\square
 ELECTRONICS TODAY INTERNATIONAL

（ \rightarrow POWER AMPLIFIER MODULES－TURNTABLES－DIMMERS－ OMP POWER AMPLIFIER MODULES Supplied ready built and tested．
OMP POWER AMPLIFIER MODULES Now enioy a mord－wnde recutason for cuaitity reiabliry and

 Glass sore PCB．and Dive crrcuiss to dower convatiole Vu meter Open and shot cram proot．
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP100 Mk 11 Bi－Polar Output power 110 watts R．M．S．into 4 ohms，Frequency Response 15 Hz － $30 \mathrm{KHz}-3 \mathrm{~dB}$, T．H．D． 0.01% ，S．N．R．-118 dB ．Sens．for Max output 500 mV at 10 K ，Size $355 \times 115 \times 65 \mathrm{~mm}$ ． PRICE $£ 33.99$＋£3．00 P\＆＇P．
NEW SERIES II MOS－FET MODULES
OMP／MF 100 Mos－Fet Output power 110 watts R．M．S． into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor，>300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．Typical 0.002% ，Input Sensitivity 500 mV ．S．N．R． -125 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE $£ 39.99+£ 3.00$ P\＆P．

OMPMF200 Mos－Fet Output power 200 watts R M．S． into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$
-30 B ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．Typical 0001% ，input Sensitivity 500 mV ．S．N．R． -130 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ ．
PRICE $£ 62.99+£ 3.50$ P\＆P．
OMPMF300 Mos－Fet Output power 300 watts R．M．S． into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ．Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．Typical 0.0008% ，Input Sensitivity 500 mV S．N．R．-130 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$ ． PRICE $£ 79.99+£ 4.50$ P\＆P．
 PEC（PROFESSOONAL EOUPWENT COMPAREAE

VU METER Compatble with our four amplifers detailed above．A very accurate visual display employing 11 LED diodeses（ 7 greeen， 4 red plus an additional oniat tindicaior．
Sophistcatediogic Case，nth tinted acoylict front．Szze $84 \times 27 \times 45 \mathrm{~mm}$ ． PRICE $18.50+50 \mathrm{p}$ PSP．

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FRE－ QUENCY BULLETS AND HORNS，LARGE S．A．E．（30p STAMPED）FOR COMPLETE LIST．

MCKENZIE：－INSTRUMENTS，P．A．，DISCO，ETC．

ALL MCKENZIE UNITS 8 OHMSTMPEDENCE
$8^{8 *} 100$ WATT C8100GPM GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID．DISCO
RES，FREQ，BOHz FREO，RESP TO 14 KHZ SENS， $996 B$ ．

 12 100 WAT C12100GP HIGH POWER GEN，PURPOSE．LEAD GUITAR．DISCO．
RES．FREO， 4 SHZ FREO．RESP．TO 7 KHz ．SENS .980 B ．． RES 100 WAT C12100TC TWIN CONE HIGH POWER WIDE RESPONSE．PA，VOCIE．DISCO．
12
 12.200 WATT C12200B HIGH POWER BASS．KEYBOARDS．DISCO．PA
RES FREQ， 40 Hz ．FREO．AESP TO 7 KHz SENS 100dB．

 RES．FREO， 4 OHz．FREQ．RESP．TOSKH2．SENS． 980 GB．
15200 WATI C15200日S VERY HIGH POWER BASS． 15200 WAT C152008S VERY HIGH POWER BASS．
RES，FREQ．40 H2．FREO，RESP．TO 4 KHZ SENS． 990 B． RES，FREQ．40H2．FREQ，RESP．TO 4 KHZ SENS． 99 AB ．
15250 WATI C 15250 S VERY HIGH POWER BASS RES．FREO． 40 Hz FREQ．RESP，TO 4 KHz ．SENS， 990 B 15400 WATT C15400BS VERY HIGH POWER．LOW FREQUENCY BAS RES FREO， 40 Hz ．FREO，RESP．TO 4 KHz SENS 102 AB 18 400 WAT C194048S EXTREMELY HIGH POWER L
RES FREO 27HZ FREO RESP TO 3 KHZ SENS
EARBENDEiS：－HI－FI，STUDIO，IN－CAR，ETC．
ALL EARBENDER UNITS 8 OHMS EXCEPT EB2－50 AND EBIO－50 DUAL 4 AND 8 OHM BASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED FOAM SURROUND
$8^{-} 50$ WATT EE8－50 DUAL IMPEDENCE，TAPPED $4: 8$ OHM BASS，H1－FI，IN－CAR
RES FREO 40 Hz FRED

RES．FREQ． 35 Hz ．FREO，RESP．TO 3 KHz SENS， 960 BB ． 1260 WATT EB12－60 BASS，Hi－FI，STUUDO．
RES FREO 28H2－FREO RESP TO $3 K H 2$ SE RES．FREO．2ABz．RREQ．RESP．TO 3KH2．SENS， 92 dB
12 100 WAIT E日12．100 12100 WAT EB12．100 BASS．STUDO．SEFN， 920 CE ．
RESLENT DISCO FULL RANGE TWIN CONE，HIGH COMPLANCE，ROLLED SUR S1／＂ 60 WATT EB5－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC
 6／F＂ 60 WAT EB6－60TC（TWIN CONE）H1．FI．MUUT－ARR
RES FREO $38 H z$ ．FREO，RESP，TO 20KHz，SENS． $94 d B$ ．

 RES．FREQ， 35 HZ FREQ， AESP ．TO 12 KHz ．SENS． 86 CBB ．

TRANSMITTER HOBBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PIINTED CIACUIT BOARD ANO HIGH OUALTY COMPONENT COMPLETE WITH CIRCUIT AND INSTRUCTIONS
 FORMACE RUNGE IP TO 3 MIESS．SEE $32 \times 12 \mathrm{~mm}$ ，SUPPYY 12 V © 0 SRMP PRICE EITM9＋ETDO PAP WICROTRANSNITTEA BUGI 100－100NH2 VARCAP TUNED COMFLETE WTH $58.62+9.00$ Pa P

PRICE $£ 27.50+\varepsilon 3.50 \mathrm{P} \& \mathrm{P}$
PRICE $£ 21.00+£ 3.00$ PsP．
PRICE $£ 32.00+\varepsilon 3.50$ P $\&$ P． UND

PRICE $£ 9.99+\varepsilon 1.50$ P8P． PRICE $£ 10.99+\varepsilon 1.50$ P\＆P． PRICE $£ 12.99+\varepsilon 1.50$ P $\&$ P． PRICE $£ 16.49+$ E2．00 P\＆P．

OMP VARISPEED TURNIABLE GHASSIS．

NEW MXF SERIES OF POWER AMPLIFIERS
THREE MODELS：－MXF200（100w＋100w） MXF400（ $200 w+200 w$ ）MXF600 $(300 w+300 w)$ All power ratings R．M．S．into 4 ohms．
FEATURES：\ddagger independent power supplies with two Toroidal Transtormers $\#$ Twin LE．D．Vu meters \div Rotany indended levet contros $\$$ lluminated on off swith $\$ \mathrm{XLR}$ connectiors $\$$ Standars 75 FmV inguts $*$ Open and short circuit proof $~$ Latest Mos－Feis for stress tree power delivery inio virually any load $\#$ High slew rate \ddagger Very iow distortion $\$$ Auminum cases $\$ M X F 600$ Fan Cooled with D．C．Loudspeaker and Thermal Protection． USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC． SIZES：－MXF $200 \mathrm{~W} 19 \times 431 /{ }^{\prime \prime}(2 U) \times 011^{\prime \prime}$ MXF $600 \mathrm{~W} 19^{\circ} \times \mathrm{H} 5 / 1^{\circ}(3 \mathrm{U}) \times \mathrm{D} 13$ PRICES：MXF200 ${ }^{〔} 171.35$ MXF600 $£ 322.00$

OMP LINNET LOUDSPEAKERS

the verybestin oualtty and value

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABANET
OMP $12-100$（ 100 W 100dB）PRICE $£ 159.99$ PER PAIR OMP 12.200 （ 200 W 102 dB ）PRICE $£ 209.99$ PER PAIR SECURICOR DEL．：－C1200 PER PAIR

OMP SLIDE DIMMER 1K WATT \＆2．5K WATT

 5y in ．FURL 65mm SLIDE travel MONTTORINDICATOR
MEON MONITORINDICATOR ＊FLASH OVERRIDE
BUTTON ＊HIGH 8
PRESETS PRESETS
－FUIT SUPPRESSED TO BS 800 SIRES：－
TKW H128×W
 PAICES： 1 K WATT $£ 15.99$
2．5K WATT $\varepsilon 24.99+60 \mathrm{P}$ P\＆P

PiEZZ ELECTBIC TWEETERS－MOTOROLA

PIEZO ELECTRIC TWEETERS－HOTOROLA
Join the Piezo revolution．The low oynamic mass（no voice coil）of a Piezo tweeter produces an improved transient be added to existing speaker systems of up to 100 watts（more t 2 put in series）FREE EXPL ANATOR Y LEAFLETS SUPPLIED WTTH EACH TWEETER． TYPE＇A＇（KSN2036A） 3^{\prime} round with protective wire mesh．ideal for bookshelf and medium sized Hi－fi speakers．Price $£ 4.90$ each +50 p P\＆P． TYPE＇B＇（KSN1005a） $31 / 2$ z＇super horn．For general purpose speakers，disco and P A．systems etc．Price TYPE＇C＇ $\mathbf{~ C ~}$
TYPE C（（KSN6016A） $2 \times 5^{\prime}$ wide dispersion horn．For quality Hi－fi systems and quality discos etc．Price $\mathbf{\Sigma 6 . 9 9}$ TYPE＇ D ＇（KSN1025A） 2 ＂$\times 6$＇wide dispersion horn． Upper frequency response reta ned extending down to mid range（ 2 KHz ）．Suitable for high quality Hi－fisystems and quality discos．Price £9．99 each＋50p P\＆P． TYPE＇E＇（KSN1038A） $33 / 4$ horn tweeter with attractive silver finish trim．Suitable for Hi．fi monitor systems etc． Price $£ 5.99$ each +50 p P\＆
LEVEI CONTROL Combines on a recessed mounting plate，level control and cabinet input jack socket．
$85 \times 85 \mathrm{~mm}$ ．Price $£ 3.99+50 \mathrm{p} \& \mathrm{PP}$

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \＆R graphic equalisers and twin 10 segment L．E．D． Vumeters－Many oulstanding teatures 5 Inputs with individual faders providing a useful com bination of the following：－ 3 Turntables（Mag）． 3 Mics． 4 Line including CO plus Mic with talk over switch Headphone Moni－
tor．Pan Pot L．\＆A．Master Output controls． tor．Pan Pot L．\＆R．Master Output controls
Output 775 mV ．Size $360 \times 280 \times 90 \mathrm{~mm}$ ．Supply Output 77
$220-240 \mathrm{v}$
Price E134．99－£4．00 P\＆P

THE ORIGINAL SURPLUS WONDERLAND!

SPECIAL PURCHASE
 V22 1200 baud modems

We got a tremendous buy on further stocks of this popular Mester Systems $2 / 12$ microprocessor controlled V22 full duplex 1200 baud modem - we can now bring them to you at half last advertised pricel Fully BT approved unlt, provides standard V22 high speed data comm, which at 120 cps, can save your phone bill and connect time by a staggering 75% ! Ultra slim 45 mm high. Full featured with LED status indicators and remote error diagnostics. Sync or Async use; speech or data switching; buitt In 240 v mains supply and 2 wire connection to 8T. Units are in used but good condition. Fully tested prior despatch, with data and a fuli 90 day guarantee. What more can you ask for - and at this pricel!

ONLY $£ 79$ (D)

MONITORS COLOUR MONITORS

Decca 16 " 80 series budget range colour monitors. Features include PIL tube, an attractive teak style case and guaranteed 80 column resolution, features which are only normally seen on colour monitors costing 3 times our price! it is absolutely ready to connect to a host of computer or video outputs. Manufacturers fully tested surplus, sold in little or hardly used condition with 90 day full RTB guarantee. Decca 80 RGB TTL and synic input for BBC and similar type interface etc.
Decca 80 COMPO 75 ohms composite video input with integral audio amp \& speaker. Ideal for use with video recorder or our Telebox ST, or any other audio visual use.

FLOPPY DISK DRIVES BARGAINS GALORE !!

NEW $51 / 4$ inch from $£ 29.95$!

Massive purchases of standard $51_{4}^{\prime \prime}$ drives enables us to present primeproduct at industry beating low pricesi Allunits (uniess stated) are removed from often brand new equip ment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from $+5 \&+12 v d c$. are of standard size and accept the standard 34 way connector. SHUGART SA405
TANDON TM100-2A IBM compatble DS
TANDON TM101-4 80 Track DS
EEAC FD-E etc.har height.State 40 or 80 T E75.00(B)

31/2 INCH BRAND NEW AT £19.95!!

Never before seen price for a $3^{1 / 2 "}$ drive. Standard size believed to be by Canon. Brand new and packaged - mint condition! 40 track SS, run from $+5 \&+12 \mathrm{vdc}$ with standard power connector

Only

E19.95(B)

CHOOSE YOUR 8 INCH!

Shugart 800/801 SS refurbished \& tested $\mathbf{E 1 2 5 . 0 0}$ (E)
Shugart 851 double sided refurbished \& tested $£ 195.00($ E) Mitsubl shi M289 4-63 double sided switchable
hard or soft sectors- BRAND NEW

> SPECIAL OFFER!

Dual $8^{\prime \prime}$ drives with 2 megabyte capacity housed in a smar case with built in power supplyl
kdeal as exterior drives!
Oniy £499.00 (F)
THIS MONTH'S SPECIALI

WRITE FOR OUR EIGHT

WEEKLY BARGAIN
SHEET \& GET ON OUR MAILING LIST - FREE!

Any type only $\mathbf{E 9 9 . 0 0}{ }^{(E)}$

Yery high res, faty casedimains powiored $14^{\prime \prime}$ green screen monitor. W non-glare screen 8 syivel/ie twase. The very latest tochnotogy at the v est pricel F Ully compatible PC ape awichable input to phing direct to HER
card outhuts one features fhchude aulx os a 32v DC output's to power at feast 2 disk dives or other equ|phert. Supplice BRAND NEW \& Boxed.

POWER SUPPLIES

Al power supplles operate from 220-240vac. All power supples are BRAND NEW unless stated. We have many other types ranging from 3 v to t Okv asways in stock.
Eyte Drive BD301Dual output 5vdc@1.6 amp \& 12vic@ 1.5 amp . Perfect for disk drives. Has standard Molex sockets.Attractively encased. Dim $15 \times 12 \times 7 \mathrm{~cm}$. $\quad 819.50$ (B) Plossey PL122 fully enclosed 12 vdc 2 amp . Regulated and short proof. Dim $13.5 \times 11 \times 11 \mathrm{~cm}$. $\Sigma 16.95$ (B)
AC-DC Linear PSU with outputs of $-5 \mathrm{v} @ 5.5 a .-5 \mathrm{v} @ 0.6 \mathrm{a}$, $-24 v @ 5 a$. Fully regutated and short circuit proof. Dim $28 \times$ $125 \times 7 \mathrm{~cm}$. E48.50(C)
Power One PHC 24vdc 2a. Linear \& regulated 879.95 (B) Boshert 13090 switch mode ideal for drives or complete system. +5 v @ 6a, +12v@ 2.5a, -12v@ 0.5a and -5 v @ 0.5 a . $\operatorname{Dim} 5.6 \times 21 \times 10.8 \mathrm{~cm}$. $£ 29.95$ (B) Boshert 13085. Same as above but outputs of +5 v @ $6 \mathrm{a},+24 \mathrm{v} @ 1.5 \mathrm{a},+12 \mathrm{v} @ 0.5 \mathrm{a},-12 \mathrm{v} @ 0.5 \mathrm{a}$ E39.95(B) Greendale 19ABOE 60 watt switch mode outputs -5v @6a,+12v@1a,-12v@1a,+15v@1a. Dim $11 \times 20 \times 5.5$ cm . Removed from equipment and tested. \quad E24.95(B) Conver ACI $30-3001$. High grade VDE spec. Compact 130 watt switch mode. Outputs -5 v @ 15a,-5v@1a,-12v@6a Dim $6.5 \times 27 \times 12.5 \mathrm{~cm}$. Reg price $£ 1901$ Ours new $£ 59.95$ (C) Famell G6/40A Compect 5 v 40 a switch mode and fully enclosed.
2140.00(C)

Farnell G245S As above but 24v @ 5a.

SPECIAL EXPERIMENTERS PSU's

Buit 10 Brs ig igocus standards. We have no dala so unnts are suppoied for experimentation. EPSU1:55v 2a, 112 Z
 1a,-12v $0.5 \mathrm{a} \& 5$ others. $30-7$ ovdc input. Parts alone value! EPSU1............ $£ 16.95$ (C) EPSU2............ 59.95 (C) WRITE FOR ITEMS YOU DON'T SEE, OUR SHOP AND WAREHOUSE ARE FULL TO BURSTING!

IBM KEYBOARD DEAL

A replacement or backup keyboard for IBM PC, PC-XT or PC-AT, all in onel it has a switch on the rear to convert betwen modelsi LED indicators for Caps, Scroll \& Num Locks. Standard 10 function keys plus 56 on the main bank and 19 on the keyped, 85 in all. Made by NCR for the English \& US markets. Absolutely standard. Brand new $\&$ boxed with manual and key template for user slogans on the function keys. Attractive beige,grey and cream finish, with the usual retractable legs underneath. A generous length of curly cord. terminating in the standard 5 pin DIN plug. A beautiful clean piece of manufacturers surplus. What a deall $£ 59$ (B)

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Einstin. The TPC2000 Professional 3 piece system comprises: Quality high resolution Green $12^{\prime \prime}$ monitor. Sculptured 92 key keyboard and plinth unit containing Z80A CPU and all control ctrauits. PLUS 2 Integral TEAC 5.2580 track double sided disk drives. Generous other features include dual $8-$ IBM format disk drive support. Serial and paralled outputs, full expansion port, 64 K ram and ready to run software. Supplied complete with CP/M, Wordstar and Basic. Brand new and covered by our farnous 90 day guarantee and backup. The original price of this unit is over $£ 1400$!

Our Price ...only........ $£ 299$ (E)
EQUNNOX (IMS) 5100 system capabie of running either Turbo or Standard CPM. Unit features heavy duty box containing a powerfu! PSU. 12 slot backplane \& dual double sided $\mathbf{8}^{\text {" }}$ disk drives. Two individual $\mathrm{Z80}$ cpu boards with 192K of RAM, allows the use of multi-user software with up to 4 RS232 serial interfaces. Well loaded features include battery backed real time clock and socketed IC's. Units in good condition and fully tested prior to despatch. Regret no

THE AMAZING TELEBOX!

Converts your colour monitor into a QUALITY COLOUR TV!!

Brand new high quality, fully cased, 7 channel UHF PAL TV tuner system. Unit simply connects to your TV aerial socket and colour video monitor turning same into a fabulous colour TV. Dont worry if your monitor does'nt have sound. the TELEBOX even has an integral audio amp for driving a speaker plus an auxillary output for Headphones or Hi Fi system etc. Many other features: LED Status indicator, Smart mouldied case, Mains powered. Buit to BS safety specs. Many other uses for TV sound or video etc. Supplied BRAND NEW with full 1 year guarantee.
Telebox ST for composite video input monitors.. 229.95 (B) Telebox STL as ST but with integral speaker.....E34.95(B) Telebox RGB for analogue RGB monitors........... 259.95 (B)

BRAND NEW PRINTERS

Epson MX-80 F/T One of the most popular printers around Bi-directional printing with full logic seeking. 9×9 dot matrix for enlarged.boid,condensed etc. Standard parallel interface. Brand label removed from front. Handles tractor,fanfold and individual paper. OK with IBM PC and most others. A tremendous buy! E129.00 (E) Hazeltine Espitnt small desktop. 100 cps with RS232 and standard parallel. Full pin addressabile and 6 user selectable fonts. Up to 9.5^{\prime} paper. Sheet \& tractor feed. \quad \& $149.00(\mathbf{E}$) Centronics 150 series. Always known for their reliabilty in continuous use - real workhorses in any environment. Fast 150 cps with 4 fonts and choice of interfaces.
150-SN up to $9.5^{\prime \prime}$ paper.
2155.00(E)

150-SW up to 14.5° paper
ع189.00(E)

Come to our Shop and see before you buryl Technical help ahways on hand plus many un advertised specials. You can buy a colour the gang at 215 Whitehorse Lanel manual at present so our price only.
c199 (F)

VOLUME 18 No 8

Page 56

ISSN		
$0142-7229$	ABC	Member of the Audit Bureau of Circulation

ETI is normally published on the first Friday in the month preceding the cover date. The contents of this publication including all articles. designs. pians. drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specralist Publications Limited. All rights conferred by the Law of Copyright and other inceliectual properry righzs and by viruried to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company (c) 1989 Argus Specialist Publications Lod. All reasonable care is taken in the preparation of the magazine contenes, but the publishers cannor be held legally responsibic for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data concained in advertisements are accepred by us in good fath as correct at the time of going to press. Neither the advertisers nor the publishers can be held responsible, however. for ary variations affecting price or availability which may occur after the publication has closed for press.

- Subscription rates - UK: $£ 18.00$. Europe: $£ 22.20$. Middle East: $£ 22.40$. Far East: $£ 24.00$. Rest: $\mathbf{\varepsilon} \mathbf{2 2} .70$ or USS 39.00

Argus House Boundary Way, Hemel Hempstead HP2 7ST
Tel: (0442) 66551 Telex: 827797

Jez Ford: Editor
Paul Freeman: Deputy Editor
Paul Chappell: Projects Editor
Mark Webb: Group Editor

Cass Gilroy: Ad Manager Nick Peters: Classified Sales Jerry Fowler: Technical lllustration Mark Warford: Photography

REGULARS

6

Blueprint

Open Channel
10

Diary

Booklook
Classified Ads

Readers'
Free Ads
25

Subscriptions

II

 2Oops!

35

Special Offer

PCB Foil Patterns

Photocopies \& Backnumbers

45

Citizens Band

46

Next Month

66

Ad Index

Published by Argus Specialist Publications Ltd., Argus House, Boundary Way, Hemel Hempstead HP2 7ST. Tel: (0442) 66551. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: 01-677 8111. Overseas and nonnewstrade sales by Magazine Sales Department. Argus House, Boundary Way. Hemel Hempstead, HP2 7ST. Tel: (0442) 66551. Subscriptions by Infonet Ltd., 5 River Park Estate, Berkhamsted HP4 IHL. Tel: (0442) 876661. US subscriptions by Wise Owl Publications, 4314 West 238th Street, Torrance, CA 90505 USA. Typesetting and origination by Project 3 Filmsetters, Whitstable. Printed and bound by The Chesham Press, Chesham. Covers printed by Loxley Brothers Ltd., Sheffield.

FEATURES/PROJECTS

In The Beginning Was The Valve

John Linsley Hood takes the thermionic valve out of the museum and into perspective, looking at its history and use in audio design past and present

14

Noise Annoys

Paul Chappell opens up the ETI data book collection and asks why so many manufacturers keep quiet about noise figures

CIRCUITS DC Motor Circuits

Ray Marston opens his circuit notebook to ETI readers and offers a step-by-step guide to DC motor control

26

CIRCUITS

Neon Circuits

A selection of neon ideas to bring bright lights to the bigcity or the humble workshop. Paul Chappell makes the circuits glow

32

CIRCUITS

Security Tech

 TipsRobert Penfold presents a bumper bundle of circuit ideas to keep the burglars at bay when youre basking on the beach

Page 42

PROIECT

Digital

 Joystick/Mouse ConversionRichard Grodzik can use his joystick to wander through a WIMP environment without waving a mouse around his desk

PROJECT

Switchless

Intercom System

A hands-free design for constant communication without the curses. Messrs Feeley and Lawson do the talking

PROJECT

Micro Monitors

Jeff Macauley puts his design program into action to produce this design for a pair of compact bass reflex speakers

$4 \mid$

56

\square ELECTRONICS TODAY INTERNATIONAL

Page 26

ETI AUGUST 1989

CD-I

Sony. Matsushita and Philips have announced that they will be joining forces for the promotion and marketing of the latest CD iechnology, Compact Disc Interactive (CD-1).

Compact Disc Interactive combines high quality sound. text. still image and full motion picture. computer graphics and data all on a 5 -inch disc. All these forms of information can be used interactively via a keyboard or mouse control.

The three companies will be working logether on improving the technical capabilities of the CD-1 system. particularly in the fieid of high quality video. High definition TV isnot far away!

This powerful machine could well find its way into many homes for use as an entertaining medium, but perhaps more importantly in supplying a wide variety of local and national information.

Another area of use will be in education. where discs on various individual topics could be used at schools and colleges or indeed for home tutorials. Several companies are in the process of preparing CD-I titles.

POCKET DMM

Solex International has a range of pocket sized digital multimeters. The 3060 model is a $31 / 2$ digit display and measures in at $51 \times 106 \times 10 \mathrm{~mm}$. It offers high speed auto or manual randing, measuring $A C$ or $D C$ voltages up to 450 V and resistances from 300 R to 30 M .

The pocket sized DMM also tests diodes and has a useful continuity bleeper function. It delivers high speed sampling on a 32 -segment bar graph display

Solex claims it is electrically protected on all ranges and is virtually drop proof.

A good feature about this meter is

CURRENT TRANSDUCERS

From Northern Design comes a selection of novel current transducers that are designed for both instrument and data logging applications.

These new units can detect from 5 to 300 A through the wire they surround. They can have a DC output of $1 V$ and be self powered or a 4 to 20 mA current output which
requires an external 24V DC supply Operating frequency is between $40 \mathrm{~Hz}-5 \mathrm{kHz}$ and source impedance lower than 500 R. Prices are from $£ 33$ plus VAT.

Contact Northern Design (Electronics) Ltd. 228 Bolton Road, Bradford. West Yorkshire BD3 0QW. Tel: (0274) 729533.
the atomatic power off. How many times have you left portable equipment on, only to find exhausted batteries on return!

The DMM comes with instruction manual. test leads, protective case and two batteries.

The 3020 model has similar features except for a maximum resistance range of 2 MO and a 32-segment bar graph display.

The 3060 retails at $£ 29$ plus VAT.
Further details from Solex International, 95 Main Street, Broughton Astiey, Leicestershire LE9 6RE.

LAG TAG ON TRIAL

An experimental system of electronic tagging for convicted criminals will soon commence using selected persons:

The Government intends to reduce the bulging prison population by this new electronic tracking method. The offender would have to wear a small waterproof, calculator-sized monitor around the neck or under their clothes. The device would emit coded signals three times an hour to the nearest specialised cellular radio station. which then passes the signal on to a central computer. The cells' would cover areas ranging up to two miles square.

The tag wearer would be restricted to a certain number of cells for normal movements including access to work. Should the wearer move out of the permitted cells, the monitor would emit audible signals and also inform the central computer to alert the authorities.

A trial has recently been completed at the University of Kent using student volunteers

QUANTUM LEAP FOR BELL

AT\&T Bell Laboratories, the people that brought you the first transistor, have demonstrated a new quantum device that functions as a finy parallel processor to reduce circuit complexity dramatically.

The device is called a multi-state resonant tunnelling bipolar transistor no less!

Until now, normal transistors have been limited to two states: 'on' and 'off. This new transistor is the first with multiple states: three or more

When the input current increases in the device the output current peaks. falls off, then peaks again. This unique, multi peak characteristic produces the multiple states and allows a single device to do the work of many conventional transistors.

An example is in parity bit checking in digital systems. They normally use 24 conventional transistors to check four bit words. The scientists at Bell have achieved this task using just one of the new devices.

The demonstration suggests that in future a much higher density of operations could be packed in the same area as todays integrated circuits.

Although this is a great advance, resonant tunnelling transistors are still a research technology and many development hurdies remain.

CHEAPER APRICOTS FOR SALE

A pricot Computers of Birming ham, who specialise in desktop computers. are producing their first generation of powerful machines for large businesses.

Processing power is available for up to 128 workstations and is likely to make use of the latest 80,486 microprocessor from Inie! (see Insight).

This 32 -bit processing machine should provide stiff competition against other computing systems costing between four and twenty five times the price.

FREE CAT

Falcon Electronics has its lates catalogue (PL18) available. It contains a large range of speaker kits for the audiophile plus capacitors, connectors and audio publications.

Send SAE with a $26 p$ stamp for their latest list to: Falcon Electronics. Tabor House, Norwich Road. Mulbarton, Nr Norwich Norfolk NR14 8JT. Tel: (0508) 78272.

Amongst the many pairs of headphones Sony sells there are two rather interesting pairs on offer. The first. the MDR-R10, boasts of producing concert hall quality acoustics and ergonomic comfort as never before. Have we not heard this before? Yes. well read on
"The MDR-R10 employs a newly developed bio-cellulose diaphragm. which has over ten times the rigidity of a conventional paper cone, yet achieves naturalness and remarkable presence."

OK. a very thin tough diaphragm, that's an improvement. The earphone housing is made of 200 year old zelkova wood. This is used for its lightweight and solid character providing unequalled acoustic quality': We must be approaching the law of diminishing returns here. That goes for the wood as well. But wait, there is more. To ensure luxurious comfort. the earpads are made of Greek sheepskin and the cord is wrapped in pure silk! This could get very sensuous. They are also kind enough to throw in a rhodium-base pure gold plated plug and a hard case with lock. It could really do with an anti-theff device because here is the crowning glory - the price. A mere snip at £2.499.95.

Sony does have a pair of headphones. model number MDR-1F5K, which says goodbye to the cord that invariably strangles you, called a wireless headphone. Now you can have the freedom to wander around the living room listening in digital audio quality. The system adopts an infra-red transmitter to sit on your hifi giving a wide dynamic transmission range of 90 dB . This ensures excellent sound reproduction from compact disc. The unit's automatic levelcontrol circuit also allows for optimum FM modulation without any adjustment to provide the best listening at all times. The headphones have built-in rechargeable batteries that can be revived by placing the headphones in a stand attached to the transmitter. The frequency response of the whole system is 18 Hz to 22 kHz . The cost of the complete system is $£ 99.95$.
\qquad

FLAT AERIAL MAT FOR SAT

A
mid the chaos of melting Astra dishes and failing squarials. an entirely new range of receivers has been produced by Mawzones of Baldock in Herts.

For some time Mawzones has been producing window-mounting sheets that focus received satellite signals to a feeder behind the window (see News ETI Dec 1988). The focussing is performed by a set of concentric circles that are opaque to electro-magnetic radiation. The alternating transmitting and opaque areas act as Fresnel zones and focus the signals. Since the window surface is vertical and the satellite source is elevated. the circular zones are stretched to ellipses.

However the window-mounting Mawzone sheets lost half the signal strength in the opaque area and were limited in size by available window space. As a result they were best used only for low and medium rate data reception.

