EASI Alarm System

The ultimate in treasure protection
with curse-free installation

Artificial Intelligence

Reaction Timer

Beginners’ Camera Trigger

Plus:
Exclusive Pan-Atlantic Necktie

AUDIO•COMPUTING•MUSIC•DOMESTIC
FM MICRO TRANSMITTER (BUG) 100-108MHz VARICAP TUNED COMPLETE WITH 3W FM TRANSMITTER 88-108MHz VARICAP CONTROLLED PROFESSIONAL POWER AMPLIFIER MODULES
PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS

NEW SERIES II MOS-FET MODULES

FM/O I 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £33.99 + £3.00 P&P.

FM/O IF 300 Mos-Fet Output power 300 watts 10 ohms into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £62.99 + £3.50 P&P.

FM/O II 100 Mos-Fet Output power 100 watts R.M.S. into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £59.99 + £3.50 P&P.

NEW SERIES III MOS-FET MODULES

FM/MP I 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £33.99 + £3.00 P&P.

FM/MP II 300 Mos-Fet Output power 300 watts 10 ohms into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £62.99 + £3.50 P&P.

FM/MP III 100 Mos-Fet Output power 100 watts R.M.S. into 4 ohms, Frequency Response 10Hz - 10kHz -3dB, Damping Factor >300, Slew Rate 50V/uS, T.H.D. Typical 0.002%, Input Sensitivity 550mV, S/N @ 1500uW 300 > 120 @ 60mW
PRICE £59.99 + £3.50 P&P.

NOTE: MOS-FET MODULES ARE AVAILABLE IN BOTH VERSIONS, STANDARD - IMP. SENS. 300mV, BAND WIDTH 30kHz, MINIMUM OUTPUT 100mW, INTEGRAL HEAT SINK, PRINTED CIRCUIT BOARD. LOW POWER RATINGS, 10mW INTO 4 OHMS, 100mW INTO 1000 OHMS. POWER SUPPLIES NOT INCLUDED. ORDER STANDARD OR MOS-FET.

F. KENZIE: INSTRUMENTS, P.A., DISCO, ETC.

LOWNOISE AMPLIFIERS - POWERFUL, TWO CHANNEL 11 INCH RACK

PRICE £99.19 + £5.00 P&P.

MOS-LINNET LOUDSPEAKERS

THE VERY BEST IN QUALITY AND VALUE

LOW NOISE MICROPHONE PRE-AMPS

PRICE £29.99 + £2.50 P&P.

PIEZO ELECTRIC TWEETERS-MOTOROLA

PIEZO ELECTRIC TWEETERS - MOTOROLA

A PIONEER IN THE PIEZO Tweeter field, Marx & Associates has now added a new range of Piezo tweeters to its line, offering a high frequency range up to 30kHz, with a maximum output of 300W R.M.S. and an S/N.R. of -130dB. Size 150 x 150 x 30mm.
PRICE £39.99 + £3.50 P&P.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

NEW MXF SERIES OF POWER AMPLIFIERS

THREE MODELS - MXF200 (100w + 100w)

MXF400 (200w + 200w)

MXF600 (300w + 300w)

All power ratings R.M.S. into 4 ohms.

FEATURES:

NEW MXF SERIES OF POWER AMPLIFIERS

THREE MODELS - MXF200 (100w + 100w)

MXF400 (200w + 200w)

MXF600 (300w + 300w)

All power ratings R.M.S. into 4 ohms.

FEATURES:

NEW MXF SERIES OF POWER AMPLIFIERS

THREE MODELS - MXF200 (100w + 100w)

MXF400 (200w + 200w)

MXF600 (300w + 300w)

All power ratings R.M.S. into 4 ohms.

FEATURES:

NEW MXF SERIES OF POWER AMPLIFIERS

THREE MODELS - MXF200 (100w + 100w)

MXF400 (200w + 200w)

MXF600 (300w + 300w)

All power ratings R.M.S. into 4 ohms.

FEATURES:

COLOUR MONITORS

16" Deco, 80 series budget range, colour monitors, features in- clude integral audio amp and speaker, ideal for use with video recorder or domestic applications. Supplied with data RFE and tested with base in discharged state. Dimensions cm 13.5 x 11 x 5.5. Output currents & withstand long periods of storage in discharged state. MAINTENANCE FREE, SEALED LEAD ACID. **BRAND NEW 85 Mb** £98.95 **Limited Offer**

HIGH DEFINITION COLOUR

BRAND NEW CENTRONIC 14" monitors in attractive style moulded case featuring the res. Mitsubishi 042 dot pitch tube with 66x 90 dots. 20MHz bandwidth. Full 4x day guarantee. Order as 102-N2, sync RGB for BBC etc £99.95. 1003-N1 for IBM PCi fully CGA equ. 1025-N2 RGB image for ICL 2530 £169.95.

20" & 22" AV Specials

Superb image, UK manufacture, PLU track, ideal size colour monitors, complete with composite video and sound outputs, attach- able to a wide range of systems. Supplied with a full 4x day guarantee in excellent RFE used condition with full 90 day guarantee. 22" available from £999.95.

MONOCROME

MOTOROLA M1000-100 9' CRT black & white compact chassis monitor measuring only cm 16.7w, 10.2d, deep for 517 line etc. Fits into 1U rack. 5V Outputs. Operates from DC at 0v up to 48v. Some units may be fitted with PSU. Dim cm 16.7w, 10.2d, 5v. £149.95

SUGART 851 double sided refurb £105.95. **£120.00** (E) £285.00 £399.00 £499.00 **£599.00** (E) £799.00 £999.00 £1099.00 **£1199.00** (E) £1499.00 £1599.00 £1699.00 **£1799.00** (E) £1899.00 £1999.00 £2099.00 **£2199.00** (E) £2299.00 £2399.00 £2499.00 **£2599.00** (E) £2699.00 £2799.00 £2899.00 **£2999.00** (E) £3099.00 £3199.00 £3299.00 **£3399.00** (E) £3499.00 £3599.00 £3699.00 **£3799.00** (E) £3899.00 £3999.00 £4099.00 **£4199.00** (E) £4299.00 £4399.00 £4499.00 **£4599.00** (E) £4699.00 £4799.00 £4899.00 **£4999.00** (E) £5099.00 £5199.00 £5299.00 **£5399.00** **£5499.00** **£5599.00** **£5699.00** **£5799.00** **£5899.00** **£5999.00** **£6099.00** **£6199.00** **£6299.00** **£6399.00** **£6499.00** **£6599.00** **£6699.00** **£6799.00** **£6899.00** **£6999.00** **£7099.00** **£7199.00** **£7299.00** **£7399.00** **£7499.00** **£7599.00** **£7699.00** **£7799.00** **£7899.00** **£7999.00** **£8099.00** **£8199.00** **£8299.00** **£8399.00** **£8499.00** **£8599.00** **£8699.00** **£8799.00** **£8899.00** **£8999.00** **£9099.00** **£9199.00** **£9299.00** **£9399.00** **£9499.00** **£9599.00** **£9699.00** **£9799.00** **£9899.00** **£9999.00** **£10099.00**

DISPLAY ELECTRONICS

MAIL ORDER & OFFICES

Open Mondays to Saturdays 9-5.30

LONDON SHOP

215 Whitehorse Lane. London SE19 3XF

DISTEL: (£) THE ORIGINAL FREE OF charge enquiry line: (061) 787 9010

All prices are UK Mainland. UK Customers must add 61% VAT to total order value. Minimum order, cash £5, Credit Card £10. All goods are supplied subject to standard conditions of sale. All guarantees given on a return to base basis and applied to requests for any returns or exchanges. All sales and exchanges within 14 days of purchase. No sales to retailers. October 1989. All charges correct at time of publication. Further info ON LINE NOW!!

TELEX 894502

ETI APRIL 1989

DISPLAY ELECTRONICS
<table>
<thead>
<tr>
<th>FEATURES/PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT 12</td>
</tr>
<tr>
<td>Digital Doorbell</td>
</tr>
<tr>
<td>John Jameson greets callers to his home with music, screams or the voice of Nicholas Parsons</td>
</tr>
</tbody>
</table>

| **PROJECT 20** |
| **Op-Amps** |
| Paul Chappell delves into the Circuit Theory of op-amp circuits oscillating or not |

| **PROJECT 22** |
| **EASi** |
| Pat Alley finds his patented EASi alarm system is a much easier way to protect your valuables than 3½ million blocks of limestone |

| **PROJECT 30** |
| **ELECTRONICS TODAY INTERNATIONAL** |
| Cover photograph courtesy of Images Colour Library (Eric Bach) |

| **PROJECT 35** |
| **Kinetotie** |
| Mike Bedford dons the world's first Pan-Atlantic Necktie and discovers there is no better way to use up 146 LEDs |

| **PROJECT 40** |
| **Camera Controller** |
| Keith Brindley snaps up the 1st Class spot for an electronic trigger for cameras |

| **PROJECT 43** |
| **Intelligent Plotter** |
| Bob Joyce concludes his Intelligent Plotter project with the intelligent bit. Here he reveals the wherewithalls of the CPU, memory, keyboard and display |

| **PROJECT 50** |
| **Reaction Timer** |
| Rod Cooper is quick off the marks with this simple timer of all things reactive |

ETI APRIL 1989
New European legislation defining exactly what constitutes an EC-origin IC should lead to a massive capital investment in the Community from Japanese and US companies.

The new rules state clearly that all diffusion processes involved in chip manufacture must take place within the EC if the IC is to receive EC-origin status.

Until now it has been possible to import diffused wafers and merely assemble the chips here, keeping the more complex and costly procedures elsewhere.

The immediate effect will be a boost for European companies. In the longer term it will mean an increase or switch in US and Japanese activities and investment within the Community.

The legislation is a great success for EC companies who have fought for such measures over the past six years.

In Mid Glamorgan AB Electronics has appointed funds, skill and expertise to a local school to increase understanding of electronics in education and remove some of the problems that can surround its tuition.

The sixth form at Coed-y-Lan Comprehensive in Pontypridd has set up an electronics room for all third years pupils to learn basic electronics and older pupils to take GCSE Electronics as an option.

Graduate trainees from AB are assisting the school with technical guidance and working with the pupils to select suitable projects. Work experience at AB is also available for pupils.

Apart from demonstrating its commitment to the area, AB hopes that the scheme will give its own trainees experience of management and presentation. If successful the ideas may be extended to other local schools.

For further details contact AB Electronics, Abercynon, Mid Glamorgan CF45 4SF. Tel: (0443) 740331.

CD-R FOR THE PROFESSIONALS

Recordable compact discs now seem certain to reach the world marketplace by this summer.

Taiyo Yuden, manufacturer of the That's range of audio tape, has perfected a marketable 'write-once' CD-R system and hopes to launch the system in Japan this spring. The discs are compatible with normal CD equipment and should retail at around a third of the price of a pre-recorded disc.

The recording surface appears green. A dye recording layer is introduced during the manufacturing of the discs with a spiral guide groove in the polycarbonate replacing the usual pit system.

Taiyo Yuden has however recognised the concern in the industry at the prospect of the mass of CD pirating that would inevitably be produced by a consumer CD-R system, particularly since a twin-disk CD-R is anticipated to cost little more than a standard normal CD player.

The company will concentrate on the areas of broadcasting, professional recording and the record industry itself, where the benefits of cheap short-run CD production could be reaped.

It claims it will not exploit the consumer market until the copyright issues are resolved.

The distribution in the UK will be handled by Harman.

It is expected that a commercially viable CD-E system (repeatedly erasable disc) will not be fully developed for several years.

RENT THE SKIES

The high consumer interest in the area of satellite TV system rental has led to mass orders of equipment from the large TV rental chains.

Thorn EMIL has plumped for Grundig's equipment on the strength of 10000 positive responses to a recent customer questionnaire. Some 40000 Grundig units have been ordered.

The Granada retail and rental chain, one of the founder members or British Satellite Broadcasting, has displayed an interesting sense of loyalty by ordering equipment to receive Astra channels - BSB's deadly rivals. These orders will be filled by Finnish company Salora and Swedish SDI.

The Ministry of Defence has been carrying out feasibility studies on the possibilities of a European anti-ballistic missile umbrella similar to the US 'Star Wars' project.

However despite conclusions that such a system would be possible, the Defence Secretary Mr George Younger has ruled out any possibility of development along those lines.

The study was based on the use of existing technology - Sea Wolf and Spartan missiles - rather than on new and uncertain systems as envisaged in the US.

The MoD study was commissioned and financed by the US SDI Initiative.

ON THE COUNTER

An 8-digit frequency counter with a range from 1Hz to 100MHz is available from Alpha Electronics.

The Goldstar FC7011 can use manual or automatic ranging with gate times from 0.01s to 1s and a basic input sensitivity of 10mV.

The 10MHz reference crystal has 5ppm stability — other models can provide stability better than 1ppm.

The FC7011 costs £98 + VAT.

Contact Alpha Electronics, Unit 5, Linstock Trading Estate, Wigan Road, Atherton, Manchester M29 OQA. Tel: (0942) 873434.

OPEN AND SHUT CASE

Two ranges of cases are now available from West Hyde.

The 'Boplast Plus' cases pictured here have separate compartments, each with a screw sealed lid, so that say power terminations could be kept isolated from the main electronic circuits allowing circuit adjustment without the danger of live terminal blocks exposed.

The 'Sentinel' range of cases are designed for housing wall-mounted sensors such as smoke, gas or fire alarms.

Details of both ranges are available from West Hyde, Unit 9, Park Street Ind. Est., Aylesbury HP20 1ET. Tel: (0296) 20441.

PILOT PILOT

A pilot electronic guidance scheme is being considered by the Government with tenders being invited from the private sector.

The proposal would initially involve the London area within the orbital M25, concentrating on radial routes from the centre to the motorway. About 1000 vehicles could be fitted with the Autoguide equipment which takes information from roadside beacons and instructs the driver of current traffic problems and alternative routes.

Both GEC and Plessey are showing interest in the scheme (as well as each other). Successful trials could lead to a public system within five years.
A ways one to answer to call for assistance, ETI leaps forth with the May issue to rescue all readers in need of a bit of crucial reading.

The EASi alarm blossoms forth into a complete system with the first of two groups of peripheral bits to add onto this month's control box including the entry/exit timer, panic switch and a fire and gas/smoke sensor.

The long awaited update and general modernisation of John Linsley Hood's excellent 'Audio Design' hi-fi amplifier also sees the light of day next month as does a novel, cheap super efficient guitar tuner. For those of you with an eye on the rapidly disintegrating kitchen sink, we start an indepth series on making your own PCBs with some home made equipment.

And of course there's all the other sought after snippets which go to make ETI the thinking man's electronics mag. Make May a merry month with ETI.

Help arrives on March 3rd

OUT NOW!

1989 100 PAGE COMPONENT CATALOGUE PRICE £1

SEND OFF FOR YOUR COPY TODAY...

- WE STOCK AN UNRIVALLED RANGE
- ALL OUR COMPONENTS ARE FIRST CLASS BRANDED ITEMS
- WE OFFER A SAME DAY SERVICE ON ALL STOCK ITEMS
- NO MINIMUM ORDER—IF YOU NEED ONE COMPONENT WE CAN SUPPLY ONE COMPONENT
- WE HAVE ADOPTED A NEW LOWER PRICING POLICY + QUANTITY DISCOUNTS
- FREE VOUCHERS WITH YOUR CATALOGUE—ORDER ONE NOW!

JUST FILL IN THE COUPON OPPOSITE AND POST IT WITH YOUR £1 PAYMENT TO THE ADDRESS BELOW. YOU WILL RECEIVE NOT ONLY OUR SUPERB 100 PAGE CATALOGUE, BUT ALSO FREE VOUCHERS WHICH YOU CAN USE ON YOUR NEXT COMPONENTS ORDER.

FREE VOUCHERS!

SEND OFF FOR YOUR CATALOGUE AND VOUCHERS TODAY.

I WOULD LIKE TO RECEIVE... COPY(COPIES) OF THE 1989 CRICKLEWOOD ELECTRONICS COMPONENT CATALOGUE. I ENCLOSE £... PLEASE ENCLOSE MY FREE VOUCHERS.

NAME.

ADDRESS.

CRICKLEWOOD ELECTRONICS LTD 40 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL: 01-459 0995/452 0181 FAX: 01-208 1441 TELEX: 914977

Tape your £1 coin here, or send a cheque or postal order for £1.00 for every catalogue you require.
What is Artificial Intelligence? Let's make one thing quite clear at the start. There is no such thing as intelligence. Come to that, Al workers have begun to doubt that there is such a thing as artificial, either. That has not stopped a flood of products and ideas about AI, a wealth of programs which run chemical plants and plan road networks and advise doctors and chat in reasonable English. However, they are not intelligent.

Why do Al workers suspect this? Because every time they have found a good definition of intelligence (as opposed to one that boils down to 'Intelligence to what I am, and you are not'), they write a program which fulfills it. The sceptics then all say 'Oh, that's not what we mean by intelligence', and everyone starts again.

Far easier, then, to assume that intelligence does not actually exist. Working from that point, then, what is AI all about?

That depends on when you ask it. Every ten years the sceptics decide that what AI workers used to think was AI is actually just programming. You get a quite different answer every ten years. So, let's start from the beginning.

40 Years Ago
What was AI 40 years ago? Well, about then a lot of boffins (later called scientists, then electronic engineers) released from the war effort realised that they had to hand some very powerful electronics with which they could do calculations. Indeed, they were so good at it that they beat human calculations hands down and that led the boffins to ask whether they could beat humans at anything else. Maybe they could even think?

Ah, but is thought a feature of brute machines, or is it something ethereal, beyond reproduction of cogs and valves and things? The sceptics said that there was no way that anyone could produce a thinking machine, no matter how fast it did arithmetic. To the boffins such a challenge was like a red rag to a rabbit — baffling but slightly intriguing. They put their minds to it and formulated the first theory of intelligence.

Any problem can be stated as a problem in logic. Thus any problem can be solved by a program which can manipulate the symbols of logic.

This approach eventually gave rise to the General Problem Solver (GPS) project. Its basis was the work done at the start of this century by Bertrand Russell on formulating mathematics as logic. He was concerned with such statements as 'The King of France is bald.' The difficulty with this statement is that it is neither true nor false. The King of France is not bald but neither had he any hair. The problem is that the King of France is not anything. He does not exist.

However there is no way of including this in our statement.

Bert got round it by expanding the statement into one that goes 'There is a class of people called 'Kings of France' and there is a class of people who are bald, and there exists a person X and X is a member of both classes.' (I have translated slightly.) Now we see where the problem lies — there does not exist a person X such that... etc. Bert considered that, with enough thought, any query such as 'Oh, why did you have to wear that ghastly jacket to dinner?' could be formulated in these terms ('There is a class of jackets...').

