\\ \title{
ELECTRONICS\\ \title{
ELECTRONICS TODAY INTERNATIONAL
} TODAY INTERNATIONAL
}

THE ELECTRONICS, SCIENCE \& TECHNOLOGY MONTHLY
March 1888
£1.50

Telephone Indicator MIIDI Controller
Construction Set Computing

*PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDLY SERVICE * LARGE S.A.E., 30 p STAMPED FOR CURRENT LIST OMP VARISPEED TURNIABLE CHASSIS.

\star MANUAL ARM \star STEEL CHASSIS 』 ELECTRONIC SPEED CON

 SOEOH2
TEMPLATE PRICE $£ 59.99+£ 3.50$ P\&P.

STANTON AL500 GOLDRING G850 PRICE $£ 16.99+50 \mathrm{p}$ P\& P PRICE $£ 6.99+50 \mathrm{D}$ P\&P

 NCH STEREO RACK AMPLIFIEBS

NOTE:- MOS.FET MODULES ARE AVAL LABLE IN
PEC (PROFESSIONAL EQUIPMENT COMPATABLE)
MP10 R.M.S. Mk 11 Bi-Polar Output power 110 watts 30 KHz - 3dB . T. H. D. Frequency Response 15 Hz Max output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.

NEW SERIES II MOS-FET MODULES

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor, >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ T.H.D. Typical 0.002%, Input Sensitivity 500 mV , S. N. R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE $£ 39.99+£ 3.00$ P\&.

OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{US}$, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R. -130 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE £62.99 + £3.50 P\&P.
OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ - 3 dB , Damping Factor >300, Slew Rate 60 V uS T.H.D. Typical 0.0008%, Input Sensitivity 500 mV S.N.R. -130 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE $£ 79.99+£ 4.50$ P\&P.
TWO VEFSIONS STANDARD - INPUT SENS 50ZMV YAND WIDTH 100 HHz

NEW MXF SERIES OF POWER AMPLIFIERS
THREE MODELS:- MXF200 (100w + 100w) MXF400 (200w + 200w) MXF600 (300w + 300w)

FEATURES: \star Independen power supplies with wo Toroidal Transformers * Twin L.E D. Vu melers * Rolan, indended level controls *lluminated on ot swich * XLR connectors * Standard 775 mV Inputs * Open and shor. cricuit proof * Latest Mos.Fets for stress tree power delivery into vitually any load * High sew rate * Very low distortion *Aluminum cases *MXF600 Fan Cooled with D.C. Loudspeaker and Thermal Prolection. USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

MXF200 £171.35
PRICES: MXF400 $£ 228.85$ MXF600 £322.00
SECURICOR DELIVEHY $£ 12.00$ EACH
OMP LINNET LOUDSPEAKERS

the very best in quality ano value

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100 (100 W 100dB) PRICE $£ 159.99$ PER PAIR
OMP 12-200 (200W 102dB) PRICE 2209.99 PER PAIR SECUAICOR DEL:- £1200 PER PAIR

OMP SLIDE DIMMER 1 K WATT \& 2.5 K WATT

> * FULL 68 TRAVEL * NFON

MONITOR INDICATOR * FLASH OVERAIDE | BUTTON |
| :--- |
| \star HIGH | $*$ HIGH s

PRESETS PRESETS

* FIULY SU
TO BS BOD To
SIZES:
1KW H
$25 W$
 PAICES:- 1 K WATT $£ 15.99$
2.5 K WATT $£ 24.99+60 \mathrm{p}$ P P

PIEZO ELECTRIC TWEETERS-MOTOROLA

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the PIeZo revolution The low dynamic mass
Loin the Piezo revolution The low dynamic mass inc voce coll $z^{\prime}=P$ Ezc weeter produces an mproved transient
response with a lower distortion level than ordinary

PRICE $10.99+51.50$ P8P PRICE $\varepsilon 1299+\varepsilon 1.50$ P 8 P. PRICE $£ 16.49+£ 2.00$ P\&P. 1060 WATT EB10-60TC (TWIN CONE) HI-FI. MUITI-AR
RES, FREQ, 35 Hz . FREO, RESP. TO 12 KHz . SENS. 86dB
TRANSMITTER HOBBY KITS
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE
PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS

3W FM TRANSMITER 80-108M Hz VAAICAP CONTROLLED PROFESSIONAL PER-
FORMANCE. FANGE UP TO 3 MLES SIZE 38×123 mm SUPPLY $2 V$ ia $05 A M P$ FORMANCE, FANGE UP TO 3 MILES SIZE $38 \times 123 m m$ SUPPLY $12 V$ (a $05 A M P$
PRICE $£ 14.49+£ 1.00$ P\&P PRICE $\{14.49+£ 1.00$ P\&P

FM MICRO TRANSMITTER (BUG) 100-108MHZ VARICAP TUNED COMPLETE WTH 3 watt FM VERY SENS FET MIC RANGE $100-300 \mathrm{~m}$ SIZE $56 \times 46 \mathrm{~mm}$ SUPP LY YV BAT PRICE

Transmitter

POSTAL CHARGES PER ORDER 100 MNMMUM OFFICIAL ORDEAS WELCOME FROM

SUPPLIED WITH EACH TWEETER

TYPE A' (KSN2036A) 3 round with protective wire Speakers Price $£ 4.90$ each +50 P P \& P TYPE B (KSN1005a) 3) super horn. For general
ourpose sceakers cisco and P.A. systems etc. Price f5.00 each - 500 PSP
TYPE $C^{\prime}(K S N G 016 A) 2 \times 5$ wide dispersion horn For cua - H. sys: mms and quality discos etc, Price £6, 99 TYPE D (KSN1025A) 2×6 wide dispersion horn Upoer itcoency resconse retained extending down to TYPE E (KSN1038A) Price $£ 9.99$ each +50 p P \& P TYPE E (KSN1038A) horn tweeter with attractive SMice 5599 each - 500 P\&F
LEVEL CONTROL Comb nes on a recessed mounting LEVEL CONTROL ConD nes on a recessed mounting

STEREO DISCO MIXER

STEREO DISCO MIXER with
graphic equalisers and twin 10 segmen
Vu Meters. Many outstanding features
bination of the following-
3 Turntables (Mag)
plus Mic with talk over switch Hine ncluping CD tor. Pan Pot L \& R Master Output cortrols
Output 775 mV Size $350 \times 260.90 \mathrm{~mm}$ Sipot Output 77
$220-240 \mathrm{v}$
Price £134.99-£4.00 P\&P
B. K. ELECTRONICS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572 FAX: 0702-420243

POWER CONDITIONER

FEATURED IN ET
JANUARY 1988

The will mate mans
purlfer Intended manly Jor towering he noise floor and improving the
analytical qualities of analytical qualities of
top-light audio equipme

The massive liter section contains inireen capacitors and
Iwo current balanced inductors together with a bank of six MORs to remove every, lass race of Impulse and $A F$ interference A ion LED logarithmic display gives a second b
second indication of the amount of interference removed second indication of the amount of interference removed Our approved parts set consists of case, PCB all Components (including nigh permeability toroidal cores iC
Ifansislors, class X and Y suppression capacitors, VDAs, lransis tors, class x and Y s
etc) and lull instructions
PARTS SET £28.50 + VAT

MAINS CONDITIONER PARTS SET \&5 40
RUGGED PLASTIC CASE E1.80 + VAT

Adjust! he controls to suit your mood and ier the gentle. relaxing sound doth over y you At trust you might hear sot t rain sea surf or he wind through distant Ieee Almost hypnoulc
me sound draws you iresistably into a peacelul refreshing me sour
sleep
sleep perhaps ike irs truly restful sleep in years ss exciting enough in self For more adventurous souls here are strange and
mysienous dream experiences wall ing. Take lucid dreams. lo Instance imagine being in con roll of your dreams and able lo change them al will to act out y
With
With he Dream Machine ils easyl
The approved parts set consists oi PCB ali components controls, loudspeaker, knobs, lamp, tuseholders fuse, rams PARTS SET $£ 16.50$ + VAT
Ben Swarmed bert mole GROW AICH WHILE YOU SLEEP

```
hnowin thick.
E2.95 (NOVAS)
```


TVBOOSTER

Good TVpritures lampoon aecialsis whet this redis al about Keith Binder 5 Serial Boostergves a massive ai gamin lo ensure good wewngloy
campers and caravannes, rom indoor aerial, ox wherever Property positioned hing -z
anima

Based on the OU335 hybrid amplifier, the booster has speecificalicns larval

 made by acarevil beginner:

 lean, sockets and hardware
AAA PARTS SET $\mathbf{E 1 2 . 8 0 ~ + ~ V A T ~}$
AA2PARTS SET $£ 4.80$ +

KNIGHT RAIDER
FEATURED IN ETI JULY 1987

 nigh il leaving it comers sui u behind flip the with again a no the point in tot becorises vair bouncing back wa ids and forwards.
 are cong
 light y or will wow powered bulbs ic an
bicycle nil a spectacular TV-gge coy' The pats sal consists al box. PCB and components bor control PCB and components lir s Lamps nat included
PARTS SET £19.90 + VAT

RAINY DAY

 PROJECTS

All can be built in an afternoon!
 CAEDIT CARD CASiNo CREDIT CARD CASINO [ETTM March 1987) The wicked pocked gamb ing machin MAINS CONTROLLER
Isolated logic lo mains interlace MATCHBOX AMPLIFIERS |ETT A Dr| 1986) Listen 50 W or huff power rom an amp small enough to of in a match box li
Matchbox Amplifier (20W) Malchbox Bridge Amplifier (Sow)

TACHOIDWELL METER (ETI January 1987 HI -FI POWER METER (ETIMay 1987) HI-FI POWER METER (ETIMay
Measures Hi Ff output power up 10100 W

- Inc udder PCB components milers Mono power meter
Stereo power meter $£ 390$
$£ 7.20$

THE MISTRAL AIR IONISER

The best ioniser design yet - this one counter and ion drive, built-in ion multi-point emitters. power to drive five multi-point emitters. For the technically five secondary ne main drive stages, section booster to gives, and a four capability of almost fitter output capability of almost fifteen billion $\left(1.47 \times 10^{\prime \prime}\right)$ ions every minute, or
$2.45 \times 10^{\prime \prime}$ ions With extra emitters second. increased still further! can be PARTS SET E 24.80 The parts set includes case, printed circuit boards, 126 top grade components, all controls, lamps, hardware, a mult-point phospher-bronze emitter and full instructions.
Some parts are available separately -
please send SAE for iss, or SAE
details and recut and construction (tree with parts set).

READYBULTMITTRAL
The Mistral Ioniser (and most of our other
projects) can now be and ready to go. For details, built, tested contact Peter Leah details, please 8 Wobum Road, Eat PL. Electronics Tel: 0272522703 Eastville, Bristol BS 5 6 TI. Tel: 0272522703 . Evenings Only INTERNAL ENTER
Can be used in place of the $P 2.69$ +VAT
emitter, or both can of the P-B external emitter, or both can be used together
for the highest ion includes PCB, ion emitters, comet and instructions ion emitters, components

IPA BOARD CLEANER

Essential for removing grease and flux residues from the Mistral PCB achieve peak performance. Applicator brush supplied.

IONFAN

$£ 9.80$
An almost silent piezo-electric fan, mains operated, to pump ions away from the effectiveness of any ion. Increases the

POWERFUL AIR IONISER
FEATURED INETI JULY 1986 Ions have been described of
vitamins of tine ar by ins vitamins of the air by the health magazines and have
been created with everything

 exaggerated. here is no doubt I Ia l i ionised an is much cleaner
and purer, and see $m s$ much more invigorat ing than dead air The DIAECT ION Ionise: caused a great deal il excitement when 11 appeared as a consilictlonal prolec| in ETI Al Iasi anoonse
that was comparable will (better ligan? commercial products was reliable good lo build and tun' Apart from the serous applications some oi tine suggested experiments were outrageous We can supply a matched sol of pans lully approved by the designer to build this unique project The eel includes a roller tinned printed circuit board 66 components case mans lead
and even lite pans loo the tester According lo one customer te and even te pans lot the tester According l lo one customer the
set costs about a lind of the price of he individual components What more can we say?
PARTS SET WITH BLACK CASE $\mathbf{1 1 1 . 5 0}+$ VAT $^{\text {included }}$ are PARTS SET WITH WHITE CASE $£ 11.80$ + VAT

BURGLAR BUSTER

The pats selinciudes ati:our PCB and al compipnenns logoonthem 0 pars (case, switches, ell, are ayalabbe spparaleyy, you haven igor
 relays, capactions,
instructions
BE 1 PARTS SET £12.80

LED

Green rectangular LENs

50 tor $£ 3.50 \quad 500$ or $£ 25$
DIGITAL AND AUDIO EQUIPMENT LE
Assorted 3 mm LEEs red, green, y
25 of each (100 LEDs) for $£ 6.80$

+ VAT

Specialist

and 15°. VAT to total
Eire and overseas:
no vat Carriage and insurance 〔450
Specialconductors
Tel: (0600) 3715
SALESDEPT., ROOM 107 , FOUNDERS HOUSE, REDBROOK, MONMOUTH, GWENT

ION DISPERSION METER

BIO. FEEDBACK

 FEATURED IN ET DECEMBER 1986Bic-teedback comes ot age with ins highly responsive self-balancing skin

powartul circuit has found application in clinical situation as well as on the bio-leedback scene \|I w\| open your eyes lo what GSR techniques are really all about The complete parts set includes case, PCB, all components, leads, electrodes, conductive gel and lull instructions.
PARTS SET $\mathbf{£ 1 5 . 8 0}$ + VAT
BIO-FEEDBACK BOOK £4.50 (no VAT)

Please note the book by Stern and Ray is an authorised guide
he polenifial of bo-leedback techniques lis no
and will only be of interest io intelligent a dulls
BRAiNWAVE MONTOR

ectronics magaz Sue ectironics magazine Similar in principle lo a medical EEG thythms on your own mind The al ha bela and theta forms De selected tor study and the thine articles give masses of information on the interpretation and powers In conjunction with Dr Lewis s Alpha Plan the monitor can be used lo overcome shyness to help you leal contident in
slress'il silva lions, and lo liar yourself to excel al th ing you re stress'tul sliualions, and lo tran yourself to excel al things you re no good al
Our approved parts set contlans case, Iwo PCBs, screening can ampiliters), leads brass electrodes and lull ne emp precis PARTS SET $\mathbf{\$ 3 6 . 9 0}+$ VAT ALPHA PLAN BOOK $\mathbf{£ 2 . 5 0}$ SILVEA SOLUTION IC Da ling elearices) $13.60+V$

VOLUME 18 No 3

ISSN 0142-7229
 ABC
 Member of the Audit Bureau of Circulation

ETI is normally published on the first Friday in the monch preceding the cover date. The contents of this publication including allarticles, designs, plans, drawings and programs and all copyright and other incellectual property rights therein conferred by the Law of Copyrighr and other intellectual property rights and by virtue of incernational copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior writcen consent of the Company © 1989 Argus Specialist Publications Ltd. All reasonable care is taken in the preparation of the magazine contencs, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible after wards. All prices and data contained in advertisements are accepted by us in good faith as correct at the cime of going to press. Nither the advertisers variations affecting price or availability which may occur after the publication has closed for press.

- Subscription rates - UK:EI8,00. Europe: $£ 22.20$. Middle East: 122.40 . Far East: $: 24.00$. Rest: $£ 22.70$ or US\$39.00.

\section*{| ARGUS |
| :--- |
| PRESS | GROUP} 1 Golden Square London W1R 3AB Tel: 01-437 0626 Telex: 8811896

Geoff Bains: Editor Jez Ford: Assistant Editor Paul Chappell: Projects Editor Jerry Fowler: Technical llustrator Heather Hopkinson: Design

Mark Warford: Photography Selina Gayle: Ad Manager Heather Wust: Classified Sales Andrew Selwood: Copy Control Mark Webb: Group Editor

REGULARS	
6	47

Classified Ads

Blueprint

Open Channel

Micro Music

PCB Service

Ad Index

Published by Argus Specialist Publications Ltd., I Golden Square, London WIR 3AB. Tel: 0l-437 0626. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: 01-677 81II. Overseas and non-newstrade sales by Magazine Sales Department, I Golden Square, London WIR 3AB. Tel: 01-437 0626. Subscriptions by Infonet Ltd., 5 River Park Estate, Berkhamsted HP4 IHL. Tel: (0442) 876661. US subscriptions by Wise Owl Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Project 3 Filmsetters, Whirstable. Printed and bound by The Chesham Press, Chesham. Covers printed by Loxley Brothers Ltd., Sheffield.

FEATURES/PROJECTS

II

Electromagnetic Interference
(and how to get rid of it)
Keith Brindley explores the realms of interference and gives some advice on prevention and cure

Construction Set Computing

Mike Bedford explains why he has abandoned his faithful Microtan for an IBM PC clone and shows how to put together your own PC for less than you'd think

Competition

And Results
The lucky winners of the Nite Sentry competition are revealed along with details of how you can win a Variat-Ion ioniser or Quest-lon ion meter kit from Specialist Semiconductors

Sun Power

Andrew Armstrong goes green with a look at the current state of amorphous silicon solar cells

Op-Amps
Paul Chappell turns the Circuit Theory spotlight onto real opamps for a change

MIDI

Programmer

Robert Penfold reaches the codes other projects can't with an ingenious friend for digital musicians

PRDIECT

Telephone

Indicator

Ali Taalf keeps his eye on the line with a beginner's 1st Class project for anyone with more than one phone

PROJECT

Intelligent

Plotter
Bob Joyce continues to build his stand-alone flatbed plotter. This month all the mechanics are described along with details of connecting up a BBC micro

PROJECT

44

Modular

 Pre-Amp Disc Input StageBarry Porter updates his 1983 modular pre-amp project with a balanced input phono stage to prove there's life in vinyl yet

PROJECT

Digitally Tuned Radio

Richard Grodzik tunes his radio with nothing more than the press of a button

52

Tech Tips

More readers' circuits to tickle your taste buds
Car Courtesy Delay
Time Switch
Capacitor Lamp Dimmer Opto-counter
Single Pulse Generator
Spectrum Programmable ROM
 ELECTRONICS TODAY INTERNATIONAL

$\stackrel{?}{\stackrel{0}{0}}$

Page 49

EWSEUROPE'S GAIN?

DTIvEC ON EMI

Adraft directive from the European Commission on interference and electromagnetic compatibility has come in for some interference of its own from the British DTI.

The directive, due to become law early in 1992, would force manufacturers of any electrical and telecommunications equipment to prove that EM emissions are at a negligable level and would not present any basis for interference.

While the need to limit EMI is agreed by all, the DTl argues that such a directive wol. apply to such a vast amount of $e^{r} \quad$ ient that it would be quite unw There are also fears that compulsory testing of telecommunication terminals would seriously extend development and approval stages of production.

DIAL 0898 FOR PROFIT

The 0898 telephone prefix is causing a màjor dispute between British Telecom and Mercury Communications.

BT's premium services using the 0898 prefix charge at 38 p a minute peak and 25 p a minute standard. Lines are sold by BT to private companies for playback of recorded tapes ranging from the 'FT Cityline' (123456) to 'My Coconuts' (886222).

The revenue generated by such lines is one of the fastest growing areas of BT s operations so it is not surprising that Mercury wants to start similar services as soon as possible.

The present argument has occurred over the distribution of revenues. BT gives 20p per minute to the service provider (regardless of call rate).

However, if Mercury runs services as well, a third party is introduced, with BT customers calling Mercury services and Mercury customers calling BT services.

Who gets what is the question, now in dispute for several months and finally referred to the Office of Telecommunications.

The result will provide an interesting pointer for the two companies over the possibility of a future Oftel ruling on the much larger problem of normal calls crossing between the two systems.

mos

The sale of INMOS by Thorn EMi is the biggest nail yet to be hammered into the coffin of the UK: semiconductor industry

The purchasing company is Thomson-SGS the Thomson half being owned by the Frencti government and SGS effectively by the Italian government.

Inmos never did achieve the success it deserved. The Labour government produced Inmos in 1978 as a spearhead for the UK electronics industry An innovative development team designed the transputer and put the UK at the forefront of microprocessor technology with a pioneering reputation in the field of parallel processing.

But profits did not follow and the company was privatised by the Conservatives in 1984 Thorn EMI was an ideal purchaser, at that time on a huge programme of expansion, ripe to fund an innovative product in an expanding market.
In the event however, continued losses proved too much for Thorn and various potential buyers were involved in discussions stretching as far brack as 1985. just a year after the origina! purchase.

Enter SGS-Thomson, just fifteen months as a merged company strong on memories but weak on processing and hungry to expand.

With the backing of two governments and by paying off Thorn with a substantial shareholding, there is little doubt that SGS-Thompson will be in a far better position to give Inmos the rope it requires.

Inmos has already swung into profit in the last six montis and looks set to continue reaping the benefits of favourable markets and a recent streamlining of production.

In the interests of a strong and cooperative European semiconductor industry one must wish the combined company the best of luck, but the loss of a UK market leader reveais how bitter the taste of 1992 can be.

Low cost EPROM programming is available for BBC owners with the UviProm 16/32 from Ground Control.
The unit, a development of the UviProm 16, plugs into the user port of a BBC B, $\mathrm{B}+$ or Master and uses a switched mode power supply to generate programming voltages of 21 V and 12.5 V from the BBC 's power busses

It will program 2764, 27128 and 27256 EPROMs including CMOS and A versions.
The software on ROM uses '*' commands from the BBC to read, blow, compare, view and test devices.
The incluṣive price is just $£ 30.00$.
For full details contact Group Control. 4 Alfreda Avenue, Hullbridge, Hockley, Essex SS5 6LT. Tel: (0702) 230324.

HIDDEN VALUE

Deception and crime prevention are the orders of the day with a couple of pseudo-products from Grundig and Volumatic.

Grundigh has produced a dummy front panel that clips onto any of its car audio range, making the radio appear so cheap and old-fashioned that only the most hard-up thieves would bother breaking in to steal it.

With many people now removing their car cassettes each time they park. this sneaky piece of innovation should relieve that nightly finger-twiddling routine

However, should your car hi-fi be too expensive to trust even to such artful subterfuge. Grundig also produces a quick release unit for many of their radio cassettes to reduce fitting and removal time to a minimum.

Contact Grundig, Mill Road, Rugby CV21 IPR. Tel (0788) 77155.

Volumatic's Videoguard range of surveillance cameras has been augmented by a new camera that doesn't actually work but acts as a deterrant to thieves and hoodlums. The static camera retails at $£ 65+$ VAT with a sweeping madel for $£ 95$, a little pricey when you can buy working cameras secondhand for similar prices, but highly effective if used in conjunction with an existing system of gemuine surveillance equipment.

Contact Volumatic. Taurus House, Endermere Road, Coventry CV6 5PY Tel: (0203) 684217.

BT - CREDIT TO THE NATION

There is a new piece of plastic now available for credit junkies everywhere - the British Telecom credit card

BT has run credit schemes before but always with the necessity of going through the operator, thereby raising the cost of the calls to operator rates,

The new card can be used from any
private or public phone using tone dialling. After dialling 144 to connect to the service, users enter an account number and PIN, followed by the phone number required. Recorded prompts are given for each stage and as with most PIN systems you get three attempts before being disconnected from the system.

The calls are charged at rates somethat higher than normal rates (10p per unit) plus there is a charge between 20 p and 30 p for each call. The credit card charges are itemised in a statement supplied to office or home with the standard quarterly bill.
For more information contact BT on 01-356 5369.

FLATTER SQUARER AUDIO

Studio Power Loudspeakers has produced a stylishly finished loudspeaker design entitled the Sound Panel.

Incorporating a 6 in bass drive and 2in cone domed tweeter, the units are mounted in convex square cabinets for wall-mounting or floor standing. Studio

Power claims a sound with clarity and punch with no loss of treble, a problem in some similar designs.

The speakers retail at $£ 189.90$ per pair.

Contact Studio Power, 65 Victoria Road, Guiseley, Leeds LS20 8DQ. Tel: (0943) 870057 .

CD-ROM DICTIONARY

The enormous task of keeping the complete Oxford English Dictionary in pace with the ever changing English language is being tackled by the electronic publishing department at the Oxford University Press.

The original dictionary is already available on CD-ROM (OUP £500) with over a quarter of a million
headings and entries up to 50000 words long.

The OUP now faces the neverending entry of the 12000 new words that are accepted by the dictionary each vear and the merging of the OED supplement with the original version.

It hopes an accurate electronic version will be available by 1991.

ATLANTIC CROSSING

Christmas communications beween the UK and the US made use of the world's first transatlantic optical fibre cable, opened on December 14th by BT in London. AT\&T in the States and France Telecom in Paris.

In true Neil Armstrong tradition, Isaac Asimov spoke the first words to pass through the cable. "Advances in communications technology have always led to advances in human understanding" he said, a significant improvement on previous technological opening gambits such as 'Come here Mr Watson' and the ever popular 'Testing testing, one two'.

The cable, TAT-8, can handle 4000 calls, effectively doubling telecommunications capacity across the Atlantic. The main cable from New Jersey to the UK/France branching point has two fibre pairs plus a third for back-up.

The system rate is $140 \mathrm{Mbits} / \mathrm{s}$ lline rate $295.6 \mathrm{Mbits} / \mathrm{s}$) using a wavelength of 1310 nm . Repeaters boost the signals every 55 km along the ocean floor - cables are armoured to a depth of at least 1000 m with some reduced protection (against sharks) to 2600 m .

For further information contact BT on 01-492 2626

CLOSING OUR HORIZONS

Britain has again alienated itself in the halls of the European Space Agency, this time over its reluctance to agree funding on the Horizon 2000 project.

The extensive programme (involving the launching of astronomy satellites and solar system probes) requires a 25% increase in ESA space science spending by 1994 which Britain, alone among the thirteen ESA members, claimed was excessive and

unacceptable.

However, the reaction to our announcement was strong enough to reverse the British decision when the final vote was taken on December 15 th.

Suggestions that Britain should perhaps consider whether it wanted to remain in the agency were successful in reducing our demands to the instigation of an independent review of costs and management.

Budding electronics enthusiasts are not as thick on the ground as might be hoped.

ETI has been approached by the Chemistry Department of University College London which is despairing in its search for development and maintenance techmicians
' O ' level equivalents are needed in maths and physics/chemistry but the overriding requirement is a genuine enthusiasm for electronics.

Despite advertising by all the normal channels the department has had virtually no success. The posts carry five weeks holiday and pay between $£ 5427$ and $£ 6038$ depending on age (16-18).

Any ETI readers interested should contact Miss B Mann, Personnel Tech Staff CE7, University College, Gower Street, London WC1E 6BT. Tel: 013877050 .

METER

Apowertul RS232-equipped clampon meter is new on the market from Livingston Technical Sales.

The Hall effect Bell UM-7900 measures nine parameters: true RMS volts and amps. direct current, phase. power factor, plus true, real and apparent power.

Results can be displayed on the 31/2-digit LCD or can be cormmunicated via the RS232 interface to a printer or monitoring system.

Rernote control of the device is also possible via the RS232 port

Such sophistication does not come cheap. The UM7900 costs $£ 659$ + VAT. Contact Livingston, $2-6$ Queens Road, Teddington TW11 OLR Tel: 01-9770055.

SECURITY INTERFERENCE

Horrendous security implications are created by the problems of electromagnetic emissions when related to computer security.

The Government standard for protection is known by its NATO codename - Tempest. GCHQ is responsible for regulating the 50 or so manufacturers involved in the Industrial Tempest Scheme (ITS).

Equipment such as that produced at MSL in Hitchin (see ETI News July 1988) can detect and process radiated signals from keyboards, screens, printers and cables while remaining hundreds of feet away from the monitored system.

Happily, both the US and UK governments have kept a tight rein on the sale of such equipment with the vast majority of test rigs in the UK going to GCHQ itself in Cheltenham. Curiously, however, systems which are adequately protected against EMI have until now been similarly restricted.

In these enlightened post-Spy catcher days, GCHQ has informed members of the ITS that it is keen to see British companies protecting sensitive data areas and has released the barriers around the Tempest community. It has even produced a second Tempest standard slightly less stringent than the original that brings protection costs significantly lower.

Considering the success of 'computer security' advisors specialising in the City over recent years, the Tempest phenomenon seems likely to herald a new era in data security investment.

READ $\overline{W R I T E}$

THERMOSTAT THREAT

WTith reference to the above Electronic Thermostat project in the December issue of ETI, I was absolutely horrified when I read this article. I have been concerned with electronics, and central heating in particular for some years and seldom have I come across such irresponsible advice.

I enclose the circuit diayram of a typical controil system.

In the first place I must point out that the low voltage circuit on gas (and some oil) boilers is designed to operate the main gas valve via the boiler thermostat (not room thermostat). The sensor for this is contained in a pocket in the boiler jacket. However, what is more important is that this circuit is also part of the 'fail safe' system. A small sensor is located within the pilot flame and as long as that flame continues to burn the circuit is held closed by the sensor. Should the pilot flame be blown out then the sensor cools and the circuit opens and the device is made safe

Obviously any interference with this circuit is in contravention of laid down procedures for the installation of central heating appliances and, should an accident happen, would render the majority of insurance covers void.

