the mains supply.

Circuit operation is as follows. The output from the secondary winding of the mains step-down transformer to its full-wave rectified by diodes D3 to D6 and smoothed by C1, voltage stabilisation necessary for reliable circuit operation is provided by positive voltage regulator REG1. The square-wave output signal generated by the 15kHz oscillator formed by IC1a, R1 and C3 is fed via the capacitive touch plate to the input of buffer IC1b. The inverted output rapidly pump charges C4 to the steady logic levels of the monostable IC1c. This results in a steady logic 0 level at the output of IC1c. When finger contact is made with the touch pad, the oscillator output is heavily attenuated. The DC voltage present on the slider (RV1) holds the input of IC1b high. The inverted output allows C4 to discharge via R2. At the instant IC1c input reverts to a logic 0, a positive-going transition is produced at the output, triggering the clock input of the monostable multivibrator. This is formed by a D type flip-flop IC2a and timing components R3 and C5.

This arrangement is included to prevent erratic circuit operation which might otherwise occur when the operator's hand is in close proximity to the touch plate. The leading edge of the 100ms positive-going pulse produced at the Q output strobes the clock input of IC2b. As this second D type flip-flop is configured as a divide-by-two circuit, the Q output toggles between logic states with successive operations of the touch plate. When high, the output source current to the base of Q1 through a current limiting resistor R4, saturating the transistor and energising the coil of RLA1. D2 is included to protect Q1 from any back emf generated by the coil of RLA1. When the normally open relay contacts close, mains power is delivered to LP1, a suitably rated mains filament lamp. Care should be taken to ensure that SW1, FS1 and the relay contacts are wired in the live side of the transformer primary circuit. If a metal lampholder and/or the case used to house the circuitry is of metal construction, the necessary connections to the mains protective earth terminal must be provided.

Finally, a touch plate may be manufactured using double-sided copper clad board. Keeping the upper surface intact, the lower surface is split into two equal lands by removing a strip of copper approximately 2mm wide. Plate area should be conducive to the user's requirements, 25cm² being typical, but the precise dimensions are not critical.
REAL POWER AMPLIFIER for your car, it has 150 watts output, frequency response 10Hz to 20KHz. Power to weight ratio better than 6dB. Has built in short circuit protection and adjustable input level, suit your existing car stereo, no need to preamp. Works with all new ord or older car radios. Ref 0279. Price £20 each plus £2 insured delivery. Order ref 0397.

REAL CAR STEREO CARRIERS, Stereo panel output 100 watts. Special stereo panel, 11" wide. Has built in subwoofer controller, 2 tweeters. Each set at a constant purpose built metal mounting unit. Ideal to work with the amplifiers described above. Price per pair £219. Order ref 0398.

STEREO CAR STEREO CARRIERS. Not quite so powerful — The price is 0292 250 watts, frequency response 10Hz to 20KHz. Has built in subwoofer controller, 2 tweeters. Each set at a constant purpose built metal mounting unit. Price per pair £295. Order ref 0396.

SLIGHT DISLIKE INTERFACE. Add £2.50 per item. Complete with full data and diagram. Price £3.00 per item. Order ref 0399.

SILICON CONTROLLED RECTIFIER. Price £10.00 each. Order ref 0400.

SOUND AND TOUCH INTERFACE. Add £2.50 per item. Complete with full data and diagram. Price £3.00 per item. Order ref 0401.

SPEAKER SYSTEMS. Complete with colour print, speaker with crossover. Price £12.00. Our ref 3P134.

SPREAD anti-jammer kit. Price £1.00 each. Our ref 3P135.

STILL AT LEAST 40 DUNKS BASKETBALLER. All prices are £1 each. If you order 12 then you are entitled to a 15% discount. Wide choice of football, rugby, basketball, table tennis, netball, tennis and squash. Suitable for play on the extreme length the pack number and the next figures refer to the actual number of items in the pack. Price is for the entire pack. Order ref 0397.

SUB -MIN TOGGLE SWITCH. Price £1.50 each. If you order 12 then you are entitled to a 15% discount. Wide choice of switch with heavy duty, long life contact material. Suitable for use in various applications from small domestic to large industrial machinery. Price £1.50 each. Order ref 0402.

SUPER SHORT SWING arm. Body size 8mm. Item 3mm BSW. £5.00 each. With chrome dollar fixing nut. 3 for £15. Order ref 0404.

SOUND AND TOUCH INTERFACE. Add £2.50 per item. Complete with full data and diagram. £3.00 per item. Order ref 0401.

SPEAKER SYSTEMS. Complete with colour print, speaker with crossover. Price £12.00. Our ref 3P134.

SOUND AND TOUCH INTERFACE. Add £2.50 per item. Complete with full data and diagram. Price £3.00 per item. Order ref 0401.
LASER COMPETITION

Back, way back in the midst of time (the September issue to be precise), we had a stupendous competition to give away not only one of Maplin's coo-gosh lasers, fully built and ready to use, but Maplin's controller unit to whiz it into a whirl to wow the world.

There were five questions, to which the answers are:
1C LASER is an acronym for Light Amplification by Stimulated Emission of Radiation
2D One light year is approximately 9.4607 x 10^16 km
3E Boron is not a gas used commonly in lasers — it isn't a gas at all (at rt)
4A 'Lasers are illegal' in Norway is of course complete rubbish — oddly this is the question most people got wrong
5D Erm... whoops. A typographical must have meant that none of the above or 'wharra' was the answer.

The first prize winner was Mr. Richard Blundell of Rugby, who will receive his prize just as soon as we stop playing with it. He will also receive a complimentary pair of entry tickets to the London Laserium to witness the spectacular whizzbang shows therein. Runners-up were Mr. John Linsley of 80W Audio Design MOSFET Amplifier; The oh-so-tricky questions involved identifying obscure bits of past covers (an idea borrowed with best grace from early '70s issues of Family Circle). The answers were:

The answers were:
1. Dark side of the moon
2. The white album
3. Physical graffiti
4. No jacket required
5. Venus and Mars

Again the entries literally jitterbugged in, and the six winners were: R. G. Christoph from Bristol, R. S. Symes of Lymington, M. Wrigley of Dorchester, T. McKernan of Harpenden, R. Hart of Putney and Phil Sturges of Maldon.

These people should already have received their prizes, and will no doubt soon be donning their portable headphones and watching the metal musos blowing their valves above the streets of Piccadilly Circus. More competitions follow soon!

THE GRAND ETI SUBSCRIPTIONS OFFER

In the September and October issues we ran a subscriptions offer with a competition to win Harri's kit for the John Linsley Hood's 80W Audio Design MOSFET Amplifier. The oh-so-tricky questions involved identifying obscure bits of past covers (an idea borrowed with best grace from early '70s issues of Family Circle). The answers were:

A June issue (the piano stool)
B July issue (Einstein)
C May issue (bucket handle)
D September issue (treasure hunt)

The winner is Mr. Daniel Bull from Milton Keynes, lucky thing, and will be receiving his prize as soon as we've been to the Post Office to buy the stamps.

ROCK CIRCUS COMPETITION

Gosh golly surely not another competition you missed? Yes in our prize-winning November issue, the Rock Circus feature was followed by a chance to win six pairs of ever-so-free tickets to see the audio animatronic marvels shake their things and strut their funky chickens and so forth.

The answers were:
1. Dark side of the moon
2. The white album
3. Physical graffiti
4. No jacket required
5. Venus and Mars
6. None of the above

Again the entries literally jitterbugged in, and the six winners were: R. G. Christoph from Bristol, R. S. Symes of Lymington, M. Wrigley of Dorchester, T. McKernan of Harpenden, R. Hart of Putney and Phil Sturges of Maldon.

These people should already have received their prizes, and will no doubt soon be donning their portable headphones and watching the metal musos blowing their valves above the streets of Piccadilly Circus. More competitions follow soon!
DON'T MISS Top Projects 1989

Next month inside ETI will be a free special issue — 68 pages containing the finest of our projects from the last twelve months.

FREE INSIDE THE FEBRUARY ETI

CIRCUITS

Alarm Generator Part 1 August 36
Birdsong Amplifier (Blueprint) Part 1 October 10
Capacitor Lamp Dimmer Part 2 October 10
Car Courtesy Delay March 52
Countdown Timer (Blueprint) March 52
DC Bridge Null Detector (Blueprint) September 10
DC Motor Circuits (six pages) August 26
DC Motor Circuits (five pages) September 25
Door Alarm August 36
Doppler Shift Alarm August 37
Frequency Spectrum Bargraph (Blueprint) August 8
Games Circuits (five pages) December 14
Gas Alarm August 39
Lamp Brightener (Blueprint) February 62
Light Dawn/dusk Switch (Blueprint) May 8
Loop Alarm August 38
Loudness Control (Blueprint) November 10
Neon Circuits (two pages) August 32
Opto Counter March 53
Relative Humidity Gauge (Blueprint) June 9
Rev Limiter (Blueprint) April 61
SineWave Generation (three pages) December 20
Single Pulse Generator March 53
Time Delay Switch March 52
Transistor-assisted Ignition (Blueprint) March 62
E901-1 20 metre Receiver J
E901-2 Wavemaker FG L
E901-3 Motorcycle Intercom F
E901-4 Low Voltage Alarm C

PCBs for the remaining projects are available from the companies listed in Buylines.

Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifies the board but also tells you when the project was published. The first two numbers are the year, the next two are the month.

Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice if required. Such orders will not be processed until payment is received.

<table>
<thead>
<tr>
<th>Ref. no.</th>
<th>Price Code Price (inc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8910-1 Multimeter H</td>
<td></td>
</tr>
<tr>
<td>E8910-2 MIDI Mapper M</td>
<td></td>
</tr>
<tr>
<td>E8911-1 Smoke Alarm main board F</td>
<td></td>
</tr>
<tr>
<td>E8911-2 Smoke Alarm power supply ... F</td>
<td></td>
</tr>
<tr>
<td>E8911-3 Frequency Meter (3 boards)</td>
<td>O</td>
</tr>
<tr>
<td>E8911-4 Serial Logic Scope L</td>
<td></td>
</tr>
<tr>
<td>E8912-1 Mains Failure Alarm H</td>
<td></td>
</tr>
<tr>
<td>E8912-2 Surveillance PCB (Free Next Month)</td>
<td>F</td>
</tr>
<tr>
<td>E8912-3 Slide/Tape Synch E</td>
<td></td>
</tr>
<tr>
<td>E8912-4 Pedal Power L</td>
<td></td>
</tr>
<tr>
<td>E8912-5 Digital Noise Generator K</td>
<td></td>
</tr>
</tbody>
</table>

TO: ETI PCB SERVICE, READERS' SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:
Quantity Ref. no. Price Code Price Total Price

Post and packing £0.75

Total enclosed £

Please send my PCBs to: (BLOCK CAPITALS PLEASE)

Name
Address
Postcode

CHEQUES SHOULD BE MADE PAYABLE TO ASP Ltd.
Any readers who have ever ridden a motorcycle will know how bored both the rider and passenger can get on long journeys. It was one such journey that inspired me to design this project.

After some thought I came up with the following design specifications. The intercom had to be relatively cheap and should be small and rugged enough to withstand life in a motorcycle jacket pocket. It must have an input for an external source such as a personal stereo, and must be also be able to differentiate which of the incoming signals is passed to the main headphone amp. Lastly it must be economical to run.

So bearing all of this in mind the following idea emerged.

Circuit Operation

Working from the block diagram in Fig. 1, the circuit operates in the following manner.

Essentially the input stages (the first two blocks) are the same circuit (see Fig. 2) using a 741 op-amp. The incoming signal from the mic is amplified by 100. This value is set by the resistors R2 and R3 (R9 and R10 for the rider). The circuit is of the basic non-inverting mode, the only difference being the addition of the resistor R6, the purpose of which is to add stability to the circuit as the 741 is running off a single rail supply.