The new computers were ideally suited to manipulating such logical formulae, as each part of a formula is either true or false and so its truth value can be represented by a single binary bit. So GPS and logicians and computer programmers struggled mightily with it for much of the 1950s until they decided that, while capable of some logical feats, it was far from General.

Out of GPS, however, sprung two lines of programs. Manipulating truth tables turned into some spreadsheet software, where columns of data are sorted and transformed on logical rather than arithmetical grounds. The other line of programs ended up performing computer algebra. All the tedious stuff about gathering all the x's on one side of an equation that we do at school can be done by computers now, as well as the expansion of such equations as

$$y = (x - 1)^{101}$$

lots of deduction in trigonometry, topology and other branches of mathematical logic. This is not surprising really, because Russell's logical theories were only really successful in mathematics.

Bill Bains racks his brain for signs of artificial intelligence

Fig. 1 The state graph of the cannibals and missionaries problem
The problem was that many problems that were solved by intelligent people were not just logic-chopping games. They involved choices between alternative actions based on their likely effects. Thus the second, 1960s version of Al:

Difficult problems can be solved by breaking them down into sub-problems and then solving the sub-problems.

Search

This brings us to the theory of search. In general, 'search' means how the computer hunts for the solution to a problem through a set of sub-problems. The ultimate search problem was the game of chess and so for quite a while a 'really intelligent computer' was one that could play chess. In part this is because chess is mind-bogglingly complex. We will choose another AI classic, the missionary and cannibals problem, to explain the principles.

Two missionaries and two cannibals have to cross a river using a boat that will only hold two people. However, if the cannibals outnumber the missionaries on either bank or on the boat, the cannibals eat the missionaries. Rather than try to solve the problem by breaking it down into a lot of sub-problems and try to solve them. Each possible state of the game is a sub-problem — the problem of what to do next. You can only get from one state to a few others.

This can be described by a state graph. The current state of the game is described by some symbol: we will describe each cannibal with a C and each missionary with an M. The R represents the river, so $\text{CM}\text{R}\text{CM} \equiv \text{C}\text{R}\text{M}\text{C}$ represents one cannibal and one missionary on each side of the river. The B shows where the boat is. Only missionaries can row.

The graph (or tree) connects up each state of the game by links describing how you get from one to the other (Fig. 1).

Now, this is a very simple game but shows several of the problems of more complicated ones. The tree is abbreviated because several of the states (the underlined ones) are the same as ones we have found before. To avoid getting round these again and again, the computer must remember where it has gone. We must also be able to detect when we have got to the goal and detect when we have failed too.

There are two approaches to doing this. A breadth first search means constructing all the possible moves on the first line, then all the ones you can make next, drawing the full width of each layer before going on to the next. The alternative is depth first which follows one line down to the bottom of the tree before starting another. The former is more sympathetic but takes longer. The latter is a better bet if you have some idea in which direction to head as you cut out a lot of tree-building, but it offers no advantage if you have no initial clue.

For chess, of course, a breadth first algorithm would be hopeless — the full tree for a typical game might contain 10^{120} states. So we need a depth first plan, guided by rules of thumb — heuristics. These might be that any move that takes command of the center of the board is preferable to one that commands the periphery, that trapping some pieces such as the opponent's queen is more advantageous than trapping the pawns and so on. The tree then becomes simpler (Fig. 2). And each state actually encompasses a lot of moves and a lot of possible board positions.

The theory of search has been most spectacularly useful in automation. However, more complicated problems run across the combinatorial explosion — the way that the number of possible moves expand exponentially as the problem gets bigger.

![Chess state graph](image1.png)

Fig. 2 Part of the state graph for chess

Chess suffered from this too but in chess there are many heuristic rules, derived by human experts from years of study, which can eliminate nearly all moves from consideration. In other problems this is not possible, as for example in the Travelling Salesmen Problem (Fig. 3).

Travelling Salesman

Here a travelling salesman has to visit each of N cities once only, visiting no city twice and returning to his starting point. What is the shortest route? Finding a route is easy but finding the shortest gets enormously hard because of the number of possible routes. Here a search approach could systematically try all routes, but it would take forever to do it.

Travelling salesmen do this sort of thing automatically, whereas chess players have to think about their moves and so can give a coherent account of why they choose one other another. So, what we really need is something that can not only search through various options (which is what searching a state graph is doing) but can evaluate them in the light of human experience.
of expertise.
Thus we arrive at the third, 1970s version of Intelligence.

Difficult problems are solved by the application of engineering and expertise.
This leads us into the realm of the expert system and the most obviously useful of AI's results. An expert system is a program or group of programs which embodies 'expertise' in some area — its 'domain'.

Expert systems applications fall into three broad areas. Advisory systems are the most spectacular, advising on medical diagnosis, taxation, pension schemes, house-buying, configuring mainframe computers and the like.

Checking systems are used in clerical and ordering roles, checking, say, that the order for four tonnes of elephant manure can be met by the number of elephants in stock at the moment. For ordering the components to make, say, a satellite this is no mean feat.

The third area is in real-time monitoring, where the system integrates a large number of inputs to produce a single advisory output, usually of the 'help' variety. This latter has been used in army in battlefield evaluation systems.

Big expert systems are remarkably good — the MYCIN system, which advises on infectious disease treatment, is as reliable as an experienced hospital intern. However, a lot of extreme cleverness in three areas is required to get to this point.

Fig. 4 A semantic net

Rules
The first is the rules base. Nearly all expert systems are rules-based systems, in that their expertise is based in some way on rules. MYCIN, one of the early successful systems, had the rules written in Lisp, the world's most unreadable 'high-level' computer language. They are of the form known as 'production rules' which are a list of conditions and an action to take if the conditions are all met. They are usually heuristic rules because they embody something that we have found to be so, not something that is logically necessary. Thus they might list the chance that a given set of symptoms are associated with infection by a particular bacterium.

Lisp stands for List Processing language, and was invented by AI pioneer John McCarthy in 1958. It has the advantage that it is enormously flexible and so any sort of knowledge can be described in Lisp using some suitable symbology (Lisp is meant to be a very difficult language, which is why AI researchers do not like you to mention that it is amazingly like Logo).

Recently programmers have been shifting more to Prolog as their language for this knowledge engineering, not because writing the rules is easier in Prolog but because making them work for you is much easier.

This brings us to the second problem, the problem of inference. Having a huge amount of data in a computer is one thing — getting anything useful out again is quite another. This is the job of the inference engine, the part of the system which checks to see which rules are actually true given its data and hence what conclusions it can draw. This is where Prolog scores because it is a language written around predicate logic, a form of logical calculus (just as Fortran is written around arithmetic, so making arithmetical calculations very easy). This means that stating logical rules in Prolog is a doodie and 'adding' them together with data is also simple.

An example? Certainly, Sir. Let us outline an expert system for finding out why your hi-fi is making no noise. This is the simple version, for people to whom IC1 is a misprint for (CI. First, the rules.

1) If the speakers are turned off then no noise will come out.
2) If there is no power then no noise will come out.
3) If it is not plugged in then there will be no power.
4) If the power supply is blown then there will be no power.
5) If the transformer is smoking then the power supply is blown.
6) If the rectifier is smoking then the power supply is blown.
7) If the fuse is blown then there will be no power.

That will do for now. To start, we observe that even our 'Saxon' CD will not produce any sound. So the initial observation is that no noise comes out. In the most common method, called backward chaining, the system, takes one of the possible explanations for this and then works back to check if the data actually support it.

In this case, we chose rule 1 and the system then asks

Are the speakers turned off?
> No (we reply).

So rule 1 'fails', and we have to go back to the start (backtracking — something easy to Prolog and LISP). The other possibility is now invoked — rule 2. Is rule 2 'true' — does it fit the facts to explain the silence? More questions: the system postulates rule 3, and then checks for data:

Is it plugged in?
> Yes.

So rule 3 fails but rule 2 might still hold, so we backtrack to rule 2, not right to the start. Keeping track of where you are among the rules is what makes Prolog clever.

Is the transformer smoking? (It postulates rules 4 and 5)
> No (Rule 5 fails, backtrack to rule 4)
> Is the rectifier smoking? (Postulate rule 6)
> Yes.

Your power supply is shot. (Found that rules 2, 4 and 6 apply and there you are, another success.

The alternative to this is forward chaining, which takes all the data and then filters out the rules that can apply to it. This is more systematic but often you do not know what data you need before you start reasoning.

You can incorporate uncertainty into the logic by using probabilities or fuzzy logic instead of a true/false dichotomy to characterise each statement. Inference becomes more complicated but can cope with statements like 'There is a bit of haze round the transformer... which do not seem too sure. MYCIN uses probabilities in this way, using Bayes Theorem.

So far this is easy programming and you could probably do it yourself in Basic, let alone Lisp. The third problem is the big one, though. Where does that...
Expertise come from and how do you store it?

The last part first. Rules are fine for simple diagnostic tests but are very cumbersome for dealing with more complicated subjects. Imagine a system for identifying animals. There would be a vast amount of repetition if we used rules to identify each one:

IF — It is bipedal AND it has binocular vision AND it has no feathers AND it has little hair THEN it is a human.

IF — It is bipedal AND it has binocular vision AND it has no feathers AND it has little hair AND it has claws then it is a plucked chicken.

Very wasteful, which is why a lot of effort is put into identifying good database structures for all this information such that the attributes of a plucked chicken are automatically called up by asking about chickens or, conversely, that asking about biped animals that have no feathers or hair automatically generates a shortlist of humans, chickens, tyrannosauruses, etc. As there is no consensus on this one and as several of the database structures are almost exactly the same apart from the words used to describe them, let us just list them quickly.

Hierarchical databases arrange things so that there is an entry for mammals, then a sub-entry for primates that shares all the mammal entry and has a few more specific items of its own, then an entry for humans that is more specific and so on. Easy to write, but has problems with exceptions to rules.

Semantic nets (Fig. 4) are pictures a bit like the graph in Fig. 1. Each concept is linked to any other concept it is related to, so travelling down the lines automatically gets you to related subjects. Nice idea, hard to do.

Frames and Scripts (Fig. 5) are like blank forms — there is a memory form for 'Planets' with slots for 'mass', 'number of crashed space-probes' and so on into which you fill your data. This allows you to know what to expect but again copes poorly with exceptions.

Object-Orientated Programming is the latest craze — databases are oriented around objects (cats, dogs, Saturn, the GNP) rather than properties. What this means in practice is still unclear. None of them do as well as a trained gerbil.

Expertise

The other aspect of the expertise problem is putting expertise into the system. This is troublesome in two ways. Firstly, it is very difficult and boring to do. Expert systems cannot go out and get expertise — they must have it fed into them. Very sophisticated ones can find some gaps in their knowledge and request that you fill them but nothing you could buy would do this. So you must go round asking people all about infectious disease, or power amps, or budgie breeding.

Often this requires you just to watch someone doing something — mending their car, sexing their budgie or whatever, and asking them at frequent intervals why they are doing that. Then you must code the result in the form the database requires. After that, typing it in is a minor chore.

The second point is even worse. Much knowledge is not explicit knowledge, such as the definition of a disease in a medical text-book, but is tacit or hidden knowledge, such as knowing just what a 'rash' is. I know what it is, but I am sure that no-one ever tried to define one for me. If I told you to put your shoes and socks on, you would automatically do it in the reverse order (despite the fact that it is quite possible to put your shoes on and then put your socks on) because, well, you would look daft otherwise, wouldn't you?

We learn these things by example and experience, and consequently often do not realise that we know them, let alone exactly what it is that we know. This shows up in expert systems in two ways. First, crucial knowledge may be just missing. It works fine when it is used by an expert because, of course (ha ha), no-one in their right mind (ha ha) would ever think of trying to treat a Treponema infection with oral ampicillin! Ha, what a laff — until you unleash your expert system on some GP who is a little shakey on what Treponema actually are. Consequently, most expert systems are only really useful as prompts for other experts.

The other way this shows up is in default reasoning. In expert systems, tacit knowledge is often hidden as default reasoning — conclusions which are drawn if no other ones can be drawn from the rules. Quite often these defaults are not even stated as rules at all but are hidden in the mechanics of the inference engine. The programmer has assumed (maybe unconsciously) that the defaults are correct. If you are not an expert in the area or if you want to challenge the assumptions then such 'hidden knowledge' makes using the system very difficult. If my expert system on rose pruning suddenly recommends that I buy a bulldozer, I might be loath to take its advice. If it can explain its reasoning it might convince me. This is the job of the explanation system.

In theory, such a system is simple, it just keeps track of all the rules that 'fired' in coming to a particular conclusion. The result is rather like a machine-code dump of a Fortran program in its intelligability, so many expert systems have explanation systems attached which translate such 'traces' into English.

Their degree of success depends not only on the quality of their English but also on how much of the reasoning is hidden — the dreaded tacit knowledge. For example, my expert system might have built into it the assumption that if it could not decide what was wrong with your roses you should give up and try geraniums. Hence the bulldozer. Getting the explanation system to reveal this default logic is tricky.

Language

This brings us back to the problem of input, both of rules and, when it is full of rules, of queries. Many commercial expert systems claim to be able to understand English, but they cannot. They understand such formalised, stilted English as:

Query: count the samples from the location Birmingham.

rather than:

So how many lorries do we have in Birmingham, then?

Al has a poor record of getting computers to understand 'natural language' (English, Russian, Scouse) as opposed to artificial languages (Fortran, Lisp and the like, which they should be able to understand as these languages are designed for computers). Because we can do this, and computers cannot, this has been one of the two 1980s definitions
of AI: An intelligent system is one that can communicate in natural language.

It has the major advantage that it automatically includes nearly all humans and no computers at all. Yet,

One early English-language program was one called Eliza, which was a psychiatric consultation program. It would scan your sentence for key words, and then re-use them in its own sentence. Just like a half-asleep psychiatrist, in fact. When no obvious prompt suggested itself, the program invited you to 'tell me about ...'. Thus, for example:

> I am really depressed
> Why do you say that you are really depressed?
> Tell me about your father
> Tell me about your father and so on. This could result in ludicrous problems, however:

<table>
<thead>
<tr>
<th>SENTENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOUN PHRASE</td>
</tr>
<tr>
<td>ARTICLE</td>
</tr>
<tr>
<td>THE CAT</td>
</tr>
<tr>
<td>SPECIFIC</td>
</tr>
</tbody>
</table>

Fig. 6 Deep structure (or parts of speech)

> I have terrible heartburn.
> Why do you think that is?
> I have had kippers for breakfast
> Tell me about had kippers for breakfast
> Tell me about had kippers for breakfast

This approach was rapidly discontinued.

AI people thought that they had language cracked in the early 1970s. Using a variety of grammatical theories coupled in the latest in database structures, a program called Shlurdu could converse in grammatical English about a box filled with geometrical shapes. The box was displayed on the screen and the computer identified shapes and moved them around under the user's control. Thus, for example:

> Pick up the green pyramid.
> Which green pyramid do you mean?
> The one on top of the red block.
> (Does it) OK.
> Put it down on top of the red cylinder.
> (Does it) OK.
> Is there a tower in the box?
> I do not understand tower.
> A tower is any pile of two or more objects. Is there a tower here?
> Yes. The green pyramid on the red cylinder.

and so on. It could keep this up for days and also explain the logic of what it was 'thinking'. However, the basis of the program was a mass of mixed theories and database structures which happened to work. When people tried to extend the program to more useful domains, they turned out not to work.

So for the last 15 years it has been back to basics, to try for a Grand Unified Theory of language, one that would be the building block of a computer comprehension system. When a computer translates a computer language into machine code, it does so by a series of rewrite rules. The symbol 'X' is translated into 'Load contents of buffer H into memory location pointed by buffer X' (which is why sane people prefer 'X = '). Such grammars are largely 'content-free', that is what a symbol means does not depend on where in a program it lies. 'SIN(X)' always means 'calculate the sine of X'.

A human analogue of this sort of language was tried and reached its most sophisticated development with Naom Chomsky who said that behind the surface structure of every sentence is a Deep Structure, which represents its internal representation in our brains. The deep structure is the same for all human languages and all you need to do to get from English to Japanese, or from English to the brain's own databases, is to rearrange the sentence according to set rules (Fig. 6).

Thus:

The cat sat on the mat.

is split into subject phrase (The cat) and verb phrase (sat on (the mat)). The verb phrase is a verb and another noun phrase, the noun phrase consists of an article (the) and a noun (mat). Getting from one structure to the other is simply a case of replacing (the mat) with (noun phrase) throughout.

Hang on, isn't this terribly complicated AI stuff just the old 'parts of speech'? Well, yes, a lot of AI natural language processing is actually parsing sentences to see what structural form they fit into.

The problem with this is that it assumes that a sentence can be parsed on the basis of its syntax alone without worrying about what it means — its semantics. It also assumes that the meaning of one bit is not affected by that of another bit, let alone by what the next sentence means. Alas, this is not true. Try saying 'I never said that he was a bad salesman' with the stress on different words. No computer could tell what you mean from it unless it could understand the subsequent sentence which said 'Rotten manager, yes, ...'. So much for context-free grammars.

Having said that, fairly unambiguous and simple English can be understood by the descendants of the AL language research projects. They are often used as 'front ends' to expert systems, allowing the user to communicate with the system in something like English. Which is where we came in.

Vision

The other big area which traditional AI has bumped on is vision. Now, a two-year-old can pick out a stylised plane from a tangled picture containing dozens of objects in about three seconds. A Cray supercomputer, programmed with the latest software, would take 10 minutes to come to the same conclusion — and might pick out a duck by mistake.

This is a great embarrassment to AI and leads to our last definition of intelligence:

An intelligent system is one that can see.

(Non-AI apologists do not usually put it like that — they usually say 'can match complex patterns, like the eye does').

The difficulty is not picking up a picture, which is done with a TV, but by identifying what is in it. You start with a digitised TV picture, usually reduced to space. The picture areas are identified by their edges. These are then smoothened to give shapes (Fig. 7). Surface texture gives an idea of surface orientation and stereoscopic vision can give depth information. But where then? All you have is a series of lines and planes and, with luck, their orientation in 3D space. You then have to identify the objects concerned.

How is it that we can instantly discriminate between a table and a fattish horse? Why are we not amazed when red buildings with wheels at bus stops suddenly start moving? In a nutshell, no-one knows
and no-one has managed to mimic it on a conventional computer.

What they can do is apply pattern recognition techniques to a limited number of patterns and so discriminate between objects on a production line, or check the orientation of a part as it enters a machine. They can get an idea of whether a moving object is a person or a car (although a wolfhound would probably floor them). In short, like the language systems, when they are operating on a limited set of possibilities they work OK.

Minds To Come

So what of the future? The really successful applications of AI—games playing (and its serious counterparts in automation) and expert systems, are going from strength to strength. Commercial 'expert systems' often contain no more AI than a spreadsheet but this will change as research techniques in logic penetrate to the office.