Secondly, it is the 'off boiler' circuits which control both the point at which various controls are switched
in and out and these include low limit stats, room stats, cylinder stats, motorised valves and timeclocks. The majority of these circuits arenormally at full mains voltage.

It is in this latter part of the circuit that devices of this type should be installed although I would question the need for such a device. There is nothing wrong with a desire to obtain the most accurate form of control. whatever the system. However, as any central heating engineer will tell you, the reaction time of a normal system is so slow that a normal mechanical device is well within the tolerances of the total systern and, don't forget, that it is the reaction time of the total building which is the deciding factor in any system not any one room. I am afraid this is another electronic 'miracle' device which falls into the category of using a 24 lb hammer to crack a peanut

T Wright
York

Andrew Armstrong replies: In reply to your first point, at the beginning of the article I specifically referred to the use of the controllex to replace thermostats which operate at 24 V . These comprise the majority of the admittedly small number of systems which I have examined. I would assume that many systems installed in recent years use

24 V on the external circuits for safety reasons. It would certainly seem risky to use mains on a room thermostat unless its cover were made stronger than most I have seen in use.

Admittedly some thermostats do run at mains voltage and the controller is not suitable for these. It is important to check before building the project to avoid wasting time and money on something which is unsuitable for the $j o b$. Now that I have moved from a house with a 24 V warm air heating system to one with a mains controlled boiler system, I shall design a miniproject or Tech Tip of a suitable adaptor which will replace the thermostat contacts with relay contacts, and operate the electronic controller at as low a voltage as it requires.

Sound 89 - February 21-22nd
Heathrow Penta Hotel, London. Contact Sound and Communications Industries Federation on (06286) 67633

Which Computer? Show - February 21-24th

National Exhibition Centre, Birmingham. Contact Cahners Exhibitions on 01-891 5051

Radiowave Propagation - March 5-10th

Danbury Park Management Centre, Chelmsford. Third IEE vacation school. Contact IEE on 01-240 1871

Patents In Practice - March 8th

Institute of Civi Engineers, London. Seminar organised by Institute of Physics. Contact the Institute on 01-235 6111
Magneto Optical Data Storage And Recording - March 13th
Cafe Royal, London. Conference on this blosoming technology. Contact IBC Technical Services on 01-236 4080
Cadcam 89 - March 14-16th
NEC, Birmingham. Contact EMAP International Exhibitions on 01-404 4844 Document Image Processing - March 14-16th
Queen Elizabeth II Centre, London. Contact Blenheim Online on 01-868 4466 Internepcon Production - March 14-16th
NEC, Birmingham. Electronics manufacturers show, Contact Cahners Exhibitions on 01-891 5051

Annual European Conference On Fibre Optics - March 16-17th Kensington Palace Hotel, London. Contact Frost and Sulivan on 01-730 3438 Cable And Satellite 89 - March 16-19th
Olympia, London. Contact Montbuild on 01-486 1951
Corporate Electronic Publishing Systems - March 21-23rd
Olympia, London. Contact Cahners Exhibitions on 01-891 5051
Open Systems - March 21-23rd
Queen Elizabeth II Centre, London. Contact Blenheim Online on 01-8684466 Connectors 89 - March 23rd
Crest Hotel, Walsgrave, Coventry. Contact A F Hayes \& Co. (0533) 881208 IEE National Conference On Telecommunications - April 2-5th University of York. Contact the IEE on 01-240 1871

Low Energy Ion Beams Conference - April 2-6th

University of Surrey. Contact The Institute of Physics on 01-235 6111

Automan - May 9-12th

NEC, Birmingham. Automated manufacturing show. Contact Cahners Exhibitions on 01-891 5051
Energy 89 - May 16-18
NEC, Birmingham. Contact Emap Maclaren on 01-660 8008
Scitech 89 - May 17-21st
Alexandra Palace, London. Exhibition of all the best British science and technology, Contact British Science And Technical Trust on 01-992 0684
Image Processing And Its Applications - July 18-20th
University of Warwick. Third International Conference. Contact IEE on 01-240 1871

Holographic Systems, Components And Applications - September

 11-13thUniversity of Bath. Second International Conference. Contact IEE on 01-240 1871

Vacuum Microelectronics - July 24-26th

University of Bath, Conference sponsored by The Institute of Physics, IEE and IEEE. Contact The Institute of Physics on 01-235 6111

HART ELECTRONICS are specialist producers of kits for
designs by JoHN LINSLEY-HOOD. All kits are APPROVED by the designer
LINSLEY-HOOd CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quality iow nolse tereo cassette recorder Circuits are optimised tor our
H Sib Super Ouality Sendust Alloy Head Switched bias and HS16 Super Quality Sendust Alloy Head Switched bias as to equalisation to cater for chrome and terric tapes instructions
assemble on plug-in PCBS. Complete with full ind

Complete Stereo Record/Play K
VU Meters to suit
182.30 each
750

Reprints of original Articles
LINSLEY HOOD 300 SERIES AMPLIFIER KITS Superb integrated amplitier
Hoods articles in Hifi News
Ulitra easy assembly and set- with sous araty the most discerning listener Ideal basis for any domestic sound system it quality matters to you Buy the kit complet and save pounds oft the individual component price
K300-35. 35 Watt. Discount price for Complete Kii $£ 98.79$ K300-45. 45 Watt. Discount price for Complete Kit $£ 102.36$
RLH485. Reprints of Original Articles from. Hi-fi RLH485. Reprints of Original Arlicles Hom 51.05 no VAT

LINSLEY-HOOD SUPER HIGH QUALITY AM/FM TUNER (20)

Our very latest kit for the discerning enithusiast of quality sound and an exotic feast Linstey-Hood A combination of his ultra nigh quality FM tuner and stero decoder described in "ELECTRONICS receiver described in "Wireless World The complete unit cased to match our 300 Serles amplifers Novel circuit
features in the FM section to include reacy bult pre-aligned front-end. phase locked loop demodulato with a response down to DC and advanced sample as hetler han the bestio
together make a tuner which sounds bet together make a tunet which souncs
the high-priced exotica but thanks 10 HART engineering remains easy 10 bulld The synchrodyne section with its selectable bandwidth provides the best possible results from
Long and Medium wave channels so necessary in thesedays Long and Medium wave channels sonecessary in thesedays iistening then this is the tuner for you Since all components are selected by the designer to give the very best sound this
tuner is not cheap but in terms of it's sound it is incredible tuner is not cheap. but in terms of its sound it is incredible value for money To cater for all needs four versions are
available with variations up to the top ot the range full AM.FM available with variations up to the toportherangeime Send for
model with any unit being upgradeable at any time model with any unit being

STUART TAPE RECORDER CIRCUITS
Complete stereo record replay and bias system for reel-to reet recorders these circuiss wing qive stcrd and replay oive good mpe deck Separatesectiow a third head monitoring system to be used where the deck has this litted Standard 250 mV input and output levels These circuits are ideal 10 O bringing that old valve tape recorder back to life
Drive ... $£ 65.67$
RJS1 Reprinis of Original Ärticles

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn thead could be the problem Fitting one of our replacement heads could restore performance to beller than new' Standard mountings make fitting spot-on. We are the actual importers which means you get the benelit of lower prices for prime parts compare us with athe
suppliers and seet The following is a list of our most popular heads, all are suitable for use of Dolby machines and are ex-
Stock HC20 Permalloy Stereo Head. This is the standard head fitted as original equipment on most decks, HS16 Sendust Alloy Super Head. The best head we can find
 HO551 4-Track Head tor auto-reverse or quadrophonic use Fuil specitication record and playback head,....... $£ 14.60$ HX100 Stereo Permalloy R/P head Special Offer $£ 2.49$
MA481 2/2 Language Lab R/P head............. $£ 13.35$ SM166 2/2 Erase Head. Standard mounting SM166 2/2 Erase Head. Slandard moun $\mathrm{EB}_{\mathrm{AC}} 85$ SM150 $2 / 2$ Erase Head. DC Type £3.60 HQ751E $4 / 4$ Erase Head for Portasther special purpos heads in our list

HART TRIPLE-PURPOSE TEST

 CASSETTE TC1
head azrmuth and tape speed Invaluable when fitting ne

 heads Only $£ 4.66$ plus VAT and 50 p postageTape Head De-magnetiser. Handy size mains operated unit prevents build up of residual head magnetisation causing noise on playbackSend for your lree copy of our LISTS Overseas plea
Please add part cost of posi, packing and insurance as follows: INLAND OVERSEAS

nor Mooth in

 7 ELECTRONICS TODAY INTERNATIONAL
The April ETI the perfect finish to a good meal

THE APRIL FOOL

Ingredients (serves two):
1/2lb strawberries
$1 / 4 / \mathrm{lb}$ redcurrants
1/4pt custard
$1 / 3$ pt double cream
1 tblsp castor sugar
Place the strawberries and redcurrants in a pan and cook with the sugar and a little water until soft. Purée the fruit through a sieve or in a blender.

Whip the cream until thick and fold the sweetened fruit purée into the cream and custard.

Divide the mixture into individual glasses or sundae dishes and cool in the fridge. Serve chilled and decorated with halved strawberries and piped whipped cream.

Alternatively, if you don't fancy a fool and it's food for thought you're after, help yourself to a large slice of the April ETI instead.
Next month's ETI includes many tasty morsels. There's the third and final part of the Intelligent Plotter project with the actual on-board intelligence added and the whole thing brought together.
The EASi Alarm system is a novel approach to a perennial problem which is both extremely expandable and simple to install. Artificial Intelligence comes under the ETI scrutiny - what it is and why everyone's so interested in it.
And last but not least, next month's issue contains the full details of the ultimate thinking man's neck apparel - the Pan-Atlantic Tie.

The recipes mentioned here are in preparation but might just be too yummy to publish.

SPP SUBWOOFER

The Wilmslow Audio SUPER PUSH PULL subwoofer can be connected directly into systems using medium/large speakers (typically 89-91 dB sensitivity) and needs no extra amplifier. Using two special 12" (18hz resonance) sub-bass drive units it achieves remarkable results from an enclosure of only $673 \times 385 \times 432 \mathrm{~mm}(261 / 2 \times 15 \times$
 17in.). The Super PP kit includes drive units, high/ low pass crossovers, grille fabric, reflex port, binding post connectors, Flatpack cabinet kit(inc. stand) accurately machined from smooth MDF. Easy assembly - no woodworking or electronic skills required! Suitable for amplifiers of 40-200 watts per channel.

PRICE $\mathbf{\varepsilon} 199$ inc. VAT plus carr/ins $£ 15$
E. Telephone credit card orders WILMSLOW AUDIO LTD.
35/39 Church Street, Wilmslow, Cheshire SK9 1AS Tel: 0625529599
Call and see us for a great deal on HiFi (Closed all day Mondays)
DIY Speaker catalogue $£ 1.50$ post free (export \$6)

ELECTROMAGNETIC INTERFERENCE

(And How To Get Rid Of It)

Electromagnetic interference (EMI) is, with a few notable exceptions, a totally manmade form of noise (the most well-known exception is the interference caused by a lightning strike). Being manmade it is possible, therefore, to devise ways of reducing its effects to a negligible level. (Non-manmade noise such as thermal or sky noise, on the other hand, is random and more difficult to control.)

In theory at least, we need only understand what EMI is and what causes it to be able to formulate techniques to control it. So, what is it?

EMI can be considered as being interference in the classic sense - noise generated by a noise source, picked up by a noise victim, via a noise path (Fig. 1).

Fig. 1 EMI as classic interference
The noise path can be any form of transmission media. This is pretty self-explanatory. If there is no source, the EMI can't be picked up. If there is no noise path, the noise can't be transmitted from source to victim. If there is no victim, it doesn't matter whether the noise is there or not.

Even from this simplified explanation it's pretty obvious that there are three main points at which EMI can be reduced - at the noise source, in the noise path or at the noise victim. The problem, however, is that it is often difficult to differentiate between the three parts.

There are a number of main causes of EMI, including:

- radio transmitters. The ether is full of radio transmissions at frequencies of just a few kilohertz, up to several gigahertz. These are at varying levels of saturation. Obviously the greater the saturation, the greater the risk of significant EMI taking place. At levels below $100 \mathrm{mVm}^{-1}$ there is negligible risk of EMI. Between $100 \mathrm{mVm}^{-1}$ and $3 \mathrm{Vm}^{-1}$ there is a risk of EMI depending on the physical dimensions of the victim equipment. At levels above $3 \mathrm{Vm}^{-1}$ there is significant risk from EMI.
- non-radio, high frequency generators. Many items of electrical equipment are sources of high frequency EMI. Computers, arc welders, microwave ovens and so on can generate EMI by radiated and/or conductive means and so are potential noise sources. - electrostatic discharge. One of the main culprits of electrostatic discharge is the man-made carpet. Simply walking over it can create a static potential in the human body which will discharge as the person touches equipment maintained at a different potential. The situation is aggravated in dry atmospheres.
- lightning. A lightning strike creates a huge electromagnetic field, which may induce voltage
surges in power and communications lines.
- transient EMI sources. There is a vast range of sources such as dimmer switches, fluorescent lights, power tools, car engines and power supplies, all of which can act as EMI sources.
- power line interference. Although nominal AC mains voltage is 240 V , minor and long-lived variations of as much as $\pm 10 \%$ are common. Transient spikes may also occur due to the previous two EMI sources.

In all of these possibilities, EMI falls into one of only two types: radiated, or communicated.

EMI Reduction

Knowing now what EMI is, and the typical causes, we can begin to formulate ideas about how to reduce its effects. First, is to stop the EMI from leaving the source at all. Second is to improve the noise path - to prevent the EMI from passing along it. Third is to stop the EMI from entering the victim. All fairly obvious. But what isn't obvious is that the method chosen depends on the type of EMI.

For example, if the EMI is caused by a radio transmitter (say, your 100 watt per channel hi-fi amp picks up CB conversations) then there is nothing you can do about either the noisy $C B$ transmitter or the noise path - so you have to improve your amplifier's resistance to the EMI. On the other hand, if your amplifier produces a click through the speakers whenever your kitchen fluorescent light is turned on, you can do something about the EMI source and noise path.

Generally, like the first example, the EMI source is going to be remote and so impossible to effectively reduce at the source. So the following EMI reduction techniques are those which are taken at the EMI victim.

Radiated EMI

Primary prevention is always sought through the use of an earthed, conductive enclosure (typically a metal box) to house the potential victim. Steel enclosures have better absorption loss than aluminium or copper for thicknesses above 1 mm . Below 1mm thick, copper or aluminium have similar qualities. Enclosures which provide some 90 dB or'so of EMI attenuation are possible and provide the ultimate in EMI protećtion.

Ideally the enclosure should be continuous, without holes, connectors or seams. Outside EMI radiation can thus not pass through the enclosure to the victim inside. However such an ideal enclosure is impossible. Ventilation holes, cable-through holes, connectors, controls and what have you are always needed and of necessity must pass through the enclosure, providing breaks in the shielding through which EMI may pass.

The usual steps to ensure maximum possible EMI prevention is obtained with a metal enclosure are to

From a scratchy click in your speakers to total computer data loss, electromagnetic interference is the scourge of all electronic equipment. Keith Brindley takes a close look and finds ways to reduce its effects.

- make sure all through-holes are as small as possible, preferably using correctly sized cable glands - use perforated grids to cover ventilation holes - ensure all joints in the enclosure are adequately seamed, and allow good electrical bonding
- where covers are electrically separate (say, you are using a painted metal box with separate lid) use braided copper jumpers bolted to both cover and main frame.

Fig. 2 Seaming techniques for metal enclosures and internal shields

In the case of severe EMI radiation, use grid with perforation holes no greater than 2 mm in diameter and ensure several copper jumpers are used, where the spaces between them never exceed one tenth the wavelength of the expected EMI. So if the potential EMI is known to be around a frequency of $27 \mathrm{MHz}(\mathrm{CB}$ frequencies) then jumpers should be no further apart than about a metre. If the EMI is around 300 MHz then jumpers should be less than 10 cm apart.

In many cases a metal enclosure is unsuitable for aesthetic or cost reasons. Several EMI reducing procedures can be followed when plastic or wood enclosures are used. Plastic and wood provide no

Fig. 3 (a) Radiated EMI can enter a screened enclosure via a screened lead but (b) can be prevented with good practice
shielding whatsoever against EMI of course, so the procedures generally try to incorporate an internal shield of some description.

Plastic boxes are now available which are coated at manufacture stage with a metal acrylic layer, effectively allowing good shielding ($50-90 \mathrm{~dB}$ depend ing on EMI frequency) with a good appearance and still remaining cheap.

Aerosol sprays exist which allow the user to incorporate a metallised conductive coating onto the inside of plastic enclosures. EMI attenuation up to about 50 dB is possible.

Alternative procedures usually incorporate internal shields over parts of the equipment: either over parts prone to EMI pickup (PCBs, cables) or over radiating parts (power supplies, CRTs etc).

These internal shields, and indeed full metal enclosures, benefit from good seaming techniques (Fig. 2) to ensure that EMI does not occur through the seam itself.

Cabling Techniques

Much EMI can be caused by incorrect cabling within the enclosure. EMI in this context is simple crosstalk - radiation from one cable to another. This may be from one part of the system to another or may be due to external EMI entering the equipment via cable
inlets.
The first step is to organise all cables into three distinct groups:

- power cables, carrying AC mains. These are potential EMI sources.
- DC control and power cables. These can be EMI sources or victims.
- Signal and logic cables. These are generally EMI victims but may be sources too.

Next, cables in the three groups must be routed round the equipment separately and as far away from each other as space allows.

If signal and logic cables run parallel to cables of the other two groups (it's on parallel runs that crosstalk will be maximum), make sure that distances apart are 2.5 cm between. As a rule-of-thumb allow a space of 2.5 cm between digital cables and power cables for every metre of parallel run. Similarly, ensure that analogue signal cables are 25 cm away from power cables, for every metre of parallel run.

Where cables of more than one group enter the enclosure, separate entry holes must be made, and cable routes outside the equipment should follow the same separation techniques just prescribed.

Regarding cable entries, it should not be assumed that outside radiated EMI cannot enter the enclosure via the cable itself - even if the cable is screened. Fig. 3a shows how radiated EMI can enter the enclosure via the cable screen, while Fig. 3b shows a method of cable entry which prevents this.

Cables carrying low-level digital or analogue signals fall into three main wire types - ribbon cable, coaxial cable and twisted pair. In all, each signal wire should have its own return running beside it, thus reducing signal loop area. (The larger the loop area, the greater the risk of EMI via inductive coupling.)

Ribbon Cable

Figure 4 shows how signal wires within the ribbon should ideally have earthed wires between. The earthed wires create the effect of a screen between the various signals.

Coaxial cable effectively allows a electrostatic screen or shield, much like the screen afforded by a metal enclosure. In many cases it can be extremely useful in reducing the effects of EMI. However, problems (worse than the original EMI) can occur if

Fig. 4 Signal wires in ribbon cable should be separated by earthed wires, effectively screening signals
care is not taken. To work correctly, the screen must have zero resistance to earth. In this way any coupled EMI is effectively shorted directly to earth.

If, however, the shield has a finite resistance to earth (which is always the case when a long connecting lead is used between remote parts of a system because the cable has resistance) then the EMI will generate a noise voltage between the screen and true earth. Interference may even be worse than without coaxial cable! With short lengths of screened coaxial connecting cable this is not usually a problem, however.

Interference may also be caused by sloppy use of coaxial cable if the idea of 'earth' is not fully understood. Figure 5 shows a transducer connected
to an amplifier by coaxial cable, in which the cable's screen is earthed at the tranducer and at the amplifier. Earthing, however, is not a guarantee that voltages at two different earth points will be identical. If even just a tiny difference in potential between the two earth points exists then a current will flow along the screen, itself causing interference. This situation is known as an 'earth loop'.

As a rule-of-thumb, when coaxial cable is used to connect parts of a system the screen should be connected at only one end (generally the receiving end) of the cable run. There are exceptions, particularly at high frequency

Figure 6 shows a twisted pair, in which each signal wire runs with its return. These can be highly effective against EMI produced in differential mode or balanced analogue circuits but are virtually useless in common mode circuits. The protection against EMI is given simply because interference voltages induced in each turn of the twisted wire pair are equal and hence cancel other out.

PCB Techniques

Many of the techniques used in EMI reduction through cable routing and use can be adopted when designing equipment $\mathrm{PCB} . \mathrm{PCB}$ is, after all, just a connecting method between components of the system.

For example, earth loops can occur in analogue circuits where two or more amplifying stages are in series (Fig. 7a). The problem is that the two separate earth points may have slightly different potentials and a noise current will flow - even if the two earth points are formed by the same conductor which may be a single piece of printed circuit track.

In low amplification circuits this will probably cause few problems but high amplification circuits will be unstable. The only solution is to provide a common earthing point for all parts of the circuit - shown in Fig. 7 b .

Circuits which require a high impedance input stage are more prone to crosstalk than low impedance circuits so if a high impedance input is necessary, the 'guard ring' approach may be useful. Here, the high impedance amplifier is configured as a non-inverting buffer amplifier (Fig. 8) in which the amplifier's output impedance is much lower than that of its input. The

Fig. 7 Earth loops can occur at PCB level (a) if separate earth points are used but (b) can be eliminated with a common earth
guard ring is linked to the amplifier's output, so that it forms a low resistance path to EMI signals.

On power supply PCBs, ripple and high frequency noise can be reduced if connections are made as large as possible, using copper planes rather
than individual tracks. This has the added benefit of making the PCB slightly cheaper to make (less copper has to be removed at the etching stage).

Generally, particularly on signal boards, it is advisable also to leave copper on any unused areas of board. These can then be earthed.

Communicated EMI

Where EMI reaches the victim through cables, as opposed to being radiated, the only real solution is to filter out the interference signal. Generally, EMI will be in the form of voltage spikes and transients on $A C$ power input leads, so the obvious course of action is to instail a filter at the input to the equipment and various types exist. Neatest are the IEC-type chassismounted plug units, although many surface-mounted filters exist. EMI attenuation up to about 60 dB is a feature.

Fig. 5 Earthing coaxial cable to both ends may cause an earth loop

Mains filters have the double benefit of attenuating noise produced within a system, attenuating the level of EMI going into the mains thus reducing the likelihood of EMI with other equipment. National regulations covering EMI produced by equipment may necessitate the use of such filters.

Transients, spikes and surges on the $A C$ power lead may reach peaks much higher than equipment

Fig. 6 Principle of a twisted pair
can cope with and filters cannot dissipate the extra energy which occurs. Suppressors must be used if large over-voltages are expected. Two main types are available: 'gas discharge tube arrestors' and 'varistors'.

Fig. 8 Guard rings reduce crosstalk to high impedance input stages
The former is connected across the input and under usual conditions remains open circuit. However, if the input voltage exceeds a sparkover voltage the gas inside the device becomes ionised and effectively short circuits the supply, until the surge ends.

The varistor clamps the AC power supply voltage to a preset value, rather like a zener diode does for DC supplies.

> Mike Bedford finally gives up his Microtan for a new hardware man's computer - the IBM PC

CONSTRUCTION SET COMPUTING

The author's completed DIY PC/AT

Looking around today's home computer scene it seems that the true technically minded computer enthusiast is no more that intrepid bunch of devotees to a number of systems which made their appearance in the early 1980s, typified by the Nascom and the Microtan. The Microtan in particular became widely accepted as 'the hardware man's computer' and has featured widely in the pages of ETI.

Although advocates of both these systems (and no doubt others) have battled on through the years expanding and modifying them and proving that contrary to the old saying it is possible to fit a quart into a pint pot, time waits for no man! Board based systems have been replaced by black boxes too numerous to mention. These plug-in-and-go machines were designed primarily for games players who perhaps wanted to dabble a bit in Basic programming.

In common with virtually all consumer booms, the appeal of this superficial infatuation with computers was short lived and the home computer boom is now history. The result of all this is that the home computer hobbyist is now considered a rare breed and most machines now on the market don't lend themselves too well to hardware tinkering.

Certainly, compared to the hoards of games players a few years ago, those computer enthusiasts with a hardware leaning are few. Nevertheless, few reading this magazine would suggest that our's is anything but a popular pastime. So what sort of computer available today is able to fill the same niche as that occupied by the Nascom and the Tangerine five years ago but will allow its owner to experience up to date technology such as $16 / 32$-bit processors?

One way to tackle this question is to consider the features of these early machines that made them so appealing to hardware enthusiasts.

They were essentially modular systems, the individual cards connecting via a mother board. The
advantages of this are numerous. A system can be built up gradually to cope with increasing demands and/or improving financial situation. Certain functional blocks (keyboards, power supplies, cases) need not be bought from the computer supplier but could be home made or reused from other equipment.

The modular approach encouraged third parties to offer plug-compatible cards hence increasing the options. For example, at least three different graphics cards were available for the Microtan. in addition to the offering from Tangerine. Magazines lespecially ETI) published designs for compatible cards and owners experimented with their own designs.

The other point in favour of these systems (in common with their black box counterparts) is that they were supported by active user groups. On the reverse side of the coin. however, was the software availability situation - the one area where the Microtan and friends had to play second fiddle to the BBC micro, Spectrum, Dragon and so on.

PC To The Rescue

So, we are still lefi with the question of what machine, if any, fulfils the requirements outlined above and overcomes the one limitation given? I would like to suggest the answer is the IBM PC range and the numerous compatibles. At this point please don't switch off, dismissing it as a boring business black box but read on.

Black boxes most certainly are represented both from IBM and from the numerous clone manufacturers typified by Amstrad at the lower end of the price range. However, it will be the products of various Far Eastern manufacturers which will be of interest to the electronics enthusiast looking for a really low cost option. These companies are in the business of providing PC components such as motherboards, PSUs and keyboards to OEMs for incorporation into their

Fig. 1 Eight into sixteen sometimes will and sometimes won't go
own 'badge engineered' clones. By purchasing these component parts, we can also assemble machines customised to our own requirements at an absolute minimum cost. The purpose of this article is to show just how to go about this process, giving names of suppliers together with typical pricings.

What about the concept held by many that even if we can build a PC ourselves, once complete it can only be used with word processors, spreadsheets, databases and accounting packages? This couldn't be further from the truth. Although all these types of package are available in abundance this is only the tip of the iceberg.

It is probably true to say that more software has been written to run under MS-DOS (the PC's operat ing system) than for any other machine. The following incomplete list is given just to whet the appetite Languages: Basic in many flavours, Fortran, Algol Cobol, C, Pascal, Forth, Lisp, Prolog, ADA and Assemblers both native and cross. Programming utilities: Libraries, Debuggers and so on. Applications word processors, spreadsheets, databases, communications, business graphics, art packages, CAD/CAM Games: Arcade type, adventures, strategy . . . and so the list goes on. Further more much is not sold commercially but is available as either public domain or user supported at very low cost.

Building Blocks

So here is the nitty grittý, a roundup of all the constituent parts of a PC indicating all the options and the factors which will influence your choice.

Motherboard

Otherwise called the mainboard, this is the heart of the PC and unlike some systems, the motherboard is not just a passive component allowing the active boards to be interconnected but actually includes all the basic circuitry. This includes the processor and its associated glue logic, a floating point co-processor (socketed option), RAM, the BIOS and sockets for expansion cards.

For PC or PC/XT compatible boards the processor will be the 8088 whereas for PC/ATs an 80286 is used. Although it wasn't a standard which 1BM adopted, PC type boards which take an 80386 are also available but at much higher cost so probably won't be of much interest. Whereas the original PC had a 4.77 MHz processor clock, many boards now have a so-called turbo facility allowing dual $4.77 / 8$ or $4.77 / 10 \mathrm{MHz}$ and similarly turbo AT boards often give multiple speeds up to 12 MHz or even 16 MHz for more expensive versions

Another variable feature of motherboards is the number of expansion slots - this will normally be six or eight. On an AT board these slots will be a mixture of 8 -bit (PC compatible) and 16-bit (making full use of the 286 architecture) sockets.

The third main variable is the RAM capacity. RAM is usually configured in blocks of nine dynamic

EXPANSION CARDS

Actually a bit of a misnomer since withmost mother boards a nurnber of such cards are required to give even a base level system. This section should beread in conjunction with selecting the disk controllers, video and 10 cards described elsewhere in this article.

Expansion cards are of two mein types, those with an 8 -bit interface, and those with a 16 bit interface, and are intended for plugging into 8 -bit expansion slats and 16 -bit expansion slots respectively. There is, however, more flexibility than this statement would suggest. Ali cards have a 62 -way edge connector whereas the 16 -bit cards have an additional 35 -way edge connector separated a short distance from the first.