The new range of antennae has the transparent sheet combined with a reflective surface. the two plates being separated by a gap of a few millimetres. This effectively creates two separate antennae with a common focus in front of the sheets. The plates are mounted flush against a wall facing roughly south, with a standard low noise blockdownconverter (LNB) feeding a receiver inside.

The mirror sheet designed to receive Astra is just slightily larger than its dish equivalent and will be circular. Its flush fitting makes it less vuinerable to weather damage or vandalism. Mawzones claims it can be painted without affecting the output, thus making it less of an eyesore the left of the larger plates in the photo is a Eutelsat receiver disguised as roof slates).

The fact that the plates are flush

PORTABLE PYROPEN

fitting means that even the larger dishes are exempt from planning permission.

A target price has not yet been set for the Astra antennae but it will be aimed around the same level as conventional dishes. Mawzones sees 'no reason to undercut conventional dishes since most people. given the choice of two similarly priced antennae, would opt for obvious advantages of the Mauzones design".

A design for receiving BSB is already well under way. Whe, BSB's problems with the squarial became apparent. Mawzones suggested to BSB that the sheet antennae could solve its problems. Reorientating the square sheet antennae as a diamond could even save face for BSB if it had to dump the squarial. A dummy BSB design was prepared by Mawzones but BSB seems intent to continue with its delayed squarial plans.

Mawzones has also developed an enormous sheet antenna ($4 m \times 4 m$) capable of use with C band transmissions. The sheet is modular. consisting of many tiles each with part of the concentric circles pattem so that the antenna can be easily transported and erected in remote areas.

Contact Mawzones Ltd. 6 Hodwell. Ashwell. Baldock, Herts SG7 5QG. Tel: (0462) 742854.

From Axiom Electronics comes a cordless soldering iron. made by Weller

The soldering iron is ideal for use in field service applications. Pyropen is an LP gas-operated iron which is independent of mains or batteries and weighs only 90 g . The gas in a single charge is capable of giving four hours -
continuous operation.
The kit also includes a 3.3 mm tip, a 5.7 mm hot blow tip. torch ejector. spanner, cleaning sponge and carrying case.

The price is $£ 54.08$ plus VAT.
Contact Axiom Electronics on (0494) 461616.

SIGNAL GETS ALL CLEAR

Ateam at the British Teiecom Re search Laboratories has developed an optical amplifier to boost weak optical signals along their newer communication routes.

This is another major step forward because at present all optical signals are converted to electronic ones which are then amplified in the normal manner. only to be reconverted to optical once again to continue on their route.

Apart from overcoming this disadvantage. this latest ampifier will work at many different wavelengths and bit rates. It is not affected by the polarisation of the input signal. something that earlier amplifiers suffered from.

Fault location in lines will now be made much easier with this new device because with the existing system any optical signal designed to find a fault is interrupled by the electronic repeater.

DIAL A DRILL

Now available from Freetrade (TEP) Ltd.. is the new Dial A Drill conversion unit.

This unit will convert any power drill into a six-piece self-contained screwdriver set. The unit contains four drill bits. $\frac{1}{16}$ in, $1 / 8 \mathrm{in},{ }_{2}^{1} 6 \mathrm{in}$. $1 / 4 \mathrm{in}$ and two screw drivers. No. 2 Phillips and $1 / 4$ in slotted. All are of high quality and heat treated for strength, including HSS treatment.

For ease of operation the desired bit can be selected quickly and simply.

Contact Freetrade (TEP) Lid.. Unit 15C. Aviary Industrial Park. Garrison Lane, Bordersley Green. Birmingham B9 4QE. Tel: (021) 766 6142.

BLUEPRINT

This column is a service to readers to provide electronic designs. Send your requirements, with as much detall as possible, to ETI Blueprint, Argus House, Boundary Way, Hemel Hempstead HP2 7ST

T
his month the question is from Peter Morgan in the county of Powys. He would like a design for a bargraph display of audio spectral content. He requests displays of the level at $100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 400 \mathrm{~Hz}$, $600 \mathrm{~Hz}, 800 \mathrm{~Hz}, 1 \mathrm{kHz}, 4 \mathrm{kHz}, 6 \mathrm{kHz}$, 8 kHz and 10 kHz , and says that it is intended to be plugged into a headphone socket.

For anindicator of this type to be meaningful, it must have equal proportional intervals between frequencies in order to correspond approximately with the way in which sound is perceived. $2: 1$ frequency steps would be reasonable, so to fit ten frequencies into the audio range we would aim for frequencies of: 32 Hz , $64 \mathrm{~Hz}, 128 \mathrm{~Hz}, 256 \mathrm{~Hz}, 512 \mathrm{~Hz}$, $1024 \mathrm{~Hz}, 2048 \mathrm{~Hz} .4096 \mathrm{~Hz}, 8192 \mathrm{~Hz}$ and 16384 Hz . In practice, variations of up to 20% either side of these frequencies are unlikely to affect the usefulness of the display.

Building Blocks

The sound must be filtered into frequency bands. the sound level at these bands must be detected and the result must be displayed on LED bargraphs. A logarithnic display is necessary to cope with the logarithmic perception of sound intensity, so a logarithmic bargray inlC such as the LM3915 is the obviousanswer. The need to connect
the circuit to a headphone socket, with the inevitable variation of signal level as a volume control is set to different levels, necessitates a gain corntrol at the input of the circuit. Putting all this together gives rise to the block diagram shown in Fig. 1.

The whole system, with two 10channel indicators (one for each stereo side) encompasses a lot of circuitry but consists of a few simple building blocks repeated with minor variations. The first block, shown inFig. 2, is the input buffer, one for each channel. This is there to provide a lowimpedance drive to the filter stages. It is preceded by a gain control to set the average level of the display to a reasonable level at whatever volume setting is in use on the amplifier.

Following the DC blocking capacity is a protection circuit to prevent damage to the op-amp input if the volume is turned up too high. After the unity gain buffer are ten bandpassfilters, giving a total loading on the buffer of 330 R.

The filters are of the multiple feedback configuration shown in Fig. 3. The configuration remains the same at-all frequencies but the capacitor values change to set the centre frequency. The Q of the filter, the centre frequency divided by the bandwidth, is set by the resistor ratio and is thus constant for allfrequencies. This

is exactly what is required - the same proportional bandwidth because the proportionalfrequency spacing of the fitters is the same.
$A Q v a l u e$ between one and two is reasonable for the application, so a convenient set of resistor values is chosen to giving a Q value of 1.6. The circuit also has a voltage gain dependant on the Q value chosen. In this case the circuit gain is five. which is not too high to be practical. It does mean that the gain-bandwidth product of the opamp used becomes significant at the higher frequencies. The LM324 would be suitable for the lower frequenciesbut for the top two bands a higher bandwidth type such as a TL084 would be better. On the other hand, the effect on the indication level will be minor.

The table of component values and frequencies in Fig. 3 shows the preferred value components which should be used and the actual centre frequencies which these give. If more accuracy is needed, parallel capacitor combinations could be used to give the actual values calculated from the formula. This is only worthwhile, of course, if the tolerance of the capacitors is commensurate with the accuracy required.

Level Display

To provide a usefuidisplay of the signal level within a frequency range, it is necessary to rectify it and detect the
resulting DC level with suitable charge and discharge time constants. The modified precision rectifier shown in Fig. 4 represents one approach to the problem. The charge time constant is $\mathrm{R} 1 \times \mathrm{C} 1$ and the discharge time constant is $\mathrm{R} 2 \times \mathrm{Cl}$. This latter must be much longer than the charge time constant because the value of R 2 must be greater than that of RI to permit the capacitor to reach its required voltage

This detector will therefore detect peak signallevels of negative polarity. Suitable choice of R1 and R2 could produce an approximation to a peak programme meter characteristic. Equally, choice of component values can produce a peak reading display which will fall only slowly when the signallevel drops, or something like a VU meter which responds rapidly to falling signal leve!. The limit on the speed of response is that the discharge time constant must not allow significant ripple on the capacitor at the centre frequency of the filter or else the display will flicker. For the 32 Hz channel, a time constant of about 300 ms is required. Example component values for this would be: $\mathrm{Rl}=1 \mathrm{k}, \mathrm{Cl}=47 \mu, \mathrm{R} 2-56 \mathrm{k}$. For higher frequencies if a fast response is required, the value of Cl can be reduced to 10μ and the resistor values chosen accordingly.

Ifboth halves of the cycie must be measured, the circuit of Fig. 5 would be

suitable. This circuit can be configured to produce similar attack and decay times if R2 is significantly lower than R1. The indication will then be based on an average reading of signal level rather than on peak.

Figure 6 shows the suggested circuit to use the LM3915 bargraph display IC. As detailed later, the LED power supply is separate from the main power supply.

To provide reasonable brightness, a LED current of 5 mA ischosen. The LM3915 regulates this current itself, as approximately ten times the total current drawn from the reference output (pin 7). The basis reference voltage is 1.25 V (between Ref out and Ref adj) and the resistance of the resistive divider chain in the LM3915 is 22 k . and the Ref adjust ground current is $80 \mu \mathrm{~A}$, so the formulae for reference voltage and LED current are Vref $=1.2 \mathrm{~V} \times\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{R} 2 \times 80 \mu \mathrm{~A}$ ILED $=\frac{12.5 \mathrm{~V}}{R 1}+\frac{V_{\text {tef }}}{2 \mathrm{k} 2}$

The decoupling capacitor must beclose to the LM3915 and each IC or pair of ICs should have one. depending on layout, otherwise the circuit is likely to oscillate. Adequate decoupling should also be provided on the $\pm 12 \mathrm{~V}$ power supplies to avoid interaction between stages. Finally the $0 V$ tracks from the LM3915s should be starred with fairly thick wire back to the power supply, to prevent the heavy LED currents from imposing significant earth voltages relative to the signals.

Power Supplies

The circuit should be powered from $\pm 12 \mathrm{~V}$ to 15 V . In order to prevent the LM3915 ICs from over-dissipating, a lower voltage supply is needed for these chips. To drive a total of 20 bargraph displays each with ten LEDs and to produce a reasonable brightness requires 1 A . The best way to provide this is to use a metalcan (TO3) LM317 regulator on a big heatsink to supply the LEDs and to set its output voltage between 3.5 .4 V . This will minimise dissipation in the LM3915s, at the expense of dissipating a lot of power in the regulator.

Because of the three power supply rails required, it is probably worthwhile to use two separate mains transformers, one rated at $15-0-15 \mathrm{~V}$ for the $\pm 12 \mathrm{~V}$ supplies and another rated at 9 V to supply the LEDs. The 15 V transformer need only be a 6VA type but the transformer powering the LEDs needs to be rated at 12VA.

With all this LED power available, this unit when completed should light up the room nicely.

Andrew Armstrong

INSIGHT

Ever since Intel launched the 33 MHz 80386 processor, power users have been looking to the next generation of chip's the 486 family - for their processing panacea. But will the 486 live up to expectations?

The microprocessor world seems to be divided into two schools of thought. One side has opted for the fast but relatively untried "new" technology of the RISC (Reduced Instruction Set Computer) chip sets such as IBM's RT series and DEC's MIPS co-processors - the key to their open systems architecture and Ultrix developments in the future

The other side has opted for the faster and more tried-and-tested grounds of the CISC processor (Complex Instruction Set Computer), whereby more instructions are packed into ever decreasing areas of silicon.

Of the most popular processors. the most likely to take on the subRISC achitecture (such as ARM from Acorn) is the Intel 80386 but, even though new machines from companies such as Tandon. Acer and AMP have proven to be fast and efficient in their own respective ways. the Intel 486 series seems to offer so much more.

The original prototypes of the 80386 were clocked at 12 MHz rather a conservative speed and one that was matched easily (and surpassed by unconventional wiring) by the older and more established 80286 series of processors. Intel like to take their processors up in speeds of 25% at a time, so that a floor speed of 12 MHz was untenable for the short period of its life. This led to Intel boosting the power of the basic processor to 16 MHz and dropping the 12 MHz model completely.

Not that it mattered much anyway, since shortly after that Intel upped the specs again and released the 20 MHz 386 . Quite recently the 25 MHz chip sets have appeared and are now cheap enough to be considered worthy of the Taiwanese clones from the Middle and Far East.

However, the big break came when the 33 MHz machines were announced. The design specs (but not the processor chip sets) were distributed to a few major companies and an embargo was set to last until 10th April 1989 so that the processor could be launched with a fleet of high-powered compatible machines to follow literally minutes after the official launch.

This was, as they say, not strictly adhered to, although the general impression is that Intel got their new 33 MHz chips out - and the dealers got their machines out - all claiming to be the fastest PCs in the worid.

Life isn't as easy as sticking in a new chip set. Intel is well aware that their new chip needed support to properly harness the sixty per cent speed increase over a popular chip set such as the 20 MHz 386 . Intel has to make sure that the chip had no added features.

Bugs in short

Why all the fuss about getting the chips right in the first place? Why not wind it up and let it go - after all. there were no new fabrication processes involved. The technology whilst operating at a slightly higher density - was well within the limits of fabrication standards. Instead Intel has refined its screening process and selected only the chips that can run at a floor level of 20 MHz .

Temperature is a deciding factor - as the clock speed goes up so the number of operations goes up. requiring a larger power drain etc etc. Beyond a certain level, the chip can literally fry itself out so that gates start to short out (and not close). Errors start to occur - and as we are well aware, processor errors are always fatal ones.

So we have ascertamed that speed is important and that all Intel really has done is raise its selection bandwidth - fine but what about the projected 486 chip sets - what are they and what will they run?

The 486 will be a new beginning (many people have been led to believe) offering distributed processing facilities that will be transputer-like in their ability to be linked from one machine to another. It seems likely that an entirely new tack is needed, instead of just raising the selection platform even higher (so that processors are being driven even harder) These days, the cooling systems installed inside the latest state-of-the-art microprocessor base subsystems vibrate at a level somewhat akin to a 747 taking off in your own room. I recently saw my first water-cooled PC subsystem!

These are all based on top-end 386 systems requiring no less than $16-32 \mathrm{Mb}$ and offering disc storage of no less than 150 Mb , normally specified for power-users and emulators (running CICS IMS. Unix and other open systems ranging from IBM's SNA and SAA to the old 3083 and 370 system software - going back to CICS again!). It seems that the new family of bona-fide 32 -bit bus processors are happily running more of the same software - but faster,

Putting it bluntly, the 486 will have a hard time breaking out of the mould set up by its siblings the 286 and the 386 . The industry pundits and gurus have been commenting on an early 1990 production date for 486 processors. The 486 is expected to be launched with the final incarnation of the 386 chip - although it is unclear as to whether the chip will simply be a souped up mega cache version of the 33 MHz 386 with built-in co processors, or whether it will be a simple enhancement.

Where does that leave the PCs of the world?

Well, MCA is fast becoming the de-facto standard although the alternative EISA seems to be putting up a good fight. Indeed, many companies are placing their products directly across the two platforms (with the notable exception of Compaq) Mission's MCA portable clearly needs (or at least is happy with) as much processing power as it can get. and of course the faster processors get, the faster RAM has to get or we have to start introducing wait states - an undesirable situation.

For the time being, power users have the 33 MHz chip - if they want faster they'll have to go to Digital's MIPS systems (and their nod in the direction of the Open Systems Architecture). That involves leaving the sanctity of DOS and expanded memory and that involves breaking into new ground. But then that's just what Intel may be doing in the near future anyway.

OPEN CHANNEL 트ㄴㅡㅗ

Asbusiness relies more and more on computers to exchange information as a faster method than oldfashioned letters-and-stamps mail, users are beginning to become seriously concerned about security. When Roya! Mail takes charge of a letter, users have a high degree of security - it is. after all, illegal to open anyone else's mail. There are increased levels of mail security. registered mail or Datapost, which guarantee secure delivery - as long as the envelope is intact. the content has not been seen by anyone between sender and recipient. Further. industrial espionage agents find it extremely difficult, nay - impossible, to locate any given item of mail among the many millions posted each day. And all for 19p!

But on a computer information network it only takes a competent hacker to find required information. True. there can be codes, authorisation numbers and so on built into the system, but the more complicated the network, the cleverer and more well equipped is the hacker. It seems to be that if data is on a computer network, little or nothing will stop it being illegally removed if someone wants it bad enough. Industrial espionage is not the world of James Bond, more the concern of the computer-buff.

Hacking isn't the only concern either. Recent viruses have literally swept through some computer networks. virtuaily closing down networks and losing priceless amounts of files.

In the light of this. it's not really surprising that a growing number of
large multinational organizations $\{28$ at the time of writing) have joined forces in the European Security Forum. The forum is being organised by the European wing of the worldwide accounting and financial services company Coopers and Lybrand, which last year produced a report funded by the European Commission on network security.

Membership so far includes such big guns as British Airways. British Telecom, Volvo, Olivetti. Digital Equipment Corporation and the Society for Worldwide Interbank Financial Telecommunications (SWIFT) - to name but a few. A similar group called $1-4$ was set up in the United States three years ago.

United We Stand

Meanwhile the European Commission is trying to get a pan-European electronic data interchange (EDI) standard up and running as part of the committment to harmonisation by 1992. The aim is to allow networks to communicate such that electronic trading can take place between countries. To do this the Commission is funding and organising a project called EDI/Unite. Looks like the European Security Forum has been set up at just the right time. Could someone introduce the two groups?

EFTPOS

Electronic Funds Transfer at Point Of Sale, the dream of large shopping concerns, is to get a big boost this summer when shops in three selected cities (Edinburgh, Leeds. and Southampton) are fully kitted out with point of sale terminals capable of doing the
biz. At its fullest. shoppers will simply have to pass a card through a card reader at a terminal. key in a personal identification number (PIN) and the goods have been paid for. All this is possible because the terminal links up to bank networks to locate the shoppers bank accounts, automatically debiting them and simultaneously crediting the shop's bank account.

The three-city trial is being setup by EFTPOS UK, an organisation created by the banks' joint clearing house system and, despite disagreement and similar proposals by individual banks, looks set to become the first stage in a countrywide coordinated network.

Of course with such a system not only the large network users need to be concemed about network security. The possibility of illegal funds transter exists if the network is not secure. And the only way you'll ever know it has occurred is when your bank statement drops on your doormat.

BT Moves to TV

British Telecom has always stated it could not justify the use of optical fibre in the local loops between local exchanges and subscribers homes merely for telephone purposes. The reason is financial - the cost of installation can never be covered by line charges when the line is used just for telephone calls. (Interestingly, other companies argue that optical fibre is justifiable. but that's another matter!)

In retrospect. BTs argument has been a good manoeuvre. Current regulations prevent BT from distribu-
ting television transmissions over the telephone network. On the other hand. cable television distribution companies can carry telephone calls. BT has always thought this slightly unfair. By forcing the Department of Trade and Industry's hand with its noTV no-optical-fibre stance. BT looks as though it is going to gets its way in a change of regulations to allow television distribution over the telephone network.

If this happens, youll be surprised how quickly your local line will change to optical fibre!

Recently BT has moved to bypass the no-TV regulation in two ways. First, a special trial (granted by the DTI) is about to start in Bishops Stortford (scheduled for March of next year, to be precise). The trial will involve some 500 users. both business and residential. providing stereo television and radio. data communications and, of course. telephone. It's to be a two-year trial costing around $£ 5$ million. Two different systems will be tested during the trial period.

Second. in a crafty move, BT's own cable television franchise subsidiary (yes. a loop-hole in the regulations) Cable Thames Valley, will soon carry telephone traffic over its optical fibre network as a so-called trial. Telecoms watchdog. Oftel, knows about the "trial and will be looking at it carefully. Around 200,000 homes in the High Wycombe. Newbury and Reading area will be networked and cabling should be starting any time now.

Keith Brindley

EWEC 89 - July 10-13th
Wind energy conference and exhibition. Scottish Conference and Exhibition Centre, Glasgow.
Holographic Systems, Components And Applications - July 11-13th September
University of Bath. Second Intemational Conference. Contact IEE on 01-240 1871
Image Processing And Its Applications - July 18-20th
University of Warwick. Third Intemational Conference. Contact IEE on 01-240 1871
Vacuum Microelectronics - July 24-26th
University of Bath. Conference sponsored by The Institute of Physics, IEE and
IEEE. Contact The Institute of Physics on 01-235 6111
Eurobus 89 - September 4-6th
Novotel Hotel. London. Organised by Microdynamics Inc. UK organisers Pattern Ltd on 01-940 4625.
Circuit Theory And Design - September 5-8th
University of Sussex. Ninth International conference. Contact IEE on 01-240 1871

Holographic Systems, Components And Applications - September 11-13th
University of Bath. Second international conierence. Contact IEE on 01-240 1871
POS 89 - September 12-14th
Business Design Centre, Islington, London. Point Of Sale technology exhibition. Contact Batiste Exhibitions on (0532) 580033
Data Communications and Networks - 17-22nd September
Aston University. Vacation school, sixth year. Contact IEE on 01-240 1871 ex 308.

Optical Systems - September 12-14th
Ramada Inn, London.
Sensors And Their Applications - September 25-27th
University of Kent, Canterbury. Conference sponsored by The Institute of Physics. Institute of Measurement and Control, Institution of Mechanical Engineers and IEE. Contact The Institute of Physics on 01-235 6111
Lightning And Static Electicity Conference - September (date to be finalised)
University of Bath. Sponsored by Ministry of Defence Procurement Executive. Contact ERA Technology on (0372) 374496
Artificial Neural Networks - October 17-18th
IEE, London. International conference. Contact IEE on 01-240 1871
Open Systems 89 - November 1-3rd
Olympia, London. Computer communications standards. Contact Cahners Exhibtions on 01-948 9800
Automated Test And Diagnosis - April 9-12th
international Centre. Boumemouth. Conference. Contact IEE on 01-240 1871.

BOOKS

1989 IC Master, Vols 1, 2 and 3. Editor: David Howell.
Published by Hearst Business Communications.
Three volume set $£ 98.00$ from J.B. Tratsart Ltd., 154a Greenford Road, Harrow, Middlesex, HA1 3QT.

Weighing in at $41 / 2 \mathrm{~kg}$. the massive three-volume IC Master is a brave attempt to catalogue every IC known to man. Well. 80000 of them anyway. If the directory works, it should be possible to find out what almost any IC does. where you can get one, what substitutes or equivalents there are, whether there are any application notes about it (and where to get them from). and a lot more besides.

The amount of data varies widely from IC to IC. What you are guaranteed is a listing according to function in one of the many tables. For the MB3501, for instance. you discover that it's a wideband amplifier made by Fujitsu, but that's your lot. For more information you turn to the distributors directory. find there's no listed UK sales office. and wonder why you didn't spend the $£ 98$ on ice cream.

But this is not fair. Most of the time there's enough data available to at least allow a comparison between various similar ICs and make a list of devices that will be suitable for your purposes. The regulators section, for instance, is divided into listings of fixed positive, fixed negative, dual, adjustable positive, and so on. Each listing is further divided according to output voltage and yet again for output current. So if you need an 8.5 V regulator good for 1A, you can track it down in no time - there are three to choose from.

Logo Guru

In addition to the main IC listings, there are so many other areas of additional information that it would take a review as long as the iC Master itself to do full justice to them. You'll find a part number guide which not only explains the letters that manufacturers append to the device codes. but aiso gives the logo or symbol that you might find printed on the IC - a useful first step in identifying an unfamiliar one. Here are a few of the others that caught my attention.

The application notes directory makes fascinating reading. The listed data ranges from the ordinary and predictable (there's scads of stuff on op -amps) to the most arcane. esoteric and outlandish. How about a Thermometer for Albacore Fishing? or a Hands Free Featurephone? whatever that may be!

Much less interesting to browse through. but every bit as useful, is the alternaie source directory. It's a bit of a letdown to discover that the giamorous sounding XR3503 is nothing more than a workaday LM324 but that's just the thing you'd like to know if you came across it in a piece of equipment you were repairing.

Data

The manufacturers' data section has been greatly extended in this year's edition - most of the second volume is given over to it. It's useful where it appears but since the choice of what data to provide, or indeed whether to supply any at all, appears to be at the discretion of the individual manufacturer, the coverage is very patchy. Some of the smaller concerns list all they've got: other firms (National for instance) give it a miss altogether. If you're lucky you'll find what you're looking for but it's no substitute for a shelf full of data books.

To an individual the $£ 98$ price tag will give pause for thought but to anybody who designs circuits. repairs equipment. or is involved in the surpius components trade. I say: go for it! There's an awful lot of information for your money. Large companies. of course, fill their sheives with directories as a matter of course and may even overlook this one because it doesn't absorb enough of the budget. (How can you ask for a bigger budget next year if you haven't overspent a little on this year's?) Toyou I say: give it a try anyway. You'll find it's the one that actually gets used!

My only real grouse about the latest edition is that the hard cover has been abandoned in favour of a floppy paper one. Making it behave on the booksheff is about as easy as trying to prop a drunken sailor against a lamp post. But I guess you can't have everything.

M \& B AADIO (LEGDS)
DEALERS IN SURPLUS ELECTRONIC EQUIPMENT, TEST EQUIPMENT AMATEUR RADIO

OSCILLOSCOPE'S

PHILIP'S PM 3232. WMHZ TRUE DUAL BEAM $£ 150$
COSSOR CDU 150. COMPACT 35MHZ DUAL BEAM SCOPE'S
DELAYED SWEEP. LARGE $8 C M \times 10 \mathrm{CM}$ DISPLAY $+X 1$ AND X 10 PROBE XIT IN FRONT COVER. SPECIAL PRICE
FULL SERVICE MANUAL £ 10 EXTRA
TELEQUIPMENT D755. 50MMZ DUAL BEAM SCOPE'S. SOLID
STATE DELAYED SWEEP (EX MOD VERSION OF D75
$\mathbf{2} 275$
TELEQUIPMENT D83. 50MHZ AS ABOVE BUT HAS LARGE 8CM \times IICM DISPLAY
£300
TEKTRONIX 466100 MHZ STORAGE SCOPE ... £ $1 .$.
TEKTRONIX 475 200MHZ DUAL BEAM SCOPE'S. DELAYED
SWEEP. HIGH SPEC. SPECIAL PRICE
£595

SIGNAL GENERATOR'S

MARCONI TF995 "EX MOD" VERSION 1.5MHZ to 220 MHZ AM
FM CW WITH (LEAD'S $500+759$ PAD'S) SPECIAL PRICE
MARCONI TF 2002 10KHZ TO 72 MHZ GENERATOR'S
$\Sigma 95$
MARCONI TF 2012 UHF GENERATOR 400 MHZ TO 520 MHZ £100
MARCONI TF 2008 AMFM 10 KHZ TO 510 MHZ WITH BUILT IN
SWEEPER HIGH SPEC. WITH RF TEST LEAD KIT
£375
MARCONI TF2015/TF2171 AMFM 10 MHZ TO 520 MHZ WITH SYNCHRONISER
$£ 500$
RACAL RAI7 RECEIVER'S 500 KCS TO 30 MHZ
DATONG FLI AUDIO FILTER'S
$\varepsilon 150$ RF DUMMY LOAD'S EX MOD. 502 NTYPE CONNECTOR 300 WATT'S CONT' 0-250 MHZ
BRADLEY ELECTRONIC TESTMETER'S RF TO 1200 MHZ …............ £ 25 ail prices plus vat + Carriage
86 Bishopgate Street
Tel: (0532) 435649
Leeds
LSI 4BB
Fax: (0532) 426881 Mobile: (0836) 288580

[^0]
SURVBIT WANCE RRODRSSGONaL QuadTiv Hits

A range of high quality kits as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All kits come tully documented with concise assembly and setung-up details. fibreglass PCB and all components. All transmitters are fully tuneable and can be monitored on a normal VHF radio or tuned higher for greater security. All units available ready built if required
MTX Micro-miniature audio transmitter. $17 \mathrm{~mm} \times 17 \mathrm{~mm}$. 9 V operation. 1000 m range $£ 10.95$ VT 500 Hi-power audio transmitter. 250 mW output. $20 \mathrm{~mm} \times 40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. $2-3000 \mathrm{~m}$ range

E12.95
vox75 Voice activated transmiter. Variable sensitivity. $30 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V operation. 1000 m range
§15.95

CTX900 Sub-carier scramber audio ransmiller Cannotbe monitored withoul decor fited to radio. $30 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V operation, 1000 m range $£ 18.95$ OS $\mathbf{9 0 0}$ Sub-carrier decoder unit for monitoring CTX 900 . Connects to radio earphone socket. Provides output for headphones. $35 \mathrm{~mm} \times 50 \mathrm{~mm} .9 .12 \mathrm{~V}$ operation $£ 17.95$ | HVX 400 Mains powered audio transmitter. Connects directly to 240 V AC supply. $30 \mathrm{~mm} \times 35$ |
| :--- |
| mm .500 m rang..................................$~$ |
| 15.95 | XT89 Crystal controlled audio transmitter. High performance. 100 mW output Supplied with xial for 108 MHz . Others available to 116 MHz . $85 \mathrm{~mm} \times 28 \mathrm{~mm}$. 9 V operation $2-3000 \mathrm{~m}$ range E29.95

TKX900 Tracker/Bleeper Iransmitter. Transmits continuous stream of audro pulses. Variable tone and rate. Poweriul 200 mW output. $63 \mathrm{~mm} \times 25 \mathrm{~mm}$. 9 V operation. $2-3000 \mathrm{~m}$ range $£ 18.95$ ATR2 Micro size telephone recording interface. Connects between telephone lines(anywhere) and cassette recorder. Tape switches aulomatically with use of phone. All conversations recorded. Powered from line. $10 \mathrm{~mm} \times 35 \mathrm{~mm}$

E10.95
TLX700 Micro miniature telephone transmitter. Connects to line (anywhere) switches on and off with phone use. All conversations transmitted. $20 \mathrm{~mm} \times 20 \mathrm{~mm}$. Powered from line. 1000 m range
XML. 900 AF bug detector. Variable sensitivity. Triggers LED and bleeper when in presence of RF field. Detects MTX $\mathbf{1 5 - 2 0}$ feet. $55 \mathrm{~mm} \times 55 \mathrm{~mm}$. 9V operation $\mathbf{E 2 1 . 9 5}$ XL7000 Professional oug detector/locator. Variable sensitivity. Twin mode ten segmeniLED readout of signal strength with variable rate bleeper. Second mode AUDIO CONFIRM distinguishes between localised bug transmission and normal legitimate signai such as pagers, cellular atc. $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation

Kustomers please send cheques, PO's or registered cash. Please add £1.50 per order for P\&. Goods despatched ASAP allowing for cheque clearance. Overseas customers send tering bank draft or Eurocheque and ado 55.00 per order for shipment. Credit card order accepted on 0827714476 . Full catslogue available on receipt of 28ρ stamp. Trade enquirles welcome.

Aydin
DESIGNS

AUDORUTS Precision componemts

THE VIRTUOSO POWER AMPLIFIER
AUDIOKTTS top of the range power amplifier kit and stilit the number one power amplifier in terms of sound quality and ease of construction and testing. At $£ 325$ complete, the standard $100 \mathrm{~W} /$ Channel version is excellent value for money whilst the 3 U upgraded version at $£ 840$ offers the kind of sonic performance expected of the world's best power amplifiers.