The real problem is that these systems are hard to use, partly because their output is incomprehensible but mostly because inputting data into them is very tedious. WIMPS methods (themselves a spinoff from AI) are more comprehensible for output but useless for input. So the next major jump must be in input and output format, and that means language comprehension and voice recognition. Then we will be able to babble at our computers, not just program them.

The nice thing about it for the ETI reader is that it is not clever programming that makes this possible but clever hardware and some simple programming to run it. There was a theory a few years ago that all you needed to understand English, or defend the USA against nuclear attack, was a hundred mainframe computers and a program that would stretch to the moon. However, AI has taken another course and changed the rules again.

The latest test of AI (propounded by the BBC, so it must be right) is that an intelligent system can appreciate a metaphor. This really is getting a bit rarefied, considering the performance of the average Sun reader.

I prefer the definition of intelligence proposed by a disgruntled AI researcher several decades ago, when sheer number-crunching power was thought clever enough. It seems to get nearer the heart of what most people would call intelligence than anything else. See how near your micro, or even your toaster, is to this!

And mankind at last built the ultimate computer, with more connections than in all the human brains in the world. They switched it on. And they knew at once that it was truly intelligent because no matter what problem they set it, no matter how difficult or arcane the subject, no matter the gravity of human suffering held in the balance by the flip of a circuit, the damn thing always found an excuse not to bother finding the answer.
HIGH GRADE COMPONENT PARCELS

EVERYTHING MUST GO!

UNIVERSAL EVERYTHING PARCEL
This one contains some of just about any component you care to name. There are passives (resistors, capacitors, tants, potentiometers), opto devices (couplers, LEDs of all shapes and sizes, infra-red components, 7-segment displays), semiconductors (transistors, diodes, ICs, rectifiers), and all kinds of other odd and ends (relays, VDRs, neon battery connectors, mixed components packs). A stunning range of components - enough to get a workshop or lab started - at a ridiculously low price.

PARCEL IA: 20 PACKS for £12! + VAT
PARCEL IB: 100 PACKS for £39! + VAT

MASSIVE CLEARANCE SALE

INTEGRATED CIRCUITS
This parcel contains nothing but ICs. The mixture offers TTL and CMOS logic, interface ICs, linear, data converters, op-amps, special functions, and so on. Some of the ICs are pre-packed with data sheets, some (TTL, CMOS, op-amps) we expect you to identify for yourself, others will be covered by the free data pack provided, and the rest you'll have to identify under your own steam. If you know your ICs you'll be in for a few nice surprises.

PARCEL 3A: 100 ICs for £12! + VAT
PARCEL 3B: 500 ICs for £49! + VAT

ELECTROLYTICS
A first class selection of good, modern electrolytics. The mixture ranges from small coupling caps up to huge power supply electrolytics - you'll be hard pressed to find any value between 1µF and 2200µF that isn't represented. A wide range of very useful components. Go for it!

PARCEL 5A: 1000 ELECTROLYTICS for £6.50 + VAT
PARCEL 5B: 2500 ELECTROLYTICS for £14.90 + VAT

TANTALUM CAPACITORS
A nice range of tants in values up to 47µF. Lots of useful caps, and we're not mean with the most expensive ones. A fine selection.

PARCEL 4A: 100 TANTS for £6.80 + VAT
PARCEL 4B: 500 TANTS for £29! + VAT

LEDs
All shapes, sizes and colours of LEDs. Round ones in various sizes, rectangular ones, red, green, amber and yellow ones, clear and tinted lenses, all sorts.

PARCEL 7A: 100 LEDs for £5.90 + VAT
PARCEL 7B: 500 LEDs for £24.90 + VAT

TRANSISTORS
A mix of general purpose silicon transistors, mostly bipolar NPN and PNP, with a few FETs and unjunctions thrown in (when available) to spice the mixture. The contents vary from month to month - at the moment there are BC212s, BG213s, BC548s, BC238Bs, MJE210s, and so on. Next month - who knows? All top quality components.

PARCEL 6A: 200 TRANSISTORS for £6.10 + VAT

CAPACITORS
An exciting selection of capacitors. There are ceramics for decoupling and general use, Polystyrenes for high performance circuits, dipped and moulded polyesters in values from a few nF up to 22µF (very expensive!), tants and aluminium electrolytics - just about any capacitor you'll ever need. Don't miss this one!

PARCEL 8A: 1000 CAPACITORS for £6.50 + VAT
PARCEL 8B: 2500 CAPACITORS for £14.90 + VAT

UK Orders:
Please add £2.50 towards postage and packing

Europe and Eire:
Please add £6.00 carriage

Outside Europe:
Please add £12.00 carriage and insurance

HIGHGRADE COMPONENTS LTD
Unit 7, 8 Woburn Road, Eastville, Bristol BS5 6TT

HIGH GRADE COMPONENTS LTD
Unit 7, 8 Woburn Road, Eastville, Bristol BS5 6TT

ETI APRIL 1989
KNIGHT RAIDER

FEATURED IN ETI JULY 1987

The unique sleeping aid that you've never seen before! Knight Raider is a dynamite device for getting a good night's sleep. As you drift off into that all important slumber, you'll hear the soft, soothing sounds of a gentle breeze drifting past your ears. The Knight Raider is designed to be used in conjunction with your bed, and is fully adjustable to suit your individual needs. The Knight Raider is easy to use, and is perfect for anyone who wants to improve their sleep quality. It's the ultimate sleep aid, and will help you get a good night's rest. The Knight Raider is available now at your local electronics store, or you can order it online at www.knightraider.com. Order yours today and enjoy the best sleep of your life!
Paul Chappell resists the urge to oscillate with the low down on stabilising op-amp circuits

In last month's article I introduced some of the basic concepts of feedback theory — loop gain, return difference and so on. This month I'd like to pursue the topic a little further.

To explain the idea of loop gain, I cut the feedback loop at various points, injected a signal into the loop and looked at what came out of the other side of the cut. I didn't specify the kind of signal I was injecting but let's suppose it was a sine wave. The situation is shown in Fig. 1.

![Fig. 1 The loop gain circuit](image)

Suppose that the block A in Fig. 1 is a real op-amp. It is built only to amplify, so inside its black plastic case there are nothing but transistors and resistors. Is it reasonable to describe its operation by saying simply that it magnifies the input signal by a factor A? That is to say, can you assume that for a real (uncompensated) op-amp, it will simply amplify any old signal by an equal amount?

For low frequency inputs, the description may not be far from the truth, but at higher frequencies the limitations of components in the circuit will begin to make themselves apparent. Although no reactive components have been deliberately introduced, they exist as integral parts of the various components of the IC.

The result is that as the frequency of the signal in Fig. 1 is increased, the loop gain will start to decrease and the phase of the returned signal will change. With any signal other than a sine wave, the shape of the wave would change too but a sine has the special property of passing through any linear circuit without a change in form.

Just suppose that at some particular frequency the returned signal was reduced to exactly the same amplitude as the test signal by the fall in gain of the amplifier (Fig. 2). Why not close the switch, remove the test signal and let the circuit carry on alone? The answer is — no reason at all! But if this circuit is both a feedback amplifier and an oscillator, how do you separate the two functions? How do you make a feedback amplifier that won't oscillate?

You may think there's a pretty slim chance that in any practical circuit the gain would hit unity at just the same moment the amp's phase shift was 180°, and you'd be right. But let's just think about the opposite side of the situation for a moment. If you were deliberately trying to make an oscillator, how would you go about it?

The condition for the circuit of Fig. 1 or 2 to be an oscillator is that at the frequency of oscillation, the signal emerging from a cut in the loop should be exactly the same as the one that went in. In mathematical terms, the condition is $\frac{A}{\beta} = 1$. (Since we're dealing with sine waves, you can think of A and β as complex numbers which represent both the gain and phase change at any particular frequency). You won't want to rely on chance to determine the frequency of oscillation, so instead of relying on A to provide the phase shift, you'll put some network in the β-box which gives 180° phase shift at the frequency you choose, well below the frequency at which the amplifier starts to add its own contributions.

Now comes the problem of making the loop gain exactly equal to one at the frequency you've chosen. Exactly one? Not even a fraction of a percent out? What happens if it's, say, just a touch less? If you have
a circuit oscillating merrily away and reduce the loop gain just a little below one, the oscillations will die away. This corresponds with the intuitive notion that the signal will get smaller and smaller on each journey around the loop until it's too small to see.

Increasing the loop gain above one, on the other hand, will cause the oscillations to increase in amplitude — not to settle at a higher level but to keep increasing until something makes them stop. Banging against the power rails, perhaps.

Setting the loop gain at exactly one, without the tiniest margin for error on, either side, is clearly ridiculous. Impossible. The upshot is that there's no such thing as an oscillator based on a linear circuit! The ones which look as if they are, all have gains set slightly higher than one. What happens is that the oscillations build up until circuit non-linearities come into play. The circuit then finds itself a wave that is not quite a sine wave but will travel around the loop with exactly unity gain. The trick to designing an oscillator is to make this new wave as close to a sine wave as possible, which is most easily done by giving the circuit a gentle transition into non-linearity as amplitude increases — in other words, no sudden clipping.

Just to avoid confusion, I'm talking here about the kind of oscillator that might make an unwelcome appearance in your amplifier circuits. There is another type of oscillator, the relaxation oscillator, which uses the active circuit element as a switch. Some examples based on op-amps are shown in Fig. 3. The amplifier's linear characteristics are irrelevant to these circuits — they could equally well be made from logic gates. They are also unlikely to creep into your circuits by accident. If you want one, you have to put in the components to make it!

Returning to the amplifier circuits, the situation is this. If the amplifier produces a 180° phase shift while the gain is still unity or above, the feedback circuit will oscillate. Is there any way to ensure that this won't happen? One way to be certain is to deliberately introduce a roll-off in the gain of the op-amp so that it reaches unity before all the unwanted (but unavoidable) capacitors built into the IC make themselves felt.

Introducing a single capacitor between collector and base of one of the driver transistors in the IC is a very common way. The capacitor introduces its own phase shift but although it approaches 90° at high frequencies, it remains far from the critical 180°.

Although certain to produce stable amplifier circuits, this technique is not ideal. A single capacitor gives a gain roll-off of 20dB per decade (in other words, every time the frequency goes up by a factor of ten, the gain drops by 20dB). This roll-off rate doesn't depend on how the capacitor is connected — all you can change by altering the circuit is the frequency at which it starts.

This means that for an op-amp circuit which would begin to introduce its own phase shifts at a few hundred kHz, the frequency chosen by the IC designer for unity gain might be 1MHz. If the original circuit had a gain of 100dB, this means that the roll-off in gain must start at only 10Hz!

Some IC manufacturers go for a more subtle means of keeping the amplifier stable in an attempt to preserve more of the gain at higher frequencies. The NE5534, for example, being intended for audio use, must have useful gain at least into the tens of kHz. The compensation circuit used does exactly that but the trouble is that the op-amp produces a 180° phase shift before the gain hits unity. In other words, you can build quite ordinary two resistor feedback circuits around the IC and it will oscillate!

Let's take an example. Suppose you have an op-amp which reaches the 180° phase shift while it still has a gain of five. How can you use it? Look at the circuit of Fig. 1 again. At the 180° shift frequency (let's say it's 200kHz) the A box will have a gain of five. As long as the / box has a gain of less than 1, the loop gain will still be less than unity, although the op-amp's own gain isn't. Remembering that the demanded gain is 1/5 as long as the resistors are used to select a gain greater than five, the circuit won't oscillate. Try to select a gain of five or below and the loop gain will exceed unity and you'll have a 200kHz oscillator on your hands!

Preventing the circuit from oscillating spontaneously is not quite enough to make sure you end up with a well-behaved amplifier. If the loop gain is only marginally below unity at the 180° phase shift point, its transient response can still be pretty bad. If you apply a square wave, it can set up 'echoes' around the loop (like the oscillator with loop gain set just below one) which die away after a few cycles. This shows itself as 'ringing' after each transition of the square wave.

The worst effects are cleared up by making sure the loop gain is well below one when the phase hits 180° and the phase is well away from 180° when the gain is unity and above. In the jargon, you give the circuit the highest possible gain margin and phase margin.

Well, I promised many months ago to give an explanation of the capacitor in the op-amp and the reason for the roll-off in gain. At last I've got there. I hope you've found a few useful odds and ends to extract from all the theory. Don't expect an op-amp to give a gain of 1000 at 100kHz, for example! Beyond that, if you ever build an amp that turns out to be an oscillator, at least you won't be entirely baffled about the cause.
Pat Alley presents the EASi way to the ultimate comprehensive alarm system

Wires wires wires. The problem with modern burglar alarms is the wires. Wires for sensing, wires for sounding, wires to confirm, wires to deter. A never-ending reel of 4-core cable, all of which needs carefully hiding in order to avoid 'decor pollution' and the wrath of co-residents!

So how about having a single 1mm wire connecting door and window sensors, pressure pads, ultra-sonics and infra-red devices, fire, gas, smoke and flood alarms, personal attack points and more. Does it sound a tricky problem? The answer is EASi.

EASi

EASi stands for Event Alarm System installation. Figure 1 shows the fundamental operation. A constant current is fed through the single wire loop around the house from a mains-derived power supply (with battery back-up). Across each door and window switch (normally closed) is a standard red LED.

With all switches closed the resistance of the loop will be negligible in comparison with R1 and the voltmeter will read zero. For an open switch, the LED will drop something like 1.6V and the voltmeter acts as a totaliser indicating how many switches are open.

Also the illuminated LED makes it easy to spot which switch is to blame — anyone with a loop alarm system will tell you how infuriating it is to open and shut every window and door until the alarm resets properly!

The LED also assists a very important aspect of burglar alarms, your sense of security. Every time you open a window, you see the system in operation as the LED lights — a psychologically satisfying side-effect.

Another major advantage of the EASi system stems from the fact that the alarm triggers from the rise in voltage rather than from the crossing of a specified alarm threshold. This means that a window can be left open at night in your bedroom without disabling the whole system, as is the case in virtually all commercial designs.

Things To Come

Before we describe the main system in detail we should give you a taster of the many units we have to offer over the next few issues that can be used with the EASi loop.

Apart from the central control and power supply, there is an entry/exit sensor, a fire sensor, a combined gas and smoke sensor, a panic switch, an ultrasonic detection system, a light detector, an intercom system, a freezer fault alarm and a moisture alert. Oops, nearly forgot the pressure mat and cupboard sensors, and the instructions for fitting side loops or for including garden sheds without jeopardising the internal security. Impressed? Now read on...

The Control Box

The heart of the system (from which flows all knowledge and current) is the control box, normally screwed to the wall inside the house. It is powered from the mains but uses a 12V back-up battery in case of mains failure.

The control box has a loud internal siren which can be heard throughout the premises. The unit distinguishes between three types of alarm — hazard, intruder and event. Hazards include fire, floods and personal attack. Intruder alerts come from windows, doors and other burglar spotting sensors. Events could be anything from your freezer turning off unexpectedly to a potentially explosive gas concentration.

A key operated switch selects between full, test and part. With full selected, all sensors are activated. The part option de-activates intruder alarms so that you can use your house as normal without turning off the alarm completely. Test prevents all alarms, checks the battery and displays the number of open sensors.

Fig. 1 Fundamental concept of the EASi system
using the four display LEDs.
The component overlay is shown in Fig. 3.
Construction is reasonably straightforward, starting
with the resistors and building up through to the higher
components, IC sockets and variable resistors. Leave
the ICs out for the moment.
All electrolytic capacitors and LEDs have their positive terminal facing the top of the board as indicated.

The LEDs that appear on the front panel each have a space for a 6mm hole next to the solder points, through which the LED should pass, finally standing 12mm proud of the PCB. Alternatively, with a bit of careful positioning these LEDs could simply be soldered in on the copper side of the PCB.

IC sockets are highly recommended since there is plenty of room and the convenience far outweighs the cost.

Power Supply

The power supply is on a separate board (Fig. 4). Again construction is straightforward — the PCB pins to connect with the mains terminal block should stand about 8-9mm proud of the board.

The principle reason for keeping the power supply off the main board is one of safety, this way there is no chance of mains voltages appearing in the wrong place through a bridged PCB track. As a further precaution put some form of insulation over the short copper track that carries mains.

On the prototype the main circuit board was fitted to the lid of the metal case using plastic snap-on stand-offs, so that the PCB was about 10mm from the lid. This puts the LEDs in positions as shown in Fig. 5 and gives easy access to the terminal blocks for the sensor loop and alarm signals.

Once you've decided on your case layout you can join the boards together (three wires, +, – and a link between R58 and R59) and wire in the keyswitch. Ribbon cable is of sufficient gauge for everything except the battery connections. For testing, the lid microswitch SW1 should be shorted out.

Testing

Do not connect the mains power yet, we can do preliminary tests without it. With the ICs and the fuses in place, set all pots around the middle of their range except RV2 and RV5 which should be fully anti-clockwise. Place SW5 in the 5s position and fit the terminal blocks onto each PCB if you have not done so already. Label the mains clearly on the power board’s block, preferably by colouring them.

To test the system without wiring your house up, construct the breadboard test circuit shown in Fig. 6. The switches can be pieces of wire inserted or removed as required. Run a wire to each of the six main PCB terminals modulating the loop sensor LEDs at about 2Hz for easier viewing when keyswitch SW1 is selected to TEST and IC1d pin 13 goes high via SW1b, R42 and R6.

Q5 amplifies event alarm condition and if the DC output of C12-D8 D10 C14 exceeds approximately 0.3V then CMOS stable IC2e almost oscillates and via Q8 and R4-V4 audio modulates the internal siren to give an event alarm.

IC5 is a quad voltage comparator powered only when SW1 is selected to TEST, at which point R28 passes current approximating to that of the loop through series connected LEDs S9-S2 and A7. Thus the voltage at the junction of LD6/LD0 is 1.7V and ascends 1.6V with each LED, each junction being connected to the non-inverting input of each independent comparator. Meanwhile each inverting input samples the loop voltage via R29 and output tests LD3-16 illuminate according to each voltage comparison.

If electronic sensors are installed the standing voltage of the loop within any open D/Ws will greatly exceed +0.7V, in which case R5 is adjusted to bias the comparator LED voltages S9-S2 downwards. This LED datum is a one-off and for all adjustment unless electronic sensors are added or removed from the loop.

If the voltage across ZD2 and LD6 exceeds 11V then LD6 will illuminate. This battery check is only valid if the mains if switched off for obvious reasons but given the expected life (my own battery is now eight years old) this need not be done too often.

Under quiescent conditions IC4d output is high and charges C20 via R51 and D22 placing a high on IC3c pin 8. Note D22 prevents reverse current flow when IC4d output goes low.