An 8 -bit card can be piugged into any type of expansion slot. If this is a 16 -bitexpansion sloton an AT then the transfer ofdata will be slower than if a true 16 -bit card were to be used in the same slot. With inherently slow cards such as a serial I/O module this won't make any difference but use of an 8 -bit memory card on an AT would give considerable degradat on

There is a physical constraint which gives an exception to this rule. Figure 1 shows a board which could be used and aboard which couldn't and illustrates how some board shapes preclude their use in a 16 -bit slot. Now considering the opposite situation, can a 16 -bit card be plugged into an 8-bit slot? Well, the normal answer to this is no since it would leave a number of the signals on the card 'hanging' into free space!

There is one exception to this rule - cards which have sufficient intelligence on board to be able to recognise this situation and configure itself to either 8 -bitor 16 -bitoperation as appropriate. An example of this is the generation of high performance add-ongraphics cards which have on-board processors.

RAMs which each give a block of byte wide memory (the ninth chip is to provide parity). Depending on the board and the setting of DIL switches, these RAM slots may take $64 \mathrm{~K} \times 1$ or $256 \mathrm{~K} \times 1$ dynamic RAMs. Some motherboards have two such banks and therefore only allow up to 512 K to be used. More often, four

The constituent parts of a DIY PC (iess case)

Block 0 RAM to 64 k
Block 1 RAM to 128 k
Block 2 RAM to 192 k
Block 3 RAM to 256 k
Block 4 RAM to 320 k
Block 5 RAM to 384 k
Block 6 RAM to 448 k
Block 7 RAM to 512 k
Block 8 RAM to 576 k
Block 9 RAM to 640 k
Block A Extended video RAM
Block B Standard video RAM
Block C BIOS expansion (eg EGA)
Block D reserved
Block E reserved
Block F BIOS
Fig. 2 The memory map of the standard IBM PC

EXTENDED/EXPANDED MEMORY

MS-DOS, written for the 8088 processor which has 20 address lines, considers its address map to be 1 Mb in length. This memory map is shown in Fig. 2.

It will be noticed that only 640 K is officially designated as RAM space and this is the limit for most software. However there are two techniques for overcoming this limitation which give rise to memory standards with the confusingly similarnames of extendedmemory and expanded memory. At onetime memory beyond 640 K was only found on expansion cards but since some motherboards now offer extended/expanded memory it is important to be aware of the implications from the start.

On an AT compatible machine the physical constraint of 20 address lines nolonger exists and, in fact, the 80286 can address up to 16 Mb linearly. Such memory above MMb is referred to as Extended memory. However, theoperating systemlimitation still applies and MS DOS actually uses the 80286 in its' real' mode in whichitemulates the constraints of the 8086 . Some software does switch the processor from real mode into 'protected' mode thereby allowing extended memory to be used but thisis rare asitdemands amuchgreater degree of software sophistication.

Theother possible way to use this memory is to utilise one of the BIOS routines which swapsablock of data between base and extended memory This is the method used by MS-DOS to implement aRAMdisk in extended memory and this will probably be the most likely application of it.

Expanded memoryemploys atechnique which can beused with ATs and PCs. The memory map reveals two 64 K blocks which are officially designated 'other usé and have been essentially unused exceptforROMcartridges in the IBMPC Junior: Certainly RAM could be puthere but this would only give a maximum 128 K non-contiguous expansion. Instead, in expanded memory, an empty 64 K block in the memory map is used as a window into a much larger area of paged memory. So, forexample 1Mbwouldappear as 16 pages. The standard forpage switching is the Lotus/intel/Microsoft EMS standard. Memory adhering to this standard can either be used by specially written application software or by MS-DOS to create a RAM disk.
banks are available allowing configurations up to 640 K or 1 MB to be used even though memory beyond 640 K is of less general use than so called base memory up to this level.

There are clearly a number of decisions to be made, most fundamentally the processor type and speed. The decision comes down to a trade off between power and price. If it is intended to experiment with true 16 -bit interfacing or if a major requirement is say PCB CAD with auto-routing then a machine based on an 8088 must be discounted. The turbo version of a board will often be only a little more expensive than the single (low) speed version. It is worth bearing in mind the overheads of choosing a high clock speed though -- namely more expensive lower access time RAMs and very much more expensive floating point co-processors (8087 or 80287) although it is unlikely that many will opt for adding

Putting it all together
this chip.
The advantage of a large number of expansion slots is obvious. A lower number, on the other hand, results in a physically smaller board allowing use of a more compact cabinet and also gives the advantage of lower potential power consumption with PSU size and cost implications.

The choice of a board wih a 512 K RAM limit is probably somewhat short-sighted as some software does require a full 640 K to operate. This discussion refers to RAM capacity, the actual RAM fitted is nearly always zero on motherboards so there is always the possiblity of minimally populating initially and adding extra on-board memory at a later date.

It is also worth pointing out that the mother board may not include BIOS - if not it will have to be purchased separately so watch out for this. The BIOS is EPROM resident firmware Basic Input/Output System facilities which are used by MS-DOS. If the BIOS is bought separately it is important to recognise that the BIOS for a PC is different to that for an AT compatible.

As a final point before leaving the topic of motherboards, some will be found to include a floppy disk controller and/or serial/parallel interfaces. If this proves to be the case, then clearly cards offering these functions will not be required additionally. This must be considered the exception rather than the rule.

Power Supply

Power supplies intended for use in PCs have a number of factors in common, irrespective of the manufacturer. They have switched mode circuitry, are totally housed in a screened metal box with a fan and most importantly give outputs of $+5 \mathrm{~V},+12 \mathrm{~V},-5 \mathrm{~V}$ and -12 V . The outputs are on flying leads terminated in the appropriate connectors for powering the motherboard and disk drives. The respect in which PSUs differ is their power output, $130 \mathrm{~W}, 150 \mathrm{~W}$, 180W, 200 W and 220 W being common specifications

The smalier supplies generally have outputs for two disk drives whereas those at the top of the range can often power four drives in addition to the motherboard. AT type motherboards generally draw more current than PC types and clearly the greater the number of expansion slots the larger is the potential power requirement. 150W is usually considered the maximum size necessary for an 8 -slot PC with up to two disk drives. A 200W supply is the standard type for a full size AT whereas for those with just six expansion slots, 180 W or less may be sufficient. The 220 W PSUs are normally only required for 80386 based machines.

This is an area where there is the possibility of substituting a non-PC component if one can be found at the right price, however, PC PSUs are quite competitively priced. If substituting, the following typical output figures for a 130 W supply will give some idea of the current consumption at the various voltages: +5 V at $15 \mathrm{~A},+12 \mathrm{~V}$ at $4 \mathrm{~A},-5 \mathrm{~V}$ at 0.4 A , -12 V at 0.25 A . Please also make sure the physical size of any substituted PSU is consistent with being fitted inside a standard PC case (if indeed you intend to use one).

Keyboards

The first thing to point out about keyboards is that a standard serial or parallel ASCII encoded type cannot be used. Instead one of the special PC compatible keyboards should be used. Although other variants can be found, the most common ones are the 84 -key type and the $101 / 102$-key types otherwise known as
the enhanced AT keyboard. The main difference between the two is that the larger variant has a separate cursor control pad between the 'QWERTY' block and the numeric pad. The 84-key type has these cursor control functions (up, down, left, right, home, page-up and so on) as a shift of the numeric keyboard keys. As a rough convention, 84 -key keyboards are used with PC compatibles and $101 / 102$-key versions with ATs. There is actually no technical reason for this convention and if it is desired to have a more ergonomic keyboard on a PC or shave a little off the cost of an AT then this could be reversed.

We should also consider keyboard language. It will be noticed that the AT enhanced keyboard was described as having $101 / 102$ keys. The fact is that the US version has 101 keys whereas the international versions (including the UK type) have 102 keys. It is probably fair to say that most people reading this article will not be interested in the European variants so the choice is between US and UK. Well, from a compatibility point of view it doesn't really matter, any flavour of PC keyboard will attach to any PC as the MS-DOS operating system provides drivers for all the variants. In addition, any character which does not have a corresponding key on the keyboard (such as £ on a US or Ü on a French) can be generated by use of the Alt key at the expense of extra key depressions. So, the decision comes down to personal preference.

Disk Drives And Controllers

Unlike most of the home computers where a disk drive was considered a luxury add-on, the floppy disk drive is an absolute essential on a PC or AT compatible and a hard disk is a highly desirable extra. As another of those conventions which have no technical reason behind them (other than the fact that disk drive technology had progressed between the introduction of the PC and the birth of the AT) PCs have 360K floppy drives whereas ATs have 1.2M drives. These types of drive are both of the $51 / 4$ in variety and although never part of IBM's PC range, we now also have the $31 / 2$ in drives of the type found in the PS/2 to consider. $31 / 2$ in disks have capacities of 720 K or 1.44 M . So long as the disk controllers match, any of these floppy disk drive may be used on any PC or AT compatible -

PROCESSOR TYPES

8086 This is the baselevel Intel 16 -bit processor. It is not commonly found in PC compatibles although the Amstrad PC1512 and PC1640 arenotable exceptions to this rule. The processor has a 20 -bit address bus and is therefore able to address 1MB of memory.
8088 The original IBMPC processor and still the one most widely encountered in clones. It is essentially an 8086 intemally butwith an 8 -bit externaldata bus. The purpose of this restriction was to allow it to be used with cheaper 8-bitperipherals and toreducethe chip packagesize. However, having effectively to do two memory accesses to read or write a 16 -bit word causes it to be inherently slower than the 8086 . 80286 An 8086 with on-chip memory management and protection and hardware support for multitasking la feature only used by the OS/2 operating system of the PS $/ 2$ range). This is the processor found in the PCIAT and compatibles. Its pipelined architecture, high speed bus and interruptresponse times give a baselevel $(8 \mathrm{MHz}$) chip about six times the power of a baselevel $(4,77 \mathrm{MHz}) 8086$. Its 24 address lines allow 16 MBs to be addressed. Theinstructionset isupwards compatible with the 8086/8088.
80386 A 32 -bit processor offering the advanced features of the 80286. Further improved instruction pipelining and on-chip address translation ensures very high speed operation and figures of 4-6 MIPS are claimed. As the current top of the range, 4Gb of memory can be addressed but once againcompatibility with the lowerend processors at an object code level is maintained.
it all depends on whether it is intended to stay with convention and/or inside a budget.

Usually a 1.2 M drive can read and write 360 K disks although this cannot be relied on. A 360K drive, of course, cannot read or write to 1.2 M disks.

There is an operating system consideration too. The newer disk drive types are only supported on the more recent versions of MS-DOS. It is unlikely that DOS of an earlier version than 3.2 will be obtained but it should be borne in mind that V3.3 is required to support the 1.44 M drive.

So if anything can plug into anything how do we decide on disk configurations? As always, a lot of this will come down to price. 360 K drives are by far the cheapest and they also happen to use the least expensive media. $31 / 2$ in disks are particularly expensive but in terms of pence per K there probably isn't too much difference. Of course it is possible to put a mixture of disk drives into a single machine if there is a good reason to do so and this is simplified by the fact that some controllers will support more than one standard. Use of a $1.44 \mathrm{M} 31 / 2$ in drive may be particularly attractive on an AT compatible as it then gives the option of substituting OS/2 for MS-DOS and effectively upgrading to a PS/2 (almost).

Although for the purpose of this article I shall consider a hard disk drive as an add-on rather than part of the basic machine, considering it at this stage could save some money in the long run. It is possible to obtain controller cards which support both hard and floppy disk drives, so if it is intended to add a hard disk at a later stage it may be worthwhile investing in a combined controller at the start. The circumstance in which this wouldn't make sense is if one of the increasingly popular hard cards is eventually added. These cards combine the function of a hard disk controller and the hard disk in the single unit hence obviating the need for a separate hard disk controller.

Although it is probably true to say that virtually anybody can manufacture something like a mother board which is totally electronic, disk drives from an unknown manufacturer can be more suspect. This being the case, when selecting disk drives and more particularly hard disks, unless there is a very significant price saving and you're prepared to accept a possibly more unreliable product then stay with the big names (Teak, Suggart, Seagate and so on).

Video Card

This is the last system component which has to be considered as absolutely essential and once again a bewildering array of choices faces us. Fig. 3 gives a run down on the screen modes provided by the various cards and should be used as a basis for coming to a decision. Some standards (such as the PGA) are virtually obsolete and most people will restrict their

AST's Sixpack Plus memory expansion board

Mode	Text Format	Graphics Resolution	Colours	Display adapter
0	40×25		2	MDA
1	40×25		16	CGA
2	80×25		2	MDA
3	80×25		16	CGA
4		320×200	4	CGA
5		320×200	2	CGA
6		640×200	2	CGA
13		320×200	16	EGA
14		640×200	16	EGA
15		640×350	2	EGA
16		640×350	16	EGA
17		640×480	2	VGA
18		640×480	16	VGA
19		320×200	256	VGA
-	80×25		20×348	2

VIDEO STANDARDS

Abstract

The choice of videocards is extensive. Figure 3 lists the more common of IBM's official screen modesindicating which modes are provided by which cards. In fact the last mode is not an offical IBM one but the Hercules card has nevertheless become an industry standard. Itshould be bornein mind that thelower resolution modes are not lost ingoing to a higher performance card, Inother words all the CGA modes areprovided by the EGA card and all the EGA (and henceCGA) modes are available on the VGA card.

There are also enhanced EGA cards provided by a number of manufacturers. In addition to the official EGA modes these provide those VGA modes which donotrequire more than 64 colours imodes 17 and 18) and very often go beyond even this level giving resolutions of say 752×410 and 800×600. Furthermore, enhancedVGA cards are now starting to hit the market (at anot insignificant price), providing these higher resolution modes in a greater number of colours.

choice to Hercules, CGA and EGA or possibly also the VGA if upwards compatibility with the PS/2 is being considered.

The Hercules gives the lowest cost graphics product, especially since it enables a monochrome monitor to be used. The CGA card is generally available for about the same sort of price as the Hercules but of course a colour monitor is now necessary increasing the overall system cost and CGA text is pretty appalling. It is probably fair to say that anyone who is serious about colour graphics will opt for EGA. The EGA card supports the CGA modes as a subset but a result of supporting both 200 and 350 line formats is that a special EGA dual standard monitor is required. As an alternative, however, most EGA cards now available solve this problem by repeating each line in the CGA modes twice to give 400 lines and implementing the EGA modes as a 350 line window within the 400 display lines, obviating the need for a dual standard monitor. However, these cards often provide graphics performance in excess of EGA but to make use of these modes in addition to CGA/EGA a multi-synch type monitor is required It is therefore important to make sure whether a particular card is a clone of a basic EGA or one of the so called enhanced EGAs.

I/O Cards

Although perhaps not absolutely essential, most people would consider a Centronics printer port and at least one serial RS232 port to be standard equipment. The options here are more limited than in most of the areas so far considered and the most likely configuration will be a combined serial/parallel I/O card which will provide both functions. Of course if it was desired to have, say, only Centronics or only RS232 then such a card could be obtained but it wouldn't be much less expensive than a combined
card. On the other hand, many video cards include a parallel printer port and in this case then clearly a serial I/O card will be obtained separately. A myriad of other types of I/O card are available but this would take us into the realm of add-ons.

The Case For The Third Party

Once again, the case is a component which we could at a pinch do without or perhaps built out of chipboard but I suspect most people will be prepared to spend that extra $£ 40$ to smarten the machine up and give it that truly professional image. PC or AT cases differ in size depending mainly on the size of the motherboard and power supply. The larger cases also allow up to four disk drives to be fitted whereas the smaller ones limit this to two (excluding any hardcards which fit vertically in the expansion slots)

The other point to note about cases is the front panel controls and indicators. Some have a keyswitch to lock the keyboard, pushbutton switches for switching clock speeds and reset and indicator lamps to show 'Turbo', 'Power' or 'Hard Disk Access'. It is important to ensure that any switches or indicators required by the motherboard are available or can be fitted. However, some switches appear to be necessary but in fact are not. For example although many motherboards provide the facility to switch clock speeds by use of a push button, there is often an alternative method provided by the BIOS in the form of keyboard key combinations (Ctrl Alt -).

Putting It All Together

There really isn't too much to be said about this. Most people will find it fairly obvious how to plug the various component parts together. What goes where doesn't vary much from one clone to another. The one area which may be less obvious is the configuring of links and DIL switches. As this varies from manufacturer to manufacturer this cannot be covered here but on buying any PC system component, check a manual is provided (even though the English may be translated in a quaint manner!).

Spending Money

The following is a list of some British companies known to sell constituent parts of PC compatble sustems.

AAA Trading Ltd,
10, Greycoat Place,
London SW1P 1SB.
Tel: 01-222 8866
Atomstyle Ltd,
Millmead Business Centre,
London N17 1QU.
Tel: 01-801 1838
DRAM Electronics Ltd.,
Unit 12,
Kingston Mill,
Chestergate,
Stockport SK3 0AL
Tel: 061-429 0626
This is by no means a complete list, nor are they necessarily the cheapest, so check price lists from them, look for other suppliers and shop around. Don't assume that because a particular supplier is competitive on motherboards, it is the place for the cheapest disk drives.

Building up a system this way usually gives a significant price advantage over the big name low cost clones and will be slightly cheaper than the anonymous clones also available from many of these companies. Table 1 quantifies this by giving typical costings for a

PS/2

Whatabout the PSi2? Doesitreally make sense tostartdownthe path of PC compatible computing more than a year after 1 BM have replaced this rangeof computers by its new PS/2range? Theanswer to thisques tion is 'Yes' but it's appropriate to give the reasons for this to assure readers this route won't lead to obsolescence in a short period of time.

ThePS/2 rangeas available in the UK currently consists of models $30,50,60$ and 80 . The top three models are truly what people consider as the new generation, having Microchannel Architecture lthenew bus specification and corresponding add-on card format) and allowing use of thenew multitasking OS $/ 2$ operating system as an alternative to MSDOS. The models 50 and 60 have 80286 processors whereas the model 80 has an 80386 , the 80286 being the baselevel processor for use of $O S / 2$. The model 30 , on the other hand is a totally different machine. It has the superficial features of the PS/2 a ange in terms of styling and use of $31 / 2$ in disk drives but can only run the MS-DOS operating system and has the same bus specification as the original PC. To all intents and purposes, the de facto standard for base level personalcomputinghasnot changed. Byputting a 3 /2indisk and VGA card into a PC we virtually have a PS/2 30. True PS/ 2 clones are slow totakeoff and although 1 BM nolonger make aPC or PC.AT compatible, the third parties are still very strong in this area. Furthermore there is nothing inherent in the AT architecture to prevent the running of the OS/2 operating system and thereby give PS/250 or 60 functionality, The only difference, of course, would be the lack of the Microchannel Architecture (MCA) bus. Even this needn't be a problem. Certainly it means that any true PS $/ 2$ cards couldn't be plugged in butithas to be said that the PC bus has been astandard for solong that virtually every imaginable add-on board is available in this format.

New moves by PC manufacturersmaderecentlymake the future of original PC compatibles and cards evenmore secure. A consortium including such big names as Compaq, AST, Wyse and Tandy (nine companies in all) are developing a competing architecture to the MCA which will support the 32 -bit data bus of the 80386 .

Called the Extended Industry Standard Architecture (EISA) the AT bus land hence also the PC bus) is a subset, hence allowing cards designed for these earlier machines to be used on the new bus:
bottom end PC compatible and a bottom end AT compatible.

It should be borne in mind that these prices do not include a monitor or the MS-DOS operating system nor do they include RAM since at the time of writing the price of RAMs is (hopefully, temporarily) extremely high and would therefore give a false impression

These prices may look attractive but if we're prepared to be that bit more adventurous, top end systems can be built up even more cheaply. The secret is to buy from the far east, probably Taiwan. To give an example, let's consider an 80386 based machine

This is Intel's true 32-bit processor and we haven't teally considered them so far in this article because the pricing would normally be prohibitive (almost $£ 1000$ for the motherboard). A recent advertisement for a Taiwanese 20 MHz 80386 motherboard (excluding RAM and processor) gave a price of $\$ 345$ (at today's exchange rate, less than $£ 200$).

Admittedly this is really a high volume price and such companies are not really in the business of providing one-offs to end users. Nevertheless, it will probably be possible to obtain a 'sample' for a slight extra handling charge. The example given is a high value, low weight product and is therefore the type of product which is particularly efficient to import. Because of treight charges, low value, heavy items such as power supplies and cases won't be too attractive to buy from overseas.

A few points should be made about buying from the far east. Firstly the prices quoted will be F.O.B. in US5. That is a price including nothing more than carriage onto an aircraft in Taipei (or wherever). It is the buyer's responsibility to pay for the air freight and once Ifs in the UK to pay import duty and VAT

This can all get a bit complicated so if your're tempted to dabble in a bit of importing then contact a forwarding agent (listed under the classification Freight Forwarding Agents or Import Agents in the Yellow Pages) who for a small fee will be able to relieve you of all this and also, of course, advise as to how much all these extras will come to before ordering. We're not going to give any examples of far eastern suppliers essentially because there are so many of them and a small sample couldn't be representative but keep your eyes open in the PC related press. One very useful publication is Asian Sources Computer Products, it is not too generally available but you should be able to obtain a copy from the publishers at:

Trade Media Ltd.
Grand Cayman,
Cayman Islands,
British West Indies.

The Future

Clearly we are predicting a rapid increase in the popularity of PC compatibles for home use. Furthermore we expect such machines to appeal to the more technically minded. Certainly the technology is not new nor has this trend just begun but at the sort of pricings we now see, this will surely mushroom. ETI

沓

 \square
 凹

AST's Hotshot-286 processor substitution card

	PC	AT
Motherboard	4.77/10MHz, 640k........ 49.00	6/12MHz, 1M............. 215.00
PSU	150W...................... 40.00	200W..................... 60.00
Video card	CGA/Printer................ 27.00	CGA/Printer.............. 27.00
F. Disk controller	360k 15.00	360k/720k/1.2M....... 23.00
F. Disk drive	360k....................... 59.00	1.2M 68.00
I/O card	Serial........................ 14.00	Serial...................... 14.00
Keyboard	84 keys..................... 32.00	102 keys................. 43.00
Case	PC type...................... 30.00	AT type................... 45.00
	TOTAL £266.00	TOTAL £495.00

Table 1 Typical 'shop-around' prices for a basic PC and AT
intends to support PC compatibles. Ageneral article on PC interfacing is planned and it is also hoped to present designs for a number of add-on cards. However, this depends very much on the response and contributions we receive. Although we regularly make appeals for articles it is appropriate at this stage to say that we would be particularly interested in designs for PC add-ons.

Tel: 01-471 1338
 VIEWCOM
 T|x:929709 VICOMG Specialised Supplier of Digital Integrated Circuits

TOP QUALITY AUDIOPHILE COMPONENTS NEW FROM SAGE AUDIO HIGHEST POSSIBLE TECHNICAL PERFOAMANCE THE MOST ADVANCED HI-FI AMP IN THE WORLD Following the success of the original SUPERMOS we now launch a higher powered version with many new exclusive sound improvements not available on any other amplifier, kit, board, module, or ready made. FEATURES:- - Highly efficient distortionless PURE CLASS A throughout (low heat generation) - Top audiophile components inc, best SMD's. - Exclusively made matched custom semiconductors, - Minimal capacitor design (without DC servos) - PSU sound colouration eliminated, Advanced PSU feedforward ripple elimination including internally separately regulated voltage AND current to ALL stages using SAGE Super-Supply circuitry Total reactance (difficult speaker) drive capable. $\text { SIZE } 240 \times 100 \times 100 \mathrm{~mm}$ THD 0.0001%, Slewrate $685 \mathrm{v} / \mathrm{us}, \mathrm{f}-3 \mathrm{~dB} 0.5 \mathrm{~Hz}-350 \mathrm{kHz}, \mathrm{O} / \mathrm{P}$ Current 80 amps , Damping factor 940 , transient power (2ohms) up to 1800 W max. PLUS By innovative technical design we have eliminated 5 individual sound colouration components found in all other conventional amplifiers. ELIM/INATED - 1) Emitter resistors 2) Zobel networks 3) HF pole compensation 4) Fixed bias Vbe multiplier and temp gen distortions 5) Capacitor sound. AND THERES MORE . . . Sage exclusive CLEAN CLIPPING (not to be confused with soft clipping) eliminates PSU ripple from reaching the outpul even when severely clipped, this together with individual regulated supplies to all stages (Super-supplies) TOTALLY eliminates PSU component sound colourations, (A World first) Supermos £65, Supermos1 £78, Supermos2 $£ 140$ each AND THERE'S MORE . . . We can't possibly describe this amp fully in this ad. To receive an 8 page glossy brochure describing these modules inc description of our class A operalion and all our products send $£ 1.50$ cheque, $P O_{\text {, coins plus a }} 9^{\prime \prime} \times 12^{\prime \prime} 26$ p SAE (note we no longer send information without the above money and SAE or GIRC's overseas) to:		

INTERBEEB

The Interbeb unit conect micro's 1 MHz bus expansion connector and is supplied complete with its own power supply unit.

The interface unit is housed in a plastic case approx $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connectors.

- 8-bit input port

- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- precision 2.5 V reference
- external power supply
- 15-way expansion bus

All sections of the interface are memory mapped in the 1 MHz expansion map for maximum ease of use and compatibility with existing peripherals

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. All the information required for using additional devices is included.

INTERSPEC

£29.95
The Interspec unit plugs directly onto the expansion edge connector of the Spectrum to provide a full range of interfacing facilities.

The unit is housed in a plastic case approximately $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connections.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- 15-way expansion bus

All sections of the interface are I/O port mapped and designed for maximum compatibility with existing Spectrum peripherals. Power is supplied through the Spectrum edge connector.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. Connection is by multi-way PCB connector and all the information required for adding further devices is given

COMPETITION

ETI has huddled together in a corner with Specialist Semiconductors to bring you the competition to end all others (well this one anyway). This is your chance to become the proud owner of a complete Variat-Ion ioniser with all the trimmings (though you'll have to make up the kit yourself, but then you are an ETI reader so that will be no problem). For two lucky runners-up we have Quest-Ion kits to give away.

All you have to do is to find the odd one out in the following lists of items. It's a dead cinch for intelligent ETI reader types so it shouldn't take you a trifle. When you've worked them out, write the odd one out for each list next to the list number on the back of a postcard or sealed envelope along with your name and address and send it to:

ETI lon Competition
I Golden Square
London W1R 3AB
to arrive not later than February 28th.

1. Fortran Latin Pascal Forth
2. Transistor Tripod Diode Milking-stool
3. GaAs GaPs GaAsP GaP
4. Direction Question Variation Negotiation
5. Silicone Geranium Gallium Indian
6. BY127 OM335 1N4007 BAT42 1N4148

RESULTS

The Nite Sentry competition in the December 1988 issue flooded Golden Square with hopeful entries. Alas only two of these made it through the rigorous selection procedure (the Editor's now infamous Lithuanian Trilby): D. C. Horwood from Cheltenham and J. Ella from Wokingham

In case you're still wondering what the answers were, the ingeniously cryptic addresses were:

84 Charing Cross Road (the book, film, clockwork toy, etc) 32 Windsor Gardens (Paddington Bear) 10 Rillington Place (the incident and film) 33 Railway Cuttings (Hancock's Half Hour)
50 Wimpole Street (The Barrett's residence)
1 Golden Square (oh, come on!)
77 Sunset Strip (US TV)
221b Baker Street (elementary, Watson)
100 Acre Wood (Winnie, Christopher Robin et al)
11 Downing Street (the Chancellor of the Exchequer)
In addition, the first 100 entries will soon be receiving a free copy of the Maplin Catalogue and if you think we are going to list all of them you can think again

Thanks to all who entered. Keep reading the mag for more competitions.

- WE STOCK AN UNRIVALLED RANGE
- ALL OUR COMPONENTS ARE FIRST CLASS BRANDED ITEMS
- WE OFFER A SAME DAY SERVICE ON ALL STOCK TTEMS
- NO MINIMUM ORDER-IF YOU NEED ONE COMPONENT WE CAN SUPPLY ONE COMPONENT
- WE HAVE ADOPTED A NEW LOWER PRICING POLICY + QUANTTTY DISCOUNTS
- FREE VOUCHERS WITH YOUR CATALOGUE-ORDER ONE Now:-
JUST FIL. IN THE COUPON OPPOSTTE AND POST IT WITH YOUR §1 PAYMENT TO THE ADDRESS BELOW. YOU WILL RECEIVE NOT ONLY OUR SUPERB 100 PAGE CATALOGUE, BUT ALSO FREE VOUCHERS WHICH YOU CAN USE ON YOUR NEXT COMPONENTS ORDER.

CRHCKLEWOODELECTRONICSLTD 40 CRICK1EWOOD BROADWAY LONFON
NW2 3ET TEL. $01.4500995 / 4520161$ FAX:01-208 1441 TELEX: 914977

FREE VOUCHERS!
 SEND OFF FOR YOUR CATALOGUE AND VOUCHERS TODAY.