This basic circuit I have found to be most useful. The 741 is led into believing that the supply is a dual supply by referencing the input and feedback loop to half the supply, in this case to ±4.5V. Capacitor C3 is used as a DC blocking cap.

The output of the op-amp is then split. One part is fed into the sensing circuit and then onto the control. The other is sent off to a simple transistor switch formed by R4 and Q1. It is the operation of this transistor to attenuate the signal at the appropriate time as the op-amp continuously monitors the incoming signal. This excludes the need for a second amplifier.

The sensing circuit comprises the diodes D1-3, R1 and C1. The three diodes in series are there to remove an offset of about 1.5V (three diode drops) arising because the 741 cannot swing down to ground. The diodes also rectify the audio signal which is then smoothed by the capacitor and fed into the input of the CMOS 4011.

The input impedance of IC5 is exceedingly high and as a result of this the capacitor would take too long to discharge. The addition of R1 allows the charge to leak away and the values of R1 and C1 determine the time the gate stays open.

Turn The Music Up

Blocks three and four are the inputs for an external source, probably a personal stereo, and I have assumed that the signal will need no amplification or attenuation.
This part of the circuit works in the following manner. The incoming signal passes through a DC decoupling capacitor (C7,9) to remove any DC offset. Then a half supply offset is added to the signal so that the signal can swing equally between positive and negative, giving maximum volume without distortion.

The signal and offset are then controlled by the switch set up by R15 and Q3 for the left, and R19 and Q4 for the right.

It should be noted at this point that connected to the base of every transistor is a resistor to limit the current passing through the base-emitter junction and a capacitor to decouple any oscillations that occur during the time that IC5 changes state.

The design could have incorporated several Schmitt triggers on the input to IC5 to introduce some hysteresis but this increased the complexity of the circuit and was found to provide no notable improvement.

Control Circuits

As can be seen from circuit diagram, the control part of the circuit (block 10) is based around the CMOS 4011. Its purpose is to set the order of priority of the incoming signals, this priority being rider, passenger and external signal in that order. A truth table for the logic states is shown in Table 1 and a description for readers not familiar with truth tables follows. To understand this you need to realise that where an output is 1, the transistor connected to that output will be turned on and fully saturated — no sound from that input will pass to the output. When the output is zero the transistor will be turned off — the sound passes. As mentioned earlier the transistor acts as a switch.

It can be seen that from the rider output that the output is the inverse of the rider input. As a result of this all other signals are turned off when the rider speaks, thus giving him or her full control (remember, 1 = sound off and 0 = sound on).

It should also be noted that to conserve the number of chips used, the results are obtained by effectively sharing gates. All the 'decisions' made by the unit happen almost instantaneously so that the unit can change between signals very rapidly.

The overall effect of the control circuit is to set a priority order for the inputs. This small amount of circuitry does this most effectively.

Master Mix

Block eleven to thirteen (Fig. 1) are used by the unit to split the mono input of the mics ready for the stereo headphone amplifier. The problem is not splitting the signal but the mixing of all three signals together after the splitter. It would be highly undesirable to get crossover between the right and left channel.

Referring again to the circuit diagram, we have seen that at any time during the operation of this circuit there will be only one transistor on at any one time (with the exception of Q3 and Q4 as these are controlled by the same signal).

To explain this part of the circuit I shall pick the situation where the rider's gate is open and the other two (three if the external input is counted as two) are closed.

The signal is taken from the collector of Q1 and then enters the anodes of D7 and D8. The impedance of both of these branches is approximately the same and so the signals are approximately the same, you should also remember that all signals entering the mixer are on a ½Vcc offset and that any transistor saturated appears to be ground to any signal in the mixer.

The output signal then passes through a potential divider set by two 10k resistors thus halving the signal which then carries on to the headphone amplifier.

To stop the signals crossing over from right to left they pass through diodes. Because of the offset on the desired signal and all other inputs being held at almost ground, the diodes will not conduct.

Level Lifter

Blocks nine and fourteen form the headphone amplifier. The circuit is of similar form to the circuits in blocks one and two.

R32 and R33 set up the half supply, RV1 and R30 set the gain, C12 and C31 remove any offset and limit the output from the current from the 741. R29 is used to stabilise the circuit and C11 is used to block DC entering the amplifier.

Power Supplies

The power supply for the unit comes from either one or two PP3 size batteries. Diodes D13 and D14 protect the circuit from being connected the wrong way around. They also select the stronger battery to power...
the unit so a new battery and a half-used battery may be used together.

SW1 is the main on/off switch, but this is located on the input/output socket and as a result the unit is turned off when the plug is removed.

C10 is used to decouple any unwanted signals that get into the supply lines and R39 and R20 set up a ½Vcc supply.

Construction
The PCB (see Fig. 3) should be constructed as follows. For convenience all of the ICs are best held in sockets, and these can be fitted first followed by the links. Be as neat as possible!

Then solder in all of the resistors followed by the capacitors. Finally add the diodes and transistors.

Check your work for shorts, dry joints and polarity of components.

For the components mounted off the board try to ensure good mechanical joints before soldering and make all wires long enough to do their job without being stretched but short enough not to make the job look messy.

Finally the decoupling capacitor must be connected between pins 14 (+ve) and 7 (ground) of IC5. It is very important to observe the polarity of this capacitor and hold your iron on the legs of this chip for the absolute minimum time possible.

Once again check that your work is clean — if it is then the unit is complete!

In my prototype I installed a normal pair of cheap headphones and microphone (Maplin type LB93B) into my helmet taking care not to damage the helmet.

Very important! Do not under any circumstance drop your helmet or attempt to drill holes into it as this will weaken it considerably. Do not use any type or solvent based glues on your helmet as this will melt your helmet over time.
Testing And Trouble Shooting

Ensure that all the components have been inserted with the correct polarity and that all chips have power and inputs. Inspect your work for dry joints and any bridging that may have occurred during the construction. Check all external wiring!

After the unit has been constructed and the headphones and mic inserted into the helmet, the unit can be tested. If it proves not to function as expected then the following trouble shooting may be followed.

As the unit was designed in blocks it can be tested in blocks. To check thoroughly you will need an oscilloscope and a signal generator, although a high impedance input voltmeter will do the job reasonably well.

To establish that the pre-amps IC1,2 are working correctly, compare their outputs (pin 6) to their inputs (pin 3) using a scope. If this is not possible check that pin 11 on IC5 goes low when there is an input to IC1 and pin 10 on IC5 goes low when there is an input on IC2. If Q1,2 are found to work correctly then it can be assumed that the amp, gate and detection circuit work correctly.

To establish that the control section works properly follow the truth table shown in Table 1.

Checking the external input can be done with a

<table>
<thead>
<tr>
<th>Rider input IC5 pins 13,14</th>
<th>Passenger input IC5 pins 8,9</th>
<th>Rider out IC5 pin 11</th>
<th>Passenger out IC5 pin 4</th>
<th>External out IC5 pin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 IC5 control truth table for automatic input selection
voltmeter. Ensure that there is $\frac{1}{2}\text{Vcc}$ between R13,14 and R17,18 and that the transistors Q3,4 are switching.

The next stage is to check that the mixer is functioning correctly. Check all diodes are the correct way round and that there is about 0.6V drop on each of the diodes in the forward bias condition. By this stage the signal at R27,28 should vary between 0 and about half supply.

The signal is then passed to the headphone amp which is used to match the impedances of the mixer to the headphones.

Parts List

<table>
<thead>
<tr>
<th>PARTS LIST</th>
<th>RESISTORS (all %W 5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,7</td>
<td>10k</td>
</tr>
<tr>
<td>R2,6,8,9,29,34</td>
<td>10k</td>
</tr>
<tr>
<td>R3,10,13,14,17,18,25,26</td>
<td>1k</td>
</tr>
<tr>
<td>R4,11</td>
<td>4k</td>
</tr>
<tr>
<td>R5,12,16,20,24,27,28,29</td>
<td>10k</td>
</tr>
<tr>
<td>R15,19</td>
<td>2k</td>
</tr>
<tr>
<td>R30,33</td>
<td>4k</td>
</tr>
<tr>
<td>R31,35</td>
<td>22k</td>
</tr>
<tr>
<td>R32,33,36,37</td>
<td>22R</td>
</tr>
<tr>
<td>RV1,2</td>
<td>10k lin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,4</td>
</tr>
<tr>
<td>C2,6-9</td>
</tr>
<tr>
<td>C3,5,11,13</td>
</tr>
<tr>
<td>C10</td>
</tr>
<tr>
<td>C12,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1-4</td>
</tr>
<tr>
<td>IC5</td>
</tr>
<tr>
<td>Q1-4</td>
</tr>
<tr>
<td>D1-12</td>
</tr>
<tr>
<td>D13,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATT1,2</td>
</tr>
<tr>
<td>SK1,2</td>
</tr>
<tr>
<td>SK3</td>
</tr>
</tbody>
</table>

The Archer Z80 SBC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

The Bowman 68000 SBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.

- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Industrial Estate, High Wycombe, Bucks HP12 3PY. Tel: (0494) 464264

ETI JANUARY 1990
AUDIOKITS
PRECISION COMPONENTS
BUILD YOUR OWN HI-FI AMPLIFIER
AUDIOKITS OFFERS THE WIDEST CHOICE
Class One Sound DM20 Integrated Amplifier
30 + 30 Integrated Amplifier (3 versions)
Apex Preamp — Standard & Improved versions
Apex 45W Power Amp — Standard & Improved

Virtuoso Preamp — Standard, Upgraded & Second Upgrade
Virtuoso 90N Power Amp — Standard & Upgraded

All Audiokits Standard Grade Kits include high quality parts such as metal film resistors etc, that are used in Hi-Fi quality amplifiers. Audiokits Improved & Upgraded Kits include parts of the highest sonic quality which we sell separately to customers wishing to improve the sound quality of their own amplifiers.

All parts used in Audiokits Amplifiers can be supplied separately or as a complete kit including specially designed high quality cases. Please phone to check availability of cases for longer running projects. All PCBs available from stock.

Audiokits also supplies parts for many other Hi-Fi Amplifier. Amplifier projects include Valve Preamps, Audiokits Component Notes give valuable technical information on components, component applications and upgrading amplifiers.

For full details of AUDIOKITS Components and Kits, please send 9" x 6" SAE (Overseas - 3 IRCs) to:

AUDIOKITS PRECISION COMPONENTS
6 Mill Close, Borrowash, Derby DE7 3GU. Tel: 0332-674929

Remember the new Component Catalogue available from early 1990

CRICKLEWOOD ELECTRONICS

THE BIG PUNCH IN ELECTRONIC COMPONENTS

• ONE OF THE LARGEST RANGES OF COMPONENTS IN THE UK
• FAST AND EFFICIENT SAME DAY PERSONAL SERVICE
• VERY COMPETITIVE PRICES; QUANTITY DISCOUNTS AVAILABLE
• DISCOUNT VOUCHERS INCLUDED
• NO MINIMUM ORDER

FILL IN THE COUPON AND POST IT WITH YOUR CHEQUE, PO ETC FOR £1.50 TO RECEIVE YOUR 1990 CRICKLEWOOD ELECTRONICS CATALOGUE AND VOUCHERS WHICH YOU CAN USE AGAINST YOUR NEXT PURCHASE

CRICKLEWOOD ELECTRONICS 1990 COMPONENTS CATALOGUE

PLEASE SEND COPIES OF THE 1990 CRICKLEWOOD ELECTRONICS CATALOGUE AT £1.50 TO:

NAME ..
ADDRESS ..