Q8 compares any positive going loop voltage pulse via C16 and R21, with its own Vn, plus D12 voltage when SW2 is on full, and plus ZD3 when on part. If exceeded and Q8 collector increases sufficiently to make Q9 conduct, IC3d pin 13 goes high so long as the loop voltage pulse lasts (about 60ms as dictated by the time constant of R34 + R36C11)

Consequently IC3d output goes low momentarily biasing Q10 into conduction to energise the relay and D11 which time applies full rail voltage to the internal siren. On RLA1 closing, full voltage is applied to the external bell which commences to ring. It also places a high on IC3c pin 9, IC4d input and IC4c input S9. Since IC3c pin 8 is already high IC3c output goes low and latches Q10 into conduction until IC20 discharges through R61 (5s alarm) or R53 (10-15 min alarm).

Meanwhile IC4d output sets the RS bistable formed by IC3a and IC3b illuminating Memory LED 17, which will notify a returning occupant of the alarm. Simultaneously the high placed on IC4c pin

HOW IT WORKS

The circuit diagram of the EAS control box is shown in Fig. 2.

Power Supply

The specified 12-0-12V transformer of about 2VA, capable of running cool at maximum power dissipation is employed for minimum cost. It adequately supplies the quiescent current requirement of about 45mA plus sufficient charging to replenish even a discharged battery within 12-20 hours although in practice the battery normally remains in a fully charged state.

Since the battery remains permanently connected it not only dictates the rail voltage until shutted by the 13V zener diode but also augments the transformer in providing the extra current for the alarm bell thus allowing it to discharge slightly on occasions, as recommended by manufacturers, so as to sustain peak performance.

Used in this way the battery life should exceed 10 years.

Battery charging current reduces as the battery voltage increases until at about 13.6V it is completely shutted out by the 13V zener diode which commences to dissipate all excess transformer current thereafter, thus providing completely automatic battery charging.

Note this simple combination of battery, zener diode and transformer allows each component to compensate for the other, obviating maximum CMOS voltage being exceeded (even if the battery becomes detached) and superior to the traditional reversed diode which commences to dissipate all excess transformer current.

In a fully charged state.

Note also that without the reversed diode the battery can provide much of the smoothing, augmented by the 100uF capacitor.

The ultimate safety device in case of zener diode breakdown creating a short circuit is the 2.5A fuse.

Main Board

All CMOS states 0 or 1 shown are for normal operation on part or full.
All the DC voltages were measured with a 10kV meter. IC1a and IC1b in the stable mode, oscillating at about 70kHz, fed into push-pull transistors Q1 and Q2 to lower the output impedance and via the following diodecapacitors boost the voltage across C7 to over 30V DC where output is about 700R.

A constant current impedance circuit feeds 5mA current into the loop via Q4 and terminal C1 (LD2 + D8 are there in case LD3 fails open-circuit). Note the DC path via Q4 in case of voltage booster failure. This still ensures approximately 5mA of loop current and thus ensures protection from the system, albeit at a lower potential voltage.

IC3a and IC3b in the stable mode provide the means of visually

ETI APRIL 1989
Performing each test first with the resistor, then if the current rises excessively — to 40mA say — then there is something amiss.

Otherwise you can proceed as follows, performing each test first with the resistor, then without.

As indicated (D and D’ are common). Leave out R60 (see Fig. 3) until after testing. Do not connect the mains! We can test quite happily using the battery.

When C20 discharges below 1/3 Vcc, C3c output goes high, Q10 switches off de-energising the relay, the bell and the siren. Also C4c pin 9 goes low and its output goes high but IC3c remains inhibited (to prevent a nuisance alarm) until C17 charges via R39. This takes 6-8 seconds, sufficient time for all circuit voltages to settle.

At this point the system continues protection. Note that R34/R56/C11 can be increased in value so as to require the alarm trigger pulse to last longer (I have had it up to 300ms). These same components, in conjunction with D13, also act as an AC rejection circuit since the decay time is much faster than the attack time (D13 + R36/C11 versus R34 + R36/C11).

Another route for an alarm is via IC2c and IC2d. If the loop voltage exceeds about 30V DC (set by Rv23) due to an open circuit in the sensor loop or by the insertion of a ‘cheat’ resistance in an attempt to exhaust the loop voltage, then IC2c output goes low. Consequently IC2d goes high, fault LEDs 4 & 5 illuminate and IC3d momentarily outputs a high due to a positive pulse via C11 to IC3d pin 13.

As previously described this results in a timed alarm. The alarm will also be triggered via the Q8 route too, even if the loop voltage rises to maximum at a reasonably slow rate (belts and braces!).

If required an A/T loop with a voltage of 32V is provided via the output of IC 4b via C18 and R41, sending the output of IC4c 6-8 seconds, sufficient time for all circuit voltages to settle.

When mains power IC4a input is low due to R59 thus its output is high, illuminating fault IC3a as a reminder to the user to switch on the mains. When mains power is applied, transformer-derived voltage is rectified by D24/25 and smoothed by C24 placing a high on IC4a input, consequently its output is low and IC18 is extinguished.

Certain sensors if used in the loop, such as the gaskemote detector, various forms of light detectors and the ultrasonic transmitter rely on mains power and it is necessary to inhibit the alarm at the instant there is a mains failure and once again on restoration of the mains in order to prevent a false alarm. Protection is lost from these sensors during the period of the power cut but not from the remaining sensors such as D/W sensors, pressure mats, smoke alarm, infra-red and others.

On the mains failing IC4a goes high, illuminating fault LED15 and placing a momentary high on IC4c pin 8 which sends its output low, discharging C17 quickly through D15 and inhibiting IC3d from an alarm signal. It remains inhibited for 6-8 seconds until IC17e charges via R39.

On restoration of the mains a momentary positive pulse, this time from the output of IC4b via C18 and R41, sends the output of IC4c low and IC3d is once again inhibited for 6-8 seconds. Thus by the time IC3d is ready to accept an alarm signal everything is back to normal and LED18 extinguished.

It can be seen that when SW2 is selected to full red LED 7 illuminates and when selected to part green LED8 illuminates. The reason for this is two fold. Firstly one can see at a glance from the LED’s colour which mode the system is in and secondly the LED current derived from the 12V rail via R24 biases ZD3 to a more predictable voltage, offsetting the rather steep knee voltage one sometimes finds with zeners and defining the voltage pulse necessary to trigger the alarm more precisely. For example some 5V1 zener diodes pass 20mA at 3.5V and in this case the alarm would be triggered at about 4.9V instead of 5.5V.
Fig. 3 Component overlay of the control box PCB
you have been taking into account the 6-8 second 'alarm inhibit' period. The system prevents false alarms by automatically switching off briefly in any of the following situations:

- after initial selection of SW2 to part or full
- after mains failure
- when mains is restored
- immediately following an alarm
- with SW2 on test, all alarms are permanently inhibited.

Now hopefully we are ready to connect the mains. Remove the ammeter and resistor and make sure SW3 and 4 are fully down. Now reconnect the ammeter between battery and power board but in reverse mode so it will show a discharge. Use an ammeter scale of 500mA or more.

Now connect the mains and switch on. The ammeter should show a positive reading between 5-80mA, indicating that the battery is being charged. Switch off the mains and remove the ammeter, then switch back on.

Note that as standard policy you should avoid powering from the mains without the battery in circuit.

Calibration
Moving back to the breadboard test rig, connect the ammeter across the first switch (A) and pull out the LED. Turn SW2 to part and open the test rig switch. Adjust RV1 to give 5mA as the loop current, then close switch A again.

Next set the meter to read at least 35V FSD and open switch A again. The siren should leap into action for about 5s and then stop. The fifth LED on the breadboard should also illuminate — this is substituting for an external alarm bell.

When the alarm stops, check that the voltage is 30V or more. The alarm for this open loop circuit was triggered via Q8 (read How It Works for the full story) so now turn RV2 clockwise until the break and volts fault LEDs (4 and 5) illuminate.

Close breadboard switch A again, wait about 10s then open it again, making sure that the two LEDs
Fig. 6 The breadboard test circuit

The breadboard test circuit is shown in Fig. 6. It includes a control box with terminals, a sensor loop, an external bell, and a loop for testing. The breadboard rig is used to test various components of the alarm system.

Fig. 7 The second breadboard test circuit

The second breadboard test circuit is shown in Fig. 7. It includes a shorting wire and a connection for testing the system. The circuit is used to simulate various scenarios to test the alarm system's response.

Playing Burglars

Switching SW2 to test will turn off the alarm memory fault indicator, LED17. Now, pretend you are a burglar cutting the wires to your external bell by opening switch E on the breadboard rig for a timed alarm by internal siren. Notice that when you select test with SW2, LED17 does not time extinguish — alerting you to the bell's disconnection. Close switch F to reset, leaving SW2 on test.

Next simulate an open window or door (takes you right back to Play School doesn’t it …) by opening switch A. Its LED will flash but more importantly the first of the test indicators (LEDs 13-17) should also have lit. Experiment with switches A-D and check you get the right responses.

To demonstrate the auto-reset, turn SW2 to full and open any window A-D to trigger the alarm (don’t forget the 6-8s inhibit time). When the alarm has stopped open another window. The alarm triggers again despite the circuit break in the other switch.

Check mains failure by turning off the power. The mains indicator LED18 should activate. The alarm should not sound.

Simulate shorting the anti-tamper loop to the sensor loop by closing switch F for a timed alarm. Note illumination of alarm, volts and short indicators (LEDs 1, 4 and 17). You will find that after the usual inhibit period the windows are still protected even though the alarm is shorted out. The fault LEDs tell you what the naughtier burglar has attempted while you’ve been away and with SW2 on test you can locate the short by opening all the windows and checking the brightness of their respective LEDs!

Test Rig 2

Adapt your test rig to the circuit shown in Fig. 7. Adjust RV3 to give 3V DC (or as close as you can get) across R15 — next to the siren output on the circuit board. Set SW2 to part and open breadboard switch G to simulate an ‘event’ alarm. This should produce a modulated bleeping alarm, the volume of which can be varied by RV4. Note that with SW2 on part, the window and door alarms (A,B) are disabled.

Close switch G, set SW2 to full and set off the event alarm again. Do not close switch G but open switch A or B as well to give a main alarm, showing that the main alarm takes preference.

If all that has worked then congratulate yourself on producing a fully operational EAS master control. Of course, it’s scattered all over your workbench at the moment, but the final product is in sight!

Assembly

In the prototype the control box top was drilled as in Fig. 8. The corner hole is to house the lid protection microswitch. A hole on the main case will also be required to earth from the power supply board. The other holes are for the internal alarm.

Resistor R60, previously ignored, should now be fitted hanging precariously between terminals D and E.

Then all that remains is the fitting into the chosen box using spacers to hold the PCBs solidly in position.

Your Choice

The position of D2 (see Fig. 2) is the result of one of those iffy questions — would the burglar be clever enough to earth an outside wire by driving a stake into the ground? This is I think unlikely but perhaps it is best to leave it to the installer.

The only disadvantage of not earthing the loop is that if you ever did have to locate an open circuit with the probe to be described later, you would have to rewrite the circuit to temporarily short D2. You have the option of soldering it in, leaving it out or shorting the gap.

Another function you could remove is the ‘mains inhibit’ function — if you use no mains powered sensors you could remove this by omitting C18 and C21.

Switch SW3, as you’ll no doubt have gathered
by now, will remove the delay normally placed on event alarms for the purpose of experimentation. If you don't mind waiting the 10s that must otherwise elapse the switch could be omitted.

Wiring The House

With the completed control box screwed to the wall, you can start wiring up your house. If you are using an external bell then wire that up first with twin 7/0.2mm wire connected to terminals D and E. If you are not using such a bell, you must leave resistor R60 across the terminals.

Also if you are not using an anti-tamper loop you must short between terminals A and B.

When you start running the wire around the house, always go the easy way. Don't restructure your house just to save fifteen feet of wire, and remember to make the most of carpets, cellars and attics. It is also a sterling idea to make a simple map of the route in case you forget later.

Connect door and window sensors one at a time so that the continuity of the loop is assured and the direction of the LED will check that you are on the right path.

Take It To The Limit

The number of door and window sensors is unlimited but some of the EASI sensors to be described in forthcoming articles take power from the sensor loop, consuming something like 0.4V per sensor. To avoid the necessity of extra wires or batteries it is recommended the voltage dropped is limited to about 6V — about 15 sensors. Since such sensors are unlikely to be required in profusion (ultrasonics, light sensors, pressure mats, water sensors) this shouldn't cause a problem.

Protecting Of Outbuildings

The first of the major additions made as the prototype developed was the protection of outside premises such as garage and garden shed by extending the loop across a small module parallelled across the loop just inside the house (see Fig. 9a).

The 5V1 zener, push button and LED form the House Protector unit (HP). Pressing the button will short out the zener and light the LED if any of the outbuilding door/window switches are open, thus saving a trip out into the cold.

If the outside loop wire is broken, the main alarm will sound and hopefully the culprit will leave the scene. But even when the alarm stops the house remains fully protected by the maintenance of loop current through the HP.

For those who feel the need to tamper proof outside buildings (access could be obtained by shorting both wires) it is possible to move the HP to the end of the house loop (Fig. 9b) and earth the loop wire through any mains earth. This will in addition tamper proof the control box since removing the mains plug will break the HP circuit and sound the alarm.

After A Break

In the unlikely event of the main house loop wire being broken, cut or eaten by rats, a positive voltage equal to the supply will set off the alarm. Thereafter the open loop circuit is unusable.

Given the length of loop wire (300m is not unusual in a large house) a quick and simple method is handy to trace the break. This is the probe shown in Fig. 1 consisting of a sewing needle on a copper-clad board in series with an LED connected to mains earth. For complete safety we should advise turning off the house mains power.

An iterative search rapidly homes in on the break. Start at the middle of the break and pierce the wire with the needle. If the break is between probe and earth, the needle provides an alternative source to earth and the LED will light. Move further down the wire and try again.

If the probe doesn't light, go back towards R1. The length of suspect wire reduces exponentially — just eight tests take you from 300m to about 1m.

That describes the basic EASI system. The profusion of sensors and expansions will follow next month. Until then, happy wiring!

All boards and modules for the EASI alarm system are available in kit form. Full details and prices will follow in next month's article.
John Jameson's front door greets visitors with a blood curdling scream, a fanfare and the chimes of Big Ben thanks to his ingenious sampler doorbell.

This project provides you with the means to have a totally unique doorbell. Almost any sound effect lasting up to three seconds can be emitted at considerable power whenever a visitor calls. If you have several doors, you could build several units and have them announce Front Door, Back Door or you could sample the neighbours' bloodhound and frighten the wits out of your postman.

The possibilities for such a project are limited only by your imagination. Slightly modified, the unit could even find uses in electronic music, as a simple but versatile drum effect.

To make things easy for you, the author has arranged to provide a range of sound effect ROMs, and a tape to EPROM service (see Buylines) so you won't need a sampler and an EPROM programmer to build the project.

Construction

The project is constructed on a 4 x 4in double sided PCB with only the loudspeaker and the power and bell push sockets mounted off the board. This design is simple enough to build up completely before testing, provided you have the proper PCB.

Start by making the through-hole connections or 'vias' first. Don't forget the ones under the EPROM. Next insert then solder in the six pins used to make the external connections and add the passive components. The ICs should go in last.

Only the EPROM need be mounted in a socket. IC3, 4 and 5 will have to be soldered in as their legs make further through-hole connections. These are CMOS devices so take the usual anti-static precautions of earthing yourself and everything else in sight when doing this.

If you house the unit in the recommended box, the PCB will be glued in, so it is highly advisable to test it thoroughly and get it working on the bench. A 15V DC power supply will do just as well as AC for testing so you can use your bench supply. Initially, power the unit up without an EPROM inserted. Several simple tests can now be made.

First and foremost, check the 5V supply is present. The output from the DAC, IC6, should be at around 2.5V (it is seeing OFF on its inputs) and the output of the LM380, pin 9, should be at about 7-8V. Switch off, insert a programmed EPROM, set the DIP switches as detailed in Table 1, set RV1 at mid range and switch on.

If all is well, the unit should emit the sample and go quiet. Triggering the unit by shorting the bell push terminals should cause it to emit the sample once and stop.

If you get nothing, use a crystal earpiece or a scope to trace the fault back down the analogue path. If nothing is coming out of the DAC, see if data is coming out of the EPROM. Failing that, check around the address counter and the clock. Highly distorted sound might simply be due to shorted address or data connections around the ROM.

Once you have a working doorbell and assuming you are using the recommended case, drill a grid of holes in the top of the case for the loudspeaker and bolt it to the top (or glue it using Araldite or something similar). Drill two more holes at one end of the box for the two jack sockets. The prototype has the 2.5mm connector for power and the 3.5mm one for the bell push, though this is not at all crucial.

If you plan to mount the unit on a wall, drill a couple of holes in the bottom of the case, and file them into keyhole shapes so you will be able to hang the unit on a couple of screws in the wall.

Put the PCB in the bottom of the box at the other end from the mounting holes (so as to avoid the screws shorting things on the underside of the board) and measure up connecting wires to go from the PCB pins to the sockets and the loudspeaker. Wire up these connections, check everything and then glue the PCB onto the bottom of the box using Araldite. Finally screw the lid onto the box and wire up cables to your bell transformer and bell push.

You will need a bell transformer with a 12V tap. Also, bear in mind that sticking a jack plug into a socket causes a momentary short, so turn the power off to the transformer while setting everything up.

Fig. 1 Block diagram of the Digital Doorbell
HOW IT WORKS

The unit is in effect a self-contained, play-only sampler. The sample data is stored on a standard EPROM and the rest of the design consists of a clock, a trigger circuit, an address counter, a DAC, a 4-pole filter and a power amp. The arrangement is shown in the block diagram (Fig. 1).

The clock is (almost inevitably) a 555 timer — in this case the CMOS version. The component values have been chosen to make it oscillate at around 10kHz giving up to 3.2s sample length with a 32K EPROM (27C256).

As with all sampling systems the bandwidth is restricted to half the clock frequency and is therefore about 5kHz. This may seem low for the hifi purists but it is adequate, given that the sound will emanate from a cheap 4in loudspeaker.

Pressing the bell push (SW6) triggers the monostable IC5 which resets the address counter made from IC3,4. The monostable is configured to be edge triggered and non-retriggerable which means that however long the bell push is pressed, the pulse from the monostable will only last about 20ms, after which its Q output will return low.

Once the reset pulse has ended, the address counter will start counting and data will be fed to DAC IC6 and the analogue stages beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

The chosen filter is a fixed cut-off 4-pole Chebyshev low pass filter and is a good example of economic design. The output from the DAC ranges from 0 to 2.5V, and the overall gain of the two filter stages required. Normally you would achieve this using ±12V or 15V rails but by choosing op-amps capable of single rail, low voltage operation and by doing a few simple calculations, it is possible to power the filter from the regulated 5V rail required for the EPROM.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

Firstly, follow the normal procedure for sampling a sound on your sampler. If you want it to play back need to follow for the doorbell of your dreams.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

The chosen filter is a fixed cut-off 4-pole Chebyshev low pass filter and is a good example of economic design. The output from the DAC ranges from 0 to 2.5V, and the overall gain of the two filter stages is just over five. It follows that if the output of the DAC were fed directly into the filter, an output swing of over 12.5V would be required. Normally you would achieve this using ±12V or 15V rails but by choosing op-amps capable of single rail, low voltage operation and by doing a few simple calculations, it is possible to power the filter from the regulated 5V rail required for the EPROM.