I WOULD LIKE TO RECEIVE...... Tape your $\$ 1$ coin COPY(COPIES) OF THE 1989 CRICKLEWOOD ELECTRONICS COMPONENT CATALOGUE I ENCLOSE \&
PLEASE ENCLOSE MY FREE VOUCHERS.

NAME.
ADDRESS here, or send a cheque or postal order for $\$ 1.00$ for every catalogue you require.

KITS

ELECTRONIC GUARD DOG

One of the best burglar deterrents is a guard dog and this kit provides the barking Can be connected to a doorbell pressure mat or any other intruder detecfor and produces random threatening barks. All you need is a mains supply. intruder detector and a little time. XK125
£24.00

DLSO00K B-way sequencer kit with builtin opto-isolated sound to light input. Only requires a box and control knob to complete
£31.50
DL1000K 4 -way chaser leatures directional sequence and dimming 1 kW per channel per channel
OLZ1000K Uni-difectional version of the above. Zero switching to reduce inDLA/1 (for DL \& DLLZ1000K) Optional 810.80
terferenc: OLA/ 1 (for DL \& DL.Z1000K) Optional op-
to input allowing audio beat /light response
OL3000K 3 -channel sound to light kit. zero voltage switching, autpmatic level controf and buitt-in tric tkW per channel 215.60

POWER STROBE KIT

Produces an intens
light pulse at a
variable frequency of variable frequency of
ito 15 Hz . Includes high quality PCB. components connec lors, 5 Ws strabe tube and assembly in: structions. Supply. 240 V ac. Size: $80 \times 50 \times 45$.
XK 124 STROBOSCOPE KIT_. $£ 13.75$ PROPORTIONAL TEMPERATURE CONTROL KIT

Uses burst fire technique to mantan demperature to within $0.5^{\circ} \mathrm{C}$. Ideal for photography incubators, wine-making. etc. Max load $3 \mathrm{~kW}(240 \mathrm{~V}$ ac) Temp range
MK4 £7.80

SIMPLE KITS FOR BEGINNERS

Especially aimed at the beginner. Have fun with your project even after you have built it and also learn a little trom building it. These kits include high quality solder resist printed circuit boards, all efectronic components (including speaker where used) and full construction instructions with circuit description.

SK1 DOOR CHIME plays a tune when ac- XK118 TEN EXCITING PROJECTS F0R tivated by a pushbutton
£3. 90 SK2 WHISTLE SWITCH switches a relay on and off in response to whistle command £3.90 SK3 SOUND GENERATOR produces FOUR different sounds. including police/ ambulance/tire-engine siren and machine gun E3.90 XK113 MW RADIO KIT based on ZN414 IC. kit includes PCB. wound aerial and crystal earpiece and all components to make a sensitve miniature radio. Size. $5.5 \times 2.7 \times 2$ BEGINNERS this kit contains a solderless breadboard, components, and a bookiet with instructions to enable the absolute novice to build ten tascinating projects including a light operated switch. intercom, burglar alarm, and electronic lock Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section on component identitication and function is included, enabling the beginner to buikd the circuits with cms. Requires PP3 9 V battery $£ 6.60$
£15.00

Isolation. 4 KV terminals to heatsink isolation. 3 V to 32 V input voltage easily interfaced to TTL or CMOS logic. 24 V to 240 V rms load veltage inductive load 5witching Built-in snubber network 10 A max. 4 A with no heatsink at $40^{\circ} \mathrm{C}$ CD240/10

E2. 25

Includes all components $(+$ trans former) for a sensitive IR receiver with 16 logic outputs $(0-15 \mathrm{~V})$ which with suitable intertace circuitry (relays triacs, etc-details supglied) can switch up to 16 items of equipment on or oft femotely. Outputs may be latched to the last received code or momentary (an during transmission) by specifying the decoder IG and a 15 V stabilised supply is available to power external circuits. Supply= 240 V AC or $15-24 \mathrm{~V}$ DC at 10 mA Size (exc. transformer) $9 \times 4 \times 2 \mathrm{cms}$. Companion transmitter is the MK18 which onerates from a gV PP3 battery and gives a range of up to bioft Two keytioards are available - Mkg (4-way) keytoards a and MK10 (16-Wa)
(inc transformer)
MK18 Transmitter
MK9 4-way Keyboard. MK10 16-way Keyboard 601133 Box for Transmitter
£16.30 £7.50 £2. 20 $£ 6.55$
$£ 2.60$

TK ELECTRONICS 13 Boston Road London W7 3SJ Tel: 01-567 8910
Fax: 01-566 1916

ORDERING INFORMATION. All prices exclude VAT. Free p\&p on orders over $£ 50$ (UK only), otherwise add $£ 1.00+$ VAT. Overseas p\&p: Europe $£ 350$; elsewhere $£ 10$. Send cheque/PO/Barclaycard/Access No. with order. Giro No. 529314002 . Local authority and export orders welcome. Goods by return subject to availability.

SUN POWER

The possibility of obtaining useful amounts of electricity from sunlight by photovoltaic generation has long been an intriguing possibility 'just around the corner'. It still seems to be around the corner but at least the corner is now perceptibly closer. Mass produced amorphous silicon solar cells open the door to many practical applications of solar generated electricity though the national grid is not obsolete just yet

The solar energy impinging on a square metre of ground at the equator on a clear day is approximately 800 W . A reasonable conversion efficiency using low cost solar cells plus a reasonable storage method could permit the use of this energy, with a consequent reduction of electricity generating costs of environmental pollution.

In Britain, of course, the energy per square metre is much less buta high conversion efficiency can render its use practical.

Early satellites launched in the 1950s used solar cells costing around $\$ 1000$ ($£ 500-600$) per watt. This cost was insignificant compared with the overall costs of putting a satellite into orbit but rendered solar cells uncompetitive for ground based applications.

The high cost of the solar cells arose from the fact that each cell uses a single crystal of silicon. The cost of producing monocrystalline silicon increases rapidly with size, so that solar cells were disproportionately more difficult to produce than transistors.

Costs of producing crystalline solar cells have been reduced from $£ 550 / \mathrm{W}$ in the 1950 s to just under $£ 3 /$ W. Both monocrystalline and polycrystalline cells fall into this category, each type having different strengths and weaknesses. Monocrystal cell.s achieve a conversion efficiency of $10-14 \%$, while polycrystal ones manage $10-12 \%$. Though their cost is similar at present, there is probably more scope for further cost reductions in the polycrystalline cells.

Amorphous Semiconductors

At these prices, solar cells are practical and economic for such applications as remote telecom repeaters, navigational aids and the like, as well as for such applications as small scale refrigeration in developing countries where no reliable electricity supply is available. Only recently, with the advent of a-Si

Fig. 1 The spectrum of sunlight

Chronar's 'Walklite' path light with internal battery and solar cell
(amorphous silicon) solar cells costing around $£ 1 / \mathrm{W}$, has photovoltaic power progressed beyond this level of application.

Amorphous semiconductor material is, as its name suggests, not in an ordered crystalline form but in a disordered glassy state. One might ask why this type of material (which is easier to produce and to work with) was not used from the start of solar cell development. The reason is the same as the reason why monocrystalline silicon is used for transistors and integrated circuits - amorphous silicon as it stands cannot be used to make semiconductor devices in the way that crystalline silicon can.

Most of the useful things which semiconductors can do arise from well defined differences in the energy levels of electrons in different states. A specific amount of energy is required to raise an electron from the valence band of energy levels (where it is participating in bonding atoms into the crystal lattice) to the conduction band in which it is free to move around. It is vital that the conduction electrons should have a reasonable lifetime before falling back to the valence band or no usefulfunctioning can take place.

In crystalline silicon, the available bonds between the atoms are all used. Silicon has four available bonds - it is said to be four valent. When in a crystal in which there are atoms at the four positions needed to use these four bonds it is said to be four co-ordinated. The valent bonds between the atoms consist of pairs of shared electrons of opposite spin, which serve to

Andrew Armstrong looks at amorphous silicon in general and photovoltaic cells in particular

Fig. 2 Energy absorption characteristics of various types of solar cell
complete the outer electron shells of the atoms involved.

This sort of bonding occurs in atoms where the outer shell has fewer electrons than the number to complete the ideal pattern for that shell. The atom can only have the number of electrons which balance the number of protons in the nucleus or else it will carry a net electrical charge.

Energy

Just as water flows downhill so in general all systems tend towards the lowest energy state. Completion of all partial electron shells represents a lower energy state than non-completion but charge neutrality is a lower energy state still. Consequently an atom will not normally carry a charge to complete all shells but if it can share electrons with other atoms which also have incomplete shells, charge neutrality is maintained while the outer shells share electrons which complete their required patterns. This is a stable low energy state and such bonds are often very strong, resulting in chemically stable substances.

In an amorphous semiconductor like silicon, which is four co-ordinated in its crystalline form, many atoms are not four co-ordinated. They have dangling bonds which are ready to capture any passing electron of opposite spin. This completes the outer shell and charges the atom negatively. The dielectric constant of the material is sufficiently high that the fact the net electrical charge of the material is neutral overrides the effect of the localised excess of negative charge and the electron is bound firmly to the dangling bond rather than being repelled away electrostatically. This results in a very short life for electrons in the conduction band and the material is about as useful to make a semiconductor device as a piece of window glass.

Pioneering work on the electrical properties of amorphous solids by Sir Nevill Mott (then Cavendish Professor of physics at Cambridge) and P W Anderson, which earned them the Nobel prize for physics, opened the door to useable amorphous semiconductor devices. The actual process, discovered by Walter Spear of Dundee University, is to deposit silicon from Silane $\left(\mathrm{SiH}_{4}\right)$, by glow discharge (RF
electron bombardment). At first he thought that it was the glow discharge which was making the important difference, by depositing the silicon differently. The physics of the situation showed that hydrogen from the silane occupies virtually all the dangling bonds, which permits electrons to remain in the conduction band for longer. It is the use of silane which is crucial.

Addition of phosgene $\left(\mathrm{PH}_{3}\right)$ to the deposition chamber dopes the amorphous silicon with phosphorous, which is five valent. In situations where the phosphorous is four co-ordinated (approximately 50% of phosphorous atoms settle this way) there is a vacancy for an electron to join with the spare bond from the phosphorous. This electron is weakly bound but while it is where the phosphorous atom is, a vacancy or hole exists elsewhere. Thus a P-type semiconductor is formed. N-type semiconductor material is made by doping with boron, which is three valent.

The conversion efficiency of a-Si (amorphous silicon) solar cells is around 7% but will probably exceed 10% by 1990 as it now does in laboratory specimens. Though more cell area is needed to give the same power output as crystalline cells, the reduced cost per unit of power output makes amorphous cells more attractive for most purposes.

The 'Keylite' solar powered keyring torch from Chronar
Figure 1 shows the spectral content of sunlight in space and after absorbtion by water vapour, ozone, carbon dioxide and nitrogen in the atmosphere. Figure 2 shows the energy absorbtion of the various types of solar cells and it can be seen that the amorphous cells are more efficient in the visible region $(400-750 \mathrm{~mm})$. This gives rise to extended sensitivity under low light levels, where a-Si cells can be more
effective than crystalline ones
The high absorbtivity of a-Si in the visible range also means that a thinner layer of material will absorb the energy effectively. A-Si cells can be of the thin film variety, typically $1 \mu \mathrm{~m}$ as compared with $0.25-0.5 \mathrm{~mm}$ with crystalline cells.

Manufacture

One major advantage of a-Si solar cell modules is that the interconnection between cells is an integral part of the unit. The world's largest a-Si solar cell manufacturer, Chronar, uses the following processing steps: the P-I-N structure cells are fabricated by deposition of the required layers onto a glass sheet. As illustrated in Fig. 3. The first layer to be deposited is the front electrode, consisting of a layer of tin oxide which is laser scribed into strips. A-Si is then deposited and laser scribed. The final layer to be deposited is the back electrode, and this is also scribed to match with the strips of silicon. This rear electrode thus forms the contact between front and rear and is responsible for connecting the cell strips in series to give the required voltage.

Monolithic connection in this manner avoids the need to solder individual connections between cells, and is a significant factor in the competitive price of a-Si modules.

Crystalline cells are manufactured as wafers from cast ingots and by the time they have been scribed to shape, up to 50% of the base material may have been wasted. Considering the continued demand for silicon wafers from IC manufacturers (the increase in demand for RAM chips, for example, has contributed more than is generally realised to the well-publicised shortage while the production capacity catches up) the price of this base material is unlikely to fall dramaticaily. A-Si is cheaper and likely to remain so.

There appear to be two main companies involved in solar powered systems in the UK, Chronar and Solapak. Chronar is based in the USA, and is primarily a manufacturer of solar panels. Solapak, a UK based company, deals purely in applications, such as remote telemetry for the gas board. A sister company, Intersolar, deals with domestic products such as the Autovent. This is a ventilator which fits in the top of a car window, and leaves the car as secure as if the window were closed without the vent there. The more the sun shines, the hotter the car will tend to become, and the more efficiently the solar powered ventilator works to keep it cool.

Several other companies market cells or products in the UK. There is no indigenous British company manufacturing solar cells, and Chronar claims to be the only company manufacturing amorphous solar cells in Britain, with their substantial piant at Bridgend.

Solapak has a factory at High Wycombe to assemble systems and products. Interestingly, Solarpak is not so committed to a-Si, but prefers monocrystalline cells for industrial applications where performance is the main criterion.

Solapak was the main company involved in the Solar/Wind Energy Project at Milton Keynes. In this project, solar panels and a wind generator are used in conjunction with storage batteries to provide electricity for nine houses. A total generating capacity of 30 kW is installed, with automatic switchover to mains electricity in the event that the batteries run too low. The combination of wind and solar power $(80 \%$ solar, 20% wind) matches the seasonal demand for electricity and the houses are designed to use passive solar heating to minimise the electricity requirements for this most inefficient use of electricity.

Electrical Characteristics

A-Si cells produce approximately 0.8 V off load, falling to 0.55 V on load. Figure 4 shows the V-I characteristics of a typical cell. The characteristic is not linear and there is a well defined point at which maximum power is delivered to the load. An equivalent circuit giving a good representation of the characteristic is shown in Figure 5.

The precise V-I characteristic of the cells depends on the intensity of the incident light and the temperature. Both Chronar and Solapack (and probably others as well.) have designed load tracking units which adjust the load applied to the photovoltaic panels to extract maximum power from them under the prevailing conditions. Such units are claimed to increase by 15% the average battery charging capability by making best use of morning and evening

Fig. 4 V-I characteristic of a typical a-Si solar cell

Fig. 5 The equivalent circuit for a typical a-Si solar cell
light levels, as is shown in Figure 6.
Another advantage claimed for load optimising units is that if the solar cells are used to power, say, a pump directly, the amount of water pumped can be increased from 20 to 100%. This is because the pump starts earlier in the morning and works later in the evening. It can also run faster in the middle of the day when the total power is greatest (even though the cell voltage is the same). This is illustrated in Figure 7.

The load optimiser units work somewhat similarly to switched mode power supplies, using variable mark/space ratio switching to control the step up/down as shown in Figure 8.

Photovoltaic Applications

At present photovoltaic power is useful in Britain only for applications where it is not convenient to use mains power. If the price per watt were to drop further the applications could multiply.

To take a simple example, if solar cells were used in conjunction with rechargeable batteries in a radio, then the size of battery required would be less than that needed if it had to operate the radio with no topup between charges. In this case, the batteries only have to retain enough charge to cope with periods when the light is not bright enough for the solar cells to run the set on their own. The same argument applies to other electronic products. Even if a separate or built-in charger is necessary, the addition of solar cells can extend battery life in normal use.

Already it is practical to use a- Si solar panels to charge batteries in caravans, small boats and the like to provide power for weekend use. With the increase in static 'key off loads in cars, there may soon by an incentive to provide a solar battery charger, perhaps in the form of a sun roof. A-Si solar arrays are semitransparent, rather like a dark tinted glass and could enhance the appearance of the car while preventing the increasing amount of continuously operating electronic equipment in the car from discharging the battery if the vehicle is left parked for a couple of weeks.

No doubt the availability of top-up charge from a solar panel would encourage the provision of more key-off loads, such as better security devices. One interesting possibility would be to power a ventilation fan to keep the internal temperature down to levels safe for pets who may have to remain in the car. Spare power along with an extra switch could solve that problem, as well as making the car more pleasant to get into after it has been parked for while in the sun.

Outland

Out in the outback solar power has been making an impact. Australian farmers living far from mains electricity supplies have for some time made use of diesel generators to provide electricity for the mod cons of contemporary civilisation. The drawback is that the efficiency is low. The diesel generator has to be able to supply the maximum load, which may be required for a short period each week but it has to be kept running all the time to maintain loads such as food freezers, radio communication equipment and so on.

If the diesel generator is run lightly loaded it is inefficient but still the fuel consumed is much less than at full load. Unfortunately a lightly loaded diese] engine is less reliable then a fully loaded one. For this reason, in many cases power is deliberately wasted, for example by using an air conditioner and a heater in the same room, to maintain the load at near maximum. This is costly but less inconvenient than arranging for repairs to a diesel generator set hundreds
of miles from civilisation.
A possible answer would be to use the generator to charge batteries, and only start the engine when the batteries run low. This can help but once again unreliability becomes a problem. The solar solution diminishes the problems. At current prices it is not sensible to provide enough photovoltaic power and/or storage to cater for the maximum load but it is possible to provide for the base load at a cost which is quickly repaid in saved fuel costs.

Enough storage batteries are used to provide for the night-time operation of necessary loads and the diesel engine will be started automatically on the rare occasions when the stored energy is inadequate. Normally, however, the diesel engine would only be used when, for example, extra loads such as a washing machine, electric iron or whatever are used once or twice a week. The reliability of the diesel generator set is not seriously compromised by the limited stopping and starting required and if the generator fails the solar panels can keep essential loads supplied. The pay-

Fig. 6 Annual output of a solar cell using a maximum power controller

Solar powered rechargeable hand lantern form Chronar
back time for such schemes is claimed to be between one and two years.

The farthest out application, geographically, is still in outer space. It is unlikely that a-Si will be suitable for satellite applications because efficiency is more important than price, and crystalline cells are likely to remain more efficient in the forseeable future. It is more likely that indium phosphide would replace crystalline silicon as the material for satellite solar cells.

The reason for this is that particle radiation gradually and irrevocably disrupts the crystalline structure of silicon, while the structure of indium phosphide reforms itself. So indium phosphide cells would not suffer the slow degradation which silicon cells suffer.

Amorphous Applications

The use of a-Si is not confined to solar cells. Researchers at Chronar have fabricated transistors and logic gates of up to 18 transistor functions per

Fig. 7 Load performance improvement using a maximum power controller
chip, and are currently developing more complex logic functions silicon logic circuits which can operate at up to 1 MHz on supplies of 5 V . This is hardly likely to outperform RISC processors in the near future but the performance is suitable to be incorporated into flat panel displays. For example, if driving electronics were to be incorporated into a liquid crystal display panel, then each pixel could be driven separately rather than being multiplexed.

The available contrast would then be the same as current digital LCDs provide - much greater than that available from multiplexed displays. Computer displays made in this way would be easy to read, unlike present supertwist LCDs which give limited contrast and a narrow viewing angle.

Another application of the technology is to produce non-volatile memories by an effect whereby a conduction path generated by a programming pulse remains in existence until an erase pulse is applied. The physics of this is still under investigation. The likely application is to produce memory modules as a substitute for diskettes in future generations of PCs. At last an end to BAD SECTOR ON DRIVE B.

In the long run, a-Si logic would seem ideal for use in optical page readers and general image processing. Perhaps security cameras could be made with electronic motion detection built in to the faceplate, or page readers with character recognition built in, using parallel processing of the image.

The Future

Clearly the cost of photovoltaic power and specially a-Si solar panels, will decrease during the next few years as manufacturing processes are improved and volumes increased. Chronar says its new manufacturing plant at Bridgend will produce solar panels at a cost of approximately 50 p per watt when it opens in 1989 and that this will be reduced to around 35p during 1991. This plant will be able to produce 10MW of a-Si solar panels per year, making it the largest such plant.

Such a reduction in costs, if achieved, will certainly open up many new applications. Most predictions turn out wrong or at least to have a wrong timescale, so I will suggest a few developments which I would like to see.

First of all, for reasons of sheer convenience, I would like to see more products incorporating solar cells and rechargeable batteries. This should reduce the tendency for batteries to run flat at an inconvenient moment. Of far more significance, though, would be the generation of useful amounts of electricity to reduce the need to burn coal and oil. The burning of coal, in particular, would appear to be one of the most

Chronar's range of photovoltaic panels

environmentally dangerous means of producing electricity, so even a modest reduction in the need to do so would be desirable.

It does not seem to me that in Britain, with our dim weather, centralised photovoltaic power generation would be attractive unless astounding conversion efficiencies were achieved. The land taken up with the solar panels could better be used to plant trees, which could in due time be cut down and burnt to produce electricity. However, if house roofs were made from solar panel tiles, and the power converted electronically to 50 Hz , the overall effect could be quite beneficial - although an electrician would then be needed to repair a leak in the roof!

Power would only be generated during the day, of course but it is during the day that overall power demand is greatest because of industrial use. If the net domestic load could be reduced or even made into a net supply, the resultant load levelling should increase the efficiency of power generation as well as reducing the total requirement.

Photovoltaic power could also make a contribution to road transport. Though I cannot imagine long range electrically powered vehicles becoming practical or indeed possible in the foreseeable future, there would seem to be an application for shorter range vehicles to be used around town for shopping, taking the children to school and the like. No doubt mains recharging would be needed for all but the lightest use but the use of solar ceils covering all the suitable surfaces on an electrically powered car could extend its usefulness and help to make it practical.

A short range vehicle like this could make a disproportionate reduction in total fuel consumption because it is short range town driving which is least efficient for normal cars and it is in the mile or two after starting that the poorest fuel economy (and the greatest engine wear) occurs. The major barrier in the way of this development in the medium term would appear to be the difficulty of taxing it.

Finally, to permit these and other beneficial developments, I would hope and expect that the efficiency of photovoltaic panels could be improved. Chronar has a research grant to improve efficiency and expects to achieve 10% in the near future, mainly by improving the quality of the junctions and the packing density. Improvements in the spectral absorption should in theory be possible, and it may be possible to achieve efficiencies in excess of 20% in the next decade.

71

Fig. 8 Operation of a switched mode optimum power controller

OP-AMPS

> Paul Chappell returns to the relative sanity of real op-amps for a discourse on transfer functions, loop gain, return difference and the like

Still on the trail of frequency response, negative feedback and stability in op-amp circuits, I'm going to try stalking the subject from a different direction. In the last few articles I've been concerned with some of the practical aspects of designing a heating controller and one or two of the problems you might come across. This time we'll see what a more abstract approach can do for us.

Stripped to the bare essentials, a single loop feedback system can be summed up by the diagram of Fig.1a. There's an input of some kind, a forward path A, a feedback path β and a device which combines the signal emerging from the feedback path with the input signal. In a simple negative feedback loop the combination process is nothing more than the subtraction of the feedback signal from the input.

Fig. 1 (a) The stripped bare diagram of the single loop feedback system (b) A practical version (c) Another

Figure 1 b shows one practical form of the system and Fig. 1c shows another. The diagram of Fig. 1a is so stripped of any kind of personality that it could represent a wide range of systems, and not necessarily electronic ones either. It might be a mechanical fuel injection system in a car, for example, or a gas pressure regulator. Anything which takes account of the results of its actions and compares them with the input to see if it's doing the thing right has the same essential parts.

So if we can draw any conclusions from such unpromising material as the diagram of Fig.1a, they will hold good for an enormous number of apparently unrelated (but in essence very similar) devices.

Having said all that, I'm not really aiming for complete generality here - apart from anything else Id have to keep stopping to show how the terms, conditions and results apply to various other systems, or to resort to heavy mathematics, neither of which I want to do. It's op-amps we're interested in, so that's what ['ll concentrate on.

Having settled that, we can now say that A is the vc' age gain of the op-amp, β is the factor by which R1 and R2 (Fig.1b) reduce the output signal

$$
\left(\beta=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)
$$

and that the combining block represents the subtraction of the -input signal from the +input signal that happens in the input stage of the op-amp.

OK, if I'm not aiming for generality, why not stick to drawing proper op-amp circuits instead of boxes with odd names? The answer is that a slight shift in viewpoint often shows up all kinds of relationships that

Fig. 2 Putting formulae to (a) the stripped-bare version (b) Real op-amps
were not at all obvious before. Translating to the frequency domain, for instance, can make it impossible to miss things that were all but invisible in the time domain.

The shift we're making here is to see things in terms of what they do rather than what they are. We are no longer interested to know that the subtraction of the feedback signal from the input takes place inside the op-amp or that the division of the output is achieved with a pair of resistors. All we care about is that somehow or other it happens - irrelevant information is cast aside. The markings on the boxes represent their transfer functions - the way they process a signal on its way through. For the moment, function is all!

Let's begin by working out what the voltage gain of the network of Fig. 2 a will be. By inspection we can write down

$$
v_{e}=v_{i}-\beta v_{o} \text { and } v_{e}=v_{o} / A
$$

so, combining the two equations and losing v_{e}, which we're not interested in, we get:

$$
v_{1}-\beta v_{0}=v_{0} / A
$$

which, after a bit of fiddling around, gives:

$$
v_{0} / v_{i}=A /(1+A \beta) .
$$

Now, if the value of $A \beta$ happened to be much greater than one, there would be not much error in saying that the network gain v_{0} / v_{i} is $1 / \beta$. If $A \beta$, on the other hand, turned out to be very much smaller than one, the gain would be pretty close to A , the gain of the forward path. Which is exactly what you'd expect from your experience with op-amps, isn't it? You sound doubtful.

Orientation exercises coming up. In the circuit of Fig. 2 b , you'd have no hesitation in telling me that the gain was ($R_{1}+R_{2}$)/ R_{2}. If pressed, you'd also admit that this was an approximate formula but one that gave an answer near-as-makes-no-odds correct as long as the demand gain was a good deal smaller than the open-loop gain A of the amplifier.

Translating this into As and β s, you are telling me that the gain is $1 / \beta$ as long as $1 / \beta$ is much less than A, which is the same as saying that $A \beta$ must be much greater than one. Which is exactly what I said before!

So what happens if the demanded gain gets close to the open-loop gain of the amplifier? Or equal to or greater than it? If you remember way back to the earliest articles in this series, I produced some figures showing exactly what the resulting gain would be. It would get closer and closer to A , the amplifier's own gain, and would no longer bear any relation to the values of the feedback resistors.

Once again, the translation into A s and βs : you now tell me that as demanded gain $1 / \beta$ approaches A it becomes a less and less reliable formula for the circuit's gain. If it goes way beyond A (which is to say that $A \beta$ becomes much less than 1) then the gain of the circuit gets closer and closer to A.

All clear now? Without hesitation then, if I replace R 1 and R 2 with a pot and turn the pot in the direction to increase the circuit's gain, am I increasing or decreasing β ? If I set the pot so that the demanded gain $\left(R_{1}+R_{2}\right) / R_{2}$ is equal to the op-amp's gain A, what will be the value of $A \beta$? And what will be the gain of the circuit? OK, you've passed!

Have a look at Fig.3a. For reasons best known to my psychiatrist, l've grounded the input of the network and broken the loop between the output and the β box. Not content with this, I'm also injecting an input straight into the β box and looking at what comes out of the other side of the cut. You can easily work out what it will be: $-\mathrm{A} \beta \mathrm{vin}$.

In Fig. 3b l've done the same thing again but in a different part of the loop. Once again the signal that comes out will be - A βv vin, and so would it be if I cut it yet again just before the A box. The term - A β is
known as the network's loop gain - it's the gain you get if you send a signal once around the loop, no matter where it starts and finishes.

Another quick test: there are two op-amps circuits on your bench, each using the circuit of Fig. 2 b . One is connected for a gain of 10 and the other for a gain of 1000. Assuming both use ICs with more or less the same open-loop gain, which circuit has the higher loop gain? (and which has the nicer coloured resistors?).

There's another relationship to be spotted here. The higher the demanded gain from the circuit, the lower the loop gain (strictly speaking, the lower the magnitude of the loop gain but you know what I mean). At the point where the demanded gain is equal to the open-loop gain (that is, if you have an op-amp with a gain of 10^{6} and try to set a gain of 10^{6} with the resistors) the loop gain will be one and the actual circuit gain will be almost exactly half the value you expect. If you apply lots of feedback and to select a gain much less than the open-loop gain, the loop gain will be high. Have just a little feedback and the loop gain will be low.

There's one more term I should introduce this month, and that's the return difference. In the equation for the gain of the network of Fig. 2 a , the 1 $+A \beta$ term is called the return difference - don't ask me why. Calling the various parts of the gain formula by name, it becomes:

$$
\text { closed loop gain }=\frac{\text { open loop gain }}{\text { return difference }}
$$

so it follows that:

$$
\text { return difference }=\frac{\text { open loop gain }}{\text { closed loop gain }}
$$

It's given a special name because, like pi, it keeps popping up all over the place, although why it isn't called something sensible like gain ratio is beyond me.

