

SHAIE OF THE CUARK

Electronics, the universe and everything

Your Spectirum as a development tool

1st CLASS
TV aerial booster project.
, e

Budget project for the workshop

WEWS REVIESWS, CIRCOIL IDEAS AND MORE
AUDIO.CO ${ }^{v}$ s.MUSIC-DOMESTIC

BURGLAR ALARM

Supplied ready built and tested． OMP 100 Mk II Bi－Polar Output power 110 watts RMS into 4 ohms．Frequency Res－ SNR－ 118 dB ．Sens for Max 500 mV at 10 K ，Size $355 \times 115 \times 65 \mathrm{~mm}$ PRICE $£ 3399$－ $\mathbf{5 3 0 0} \mathbf{P \& P}$
OMP MF1D0 Mos－Fet Output power 110 watts RM S into 4 ohms．Frequency Res－ ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}--3 \mathrm{~dB}$ ，Damping Factor
80．Slew Rate 45 V uS．THD Typical 0002% ．Input Sensitivity 500 mV ，SN R -125 dB Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE PRICE $£ 39.99+£ 3.00$ P\＆P． watts RM S into 4 ohms．Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$ ．Damping Factor 250．Slew Rate 50 V uS，T．H．D Typical
0001% Input Sensitivity 500 mV ，SN R -130 dB Size $300 \times 150 \times 100 \mathrm{~mm}$ PRICE
PRICE $\mathrm{f} 6299+f 3.50 \mathrm{P} \mathrm{\&} \mathrm{P}$ － 162 Oリ +3.50 PaP OMP／MF300 Mos－Fet Output power 300 watts R M S into 4 ohms．Frequency Res－
ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$ ．Damping Factor 350．Slew Rate GOV uS THD Typica 00008% ．Input Sensitivity 500 mV ．SNR PRICE $f 7999$ ． $147 \times 102 \mathrm{mIn}$ PRICE

verv accurate visuad cusplav emploving II L FD diedes if green A resl plus an acdidional on offindicator Saphisticated kexice comario

PRICE 8850 －50p P\＆P

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS RM S Cabinet Fixing in stock．Huge selection of McKenzie Loudspeakers available including Cabinet Plans Large S．A E．（28p）for free details
POWER RANGE
850 WATTRMS Hi．Fi Disco
 12100 WATR R M S HIFFI Disco
380
2542
20

MCKENZIE

${ }^{12 "} 85$ WATT R．M．S．C1285GP Lead guitar／keyboard Disco
 12＂ 85 WATT R．M．S．C1285TC P．ADisco 2^{-}ally voice coil．Twin cone

$3^{3 \prime}$ ally voice coil Die－cast chassis Res Freq 40 －2 Frec Resp to 4 KHz PRICE $£ 5787+£ 400 \mathrm{P} \& \mathrm{P}$ ea
 10 ＂ 200 WATT R．M S．C10200GP Guitar Keyboarc．Disco
5 ＂voice coil Res．Freq 45 Hz Freg Resp to 7 KHz Sens 101 dB PFICE $£ 4476+£ 300 \mathrm{P} \mathrm{\& P}$
Res．Freq 40 Hz Freq Resp to 5 kHz Sers $10^{\circ} \mathrm{CB}$ PRICE $£ 62.41+£ 4,00 \mathrm{P} \& \mathrm{P}$
15＂ 400 WATT R．M．S．C15400 High Power Bass．
WEM
5＂ 70 WATT R．M．S．Multiple Array Disco etc
＂ 150 Woll hes Freq 52 Hz Freq 52 Hz Freq Aesp to 5 KHz Sens 89dB PRICE $22200+£ 150$ P\＆P ea 1＂$^{\prime \prime}$ voice coil Res．F．Multiple Array Disco etc
10 ＂ 300 WATT R．M．S．Disco／Sound re－enforcement 92 dB PRICE $£ 3200+£ 150 \mathrm{P} \mathrm{\&}$ ． P ea
$1^{\prime \prime}$ voice coil Res Freq 35 Hz Freq Resp to 4 KHz Sens
$12^{\prime \prime} 300$ WATT R．M．S．Disco
voice coll Res Freq 35 Hz Freq Resp 104 KHz Sens 94 dB PRICE $£ 4700+£ 300 \mathrm{Ps} \mathrm{P}$ e
SOUNDLAB（Full
5＂＇ 60 WATT RMS Mi－Fi Multiple Array Disco etc 6，．＇ 60 WATRRMS Hi－Fi，Multiple Array Disco etc 86 dB PRICE 1999 － 60 WATT R．MS

60 WATT A M S 38 Hz Freq Resp

HO日BY KITS．Proven designs including glass fibre printed circuit board and high quality components complete with instructions． FMI MICROTRANSMTTTER［BUG） $90 / 105 \mathrm{MHz}$ whth very sensitive microphone Aange $100 / 300$ merres． $57 \times 46 \times 4 \mathrm{~mm}$（9 vorl Price： $58.62+750$ P\＆P
3 WATT FM TAANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ Varicep conyonled professional performance Range up to 3 miles $35 \times$ B4 $\times 12 \mathrm{~mm}$ SINGLE CHANNEL RADK CONTROLLED TRANSMITTER RECEIVER 27 MHz ．Range up to 500 metres．Double coded modulation Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts Ideal for many applications．Receiver $90 \times 70 \times 22 \mathrm{~mm} 19 / 12$ volt）Price：
$f 1782$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt）Price：$f 112$ $f 1782$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt）．Price： f 11.29
$\mathrm{P} \& \mathrm{P}+75 \mathrm{p}$ each．S A．E．for complete list

STEREO DISCO MXER

STEREO DISCO MMER＝ 2 graphat ef tisers are －EB V 5 Mnou＇s． jet

B．त．ELEGTROWIOS

UNTT E．cetri may，SOUTHEND－ON－SEA， ESSEX S工，GTR TE1：0702．527572

Programs for the BBC model ' $\mathrm{B}^{\prime}, \mathrm{B}$ +, Master and Master Compact with disc dri	
DIAGRAM II - $£ 55.00+$ vat p\&pfree	
MARCONI TRACKERBA	

PROFESSIONAL, GRADE AMPLIFIER MODUHES

 RMA150-150 watts RMS into 40 hms , 85 watts RMS into 8 ohms

Available for the first time, MosFet power amplifier modules derived from internationally acclaimed RAUCH Pro-Audio technology

The RMA series of amplifier modules offer outstanding power handling capability and combine a 'Class A' driver stage with MosFet output devices to give Audiophile performance

RAUCH

All of the RMA modules have been over designed for long term reliability, and are constructed on a glass-fibre solder resisted board with component legending. The power Mosfets are mounted under the PCB and bolted to a substantial 9 mm thick aluminum mounting plate This forms a compact and very robust package which can be easily mounted to the heatsink

RAUCH PRECISION ENG LTD DEPT H BLACKHILL IND EST SNITTERFIELD STRATFORD ON AVON WARKS CV37 OPT

GENERAL SPECIFICATION FOR ALL MODULES
Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz},+0 \mathrm{~dB}--1.2 \mathrm{~dB}$
THD $\quad 0.01 \% @ 1 \mathrm{kHz}$ max, typically 0003%
SN.R
Slew Rate
Input Sensitivity Dimensions Weight 10 db A weighted 100v/uS 0.775 v RMS, OdB

Note: the above specifications only apply when the modules are used with the correct power supply and heatsink, which we can supply, see listing below
PRICES excluding VAT and carriage

RMA600 Amp Module	$£ 74.00$ built	£65 00
RMA300 Amp Module	£49,00 built	$£ 41.00 \mathrm{kkt}$
RMA150 Amp Module	$£ 3700$ built	£30 00
Toroidal transformer $800 \mathrm{VA} 60-0-60 \mathrm{~V}$ for RMA600 $£$		
Toroidal transformer 500 VA 60-0-60v for RMA300 £ 2600		
Toroidal transformer 200 VA 60-0-60v for RMA150 £1700		
10,000 uf 100 vW PSU capa	itors with clamps	£1180
600 v 35 amp bridge rectifi		£ 29
Heatsink $300 \times 80 \times 40 \mathrm{~mm}$	$45 \mathrm{oC} / \mathrm{W}$	£1200
24 v DC fan 120 mmm (Papst)		£21.90
24 vDC fan 90 mmm (Papst)		£20 80
Thermal switch, re-settring		£ 280
DC protection card	$£ 1040$ built	£ 8.50

CARRIAGE 22.20 FOR ALL ORDERS, CHEQUE OR POSTAL ORDERS ONLY.SAEE FORFURTHERDETAILS, TRADE ENOURIES WELCOME!

BUY WITH CONFIDENCE - RAUCH PRECISION ARE A WELL ESTABLISHED COMMPANY WTH SALES OF PROFESSIONAL POWER AMPLIFIERS EXCEEDING £1,500,000 TO SATISFIED CUSTOMERS WORLDWIDE

Geoff Bains: Editor Jez Ford: Assistane Edior Paul Chappell: Projects Editor Jerry Fowler: Technical llussrator Heather Hopkinson: Design

Mark Warford: Photography Julie Capstick: Ad Manager Heather Wust: Classiied Sales Andrew Selwood: Copy Control Mark Webb: Group Editor

ETI is normally published on the first Friday in the month preceding the cover dace. The contents of chis publication including all articles. designs. plans, drawings and programs cherein belong to Argus Specialist Publications Limited All rights conferred by che Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reservedroduction requires the prior written consent of the Company. O 1988 Argus Specialist Publications Led. All reasonable care is cakelishers preparation or the magazine coibe for errors Where miscakes do occur, a correccion will normally be published as soon as possible afcerwards All prices and daca contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible however, for any variations affecting price or availability which may occur afser the publication has closed for press

- Subscription rates UK $£ 16.80$. Europe: £21.00. Middle East: $£ 21.20$. Far East: $£ 22.80$. Rest: $£ 21.50$ or US\$32.00.

ARGUS PRESS GROUP

1 Golden Square London W1R 3AB Tel: 01-437 0626 Telex: 8811896

Published by Argus Specialist Publications Ltd., I Golden Square, London WIR 3AB. Tel: 01-437 0626. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: 01-677 8III. Overseas and non-newstrade sales by Magazine Sales Department, I Golden Square, London WIR 3AB. Tel: 01-437 0626. Subscriptions by Infonet Ltd., 5 River Park Estate, Berkhamsted HP4 IHL. Tel:(04427) 7666I. US subscriptions by Wise Owl Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Project 3 Filmsetters, Whitstable. Printed and bound by The Chesham Press, Chesham. Covers printed by Loxley Brothers Ltd., Sheffield.

FEATURES/PROJECTS

It's A Small

World

Steve Malone goes deeper into theory than ever before with a complete explanation of the Universe along with instructions for building your own!

Op-amps

Paul Chappell continues the Circuit Theorylook at op-amps with an in-depth investigation of offset voltages

Brought To Light

Mike Barwise has found a cheap laser diode for experimentation or blinding the neighbour's cat and he is devoting this month's ChipIn to handling this versatile device

Speaking For

Yourself
Malcolm Walmsley has emerged from the garage with sawn fingers, hammered thumbs and a pair of Maplin loudspeaker kits

PROJECT

Spectrum EPROM

Emulator

Graeme Durant, fresh from his exploits with the ETI Spectrum second processor has turned his humble home computer into a fully-fledged development tool

Model Railway

 CircuitsRobert Penfold enters a second (or third?) childhood with a collection of Tech Tips for the
model train fanatic
Paul Chappell has the low down on turning last month's respiration and heart rate meter into a lucid dream stimulator

Frequency Meter
Low cost is the watchword for this useful item of workshop equipment from Mark Thewliss

Travellers' Aerial

 AmpKeith Brindley takes to the road with a simple-to-build 1st Class project to give you better TV pictures in your caravan or tent

PROJECT

No Holds Barred
More silly puns to announce the results of the July ETI bar code competition

ELECTRONICS TODAY INTERNATIONAL

Snooker balls, cue and bridge in the cover photo courtesy Lillywhites of Piccadilly Circus, London.

News

 END OF INDI RECORDINGSAI last Indonesia has agreed to halt or at least curb music piracy of European recordings. Until May such flagrant disregard of copyright has been legal in Indonesia and vast numbers of unofficial copies have found their way into Europe, perhaps the most notorious example being the bfficial Live Aid cassettes in 1985.

The International Federation of Phonogram and Videogram Producers has been lobbying for actionever since pirating was sent under ${ }^{5}$ ground in Singapore and Hong Kong. and many copying operations moved to new bases in indonesia. It is expected that the next shift will be an: to the Philhppines, athough hopefully fi will be some time before operations will grow to reach their present strenyth.
Indonesia's agreement to clamp down comes after an official investgation by the European Commurity, Enstigated primarily by the IFPVP.

IMPROVING ON PERFECTION

TThe 'perfect' sound of compact tasks generally performed by some 25 discs can be significantly standard CMOS chips - 1000 gates improved, claims Arcam, the British in all hi-fi manufacturer based in Cambridge.
Arcam has launched a 'black box' digital audio interface that takes the delicate signal-converting stages of CD operation away from the host CDplayer whre RFI leaks from noisy drive mechanisms and processors can dull just the musical accuracy that the CD fraternity swears by
The unit is based around one custom ASIC developed in conjunction with Newmarket Microsystems The ASIC takes over the processing

The launch has taken the hi-fi community somewhat by surprise not least the Japanese electronics giants, whose earlier attempts to solve the problems resulted in add-ons that were prohibitively expensive for the consumer market.

The Black Box Digital Audio Interface will retain around $£ 250$.

Contact A\&R Cambridge (Arcam), Pembroke Avenue, Waterbeach, Cambridge CB5 9PB Tel: (0223) 861550

NICAM STEREO UPDATE

TThe slow stroll towards NICAM 728 stereo television continues with both the BBC and IBA moving for a national stereo network in the early years of the next decade.

Although the BBC has officially shelved NICAM indefinitely with a review in 1991, recent directives to the Director of Engineering show that transmitters will continue to be updated to handle NICAM as routine maintenance takes place This would produce a complete network by the end of the decade.

The feeling within the BBC is that a service of sorts may well be underway by then, in the same way that stereo radio was broadcasting nationally for two hours a day without being described as an official service.

The IBA is testing next year and should have a stereo service on both channeis in London. Yorkshire and possibly Somerset in Autumn 1989. with a national service the following year.

Meanwhile you can tune your Nicam VCR to Wogan, Top of the Pops and various BBC outside broadcasts, all of which are regularly transmitted in stereo to the Home Counties.

SPEAKER DESIGN

ACAD package for loudspeaker optimises the summed acoustic optimisation has been produced output of the multiway speaker system by an Australian software house to get - or approximate - a desired CALSOD from Audiosoft uses curve response fitting to develop minimum phase

The mail order price to England is transfer functions for impedance and sound pressure response

The program will handle a cross$\$ 330$ Aus - about $£ 150$

For full details write to Audiosoft, (passive only) and CALSOD 3081. Melbourne, Australia.

SOLAR FLAIR

TThe summer sun should be beating
down on ranned ETI readers this month and TK Electronics has introduced some giant size solar cells to make the most, of the hot house tem ${ }^{2}$ peratures.

The panels are $12 \ln s$ square, deposited on glass. Each panel can rroduce 200 mA at 12 V in bright sunlight - though TK is honest enough to estmate that most British Road Eatict summer days (dull andiovercast) with 01-567 8910.
deliver about 60 mA at 11.5 V , still useful for trickle charging a car battery, or NiCds to run equipment after dark The panels cost $£ 14.50+$ VAT and there is a $£ 1.75$ postage charge to cover the careful packing of these delicate items.

Contact TK Electronics, 13 Boston

SOCCER FANS SHOWN CARD

IIn an attempt to banish hooliganism from the terraces, Reading Football Club is issuing its supporters with PROM cards

The scheme is being sponsored by British Rail South East, and pre-empts the Government's insistence that all League division grounds must introduce identity systems for the 1989 season The cards use the Cardkey system from Datacard of Hampshire

Club members pass their cards through a Cardkey reader on entry to the ground and any banned supporters will be refused entry and set off a security alarm

The credit card format of data retention is becoming increasingly popular Datacard now produces more than 70 million plastic cards a year

Hakuto of Waltham Cross is now producing EEPROM cards as well as

SRAM, PROM, EPROM and OTP masked ROM formatted cards.
The latest 64 kB 'smart cards' produced by Bull CP8 of France are finding applications throughout Europe and beyond
The University of Rome has just issued 165000 cards to all students and staff for administrative tasks from enrolment to library registration
In Australia, the Westpac Banking Corporation is using the Bull cards for its top business clients, providing a simple card-reader that interfaces with the client's PC, enabling them to conduct financial transactions by phone Multiple access codes reduce the risk of fraud and other Australian banks are expected to follow suit.
For further information contact Datacard, New Lane, Havant PO9 2NR or Bull CP8, rue Eugene Henaff, BP45, 78193 Trappes Cedex, France. Tel: $331 / 30696050$.

CURRIE MAKES MOVES

Controversy has arisen over a recent article in the quarterly newsletter of Electronics and Computing for Peace describing the shipping of obsolete medical elec. tronics to hospitals in Nicaragua. The equipment was contravening the UKs Health and Salety laws and was due to be scrapped until it was saved in cooperation with the Nicaragua Health Fund for use in the thind worid. Safety regulations in South America are less stringent than our own and medical equipment is in short supply.

Enter Edwina Currie, brandishing a copy of ECP's newsletter and ordering an investigation by the NHS auditors. The NHS employees responsible suffered quite some embarrassment and distress for what would seem on the whole to have been a charitable act

ECP has now sent an open letter to Mrs Currie asking that she decide whether electronic equipment that becomes available in future should be allowed to be used in third world countries, or whether it should be scrapped as NHS property

For full information contact ECP on $01-3412509$

FREEBIES

If you're short of things to read on the beach this month. dip into the ETI guide to freebie literature.
An interesting guide to making and commissioning videos is available from Documentary Video Associates. explaining in a compact 24 -page booklet what video could do for you (and why DVA should do it). It normally costs $£ 2.95$, but mention ETI and you'll get it for free. Write to DVA. 16 Fernhill Road. Famborough, Hants GU14 9RX.
British Telecom Intemational has published a new guide to international data communications, covering mainly Datel and IPSS and aimed primarily at PC users. Not only is the handbook free, those awfully nice BT people have opened a Freephone line to order it on. Telephone (0800) 400435
West Hyde has produced a summer leaflet covering various racks, boxes and blts (phone (0908) 640695) and JA Crew has issued a supplement to its 1988 hardware catalogue, available on (0908) 583252
Hitachi has a 16 -page brochure describing its ZTAT (Zero Turn Around Time) microcomputers. Write to Hitachl, 21 Upion Road, Watford. Herts WDI 7 TB.
And lastly, for those in search of: second-hand (but guaranteed) lest gear, Instrumex has an 8 page list of available stuff. Telephone (0753) 44878.

Surface mounting electronics tools form the latest range of hardware from CK, the toolmakers.

Pliers and cutters are all box jointed with good solid grips, and the tweezers (nine varieties in all) are manufactured from anti-magnetic acid resistant steel

For details of the full range contact CK, Pwllheli, Gwynedd LL53 5LH, Tel: (0758) 612254

COPY KITTEN

Aneat little portable plain paper: photocopier has just hit the streets courtesy of Panasonic. The FN1 P300 weighs just 6 kg and can copy A4 or smaller using digital scanning (simfiar to fax scanning) and therma) priniling. The front section of the unif is the A4 plate and the unit scans stationary pages rather than feeding sheets, which enables books and. magazines to be copled - a feature often unabie on other personal machines

The FN-P300 is also cheaper than competition - it retails at $£ 449+$ VAI

Information from Panasonic Office Automation, 300-318 Bath Road. Slough. Berkshire. Tet (0753) 34522.