Remittance enclosed £

CRICKLEWOOD ELECTRONICS LTD
40 CRICKLEWOOD BROADWAY, LONDON, NW2 3ET
Tel: 01-450 0995/452 0161
Fax: 01-208 1441 Telex: 914977
Dom Banham presents a budget function generator for the workshop

WAVEMAKER FG

SPECIFICATIONS

Frequency range 1Hz-100kHz
Output level 0-5V peak (10V pk-to-pk)
Sine wave distortion <2% (100Hz-100kHz)
Square rise time (at full output) <1.5us

Construction

The construction is fairly straightforward, with most of the components being mounted on the single sided PCB (see Fig. 2).

Begin construction with the wire links and PCB pins for off-board connections, then add the IC sockets if you’re using them.

Note that two of the links (near the transformer) cross over each other — obviously one or both of them will need to be insulated.

The rest of the components can then be inserted in order of height. Do not add ICs 1-4 yet, and pay special attention to the polarity of C14,15 and the rectifier, since the reversal of any of these may cause loud noises and acid smoke! Transformer T1 has its secondary tags connected to the PCB with short lengths of wire, the two central ones having first been linked. Note also that IC5 and IC6 will not require heatsinks.

The off-board wiring is best done with rainbow ribbon cable as this aids both neatness and ease of identification. This is all shown in Fig. 2. Obviously the mains wiring can not be ribbon cable and must use mains rated cable.

The switch SW3 is shown as a toggle type (see Buylines) but any sort of 3-way switch can be substituted. The output socket SK2 could also be chosen as you wish but bear in mind that the BNC or phono type will connect the circuit ground to the case (and therefore to mains earth) and if this is not desired then an insulated socket should be used.

In the prototype the circuit board was housed in a small aluminium box of the dimensions specified in Buylines. This makes the front panel work fairly crowded — but then it’s economical on space and it makes the box cheaper. For screening purposes a metal case is definitely recommended. The prototype was given a couple of coats of matt black spray paint and labelled with rub-down transfers. Good and smart (see photographs).

Setting Up

A multimeter with a fairly low DC range is required
to set up the unit. A scope, if you have one, is also useful to check the waveforms.

Connect the unit to the mains and switch on. The LED should light and ±12V should appear on the relevant IC pins. If not, switch off immediately and check the power supply circuitry — using great care to do so of course.

Now insert ICs 1-4 and set all presets to mid position. Select range three on SW2, set SW3 to 'triangle' and SW4 to 0-5V. Take RV2 fully clockwise and RV5 fully anticlockwise. Now check all those again in case you got confused.
PARTS LIST

RESISTORS (all 1/4W 5%)

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,6</td>
<td>100k</td>
</tr>
<tr>
<td>R2,8,12,17</td>
<td>4.7k</td>
</tr>
<tr>
<td>R3,5,7</td>
<td>12k</td>
</tr>
<tr>
<td>R4,10,30,31</td>
<td>10k</td>
</tr>
<tr>
<td>R9</td>
<td>2.7k</td>
</tr>
<tr>
<td>R11</td>
<td>1k1</td>
</tr>
<tr>
<td>R13,14</td>
<td>120R</td>
</tr>
<tr>
<td>R15</td>
<td>2k7</td>
</tr>
<tr>
<td>R16</td>
<td>4.7k</td>
</tr>
<tr>
<td>R18</td>
<td>10kR</td>
</tr>
<tr>
<td>R19</td>
<td>470k</td>
</tr>
<tr>
<td>R20</td>
<td>27k</td>
</tr>
<tr>
<td>R21</td>
<td>22k</td>
</tr>
<tr>
<td>R22-24,26-28</td>
<td>82k</td>
</tr>
<tr>
<td>R25</td>
<td>1k8</td>
</tr>
<tr>
<td>R29</td>
<td>470R</td>
</tr>
<tr>
<td>RV1</td>
<td>4.7 cermet preset</td>
</tr>
<tr>
<td>RV2</td>
<td>10k linear</td>
</tr>
<tr>
<td>RV3,4,6</td>
<td>10k cermet preset</td>
</tr>
<tr>
<td>RV5</td>
<td>100k log</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,6</td>
<td>1uF polyester layer</td>
</tr>
<tr>
<td>C2,7</td>
<td>100n polyester layer</td>
</tr>
<tr>
<td>C3,8</td>
<td>10n polyester layer</td>
</tr>
<tr>
<td>C4,9</td>
<td>1m0 polystyrene</td>
</tr>
<tr>
<td>C5,10</td>
<td>100p polystyrene</td>
</tr>
<tr>
<td>C11</td>
<td>22p polystyrene</td>
</tr>
<tr>
<td>C12,13</td>
<td>10n dipped polyester C280</td>
</tr>
<tr>
<td>C14,15</td>
<td>470u 35V radial electrolytic</td>
</tr>
<tr>
<td>C15,17</td>
<td>10u 16V radial electrolytic</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1,2</td>
<td>LM38600N</td>
</tr>
<tr>
<td>IC3</td>
<td>NE5534</td>
</tr>
<tr>
<td>IC4</td>
<td>TL082</td>
</tr>
<tr>
<td>IC5</td>
<td>78M12</td>
</tr>
<tr>
<td>IC6</td>
<td>79M12</td>
</tr>
<tr>
<td>LED1</td>
<td>Panel mounting LED</td>
</tr>
<tr>
<td>BR1</td>
<td>W01 bridge rectifier</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX1</td>
<td>6-way PCB-mounting DIN socket</td>
</tr>
<tr>
<td>SX2</td>
<td>See text</td>
</tr>
<tr>
<td>SW1</td>
<td>Mains on/off switch</td>
</tr>
<tr>
<td>SW2</td>
<td>2-pole 6-way rotary switch</td>
</tr>
<tr>
<td>SW3</td>
<td>1-pole 3-way toggle or rotary</td>
</tr>
<tr>
<td>SW4</td>
<td>SPDT toggle</td>
</tr>
<tr>
<td>TI</td>
<td>15V+15V 10VA transformer</td>
</tr>
</tbody>
</table>

Case: PCB, Nuts, bolts, wire etc.

Fig. 2 Component overlay for the Wavemaker and off-board wiring

ETI January 1990
Now connect a scope or voltmeter to the output. Switch the unit on and rotate RV5 clockwise slowly. A large DC offset will probably appear. Adjust RV4 to cancel this then switch SW3 to ‘line’ and adjust RV3 to cancel any offset that appears again.

If you do have a scope you can now use RV1 and RV6 to set the maximum frequency and amplitude to 1kHz and 5V peak respectively. If you haven’t then set RV6 to the mid position and replace RV1 with a 1kΩ resistor. This will give enough calibration for most purposes.

HOW IT WORKS

The complete circuit diagram is shown in Fig. 1. The mains oscillator circuit is formed by IC1, a LM13600 dual OTA (operational transconductance amplifier). This is connected in a circuit similar to that of the standard square/triangle wave generator. IC1b acts as an integrator or ramp generator with the slope determined by the current flowing into pin 1 (thus allowing voltage control). IC1a operates as a Schmitt trigger with its trigger levels centred about the OV line. The timing capacitor is selectable for different frequency ranges by SW2a. The square and triangle waves are available at a level of 1V peak from pins 9 and 8 respectively, and are fed to waveform selector switch SW3 by level matching resistors R5 and R7.

Due to the buffer stage in IC1a, the squarewave output has an offset of about +1V. R6 adds a small current to correct for this. The triangle output is also fed via R8 to IC2b which is configured as a voltage controlled filter arranged to track the oscillator frequency, which filters the triangle wave to give a fairly good sine wave. Although the filtering is fairly gentle the output is quite clean and rather more sinewave-like than that produced by the more usual method of passing a triangle wave through non-linear circuits.

With a scope connected to the output, clean square, sine and triangle waveforms should be visible and the amplitude should be variable with RV5 and SW4. Frequency should be variable over a 10:1 range with RV2 and in decade ranges with SW2. If the sine output on any range is either weak or distorted, check that C6-10 are wired to the right terminals of SW2b, (you might have got it wrong, even with ribbon cable!).

And so, the function generator is now ready for use.

Finally here are a few points about the design for readers who enjoy playing with designs.

- C12 and C13 were included in the prototype to prevent stray pick-up at the control inputs. If these inputs are connected to external equipment then you can take out the capacitors.
- The LM13600 ICs can be replaced by LM13700s if available, but performance may drop a little at low frequencies.
- For applications needing more output power at low frequencies, a higher power op-amp such as an L165 may be fitted in place of IC3. IC5 and IC6 will then need heatsinks and the values of C14 and C15 will need to be increased to about 2200μF.

BUYLINES

Most components can be obtained from any supplier. IC1,2 can be obtained from Watford Electronics, tel. (0923) 37774. The case in the prototype measured 130 x 180 x 75mm. The PCB can be obtained from ETI's PCB Service (see centre pages).
Solder all passive components first: resistors, capacitor, and for the stripboard — wire links. It's a good idea (though by no means essential) to insert PCB pins at hole positions of all off-board connection points. This makes soldering of the connections easier when the board is fully populated with components.

Next, solder in the zener diode. Your choice of value should be taken after reading the How It Works section, which explains how the project works and how to select a zener diode value.

You can either solder the integrated circuit IC1 directly into the board, or use an IC socket of some description. A socket is useful if at some later time you intend using the IC in another circuit. If you have no intention of this, perhaps you might like to solder the IC in. Soldering of integrated circuit pins should be undertaken carefully, avoiding too much heat which can damage the IC internally. As a precaution allow the IC to cool after soldering one pin before you solder in the next.

After all the components have been soldered in, make all off-board connections, that is, to the piezo buzzer and the projects power connection leads. This is where the use of PCB pins, mentioned earlier, makes things a bit easier. They really are worth investing in.

Testing

To make sure your project is working properly, you should have a power supply with a continuously variable output voltage and a voltmeter, capable of reading the voltage range covered by the power supply.

Connect the voltmeter to the power supply, to measure the output voltage. Set the power supply output to a voltage higher than you want the project to sound its alarm. So, if you wanted your project to sound when voltage falls below, say 7V, set the power supply to about 10V.

Now, connect your project to the power supply. If your choice of zener diode is correct, nothing should happen.
HOW IT WORKS

Figure 4 shows a block diagram of circuit operation. If you compare this with the circuit diagram of Fig. 1 you'll get a good idea of how the project works.

The voltages reference is formed by zener diode ZD1 and resistor R1. You should note that, unlike the normal uses of zener diodes in say power supplies, the diode and resistor are inverted. That is, the zener is connected to the positive power rail while the resistor is connected to the negative rail.

All this means is that the reference voltage maintained by the zener across itself is always more positive with respect to the voltage across the resistor. Because of this, the voltage applied to the input of gate IC1a is not fixed with respect to ground (as it would be in the more conventional method of zener diode use) but is instead fixed with respect to positive supply voltage. In effect, as the supply voltage rises or falls, the gate input voltage rises or falls in a fixed manner.

As the gate input voltage varies with changing power supply voltage, the switching point at which the gate switches from a high to low state is crossed. Thus the gate switches as the power supply drops. This can be seen by considering the graph in Fig. 5, where three curves are shown. The first (curve A) shows how the gate switching voltage changes with varying power supply voltage.

Curve B on the other hand shows the voltage applied to the gate input due to the zener diode voltage reference with a zener diode voltage of 3V. Curve C shows a curve for a zener diode voltage of 6V.

Looking at these curves you can see how the gate switches when the power supply voltage is around 5V for the 3V zener diode and at around 12V for the 6V zener diode.