THE VIRTUOSO POWER AMPLIFIER

The ideat constructors preamp. Excellent sonic performance and simple but effective circuity make it one of the most popular preamp designs pubished. And its moduiar construction, inciuding separate power supply regulator board makes it ideal for anyone requiring an MC Stage, Disc Amplifier, Tone Control or Basic Low Level Amplifier on its own. Now even further sonic improvement are possible through better components. For details send now for:
ACN19 VIRTUOSO PREAMP - THE SECOND UPGRADE $£ 5.00$
ACN2O REMOTE PREAMP POWER SUPPLY $£ 1.50$

AUDIO DESIGN POWER AMPLIFIER

Many ETreaders have substantially improved the sound quality of the original audic design power amplitier by fitting higher grade recommended and supplied by AUDIOKITS. Whether you are building the latest version as published or making your own version in your own case, AUDIOKITS component note and price list offers many useful ideas on improving 50 und quality at low cost. Send now for
ACN 22 AUDIO DESIGN POWER AMPLIFIER
£2.00
For further details of Audiokits, Audio Amplifier Kits, Electronic Components and Cables. send $9^{\prime} \times 4^{\prime}$ SAE (overseas 3 IRCs) to Audiokits Precision Components, 6 Mill Close, Borrowash, Derby, DE7 3GU, England. Tel: 0332674929.

The UK Distributor for the complete ILP Audio Range

BIPOLAR AND MOSFET MODULES

The unique range of encapsulated amplifier modules with integral heatsink.
HY30 15w Bipoiar amp £11.30 HY248 120W Bipolar amp ($80 h m$) £24.16 HY60 30W Bipolar amp $£ 11.30$ HY 364180 W Bipolar amp (4ohm) $£ 3755$ HY6060 30W Stereo Bipolar amp e23.65 HY368 180 W Bipolar amp (80hm) £37.55
 HY128 60W Bipoiar amp (8 ohm) £18.50 MOS248 120 W Mosfet amp $£ 42.40$ HY244 120W Bipolar amp (40hm) £24.15 MOS364 lis0W Morfet amp $£ 66.25$

PLATE AMPLIFIERS

Bipolar and MOSFET modules with the same electronics as above amplifiers but housed in a different extrusion without heatsink.

HY606P	30 W bipolar amp	f19.15
HY124P	60 W bipoiar amp (4 ohm)	E14.20
HY128P	60 W bipolar amp (8 ohm)	£14.20
HY244P	120 W bipolar amp (4 ohm)	f19.25
HY248P	120 W bipolar amp $\{8 \mathrm{otm}$ \}	E19.25
HY364P	180 W bipolar amp 14 ohm)	£24.85
HY368P	180 W bipolar amp (8 otm)	¢24.85
MOS126P	60 W MOSFET amp	E29.96
MOS248P	120 W MOSFET amp	£33.05
MOS364P	180 W MOSFET amp	E56.20

NOTE: These modules require additional heatsinks.
POWER SUPPLIES
Comprising toroìdal transformer and DC boaid to power the ILP amplifier modules.

	Application		PSU532 MOS 128 (2)	¢ 26.16
PSU30	Preamplifier	£10.36	PSU542 HY248	£26.15
PSU212	1 or 2 HY 30	¢18.30	PSU552 MOS248	£28.20
PSU412	HY6060. HM24, for 2 HY60	£20.45	PSU712 HY244 (2)	£30.25
PSU422	HY128	£22.60	PSU722 HY248 (2)	£31.25
PSU432	MOS 128	£23.55	PSU732 HY364	£31.25
PSU512	HY244, HY128 (2)	E25.15	PSU742 HY368	E33.30
PSU522	HY:24 (2)	£25.15	PSU752 MOS364. MOS248 (2)	£33.30

PRE-AMP and MIXER MODULES

These encapsulated modules are supplied with in-line coninectors but require potentiometers, switches etc. Individual data sheets on request.
HY6 Mono pre-amp with bass \& itreble
HY66 Stereo pre-smp with bass \& treble
HY83 Guitar pre-anp with special effects
B6
Mounting board
886 Mounting board
POWER SLAVES
818.95
E
1.15

These cased amplifiers are supplied assembled and tested in 60 and 120 watt Bipolar or Masfet versions.
US12 60 watt Bipolar (40 hm) $\quad £ 75.00$ US32 60 watt Mosfet $\quad \mathbf{E 9 9 . 9 5}$ US22 120 watt Bipolar (4ohm) 583.75 US42 120 watt Mosfes
£99.95

Prices include VAT and carriage
Quantity prices available on request Write or phone for free Data Pack

Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227)375254 Fax: 0227365104

THE RTC MONITOR II 100 WATT SPEAKER KIT $£ 60.00+£ 3.50$ P\&P (pair)

RESPONSE: $55 \mathrm{~Hz}-20 \mathrm{kHz}$

BASS POLYMER CONE D: 22 cm DOME TWEETER: 14 mm OVERALL SIZE (HWO): $382,252,204 \mathrm{~mm}$ RECOMMENDED AMP POWER $10-100$ watts per channel
The performance standard achieved in this compact design is distinctively superior to anything else available at the price. The drive units used are of sophisticated
 design and have been
carefully integrated with a carefully integrated with a
Complex Crossover. Stereo performance is exceptionally good with a well focussed sound stage and sharp resolution of detail. Distortion throughout the frequency range is low even at quite high power input and this gives a great sense of dynamic range and openness especially when used in bi-wired mode.
Supplied with:-2 READY CUT BAFFLES, ALL CROSSOVER COMPONENTS, 2 BASS MIDRANGE, 2 DOME TWEETERS, HOOK UP WIRE, GRILLE CLOTH, SCREW TERMINALS AND SCREWS.
CROSSOVER KIT. To build 2 sets of crossovers $£ 11+£ 1.75$ post. (Featured in Everyday Elec tronics-May 1989 issue). Reprint Free with Kits

AMPHONIC $\mathbf{1 2 5 + 1 2 5}$ POWER AMPLIFIER

125 watt per channel stereo power amplifier with independent volume controls, professional 19 " rack mount and silent running cooling fan for extra reliability.
Output power
125W RMS max. per channe Output impedance
max. power int 40 hms)
Sensitivity 450 V at 22 K ohms
Protection Electronic short-circuit and fuses
Power
$220-240 \mathrm{~V}$ a.c. 50 Hz
Chassis dim $435 \times 125 \times 280 \mathrm{~mm}$
Weight
10 kg approx

£124.99 $+\mathbf{£ 7 . 0 0} \mathbf{p \& p}$

125W POWER AMP MODULE
£15+£1.15 p\&p

SPECIFICATIONS:

Max. output power (RMS): 125 W
Operating voltage (DC): 50 -80 max
Loads: 4-16 ohms.
Frequency response measured at 100 watts $25 \mathrm{~Hz}-20 \mathrm{KHz}$
Sensitivity for 100 watts: 400 V at 47 K .
Typical T.H.D. at 50 watts, 4 ohms: 0.1%.
Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

52W 2-WAY COMPONENT SPEAKER SYSTEM $£ 3.95$

Comprises 8 in rolled surround bass unit and $21 / 2 i n$ tweeter for In -Car or Hi -Fi use. 4 ohm . Made by Sanyo.

8 OHM HI-FI COMPONENT SPEAKER $£ 4.95$

$61 / 2 \mathrm{in}$ Audax 60 w . Res freq. 45 Hz bass-mid. 8 in SOUND LAB $60 \mathrm{~W} £ 12.95$
Res. freq. 38 Hz full range 12in DANTEX 100W £21.75
Res. freq. 23 Hz bass unit
Postage $£ 3.20$ each order BUY 10 GET 1 FREE

Please state pack(s) required
No=Order No. Qty = Quantity per pack
No
BP010
2
61/2" Speaker 8810 watt
BP012 $26^{61 / 2 " S}$ Speaker 41110 watt
$\begin{array}{llll}\text { BP013 } & 3 & 8^{\prime \prime} \times 5^{\prime \prime} \text { Speaker } 4!!6 \text { watt made by E.M. } \\ \text { BP014B } & 2 & \left.6^{\prime \prime} \times 4^{\prime \prime} \text { Full range } 8 \text { watt } 41\right\} \text { speakers }\end{array}$
BP015A $15^{1} / 2$ full range 12 watt 4s speaker with matching grill. For small p.a. or in car use.
BP015B i 30 watt, dome weeter. Size $90 \times 66 \mathrm{mil}$ JAPAN made
BP016 62200μ f can type Electrolytic 25 V o.c computer grade made in UK by PHILPS
BP017 $333000 \mu \mathrm{~L} 16 \mathrm{~V}$ d.c. electrolytic high quality computer grade UK made
BP018 $32000 \mu f 50 \mathrm{~V}$ d.c. electrolytic high quality computer grade made in USA
8P019 2020 ceramic trimmers
BP020 4 Tuning capacitors. 2 gang dielectric a.m. type
BP021 $10 \quad 3$ position, 8 tag slide switch 3 amp rated
BPO22 5 Push-button switches, push on push off, 2 pole change over. PC mount JAPAN made
BP023 62 pole 2 way rotary switch
BPO24 2 Right angle, PCB mounting rotary switch. BP025 4 pole, 3 way rotary switch UK made by LORLIN BP025 43 pole. 3 way miniature rotary switch with one 8 P026 4 4 pole 2 way rolary switch UK made by LORU 8 P026 4 4 pole, 2 way rolary switch UK made by LORLIN BP027 30 Mixed control knobs
BP028 10 Slide potentiometers (popular values)
BP029 6 Sterco rotary potentiometers
BP030 2100 k wire wound double precision potentiometers UK made
6 Single 100k multitune pots, ideal for varicap tuners UK made by PHILIPS
BP032 4 UHF vaticap tuner heads, unboxed and Uhf vartcap Iuner heads, Unbo
untested UK made by PHILIPS
BP033 2 FM stereo decoder modules with diagram UK made by PHILIPS
BP034 3 AM IF modules with diagram
UK made by PHIUPS
AM-FM iuner head modules.
BP0348 1 Hi-Fistereo pre-amp module inputsfor CD , tuner tape, magnetic cartridge with diagram. UK made by MULLARO
BP035 6 All metal co-axial aerial plugs
BP036 6 Fuse holders, panel mounting 20 mm type JAPAN made
BP037 6 Inline fuse holders 20 mm type UK made by BULGIN
BP038 205 pin din. 180° chassis socke
3P039 6 Double phono sockets, Paxolin mounted
ap040 6 Single phono to phono screen leads 1.2 m long JAPAN made
BP041 3.2 .8 m lengths of 3 core 5 amp mains flex
BPO42 2 Large VU meters JAPAN made
BPO43 30 VV miniature bulbs, wire ended, new uniested
IP styli JAPAN made
8P045 2 Stereo cassette record and play heads
3P046 4 6-0-6 AVA mains transformers. P.C. mount 6-0.6 4VA ma
BP047 $1 \quad 24 \mathrm{~V} 750 \mathrm{~mA}$ mains power supply. Brand new boxed UK made by MULLARD
BP048 : Car rear window heateridemister. Self achesive panel, size $24^{\prime \prime} \times 9^{\prime \prime}$, complete with switch and cable UK made
(Ideal for vour old "Moggy 1000" etc)
8P049 10 OC44 transistors. Remove paint from top and it becomes a photo-electric cell (or P12) UK made by MULLARD
BP050 30 Low signal transistors n.p.n.. p.n.p. types
BP051 614 watt output transistors. 3 complimentary pairs in 1066 case (ldeal replacement for AD161 and 162s)
BP052A 1 Tape deck pre-amp IC with record replay switching No LM1818 with diagram
BP053 55 watt audio ICs. No TBA800 (ATEZ)
EP054 10 Motor speed control ICs, as used with most cassette and record player motors
BP055 1 Digital DVM meter 1.C. made by PLESSEY as used by THANDAR with diagram
BP056 47 segment 0.3 LED display (R.E.O.)
BP057 8 Bridge rectifiers, $1 \mathrm{amp}, 24 \mathrm{~V}$
BP058 200 Assorted carbon resistors
BP059 1 Power supply PCB with 30V 4V'A transformer. MC7818CT IC \& bridge rectifier: Size 4 " $\times 23 / \varepsilon$
BP060 1 Transcription record player motor 1500 rpm 240 V a.c.
BP061 $5 \quad 6.35 \mathrm{~mm}$ Mono jack plugs
BP062 85 pin DIN 180° plugs
BP063 $\quad 5 \quad 6.35 \mathrm{~mm}$ stereo switched jack sockets
BP064 12 Coax chassis mount sockets
BP055 I 3mtr Euro-mains lead with a matching chassis sociket
BP066 1 FM wireless intercom. These are not second hand out but are slight rejects and may need repairing

[^1]
$30+30$ WATT AMPLIFIER KIT

An easy to build amplitier with a good specification. All the components are mounted on the single P.C.B. which is already punched and hackprinted.
30W $\times 2$ (DIN 4 ohm)

- CDAAux, tape I, tape II, tuner and phono inputs.
Separate treble and bass
- Headphone jack

Size (H.W.D.) $75 \times 400 \times 195 \mathrm{~mm}$
Kit enclosed: case, P.C.B., all components, scale and knobs $£ 36.80$. post $£ 3.50$
(Featured project in Everyday Electronics April 1989 issue). Reprint Free with kit.

TV SOUND TUNER

In the cut-throat world of consumer electronics one of the questions designers apparently pon der over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set one of the first casualties seems to be the sound quality. Small speakers and no tone controls are quite common and that really is quite sad, as the IV companies do their best to transmit the high est quality sound. Given this background a com pact independent TV tuner that connects direc to your $\mathrm{Hi}-\mathrm{Fl}$ is a must for quality reproduction The unit is mains operated. This TV SOUND TUNER offers full UHF coverage with 5 pre selected tuning controls. It can also be used in conjunction with your video recorder
£29.50 + £2,50 p\&p
As above but with built-in stereo headphone amplifier for the hard of hearing You can tune into the TV channel you want while still receiving the picture on your TV set. In fact it is rather like a second television, but without the screen. So that the ordinary TV can be placed for everyone to see, and the volume on it can be comfortable for others, while the sound tune can be placed where you can control it. You will need to plug in one of your own listening aids such as headphones or an induction loop to hear the sound. The tuner is mains operated, has 5 pre-selected tuning controls and can be used in conjunction with a video recorder.
Size: $270 \times 192 \times 65 \mathrm{~mm}$. $£ 35.90+£ 2.50 \mathrm{p} \& \mathrm{p}$
A.M. F.M. STEREO TUNER

-8 95 PIAL OFFR
$\mathbf{5 8 . 9 5}$ Plus $£ 2.50$ p\&p
This easy to build 3 band stereo AM FM tuner kit is designed in conjunction with Practical Electronics
For ease of construction and alignment it incorporates three Mullard modules and an I.C. I.F System.
FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM-Ferrite rod. FM-75 or 300 ohms. Stabilised power supply with 'C' core mains transformer. All components supplied are to strict P.E. specification. Front scale size: are to strict P.E. specification. Front scale size:
$10^{1 / 2} \times 2^{11 / 2}$ approx. Complete with diagram and $101 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$ a
instructions.
$\mathrm{Hi}-\mathrm{Fi}$ stereo cassette deck transport mechanism, complete with 3 digit rev counter and tape heads, 12V d.c. operation. Unused manufacturers surplus JAPAN made
$\mathbf{£ 6 . 2 0}+£ 1.50$ P\&P 2 for $£ 10+£ 2.50$ P\&P Garrard stereo record player deck, manual auto operation, 3 speed $\left(78,45,33^{1 / 3}\right)$. 240V operation Unused but store soiled
$\mathbf{£ 6 . 5 0 + £ 1 . 5 0}$ P\&P 2 for $£ 10+£ 3.75$ P\&P

John Linsley Hood looks at the history and audio applications of the forsaken but not forgotten thermionic valve

For the first half century of its existence, the art we call electronics' was all about the construction and use of electrical circuitry based on thermionic valves' - and there are still some remaining enthusiasts, especially in the field of audio, who think that 'valves' are the only proper way of doing things.

There is, quite clearly, an aesthetic appeal in the sight of a row of gleaming bottles with complicated arrangements of wire and metal glowing inside. It is an appeal quite lacking in the dull black plastic blobs and caterpillars of today and one which would encourage a kind of electronic equivalent to the steam railway preservation enthusiasts. But how and why did valves come to be made and used in the first place?

Well, 1 suppose it all began with James Clerk Maxwell, an Edinburgh mathematician with an interest in physics who had turned his attention to the basic principles of electricity and magnetism. In 1864 he proposed an 'Electromagnetic Theory of Light', the basis of which was that light was just another form of electromagnetic radiation and offered a series of equations which accurately defined the characteristics of all electromagnetic phenomena of this type.

This theory was received with enthusiasm by the scientific community of the day because it tidied up a lot of loose ends which had lain around since the time of Newton. However, like most useful theories it raised as many questions as it answered, one of which was whether all ρs cillatory electromagnetic fields would indeed cause energy to be radiated through free space, as Maxwell's equations implied.

The Discovery Of Radio Waves

Consideration of this possibility provoked a German professor of physics at Karlsruhe, Heinrich Hertz, to carry out a series of experiments to see whether this effect - the propagation of an electromagnetic wave from some discrete energy source to a remotely positioned receiver - could be demonstrated in the laboratory. In 1889, after some four years of experimentation, he announced that he had conclusively proved that this did happen just as Maxwell had predicted.

The latter years of the nineteenth century became a time of great activity in the field of electrical
telegraphy, first by the 'Morse' code and later by speech, and the prospect of being able to send telegraphic messages without the need to install connecting wires - a true 'Wireless Telegraphy' - offered great commercial prospects.

The possibilities were not lost on Marconi and he began his own experiments with 'Hertzian waves' using much improved apparatus. A series of trials commenced, demonstrating the use of such transmissions in places where cables could never be used, such as from ship to shore and from ship to ship. and across the Bristol channel. He mounted his historic 'coup de theatre' by a transmission across the whole of the North Atlantic ocean from Poldhu on the Lizard peninsula in Cornwall to St John's in Newfoundland, which showed beyond doubt the potential for this new discovery.

Understandably, the radio signals received across such distances were very weak and the apparatus used for receiving them was primitive and inefficient. No way was then known of amplifying the signals. So from a strictly commercial point of view, the uncertainties of reception made it a rather dubious competitor to the well-established techniques of telegraphy over wire or undersea cables. For 'wireless' to succeed, it needed improved hardware and this proved a powerful stimulus to invention.

The Thermionic Valve

The thermionic valve really has its origins in the 1880s, when Thomas Edison, the inventor of the filament lamp bulb, had noticed that the glass wall of the bulb would become darkened after prolonged use in regions close to the filament, even though the bulb had been evacuated of all gases.
-He also found, as a matter of academic curiosity, that if a metal plate was inserted into the lamp bulb. the glass would stay clear in the area of its shadow. Moreover. if he made this plate positive in respect to the filament then a small current would flow.

This phenomenon was correctly interpreted by Sir Ambrose Fleming as being due to the emission of electrons from the filament and their subsequent capture by the positively charged plate. The significant feature of this effect was that current could only flow in one direction (from the filament to the plate) since
no electrons would be emitted by the cold metal of the plate itself.

This was just what was required to allow the inaudible pulses of high frequency $A C$ received by a Marconi-style 'wireless telegraphy' apparatus to be converted into unidirectional pulses of current which could be heard by headphones or displayed on a sensitive milliammeter. So in 1905 Fleming took out a patent for a lamp bulb with an internal plate, which he called a thermionic valve.

He used this name because 'thermions' was the technical term for thermally emitted electrons and he described it as a 'value' because of its capacity to allow the current to flow in only one direction.

The next step was taken by an inveterate American experimenter, Lee de Forest. He grasped the fact that since electrons are negatively charged, their flow from the filament to the plate could be controlled if a wire mesh 'grid' was inserted into the space between them. If this was at 0 V then the current would flow as before, but if this grid was made sufficiently negative the current flow would be cut off.

This kind of device would for the first time allow small high frequency signals to be amplified and make radio reception a much more reliable business. So in 1907, de Forest took out a patent for this device, which he called the 'Audion' tube, and by so doing launched the whole business of electronics.

The Modern Electronic Valve

Clearly, the thin carbon and tungsten filaments of the early lamp bulbs weren't a good recipe for a copious source of electrons. Tungsten isn't bad but it needs to be very hot (around $2250-2350^{\circ} \mathrm{C}$) to be of much use - that consumes a lot of power and doesn't make for a long life. In any case, what was required for valves was that they be heated by a low voltage AC source, derived from the mains by a transformer.

So in contemporary designs, valves have a 'cathode' (the name which is given to the electron emitting electrode) in the form of a metal tube usually made of nickel which is heated by an internal insulated bundle of tungsten wire and is coated with a mixture of barium and strontium oxides.

When this is heated to a dull red heat (about $850^{\circ} \mathrm{C}$), a small part of the barium oxide in contact with the nickel is reduced to metallic barium and this diffuses outwards to the cathode surface. However, a very hard vacuum is needed with 'oxide coated' valves to prevent the hot metallic barium from promptly oxidising again!

Metallic barium has a much lower 'work function' (the temperature-related energy which. thermally excited electrons have to reach to escape into the vacuum surrounding the cathode) than tuingsten and these oxide coated cathodes are now the standard form in valves or 'electron tubes'. I have shown a typical arrangement for an 'indirectly heated' cathode in Fig. 1.

A 'diode' (a two-electrode valve) for use as a detector for $A C$ signals or power rectifier to convert the incoming $A C$ power supply from a transformer into a suitable DC voltage (usually between $100-$ 450 V) to operate equipment. is constructed by mounting an electron receiving plate (called the anode) in reasonably close proximity to the cathode.

Usually the anode is in the form of a small diameter tubular sleeve mounted around a cylindrical cathode. It is usually also made of nickel and may be blackened to assist it to radiate heat. To keep the structure rigid, the electrodes will be spot welded on to stiff metal rods, held between the glass 'pinch' at the base and a mica washer which is itself a tight fit in the envelope. With modern tubular-envelope

Fig. 2 Mechanical construction of a rectifier diode

Fig. 3 Comparative structures of triode valves ${ }^{\text {- }}$ (a) high gain (b) Iow gain

valves, two such washers are used for even greater electrode rigidity. I have shown this in Fig. 2.

Usually in this type of application, the closer the spacing between the anode and the cathode the better since it will lower the impedance and the consequent voltage drop of the rectifier. Of course the electrodes must not ever touch, even under shock or vibration Enough of a gap must be left between them in power rectifiers to make sure that they don't spark over inside.

Amplifying Valves

These are all multiple elẽctrode valves with one or more 'grids' or other electrodes between the cathode and the anode. They are called 'triodes', 'tetrodes' or 'pentodes' and so on, according to the number of electrodes (ignoring the heater) which they contain.

Taking the case of the triode, the simplest amplifying valve, the effectiveness of the 'grid' in controlling the current flow through the valve (for a given grid voltage) depends on the fineness of the mesh construction and the relative spacings of the grid and anode with respect to the cathode.

If the grid is relatively close to the cathode and the anode relatively distant, the amplification factor of the valve will be large. Its impedance will however be high and its maximum anode current flow will be small. Obviously the characteristics are reversed for a grid closer to the anode. A comparison of these types is shown in Figs. 3a and 3b.

A couple of illustrative examples of the effect of grid mesh and anode-cathode spacings are given by a pair of double triode designs from the classic 'octal' based series. The 6SL7 has an anode current impedance (Ra) of 44 k , an amplification factor (u) of 70 , and a normal anode current (la) of 2.3 mA . Its lower impedance brother, the 6SN7, has an 'Ra' of 7 kO , a ' u ' of 20 , and an 'la' of 10.6 mA

For power output stages, where the total output power depends on the anode current, the maximum practicable amplification factor of an 'output triode' might only be five or six, so this style of output configuration was seldom used even in "hi-fi' gear, where the particular warmth of 'triode sound' might have been an incentive.

Screened Grid, Beam Tetrode And Pentode Valves

The main snag with the triode, though, was the capacitance between its anode and its grid, which would be several pF even in a small signal high gain valve. This meant that it was very difficult to arrange HF amplifying stages using triodes, since the kind of circuit I have shown in Fig. 4 would certainly oscillate at the drop of a hat. (It was possible to 'neutralise' this feedback capacitance but that made the circuitry a lot more complicated.)

The answer was to insert another grid, only this time with a suitable positive voltage, between the control grid and the anode to act as an electrostatic screen. This is shown schematically in Fig. 5. This could reduce the anode to control grid capacitance to about 0.005 pF and make high orders of RF amplification possible without instability.

This layout also had another advantage in that it allowed a very much higher amplification factor than possible with a triode - figures of the order of several thousands being feasible. However, the snag was that electrons accelerated towards the anode could cause the emission of 'secondary' electrons from the anode. which would be picked up by the positively charged screen grid and cause a 'kink' in the anode current vs anode voltage graph, as I have shown in Fig. 6.

Fig. 5 Structure and circuit symbol for the screened grid valve

Fig. 6 The characteristic anode current kink of a tetrode valve

Fig. 7 Beam tetrode structure

Fig. 8 Circuit symbols for more complex valve structures

This didnt present any great problem for RF amplification where the likely size of the voltage swing present at the anode was unlikely to take the anode voltage into the problem region, but where such valves were to be used for audio (especially in output stages) the presence of the 'tetrode kink' could seriously limit the possible output voltage swing.

Two ways were found of overcoming this difficulty. The first was to interpose a fairly open mesh grid between the screen grid and the anode, connected internally to a low potential (such as the cathode or externally to the zero volt rail). This would produce a reverse voltage gradient close to the anode which would discourage the emission of secondary electrons, while having very little effect on the higher

Fig. 9 input characteristics of (a) valve and (b) transistor
velocity cathode-anode electron flow. This kind of layout was called a 'pentode'.

The second and more elegant answer was to construct a pair of 'beam confining plates' on either side of the cathode-anode electron path as I have shown in Fig. 7. Such valves - called 'beam' or kinkless' tetrodes - became the mainstay of the output circuitry of the traditional valve operated audio power amplifiers, since they had high efficiencies and a rather lower 3rd harmonic distortion content than their output pentode predecessors.

Other Multiple Electrode Valves

For many years, manufacturers of radio sets had to pay a royalty based on the number of valves that they used in their designs. However even when this royalty payment lapsed, the economics of manufacture favoured multiple electrode valves since fewer valves meant fewer holes in the chassis, fewer valve holders and fewer interconnecting wires. In those days, all interconnections between components had to be made by hand with individual workers sitting, soldering irons in hand, at an assembly bench so that the fewer bits one had to join up the less the job would cost.

The most common multiple valve types were the triode-hexode (shown in Fig. 8a) used for the input 'frequency changer' in a superhet radio, and the double-diode triode and double-diode pentode (shown in Figs. 8b and 8c) used as combined IF demodulator and AF amplifier/output stages for such radios.

In television sets there would also be the triodepentodes of Fig. 8 d for use in time-base circuits, along with the ubiquitous double triodes of Fig. $8 e-u s e d$ very widely in industry, as well as in "hi-fi' amplifiers. The small signal RF pentode such as the EF80 (shown symbolically in Fig. 8f) was also found to be a very useful device for AF amplification, and a special lownoise low microphony version of this called the EF86 was produced for use in audio equipment.

The last important variation of this device was the 'vari-mu' pentode, sometimes depicted in circuitry by the use of the pentode symbol with an arrow drawn through it. This device allowed the gain of an RF amplifying stage to be controlled by means of a varying negative $D C$ voitage applied to its control grid. This was achieved by winding the control grid with a spiral mesh of wire which became more widely spaced towards one end. Then as the negative 'bias' on the grid was increased, the electron flow through the finely spaced regions of the grid mesh would be cut off and the only remaining electron flow would be through the more open spaced region, which would have a much lower amplification factor.

Fig. 10 Comparable valve and transistor gain stages
There were also many specialised combination valves, such as the double anode valves used in higb performance mixers and modulators, and the magic eye tubes used as tuning indicators. The main limit on the inventiveness of the valve manufacturers was the eight or nine pins available for such electrode connections on the base of the value.

Advantages And Snags

The big advantage of the value is its robustness. It really does take quite a lot of carelessness to damage one physically - except perhaps the sort of user capable of pushing a second compact cassette into the hole of a car cassette player already occupied by the first one (I saw this achieved recently).

Valves are also quite robust in use. They have enough thermal inertia to be able to absorb, for a short time. a current or voltage overload many times their normal rating, and a $11 / 2-2 \times$ overload for several hours. They also operate at a high enough anode voltage for quite high output voltage swings to be easily obtained, .plus they have a relatively graceful overload characteristic.

Interms of the distortion of the output signal, they are a lot better than any normal semiconductor with the exception.of high voltage MOSFETs, and they are a lot better than these in respect of noise level and can't be damaged by 'static'.

On the debit side, there are a lot of problems. To start with, they are physically bulky and soak up a lot of power. Anyone contemplating a twenty valve unit would be envisaging a large hot lump of kit.

Again, the heater wiring has to be taken to each value holder and carries an $A C$ current at mains frequency and typically at 6.3 V . The hum induced by

Fig. 11 'Triode connection' of output beam-tetrode
this wiring, especially in small signal circuitry at the input to an amplifier, is a nuisance which must be minimised by care in the layout of these wires, installed as a twisted pair or screened cable (and if the latter, heavy enough to carry $1-2 A$).

For anyone used to transistor circuitry, the absence of 'complementary' symmetry in the valves is a great pity, since 'upside-down devices can be a great help in neat circuit design.

One also misses the freedom to operate devices at any sort of static voltage level one wishes since, with valves, one must always keep an eye on the limits on cathode-heater insulation and the possibility of electron emission from the heater itself if the cathode is a long way positive of the heater.

The order of voltages which one may encounter in valve operated hardware is also such that one can get a nasty shock if one plays with the innards while the power is switched on, while with semiconductor equipment the damage is more likely to be to the semiconductors.

This leads to the other disadvantage with valves - that their output impedance is so high. This means that it is impracticable to connect a standard 4 R or 8 R loudspeaker, even a 15R one. directly to an audio amplifier circuit. The necessary output matching transformer, even when carefully and expensively made. is likely to introduce much more degradation of the signal - especially on transients - than the whole of the rest of the circuitry.

The bulk and weight of decently made output transformers, to say nothing of the mains transformer, will mean that a stereo power amplifier is going to be quite a massive bit of gear. Still, people do build them and people do use them. So for the interest of the curious, I propose to continue with a look at the design technology of valve operated audio amplifiers.

Valves In Audio

Nearly thirty years ago, Fairchild Instrument Corporation's invention of the silicon planar' transistor process proclaimed to the world that the transistor had come of age and signalled the beginning of the end for the dominance of the thermionic value in the world of electronics.

Well, as I said, that was nearly thirty years ago. And yet value operated audio amplifiers are still around and, what is more, they are still being made and sold to audiophiles - so why is this?

As with all things technical, there is good news and bad news. Let us take the good news first.