PLANT GROWTH

Westcode, the Hawker Siddeley subsidiary, is helping put some marrow back into the backbone of the UK semiconductor industry by opening a new $\mathbf{E 8}$ million manufacturing plani in Chippenham. Wiltshire.

Westerde is using the plant to produce power semiconductor products to the highest standards for use within the UK and for export to Europe, North America and into the difficult marketplace of Japan.

The plant is one of the most sophisticated in Europe complete with ultra-clean faciltles for producing uncontaminated silicon walers. Electron beam evaporation. photolithographic and diffusion technologies are all catered for, with many production materials being specially processed in Westcode's newf facilities.

For more information contact Westcode Semiconductors, Langley Road, Chippenham. Wiltshire SN15 1JL. Tel: (0249) 654141.

COURSES

The London Electronics College is now taking applicants for four new BTEC National Certificate courses starting in the autumn.
The four subjects are Software Engineering, Electronic Equipment Servicing, Computing Technology and Information Technology. and are designed to be especially useful to those wishing to retrain or update their knowledge of the latest technology

The courses are full-time and take a year to complete. Prices can be obtained from the college - the courses do qualify for ATS grant aid and employer sponsorship might be worth seeking

For prices and full information contact The London Electronics Centre, Penywern Road, London SW5 9SU Tel: 01-373 8721.

ON THE RACK

Nineteen inch rack mounting units are the specialisation of Rackz of Bristol.
Rackz produces a wide range of units (and the cabinets to slot them into), all constructed from 0.9 mm PVC pre-coated steel with aluminium front panels. Enclosures are supplied in flatpack kit form with assembly a insiructions.

The latest range includes a sloped desk mixer forder code M6U) retailing at $£ 29$.

For details of the complete range contact Rackz, PO Box 1402,
Mangotsfield, Bristol BS17 3RY Tel:
(0749) 840102.

REPLY FROM BT

British Telecom has responded to the widely reported Which? magazine survey that concluded BT's performance since privatisation has been "a big disappointment"

BT is still a virtual monopoly in most areas and has little incentive to perform efficiently The report recommends Government action to produce tougher legislation or effective competition

British Telecom admits that through most of last year, many services were not up to its own targets But the Which? survey is six months out of date, it points out, and was largely based on information gathered after last year's storms wrecked a third of the country's overland infrastructure

Many of the services suggested by Which? such as itemised billing and compensation are already on the way The Oftel agreement announced on July 7th brings a much wider range of services under price control BT will now operate a price freeze until August 1989 followed by a 4 -year Oftel price cap of 45% below increases in the RPI

RND KITS

The Random Number Display from last month is now avallable in kit form from GP Electronic Services in Durham

The complete kit inciudes all parts except the case and window filser and costs £24.98 including VAT and p\&s. The case of the prototype was constructed from hardbpard and a red plastic A4 wallet makes a good window filter for the 86 LED display:
$G P$ is also supplying the PCB for the project at $£ 9.9$.', it is not available from the ETI PCB Service as we started last month (orders sent there will be forwarded to GP)

Contact GP Electronic Servioes, 87 Willowtree Avenue, Durham DH1 1D2.

VENERABLE SAGE

After reading the news story in ETI lune issue I bought a pair of the Sage Supermos modules and power supply components from Sage Audio

I'm glad 1 did! I have heard many esoteric amplifiers in hi-fi shops costing up to $£ 5000$ Some of these are very good sol thought it would be interesting to compare the Sage amps with a friend's Kreil I may have been hearing things but I couldn't believe my ears! The Supermos sound was effortless and much more relaxing to listen ta

After several months of comparisons my friend has finally swallowed his pride and built a Sage amp

So, full marks to Sage Audio for an excellent product and friendly service, and to ETI my favourite high street mag More hi-fi and sound articles please and less computer and printer projects
L. Atkinson

Carlton. West Yorkshire

We have a pair of Sage Supermos modules here at ETI for review and so far it must be said that they live up to all that Sage claims for them A full !eview of these modules will appear in ETI shortly

Meanwhile. readers may like to refer back to the review of Sage Audio's Superamp bipolar amp modules in the May 1987 issue of ETI.

We shall be carrying further hi-fi projects in ETI in the near future but we cant promise to cut out all the compurer and printer stuff too!

DISH OF THE DAY

Abit of bad timing. I fear Why should I want a $£ 1300$ satellite television system courtesy of Pace and Vrvor (your June'July competition) When I shall soon be able to have a eomplete system for $£ 200$ from Amstrad to watch Rupert Murdochis new channels? If anything is going to will off satellite TV (not that it requires Thuch in the way of a death blow)ut is the new satellite TV!

Who is going to watch Sky and Superchannel when all the new BSB channels appear. I bet all those who have already spent $£ 1300$-odd on an STV system are really kicking themselves now.

Alan Wilson

Neasclen. London
Whoal Not so fast Dorit dismiss satelline TV that easily First the Amstrad system will not be able to pick up signals from any other satellite except Astra dunless fit is set up to point at another satellite, in which case it won't pick up Astro) Good STV systems (such as the prize in ETI's Reach For The Sky coimpetition) have poliar mounts and actuators so they can be pointed at any satellite herween the horizons (local scenary permitting) Amstrad is promising an add-on to allow this with the $£ 200$ system butath is not known yet when this will a ppear or how much fl will cost.

With a full large, steerable dish you are able to pick up many more channels from many more satellites and easily fit decoders or format i-changers to suit whatever you wish to uratch.

Satellite TV is far from dead. There ore now several hundred thousand STV recelvers in the UK. Mariy millions more viewers will iake to the skies when Amstrad's system comes along but this wont make rectundant the dishes already out there. Feople didni stop buying Rolls Royces when the Model T Ford was launched!

By she way the existing. Sky changel is one of Murdochis.

CHOCOLATE BARS

WTell you canitsay I didn't try. Into was a meaning to the Juily cover Salnsbury's 1 boldly strode, there'sa deep philosbphicalmeaning hiding my:luly ETl among my basket 10 all our covers - this month the of sickly chocolate cake and cured meanmy is that all mafter is infact pork and as the girl on the till wetghed: up my mangoes i ran the ETI cover over their bar code machine.

Not a blip. Nothing. dust odd looks from the queue behind me.

Now come on ETI. did it mean anything? How am I suppresed to work out how to read this - the cover was no smple "wide or narrow' bar code like the ones for the project inside. What was the secrel message?
(This Saturday I try Sateways.)
Nigel Griffilis
Peterborough. Cambridgeshire How dare you Sin Of course here
made of bright plastic balls and that the Universe is finite and surrounded by six pockets!

The code is much more comp licated than the Bar Code Lock system

It is in fact the EAN 13 figure system (as used on your chocolate cake and cured pork) and all is revealed in the competition results. elsewhere in this issue?

Untortunately the readers in Sainsburys simply canis ift a mole an these staggering proportions into their lield of vision:

NSIGHT

Consumers in Britain accept new products and technology faster than anywhere else in Europe, concludes an extensive survey into the UK consumer electronics market
The report shows the UK VCR market to be particularly bouyant. Last year the 'household penetration' of videos passed 50% and this year an estimated $21 / 4$ million machines will be sold Just under half of these are people replacing old recorders, primarily machines that were rented but many are converting to VHS from the now mortally wounded Beta format.
The most popular feature on new VHS machines last year was undoubtedly the twin-speed facility for long play of cassettes - and while hi-fi sound is becoming increasingly common, this is thanks more to the manufacturers than the consumers, who are unlikely to demand audio improvement until NICAM stereo TV is officially introduced
The television market is also steadily rising, though ETI readers will surely be appalled to discover that the public rates the appearance of a TV as almost twice as important as the features it possesses Price, reasonably enough, was more important than either. More than 4 million sets were shifted last year, with FST storming the large screen market
TV rental has been declining in recent years, slowly leveling off at about 24% of the total large screen market. The current re-explanation of hire purchase as option three - rental with ownership after 3 years, may cause further decline
In the UK audio market, the continuing success story is of course compact disc With prices still falling and disc catalogues blooming, the CD player is rapidly becoming an essential component of any music system. Although often criticised by hi-fi purists, the sound quality is a recognisable improvement over the mediocre turntables offered in comparable component and stack systems and UK consumers have taken the affluent image of the CD player to their hearts and their hi-fis.
The only declining area of $C D$ is the personal player, and hardware manufacturers are planning to boost this market by pushing the 3 -inch CD

over the next six months. In-car CD is still overcoming technical hiccups but is expected to take off over the next 12 months unless DAT can get its nose under the bonnet first.
Despite the CD onslaught, radio cassettes and to a lesser extent good old vinyl discs are still holding the vast majority of music sales - taking 65\% of the market value last year

The report holds nothing but optimism for the future. The video market will be boosted by the appearance of S-VHS in the autumn particularly in the camcorder market although a summer lull in sales is likely until the new format cameras reach the market. CD-video should be briefly noted - although the success of CD-audio will certainly assist its introduction, it must be remembered that video discs have flumped once in the UK already.
In the audio market the appearance of DAT is predicted to have only a small impact on CD sales if it manages to take off as a consumer product at all.
The report's greatest optimism is for the TV market, with satellite broadcasting producing a possible extra million units a year market by the mid-90s
If the recently announced Mur-doch-Sugar collaboration achieves its target, the market may be bigger still. They plan to get an Astra targeted systern on the marketplace under £250 by broadcasting in PAL format, thus removing the expense of D-MAC conversion decoders.
That could be the lever that finally gets STV rolling as a mass market success.
The report The UK Consumer Electronics Market was prepared by Ferguson, Cambridge House, 270 Great Cambridge Road, Enfield, Middlesex EN1 1ND. Tel: 01-363 5353

PCB Manufacturers Which to choose?

With scores of PCB manufacturers falling over themselves to make your conventional boards, it can be very difficult to choose the right one.

You could however, choose a PCB manufacturer with more to offer. Such as, assembly, panel printing, final build and design.

Slee Electro Products can provide you with these services and will still offer you competitive prices on your PCB's.
"We're hot on quality and delivery too. And being a member of the Printed Circuit Association, means we have to try harder."
Slee Electro Products, Tel: 0226 200717, Fax: 0226 731817, Unit 4, Grange Lane Industrial Estate, Carrwood Road, Barnsley, South Yorkshire S71 5AS, England.

POWER CONDITIONER
FEATURED INET
JANUARY 1988

The ullimate mans purilier Intended manily floor and improving the ana ylical qualliles of

KNIGHT RADDER

FEATURED INETI JULY 1987
The massive tilter section contans thrieen capacitors and
Iwo currenl balanced Inductors．Iogether with a bank ol six Iwo current balanced inductors，logether with a bank ol six VDAs to remove every lasil lrace of impulsive and AF
milenerence A Ien LED loganithmic display gwes a second by second ind callon ot the amouni ol inlerference removed Our approved parts set consisis ol case PCB all componenss（including high permeabilly torodidal cores，ICs transistors，class X and Y suppression capaciors，VDRs， elc｜and full instructions
PARTS SET $£ 28.50$＋VAT
 Stree with parts sel！

THE DREAM MACHINE FEATURED INETI
DECEMBER 1987
elaxing cond dritl over you Allist an ter the genier sof ran sea surf or the wind through disiant trees Almost hypnotic the sound draws you iresistably into a peacefu＇，relfesh ng sleep
For many the lhought ol waking reireshed and alerl from perhaps the first truy restlu sieep in years is excling enoug
in itseli For more adventurous souls there are strange and mysterious dream experiences wat ing Take lucid dreams， lor inslance Imagne belng in control of your dreams and ablay lo change them al will to act out your wishes and lanlasies With the Dream Machine il s easy！
The approved parts sel consisls of PCB all components conlrols，loudspeaker，knobs，lamp，lusenoiders，tuse，mans power supply，presige case ano tirnstructions PARTS SET $\mathbf{£ 1 6 . 5 0}+$ VAT
AVALLABLE WITHOUT CASE FOR ONLY $£ 11.90+$ VA

MAINS

CONDITIONER
FEATURED IN ETI SEPTEMBER 1986

Cleans up mans pollution easily and efleclively
You＇ll hardly beleve it difference in your H_{H}－ F_{1} ，TV Video，and ather sansilive equipment

PATTS SET $£ 4.80$ ，vR：
RUGGEDPLASIICCASE $£ 1.65+$ VAT

POWERFUL AIR IONISER
FEATURED IN ETI JULY 9986
 haditimagarive ima have

men cest toc aim meveryming
rom curng hay lever and asitma lo mproving concenirallon and
puthing an end lo insomnaa Allhough sonn exaggeraled inere is no doubl linal ionised air is much cleaner and purer and seems much more invigorating inan dead air The OIRECT ION ionser caused a greal daal ol excllement when appeated as a consiructora probect Leti Allast an lonlse was reliblle good to buld and＇un＇Aparl trom lhe sericus applicalions some ol the suggested experiments were outrageous Ne can supply a matcher sel of parts lully approved by ine
designer lo buid this unique projecl The sel includes a role inred punied circull board 66 components case mans lead and even ite pars tor the lester Accorring lo one cuslomer the
sel cosis about a throd of the price the indivitual componenis Whal more can we say？ PARTS SET WITH 日LACK CASE $£ 11.50+$ VAT included PARTS SET WITH WHITE CASE $£ 11.80$＋VAT

RAINY DAY PROJECTS

All can be built in an afternoon！
JUMPIN＇JACK FLASH ETI March 198日 Speclacular rock slage and disco ighling ellecil
CREDIT CARD CASINO CREDIT CARD CASINO ETI March 1987）
The wicked pockel gantling machine MAINS CONTROLLER Alalad loge 10 mans interace slem 5CW ol HIMFI power IERS（ETI Aprl 1986 enough 10 it in a a malchoor Malchbox Ampilier（ cow
\qquad
TACHO／DWELL METER IETI January 1587） HI－FI POWER METER（ETT May t987｜
 Mone power meler
Slereo power meler

1．DEEATHED NE SEPTEMBER 1988

The MISTRAL AIR

ON
 are wiped out by dirt，dust，pollution and fraflie fumes．The resulumg inents the natural ions istlessiness are so easy to change．The resulthy fonlings af paie，tired The Mistral is designed to restore the
health and vifality．A highly developed circuit ion balance，anid with ityour－sense of energy wilhin hours！ ans．Your feel ine ortherence

Variable ionisation potential for maximum
ion rush ion rush
Hundreds of phosphor bronze ion thrust points
Built－in ion counter－see the output level at a glance

LM2917 EXPERIMENTER SET

Consists of LM2917 IC special prinled circuil board and deialed insiructions wilh daia and circuils for eighl ditferen projecls lo buld Can be used to experimeni with ithe circuils
in the＇Nexl Great Litle ic leature（ET．December 986 ） LM2917 EXPERIMENTER SET $£ 5.80$＋VAT

Over 100 top grade components
－Speedy reliel for hay fever and asthma sutferers
－Feel the difterence withun hours
 delats and further fintorition ists，cireull，construction

LEDs

> Green rectangular LEDS tor bar-graph displays 50 lor $£ 350 \quad 500$ for $£ 2$ $\begin{array}{ll}50 \text { lor } £ 350 & 500 \text { for } £ 25 \\ 100 \text { tor } £ 6 & 1000 \text { lor } £ 45\end{array}$
DIGITAL AND AUDIO EQUIPMENT LED Assorted 3 mm LEDs red，green，yellow anc orang 25 ol each（ 100 LEDs） 10 r $£ 6.80$

Specialisist

Pilces shown are exclus we of VaT so please add 15% io the
order tolal UK Doslage is 70 an any
order tolal UK poslage is 70 pon any order Carrage and
insurance tor overseas orders E 450 Peasse allow up 10 ic insurance lor overseas orders E4 50 Pease allow up 1014 day
Ior delvery No cir o DS

SALES DEPT．ROOM 107 ，FOUNDERS HOUSE．REDBROOK．MONMOUTH．GWENT．

ARMSTRONG 75W AMPLIFIER

 FEATUAED IN PE JULYY 988 A J Armstrong＇s exnew audio amplifier
 module is here al last！ Del vering a cool 75W（conservatively raled－you II get nearer 100W），ihis MOSFET design embodies the fines unclutered circuit in which every component makes precisely detined contribution to the overall sound You can read all about it in the July issue of PE，bul bother with words when your ears will tell you so much more？
Pars set includes top grade PCB and ali compone SPECIAL INTRODUCTO
UPGRADED MODULES

SINGLE PARTS SET $£ 14.90$＋VAT STEREO PAIR $£ 25.90$＋VAT

 be avalable lrom y ，approved pant sell

$B 10$.

 FEEDBACKFEATURED IN ETI DECEMBER 1986 Bio－lediback comes ol age will this highly responsive sell－balancing skin
response montior 1 The

powertul circuil has louno application in clinical situalions as well as on ine bio－teedback scene II will open you The comple nats sel a tomponenls leads eleclrodes conduclive gel and lull instructions

PARTS SET £13． 95 ＋VAT
日IO－FEEDBACK BOOK £3．95（no VAT
ease nole ine boox by Slern and Aay is an au horised guide io ne Dol enilial 10 tbo leedback lechniques 11 is

GRAINWAYE MONTTOR

 machine this propeci al：ows you to hear the characteristic thythrms ol your own mind＇The aipha bela and liela lorms c be selecled tor study and the inree aricicies glve masses of intormalion on their milerprelation and powers In conjunction with Dr Lewis s Alpha Plan the mon tor ca used lo overcome shyness lo help you feel contident in
siresslut silualions and to rain yourself to excel at thing no good al
nestur Our atcroves pants mif contans case．two PCBs screening can lor bo－minplites silcomponensi finctuding Ihree PMI preision ampliweril las\％bast elmatrodes and lull instruclions
PARTS SET $£ 6.90$＋VAT ALPHAPLAN BOOK $£ 50$ SILVER SOLUTION to coa np peeca cces $\mathbf{£ 3 . 6 0 + V A T}$ Parts sel avalable seaparalely we also have a range ol accessopies

Next Mooth 7
 ELECTRONICS TODAY INTERNATIONAL

Next month ETI is more than usually educational To coincide with the start of the new academic year, the October issue is a careers and educational special. If you are about to look for an electronics course to take on after A-levels, you'll want to read the ETI low down on the types of course (diplomas, and degrees) available to the school leaver. If you are about to get your degree or HND we have information on the jobs available - the companies and who they are looking for.

For those ETI readers already far beyond all this and now teaching others, we reveal how electronics teaching is changing with the new GCSE curriculum and what the teachers really want.

Projects are not forgotten in the October issue. For the beginners we have a deafening bicycle siren to frighten the neighbours, a sophisticated peak programme meter for your hi-fi or recording studio and a super-powerful fully variable air ioniser. Plus, there's news, reviews, and lots, lots more in the highoctane October issue.

Don't be an ocker, get the October ETI - out Sept 2nd

Stephen Malone accepts no responsibility for any universe created using the forces described in this look at state-of-the-quark physics

Fig. 1 Electric force interaction

IT'S A SMALL WORLD

Does matter exist? We really should be told For decades scientists have been 'discovering' particles that are getting smaller and smaller and smaller. Some people are now wondering if there is actually anything there at all.

For most of this century following the confirmation of the nuclear model of the atom, scientists have been engaged in a search for the fundamental forces and the fundamental particles of nature.