One of the main problems with feedback theory in general is that no two people ever agree on the names of definitions of any part of it. The theory grew up almost independently in several different areas amplifiers, servo-mechanisms, control theory and so on. By the time everyone realised that they were essentially studying the same thing under different names, it was too late.

Some call the signal which feeds the A box the error signal, others insist that it is the correction. Some like to refer to loop gain, others prefer loop feedback factor or return ratio. So if you're browsing through a book on feedback and find that they use entirely different names and definitions, don't worry - just choose whichever you like the best!

HIGH GRADE COMPONENT PARCELS

Uniess otherwise stated, all the clearance parcels we offer contain brand new, top grade
components. It some of the offers look too good to be true, all I can say is that the optimists will get some stunning bargains, the cynics will never know what they've missed, so everybody will be happy! All offers apply only while

UNIVERSAL

 EVERYTHING PARCELThis one contains some of ust about any component you care to name! There are passives (resistors, capaciors, tants, presets), opto devices (couplers, LEDs of all shapes and sizes, infra-red components
7 -segment displays) semiconductors (transistors, diodes ics rectifiers), and all kinds ol other odds and ends (relays. VDAs, neon battery conneciors, mixed components packs). A slunning range of components - enough to get a workshop or lab. started - at a The compony low price.
sell at cl emponents are of excellent quality, in packs originally intended to parcel will have no more than two of get a good vanety, the 20 -pack
will have at most five of any one pack. Packs supplied as they pack parcel our choice.

This parcel contains nothing but ICs. The mixture offers TTL and CMOS logic, interface ICs, linear, data converters, op-amps, special functions, and so on. Some of the ICs are pre-packed with data sheets, some (TTL, CMOS, op-amps) we expect you to identify for yourself, others will be covered by the free data pack provided, and the rest you'll have to identify under your own steam. If you know your ICs you'll be in for a few nice surprises.
PARCEL 3A: 200 ICs for 812 ! PARCEL 3B: 500 ICs for $£ 49$!

ELECTROLYTICS

A first class selection of good, modern electrolytics. The mixture ranges from small coupling caps up to huge power supply electrolytics - you'll be hard pressed to find any value between $1 \mu \mathrm{~F}$ and $2200 \mu \mathrm{~F}$ that isn't represented. A wide range of very useful components. Go for it!
PARCEL 5A:
1000 ELECTROLYTICS for $£ 8$
PARCEL 5B:
2500 ELECTROLYTICS for $£ 16$

TANTALUM CAPACITORS

A nice range of tants in values up to $47 \mu \mathrm{~F}$. Lots of useful caps, and we're not mean with the most expensive ones. A fine selection.
PARCEL 4A: 100 TANTS for $£ 6.80$ PARCEL 4B: 500 TANTS for $£ 29!$

LEDs

All shapes, sizes and colours of LEDs. Round ones in various sizes, rectangular ones, red, green, amber and yellow ones, clear and tinted lenses, all sorts.
PARCEL 7A: 100 LEDs for $£ 5.90$ PARCEL 7B: 500 LEDs for $£ 24.90$

CAPACITORS

An exciting selection of capacitors. There are ceramics for decoupling and general use, Polystyrenes for high performance circuits, dipped and moulded polyesters in values from a few $n \mathrm{~F}$ up to $2.2 \mu \mathrm{~F}$ (very expensive!), tants and aluminium electrolytics - just about any capacitor you'll ever need. Don't miss this one!
PARCEL 8A:

MIDI PROGRAMMER

In the early days of synthesisers, instruments had impressive rows of rotary controls and any desired parameter could be almost instantly selected and adjusted. Progress resulted in polyphonic and multi-timbral instruments which required too many controls for this approach to be viable, and so the numeric keypad plus single control was born. The keypad was used to select the required function and then the control knob was adjusted to obtain the required sound

Finally, things were streamlined still further, with the control knob disappearing altogether and the push buttons being used to select and adjust everything. While all this was happening, the complexities of setting up a new sound were growing, with ever more parameters to set. The result of this has been that sound creation has become so complicated that most users of electronic instruments now simply settle for the factory preset sounds or sounds bought on cartridges (or whatever).

Matters have improved somewhat recently, with MIDI providing the possibility of easier access to the controls of an instrument. There are two basic approaches and the best of these is to have a sophisticated computer controller having an on screen control panel that gives the same ease of access to the controls as the analogue synthesisers of many years ago. Unfortunately, this tends to be a relatively expensive solution to the problem, even if suitable equipment and software can be tracked down.

Method number two is to go back one step, and to have something analogous to the keypad selector and single control knob. This is somewhat slower than the full control panel approach but it is still much quicker and more convenient than total push-button control. It is also something that can be achieved using a reasonably simple piece of hardware, with no need to resort to a full blown microprocessor based system.

The MIDI controller described here is of this basic type but it has thumbwheel switches rather than a keypad to permit selection of the required control function. It will operate on any MIDI channel, and should function with any instrument that implements MIDI controllers.

A lot of instruments fall into this category but it is only fair to point out that some recent instruments, rather unhelpfully, provide access to many parts of the sound generator circuit only via system exclusive messages. The only MIDl controllers then imple mented are (usually) modulation depth, master volume, and sustain on/off. With these instruments full control is only really possible using a dedicated microprocessor based system, or a home computer with custom software. This controller will not produce the system exclusive protocols and cannot be used for
programming such instruments as the Roland MT-32 for example.

As always with MIDI equipment, check the specifications of your instruments before deciding on a course of action, and do not jump to conclusions. There are about as many MIDI different implementations as there are different pieces of MIDI equipment.

In Control

A MIDI message consists of a header byte which is usually followed by one or more bytes of data. The header byte consists of two nibbles, and for channel mode messages the most significant nibble indicates the type of message (note-on, note-off, and so on) while the least significant nibble carries the channel number. There are also system common messages, where the most significant nibble is the system common code, and the least significant nibble indicates the precise nature of the message (mostly forms of clock and synchronisation signal).

In this case it is a form of channel mode message that we are interested in. The MIDI controller header nibble is 1011 in binary and as this is a channel mode message, the least significant nibble is the channe] value. Values from 0 to 15 are used in the MIDI message, but MIDI channels are conventionally numbered from 1 to 16 . The value used here is therefore equal to one less than the number from the channel on which the message must be sent.

The header byte is followed by two data bytes. The first of these is the number of the control to be altered, and the second is the new control setting.

MIDI data bytes always have the most significant bit set to 0 (it is always set to 1 in header bytes), and the valid range for both of these bytes is therefore 0 to 127. Things are a little more complicated than this would suggest as some controls are grouped in pairs and the two bytes are combined as single 14 -bit value. (Control numbers 0 to 31 are paired with controls 32 to 63 respectively. The control having the lower number is the one which takes the most significant byte.)

Robert Penfold concocts control codes with his MIDI parameter programmer

Fig. 1 Block diagram for the MIDI programmer

It is quite feasible to use our MIDI controller to adjust one byte of a control and then click the most significant digit of the hex switch through a couple of digits so that the other byte of a control can be adjusted. In practice this will not normally be necessary as it seems to be rare for the full 14-bit resolution to be implemented. Most controls have straightforward 7-bit resolution, and in some cases the least significant bit or bits are ignored so that only 5 or 6-bit resolution is obtained

The manuals for your MIDI equipment should state the resolution of each control. Note that if only one byte is used it will be the most significant byte the lower control number will be used and the higher one will simply be ignored).

Control numbers 64 to 95 are used for switches. The data byte is either 0 (off) of 127 (on), and other values will have no effect. Control numbers from 96 to 127 are either as yet unassigned. or are used for mode change messages.

Fig. 2 The main circuit diagram

The general arrangement used in this unit is shown in Fig. 1. Generating the basic MIDI signal represents no real difficulty as MIDI uses what is virtually a standard RS232C serial signal as used in computer interfacing

It differs from the RS232C standard in that the baud rate is nonstandard (31250 baud), and the output signal is in the form of a 5 mA current loop (which drives an opto-isolator at a MiDl input to guard against differences in chassis potential).

The baud rate can be accommodated using standard crystals, and the 5 mA current loop merely requires a simple open collector output stage. A UART (Universal Asynchronous Receiver/Transmitter) plus suitable clock and output circuits will provide the necessary parailiel to serial conversion

The UART must be fed with three bytes in the correct sequence (headerichannel byte, control number, and control value). The headerichannel number byte is produced by a simple binary code generator circuit, and it is fed through to the UART via a buffer which has three state outputs.

A similar arrangement is used for the control number byte, with a double hex switch feeding into the tristate buffer

The control value is generated by an ADC fed from a potentiometer. This value could be generated more simply using a hex switch, but adjustment using a potentiometer is much quicker and easier. It is probably cheaper as well. No separate tristate buffer is needed for the ADC as it has tristate outputs.

A control circuit is needed to activate the tristate outputs in sequence, and also to provide the start conversion pulses to the converter. The basic course of events is for the first tristate buffer to be activated and for a start conversion pulse to be supplied to the converter. Then the second tuistate buffer is activated, and finally the outputs of the converter are activated. This train of events is repeated indefinitely.

The control logic circuit that provides these pulses is driven by a clock oscillator that produces about 160 complete messages per second. This ensures that any changes in the setting of the potentiometer are quickly transmitted, and there is no discernable lag between adjustments being made and the instrument responding to them.

The control logic circuit includes a disable function. Remember that the unit should not be left transmitting while changes in the controi number are made. As the her switch is adjusted from one control to another, this would result in any control numbers passed through on route being set to the current potentiometer value. A lot of work could be very rapidly undone in this way! The enableidisable switch ailows the flow of data to be halted, and the circuit ensures that each three byte message is completed before the output signal is cuit off.

A negative supply is required for the 'tail' resistor in the $A D C$, and this is derived by rectifying and smoothing some of the output from the control circuit's clock oscillator.

The main circuit diagram is shown in Fig. 2 , with the control logic circuit shown separately in Fig. 3 .

A standard 6402 UART IC2) forms the basis of the circuit - the aimost identical (but slightly cheaper) AY-3-1015D can be used.

The clock signal must be at sixteen times the required baud rate, which works out at 500 kHz in this case. This is obtained from a 4 MHz crystal oscillator based on 02, and a three stage binary divider (IC1). 01 is a common emitter switch which provides the nominal 5 mA output pulses.

MIDUIN and OUT sockets are provided 50 that the unit can be connected in-line with another MDI control device. SW5 enables the unit to be switched into circuit or bypassed, as required. IC2 requires a long reset pulse at switch-on, and this is provided by C 3 and A 6 .

IC3 and IC5 are the tristate buffers, and are actually transceivers held permanently in the 'receive' mode. The most significant nibble of IC3 is wired to give the correct header code, and the least significant nibble is provided by a hex switch SW1. In most cases, operation only on MIDIchanne 1 will be sufficient, and the hex switch can be omitted.

Both nibbles for IC5 are provided by a two digit hex switch SW2 The most significant bit of the switch is not connected, and is held permanently low by R21. Control numbers of more than 127 are not valid and this prevents illegal values from being transmitted.

The ADC (IC4) is a successive approximation type and has abuilt in clock oscillator which requires discrete timing capacitor C5, giving a conversion time of about $20 \mu 5$. Conversions are therefore completed comfortably within the 2 ms or so between the 'start conversion' pulse being issued and the converter being read. The potentiometer is fed from the built-in 2.55 V reference source of 1 C 4 , and RV 2 is adjusted to give a maximum reading of 127 .

A one-of-ten decoder liC8) provides the basis of the contro circuit. In this case only the first three outputs are required, and so output 3 resets the device.

C10 and R25 provide IC8 with an initial reset pulse at switchon. This ensures that the unit starts by transmitting the header byte and not one of the data bytes. The outputs of IC8 provide positive pulses inverted for the buffers and converter by three stages of hex inverter 169 . The other theee stages of $1 C 9$ are left unused but their inputs are tied to the positive supply rail in order to prevent spurious operations.

IC6 provides the clock signal for the control circuit, and apart from the fact LC6 is a low power device, this is a standard 555 astable circuit. The clock signal is supplied to IC8 by way of a gate circuit which uses two of the 2 -input NOR gates of IC7.

The other two gates form a simple bistabie circuit, and when SW4 is closed the bistable permanently enables the gate. The unit then provides a continuous stream of data. When SW4 is opened, the bistable is reset when IC8 completes its next cycle, and the clock signal is cut off. The output signal then ceases until SW4 is closed again.

The UART must be supplied with a pulse in order to initiate transmission of each byte. This signal is provided by the gated clock signal and not from $\operatorname{IC} 8$.

D1, D2, and C9 rectify and smooth some of the output from IC6 to generate the negative supply for KC (about 3 V).

The main circuit requires 5 V and has a clirrent consumption of about 50 mA . This is obtained from B1 via monolithic voltage regulator IC10

Fig. 4 Component overlay for the MIDI programmer
The precise front panel is not too criticai, but
SW2 must be mounted at the extreme right hand to
avoid the PCB. I omitted the SW1, a operation on
MIDI channel 1 was all that I required and a wider case
must be used to accommodate SW1 unless it is
relegated to the rear panel.

When fitting the end cheeks to SW1 and SW2 (see Buylines), beware the threaded rods that fix them together. If you cut them too short you can't fit the nuts, too long and it will not fit in the panel cutout. Cut them slightly too long and file them back. The cutout must be accurate and is 31 mm high and 17 mm

PARTS LIST

RESISTORS (all 14 W 5\%)	
R1	470R
A2, 7-10,	
1425	10k
R3	3 k 3
R4	1 MO
R5	2 k 7
R8	1 k 8
R11	6 k 6
R12	47k
R13	390R
RV1	10 k lin
RV2	4 K 7 sub-min horiz preset
CAPACITORS	
C1, 2	33p ceramic plate
C3, 8, 9	47\% 10V radial electrolytic
C4	14.50 V radial electrolytic
C5	220p ceramic plate
C6	100 μ radial electrolytic
C7	100 n polyester
C10	10 n polyester
C11, 12	100 n ceramic
SEMICONDUCTORS	
$1 C 1$	4024BE
1 C 2	6402 or AY-3-1015D
123,5	74HC245
IC4	ZN449E
166	TLC555P
167	4001BE
168	4017BE
109	40698E
1610	4A78L05
01.	8 C 59
02	BC549
D1, 2,3	1N4148
MISCELLANEOUS	
B1	9 V battery ($6 \times$ HP7 or PP9)
SK1, 2	5 -way, $180^{\circ} \mathrm{DIN}$ socket
SW1	hex switch
SW2	double hex switch
SW3	DPDT miniature toggle switch
SW4, 5	SPST miniature toggle switch
X1	4 MHz wire-ended crystal
PCB Cas	IC sockets: Battery connector. Se

wide for a single switch, or 24 mm wide for a double switch

Most of the point-to-point style wiring is straightforward but Fig. 5 should help with any difficulties This assumes that the recommended thumbwheel switches are used for the two hex switches. Provided SK1 and SK2 are 5-way 180 degree DIN sockets connected as shown in Fig. 5, the unit can be fitted into the MIDI system using standard MIDI leads.

Adjustment And Use

Most instruments implement the modulation amount as controller 1, and this is a good one for initially testing the unit. With '01' selected on the twin hex switch, SW3 set to connect the output through to SK2, and the unit switched on and enabled, adjusting RV1 should control the modulation amount.

The unit can then be tried with other control values set on the twin hex switch. The fact that this switch is calibrated in hex rather than decimal should not give any problems. MIDI sections of instrument manuals seem to deal almost exclusively in hex and binary, with little mention of decimal values.

RV2 must be adjusted to give a maximum

BUYLINES

Crystal XI must be a miniature wire-ended type (HC- 88 N or HC-49M) If it is to fit on the PCB as shown.

Most hex switches (SW1 and SW2) are intended for on-board mounting so are unsuitable for this project. A thumbwheel switch is best - these are obtained as single switches plus optional end cheeks. A double switch is simply two single switches sandwiched between a pair of end cheeks. These are available from Electromail (Tel: (0536) 20455), Switches are parts 337-093, end cheeks (pair) part 338 -406.

IC4 is Ferranti's ZN449E available from STC (Tel: 102791 626777). The higher quality ZN448E and ZN447E are also suitable and more commonly available, but are much more expensive and unnecessarily accurate.

The PCB is available from the PCB Service.
control value of 127 . The ideal aid for adjusting this preset is a computer that will display values received at its MIDI port. In the absence of such equipment probably the best solution is to use any switch control of the instrument to indicate when a value of 127 has been reached. Remember that switch controls turn on at 127 , and switch off at 0 , ignoring values inbetween Start with RV1 set at maximum, and RV2 set fully counter clockwise. Advance RV2 slowly, just far enough to switch on the selected control function. The unit is then ready for use.

Fig. 5 Off-board wiring diagram

Ali Taalf keeps track of his extensions with this simple in-use signal for telephone circuits

This equipment is not approved by the British Approval Board for Telecommunications (BART) and so cannot legally be connected to a BT telephone line. However, if properly constructed the Telephone Indicator will not harm either the BT line or other equipment connected to it.

Aregular modem user living in a threestorey house once had a problem. While he was online to his favourite bulletin board he would sometimes suffer such severe data corruption that the computer logged him off. He soon found the cause.

Fig. 1 The connections to a BT master socket

His wife, two stories below him, did not know that the phone line was in use and picked up the extension phone to make a call. Sometimes even the click of picking it up, let alone trying to dial, could cause problems. He asked me how he could indicate when

PARTS LIST

a line was in use, in such a way that the indication would be automatic and could be used at any extension socket

I ascertained that his telephone system uses the modern rectangular $B T$ sockets and l made some measurements on my own telephone socket. Figure 1 shows the circuit of a standard master socket, of which there is one per line. The function of the surge arrestor is obvious, the resistor is there to load the line and permit line tests even if all the telephones are unplugged and the capacitor is to provide ringing current to the sounders in the telephones.

Ringing current is AC and the capacitor is chosen to provide little impedance to the frequency used. When any handset is picked up, the ringing current output is loaded so that dialling pulses do not cause the telephones to tweet.

Clearly, in order to maintain indication of line operation without injecting any foreign signal into the system, the detector should measure across terminals 2 and 5.

When none of the phones are in use, there is about 50 V across terminals 2 and 5 . When you pick up a phone this reduces to about 10 V , which changes still further if the number you are dialling answers. A simple means of measuring this voltage would detect line use and such a device with low off-state current consumption would be ideal

The Answer

The need for the battery to last for a long time rules out the quiescent consumption of most ICs. However, an ordinary junction FET (field effect transistor) can be switched by the signal available and can have a very low quiescent consumption.

To make a tidy and movable indicator, it should be connected to a telephone plug and the telephone extension socket should be changed for a double socket. These are available with screw terminals so that the insulation displacement tool is not needed for installation.

The method of installation is simple. Note which wire(s) connect to which terminal number, disconnect them, reconnect to the same terminal numbers in the new socket. Be sure to make good connections or else there could be crackling on the line.

As an easier alternative to replacing the telephone socket, a 2-way telephone adaptor could be used or you could wire it permanently onto a socket (naughty) or even build the whole project into a socket (very naughty).

Fig. 2 The Telephone Indicator circuit

The circuit of the line indicator is shown in Figure 2. The N-channel junction FET is biased off by the 50 V , which is connected so as to put about -5 V on the gate via the potential divider action of R1, R2 and R3. With only 10 V present (when the line is in use) the gate of the FET is biased slightly positive and the FET conducts and switches on the LED. R4 sets the LED current and I have chosen a value which will give enough brightness to see it clearly except in bright sunlight, while keeping the current low enough to make the battery last. Typical on operating current is 3.3 mA and typical off leakage current is $5 \mu \mathrm{~A}$.

Two resistors in series are used in the input to protect against damage to the phone system if one should be short circuited. Telecom disapprove of modifications or additions which may damage or adversely affect the system. Actually I think they object to anything at all, no matter how carefully done but if you make sure that there is no significant loading on the line and that no significant extraneous signal is injected there can be little genuine cause for complaint.

Construction

No PCB design is given for this circuit because it is so simple as to make the expense a little silly. Instead a stripboard layout for the project is given in Figure 3.

This should pose no real problems. Just be careful to solder in the FET (Q1) the right way round and watch out for 'bridges' of solder between adjacent tracks.

When you first build the circuit, connect up the battery while the input is unconnected. The LED should light. Then connect the wires to the socket and
it should go out. If not, try reversing the wires. If this does not work then the pinch off voltage of the FET may be so different from that of the prototype that different biasing resistor (R 4) values are called for.

If the LED never extinguished, then increase the value of R3. If it never switched on, first check that it is connected the right way round, and does light if the source and drain of the FET are shorted together, then decrease the value of R3. Few units are likely to need this however.

Fig. 3 The track cuts and component layout for the Telephone Indicator

BUYLINES

All the parts used in this popject are easy to obtain. The BF244 is available from Mapilin as are the phone sacket and adapter.

G1

AUDNOKITS Precision Components

THE VIRTUOSO PREAMP
(ETI June-November 1986) NOW AVAILABLE
AUDIOKITS COMPONENT NOTE ACN19 VIRTUOSO PREAMP THE SECOND UPGRADE £5
Describes how the sound quality of the upgraded Virtuoso preamp can be substantially improved in sound quality by substituting bulk foil resistors. polypropylene capacitors, PTFE cables, gold plated switches and heavier power supplies. Includes full revised circuit diagrams parts lists and prices.
ACN20 REMOTE PREAMP POWER SUPPLY $£ 1.50$
Describes how to build a remote power supply (up to 500 VA) for your preamp. tuner, integrated amplifier or even your power amp.

> NEW NEW NEW NEW

COMPLETE STEREO AMPLIFIER KIT £99.50

The Class One Sound DM20 kit amplifer which was featured in the January and February issues of Everyday Electronics is easy to build (ideal for schools and colleges) and sounds astonishingly good for the price due to AUDIOKITS latest design features including mapped star earth, low TGD and completely separate circuits for each channel. Available built, tested guaranteed for only $£ 149.50$ (demonstrations by appointment).

TO3-P Power mosfets.
Hitachi 2SK1058 (N) £4.50 2SJ162 (P) £4.50
For full details of AUDIOKITS audio amplifier kits and audio quality electronic components please send sae (overseas three IRCs) to
AUDIOKITS PRECISION COMPONENTS,
6 Mill Close, Borrowash, Derby DE7 3GU
Tel: 0332674929

19" RACK CASES

* Sutabie for instruments, nigh quality amplifiers and many other applications that demand strength and professional finish $\&$ Newi improved construction and finish $*$ Black anodisedzlutrinium tront panels \& Separate front mounting plate, nolxing screws visibie on the tront and the sideot the enclosure * Heavy gauge front panel iscloruahed aluminium tinishenhanced with iwo professional handes * winverniano sing. Comes in quick assembiy flat package spare front panels available Order Code Panel Size Rear Box $\begin{aligned} & \text { RH(inch) } \\ & W\end{aligned} H_{D}$ Weight ${ }_{E}$ U-19 $\quad 19 \times 175 \quad 17 \times 1.5 \times 1024 \mathrm{~kg} \quad 23.50$ $\begin{array}{lllll}2 \mathrm{VFO} & 19 \times 35 & 17 \times 30 \times 10 & 29 \mathrm{~kg} & 24.50 \\ & 19 \times 525 & 17 \times 50 \times 10 & 35 \mathrm{~kg} & \mathbf{2 6 . 5 0}\end{array}$ $\begin{array}{lllll}3 \mathrm{U} \cdot 10 & 19 \times 525 \quad 17 \times 50 \times 10 & 35 \mathrm{~kg} & 26.50\end{array}$

No VAT to be added to the price.
Arange of fow cost, highquality test equipments available, s.a.e. tor details. Teorder send cheque/postal order. Ouantity o scount available. Cust
T.J.A. DEVELOPMENTS

Dept. ETI, 19 Welbeck Road,
Harrow, Middlesex HA2 ORN.

The plot thickens as
Bob Joyce shows his metal for the mechanics of his microprocessor controlled plotter

INTELLIGENT PLOTTER

This month we turn to the mechanics of the intelligent plotter. The design is given in exploded arrangements of the various elements with greater detail where necessary.
For those of you who are fortunate enough to own a BBC micro there is a ROM available which allows the mechanics to be driven from the user port using \star commands. The rest of you will have to wait until next month for the microprocessor controller board and keyboard.

Design Considerations

The construction provides ease of manufacture without unduly compromising the overall accuracy. In some instances alternative forms of construction are given so that those of you without access to machine tools can build the mechanics with the minimum of tools and without the need to resort to outside manufacturers.

The motors specified produce 400 steps per revolution with an increment of 0.1 mm for each motor step. The resolution of the software and the hardware is thus 0.1 mm so it is important to ensure that the
moving parts are able to repeat their position to this accuracy.

The Metal Bits

The frame of the mechanics comprises extended aluminium sections and shaft holders of twin 8 mm pipe clip plastic mouldings (see Buylines). Screws were used to fix the motor and shaft holders and 'pop' rivets to secure the frame sections. The designs given are a rough guide only. You can make the x or y axes dimensions as long as you like (software limit 1 m) provided that you increase the shaft and aluminium sections to cater for the increased weight and corresponding bending moment.

The shafts should be 8 mm round ground bar, tool steel rod (silver steel) or brass. If you really want to save money you could make them out of 2 -off 8 mm x 1 m long chromed gas fire pipe fitting.

The nylon coated wire deserves a special mention. Several types and diameters of cable were tried and the nylon coated trace wire satisfied all the requirements and is available at large fishing tackle shops (the type used on the prototype was cardylon nylon covered stainless steel trace wire rated at 40 kg breaking strain available in 7.5 m lengths). Fig. 1 shows

Fig. 1 Details of the x-axis mechanics
the details of the x-axis, Fig. 2 the y-axis, and Fig. 3 the details of the open solenoid carrier. Note that the x-axis carries the y-axis and motor, so care must be taken to ensure that adequate section sizes are used to prevent sagging of the support rails.

I hope that my efforts may inspire you to design your own version using my drawings as a basis. It is often possible to obtain old dot matrix printers or electric typewriters cheaply and use the slideways and bearings from them.

Motor Pulley Drives

The pulleys can be made from aluminium brass or steel, simply cylindrical or contoured. The pulley diameter determines the movement per revolution of the motor and must be calculated by dividing 40 (movement per revolution of the motor shaft) by π to give the pitch circle diameter of the centre of the cable. Hence a pulley diameter of around 12 mm will be required.

To obtain an exact value the diameter of the stretched cable will need to be measured so that this can be subtracted from the calculated pitch circle diameter above to give the pulley outside diameter. The cable must be wound on to the pulley carefully, starting by trying a knot at the loose end of the cable and fixing it into the hole and sawn slot at the bottom of the drive pulley. Slowly wind the cable anticlockwise around the pulley (approx 4 turns depending on length of travel) then take the cable around the loose pulley at the other end of the slide and back. Wind on to the pulley a further 4 times anticlockwise, finally fixing the end into the other sawn slot at the top of the pulley using a knot as before.

Fig. 2 Details of the y-axis mechanics

Fig. 4 Alternative designs for motor pulley drives

Fig. 3 The pen solenoid carrier and attachment to the y-axis

PARTS LIST

MISCELLANEOUS

FS1 $\quad 250 \mathrm{~mA}$ anti-surge fuse
II 50 VA transformer, primary mains, secondary 0.9

PCB. Heatsink $17^{\circ} \mathrm{CW}$ approx). Solenoid (see Buylines). The following items for the mechanics provide a general guide most constructors will probably use materials that they already have left over from other projects. Numbers in brackets are Electromial part numbers.
X and Y axis parts:
Aluminium sections various.
4 -off twin 8 mm pipe clips.
1 -off twin 10 mm pipe clips.
4 -off limit switches V4 roller type.
2-off stepper motors 200 steps irevolution:
1 -off trace wire (see text).
2 -metres (approx) brass, siver steel or ground 8 mm bar. 4 -off bearings 8 mm bore in plastic, brass or sintered bronze (alternatively for low cost 8 mm brass plumbing olives).
1-off aluminium plate (solenoid support plate).

OUTER PANELS

The outer panels on the prototype are secured to the fixed aluminium sections and were made from perspex sheet, aluminium sheet and perforated sheet.

Fig. 5 Simplified low-cost moving slide block design

Fig. 6 Component overlay for the solenoid board
Tension the pulley by sliding the loose pulley and holder them rivet or screw into place, ensuring that the loose pulley is able to rotate freely.

Slides

Figure 4 illustrates one method of construction using a brass block and two oil pregnated (sintered) bearings. An alternative approach would be to use a plastic block without bearings. For a low cost design 8 mm pipe olives could be used in conjuction with twin 10 mm pipe clips as shown in Fig. 5.