The Advantages Of Valves

If one is considering the design of low distortion audio amplifiers, the value has a lot to commend it. To start with, it has a very linear input voltage vs output current transfer characteristic as compared with the silicon transistor. as is shown in Figs. 9a and 9b.

Putting some figures to these graphs, the harmonic distortion at the largest sensible output signal level for a șmall signal $A F$ value stage could be of the order of $1-2 \%$. For a transistor gain stage using simple circuitry, this figure would be nearer 10%.

Secondly, the valve amplifier stage will have a very much larger possible output voltage swing, so that for a given AF output the distortion would be proportionately lower anyway.

Thirdly, the problems of 'clipping' in small signal stages are of minor importance. Consider, for example, a normal small-signal AF amplifier pentode, such as the EF86, shown in a working circuit in Fig. 10 a . This will operate quite happily at anode voltages

Fig. 12 Typical layout of a high quality push-pull output stage
up to 400 V , which would allow a peak-to-peak output voltage swing of some 250 V before clipping.

By comparison, a low-noise small-signal transistor, shown in a comparable operating circuit in Fig. 10 b , probably has a peak collector voltage rating of some $30-40 \mathrm{~V}$ and can only deliver an output signal swing one tenth as large before the stage overloads.
'Headroom' is a fairly vital consideration in the preamp stages of solid-state audio gear. One hardly needs to give it a thought with valves.

There is also the question of the stability of performance characteristics. Valves do wear out with time but this is a slow and gradual process and, as a friend of mine once observed, "if you have a valve amplifier and you measure its HT current from time to time, provided that this is of the right sort of order, you know your gear is all right. You can never be so sure with these new-fangled transistor systems".

Finally, provided that one doesn't hit them with something heavy and hard, or take an excessive anode current for too long at any one time, the valve is almost indestructible.

These valve properties were a very great advantage for audio equipment, since the peak to mean signal (and power) ratios of typical music signals are very high and use at a quite modest average output may lead to occasional quite brief peaks in signal level which could cause a transistor amplifier some trouble - especially if the load impedance is a bit on the low side - but which valve gear will shrug off.

This aspect is part of what one might describe as the valve's more graceful overload characteristics, which endears this technology to its afficionados.

The Snags

1 have been around long enough in the field of electronic circuit design to be able to remember quite clearly the advent of the transistor, and the impact of its intrusion into my orderly hot-cathode scene. Obviously there were problems in the use of these little gadgets - normal valve type circuitry didn't work terribly well with them.

Indeed. most of my own early trials with trans: istors seemed to end up with a very sick semiconductor, from which a small ascending spiral of smoke signalled the end of the experiment. However, once one did get the hang of their needs and prohibitions, these little gadgets did make clear some of the inconveniences in the use of the valves with which we had lived so long.

To begin with, values were BIG. Making small sized bits of gadgetry with them was difficult. They also didn't like knocks or vibration. This wasn't much of a problem for domestic audio, with one's hi-fi amp sitting quietly on the book case, but at the time I was an

Fig. 13 Simple cascade phase inverter
industrial electronics engineer and the need to make things which would work in hostile environments was all part of the scene.

Thirdly, valves were a bit awkward in use. To make any bit of kit using valves. one first had to start by putting valve holders in a metal chassis, for which one had to begin by cutting the holes. Then one had to wire up the heater circuits using twisted pair wires to minimise the extent of the radiated 50 Hz AC field, and then connect them to the mains transformer for which one had to cut a rectangular hole in the chassis.

With the orders of voltage one needed to use with valves, it was not considered good practice to have the transformer mounted on top of the chassis with its high voltage connections exposed, ready to bite the unwary hand

Finally, however careful one was with heater circuit wiring or HT smoothing, one always seemed to get a bit of residual mains 'hum' in the output. The ideal result - so easy to achieve with transistors of an audio amplifier where one needed to look at the pilot light to see if it was 'on', was a difficult thing to achieve.

Nevertheless, a good valve operated audio amplifier was a nice thing to listen to, especially in the fond remembrance of nostalgia, a few decades in the past. I said a 'good' one, since there were some pretty grotty designs, even among those sold with a hi-fi label and now considered to be collectors pieces.

Valve Audio Circuit Design

In any audio power amplifier, the task is to get as much output as one can for a given rating and cost of power supply or output valves, with as low a distortion figure as is practicable.

For small signal amplification, triodes are better than pentodes in that their distortion content is lower and consists mostly of second harmonic, which the ear does not object to (indeed there is some evidence that half a percent or so of second harmonic distortion may actually appeal to the listener. Third harmonic distortion is a major component of the pentode output distortion figure and is definitely not liked by the ear).

Unfortunately, while triodes make quite good (though lowish gain) small power amplifiers, they make very inefficient (though nice sounding) output stages.

The 'beam tetrode' is a style of valve in which the unwanted secondary emission of electrons from the anode (which can cause a big 'kink' in the anode voltage/anode current graph when the anode voltage swings below that on the screen grid) is prevented by a pair of internal 'beam' plates. It is at least as efficient

Fig. 14 'Floating paraphase' inverter stage
as the pentode and is somewhere between the pentode and the triode in its distortion characteristics.

Power output triodes. in addition to being inefficient, were always awkward to use and are now no longer made, since one can get substantially the same result by connecting the anode to the screen grid (G2) in a pentode or beam tetrode, which avoids the need for the manufacture of a separate valve type.

Using a single 'triode-connected' output beam tetrode as ! have shown in Fig. 11 will only give an output power of $4-5 \mathrm{~W}$. even with an HT supply of 450 V . This isn't adequate for "hi-fi' use.

The 'push-pull' connection of a pair of triodeconnected beam tetrodes such as the celebrated KT66s, as I have shown in Fig. 12, will allow an output power of about 15 W RMS, provided that the output stage is matched to the load.

This brings me to the final snag for the audio designer, which is that because valves have a high output impedance (typically of the order of k -ohms). an output coupling transformer T1 is needed to match such an amplifier design to a loudspeaker load. On the quality of this component hangs the whole performance of the design.

Push-pull Output Stages

Using the output valves in 'push-pull' gives a useful increase in output power from this stage and will cancel out most of the even harmonic distortion residues. To do this it is necessary to provide an antiphase pair of input drive signals to the two control grids, so that as one goes positive the other will swing negative.

The simplest way of doing this is by means of an input 'driver' transformer but the use of two coupling transformers in cascade is not a very 'hi-fi' approach. Respectable designs must therefore contrive some kind of 'phase-splitter' circuit, to convert the single ended' input signal into a pair of balanced lowdistortion push-pull signals, to drive the output valve pair.

It is in the design of the phase-splitter stage and the succeeding amplifier stages which will drive the output valves that the ingenuity of the designer is most needed, since it is a difficult part of the circuit to do well.

I have shown some of the circuit options in Figs. 13-16. Of these the first and crudest, shown in Fig. 13, is just an additional (phase-inverting) amplifier stage V2, with a trimmer pot on its input so that its output can be adjusted to be the same as that from V1. This works but offers few concessions to hi-fi.

An improved version of this circuit, shown in Fig. 14, is called the floating paraphase' and uses a pair of resistors ($\mathrm{R} 4 / \mathrm{R} 5$) connected between the

Fig. 15 'Long tailed pair' inverter stage
anodes of V1 and V2 to generate an input signal to V2. Because of the negative feedback through R5, the V2 output will be close to that from V1. Also. because of the nearly 100% negative feedback applied across V2 through R5, the output from V2 will not be much degraded by comparison with that from V1

The third option in Fig. 15 is our old friend the 'long-tailed pair', very commonly used in transistor and IC circuit layouts. This works best if there is a suitable low-current negative supply to feed the cathode circuit, so that both of the input grids can operate at OV line potential.

This type of phase-splitter has low distortion but may not, for a single long-tailed pair stage, give identical but antiphase outputs from both V1 and V2. Running two successive long-tailed pair stages in cascade will ensure that the two push-pull outputs are closely identical.

The final option of Fig. 16 is the split-load phasesplitter. In this the second valve V2 is operated as a cathode follower, but with an equal value of load resistor in both its cathode and anode circuits. Since the same current flows through both, the outputs must be identical - apart from the minor effects of the different load capacitances on the anode and cathode circuits.

In practical audio power amplifier designs. combinations of these circuits will be used but of the choices the last option is very much the purists approach. This was the phase-splitter layout employed by D T N Williamson of the Marconi-Osram Valve Co in 1947, in his justly celebrated 'Williamson' 15 W amplifier, whose performance has hardly been bettered in valve operated amplifiers to this day.

Practical Problems

The influence of the heater circuit on the operation of a value cannot be entirely ignored, since there will inevitably be some current leakage between the heater winding and the cathode tube which surrounds it. Also, since there will be some capacitance between heater and cathode, some mains 'hum' voltage will be coupled into the cathode circuit from the heater winding.

Finally, if the cathode is significantly positive with respect to the heater, there may be some thermionic emission from the heater to the cathode and this will inject an unwanted modulated DC into this circuit. This problem could be even worse if the heater was significantly positive in respect to the cathode, when it would operate as another 'anode'.

This difficulty was avoided in traditional designs by the use of a separate heater supply winding on the
mains transformer. which could be connected to a suitable positive voltage supply so that the heater element was that the same potential as the cathode.

Output Stage Efficiency

The output efficiency of push-pull triode-connected beam tetrodes is nowhere near as good as that of the same values when tetrode connected, and this had stimulated some research during the early 1950 s into ways by which the output stage efficiency could be improved (without too great a worsening of the THD figure) by coupling the cathode or screen grid circuit into the output transformer.

Various ways of doing this were tried - using additional windings or taps on the windings for this transformer - but the simplest and generally most effective technique was found to be to connect the screen grids (G2) to a tap on the primary winding, somewhere between 20% and 40% of the total (Fig. 17). This gave an output stage distortion which was nearly as good as that of the same valve when triode connected but without causing too big a loss in efficiency.

This technique was described as the 'ultra-linear' connection. I remember an indignant purist of the day feeling that nothing could be more linear than "linear', observing of this description that "it was like the thirteenth stroke of a crazy clock . . . which cast doubt on all that which had gone before". Nevertheless, this was a useful improvement in output stage circuitry and allowed existing valves to be used in 25-30W amplifiers.

Negative Feedback

Most of the exponents of valve operated audio amplifier technology are also committed to the view that negative feedback is a 'bad thing' and must be avoided. However, as a concession to the main stream of circuit design thought, they may allow some 6 dB s worth in their designs. By doing this they fall between two stools.

The purpose of negative feedback is threefold. Firstly, it improves the accuracy of waveform preservation and this will apply, within certain bandwidth constraints, to transient signals as well as stea dy state 'sine wave' ones.

Secondly, negative feedback will help stabilise the gain. from unit to production unit and from LF to HF. Thirdly, it will reduce the amount of unwanted 'hum' and noise introduced by that part of the circuit within the feedback loop. However, to do any of these things properly it must be adequate in extent. This is particularly true for the reduction in waveform distortion, for the following reason.

Assume that the amplifier introduces a certain amount of second and third harmonic distortion. Together with the original signal, this will be fed back and added to the input but in antiphase. Because the distortion components are not present in the input signal, they will be amplified again to cancel the original errors.

However, and this is the important bit, the distortion components fed into the circuit by the feedback loop will also be distorted, so the original second and third harmonics will now generate fourth, sixth and ninth harmonics. These last two are aurally objectionable.

If enough feedback is used, the residual magnitude of the internally generated high order harmonic distortion will be vanishingly small and won't go round the loop for a third and fourth time creating yet more spurious overtones. However, to be on the safe side at least 20 dB . preferably 26 dB , of NFB must be used

Fig. 16 Split-load phase splitter circuit

Fig. 17 The 'ultra-linear' output stage configuration
and this demands a very good output transformer since this is the component which introduces the bulk of the end of passband phase shifts.

Power Supplies

A high power audio amplifier will normally be operated from a single +450 V HT supply, and this
must be adequately smoothed to keep the hum level down. Fortunately for those who make modern day valve operated audio amps, reasonably sized electrolytics are now much more easily obtained than in the 1950s and this helps a lot.

The smoothing effect of a capacitor depends on the energy which is stored in it. given by $\mathrm{CV}^{2} / 2$. This means an $8 \mu \mathrm{~F}$ capacitor at 450 V holds about as much energy as a $1500 \mu \mathrm{~F}$ at 35 V . If one were to 'push the boat out' and use a $100 \mu \mathrm{~F} / 450 \mathrm{~V}$ smoothing capacitor, this would be equivalent to a $16,500 \mu \mathrm{~F}$ at 35 V . Even the advocates of filing cabinet sized reservoir capacitors would probably think that this was big enough.

However, a $450 \mathrm{~V} / 100 \mu \mathrm{~F}$ capacitor would pack a lethal punch, and the HT+ supply line would need to be treated with great respect. In addition, an inadvertent short-circuit across the HT+ line would be noisy and highly destructive.

A Present Day 30W Valve Audio Amplifier Design

I have sketched out in Fig. 18 the type of circuit which might have been used when valve amplifiers were in their heyday if some of the components we now take for granted had been available to their designers.

This is largely based on the Williamson design but with an 'ultra-linear' connected output transformer and fixed bias for the output valves, derived from a three-terminal voltage regulator in the interests of output stage efficiency.

The performance of the design will depend, crucially, upon the characteristics of the output transformer. Assuming that this has a specification which is as good as that of the original Williamson one, the indicated amount of negative feedback will be usable to give a bandwidth of $3 \mathrm{~Hz}-100 \mathrm{kHz}$, with a full output THD of 0.1% at $100 \mathrm{~Hz}-20 \mathrm{kHz}$. decreasing at lower output powers to below the noise threshold at IW or so.

I have only considered power amp designs because, while it is possible to make valve operated pre-amplifiers as well, I really cannot see any good reason for such a masochistic exercise - except possibly for 'headroom', and this could be achieved more easily in other ways.

II

> Paul Chappell mounts a special investigation into the misleading noise characteristics quoted to unsuspecting punters

If you choose your op-amps from catalogue information, or even from some manufacturers' data books, about the only indication you'll get of the noise performance is a figure of so many VV per $\sqrt{\mathrm{Hz}}$. Thumbing through the Electromail catalogue. I see that the NE5534 turns in a figure of 3.5 nV per $\sqrt{\mathrm{Hz}}$. the TL071 gives 18 nV per $\sqrt{\mathrm{Hz}}$ and the OP27G has a figure of 3.2 nV per $\sqrt{\mathrm{Hz}}$. So for a low noise amplifier the NE5534 is much better than the TL071, but just a touch inferior to the OP27G. right? Or is there more to it than that?

In the very same catalogue I find that the ZN549CP comes up with a white noise voltage figure of a tiny 800 pV per $\sqrt{\mathrm{Hz}}$. but that its LF spot noise is 3 nV per $\sqrt{\mathrm{Hz}}$. Both figures subject to a zero source resistance. What's going on here?

If they had just put down the 800 pV figure, my choice would have been clear: 800 pV is less than 3.2 nV . So I choose the IC with the nicest number for noise and go for the ZN549. But they confuse the issue by putting in another noise number and then say that the whole lot might not be true anyway: it only works for a zero source resistance! Knowing that IC manufacturers are just as keen as anyone else to say their product washes whiter than white, you can bet that the zero source resistance turns in the best achievable figure. But what if the source resistance isn't zero? Will it make a lot of difference? And how about the other ICs - could it be that their figures depend on having zero source resistance and the manufacturers just forgot to mention it? It's enough to make you read the rest of the article!

Voltage Noise Density

Lets go back to resistors for a moment. Take a 100 k resistor ar room temperature. By the formula for the noise voltage $\mathrm{v}_{\mathrm{n}}(\mathrm{RMS})=\sqrt{4 \mathrm{kTRB}}$. it's easy enough
to calculate that the voltage noise in a given bandwidth will be $40 \mathrm{nV} \times$ vB: that is 40 nV times the square root of the number of Hz in the bandwidth, or even more simply: 40 nV per $\sqrt{\mathrm{Hz}}$

This means that for a 1 Hz bandwidth at any centre frequency whatsoever, the RMS noise voltage from a 100 k resistor will be 40 nV . The 40 nV per VHz is the noise density figure for the resistor: it tells you how much noise in a unit bandwidth. Since it is independent of frequency, the one figure tells you all you need to know. It can be summed up in the graph of voltage noise density against frequency shown in Fig. 1

As a slight digression, the 40 nV figure for a 100 k resistor (or 4 nV for a 1 k resistor) is a good one to commit to memory. As long as you remember that the voltage noise is proportional to the square root of the resistance (so four times the resistance will produce twice the noise voltage, one hundred times the resistance will give ten times the noise voltage and so on) it's fairly easy to do a quick calculation of the noise density figure for any resistor in your head

Now, what are we to make of similar looking figures quoted for op-amps? The first thing to realise is that the quoted figures are referred to the input of the op-amp. If you make up an amplifier with a gain of say twenty, and make sure that the input sees exactly the same conditions it did when the tests which produced the figures were made, and if you're lucky enough to buy a device which lives up to the "typical" figures. the best you can hope for is a voltage noise density of twenty times the published figure at the output.

The second assumption you have to make. if you want to rely on the published figures. is that the opamp has the same noise spectrum as a resistor: equal power per unit bandwidth or white noise. If not. the graph of noise density against frequency will not be a horizontal line, the noise density figure will vary with frequency and the published number wont be telling

Fig. 1 Graph of voltage noise density against frequency for a resistor and low noise op-amp

Fig. 2 Create your own!
the whole story! Tve already given enough hints in past articles for you to guess that the noise spectrum is not flat for op-amps. The true picture for a low noise audio amp (NE5534s and the like) is also shown in Fig. 1. For 1 kHz and above, the 3.5 nV per $\sqrt{\mathrm{Hz}}$ is a reasonable approximation to the truth. But it's not the whole truth.

The rise at the lower end of the spectrum is caused by $1 / \mathrm{f}$ noise, so called because its density is inversely proportional to frequency. At the upper end, white noise predominates. The changeover point (where the two asymptotes join, as shown by the dotted line in Fig. 1) is called the noise corner or $1 / \mathrm{f}$ corner of the op-amp. Above this frequency you can believe the published noise voltage figure. Below it, don't trust it an inch!

If you can get hold of the figure for the $1 / \mathrm{f}$ corner of the op-amp you're considering, you can rough out a diagram like Fig. 1 for yourself. First, draw a horizontal line at the published noise voltage figure. Let's say it's 5 nV per $\sqrt{\mathrm{Hz}}$: you draw a horizontal line at 5 nV . Now mark the line at the corner frequency. Let's say it's 100 Hz . Figure 2a shows these steps.

At a frequency of one hundredth of the corner frequency (1 Hz in this case), make mark at ten times the published noise voltage figure $(50 \mathrm{nV})$ and make a straight line between this and the corner frequency mark on the horizontal line (Fig. 2b). Now make a mark vertically above the place where the two lines join, at about $11 / 2$ times the published noise voltage figure (7 nV will be fine).

Now you draw in the curve freehand! Start along the downward sloping line until you reach a tenth of the corner frequency (10 Hz in this case). Then move away from the line so that your graph will go through the ' $11 / 2$-times' point (or 1.4 times, to be a little more accurate). Then head back towards the horizontal line and join in at about ten times the corner frequency $(1 \mathrm{kHz})$. Follow along the horizontal line to the end of the graph and you're done. Given the uncertainty about typical' figures and variations in corner frequency between one IC and another, your homemade performance graph will give results every bit as good as one you'll find in a data book! Figure 2c shows the result. Remember that you have to do this on log\log graph paper or it won't give the proper answers.

Current Noise

Even when you've taken account of the $1 /$ f noise, this is by no means the whole story. Superimposed on the op-amp's bias currents is current noise: random fluctuations of the current at the input terminals. You'll usually find a figure for this in data books but not
always in catalogues. It will be given as so many pA per $\sqrt{\mathrm{Hz}}$. For the OP37 for instance, it is 0.4 pA per $\sqrt{\mathrm{Hz}}$ - quite a respectable figure for a reasonably priced op-amp.

The same warning about low frequencies applies here too: there will be a $1 / \mathrm{f}$ corner above which white noise will predominate and the noise density figure will be fairly reliable, but below which it will rise. The situation is worse than for voltage noise because the corner frequency is usually very much higher.

Figure 3 shows the barest bones of the input circuit of an op-amp. In series with each input is a resistor (which might be zero resistance if theterminal is directly connected to say 0 V). The resistors might be physical devices, or could be the source resistance of whatever is providing the input signal, or a combination of the two.

The three things to be taken into account are the op-amp's voltage noise, its current noise and the noise generated by the resistors themselves. The effect of the current noise will be to produce a voltage across the resistors, so the whole lot can be summed up as: total noise $=(\text { (voltage noise) })^{2}+$

$$
\sqrt{\left(\begin{array}{l}
\text { (current noise) } \\
(\text { resistor noise })^{2}
\end{array}+\right.}
$$

You'll notice that if you assume $\mathrm{R}_{\mathrm{S}}=0$, you cut out all the contribution from current noise and from resistor noise and get a very cheerful looking figure. It won't bear much relation to the op-amp's performance in a real circuit but it might persuade a few dummies to buy one!

One decision an op-amp designer has to make is how to trade off current noise against voltage noise. An op-amp intended to work with high source resistances will have the current noise minimised, probably at the expense of the voltage noise but since current noise will predominate over a certain value of R_{S}, this is exactly what is required.

Let's see how this works out. First of all, notice that the 'root of sum of squares' addition process for noise sources means that the larger sources have a disproportionately big effect on the total. Let's suppose that there are two noise sources, one of 3 nV and one of 1 nV . The total noise will be $\sqrt{9+1}=3.16 \mathrm{mV}$, so neglecting the lnV entirely would only give a little over 5% error in your estimate of the total noise! Unless the two sources are very similar in size, there's little error in saying that all the noise comes from the larger.

Now, suppose the two noise sources are the voltage noise of the op-amp and the current noise

Fig. 4 Noise at 10 Hz versus source resistance for various op-amps. Spot the odd one out!
multiplied by the source resistance. If the source resistance is low, the voltage noise will predominate. The current noise will only start having an impact when R_{S} is large enough for R_{S} times the current noise to be a third or more of the voltage noise. Taking the figures for the OP37, the voltage noise will be 3 nV per $\sqrt{\mathrm{Hz}}$, the extra voltage noise introduced by the current noise flowing through the source resistance will be $\left(0.4 \times R_{s}\right) \mathrm{pV}$ per $\sqrt{\mathrm{Hz}}$ (because the noise current density is 0.4 pA per $\sqrt{\mathrm{Hz}}$, so for a source resistance below about 2.5 k (which would give InV per $\sqrt{\mathrm{Hz}}$) the voltage noise swamps the current noise. Above about 20k the voltage noise is lost in the current noise. For high source resistances then, it's wise to accept a high noise voltage figure for the op-amp as long as it turns in a good noise performance, because it's the current that will make the difference.

To get the total noise, you have to add in the resistor noise. of course. I'm assuming that the source
resistance is high and the designer had no choice in the matter (because the input comes from a transducer for instance). If there is a possibility of varying the source resistance, the very best results will come from the lower source resistance, lowest noise voltage, and a more modest figure for the noise current.

The sum of all the various noise voltages for several different op-amps is shown in Fig. 4 (taken from the PMI Linear data book). Bearing in mind that it's for a frequency of 10 Hz and that most of the PMI op-amps featured are intended for instrumentation and have exceptionally low $1 / \mathrm{f}$ corner frequencies, would I be justified in using this diagram alone to 'prove' that the OP27 and OP37 are better, noise-wise, than the Signetics NE5534? PMI don't say this. by the way. but they do slip the Signetics IC in amongst their own data and leave you to draw your own conclusions!

STEVE CIARCIA'S FAMOUS BYTE PROJECTS NOW AVAILABLE AS TRIED AND TESTED KITS

 from $18^{\prime \prime}$ to 35 ft with a resolution of $1.2^{\prime \prime}$.

SUPER IC TESTER Tests over six hundred 7400 -series TTL, L, S, H, C, HC, HCT, F, AS, and ALS devices, 4000 -series CMOS and PALS. Identifies un-marked chips and bad IC pins. User definable test sequence and user expand-able ROM library. Operates stand-alone with LCD display, or with PC or terminal.

SERIAL EPROM PROGRAMMER
Use stand-alone or with computer/ Term. Programs standard or fast algorithm mode. menu selectable, no jumpers. Programs all 5V 27xxx Eproms from 2716 to 27512. Intel Hex file Upload/Download.

VIDEO-DIGITISER True "Frame Grabber", gets picture in 1 frame time. Bus independent digitiser. Serial output, transmits 300 bps to 57.6 kbps . Resolution is 256×24464 grey level. Accepts any B\&W or colour composite video signal. Optional Rec/Display makes up a video telephone. Images can be stored and displayed on IBM PC. Comprehensive IBM image-processing software available.

MORE...
Other kits, and a wide range of fully-built computer boards, interfaces and other products also available.

FREE READERS' ADS

 Buy, sell or exchange through our free service to readers

 Buy, sell or exchange through our free service to readers
 Z80 BASED FILESERVER and work station plus NEC Spinwriter.
 COMMODORE 64 modem with ID manuals, boxed, as new. Ibico

word processing and other software. $£ 100$. Phone Chandlers Ford 262402.

EX-ARCADE video game PCBs. Working. Many useful parts. $£ 25$. Also various surplus components. 11 Cooper Street, Nuneaton, Warks CV11 4BP. (0203) 342825
RTTY morse code master CWR-610 with green monitor. Operating manual. Bargain, hardly used, $£ 125$. Sittingbourne, Kent. Tel: (0795) 78627.

TERMINAL. Televideo 970 . Software set up. Two comms ports and manual. $£ 100$. Contact Mr Onno, 100 Masser Road, Coventry CV6 4JW.
PROTOTYPE GYMNASIUM SCOREBOARD as per ETI 1985. $£ 50$ as is. Refurbished by author negotiable. Delivery within reason. Ken Wood (0633) 896705.
WANTED: 'Practical repair and renovation of colour TVs' by C. E. Miller, Babani BP 34. Postage refunded. Mr P. Faccenda, 5/5 Murrayburn Gardens, Edinburgh EH14 2PZ
KODEN KS 510 II automatic direction finder, 150 kHz to 4.6 MHz in 3 bands. Six crystal spaces. Swap for good communications receiver. Phone 082-623 461
TRANSCEIVER COBRA 25GTL 27MHz Citizens Band 40 channels AM American frequencies. Also 13.8V DC output mains power supply $£ 55$. Phone (0406) 380037
1936 MAINS RADIO. Collectors item, wooden case, good working order. Philco model 269. Nice tone. £35. (Edinburgh) 031-229 0067
WANTED: Photocopy complete article Ultrasonic Alarm, Hobby Electronics October 1983 issue. Tel: Ashford (0233) 33177
WANTED: SERVICE MANUAL or user manual for Qume printer S5. Loan acceptable. Will refund p\&p. Phone (0625) 20782.
WANTED: RCA receiving tube manual. Cosgrove, 59 Fenton Road, Bournemouth BH6 5BS. Tel: (0202) 432973.
YAESLI EQUIPMENT. FRG9600 scanning receiver $£ 395$. FT790R UHF multimode transceiver $£ 285$. FRG7 receiver $£ 120$. Phone Portsmouth (0705) 250830 after 6pm.
ETI Apr 72 (No. 1) to Mar 82 (4 missing). Practical Electronics Nov 64 (No. 1) to Mar 82 (1 missing) offers? J. R. Harris (0285) 658144 (home) (0793) 751160 (work).
WANTED: DFS 1.20 for BBC micro, also printer, LQ or NLQ. Tel: 01-720 4619
ELECTRONIC SOFTWARE for BBC micro from Farnell. Stupid price $£ 35$ the set. Call Jon (0905) 5324824 hr or (0905) 52536
555 TIMER ICs. Brand new, no rejects. Only 24p each or 20 for £4.40. S. Lord, 6 Stubbing Brink, Hebden Bridge, HX7 6LR
AMSTRAD COMPUTER magazines: $60+$, many titles, will sell $£ 20$, will not split, p\&p not included. - Phone (0368) 62836, after 6pm. WANTED: WIRING details for Powertran MPA-200 amplifier. - Roy Porter, 71 Irish Street, Londonderry, Northern Ireland, BT47 2DA Tel. (0504) 41968

Ltri letter quality printer, boxed. $£ 200$ ono the lot. - 01-699 1146. HITACHI LCD displays, new LM032L, £15; new H2571, £10; exequip LM020L. $£ 5$. - Tel. (0577) 63553. evenings
CALL UK's best multi-user BBS (0905) 52536. Archimedes conference now in operation - lots of downloads.
TREKKER ROBOT: user guide, software guide and discs, umbilical cord connects with BBC computer, £80. - Tel. (0772) 423696
WANTED: MOTOR EG510ED for NEC-K450E cassette deck or Mabuchi motor without electronics. - J. Corfield, 6 Lavender Bank, Biships Castle, Shropshire SY9 5BD. Tel. (0588) 638238.
WANTED: DOS manuals etc for Burroughs B20 Series. - D. Armstrong, 85 Lower Bagthorpe. Bagthorpe, Notts NG16 5HF WANTED: ZX81 with 16K ram pack, also ZX printer wanted. Would pay around $£ 25$. - Phone (0902) 759034, Wolverhampton. THORENS TURNTABLE, TD166 Mk II. New condition, including cartridge. $£ 75$. - Phone 01-804 8605, evenings for details.
RESISTORS. $1 / 4 \mathrm{~W} .5 \% .470$ R. $3 \mathrm{k} 3,18 \mathrm{k}, 47 \mathrm{k}, 100 \mathrm{k}$. 1 pence each or 50 p/ 100.50 pence p\&p. - Andrew, 14 Bolingey Way, Hucknall, Notts NG15 6GZ.
PHILIPS MDCR200. Test cert and data. Cost over $£ 100$. Price as new, £35. Perfect tape storage. - Tel. Garry, 061-799 7365
WANTED: CIRCUIT diagrams for Spectrum $48 \mathrm{~K} / 128 \mathrm{~K}$ Commodore $64 \mathrm{~K} / 128 \mathrm{~K}$, Atari 800XL. - Hackers to contact Atif, 437 Chaklala Sch 3 Rawalpindi, Pakistan.
ARCADE GAME PCBs, old and new. from $£ 50$, with connecting instructions. Also some full arcade machines. - Phone Steve, Oxford (0865) 63744.