It was all getting along fine until Heisenberg hit them with electrons being waves and particles at the same time And although they took that on board, as they peered deeper things seemed to dissolve in the uncertainties of Quantum Theory.

So what is really there among the fuzz of quantised energy and empty space? What holds it all together? Why does it hurt when you walk into a wall? Well since you ask
at a distance - you waggle an electron over here and it affects that one over there. But the reaction is not instantaneous, the force travels at the speed of light (even thinking in the abstract doesn't mean you can violate the Theory of Relativity!)

But what is the force? What travels at the speed of light?

Well, the force-carrying particle is a photon (or indeed a wave-packet of electromagnetic energy, but if you don't know what that is, forget it). See Fig. 1.

Richard Feynman won himself a Nobel prize for coming up with these nifty little diagrams - they're actually very useful for doing the maths as well as looking pretty. In practice the two electrons would swap many photons back and forth in the course of the encounter, but the simpler diagram is easier to understand.

Okay, but where do the photons came from? (I was afraid you might ask that.)

Force-carrying Particles and Sub-atomic Structure

First the electric force. The tricky thing about electromagnetic interaction is that it involves action

Heisenberg's Uncertainty Principle
This is generally expressed in terms of momentum and position, $\delta \mathrm{Px} \delta x \geqslant \mathrm{~h}$ - the more exactly we know the position of our particle, the less exactly we know
its momentum and vice versa (well, it stands to reason really - we can only measure the momentum by letting it move - so where is it? Somewhere between here and there. And if we fix it to an exact spot at an exact moment in time, how can we measure its momentum?).

However we can equally validly express it as $\delta \mathrm{E} . \delta \mathrm{t} \geqslant \mathrm{h}$ (you can do the dimensional analysis yourself), and energy and time are what we are concerned with here

In any given very short period of time, there is a very large uncertainty in the amount of energy present, and as Einstein said $E=m c^{2}$. So, with a flick of the wrist, nothing up my sleeve guv, honest, we have our photon.

It doesn't last long of course, it's not allowed to - but the electron keeps at it, flashing on and off as it moves along (about 1:137 on:off, don't ask me why). And when it meets another one, a quick barrage of imaginary energy and away they go.

The scientists had lots of fun arguing about whether these particles of light were real or not - they are by definition impossible to detect or measure and in the end plumped for calling them 'virtual' particles. But virtual or not they can change the world around them - much as you could get a million pounds out of the Autobank on Friday night, buy a cut-price Van Gogh in America and sell it in Japan (but only for a million again, don't forget the conservation of energy) and then get the money back in the bank first thing Monday. You've changed the world by moving a Van Gogh across the world and a million pounds in the other direction, without your bank balance changing at all!

Of course there's more fun to be had with this Virtual energy can exist even in empty space because of the impossibility of measuring its lack of energy instantaneously (nice sentence, though of course it's really the 3 K microwave background that we're failing to measure accurately instantaneously)

This energy can create short lived pairs of particles and anti-particles as in Fig. 2. These are always in pairs - can't go round changing the total amount of matter in the universe with virtual energy now can we! Empty space could be throught of as seething with short-lived particles - electrons and anti-electrons, protons and anti-protons (shorter lived because heavier) and so on.

So, what about our little photon. Well the photon passing between the two electrons could be thought of as consisting of an electron and an anti-electron (Fig 3). This is perhaps more figurative than literal most photons would not be energetic enough to actually materialise a pair of particles - but the electric charges cancel out and the combination works just like a photon

So why don't they annihilate each other? Well, you could say they do - and the product of the annihilation is our friendly photon But it is a usefu] convention, emphasising that the force carrier exists at the very interface of the universe and anti-universe, and since the creation of a matter/anti-matter pair need not alter the net contents of the universe they are very useful for carrying a force whenever the need arises.

Mesonic Handshakes

The strong nuclear force is around 100 times stronger than the photon-carried electric force and is carried by mesons. This force holds nuclei together as in Fig. 4 (okay so it's an attractive force, but this is the convention in these diagrams),

Why does it operate on so short a range? Well mesons are heavy, it takes a lot of energy to make one,
they don't last long and don't go very far - but protons flash with mesons the way electrons flash with photons.

That's all about the Strong Force for a while, but if you hang in there we'll come round to these mesons again.

Confused yet? No? Okay then, here goes nothing! Ever wondered how a star manages to burn hydrogen to make helium - four protons giving two protons and two neutrons? Something is changing protons into neutrons You can go on like this as far as iron. To get your heavy elements first explode your star - the resulting neutrons tack on to existing nuclei, some of them become protons -- hey presto, a heavier element. Something is changing neutrons into protons.

The Weak Force

This is a tricky one. It's not a force in the sense of an attraction or repulsion, but we're swapping 'force'

Fig. 3 Photon as a particle pair

Fig. 4 Nuclear force interaction

Fig. 5 Proton into neutron
carrying particles around and by a roundabout route it links with the electric force - the first glimmerings of unification

Changing protons into neutrons involves us with quarks, There'll be more later, but for now we just need two - the up quark and the down quark. Protons are made of two up quarks and one down quark, neutrons of one up and two down So for proton into neutron we have the change shown in Fig 5, or more exactly Fig 6.

But what's actually happening here? How does the up quark become a down quark? Brace yourself - here come some more pairs of imaginary particles.

Fig. 6 Up quark into down quark

Fig. 7 Up quark into down quark via particle pair

Remembering our uncertainty about the matter/energy present at any time, we can look at it as in Fig. 7. The up quark is replaced by the down, leaving us with an up/anti-down pair which is the force carrying particle, the W^{+}boson (you could look at the electric force the same way, but it's a rather trivial case as the substitution of an electron for an electron goes largely unnoticed)

On the right of fig. 7 we have our W^{+}boson breaking down into a neutrino and an anti-electron - it could be thought of as being made of a neutrino/anti-electron pair.

Actually it's an elusive swine our W^{+}boson, fond of disguises, never know what it's going to be from one moment to the next (Fig. 8).

The opposite process - neutron into proton (or down quark into up quark) gives us the W^{-}boson (Fig 9). The + and - denote real unit charge (as you'll see if you balance both sides of the proton neutron equation - down quarks have $-1 / 3$ charge, up quarks $2 / 3$ charge if that helps).

But there are other interactions where no change of charge is involved, such as interactions between neutrinos and quarks where the neutrino remains unchanged. This brings us to the W^{0} boson in Fig. 10 . Among the repertoire of our W^{0} boson we find an electron/anti-electron pair - say hello to the electric force! But how do the W particles vary their constitution? Well, remember we are dealing with particle/anti-particle.pairs. It is not so much that an up/anti-down pair is the same as a neutrino/antielectron pair but rather that the difference between the pairs of particles is the same in each case.

So is the electric force carried by W^{0} bosons then? And if not, what's the difference? Well, the W^{0} particles are very shört range, very heavy, it takes a lot of energy to make one They could indeed be considered as freak cases of the electric force - if only one force - carrying photon in a thousand behaved this way, it would account for all the weak force interactions that take place.

This is the first breakthrough in the direction of the legendary Unified Field Theory (nowadays it's the Grand Unified Theory and they seem to be pretty much there except for the elusive graviton). Of course it wasn't worked out with pretty pictures, they were really very deep in some hairy mathematics - but it's so much easier to talk about some generalised 'gauge theory' than to get into gauge transformations of wave equations which is what the theorists were up to their eyes in.

Gauge theory? Well, that's what helped them tie up the loose ends in the maths. The possibility of multiple exchanges of force carrying particles kept giving uncomfortable answers with apparently infinite forces, but Gerald 't Hooft (I only introduce him because of that name!) came up with the gauge transformation as a mathematically valid way of providing limits to the equations and it all hung together.

The main implication for the heavy, short range force cariers is that they feel the force themselves (Fig. 11). Two particles approaching each other both send out force carrying particles. These meet in the middle and feel each other's effects which modifies their behaviour.

Fig. 9 The W^{-}particle

Fig. 10 The W^{0} particle

More Quarks

Although all the matter we meet from day to day is made up of protons/neutrons/electrons in more exotic environments (ranging from cosmic ray interactions at the surface of the atmosphere to the heart of exploding stars) peculiar variants on the proton and neutron are to be found. These consist of variations on the three quark (up up.down) structure of the proton using any three of the six available quarks in Fig. 12. The meson family of particles is made of any pair of quark/anti-quarks.

Perming any three from six gives us a large family of proton related particles, the more so when we take quark spin into account With mesons it's fairly straightforward (Fig. 13), for the proton relatives slightly more complicated (Fig, 14).

So looking at just the up-down-strange combinations we have the tree for the 'souped-up' particles shown in Fig 15. Throw in charm as well and we've got a pyramid of combinations with ccc at the apex - I wor't even think about trying to represent the picture with the truth and beauty quarks thrown in, but you get the idea.

So far, so good But then the scientists began wondering quite what was sticking the quarks together in these combinations and came up with the gluons ... and quantum chromodynamics

The Colour Force

So why are we only allowed certain quark combinations: three quarks for protons, or quark/antiquark in a force carrier? Why not a pair of ordinary quarks, or four quarks together? And why no lone quarks?

This is where the colour theory comes in. It proposes a new quality of matter (roughly comparable with electric charge) called 'colour'. Of course the quarks aren't really coloured in the macroscopic sense, but the analogy proves useful

All observable particles must be 'white', but the whiteness can be produced by mixing colours in various ways (Fig. 16). The proton family are made up of one red quark, one green and one blue (antiprotons of one turquoise, one mauve, one yellow). The mesons combine a coloured quark with the appropriately anti-coloured anti-quark

The assignment of a colour to a quark has no connection with what type of quark it is Any quark can be red, green or blue - in fact the operation of the colour force requires that each quark in the proton is forever changing its colour (though the combination must remain white).

The force carrying particles for the colour force are our gluons. Because they are never seen outside the proton they can be non-white (the colour doesn't have to be matched by its anti-colour), and we have a variety of coloured gluons.

(4) up	(-) Charm	(i) truth
(${ }^{\text {d }}$ down	(4) stange	(7) beauty

Fig. 12 The quark family

Fig. 14 Quark spin for the proton family
red-mauve green-turquoise blue-turquoise red-yellow green-yellow blue-mauve

In addition there are the red-turquoise, greenmauve and blue-yellow which, though you and 1 might think make three white gluons, in fact for 'subtle reasons of group theory' mix together to make two 'off-white' combinations. Well that's what the theorists insist - giving us the family of eight gluons, shown in Fig. 17.

The force carrying gluons shuttle about between the three quarks of a proton changing their colours, The operation of six 'charges', (three colours and three anti-colours), compared with just two (+ and -) for the electric force means that the colour force is very strong indeed. But the force is essentially the same kind as the other cosmic forces and we can still draw our pretty Feynman diagram (Fig 18) Or. remembering that coloured gluons would themselves feel the colour force, we can fit it into the gauge theory and have this diagram (Fig 19).

One of the peculiarities of the colour force is that the force is fairly weak at short ranges, but as the quarks move further apart they feel a stronger and stronger force binding them within the proton One way of looking at this phenomenon is to consider the network of interactions over a larger distance as forming 'strings' between the quarks (Fig, 20) The strings are conceived of as white, each gluon cancelling the colours of its neighbours (on the very small scale, at the 'centre' of the proton, you would still have red, green and blue colours exposed and interacting)

If you tried to pull a quark out of a proton, you could only move it by making the string longer, putting in enough energy to create another gluon. This amount of energy doesn't decrease the further away you get, so the force remains as strong.

But can you break the string by pulling hard enough? Wouldn't this give you a lone quark? Well, no - because that would be like asking for a piece of string with only one end, or a single pole magnet Snapping the string simply exposes new quarks at the broken ends (Fig. 21) The exposed end of the string running back to the rest of the proton has the same colour as the original quark, so the proton remains unchanged. All you have managed to do with your input of energy is to create a new particle - a perfectly ordinary particle, a quark/anti-quark pair of opposite colours - an ordinary 'white' meson, the strong force carrier. And this is where the strong force and the colour force tie together.

The relation of the colour force to the strong force is similar to that of the electric force to the Van der Waal's force between molecules in liquids A normal molecule is electrically neutral - a normal particle of nuclear matter is colour neutral (white) The Van der Waal's force arises through electric resonance between

Fig. 13 Quark spin for mesons

Fig. 15 The 'souped-up' particle tree
electrons in neighbouring molecules even though they are tethered within the molecule by electric force. Similarly. even though quarks are tethered within nuclear particles by the colour force they can exchange relatively feeble 'vibrations' in the form of white force-carrying particles (Unified Field Theory? Who mentioned the Unified Field Theory?).

Fig. 18 The colour force interaction

Fig. 19 Colour force: gauge theory diagram

And There's More

What? More - you want more? No, I'm afraid that's it. Those are your fundamental forces (ok, ok, so l've left out gravity but they haven't quite sorted that out yet) and your fundamental particles - the quark family and the electron/neutrino family. Gluons don't have to be more fundamental than quarks - quarks aren't made of gluons. As we have seen gluons are very much akin to mesons and in one sense we could say gluons are made of quarks.)

But what is this with these multiple fundamental particles? Couldn't there be one thing from which all these others are built? Well, yes there is - it's called energy

Everything's made of energy One type of energy distribution makes up quarks, with minor variations

Fig. 16 Colour mixing for white particles

Fig. 17 The givon family

Fig. 20 Quark strings

Fig. 22 Creating a child universe

giving us the different types. Add the requisite ones together and you get a net energy distribution that behaves just like a proton - well it is one.

Electrons are energy (even gravitons are energy). We know that everything is Unified, it's all made of energy - what we're after is a mathematical description that will predict and explain the universe.

So if it's all just energy, why do we see objects as solid? Well, we're seeing photons reflected by these large scale organisations of energy. What are we feeling? We feel the average of incalculable numbers of interactions at the atomic level - we feel what that electric pulse travelling to the brain tells us to feel. And why does it hurt when we walk into a wall? For the same reason that a Maglev train stays hovering above the rails - energy in the right configuration can be pretty damn solid when it wants

Okay, so there you have the basis of modern nuclear theory - but they sorted most of that out ten years ago. What's new? Superstring theory, that's what.

This starts with the idea of supersymmetry - the proposal that every force carrying particle (gluon, graviton and so on) must have a partner in the material world (gluino, gravitino). Or that every particle in the 'world' has a corresponding particle on the 'world'/'anti-world' interface where force carriers exist (and then a further corresponding particle in the antiworld, such as electron-selectron-positron).

And strings? Well, here comes another mathematical conceit All attempts to include gravity in the above theories kept bringing in awkward infinities again. This all comes about because the physicists, when they're not treating them as waves, treat their particles as mathematical points. If on the other hand you look on them as strings, little onedimensional lines, things start to look friendly again.

Not only does the problem with infinities vanish, but gravity doesn't need to be added to the theory - it's already three. Gravity - specifically a graviton with zero mass and spin 2 -- is a necessary part of any workable string theory of the particle world Now they've just got to find the elusive little particles.

That's your lot. I shall pause only to add an interesting cosmological rider on the quantum fluctuations due to $\delta \mathrm{E} . \delta \mathrm{t} \geqslant \mathrm{h}$

In general relativity, gravity and mass have opposite energies - we label mass as positive energy and gravity as negative energy It is possible that the gravity of the universe exactly cancels out its mass so that the overall energy of the universe is arbitrarily close to zero If so, then the universe could be conceived of as nothing more than a quantum flunctuation with E very very small and t very very large. Fun, hey - and there's more.

Want to make a universe? All you need is the energy of a large hydrogen bomb. Confine the energy in a matchbox to squeeze a small portion of our universe into a mini black hole. Conditions within match those early in the birth of the universe where quantum fluctuations could create a small bubble of space time. At these energies and densities the bubble would be forced out of our universe and a new child universe' is born in another space and time (Fig. 22).

Of course if we did create such a mini black hole it would explode within about $10^{-1: 3}$ of a second Not very long for a universe to evolve, you might think But that is only the time-scale as viewed from our universe. The child universe is completely separate from our space time Inside it the whole cycle of inflation, steady expansion, formation of galaxies and the evolution of life could run its course while we were still opening the matchbox to see if it had worked

SPECIAL OFFER

FOR SPECTRUM AND BBC MICRO OWNERS
Now your computer can take control for an affordable price. These tried and trusted interfaces from DCP Microdevelopments are offered at $£ 20$ off the normal price.

Both units are extremely easy to use from both Basic and assembler/machine code and are supplied ready built and complete with all the documentation you need.

To order by post fill in the form below (or a copy) and send it with your remittance to

ASP READERS' SERVICES (RO ET5/6)
9 Hall Road, Maylands Wood Estate, Hemel Hempstead, HP2 7BH Please make cheques payable to ASP Ltd. Overseas orders add $£ 5$ (Interspec) or $£ 10$ (Interbeeb) for airpost.
Access and Visa card holders can also place their order by phone on (0442) 41221
Allow 28 days for delivery.
Please supply Interspecs (RO ET5) at £29.95 plus $£ 1.95$ p\&p per order: Please supply Interbeeljs (RO ET6) at £49.95 plus $£ 1.95$ p\&p per order.

Name
Address \qquad
\qquad Please debit my ACCESS/VISA card No to the sum of £ E Signed:

INTERSPEC

£29.95
The Interspec unit plugs directly onto the expansion edge connector of the Spectrum to provide a full range of interfacing facilities.

The unit is housed in a plastic case approximately $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connections.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter

- 15-way expansion bus

All sections of the interface are I/O port mapped and designed for maximum compatibility with existing Spectrum peripherals. Power is supplied through the Spectrum edge connector.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. Connection is by multi-way PCB connector and all the information required for adding further devices is given.

INTERBEEB

$£ 49.95$
The Interbeeb unit connects to the BBC micro's 1 MHz bus expansion connector and is supplied complete with its own power supply unit.

The interface unit is housed in a plastic case approx $4 \frac{1}{2} \times 3 \times 1$ in which contains the top quality double sided PCB and interface connectors.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12 V 1 A outputs
- eight channel multiplexed analogue to digital converter
- precision 2.5 V reference
- external power supply
- 15-way expansion bus

All sections of the interface are memory mapped in the 1 MHz expansion map for maximum ease of use and compatibility with existing peripherals.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. All the information required for using additional devices is included.

OP-AMPS

Having successfully minimised the effect of an op-amp's bias current on circuits last month, I'll now risk upsetting you by saying that unfortunately this is not the end of the story. Another cause of DC errors is the input offset voltage.

In all articles so far, I have assumed that if the two input terminals of the op-amp are at the same voltage, the output will be at 0 V . This is not the case and the reason can easily be seen by inspecting the input circuits of the 741 op-amp (Fig.1). Unless the four

Fig. 1 The input stage of a 741/MC1458 op-amp
input transistors are exactly matched, the voltage needed to cause a given current in the collector will not be the same for both pairs Because of this imbalance, the output of the op-amp will be at 0 V when a small difference in voltage exists between the two input terminals. This voltage is known as the input offset voltage, and may be around 10 mV for a low cost bipolar op-amp.

Taking the same four circuits as last month (Fig. 2). let's see what effect this has on their operation, assuming once again that the gain of each op-amp is large enough for any variation in the input voltages to be neglected. In Fig 2a, all that will happen is that -he output will settle at -10 mV (we'll assume that the offset has the + input 10 mV higher than the -input)

Ah . . but of course what I should say is that all -hings being equal it would settle at -10 mV . Last month we discovered that all things are not equal there is already a +100 mV offset due to the bias current. In this case, the output will actually settle at +90 mV , so the input offset has actually resulted in a slight improvement! On the other hand, the specified 10 mV voltage offset could actually be in either Erection so the two might add up to give +110 mV .