Even though these graphs are arrived at empirically, you should get the idea, by changing the zener diode voltage, you change the gate switching point as the power supply voltage falls. So, you can insert the zener diode of your choice, to suit the voltage range you wish to monitor.

Table 1 lists a number of commonly available zener voltages and the approximate switching point of the power supply. So, if you wish the project to sound the alarm when power supply voltage falls to around 11.5V, use a 5V6 zener diode. If the alarm is to sound when voltage has fallen to around 7V, use a 4V7 zener diode. All voltages are dependent on individual components (both zener diodes and gate switching voltages are slightly variable) so you may need to experiment.

Gates IC1d & e form the low voltage trigger. The gated astable multivibrator is formed around gates IC1c & b, together with associated components. The piezo buzzer is driven in anti-phase by the astable multivibrator. Thus when the power supply voltage is above that which causes the zener diode voltage to be above the first gate's switch point the buzzer does not sound. However, as the power supply voltage falls, taking the first gate's input voltage below its switch point, the buzzer sounds.

Slowly lower the power supply output voltage, simultaneously watching the reading on the voltmeter. At some lower voltage, the piezo buzzer should sound, indicating the project works. At voltages below this point the buzzer sounds, voltages above the point will cause the buzzer to stop. If your choice of zener diode is correct, the voltage point at which the piezo buzzer sounds will be your selected voltage.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 3W 5%)</th>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 47</td>
<td>C1 10n</td>
</tr>
<tr>
<td>R2 39k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 4001</td>
</tr>
<tr>
<td>ZD1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezo buzzer</td>
</tr>
<tr>
<td>IC socket</td>
</tr>
<tr>
<td>PCB or stripboard</td>
</tr>
</tbody>
</table>

BUYLINES

No component will give any difficulty in procurement; they are all extremely common components. Either your local outlet, or any of the mail order companies who advertise in ETI will be able to provide you with all components. A PCB can be purchased from the ETI PCB Service (see centre pages).

Table 1 Zener and trigger voltages

<table>
<thead>
<tr>
<th>Zener diode voltage</th>
<th>Approximate trigger voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3V0</td>
<td>5V</td>
</tr>
<tr>
<td>4V7</td>
<td>7V</td>
</tr>
<tr>
<td>5V7</td>
<td>11V5</td>
</tr>
<tr>
<td>6V8</td>
<td>13V8</td>
</tr>
</tbody>
</table>

Fig. 4 Block diagram of the ETI Low Voltage Alarm

Fig. 5 Graph of power supply voltage versus resultant gate switching voltages (curve A), compared with gate input voltages for two values of zener diode (curves B and C)
Use your free PCB to build a variety of novel surveillance projects. Paul Chappell helps you with the construction

Just when you thought it was safe to talk on the telephone... The PCB from the cover is about the closest thing you'll find to a home spying kit. There is indeed a telephone bug, and believe me it's one that the professionals would be pleased to have in their kit bag for a routine surveillance operation. There's a voice transmitter, very sensitive indeed with excellent clarity and a most respectable transmitting range. There's the bug detector board for last month's project, and finally the PCB to use with last month's free components.

Your first task is to split the PCB into the four sections. The places to cut are shown by the dotted lines. The best tool for the job, assuming you're not equipped with a guillotine, is a small hacksaw. Cut carefully to avoid chopping any of the tracks or pads. Don't try it with shears or any tool that might bend the board—you may get away with it on fibreglass, but the bonded paper material of your free PCB is brittle and the board will split.

The smallest board is for last month's bug detector project, so if you've been waiting to build that one, off you go and do it. The two slightly larger ones are for the telephone and voice bugs. I'll tell you how to build these later. The largest board of all, the one with the spiral pattern at one end, is for the free project, and that's the one I'll begin with. If you missed last month's free components, by the way, all is not lost. There are some spare ones—see Buylines elsewhere in this article for details.

The Free Project

When the time came around for this year's free project, I was very keen on the idea of giving away a bug. Right up until the last moment I thought it would be impossible—how can you possibly make a bug with half a dozen components? Eventually, by etching the coil onto the PCB and getting as much work as possible from the remaining parts, I just about managed it. The circuit is shown in Fig. 1.

It has to be said that because of certain compromises from paring the circuit to the very core, the performance is not in the top league. In fact it would have difficulty qualifying for the middle league. But you will hear your voice on the radio, and what could be more thrilling than that?

![Fig. 1 Free bug circuit](image-url)
The component layout for the project is shown in Fig.2. So long as you use a suitable soldering iron (a 15W one with a slim bit), seat the components comfortably against the board (no long 'legs') and make absolutely sure not to short out adjacent tracks, everything should be fine. The microphone must be a crystal type — others won't have sufficient output and will in any case upset the operation of the circuit.

Now for the test. Put the bug close to an FM radio receiver and tune slowly across the dial. When you hit the right spot in the band there will be a loud whistle as the microphone picks up the sound from the radio and feeds it back again, setting up oscillations around the loop. Take the bug away from the radio, the whistling should die down, and you're in show biz: sing, tap dance, do a cabaret routine, and there it is reproduced on your radio (and probably your neighbour's too, for that matter).

The transmitter, you'll find, is somewhat sensitive to handling and will drift out of tune from hand capacitance. This can be an advantage when you're tuning the radio in the first place; if you're approaching the proper frequency from below you can gently squeeze the coil between finger and thumb, and you'll hear a 'whump' from the radio as your fingers tune the bug past the radio's frequency. The closer you come to the proper tuning, the less of the coil you'll have to cover to get the 'whump.' Who needs a frequency meter?

There are a number of ways the performance of the circuit can be improved, and if you're an experimenter at heart you can see the right direction to head in by comparing Fig.1 with the infinitely better circuit of Fig.5. Otherwise, you might like to have a go at my next circuit, shown in Fig.3.

This one is the exception in that it isn't specifically intended to be a bug. There are all kinds of uses for a radio transmitter and what I had in mind for this one was a leadless electric guitar. That is to say, instead of connecting the guitar to the amplifier with a length of wire, you make a radio link instead. You can buy transmitters for this purpose, but all the ones I've seen have a price tag totally out of proportion to the cost of the electronics inside. This one can be built for the price of a decent guitar lead, and although I wouldn't have absolute confidence in it if you're about to play at the Colston Hall, Hammersmith Odeon or wherever (crystal frequency control and a transmitting frequency outside the broadcast band would be the main modifications) it's fine for practice and for gigs on the pub and club circuit.

Frequency modulation is achieved with a tuning diode. All diodes have, to a greater or lesser extent, a junction capacitance which varies with voltage. Tuning diodes are specially made to magnify this characteristic, so that on the low cost ones you can get something of the order of a 2:1 capacitance change, and for the exotics 20:1 or more. These are sometimes called varactor diodes, or variable capacitance diodes. I'll call them tuning diodes, which neatly sums up their purpose. If you want to know where to get them from, please don't call us. Look at the Buylines section elsewhere in this article.

If you want to use your free components for this circuit instead of Fig.1, use the free transistor as Q1, not Q2, since the components around Q2 have been specified to suit a ZTX300, whereas those around Q1 are for most transistors. Since the free transistor has a far higher transconductance than the Ferranti device (yes, transconductance is important in certain bipolar transistor circuits, like this one) you may find that the modulation is excessive, causing a certain amount of distortion. There's no easy way around this, other than to use the specified transistors for Q2 and Q1. You may get away with tuning down the guitar's volume control close to minimum, or you might find it better to omit C2, which will reduce the gain considerably.

The circuit layout is shown in Fig.4. Once again,

!! Fig. 2 Free bug component layout

!! Fig. 3 Cordless guitar circuit

ETI JANUARY 1990
there's nothing to cause any difficulty except that it's all too easy to solder across adjacent pads. Check the circuit thoroughly when you've finished to make sure there aren't any shorts, and for heaven's sake don't try soldering it with that monster iron you use for repairing car electrics!

When you're tuning up the circuit, treat the tuning slug in the coil as if it were a Ming vase. It's very brittle and if you break it (as many of you will), that's the end of the coil. Metal screwdrivers, and even metal trim tools, are a no-no. It's plastic every time. If you haven't got a trim tool, a few minutes spent filing down a plastic knitting needle will be time well spent.

To tune up, either set the radio to mid-band and tune the coil, or set the coil slug 1mm from the top of the former and tune the radio. When you hit the right frequency you'll know it by the sudden decrease in the volume of hissing from the radio. Otherwise, you can temporarily connect a microphone to the input and listen out for the whistling, as for the bug circuit. Or have somebody twang the guitar and listen out for the sound. The choice is yours.

Room Bug
I must admit that this one impressed even me. Where electronics is concerned, I've been there, seen it, done it, got the tee-shirt, as they say. There's not a lot that elicits more than a slightly raised eyebrow or a stilled yawn. But to hear this one go gave me the biggest buzz I've had in years (from electronics, that is!) The thing is, if a large and complicated circuit performs well, so what? You expect it. But to hear a little two-transistor job give better clarity than a BBC broadcast, now that's something else entirely. I love it.

As far as sensitivity goes... well, I won't spoil it for you. When you come to try it out, remember that it is a bug, so don't speak directly into the microphone.

Put it a couple of feet away, or on the other side of the room if you like, and speak normally. Speak quietly. Whisper. It will pick it all up.

The circuit for the project is shown in Fig 5a. Once again I've used Ferranti ZTX300 transistors, which are ideal for FM bug making. The slim 'E-line' package is about the smallest you'll get without resorting to surface mount, and an f, of 150MHz for the ZTX300 means it has plenty of oomph at the frequencies of interest.

The microphone is an electret insert. The one I used in the prototype was the two wire version — it's smaller than the three wire type. If I'd really been pushing for the tiniest possible size, they do come smaller still. Connections for the alternative three-wire type are shown in Fig 5b. R1 will not be needed, and the power connections are available on the PCB if this is the only type you can get hold of.

Room Bug
I must admit that this one impressed even me. Where electronics is concerned, I've been there, seen it, done it, got the tee-shirt, as they say. There's not a lot that elicits more than a slightly raised eyebrow or a stilled yawn. But to hear this one go gave me the biggest buzz I've had in years (from electronics, that is!) The thing is, if a large and complicated circuit performs well, so what? You expect it. But to hear a little two-transistor job give better clarity than a BBC broadcast, now that's something else entirely. I love it.

As far as sensitivity goes... well, I won't spoil it for you. When you come to try it out, remember that it is a bug, so don't speak directly into the microphone.

Put it a couple of feet away, or on the other side of the room if you like, and speak normally. Speak quietly. Whisper. It will pick it all up.

The circuit for the project is shown in Fig 5a. Once again I've used Ferranti ZTX300 transistors, which are ideal for FM bug making. The slim 'E-line' package is about the smallest you'll get without resorting to surface mount, and an f, of 150MHz for the ZTX300 means it has plenty of oomph at the frequencies of interest.

The microphone is an electret insert. The one I used in the prototype was the two wire version — it's smaller than the three wire type. If I'd really been pushing for the tiniest possible size, they do come smaller still. Connections for the alternative three-wire type are shown in Fig 5b. R1 will not be needed, and the power connections are available on the PCB if this is the only type you can get hold of.

Room Bug
I must admit that this one impressed even me. Where electronics is concerned, I've been there, seen it, done it, got the tee-shirt, as they say. There's not a lot that elicits more than a slightly raised eyebrow or a stilled yawn. But to hear this one go gave me the biggest buzz I've had in years (from electronics, that is!) The thing is, if a large and complicated circuit performs well, so what? You expect it. But to hear a little two-transistor job give better clarity than a BBC broadcast, now that's something else entirely. I love it.

As far as sensitivity goes... well, I won't spoil it for you. When you come to try it out, remember that it is a bug, so don't speak directly into the microphone.