SPECTRUM GAMES, books, peripherals, 50 p to $£ 2$. Blank cassettes 20 p. - SAE list: S. Sunderland, 54 North Road, Three bridges, West Sussex RH10 1RH
CENTRONICS TYPE 50 -way I^{\prime} C C plugs (3 M Delta ribbon connectors). Box of 100 for $£ 25$ in ostage. - (0744) 24608 (St Helens)
CORTEX 16-BIT computer, offers. BBC 8271 disk controller, $£ 25$ $51 / 4$ in 1 Mb disk drive, half height, offers. - Phone (0602) 461449 WANTED: SN76477 sound effects generator IC. Two needed. Richard C. Doughty, 10 Northdown Way, Margate, Kent CT9 3QX. CAMERA EQUIPMENT: Praktica camera, electronic flashgun tripod, 3 lens, 'new' was unwanted present. $£ 160$. - David McDowell, 257 Linn Road, Lame BT40 2AH.
TI59C, PC100 programmable calculator and printer. Electrical engineering, maths utilities modules etc, plus spare magnetic cards and all manuals. $£ 200$. - (0844) 53498.
ETI BACK issues. 1975-1984, £25. - Phone Yateley, (0252) 877577
WANTED: APPROX 35 foot, 3 section lattice tower or similar, upith winch. Can collect. - Telephone after 5pm: Cannock (05435) 79818, contact John.

CONDITIONS

- Ihese ads are only for ETI readers not engaged in buying or selling the same items or service on a commercial basis.
- Ads will be inserted as and when space permits. Insertion in a specific issue cannot be guaranteed.
- ETI reserves the right to alter or refuse ads whenever this is judged necessary
- All ads are accepted in good faith. Neither the magazine nor its puhlishers can be held responsible for any errors in the reproduction of ads, nor for untruths or misrepresentations nor for the activities of advertisers or respondents.
- Advertisers submitting ads for this section shall be deemed to have accepted thes conditions.

Ads should be 20 words or less including the address and/or telephone number. Please write in black block capitals or type in the grid provided on this form or a photocopy.
Send the form to:
FREE READERS' ADS
Electronics Today International Argus House, Boundary Road Hemel Hempstead, Herts HP2 7ST
Enter your advertisement below

DC MOTOR CONTROL

Ray Marston opens his circuit notebook to ETI readers, starting a mini-series on $D C$ motors and how to keep control

Fig. 1 Motor action of a four phase variable-reluctance stepper motor

one of the most interesting applications of electronics is the control of DC electric motors. Careful techniques can be used to give precision step rotation or speed/direction control of multi-phase stepper motors, or precision speed regulation or wide-range speed control of permanent magnet DC motors, or precision control of the speed or angular movement of various types of DC servomotor, and so on. Practical application circuits of all these types are shown in this and the next part of this mini-series. Let's start off by looking at the various types of DC motor.

DC Motor Types

Four major types of DC electric motor are relevant to us. The first of these is the 'stepper' motor, which has several phase windings. These are pulsed in an appropriate sequence to rotate the output spindle a precise step angle (usually between 1.8° and 7.5°). Thus the spindle can be turned an exact number of steps or rotated continuously at any desired speed in either direction, simply by applying suitable pulse sequences.

Stepper motors can easily be controlled via a microprocessor or dedicated stepper motor driver IC such as the SAA1027 or SAA1024. They are widely used in applications where precise amounts of angular movement are needed, such as in the movement of robot arms, in daisy wheel character selection, or the movement control of the print head and paper feed in an electronic typewriter.

The most widely used type of DC motor is the permanent magnet commutator type, simply designed to rotate at some approximate speed when powered by a particular DC voltage. Motors of this type are used as fixed-speed drivers in tape/cassette recorders and record/disc players, and as wide-range variable-speed drivers in miniature electric drills and model locomotives. In all of these applications, the motor performance can be greatly enhanced with the aid of electronic control circuitry.

The third type of motor is the so-called servomotor'. This is simply an electric motor coupled to a movement-to-data translator such as a shaft-mounted tachogenerator (which gives an output proportional to the motor speed) or a gearbox-driven potentiometer (which gives an output proportional to
the output shaft position). When one of these motors is coupled into a suitable power control feedback loop, its speed can be precisely locked to that of an external frequency generator, or its shaft movements can be locked to that of an external shaft or control knob.

Servomotors of the tachogenerator type are often used to give precision speed control of record/disc turntables. Servomotors of the pot output type are widely used to give remote-controlled antenna rotation or remote activation of model aircraft/boat control surfaces and engine speed.

The final type of motor is the 2-phase low-voltage AC motor, usually driven via a DC-powered low frequency oscillator. Motors of this type are occasionally used in turntable driving applications.

Stepper Motor Basics

Stepper motors come in two basic forms, either 'variable-reluctance' or 'hybrid' types. Stepper motor basic principles can best be understood by looking at Fig. 1, which shows stepping operation of a 4-phase variable-reluctance motor

The stator (body) of this motor has eight inwardprojecting teeth, each with a coil winding connected to oppose the coil on the opposite tooth. This gives four-phase pairs: A,B,C and D.

When a phase is energised, magnetic flux flows from the positive phase tooth to the negative one via the shortest possible magnetic path through the softiron rotor, which has six (in this case) projecting teeth. To minimise this magnetic path the rotor is forced to move so that the nearest pair of its teeth align with those of the energised phase.

Thus in Fig. la, phase A is energised and the rotor's reference tooth (indicated by the large arrow) aligns with positive phase tooth A. From this position

Fig. 2 Standard external connections for a four phase stepper motor

Fig. 3 Basic transistor driven stepper motor circuit

Fig. 4 Outline and pin designations of the SAA1027 stepper driver IC

Fig. 5 Internal block diagram and basic applications circuit of the SAA1027

Fig. 6 Complete stepper motor drive and test circuit
we could energise phase B (the rotor turns 15° anticlockwise for the nearest tooth to line up - Fig. 1b) or phase D (rotor turns 15° clockwise - Fig. 1c).

Going from phase A to phase C would give an uncertain result since two possible teeth are equidistant from the C phase.

So each step gives a 15° rotation and we can choose between clockwise and anticlockwise simply by energising in the order A D C B A or A B C D respectively.

The step length of this type of motor equals $\frac{360^{\circ}}{P \times N}$ degrees, where P is the number of phases, and N is the number of rotor teeth. In the case of Fig 1, this gives a step length of 15° indicating that a 24 -step sequence is needed to complete one motor revolution.

Hybrid Stepper Motors

In practice the most popular variety of stepper motor is the hybrid type, which gives the same type of stepping action as in Fig. 1 but differs in details of construction and operation (for example, its rotor houses a permanent magnet and energising flux flows paralle to the shaft axis). Usually, these motors have four phases or coil windings, which may be available via eight independent terminals as shown in Fig. 2a, or via two sets of triple terminals, as shown in Fig. 2b. The phases are usually designed for unipolar drive and must be connected in the correct polarity.

Figure 3 shows the basic way of transistor driving a normal 4 -phase hybrid stepper motor at its designated voltage rating. Table 1 at the end of the

Fig. 7 Stepper motor to microprocessor interface

Fig. 8 Two circuits to boost the drive current (a) using independent phase windings and (b) coupled phase windings
article shows the usual full-step switching sequence. Note that the motor can be repeatedly stepped or rotated clockwise by repeating the 1-2-3-4 sequence or anticlockwise by repeating the 4-3-2-1 sequence, and that in each step two phases are energised at the same time but phases 1 and 2 or 3 and 4 are never both on at the same time.

A useful feature of the 4 -phase hybrid motor is that it can also be driven in the 'half step' mode, the rotor advancing only a half step angle at a time, using a mixture of single and dual phase switching, as shown in Table 2.

A 4-phase hybrid motor can be operated from a $D C$ supply greater than its designated voitage rating by wiring suitable dropper resistors in series with its phases. Since phases 1 and 2 or 3 and 4 are never both on at the same time, each of these pairs of phases can share a single dropper resistor, R, at each of the points X and Y in Fig. 3. Thus, a 6V 6R motor (1A
per phase) can be operated via a 12 V supply by giving each resistor a 6 R 6 W rating.

The SAA1027 Driver IC

Several dedicated 4-phase stepper motor driver ICs are available and the best known of these is the SAA1027, designed to operate from supplies in the 9.5 V to 18 V range and to give full-stepping 4 -phase motor operation at total output drive currents up to about 500 mA .

Figure 4 shows the outline and pin notations of the SAA1027, Fig. 5 shows its internal block diagram and basic application circuit. Internally the IC has three buffered inputs which are used to control a synchronous 2 -bit (4 -state) up/down counter, its output fed to a code converter which then uses its four outputs to control (via suitable driver circuitry) four transistor output stages. Each of these operates in the open-collector mode with motor back-emf damage protection provided via an internal collector-to-pin-13 diode.

Note that the IC has two sets of supply rail pins. one set (pins 13 and 12) feeding the high-current circuitry and the other (pins 14 and 5) feeding the low current sections. In use, pins 5 and 12 are grounded and the positive (usually 12 V) rail is fed directly to pin 13 and via decoupling components $\mathrm{R} 1-\mathrm{C} 1$ to pin 14. The positive rail must also be fed to pin 4 via R_{x}, which determines the maximum drive current capacity of the four output transistors. The appropriate value of R_{x} is given by

$$
\mathrm{R}_{\mathrm{x}}=(4 \mathrm{E} / \mathrm{I})-60
$$

where E is the supply voltage and I is the desired maximum motor phase current. Thus when using a 12 V supply. R_{x} needs values of $420 \mathrm{R}, 180 \mathrm{R}$, or 78 R for maximum output currents of $100 \mathrm{~mA}, 200 \mathrm{~mA}$ or 350 mA respectively.

The SAA1027 IC has three input control terminals, noted COUNT, MODE and RESET. RESET is normally biased high, letting the IC's outputs change state each time the COUNT terminal transitions from the low to the high stage, as shown in Table 3.

The sequence repeats at 4 -step intervals but can be reset to zero at any time by pulling RESET low. The sequence repeats in one direction (normally clockwise motor rotation) when the MODE input is low and in the other (normally anticlockwise) when high.

Figure 6 shows a practical drive/test circuit that can be used to drive hybrid 4 -phase stepper motors with current rating up to about 300 mA . The motor can be manually sequenced one step at a time via SW3 (which is effectively 'debounced' via R4-C5), or automatically via the 555/7555 astable oscillator by moving SW2 to either the STEP or FREE-RUN position. The motor direction is controlled via SW4 and the stepping sequence reset via SW5.

The operating speed of the free-running astable circuit is widely variable via RV1 and SW1. In the SLOW (1) range, the astable frequency is variable from below 5 Hz to about 68 Hz . On a 48 -step $\left(7.5^{\circ}\right.$ step angle) motor this corresponds to a speed range of $6-85 \mathrm{rpm}$. Switch SW1 ranges 2 and 3 give frequency ranges that are 10 and 100 times greater than this respectively and the circuit thus gives a total speed control range of 6 rpm to 8500 rpm on a 48 -step motor.

Circuit Variations

The basic Fig. 6 circuit can be varied in several ways. Figure 7 shows how it can be driven via a computer or microprocessor output port with terminal voltages that are below 1 V in the logic 0 state and above 3.5 V in the logic 1 state. Note that this circuitry reverses the normal polarity of the input control signals. Thus the

(b)

Fig. 9 Symbol and equivalent circuit of a DC permanent magnet motor

Fig. 10 On/off motor control using transistor switching and (b) increased sensitivity

STEP input is pulsed by a high-to-low transition, the stepping sequence is RESET by a high input, and a low MODE input gives forward motor rotation and a high input gives reverse rotation.

Figures 6 and 7 are designed to give maximum output drive currents up to about 300 mA . If desired these outputs can be boosted up to about 5A by using the two circuits of Fig. 8, which each show the additional circuitry needed to drive one of the four output phases of the stepper motor. Four such driver stages are needed per motor. The Fig. 8a circuit can be used to drive motors with fully independent phase windings and the Fig. 8b design can be used in cases where two windings share a common supply terminal. In both cases D1 and D2 are used to damp the motor back-emfs.

Magnet Commutator Motor Basics

Leaving the stepper motor, let's move on to the most widely used DC motor - the permanent magnet type with a commutator that rotates when the motor is powered from an appropriate DC voltage. Figure 9 shows the symbol and simplified equivalent circuit of this type of motor.

The basic action of this motor is such that an applied DC voltage forces current through its sets of armature windings (via commutator segments and pick-up brushes) and generates electromagnetic fields that react with those of fixed stator magnets in such a way that the armature is forced to rotate. As it rotates, its interacting fields make it generate a back-emf that is directly proportional to the armature speed and opposes the applied DC voltage, thus giving the equivalent circuit of Fig 1 b , in which R_{w} represents the total resistance of the armature windings, and E represents the speed-dependent back-emf.

The major points to note about this kind of motor are as follows:

- When the motor is loaded by a fixed amount, its speed is directly proportional to supply voltage.
- When the motor is powered from a fixed DC supply. its running current is directly proportional to the amount of armature loading.
- The motor's effective applied voltage equals the applied DC voltage minus the speed-dependent backemf. Consequently when it is powered from a fixed voltage, motor speed tends to self-regulate. since any increase in loading tends to slow the armature. thus reducing the back-emf and increasing the effective applied voltage and so on
- The motor current is greatest when the armature is stalled and the back-emf is zero. It then equals $\mathrm{V} / \mathrm{R}_{\mathrm{w}}$ (where V is the supply voltage). This state naturally occurs under 'start' conditions.
- The direction of armature rotation can be reversed by reversing the motor's supply connections.

The main applications of electronic power control to DC motors of this type are in on/off switching and direction control and in variable speed control and improved speed self-regulation (subjects that are deait with next month)

On/Off Switching

A DC motor can be turned on and off by wiring a control switch between motor and power supply. This switch can be an ordinary electromechanical type (or a pair of relay contacts), or a switching transistor as in Fig. 10a. Here the motor is off when the input is low and is on when the input is high. Note here that diodes D1 and D2 are used to damp the motor's backemf, that C1 limits unwanted RFI. and R1 limits Q1's base current to about 52 mA with 6 V input. Under this condition Q1 provides a maximum motor current of about one amp.

In the above circuit, Ql's 52 mA base current is provided via the external drive circuitry. If desired, the drive current can be reduced to a mere 2 mA or so by adding a buffer transistor as shown in Fig. 10b, where R3 limits Q1's base current to a safe value.

Direction Control

The rotational direction of a permanent magnet DC motor can be reversed by simply reversing the polarity of its supply connections. If the motor is powered via dual (split) supplies, this can be achieved via a singlepole switch connected as in Fig. Ila or via transistoraided switching by using the circuit of Fig. 1ib.

Transistors Q1 and Q3 are biased on and Q2 and Q4 are cut off (with Q2's base-emitter junction reverse biased) when SW1 is set to the forward position, and Q2 and Q4 are biased on and Q1 and Q3 are cut off (with Ql's base-emitter junction reverse biased) when SW1 is set to the reverse position. Note that if this circuit is used with supply values greater than 12 V , diodes must be wired in series with the Q1 and Q2 base-emitter junctions. to protect them against breakdown when reverse biased.

The circuit of Fig. 11b uses double-ended input switching and this makes it difficult to replace SW1 with electronic control circuitry in 'interfacing' applications. Fig. 11c shows how the design can be modified to give single-ended input switching control, making it easy to replace SW1 with electronic switching. In this circuit, Q1 and Q3 are biased on and Q2 and Q4 are cut off when SW1 is set to the forward position. Q2 and Q4 are on and Q1 and Q3 are off when SW1 is set to reverse.

Direction Control, Using Single-ended Supplies

If a $D C$ motor is powered from a single-ended supply, its direction can be controlled via a double-pole switch

(a)

Fig. 11 Motor direction control using (a) simple switching (b) transistor switching and (c) transistor switching with single-ended input
wired as in Fig. 12a, or via a bridge-wired set of transistors connected in the basic form shown in Fig. 12b. Here Q1 and Q4 are turned on and Q2 and Q3 are off when SW1 is set forward, and Q2 and Q3 are on and Q1 and Q4 are off when SW1 is set to reverse. Diodes D1-4 are used to protect the circuit against possible damage from motor back-emfs, and so on.

Figure 12 c shows how the circuit can be modified to give alternative switching control via independent forward/reverse (SW1) and on/off (SW2) switches. A very important point to note about this configuration is that it causes Q1 or Q2 to be turned on at all times, with the on/off action being applied via Q3 or Q4. The motor currents can collapse very rapidly (via the Q1-D2 or Q2-D1 loop) when the circuit is switched off. This so-called flywhee? action is vital if SW2 is replaced by a pulse-width modulated (PWM) electronic switch, enabling the motor speed to be electronically controlled (this technique will be described next month).

A weakness of the simple Fig. $12 b$ circuit is that it uses fairly high base drive currents, which must be supplied via the switching circuitry. Fig. 13a shows a more sensitive version of the circuit, which needs input control currents (to the A, B, C, D terminals) of only a few milliamps.

This can be controlled manually via a pair of switches by using the connections of Fig. 13b. It can also be controlled electronically as in Fig. 13c, in which a 4052B CMOS IC is used as a ganged 2-pole 4-way bilateral switch that can be controlled via logic-0 or logic- 1 signals applied to its ' A ' or ' B ' input pins. to give independent forward/reverse and on/off (or PWM speed control) actions. Note that both of these circuits are configured to give the 'flywheel' type of switching action already described.

To conclude this month's article, Table 4 illustrates the above point by showing the truth table that occurs when the Fig. 13a and 13c circuits are interconnected.

Fig. 12 Motor direction control with single-ended supply (a) simple switching (b) transistor switching (c) separate on/off switching

DC MOTOR TABLES

STEP No.	01	02	03	04
0	ON	OFF	ON	OFF
1	OFF	ON	ON	OFF
2	OFF	ON	OFF	ON
3	ON	OFF	OFF	ON
4	ON	OFF	ON	OFF
5	OFF	ON	ON	OFF

Table 1 Full step sequencing of the circuit in Fig. 3

	STEP No.	01	Q2.	Q3	04
	0	ON	OFF	ON	OFF
	1	ON	OFF	OFF	OFF
	2	ON	OFF	OFF	ON
	3	OFF	OFF	OFF	ON
	4	OFF	ON	OFF	ON
	5	OFF	ON	OFF	OFF
	6	OFF	ON	ON	OFF
	7	OFF	OFF	ON	OFF
	8	ON	OFF	ON	OFF
	9	ON	OFF	OFF	OFF

Table 2 Half step sequencing

COUNTING SEQUENCE	MODE-LOW				MODE-HIGH			
	01	Q2	Q3	Q4	01	Q2	03	04
0	ON	OFF	ON	OFF	ON	OFF	ON	OFF
1	OFF	ON	ON	OFF	ON	OFF	OFF	ON
2	OFF	ON	OFF	ON	OFF	ON	OFF	ON
3	ON	OFF	OFF	ON	OFF	ON	ON	OFF
0	ON	OFF	ON	OFF	ON	OFF	ON	OFF
RESET LOW	ON	OFF	ON	OFF	ON	OFF	ON	OFF

Table 3 SAA1027 output sequencing table

Table 4 Truth tables of Figs $13 a$ and 13 c when interconnected

delivered to your door FREE !*

That's right, if you take out a year's subscription to ETI we will make sure that it is delivered to your door cach month at no extra charge*. Just fill in the coupon below and send it to the address given with a cheque, money order or credit card instructions to cover the cost of the subscription

We'll do the rest.

UK: $£ 18.00$; EUROPE: $£ 22.20$; MIDDLE EAST: $£ 22.40$; FAR EAST: $£ 24.00$ REST OF THE WORLD: $£ 22.70$ or USA: $\$ 39.00$
Airmail Rates on Request.

Send this form with your remittance to: INFONET LTD., 5 River Park Estate, Billet Lane, BERKHAMSTED, Herts. HP4 1HL, United Kingdom
Please commence my subscription to ETI with the
 to ARGUS SPECIALIST PUBLICATIONS
 Valid from
to
Signature
Name \qquad Address
\square New subscriber
\square Subscription renewal/extension (delete as applicablc)

Paul Chappell's neon lights alive with a selection of summer circuits to get your workbench glowing

Let's face it, nobody want to sit slaving over a hot soldering iron for hours on end when the sun is shining. So here are some projects to amuse you for a few minutes during the odd rain shower. None should take more than twenty minutes to build, so by the time the sun comes out again - you've finished. All are based on that very underrated component, the neon bulb.

Here's a very easy one to start with: a neon flasher. It has lots of uses like . . . um . . . a beacon to stop low flying owls crashing into your roof at night, for instance. My house hasn't suffered any owl damage at all since 1 installed mine.

Otherwise. it can be a warning lamp to attract your attention to a fault condition (Fig. 2 shows a blown fuse indicator), or use it just as an alternative to a mains-on lamp: if you get fed up with it staring at you, make it wink instead.

Fig. 1 Circuit diagram for a mains beacon

Fig. 2 Circuit diagram and construction for a blown fuse indicator

The circuit is shown in Fig. 1. On positive halfcycles of the mains. C1 charges up via D1 and R1. Eventually the voltage across Cl will be high enough for the neon to strike and glow. The current taken by the neon discharges Cl until the voltage is too low for the neon to continue glowing. It turns off, C1 begins to charge and the cycle repeats for ever more.

The important characteristic of the neon bulb in this circuit, and in all the others for that matter, is that it takes a higher voltage to make the neon start to conduct than it does to keep it going once it's started. It may strike at 80 V but wor't turn off again until the voltage sinks below, say, 50 V . That's what makes it possible to use it as an oscillator.

Fig. 2 shows the circuit connected as a blown fuse indicator. As long as the fuse is intact it shorts out the - flasher circuit. Once the fuse blows, the flasher takes current via the transformer - but such a small current that the protected circuit won't be powered up at all. Construction details are below (if you really need them!). For the beacon or mains indicator, just connect the circuit directly between L and N of the mains.

Fault finding couldn't be simpler. If anything is wrong, the lamp will either stay on all the time which means that Rl is too small, or will not come on at all which means that Cl is too leaky. With the DC supply to the neon. the glow will only be seen around one of the internal electrodes - this is an unavoidable characteristic of the circuit and doesn't indicate a fault. To increase flash rate, reduce the value of C . To make it slower, increase the value of C .

Fig. 3 Circuit and construction for an electrical activity indicator

Anyone who is enthusiastic about Amateur Radio or home weather forecasting will find the next little circuit useful. It gives an indication of electrical activity in the air, which has a great effect on the quality or even the possibility of picking up distant radio signals. During quiet periods the neon will hardly flash at all. During a thunderstorm it will be on almost continuously. Degrees of electrical activity between these two extremes will be shown by variations in the flash rate.

The circuit and construction details for this project are shown in Fig. 3. The VDR is included to sink surplus current which might otherwise damage the neon during times of intense activity. The collecting plate should be insulated - a piece of PCB material will be fine - and fixed high on the outside wall of the house. Not on the roof, though. It's not supposed to be a lightning conductor!

The wire connecting the plate to the circuit should be well insulated but thin enough to fuse immediately if a lightning strike should ever occur close by. The ground should be exactly that - a metal rod driven two feet into the ground. An offcut of copper pipe will do nicely.

In Fig. 4 there's a coin toss circuit, or a make-up-your-mind machine for the indecisive. The circuit is similar in principle to the two transistor multivibrator that will be familiar to anyone who was around in those far off days when ICs were a rarity and transistors

Fig. 4 Circuit for a coin toss decision maker
the main active components (Fig. 5). Suppose the lefthand neon of Fig. 4 is on and the right one isn't. C2 will charge via R3 until it eventually reaches the point where the right hand neon will strike. If we stick to the 80 V and 50 V I mentioned earlier as fairly typical for striking and extinguishing a neon, then just at the

MULTIVIBRATOR
NOTE:
01,2 = GENERAL PURPOSE NPN

Fig. 5 Transistor multivibrator circuit
moment the right hand neon is on the point of striking, the right hand side of C 2 will be at 80 V and the left hand side at 50 V . As soon as the right hand neon strikes, the voltage at the right hand plate of C 2 will drop to 50 V and the left hand plate to 20 V , so now the right hand neon will be on and the left hand one off. Now the right hand plate is held at 50 V . The left hand plate of C 2 will charge via R 2 , the left hand neon will eventually strike, turning off the right hand one at the same time.

And so it continues, with first one neon and then the other lighting. With the component values shown, the flashing will be almost fast enough to be taken for continuous illumination of both bulbs, although they will flicker.

Push SW1 and an extra resistor is introduced into the circuit. The value of R1 is chosen so that the conducting neon drawing current through it will drop enough voltage that the top of $R 2$ and $R 3$ will be below 80 V , so the neon that isn't lit when the switch is pressed can never light at all. In other words, the flashing is frozen, with whichever neon was on when the switch was pressed staying on. Label the neons 'yes' and ' $n o$ ' and press for an instant decision!

The value of R1 may need a little adjustment by trial and error to suit the particular neon lamps you use. If too small, the neons won't stop flashing. If too large, the lit neon will be very dim when the switch is pressed.

Fig: 6 Circuit with neon as trigger
Yet another use for a neon bulb is as a trigger for triacs and SCRs. Figure 6 shows the general idea. This circuit will flash a mains lamp if you have an urge to do such a thing. Figure 7 shows a circuit for an electric fence energiser. These are more by way of tech tips than projects, although Fig. 6 will work perfectly well as it stands.

Fig. 7 Circuit for an electric fence energiser
When you're experimenting with any of these circuits, do be careful - none are isolated from the mains. Also bear in mind that the caps can retain enough charge to give a shock even when the mains is disconnected, so discharge each one through a 100 R resistor before making any mods to the circuit.
 available from most larger newsagents or direct from the company priced at $£ 1.50$. The latest books, an RF frequency meter. two new PSU designs and a 3.5 MHz converter are among the innovative new kits this issue, while our construction project - a 2 Watt stereo amplifier - is bound to prove an absorbing activity for dedicated constructors. In the test equipment section there's a whole new range of multimeters, a bench DVM and a triple output PSU.
For eagle-eyed readers who enjoy a challenge of a different sort. there is the opportunity of winning an audio signal generator worth more than $£ 180.00$ In the latest fiendish competition. All prices now include VAT for quicker. easier ordering: and Cirkit's same-day despatch of all orders. combined with value-for-money discount vouchers. makes the line-up even more attractive.

D-MM GOOD VALUE!

Cirkit's six new digital multimeters are packed with sophisticated extra facilities: capacitance measurument, frequency measurement up to 20 MHz , temperature reading, transistor test and logic test in addition to the usual volts, current (DC and AC) and resistance measurement and all unbeatable value with prices ranging from $£ 20.00$ to $£ 55.00$!

BRIAN PRICE - BOHM ORGAN STUDIOS

 389 ASPLEY LANE, NOTTINGHAM NG8 5RR Telephone/Fax: 0602-296311 32 years' experience in high quality Organ and Keyboard design behind every BOHM product. Equipment for Home and Professional use

* Latest from 80HM
* Portable or Spiner
- 49 note keyboards. Touch Sensitive * 16 Bit Sampled voicos
* 22 Sampled Rh
hyyhm Instruments Tive Rhythms. Fitis. Intros, Breaks \& Endings
- User Programmable voices. Rhythms a Accompanimenis
- Soundcard Programming
* Full MIDIINIOUT/THRU * 160w Stereo HiFl Amplifier

BOHM MUSICA FUTURA 520 Kit form Price $£ 2230$ inc. Stool. Buit Price $£ 2563$ BOHM DOUBLE KEY 520(P) Kit form Price £2069 inc. Stool. Built Price £2275 Loudspeakers extra for Double Key $2 \times$ B100 $£ 474.00100$ watts if required.

Supplied in Kit form or Built by: THE BOMM SPECIALISTS
Part Exchange welcome. Please write or phone for full illustrated literature and price list.

19" RACK CASES

* Suitable for instruments, high quaity amplifiers and many other applications that demand strengith and orriessional finish \& New improved construction and finish \# Black anodised aluminium fromt parreis \& Separate tcot mounting plate. no fixing screws visible onthe frort and the side of the enclosure \& Heavy gauge front panel
is of brushed aluminium finish enhanced with wo professional handles $*$ With ventilation slits and plastic feet *Rear box manulactured from 1.3 mm steel finished inblack Rack mountingor free standing. Comes inquick azsembly flat package
Oreer Code Panel Size Rear Box WH Werght Price $\begin{array}{lllll}U 101 & 19 \times 1.75 & 17 \times 1.5 \times 10 & 2.4 \mathrm{~kg} & 26.95 \\ \mathrm{U} 103 & 19 \times 5.25 & 17 \times 5.0 \times 10 & 3.5 \mathrm{~kg} & 29.95\end{array}$
$\begin{array}{lllll} & 19 & 12 \times 3.5 & 17 \times 30 \times 12 & 33 \mathrm{~kg} \\ 529.75\end{array}$
$\begin{array}{lllll}U 312 & 19 \times 5.25 & 17 \times 50 \times 12 & 4.0 \mathrm{~kg} & 531.95 \\ 1412 & 19 \times 70 & 17 \times 65 \times 12 & 4.6 \mathrm{~kg} & 834.95\end{array}$
Piease add $\varepsilon 300 \mathrm{P} \& P$ tor the first item and $£ 1.50$ for each additional item.
Please add VAT to above prices. Overseas orders welcome

CRICKLEWOOD ELECTRONICS LTD 40 CRICKELWOOD BROADWAY, LONDON NW2 3ET Tel: 01-4520161 Fax:01-208 1441 SOLE UK DISTRIBUTORS

PCB

 SERVICE August
E8908-1 Intercom master station E8908-2 Intercom slave station F E8908-3 Intercom power mixer E E8908-4 Digital joystick-to-mouse conversion H

PCBs for the remaining projects are available from the companies listed in Buylines
Use the form or a photocopy for your order. Please fill out all parts of the form. Make sure you use the board reference numbers. This not only identifles the board but also tells you when the project was published. The first two numbers are the year, the next two are the month.