However, it's clear that in this circuit the output offset due to bias current outweighs that due to input voltage offset.

Adding the extra resistor in series with the + terminal will bring the bias current induced offset down to the same order of magnitude as the voltage induced offset, and you could reasonably expect the output voltage to lie somewhere between -20 mV and +20 mV . Zero if you're very lucky!

Figure 2 b we have already found to be a dud from bias current considerations, so seeing what additional effect the input offset voltage will have is purely academic. As it turns out, the component of the output voltage necessary to maintain the -input 10 mV below the + input is $-10 \mathrm{~V}(-10 \mathrm{mV} \times$ the

Fig. 2 Example circuits to analyse and alter
circuit gain of 1000), which means that the output is now only straining to reach 90 V instead of 100 V . Perhaps it won't quite dent the positive supply rail as much as before.

In Fig. 2c we have the DC coupled version of the series feedback circuit which was not too bad from a bias induced offset point of view. On the other hand. the output will still amplify up the -10 mV on the - terminal to give -10 V at the output. Not too good

Fig. 3 Improved circuits from Fig. 2

Fig. 4 Offset nulling in $\mathbf{7 4 1}$ type ICs
Figure 2 d is no better. Yet again the input offset will be amplified to give -10 V at the output. It begins to seem as if the only practical op-amp circuit is Fig $2 a$

Thankfully, this is not the case. There is no simple 'fix' to remove the effects of input offset voltage, but it certainly needn't be as high as the story so far might suggest Ignoring 2b, which was a non-starter anyway, it's clear that the large output offsets of Figs 2 c and 2 d are due to the fact that the circuits amplify at DC and magnify the input offset voltage by the circuit gain. The fact that Fig 2a is 1000 times better suggests one solution: reduce the gain to unity at $D C$.

In Fig. 2d this is achieved by a capacitor in series with R1, to give Fig. 2a. In Fig. 2c the capacitor goes in series with R 2 to give the kosher version of Fig. 2 b (Fig. 3b).

That's all very well for $A C$ amplifiers, but often an op-amp circuit is used in conjunction with, say, temperature or pressure transducers, or other applications where very slow moving signals are involved. Even if you could get hold of a large enough capacitor for the purpose, the settling time of the circuit might be hours, or even days! Let's face it, sometimes there's no alternative to DC coupling.

If the output offset is too large to be tolerable by a factor of ten or so, one way to reduce it is to apply offset trim. Many single op-amps have terminals for just this purpose: a preset pot is connected between the two terminals with its slider to one or other of the supply rails (depending on the type of IC). The effect is to vary the current ratio in the two input transistor collectors, to counteract the imbalance of their base circuits. Figure 4 shows how this works for the 741 type ICs.

Trimming

The offset can be trimmed to zero by this means, so it would be the ideal solution if not for the fact that the input offset voltage will vary with time and temperature. If you reckon on much more than a factor of 20 improvement over the 1 C in its 'raw' state, you may be unduly optimistic. Unless of course you are willing to keep adjusting the null pot every time the drift makes itself felt.

The essential entry in the specifications table is the offset voltage drift - for general purpose op-amps it will be given in terms of so many $\mu \mathrm{V}$ per ${ }^{\circ} \mathrm{C}$. For opamps intended specifically for DC amplification, you'll probably get some indication of the long term drift with time too.

Another possibility is to arrange your own offset null. In the circuit of 2 d , for instance, instead of taking the +input to ground, take it to the slider of a pot which will vary the voltage between $\pm 10 \mathrm{mV}$. Then adjust until the output is at 0 V . An even better idea with dual or quad op-amp packages is to assume that the temperature drift of two ICs in the same package will be similar, and incorporate another op-amp in the nulling circuit in the hope that they will track. This can often give very good results

An obvious solution is to apply money to the problem. Buy a better op-amp! Some very good devices can now be had for quite reasonable cost. The OP77, for instance, has a maximum input offset voltage of $60 \mu \mathrm{~V}$, a long term offset stability of around 400 nV per month and a maximum temperature drift of $06 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$ (all this for the GP version). These features and many more very respectable performance figures in an IC which costs less than $£ 2$!

The ultimate solution for circuits where even the slightest offset is intolerable is to use one of the many types of chopper, stabilised or auto-zeroing amplifiers. The principle of the true chopper amplifier is illustrated in Fig. 5. The chopper FET switches the input to the $A C$ amplifier continuously between the voltages at the + and - input terminals.

The amplifier is AC coupled at both the input and output, so its own voltage offsets have no bearing on the signal. The result is an amplified square wave, the amplitude of which depends on the difference in voltage between the two input terminals, but not at all on their common mode voltage.

After amplification, a synchronous demodulator restores the waveform to a DC level, which is then buffered and appears at the output. The only place
where significant DC errors can be introduced is in the output buffer, and as we've already seen it is gain that causes the problems. A unity gain buffer can be made to behave itself very well indeed.

The kind of performance possible with amplifiers of this kind is exemplified by the Analog Devices 261, with a maximum input offset of $25 \mu \mathrm{~V}$, a drift with temperature of $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and with time of $0.5 \mu \mathrm{~V}$ per month.

Even better performance is achieved with the auto-zero or 'capacitor nulling' breed of amplifiers. Details of operation vary from device to device but all have the common feature that the input offset voltage is somehow transferred to a capacitor on one phase of the clock, then the voltage on the capacitor is added to the input signal in such a way as to cancel the offset on the other clock phase. It usually involves some fairly complicated switching - often there will be two separate amplifiers which are zeroed and used alternately, so that one or the other is always able to amplify the input signal.

Figure 6a shows the bare bones of the process (or one way of doing it, anyway) and Fig. 6 b shows a practical version as used in the ICL7605/6. The principle is that in the nulling phase, the op-amp's offset is transferred to the capacitor. Let's say the offset voltage is 10 mV , with the -terminal positive with respect to the +terminal The circuit will stabilise with the output at +10 mV , and a voltage of 10 mV across the capacitor.

In the amplify phase, the capacitor holds the internal amplifier's + terminal 10 mV below the voltage at the +input of the complete amplifier If the two input terminals were now at the same voltage, the output of the amplifier would indeed be 0 V because the two terminals of the internal amplifier are held 10 mV apart by the voltage on the capacitor.

The practical version of the circuit is nothing more than the basic circuit doubled, with each internal amplifier being zeroed while the other handles the signal. The switching takes place at 160 Hz or 256 Hz (nominal) depending on the voltage applied to the 'division ratio' pin, which alters the internal clock divider.

The performance of the ICL 7605/6 is maximum input offset voltage $\pm 5 \mu \mathrm{~V}$, temperature drift $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and long term offset stability $0.5 \mu \mathrm{~V}$ per year.

These days the trend is for the performance of non-switching op-amps to catch up with and even to overtake that of the chopper or commutating types. The prices of high performance amps of any variety are still high, so it pays to look carefully at the design problem you're faced with to see whether more careful circuit design can relax the specification of the ICs needed.

ETT's breathing rate monitor circuit is a case in point. The detection of slowly changing temperatures is an 'obvious' case for DC coupling, yet by resisting the temptation it was possible to use a very ordinary $\mathrm{op}-\mathrm{amp}$ and still to achieve excellent performance. There's no substitute for careful thought!

Fig. 5 Principle of the chopper amplifier

(白)

Fig. 6 (a) The auto-zeroing amplifier. (b) The ICL7605/6

Last month the cure for the circuit in Fig. 2d was giv3n as a 1 MO resistor is series with the +terminal. The value should have been 1 kO

Ithought last month that I had finished my brief introduction to opto-electronics. However, as we went to press I found a source of laser diodes at $£ 16$ (yes - sixteen quid!). This caused me to postpone my revue of electronic sensors in favour of some basic practical information on how to set up an experimental laser using one of these diodes

Figure 1 reproduces the standard laser safety lavel for non-visible output lasers. The top line means what it says! Although the dispersion angle of semiconductor lasers is quite wide (minimum 8°) there is a lot of power available in addition to the small percentage of visible light It may not look very bright, but your eyes can be damaged permanently by the invisible infra-red (IR) emission. With this diode 30 cm is the absolute minimum safe viewing distance and even this is not advisable.

Figure 2 illustrates the recommended safe procedure for viewing the output from your diode. The safety glasses are not sunglasses. They are special green (usually) glasses designed to filter out the IR. The fluorescent screen emits visible light when exposed to IR so you can see an image through the glasses I suggest that you have a chat with either your Sharp distributor or with Kodak Professional Sales in London before going ahead.

Please note that the above is no joke if you want to keep your sight undamaged. It is, however, unnecessary to assume the gormless facial expression illustrated in Fig 2! This takes a lot of practice and contributes very little to either safety or experimental results!

Diode safety

Having looked at personal safety, we now come to diode safety Even at $£ 16$ to $£ 35$, you don’t want to blow up too many diodes! The bees knees of laser diode handling stations is shown in Fig. 3. Once again, the facial expression is irrelevant and I think this system shown is extreme over-kill. Where I work nobody uses humidifiers or ionisers and very few use floor mats or wrist straps. The conductive bench mat is definitely essential, as is the grounded soldering iron tip but that is about all that is needed provided you are careful and intelligent about the static problem.

Obviously, you should not wear a nylon shirt and stroke the cat for half an hour before soldering your laser diode on a polypropylene carpet but it is not

Fig. 2 Safety precautions
necessary to use a conductive neck tie attached to the ceiling unless you are really desperate.

The aim is to prevent static discharge with spike potentials in excess of about 20 V (yes twenty) This is surprisingly simple. All you have to do is ensure you are resting your bare arms on the same conductive surface the diode is on at all times while you are touching it, and before you touch it if you have lost contact with it.

Here again, another warning: It is extremely dangerous to make a conductive mat out of metal or other good conductor. If your soldering iron should short out, you could kill yourself even if there is a resistor to ground proper in the lead A conductive mat should always have an inherent resistance of 5 k to 100 k per linear centimetre in addition to a series resistor of 1 M 0 at 2 W rating as near as possible to the earthing point.

The best system I have found is to use a 13A mains plug with the live and neutral pins entirely removed and to put the 1 M 0 resistor inside the plug body. A substantial yellow wire $(15 \mathrm{~mm} s q / 15 A$ rating) is soldered to the resistor, the cord gripped using a nylon tie (not insulating tape as this deteriorates with age and slips) and terminated in a standard crocodile clip which attaches to the edge of the mat. To strictly conform with safety regulations, the plug body should be painted bright yellow!

Commercial conductive mats are expensive but a cheap and adequate compromise is to use a conductive bag. These can frequently be begged from electronics component shops and even a slightly damaged one will do. Slit it open and unfold it. and you have a reasonable anti-static mat, albeit not very durable.

Test it with a DMM to make sure it is conductive as specified above, as many (mainly transparent or pink) bags are static passivated (they don't generate static) but not really conductive The bag that works would normally be black. Another alternative for the more intensive experimenter is to purchase an offcut of proper matting These can usually be obtained quite cheaply from firms that make special mats for industry. I got a $6 \times 2 \mathrm{ft}$ conductive polyethelene mat from Conductive Products as an offcut for about $£ 15$. It is a really durable material about 2 mm thick, with a textured surface. The piece was not quite square but I trued it up with no more than a craft knife and straight edge

Fig. 3 The over-kill workbench for the static mad

Fig. 5 The LC circuit

Fig. 6 Optical power measurement

Fig. 7 Incorrect and correct diode clamping

wavelength. This is practically impossible. There is always some spread. As will be seen later, the spread is very dependent on the proportion of maximum power at which the diode is being driven, anyway The 'coherence length' is the distance from the diode over which the emitted light remains in phase along any one axis. The coherence length of these cheap laser diodes is very short - about 2 mm . In fact, by the time the light was emerged from the package window, it can be considered temporally incoherent. This is designed-in on purpose. These diodes are produced for use in CD players, where excessive temporal coherence leads to increased noise.

Spatial coherence (Fig. 10d) is a measure of how perfectly the optical wavefronts conform to segments of concentric circles centred on the emission point of the diode. The better the spatial coherence, the smaller the area of the focussed spot through a collimating lens. The spatial coherence of a CD player diode has to be good: a small spot of light is needed at the surface of the disc. Similarly, if you are to launch the light efficiently into an optical fibre (core diameters from 2 micron to 50 micron) you need a high degree of spatial coherence.

Any lens used to focus the light from the laser to a small spot is a collimating lens. Normally a microscope objective of about $\times 10$ focal length is used. In this case, the diode finishes up about $2-4 \mathrm{~cm}$ from the threaded (back) end of the objective and the focussed light is insertable into a fibre about the same distance from the other end.

Warning!! Collimated laser light is extemely dangerous. The spot is very small so the relative intensity is dangerously high. Never look directly at the output of your collimating lens along the optical axis.

To set this type of system up, you need some kind of rigid adjustable support for the laser diode, the collimating lens and the fibre or other device the light is aimed at. Professional aligners are costly but so long as you have lots of patience you can use fairly crude equipment if it is rigid

Magnetic bases with clamp-on arms are available for mounting engineers' dial guages. These will do quite well with care. A steel baseplate about $1 / 4$ in thick is then an adequate 'optical bench'. A good size for use with magnetic bases would be about 3in wide by a foot or so long, screwed down to large enough piece of wood to ensure the system is completely stable When aligning the system, the same detector mentioned above can be used and the different bits are manipulated until a maximum output reading is obtained. I know this sounds very rule of thumb but it is: just move things around until it comes out right!

The laser diode must be mounted on a substantial heatsink (not less than $6^{\circ} \mathrm{C} /$ Watt).

Driver Chips And Control

Sharp makes a couple of driver chips which greatly simplify the bringing up of laser diodes with internal references If you should get a laser diode without an internal reference, then the driver circuit given last month will serve but it will be necessary to add an active cooler/heater.

All the low cost Sharp diodes have an internal reference. This is not more than a photodiode positioned to receive a constant proportion of the light emitted by the laser.

The driver chip circuits are shown in Fig. 11. They are both about $£ 4$. Figure 11a shows a simple driver with a TTL compatible control input and Fig.
 11 b is a slightly more complex circuit which allows the use of a thermistor attached to the laser diode heatsink

Fig $10(a)+(b)$ Temporal coherence. (c) + (d) Spatial coherence

Fig. 11 Driver circuits
to shut it down if it overheats. There is not great advantage in using the circuit in 11a. Both circuits include slow start to eliminate switch-on spikes and both can be driven from TTL.

It is important to realise that the terms ON and OFF do not mean what you normally think. The laser is not extinguished when 'off as, while you can modulate it within its lasing region at high speed, it is quite sluggish to turn on if you take it below lasing threshold and back.

The LC filter (Fig. 5) should always be incorporated when using these driver circuits, and their power should be supplied from a well regulated source. The TTL control input should be debounced.

Sharp LT022MC

Now let us look at the specific laser diode I am enthusing about: the Sharp LT022MC. This cost $£ 16$ + VAT at the last count. Some of its more important characteristics are illustrated in Fig. 12.

Figure 12a shows the dependence of forward current and voltage over temperature (which does not show much variation) and Fig. 12b shows the optical output power versus input current over temperature (which varies a lot). The transition between nearhorizontal and near-vertical in this graph is the lasing threshold current. As you can see, it changes a lot with temperature, so it is important to keep the diode temperature as constant as possible. In the absence of active cooling/heating, use a large heatsink and don't keep it switched on for too long. As can be seen from the graph (12b) the threshold current at $50^{\circ} \mathrm{C}$ is about 62 mA , which would overdrive the diode destructively at $0^{\circ} \mathrm{C}$.

Figure 12c is a clearer indication of threshold current change with temperature.

Temperature change will also alter the wavelength of the enritted light (Fig. 12d) due to changes in the length of the resonant cavity. This should not be a problem for most applications, as the diode is not suitable for interferometry anyway (which is mainly where critical control of wavelength is required) due to its short coherence length.

What is more of a potential problem is the change in bandwidth with opticalpower output (Fig. 12e). As can be seen, the harder you drive the diode, the purer the output spectrum. However, it is most unwise to drive the diode at more than about 50 per cent power in such lash-ups as we are discussing, to avoid frequent replacement due to blow-ups.

Coupling To Fibre

The main use of our laser diode will probably be the insertion of high intensity light into optical fibres. The most usuable types of fibre will be large diameter plastic (1 mm approx). 200 micron plastic coated silica (PCS) and possibly 50/125 silica (50 micron core 125 micron cladding). The interference patterns described last month are quite easy to obtain and with a good 'launch' (optical insertion) it should be possible to throw a detectable pattern over a distance of some 4-6 inches. Sorry folks but the 'across the room' laser light show is not really on. Remember, also, that most of the power output is invisible with these lasers.

This is the knotty point. Optical sensing using coherent light is a pretty complex business. There are many alternatives and many modes of operation. There just isn't the space to go into them in detail. The main thing is: get experimenting. You might just discover something important in this still experimental fieid. Above-all, though: do it safely.

The laser diodes, information about safety glasses, viewing screens and detector diodes are available from Access Pacific, Bury St Edmunds. Tel: (0284) 69661.

Plastic Optical fibres are available from Electromail; silica fibres from York VSOP, School Lane, Chandlers Ford SO5 3PG or: Opital Fibre, Second Avenue, Deeside Industrial Park, Deeside, Clwyd CH5 2NX.

Fig. 12 Characteristics of the LTO22MC

BOLDERLESS WIRING EASIWIRE

Construct your electronic circuits the new, quick and easy-to-learn -ay. WITHOUT solder: with Circuigraph Easiwire from BICC-VERO
\therefore :h Easiwire all you do is wind the circuit wire tightly around the a.mponent pins No soldering, no chemicals, no extras, simplicity ¿elt. Circuits can be changed easily, and components re-used.

Eesiwire comes in kit form. It contains all you need to construct =rcuits: a high-quality wiring pen with integral wire cutter, 2 reels of -re, a tool for component positioning and removal, a flexible -lection moulded wiring board, double-sided adhesive sheets, soring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available sesarately too.

To take advantage of the special introductory offer, complete the \therefore-oon on the rigint and send it to

BCC-VERO ELECTRONICS LIMITED,

Fia-ders Road

-adge End,
Semampton, SO3 3LG

Please rush me Easiwire kits, retail price $£ 18$ -
special introductory offer £15.- (includes p \& p and VAT).
I enclose cheque/postal order for. BICC-VERO Electronics Limited
made payable to

Please debit my credit card as follows

Card Number

\qquad Expiry Date

Name
Address

Signature
or phone 0489288774 now with your credit card number (24-hour answering service)

SPEAKING FOR YOURSELF

> Malcolm Walmsley tries his hand at putting together a Maplin loudspeaker kit. While that's drying, here's one he made earlier

There was a time when loudspeaker kits were almost as common as their readymade cousins. I've still got a pair of Wharfedale Dentons and a couple of Kefs made up from kits bought more years ago than l'd care to remember in 'normal' hi-fi shops in Tottenham Court Road.

Nowadays it seems speaker kits are only to be found in obscure electronics dealers and through obscure mail order firms.

This is a great shame. There is nothing mystical or even difficult about making loudspeaker cabinets. Designing good ones is tricky, it's true, but putting together a few pieces of wood cut to someone else's design is (relatively) child's play. However, the savings over letting the nice man at the Korean factory do it are considerable.

The most difficult bit is making them look as good as the commercial equivalents. Even that is less difficult than it used to be, now that commercial speakers seem to be universally designed to look unattractive.

It's all to the good then, that Maplin has done its bit to straighten the record with a couple of speaker kits ideal for the home constructor like me with a bodge-it attitude to DIY and very little skill.