The Solenoid Board

Construction of the solenoid PCB is straight forward using the overlay shown in Fig. 6. A fairly hefty heatsink is needed for Q1 (see Buylines) although if a smaller solenoid is used a correspondingly smaller transistor and heatsink would be sufficient. The interrupt wires labelled CA1, CA2, CB1 and CB2 will join to the Plotter processor board when it comes into existance next month.

Fig. 7 Connections to a BBC computer

Fig. 8 Circuit diagram for the solenoid board

HOW IT WORKS

The circuit in Fig. 8 gives details of the pen drive electronics. The solenoid used has a $12 \mathrm{~V} D C$ coil and is energised when pen lift is requested. When no power is given the pen releases under gravity thus allowing for varying thicknesses of drawing material an uneven working surfaces. On the prototype lused an A4 drawing board which clipped to the front of the Plotter

The power darlington transistor 01 could be replaced with a lower current darlington transistor if a smaller solenoid is used.

To operate the solenoid a 5 V signal is applied to the voltage divider R1/R8 with C5 filtering the signal. IC1 inverts this signal twice switching on the darlington transistor driver 01 thus operating the solenoid. D1 is used to prevent damage to 01 during reverse voltage peaks from the solenoid.

A link is provided to change from a rising signal operating the solenoid to a falling signal.

The limit switches are held at 5 V . When a limit switch is opened the voltage from the switch into IC1 will be OV. IC1 inverts this signal sending a 5 V signal onto the appropriate interrupt line to signal the processor that a limit has been broken.

Four limit switches are used to inform the Plotter processor board that the plotter had reached its end of travel. These limit switches are positioned at the extremities of the slides to prevent the mechanics reaching the end of their travel, and to facilitate datumming and repeatability of position.

The limit switch common terminals are wired to 5 V Itaken from the processor board). The normally closed contacts are connected to their respective terminals on the solenoid board. For speed of operation these signals are interrupt driven and consequently connected to the $\mathbb{R Q}$ line through the 6522 VIA (Versatile Interface Adaptor) on the processor board.

Testing The Mechanics

The Intelligent Plotter mechanics can be tested from the processor board, from a BBC computer or from a square wave oscillator (manual operation only).

The processor and keyboard interface will be described next month. In the meanwhile if you have a BBC computer or have built up the square wave oscillator the mechanics can be tested right away.

The square wave oscillator simply connects to each axis drive board clock input using two switches. The direction can be changed on the drive board or remotely as shown in last month's article. Build up the speed by increasing the oscillator frequency and try
reversing the direction whilst running and check for play or backlash on the mechanics.

As mentioned earlier a ROM is available for the BBC which provides various 'star' commands from within a basic program or directly from the computer keyboard to move and draw.

Note that you do not need this ROM if you are building up the processor board as it contains its own ROMs which provide all the move, draw and test routines which are available directly from the Plotter's keyboard.

Connecting Up To A BBC

Attach the drive boards and mechanics to the BBC user port via a 20-way IDC connector as shown in Fig. 7.

Insert the EPROM into a vacant sideways ROM socket, connect the relevant power supplies for the solenoid and drive board, and enter the commands:

$$
\star \text { PLOTI (return) }
$$

\star PLOTT (return)
This will initiate the plotter (\star PLOTI) followed by plotting the test program (\star PLOTT) shown in the picture. Various other ' \star ' commands are available to operate the mechanics directly from the computer keyboard or from within a basic program.

Next month we conclude with the central processing board, the keyboard and interface devices.

BUYLINES

All the components are available from Electromail (0536 -204555) and other major suppliers.

The stepper motors used in the prototype were Electromail part 332-082, the limit switches part 331-405 and the solenoid part. 349.709.

Pile clip mouldings are available from large DIY centres - those for the prototype came from Do-lt-All.

Aluminium sheet is available from Maplin.
A ROM is available for a BBC micro which allows many of the Plotter commands to be made directly from the BBC micro keyboard using ' ' $^{\prime}$ commands. This ROM is available for f 15 from the author Mr. R. Joyce, 104 Craythorne Avenue, Handsworth Wood, Birmingham B20 1LN.

HERRY'S

ELECTRONICS FOR TRADE INDUSTRY, EXPORT, EDUCATION AND RETAIL

COMMUNICATIONS

- INTERCOMS - CB RADIO

-
 Tel: $01.7240323 \sim \mathrm{nat}$
 - ALSO AT Audio Electronics 301 Edqware Road W2 01.7243564 SALES OFFICE 01-258 1831 Telex 298102 Fax 01.724 0322

OUR RANGE OF MICROCONTROLLER AND EXPANSION BOARDS IS VASTLY EXTENDED - SEND FOR DETAILS NOW : 8052-BASIC MICROCONTROLLER-KIT

 FEATURES INCLUDE* Powerful Enhanced Basic Interpreter * On Board EPROM Programmer
* Program Development from a VDU,
* 32K Bytes of CMOS Static RAM.
* 32 K Bytes of CMOS EPROM (expandable to 56 K Bytes)
* Single Unregulated Supply

Requirements,

* Small Physical Size (80 by 100 mm),
* Expansion with range of Compatible Circuit Boards.
* Two RS232 Ports.

CALL FOR MORE INFORMATION

KIT including all components full
instructions and operating manual -

Manufactured and Fully Tested Circuit Board -
£229
"'All prices exclude VAT.'
Packaging and Postage Free (UK only) IFOR FULL DETAILS, PLEASE CONTACT
Acsess VISA

Field Electronics

T.V. Video - Electronic Spares - Import \& Export

> 27 Cuckoo Hill RoAd
> PINNER. MIDDLESEX HA5 1AS
> Tcl: 01-868 5650

Please phone or write for catalogue. Enclosing 26p SAE.

KEEP REGULAR

Don't miss out on your favourite electronics mag. Why search high and low for a copy? Let your newsagent take the strain and reserve you a copy each month.
Fill in your name and address on the form below and hand it to your local newsagent. It will keep you as regular as All-bran. Alternatively, you can eat the coupon. They you'll need the All-bran.

Barry Porter revisits the disc input stage of his 1983 modular pre-amp with a conversion to high quality balanced input

MODULAR PRE-AMP DISC INPUT STAGE

Four years have elapsed since the publication of my Modular Pre-Amplifier design and if reports from satisfied builders are to be believed (I only believe the satisfied ones!), it has withstood the test of time pretty well.

However, recent development work has led to a few circuit improvements which, if implemented, should give the basic design a new lease of life.

Disc Amplifier Stage

The original disc stage was very successful - and was certainly good enough for at least one hi-fi manufacturer to 'borrow' the circuit! For the past year or so I have been experimenting with balanced input connections for pick-up cartridges and have concluded that the additional circuit complexity, not to mention expense, is well justified.

A pick-up cartridge, whether moving coil or moving magnet, is an electrical generator with antiphase outputs which are floating with respect to earth. As such, it may be connected to a balanced input in the form of a transformer or a suitable differential input amplifier (Fig. 1). A comparison may be drawn between a pick-up cartridge and a moving coil microphone. They both have low impedance and floating outputs and both generate very low signal levels which means that until their output is amplified to a higher level, there is a great danger of hum and other unwanted noise being picked up by the interconnection cable.

No-one in their right mind plugs a moving coil microphone into an unbalanced input and I am now convinced that the same should apply to pick-up cartridges (even though they are not normally hung on the end of 100 metres of interconnect cable).

Due to their low output voltage, moving coil cartridges will benefit more from balancing than those
of the moving magnet variety but the freedom from noise problems makes balancing the disc input stage a very worthwhile venture, regardless of cartridge type.

The circuit of Fig. 2 is not too far removed from the original disc stage (Page 56 of December 1983 ETI . One advantage of the new configuration is that the gains are now set by a single resistor (R8-R15) and, being DC coupled at this point, the value of this resister may be reduced to a minimum at high gain settings in order to keep its noise contribution as small as possible. The original version suffered by having to have its gain setting resistor (R4) AC coupled by C 2 , which would have to be 4700μ for R4 to be reduced to 10R.

Gain Structure

With 15 V supply rails, a NE5532 or 5534 will deliver an output of more than 9 V RMS before clipping. If an overload margin of 33 dB is to be achieved then an operating level of 200 mV is necessary. (33dB below $9.0 \mathrm{~V}=9 / 44.668=201.5 \mathrm{mV}$).

It would be nice to use the linear input buffer to amplify the input signal to 200 mV but unfortunately we are dealing with a pre-emphasised signal. The RIAA characteristic fixes the 20 kHz signal level at almost 20 dB above the 1 kHz level and this has to be taken into account when fixing the input stage gain.

The answer is to arrange things so that the output of the first stage at 1 kHz , is 20 dB below 200 mV namely 20 mV - and this is what is obtained with the values shown in Fig. 2.

Having arrived at the output of IC4, the signal may now be subjected to de-emphasis at $75 \mu \mathrm{~s}$, obtained by the action of R26, R27, and C10, Note the move away from E96 value resistors, which are very difficult to obtain in small quantities. In fact, the parallel combination of R26 and R27 leads to increased accuacy - at 10 kHz , the previous error of

Fig. 1 Balanced input amplifiers using (a) Transformers (b) Differential input
0.022 dB has been reduced to 0.0033 dB (assuming R26, R27 and C10 to be zero tolerance components). The 318 and $3180 \mu \mathrm{~s}$ time constants are provided by IC5 in a similar manner to the original circuit, again with the exception of the E96 resistors.

Input Loading

The original version had fixed input loading components, which made experimenting with alternative values somewhat difficult so a DIL switch is now used to simplify the process. The values given in Fig. 2 appear to be suitable for most cartridges, offering 47 k in parallel with 220 p for moving magnet types and a choice of $33.8,51$ or 100 R in parallel with $10 \mathrm{n}, 22 \mathrm{n}$ or 32 n for moving coils. Obviously the values of R1-R3 and C1-C3 may be changed to suit personal preferences.

The final PCB design is given in Fig. 3.

Common Mode Rejection

The single main advantage of balancing the disc input stage is that any hum and noise picked up by the

The easiest way to set the minimum output is to observe the waveform on a sensitive ascilloscope.

To give some idea of the effectiveness of a balanced disc input stage, during development the amplifier was connected to a Dynavector moving coil cartridge by 10 metres of unscreened twin core mains cable. This cable was routed close to three mains transformers, being wound three times around one of them. (The transformers were in pieces of equipment such as a cassette recorder and FM tuner and were powered during the test.) With the disc amplifier sensitivity set to 0.2 mV at a pretty high listening level. no hum was detectable from a pair of sensitive speakers.

When the input was unbalanced, the bass unii cones almost parted company from their voice coils, Marmaduke, our tone deaf cat, did a fair impression of a Saturn V at $T+20$ and our five-year-old started phoning estate agents with a view to leaving home!

Other Circuit Changes

In spite of trying, I have still not found an alternative to the LM394 for moving coil input stages, although

定 B [T]

Fig. 4 Balancing the input stage to reduce the common mode rejection

Fig. 3 The component overlay for the updated PCB
some of the low base resistance transistors now available are very attractive in view of their low cost. In particular, the 2SD7865 is almost as quiet as an LM394 and if you turn the circuit upside down and use PNP input devices, the 2SB7375 is only about 0.25 dB noisier than a 394 but for some reason it introduces a harshness to the sound that becomes quite tiring with extended listening. I also tried replacing the NE5534 op-amps with Linear Technology LT1028 chips but could neither hear nor measure a difference. With a price differential of nearly $12: 1$, Pll stay with my 5534s.

A Word of Warning

Having switchable gain and input loading is great if you want to change things around to get the best performance from your cartridge but if you make changes while your pre-amplifier is in use, don't lay a finger on either switch until you have turned the volume down.

In particular, the gain setting switch briefly upsets the DC stability of the circuit and is capable of sending out high level 'thumps' that are guaranteed to see off anything short of a 15 in JBL. You have been warned, so no claims will be entertained for new speakers, re-plastering the mansion or multiple visits to have your fillings renewed.

Performance

Although individual methods of construction will have some effect on the performance of a pre-amplifier, typical noise performance is likely to be similar to that measured with my development unit:
Noise: Disc input to main output, with Level control adusted to give 0.5V RMS output at 1 kHz .

Input sensitivity	$22 \mathrm{~Hz}-22 \mathrm{kHz}$ bandwidth	IEC 'A' weighted
8.0 mV	-84 dB	-91 dB
5.0 mV	-80 dB	-87 dB
3.0 mV	-75 dB	-81 dB
2.0 mV	-72 dB	-78 dB
0.5 mV	-75 dB	-80 dB
0.3 mV	-71 dB	-76 dB
0.2 mV	-68 dB	-72 dB
0.1 mV	-63 dB	-68 dB

Distortion: THD at +20 dBm (7.75 V R.M.S.), any frequency $20 \mathrm{~Hz}-20 \mathrm{kHz}$.

PARTS LIST

Moving Magnet settings: $<0.005 \%$ (Typically 0.001% at 1 kHz .)
Moving Coil settings: $<0.008 \%$ (Typically 0.0025% at 1 kHz .)
At lower output level, distortion is below noise. RIAA Equalisation Accuracy: $20 \mathrm{~Hz}-20 \mathrm{kHz}$: Within (). 2 dB of reference curve. $10 \mathrm{~Hz}-100 \mathrm{kHz}$: Within 1.0 dB of reference curve

Cartridge Connector

I have been in touch with the majority of tone-arm manufacturers and importers and it appears that most arms are suitable for balanced operation, with little or no modification required. Just ensure that with your system, it is possible to separately access the four cartridge outputs and that none of them connects to an Earth of any description.

Each channel input at the pre-amplifier should have a 3-pin connector (DIN is the natural choice, but LEMO multi-pin connectors are the best for a top quality system) and each plug should be connected to the tone-arm by a twin conductor, screened cable, with the screen only connected at the pre-amplifier end. Earth continuity from the tone-arm and. if necessary, the turntable, should be carried by a separate heavy wire to the pre-amplifier Earth terminal. The method of connection is illustrated in Fig. 1.

The updated disc amplifier stage circuit board layout (Fig. 4) is of identical dimensions to the original. so no problems should be encountered in replacing the original boards.

Further Tweaks

The original balanced output amplifier (January 1984 ETI) had a rather crude method of setting the output symmetry, which requires an extremely steady hand to obtain the optimum balance. Fig. 5 shows a modification which, while being a more elegant solution to the method of symmetry adjustment, is quite easy to implement on the original circuit board. RV1 should be a multi-turn type and with a 1 kHz tone applied to the amplifier, should be adjusted for minimum signal at TP1.

Fig. 5 Modification to the balanced output stage
The final modification is concerned with the tone control stage. If you can obtain some 10 k linear potentiometers with centre tapped tracks, these should be used for the amplitude controls, the centre taps being taken to Earth. This will give a small noise improvement to the stage, will ensure a flat response when the controls are centrally placed and will totally stop interaction between the two sections.

I am sure there are many other improvements that can be carried out to the design but as time is limited, and each change can take many months to implement and test, the above should be enough for the time being.

31

POPULAR BAKERS DOZEN PACKS (Still available)
 at mulubey and the nexl tigures is the quartily of thens on the pack trialiy a short description

13A spus proyide a lused outtet to a ming man where device such as a clock nuss trol be swilched
in flex switches with neon on oft hights. saves leaving things switched on xed clamos 2 speaker cabinet ideal tor extensions. take 30 watl reet Rer Bot 3 ,
wadt weed swichus, it s supprising what you can che with mese - burglar alams secret swihes, retay etc etc
0 AC
cad constani current ctarers alue
imost any nicad battery
humbity switches, as the air becomes damper the membitane stretches and oeprates a microswitch
2 meter tenglt of connecting wire ail colour coded
13 A rocker switch three tag so onofi. or change over with centre off
24 hr time switch. ex-Electricity Board, automati cally adust tor lengithening and shortening day
neon valves, with series resistors, these make good night lights
puzel, we gur one use is for an electric , gosay into motar. moves switch throught one pole liat solenoids - you could make your multi-tester read $A C$ amps with this
suck or blow operated pressure swith, or it can as water level in water tanss as water teve in water tanks
16 rmm .2 wat अated
6 750MA power supply, nicely cased with inpul and output leads
stripper boards each contans a 400v 2 A bridge
rectfier and 14 other diodies and rectifiers as well rectifier and 14 other diodes and rectlifiers as well as dozens of condensers etc
twin screened fex wit
8012210 m twin screened
very ine dills tor $\rho . \mathrm{cb}$. boards etc Normal cost
about
Bop each piastic: boxes apl
plisough top so ideal ior interupted bam swith mithors tor model aeroplanes. spin 10 start 50
needs no 5 witch imicroptrane insents - fragnetic 490 ohm also act as speakers
reed relay kils you gel 16 reed switches and 4 coil sets with notes on maxing cio reliays and other gadgets
satery cover for $13 A$ msockets - prevent those
Inquisitive little fingers oetting nasty shocks neon indicators !n panel mounting holders with
BD193 $6 \begin{aligned} & \text { lens } \\ & 5 \text { amp } \\ & 3\end{aligned}$ pin flusht mounting sockets makes a low cost disco pane:
in flex simmerstat - keeps your soldering iron etc aivays at the ready mains solenoid very powertul has t" pull or could push it modilied
keyboard swiches - made for computers bul have many other applications
transistors type 2 N 3055 tannisions type 2N3055 probably the most usetul electrc clock mans operated put this in a box and you need never be late
horn Slightly se a noise about as louc as a car $6^{\prime \prime} \times 4^{4}$ speakers 4 ohm made from Radiomobile so very good quatity panostat, controls output of boiling ring from
simmer up boil simmer up boil
-mans connections elc oblong push switthes for bell or chimes, these can nains up to 5 amps so could be foot swilch if fitted into patiress
mini 1 watl amp tor record player. Will also change speed of record playee motor
mid steel boxes approximatey $3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ deep - standard eiectrical
 4.7t, non-polarised block capacitors. pCD mounting est equipment and kt selts
$0653-2$ Miniature dnver transtormers Ret LT44. 20 k to Ik, centse tapped
BD553a 23.5 volt operated relays, each with two pairs CO Most other packs still avaiable and you can choose any as your iree one.

POWERFUL IONISER

Generates approx 10 times more IONS inan the ETI and simlar Makes you teel better and work harder -a complete mans operated kit case includod $\mathrm{\Sigma 11.50}+\mathrm{E3} \mathrm{P} \mathrm{gP}$

25A ELECTRICAL PROGRAMMER
Leam in your sibep. Have radio playing and
ketll boling as you wake - switch on lighis keflle boling as you wake - switch on lights
10 ward of intuders - have a warm nouse 10 come home to You can do ali ithese and more. By a farmous maker with 25 amp on

ATARI 65XE COMPUTEF
 doliven

 JOYSTICK FOR ATARI OR COMMODORE tor all all Alart and EXTRA SPECIAL OFFER. The ATARI Compendum corrtains

VENNER TIME SWITCH

Mans operated with 20 amp switch, one
and one of per 24 nis tropeals daily engthening or storienting day. An expensse tine switch but you can have tor only E 2.95 without case, metal case
C2. ador kil 10 convert lisis inlo a
 This makes an ideal controller tor the

Ex-flectricity Board

SOUND TO UGHT UNIT
over 2000 wals of lighting Use thes at home it you wish but it is plenty ugged enough for disco work. The unit is housed in an attractive two The aduic inpul and outputs aro by $1 / \mathrm{I}^{1}$ sockets and three panel mounting luse holders provice thyristor proection. A four pin plig and
sochet laciliale ease of connecting lamps. Special price is $£ 14.95$ in kll

5710MTITMM

 ORGAN MASTER is a thee seautifuly made. has goid plated contacts and is complete with itboc

MUSIC FROM YOUR SPECTRUM 128. We oher the Organ

CAMERAS
sci and twe thee canneras, air by tamous makers, Kodak, ettc. One beleved to te inferent instant cameras. All in forst class condition

ALBA TWIN CASSETTE RECORDER AND PLAYER
WITH STEREO RADIO. This is a mans/batter pontabie made io They are brarti now stull in the manulacturers, boxes but have a sighi Pcion, both mono and classente se section The ratio and amplifie
 $1 / 8$ th HORSEPOWER 12 VOLT MOTOR 516 m of an ins is approximately 3 in, the diameter 3 in and the spindie trong a can be fived tom the eas 5 meners of 2 er for
trang α can be fixed from the end by means of 2 nuts A very powerfu you have ary propecis in mind then you could rey' on suppres lo a tees (wo years Pine $E 6$. Our rell 6 P1, dsomunt for quartibes of 10 or more

HIGH RESOLUTION MONITOR. gin black and white, uses
 Brand new e16 plus $£ 5$ cost Our reference $16 P_{1}$

TANGENTIAL HEATERS.

We a
 again have good stocks of this

 quiet running, instant heat unis They require only a simpie case or very compact ittse unit and also a a 2.5 kw , which is approximately 10 in special packing so add $\mathbb{2}$ per healer for post and packing. Controd Sutch for 25 kw model giving full heat, hatt heat or cold blow Prices 50 p .MINN MONO AMP MINI MONO AMP on p.cb. size $4^{\prime \prime}$
Fitted volume control and a hole for a trol should you require if The amplitier
has three roansistors and we estimate the outpunsistors and we estim- $3 W$ rms.
More tectroical date will te ind More lectrical data will be included with the amp, Brand new.

31/2in made by Crino BARGAINS

compatible intortare $51 /$ sn drives. $£ 28.50$ plus $£ 3$ post. 3in Hitachi, reterence 305 SXA . Standard Shugat connection, works inth mosi
ocmputers bif particulary suitale and recommended for

Generous discounts for quantities

J \& N BULL ELECTRICAL
 Dept. ETI, 250 PORTLAND ROAD. HOVE,

 BRIGHTON, SUSSEX BN3 50T.MAIL ORDER ERAMS: Cash P.O. or cheque with order. Orders under £20 add
E1. 50 senice charge. Monthy account orders accept from schools and public compans. Access \& Biccard orders art accepted - minimum $£ 5$. Brighton
12737) 344448 or 203500 .

BARGAINS STILL AVAILABLE

VERY POWERFUL MAGNETS Alttruyh unly less Itan lin lung and nol maxh thicker than an pencil these are very diflicull to pull apart Could be
used to operate enbedded reed switches, elc Price 50 p each. 2 lor $£ 100$ Our ret B064?
CLEAR LACOUER, Ouick drying for the protectıon ol translers markuog maps, etc. Also protects
§1 00 Oider rel
BO66
PAPST AXIAL FAN. MANUFACTURERS REF NO TYP4580N. This is maIns operated 15 watt rating and in a metal frame with metal blades so OK in high lemperatures. Body sire approximately 4 S/an square \times \$/8in thick. $\$ 600$

TRANSMITIER SURVEILLANCE (BUG) - tiny, easily hudden, bul which will enabie conversation to be picked up with FM radio. Can be housed in a
matchbox. All eiectronic parts and circuil Price §2 Rel $2 P 5$? STEC PSUI. Mains operaled swilch mode so amp. Brand new. Normal price $£ 30+$. Our price only $£ 10$ Ref. Hop34 APPLIANCE THERMOSTATS - spindle adjust type sulable lor convector heaters or similar. Price 2 lor $£ 1$ Rel BO582.
3 CORE FLEX BARGAIN No 1 - Core size $5 m \mathrm{~m}$ so leads carrying up to 5 amps or short leads up to 10 amps. 15 mm for $£ 2$.

3 Core flex bahgain No. 2 - Core size 1.25 mm so suitable Ior long uxtension leads carrying up to 13 amps - or short leads up 1025 A . 10 m lor
E2. Order Ret. 2 P190.

CASE WITH 13A PRONGS - to go into 13A socket, nice size and suitabie for witch, night light, noise suppressor, dimmers etc. Price - 2 for 51 . Rel. D565.
ALPHA-NUMERIC KEYBOARD - this keyboard has 73 keys with contactless apacitance switches giving long trouble free life and no contact bounce,
he kevs are arranged in two groups, the main area field is a OWERY y and on the night is a 15 key number pad, board size is approx $13^{\circ} \times 4^{\text {" }}$ Aet. $3 P 27$ -
ELEPHONE EXTENSIONS
If telephone extensions. For this we can supply 4 core lelephone cable taples 52 Dual adantor for bockets I2.95. Packet of 50 plastic headed leads with BT plug for changing old phones a for 5 ?
covered. Only $£ 3+£ 1$ postr. Rel. 3 P31 - thal's well under 1 p per metre and this wire is ideal lor push on connections.
INTERRUPTED BEAM KIT - this kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main components - relay pholo transistor, resistors and caps etc. Circuit capacino
CAPACITOR BARGAIN - axial ended-4700ut (ur 25 v dap made. Normally
50p each, but you will get 4 lor $£ 1$. Ref. 613 . $50 p$ each, but you will get 4 lor $£ 1$. Ref. 613.
SPRING LOADED TEST PRODS - heavy duly, made by the farnous Bulgin

SOLAR POWERED NJ-CAD CHARGER 4 NI-CAD batteries AA (HP7) charged
in eight hours or two in only 4 hours. It is complete, boxed ready to us
50v 20A TRANSFORMER 'C. Core constuction so olher outputs - tapped mains input, only £25, but very heavy so please add other outputs - tapped mains input, only
$£ 5$, it not collecting Order Ref. 25P4.
FREE POWER! Can be yours if you use our solar cells - sturdily made
modules with new system bubtbe manifiers to eliminate the need lor actual sunshine - they work iust as well in brigh light Voltage input is .45 - you join in series to get desired voltage- and in parallel for more amps. Module A gives 100 mA . Price \&1 Out Ref. BD631 Moduie C gives 400mA. P
SWITCH AC LOADS WITH YOUR COMPUTER. This is easy and reliable you use our solid state relay. This has no moving parts, has high input
resistance and acts as a noise barrier and provides 4 kW isolation between logic terminals. The fum-on voltape is not critical, anyithing between 3 and 30 V . intermal resistance is about 1 K ohm. AC loads up to 10A can be switched. Price is $\mathbb{2}$ each Pot. 2P18
METAL PROJECT BOX. Ideal size for battery charger, power supply etc
sprayed grey, size $\mathrm{B}^{\prime \prime} \times 4^{1 /} 4^{\prime \prime} \times 4^{\prime \prime}$ hith sprayed grey, size $\mathrm{B}^{\prime \prime} \times 4^{1 / 4^{\prime \prime} \times 4^{\prime \prime} \text { high, ends are louvered for ventilation }}$ other sides are flat and undrilled Order
BIG SMOOTHING CAPACITOR. Spraque powertytic 39,000 uF at 50 V . $£ 3$
Our Ref. 3P41.
4-CORE FLEX CABLE. Cores separately insulated and grey PVC covered simalar applications even at mains voltage. 20 metres $£ 2$. Our Ret. $2 P 196$ or 100 metres coll Es . Onder Ret. 8P19.
TWIN GANG TUNING CAPACITOR. Each section is .OO05uF with trimmer and good length $1 / 4$ in spindle. Unused but old and may be slightly soiled. Sleeved prong type. £I each. Our Re1. BD630.
13A PLUGS. Good British make complete with fuse, parcel of 5 for $£ 2$ Order Ref. 2P186
13A ADAPTERS - Takes 2 13A plugs, packet of 3 for $£ 2$. Order Ret, 2P187 $20 \mathrm{v}-0-20 \mathrm{v}$ - Mains transformers $2^{11 / 2}$ amp (100 walt) loading, tapped primary $200-245$ upright mounlings $£ 4$. Order Ref. 4P24.
POWERFUL 12V MOTOH was intended for Sinclair Electric Car, rating Per.
RE-CHARGEABLE NICADS 'D' SIZE these are tagged for easy ioining together but tags can easily be removed, virtually unused, tested and gintd.
$£ 2.00$ each. Ref. 2P141, 6 for $£ 10$. Rel. 10P 47 .
FLIP-OVER DIGTAL CLOCK - Quite an eyecatcher, this is mains operated The rigures lip-over per minute and per hour and give a larger than usual
visual display. Supplied complete with Iront and perspex panels to slue together to make its case $£ 200$ each. Our Ref 2 P 205 - panels to glue Quick rix mans commecton tach. Our Ref. 2 P205.
dulck Fix mains CONNECTOR - A must for your workshop. Saves putting on plugs as you just push the wires under the spring clips.
Automatically off when lid is up. Price $£ 7.50$. Our reference $7 P 5 / 1$ T HANDSET with curly lead terminaling at BT piug. Colour cream Price ¢5 00. Our reference 5P123.
SINGLE SCREENED FLEX 7.02 copper conductors, pvc insulated then with copper screen, linally outer insulation. In fact quite normal screened flex.
10 m for $£ 1$. Our rel BD668. Ditto, but solid conductor. 10 m for $£ 1$. Our ref BD668A
WHITE CELLING SWITCH 5 amp 2 way surface mounting with cord and
lassle. Made by the famous Crabtree Company. Price 11 each. Our ref
13A SWITCH SOCXETS - Top quality made by Crabtree fitted in metal box with cutouts so ideal for garage, workshop, cellar, etc. Price $£ 2$ each. Our ef 2P37. onlinuous or 20 mA intermittent. fdeal as a spark generalor for boiler ighting, etc., or with a simple voltage doubler circuit would make a good

DIGITALLY TUNED RADIO

The humble radio has yet to be digitised at an affordable price. The world is increasingly crammed with digital electronics, populating boards from Shanghai to Sheffield, but the radio has stuck with its analogue roots.