Terms are strictly payment with order. We cannot accept official orders but we can supply a proforma invoice If required. Such orders will not be processed until payment is received

E8806-4 Virtuoso AOT Board
E8806-5 Metal Detector
E8806-6 Bicycle Dynamo Backup
E8807-1 Bar Code Lock (2 bds)
E8807-2 Analogue Computer Power Board E8807-3 Bell Boy
E8807-4 Logic Probe
E8807-5 Updated FM Stereo Decoder
E8807-6. Breath Rate Display Board
E8808-1 Breath Rate Main Board
E8808-2 Breath Rate Switch Board
E8808-3 Telephone Recorder
E8808-4 Analogue Computer Main Board (2 bds)
E8809-1 Spectrum EPROM Emulator
E8809-2 Frequency Meter (2 bds)
E8809-3 Travellers' Aerial Amp
E8810-1 Gerrada Marweh Bikebell
E8810-2 Peak Programme Meter (2bds)
E8810-4 TV-to-RGB Converter
E8810-5 Electron RGB Buffer
E8811-1 NiCd Charger
E8811-2 Chronoscope (3 bds)
E8811.3 Digital Transistor Tester
E8812.1 Doppler Speed Gun (2 bds)
E8812-2 Small Fry Mini Amp
E8812-3 Thermostat
E8812-4 Burglar Buster Free PCB
E8812-5 Burglar Buster Power/relay Board
E8812-6 Burglar Buster Alarm Board
E8812-7 Burglar Buster Bleeper Board
E8901-1 EPROM Programmer mother board
E8901-2 Variat-Ion updated Main Board
E8901-3 Variat-Ion Emitter Board
E8901-4 In-car Power Supply
E8901-5 Granny's Hearing Booster
E8902-1 Compressor/Limiter/Gate
E8902-2 Ultrasonic Horn
8905-2 Camera Trigger Ultrasonics (2 boards)
E8905-3 Bench Power Supply (2 boards)
E8906-1 PC edge connector
E8906-2 MIDI converter CPU
E8906-3 MIDl converter keyboard
E8906-4 MIDI converter control
E8906-5 AF signal generator
E8906-6 Mini bleeper
E8906-7 Caravan heater controller
E8907-1 MIDI Patch Bay
E8907-2 Priority Quiz Switch
E8907.3 Camera Trigger Infra-reds (2 boards)
E8907-4 Aerial Amplifier main board
E8907-5 Aerial Amplifier power supply

E8902-3 Stepper Motor Driver Board
E8902-4 Quest-Ion (2bds)
E8903-1 Intelligent Plotter Solenoid Board
E8903-2 MIDI Programmer
E8903-3 Balanced Disc Input Stage
E8903.4 Digitally Tuned Radio
E8904-1 Camera Trigger
E8904-3 Intelligent Plotter Main Board
E8904-4 Kinetotie Tie Board
E8904-5 Kinetotie Control Board
E8905-1 Guitar Tuner

TO: ETI PCB SERVICE, READERS' SERVICES, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

Please supply:
Quantity Ref. no. Price Code Price Total Price

Post and packing
$\mathfrak{£ 0 . 7 5}$
Total enclosed
Please send my PCBs to: (block Capitals please)
Name
Address

Robert Penfold presents a package of circuits to infuriate intruders

SECURITY TECH TIPS

Alarm Generator

Many alarm systems still rely on the standard bell alarm generators, remaining as effective as they ever were. Electronic alarm generators are increasingly popular though, and represent an easy project for the home constructor. A simple signal having a single unmodulated tone is not very effective as it is easily masked by other sounds - not sounding much like an alarm signal it runs the risk of being ignored even if someone should hear it! This alarm generator relies on frequency modulation to give a very effective sound and this is probably the best type of modulation for alarm applications.

IC2 generates the basic tone signal as a 555 timer in the standard astable configuration. The operating frequency is in the region of 1 kHz and the often unused pin 5 of the 555 is brought into play in this circuit. Normally timing capacitor C3 repeatedly charges to two thirds of the supply voltage and discharges to one third of the supply potential. Pin 5 provides access to the potential divider that sets the two thirds of $\mathrm{V}+$ threshold level and permits this voltage to be modulated. By raising this voltage, it takes longer for C 3 to charge and discharge from the threshold level. the operating frequency being reduced. A lower threshold voltage gives reduced charge and discharge times and a higher output frequency. IC2 can therefore be frequency modulated via a modulation voltage applied to pin 5 .

The modulation signal is generated by IC1 connected in what is almost the standard square/ triangle oscillator configuration operating at about 5 Hz . IC1 functions as the Miller integrator while IClb
provides the Schmitt trigger action. The circuit differs from the standard configuration in that D1 is included across timing resistor Rl so that the charge time of C 2 is greatly shortened - a sawtooth waveform is obtained instead of a triangular type.

In terms of the audio output signal, this gives a tone which is swept downwards in frequency switched up to a higher frequency. swept downwards again and so on. The effect obtained is easily modified. To obtain an upwards sweep it is merely necessary to reverse the polarity of D1. For a smooth upwards and downwards sweep D1 should be removed altogether (this also halves the modulation frequency). The modulation frequency is inversely proportional to the value of C 2 . The output frequency range is controlled in the same way by C 3 .

The output power available from IC2 is only quite low and is totally inadequate for most purposes. The loudspeaker is therefore driven via an emitter following Darlington power device Q1 - readily able to provide output currents of a few amps. The output power is a few watts into a 4-8R impedance loudspeaker using a 12 V supply. If high output power is important. use a 4 R speaker and raise the supply voltage to 15 V . Even using a 12 V supply and 8 R speaker the sound is pretty loud unless an inefficient speaker is used. In this application efficiency is of greater importance than audio quality and it is also important that the loudspeaker is rated to handle about 8 W rms or more. Miniature types are likely to be destroyed after a few seconds of operation! As Q1 is used in a switching mode it does not dissipate much power but it is advisable to fit it with a small finned heatsink. The current consumption of the circuit is about $800 \mu \mathrm{~A}$ using an 8 R loudspeaker, or around double this figure for a 4R type.

Door Alarm

W
hile there is no real substitute for a comprehensive burglar alarm system. many people are simply not prepared to go to the trouble or expense of having such a system installed on their premises.

A simple form of alarm is considerably better than nothing - the most popular being the various types of window and door alarms. These vary in sophistication but most rely on some form of mechanical or magnetic switch to trigger a simple electronic alarm generator circuit. One way of handling the sensor part
of such an alarm is to have a reed switch fitted in the main unit. mounted on the door or window. The actuating magnet is fitted on the door or window frame, with everything arranged so that the magnet activates the switch when the door or window is closed. In some cases it might be more convenient io have the main unit mounted on the frame and the magnet on the door or window.

There are alternative types of switch - one possibility is to use a micro-switch. One of these could be rather awkward to use in a simple stand-alone alarm though and my preferred method is to use some form of vibration switch. This could be a mercury switch mounted very close to the angle at which it is activated. or a pendulum type mechanism - when
the unit is moved the pendulum swings and comes into contact with a circular electrode. completing a circuit in the process. Ready-made switches of this type can be obtained. otherwise it is not too difficult to improvise a DIY version.

The electronics of such a simple alarm can be nothing more than a low power alarm generator circuit. However, it is advisable to include a latch circuit. Remember that the sensor switch may be activated only momentarily and that without the aid of a latch the alarm generator may produce nothing more than one or two very brief 'squeaks.

In this alarm unit the latching action is provided by Q1 and Q2 connected in a sort of pseudo thyristor arrangement. When sensor switch SW1 is closed, Q2 is biased into conduction and its collector current biases Q1 into conduction. Feedback through R7 results in both transistors being held in the on state even if SW1 should open again. Note that SW1 must provide a normally closed action.

The alarm generator circuit is based on a 4046BE CMOS low power phase locked loop (IC1). In fact it is only the VCO section of the device that is utilised in this circuit - the phase detectors and the other
stages are left unused. The VCO generates the basic alarm signal and drives a ceramic resonator (LS1). The latter provides a very high level of efficiency and can provide a very loud alarm signal from the very limited output current of IC1.

In order to obtain this efficiency the output frequency of IC 1 must be in the region of $1-5 \mathrm{kHz}$ and it is swept up and down over this range by IC2 which operates as a standard operational amplifier astable circuit. There is a squarewave output signal from IC1 but in this case it is the non-linear triangular waveform across timing capacitor C3 that is used as the modulation signal. The frequency is about 5 Hz .

The unit should provide many months of operation in the standby mode as the current consumption in this state is only the leakage current that flows through Q1 and Q2 (typically under $1 \mu \mathrm{~A}$). The current consumption when the unit is activated is only a few milliamps and a small (PP3 size) battery should suffice as the power source. Ideally SW2 should be a keyswitch so that there is no easy way for an intruder to switch the unit off once it has been triggered. The unit is reset by switching it off for a second or two and then switching it back on again.

Dopper Shift Alarm

No doubt ETI readers are all familiar with the doppler shift effect which. for example, gives the apparent change in the engine pitch of a passing car. Doppler shifts are now used to good effect in a number of practical applications including such diverse tasks as navigation systems and burglar alarms. In this second category there are radar systems (using microwave techniques) and ultrasonic systems. Radar systems have their advantages but for the home constructor there can be licensing problems plus they are relatively expensive. The system described here is a low cost but very sensitive ultrasonic system.

A unit of this type transmits an ultrasonic signal and picks up any reflected signals. Normally the reflected signals will all be at the same frequency (the transmission frequency). However, if something (or someone) moves around in the area covered by the alarm, the reflected signal is shifted slightly in frequency due to the Doppler effect. Some of the signal picked up by the unit is at the transmission frequency and some is at a slightly different frequency. The two signals interact to give what is effectively an amplitude modulated signal, with the modulation at a frequency equal to the difference between the iwo. This is the same effect that causes a tone to be heard when AM radio is tuned to two stations on marginally different frequencies. The alarm operates by demodu-
lating the received signal and using any audio output signal to trigger a relay driver circuit. In fact the demodulated signals will often be at sub-audio frequencies and the relevant stages of the unit must be designed to cope with these very low frequencies.

This ultrasonic alarm provides virtually full coverage of anything but the largest of rooms in a house. Although systems of this type generally have a few blind spots, these are generally inadequate to permit someone to enter and leave a room without triggering the alarm. Apart from anything else, someone moving around the room will usually produce a certain amount of turbulence that will spread across the room and trigger the alarm.

The transmitter circuit is a standard 555 astable driving a 40 kHz ultrasonic transducer. RV1 is used to adjust the transmitter for the frequency that gives optimum results.

At the receiver another ultrasonic transducer operates as the microphone, its output fed to a two stage high gain amplifier based on Q1 and Q2. The amplified signal is fed to a diode demodulator and then to a common emitter amplifier which provides about 20 dB of voltage gain. The output of this stage is fed to a rectifier circuit and then to a relay driver stage. When modulation is present on the received signal, positive going half cycles from D 4 will drive Q 4 into conduction and activate the relay. Note that the circuit does not provide a latching action and it is assumed that it will be used as part of a standard switch type burglar alarm. In other words, this unit will be
connected in with the window switches, trigger mats and other sensors of the alarm system. The main alarm circuit will then provide latching, exit delays etc.

Any 40 kHz ultrasonic transducers should suffice for LS1 and MIC1 but note that with some of these there are specific transmitter and receiver units, while with others the two transducers are identical. Be sure to get them round the right way where necessary. Try to have the transducers mounted at least 150 millimetres apart. RLA1 can be any 12 V relay with a coil resistance of about 200 R or more and suitable contacts

Due to the high gairof the receiver circuit some
care needs to be taken with the component layout or instability might occur. If suitable test gear is not available, RV1 must be adjusted using trial and error to find the setting that gives optimum pick up and sensitivity. A little experimentation should soon find a good position and aim for the unit. In general, resuits tend to be best with the unit in a corner or somewhere at the edge of a room, not near the middle. Sensitivity of the circuit can be reduced by increasing R12 and vice versa. However, very high levels of sensitivity can bring problems with false alarms. The slightest draughts or small insects flying around the room can be sufficient to trigger the unit!

Loop Alarm

Aloop alarm is a form of alarm that is often used in shops and on market stalls. The basic idea is to have a loop of wire which is threaded through the goods which are to be protected by the alarm-radios and televisions for instance. All the alarm circuit has to do is to sound the alarm if the wire is broken.

In practice this type of alarm is not as good as it could be in that it is not too difficult to bypass the wire so that it can then be cut without activating the alarm. There are ways of making such an alarm more 'crackproof though, and the method used in this design is to have a multi-way cable rather than a single wire. Breaking any one of the five leads, or several of them, will activate the alarm. Any cross coupling or other tampering will almost certainly activate the unit.

The loop can be bypassed but all four wires must be individually bypassed (with no accidental short circuits) in order to successfully 'crack' it. In a practical situation there is not likely to be a realistic chance of
anyone managing this without being noticed!
The alarm generator section of the unit is exactly the same as the one used in the door alarm circuit described earlier - a high pitched FM tone which gives quite good volume from a high efficiency ceramic resonator.

A pair of window discriminators form the basis of the broken loop sensor part of the circuit. If we consider IC3a and IC3b, these are operational amplifiers both operating here as voltage comparators. They each have one input fed from the potential divider formed by R8. 9 and 10, with IC3a receiving the higher reference voltage and IC3b being supplied with the slightly lower one. The other two units are wired together and fed with a variable voltage from RV2.

If the voltage supplied by RV2 is greater than the higher reference voltage, the output of 1 C3a goes high and activates the alarm by way of Q1. Similarly, if the voltage from RV2 is below the lower reference voltage, the output of IC3b goes high and activates the alarm. In practice RV2 is adjusted to a voltage between these two levels so that the alarm is not normally activated.

IC3c and IC3d form what is virtually an identical
window discriminator circuit but the 'window' is at a lower range of voltages. RV1 is adjusted for a voltage that is within this range.

RV1 and RV2 are connected to the main circuit via the loop of wire, which should be a quad screened cable having the negative supply rail carried by its outer braiding. The cable does not actually need to be a loop and the two preset potentiometers can be mounted in a separate case some distance away from the main unit if preferred. If any of the connecting leads are cut or short circuited. the input voltages are taken outside the 'windows' and the alarm is switched on. R14 and R15 ensure that the unit can not be
defeated by connecting the wires together so that the power supply is short circuited.

The circuit does not incorporate latching but once the cable is cut or otherwise tampered with it is unlikely that there would be any easy way of reversing the process and silencing the alarm. The unit should work properly with a connecting cable of up to at least 10 metres in length.

The standby current consumption of the unit is about $800 \mu \mathrm{~A}$ rising to about 5 mA when activated Battery operation is therefore feasible provided a fairly high capacity type is used (such as six HP7 size cells connected in series)

Gas Alarm

Tthere are a surprisingly large number of ways of detecting fire. or a situation where fire or explosion is a real hazard. There are a range of methods which rely on optical sensors to detect smoke, or turbulence in the air caused by the heat of a fire. Some units simply detect an abnormally high temperature, or an unusually rapid increase in temperature.

Another method, and a highly sophisticated one, is to use a form of sensor that detects inflammable gases or vapours in the air. These can usually detect the smoke from a fire without difficulty but they are more than just fire detectors as they can detect inflammable gases and vapours at quite low concentrations. A unit based on one of these sensors can therefore be used as a gas alarm as well. They are particularly valuable for use in caravans and boats, where bottled gas is used. They can detect the risk of explosion due to a gas leak. rather than simply detecting. after the event, that the remains of the boat (or whatever) are on fire.

This gas alarm is based on the detector available from Maplin. Actually this is two components - the sensor and a compensating element. The sensor has fine platinum wire coated with oxides and a catalyst. Normally the current passing through the sensor causes it to heat to approximately $350^{\circ} \mathrm{C}$ but in the presence of suitable gases oxidisation takes place. This produces a rise in temperature which in turn causes the increase in the resistance of the sensor. The compensating element has characteristics which are almost identical to the sensor but in the presence of combustible gases its temperature and resistance are unaffected.

The sensor and compensating element are designed to be used in a bridge circuit. They form one
side of the bridge while R8, R9 and RV1 are used in the other section. IC3 operates as a voltage comparator and RVI is set for a wiper voltage that is marginally lower than the voltage produced by the sensor side of the bridge. The output of IC3 therefore goes low. QI is cut off and the alarm circuit is not activated.

The sensor circuit requires a 2.2 V supply and this is provided by a voltage regulator based on IC4. Any drift in the output voltage of IC4 should not adversely affect operation of the circuit as it will affect both sides of the bridge equally. Any environmental changes that affect the sensor will affect the compensating element by an almost identical amount and this will prevent any change in the output voltage from this side of the bridge. Of course. if inflammable gas is detected by the sensor, its resistance rises and the output voltage from this side of the bridge circuit falls. This takes the inverting input of IC3 to a lower voltage than that present at the non-inverting input. The output of IC3 then triggers to the high state. Q1 is switched on and the alarm generator is activated.

It is important to get the sensor and compensator round the right way - the one with a blue spot on the body is the compensating element and the one without the blue spot (it will probably have two or three, spots of other colours) is the sensor. There is a change in output voltage from the sensor circuit of only about 20 mV when the unit is activated. It is therefore important to carefully adjust RVI for the lowest possible voltage that does not trigger the alarm.

Note that it takes about 10 seconds for the sensor and compensating element to stabilise after switchon. The current consumption of the circuit is quite high at about 350 to 400 mA . There is no risk of the sensor or compensating element igniting suitable concentrations of inflammable gas as they are both covered by a double mesh of stainless steel. Note that IC4 should be fitted on a medium sized heatsink as it has to dissipate a few watts of power.

Yos. you too can attoro the very best in real hi-fi equipment by builcing a HAFT kt. With a HART kty you can avod the hiarious pnces and magical clams of the "oxygen tree grain oriented copper" brigade and the fissty exterior and muncare interior ol the mass market prodecs. With every men of the caltore of tohn Linsey Hood for in ance who has been in the torefront of audio despon for many yoars. This circuil expenise is harnessed to realise its full polenntal by HART engineering sfandards which have been larrouse in the kit feid slnce \{961, The HART approach is simply to five you the best vaiue in hisit by combining the best circuit concepts with the latest and best componenls within a unt carefully designed to bring out your hidden skills as an equipment builder.
Units in the HART audio range are caretully de signed to torm matched stacks of identialiy sized cases, in many cases even the control piches are al so lined up from unit to unit tor a cohesive look to your customised ensemble.
Flagst:p of our range, and the ideal powerhouse for your ultimate system is the new AUDIO DESIGN 8O WATT POWER AMPLIFIER, descriDed in the May issue of "Electronics Today international. This complete stereo pover amphiler has so many features that your realiy need our hist to bense through them all. Glossing over its lechnical merils, which its of a burle guarantees anyway. it is a power amp with the extra versalivity balance controls Tape or CD players may therefore be directly connected along vith a standard pre-amp output, indeed your sysiem may not need a pre-amp at alf with the well balanced output of competen! CD players. Send tor our new FREE Spring 'a9 List It has full intormation on thus new amplifier as well as deiaits of improvements to cther kits in our range. Our 300 SERIES amplifies for instance now feature optional phono input sockets and doubie size LCR power supply capacitors.
The 400 SERIES John Linsloy Hood Auctiophile Juner range now: incorporates the very tatest updated stereo decoder circuit which can also be retro-fitted to existing tuners with our 'Tuner Enhancement Package:' Also isted are many exciting new products for the serious audiochile such as our Gold phsted phono and XLR plugs and sockets and utimate quality connection leads for CD audio or digital signals.

High quality, reasonably priced front loading cassette deck, fitted with good quaity stereo RUP and erase heads. The mechanism has a 3-digit counter, chrome operating keys, mechanical auto slop and a removable decorative cassethe door with central window and key functions marked below Casseite doorkcarnier has a hydraulically damped sots eject feature. Motor is internally governed and only needs a 12 V DC supgly with an average curren: of 80 mA A change-over switch is fitted to energise the moxor when required and provide a make contact in the s:ap position ior and 85 mm deep induding molor and keys. A cobus and thoroughty usefu or and keys. A robust and thoroughty usetu ceck for many purposes.

VFL600 Vertical Front Loading Cassette Deck
SPECIAL SUMMER SALE PRICE ONLY E15
SOLENOID CONTROLLED FRONT LOAD CASSETTE DECK TN3600

High quarity (008% W8F) successor to our very popular SF925F. A very useful high quality cassette mochanism for domestic or industral use Ofiers all standard facilities plus cue and revue modes all under remote iogic or sotware control The power and control requirements are very is supphied as standard fited with a very nice 10 KHz RVP head and a 1.5 mH erase head.
TN3600 Deck with stereo head ata $£ 48.53$

QUALITY AUDIO KITS

MGH QUALITY REPLACEMENT CASSETTE HEADS
1
Do your tapes lack treble? A worm head could be the prociem. Fitting cne of our reptacement heads could restore performance to beter than nevv! Standard inductances and mounting make fitting easy on neaticy alf As ur are the actual inporters jou get prime pars at lower pricas compare our prices with other sucpliers and see! All our heads are suitable for use with any Doity system and are nommally avalabie ex sock. We aiso stock a wide range of special heads tor home construction and indusital users. HS16 Senoust Alloy Stereo Head. High quality head with excellent trequency response and hyperbolic face for good tape io head contact
HC4O NEW RANGE High Beta Permalloy Stereo head. Modern space save design tor easy firting and lowe cost. Suitable for chrome melal and iems tapes, truly a unversa repracement head for hirh decks to car players and at an incredible price too?
HX100 Special Otter Stereo Permalloy Head
HRP373 Downsiream Uonitor Stereo Combination He......... $£ 2.86$ HO551 4-Track Record \& Play Permalloy Head to Head. $£ 44.39$ layers or quadraponic play Pormalloy Head for atro-revese car 1524 Srancard Erase Hecording
SM166 $2 / 2$ AC Erase Head. Standard Mount HS9510 $2 / 4$ Stereo DC Erase Hesd
§2.59 S59510 $2 / 4$ Stereo DC Erase Hesd $\quad 512.60$ H 0751 E 4/4 AC Erase Head, tracks compatible with HC551 .. £57.06 We can supply card reader heads tor OEMs at very keen prices.
HEEL TO REEL MEADS
999R $2 / 4$ Record/Piay 110 mH . Suits Stuan Tape Circuits £13.34 999R $2 / 4$ Record/Piay 110 mH . Suits Stuan Tape Circuits $£ 13.34$ TAPE RECORDER CARE PRODUCTS
HART TCI TEST CASSETTE Our tamous triple purpose test cassette. Sets tape azimuth, VU level and tape speed £5.36 lmi Mains powered thead magnetisation . $£ 4.08$ DEM115 Electronk, Cassette Type, demagnetiser £8.61 Our new SPRING ' 89 List is FREE. Send for your copy now. Overseas Customers welcome, please send 2 IRCs to cover surfiace post. or 5 tor Airmail.
Piease add part coss of carnage and insurance as follows:
INLAND: Orders up to $£ 10-£ 1$: Orders $£ 10$:0 $£ 49-£ 1.50$; Orders ove £50- $£ 2.50$: Express Courier - $£ 9$
OVERSEAS: Please see the ordering inticrmation with our lists

MAKING ELECTRONICS C.A.D. AFFORDABLE

- HAVE YOU BEEN PUTTING OFF BUYING PCB CAD SOFTWARE? - ARE YOU STILL USING TAPES AND A LIGHT BOX?
- HAVE YOU ACCESS TO AN IEM PCIXT/AT OR CLONE?
- WOULD YOU LIKE TO BE ABLE TO PRODUCE PCB LAYOUTS UP TO 17" SQUARE?
- WITH UPTO 8 TRACK LAYERS AND 2 SILK SCREEN LAYERS?
- PLUS DRILL TEMPLATE AND SOLDERRESIST?
- WITH UP TO 8 DIFFERENT TRACK WIDTHS ANYWHERE IN THE RANGE 002 to 531^{n} ?
- WITH UP TO 16 DIFFERENTPADSIZES FROM THESAMERANGE?
- WITH PAD SHAPES INCLUDING ROUND, OVAL, SQUARE, WITH OR WITHOUT HOLE, AND EDGE CONNECTOR FINGERS?
- WITH UP TO 1500 IC'S PER BOARD, FROM UP TO 100 DIFFERENT OUTLINES?
- WITH AUTOREPEAT ON TRACKS OROTHER FEATURES - IDEAL FOR MEMORY PLANES?
- THAT CAN BE USED FOR SURFACE MOUNT COMPONENTS?
- WITH THE ABILITY TO LOCATE COMPONENTS AND PADS ON GRID OR TO . $002^{\prime \prime}$ RESOLUTION?
- WITH AN OPTIONAL AUTO-VIA FACILITY FOR MULTILAYER BOARDS?
- WITH THE ABILITY TO CREATE AND SAVE YOUROWNSYMBOLS?
- THAT IS AS GOOD AT CIRCUIT DIAGRAMS AS IT IS AT PCB's?
- THAT CAN BE USED WITH EITHER CURSOR KEYS OR MOUSE?
- WHERE YOU CAN LEARN HOW TO USEIT IN AROUND HALF AN HOUR?
- WHICH WITH EASY-PLOT ANDEASY-GERB CAN OUTPUT TOPENPLOTTER OR PHOTO-PLOTTER (VIA BUREAUX)
-THAT ONLY COSTS FROM £95 + VAT?
WRITE OR TELEPHONE FOR FULL INFORMATION

TINY-PC, EASY-PC, TINY-PC, EASY-PC, TINY-PC, EASY-PC, TINY-PC, EASY-PC

Number One Systems Itd

Ref: ETI, HARDING WAY, SOMERSHAM ROAD ST IVES, HUNTINGDON, CAMBS PE17 4WR

Telephone: 048061778 (4 lines)

DIGITAL JOYSTICK -TO-MOUSE CONVERSION

Invariably, all personal computers today are supplied with a mouse and WIMP (window-icon-mouse-pointer) oriented software packages, thus reducing the need for keyboard skills and hopefully producing a friendier machine.

The mouse of the WIMP acronym is a small opto-electronic device which sits on the desk next to the computer. As the user moves it around the desktop, a pointer on the computer screen mimics its movements.

This gives an easy way to select options from the screen - there is no need to type in strangely-named commands. Many commands are shown by small pictures (icons) on the computer screen with a list of options. The user just points at the required option and pushes a button on the mouse to select.

If we perform an autopsy on a typical mouse (see Fig. 1) we find a ball which sits on two freely rotating steel shafts at right angles to each other. The two shafts drive optical encoders which produce electrical pulses, the number of pulses produced being proportional to the vector quantities derived from the balls' movement. These pulses are shaped and squared by sch-mitt-triggers and fed to the computer, which translates these signals into pointer movement on the screen. Thus, as the mouse is dragged around the desktop, a pointer on the screen follows its movements.

Fig. 1 Block diagram of a standard mouse
The ball mechanism of the mouse is subject to the ingress of dirt as well as wear and tear. Indeed it has been known for the ball to become mysteriously detached and lost! In addition the proliferation of paperwork associated with computer use often doesn't leave the mouse enough room to move about.

A further consideration to be taken into account is the actual speed of the pointer across the screen. Mouse movement scaling (the relationship between

> Richard Grodzik presents a design to control a computer mouse port with a considerably more compact digital joystick

Fig. 2 The circuit diagram of the electronic mouse-on-a-stick
how far you move the mouse and how the pointer moves on the screen) can be re-configured by accessing the operating system and consulting the not-so-user-friendly computer user's manual.

This digital mouse design does away with the opto-electronic mouse philosophy adopted by most manufacturers. The rotating ball mechanism has been replaced by a joystick which has the major advantage that it requires very little desk space. Bin that mouse mat and you've got room for an extra folder or a plate of microwaved chicken orientale and half a lager. A work environment transformed!

And don't baulk at the word joystick. Those cheap plastic nasties supplied for computer games are mostly analogue devices utilising potentiometers and/or switches which connect to the computer's analogue port. The digital joustick recommended here connects into the same digital port as the original mouse and is a direct replacement. so that an old plug and connecting lead from the mouse may be utilised.

The joystick has eight axes of movement, enabling the screen pointer to move in a vertical. horizontal or diagonal direction. Pointer speed or movement scaling is adjustable without recourse to the computer's operating system by means of an spdt switch. Pressing the switch in one direction increases the pointer speed. in the other it decreases the speed - those intergalaxian mind spleens with their turbo spaceprops had better watch out!

The ability to reduce the pointer speed to a slow crawl has proved to be invaluable in design systems where precise pointer positioning is required drawing a straight line with a conventional mouse can be a tricky thing sometimes.

Construction

Building the unit on the ETIPCB (Fig. 4) is reasonably simple. There are few discrete components. Capacitors C5 and C6 can be laid flat against the topside PCB tracks - this also reduces the risk of a short with the case of the crystal. Sockets are recommended for all the ICs and obviously take precautions with static sensitive devices.

BUYLINES

Electromail tetephone (0536) 204555) can supply suitoble joysticks. the small version has order code 332-105, alarger model is 332-111

The PCB is vailabie from the ETIPCBService (seecentre pages).

Fig. 3 Quadrature outputs from a normal mouse

HOW IT WORKS

The circuit diagram is shown in Fig. 2 . it comprises aminimum system computer based around IC1, an 8031 single chip computer running at 4 NH Hz its clock is taken from crystal XTALI.

Addressidata multiplexing is performed by IC2, controlling the access to the data in IC3, a 16 K EPROM wherein lies the software required to generate the oulse trains expiained below.

The joystick is fitted with four changeover microswitches. Depending on joystick position either none, one or two neighbouring switches are activated.

These four switches are polied in turn by part lines P1.4 through P1. 7 of ict, and when a switch press is detected the relevant puise trains (see below) are produced on P1.0 through P:3.

Let us take a closer look at the signals generated by the electronics of a normal mouse. The final output consists of two trains of square-wave pulses for the x and y direction movements of the mouse. The square-wave outputs are in quadrature $/ 90$ degrees out of phasel with each other and the phase relationsthip - leading or lagging - determines the direction of movement No movement produces no output.

For example, if we move the mouse to the right the signais of Fig 3 a will be produced. Movement to the left will give the signais in Fig. 3 b .

Similar phase related pulse trans are produced at YA and YB for a vertical movement of the mouse. For a diagonat movement, pulse trains are produced for both $X A, X B$ and $Y A$. $Y B$ outputs.

The number for frequencyt of pulses determines ihe amount of on-screen movemen: With a normal mouse this is controlled only by the mouse ball rotating the optical encoded dises as shown in Fig. 1. The only way of attering the response on-screen relative to actual mouse movements is by sofware - either the operating system or the programme running.

With this circuit Fig. 2/ switch SWi can be used to ater the basic frequency of the puises land so the responsel to the user's taste in a very simple operation. Rocking the switch eirher way interrupts $\mid C 1$ on pin 12 or 13 to increase or decrease (respectively the frequency of $1 \mathrm{Cl}^{\prime}$'s resident timer

Start up frequency is defined by address $\& 003$ F of the EPROM (see Listing 1). This can be altered to suit your favourite pace and program.

Limits can be sei to give a maximum or minimum speed that can be reached by rocking SWL. The EPROM address for minimum speed is $\& 0085$, shown in Listing 1 with a data value of $\& 00$. Maximum speed limit is at address 80000 , shown as \&FF.

Switches SW2 and SW3 haveno interaction with the main circuit and simply ground the 'select' pins of the plug to the host computer - these 'select' switches are used in conjunction with a normal mouse to select software options and use will be described by individual programs.

PARTS LIST

00000200 3E 0200 BO 0000
0008000000 CO DO 020060
00100000000200 CB 0000
00180000000000000000
00200000000000000000
00280000000000000000
00300000000000000000
003800000000000078 BO
00407590 FO 75 8A 0075 8C
0048 F0 758961 D2 A8 D2 AA
0050 D2 A9 D2 AF D2 8C 80 FE
005880 FC 000000000000
0060000088 8C 3097 OB 30
0068961730952030942 A
007080 OC B2 907 E 40 1E BE
007800 FC B2 9101 6A.DO DO
008032 B2 91 7E 40 1E BE 00
0088 FC B2 9001 6A B2 92 7E
0090 4C. 1E BE 00 FC B2 93 DO
0098 DO 32 B2 93 7E 40 1E BE
OOAO OO FC B2 92 DO DO 32 FF
00 AB FF FF FF FF FF FF FF FF
OOBO CO DO B2 8C B8 FF 0280
OOB8 OD $087 \mathrm{~F} \quad 17$ 1E 7F FF 1F
OOCO BF OD FC BE OO F6 DO DO
OOC8 D2 8C 32 CO DO B2 8C B8
OODO OO 0280 OD 18 7E 17 1E
0008 7F FF 1F BF 00 FC BE 00
O0EO F6 DO DO D2 8C 320000
OOE 0000000000000000

Listing 1. Digital Mouse Hex Dump

Fig. 4 Component overlay for the mouse-on-a-stick

The prototype was constructed to interface with the Amstrad 1512 or 1640 . Other computers can be easily accommodated by rewiring the interface lead to fit the inputs on your particular computer - various plugs are shown in Fig. 5. Refer to your user manual list of pins and wire up accordingly. A word of caution here, since plugging a non-manufacturer-recommen-
ded piece of equipment into your computer may well invalidate your guarantee. You have been warned!