Put it a couple of feet away, or on the other side of the room if you like, and speak normally. Speak quietly. Whisper. It will pick it all up.

The circuit for the project is shown in Fig 5a. Once again I've used Ferranti ZTX300 transistors, which are ideal for FM bug making. The slim 'E-line' package is about the smallest you'll get without resorting to surface mount, and an f, of 150MHz for the ZTX300 means it has plenty of oomph at the frequencies of interest.

The microphone is an electret insert. The one I used in the prototype was the two wire version — it's smaller than the three wire type. If I'd really been pushing for the tiniest possible size, they do come smaller still. Connections for the alternative three-wire type are shown in Fig 5b. R1 will not be needed, and the power connections are available on the PCB if this is the only type you can get hold of.

Room Bug
I must admit that this one impressed even me. Where electronics is concerned, I've been there, seen it, done it, got the tee-shirt, as they say. There's not a lot that elicits more than a slightly raised eyebrow or a stilled yawn. But to hear this one go gave me the biggest buzz I've had in years (from electronics, that is!) The thing is, if a large and complicated circuit performs well, so what? You expect it. But to hear a little two-transistor job give better clarity than a BBC broadcast, now that's something else entirely. I love it.

As far as sensitivity goes... well, I won't spoil it for you. When you come to try it out, remember that it is a bug, so don't speak directly into the microphone.

Put it a couple of feet away, or on the other side of the room if you like, and speak normally. Speak quietly. Whisper. It will pick it all up.

The circuit for the project is shown in Fig 5a. Once again I've used Ferranti ZTX300 transistors, which are ideal for FM bug making. The slim 'E-line' package is about the smallest you'll get without resorting to surface mount, and an f, of 150MHz for the ZTX300 means it has plenty of oomph at the frequencies of interest.

The microphone is an electret insert. The one I used in the prototype was the two wire version — it's smaller than the three wire type. If I'd really been pushing for the tiniest possible size, they do come smaller still. Connections for the alternative three-wire type are shown in Fig 5b. R1 will not be needed, and the power connections are available on the PCB if this is the only type you can get hold of.
The safest thing is to set the core 1 mm below the top of the coil former (roughly, that is — don't measure it!) and tune the radio. With the bug anywhere in the same room, you'll get a loud feedback whistle as soon as you hit the right frequency. (If you get a feedback whistle without your bug connected up, I should start wondering who has planted a bug on you.) That's all there is to be done, unless the bug is transmitting in a crowded part of the band: you can raise the frequency by moving the core higher, or lower it by screwing the core deeper into the former.

If there is no sign of life from the bug, it's five pounds to a bag of wire clippings that you've shorted out some tracks. Check the underside of the PCB carefully and make absolutely sure that there's not stray solder blobs and that the solder hasn't wandered from one pad to the next next door. Clean off the board with some iso-propanol and scratch off any bits of dross that may remain.

The other possibility is that, because of component tolerances, the bug isn't quite hitting the FM waveband. Tune your radio to the middle of the band and (carefully) adjust the core of the bug's tuning coil until you get the whistle.

For test purposes, and indeed for transmitting to your car outside or for some way down the street, an antenna consisting of a component lead offcut will be fine. You'll be surprised how far it will carry with an antenna less than an inch long. For the best range though, you really need an antenna of about 2½ ft in length. And it must be kept straight. A length of connecting wire, insulated, will fit the bill admirably. Line of sight range is well over half a mile. This means what it says in that if you could, barring trees and walls of the house, actually see the transmitter from the receiver, that's the range you'll get. If there's a chuffin' great hill in the way, it's asking a bit much to expect the signal to go straight through it. The same goes with streets and streets of houses: the more there is in the way the less the range will be, so choose your listening post with this in mind.

Telephone Bug

This one is connected to the victim's telephone line. Snip a wire, splice two connections and it's in. Once installed it remains alert and watchful but completely silent between calls. As soon as the handset is picked up, it senses the change and begins transmission of both sides of the conversation, drawing its power from the line. An evil little device.

The circuit is shown in Fig.7. R1 drops sufficient voltage to allow the circuit to operate, without affecting the working of the telephone. The bridge rectifier means you don't have to bother about which way round to connect it. Either way around, and to either line. The job's over in a matter of seconds.

The transmitting section is just the same as for the voice bug. If you've got a good circuit, why change it? The range, as before, is a few hundred yards with a lynch antenna, and half a mile or more with a 2½ ft straight aerial.

The component layout is shown in Fig.8, and yet again I'll say be careful not to short out adjacent tracks.

Check afterwards, and check again. The track side link should be put on last of all. OK, I admit it, another booby trap. You wouldn't believe what a rush it's been to get four whole projects ready for you, so I hope you'll forgive the mistake.

Connecting this little darling to a telephone line is against the law; so of course you won't do it. But you may be interested to know how the bad people who don't give a fig for the law might go about testing the circuit. First they would take off the lid of the junction box where the telephone wires enter the house. Inside they would find the two wires connected, depending on the age of the installation, either to screw terminals or to an IDC connector block. In either case they'd remove one of the wires, slip one of the bug's input leads into the connector (or screw it to the terminal) and splice the other to the loose wire. Next they would lift the telephone handset to get the dialling tone, then pop over to the radio and tune it across the band until they heard that very tone reproduced on the radio. If the ferrite core needed adjustment to bring the transmitter frequency within the FM broadcast band, they'd never ever use a metal tool. Rumour has it they'd file down a plastic knitting needle to make themselves a little trim tool, and I have heard tell they'd be ever so careful not to break the core.

So there you have it, folks. Your home spy kit. Bug anyone you like, as long as it isn't me. Please note that using these circuits contravenes the Wireless Telegraph Act and quite possibly privacy laws as well, and if you find two sour faced gentlemen listening to a radio outside your house, my advice is to flush them down the loo pretty damn quick. The bugs, that is. You'll find yourself in court for assault if you try flushing home office employees.

Using the telephone bug will also get you into trouble with British Telecom, and believe me if they come knocking on your door they will be quite humourless about it. You'll be up in court, and that's that.

We share this world, and even our hobby, with
certain worthless individuals whose first instincts if they find themselves in trouble is to find somebody else to blame. 'It's not my fault' they whine. 'ETI told me to do it. They shouldn't publish things like that if it's against the law.' Rubbish. We treat you all as responsible people. You have the circuits, you also have the warning. It’s your choice alone whether to bin the board or build projects. So be good, be careful, and have fun with the circuits in any way you choose.

BUYLINES

OK, so you missed out on the free components. Pencil and paper ready? Then this is what you do. Specialist Semiconductors, bless ’em, have taken it upon themselves to cole out the remaining bags, so you either phone them on (0600) 3716, or write to them at Founders House, Redbrook, Monmouth, Gwent. As long as you get in touch before they’re all gone, the components will come zipping through the post to you forthwith. While you’re on the phone, ask them to send along the list of components for the projects — they can supply all the specified parts.

If these projects give you a taste for RF circuits: a useful catalogue for your shelves can be had from Circi. They stock all kinds of RF gear, components and kits. Contact them on (0982) 444111, or write to them at Park Lane, Broxbourne, Herts.

PARTS LIST

FREE BUG PROJECT

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220k</td>
</tr>
<tr>
<td>R2</td>
<td>220R</td>
</tr>
<tr>
<td>C1</td>
<td>2n2</td>
</tr>
<tr>
<td>C2</td>
<td>47p</td>
</tr>
<tr>
<td>C3</td>
<td>27p</td>
</tr>
<tr>
<td>Q1</td>
<td>Free transistor (or ZTX300)</td>
</tr>
<tr>
<td>L1</td>
<td>On free PCB</td>
</tr>
</tbody>
</table>

Additional parts: crystal microphone insert, battery connector, PP3 battery, length of wire for antenna.

CORDLESS GUITAR

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100k</td>
</tr>
<tr>
<td>R2</td>
<td>33k</td>
</tr>
<tr>
<td>R3</td>
<td>12k</td>
</tr>
<tr>
<td>R4</td>
<td>3x3</td>
</tr>
<tr>
<td>R5</td>
<td>6x8</td>
</tr>
<tr>
<td>R6</td>
<td>470R</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2u2 tant or min. elect.</td>
</tr>
<tr>
<td>C2</td>
<td>2u2 tant or min. elect.</td>
</tr>
<tr>
<td>C3</td>
<td>2n2 ceramic</td>
</tr>
<tr>
<td>C4</td>
<td>2p2 ceramic</td>
</tr>
<tr>
<td>C5</td>
<td>27p ceramic</td>
</tr>
<tr>
<td>C6</td>
<td>6p8 ceramic</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>ZTX300</td>
</tr>
<tr>
<td>Q2</td>
<td>ZTX300</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>25uH choke</td>
</tr>
<tr>
<td>L2</td>
<td>7½ turns, 3mm dia., with ferrite tuning slug. Toko coil used in prototype.</td>
</tr>
</tbody>
</table>

Battery connector, PP3 battery, length of wire for antenna, free PCB.

TELEPHONE BUG

RESISTORS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>390R</td>
</tr>
<tr>
<td>R2</td>
<td>68k</td>
</tr>
<tr>
<td>R3</td>
<td>470R</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>47uf ceramic</td>
</tr>
<tr>
<td>C2</td>
<td>6p8</td>
</tr>
<tr>
<td>C3</td>
<td>2p2</td>
</tr>
<tr>
<td>C4</td>
<td>27p</td>
</tr>
<tr>
<td>C5</td>
<td>27p</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>ZTX300</td>
</tr>
<tr>
<td>Q2</td>
<td>ZTX300</td>
</tr>
<tr>
<td>Q1-4</td>
<td>1N4148</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>PART</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>25uH choke</td>
</tr>
<tr>
<td>L2</td>
<td>Toko 3mm coil with tuning slug.</td>
</tr>
</tbody>
</table>

Length of wire for antenna. Free PCB.
THE RTC MONITOR II

100 WATT SPEAKER KIT £60.00 + £3.50 P&P (pair)
RESPONSE 55Hz - 20kHz
BASS POLYMER CONE D: 22cm
TREBLE 14mm
OVERALL SIZE 3BG0: 382 x 252 x 20mm
RECOMMENDED AMP POWER: 10-100 watts per channel
The performance standard achieved in this compact design is distinctively superior to anything else available at the price. The drive units are of lightweight construction and treated with the highest possible standards in the manufacture of professional components. Stereo performance is exceptionally good with a well focused soundstage and sharp resolution of detail. Distortion throughout the frequency range is low even at quite high power input and this gives a great sense of dynamic range and openness especially when used in bi-wired mode.

Supplied with — 2 READY CUT BAKELITES, ALL CROSSTOVER COMPONENTS, 2 BASS MEDIUM RANGE, 2 DOME TWEETERS, HOOK UP WIRE, GRILLE CLOTH, SCREW TERMINALS AND SCREWS.
CROSSOVER KIT. To build 2 sets of crossovers £11 + £7.50 post. (Featured in Everyday Electronics — May 1989 issue). Reprint Free with Kits.