This design reaches a compromise with oldfashioned analogue married to digital techniques. The block diagram is shown in Fig. 1. This radio has no tuning capacitors or condensors to rotate. Instead tuning is accomplished by means of a single push button. This increments a counter, the output of which is converted to an analogue voltage across the varicap diodes.

As the push button is kept depressed. the resonant frequency of the tuned circuit changes progressively, pulling in different stations. This would mean that on switch-off, the tuning is lost. Allowance can be made for this by winding the aerial coil on a tube such that the ferrite rod can slide. Your favourite station can be selected by 'permeability' tuning - fine adjustment of the ferrite rod. Once positioned as you wish, fix them with a blob of wax or hardening glue.

Construction

The component overlay for the digitally tuned radio is shown in Fig. 2. Construction is very straightforward

Richard Grodzik counts on his radio to tune him to his
favourite station

Fig. 1 Block diagram of the digitally tuned radio

Fig. 3 Explanation of the R-2R tuning network

HOW IT WORKS

The circuit diagram is shown in Fig. 4. The digital tuning is formed by IC1 and IC2, the analogue section by IC3 and IC4.

When SW1 is pressed it enables IC2 by grounding pin 1, producing very low frequency pulses. These pulses clock IC1, a 4 -bit asynchronous counter with the output count on pins 11-14. This count is shown on the LED display, giving an indication of the tuning.

R3-10 translate the binary value of IC 1 to a DC voltage using what is known as an R-2R configuration. Figure 3 shows how. The idea is that at each node, the input current is split in half for this to happen the resistance of each exit path must be the same.

So in Fig. 3a, the current I will split as required if $\mathrm{R} 1=\mathrm{R} 2 . \ln$ Fig. 3b, the combination of R4,5 and 7 must equal R3 limagine the resistors inside the dotted line as a single component). At the second node, the incoming current is $1 / 2$ and if $R 4=R 5$ this will split again to $2 x^{1 / 2}$. (Note that R 4 and R 5 in parallel give a resistance of 1 kO which together with R 7 produces a 2 kO total resistance inside the dotted line, equalling that of $R 3$ as desired).

Expanding to the full network in Fig. 3 c , the division of current continues as you move along the ladder.

We then return the 'earth' ends of R3,4,5,6 to either ground or supply depending on the logic states of $O D, O C, Q B$ and $Q A$ of IC1 the binary count). Thus the total amount of current supplied to the
network varies with the binary count, altering the reverse voltage across D1 as in Fig. 3d.

The ramp tuning voltage increases as SWI is depressed, and the capacitance of $D 1$ alters accordingly. D1 in conjunction with $L 1$ forms a tuned 'tank' circuit, with resonant frequency dependent on the capacitance value of D1. An incoming AM broadcast signal is selected by the tank circuit and fed to IC3 the heart of the analogue side is IC3, a tuned-radio-frequency circuit containing an RF amplifier, detectoridemodulator, AGC circuits and a buffered output stage sufficient to drive a power amplifier IC4.

In order to provide a good signal to noise ratio, IC3 is designed to operate at a very low voltage, typically 1.3 V . The gain and thus the overall sensitivity of the radio is adjusted by RV2 which varies the supply current to the chip

The remainder of the circuitry is quite straightforward a single chip AF amplifier (IC4), deivering upto 2 W to an 8 R loudspeaker.

If fidelity is sought after, I strongly suggest the use of a large diameter loudspeaker. Of course, overall current consumption will increase but this will not present a problem to your battery finances if rechargable batteries are used.

Note that replacing R14 with a 470R pot will vary the overall gain to suit different speaker.
?

using the PCB. Build from the resistors up, sockets are recommended for ICs and for the display LED - the legs on this device are pretty fragile and it is also static sensitive so take the normal static precautions.

The push-to-make switch can be mounted either on the board or remotely, depending on how you intend to box the unit.

The connections to the loudspeaker on the prototype were secured with a dollup of glue, just in case a sharp pull broke through the solder.

Lastly, when you're fitting the rod into place, a couple of pairs of holes are on the board to take loops of wire towards each end of the rod. These should stop it sliding out of place too much during testing.

The simple power supply is all mounted off-
board and uses four ' C ' type batteries. These actually take up more room than the entire populated PCB but can be arranged two by two to form about the same shape. The whole unit can then be fitted quite neatly into a rectangular case.

BUYLINES

Most of the components are easiy obtained. D1 is stocked by Mapiin (order code YH83E). The display can be obrained from Electromail (Tel: 10536) 204555) as part $586-734$.

The PCB is avaliable from the ETIPCB Service listed at the back of the magazine.

TECH TIPS

Car Courtesy Delay

K. Wood Ipswich

ar door lights are usually simple switches that plunge night drivers into darkness as soon as they close the door. This circuit is inserted between the door switches and the courtesy light in the

Circuits and other ideas for Tech Tips should be sent to ETI at 1 Golden Square, London WiR 3AB. All items used will be paid for. Please include a SAE for acknowledgement.

52

Time Delay Switch

D. Ian
East Molesey, Surrey

This design was produced to replace an expensive time delay switch for the light in a porch. No modification of the existing system is required, the circuit simply replaces the previous time-switch.
The push-to-make switch charges $C 1$, switching on the VFET and closing the relay until C 1 discharges through the preset RV1 - in this case variable from 1 to 10 minutes.
car (negative earth) to keep the light on for a few seconds after the doors have been closed, then fade out gently.

Opening a door shorts point A to ground, charging C 1 , turning on Q 1 and Q3 via Q2. Q3 drives the light (which should not be more than about 10W). The voltage at the junction between R12 and R13 is still not low enough to turn Q1 off, so the lamp is driven hard and Q3 does not get hot.

When the output voltage cannot rise any further (with Q1, Q2, and Q3 hard off) insignificant current flows from the supply, though the capacitor still has to finish discharging. Again there is no cause for Q3 to get hot.

The only time Q3 will get warm is during fadeout and this is quick enough not to matter. Q3 requires a lot of base drive supplied by Q2 with R7-R9 absorbing some of the power dissipation that would otherwise be concentrated in Q2.

R1 and D1 are optional to allow burglar alarms that monitor the door light circuit to function correctly. The actual value of R 1 may need adjusting but watch out for the power if you make it much smaller than 1 k 0 . Change C 1 or R 3 to alter the delay.

Capacitor Lamp Dimmer

J. Quigley
Mapperley, Notts

Building a nightlight for a child's bedroom with a fully variable lamp dimmer is like using a guillotine to clear your dandruff. A capacitor in series with the lamp is a quick and cheap way of reducing power without interference. SW2 selects full power or reduced output.

The value of C 1 depends on the wattage of the bulb and the brightness required (see table). You could fit a multiway switch with different capacitance values to give a variety of control.

Electrolytics must not be used, and simply shorting out C1 may damage both capacitor and switch. Use polyester, mixed or paper with at least a 300 V rating. The neon will discharge C 1 safely if the lamp is disconnected at the mains with the mains switch left closed.

Care must be taken when testing as the capacitors will hold a charge for some time.

Opto Counter

S. S. Ahmed,

Karachi, Pakistan.

This circuit is a counter/timer with start and stop triggered by the breaking of optical links. The applications are wide, but the circuit was designed for use in classroom physics experiments such as the inclined plane experiment to calculate gravity.

There are three main sections - the timebase, the gate control and the counter stage.

The time base itself is not described here, as constructors will have different requirements. A 555 could be used for low precision work, or a crystal oscillator for high accuracy.

The time base is divided by a pair of 7490 s to provide three time ranges 0.000 to $0.999 \mathrm{~s}, 0.00$ to $9,99 \mathrm{~s}$, and 00.0 to 99.9 s . Further ranges could easily be added.

The light sources for the LDRs were 3V bulbs with built-in focussing lenses. A 2 cm long barrel of
card around both bulbs and LDRs works well even in bright lighting, even better with the inside of the card painted black.

IC3 (quad NAND gate) controls the gating logic. The outputs of IC3a,b are normally low. The resistance of LDR1 falls when the light beam is cut and the output of ICla goes high. This sets the R-S latch formed by IC3c,d and opens the input gate (IC4) enabling the timing pulses to be counted.

When the second beam is broken, IC3b goes high, resetting the latch and stopping the counting.

The counter and display section of the circuit has nothing unusual - 7490 s as decade counters, 7447 s as decoders and display drivers, and any common anode LEDs for the display.

SW2 is a DPDT push switch. When pressed pins 2 and 3 of all 7490s go high, clearing all counters. It also stops the counting by pulling down the input of IC3b.

The LDRs used were from Tandy but any LDR that fail from $500 \mathrm{k}-1 \mathrm{M} 0$ to $100-300 \mathrm{R}$ when light is removed will work.

Single Pulse Generator

C. Carter
 Falmouth

When designing counting circuits in either CMOS or TTL it can be diffi cult to decipher rapidly changing outputs. This circuit produces a single pulse of controllable width. A 555 is used as a monostable with the trigger input (pin 2) decoupled to prevent false triggering. The LED pulse indicator is powered from a shunt regulator to allow any supply from $5-18 \mathrm{~V}$ to be used. Vote that SW1 must be a normally closed type. Outputs are buffered to ensure true logic level outputs.

Spectrum Programmable ROM

K.D. Hedger

Great Yarmouth

Spectrums are limited by the inability to add or change the commands resident in ROM. This circuit pages out the ROM, replacing it with RAM which will be write protected once it is switched in (and will survive even a system reset).

The RAM is a 1 K block which can be switched in to replace areas in 1 K steps selected by switches SW1-4 (SW1 as MSB). Thus with 0001 on the switches the RAM occupies \& 400 to \&7FF, with 0010 the RAM occupies $\& 800$ to \&BFF, and so on through
the RAM map. Larger RAMs can be used. For example omitting SW4, D4 and IC4d would allow a 2K RAM to be switched in 2 K blocks.

Any address line on A10-A13 not matching the relevant switch will send the output of IC4e and so IC6d high (disabling IC1 and 2). The output of IC4f goes low and is blocked by D5. Any address outside the range $\& 0000-\& 3 F F F$ will do the same via IC5.

SW5 selects whether the RAM is to be read only or write only. In write position the normal ROM can be read and copied to RAM ready for alteration.

IC6, Q1, IC3 and SW6 make sure the RAM appears in the correct ROM as the 128 switches using an 'OUT 7FFD' instruction with bit 4 selecting the ROM. For 48 K machines everything up to SW6 can be omitted and pin 9 of IC5d should be wired to 0 V .

Note that on power up SW5 must be in write position.

PCB FOIL

 PATTERNS

 PATTERNS}

The MIDI Programmer foil pattern

The intelligent plotter solenoid board

The digitally tuned radio PCB foil

The modular pre-amp input stage solderside foil

The modular pre-amp disc input stage topside foil

Dynamic Noise Reduction (May 1988)
The LM1894 is no longer available from the sources listed but it can be obtained from the author. Please address orders to Manu Mehra, 88 Gleneagle Road, Streatham, London SW16 6AF.

QL Output Port (Tech Tips May 1988)
Several problems with the diagram for this one A5 should read AS - that is, address strobe. Pins 22 and 24 should be connected to +5 V and the junction of the (only) resistor and diode connected to VPA on the QL.

Bicycle Battery Dynamo Backup

(June 1988)
$\mathrm{C} 1,2$ are incorrectly given as 22μ in the Parts List. The value of 220μ given on the circuit diagram (Fig. 1) is correct.

QWL Loudspeakers (August 1988)
Some dimensions were missing from Fig. 7. The bass driver port centre should be $33 / 4$ in above the base of the baffle panel. The notches in the side of the tweeter cut-out are $1 / 2$ in wide. The top plate is missing from the cutout diagram (Fig. 6). This is $7 \times 45 / 8 \mathrm{in}$

EEG Monitor (September 1987)
The wiring for the switch SW1 in Fig. 5 shows all the wires for selecting Alpba and Beta waves swapped. A_{1} should read B_{1}. A_{2} should read B_{2} and so on. The easiest remedy is to swap the front panel labelling shown in Fig. 6 so that the switch labelling reads Theta, Beta, Alpha.

Chronoscope (November 1988)
In the overlay diagram for the counter PCB (Fig) 3) the polarity of C12 is shown the wrong way around. SWla-d is shown as SW1-4. In Fig. 4 the cathodes of LED 8 and 9 are the righthand and lefthand pads respectively. The cathodes for LED 6.7 are marked as the wrong pin. In the text section on Battery Operation, Q1 should read T1. In Fig. 5 SW2 is incorrectly labelled SW5

Doppler Speed Gun (December 1988)
In Fig. 2 the labelling of pins 7 and 4 of IC2 are transposed. IC10a Pin 1 and IC9c Pin 10 should connect together and not to the 5 V rail. The positive terminal of C 3 should connect to the junction of R2/R3. Pin 7 of IC2 should connect to the 12 V rail and not to Pin 6/R1. So the pin labelling of CONN1 runs left-right on the overlay diagram, the corresponding labelling in Fig. 2 should be 3-1-2, reading downwards. Fig. 4 is correct in all respects except for the orientation of Q2 for which the c and e labels should be transposed. In addition the extra switch to be seen in the photograph of the prototype is a hangover from a previous incarnation. Just ignore it!

Burglar Buster (December 1988)
The foil part of the component overlay for the basic alarm (Fig. 1) was printed the wrong way around. It should be rotated through 180° as in Fig. 5.

Rev-Rider (January 1989)
In the parts list RV2 is incorrectly given at 33 k . It should be 22 k as in the circuit diagram. A 'blob' went missing from the circuit diagram. RV2, R7, R4, C1 and D3 should all be connected.

That's what an incredibly small number of people have achieved by contributing articles to ETI. The rest of us have had to make do with total obscurity and enough money for a couple of pints. Nevertheless it's all worthwhile and we need your contributions now!

FEATURES

If you know what you're talking about and it hasn't all been said before, we want you to add to our wide ranging and informative features. If you have a great idea for a feature or two, send in a brief resumé. If you don't have the ideas but you think you have a commanding knowledge of a suitable subject area we want to hear from you too.

PROJECTS

ETI has built its reputation on novel, worthwhile projects well designed and accurately presented. If you have recently designed and built a world-beater we want to hear from you. In the first instance send us a brief description of your masterpiece along with a circuit diagram.

Whatever you can contribute to ETI, take the plunge now. We can offer a modicum of fame and a very reasonable fortune.

Write in to:
The Editor ETI
1 Golden Square London W.1R 3AB

SPECIAL SOUNDEEEEC~S SPECIAL OFFER

ETI has teamed up with ITRON UK to bring you this microprocessorcontrolled programmable sound effects generator at a bargain price. The Sound-FX generates all manner of preset sound effects suitable for stage, toys, games or just for fun, plus it can be programmed to produce more musical sounds from the keyboard.

The Sound-FX comes ready to assemble with a sturdy console type case, two loudspeakers, pushbuttons for the keyboard and the allimportant ready-made PCB containing the custom microprocessor and amplifier. The kit just needs soldering together and the addition of a PP3 battery to create a wide variety of sounds.

Please send me Sound-FX complete kits at $£ 11.99$ each plus 95 p postage.
lenclose a cheque for $£$. made out to ITRON UK.
\square
Send your order to:
ETI ITRON Offer 1 Golden Square London W1R 3AB
Please allow 28 days for delivery

$\overline{31} 6$

CLASSIFIED
Heather Wust
01-437 0699 Ext 292
Send your requirements to:
Heather Wust, ETI Classified Department, ASP Ltd., 1 Golden Square, London W1.
Lineage: 54p per word VAT inclusive (minimum 15 words) Semi Display: (minimum 2 cms) £12.80 per single column centimetre + VAT Ring for information on series bookings/discounts
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

SITUATIONS VACANT

Head of Electronics

$£ 24,800$ to $£ \mathbf{£ 8}, \mathbf{3 5 0}$

The Research Centre is engaged in a wide ranging research and development programme concerned with the utilisation and distribution of electricity

We employ some 350 staff and are situated in the green belt, close to Chester.
Due to the departure of the present Head of Electronics to form his own company, we now have a vacancy for a highly motivated and experienced Electronic Engineer to lead a specialist group responsible for Electronic research and development and providing a service to Research Sections,

Applicants should have in-depth knowledge and substantial experience of Electronics operating at the forefront of applied Electronics research and development and the provision of allied services in a research setting. Electronics

SUBJECTTO REVIEW
knowledge must cover the range of the discipline including design, data-processing and instrument repair/calibration.

Applicants must be qualified to at least degree level in Electronics. In addition they must possess skills relevant to the cost effective use of resources and effective communication. Salary will be within the range $£ 24,799$ to $£ 28,373$ plus an Assisted Travel Allowance if appropriate.

Applications giving details of age qualifications, experience, present position, grading and salary should be forwarded to the Head of Personnel Services, Electricity Council Research Centre, Capenhurst, Chester CH1 6ES quoting reference number 664

The Centre has an equal opportunity policy and welcomes applications from disabled people.

Electricity Council Research Centre

RECRUITMENT

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY

Department of Manufacturing Engineering

RESEARCH ASSOCIATES Grade 1A

Applicalions are invited for two Research Associates to join a major SER C funded UK research leam for threc years
The study, involving industrial partners, aims to use state-of-the-art CAD and contro techniques to design, configure and progran a new generation of versatile computer controlled manufacturing machines
A good honours degree in Enginecring or Computer Science is required. preferably with two years' releyant industrial experience Starting salary within the range $£ 13,365$ to £15,105
For further details and an application form please contuct:

Professor R. H. Weston,
Deparment of Manutacturing Engineering, Loughborough University of Technology Loughborough,
Leicestershire LE11 3TU.
Tel: 0509263171 (ext) 2907 050922907 (DDI)

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only £1,00, Components and P.C.B's available Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

PCB'S

PRINTED CIRCUIT BOARDS. Low cost production service: $5 p$ per square centimetre (less for orders of 10 plus) one offs, 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire CV11 6JL. Telephone (0203) 382296.

> TO ADVERTISE TELEPHONE HEATHER WUST ON 01-437 0626

NEW VHF MICROTRANSMITTER kit, tuneable $80-115 \mathrm{MHz}$, 500 metre range, sensitive electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £5 POST FREE. Access orders telephone 021-411 1821, cheques/PO's to: Quantek Electronics Ltd, (Dept ETI), 45a Station Road, Northfield, Birmingham B31 3TE

ETI MAGAZINE HAS RATES TO SUIT ALL ADVERTISERS' NEEDS. RING 01-437 0626 FOR MORE DETAILS

SOLDERING PRACTICE KITS.
Don't ruin that expensive project! £3.50 each (2 for £6). Large component bags $£ 5$ inc postage. Wonderful value! AGS Electronics, 49 Farringdon Rd, Plymouth PL4 9ER.

FREEREADERS OFFER

FREE 60 WATT AMPLIFIER MODULE!! Low-profile pcb \& heatsink. Thd 0.003%. New + leads \& data!! SEND-US-THE-AD + £4.95p (handling) to KIA, 8 $+\begin{aligned} & \text { Cuniffe Rd, } \\ & \text { Cukley LS29. }\end{aligned}$

WANTED

Turn your surplus transistors, IC's etc., into cash. Immediate settlement We also welcome the opportunity to quote for complete factory clearance Contact:

COLES HARDING \& CO. 103 South Brink
ESTABLISHED OVER 10 YEARS Tel: 0945584188 Fax Number: 0945588844

Wanted:

Constructional Projects for publication to Electronic Enthusiasts, good rates. Contact: Bill Williams Telephone: 01-444 6706

SURVEILLANCE

ESKAN ELECTRONICS

LEADING MANUFACTURERS AND SUPPLIERS OF SURVEILLANCE AND SECURITY EQUIPMENT. MINIATURE TRANSMITTERS, TELEPHONE MONITORING EQUIPMENT, AND MANY OTHERS.

Send stamped addressed envelope for your free catalogue to.
172 Caledonian Road, London N1 0SG.

Telephone
 01-278-1768 VisA
Trade Enquiries Welcome

WHY NOT FAX US DETAILS OF YOUR ADVERTISEMENT ON 01-437 1006

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17. Tolophone 01-531 1568 ENAMELLED COPPER WIRE				
SWG	116	802	402	202
81034	43.63	2.09		0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	600	320	225	161
44 to 47	867	580	349	275
48	1596	958		369
	SILVER PLATED COPPER WIRE			
141030) 10.10		293	197
	TINNE	COPP	VRE	
141030	397			094
Post Free Please aco V AT at 15\% Orders under $[3.00$ add 500 . SAE for ist of copper and resistence wire Deáler enquiries welcome				

COPPERCLAD BOARD. Double sided, fibre glass at $5 p$ per sq in. 50p p\&p. - Phone: Paul, 021-358 2884.

PLANS AND DESIGNS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices pyrotechnics and computer graphics tablet. 150 projects For catalogue. SAE to Plancentre Publications, Unit 7 , Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

TO ADVERTISE Tel: 01-437 0626

SPECIAL OFFERS

GOVERNMENT SURPLUS EQUIPMENT

ANCHOR SURPLUS LTD
 THE CATTLEMARKET, NOTTINGHAM 0602864902

Britain's largest electronic surplus depot! 2 acre site in central Nottingham. Millions of electronic goodies, oscilloscopes, radios, tuners, amplifiers, aerials components, microwave bits, signal generators, spectrum analysers, tape recorders, videos, cameras; batteries, cables, etc
IF THE ARMED FORCES USE IT - WE PROBABLY SELL IT

NOTTINGHAM DEPOT
Mon-Fri 9 am-6 pm Saturday $9 \mathrm{am}-4 \mathrm{pm}$
Plenty of parking space everyday except Saturdays

RIPLEY DEPOT
PEASEHILL INDUSTRIAL ESTATE, RIPLEY, DERBYSHIRE Tel: 0773570537

SURREM,
16 Central Road,
Worcester Park,
Surrey KT4 8HZ,
Tel: 01-330 6540.
Programmable device specialists.
(PAL's, PROM's, PLD's etc). Many
other components in stock.

TERMS \& CONDITIONS

CLASSIFIED ADVERTISING TERMS \& CONDITIONS

 Our terms for new adverisers (semi-display and lineage) are strictly pro-torma payments until satissactory reference can be taken up (excluding recognised advertising agencies Cheques and fo. s should be crossed and PUBLICATIONSLTD and sent together with the advertisements 10 .The Classitied Dept.
No. 1 Golden
No. 1 Golden Square,
There are no reimbursements for cancellations Advertisements arriving too late for a particula issue will be inserted in the following issue unless accompanied by instructions to the contrary. Itis the responsibility of the advertiser
to ensurathat the tirst insertion of every series to ensura that the tirst insertion of every serties
is published correctly, and corrections must be notified in time for the second insertion, otherwise the publishers will not accept liability or offer any reduction in charges. All adverising sales are subject to Government Regulations concerning VAT. Advertisers are requirements in force eg The Trade Description Act, sex discrimination act \& the business advertisements (disclosure) order 1977
Full Terms $\&$ Condition Full Terms $\&$ Conditions of Adverising available on request.
Worcester Park, Surrey KT4 8HZ, Tel: 01-330 6540. Programmable device specialists. es, PROM's, PLD's etc). Many

ADVERTISE YOUR PRODUCTS HERE TO REACH A DEDICATED AUDIENCE OF ELECTRONICS ENTHUSIASTS. We have rates TO SUIT ALL ADVERTISERS NEEDS.

CLASSIFIED COUPON

USE THE COUPON BELOW TO PLACE A LINEAGE ADVERT IN ETI OR ALTERNATIVELY RING 01-437 0626

This column is a service to readers to próvide electronic designs to order. Many a project never gets further than the drawing board because of difficulties with one small part. If you are stuck for a circuit or a technique, let the ETI expert help you out. Send your requirements, with as much detail as possible, to ETI Blueprint, 1 Golden Square, W1R 3AB.

This month's enquiry is from Adrian Moretti in Italy who has a problem with an oid circuit from another mag (well it wouldn't be ETI, would it')

This transistor assisted ignition project from the 1982 Australian edition of Electronic Projects For Cars has me stumped. I have built it on the proper $P C B$, and it works fine on the bench. When I use it in my car, a model 316 BMW (1980 vintage) it invariably burns out the ignition coil after a few hundred kilometres. Can anything be done about it?

It is difficult to solve problems at long distance but if I explain what the project does and how it works in more detail than the original article did, this may enable you to see what the problem is in your application.

The reason for using a transistor assisted ignition is to provide a clean switching signal to the ignition coil, even though the point may not open absolutely cleanly. To see why this matters, we must first consider the principles of an ignition system.

A conventional ignition system stores energy in the magnetic field in the ignition coil while the points are open. When the points close, the current starts to rise following an exponential law, with a time constant of L / R where L is the inductance of the coil and R is the total circuit resistance.

Normally the current in the coil has time to get close to the maximum theoretical current, given by the voltage and the resistance alone, so that each time the contact opens there is a defined amount of energy available for the spark.

As the contact opens, it rapidly reaches the point where the voltage required to spark across the contacts is greater than that required to spark in the spark plugs, scaled by the turns of the coil. At this point, instead of the contacts arcing at perhaps 100 V , the

spark plug sparks over at several thousand volts. This simple system would work but would burn the contacts and fail after a short time. The addition of a capacitor in parallel with the contacts keeps the rate of rise of voltage across the contacts just below the rate at which the arc voltage rises as the contacts open.

If the opening of the contacts is not clean, which can be the case after wear has taken place, then some of the stored energy will be used in sparking and burning the contacts rather than in making a healthy spark at the spark plug. It is in this aspect of performance that a transistor assisted ignition can help. A transistor can be made to switch cleanly regardless of contact bounce on the points.

The circuit of the project in question, shown in Fig. 1, does just this. The contacts are debounced by the time constants of R6, R7, and C2. C2 charges rapidly as soon as the contacts open and discharges more slowly when they close. So brief contact bounces after the initial opening have no effect.

Fig. 2

The voltage on C2 is fed to a CMOS buffer which will normally give saturated logic outputs despite the fact that it is not fed from logic levels because it has substantial voltage gain. The output logic level is fed to a further time constant which holds Q2 on for approximately 1 ms .

Two logic gates in series are used to amplify the voltage change at the junction of C3 and R8 so that, although the voltage at this point changes relatively slowly, the base drive to Q2 switches rapidly over a small range of voltage on the time constant of C3 and R8.

While Q2 is switched on, Q4, which controls the coil current, is switched off, The rate of rise of voltage across Q4 when it switches off is limited by C 4 to prevent damage to the transistor or to the ignition coil due to high voltage spikes.

There are two extra features of the circuit. Q3 which drives the output transistor is configured as a constant source (though it is temperature dependent). This maintains the correct drive current during starting, when the battery voltage may fall to 6 V , without unnecessarily high dissipation when the battery is at 12 V . Q1 is included to discharge C3 and thus switch on Q 4 if the voltage across it rings negative. This is illustrated by Fig. 2.

Cause Of Failure

There would seem to be two general reasons why the coil might burn out when the ignition system is used. The first possibility is that the peak voltage across the coil is higher and that this is breaking down the insulation. The second possibility is that too much current is flowing, perhaps because a ballast resistor has been wired out of circuit and the coil is overheating. If the ballast resistor has been shorted, there will be too high a voltage as well, so there will be a double reason for the coil to break down.

These general reasons may be caused by a number of different problems but the first thing is to identify what the general problem is whether or not it is one of the two possibilities suggested here. If an oscilloscope is available, display the waveform on the collector of Q 4 when the ignition system is installed in the car and compare it with the waveform on the points when the conventional ignition is in use.

To protect the scope input (or probe) use potting down resistors of 100 k and 1 k 0 to reduce the measured signal to 1% of its actual level.

This measurement will not indicate small differences in output voltage but if there is a substantial difference in secondary voltage this should be shown in the primary waveform. Look carefully to see whether the transistor sometimes switches when the points are closed. It is possible that noise in the wiring of the car could cause false triggering. If this did occur, it would be when the distributor arm was not in the correct position to route the output to one of the spark plugs. The lack of a proper discharge path for the energy would result in a higher than normal voltage.

The most likely place for noise pickup to occur would be on ICl pin 3, and if this is where pickup occurs then a good way to try to cure the problem would be to incorporate a proper monostable to replace C3 and R8. Fig. 3 shows a possible circuit with less susceptibility to noise. The component values may require experiment.

The single most likely cause of the problem is a shorted ballast resistor. Before trying anything more complicated, double check whether there is a ballast resistor in your car and if so that it is in circuit when the transistor assisted ignition is in use.