R11 and R12 attenuate the signal from IC6 so it will not drive the second op-amp, IC8, into overload. C4 removes the DC content from the output of the DAC and R21 in combination with R12 sets a new DC bias level for both op-amps. Bearing in mind that the DAC has an output impedance of 10k, application of simple resistors in series/parallel theory to the network shows the impedance at the node (without the filter connected) would be 8k1 R13 then makes this up to near enough 39k as required for the filter.

C9 couples the filter to the output stage, RV1 sets the volume and the LM380 provides power amplification sufficient for the purpose.

A standard 78L05 regulator circuit provides the supply for the logic and the filter while the LM380 is run from the unregulated supply, which should be about 15V from a 12V AC input.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

Firstly, follow the normal procedure for sampling a sound on your sampler. If you want it to play back need to follow for the doorbell of your dreams.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

The chosen filter is a fixed cut-off 4-pole Chebyshev low pass filter and is a good example of economic design. The output from the DAC ranges from 0 to 2.5V, and the overall gain of the two filter stages is just over five. It follows that if the output of the DAC were fed directly into the filter, an output swing of over 12.5V would be required. Normally you would achieve this using ±12V or 15V rails but by choosing op-amps capable of single rail, low voltage operation and by doing a few simple calculations, it is possible to power the filter from the regulated 5V rail required for the EPROM.

R11 and R12 attenuate the signal from IC6 so it will not drive the second op-amp, IC8, into overload. C4 removes the DC content from the output of the DAC and R21 in combination with R12 sets a new DC bias level for both op-amps. Bearing in mind that the DAC has an output impedance of 10k, application of simple resistors in series/parallel theory to the network shows the impedance at the node (without the filter connected) would be 8k1 R13 then makes this up to near enough 39k as required for the filter.

C9 couples the filter to the output stage, RV1 sets the volume and the LM380 provides power amplification sufficient for the purpose.

A standard 78L05 regulator circuit provides the supply for the logic and the filter while the LM380 is run off the unregulated supply, which should be about 15V from a 12V AC input.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

Firstly, follow the normal procedure for sampling a sound on your sampler. If you want it to play back need to follow for the doorbell of your dreams.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

The chosen filter is a fixed cut-off 4-pole Chebyshev low pass filter and is a good example of economic design. The output from the DAC ranges from 0 to 2.5V, and the overall gain of the two filter stages is just over five. It follows that if the output of the DAC were fed directly into the filter, an output swing of over 12.5V would be required. Normally you would achieve this using ±12V or 15V rails but by choosing op-amps capable of single rail, low voltage operation and by doing a few simple calculations, it is possible to power the filter from the regulated 5V rail required for the EPROM.

R11 and R12 attenuate the signal from IC6 so it will not drive the second op-amp, IC8, into overload. C4 removes the DC content from the output of the DAC and R21 in combination with R12 sets a new DC bias level for both op-amps. Bearing in mind that the DAC has an output impedance of 10k, application of simple resistors in series/parallel theory to the network shows the impedance at the node (without the filter connected) would be 8k1 R13 then makes this up to near enough 39k as required for the filter.

C9 couples the filter to the output stage, RV1 sets the volume and the LM380 provides power amplification sufficient for the purpose.

A standard 78L05 regulator circuit provides the supply for the logic and the filter while the LM380 is run off the unregulated supply, which should be about 15V from a 12V AC input.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

Firstly, follow the normal procedure for sampling a sound on your sampler. If you want it to play back need to follow for the doorbell of your dreams.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

The chosen filter is a fixed cut-off 4-pole Chebyshev low pass filter and is a good example of economic design. The output from the DAC ranges from 0 to 2.5V, and the overall gain of the two filter stages is just over five. It follows that if the output of the DAC were fed directly into the filter, an output swing of over 12.5V would be required. Normally you would achieve this using ±12V or 15V rails but by choosing op-amps capable of single rail, low voltage operation and by doing a few simple calculations, it is possible to power the filter from the regulated 5V rail required for the EPROM.

R11 and R12 attenuate the signal from IC6 so it will not drive the second op-amp, IC8, into overload. C4 removes the DC content from the output of the DAC and R21 in combination with R12 sets a new DC bias level for both op-amps. Bearing in mind that the DAC has an output impedance of 10k, application of simple resistors in series/parallel theory to the network shows the impedance at the node (without the filter connected) would be 8k1 R13 then makes this up to near enough 39k as required for the filter.

C9 couples the filter to the output stage, RV1 sets the volume and the LM380 provides power amplification sufficient for the purpose.

A standard 78L05 regulator circuit provides the supply for the logic and the filter while the LM380 is run off the unregulated supply, which should be about 15V from a 12V AC input.

SW5 selects retriggerable or non-retriggerable operation. If it is open, then re-pressing the bell push will re-start the sample from the beginning. If SW5 is closed, then the monostable will be held reset until the sample has finished, thus preventing the sample being retriggered while it is playing.

Firstly, follow the normal procedure for sampling a sound on your sampler. If you want it to play back need to follow for the doorbell of your dreams.
at its natural pitch, try to sample it at a rate of 10kHz, or at least a multiple of that. You will then need to extract a binary dump of the sample. This is easiest if your sampler is home made and based on a home computer.

Those of you who have built my Amstrad Sampler (ETI, September 1987) and have the full software, will find that the SMP file is a direct binary dump of the sample and is in the same 8-bit linear format used by the doorbell.

The Spectrum Sampler (ETI, November 1985 to July 1986) uses logarithmic ADC and DACs, so you will need to write a program to convert the data to linear form.

MIDI sampler owners with a home computer based MIDI interface should be able to extract samples from their machines using the MIDI sample dump protocol.

Having got a linear sample dump, the next job is to adjust it for the 10kHz playback. If you sampled at 10kHz, you can omit this step. If you sampled at 20kHz, then you need a program to average successive pairs of bytes, and for 30kHz, your program should average groups of three bytes.

Once this is achieved, you now need to ensure the data is represented such that &000 represents the most negative value, &080 represents quiescent conditions, and &0FF represents the most positive

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W 5% unless specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,7,8,12,16,20</td>
</tr>
<tr>
<td>1k</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>6k</td>
</tr>
<tr>
<td>R3,15</td>
</tr>
<tr>
<td>10k</td>
</tr>
<tr>
<td>R4</td>
</tr>
<tr>
<td>330R</td>
</tr>
<tr>
<td>R5</td>
</tr>
<tr>
<td>10kR</td>
</tr>
<tr>
<td>R6</td>
</tr>
<tr>
<td>470R</td>
</tr>
<tr>
<td>R10</td>
</tr>
<tr>
<td>220k</td>
</tr>
<tr>
<td>R11</td>
</tr>
<tr>
<td>4.7k</td>
</tr>
<tr>
<td>R12</td>
</tr>
<tr>
<td>30k 1%</td>
</tr>
<tr>
<td>R14</td>
</tr>
<tr>
<td>39k</td>
</tr>
<tr>
<td>R17,18</td>
</tr>
<tr>
<td>8k</td>
</tr>
<tr>
<td>R19</td>
</tr>
<tr>
<td>9k 1%</td>
</tr>
<tr>
<td>R21</td>
</tr>
<tr>
<td>180k</td>
</tr>
<tr>
<td>RV1</td>
</tr>
<tr>
<td>10k horz preset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>3x3 ceramic disc</td>
</tr>
<tr>
<td>C2,3</td>
</tr>
<tr>
<td>10p 25V radial electrolytic</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>100n polyester</td>
</tr>
<tr>
<td>C5,6,7,8</td>
</tr>
<tr>
<td>10n ceramic disc</td>
</tr>
<tr>
<td>C9</td>
</tr>
<tr>
<td>2x 63V radial electrolytic</td>
</tr>
<tr>
<td>C10,13</td>
</tr>
<tr>
<td>4x7 63V radial electrolytic</td>
</tr>
<tr>
<td>C11</td>
</tr>
<tr>
<td>470p 16V radial electrolytic</td>
</tr>
<tr>
<td>C12</td>
</tr>
<tr>
<td>100u, 16V radial electrolytic</td>
</tr>
<tr>
<td>C14,15,16,17,18</td>
</tr>
<tr>
<td>100n dipped multilayer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
</tr>
<tr>
<td>2764 or 27128 (see text)</td>
</tr>
<tr>
<td>IC2</td>
</tr>
<tr>
<td>7555</td>
</tr>
<tr>
<td>IC3,4</td>
</tr>
<tr>
<td>4520</td>
</tr>
<tr>
<td>IC5</td>
</tr>
<tr>
<td>4098</td>
</tr>
<tr>
<td>IC6</td>
</tr>
<tr>
<td>2N426</td>
</tr>
<tr>
<td>IC7,8</td>
</tr>
<tr>
<td>CA3140</td>
</tr>
<tr>
<td>IC9</td>
</tr>
<tr>
<td>LM380</td>
</tr>
<tr>
<td>IC10</td>
</tr>
<tr>
<td>78L05</td>
</tr>
<tr>
<td>ZD1</td>
</tr>
<tr>
<td>8V1 zener</td>
</tr>
<tr>
<td>SRT</td>
</tr>
<tr>
<td>W005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1</td>
</tr>
<tr>
<td>4in 4R 2W speaker</td>
</tr>
<tr>
<td>PL1</td>
</tr>
<tr>
<td>2.5mm jack plug</td>
</tr>
<tr>
<td>PL2</td>
</tr>
<tr>
<td>3.5mm jack plug</td>
</tr>
<tr>
<td>SKT</td>
</tr>
<tr>
<td>2.5mm jack socket</td>
</tr>
<tr>
<td>SKT2</td>
</tr>
<tr>
<td>3.5mm jack socket</td>
</tr>
<tr>
<td>SW5,5</td>
</tr>
<tr>
<td>6-way DIP switch</td>
</tr>
<tr>
<td>SW6</td>
</tr>
<tr>
<td>single pole push switch</td>
</tr>
</tbody>
</table>

| PCB. Case 130 x 110 x 74mm. IC sockets. Wire. Glue. Nuts and bolts. |

BUYLINES

All the electronic components should be readily available. The recommended case is sold by Rapid Electronics (Tel. 02058 272730) as order code 30-0420. Alternatively, a kit including the PCB, all components, one standard sound effects ROM (16K or 32K) and the case, but not including a bell transformer is available from Labcenter Electronics, 14 Maner's Drive, Bradford BD4 1JT. The cost is £29.95 plus 50p postage inc VAT. The PCB is available for £7.20 plus 30p postage.

Write to Labcenter for details of the Tape-to-Sample service and for a list of standard sound effect EPROMS.
value. Again, Amstrad Sampler owners need do nothing here.

Choose an EPROM type large enough to hold the data (8K, 16K or 32K) and then pad out the sample dump with &080 so as to fill the ROM. The first byte of the ROM should be &080 as well, so as to prevent a sharp click occurring at the end of the sound.

Finally, transfer the data to your EPROM programmer to blow the device.
DIGITAL ULTRASONIC DETECTOR

SINGLE BOARD COMPUTER “SBC-1”

A computer doesn’t have to look like you’d expect a computer to look. It doesn’t have to have a keyboard and a screen and floppy disks and so on.

The SBC-1 has the bare minimum of chips: a 286 CPU can have and still be a computer: A 4MHz 80386A-CPU chip, an EPROM chip (up to 32K), a static RAM chip (up to 256K) and a pair of D555A I/O (input/output) chips giving 48 individual lines to wiggle up and down. There are one or two additional “glue” chips included, but these are simple “74LS” or “HC” parts.

A star feature is that no special or custom chips (ie PALs, ULAs, ASICs etc) are used — and thus there are no secrets. The Z80A is the fastest and best established of all the 8-bit microprocessors — possibly the cheapest too!

Although no serial interface is included, it is easy for a 286A to waggle one bit up or down at the appropriate rate — the cost is a few pence worth of code in the program. Why buy hardware when software will do?

Applications already identified include: Magnetic Card reader, mini printer interface, printer buffer, push button keypad, LCD alphanumeric panel interface, 4-zone security system, modern interface for auto-sending of security alarms, code converter (eg IBM PC keyboard codes to regular ASCII), real time clock (with plug in module), automatic horticultural irrigation controller.

By disabling the on-board 2840-CPU this card will plug into our Interak I/OPM Plus disk-based development system, so if you don’t fancy hand-assembly 286A machine code you don’t have to!

The idea is (if you are a manufacturer) you buy just one development system and then turn out the cheap SBC systems by the hundred. If you are really lazy we can write the program for you and assemble the SBC-1 cards so you can get on with manufacturing your product, leaving all your control problems to us.

CA 1382 ADVANCED CONTROL UNIT

ONLy £44.95 +VAT

Immediate Security Without Installation

Only £13.95 +VAT

For Homes, Storerooms, Clubhouses, Caravans, etc.

- Detects intruders up to 30ft.
- Penetrating 103db Siren
- Commercial specification
- Compact size only 203x180x78mm
- Easily extended for coverage of additional rooms or large areas.

CA 1250 LOW COST ALARM MODULE

This tried and tested unit represents the best value in security hardware, providing the following features:

- Built in electronic silence devices
- Loudspeakers
- Provide 90db entrance and exit alarms
- With loud speaker or microphone
- 2 operating modes
- Full anti intrusion and fire alarm protection
- Combined alarm and fire alarm
- Immediate Security Without Installation

Instant Protection

For less than the cost of a double ticket "Anytime" travelcard, the CA 1250 provides immediate protection of a chosen area without the need for money in control systems.

CA 1382 ADVANCED CONTROL UNIT that’s

Priced £67.72 +VAT

Ricsomp Limited

Dept. ETI 1, S. Poppy Road, Princes Risborough, Bucks.

The Security Specialist

Immediate Security Without Installation

For Homes, Storerooms, Clubhouses, Caravans, etc.

- Detects intruders up to 30ft.
- Penetrating 103db Siren
- Commercial specification
- Compact size only 203x180x78mm
- Easily extended for coverage of additional rooms or large areas.

POWER SUPPLY & MAINS SWITCHING UNIT PS 96 1655

In addition to providing 12V+ supplies it also has a 240V Mains Switching Unit which can be used to provide a switched 240V output. Available in kit form with fully-built electronics, £0.95 +VAT.

CA 1382 ADVANCED CONTROL UNIT

ONLy £44.95 +VAT

Immediate Security Without Installation

Only £13.95 +VAT

For Homes, Storerooms, Clubhouses, Caravans, etc.

- Detects intruders up to 30ft.
- Penetrating 103db Siren
- Commercial specification
- Compact size only 203x180x78mm
- Easily extended for coverage of additional rooms or large areas.

CA 1250 LOW COST ALARM MODULE

This tried and tested unit represents the best value in security hardware, providing the following features:

- Built in electronic silence devices
- Loudspeakers
- Provide 90db entrance and exit alarms
- With loud speaker or microphone
- 2 operating modes
- Full anti intrusion and fire alarm protection
- Combined alarm and fire alarm
- Immediate Security Without Installation

Instant Protection

For less than the cost of a double ticket "Anytime" travelcard, the CA 1250 provides immediate protection of a chosen area without the need for money in control systems.

CA 1382 ADVANCED CONTROL UNIT that’s

Priced £67.72 +VAT

Ricsomp Limited

Dept. ETI 1, S. Poppy Road, Princes Risborough, Bucks.

The Security Specialist

Immediate Security Without Installation

For Homes, Storerooms, Clubhouses, Caravans, etc.

- Detects intruders up to 30ft.
- Penetrating 103db Siren
- Commercial specification
- Compact size only 203x180x78mm
- Easily extended for coverage of additional rooms or large areas.

POWER SUPPLY & MAINS SWITCHING UNIT PS 96 1655

In addition to providing 12V+ supplies it also has a 240V Mains Switching Unit which can be used to provide a switched 240V output. Available in kit form with fully-built electronics, £0.95 +VAT.
Have you ever taken a really good look at striped ties? Have you ever noticed that there is one aspect in which these ties hardly ever differ? Certainly they differ in width and the stripes also vary from the very wide to the very narrow. They may be in the colours of the regiment, the school, the company, the sports team, the university or the society and the stripes may be interspaced with emblems or coats of arms. So what is this mysterious invariant feature?

Well, if you do take a good look at a number of ties in the street, I'd be very surprised if many had the stripes running from top left to bottom right (looking towards the wearer). Yes, virtually all the stripes run along the same diagonal.

Nobody seems to know why this has come about but the strange thing is that the converse would be found if a survey of ties on the streets of Washington DC (or any other place in the US for that matter) were to be carried out.

Indeed, two separate standards have emerged and the well dressed, well informed gentlemen in either the UK or the USA would not dream of wearing a tie with the stripes running in the wrong direction, would you?

At ETI we are frankly appalled at the declining standards of dress in recent years. Although only in small numbers, American ties are making their way to this side of the Atlantic and have even been worn by otherwise perfectly attired, bowler hatted, pin stripe besuited English gentlemen!

It is felt that public awareness of this problem should be highlighted and we have considered lobbying our MP to push for a total embargo on their importation. However, such a solution would be unacceptable to the frequent trans-Atlantic traveller who doesn't wish to stand out like the proverbial sore thumb in either continent. Electronics has come to the rescue! We believe that in not too many years time an announcement like this may be commonplace on trans-Atlantic flights. "Ladies and Gentlemen. We are about to start our final approach to John F. Kennedy Airport. We would advise passengers that the local time is now 9.32 am. Gentlemen are also advised that since we are entering a North American tie zone, all neck ties should be switched accordingly."

Mike Bedford dons suitable garb for the foolish season with an ETI first — the truly pan-Atlantic tie
HOW IT WORKS

To keep the cost of the tie to within reasonable limits, the number of stripes has been limited to six. Each stripe is made up of a cross of LEDs, each cross being constructed from LEDs in three different groups. These groups are those exclusively in the UK diagonal, those exclusively in the US diagonal and the one LED at the intersection which is common to both. The number of LEDs per group increases from top to bottom since the tie is tapered and can vary from as few as one (only for the common LED) to as many as 15.

The LEDs within a group are arranged in a series/parallel arrangement with groups of three in series paralleled together. Where the number in a group is not equally divisible by three the remaining one or two LEDs have a series resistor added to keep the potential across them to the 2V required.

The supply used is 7V2 which when the 2 x 0.7V drops across the two drivers (discussed later) is subtracted comes to just less than 6V — hence the triplets of LEDs.

In passing it is worth noting the resistors in series with the single common LEDs (220Ω) are different to that used when a single LED remains in an exclusively UK or US diagonal group (180Ω) because the common LEDs are hard wired to the 7V2 supply rather than through a driver and the effective supply potential is therefore 9.7V higher.