Apart from that you should be able to get on and build yourself a joystick mouse into a case only slightly larger than the PCB. Desk space to spare and enough control to conquer the cosmos!

71

SPECIAL OFFER FOR SPECTRUM AND BBC MICRO OWNERS

Now your computer can take control for an affordable price. These tried and trusted interfaces from DCP Microdevelopments are offered at $£ 20$ off the normal price.

Both units are extremely easy to use from both Basic and assembler/machine code and are supplied ready built and complete with all the documentation you need.

To order by post fill in the form below (or a copy) and send it with your remittance to

ASP READERS' SERVICES (RO ET5/6),
Argus House, Boundary Way,
Hemel Hempstead, HP2 7ST
Please make cheques payable to ASP Ltd. Overseas orders add £5 (Interspec) or $£ 10$ (Interbeeb) for airpost
Access and Visa card holders can also place their order by phone on (0442) 41221 Allow 28 days for delivery.

Please supply Interspecs (RO ET5) at £29.95 plus $£ 1.95$ p\&p per order.
Please supply Interbeebs (RO ET6) at £49.95 plus $£ 1.95$ p\&p per order.

Name
Address
\qquad
Please debit my ACCESS/VISA card No. to the sum of £ Signed: $£$ \qquad

INTERBEEB

$£ 49.95$

The Interbeeb unit connects to the BBC micro's 1 MHz bus expansion connector and is supplied complete with its own power supply unit.

The interface unit is housed in a plastic case approx $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connectors.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- precision 2.5 V reference
- external power supply
- 15-way expansion bus

All sections of the interface are memory mapped in the 1 MHz expansion map for maximum ease of use and compatibility with existing peripherals.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. All the information required for using additional devices is included.

INTERSPEC

The Interspec unit plugs directly onto the expansion edge connector of the Spectrum to provide a full range of interfacing facilities.

The unit is housed in a plastic case approximately $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connections.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12 V 1 A outputs
- eight channel multiplexed analogue to digital converter
- 15-way expansion bus

All sections of the interface are 1/O port mapped and designed for maximum compatibility with existing Spectrum peripherals. Power is supplied through the Spectrum edge connector.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. Connection is by multi-way PCB connector and all the information required for adding further devices is given.

Please supply the follíwing backnumbers of ETI.
Note: Backnumbers are hed for 12 months only
(complete in block capitals)
Month Year Month Year
Month Year Month Year
Month Year Month Year
Month Year Month Year

I enclose a cheque/postal order made out to ASP Ltd. to the value of $£ 1.90$ per issue ordered.

\qquad
\qquad

Postcode
Send the completed form and your remittance to:
ETI Backnumbers Department

Infonet Ltd

5 River Park Estate Berkhamsted
Herts HP4 1HL $-\frac{O}{\sigma}<--1$

Oscilloscopes

 EXir GOUDHDNANCECSTOOMA Dual Trace 401AH2 Dellay TR1O CS1566k Duzd race 2011Hz Delay Sweop PHILPS PME2?3 Dual Trace 10 MH2 TEECUHPMENT D75 Dua Trace 50 Winz Delay Smes HKKUSUI 5530A Oua Face 35NHz HANEG 2034 Duad Tracs 201AHz
if I200 Dual Trce isikhz GOULD AONANE OSTHOO Duad Trace 304Hiz GOULD ADSANCE OS225 Dual Tace 15MAt Porzale $8 \times 3 \mathrm{~cm}$ Display Connait front ocver contaning 2 probes etc -
 enema DC xoaraton $2 x$ xom Disyay

 UARCON: TF2015 AU FU 0.5204 Hz Gen

 UABCON TF2O15 whtrut Smentriser WARCONI SANDERS SIG SOJIRCE 60558 850-2150UHZ RP. S6i SWEEP OSCILATOR T-12 UCH2 ITP. 220 Syend Generato 7116 Hz HP. 614 A Sinnal Genermon $800-2400 \mathrm{MHz}$ FEARCGRAPH नTT5 F Fecorder Test Sex WOELKHE Wow \& Fthter Meer HETGS 51. - 500 LEVELT TGZCODM 1Hz-HMHz Sine Square Whncond Autantir Distomon Meter TF2337R 400 Hz or idHz Mesisuras diwn baOTH Ca Enoge Satary Operaled PSILIPS Ph! 6455 Fl! Slerso Generalor
 TEKTRONIX CURVER TRACER HFTE CTI

SPECIAL OFFER HEWLETT PACKARD OSCILLOSCOPE TYPE 1740A

HAMEG MODULAR SYSTEM

 HMENO: Man Frame wath Husca? Sine Ware Generalo 1gqal Mummerter 4 Dis

ONLY £400

AACAL-NDASK Keyboart CASED ASCA COceed + Funcion

 Coys Unused SOme info
 DRIVES 5H OSDD 60 tack MULTIMETERS (P\&P All AVOs £10)
 AYO TEST SET No 1 (Matary version ol AVO :) CCmplese with Eatieries 8 Leads TEST LEAOS SuItale Tor AVOWETERS REO \& Bixck mid $£ 65$

 ANO TRANSISTCA MVALYSIS MIC CTA4G Suntcase Syle,

NEW EQUIPMENT

 aster 22 Proses

AT OMer Nodet Avadole
BLACK STAR FREOUENCY COUNTERS PAP Mefeco 100-1001/Riz
Meicor 600600 HHz .

599
-9179
$\varepsilon 178$ Meecer 600.60014 Hz

ELACK STAR MUPTOL 500 FUNCTION GENERRTOR GUACK STAR DRION. PALONVIDEO COLOUR PATTERN GENERATO
HUNG CHWNG puse 20303 3ib figit Hand hedd 28 renges incluoding io Amp ACDC Q. 1% Complete wht oxteries \& 5 acre D1um 60100.25% Cstyng Case for above OSCILLOSCOPES PROBES. Switchec $\times \mathbb{E} \times 10 \ldots \ldots 11$ each

Used equipment - with 30 days guarantee. Manuals supplied if possible This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Piease check availability before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods \& Carriage

STEWARTS OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Tel: 0734 68041. Fax: 0734 351696. Callers welcome $92 m-5.30$ pm Mon-Fri (until 8pm Thurs)

HENRY'S

ELECTRONICS FOR TBADE NDDUSTRY,

 EXPORT, EDUGATION AND RETAIL

COMPONENTS TOOLS CABLES ETC. NUDIO TVIVIDEO
SECURITY CB RADIO ACCESSORIES

Please state Trade/Education or Retailmail order Send $123 / 4^{n} \times 9^{\prime \prime}$ (A4) SAE $£ 1.50$ each or $£ 3.00$ for both

$\int 3 \cap \int 04$ Edgware Road. London W21E0
 Tel: 01-7240323 , val
 - ALSO AT Audio Electronics 301 Edgware Road W2 01.7243564 SALES OFFICE 01-258 1831 Telex 298102 Fax 01-724 0322

OUT NOW!

- WE STOCK AN UNRIVALLED RANGE
- ALL OUR COMPONENTS ARE FIRST CLASS BRANDED ITEMS
- WE OFFER A SAME DAY SERVICE ON ALL STOCK TTEMS
- NO MINIMUM ORDER-IF YOU NEED ONE COMPONENT WE CAN SUPPEY ONE COMPONENT
- WE HAVE ADOPTED A NEW LOWER PRICING POLICY + QUANTITY DISCOUNTS
- Fize vouchers wrth your catalogue-ORDER ONE Now:.
JUST FIL IN THE COUPON OPPOSTTE AND POST TT WTIH YOUR S1. PAYMENT TO THE ADDRESS BELOW. YOU WILL RECEIVE NOT ONLI OUR SUPERB IOG PAGE CATALOGUE BUT ALSO FREE
VOUCHERS WHICH YOU CAN USE ON YOUR NEXT COMPONENTS ORDER.

CRICKLEWOOD EAECTRONICSLTD 40 CRICKLEWOOD BROADWAY LONDON
NW2 2ET TEL $01 / 4500 \% 35 / 4520161$ FAX $01-2081441$ TEAEX 914477

FREE VOUCHERS!
SEND OFF FOR YOUR CATALOGUE AND VOUCHERS TODAY.

I WOULD LKE TO RECEEVE. COPY(COPIES) OF THE 1989 CRICKLEWOOD ELECTRONICS COMPONENT CATALOGUE. I ENCLOSE \&
PLEASE ENCLOSE MY FREE
VOUCHERS.
NAME.
ADDRESS

Tape your $\$ 1$ coin here, or send a cheque or postal order for $\$ 1.00$ for every catalogue you require.

SWITCHLESS INTERCOM SYSTEM

Ever since primitive man decided that he had something more to communicate to his fellows than the wants and warnings exchanged between less intelligent planetary cohabitants, he has striven to make communication possible over ever greater distances, between more and more individuals and against increasingly overwhelming problems of noise and surroundings.

Having now passed on from grunts and rockbanging to an age of digital-encoded. frequencycompressed, multiplexed-laser exchanges between land mobiles, geo-stationary satelites and micro-wave dishes, is there really a need for a new intercom design?

Well . . . yes there is. My particular problem existed in a hospital radio-pharmaceutical suite where a preparation lab is separated from the collection room by a changing area and double-glazed panels. This is where injections are prepared under sterile 'clean room' conditions. Because access is restricted, messages had to be communicated via the glass panels in a startling performance of shouting and improvised sign-language, not far advanced from the communications devised by the aforementioned primitive man.

A small commercial intercom was tried but since the clean-room operator spends most of his or her time at a bench with hands busy, the 'press to-talk' button (almost universal on small systems) was not convenient and communication tended to be oneway. Besides, the unit was always being left on and
the batteries would flatten overnight.
So it was decided to attempt the unlikely - a simple two-way system free of 'press-to-talk' buttons.

Avoiding A Howler

People who have worked with microphones will have already spotted the major obstacle: a room with a live microphone feeding to a speaker in another room which contains another live microphone feeding a speaker in the first room, is an instant recipe for audio feedback - howl around.

Circumstances did not warrant excursions into possible technical solutions such as frequency shifters, adaptive filtering, line multiplexing and so on. It was judged that by reducing the acoustic coupling between speaker and microphone, sufficient sound levels could be achieved for useful working. If such a system would work, then another station was to be added in an adjacent clean-room.

Most cheap intercom systems rely on a single transducer, a loudspeaker, that functions as a microphone when suitably switched. This is mounted in a small plastic or metal box and the system gives a very poor tinny quality to the reproduced speech. A tinny sound will set up howling before useful sound levels could be reached, due to certain frequencies being reproduced more efficiently (mechanical resonances of the boxes, properties of the microphone and loudspeaker and so on) so that the whole system has sufficient gain to oscillate at these exaggerated frequencies at otherwise low levels.

Messrs Lawson and Feeney can talk for hours on their multiway expandable intercom system

Fig. 3 Circuit diagram for a slave intercom station

PARTS LIST

HOW IT WORKS

The crccuit of a slave intercom station is shown in Fig. 3 . It is a simple two amplifier design consisting of a microphone preamblifier and audio power âmpifiee.

The preamplifier is based around the SL6270 VOGAD microphone preamplifier, a voice operated gain adjusting device which uses an automatic gain control (AGCl circuit in its internal feediback cicuitry to keep a constant amolitude. The AGC causes the gain to inceaseit the externat noiseís small and vice versa - a useful feature for an intercom.

The only problem when using this device is that the maximum recommended operating votage is 10 V , whereas the minimum working voltage for IC2 is 12 V . This means a voltage regulator is sequired to drop the 12 V supply to around 9.5 V for ICl .

However there are no commonly available 9.5 V fixed valtage regulaters so ICl , a 78 L 人5, is used instead witha zener diode 7 ZO inits common comnection. The zener diode 'lits's the referenne voltage to the common connection by the zener voltage rating - to obtain a 9V supply say, a $4 V 3$ zener could be useci ithere is usually a smail loss in the zener diode).

The gain for IC3 is set by 45 wich provides negative feedback to the main amplifier of the chip. The gain is giver by the following formula:

$$
\text { Gain }=\frac{R_{G} \times 10,000}{i R_{G}+10,0001 \times 680}
$$

The minimum vaive for RG is $680 R$, the value used in this spplication, which reduces the susceptiblity to feedback due the ACC action to a minimum. This is required due to probiems otherwise encountered With audio acoustic feedback :nside the housing.

Anyone redesigning the unit as a switched intercom could remove RG.

Capacito C5 provides a high frequency foll-of to help redtce 'howling' when feeciback is prodiced. C13 and R13 set the rate of attack and decay of the AGC circuit, these are not critical and may need to 5e changed if a speciai microphone response is required.

Rit, C14 and C15 heip to decouple the supply to IC 3 along with C11 and C10 for IC2 The amportput is fed into RV1 which acts as a volume control connecting to the non-invering input of K 2

R8 sets the gain and need not be changed, R12 and C16 form a zoebel netwotk to give stability at high frequencies and D 1 and O 2 protect voitages large: than the rail.

For a simple two intercom project the master and slave unitis inputs and outputs may be cross-finked. For a three station project a mixer circuit is requised to isolate the stations properly.

A iypical mixerecrevit is shown in fig. 4, based on the LM3900 quad Norton op-amp. This tC has current mirot hputs which allow single supply operation and around 95% of the suppiv volage swing on the outputs, however the maximum input voltage is 0.6 V . 8 F controls the gain which is set to unity for this project. If the signal needs a boost at this stage RG may be increased by make sure the ourput load due to cable resistance is not too high.

The two input tesistors mix the signals from stations A and 6 and feed the output to the ibird station C .

The complere mixer circuit is shown in Fig. 5 Another station may de proviced for by using the fouth op-amp on the 3900 , with three resistors on each input instead of two.

The cower supply is a standard 12 V iA type bur make sure the transionmet is of the split toobbintype as the mains earthis not used and these ransformers provide more isolation between primany and secondary coils. Use an anti-surge fuse in the tive connection.

It became obvious that a live microphone system would have to have a fairly flat frequency response and that the penalty paid for the absence of switches would be a sound level somewhat less than can be used in a switched one-way system.

To produce a resonance-free frequency response it is important to choose better quality devices than would otherwise be selected. Various microphones and loudspeakers were tried before arriving at the present components. The amplifier was developed as a two chip design, a microphone matching pre-amp and a small hi-fi amplifier chip. This also permits the mixing needed for a larger system.

A directional microphone is a must. Looking at Fig. 1 a sound is produced at X and the mic + $\mathrm{amp}+$ speaker chain has a gain of ten. Some of this signal will find its way to the adjacent microphone and if this is any more than a tenth of the speaker level, then sufficient sound will be produced by the second channel to reinforce X and the system rapidly builds up to a teeth-grating howl. This is a much simplified explanation but illustrates why the microphones should not be responsive to sounds around or behind them and why mounting speaker and microphone via sound-insulating mounts is necessary.

Calling At The Next Station

With a system working, it is surprisingly easy to extend it to a large number of stations. A simple distribution system feeds each microphone to all loudspeakers except its own. For this, each amplifier is preceded by a basic mixer that accepts signals from various microphones (see Fig. 2)

By having each pre-amp next to its own microphone, the signals involved are then large enough to permit removing the mixer/distributor to a remote position or, for best economy of wiring, in a 'master' unit that comprises a power supply, the mixers and a single intercom station.

Fig. 4 Signal mixer using LM3900 Norton op-amp

Fig. 5 Circuit diagram for the master station

Fig. 6 Component overlay for the master station

Construction

The overlay for the master unit is shown in Fig. 6 and the slave in Fig. 7.

When assembling the PCBs mount the flattest - components first and build up according to height of components to make soldering much easier. IC sockets are not a necessity but are a useful addition in case of faults on the board. During testing it allows the supply to be checked before the ICs are placed in their sockets.

The TDA2030 and 7812 are mounted on the circuit board with a 4 BA nut and bolt. Finish construction with the transformer. making sure it is secured with mounting bolts.

Make sure the box for the master unit is deep enough to house the transformer. Wire up the mains switch and fuse and connect to the terminal block. The circuit should be tested at this point for the correct supply voltages throughout the board.

PARTS LIST

PC3. Large lin grommet for microphonel. Black baize Mounting bolts. Case Veropins.

Next solder the speaker and microphone leads to the PCB pins and socket the ICs (if sockets have been used).

Special consideration has to be given to the acoustics in the box as explained earlier. Figure 8 shows the mounting arrangements of the speakers and microphones used in the prototype. PVC tape was used for blanking off the back of the speaker. Tape deadens the internal sound better than most methods that were tried. The foam sealing strip is the material used for draughtproofing doors and this isolates the speaker from the plastic lid.

The black baize is glued in place first to act as further damping and to give a pleasing aesthetic finish. The foam strip is then put down in a circle the size of the speaker.

The microphone is isolated from the plastic lid by the rubber grommet - the microphones recommended require a grommet diameter of about 27 mm but smaller ones could be used by cutting out the internal rubber. When the microphone is glued inside the grommet (leave $1 / 2$ in out of the lid), black baize is glued on top of the microphone for aesthetic appeal.

Fig. 8 Mounting the speakers and microphone
For the slave unit follow the same procedures but bear in mind the mounting method used for the boxes. The master unit is wall mounted with four screws underneath the PCB, with the PCB then swung into place on 4BA board spacers. The slave units are mounted using the same screws as the PCB.

Make sure to use 4 -core-screened cable when wiring up the units from the mixer to the slaves. The terminal block used in the slaves is the solder-tag type where a hole is cut in the box to allow the terminal through.

The cases should be carefully cut so that everything fits in its proper place. Cutting instructions as used in the prototypes are shown in Fig. 9.

Testing

For the master unit test the power supply at the 7812 output with all ICs out of circuit and the microphone and loudspeaker disconnected. Next test the supply from the 78 L 05 which should be around 9 to 9.5 V . if the supply is correct, turn off and socket the ICs.

Connect the loudspeaker and microphone and
wire the two slave units to the terminal blocks.
On the slave units test the incoming supply with the ICs out of circuit and with the microphone and loudspeaker disconnected.

Next test the supply from the 78L05 (again around 9 to 9.5 V). and if the supply is correct turn off and socket the ICs. Connect the loudspeaker and microphone.

T T品 $\stackrel{\square}{\square}$

Fig. 9 Cutting instructions for the case

Setting Up

Space the two slave units a good distance apart (unless they are already installed) and switch on the supply. If any howling is heard, adjust the trimmers to prevent it.

Ask someone to speak into one microphone while you listen at another unit or use a portable radio to provide a sound source. Use your trimmer to give an acceptable volume at your end. then repeat the procedure for the other two units.

If the power mixer is being used, set all trimmers at highest value (unity gain).

If more volume is required turn each trimmer by the same amount until howling is reached and then back them off slightly.

Using The Intercom

The intercom was designed primarily to be switchless in operation. This has given rise to various feedback problems as previously discussed. To help prevent these getting any worse special precautions should be taken when installing the system.

Obviously the shorter the distance between units the better - if very long lengths of cable are required, the power mixer (outlined later) may provide a better performance.

All cable should be screened with the screen soldered to ground at either end.

Trynot to position units too near a sound source as this will probably be fed through to the other units.

If the intercom is used in private rooms remember that the microphones are live all the time - it may be a good idea to design in a microphone muting switch for privacy purposes.

Be careful when routing the cables, making sure not to place near switching or power cables to avoid possible interference or signal degradation.

If you do not require the microphones to be live all the time. by all means make the system a switched one. Increase the gain of the 6270 by either increasing the volume from RG or removing it altogether.

Final Conclusions

The authors are honest enough to point out that this is not the ideal system for everyone by enumerating some of the drawbacks. There is no simple way to avoid at least two screened cables and a power supply pair to each station.

Sound levels are somewhat lower than usually found in intercom systems - but in practice will depend on exact construction and on just where they are used.

Because the system may have several stations; each contributing to the tendency to howl, the settingup can be fairly critical for best levels

In mitigation, the authors have produced a facility within bounds of cost and complexity as a solution to a problem not amenable to commercial equipment. Although many readers will not have an isolated clean-room as part of their lives. it is hoped the project will help solve similar problems and reduce muffled screams and arm-waving across the nation!

ACOUSTICS

As mentioned, the key to this project is the isolation of loudspeaker and microphone from an acoustic point of view.

Severai arrangements were tried and constructors are free to experiment in this area. The ultumate separation is of course obtained by mounting the two in separate enclosures but this complicated the construction and is not ideal because each enclosure has its owr resoriances and the system is still liable to howi.

Short goose-neck stems were tried as microphone mounts but disccunted because they actually moved the microphone further into the sound field of the loudspeaker land incited colleagues to ribald comments about their appearance!].

Acoustic damping with rubber, foam sealing strip and PVC tape as indicated has soaked up sound waves from behind the loud speaker. It is important to mount the microphone capsule at least $/ 2$ in out of the enclosure to escape the residual sound within the enclosure

Areas for experiment include foam rubber tubes around the transducers, electret microphones, angled enclosures and so on.

BUYLINES

No probiems should be encounted when trying to obtain components for this project. Various micropiones were tried but the best was the unidirectional UF27 from Maplin.

The TDA 2030 and LM 3900 are available from Maplin and Cirkit, but only Cirkit supply the SL6270. The bridge rectifier used was the SKB2102L 5 A from Electromai. A suitable alternative bridge rectifier sold by Maplin is the BY164, which is also an in-line package.

The $\mu 4759$ is only available from Electomail telephone 10536$\}$ 204555). The transformer used was Electromail code 207.699.

The Power Mixer

The installation of a second system presented a new problem since the authors had to use wiring already in place in conduits in the walls. None of this wiring was screened so that any two wires formed a capacitor such that each microphone signal was fed straight back to its own loudspeaker. The capacitance between two adjacent rooms was measured at about 60 nF giving almost total feedback at the high impedance amplifier.

The solution to this is to move the amplifiers so that only high level. low impedance levels are concerned. and 60 nF is not significant.

This is not too difficult with two stations but three or more require the mixer/distributer to be high level also, so that the circuit of Fig. 10 replaces the LM3900 mixer circuit.

The amplifiers are 759 devices that 'look like' 741 devices but have a beefy 300 mA drive capacity.

Fig. 10
Circuit diagram for the optional power mixer
enough to drive over 700 mW through an 8 R loudspeaker. That might not seem much in these days of mega hi-fi but is uncomfortably loud in many circumstances!

The 759 s are simply biased so they can be used from a single 12 V supply. Gain is adjusted via RV1-3. If signal strengths are weak then increase the gain of the appropriate mixer op-amp.

A suitable component overlay is shown in Fig. 11.

To use the power mixer, the following wiring alterations need to be made to the slave units.

Connect the 6270 output directly to the TDA2030 input. Disconnect the output from the TDA2030 to loudspeaker and connect the loudspeaker to terminal 3. then re-connect the TDA2030 output to terminal 4.

Now terminal 3 is the output from the mixer and terminal 4 is the input to the mixer from the slave unit.

Alterations to the master unit are as follows:
Remove the LM3900, IC1. Remove the link from master unit PCB. Insert a PCB pin next to C10 and solder a lead from it to ' A ' on the power mixer.

Fig. 11
Component overlay for the optional power mixer
Remove C9 and insert a PCB pin where C9's negative lead was. Solder a lead from this to "' on the power mixer.

Mount the power mixer PCB on the side of the box and connect up B. C. 2 and 3 to corresponding terminals.

Connect +12 V and Ground to power terminal block on power mixer.

PARTS LIST

POWER MIXER	
RESISTORS (all YW = carbon film)	
R1,3,5,7,9,11	10 k
R2,4, $, 8,10,12$	100k
RVI.3	50 k min cermet preset
CAPACITORS	
C1,3,5	220 n tantalum
C2,4,6	$100 \mu 16 \mathrm{~V}$ electrolytic
C7	10n ceramic

SEMICONDUCTORS

IC1.3 HA759

MISCELLANEOUS

CONNT-4 2-screw terminal block PCB-mounting
PCB. Mounting screws. 48 BA nuts and bolts for mounting 759 s .

REFLEX ACTION MICRO MONITOR SPEAKERS

Jeff Macauley gets out the glue and reports on the ports of his bass reflex loudspeaker design

Last month 1 described in some detail the basic principles behind the design of reflex speakers. This month l've taken the opportunity to get my hands dirty and actually build one. There's nothing to beat the practical application of theory and so I present the following design which I hope will prove both instructive and a spur to like-minded readers to have a go!

Despite the fact that the theory behind speaker design is now fairly well explored, building a speaker will always throw up interesting challenges. For example this project started with running the characteristics of some woofers through the Optibox computer program I detailed last month.

Although I live in a flat where space for audio equipment is somewhat limited I like my fair share of bass so Im always on the lookout for small systems with good low end extension. I came across the woofer used in this project in the Tandy catalogue. Although it's only four inches in diameter and is primarily intended for in-car use its characteristics make it ideal for a micro monitor application. The unit, Tandy catalogue number 40-1022A,
ig. 1 The circuit diagram of the crossover
less liable to resonate and colour the sound. 1 eschewed the normal .75 in thick high density chip board for the more cosmetically pleasing white melamine covered variety.

Any constructor that cares to can choose the high density stuff in preference as long as the internal dimensions are retained. An 8 ft length of 9 in wide board will amply provide two cabinets for less than $£ 7$. Unless one actually enjoys woodwork or has masochistic tendencies it is worth getting your local timber yard to cut the board for you. It is absolutely essential to have the cuts made accurately (this will prevent the possibility of the air turning blue as you fit the case together).

To complement the woofer a high quality tweeter is required. As with woofers there is a large variety on the market. I finally chose a Philips polycarbonate dome type which is available from Electromail, catalogue number 249-435. The main reason for this choice is that I have had wide experience of this unit and know its strengths. It has a good flat response from $3-20 \mathrm{kHz}$, amplitude variations being kept to within a couple of dB . It is also very sensitive and capable of wide dispersion.

Considering Crossovers

Having decided on our drivers and the cabinet size, the next task is eo decide on a crossover. To understand how well or dismally a crossover works it is first necessary to consider the tasks it is required to perform.

The obvious function is to divide the incoming signal into the high and low components. Unfortunately this is complicated by the fact that the speaker units don't present pure resistive loads. Another complication is that back emf is generated by the units as they operate and this behaviour is both amplitude and frequency dependent. Add to this a compensation for response deviations in the driver and you end up with a very complex network that evades straightforward analysis.

The other alternative is to accept that some variations are inevitable and minimise these by choosing drivers that are inherently flat in their operating range. A simple network can then be designed which gives good results. Luckily both the units chosen here are fairly flat (to within a couple of dB of their operating range) and therefore the simple approach can pay dividends.

Getting back to the immediate problem of designing a crossover for the speaker in hand I made the following observations. Firstly the frequency response of the woofer is flat within $\pm 2 \mathrm{~dB}$ and has a well damped hf rolloff, 3 dB down at 5.5 kHz . Secondly the tweeter is far more efficient than the woofer and has a well controlled 'bass' resonance at 2 kHz . It is also sensibly flat between 5 and 20 kHz .

It followed from these observations that the easiest solution was to leave the woofer response as it is and precede the tweeter with a first order network. It means an asymmetric crossover and implies a careful choice of tumover frequency to avoid response
anomalities. This was the design path chosen and the resulting circuit is shown in Fig. 1. The tweeter is several dB 'hotter' than the woofer which means its signal must be attenuated. This is the function of R1. C 1 is chosen to produce a -3 dB point at 5.5 kHz in conjunction with the series resistance of R1 and the tweeter's impedance. Note that the tweeter is phase inverted with respect to the woofer due to the drive signal phase differences between them.

Despite its simplicity this network does the job it was intended to do and has a couple of advantages compared to more conventional designs. It's extremely easy to drive, the impedance doesn't fall below 7R. It uses no coils and because of the high value of R 1 a normal value polyester cap can be used for coupling.

Even so. I always find the advantages of an active crossover boost performance further, and a suitable design for the Micro Monitors will follow next month ${ }_{2}$

Construction

The required wood cuts are shown in Fig. 2. While dimensions here are in millimetres. the Parts List quotes in inches since many timber yards have yet to find their way in to the ' 80 s!

Mark out the panels for the drivers and port. The tuning duct is a length of plastic piping with an internal diameter of $1.25 \mathrm{in}(31 \mathrm{~mm})$ which has an overall external diameter of 1.5 in (37.5 mm). The internal area is thus $3.14 \mathrm{r}^{2}=1.22 \mathrm{in}^{2}$. Plugging this value into the port equation gives a length of $4.1 \mathrm{in}, 104 \mathrm{~mm}$. The piping used is available at plumbers supply merchants and a metre length cost me all of 84p.

Note that the port is mounted on the rear baffle. This is mainly because a small frontal area is required to give good stereo imaging. It has no adverse effects on the sound because at the low frequencies at which the port operates the speaker's radiation pattern is omnidirectional anyway. Cutting the pipe accurately is more difficult. A mitre box is almost essential. If you don't have one the easiest way is to wrap a piece of card tightly around the tube to obtain a straight edge which can be slid up and down. Mark off the length you need by drawing around the card. Using a hacksaw carefully make a cut around the circumference of the tube before cutting it through.

Having got to this stage, final assembly of the enclosures can commence. Everyone is entitled to their own foibles when it comes to adhesives. Mine is to use a contact adhesive Thixofix which is widely

Fig. 2 Cutting diagram for a single Micro Monitor and enclosure construction

Fig. 3 Recess dish drilling detail
available. One smears the surfaces to be joined with glue. then leaves them for ten minutes or so for the glue to cure. The paneis can then be slid together and positioned precisely. Firm pressure then completes the bond.

Whatever adhesive is used it is as well to use it liberally as this will stop air leaks.

Once the case has been glued it needs to be screwed together. I used 1 in no8 self tappers for this job. Drill pilot holes $1 / 8$ in (3 mm) diameter to take the screws and countersink these. I have detailed the screw positions on Fig. 2. These should be adhered to.