Andrew Armstrong

America is slowly but surely Acoming to grips with the problems created by HDTV. To clarify, HDTV stands for high-definition television and it's the system proposed and currently being developed by the Japanese. It has around twice as many scan lines as the existing American television system NTSC (1125 lines, to be precise).

Sidestepping, high-definition television shouldn't be confused with higher-definition television, that is the sort of television we can expect with the MAC systems currently proposed for European satellite television. Even so, many media pundits do mistake the two terms. But that's by-the-by

HDTV, which is currently undergoing a name change in the States to advanced television (ATV), is totally incompatible with existing systems. Its use would mean that NTSC would have to be scrapped. I'm sure that many readers will say thats about time, too - NTSC doesn't give the best of pictures. Nevertheless, it's taking some time for America to realise this.

MAC

In Europe, we've already gone through this realisation, many months ago, which is why we turned HDTV down at an early stage. We didrit want a totally new television system until it was on our terms and the time was right. That's why we opted for the MAC systems. MAC, although not capable of quite such hign quality pictures as HDTV (oops sorry, ATV) is compatible with PAL

Viewers, wanting the higher quality picture which MAC will provide, can opt to buy a new MAC television. Viewers with existing PAL receivers can still watch the MAC broadcasts, albeit only at PAL quality.

Even leaving compatiblty aside, HDTV suffers from one partcularly huge drawback that it requires significantly greater izansmission bandwidth. No probiem Et the transmissions are to be received from satellite. There's always pienty of space in the spectrum there ipun intended). But this greater bancutert requirement is very relevan: for terrestrial television where only limitei spectrum is available.

The Federal Communications Commission (FCC) in America recently took the buil by the horns at long last by announcing that no new frequencies will be made avaiable for terrestrial television broaecasts and that all new broadcass must be compatible with NTSC sendards.

NTSC television chanals are only 6 MHz wide, whereas HDTV channels require at least 8.1 MHz So that rules
out the use of HDTV (in existing form) for terrestrial television in the USA. What's the point of one system for terrestrial television, with another for satellite? None - two television receivers would be required to pickup both television pictures and that's expensive, bulky and pointless.

To be fair, the reason why America has been wooing HDTV for so long is that the nation is particularly conscious that the consumer boom has been passing it by recently, with the Japanese taking centre stage. America sees ATV as a way of re-entering and eventually recapturing the consumer market, to improve the nation's economy.

Where does the FCC's recent announcement leave the American television industry now? Somewhere up the mucky creek without a paddle, I guess. Let me suggest an alternative approach to ATV for our Western allies. It's a wonderous television system that will give you a great improvement in picture and sound quality (after all, anything's better than NTSC).

Further, it's proven and we can even supply you with chips, shortly, with which to build your television receivers. lt's totally compatible with terrestrial television system, it's totally compatible with satellite systems and, what's more, it only requires a transmission bandwidth the same size as terrestrial television.

It's called MAC.
Meanwhile back at the ranch, the American Electronics Association (AEA) has warned the country that unless ATV is quickly and properly developed, not only will the US consumer market continue to be dominated by the Japanese but its semiconductor, computer and automated manufacturing markets will go the same way.

So America is cornered. Having misled itself over the Japanese HDTV system for so long, it now lags considerably in the race to develop its own suitable ATV system. It will be very interesting to watch the overdue debate which is just starting over there.

Brits Hear It All
Finally, Logica has developed a voiceprinting technique which appears to work. In fact, it works so well that soon over 10,000 users will have their voices analysed so that they may gain access to a computer system merely by talking to it. The system is to be incorporated into a US organisation (details, as yet unobtained), with a potential of up to 20,000 users. The burning question is, will it be able to detect heavy breathers, and bar them from access?

Keith Brindley

THE TIME HAS COME

Britain's First Music Magazine for the Computer User! Featuring Reviews on Hardware \& Software across all formats Micro Music is the magazine the Computer Musician has been waiting for.
Available 10th March from all good Newsagents.

ЕTI PCB SERVICE

Miss out the mess with ready-made pre-drilled PCBs for ETI projects

Use the form (or a photocopy) for your order. Please fill out all parts of the form
Make sure you use the board reference number This not only identifies the board concerned but also tells you when the project was published. The first two numbers are the year of publication and the next two the month. The number after the dash indicates the particular project in that issue

Terms are strictly payment with order. We cannot accept official orders but we can supply a pro forma invoice if required. Such orders will not be processed until payment is received.

Please make cheques out to ASP Ltd. Payment can also be made through Access and Visa cards by telephone on (0442) 41221.

Send your order to:

ETI PCB Service, ASP Readers Services, 9 Hall Road, Hemel Hempstead HP2 7BH

E8107-1 System A Disc Input board MC-MM F
E8107-2 System A Pre-amplifier Main K
E8108-1 System A Power Amp L
E8109-2 System A PSU ... F
E8201-2 Infant Guard ... C
E8202-5 MM Stage Disc Pre-amp (Tilsbrook) G
E8206-5 Logic Lock ... F
E8208-1 Playmate Practice Amp (3bds) K
E8212-1 ELCB
E8301-2 Analogue to digital conv ZX81/Spectrum .. E
E8305-3 Dual Audio Power Supply, Linsley Hood .. G
E8305-3 Balanced Input Pre-amplifier
…............. F
E8307-2 Flash Trigger sound/flash/IR F
E8308-1 Graphic Equaliser $1 / 3$ Octave M
E8308-2 Servo Fail-safe .. C
E8309-1 NICAD Charger/Regenerator F
E8310-3 Typewriter Interface - EX42 F
E8311-1 Mini Drum Synth

Please supply:

Quantity Ref. no. Price Code Price Total Price

E8311-8 Moving Coil Pre-Pre-amp
F
E8312-3 Light Chaser EPROM Controlled (2 Bds) .. K
E8402-1 Speech Board M
E8402-2 Modular Pre-amp Disc Input Mono F
E8402-3 Modular Pre-amp Stereo Output F
E8402-4 Modular Pre-amp Relay, PSU F
E8402-5 Modular Pre-amp Tone Main Mono F
E8402-6 Modular Pre-amp Tone Filter, Stereo F
E8402-7 Modular Pre-amp Balanced Output F
E8402-8 Modular Pre-amp Headphone Amp F
E8404-2 Mains Remote Control Receiver …........ F
E8405-1 Auto Light Switch F
E8405-2 ZX81 EPROM Programmer N
E8405-3 Mains Remote Control Transmitter H
E8405-4 Centronics Interface F
E8405-6 Drum Synth ... F
E8406-1 Oric EPROM Board O
E8406-2 Spectrum Joystick E
E8406-3 Audio Design RIAA Stage G
E8406-4 AD Buffer/Filter/Tone H
E8406-5 AD Headphone Amp F
E8406-6 AD Preamp PSU K

E8406-9 AD Stereo Power Meter F
E8406-10 AD Input Clamp C
E8407-1 Warlock Alarm M
E8408-2 EPROM Emulator N
E8408-3 Infra-red Alarm Transmitter E
E8408-4 Infra-red Alarm Receiver F
E8409-1 EX42 Keyboard Interface F
E8409-2 Banshee Siren Unit F
E8410-1 Echo Unit ... F
E8410-2 Digital Cassette Deck N
E8410-3 Disco Party Strobe H
E8411-5 Video Vandal (3 boards) N
E8411-6 Temperature Controller D
E8411-7 Mains Failure Alarm D
E8411-8 Knite Light .. D
E8411-9 Stage Lighting Interface F
E8411-10 Perpetual Pendulum E
E8412-1 Spectrum Centronics Interface F
E8412-4 Active-8 Protection Unit F
E8412-5 Active-8 Crossover F
E8412-6 Active-8 LF EQ .. F
E8412-7 Active-8 Equaliser F
E8501-3 Digital Delay (2 bds) T
E8502-1 Digital Delay Expander N
E8502-2 Data Logger ...
E8503-1 Combo Pre-amplifier F
E8503-2 THD Meter mV \& oscillator boards (2 bds) . K
E8503-3 THD Meter Mains PSU F
E8504-1 Framestore Memory M
E8504-3 Framestore Control N
E8504-4 Buzby Meter ... E
E8504-5 CCD Delay ... F
E8505-5 Stereo Simulator F
E8506-1 Audio Mixer Main J
E8506-2 Audio Mixer PSU F
E8506-3 Audio Mixer RIAA D
E8506-4 Audio Mixer Tone Control D
E8506-5 EPROM Prog MKII O
E8507-1 Noise Gate ... H
E8508-1 RCL Bridge ... N
E8508-2 EX42/BBC Interface E
E8508-3 EPROM Emulator L
E8509-1 Spectrum EPROM Card F
E8509-2 Direct Injection Box E
E8510-9 Sunrise Light Brightener K
E8511-1 MTE Waveform Generator H
E8511-2 Millifaradometer

E8511-3	Cymbal Synth J	E8710-2	Concept Power Board
E8511-5	Chorus Effect H	E8710-3	Concept Display Board G
E8511-7	Enlarger Exposure Meter F	E8710-4	Hyper-Fuzz
E8511-8	Switching Regulator E	E8710-5	Big Digits Digit Board
E8511-9	Second Line of Defence M	E8710-6	Big Digits Minute Board
E8512-1	Specdrum Connector F	E8710-7	Big Digits Battery Board
E8512-2	MTE Pulse Generator H	E8711-1	Quiz Controiler
E8512-3	Specdrum L	E8711-2	256K Printer Buffer
E8601-2	Walkmate L	E8712-1	Heating Management System
E8601-3	MTE Counter-timer M	E8712-2	SWR Meter
E8602-1	Digibaro O	E8712-3	Dream Machine (free PCB)
E8603-2	Programmable Logic Evaluation Board H	E8801-2	Passive IR Alarm
E8603-3	Sound Sampler Analogue Board R	E8801-3	Deluxe Mains Conditio
E8604-1	JLLH PA PSU H	E8801-4	RGB Dissolve
E8604-2	Matchbox Amplifier C	E8802-1	Electric Fencer
E8604-3	Matchbox Amp Bridging Version C	E8802-2	Telephone Intercom
E8604-4	MTE Analogue/Digital Probe M	E8802-3	Transistor Tester (2 bds)
E8605-1	Microlight Intercom E	E8802-4	Spectrum Co-processor C
E8605-2	Baud Rate Converter M	E8803-1	Co-processor RAM board N
E8605-3	Baud Rate Converter PSU Board C	E8803-2	Beeb-Scope (3 bds) O
E8605-4	Portable PA H	E8803-3	Jumping Jack Flash E
E8606-1	MIDI-CV Converter Board H	E8804-1	Spectrum Co-processor Interface Board N
E8606-2	MIDI-CV Converter PSU D	E8804-2	Combo-Lock E
E8606-3	Troglograph F	E8804-3	Kitchen Timer
E8606-4	80m Receiver H	E8805-1	Virtuoso 2U PSU M
E8606-5	Sound Sampler R	E8805-2	Virtuoso 3U PSU N
E8607-1	Direct-ion E	E8805-3	Bicycle Speedometer F
E8607-2	Upgradeable Amp, MC stage (Stereo) G	E8805-4	Dynamic Noise Reduction E
E8607-3	BBC Motor Controller F	E8806-1	Universal Digital Panel Meter
E8608-1	Digital Panel Meter G	E8806-2	Universal Bar Graph Panel Meter K
E8608-2	Upgradeable Amp, MM stage (mono) H	E8806-3	Virtuoso Power Amp Board N
E8609-1	Mains Conditioner E	E8806-4	Virtuoso AOT Board G
E8609-2	Experimental Pre-amp F	E8806-5	Metal Detector E
E8609-3	Upgradeable Arnp, Tone Board (mono) H	E8806-6	Bicycle Dynamo Backup D
E8609-4	Upgradeable Amp, Output Board (mono) .. F	E8807-1	Bar Code Lock (2 bds) N
E8610-1	Audio Analyser Filter Board L	E8807-2	Analogue Computer Power Board L
E8610-2	Audio Analyser Display Driver K	E8807-3	Bell Boy ... F
E8610-3	Audio Analyser Display H	E8807-4	Logic Probe C
E8610-4	Audio Analyser Power Supply F	E8807-5	Updated FM Stereo Decoder J
E8611-1	Audio Switcher (2 bds) H	E8807-6	Breath Rate Display Board F
E8611-2	PLL Frequency Meter (4 bds) Q	E8808-1	Breath Rate Main Board H
E8611-3	Upgradeable Amp PSU J	E8808-2	Breath Rate Switch Board C
E8611-4	Call Meter, Main Board O	E8808-3	Telephone Recorder D
E8611-5	Call Meter, Interface Board N	E8808-4	Analogue Computer Main Board (2 bds) .. M
E8612-1	Bongo Box J	E8809-1	Spectrum EPROM Emulator M
E8612-2	Biofeedback Monitor (Free PCB) E	E8809-2	Frequency Meter (2 bds) P
E8701-1	RGB Converter F	E8809-3	Travellers' Aerial Amp E
E8701-2	Mains Controller D	E8810-1	Gerrada Marweh BikebellE
E8701-3	Flanger H	E8810-2	Peak Programme Meter (2bds) N
E8701-4	Audio Selector Main Board M	E8810-3	Variat-Ion Ioniser K
E8701-5	Audio Selector PSU H	E8810-4	TV-to-RGB Converter E
E8701-6	Tacho-Dwell F	E8810-5	Electron RGB Buffer C
E8702-1	Ratemeter Main Board K	E8811-1	NiCd Charger E
E8702-2	Ratemeter Ranging Board	E8811-2	Chronoscope (3 bds) P
E8702-3	Photo Process Controller (3 bds) O	E8811-3	Digital Transistor Tester G
E8702-4	LEDline Display Board (2 off) K	E8812-1	Doppler Speed Gun (2 bds) K
E8702-5	LEDline PSU and Controller (2 bds) G	E8812-2	Small Fry Mini Amp D
E8703-1	Capacitometer F	E8812-3	Thermostat E
E8703-2	Geiger Counter L	E8812-4	Burglar Buster Free PCB D
E8703-3	Credit Card Casino E	E8812-5	Burglar Buster Power/relay Board E
E8704-1	BBC Micro MIDI Interface L	E8812-6	Burglar, Buster Alarm Board C
E8704-2	ETIFaker Patch Box H	E8812-7	Burglar Buster Bleeper Board C
E8704-3	24Hr Sundial E	E8901-1	EPROM Programmer mother board M
E8705-3	MIDI Keyboard Keyswitch Boards (3 bds) .. W	E8901-2	Variat-Ion updated Main Board H
E8705-4	Batlite .. C	E8901-3	Variat-Ion Emitter Board E
E8705-5	Budget Power Meter E	E8901-4	In-car Power Supply C
E8706-1	Hi-fi Power Meter N	E8901-5	Granny's Hearing Booster E
E8706-2	MIDI Keyboard CPU U	E8902-1	Compressor/Limiter/Gate L
E8706-3	MIDI Keyboard Front Panel O	E8902-2	Ultrasonic Horn D
E8706-4	Flame Simulator G	E8902-3	Stepper Motor Driver Board
E8707-1	MIDI Keyboard PSU H	E8902-4	Quest-lon (2bds) K
E8707-2	Telephone Alarm J	E8903-1	Intelligent Plotter Solenoid Board
E8707-3	Nuclear Strategy Simulator J	E8903-2	MIDI Programmer
E8708-1	Remindalite F	E8903-3	Balanced Disc Input Stage
E8708-2	Rear Wiper Alarm G	E8903-4	Digitally Tuned Radio G
E8708-3	Rev Counter F		
E8708-4	Car Alarm F		
E8708-5	Knight Raider J		
E8709-1	Boiler Controller G		
E8709-2	Amstrad Sampler (2 bds) P		
E8709-3	Portable PA G		
E8709-4	EEG Monitor (2 bds) L		

E8802-3 Transistor Tester (2 bds) L
E8803-1 Co-processor RAM board N
Jumping Jack Flash
E8804-1 Spectrum Co-processor Interface Board N
.
E8805-1 Virtuoso 2U PSU M
E8805-3 Bicycle Speedometer F
E8805-4 Dynamic Noise Reduction E
E8806-2 Universal Bar Graph Panel Meter K
E8806-3 Virtuoso Power Amp Board N
E8806-5 Metal Detector ... E
8806-6 Bicycle Dynamo Backup
E8807-2 Analogue Computer Power Board L
E8807-4 Logic Probe
E8807-5 Updated FM Stereo Decoder J
E8808-1 Breath Rate Main Board H
E8808-2 Breath Rate Switch Board C
E8808-4 Analogue Computer Main Board (2 bds) .. M
28809 1 Spectrum EPR 12 bds)
E8809-3 Travellers' Aerial Amp E
8810-1 Gerrada Marweh Bikebell
E8810-3 Variat-Ion Ioniser K
....... E
E8811-1 NiCd Charger E
Chronoscope (3 bds)
E8812-1 Doppler Speed Gun (2 bds)
E8812-2 Small Fry Mini Amp D
Burglar Buster Free PCB
E8812-5 Burglar Buster Power/relay Board E
Burglar Buster Alarm Board

Price	Price code (inc. VAT)
	$£$$£ 1.80$ C
D	$£ 2.50$
E	$£ 3.25$
F	$£ 4.00$
G	$£ 4.75$
H	$£ 5.50$
J	$£ 6.62$
K	$£ 7.20$
L	$£ 8.80$
M	$£ 10.60$
N	$£ 13.10$
O	$£ 15.80$
P	$£ 17.90$
Q	$£ 21.80$
R	$£ 23.90$
S	$£ 25.90$
T	$£ 29.00$
U	$£ 32.20$
V	$£ 35.80$
W	$£ 37.90$
X	$£ 40.70$

ADVERTISERS INDEX

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX • 0316672611

Do your have your copy yet? If not simply send 2×19 ptamps with your name and address.
For a wide range of useful components.
For VAT inclusive pricing.
For fast, personal service simply write, phone or call in!

| Open: Monday-Friday 9.00-6.00 |
| :---: | :---: |
| |

[^0]
COLOUR MONITORS

$16 "$ Decca, 80 series budget range colour montors, features
clude PIL fube, attractive teak stle case, guaranteed 80 colur
resolition resolution only seen on monitors costing 3 times our price. ready fully tested surplus, sold in little or haroly used condition with 90 day full 'ATB guarantee 1000 's Sold to date.
DECCA 80 RGB. TLL SYNC input DECCA 80 RGB. TL
DECCA 80 COMP 7511
Compo input to
BEC type interface etc amp \& speaker ideal for use with video recorder or TELEERXX ST
any other audio visual use
Only E99.00 (E)

HIGH DEFINITION COLOUR

BRAND NEN CENTRONIC $14^{\prime \prime}$ monitors in attractive style moulded
case facturing hi res Mitsubushi 0.42 dot pith tube with 669×507
 $1005-\mathrm{N} 2$ RGB interface for OL 85 columns ${ }^{2} 169.00$ (E) $20^{\prime \prime} \& 22^{\prime \prime}$ AV Specials

MONOCHROME

MOTOROLA M1000-100 5 CRI black \& whire compact chassis

 puter applications, Accepts standard Composite video or indvidual H \& V syncs. Operates from $12 V D C$ at apprehave minor screen marks, but still in very usable condition Fully
tested with 30 day guarantee \& full data
Only $£ 29.00$ (C) lested with 30 day guarantee \& fill data
Fully cased as above. with altractive mouded, desk standing swive
and tilt case Dim. cm 12 h .14 .5 w .26 d .
$£ 39.00$ (C) and tilt case Dim cm 12 h .14 .5 w .28 d
JVC type $751-75^{\circ}$ ultra compact track \& white chassis monitor for
IV included to convert data and separate sync inputto composite video
Input. Ideal portable equipment erc. Supplied with full data KGM 3249^{\prime} Green Screen, Little used fully cased mains powered and In excellent condition and in excellent condition
20 ' Black \& White monitors by AZTEK, COTRON \& NATIONAL
All solid state, fully cased monitors. ideal for all types of AV or CCTV All solid state, fully cased monitors, ideal for all types of AV or Clt
applications Units have standard composite video inputs with in
tegral audio amp and speaker Sold in good used condition- fully

FLOPPY DRIVE SCOOP Drives from Only £39.95

 ssated are removed trom oteen 8 BAND NEW equipment. fully tefted and shipper Moyoum a tit 50 day guarantee A A unts

 DISK DRIVE ACCESSORIES

 8" DISK DRIVES
SUGART 800,601 singla sis returisted
${ }^{〔} 175.00$ (

COMPUTER SYSTEMS

TATUNG
TPC2000

 ncture Dual 8 BM IOmmot oulcu somberans CPM. WORDSTAR, Basict and actounts pack age Finl 90 day guarartee

Only £299(E)
 stancard CPM 10 Mn teat res reay duty bou contining a powerfu

\qquad
HAZELTINE ESPRINT Small destop 100 cps print speed with both RS232 and CENTRONICS intertaces. Full pro addressable graphics
and 6 user selecable type fonts Up to 95 single sheet and tractor CENPer handing 150 series A real workhorse for continuous use (E) tractor leed paper, ether in the office, home or factory, desk slanding
150 cps 4 Nype fonts and choice of interfaces Suppled BRAND NEW Order as 150 SN upto 9.5^{\prime} paper handiling
150 -SW ip to 145 paper handiling \qquad

hen ordering please specify RS232 or CENTRONICS intertace

Ultra Fast 240 cps NEWBURY DATA

 NDR 8840 High Speed Printers Only E449 !!to offer you this amazing Bitish Made qualiny printer at cleararace prices SAVING YOU OVER 1500 il The NDR 88840 teatures high
speed 240 cps print speed with integral, fully adiustable paper trac speed 240 cps spint speed with integral. fully adiustable paper trac-
tor quing excepoional ast paper handing for multi part formsetcthe
unit teatures 10 selectable type fonts giving up to 226 pintable characters on a single line. Many othver features include internal electronic vertical and horizontal tabs. Seff test, 9 needle head, Up to
155 paper 15 milion character ribbon cartridge life and stand 155° paper 15 million character ribbonn cartridge life and standard
RS232 serial intertace Sold in SUPERB lested condition with 90 day

matrix (3 lines 51240 column 3.5° wide paper roll feed, high speed matrix (3 lines per second) printer mechanism for incorporation in point of sale terminals, ticket printers, dataloggers etc. Unit features bi
directional printhead and integral roll paper leed mech with tear bar Requirs DC volts and simpte parallel extemal drive logic Competit with data RFE and tested
EPSON model 542 Same spec as above model, but designed to be EPSON model 542 Same spec as above model, but designed to be
used as a slilo or fatbed printer Ideal as label card or ticket printer plete with data RFE and tested Only E55.00 (D) FHILPS P2000 Heavy duty 25 cps bi directional daisy wheel printer Fully DIABLO, QUUM, WOADSTAR compatible Many features in clude full width platten-up to 15 "paper, host of avalable daisy wheels
single sheet paper handing superb quality print Supolied complete single sheet paper handing, superb quaity print Supplied complete
with user manual \& 90 day guarartee plus
BREE dust cover \& daisy
BRAND NEW Only E.225.00 (E)

Most of the items in this Advert, plus a whole range of other electronic components and goodies can be seen orpurchased at our electron at our
 ** South London Shop **

Localed at 215 Whitehorse Lane, London SE25. The shop is Localed at 215 Whithorse Lane, London SE25. The shop is
on the main 68 bus route and only tew miles rom the main
A23 and South circular oads Open Monday to Saturday tom 9 to 5.30 . parking is undimited and browsers are most wel 9 to 5.30 . parking is unimimed and browsers are
come. Shop callers also save the cost of carnige.

MODEMS

Modems to sutt all applications and budgets
Please contact equire more intormation or assilstance
SPECIAL PURCHASE
V22 1200 baud MODEMS ONLY £149!!
MASTER SYSTEMS type $2 / 12$ microproces
sor oontrolled V22 full duplex 1200 baud. This sor oontroiled V22 full duplex 1200 baud. This features for error free data comms at the stag gering speed of 120 characters per second saving you 75% of your BT phone bills and
data connect time fI Add these facIs to data connect time it Add these facis to ou
give away price and you have a superb buy Ultra slim unit measures only 45 mim high with
many integral features such as Auto answer
Full ED status indication AS 222 interte many integral features such as Auto answer
Full LED status indication. RS232 interiace Remote error diagnostics, SYNC or ASYNC Supplied fully tested, EXCELENT silighily

OUMNED Only 1449

CONCORD V22 1200 baud as new $£ 330.00(\mathrm{E})$ CONCORD V22 $1200-2400$ BIS $£ 399.00$ (E RIXON EX BT Modem 27 V $221200 £ 225.00$ (E)
DATEL 4800/ AACAL MPS 4800 EX BT modem for 4800 baud sync use £295.00 (E) DATEL 2412 2780/3780 4 wire modem unt EXBT fully tested
MODEM 20-1 75-1200 BAUD for $£ 199.00$ (E) PPESTEL etc EX BT fully tested $£ 49.00$ (E) TRANSDATA 307A 300 baud acoustic ooupler with RS232
RS232 DATA CABLES
16 ftand New $£ 49.00$ (E) RS 232 DATA CABLES 16 ftlong 25 w D plug to
25 way D socket. Brand New Only 99.95 (A) $\begin{array}{ll}\text { As above but } 2 \text { metres long } & £ 4.99 \text { (A) } \\ \text { BT plug \& cable for new type socket } & £ 2.95 \text { (A) }\end{array}$

RECHARGEABLE BATTERIES

 3 Ah
$\Sigma 13.95$ (A A300 6 V 3 Ah
A300 $6-0-6 \mathrm{~V} 1.8 \mathrm{Ah}$. RFE $\begin{array}{l}£ 9.95 \\ \mathrm{E5.99}\end{array}$ (A) A$)$ NICKEL CADMIUM
Quality 12 V 4 Ah cell pack. Onginally made
Ior the TECHNICOLOUR video company.
this unit contains 10 high quality GE nicad, D his unit contains 10 high quality GE nicad, D cm $19.5 \times 45 \times 12.5$. Ideatput connector Dim
BRAND NEW equipment
etc
B24.95 (B) etc 17 Ah Uitra rugged all weather, virtually
12v
indestructable refillable NICAD stack by indestructable refiliable NICAD stack by
ALCAD. Unit features $10 \times$ individual type
XL1.5 cells in wooden crate MOD and made to deliver exceptionally high output currents \& withstand long periods of
storage in discharged state Dim cm $61 \times 14 \times$ 22 Cost over $£ 250$ Supplied unused \& rested complete with instructions $£ 95.00$ (E)
EX EOUIPMENT NICAD cells by GE
Removed from good but used condipment and believed In
col size 7 Ah 6 for
(B) Also D' size 4 Ah' 4 for $£ 5$ (B)

nd of line purchase enables this brand new The NEC D2246 8' 80 Mb disk drive features ull CPU control and industry standard SMD ccess times leave the 10 , 5506 interace standing Supplied BRAND NEW with Dull manual Only £399.00 (E) Dual drive. plug in 135 Mb sub system for IBM terface cards for upto 4 dives on IBM tc avaliable Brand new at £395.00

	ONLY
u	£16.95 (c)

Made to the highest spec for BT this unit gives several fully
protected DC outputs most suited to the Electronics Hobbyis $+5 \mathrm{v} 2 \mathrm{a}+8-12$ 1a +24 V 1a and +5 v fully floating it 50 ma Ideal for school labs etco Quantity discount available.
Fully tested with data RFE Removed From Equipment

The AMAZING TELEBOX Converts
QUALITY monitor into
QULOUR
Brand new high quality, fully cased 7 channel UHF PAL TV tuner sys
tern Unit simply connects fo your TV aerial socket and vicleo monitor urning same into a fabusous colour TV Dont worry in your monito doesng have sound, the TELEBOX even has an integral audio amp for
driving a speaker plus an auxillary oupput for Headphones or Hi Fi syscase, Mains powered. Bult to BS satety specs Many Smart moulded sound or video etc. Supplied BRAND NEW with full 1 year guarantee
Carnage code (B)

TV SOUND TUNER £29.95
TELEBOX ST tor monitors with composite video input £29.95 TELEBOX RGB for use with analogue RGB monitors

COOLING FANS

SPECIAL INTEREST

Please cali for availability or further info PCB layout sysem
$\mathrm{DEC} V A X 11 / 750 \mathrm{mc} 2 \mathrm{Mb}$ Ram DZ and full HP7580A 8 pen digtal A1 Brand New 88500 EEE intertace As New $£ 4750$
 500 wat INVEAT Wave 50 Hz output
 based UNX system complete with sotware
and MOM winchester disk drive.
WAYNE KERR AAZ00 Guency response analyzer TV E3000
 standard
HP 3271 A Correlator system ${ }^{28}{ }^{2875}$
PLESSEY portable Microwave speech $/$ da link 12 VDC 70 mile range The pair $£ 275.00$
19 Rack cabinets 100 sin stock trom $£ 15.00$

ELECTROAILS-

[^0]: Interak 1
 BUILD YOUR OWN COMPUTER