Now, for simplification let’s consider each series/parallel group of LEDs as a single load so we have 18 all together arranged as a three group by six stripe matrix. Since one of the groups is always active as already mentioned, the number of drivers required is 2 + 6 = 8 which just happens to be the width of most common EPROMs — what a lucky coincidence!

The six stripes are driven from the EPROM via a ULN2003 NPN darlington driver chip to the LED cathodes whereas the US and UK groups are driven via PNP darlington pairs made from discrete BC327 transistors which switch 7V2 to the anodes. So we now have a situation whereby either the UK or the US diagonals (or both) of any combination of the six stripes may be illuminated depending on the data in the EPROM and the address inputs (Fig. 3). Only eight address inputs are used so only 256 values need programming. This means a smaller EPROM could have been used but since 2764s are so cheap this was used and A8-A12 are permanently grounded (Fig. 4).

Of the eight inputs to the EPROM, the highest order four are connected to half a 74LS393 4-bit counter which is connected to a push button on the clock input so that for each depression (assuming that A0-A3 are constant) the selected address increments by 16 (modulo 256). This gives mode selection with 16 possible modes.

To complete the address inputs to the EPROM the least significant four bits connect to the other half of the 4-bit binary counter, the clock input of which is fed from a NE555 oscillator which in turn is controlled by RV1.
Yes, we are entering the era of the electronic multimode tie.

The Kinetotie

Originally conceived as just a dual mode (UK/US) striped tie for the frequent traveller, it soon became obvious that this was limiting the potential of the electronic tie. For the cost of just a handful of extra components the tie described here boasts 16 modes, each of which can cycle through 16 different states as controlled by the programming of an EPROM.

The programming information presented here includes the original UK and US modes (since all the 16 states for a particular mode can, of course, be the same) plus 14 kinetic modes. It's questionable just how many people will have the guts to wear this tie in one of its kinetic modes on the 7.45am from Surbiton but it certainly provides a conversation point at parties. How many other people do you know with an electronically programmable tie?

Construction

Before building up the main PCB, you'll have to make a decision. This board has been designed so that it may either be built up as a single piece (which is easiest but results in a totally rigid tie) or may be split into up to six sections (this takes more effort but the end product is more flexible). If the board is to be split, it should be sawn along any of the dotted lines shown on the component overlay (Fig. 2). At each split point a number of flexible wire links which act as hinges need wiring to the pads provided. The photographs of the prototype Kinetotie show that it has been split at just the centre position.

Apologies for stating the obvious but do make sure the LEDs are inserted the correct way round. It is suggested that all LEDs along a single diagonal are inserted and then the bodies of this row of components is firmly clamped in a vice prior to soldering. This gives the opportunity to ensure that the stripes are perfectly formed without gaps.

Both the anode and the cathode leads (but particularly the cathode) have 'collars' to provide stand-off from the PCB. For this project the LEDs are to be fixed as close to the board surface as possible to make the tie as thin as possible (it will still be quite a high profile tie!). If the holes in the board were made big enough for the collars to pass through there would have been virtually no pad left. This being the case, you'll have to use a file on the LED leads before positioning them on the PCB.

Now to the links. There are a number of ordinary wire links on the component side of the board and nothing more need be said about these. Because the rows of LEDs occupy the full width of the PCB, however, not all the required links could be accommodated in this way. This being so, there are a number of links which need wiring to the track side of the board. These are shown on the component overlay as letters in circles, matching pairs of which are interconnected. So, (A) to (A), (B) to (B) through to (S) to (S) should be joined using insulated wire.

Nothing else concerned with the true electronic construction need special attention. Now the inserting of the PCB into the tie. Starting at the fat end, the stitches on the back of the tie should be unpicked for the length of the main PCB so that the back may be opened up. If the tie is like the one I used, you'll find a piece of white gauze material inside which should be cut off at the point the tie has been un-stitched to. Failure to do this will cause the stripes to diffuse on illumination and hence not be well defined. Matching lengths of self adhesive Velcro tape should be stuck onto the two edges of the material at the back of the tie so that it may be firmly fastened round the PCB.

A final note on putting the tie on. It will prove totally impossible to tie the tie in the normal manner with a PCB stuffed inside it! It is suggested that the tie is first tied without the PCB and adjusted to the correct length. Now the tie should be loosened by pulling the knot so that it can be removed over the head without undoing it. Having removed the tie in this way the PCB should be inserted and the tie "Velcroed" up before passing it back over the head and re-tightening.

The ribbon cable passes between a couple of shunt buttons so that the control box may be placed in a side trouser pocket.

The Future

The whole field of opto-electronic clothing in general and multi-mode ties in particular is in its infancy and undoubtedly new developments will follow thick and fast. So, to whet the appetite we thought we'd mention some of the possible improvements to the Kinetotie and new related projects under consideration.

The main drawbacks of the current design result from the use of LEDs which because of their height make the tie rather thick and because of their being mounted on a PCB make it somewhat rigid. Both these limitations could be overcome by incorporating optical fibres into the actual fabric of the tie.

Power consumption also proves a problem if...
prolonged use is required (especially in a non-kinetic mode). Possible solutions here include high efficiency solar panels fitted into a bowler hat and a mains adapter for those instances where limited movement is acceptable (in the boardroom for instance). Use of the tie in either the UK or the US is
straightforward but how many people would be able to say with confidence which mode would be appropriate in say the Cape Verde Islands? This brings us to the top of the range executive mode.

Complete with a satellite based navigational system, the latitude and longitude are passed to the on-board (on-tie, rather) computer which calculates the country and from this the required mode. In countries such as Australia where both tie modes seem to be commonly used, the mode would be selected at random.

Enough of ties, the pièce de résistance currently under consideration is the multi-tartan kilt (with optional sporran and MIDI-pipes to match). Whereas the electronics is well proven technology we are having considerable difficulty in finding weavers on the Isle of Harris with experience of incorporating fibre optics into the tweed (although one or two crofts in the Quidnish area look promising). Nevertheless, obstacles are there to be overcome so keep watching these pages — perhaps a few years yet but certainly at this time of year!

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4 W 5%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,2</td>
<td>82k</td>
<td></td>
</tr>
<tr>
<td>R3,20,26-27</td>
<td>10k</td>
<td></td>
</tr>
<tr>
<td>R4,6,10,13,16</td>
<td>220R</td>
<td></td>
</tr>
<tr>
<td>R5,7,11,15,17</td>
<td>100R</td>
<td></td>
</tr>
<tr>
<td>R12,14</td>
<td>180R</td>
<td></td>
</tr>
<tr>
<td>R18,19</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>RV1</td>
<td>470k Lin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1μF tantalum</td>
<td></td>
</tr>
<tr>
<td>C2,4,5</td>
<td>10μF ceramic</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>100n ceramic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>74LS393</td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>2764</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>ULN2003</td>
<td></td>
</tr>
<tr>
<td>Q1,4</td>
<td>BC327</td>
<td></td>
</tr>
</tbody>
</table>

LED1416

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>2x4V battery (2x AA NiCd)</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>4x1V battery (4x AA NiCd)</td>
<td></td>
</tr>
<tr>
<td>SW1</td>
<td>Double pole rocker</td>
<td></td>
</tr>
<tr>
<td>SW2</td>
<td>Single pole push button</td>
<td></td>
</tr>
<tr>
<td>PCB Baterry holder. 9-way ribbon cable Case 95x71x35mm. Red or pink tie.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUYLINES

Most parts are readily obtainable from the usual sources. This includes the PCBs which are available from the ETI PCB service. The LEDs used are rather specific and the only known source is Farnell Electronic Components Ltd (Tel: (0535) 6383111 where the part number is V 530PA. For those without a trade account, Farnell's parts may be purchased for a small commission from Trilogic (Tel: (0274) 691115). The LEDs specified are quite expensive. For those wishing to build a less expensive Kinetotie, ordinary round LEDs could be used but the stripes will then be made up of dots rather than solid.

For those without EPROM blowing facilities, a programming service is available from PLS (Tel: 01-330 6540).
Keith Brindley builds a snappy project for beginners to turn your camera into a sophisticated remote-triggered device.

To start we must make it clear that this project is not in itself a particularly useful addition to your camera gadget bag. It can be used to control the camera’s shutter release but its real advantage will be found later. You see, the ETI Camera Controller acts as a multi-function, electronic shutter release interface which, in the future, can be used with other projects which allow the camera to be remotely operated in a wide variety of ways.

The later projects (all 1st Class) will include:

- a light-beam trigger — when someone or something interrupts an infra-red beam of light, the camera will be triggered. Ideal for candid shots of, say, birds entering or leaving a bird-house or surprise shots of intruders breaking into guarded premises
- a sound-operated trigger — to trigger the camera on the detection of a sound
- a remote trigger — to operate the camera from a distance for, say, self-portraits
- a fixed-interval timer trigger — allowing photographs to be taken at a number of fixed times, to show, say, a flower head opening up in stages through the day
- a variable-exposure time trigger — allowing the camera to be triggered for longer periods than are available on the camera’s built-in exposure time mechanism

The Camera Controller links to your camera with a standard cable release, operating the cable release (with the help of a low-voltage solenoid) to trigger the camera on reception of an electronic pulse. So, quite simply, the project interfaces the mechanical shutter release of the camera to the electronics world. The camera then, effectively, has an electronically-operated shutter release. With the addition of one or more of the later projects listed here it becomes quite a sophisticated photographic tool.

The design is for battery-powered operation — if you’re going to use such a device to trigger your camera outside it’s hardly likely you’ll have a mains power point at the camera’s position. So the solenoid used is of low-voltage (12V) operation. However, the power required to operate a cable release and a camera’s shutter is quite large so the solenoid is a beefy one, which requires a fair current (about 1A). Your common-or-garden dry cell isn’t going to be able to provide the current needed. Instead, you should use two, PP3-sized NiCd batteries. These have two advantages. They are rechargeable and their operating voltage (8.4V, 16.8V in series) is within the maximum 18V limit for the integrated circuit used — a CMOS device. Alkaline batteries could provide a voltage of exactly 18V — too close for comfort.

Observeant readers will note the use of a cheap Darlington pair transistor to ensure a low source current requirement from the CMOS chip, while providing adequate drive current for the solenoid.

Construction

Circuit of the ETI Camera Controller is shown in Fig. 2. As usual in 1st Class projects, a choice of

HOW IT WORKS

Figure 1 shows a block diagram of the ETI Camera Controller. A bistable multivibrator (that is, a flip-flop) is used as an interface to incoming electronic shoot pulses. These pulses set or flip the bistable into the triggered state. Once set, the bistable cannot be re-triggered until it has been reset (flopped). Once set, the bistable output triggers a monostable multivibrator, with an on period of about one second. The monostable output controls a power switch which in turn controls a low-voltage solenoid. In addition to this automatic mode, the power switch can be controlled manually.

The circuit is shown in Fig. 2. Gates IC1a,b form the bistable multivibrator which is set by incoming shoot pulses and reset by incoming reset pulses. A LED is used to show when the bistable is set and to warn the user it must be reset before it will trigger the solenoid.

Gates IC1c,d form the monostable multivibrator which is triggered by the output of the bistable. Its on state is determined by the values of capacitor C5 and resistor R8, following the approximate relationship:

\[\text{Time} = 0.8 \times C_5 \times R_8 \]

which, for the given component values, is as near as dammit 0.8 seconds.

Output of the monostable drives the power switch, formed by power Darlington transistor Q1. This directly drives the solenoid. Diode D3 is incorporated in parallel with the solenoid, to prevent the back EMF generated when the solenoid is de-energised from damaging the transistor. This is effectively shorted to the positive power supply rail through the diode.

Manual override of the power switch is provided by resistor R10, which, when connected to the positive supply rail, creates a secondary base current to transistor Q1, cancelling all effects of the preceding circuit.
construction techniques is offered: printed circuit board or stripboard. Both methods are straightforward and apart from a few points are more-or-less self-explanatory.

On PCB, construction doesn't need to follow any particular order, although it's probably best to leave the integrated circuit till last. PCB layout, component overlay and wiring details are shown in Fig. 3. If you aren't too sure, insert components following an imaginarily logical order of complexity. That is, insert and solder passive components first (resistors then capacitors), simple semiconductors second (diodes then the transistor) and the complex semiconductor (the integrated circuit) last.

Although a socket was used in the prototype to mount the IC, it's by no means essential, and 4011s aren't too pricey anyway, so it can be soldered directly into the PCB without worry. Nevertheless, if you're not using a socket, go easy on the heat. Solder one pin then leave the IC to cool before moving on to solder the next pin.

On stripboard, it's probably best to follow this order of inserting and soldering components pretty rigidly. The stripboard layout, component overlay and wiring details are shown in Fig. 4. Before you start, however, make all copper track cuts then insert and solder all wire links. It's far easier doing all these fiddly

PARTS LIST

RESISTORS (all 1/4W 5%)
- R1,2,3,5,6,7 100k
- R4 4.7
- R8 2M2
- R9,10 10k

CAPACITORS
- C1,2,3,4 100n polyester
- C5 470n foil

SEMICONDUCTORS
- IC1 4011
- Q1 TI121
- LED1 red LED
- D1,2 1N4148
- D3 1N4001

MISCELLANEOUS
- B1 16.4V battery (2xPP3 NiCd)
- SOL1 12V DC 10W solenoid

Fig. 2 Circuit diagram of the camera controller

Fig. 3 The PCB component overlay

Fig. 4 The stripboard track cuts and component overlay
things before components are mounted.

On either PCB or stripboard, it's a good idea (though, again, by no means essential) to use circuit board pins where all off-board wire connections are to be made. Their use means it is simple to make a connection, particularly so after the board has been fastened down.

Whichever construction method you choose, check that no solder links or bridges are present between components or IC pins.

Although we've offered no suggestions for housing your completed project, any suitably-sized box can be used. It's here, however, that the interface between the project and the cable release takes place, using a solenoid. So this is where readers may have to use a little ingenuity to ensure the solenoid operates the release satisfactorily.

A possible method of linking the solenoid to the cable release is shown in Fig. 5. As the solenoid is energised, its plunger must push into the cable release's operating pin. The method shown couples the cable release's operating pin directly to the solenoid's plunger giving a pretty 'solid' and robust interface.

Setting Up

There's not a lot to do here. Test the project initially unconnected to the camera. When power is first applied, the LED may light. If so, connect between the two reset terminals (using, say, a screwdriver) and the LED will go out. Now, connect between the shoot terminals — the solenoid should energise for a short while (about one second) then stop. The LED should now be lit. Further attempts to connect the shoot terminals should not operate the solenoid. Resetting the project, however, by connecting the reset terminals will allow the shoot terminals' connection to energise the solenoid again.

It should be noted, here, that although we've been talking about connecting between terminals to provide shoot and reset triggers — by touching the terminals with a screwdriver — there's nothing to stop switches being used. Also, for future use, these triggers will be generated electronically by other circuits — negative-going pulses will trigger both shoot and reset.

The shoot-then-reset operation can be effectively over-ridden by connecting the manual terminals — the solenoid should energise for as long as the manual terminals are connected.

PCB DESIGNER
FOR THE 48K ZX SPECTRUM

Now you can produce high quality printed circuit boards / circuit diagrams / component layouts on your 48k zx spectrum. If you don't own one its worth getting one just for this suite of programs!

PCB LAYOUT:

Produce quality printed circuits directly from your EPSON RX/FX or compatible dot matrix printer using a dense 14 pin and pin positive photoresist coated board. Or super quality using 2D printed and photoreduction; many features such as 15 track widths; 1:1 or 2:1 dumps: preview; undo; dimensionally accurate printer (ideal for earth plane); 0.1" grid on/off; Block move; copy; mirror; clear uncluttered view of pads tracks and drill holes; large multi screen WYSIWYG display gives a positive photoresist coated board. Or super matrix printer using a dense 11 printout on from your EPSON RX/FX or compatible dot

COMPONENT LAYOUT:

Draw component layouts directly or from existing pcb layouts using a unique track-reducing routine with quick print; 1:1 or 2:1 dumps: preview; undo; dimensionally accurate printer (ideal for earth plane); 0.1" grid on/off; Block move; copy; mirror; clear uncluttered view of pads tracks and drill holes; large multi screen WYSIWYG display gives a positive photoresist coated board. Or super matrix printer using a dense 11 printout on from your EPSON RX/FX or compatible dot

CIRCUIT DIAGRAMS:

Features similar to the above programs with library of electronic symbols including resistors, capacitors, diodes, transistors, ICs, op-amp, switches, inductors, logic gates; NOT AVAILABLE SEPARATELY.

BUYLINES

The solenoid is the only difficult bit and it's available from Electromail as part 349-709. For a suitable cable release for your camera, call in at your local camera shop!
In this final part of the Intelligent Plotter we look at the central processing board, keyboard and interface devices. A single 8-bit microprocessor is used to control all of the functions and outputs of the Plotter using three 8K EPROMs holding the program, the various look-up tables, the upper case character set and the test routine co-ordinates.

The PCB was designed to be versatile enough to be used for other interface projects and accordingly a considerable amount of external interface porting has been provided (six 8-bit ports + interrupts) together with 8K RAM and 24K ROM.

Battery-backed RAM can facilitate some further development if required using any suitable 6502.
OPERATING INSTRUCTIONS

1. Connect the Plotter to a 240V 50Hz mains supply. The start up symbols [] should appear on the X and Y axis displays.

 If the start up symbols do not appear then press the reset key on the keyboard to initialise the system. If the symbols still do not appear refer to the setting up procedure.

2. After reset, manual operation via the joystick is possible although the exact position will not be shown on the display until the datum procedure has been completed.

3. A keyboard test is available at this stage (before datumming) by pressing any key. The key value and also the ASCII value of the key pressed will be shown on the displays as a decimal value. Some keys are active at this stage so will not show their value.

4. Pen speed of manual and automatic modes can be changed by pressing the 'S' key. The display subsequent to pressing the 'S' key will be as follows:

 BASE SPEED
 RAMP RATE INCREASE VALUE

 To modify the base speed between its limits of 001 (slow) and 254 (fast) press key B then either + or -. The return key loads into memory.

 The ramp speed is varied from 1 (slow ramp) to 8 (fast ramp) by R followed by + or -. The maximum speed is determined by the base speed added to the increase value. This defaults at 82 and is modified by key I followed by + or -.

5. To datum the plotter and reset the display simply press the datum' key. The X and Y axes will move to the bottom left 0.0000, 0.0000 and the display will reset.

 To optimise the speed parameters from the default values, press 'S' and 'I', reduce the increase value to 1. Press 'B' and increase the base speed until loss of step is reached then bring it back four steps to ensure stability. Then increase the max speed into its slew range, again back off by 2 when step is lost.

 Lastly increase ramp rate until step is lost then reduce by 2.