The two kits are broadly similar and offer a 2-way 23 litre enclosure and a 3 -way 40 litre enclosure. At $£ 29.95$ and $£ 35.95$ per speaker, respectively, these are well into the large savings category.

Both designs are rated at 50 W and are based (if you'll excuse the pun) on a bass reflex system using Maplin's own bass driver unit with a flat square honeycomb foam diaphragm. This is supplied complete with a front baffle edging trim piece to both look and sound good.

The 2 -way system has a single midrange/tweeter unit on top of that whereas the 3-way system uses a miniature dome tweeter and a midrange unit as well ${ }_{i}$

The 3-way enclosure is the subject of this review but many of the comments apply equally to the smaller system. Neither enclosure is on the tiny side - 40 litres is a lot of space to take out of your living room. This design is $20 \times 10 \times 16$ in in size.

The tweeters are standard enough but the midrange unit is quite unusual. This is a ferro-fluid cooled driver (in other words it has some magnetic fluid filling the cavity around the voice coil) and is enclosed in its own sealed metal infinite baffle. This means it can be simply inserted in a cabinet and forgotten about.

The kit is not a complete MFI-type flat pack assemble-in-half-an-hour job. For a start, it does not include most of the woodwork. This kit comprises the three drive units, the crossover, a tuning duct for the reflex port, some connecting wire, damping wadding, screws and the front baffle.

The front baffle is the blessing. This is supplied cut to size (and square - nearly impossible to perform in my workshop!) and pre-cut and drilled for the drive units. It is made of fibre board (expensive but easy to work) and finished with a black lextured vinyl coating.

All that is required of the constructor is the other five sides of the box to be cut from $3 / 4$ in chipboard and knocked together as per the clear instructions.

The chipboard to complete the cabinet should cost you about $£ 5$. Your local DIY warehouse will help out there. It is essential that you use the high density stuff. This not only works better but tends to be smoother surfaced too, so it looks better in the end.

I must say that I cheated. The instructions clearly tell you to put the box together with hardwood battens in the inside corners. I just glued the chipboard directly. It worked, it's strong and it was much easier!

Once the two sides, top and bottom are firmly attached to the front baffle I prettied it up! The drive units themselves are clearly designed to look good without a grill cloth and so they got none from me. Instead, I covered the cabinet top, bottom and sides with Maplin's black vinyl cabinet cloth and the front edge of the chipboard sides (not a pretty sight) with a frame made from hardwood moulding (with lovely
mitred corners - that took ages) to fit flush around the sides.

For reasons of domestic decor the front frame was painted green. (OK, so you think it's horrible but I rather like it and you've got to see it in situ to really appreciate this masterpiece of design).

The drive units are then simply screwed into position with the nice pan head bolts provided. The crossover is screwed to one inside wall and wired up, the tuning duct (a bit of plastic drainpipe to you) is glued into the right hole in the baffle, the wadding distributed around the walls, the back stuck into position and away we go.

A minor quibble is that there is no back panel connection provided. Of course everyone disagrees over which type (push connectors, screw terminals, sockets, and so on) are the most hi-fi or the most convenient so I suppose leaving the choice up to the constructor is sensible enough. I would really like to have used those levered cable grips in a sunken panel as my existing speakers (which these are going to augment) use that system. However, Maplin doesn't do those (although Tandy does!) so I plumped for screw terminals as these are the cheapest alternative.

Now came the acid test. What did my creations actually sound like?

Well I tested them next to my favourite Wharfedale Mach 3's -2 -way reflex speakers, highly efficient in the Wharfedale tradition. Many purists scoff at Wharfedales in general and the Mach range in particular but I must confess I love the sound of these. I like the extended bass response of the reflex system (despite the large size this usually entails) and the crispness and clarity (some would say colouration) of efficient speakers driven fairly hard.

Okay, so that's why some years ago I coughed

up $£ 160$-odd for the Mach 3's - what about the Maplin effort? Well, I was very pleasantly impressed, The kits are overall larger than the Wharfedales and the bass response stretched correspondingly lower. I found the low regions a little boomy, even after moving the cabinets away from the floor and walls, so this was no great advantage

The treble was excellent, I always have the totally superfluous crossover treble control on the Mach 3's cranked up full but even then the Maplin kits gave a fuller treble without any hint of tinniness or wispiness.

The midrange is a little too subtle for my liking It doesn't have the real punch that l like. However, this is a very personal view and it's unlikely to detract from most listeners' enjoyment.

Indeed, the whole business of choosing speakers is a personal one It is a shame you cannot go to a Maplin shop and listen to these kits made up before you decide. However, I would venture to say that to compliment a reasonable hi-fi, for a price (see the panel) which should if not appeal at least not horrify most, the Maplin kits provide both a chance to let off some creative steam and produce some excellent speakers at the end of your hard work

Maplin 40L loudspeaker LM20W
The bits are separately:
Bass driver (YN24B)
£14.95
Mid-range driver (YP13P) $\quad £ 7.95$
Treble driver (FD95D) £3.95
Crossover (WFO3D) $£ 5.95$
Front baffle (XJ06J) £2.95
3 m Wadding (RY06G) £3.00
Reflex port tuning tube £0.50
Cable
Screws, nuts and bolts £1.00 £ 1.00

Total £41.25

Hardware: (approximate cost)	
Chipboard	$£ 5.00$
Hardwood	$£ 2.00$
Cabinet cloth	$£ 5.50$
Wood glue	$£ 1.00$
Screws and nails	$£ 2.00$
Cabinet feet	$£ 0.50$
Paint	$£ 3.00$
Grand Total	
for single complete speaker from kit	

Keen caravanner Keith Brindley finds poor television pictures a bind. With this project he's guaranteed a good picture wherever he parks his van

TRAVELLER'S AERIAL AMP

Campers and caravanners alike will know the difficulties in picking up a strong enough signal to ensure good television reception when touring around the country. The main problem is, of course, that the typical touring aerial you use hasn't the same sort of gain which permanent aerials have. Permanent aerials can have gains up to 20 dB , depending on size and the number of elements Touring aerials, if you're lucky, give around 4 dB .

What's more, your aerial at home is sitting at rooftop level - your touring aerial is at best stuck on the top of a caravan, at worst a tiny set top job, inside the van or tent.

Aerial pre-amplifiers are available but most are mains-powered - fine for home use but not so fine for touring where your only source of power is often a car or caravan 12 V battery Those which allow lowvoltage operation have limited gain anyway - no more than about 10 dB usually - so pictures can often be still marred if you happen to have pitched for the night in a location with poor signal reception

The aerial amp featured here on the other hand gives a remarkable 23 dB gain so, even with a limited touring aerial and situation, you should be watching acceptable television pictures when you're on holiday in next to no time

The main component in the project is a thick-film hybrid IC, Mullard's OM335. It features an extremely wide bandwidth (wide enough that you can use it for amplifying VHF radio broadcasts, too) and wide operating voltage (around $9-28 \mathrm{~V}$) . These make the IC ideal for the purpose here, although it can also be used to advantage as a masthead, set-back, or MATV preamplifier in the home or laboratory

Construction

Construction couldn't be simpler With the grand total of three - yes only three - components mounted on the circuit board, the project ideally qualifies for 1st Class category Nevertheless. a number of points need to be made and certain precautions must be taken to ensure the project works

Fig. 1 Internal circuit of the Mullard OM335 thick film hybrid ic

HOW IT WORKS

Figure I shows the internal circuin of the OM335. Ht is a complete wideband preamplifier, formed by three DC coupled transistor ampiffying stages. The circuit really is wideband, amplifying with alinost identical gain all signal frequencies between 40 MHz and 860 MHz . Gain still occurs outside these limits and the IC will make a respectable 10 MHz to 14 GHz preamplifier, albeit with a none tooflat frequency response For example, with a power supply of 24 V . gain at 10 MHz is 22.5 dB , while gain at 1.4 GHz is 13.2 dB . Mro-band gain ot this supply voltage is around 26 r 1 B

Input and outpur to and from the 1 C are AC coupled via capacitors C^{\prime} and C°, while supply decoupling is performed by capacitor C^{5} Figure 1 shows the overall circuit which features an extra supply decoupling capacitor and a diode to ensure no damage can be dona if the power supply is accidentally reversed.

Note that the IC is formed by thick-film techniques which means the individual components you see in the diagram are reater - components, buit into the circuit, one by one, at manufacture.

The IC's characteristic input and output impedances are both 75 R in common with UK VHF and UHF practice and this manans it is vital to match these impedances to steer clear of mismatch probiems This could be done by soddering standard 75 R coaxial cable direcivo input and output.pms of the K but this makes construction a birtricky, not to mention messy.

Instead, the circuit board designed for the project has tracks which themselves have characteristic impedences of 75 R 100 , For standard 1.6 mm trick epoxy glass board, an impedance of $75 R$ corresponds to a track dimension of 1.5 mm width with an earthed layer erther side and underneath of the track. Using such a board with input and output connection track dimensions like this, it is thenari easy job to mount the IC onto the PCB, then make coaxial cable connections direct to the board.

You must remember that a high-gain amplifier working at the sort of frequencies which televisions receive $(450-900 \mathrm{MHz})$ can often be subject to oscillation if adequate screening and mounting techniques are not followed. This is the reason why the project can only be built using a PCB - a doublesided PCB at that - and not on Veroboard The ins and outs are explained more deeply in the How It Works section.

Fig. 2 Circuit of the ETI Traveller's Aerial Amp

Start with the case In our prototype, an aluminum alloy diecast box was used This not only gives a suitably tough enclosure for portable use but also allows total electrical screening of the internal circuit The PCB (see Fig. 3) was designed for use with this case so it makes sense for you to use an identical one but anything larger will also do.

First, drill the case for the two co-axial aerial sockets and power input lead. The aerial socket fixing holes must be drilled at about 45° angles to allow the bolts to pass through the case without touching the threaded supports inside the case at each corner. Fit a grommet into the power input hole.

Next, file the PCB (without any components, at this stage) to fit the case, between the two inside edges of the two aerial sockets. The board must be a fairly good fit, because it is to be held in position between the two sockets simply by soldering the sockets' terminals to the board.

Now solder the components into the board. Be extremely careful with the amplifier IC. It's not particularly fragile but it can be damaged by excessive heat ${ }_{66}$ Solder it in one pin at a time, letting the IC cool in between. Pins should be soldered on both sides of the board (component side and underneath) so you'll need a fine-tipped soldering iron to avoid touching -ne IC when soldering on the component side

Mount and solder the other two components ensuring the diode is the correct way round) and solder in two PCB pins, to which the earth terminals of the two aerial sockets can be soldered. Solder in power connections. About an inch from the board, tie a knot in them to prevent them from being pulled out and feed them through the grommet Now, insert the PCB between the aerial socket terminals (the components should be on the underside).

Solder the aerial socket terminals to the PCB at each end. Finally, earth the case to the PCB with a short connection from one of the socket mounting nuts and bolts to the board. For your own reference, mark the case so that input and output sockets cannot be confused.

No setting up is required, simply connect a power supply of $9-28 \mathrm{~V}$ and plug in your aerial and television leads

コ1

PARTS LIST

Aluminium alloy diecast box $189 \times 35 \times 30 \mathrm{~mm}$), Two coaxial derial suckets. PCB. Grommet. PCB pins. Nuts and botis.

BUYLINES

All parts should be easily obtained. The OM335IC is available fromit Electromai on 10536:201234. The PCB isavallabie from the ETTROB. service.

RECURRING DREAM

Those of you who have followed this project from the start may have noticed something missing from last month's construction article. Remember the lucid dream stimulator? It hasn't been overlooked.
Lucid dreams are those strange experiences that happen to many people from time to time, when they are able to take control of their own dreams. Psychologists with a particular interest in dreams are not content to wait until the lucid variety occur of their own accord and have devised a way to turn ordinary dreams into the more exciting type.

Lucid dream stimulation relies on the fact that if a sleeping person is disturbed during an ordinary dream, it will often turn into a lucid one. The stimulator must therefore be able to detect the onset of dreaming and then when the time is right apply the necessary disturbance, usually in the form of a very mild electric shock.

Detecting a dream sounds as if we need a mind reading circuit, but it's really much simpler than that. Dreams occur during a particular phase of sleep known as REM (rapid eye movement) sleep. The physical changes that occur in your body when you enter this phase of sleep include a change in your brainwave patterns, rapid movements of your eyes and . . . a speeding up of your breathing rate. You begin to see how it all comes together?

This month I'll be giving you, amongst other things, a circuit which will transform your breathing rate monitor into a lucid dream stimulator. Before I get onto that, there's some work to be done. The breathing rate signals inside the monitor will have to come out, so there's a socket to be fitted before you do anything else.

The Interface Socket

The signals you need are all available at the edge of the main PCB, and are the very same ones that drive the display board. In Fig. 3a of last month's article they are labelled J,K,H,L (G is not required), N,P,M,R and T.V,S,W. A ground reference is also needed - this can be taken from the unused pad just above the Y connection on the display board.

The most suitable type of socket to use, taking into account the number of connections and the space available for it in the case, is a 15 -way D socket. The twelve signals and ground (battery -) can be wired
to the pins in any order, so 1 won't draw a diagram. As long as you know which is which and can identify the signals at the other end, that's all that matters.

Since the display board and the socket both need the signals, the new cable between the main board and socket can be soldered to the rear of the main PCB. Otherwise, PCB pins can be soldered into the J, K...W holes and both cables can be taken to the pins. Yet another alternative is to connect both the main PCB and the display PCB to the socket. There's no difference electrically, so do whichever looks neatest or easiest.

Space inside the case is very limited, so it's a good idea to check the socket position very carefully before making the cut-out. It fits on the top of the case, just above the battery compartment and below the display PCB. A suitable hole can be made by marking out a rectangle of a size suitable for the socket, drilling holes

> Paul Chappell adds on to his breath/heart rate monitor to produce the elusive Lucid Dream Machine and other goodies

Fig. 1 Magnitude comparator circuit

Fig. 2 The Lucid Dream Stimulator circuit diagram
around the inside, then removing the surplus plastic with a modelling knife. The flange of the socket will cover any rough edges.

Magnitude Detector

All the add-ons l'm going to suggest for your monitor involve detecting whether the reading is above or below a certain value, so the magnitude comparator of Fig. 1 is common to all. I have shown the fully upgraded' version with DIL switches to select any value whatsoever as a set point but the circuit can be simplified considerably as I'll explain at the appropriate time.

The circuit needs little explanation. It simply uses three 4585 magnitude comparator ICs cascaded in the usual way to compare the breathing or heart rate from the monitor with the reference value selected by the DIL switches. As long as the monitor shows a rate less than the selected value, output X will be high. If the monitor rate equals the set rate, output Y will go high, and Z shows that the monitor ate has axceeded the value set by the switches.

Values are selected in BCD, so each switch can be set to a value from 0000 to 1001 . Rotary BCD switches would be more suitable than DIL spc/o switches if the values are to be changed frequently.

Lucid Dream Stimulator

The circuit of the stimulator is shown in Fig. 2. It is almost the same as the stimulator suggested in May as an add-on for the Brainwave Monitor - and why not? If a circuit works well, theres no point in changing it

For the magnitude comparator you could use the entire circuit of Fig. 1, but you can save an IC and DIL switch by missing out ICl and taking the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ outputs from pins 13.6 and 12 respectively of IC2. Having selected a suitable trigger point you can also hardwire the switch inpuls to IC2 and 3, saving two more switches.

The top three switch sections of SW2 are set (or wired) to $1,0,0$ The bottom switch and all of SW3 are used to set a breathing rate above which the circuit will trigger. Set it a little below your normal resting breathing rate.

The 4521 is used as a timer to allow about half an hour for you to fall asleep. During this time the comparator will be looking for a breathing rate of above 80 per minute (since pin 14 of 1 C 2 is high) and, unless theres something very odd about your breathing, it won't happen. After the half hour period, O. 22 of the 4521 goes high and the comparator now looks at whether your breathing rate is above that set

NOTE:
IC1
= CMOS
555
C2 = GENERAL PURPOSE OP-AMP
X1 = PIEZO BUZZER

Fig. 3 Circuit diagram for a training aid
by the switches．The circuit is armed！
When your breathing rate speeds up as you enter REM sleep and begin to dream，the comparator will detect this and trigger the 555 IC，which fires the shocker．This is set to give you a little tingle－just enough to disturb your sleep，but not enough to wake you up．At the same time as the circuit fires，it resets

the counter for another half－hour delay to be ready for your next dream．

The shocker electrodes are connected to the output of Fig． 2 and taped to one arm or leg．Two 1p pieces will do－if you can afford it！Needless to say， the circuit must be run from a battery and not from the mains．

Training Aid

Last month I suggested a training program which involved raising your heart rate to 100 beats per minute with occasional peaks of 140 ．It could be that when you＇re jogging along you＇d prefer to look where you＇re going rather than keep your eye on the heart monitor Your training won＇t do you much good if you end up running into a lamp post．

Reaching a level of 100 beats per minute is easy －unless you＇re very fit already you can assume that a gentle jog will give at least this rate For extra bursts of exertion however，it could be useful to know when you＇ve hit the 140 target without having to look at the monitor．Figure 3 shows a little circuit which bleeps briefly as you hit the right level．The comparator switches are of course set or wired to 140

Baby Alarm

The chances of a new born infant dying for no apparent reason are alarmingly high．Much higher than I would have guessed if I didn＇t know better．If there is no previous history of＇cot death＇occurring in ＝our family，the statistics give your child about 1 thance in 500 of dying inexplicably．If there have aiready been cot deaths，the chances of another are much worse－about 1 in 125.

Already there are gadgets available which detect ミchild＇s breathing rate and sound an alarm if it should s．op．The ETI monitor was not designed for this ＝arpose but could certainly be used in this way．The zreuit is trivial and is shown in Fig． 4.

The units used for this in hospitals are called Apnoea monitors and are based around a pneumatic sensor capsule．This is connected to a plastic cone lined with foam rubber，which is taped to the baby＇s ：$: \mathrm{mm}$ my Respiration is monitored down a plastic tube connected to the cone，and the sensor supplies signals to the main unit．Unfortunately I haven＇t yet むiscovered exactly what form these signals take，and some adjustment to the input stage of my circuit may be needed if such a system is to be used reliably and safely

The commercial devices apparently sound the alarm after a breathing interruption of 30 seconds． Since the ETI monitor would take rather longer than
this to register zero，the switches should be set to a rate of about half your infant＇s breathing rate．You can check on the delay time by simply removing the sensor leads and waiting for the alarm to sound

As long as the breathing sensor is properly arranged，the monitor can＇t do any harm and may actually save your child＇s life，so it＇s got to be worth investigating

Biofeedback

I can＇t let this project go by without mentioning biofeedback The reason I have not raised the topic before is that although conscious control of your heart rate is easy to achieve，there＇s not really much point in doing it！However，there are a few snippets of information that may amuse，enlighten or bore you， and I＇d like to take this opportunity to share them with you all，brothers and sisters

The most bizarre experiment I have come across is the one conducted by Dr Miller of Rockefeller University when he took it into his head to teach rats to beat their hearts slower or faster The idea is wacky enough in itself but the good doctor went one stage

Fig． 4 Circuit diagram for baby alarm
further．Just so that the rats could nit cheat by having a crafty jog around the cage or a peek at Playrat magazine，they were injected with curare This drug has the effect of knocking out the skeletal muscles，so the poor old rats couldn＇t do a thing for themselves －they couldn＇t even breathe．

To keep the rats in working order for the duration of the experiment，Miller attached them to little rodent respirators（I＇m not making this up！）and rewarded the proper responses with jolts of electrical ecstasy to the pleasure centres of their brains

The outcome was that the rats could indeed control their heart rates，Miller＇s students all got their PhDs ，Dr．Miller eventually received a mention in ETl ， and the rats were disposed of by the caretaker

Humans，without the curare and respirators，can usually learn without difficulty to increase or decrease their heart rates quite significantly－around 20 beats per minute on either side of the resting rate is easily achievable Being able to do this has clinical applications in the treatment of cardiac arrhythmias， but this really does require the guidance of a doctor and the aid of sophisticated heart monitoring equipment．The only point in doing it at home is just to see whether you can！

The increased awareness of your own heart could be beneficial is you were ever unlucky enough to suffer with some kind of heart trouble－you might well notice the signs and be able to have treatment earlier．

A veritable myriad of applications then，and no doubt readers will conceive more than a few more． Good luck，and sweet dreams！

コロ

FREQUENCY METER

Mark Thewliss introduces a low cost frequency meter

Frequency meters are rather expensive things to buy. I don't need one every day of my life and can think of much better things to blow a hundred quid on. So I decided to do something about it. This meter uses cheap 74LS ICs and works out to about $£ 3$ for each digit of the display and maybe $£ 20$ for the rest of the circuit.