AMPHONIC 125 + 125 POWER AMPLIFIER

125 watt per channel stereo power amplifier with independent volume controls, professional 19" rack mount and silent running cooling fan for extra reliability. Output Power: 125W RMS max, per channel Output impedance: 4 to 16 ohms Sensitivity: 450W at 22kHz Protection: Electronic short-circuit and fuses Power: 220-240V a.c. 50/60Hz Chassis dim: 435 x 125 x 280mm £124.99 + £7.00 P&P

GOODMANS 60W CAR GRAPHIC EQUALIZER AMPLIFIER

As new condition but have been returned by customers or shops, so they may need some attention. Hence the price has been reduced. Order six of these units and you get the seventh one free. Postage £2.90

LCD DIGITAL MULTI TEST METERS
AC/DC volts resistance and DC amps. Most of these are not available or resold by the store and sold with no service at £19.00 each. Postage £1. Made by Ross Electronics. £24

J.B.L. BOLIVAR COMPONENT SPEAKERS

41/2" 100W HI-MID RANGE 1 VOICE COIL PAPER CONE AND DOPED CAMBRIC EDGE FITTED WITH A 31/2" MAGNET, 6.5W RMS max. £15.95
41/2" TWEETER 3/4" VOICE CONE 14mm CONE WITH FOAM EDGE, 2W MAGNET, 6.5W IMPEDEANCE £6.60 POSTAGE £4.70 PER ORDER

52W-2 WAY COMPONENT SPEAKER SYSTEM £3.95
Comprises front left and surround back units and 21/4" tweeter for In-Car or Hi-Fi use. Made by Sanpaw. £12.99 each

8 OHM HI-FI COMPONENT SPEAKER £4.95
1/2" tweeter. Made by Sanpaw, Bass/mid £8.90. 8in SOUND LAB 60W £12.95
8in treble £3.10 each. 12in DANTON 100W £21.75 Res req. 23Hz bass unit Postage £3.20 each order

SPECIAL PURCHASES
Batteries C Size 3 x 22 AH EVERY 2ND 3 x A 4.64 Ah Made by Sony £1.99 each

Our most popular size of rechargeable battery: 4AA size. Japanese made batteries — £3.99 for 4o.

HILLS KITS IN STOCK ⭐ SEND FOR CATALOGUE

£1 BARGAIN PACKS
BUY 10 GET 1 FREE
Please state pack(s) required
No — Order No. Quantity per pack

£15.95
MULTIBAND RADIO
VHF 54-176 MHz + AM CB BANDS 1-80
Listen to — AIR TRAFFIC CONTROL, AIRCRAFT, RADAR
PUBLIC UTILITIES RADIO AMATEURS AND MANY MANY MORE
SQUELCH CONTROL
RUBBER DUCK AERIAL

Radio and TV COMPONENTS ACTON LTD
21 HIGH STREET, ACTON LONDON W3 BNG
ORDER BY TELEPHONE OR POST. Orders under £20 and £10 service charge. Net monthly accounts to Schools, Colleges and P L C only
ACCESS - 332, 24, 211, 30 and 387. Ring 211 and please: Phone: 01-723 4629 or 01 912 9423 Callers, 332 Edgware Road. London W2

£29.50 + £2.50 P&P

AS ABOVE BUT WITH BUILT-IN STEREO HEADPHONE AMPLIFIER FOR THE HARD OF HEARING

You can tune into the TV channel you want while still receiving the picture on your TV set, in fact, in many cases you can tune into the Hi-Fi bands and be able to listen to the Hi-Fi or FM and FM/MW stereo bands while watching TV. For this unit £30.95. Postage £3.50 Made in U.S.A.

SHURE HI-FI STEREO CARTRIDGE
Fitted with an elliptical diamond stylus supplied with fitting kit and instructions. A good quality unit made to sell for well over twenty pounds due to a scoop purchase, we are able to offer these at a fraction of the manufacturers price. All units are brand new and boxed. £7.70 each. If you order in multiples of five you get one free. Postage £1.50 Made in U.S.A.

KOSM MINI SPEAKERS
Use instead of head-phones on your personal stereo, just plug in instead of headphones. Koss soundcells can be mounted on top of your personal stereo with the holder supplied or simply glued in place with double-sided foam. This unit was made to be carried on your body for over seven hours by the Koss professional headphone company of the U.S.A. Due to our scoop purchase we can offer these units for £4.30 each or buy in multiples of ten and you get one free. Postage £1.50 Made in U.S.A.

KOSM STEREO HEADPHONES
High quality size stereo headphones fitted 3.5mm jack with adaptor to 6.4mm jack, ideal use Hi-Fi or personal stereos to make for nine pounds each. Our price for this unit £4.25. Postage £1.00

Hi-Fi stereo cassette deck transport mechanism, complete with all make, model, and tape heads. 12V d.c. operation. Unused manufacturers surplus JAM-ROM. £6.20 + £1.50 P&P 2 for £10 + £2.50 P&P

EXTRACTIBLE HOUSING FOR YOUR CAR STEREO + SIZE DIME + HANDLE INCLUDED + SPACE FOR MEMORY BATTERY + 4 CR E E R I S T O R SYSTEM
ENABLES YOU TO REMOVE YOUR VALUABLE STEREO FROM YOUR CAR (WITHOUT THE AID OF A HAMMER AND CHISEL, CHAINS ETC.) £9.99 postage £2.50

£30 + 30 WATT AMPLIFIER KIT
An easy to build amplifier with a good specification. All the components are mounted on the single PCB. which is already punched and breadboarded. £20.40 x 2 (DIN 4 ohm 40) £CD Aux tape, 1 tape II, tuner and phono and or CHEQUES £48.80 POST

£35.00 - £20.50 P&P

In the cut-throat world of consumer electronics, excepting companies like us, due to a massive der order is "Will anyone notice if we save money by chipping this out?". In the domestic TV set it is one of the first casualties to come of the sound quality. Small speakers and no tone controls are quite common and that is why most TV companies do their best to transmit the highest quality sound. Given this background a considerable amount of time was spent to transform this TV sound TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder.

Size: 270 x 192 x 65mm. £35.00 - £20.50 P&P
David Silvester tunes in to the 20 metre amateur band

TWENTY METRE RECEIVER

Single sideband (SSB) receivers are normally associated with high performance and can be rather expensive. However for the person newly interested in amateur radio or simply HF radio reception, the outlay of many hundreds of pounds on a good quality receiver may be too much for something that may turn out to be only of short term interest. If the listener is willing to build rather than buy, then a reasonable quality receiver using the direct conversion technique can be built for a few tens of pounds rather than hundreds. With an interest in construction and insufficient cash to go out and buy a transceiver the author decided to build a direct conversion receiver for the 20 metre amateur band as much to see what is possible using a simple circuit. The 20 metre band allows world-wide coverage at certain times and is open to interesting places all year round.

Direct conversion receivers are simple to design and build, they have good sensitivity and are easy to use. The alternative of a tuned radio frequency receiver was eliminated as they are more difficult to use.

Commercial receivers use either double conversion techniques shown in Fig. 1 or the simpler single conversion type where the first IF amplifier, the second mixer and its oscillator are left out but high cost crystal filters are included to keep the bandwidth within acceptable limits. The provision of three detectors for AM, FM and sidebands and either twin stable oscillators or crystal filters for bandwidth control increases the cost. Fig. 2 shows the direct conversion technique; there is one stable oscillator which actually runs at the same frequency as the signal being received. Filtration is carried out at AF where the use of an inductor/capacitor filter is easy to design and build. Direct conversion receivers are primarily designed for use with single sideband, carrier wave (CW), and morse transmissions. The oscillator runs at the carrier fre-
Design Considerations

The block diagram for the radio is shown in Fig. 2. An important design requirement is the stability of the single oscillator which in this case runs from 14.000 to 14.350MHz. This oscillator must be stable to within a few Hertz after a short warm-up period otherwise the user will forever be returning the radio. The oscillator needs to be settable to within about 100Hz so that the oscillator control can be calibrated in Megahertz otherwise a conversion chart can be drawn up.

Stability will be lost if long wires are used from oscillator to tuning capacitor so an alternative is to use variable capacitance diode pairs as the frequency controlling element in the design. The varicap control is carried out by voltage derived from a ten turn potentiometer. Design is also simplified by the use of ready made coils and they are all available commercially as part of the Toko range.

Construction

The whole circuit except for the three potentiometers is mounted on a single PCB, shown in Fig. 6. This board has its lower surface etched to form the track pattern and the upper surface left as a solid ground plane. When making the board, the lower surface is exposed, developed and etched as usual but the upper surface is covered to prevent any removal of the copper layer. In the final stage of board production, holes are drilled through all of the pads on the lower surface, a 1mm drill seems to be the best size for this operation. There are four through board connections shown in Fig. 6 by the crossed crosses, where the upper ground plane must be left and lastly all of the remaining holes on the upper surface have a 1mm ring of the copper film removed from around them so that the component wires could pass through without shorting to ground. A 1/8 inch drill mounted in a handle can be for this. In many cases the components have one end connected to the upper surface of the board and these components have the end connected to the upper ground plane marked with a cross in Fig. 6. Some coil pins and the dual in line ICs need to be connected to ground and in these cases the pin is soldered to a pad on the lower surface of the board and then one of the through board con-

![Block Diagram of Direct Conversion Receiver](image-url)

Fig. 2 Block diagram of direct conversion receiver

![Diagram of Upper Sideband Signal](image-url)

Fig. 3(a) Upper sideband signal (b) Incoming carrier wave (c) Upper sideband with transposed carrier

ETI JANUARY 1990
Fig. 4 Complete circuit diagram of 20 metre receiver
transmissions. In any case a communications receiver will need to be fitted with high cost narrow band filters to resolve this problem and the whole idea for the direct conversion receiver was low cost, C5 working into the 2k input importance of the first AF amplifier gives the low cut-off of 300Hz but due to the low rate of attenuation with frequency of the resistor capacitor filter, this cut-off point is adequate for SSB reception.

The AF amplifier has two stages, a simple inverting op-amp biased for use with a single power supply and a dedicated low power amplifier. The first stage is a standard circuit with an input impedence of 2k ohms defined by R16 and a voltage gain of 100 (equivalent to 20dB) set by the feedback resistor R22. As the receiver only has a single power supply of 12 volts, the non-inverting input to the op-amp has to be held at about 6V to put the op-amp into its linear operating region. This voltage is provided by R20 and R21 with C31 to remove any AC from the op-amp input. Capacitor C33 removes the DC offset at the output of IC3 and passes the AF signal to the volume control RV3 and on to the power amplifier IC4. This stage has a voltage gain of 30dB and a theoretical power output of 2 watts. Using headphones, the series load resistor R30 cuts down the volume, and also prevents damage to the power amplifier chip if the output plug is accidentally shorted out.

With stereo headphones, the two earpieces are connected in parallel to give a load impedence of 4 ohms. C41 isolates the DC on the output of the power amplifier IC from the headphones.

To ensure stability, all of the ICs in the AF amplifier have capacitors across their supply pins and the input has a noise rejection capacitor C37.

Fig. 5 Characteristics of the low-pass filter

**Fig. 4 shows the full circuit diagram for the radio. The oscillator is a standard Clapp oscillator. Diode D1 and the resistor R3 provide gate bias for the FET Q1. The tuned circuit consists of the inductance of L1, the parallel capacitance of C4 & C5, and the varicap diode pair IC2. Feedback to maintain oscillation is taken from a tap on the primary coil of the inductor. The output from the oscillator is from a small secondary coil so that the following buffer only lightly loads the oscillator. During development an MFP102, a 2P24S and a 2SK55 were tried in the position Q1. In all cases the output was similar so any of these and possibly many other FETs may be used, although some care will need to be taken to assure that the FET leads are connected correctly as the pinouts do vary between types.

The capacitance of the varicap diode pair needs only to vary over about 5pF to obtain the full input frequency range of the receiver. If a single varicap is used then a problem occurs because its capacitance varies as the oscillator operates, since the varicaps capacitance varies as its bias varies. To overcome this, the oscillator uses a back to back common cathode varicap pair in a single TO92 package, in which as one diode loses bias, the other receives extra and the capacitance across the anodes remains approximately stable. The other problem is that both diodes must be held in reverse bias even though the anode voltage at the upper end connected to the coil will be varying at 14MHz. This is overcome by making the minimum central bias voltage higher than the peak RF voltage at the top end of the coil. The bias voltage is derived from the 8V regulator - IC1 and the potential divider - RV1 and R1. This voltage can never be less than 4V and allows a 4.5 peak RF voltage.