Coordinate Programming

A series of coordinates may be programmed into memory to be run in order on execution. So to draw the star shown on the left the sequence of key entries would be as follows: prog, 1, return, X, 681, return, pen, Y, 500, return, prog, 2, return, X, 1451, return, Y, 1059, ..

To plot from program 1 onwards, press the auto key twice. The speed may be adjusted by using the 'S' key. The programmed data can be checked prior to plotting by pressing the program key followed by the program number to be checked. Pressing the shift key then displays the contents.

Memory Usage

The Plotter's memory is divided into eight 8K sections selected by IC6 (see Fig. 1).

The IRQ, NMI and RESET co-ordinate vectors are of course held in the top of the memory map to point the program counter in the right direction when required to do so.

A 6502 8-bit microprocessor controls the development system (a BBC computer was used to develop the Plotter software).

Fig. 3(a) Circuit diagram of the central processor board and power supply
HOW IT WORKS

The circuit diagram is shown in Fig. 3. IC1 controls all the functions of the plotter. A clock signal of 4MHz derived from XTAL1 and part IC3a,b is divided twice by IC7 to provide a 1MHz clock input.

IC1 is reset on switch-on by pressing SW1 manually. A reset can also be made from the keyboard.

IC1 NVI (non-maskable interrupt) is not used and held high by R4. IRQ (maskable interrupt) is connected to the VIAs to inform the central processor (IC1) that an interrupt has occurred. The software then interrogates the processor flags to determine the origin of the interrupt.

IC6 is a 3 to 8 decoder and is used to divide up the 64K memory into eight sections. This provides for 8K of RAM, 24K of ROM and space in this article to cover in depth the programming of the VIAs

ICB, IC3 and IC10 are used to enable the RAM and ROM when appropriate during read and write cycles. The display segments are driven by IC17 (741s471 which uses four ports of IC16 (6522 VIA). The displays are selected by the appropriate binary code to IC11 (74ls145 decoder) using the remaining four ports of IC16's port B.

Darrington drivers IC12 and IC13 and transistors Q1 to Q8 are used to switch on the selected display. Originally dropper resistors were used to limit the current to the displays, but subsequently omitted when the software was rewritten making them redundant.

Port A of IC16 VIA controls the plotter's mechanics as follows:

PA0 Direction Y axis
PA1 Pen control
PA2 Direction X axis
PA3 Step X axis

Initially ports A and B are both configured as outputs (by writing '1' to DDRA and DDRB).

Movement of the axis is achieved by sending a '1' to the appropriate step line for each 0.1mm movement and sending a 0 or 1 to the respective axis direction port output. There is not enough space in this article to cover in depth the programming of the VIAs but interested readers should obtain a copy of the 6522 data sheet from their usual electrical supplier.

The Keyboard

The keyboard (Fig. 2) is a 64-key QWERTY type,
which allows the user to type upper case text directly. The prototype used an old Commodore Vic20 keyboard from a local electronics rally, which had the bonus of two 6522 VIAs and a 6502 all socketed on its single PCB. Any 8x8 keyboard could be adapted. The ‘reset’ key shown could be a spare key on your keyboard or a separate switch on the plotter itself. Note also that the manual control switches can be connected to a 4-switch joystick as shown.

The keyboard scan utilises port A and port B of the VIA at &8000 in the memory map (IC14). The 8-bit VIA port A is configured as an output and the 8-bit port B as an input. All the bits of port A are set to ‘0’ so that when no keys are pressed the inputs to port B will always be held high (&FF). The software looks for a change in port B then interrogates each row to find which one has been switched.

This established port A is then loaded with a single ‘0’ which is ‘walked’ across the port until the column is found. A small software delay is included and the key checked once more, if the result is not the same as previously the routine is not executed.

When the key pressed has been identified an index is used to locate the ASCII value in a look-up table held in ROM.

Plot Routine

The flow diagram for the plotting routine is shown in Fig. 4. This routine was a major stumbling block—clearly you cannot simply instruct the X motor to run from X1 to X2 and the Y motor from Y1 to Y2 and expect them to run at the appropriate speeds for a straight plot.

The method finally chosen involves checking whether moving the X-axis, the Y-axis or both together will bring the plotter closest to the final position. Thus there are eight possible segment directions corresponding to N,S,E,W,NW,NE,SW and SE. These are followed until the final position is reached.

Speed Control

To achieve the optimum speed from the stepper motors some form of speed ramping must be applied.

In the software I have used a look-up table (see
Fig. 1) which contains the necessary delay changes to produce a smooth ramp.

The speed can be changed using three parameters, namely base speed, top speed and ramp rate. These three parameters can be changed independently from the keyboard to produce the optimum speed parameters for a given set of mechanics and stepper motor.

Construction
The component overlay for the processor board is shown in Fig. 5. Construction should be performed with care but should hold few difficulties. Note that there are quite a few links to be made, ensure that the longer ones cannot stray to other links or components.

The displays should be fitted into strip sockets without reducing their lead length. I recommend that you socket all ICs.

You will notice that there is provision for expansion (ten displays for example), so don't panic when you realise there are unpopulated holes left at the end of construction.

Fit the voltage regulator as shown in the February.

ETI APRIL 1989
issue (Fig. 3) and do not solder it until all the screws are fully tightened.

Testing

With all ICs out, check that T1 is producing 6V at 50Hz and that the power supply is giving between 5.0V and 5.2V to the PCB — this can be raised by increasing R45.

Switch off power and insert IC7 and IC9, then check that a 1MHz clean squarewave appears at the clock input of IC1 (pin 37). If it isn’t there check from the crystal through IC7 for faults.

Now insert ICs 1,6,7,8,9,10,11 making absolutely sure their orientation is correct.

To check the microprocessor, wire up a 28-pin turned pin socket as shown in Fig. 6. Inserting this in any of the EPROM sockets will give 10101010 in binary on the data bus — a NOP instruction. Switch on and check the address bus: A0 should have a 125kHz square wave, A1 62.5kHz, A2 31.25kHz and so on, halving the frequency each time. If this works you should have a working unit, if it doesn’t then get your meter out and check for shorts and breaks.

Power Supplies

Separate power supplies have been specified for the microprocessor PCB, stepper motor drive boards and solenoid driver. These individual power supplies (including fuse holders) are not mounted on the printed circuit boards but bolted to the chassis then hard wired according to the respective circuit layout.

Note all 0V power supply feed lines should be connected to the chassis at a single point using an earth bolt to reduce voltage build up between return earth paths.

Using separate supplies allows constructors to build up and use the various parts of the project independently. Anyone deciding as an alternative to amagamate all the power supplies from one transformer should take steps to prevent surges (caused by the inductive loads of the solenoid and stepper motors for instance) from reaching the 5V microprocessor board supply.

BUYLINE

IC3,4,5 are available ready programmed from the author for £15 each. A 40-track disc with source code for all three costs £9 from Mr R. Joyce, 104 Crathorne Ave, Handsworth Wood, Birmingham B20 1LN.

All the other components are available from Farnell on (0332) 636311. Farnell will deal only with account holders but Trilogic on (0274) 684299 can obtain Farnell components for individuals.

The following are Farnell’s ref. nos for components — C3,4,5 (100-9041; SKT1-41176-371); XTAL11103-8781; joystick1148-2121.

All the other components are available from Farnell on 10532) 685109. Farnell also supply Farnell’s ref. nos for components: C3,4,5 (100-9041; SKT1-41176-371); XTAL11103-8781; joystick1148-2121.

All the other components are available from Farnell on 10532) 685109. Farnell also supply Farnell’s ref. nos for components: C3,4,5 (100-9041; SKT1-41176-371); XTAL11103-8781; joystick1148-2121.

All the other components are available from Farnell on 10532) 685109. Farnell also supply Farnell’s ref. nos for components: C3,4,5 (100-9041; SKT1-41176-371); XTAL11103-8781; joystick1148-2121.
KITS & COMPONENTS

ELECTRONIC GUARD DOG

One of the best burglar deterrents is a guard dog and this kit provides the barking. Can be connected to a doorbell, pressure mat or any other intruder detector and prevents random threatening barks. All you need is a mains supply, intruder detector and a little time.

XX125
£24.00

DISCO LIGHTING KITS

DL8000K 8-way sequencer kit with built-in go-to-switched point to light input. Only requires a box and control knob to complete.
£31.50

DL1000K 4-way chaser features bi-directional sequence and dimming
£19.25

DL2000K Uni-directional version of the above. Zero switching to reduce interference
£16.80

DLA1 (for DL & DL2000K) Optional op. input allowing audio 'beat' right response
77p

DL3000K 3-channel sound to light kit, zero voltage switching, automatic level control and built-in mic.
£19.25

POWER STROKE KIT

Produces an intense light pulse at a variable frequency of 1 to 15Hz. Includes high-quality PCB, components, connectors, diesel tube, fuse and assembly instructions. Supply 240V ac. Size: 80x50x45.
£4.25

SIMPLE KITS FOR BEGINNERS

Kits include all components (inc. speaker, white unit) and full instructions.
SK1 9085 CHIME play a tune when activated by a pushbutton.
£2.90

SK2 WHISTLE SWITCH switches a relay on and off in response to whistle activation by a pushbutton
£3.90

SK3 DOOR CHIME play a tune when actuated by a pushbutton
£3.90

VERSATILE REMOTE CONTROL KIT

Includes all components (+ transformer) for a sensitive IR receiver with 16 logic supplies (0-15V) which with suitable interface circuitry (relays, transistors, etc + details supplied) can switch up to 16 relays of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder ID and a 15V stabilised supply is available to drive external circuits. Supply: 240V AC or 15-24V DC at 10mA. Size (ex. transformer) 9 x 4 x 2.2 cm.
£16.30

MK18 Transmitter
£7.50

MK8 4-way Keyboard
£2.20

MK10 16-way Keyboard
£6.50

601135 Box for Transmitter.
£1.80

SUPER-SENSITIVE MICROBUG

Transistorised version of the Mk18, substantially more sensitive.
£5.50

MICROPROCESSOR TIMER

Kit controls 4 outputs independently. Switching on fall at 10 second intervals over a 7-day cycle. LED display of time/day easily programmed. Includes box.
£47.20

XX114 Relay kit for CT6000 includes PCB, connectors and one relay. Will accept up to 4 transistors.
£1.75

STEAMPAK ELECTRONICS

VOICE RECORD/PLAYBACK KIT

This simple to construct and even simpler to operate kit will record and playback short messages or tunes. It has many uses - seashell or lights reminder in the car, welcome messages to visitors at home or at work, warning messages in factories and public places, in fact anywhere where a spoken message is announced and which needs to be changed from time to time. Also suitable for toys - why not convert your daughter’s £8 doll to an £80 talking doll!!

XX129
£19.25

TEN EXCITING PROJECTS FOR BEGINNERS

This kit contains a solderless breadboard, components and a booklet with instructions to enable the absolute novice to build ten fascinating projects including a light operated switch, intercom, burglar alarm and electronic lock. Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section on component identification and function is included, enabling the beginner to build the circuits with confidence.

XX118
£15.00

MICROPROCESSOR TIMER

Kit contains 4 outputs independently. Switching on fall at 10 second intervals over a 7-day cycle. LED display of time/day easily programmed. Includes box.
£47.20

XX114 Relay kit for CT6000 includes PCB, connectors and one relay. Will accept up to 4 transistors.
£1.75

SUPER-SENSITIVE MICROBUG

Transistorised version of the Mk18, substantially more sensitive.
£5.50

VERSATILE REMOTE CONTROL KIT

Includes all components (+ transformer) for a sensitive IR receiver with 16 logic supplies (0-15V) which with suitable interface circuitry (relays, transistors, etc + details supplied) can switch up to 16 relays of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder ID and a 15V stabilised supply is available to drive external circuits. Supply: 240V AC or 15-24V DC at 10mA. Size (ex. transformer) 9 x 4 x 2.2 cm.
£16.30

MK18 Transmitter
£7.50

MK8 4-way Keyboard
£2.20

MK10 16-way Keyboard
£6.50

601135 Box for Transmitter.
£1.80

SUPER-SENSITIVE MICROPORUS

Transistorised version of the Mk18, substantially more sensitive.
£5.50

VERSATILE REMOTE CONTROL KIT

Includes all components (+ transformer) for a sensitive IR receiver with 16 logic supplies (0-15V) which with suitable interface circuitry (relays, transistors, etc + details supplied) can switch up to 16 relays of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder ID and a 15V stabilised supply is available to drive external circuits. Supply: 240V AC or 15-24V DC at 10mA. Size (ex. transformer) 9 x 4 x 2.2 cm.
£16.30

MK18 Transmitter
£7.50

MK8 4-way Keyboard
£2.20

MK10 16-way Keyboard
£6.50

601135 Box for Transmitter.
£1.80

VERSATILE REMOTE CONTROL KIT

Includes all components (+ transformer) for a sensitive IR receiver with 16 logic supplies (0-15V) which with suitable interface circuitry (relays, transistors, etc + details supplied) can switch up to 16 relays of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder ID and a 15V stabilised supply is available to drive external circuits. Supply: 240V AC or 15-24V DC at 10mA. Size (ex. transformer) 9 x 4 x 2.2 cm.
£16.30

MK18 Transmitter
£7.50

MK8 4-way Keyboard
£2.20

MK10 16-way Keyboard
£6.50

601135 Box for Transmitter.
£1.80

VERSATILE REMOTE CONTROL KIT

Includes all components (+ transformer) for a sensitive IR receiver with 16 logic supplies (0-15V) which with suitable interface circuitry (relays, transistors, etc + details supplied) can switch up to 16 relays of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder ID and a 15V stabilised supply is available to drive external circuits. Supply: 240V AC or 15-24V DC at 10mA. Size (ex. transformer) 9 x 4 x 2.2 cm.
£16.30

MK18 Transmitter
£7.50

MK8 4-way Keyboard
£2.20

MK10 16-way Keyboard
£6.50

601135 Box for Transmitter.
£1.80
Rod Cooper beats time with a reaction timer project for quick wits

Probably the simplest method of timing human reaction is by dropping a ruler, the time being measured indirectly by the distance needed along the ruler for the subject to catch it. Most readers will be familiar with this test from their schooldays.

In practice this method suffers from a number of disadvantages. For example, it cannot be used for anything other than a visual stimulus, as it is not really feasible to incorporate an audible or touch stimulus into such a simple technique. Also, it is unreliable because of the likelihood of the operator giving the subject an inadvertent 'cue' just before dropping the ruler.

The method then becomes more of a test of a person's ability to perceive these small cues from the operator rather than a true test of reaction time. Because of these snags, most serious operators use more sophisticated methods.

There are many advantages to using an electronic meter both to give the stimulus and to record the time as a direct reading in fractions of a second. Firstly, the choice of stimulus can be made very wide. Not only can visual stimuli be given but these can vary as to colour and intensity, and can be as simple as one light coming on to a complex stimulus such as recognising a pattern out of a multitude of lights.

Similarly, an audible stimulus could be just a buzzer or could vary as to pitch and amplitude or could be a pattern-recognition type. Response to touch and small electric shocks can also easily be made part of an electronic measuring system. This reaction timer is a basic meter giving one simple audible or visual cue in the form of a buzzer or a light but can easily be expanded to give more difficult stimuli by adding on extra circuitry.

A second advantage is freedom from cueing errors. The distance between the operator and the subject is only limited by the length of the flex between the operator's console and the subject's stop-button. The two could be in separate rooms to completely eliminate the error but it is more usual to have a more reasonable distance, with a screen in between.

A third advantage is that the subject can easily give the stop signal via a foot-pedal instead of by hand and this provides an alternative path for nerve impulses. It can be instructive to compare the two paths, bearing in mind that the fastest nerve impulse travels at about 80m/s.

A fourth small advantage is that the electronic method is more accurate from the timing point of view. Quartz-crystal control and a digital display gives an accuracy impossible using a mechanical technique. Human reaction timing is used in some types of aptitude testing and also forms part of the new GCSE course in psychology. Reaction timers are available commercially but tend to be expensive, so this design provides an inexpensive alternative as well as being a good educational project.

The timer is also useful in other fields with a little adaptation. It could be used for measuring the transition time of a moving object between two points by substituting the stop-start push-buttons for either microswitches or simple opto-electronic switches. It is also possible to change the timing range, and ways of doing this are described later.

Circuit Description

The circuit is shown in block form in Fig. 1. Starting and stopping the timer depends on push-button switches but these do not operate the circuit directly because of the errors that would be introduced by the shortcomings of mechanical switches. These are well-known defects and include electrical noise and contact bounce. Clean start and stop signals can be obtained without resorting to the complexities of contactless switches simply by feeding the mechanical signals to a bistable.

The bistable opens the gate when the start signal is given and also turns a transistor switch hard on. The transistor switch gives the subject a signal via a fast-response buzzer or via an LED for visual signals. Opening the gate allows a train of pulses from the crystal oscillator to be fed to the counter, which in turn operates the display drivers. The bistable closes the gate when the stop button is pressed, this stops the
HOW IT WORKS

Figure 2 shows the circuit. IC1a forms a crystal oscillator with the crystal being used in a Pierce circuit. The crystal specified is intended for use in this type of oscillator and should not be substituted. Other crystals may work in this configuration but the accuracy will suffer. The crystal frequency is 10kHz and this is fed to a CD4017 decade divider, IC2. The 1kHz output is fed to one input of gate, IC1b. The other input is controlled by the output from the bistable IC1c,d. The bistable output goes low when the start push-button is pressed, and opens the gate, and goes high when the stop button is pressed, shutting the gate.

Transistors Q1 and Q2 form a darlington switch, the output of which is connected to the buzzer or via a limiting resistor R16 to LED1. The counter and display-driver uses the MM74C925 which has all the necessary functions on one chip, giving a compact PCB. The MM74C925 is a CMOS 4-decade counter-driver consisting of a 4-digit counter, NPN output sourcing drivers for the standard 7-segment common cathode LED display and an internal multiplexing circuit with four outputs (A, B, C and D). These outputs switch external transistors Q3-6 at a frequency of 1kHz. The multiplexing circuit has its own on-chip oscillator which determines this frequency.

The MM74C925 also features an internal output latch, which although not used in this circuit, could be used for other applications. To operate the latch, a high or low transition on pin 5 is required to latch the number in the counter into the internal output latches.

Segment resistors R1-7 are needed to limit power dissipation in this hard-working chip. Nevertheless, good brightness is obtained using standard LED displays and this can be increased a little by reducing the value of segment resistors given (Fig. 3). It is a good idea, as the MM74C925 is not cheap by any means, to fit an IC heat sink if you do this.

Note that the decimal point is placed between the first two digits.

Power is supplied by three 1.5V dry cells. The circuit will work happily from a nominal 4.5V provided adequate decoupling capacitors are included.