The design is flexible enough to be expanded gradually or built as the full 8-digit version from the start. If you're looking for something to check frequencies into the gigahertz range then I'm afraid this design ain't the one for you as the response is limited by the TTL circuitry to $40-45 \mathrm{MHz}$, which is fine by me.

If Mr Leong of Harlow is reading (hello Mr Leong), he may recognise a large chunk of the gating logic. This appeared as an ETI Tech Tip some years back and l've used it here since it worked best in pre-prototyping trials.

You can choose between using LEDs and incandescent displays - incandescents are probably a better bet if you can get them, as they do not need current limiting resistors and have a long life expectancy (50000 hours). Because of this option on the display there is no PCB to mount the digits, this would be an added expense in any case

The prototype used stripboard to mount the incandescents with wires connecting to the main PCB. The wires were colour coded corresponding to the segment connected and I really would recommend this as the only way to avoid total confusion with 56 wires flying around. This way it isn't as daunting as it seems.

Construction

To keep costs down the main PCB (Figs. 2 and 3) has been made single sided. This means there are more links on the upper side of the board than is usual. Begin by fitting all links (insulated where there is a chance of shorting) not forgetting that some lie under IC sockets. The short links under the 74LS75 ICs may be fitted on the track side if

HOW IT WORKS

The circuit diagram is shown in fig. 1 .
IC2e is configured as a 1 MHz clock oscillator and drives buffer stage IC2t This clock signal is fed to the combination of IC3 and IC4 which logether divide the clack by 10.000 .

A reset pulse is output from IC4 back into IC3 to continuously enable this pan of the circuit. A pulse is also output from IC3 pin 2 which clocks the three divide-byten ICs 5,6 and 7 . The four outputs at .01 seces, is. Is and 10 sintervals are selected by SW2 and then applied to the gating logic
IC8a is a 'D' type flip-flop configured to divide by two. The output enables IC9a which is a monostable dependant on the time constant of the $2 \mu 2 / 680 k$ kombination on its output side
There is a further monostable between IC2 oin 6 and 5 which generate the main counter reset pulse. 05 is a buffer stage to the LED on the front panel which indicates when the gate is open.
IC8b is an overllow indicator driver which is operated by a pulse from the MSD 74LS90. When this occurs, the LED is lit and the gate IC9b is disabled thus halting the count. The input into the pre-amp stage is by way of a BNC socket on the front panel feeding a switched attenuation stage via C1. Diodes D1 and D2 logether with the combination of $180 \mathrm{k} / 220 \mathrm{p}$ also protect 0 I from damage trom high-voltage spikes.

01 and 02 are connected as a high gain wideband amplifier. The output from the first pair of transistors is then fed to the darlington pair 03 and 04 . The amplified signal is ouriput from the emitter of 04 . The 1 k preset pot in the drain fead of 01 sets the stage gain of the FET and thus the rest of the pre-amp.

IC1 is an XOR gate which, if fed from either +5 V or OV changes the polarity of the square wave signal on its opposite input.

The main counter input is fed from ICl pin 3.
Each stage has three ICs - one to convert pulses into BCD, one latch to either pass the information or not. and a third IC to drive the display. The third IC (74LS47) has "lamp test' and leading zero blanking tacilities and both these are used. Note that the curreat limiting resistors R22-77 are oniy needed lor LED displays.

Each stage in the counter is identical and accepts pulses on the input pin of each 74LS90, giving output pulses to the next stage in the series on pin 11. Thus the LSD counts units, the next tens, the next hundreds and so on.
The power supply is standard. Note that there are two regulaturs fitted, this is to obviate any overload situation which might arise. The larger rated 78 HO 5 device is mounted on the case of the instrument, necessitating a metal case. The rectifier is protected by a fuse as is the mans input to the instrument. All the circuitry with the exception of the pre-amp is on one PCB thus simplifying censtruction.

Fig. 2 Off-board connections for the frequency meter
desired. Next fit throughboard pins at the appropriate places for off-board connections.

IC sockets are fitted next, then diodes, resistors and capacitors (noting polarity where appropriate), gradually building the height of components on the board. Last of the capacitors should be the pair of 2200μ in the power supply and don't forget the transistor Q5 between IC7 \& 8 . The two 220R resistors for the LEDs are mounted on the display board.

At this point the main board should be finished by checking with a multi-meter for short circuits between power rails and between IC pins (except where these are supposed to be).

Don't Fit The ICs Until I Say So

For the display board (stripboard) you'll have to fly solo I'm afraid, since this all depends on the type of display you decide to use and anyway pin-outs differ from device to device. Whatever you use you should prewire the display now and check very carefully with a trusty multimeter as a single short circuit here can cause some pretty obscure faults. And write down the colour code you use (I used the resistor codes - black for segment a, brown for b, red for c and so on - so that in five years I'll still be able to understand).

If you are using LED displays you will need either SIL resistor packs or individual 180R or 220 R resistors to the front edge of the main board. Two types of SIL packs are suitable, one with seven resistors and a cheaper one with eight. The cheaper one is just as good here, so remove the extra legs (pins 8,9) and fit as for the other type.

If you are using incandescent displays then ignore the above paragraph and proceed from here.

Wire each display segment to the main board, the colours of which should run from right to left in this order (assuming the aforementioned colour scheme) - green (f), blue (g), black (a), brown (b),

BUYLINES

All components should be available from the nermal suppliars except perhaps 01 , available from STC on (0279) 626777. The PCB is of course available from the ETl: PCE Service on 044241221.

PARTS LIST

RESISTORS (All $\%$ W 5% unless sperified)	
R1	8M2
R2	750k
R3. R4	180k
R6	1208
87	100R
R8	39 R
R9	$1 \mathrm{k8}$
R10	470R
R11. 813	1k
R12	10R
R14	IM
R15, R18, A19, R21	100k
R16. R20	220R
月17	680k
R22.77	180R or 220R
RV1	1 k min preset
CAPACITORS	
C1. C16	100 n 400 V polyester
C2	$47 \mu 35 \mathrm{~V}$ tantalum
C3	220p min polyester
C4	40735 V polyester
C5	10uf 35v
C6	100p silver mica 5\%
C7.	22p min trimmer
C8	82p silver mica 5%
c9	2 u 235 V tantalum
C10	2 n 2 min ceramic
611	1 n 0 min ceramic
C12, C 13	1 n 0 min disc
C14. C15	2200u 25 V axial electrolytic
C17.C24	100 mmin disc

SEMICONDUCTORS

IC1	744 S86
IC2	4049
IC3	4020
IC4	4068
IC5-7	4017
IC8	4013
IC9	4093
IC10,13,16-31	74 LS90
IC11,14,17-32	74 IS75
IC12,15,18-33	741 S47
IC34	$78 H 05$
IC35	7805
Q1	BF246 or 2SK40 FET
Q2	2 N3906
Q3, 4	BFY90
Q5	BC548
D1-5	IN4148
LED1,2	hi-brightness LED
LED3-10	incandescent or LED
	digit displays

Miscellaneous

BR1	6A bridge rectifier
FS1	1A fuse
FS2	3 fuse
L1	ImH wire ended choke
SW1	SP mains toggle
SW2	5 -way, 2-pole
SW3. 5	1 -pole C/0
SW4	3 -way. 1-pole
SW6. 7	press-to-make
T1	$9 V 2.5 A$ secondary
XTAL.	1 MHz crystal

Case, IC sockets. Nuts and bolts.

Fig. 3 Component overlay for the main board

red (c), orange (d), yellow (e). This applies to all displays.

Assemble the pre-amp PCB (Fig. 4) using the same order of construction as for the main board (there is only one link to fit). The only point to note here is that Q1 pads have been provided for either BF246 or 2SK40 FETs - the overlay shows a BF246 as this is the more common device.

The case depends on the transformer you use. The prototype used the transformer from a ZX81 which is fairly small for a 2.5 V secondary (which is what you need). With this, everything fits neatly into the recommended case, but otherwise a larger case is recommended. Mark and drill the front and rear panels to suit the switches and displays you are using.

Fig. 5 Test frequency source circuit diagram

Testing

At this point it will be necessary to loosely wire everything together for testing purposes. Do not fit the main board into the case just yet.

Assuming you haven't got a bench power supply capable of giving 2.5 A then proceed as follows. Mount the mains transformer, input fuse and mains switch in position being careful to cover exposed terminals with sleeving. Also mount the 78 H 05 regulator IC34 on the rear panel allowing enough room for the pre-amp and the 7805 regulator IC35 as well. Temporarily fit a heatsink to the 7805 regulator and mount it on the main board.

Ignoring the pre-amp for the time being, make connections between the 78 H 05 and the through board pin at the front of the main board. Temporarily link the case with the ground plane on the PCB and make the following tests.

Insert FS1 and apply power to the unit. There should be AC voltage on the secondary of the mains transformer. This can lie anywhere between 8 V and 12 V but should not be much lower than the :ower figure or the regulators may not work properly.

Test for DC at the 2200μ capacitors C 14,15 , the figure here will be somewhat higher, in the sange of $10-15 \mathrm{~V}$ DC. If it isn't, switch off before something catches fire and check, check and check again on your construction.

If all is well to this point, then you should have $-5 v$ on all the IC sockets (you didn't fit the ICs did you?) at the relative pins. If not, check for missing Enks, broken tracks or pins not soldered.

Remove FS3 and in its place fit a milliammeter, turn off the power and fit the logic ICs one at a time noting the current consumption as you §o.

It should gradually increase from virtually zero to a couple of hundred milliamps, if there is a sudden change, power down quickly and invesEgate the cause.

If you have connected the two LEDs on the ront panel one or the other may be lit. If the overEow is lit check it goes out when you apply +5 V to .C8 pin 4.

If you make temporary links in place of SW2 The gate LED should light in response to where you -ake the link - if you connect IC6 pin 12 to IC8 In 11 the LED should be lit for 1 second and extinguished for 1 second.

If these tests are good to this point, transfer the milliammeter to the output lead of the 78 H 05 , \equiv er first checking to see if there is +5 V on its output

Power down and insert the 3 ICs for the LSD
of the counter. As before note the current reading as you go and power down on anything which looks like a fault. Clear it and proceed to the next stage.

As each digit is checked the current should rise by some 60 to 80 mA although individual ICs may consume more than others. If after inserting all the counter ICs you have not had any major disasters to this point, then grounding pin 3 on the 74LS47 ICs should light all segments. In this condition the 78 H 05 regulator will be supplying about 2.4 A if all is well.

Remove the temporary heatsink from the 7805, drill the PCB for mounting and fit sticky stand-offs through these holes, Simply press the PCB into the bottom of the case et voila. The display board is mounted in the same way (you did allow for the extra length of course) and the remainder of the controls may now be fitted and wired up.

High brightness LEDs are recommended for the two panel mounted devices and if the overflow LED does not appear to be bright enough then an extra transistor Q5 may be included as a buffer.

Before the displays are finally mounted it is advisable to stick some contrasting material behind the aperture (in the case of LEDs this will obviously be red, but if incandescents are used then they can be any pretty colour you fancy).

Final Assembly

With the main PCB in the case, mount the pre-amp PCB on a bracket at the rear. The 7805 should also be mounted at this time.

Connect the attenuation switch on the front panel to the pre-amp board with a short length of screened cable. At this point the preset resistor on the pre-amp should be set up. To do this, monitor the voltage at the emitter end of R11. There should be approximately 1.5 V at this point relative to ground - adjust the preset and re-adjust this later for optimum performance.

At this point it is the time to adjust the master oscillator using if possible a frequency standard. However if you cannot gain access to the above proceed as follows: construct on stripboard the oscillator in Fig. 5. Depending on the frequency of the crystal used you should be able to read something close to the stated frequency.

A word here about crystals - have a chat with your local TV repair shop, they will probably be happy to part with a 4.4433619 device for a few pence (these are the ones used in all colour TVs but don't whatever you do go poking around in your TV).

Having built your test signal source apply power to it and inject the output into the BNC socket, noting that it is better to start with the attenuation switch in the $50: 1$ position to begin with. Trim the master oscillator on the counter by adjusting C 7 . If it won't quite make it to the stated frequency try altering the values of $\mathrm{C} 6, \mathrm{C} 7$ and C 8 .

All that remains to be done now is to box up the unit leaving it running for an hour or so and giving the trimmer C 7 a final tweak.

In use, you may find that when investigating square waveforms that the counter refuses to count properly. Use of SW3 will enable you to choose the best edge to count on. A final word about performance - the pre-amp should be good for the worst case transformer in the design which is Q2 whose f_{T} is quoted at 150 Mhz .

In the counter itself the upper frequency limit is imposed by the TTL itself, this being $40-45 \mathrm{Mhz}$.

19" RACK CASES

- Suinabie for insinuments, highquality amplifiers and many other applications that demand strength and professional finish * New improved construction and linish * Bläck anodisad aluminium fronl panels separate froni mount ng plate, nolixingscrews wisible on the front and the side of the enclosure. Heary gauge front panel is of brusthed aluminium linish enhânced with twoprotessionat handles *With ventiation suits and plastic leet . Foar box manulactured from 1,1 mm steel hnished in black. Rack mounting or tree standing. Comes in quick assembty llat package spare front parieis avallable.
Order Code Panel Size Rear Box © Weight Price $\begin{array}{lllll}1 \mathrm{U}-10 & 19 \times 1.75 & 17 \times 1.5 \times 10 & 2.4 \mathrm{~kg} & 23.50 \\ 2 \mathrm{U}-10 & 19 \times 3.5 & 17 \times 3.0 \times 10 & 2.9 \mathrm{~kg} & 24.50\end{array}$ $\begin{array}{lllll}10 & 19 \times 3.5 & 17 \times 3.0 \times 10 & 2.9 \mathrm{~kg} & 24.50 \\ 3 \mathrm{U}-10 & 19 \times 5.25 & 17 \times 5.0 \times 10 & 3.5 \mathrm{~kg} & \mathbf{2 6 . 5 0}\end{array}$

No VAT to be added to the price

TEST EQUIPMENTS

NEW

C550 8-DIGIT 550MHZ

 FREQUENCY COUNTER* Auto channel selection
* Dual Decimal Points Indication
* Selection of Gate Times
* Complete with RF Cable and Technical Manual
SPECIALINTRODUCTORY OFFER £79.50 offer ends 31.10.88
C550 550 MHZ Frequency Counter
C83A Drgital Powar Supplyivolimeter (0/35 Volts 15 A)
C83B Digital Power Supply ($\mathbf{\alpha} 30$ volls' 1 A)
$\begin{array}{r}\text { £ } 94.50 \\ \text { ع } \\ \hline\end{array}$
C83B Digital Power Supply (0330 Volts' 1 A)
£ 40.50
C89A Function Generator (2 Hz to 200 KHz)
C87A Autoranging Capacitance Meter (0.1 pF to 999 mf)
C87A Autoranging Capacitance Meter (0.1 pF to 999 mf)
MV338 Metal-mains detector
Hog quany rest equipmenis at an meredibly low price. Customars who hava bough tromus are delighted with the quality and found ihem exceriont value for money. Place an order nom We will give you your money back if you are notcompletely salisfied and return the unit wounn 14 days Please add $£ 3$ pip per ifem (50 p for MV338)
To order send chequeipostad order Quantity discount available. Customera who require further information ple ase send S.A E. Trade and overseäs orders welcome. Mail order only.
T.J.A. DEVELOPMENTS

Dept. ETI, 19 Welbeck Road,
Harrow, Middlesex HA2 ORN.

KGI
 CONSTRUCTOR SERIES SPEAKER KITS

Based on the famous Kef
Reference Series, these three DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-
to-earth price! With a
Wilmslow Audio
Total KIt it's easy

- no electronic
or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, wadding, grille fabric, terminals, nuts, bolts etc.

Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and CS9 is based on the Reference 105.2 (but in a conventicnally styled encl.)

CS1 $£ 117$ pair inc. VAT plus carr/ins $£ 6$ CS3 £143 pair inc. VAT plus carr/ins $£ 12$ CS9 £393 pair inc. VAT plus carr/ins $£ 18$

We also offer a kit (less cabinet) for Elector PL301
Lightning service on telephoned credit card orders! 팢ㄹ

WILMSLOW AUDIO LTD

35/39 Church Street, Wilmslow, Cheshire SK9 1AS Tel: 0625529599
Call and see us for a great deal on HiFi. (Closed all day Mondays)
DIY Speaker catalogue £1.50 post free (export \$6)

[- Amplifer Moutules

The most sophisticated and highly protected modules available today.

MODULE	POWER/LOAD	PRICE
CE608	$60 \mathrm{~W} 8 \Omega$	$£ 25.84 \mathrm{Bi}$-Polar
CE1004	$100 \mathrm{~W} 4 \Omega$	$£ 30.44 \mathrm{Bi}$-Polar
CE1008	$100 \mathrm{~W} 8 \Omega$	$£ 33.59 \mathrm{Bi}$-Polar
CE1704	$170 \mathrm{~W} 4 \Omega$	$£ 43.26 \mathrm{Bi}$-Polar
CE1708	$170 \mathrm{~W} 8 \Omega$	$£ 43.26 \mathrm{Bi}$-Polar
CE3004	$300 \mathrm{~W} 4 \Omega$	$£ 55.05 \mathrm{Bi}$-Polar
FE908	$120 \mathrm{~W} 8 \Omega$	$£ 38.75 \mathrm{MOSFET}$
FE1704	$220 \mathrm{~W} 4 \Omega$	$£ 66.85 \mathrm{MOSFET}$
FET 3	$450 \mathrm{~W} 4 \Omega$	$£ 83.71$ MOSFET
CPR 2	Stereo Preamp	$£ 53.88$
REG 2	$+/-12 v$ Supply	$£ 19.66$

Prices include P+P,VAT. All modules are guaranteed for 2 years. For more information on these modules and our other products including our Hi-Fi kit amplifiers. Please write (s.a.e.) or phone.

CRIMSON ELEKTRIK STOKE

Agents:-
 BRADLEY-MARSHALL 382-386 EDGEWARE RD. LONDON.

WILMSLOW AUDIO 35-39 CHURCH ST. WILMSLOW CHESHIRE.