Having built the case, attention can be turned to sealing it to prevent air leaks. This is most easily done with 'polyfiller'. Mix it up into a stiff paste and work it along the panel seams with your finger. Wipe the excess away with a damp cloth. The hole for the port is best cut with a hole cutter. A nest of these, suitable for cutting various diameter holes between one and two inches, can be obtained from your local tool shop for a few pounds. These are a useful addition to anyone's tool box. To fit the port into position I used araldite rapid. The other apertures are larger and are

Fig. 4 Wiring diagram

PARTS LIST

ONE CHANNEL ONLY	
81	47R iW wirewound
Cl	470 n 100V polyester wikg
Wooter	Tandy 40-0222A
Tweeter	Electromail $249-435$
Recess Dish	Maplin FS34M
Wood	15 mm thick Melamine covered chipboard
	2 -off $9 \% 2 \times 4 \mathrm{kin}$
	$2-0 \mathrm{f} 99 \% \times 9 \mathrm{in}$
	2 -ff $4 \frac{1}{2} \times 7$ \% in
104 mmiengt sockets.	Kin id plastic tubing. 3 -off Amm panel mounting

best tackled with a jigsaw or jigsaw attachment. If this is not available then a coping saw can be used.

Reflex enclosures cannot be stuffed with sound absorbants like other forms of enclosure. To do so will wreck the carefully calculated relationship between driver and enclosure resonance. For this reason the interior is left unstuffed.
One nuisance with the woofer is that the mounting holes are slightly recessed from the frame. This means that in order to seal the driver against air leaks, further action must be taken. The best idea is probably to stick some self adhesive draught excluder tape around the hole before mounting the driver. A less strenuous alternative used on the prototypes was to seal around both units with polyfiller after mounting them. The tweeter hole should be similarly treated.

Before fitting the drivers into position it is as well to solder the leads to the terminals. Because of the simplicity of the crossover unit this is simply wired across two of the terminals as shown in Fig. 4 drawing. Nothing elaborate is required here - I used 12in lengths of 5 A twin speaker cable from Halfords. This has the advantage that one of the conductors is identified with a white strip along the insulation thus allowing easy phasing of the units.

For connections to the drivers I used three 4 mm banana sockets/channel. If these are connected as shown in the schematic then upgrading the speaker to active operation becomes easy. The drilling for the rear access dish is shown in Fig. 3.

Final assembly consists of mounting and wiring the crossover and terminals then screwing the rear panel into position. Remember to seal around the back plate with more polyfiller to ensure airtightness.

At this stage all that remains is to test the unit out and finish the cabinet as desired. If you've never used melamine faced board before you will find that edging strip is available to cover the bare chipboard. This is first trimmed to the correct width and applied to the edge by ironing over it. The backing adhesive bonds with the heat.

In conclusion this pair of speakers can be built for a total expenditure of less than $£ 40$ the pair. They have a better bass response for their size than any others I have heard. What's more important is that this response is nicely damped with no audible ripple in the response. They also offer a good transient response and a 3-dimensional stereo image. They can also be simply and fairly cheaply upgraded to active use as detailed in a forthcoming article.

71

\%					
All with Test Leads:					
MODEL	DIGITS	RANGES	EXTRA FEATURES	BASIC	PRICE
3800	$31 / 2$	32	LOW ACIDCOIZO micro	0.5\%	£27.78
3610	$31 / 2$	30	LED continuity indicator	0.3\%	£34.74
3630	$31 / 2$	30	5-Range Capacitance Test	0.3\%	£41.70
3650	31/2	30	2-Range frequency counter 3-Capacitance	0.3\%	$£ 45.17$
4630	4/2	30	2-Range frequency counter 5. Capacitance	0.05\%	£60.83
4650	4/2	30	Data Hold. 2-Range Freq. 3-Capacitance	0.05\%	¢65. 17
Add 15\% VAAT UK only - UK POST/INS elc. FREE \{EXPORT EXTRA\}					
OPEN 6 DAYS A WEEK - CALLERS WELCOME					
AUDOSESCTR					
T TELEPHONE 01.7243564					
301 EDGWARE ROAD, LONOOS W2 1BN EI.00					

Interak 1

SINGLE BOARD COMPUTER "SBC-1"

A computer doesn't have to look like you'd expect a computer to look. It doesn't have to have a keyboard and a screen and floppy disks and so on.
The SBC-1 has the bare minimum of chips a 280 computer can have and still be a computer: A 4 MHz Z80A-CPU chip, an EPROM chip (up to 32 K), a static RAM chip (up to 32 K) and a pair of 8255A VO (inpu output) chips giving 48 individual lines to waggle up and down. There are one or two acditional glue chips included, but these are simple "74LS" or "HC" parts.
A star feature is that no special or custom chips (ie PALs, ULAs. ASICs etc) are used - and thus there are no secrets. The Z80A is the fastest and best established of all the 8-bit microprocessors - possibly the cheapest tool
Although no serial interface is included, it is easy for a Z80A to waggle one bit up or down at the appropriate rate - the cost is a few pence worth of code in the program: why buy hardware when software will do? Applications already identified include: Magnetic Card reader, mini printer interface, printer buffer push button keypad, LCD alphanumeric panel interface, 40 -zone security system, modem interface for auto sending of security alarms, code conveter (eg 18M PC keyboard codes to regular ASCII), real time clock (with plug in module) automatic horticultural irrigation controller.
By disabling the on-board Z80A-CPU this card will plug into ou Interak I CP/M Plus disk-based development systems, so if you don't fancy hand-assembling Z80 machine code you don't have tol
The idea is (if you are a manufacturer) you buy just one development system and then turn out the cheap SBC-1 systems by the hundred. If you are really lazy we can write the program for you and assemble the SBC-1 cards so you can get on with manufacturing your product. leaving all your control problems to us.

Greenbank

For more details write or phone us.
Greenbank Electronics, Dept. (T6E), 460 New Chester Road, Rock Ferry, Birkenhead, Merseyside L42 2AE. Tel: 051-645 3391.

Nick Peters

044266650
Send your requirements to:
ETI Classified Department, ASP, Argus House, Boundary Way, Hemel Hempstead, HP2 7ST.
Lineage: 50 p per word (+ VAT) (minimum 15 words) Semi Display: (minimum 2 cms)
£13.50 per single column centimetre + VAT Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

COURSES

TRAINING

HNC in Microprocessor
 Systems

A one year full time course, commencing on 4th September 1989, is offered by Milton Keynes Skilicentre.

The course includes 20 weeks work placement in Industry.

This is a Training Agency funded equal opportunity course and training allowances will be paid.

Please telephone 0908670001 for an application form or write to:

Milton Keynes Skillcentre
Chesney Wold
Bleak Hall
Milton Keynes
MK6 1LX

Skills Training Agency

BOOKS

Workshop Service Manuals
Video Recorder - $\$ 1250$
HostCoiour TV, Audia, Test. Vintage. Amalaur, etc $£ 500$ * Flease state MakeMAcdetType with order
FREECataiogue Unique Repair and Data Guides with ail orders or LSAE for your copy
MAURITRON ELECTRONICSLTD (ETI), 8 Cherry Tree Road, Chinnor,

Oxfordshire. OX9 4QY.
Tel: (0844) 51694

EQUIPMENT

> | TO ADVERTISE IN ETI MAGAZINE |
| :--- |
| TELEPHONE NICK PETERS ON |
| 044266650 |

MAKE YOUR INTERESTS PAY!

More than 8 million students throughotu the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence of expert'personal' tutors. Find out how we can help YOU Post or phone coday foryour FREE INFORMATION PACK on the course of your chois. Tick ona
[Tick one box only!

Electronics	\square	Radio. Audio and TV Servicing	0
Basic Electronic Engineering (City \& Guilds)	\square	Radio Amateur Licence Exam (Clity \& Gullds)	\square
Electrical Engineering	\square	Car Mechanics	\square
Electrical Contracting! Installation	\square	Computer Programming	\square
GCE over 40 ' O^{\prime} ' and ' A ' level subjects			[

iname
P. Code

FORSALE

EQUIPMENT FOR SALE Oncilomeope Tektronx SesE, cual sme Dase wer	
Scopomobie triliey a pood selection of eroces a	
graicules	30.
Sectorscope, Tetrobrix 52	230.00
Scoope probes as smictied $\times 2 / \times 10$ Price for 2 of	14.00
	40.00°
	45.00
Trmer coumter not wariong. Advance TCSA	11.50
	46.00
Digtas multmelet, Pnios PMz222 !neods sen	46.00
Aiometer model E	57.
	46.00
Pictupp test una, ind precsion amp (comidar	28.75
eco	${ }_{11.50}$
	5.75
Yest cisces	
Denon audo lectical recoma 2 ses of 3 Each Share TR102-TTR103+ CES STR1102	23.00
	23.00
Dol and Cosstiath generate Acrance SG7	17.25*
rar generator. Ducca EP6854 CB (needs	$11.50{ }^{\circ}$
.	
graphics ajore mith den 8 car	
Aspress incusto vat	
01-985 0586 or 01-423 0576	

PCB KIT: Drill, stand, tanks, UVbox, artwork light-box. Cost $£ 400$ from RS, will accept $£ 150$. Phone St Albans 68399

MULTILODE LTD

For electronics components, leads, aerosols, aerials, I.C's, diodes, video heads, tools, telephone accessories, books, magazines etc, etc
Open Mon to Sat 9am to $6 p m$ Contact: Multilode Lid.
at 7 Arlington Parade, Brixton Hill S.W. 2 1RH.

Tel: 01-326 1793

SOLARPOWER

Chronar asi solar N Cad multh chargers rated at up to 1.5 WATTS. No room there for all the info

P.O. BOX 49 DAGENHAM RM9 5NY

A\&G ELECTRONICS LTD

If you are buying Electronic Components elsewhere you are almost certainly paying too much! Write to us for a free 1989 catalogue and start saving money. (Plezse send rmo 19p stamps iovards postage) 100 Park Avenue, London E6 2SR Tel: 01-552 2386

PROJEK SOUND AND LIGHTING

Supplier of quality speaker cabinets, built to customer specification if required. Agents for McKenzie. Fane Loudspeakers and Adam Hall cabinet fittings.

Tel: (0475) 83626
or (0475) 43089 (24 hour) for immediate quote

BOOKS

Workshop Service Manuals

 Video Recoröer - $£ 1250$*MosiColour TV.Audia Test, Vintage, Amateur: \&tc $£ 600$ Please stare MizkiModelvipe with order
FREE Catalogue Uninue Repair and Data Guides with aliorders or LSAE for your COPY
*MAURITRON ELECTRONICSLTD (EII),
8 Cherry Tree Road, Chinnor,
Oxfordshire. OX9 4QY.
Tel: (0844) 51694

SATELLITE TV

ENJOY SATELLITE TV DO-ITMOURSELF AND SAVE Eecronca knowhtow na iequirad Dshas ricaverz. x win corrienters Guzanleed proven plars andmore ELECTRONICCOHCEPTSUNITD M.PO Box 476. Saint Jotm, N.R Canada. E2L 323 FREE CATALOGUE: Postsge \&t:

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$. Com ponents and P.C.B's available Herrington, 63 Home Farm Rd, Hanwell, London W7 1 NL .

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre Cedar Electronics, (HR), Unit 12 Station Drive, Bredon, Tewkesbury. Glos. Tel: 0684-73127.

PCB'S

AMCAD

PCB layout software for the Amstrad 6128.664 and 464 Tmicros. Supplied on disk. Price $£ 39.95$.

* Very easy to use
* $0.1^{\prime \prime}$ Grid. On/off
* 5 Pad sizes
* DIL, E.C. and DIN 효
Configurations at a key stroke
* Resistmask * Ground plane
* Indent layout * S/S or D/S PCB
* O/P to Dot matrix printer

Enquiries to: Phasor Circuits, ref eti, 12 Kendal Rd., Leicester LE4 7GP.

PRINTED CIRCUIT BOARDS. LOW cost production service: 5 p per square centimetre (less for orders of 10 plus) one offs, 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire CV11 6JL. Telephone (0203) 382296.

KITS

VHF/FM TRANSMITTER KIT, $11 / 4^{\prime \prime}$ $\times 1 / 2^{\prime \prime}$, tuneable, $£ 4.50$. Telephone transmitters, trackers. Novel kits and built units. SAE list. ChequelPO to A.C.E. (TI), 99 Greenheath, Hednesford, Staffs.

NEW VHF MICROTRANSMITTER kit, tuneable $80-115 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £5 POST FREE. Access orders telephone 021-411 1821, cheques/PO's to: Quantek Electronics Ltd, (Dept ETi), 45a Station Road, Northfield, Birmingham B31 3TE

FREE READERS' ADVERTISEMENTS

FREE 60 WATT AMPLIFIER MODULE!! Low-profile pcb \& heatsink. Thd 0.003%. New + leads \& data!! SEND-US-THE-AD + £4.95 (handling) to KIA, 8 Cunliffe Rd, Ilkley LS29.

WOULD YOU BUY A.CAR WITHOUT A TEST DRIVE? THEN WHY BUY A MIXER WITHOUT A TEST DRIVE?

Thinking about a new project - from a small Mixer to a large studio complex - come and talk over steas with the people who otter manylac Unit D. 318 High Road. Benileet. Essex SS75 HB to take that test drive PHONE 0258-793381 Weekend Committee visits
welcome by prist armangement)

SURVEILLANCE

SURVEILLANCE \& COUNTER SURVEILLANCE EQUIPMENT

 WE MANUFACTURE AND SUPPLY TOP QUALITYSURVEILLANCE SURVEILLANCE EQUIPMENT robdrgy VHF Transmiter Aulomatic Tekphone
Recordas. Recording Brietcases. Bus \Rightarrow Detectors. Telephone Counter-Tap Units
Ve asso ofies a complele ange of accessorixs.
neluding microcatsete recordex, micophones recenviess. cassettes and batteres
CCTV AND SECURITY
SYSTEMS SPECIALISTS Whe or prane for a deraive caralogue oo:
ESKAN ELECTRONICS LTD. DEPT ET. 172 CALEDONIAN ROAR LONDON. NI -01-278 1768 =

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury. Herefordshire, HR8 2HS.

EQUIPMENT

RE-CONDITIONED OSCILLOSCOPES. Good selection in stock at Direct Electronics, 627 Romford Rd, London E12 5AD, (01) 5531174.

> DISCUSS YOUR ADVERTISING WITH NCK PETERS - CALL 044266650

Head Ditice. 56 Fleat Rozd. Banflapl. Esestrix SS7 SJM Telepaone 0268-793255

WANTED

Turn your surplus
transistors, ICs etc, into
cash. Immediate settlement.
We also welcome the
opportunity to quote for
complete factory clearance.
Contact:
COLES HARDING \& CO.
103 South Brink
Wisbech, Cambs.
NOW ESTABLISHED OVER 15 YEARS
Tel: 0945 584188
Fax Number: 0945588844

ANY INFORMATION OH ICL PERQ computer. Will pay. Nigel, tel Crawley (0293) 513354 anytime.
SURPLUS ELECTRONIC COMPONENTS. Test gear, computers, amateur, bought for cash. (0425) 274274.

FOR DETAILS OF COPY DEALINES CALL 044266650

TERMS \& CONDITIONS

CLASSIFIED ADVERTISING

 TERMS \& CONDITIONS Ourterms for new advertisers (semi-dis play and lineage) are strictly pro-forma payments until satistaciory reference can be taken up (excluding recognised advertising agencies) Cheques and PO's should be crossed and made payable to ARGUS SPECIALIST PUBLICATIONS and sent together with the advertisements to:The Classified Dept.
Argus House, Boundary Way,
Argus House, Bound HP2 7ST
There are no reimbursements for cancellations. Advertisements arriving too late for a particular issue will be inserted in the following issue unless accompanied by instructions to the contrary. It is the responsibility of the advertiser to ensure that the first in: sertion of every series is published correctly, and corrections must be notified in time for the second insertion. otherwise the publishers will not accept liability or offer anyreduction in charges. All advertising sales are subject to Government Regulations concerning VAT. Advertisers are responsible for complying with the various legal requirements in force eg. The Trade Description Act, Sex Discrimination Act \& the Business Advertisements (Dis closure) Order 1977.
Full Terms \& Conditions of Advertising available on request.

CLASSIFIED COUPON

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPARTMENT, ARGUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 TST PLEASE DEBIT MY ACCESS/BARCLAYCARD No. EXARE

Rates: Lineage 50p per word + VAT minimum 15 words. Semidisplay $£ 13.50$ per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-paid. Name

AddressDaytime Tel. No.

Signature ... Date
Or I enclose Cheque/PO $£$
No. of insertions

Peak Programme Meter (October 1988)
In Fig. 4 D21 and D22 should be swapped. C13 should be 100 u and have no connection to IC12. The anodes of D15 and D17 should be connected to the input of IC12 (negative of C11).

On Fig. 7 the capacitors from top to bottom should be labelled C10.13, $9,11,12$.
On the Parts List R15, $36=51 \mathrm{k}$. R44, 45,46, $49,50,51=2 \mathrm{k} 7$.

Chronoscope (November 1988)
In the overlay diagram for the counter PCB (Fig. 3) the polarity of C 12 is shown the wrong way around. SWla-d is shown as SW1-4. In Fig. 4 the cathodes of LED 8 and 9 are the righthand and lefthand pads respectively. The cathodes for LED 6,7 are marked as the wrong pin. In the text section on Battery Operation, Q1 should read T1. In Fig. 5 SW2 is incorrectly labelled SW5.

Doppler Speed Gun (December 1988)

In Fig. 2 the labelling of pins 7 and 4 of IC2 are transposed. IC10a Pin 1 and IC9c Pin 10 should connect together and not to the 5 V rail. The positive terminal of C3 should connect to the junction of R2/R3. Pin 7 of IC2 should connect to the 12 V rail and not to Pin 6/R1. So the pin labelling of CONN1 runs left-right on the overlay diagram, the corresponding labelling in Fig. 2 should be 3-1-2, reading downiwards. Fig. 4 is correct in all respects except for the orientation of Q2 for which the c and e labels should be transposed. In addition the extra switch to be seen in the photograph of the prototype is a hangover from a previous incarnation. Just ignore it!

Burglar Buster (December 1988)

The foil part of the component overlay for the basic alarm (Fig. 1) was printed the wrong way around. It should be rotated through 180° as in Fig. 5.

Rev-Rider (January 1989)
In the Parts List RV2 is incorrectly given at 33 k . It should be 22 k as in the circuit diagram. A blob went missing from the circuit diagram. RV2, R7, R4, C1 and D3 should all be connected.

In-car Power Supply (January 1989) Fig. 3 shows the front view of the 317 regulator with the pin-outs reversed. The photograph, circuit and overlays are all correct showing the ledge at the front of the device.

Audio Design MOSFET Amp (May 1989)
For home constructors of the power amp PCB (Fig. 8). the copper area connecting the negative of C7. C14 and R20 is a $0 V \# 2$ connection and should be linked to the $0 \mathrm{~V} \# 2$ copper area at the junction of C16 and C18 + . Hart's kit PCB has a ground plane and no mod is necessary. Note that the preset at the bottom right of Fig. 8 takes the place of an external RV3 rheostat when bench testing and is not normath required.
Bench Power Supply (May 1989)
In the Parts List, Q3,4 should be BC237 not $B C 307$. The value in the circuit diagram is correct.

How To MIDI A Piano (June 1989)
In Fig. 5 the connection from pin 19 of IC8 (MREQ) should go to pin 12 of IC7 a. not pin 13 as shown. The component overlay is correct.

PCB

 FOIL PATTERNS

The digital joystick-to-mouse conversion foil pattern solderside

0

The digital joystick-to-mouse conversion foil pattern topside

The intercom slave station foil paitern

The intercom power mixer foil pattern

The intercom master station foil pattern

Hot, hot, my God it's hot. As the desert sun beats down upon ETI's new Hemel Hempstead headquarters, the Editor and his Deputy huddle over the air-conditioning, sipping their pina coladas and preparing the sizzling selection of projects and features for the September issue.

And Then There Were Transistors . . .

John Linsley Hood moves from the vintage valve to the transistor of today with a feature examining the operation and evolution of the semiconductor sandwich

Going For Gold

David Crone wanders the public beaches with a novel bi-loop metal detector project to track the traces of treasure.

Happy Motoring

Ray Marston presents more stator-the-art circuits for DC motor control.

Active Sound

The Micro Monitors of this issue receive the active crossover treatment to fill your home with the sounds of summer surf music (or not).

Win a JLH 80W MOSFET Power Amp

Well be giving away a complete Hart kit for the John Linsley Hood Audio Design power amp (featured in our May 1989 issue) as part of a fab summer subscriptions offer!

Plus of course there's much much more. Projects to please and features to fascinate. Plus all our regular columns and the news to keep you in touch with electronics today. Don't miss your copy.

The above articles are in preparation but circumstances may prevent publication

ADVERTISERS INDEX

AUDIO ELECTRONICS

AUDIOKITS BK ELECTRONICS
BRIAN PRICE ELECTRONICS
CIRKIT
CRICKLEWOOD ELECTRONICS
DISPLAY ELECTRONICS
GREENBANK ELECTRONICS
HART ELECTRONICS
HENFY'S AUDIO
HENRY
J 8 DESIGN TECH LTD
M+B RADIO (WEST)
MAPLIN
MILTRONIX
NUMBER ONE SYSTEMS
RADIO \& TV COMPONENTS ACTION
SAGE AUDIO
SAGEA
STEWARTS OF READING
SUMA
TK ELECTRONICS
WILMSLOW AUDIO
ZENITH ELECTRONICS

BINDERS

```
FOR YOUR VALUABLE COLLECTION OF ELECTRONICS TODAY INTERNATIONAL MAGAZINES - SMART - EASY TO USE TOP QUALITY To ASP Readers Services, Argus House, Boundary Way, Hemel Hempstead HP2 7ST (0442 66551) Binders 56.20 inc. P\&P
Total £....... (Piease make cheques payable to ASP
Years Required: 198....... 198....... 198....... 198.
Name ...............................................................................
Address...............................................................................
Piease allow 21 days for delivery
```


CONSTRUCTOR SERIES SPEAKER KITS

Based on the famous Kef
Reference Series, these three
DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-
to-earth price!
With a
Wilmslow Audio

Total Kit it's easy

- no electronic or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, wadding, grille fabric, terminals, nuts, bolts etc. Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and $\operatorname{CS9}$ is based on the Reference 105.2 (but in a conventicnally styled encl.).

CS1 £117 pair inc. VAT plus carr/ins £6
CS3 £143 pair inc. VAT plus carr/ins $£ 12$ CS9 £393 pair inc. VAT plus carr/ins £18

We also offer a kit (less cabinet) for Elector PL301

[^2]
KITS ENTS

\section*{\& COMPON

\& COMPON VOICE RECORD/PLAYBACK KIT

This simple to construct and even simpler to operate kit will record and playback short messages or tunes. It has many uses - seatbelt or lights reminder in the car, welcome messages to visitors at home or at work, warning messages in tactories and public places, in fact anywhere where a spoken message is announced and which needs to be changed from time to time. Also suitable for toys - why not convert your daughter's $£ 8$ doll to an $£ 80$ talking doli!!

Size.
Message time
....................... $78 \times 60 \times 15 \mathrm{~mm}$

XK129
$1-5$ secs normal speed, $2-10$ secs slow speed
£22.50

TEN EXCITING PROJECTS FOR BEGINNERS

This kit contains a solderless breadboard, components and a booklet with in structions to enable the absolute novice to build ten fascinating projects including a light operated switch, intercom, burglar alarm and electronic lock. Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section on component identification and function is included, enabling the beginner to build the circuits with confidence. XK118
$£ 15.00$

MULTIMETER BARGAINS

A high accuracy Autoranging meter with Display Hold, Memory features.
AC volls
$0-2-200-7501.2 \%$
OC volts.0.0.2-2-200-1000 0.8\%
AC currento-2m-200mA 1.2% 0-10A 2% DC current.

K-2M 1%
Res stance. $0-200-2 \mathrm{~K}-20 \mathrm{~K}-200 \mathrm{~K}-2 \mathrm{M} \mathrm{1} \mathrm{\%}$ Continuity. . Buzzer sounds at 120 ohms 405207 £31.75
A 15 range Autoranging multimeter with 4AC, 5DC and 6 resistence ranges. Only $8 \times 55 \times 108 \mathrm{~mm}$. Complete with wallet. 405206.
$£ 19.50$
Ask lor a leafilet on our range of meters
 SUPER-SENSITIVE

VERSATILE REMOTE CONTROL KIT Includes all components (+1ransformer) for a sensitive IR receiver with 16 logic outputs ($0-15 \mathrm{~V}$) which with suilate interiace circuitry (relays. triacs. etc - details supplied) can switch uo to 16 hems of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specitying the decoder IC and a 15 V stabilised supply is avalable to power external circuits. Supply: 240 V AC or $15-24 \mathrm{~V}$ DC at 10 mA Size (exc. transformer) $9 \times 4 \times 2 \mathrm{cms}$. Companion transmitter is the MK18 which operates from a 9V PP3 battery and gives a range of up to 60tt. Two keyboards are available - MK9 (4-way) and MK10 (16-way). MK12 IR Receiver (inc iransformer) $£ 16.30$ MK18 Transmitter. $\mathbf{£ 7 . 5 0}$ MK9 4-way Keyboard. $£ 2.20$ MK10 16 -way Keyboard. $£ 6.55$ 601133 Box lor Transmitter. $£ 2.60$

MICROPROCESSOR TIMER
Kit controls 4
outputs independently
switching on rege
loft at 18
preset times ciren ty
over a 7-day
cycle. LED display of time/day easily programmed. Includes box
CT6000K. $\mathbf{5 4 7 . 2 0}$
XK114 Relay kit for CT6000 includes
PCB, connectors and one relay. Will accept up to 4 relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o con-
lacts $£ 4.30$
701115 Additional relays. $\mathbf{£ 1 . 8 0}$

SIMPLE KITS FOR BEGINNERS

Kits include all components (inc. speaker where used) and full instructions. SK1 OOOR CHIME Diav a tune when activated by a pushbutton. $£ 3.90$ SK2 WHISTLE SWITCH switches a relay on and off in response to whistlo com. mand SK3 SOUND GENERATOR produces FOUR different sounds, including poiice/ambulance/fire-engine siten and machine gun.

SPECLAL OFFERS ON KITS FDR
SCHOOLS AND TRAINING CENTRES -contact Saies Office for discounts and samples

ELECTRONIC LOCK KIT

Don't lock yourself oun! This high securty lock kit will secure doors to sheds, garages or your front door and the built-in alarm will deter would be prowiers. Scores of uses including area access preventing unauthorised use of machinery or even disabling your Car. One correct 4 digit code (out of 5000) will open the lock. Incorrect ad soct dio alamm disable the keyboard for up to 3 mins. $\mathrm{K} \mathrm{\pi}$ cludes 12 -way keypad. and operates from 9 10 (SOuA) supply. Will reiay or 701150

Superb Triple-Trace 20MHz Oscilloscope

Precision laboratory oscilloscope. 3 Channels - 3 Trace.
Sensitive vertical amplifier $1 \mathrm{mV} /$ div allows
very low level signals to be easily observed. 150 mm rectangular CRT has internal graticule to eliminate parallax error. X-Y mode allows Lissajous patterns to be produced and phase shift measured. TV sync separator allows measurement of video signals.
20ns/div sweep rate makes fast signals observable.
Algebraic operation allows sum or difference of Channel 1 and 2 to be displayed. Stable triggering of both channels even with different frequencies is easy to achieve. $50 \mathrm{mV} / \mathrm{div}$ output from Ch 1 available to drive external instrument e.g. frequency counter. A hold-off function permits triggering of complex signals and aperiodic pulse waveforms.

40MHz Triple-Trace Oscilloscope

As above, but with 40 MHz bandwidth and super bright 12 kV tube even at the highest frequencies. This instrument also has a delayed sweep time base to provide magnified waveforms and accurate time interval measurement. Truly superb precision instrument

Includes VAT \& Carriage As Well!

P.O. Box 3, RAYLEIGH, ESSEX SS6 8LR.

PHONE BEFORE 5PM FOR SAME DAY DESPATCH
 0702554161

[^0]: TOP QUALITY
 AUDIOHME
 COMPONENTS
 AUDIOPHII
 COMPONENTS
 NEW FROM SAGE AUDIO

 HIGHEST POSSIBLE TECHHICAL

 THE MOST ADVANCED HI-FI AMP IN THE WORLD
 Following the success of the original SUPERMOS we now launch a higher powered version with many new exclusive sound improvements not available on any other amplifier, kit, board, module. or ready made.

 ## FEATURES:-

 - Highly efficient distortionless PURE CLASS A throughout (low heat generation)
 - Top audiophile components inc. best SMD's.
 - Excusively mâde matched custom semiconductors.
 - Minimal capacitor design (without DC servos).
 - PSU sound colouration eliminated.
 - Advanced PSU feedforward ripple elimination includín
 internally separately regulated voltage AND current to
 ALL stages using SAGE Super-Supply circuitry.
 - Total reactance (difficult speaker) drive capable.

 SIZE $240 \times 100 \times 100 \mathrm{~mm}$
 THD 0.0001%, Slewrate $685 \mathrm{v} / \mathrm{us}, f-3 \mathrm{~dB} 0.5 \mathrm{~Hz}-350 \mathrm{kHz}, \mathrm{O} / \mathrm{P}$ Current 80 amps , Damping factor 940 , transient power (20hms) up to 1800 W max.

 PLUS By innovative technical design we have eliminated 5 individual sound colouration components found in all other conventional amplifiers.
 $E L I M I N A T E D$ - 1) Emitter resistors 2) Zobel networks 3) $4 F$ pole compensation 4) Fixed bias Vbe multiplier and temp gen distortions 5) Capacitor sound.
 AND THERES MORE ... Sage exclusive CLEAN CUPPING fnot to be confused with soft clippingl eliminates PSU ripple from reaching the output even when severely clipped. this together with individual regulated supplies to all stages (Super-supplies) TOTALLY eliminates PSU component sound colourations, (A World first)]

 Supermos $£ 70$, Supermos $1 £ 85$, Supermos $2 £ 140$ each AND THERE'S MORE . . . We can't possibly describe this amp fully in this ad. To receive an a page glossy brochure descnbing these modules inc descripton of our class A operation and all our procucts send $£ 1.50$ cheque, PO, coins plus a $9^{\prime \prime} \times 12^{\prime \prime} 28$ p SAE (note we no longer send information without the abowe money and SAE or GIRC's overseas) to:
 Firlbe Sue Wilson, Sales Dept, SAGE AUDIO, Construction House, RUIIIC Whitley Street, Bingley, Yorks, BD16 4.JH, England.

[^1]: RADIO and TV COMPONENTS ACTONLTD
 21 HIGH STREET, ACTONLONDON W3 6NG MAIL ORDER TFBMS POSTAL OROERS and or CHEOUES wilh orders. Orders under fyo andd 7300 strvice charge Neit monthly anccumis to Schools. Colleges and PA.C unly.
 ACCESS VISA Phone orders between $9.30 \& 12$ pm please VISA Phone orders between 9.30 \&
 Phone 01.7238437 or 019928330

[^2]: \pm Lightning service on telephoned credit card orders!喵

 ## WILMSLOW AUDIO LTD.

 35/39 Church Street, Wilmslow, Cheshire
 SK9 1AS Tel: 0625529599
 Call and see us for a great deal on HiFi . (Closed all day Mondays)
 DIY Speaker catalogue $£ 1.50$ post tree (export $\$ 6$)