ETI APRIL 1989
Construction

A plastic box with a metal front 150 x 200mm was used to house the display and main components. The depth of the box depends on whether C or D size cells are chosen to power the circuit. The sounder, LED

Parts List

Resistors (all 1/4 W 5%)
- R1-7: 68R
- R8,10,11,15: 10k
- R9: 10k
- R12: 22M (or combined equivalent)
- R13: 68k
- R14: 4k
- R16: 330R

Capacitors
- C1: 22p polystyrene
- C2: 33p polystyrene
- C3: 15p polystyrene
- C4: 220p polystyrene
- C5,6: 1000p 10V axial electrolytic

Semiconductors
- IC1: 4017
- IC2: MM74C925
- Q1,3-6: BC108
- Q2: BFY52
- LED1: Red LED
- LED2-5: 7-segment common cathode display

Miscellaneous
- B1: 3 x 1.5V batteries
- BUZ1: 3V DC buzzer
- SW1,3: Push to make switch
- SW4: SPDT switch
- XTAL1: 10kHz Statek CX-IV crystal

PCB, Case, Battery holder, Optional on/off switch, Wire, Nuts and bolts.

Fig. 3 Choosing an LED segment resistor for higher brightness or for different displays

Fig. 4 The component overlay for the Reaction Timer
and stop button are housed in a smaller, all-plastic box and are joined to the main circuit by flexible multicore cable. The length of cable is of course a matter of choice.

The PCB (Fig. 4) is held onto the metal front panel by two screws, one each side of the display. The display is thus pressed soldered direct. This is to give headroom for the other components on the board. The display is mounted in a holder on the PCB, not by two screws, one each side of the display. The battery of three cells is accommodated in cell holders screwed to the base of the main case underneath the PCB. To renew them it will then be necessary to remove the front plate. Alternatively, the cells can be held in a tubular holder which exits at the side avoiding the need for front panel removal.

The start and reset buttons can be mounted anywhere on the front panel, their position is not critical at all.

Developments

The MM74C925 has a frequency limit of around 4MHz which makes this circuit easily adapted to shorter timing periods. The frequency divider is needed because 10kHz is the lowest quartz crystal frequency easily available and this requires division to get a convenient scale. If you bypass the CD4017 then you shorten the scale to read from 0.001 to 0.999 seconds. It is possible to shorten the scale further by changing the quartz crystal to a higher frequency and this makes the circuit useful for the timing of the fast-moving objects mentioned earlier.

BUYLINES

A complete kit for this project is available from £36.49 including VAT from Magenta Electronics, 135 Hunter Street, Burton-on-Trent DE14 2ST. Tel: (0283) 65435. The PCB alone costs £5.75 from Magenta. POSTAGE IS 65 ON EITHER ITEM. 2ST. Tel: (0283) 65435. The PCB alone costs £5.75 from Magenta. A complete kit for this project is available from £36.49 including VAT from Magenta Electronics, 135 Hunter Street, Burton-on-Trent DE14 2ST. Tel: (0283) 65435. The PCB alone costs £5.75 from Magenta. A complete kit for this project is available from £36.49 including VAT from Magenta Electronics, 135 Hunter Street, Burton-on-Trent DE14 2ST. Tel: (0283) 65435. The PCB alone costs £5.75 from Magenta. A complete kit for this project is available from £36.49 including VAT from Magenta Electronics, 135 Hunter Street, Burton-on-Trent DE14 2ST. Tel: (0283) 65435. The PCB alone costs £5.75 from Magenta.

19" RACK CASES

* Suitable for instruments, high quality amplifiers and many other applications that demand strength and professional finish * New improved high quality metal construction * Heavy gauge steel * Rack mount or free standing Comes in quick assembly flat package spare front panels available

Please add £3.00 P&P for the first item and £1.50 for each additional item.

FREE! ILLUSTRATED CATALOGUES WITH RETAIL DISCOUNT VOUCHERS

Please state Trade/Education or Retail/ Mail order Send 124½" x 9" (A4) SAE £1.50 each or £3.00 for both

SMART • EASY TO USE • TOP QUALITY

Total £…… (Please make cheques payable to ASP Ltd.)

Please supply . Electronics Today International Binders £5.95 inc. P&P

Please allow 21 days for delivery

53
The Kinetotie tie board (in pieces!)

Combo-Lock (April 1988)
Transistors Q1,3,5,7,8 are incorrectly given as ZTX400. The correct part number is ZTX300.

Bicycle Battery Dynamo Backup
(June 1988)
C1,2 are incorrectly given as 2214 in the Parts List. The value of 220μ given on the circuit diagram (Fig. 1) is correct.

FM Stereo Decoder Update (July 1988)
R8 is given as 1OR in the circuit diagram whereas the correct value is 10k as in the Parts List. R27 is missing from the circuit diagram. This connects R25 to the 12V supply.

QLW Loudspeakers (August 1988)
Some dimensions were missing from Fig. 7. The bass driver port centre should be 3/4in above the base of the baffle panel. The notches in the side of the tweeter cut-out are 1/2in wide. The top plate is missing from the cutout diagram (Fig. 6). This is 7 x 4 1/2in.

EEG Monitor (September 1987)
The wiring for the switch SW1 in Fig. 5 shows all the wires for selecting Alpha and Beta waves swapped. A1 should read B, A2 should read B2 and so on. The easiest remedy is to swap the front panel labelling shown in Fig. 6 so that the switch labelling reads Theta, Beta, Alpha.

Chronoscope (November 1988)
In the overlay diagram for the counter PCB (Fig. 3) the polarity of C12 is shown the wrong way around. SW1a-d is shown as SW1-4. In Fig. 4 the cathodes of LED 8 and 9 are the righthand and lefthand pads respectively. The cathodes for LED 6,7 are marked as the wrong pin. In the text section on Battery Operation, Q1 should read T1. In Fig. 5 SW2 is incorrectly labelled SW5.

Doppler Speed Gun (December 1988)
In Fig. 2 the labelling of pins 7 and 4 of IC2 are transposed. IC10a Pin 1 and IC9d Pin 10 should connect together and not to the 5V rail. The positive terminal of C3 should connect to the junction of R2/R3. Pin 7 of IC2 should connect to the 12V rail and not to Pin 6/R1. So the pin labelling of CONN1 runs left-right on the overlay diagram, the corresponding labelling in Fig. 2 should be 3-1-2, reading downwards. Fig. 4 is correct in all respects except for the orientation of Q2 for which the e and e labels should be transposed. In addition the extra switch to be seen in the photograph of the prototype is a hangover from a previous incarnation. Just ignore it!

Burglar Buster (December 1988)
The foil part of the component overlay for the basic alarm (Fig. 1) was printed the wrong way around. It should be rotated through 180° as in Fig. 5.

Rev-Rider (January 1989)
In the parts list RV2 is incorrectly given as 33k. It should be 22k as in the circuit diagram. A 'blob' went missing from the circuit diagram. RV2, R7, R4, C1 and D3 should all be connected.
ETI Electronics

Today International

CLASSIFIED

Heather Wust
01-437 0699 Ext 292
Send your requirements to:
Heather Wust, ETI Classified Department, ASP Ltd.,
1 Golden Square, London W1.
Lineage: 54p per word VAT inclusive (minimum 15 words)
Semi Display: (minimum 2 cms)
£12.80 per single column centimetre + VAT
Ring for information on series bookings/discounts

All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

Start training now for the following courses. Send for our brochure —
without obligation or Telephone us on 0626 79398

NAME

☐ Telecomms
Tech C&G 271
☐ Radio Amateur
Licence C&G
☐ Micro-
processor
☐ Introduction to
Television

Radio & Telecommunications Correspondence School,
12, Moor View Drive, Teignmouth, Devon. TQ14 9UN.

NEWARK TECHNICAL COLLEGE

offers a wide range of full-time Music Industry and Technology Courses including
BTEC National Diploma in MUSICAL INSTRUMENT ELECTRONICS — 2 years
(with recording studio option)
CERTIFICATE in MUSIC INDUSTRY MANAGEMENT — 1 year
DIPLOMA IN MUSIC INDUSTRY STUDIES — 2 years
Details from the Principal,
Newark Technical College, Chadderty Park, Newark, Notts. Tel: (0563) 705921

OPEN DAY 9th JUNE 1989

Nottinghamshire County Council

Education

SURVEILLANCE

ESKAN ELECTRONICS

LEADING MANUFACTURERS AND SUPPLIERS OF
SECURITY EQUIPMENT.

MINIATURE TRANSMITTERS, TELEPHONE MONITORING
EQUIPMENT, AND MANY OTHERS

Send stamped addressed envelope for your free
catalogue to:
172 Caledonian Road,
London N1 OSG.

Computer Repairs

HINDLEY ELECTRONICS

97 Market St, Hindley, Wigan WN2 3AA
Tel: 0942 522743

PCB's

PRINTED CIRCUIT BOARDS. Low cost production service: 5p per square centimetre (less for orders of 10 plus) one offs, 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire CV11 5JL. Telephone (0203) 382296.

COPY DEADLINE FOR THE JUNE ISSUE IS 23rd MARCH

OMICRON 2 — THE PRACTICAL surveillance solution. Less than ½
matchbox sized, shockproof unit with whisper sensitive microphone, quarter mile range on domestic FM radio, 72hr battery life and full 12 month warranty. Easy to use, many applications. Only £153.55 each. 14-day money-back guarantee — Milla Electronics, 470-472 Leymoor Road, Huddersfield, HD7 4GF. Special offer! Free COD on ordered phones (0484) 460103 24hr.

JPG Electronics

Head Office: 56 Fleet Road, Bennett, Essex SS7 5JN.
Telephone 01-499 3990

Radio & Telecommunications Correspondence School,
12, Moor View Drive, Teignmouth, Devon. TQ14 9UN.

PCB's

PRINTED CIRCUIT BOARDS. Low cost production service: 5p per square centimetre (less for orders of 10 plus) one offs, 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire CV11 5JL. Telephone (0203) 382296.

FOR SALE

** ** RESISTOR PACKS ** **
1W 5% Carbon Film. 10 of each. E12 value, 100 to 1M, total 730 resistors
£8.00 UK only.

HINDLEY PRINTED CIRCUIT BOARDS

FAST + FAST + FAST = COMPUTER REPAIRS — STANDARD CHARGES

Commodore 16... £25 Commodore 41C £25
Commodore 64... £25 Commodore 81B ... £25
Commodore 616... £25 Commodore 61C... £25

For details telephone 0484 522743 — Callers welcome

RESIDENTIAL ELECTRONICS

276 Chatsworth Road, Chesterfield S40 2BH.
Access orders (0427) 215225 — Callers welcome

FOR SALE

MINIATURE TRANSMITTERS, TELEPHONE MONITORING EQUIPMENT, AND MANY OTHERS

Send stamped addressed envelope for your free

catalogue to:
172 Caledonian Road,
London N1 OSG.

Computer Repairs

HINDLEY ELECTRONICS

97 Market St, Hindley, Wigan WN2 3AA
Tel: 0942 522743

PCB's

PRINTED CIRCUIT BOARDS. Low cost production service: 5p per square centimetre (less for orders of 10 plus) one offs, 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire CV11 5JL. Telephone (0203) 382296.

COPY DEADLINE FOR THE JUNE ISSUE IS 23rd MARCH

OMICRON 2 — THE PRACTICAL surveillance solution. Less than ½
matchbox sized, shockproof unit with whisper sensitive microphone, quarter mile range on domestic FM radio, 72hr battery life and full 12 month warranty. Easy to use, many applications. Only £153.55 each. 14-day money-back guarantee — Milla Electronics, 470-472 Leymoor Road, Huddersfield, HD7 4GF. Special offer! Free COD on ordered phones (0484) 460103 24hr.

ETI APRIL 1989
I need a circuit to limit the revs on a motorcycle engine. The circuit must have an adjustable maximum RPM, and I must be able to switch it on or off. It must work with normal points or with an electronic ignition.

A good place to start on a project like this is with an IC widely used in ETI projects, the LM2917. This IC contains a charge pump controlled by an input comparator. The output of the charge pump is fed to an op-amp which drives an output transistor with enough current capacity to switch any reasonable size of relay.

The circuit shown in Fig. 1 feeds into the comparator via suitable filtering and protection components. The input signal may have interference and ringing on it, so the output of the comparator will (hopefully) be a clean rectangular wave at the frequency of opening of the points.

Charge is transferred from C4 and C5 at this frequency and leaked away through any possible means of providing positive feedback to the inverting input (positive feedback) could be provided from the collector of the output transistor. This alone, while not providing protection is required for the relay because any normal relay contacts are much smaller than the points. The large capacitor used conveys another advantage. The opening of the relay contacts could induce a spark, at a time not related to the normal operation of the ignition system. The large capacitor prevents this from happening and avoids the small risk of damage it would entail.

Of course, the circuit has no means of detecting the speed of the motor when the ignition power is switched off. It might be worth experimenting with a large value resistor in position R7 to energise the points just enough to generate a small signal (of perhaps a volt) to operate the charge pump, while not providing a spark. A good starting point might be 2.5W.

Choices

The circuit as shown is suitable for use on a 12V electrical system with conventional ignition or with electronic ignition which uses the points. It is possible to adapt the circuit of other situations but first all there are aspects of the basic circuit to experiment with. The voltage on C5 at any particular engine speed depends on the value of C4. The voltage should be measured using a high impedance voltmeter (such as a DVM) and if it is under 2V at the maximum speed, the value of C4 should be increased. If, however, the voltage is over 5V then the value should be decreased.

The time constant of C5 and R5 sets the hold off time — the time during which the ignition will not switch on again. The value shown is very short, but if a longer time is needed then the value of C5 may be increased. A 10µ electrolytic will give a useful fraction of a second.

The required decrease in speed to switch the ignition back on is set by R4. The value shown should work acceptably but a higher or lower value may be chosen to be more appropriate as a result of experiment. This will also affect the time constant set by R5 and C5, with higher hysteresis (lower R4) giving a longer time delay.

To make the circuit work on a 6V electrical system, it is necessary to omit R6 and use the LM2907, which does not have an internal zener diode. It is also necessary to use a voltage regulator with an output above 5V.

Andrew Armstrong
Indeed, it is quite common to find a CD player with a very clean output spectrum up to 500kHz or so while its performance between 1-10MHz is comparatively weak. Furthermore, it does seem that the players exhibiting an above-average RF output are also the ones that react unpredictably with different partnering amplifiers. Why should this be?

RF
So far there is some evidence to suggest that RF intermodulation distortion could be precipitated at the input of certain amplifiers, the products of which manifest their effects in the audio band. However, because the RF noise is itself uncorrelated with frequency (it is random) any products of IMD will also transpose as a random noise rather than as a discrete set of signals.

Consequently the dynamic effect of RF IMD is very difficult to measure. Listening tests have indicated that a randomly fluctuating noise floor — even 90-100dB down — is subjectively undesirable if only because your brain is trying to assess the myriad S/N ratios of a dynamic music signal against some arbitrary reference (noise) that keeps shifting in level!

It has been suggested that higher-order IMD products are responsible for the harsh, unforgiving or superficial treble quality associated with some CD players.

Naturally, the extent to which this occurs will depend on the specific combination of amplifier and CD player (standard RC RF decoupling at the input to an amp is largely ineffective, a small attenuation is all that can be hoped for).

This does go some way in explaining why there is a consensus concerning the sound of some CD players but not others. Another variable in this messy equation is the type of interconnect used between the CD player and amplifier.

Wired For Sound
Now I am not even going to attempt to pursue the more cynical ETI readers that bits of wine have a 'sound' all of their own. However in respect of our RF theory it is interesting to note the series resonant frequency of most cabs falls around the 6MHz mark — smack in the middle of a CD player's RF band!

One way or another things will undoubtedly hot up once we enter the RF-crowded European Market. Tighter controls on RF noise are bound to follow but I for one will be more interested in the subjective repercussions of such a trend.

Paul Miller

Evolution of the Intelligent Machine. A popular history of AI. By Geoff Simons. £18.50 from NCC Publications, Oxford Road, Manchester M17ED. Tel: 061-228 6333

This chunky book is an excellent chronicle of the emergence of modern robotics and cybernetics. Simons fills it with facts and figures from the ancient roots of mechanical and logic to the latest in neural net computers, taking in much territory that most programmers or engineers could regard as alien and (wrongly) irrelevant.

Simons given a wiz through the ancient world (mentioning contributions from India and China, which most writers leave out), tells us where Aristotle went wrong and then leaps on to Charles Babbage and the beginnings of modern computing.

Chapters 5 to 7 then take us through the 20th century when robots were the buzz and the invention of the transistor by, among others, the great William Shockley.

In line with his general policy, Simons fills us in on the why, where and by whom as well as the how of all stages. A rather lengthy detour through the basics of AI then brings us back to methods of control and so to the senior systems and robotics of today, with a Roundup of currently emerging techniques and future directions.

Throughout, the book is packed with detail including brief descriptions of the 'key' programs which most other books mention but do not explain. All in all, a great introduction to Weiner's 'cybernetics' — the study of the control of animal and mechanical devices.

Which leaves us with only two problems. The first is the title. Whatever its merits, the book is only peripherally about AI. The historical background is, until the mid 19th century, the history of mechanics, not of AI. Until the Victorians, who thought that everything could be mechanical (even space was meant of material).

This is the crucial change that makes AI possible but Simons only mentions it in passing on page 103 in the context of Shannon's work in information theory.

The autmation of previous centuries and indeed many of today are meant to be mechanisms that mimic humanity, as an 'intelligent' a king. They were not thought of as being intelligent, only looking it to, the amusement, a maze of fear of all around.

Society-Wide
The comments on the impact of AI in wider society are not essential for a real history, are also almost absent, and those that are are cliches, outdated before they were printed.

The theme of this book is to chronicle the rise of the 'intelligent' robot and for that purpose it is a mine of information. It is not a history, and it is only peripherally about AI. (And who does go down a mine for fun?)

There are a couple of other faults. No index, which in a book filled with facts is a disaster. The editor should have insisted on one. What use is it to be reminded of Margaret Boden's 'tin can' approach to AI on pages 243 and 269 when you cannot remember where you saw it explained?

Reliable
I wondered how reliable some of the information was — some seemed to have been taken almost verbatim from company handouts, like the 2½ pages on Logica's Logos system. This is not the most impartial source of material.

There are occasional lapses into jargon. Fascinating although 'use was made of a network of net convexity detectors ' may be, a little explanation would be nice (but such an easy trap to fall into! 99/100 for not doing it more often).

Also needed is some assurance that 'net' was not meant to be 'nett' as some of the mistakes are so frequent. The theme of this book is to chronicle the rise of the 'intelligent' robot and for that purpose it is a mine of information. It is not a history, and it is only peripherally about AI. (And who does go down a mine for fun?)

There are a couple of other faults. No index, which in a book filled with facts is a disaster. The editor should have insisted on one. What use is it to be reminded of Margaret Boden's 'tin can' approach to AI on pages 243 and 269 when you cannot remember where you saw it explained?