The ten turn pot, although costly, was chosen because an indicating dial can be used with this type showing receiver frequency. Capacitors C1, C2, and C3 provide stability for the tuning voltage and prevent the oscillator signal feeding back into the voltage regulator IC1. During operation, no current flows out of the varicap except for leakage currents, so resistor R2 provides an RF block whilst passing the varicap DC bias voltage. R4 and C8 isolate the FETs drain from the 12V power supply as feedback of RF may affect the other RF circuits.

The second stage is a buffer amplifier formed around Q2 and Q3. This brings the signal available at the transformer tap up to about 5 volts peak to peak to drive the gate of the dual gate mixer transistor Q5. Buffer Q2 provides the gain, controlled by the ratio of R7 to R10, with Q3 as an emitter follower. The output RF voltage passes to the mixer via C12, R8, C10 and C11 are the stage isolation components. R5, R6 and C7 provide the bias voltage for the stage.

The RF circuit consists of the 14MHz tuned amplifier and a mixer. The RF amplifier has been included to prevent the possibility of the oscillator signal feeding back radiation to the antenna. Both circuits use dual gate MOSFET transistors and care must be taken in soldering the transistor into the circuit. The RF amplifier Q4 is connected to the antenna via the tuned transformer T2. R13 sets the bias for Q4’s source whilst C15 holds the source at AC ground. The tuned circuit using L3, C18 and C19 forms the load for the amplifier.

The second gate of Q4 is connected to a variable bias voltage, derived from the same 8V supply as the feed for the oscillator tuning. Varying the bias voltage alters the transconductance of the MOSFET and this alters the gain of the amplifier stage. This gain control is used to prevent overload of the mixer and the first AF amplifier, when strong signals are received.

The second winding on L3 passes the amplified antenna signal to gate 1 of the mixer stage and also provides its DC bias. In the mixer, the DC bias voltage for gate 1 is held at the same voltage as the source through R15. A series of frequencies are generated but only the audio difference frequency is used. R16 is the load for the mixer with the usual stage isolating components R17 and C22. The capacitor C23 shorts any of the mixer’s RF signals to ground, and C24 and R18 pass the audio signal to the AF filter.

The AF filter consists of L4, L5, and C25 to C29. As can be seen in Fig. 5, this is a low pass filter with a high cut off point designed to attenuate signals outside the normal SSB range. This does lead to the possibility of receiving more than one CW signal if they are closely spaced but it was felt that most users would be listening to SSB.
areas. Construction should cause no problems but the usual care should be taken especially over the connections to the ground planes as there is no indication of the orientation for these components from the holes alone.

The two dual-in-line ICs were soldered into the board instead of using sockets. Board mounting is advantageous with inexpensive ICs like these and provides some heatsinking for the power amplifier. The only components not on the board are the three potentiometers. The pots RV1 and RV2 only carry dc signals and the RF pickup that may occur is shorted to ground on the board itself. These potentiometers are connected to the PCB by single strand hookup wire. The third pot, RV3 carries AF signals at fairly high amplitude and in an attempt to reduce pickup this is connected to the PCB with audio coax cable. At the PCB end of the connection both of the screens for the coax signal cables are connected to the upper groundplane. At the potentiometer, the coax from the first stage amplifier IC3 via C33 has the core connected to one end of the pot and the screen is connected to the other end of the pot to give the ground connection. The AF return wire uses just the core of the coax, the screen is cut back and covered with tape to prevent a ground loop forming.

The antenna connection uses a short length of UR43 or similar 50 ohm RF coax to prevent pickup from the oscillator, whilst the audio output uses another piece of audio coax. In all cases where a wire leaves the board the central conductor passes through the board and is soldered to a pad on the lower surface, and the outer conductor is soldered to the upper surface of the board. It is best to split the screen of the RF coax into two tails and attach them to two tags fitted to the coax socket's mounting bolts. The routing of the off board connections are not critical although it is advantageous to route the antenna input away from the oscillator.

The board, pots and input sockets for the antenna, the 12V power supply, and the headphone socket are all fixed into an aluminium box. A circular area around each mounting hole on the board needs to be solder tinned to ensure that the ground plane securely connects to the case via the mounting bolts and metallic stand-offs.

The live tracks on the under-side becomes sandwiched between the box and the ground plane although strict attention must be paid to ensure that none of the lower surface connections touch the box. The pots are connected so that a clockwise rotation of the knob increases frequency or audio output. The clockwise end of RV1 connects to the pad going to C1 and C2, the clockwise end of RV2 to the pad joining R12 and C17 and the clockwise end of RV3 to the pad to C33, otherwise the controls will not work in the expected manner and the rig will be difficult to use.

The choice of audio socket will depend on the plug fitted to the headphones. Rather than replace this plug a mating socket of the correct size can be used, but the two terminals that carry the different signals in stereo operation need to be connected together at the socket.

The 12V input may be either by way of wires and a grommet or by one of the power plugs, depending on the constructors preference.

Two types of dial for the ten turn pot are suitable, either the round dial scaled from 0 to 100 and a number in a window which varies between 0 and 9, or a larger dial mechanism with a direct read-out. Round dial types have large control knobs which ease the tuning but are more complicated to read. Direct read-out types have a smaller tuning knob but are easier to read and reset to a specified frequency.

Aligning the Rig

The ease of setting up the rig depends on the amount of equipment available. The receiver is designed to
work from a 12V power pack normally intended for powering CB and low power amateur rigs with an actual output voltage of around 13.6V. Although the aluminium box housing the receiver is a good electrical screen, it does not give any magnetic shielding and the magnetic field of the mains transformer in the 12V power supply can couple to the two inductors L4 and L5 giving a very distorted audio output. The separation only needs to be a few inches with the PSU on the side away from the inductors.

All three of the variable capacitors C5, C13 and C18 are initially set to a central position and the potentiometer RV1 is set so that the voltage at the end of R2 is 5V. This should be at the fully clockwise position if the pot has been installed correctly and this equates to an oscillator frequency of 14.4MHz. If an oscilloscope is available connect this to the emitter of Q3, then adjust the core of L1 until the peak to peak voltage at the emitter is 5V. Ignore frequency at this stage. Alternatively a digital voltmeter with an RF probe accessory can be used and the reading set to 5V as before.

A digital frequency meter is helpful in setting the frequency range of the oscillator, but this can be carried out using another receiver or by using a calibration signal from a crystal oscillator. Check that the oscillator can be set to cover the range 14.0 to 14.4MHz which covers the 20 metre amateur band and calibrate the read-out with the dial on the ten turn pot.

If no scope or DVM is available, the core of L1 can be set to the correct frequency with C5 left in the central position. The oscillator output will be sufficiently close for most users.

Once the oscillator is set, the rest of tuning amounts to adjusting the variable capacitors for the maximum audio output of a weak input to the antenna socket. This may be an off air signal or from a signal generator or grid dip oscillator.

True alignment and calibration needs the digital frequency meter, a crystal calibrator or the loan of a communications receiver.

If the constructor is the member of a radio club then these will be available and members may be willing to help for the few minutes that calibration takes.

Setting up the Antenna

A long wire can be strung from an upstairs window to a post at the end of the garden to represent the sort of antenna that the first time user may erect. This inverted L antenna needs a good ground connection that was provided by hammering a 3ft section of copper pipe into the ground. With this simple aerial and the direct conversion receiver, many countries in Europe and North and South America have been heard. Also, by early morning listening, Australia was added to the list. This should please amateurs or short wave listeners used to more sophisticated and more expensive receivers. More over this rig gains its fascination not only because it is inexpensive, but because you built it yourself.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1%, 1% or 5% carbon or metal film)</th>
<th>SEMICONDUCTORS</th>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,3,6,12,15 10k</td>
<td>IC1 7808 8 volt regulator</td>
<td>Ten turn indicator</td>
</tr>
<tr>
<td>R2,22 22k</td>
<td>IC2 8020 varicap</td>
<td>Knobs for RF and AF volume controls</td>
</tr>
<tr>
<td>R4 220R</td>
<td>IC3 LF351 or TL071 op-amp</td>
<td>Diecast aluminium box 190x110x60mm</td>
</tr>
<tr>
<td>R5 4.7</td>
<td>IC4 TBA820M</td>
<td>RF input socket BNC or SO293 as required</td>
</tr>
<tr>
<td>R7,8,11 470R</td>
<td>Q1 MF102 see text for alternatives</td>
<td>Walkman type headphones</td>
</tr>
<tr>
<td>R8 47</td>
<td>Q2.3 BC547 or any equivalent</td>
<td>Power input socket</td>
</tr>
<tr>
<td>R10 75R</td>
<td>Q4.5 SS48 see text for alternatives</td>
<td>Short lengths of URA3 RF coax, some audio coax, hookup wire,</td>
</tr>
<tr>
<td>R13 270R</td>
<td>D1 1N4148 or equivalent</td>
<td>standoffs, mounting bolts normally 48A or metric equivalent.</td>
</tr>
</tbody>
</table>
WIZARD Power CUBE Specification

20 Amp Hour Battery, 2 x 20 Amp Mains Charger, 1 x 20 Amp Solar Charge, Portable, 6 x 20 Amp Multi Output, 1 x 20 Amp Battery Isolator.

Price £75.00 + VAT £86.00

MORE DATA — Send a 1st Stamp for Latest List.

Machine Wizard no.025,70658 Fax 0225706584 for more information or a visit to the works. PAYMENT ACCEPTABLE: Cheque, PO and Cash. Post and packing on components £1.50 or £1.00 for orders over £200. Please add VAT to total.

MERLIN SYSTEMS

Merlin Way, Bowerhill Trig Ed, Melksham, Wiltshire SN12 6TJ
In-car Power Supply (January 1989)
Fig. 3 shows the front view of the 317 regulator with the pin-outs reversed. The photograph, circuit and overlays are all correct showing the ledge at the front of the device.

Audio Design MOSFET Amp (May 1989)
For home constructors of the power amp PCB (Fig. 8), the copper area connecting the negative of C7, C14 and R20 is a 0V #2 connection and should be linked to the 0V #2 copper area at the junction of C16 and C19+. Hart's kit PCB has a ground plane and no mod is necessary. Note that the preset at the bottom right of Fig. 8 takes the place of an external RV3 rheostat when bench testing and is not normally required. In Fig. 7 R14 is not shown — it should be in series in the negative feedback line between C8 and D3. Also in the parts list C20 is 100uF and R9 is 2k2.

Bench Power Supply (May 1989)
In the Parts List, Q3, 4 should be BC237 not BC307. The value in the circuit diagram is correct.

How To MIDI A Piano (June 1989)
In Fig. 5 the connection from pin 19 of IC8 (MREQ) should go to pin 12 of IC7a, not pin 13 as shown. The component overlay is correct.

MIDI Patchbay (July 1989)
Figure 3 shows Q1-6 as npn transistors. They should in fact be pnp and their emitters should be connected to R2-12 respectively (R12 is unlabelled). Although the bases are all connected together they should not be connected to their emitters.

Reflex Action (July 1989)
Two lines in the listing on page 30 need amendment. Line 180 should read
180 PRINT "Enclosure volume = ";vb: PRINT "tuned to";fb:"Hz":PRINT " - 3db at ": f3:PRINT "Ripple = "r:"db"
Line 280 should read
280 1=(2700*a)/(vb*fb 2)-0.96*(a/0.5)

Chronoscope Revisited (September 1989)
In the paragraph headed 'Connections, D10 should read LEDs8 (on the sensor board). Also in Fig. 2, IC10 is shown reversed. The notch should be next to R49.