PHOENIX WORKS
500 KING ST.
LONGTON
STOKE-ON-TRENT
STAFFS
TEL.(0782) 330520

[^0]
SPECTRUM EPROM EMULATOR

Itis a fact of life that when it comes to designing and debugging microprocessor based circuits, your old single beam valve oscilloscope and trusty Avo won't get you very far! Microprocessors are tricky beasts to get going at the best of times and specialised development and support tools are really aimed at the professional engineer in industry, where the elevated price tag is of secondary importance.

One extremely valuable piece of microprocessor development equipment is an in-circuit emulator. This usually takes the form of a big box of tricks and a 'pod' on the end of an umbilical cable, which plugs into your target circuit in place of the microprocessor chip. From then on, the emulator pretends to be the processor, and if desired the memory too, simulating all the functions in real-time.

The emulator provides facilities to start and stop the processor, examine and change register values, and perhaps most importantly, examine and change the memory contents. Such systems provide an amazingly powerful development tool, cost many thousands of pounds and no, we're not going to build one!

A few steps down in complexity from the incircuit emulator but no less valuable, is the so-called EPROM emulator. Once again this provides a 'pod' at the end of a cable which plugs into the target board, this time in the place of the EPROM containing the operating software

As far as the target board is concerned, the EPROM emulator is the EPROM - a block of readonly store. However, the emulator is in fact RAM and data can be put into it during code development, from some external source such as a home computer:

This means that changes to code can be made in seconds, without going through the hassle of erasing and programming EPROMs each time you tiscover a tiny bug in your software It also means that short test routines can be quickly employed to test and jebug new hardware, again saving time with EPROMs.

Such EPROM emulators have appeared in ETI before. so what is so special about this one? The major Efference is in the method used to download the code anto the emulator. Usually, having been compiled/ sssembled, the code is moved from the development =omputer into the emulator via a serial link. This eequires a program to be running in the home zomputer to transmit the data, and some hardware In: the emulator to receive the data and write it into the eppropriate RAM locations. In this design all that is -inecessary.

A Full Spectrum

Tris emulator has been designed for use with our old Eend the ZX Spectrum and simply plugs onto the expansion port at the back. The emulator RAM maps
itself into the Spectrum memory as an 8 K location block starting at address 49152.

The idea is that the Spectrum sees the emulator RAM as its own memory so that downloading data is handled automatically However, the Spectrum's memory map is full of its own RAM already.

In order to overcome this, the emulator RAM is configured as 'Write-Only' memory (WOM!?) as far as the Spectrum is concerned. This means that if the Spectrum writes to these locations, the data is put into both its own RAM and that of the emulator If the Spectrum reads from these locations, it sees only its own RAM contents. Thus the emulator will not affect in any way the operation of the Spectrum, yet manages to receive download data at the same time.

In this way we simply use the Spectrum BASIC 'Poke' command to put suitable data into the emulator. However, even more amazing is the possibility of assembling code into this area of memory The mere act of assembling source code on the Spectrum writes executable code into memory, and in this case into the emulator RAM at the same time.

With an ordinary serially loaded EPROM emulator, getting executable code into the emulator RAM is a lengthy process. First, it is necessary to load the assembler into the computer, then load the source

> Graeme Durant's Spectrum bears more than a passing resemblance to a development system's EPROM

HOW IT WORKS

The block diagram for the system is shown in fig. 1. The eprom emulator basically consists of a block of static RAM, its address and data lines being switchable between one of two external ports.

The port shown on the left is connected to the Spectrum address and data busses via the Spectrum's expansion slot. This port is witeonly, and allows the EPROM data to be downloaded into the emulator from the Specturm.

The port shown on theright goes to the target system via a cable and EPROM look-alike pod. This port is read-only, and emulates the effect of an EPROM

The switching of the RAM between these two ports is handled by some simple control logic - basically by the state of the power supply to the target board as sensed by the EPROM-pod power pin. If the target board is surned off, the emulator is switched to its downlead mode EPROM emulation starts as soon as power is sensed on the target board.

The emulator boarditself is always powered from the Spectrum, via the 5 V supply connection on the expansion slot

The circuit diagram (Fig. 2) demonstrates operation in more detad. The heart of the emulator is $1 C 4$, an $8 \mathrm{~K} \times 8$ bit CMOS static RAM chip. The switching of data and address lines to IC4 is achieved by means of the tri-stateabie 8 -bit buffers $1 \mathrm{C} 1,2,3,8,9$ and 10 .

Looking first at the write-only pon from the Spectrum, the incoming data and address signals artive on the emulator board via edge connector $\mathrm{SK1}$, and are buffered by IC1 and IC2. 3 respectively onto the data and address lines of IC4.

The 8 K locations present in the emulator are mapped into the Spectrum's memory space by IC 5 b and c so that they start at 49152 (dec). IC6b detects a memory write access by the Spectrum to one of these locations.

The write strobe to IC4 is derived from the output of $1 C 6 \mathrm{~b}$ and can be disabled in emulation mode by IC5a.

Looking now at the read-only pon to the target system, the outgoing data and the incoming address signals leave α enter the card via connector SK 2 , and are buffered by $1 \mathrm{C8}$ and IC 9, or 10 respectively from or onto the data and address lines of IC4.

This time there are only thirteen address bits coming from the pod, so these all go to the' RAM without decoding - any dicoding will already have taken place on the target board.

The most significant address bit from the target system (Ai2) has a high value pull-up resistor $R 5$ connected to it. This is there to ensure that this ine doesn' pick up noise whilst the board is emulating the smaller 4K EPROM 12732) with this address line floating unconnected. This does mean however that whilst emulating the 2732, data should be placed in the top half of the 8K RAM, starting at Spectrum address 53248 (dec).

His worth noting too that the RAM address and data lines are not connected to the two extertial ports in the same order as defined by the marufacturer's datasheet This dramatically simplifies ine PCB
layout, and has no effect on operation providing that a data line from a port gues to a data lme on the RAM, and an address line from a port goes to $8 n$ address line on the RAM.

Each unique address combination will access a different RAM location capable of storing data; it does not matter where exactly this occurs on the chip! Naturally, the data and adderess lines on the two ports must match so thal data put into a certain address from the Spectrumend will be found at the same location at the emulation port

As mentioned previously, the operating mode of the card is determined by the state of the power supply on the target board. This is detectabie on the pod by the voltage on the 'EPROM' power pin, and is handled by 01 and fts associated biasing resistors. When the target supply exceeds about 3.5 V 01 tuns on the transition voltage being set by R8 and R91. The stare of 01 is converted into TTL levels by schmitt inverter LC7a, AnLED dnven via IC7b indicates when the emulation mode is in operation.

The circuit diagram shows this voltage sensing taking place on pin 28 of the 2764 pod. A second connection, via diode DI, comes from pin 26 . This is for 2732 emulation. when the EPFOM supply pin does not coincide with that of the larger device, and pin 28 is unused idiode D1 is present to protect the target system from a possible fault condition, if in the case of $8 \times$ device emulation, pin 26 of the EPROM socket is no: open circuit as the 2764 pinout assumes).
imagine first that the target board power is off, and theemulator board is thus in the download mode. 01 will be switched off, and so the output of IC7a will be low. The output of IC 7 C is always the complement of the output of IC 7 a , so will be high.

The low output oi C 7 l will directly enable buffers $1 \mathrm{Cl}, 2,3$ so that the Spectrum data and address signals will reach the emulator RAM. At the same time, the high output of $1 C 7 \mathrm{C}$ will allow IC5a to pass write strobes from the Spectrum to the RAM, so that the download inlormation can be written into C 4 . The high output of C 7 C also disables the address buffers (via 1 C 6 ac) fom the emulation port IC9. 10, and disables the deta output drivers in IC 4 and the data buffer to the emuiation port 1 C 8 .

After the download is complete, the target system power can be applied. O1 turns on, sending the output of IC7a high and the output of $K 7 C$ low. K 7 a disables the three Spectrumport buffers $\operatorname{KC1}, 2,3$, thus effectively decoupling the emulator from all the Spectrum's influence.

Similerly, IC 7 c enables the emulation port address buffer sothat IC4 receives the required EPROM address signals from the target board.

Any further write strobes from the Spectrum are slopped by the low signal on pin iof $1 C 5$, sO now the RAM is held in its read mode constantly. The logic is carefully arranged so that as long as the Spectrum is not trying to write data to the RAM at the time changing mode from download to emulation or back can never cause an - erraneous write pulse to be sent to the RAM, which inight otherwise

Fig. 1 Block diagram of the EPROM Emulator

PROJECT

code. Once assembled, the object code must be saved, then the serial link download program must be loaded into the computer, after which the object code must be re-loaded in order to transmit it to the emulator. If a small change is required in the code this whole process must be repeated. If you are working with floppy disks or worse still audio cassettes, all this loading and saving is painfully slow and very tiresome.

With the design described here, once the assembler has been loaded into the Spectrum, it can stay there, as can the source code. Code can be assembled into the emulator, the source code can be tweaked and then immediately re-assembled into the emulator for another try - all in seconds.

This design is capable of etmulating the two industry standard EPROMs mosi commonly used by the hobbyist - the 2732 and the $2764(4 \mathrm{~K} \times 8$ and $8 \mathrm{~K} \times 8$ respectively) and has an emulation access time equivalent to that of a $250-300 \mathrm{~ns}$ device.

Thus it is perfectly suited for use with 4 MHz Z80A based target systems (such as ETI Spectrum Co-processor CPU card), and indeed any application requiring such a medium speed EPROM

Construction

Construction of the EPROM Emulator should not prove to be difficult, particularly if the recommended PCB (Fig 3) is used. This is a double-sided board and requires a number of interconnections to be made between the two layers. (The board is not a throughhole plated PCB due to the excessive costs involved.) Use tinned copper wire pushed through the appropriate hole in the board and soldered in on both sides.

Many of the required through connections are made via the IC pins themselves, each time a coppef track is connected to an IC pin on the component side of the PCB. In these cases (48 in all) the ICs must be soldered in on both the top and underside of the board.

This is straightforward if you plan to put the ICs directly into the board but can create problems if you decide to put the ICsinto DIL sockets. Sockets must be employed which provide access for soldering to the
topside of the PCB. This really means DIL sockets of the 'turned-pin' variety, designed in such a way that the base of the pin is visible on the component side of the PCB.

To fit these sockets, solder into place as normal from the underside of the board. Then solder in on the component side of the board but not directly with a soldering iron (it would be very difficuit to avoid melting the plastic socket frames). The pins should be sated in turn from the underside of the board whilst dabbing fine solder onto the topside of the pin, until solder flows to form a good joint.

Once the through connections and the IC sockets (if used) are in place, the rest of the components can be inserted. No particular order is necessary, but it is always wise to put the semiconductors in last of all. Remember to put the LEDs, Q1, D1 and C1 in the right way round!

All that remains now is to fit the two connectors SK1 and SK2, SK1 is the edge connector for the Spectrum port and must be fitted so that one row of its pins are soldered to the topside of the PCB, and the other row to the underside.

The two rows of'pins will probably need to be squashed together a bit, before fitting the connector to the board. The pins do not go through holes in the PCB, they lay flat against its surface and are soldered down by flowing solder onto the copper pad associated with each pin. Squashing the pins together can be achieved either using pliers or more easily, using a small vice. SKI should then be slid onto the edge of the PCB and soldered into position

The other connector SK2 sits at the other end of the PCB and provides the EPROM emulation connections. The pinout used is shown in Fig. 4. This connector should be simply inserted and soldered into place. For extra reliability, it is recommended that M2.5 nuts and bolts are used through the PCB to fix the socket in position.

This completes the construction of the PCB itself, but now we must look briefly at the cable assemblles which connect the target system to the emulator. Basically, these consist of a length of ribbon cable with an IDC header socket at one end to plug into SK2; and an IDC DIL header at the other end to plug into

䁲

Fig. 3 Component overlay for the emulator board
the target system EPROM socket.
A different cable assembly is used depending on which size EPROM is being emulated, so you may need to make up two types.

Figure 5 shows the pinouts of the two types of EPROM we are seeking to emulate. The 2732 is in a 24 -pin package, whilst the 2764 is in a 28 -pin package. The pinouts are so designed that if you put the smaller device in the larger device's outline, matching up the ground pins, the rest of the signals correspond perfectly.

Obviously, the 2732 does not need as many signal connections as the 2764 but if the emulator provides all the connections for the larger device then the smaller device simply uses a subset of these signals. So, it is possible to make the required emulation connections to either device by only changing the size of DIL pod on the end of the cable assembly - no further signal switching is required.

Figure 5 also shows the construction of the two cable assemblies. Care must be taken to ensure that the DIL plug and the IDC header socket are fitted exactly as shown, particularly the latter which has a number of unused socket positions.

The length of ribbon cable used should not be much more than about 200 mm , since the signals ravelling up and down it are ordinary TTL levels, and are at quite high speeds. Any longer and the emulation could become unreliable. If it were necessary to have a much longer cable, then highspeed twisted pair line drivers would have to be used, sut this is really beyond the scope of this simple zroject.

To actually fit the connectors to the cable, you siould ideally use one of the special presses designed ior IDC work. Not everybody has one of these(!) but sith a little care it is quite possible to use a small vice is do the same job.

First the IDC connector should be loosely assembled so that it sandwiches the end of the ribbon cable Then the two halves should be carefully
squashed together in the vice, to make a permanent connection to the cable. Before the permanent connection is made, you must be absolutely sure that the ribbon cable is correctly positioned in the connector, because it is not easy to go back after the connector has been assembled.

It is worth then plugging it into the emulator and testing the connections from the PCB to the DIL pod with a continuity tester to make sure that correct and reliable links have been formed. One this has been done, we are ready to test the Emulator itself.

Testing

Before plugging the board into the back of your beloved Spectrum, it is wise to check that there are not potentially damaging short circuits between the emulator's power and ground lines, using a multimeter on the ohms range. If there are, make sure that the shorts are found and eliminated before moving on

Then take the plunge and push the emulator onto the expansion port of your Spectrum. Apply the power. The power indicator, LED2, should light up and LED1 (the emulation LED) should be off.

BUYLINES

There are no special parts needed to build the emulator, and your usual supplier should stock most of the components required.

The miniature axial ceramic capacitors used in this project are available from Verospeed as order code $92-50952 \mathrm{H}$. Verospeed can be contacted at Stansted Road, Boyatt Wood, Eastleigh, Hants SO5 $4 Z \mathrm{Y}$. Tel: (0703) 644555.

Suitable DIL sockets for soldering on the topside of the PCB should be commoniy available, but try the tumed pin range from Maplin if uncertain. Maplin can at5o supply the Spectrum edoge connector if required, order code FG23A.

The PCB is avalable from the ETI PCB service.

Fig. 4 IDC header plug pinout (viewed from pins)
If all is well, fit one of the emulator cable assemblies so that you can get at the 'EPROM' pin connections. Using a piece of wire or a croc clip, connect the Vcc pin on the EPROM pod (pin 28 for 2764, pin 24 for 2732) to +5 V somewhere on the emulator card to simulate the power being applied to the target system. This should switch the emulator into emulâtion mode - LED1 should illuminate.

If the circuit has responded so far, the rest of the emulator can be tested (remove the test wire on the Vcc pin). Using Spectrum BASIC, poke a data value of 85 (dec) into the top location of the emulator (Spectrum address 57343). In binary, this data value has alternate one and zeros, and is thus great for
finding stuck bits.
Next, put the emulator into emulation mode by reconnecting the Vcc wire. The data just loaded into the RAM can be looked for at the pod by pulling the 'EPROM' $\overline{C E}$ and $\overline{O E}$ lines low using further wires. At this point it becomes convenient to plug the pod into a solderless breadboard or similar to make the necessary connections. If you do not have such a thing plug the pod into an IC socket and solder test wires to the pins.

Since unconnected TTL input lines float at the logical high level, leaving the emulation address inputs open circuit on the pod will address the highest location in the RAM; this is where we put our test data previously. So, using a voltmeter or a scope. it should be possible to look at the data bits coming out of the emulator pod one by one, checking that they are correct.

If all is well, try loading a value of $170(\mathrm{dec})$ into the same location (this value in binary is the same as the last but with the ones and zeros swapped) and check for the correct bits on the pod data pins. If you are using a plug-in breadboard to test the emulator, it is quite easy to check a few more addresses besides the top location - simply pull down some of the address pins on the pod to 0 V , having poked suitable test data into the RAM. This is certainly worth trying.

After all this static testing the real proof that the emulator is working must be to try it in a real target system, after loading real executable code into it.

Use

Using the emulator in a real target system is very simple, so long as a few basic rules are obeyed. With the target system unpowered, and the emulator connected to both the Spectrum and the target board, code should be assembled/compiled into the appropriate area of Spectrum RAM.

For 2732 emulation, the starting address in the Spectrum should be 53248 (dec). For 2764 emulation, the starting address in the Spectrum should be 49152 (dec).

Orie vital thing to remember is that these starting addresses are equivalent to address zero in the

PROJECT

Fig. 5 Emulator cable assemblies

品
'EPROM' - the whole 'EPROM' contents are offset in the Spectrum memory by an amount equal to these starting addresses.

If your assembler allows you to assemble object zode into a different area of memory to the runtime :ocations, then you are lucky. Simply write the source zode from the target system's point of view starting at address zero, and then assemble it into the Spectrum memory starting at the addresses listed above

PARTS LIST

Unfortunately, the majority of software development tools for the Spectrum cannot handle such complicated concepts (!), being much less powerful than proper professional development software (though of course much cheaper!')

The only problem this does create concerns the assembler generated addresses in the executable code. Obviously, you must assemble the code into the Spectrum starting from the addresses listed above. As far as the target system is concerned, all the absolute addresses generated by the assembler in the resulting object code wil have an inbuilt offset equal to that starting address. If you are able to make your code relocatable by using only relative addressing, then there is absolutely no problem. However, if you are forced to use absolute addresses in your program, then it will be necessary to correct them by hand, subtracting the Spectrum start address before download

This whole problem could have been overcome during the hardware design, by mapping the emulator into the area of Spectrum memory starting at zero instead of where it is. Unfortunately, most assemblers for the Spectrum will not allow assembly into that part of the memory map, since that is where the Spectrum operating system EPROM sits. Despite the problem with offsets, the actual method used at least guarantees that the assembler will work!

Once the code has been assembled, the power can be applied to the target system and (assuming that the program is correct) it should spring to life. Further downloads can then be achieved by simply repeating the above process again.

One interesting possibility worth noting concerns EPROM programmers Once the final working version of your software is available, having developed and tested it using your EPROM emulator, it is possible to use the emulator as the source of the data for an EPROM programmer. After downloading the code into the emulator, the pod can be plugged into the programmer, and the data read out, just as if you were copying a real EPROM. This provides an easy means for the transferral of code from the Spectrum to the programmer, without using messy serial links and the like.

Just one extra reason for building this simple but effective development too!!

MODEL RAILWAY CIRCUITS

Robert Penfold adds ballast to your layout with a selection of circuits to keep you on the right track

Digital Train Controller

This is a pulse type train controller that is primarily intended for computer control. Although the range of available speeds is rather limited (stop, full speed, and two intermediate) the transition from one speed to the next has been made very gradual to avoid any unrealistic jumps in speed. The circuit can easily be modified to provide a greater range of speeds if desired

The unit provides a variable average output voltage by varying the mark-space ratio of the output signal. Provided a suitable output frequency is used, this type of signal is suitable for driving DC electric motors. In fact it gives very good results, fine speed regulation and immunity from stalling at slow speeds.

This circuit uses a standard pulse width modulator with IC 1 to provide the triangular clock signal, and IC2 operating as the voltage comparator The clock frequency is just over 200 Hz , which seems to give good results with any small DC electric motor.