Field Power Supply (September 1989)
Figure 2 was printed with the artwork densities reversed, rendering a tefl trickly to interpret. It was reprinted together with a omitted coil winding data on P62 of the October 1989 issue. A free photocopy is available from ETI Editorial on receipt of an SAE.

Sound/Slide Synchroniser (December 1989)
The incorrect foil was shown in the December issue for the Sound/Slide synchroniser, the correct foil is shown on this page.
This month's free PCB
Mini bug circuits

The Wavemaker FG board

Motorcycle intercom foil
ETI JANUARY 1990

COURSES

ELECTRONICS TECHNICIANS
FULL-TIME TRAINING

(Ref: ETI 12/89) FULL PROSPECTUS FROM

TEL: 01-373 8721.

LONDON ELECTRONICS COLLEGE (Dept EE)
20 PENNYWERN ROAD, EARLS COURT,
LONDON SW5 9SU.

SURVEILLANCE

SURVEILLANCE & COUNTER
SURVEILLANCE EQUIPMENT
WE MANUFACTURE AND SUPPLY
TOP QUALITY
SURVEILLANCE AND SECURITY EQUIPMENT
including VHF Transmitters
Automatic Telephone
Recorders, Recording
Brackets, Bug Detectors
Counter Top Units
We also offer a complete
range of accessories.

CLASIFIED

John Brasier
0442 66651 Ext 310
Send your requirements to:
ETI Classified Department, ASP, Argus House,
Boundary Way, Hemel Hempstead, HP2 7ST.
Lineage: 50p per word (+ VAT) (minimum 15 words)
Semi Display: (minimum 2 cms)
£13.50 per single column centimetre + VAT

Fring for information on series bookings/discounts.
All advertisements in this section must be prepaid.

Advertisements are accepted subject to the terms and conditions
printed on the advertisement rate card (available on request).

TO ADVERTISE CALL
0442 66651

ETI JANUARY 1990

TO REACH
20,000+
READERS,
CALL
JOHN BRASIER
ON
0442 66651

FREE MAIL ORDER
CATALOGUE OF
ELECTRONIC COMPONENTS
VELLEMAN PROJECT KITS,
TOOLS, ETC.

Also available are:
PC.B. DESIGN/MAINTENANCE
ASSAMLY
REPAIR/SERVICE COMMERCIAL
P.C.B.s & EQUIPMENT

R.J.E. COMPONENTS
207 GODMAN ROAD
CHADWELL-ST-MARY, GRAYS
ESSEX RM16 4TR

MENDASCOPES LTD
REPAIR & RECALIBRATE
OSCILLOSCOPES
ALL MAKES ALL MODELS
NATIONWIDE COLLECTION
& DELIVERY

FREE ESTIMATES
PHONE: 069 172 597

UK (0246) 211222 — Callers welcome

WANTED

Turn your surplus
transistors, I.C.s etc. into
cash. Immediate settlement.
We also welcome the
opportunity to quote for
complete factory clearance.

Contact:
COLES HARDING & CO.
103 South Brink
Wisech, Cambs.
NOW ESTABLISHED OVER 15 YEARS
Tel: 0945 584188
Fax Number: 0945 588444

URGENTLY REQUIRE COILS 1ft
181/4 (three), 1ft 17 (one), Denco
T41/2E, T41/3T, Weyrad (two) each.
T. Didcott, 11 Westfield Crescent,
Patcham, Brighton, Sussex BN1 8JB.

WATCH SHOP

NORWEGIAN PC-USER wants to
swap programs all over the world.
Send disks or lists to: Kent Gran,
Tjørnveien, 1500 Moss, Norway.

MISCELLANEOUS

HEATHKIT U.K. Spares and
service centre Cedar Electronics,
(HR), Unit 12 Station Drive, Bredon,
Tewkesbury, Glos. Tel: 0684-73127.
FOR SALE

DO YOU WANT
SCOPES • GENERATORS • POWER SUPPLIES • POWER METERS
DVMS • OSCILLATORS • ATTENUATORS
TEST EQUIPMENT

Contact:
COOKE INTERNATIONAL
Unit 4, Fordbridge Site, Main Road, Barnham
Bognor Regis,
West Sussex PO22 0EB
Tel: 0243 545111
Fax: 0243 545247
Wide range of items available
Send for lists

1990 COULD BE YOUR YEAR FOR BUSINESS—ADVERTISE IN ETI

HPGL PEN-PLOTTING
HPGL FILES on your discs ink-printed on top quality film for PCBs from £5.24/tournd: A6 to A4 sizes.
Send for details or 5p Stamps for details plus disc mailer.

White House Systems (Dept ETI)
48 South Terrace, Esh Winning,
Durham DH7 9PS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects.
For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate,
Dymock Road, Ledbury, Herefordshire, HR8 2HS.

NEW VHF MICROTRANSMITTER kit, tunable 80-115MHz, 500 metre range, sensitive electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £55 assembled and ready to use £89.95 post free. Access/Visa orders telephone 021-411 1851. Cheques/POs to: Quantek Electronics Ltd, (Dept ETI), 45a Station Road, Northfield, Birmingham B31 3TE.

CLASSIFIED COUPON

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT
DEPARTMENT, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSHTEAD HP2 7ST

PLEASE DEBIT MY ACCESS/BARCLAYCARD No.

EXPIRY DATE

FOR SALE COMPONENTS PLANS

SERVICES PCB'S OTHERWISE STATE

ADVERTISING COUPON

Rates: Lineage 50p per word + VAT minimum 15 words. Semi-display £13.50 per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-paid.

Name

Address

Daytime Tel. No:

Signature

Date

ETI JANUARY 1990
With this special offer from ETI and DCP Microdevelopments, you can purchase one of DCP's highly successful computer interface packs for BBC/Master or Spectrum computers at our remarkably reduced rates, plus you get a wire remote-control buggy to be programmed and controlled by the computer through your interface. This offers an ideal way to get introduced to the thousands of programming possibilities provided by these powerful packs.

ETI Interbeeb + Buggy Set
£49.95 + 1.95 p&p

For BBC/Master owners, the Interbeeb can do much more than just control a buggy's motors! It is a general purpose control interface offering the following facilities:
- eight channel 8-bit analogue to digital converter
- four relay switched outputs rated at 12V/1A
- four switch/sensor inputs

ETI Interpack 2 + Buggy Set
£59.95 + £1.95 p&p

This package also includes a wire remote control buggy with instructions and programs but the interface supplied is the Interpack 2 with a ZX intercard to allow use with all models of Spectrum computer. The ZX Interpack 2 is a power-control interface with many relay outputs and switch/sensor inputs, ideal for the control of motors, lamps, solenoids and so on for models or robotics. This Interface has the following facilities:
- six changeover relay switched outputs each rated at 12V/1A
- eight switch/sensor inputs
- DCP expansion bus system

The Interpack 2 + ZX Intercard plugs directly into the expansion bus of any ZX Spectrum computer and is supplied with comprehensive applications manual. Further DCP modules or your own electronics can be added to the DCP BUS expansion socket including stepping motor packs, D/A converters and so on.
In an astonishing display of self-promoting heroic generosity, next month's issue will contain not extra pages, not a weedy supplement, but a completely and utterly free full-size special edition of ETI — sat neatly inside the first. This 68-page special will contain our selection of the finest and most popular projects to have featured in ETI during the halycon days of 1989. It includes such classics as:

- Pulsed Twin-loop Metal Locator
- Micro Monitor Loudspeakers
- Linsley Hood 80W MOSFET Amplifier
- How To MIDI A Piano
- Aerial Amplifier
- Rev Rider
- Digital Doorbell
- Trembler Motion Detector
- JLH Granny Aid

And all these are just an added bonus to accompany an excellent main magazine. In the February issue we launch a major project — the ETI Cheapscope. This 20MHz dual-trace scope can be constructed at an astounding low cost. Full details next month.

Plus at last, the moment all you super-fi audiophiles have been waiting for — the ETI review of the Sage SuperMOS II amplifier modules, with complete critique and technical scrutiny.

We'll be running a major computer music talent competition with prizes including Casio's VZ-1 synth, studio time and MIDI-equipment kits. There will be features on encryption and scrambling of television signals, a detailed look at surface mount technology, and a fascinating introduction to earth current signalling — wireless communication used in World War I trench warfare.

Together with news, readers' circuits and the projects that make us famous (an EPROM Emulator, a lighting controller and others), the February issue is a gem to be treasured.

Please note that once the February issue sells out from the newsagent, back copies ordered will not include the Top Projects special. This will be available separately at normal cover price. Readers are advised to reserve their February copies with their newsagent.

FEBRUARY ISSUE WITH FREE TOP PROJECTS SPECIAL — OUT FRIDAY JANUARY 5th

ADVERTISERS' INDEX

AUDIO KITS	41	MERLIN SYSTEMS	60
BK ELECTRONICS	41	NATIONAL COMPONENT CLUB	60
CIRKIT HOLDINGS	22	NUMBER ONE SYSTEMS	17
CRICKLEWOOD ELECTRONICS	3, 41	PM COMPONENTS	31
DISPLAY ELECTRONICS	23	RADIO & TV COMPONENTS	53
ELECTROVALUE	33	SAGE AUDIO	11
EMINENCE	60	SHERWOOD DATA SYSTEMS	40
GREENBANK ELECTRONICS	41	STEWARTS OF READING	60
HART ELECTRONICS	22	SUMA DESIGNS	22
HENRY'S AUDIO	3	TK ELECTRONICS	28
J&B BULL ELECTRICAL	32	TSJEN LTD	IBC
MAPLIN ELECTRONICS	OBC	WILMSLOW AUDIO	3
MATMOS LTD	11		
BOARDMAKER from TSIEN

Computer aided PCB layout and schematic design for IBM and compatibles

- EASY TO USE (EASY-UUI!) PCB EDITING
- SCHEMATIC DRAWING
- PHOTOPLOT

ONLY £195
+ carriage & VAT

☐ If you have never used PCB CAD before, send for our free demo disk to see how easy it can be.
☐ If you have an overworked and probably expensive PCB system already, send for our demo to see how much BOARDMAKER does for the money.

100 HOUR BOARDMAKER: a new concept in software test driving for 1990!

For only £30, we sell you a package that runs for 100 user hours. At the end of that period either return the package in good order for a full refund, or send us the remaining sum and the dongle and we will return it set to run forever. This offer is available for a limited period.

We would like to tell you more, but our customers do quite a good job for us:

"I find it is a really worthwhile piece of integrated software that it is a delight to use and backed up with a very comprehensive manual. This is the fifth PC layout program I have used recently and it is a really a great advance over the others"
ARIOANE DESIGN Sussex.

"Rarely have I come across software that has such an easy to use interface, and has such powerful fast features, together with a low price which includes everything you need to produce phototools"
OPEN RESEARCH Oxhey

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge
CB3 0DJ
Tel. 0223 277777
Fax. 0223 276444

GRAPHTEC MP4000 A3 PLOTTERS
MP4100 only £633 - MP4200 only £845
We recommend these plotters for PCB applications. Contact us for prices on other plotters in the GRAPHTEC range.

SEND FOR FREE DEMO DISK
RING 0223 277777 NOW
THE NEW MAPLIN CATALOGUE — WORLDS APART!

OVER 580 PAGES WITH HUNDREDS OF NEW PRODUCTS AT SUPER LOW PRICES

1990 BUYER'S GUIDE TO ELECTRONIC COMPONENTS. SEND FOR YOUR COPY TODAY.

AVAILABLE FROM 10TH NOVEMBER 1989 IN ALL W.H. SMITH STORES.