With the voltage at the non-inverting input (pin 2) of IC2 halfway between the peak to peak voltages of the clock signal, the output signal is a square wave having a perfect 1:1 mark-space ratio. Taking this input voltage higher results in it being exceeded by the clock signal for a smaller percentage of the time, and the high output period becomes longer than the low output time Reducing the input potential has the opposite effect. This gives the desired result, with an average output voltage that is proportional to the control voltage.

Q1 and Q2 form a complementary emitter follower output stage that enables the unit to handle
output currents of up to a couple of amps. Q2 is not strictly necessary but with D1 it helps to suppress voltages generated by the motor when Q 1 is switched off. As Q1 operates in a switching mode it only requires a small bolt-on heatsink. Q2 does not require a heatsink at all.

For straightforward manual control a potentiometer circuit to drive pin 3 of IC2 is all that is required. For computer or digital control a DAC is needed, and a very simple and inexpensive 2 -bit circuit can be used.

The state of the signals at inputs 1 and 2 alter the resistive network determining the signal fed into IC2, and therefore the speed of the train. With both inputs at 0, Q3 and Q4 are off so that R8 and R9 provide a high enough control voltage to keep the controller output continuously high.

Applying a logic 1 signal to input 1 or input 2 shunts either R10 or R13 across R9, giving a lower control voltage and a lower average output voltage. As R10 and R13 have different values, the two logic inputs provide different speeds Taking both inputs to logic 1 produces a very low average output voltage, and the train halts.

More transistor drivers and shunt resistors can be added to give a greater range of speeds. The transition time between speeds is proportional to the value of C 4 and is easily changed.

A reasonably smooth and stable 15 V supply, with current limiting to protect the unit against the inevitable short circuits on the output, is provided by a simple smoothing and regulator circuit fed from the 'raw' 12V DC output of a train controller. Direction control can be provided manually via a DPDT switch, or under computer control via a relay and driver circuit.

Two-colour Signal

This two-colour red/green signal is automatically operated by the train via sensors on the track. There are several ways of sensing the train as it passes but the two most simple and reliable methods are to use micro or reed switches.

I prefer reed switches positioned just under the track, activated by a magnet mounted just above track level on one of the pieces of rolling stock Sometimes
the DC motors used in locomotives will activate the reed switches but in most cases a small bar magnet must be added to each train by the constructor. Note that the reed switches are activated when parallel to a bar magnet and not when one pole of a magnet is applied to them. Switches should be mounted lengthwise along the centre of the track, with the magnet mounted lengthwise along the middle of the floor of a piece of rolling stock. The distance between them probably needs to be about 10 millimetres or less - this should be possible without continual

derailment.
The purpose of the sensors is to set the signal to red as it is passed by a train and then to reset it to green when the train has progressed to some point further along the track. The circuit is basically just a S-R flipflop built around IC1b and IClc. The other two gates of IC 1 are wired as inverters and used as buffers at the outputs of the flip-flop.

SW1 is the reed switch near the signal and when this is activated it sends the output of ICl a high This switches on Q1 and the red signal LED1. SW2 is turther along the track, and returns the output of ICla :o the low state. It also sends IC1d high activating LED2, the green signal.

Problems with spurious triggering due to switch bounce or stray electrical noise in the connecting cables are counteracted by R4, C2 and R6, C3. If manual override is required, add push-button switches in parallel with SW1 and SW2

It should be possible to control a ready-made signal, but LED types will probably incorporate current limiting resistors and R1 and R8 will then be unnecessary. The unit should also be able to control sub-miniature 12 V filament bulbs in the same way, but the bulb current should not exceed about 200 mA .

A 9 or 12 V battery is the easiest source of supply. IC2 and C4 to C6 are only needed if the unit is fed with the raw 12V DC output of a train controller.

Two-tone Horn

T
his sound effects unit is designed to simulate the sound of a two-tone horn, as used on many diesel and electric locomotives. This is the type of horn that goes up about a fifth in pitch (about 50% higher in frequency) after the initial tone The basic sound is not just asimple tone, and is actually a quite complex signal.

Accurately simulating an intricate sound of this Te is far from easy but results here are about as good $3 \equiv$ you are likely to obtain from a simple circuit and a budspeaker of about 65 mm in diameter! Unless you ser a steam only fanatic, it should certainly add a bit more realism to your model railway layout

The basic audio signal is generated by a 555 Imer (IC1) used in the standard astable circuit It drives aminiature high impedance loudspeaker via common emitter amplifier Q2. LS1 must have an impedance 464 R to 80 R and must not be a low impedance type The oscillator's operating frequency works out at approximately 550 Hz but we are using frequency -dulation applied via pin 5 of the device and it does aot: always operate at this frequency.

The horn starts fractionally flat, and moves up fothe normal operating pitch over a period of around 200 ms , regulated by C 1 charging up through R1.

Pin 5 of IC1 must be pulled lower in voltage in order to raise the output frequency and give the two. tone effect. This is provided automatically just under a second after switch-on by IC3, a quad 2 input NOR gate which has three of its gates connected to operate as a monostable with an output pulse duration of around 800 ms . This is triggered at switch-on by C7 and R8 but, as it provides a negative output pulse, Q2 is initially switched off. It is turned on when the output pulse ends and it then pulls pin 5 of IC1 lower in voltage by an amount that is controlled using RV2 In practice RV2 is adjusted 'by ear' to give the correct second tone from the unit C5 gives a smoother transition to the higher pitch for a slightly improved effect.

The second 555 oscillator is used to enrich the sound and its output is mixed with the main tone signal at a much lower level, frequency modulated in exactly the same way as the main tone generator It is probably best to initially leave one terminal of R9 unconnected so that RV2 can be adjusted with only the main oscillator driving the loudspeaker With R9 connected, RV1 can be adjusted for the best effect This will probably be with the second oscillator just slightly off-tune from the main one or perhaps with the second oscillator set about a fifth higher

Three-colour Signal

This signal is similar to the two-colour type but controls a three-colour (green, amber and red) signal and requires an additional track sensor

The signal changes from green to red as the train passes the sensor next to the signal The sensor further along the track sets the signal to amber, and a third sensor still further along the track brings it back to green again. Like the two-colour signal, the sensors can be micro or reed switches

The circuit is based on a CMOS 4017 BE . This can provide a standard divide by ten action, but it has ten more outputs (0 to 9), each of which go to logic 1 for one clock cycle, in sequence.

C3 provides a reset pulse at swtich on, taking output 0 high driving Q1 into conduction and turning on the green signal LED1. The track sensors (SW1 to SW3) provide a positive pulse to the clock of IC1 each time the train is detected. R1 and C2 provide switch debouncing and help avoid problems with electrical noise

Note that with this circuit it does not matter which track switch is used in which position on the line the circuit merely requires a clock pulse each time. A switch to permit manual setting of the signal might be useful since, if the train does not pass the signal's switch first, the lights will be out of sequence. A push button switch in parallel with SW1,2 and 3 can be used to sequence the circuit through to the desired colour.

The final clock pulse of each sequence takes out put 3 high but this is coupled to the reset input of IC1 by way of D1 and it takes the circuit back to the beginning of the sequence

If the signal is a home-made type. a yellow LED will suffice for LED3 or an orange type might be considered better. (Orange LEDs certainly seem to be generally much brighter than the yellow variety).

The circuit can be powered from a 9 or 12 V battery or from the 12 V DC output of a train controller using the smoothing regulator circuit from the twocolour signal circuit

Cycling Three-colour Signal

Similar to the three-colour signal this circuit cycles continuously under the control of a built-in clock oscillator, and it does not use track sensors at all. It is not so much a matter of the train activating the signal as the operator having to control the train so that it obeys the signal. The colour sequence of the signal is slightly different, with a green -- amber red - amber - green sequence. In order to avoid a lot of inactivity (and boredom) the signal has the colours weighted in favour of green.

Again this circuit is based on a 4017BE one-often decoder (IC2). In this case though, all ten outputs of the device are utilised. Outputs 0 through to 5 drive
the green LED1, outputs 6 and 9 drive the amber LED2, and outputs 7 and 8 control the red LED3. This gives the required colour sequence with heavy weighting in favour of a green signal. Rewiring diodes can alter the weighting or colour sequence if desired.

A low frequency clock signal is required, and this is provided by a standard 555 astable circuit. RV1 enables the clock frequency to be adjusted from a little over 1 Hz to under 0.25 Hz . This equates to a complete cycle time of between about 10 and 40 seconds but a longer cycle time can be achieved by making C2 higher in value. Note that C2 must be a high quality (low leakage) type due to the high timing resistance values used in the circuit. Any plastic foil type should be sultable but electrolytics are not recommended.

The notes on power sources for the two and three colour signals apply equally to this design. RV1 may have to be a large preset, as sub-miniature types in this value (4 M 7) can be difficult to obtain.

Points Controller

Some model railway points are purely mechanical but electric points are now a standard accessory. These are mostly very basic and are really just a manual point with the addition of a couple of solenoid mechanisms giving the option of manual operation or electric remote control using a form of changeover switch plus a 12 V DC supply.

The points have three terminals, one of which is a common terminal wired to one supply rail. The other terminals are wired to the other supply rail via the changeover switch which selects the desired solenoid. By alternating this switch the points can be repeatedly set and reset.

The changeover switch is slightly non-standard in that it is spring-loaded to a central off position, so that ordinarily it does not supply power to either solenoid. This is an important point, as the solenoid currents are quite high Applying power for more than a second or two risks burning the solenoid out These points are not always totally reliable in operation and the addition of a simple capacitive discharge circuit improves this and totally removes the risk of applying excessive power to the solenoids in an attempt to force operation.

In this points controller circuit the input supply is fed to a high value capacitor C1 by way of current limiting resistor R1. R1 keeps the current at no more than about 25 mA , which should be well short of the current needed to cause over-heating. It is also well short of the current need to drive the point from one setting to the other! This does not matter though, because C 1 will charge to virtually the full input supply voltage, and can supply a large enough burst of current to reliably operate the points. The extremely
low source impedance of a capacitor means that the large pulse of current normally removes any tendancy for the points to stick.

The solenoids can simply be driven from across C1 by way of the changeover switch. However, things can be refined a bit further, as in this circuit. The switch selects one of two Darlington power devices (Q1 or Q2) which control the solenoids. R2 and R3 limit the base currents and result in the switch only handling very small currents. This eliminatess any problems with contact sparking reducing the operating life of the switch. A miniature toggle type which is spring-loaded to a central off position is perfectly suitable for SW1.

D1 and D2 protect Q1 and Q2 against any high reverse voltage spikes generated across the solenoids as they are switched off. Q1 and Q2 do not require heatsinks Also note that it takes a second or so for C 1 to recharge after the unit has been used and that the controller cannot function until C 1 has almost fully recharged.

31

NOHOLDS

BARRED

TThe Bar code competition in the July issue attracted a large number of entries. we never knew so many readers were fluent in check-out-ese and baked-bean-ian. The lucky winner was Jim McCarthy of Wokingham who correctly decoded the bars and guessed the secret message held therein A year's free subscription to ETI goes to Mr McCarthy. The explanation of the bar code is given below.
The bars were encoded in the standard EAN 13-digit code as used on baked bean cans in the supermarket. This is in two sections with six figures in each section and a barrier code (101 or bar-gap-bar) zetween them and at each end. The pattern of figures in the first section Eves an additional figure at the beginning of the code. The last figure sa checksum.

KEEP

 REGULARDon't miss out on your favourite electronics mag. Why search high and low for a copy? Let your newsagent take the strain and reserve you a copy each month.
Fill in your name and address on the form below and hand it to your local newsagent. It will keep you as regular as All-bran, Alternatively, you can eat the coupon. They you'll need the All-bran

ELECTRONCS TODAY NIERNATONAL

Dear Mr Newsagent
Please order me a copy of ETI and reserve/deliver me a copy every month.

ELECTRONICS IODAY NTERNATIONAL

Note this magazine is available to your wholesaler through: SM Distribution. 6 Leigham Court Road. Streatham, London SW16 2PG. Tel: 01-677 8111.

（0983） 292847 Xen－Electronics（0983） 292847

Just a sample of stock．Ask for items not listed．

Super Project Kit Bargains

IC＇s		L．E．D．＇s		MTPBN10		15W Cover	1.07	Metalised			
400148	12	5 mm dia		TIP 121		25W Skl	． 60	Polyester			
40111	12	Red	13	TIP126	． 34	${ }^{25 W}$ Plug	53	5／5minim Pith			
4011	12	Green	12	TIP3iC	． 30	25w Cover	1.16	3.3 nF 40 OV			
4017	31	Orange	21	TIP32C	． 30	PC日 Mount	1.6	0．030．F 100 V	08		
4028	29	Yellow	15	2N2646	1.18	15W Skt	1.02	0.022 .5854	08		
4040	38	3mm dia		2N3055	47	15W Plug	1.02	0．047 F 0.000 V	08		
4053	37	Red	13			25W Plug	2.15	0.14 F 63 V	．		
4066	19	Green	13					$0.15 \mu \mathrm{~F} 33 \mathrm{~V}$	O8		
4081	12	Orange	21	2N6070A 100V 4A 1.29 㫙137600V				$0.33_{\mu} \mathrm{F} 63 \mathrm{~V}$			
45148	95	Yellow	13			$047 \mu \mathrm{~F} 9 \mathrm{~V}$	17				
Z 80 APIO	1.68	Fired Vollage		Intre－Aed Emilter				Radian lead			
72171 PI	4.00	Regulators		TLN105A	69	23 F 53 V	11	Disc Ceramic			
${ }_{5}^{645}$	7.30	7805	.36	$\begin{aligned} & \text { Infr-Aed Sensor } \\ & \text { TPS703A } \quad 1.89 \end{aligned}$		47 foF 63 y	． 06	100F 6is	05		
555 558	.41 3.30	． 7808	$\stackrel{68}{ }$			$33,516 \mathrm{~V}$	． 04	100pp 50 V	0		
74.	． 25	7815	36	1．C．Sockets		47w 10 V	． 06	1500F 50 V	0		
LI3K09，	1.87	？ 824	68			47\％ 25 V	06	zeopr 501	0		
TDA3056	5.56	\％905	39	6 Way		47， 4 F 35 V	08	0.01 F \％ 1 kV	5		
TL0746P	51	7912	2.10	8 Way	07		15	0.0224 F 63V	10		
SG3526N	3.69	7915	． 39	14 Way	11	$10 \mu \mathrm{~F} 35 \mathrm{~V}$	06	$0.047 \mu \mathrm{~F} 50 \mathrm{~V}$	12		
SG3536	4.92	7924	． 39	16 Way	13	$10 \mu \mathrm{~F} 63 \mathrm{~V}$	06	0．14F25V	06		
SL4860P	2.20	78L05	28	18 Way	15	22，F 100 V	21	$0.1 \mu \mathrm{~F} 50 \mathrm{~V}$	． 05		
SL490DP	2.13	78L08	28	20 Way	16	1004 F 10V	06				
ML926DP	3.04	78.12	28	22 Way	18	100 H F 16V					
S576B	2.66	78.15		24 Way	20	$100,4 \mathrm{~F} 25 \mathrm{~V}$		Resistors			
		79L05	30	28 Way	23	$100 \mu \mathrm{~F} 35 \mathrm{~V}$	08	Carbon Film			
		79.12	30	40 Wyy	． 33	$100 \mu \mathrm{~F} 50 \mathrm{~V}$		025 Watt 5\％			
Diodes		7965	3	Turned Pin		$100 \mu \mathrm{~F}$ 63V	． 21	1101088	each		
1 Nann 1	05			6 Way	12	$220 \mu \mathrm{~F} 10 \mathrm{~V}$	． 06	0．5Wall 5\％			
1140002	05	BC107.		Way	16	$330 / 8 \mathrm{~F}$ 16V	． 19	iovto luate dit			
1 N 4003	05		27	14 Way	${ }^{28}$	470 of 16 V	． 25				
1144003	． 05	BC109C	． 19	18 Wey	32	470\％F 80 V	． 40	Thermisto			
1 N 4005	． 05	OC182	． 05	18 Way	36		63	（NTC）			
1.4 ± 007	． 06	BC212	05	go Way	40	${ }^{1000} 0_{y} \mathrm{~F}, 10 \mathrm{~V}$	23	GM477 W（4．7］）	2.95		
1N540i	12	${ }^{\text {BC5 }}$－ 46 B		22 Way	44	$1000 \mathrm{H}^{5} 16 \mathrm{~V}$	27				
1N5406	14	BC556A	04	24 Way	48	$2200 \mu \mathrm{~F} 16 \mathrm{~V}$	45				
		80232	42	28 Way	56			Potentiometers			
		90675A	32	40 Way	8	Axtal Lead		PC8 Moun			
Zaner Olodes		80¢76A	32	Contectors		47 F F 3 V	06	1 D0：1			
$2.74{ }^{5}$	05	6PY51	54	D－Type Soldet		10 \％F 35 V	11	${ }^{1} \mathrm{~K}$ 碇			
5V1 4W	15	8F259	． 58	9W S＊t	43	$47 \mu \mathrm{~F} 25 \mathrm{~V}$	10	${ }^{5 \times 1}$	30		
N5 4W	06	ESR5	49	Sw Prug	38	$100,525 \mathrm{~V}$	． 18	10\％	． 50		
9V1 4W	06	IRF520	1.61	9 W Cover	． 98	100，F 100 V	． 18		． 50		
10V 4 W	06	IRF840	4.10	15W Skt	． 60	$470,510 \mathrm{~V}$	． 22		50		
11V 4W	． 05	$J 112$	57	15W Plug	． 53	rocour 10 V	． 31	$\begin{aligned} & 100 \mathrm{~K} \Omega \\ & 20 \end{aligned}$	． 50		

Mail or Telephone Orders only please to：
Dept 23，Samuel Whites Estate，Bridge Road，Cowes，Isle of Wight PO31 7LP．Please add $£ 1$ for 1 st class post and packaging，and 15% VAT to total．Stock listing available soon，please send SAE to be put on mail list

Z80 BASED CONTROLLER BOARD
 This super little micro board using the very powerful $280 A$ CPU rurining at 4 MH has all the necessary hardware to conlrol menial to the most complex tasks The PTH PCB measuring only 107×118 comprises $2 K$ EPROM（empty）， 2 K static RAM， 16 input lines using two 74LS244 and 16 output lines using two 74LS373．The port connections are va four 10 W pin strips，each having eight data lines，one ground and efther NMI，INT，WAIT or FIESET．A must for the small application small application
 Order as：Z80A－CTRL／K Kit Form
 Z80A－CTRL／B Built and Tested
 Z84C－CTRL／K Cmos Kit Form
 Z84C－CTRL／B Cmos Built and Tested
 $£ 20.45$
 £24．95
 £26．95
 RS232 TO CENTRONICS CONVERTER

This handy little interface is ideal for funning parallel printers from a serial port The low cost way out of buying expensive parallel ports for your computer Originally designed for the Sinclair OL and Northstar Dimension in mind．The PC8 measuring 60×62 comprises of the 6402 UART，Baud rate generator and ain necessary iogic，comes complete with wire and ribbon cable and 36W Centronics plug．（For＇D＇Type connector and hoods see selection on left Sinclair QL SER 1 Plug available extra at $£ 1.68$ ，order as $900-71052 \mathrm{~F}$ ）．
Order as：RS232－8／K Kit Form
$£ 18.40$
RS232－8／B Built and Tested
£23．90

DISTANCE MEASURING INSTRUMENT

An invaluable handy instrument ideal for quickly measuring rooms no bigger than 50 leet sq．The ultrasonic processing PTH PCB measuring only 77×85 has all the necessary components to output the distance in four digh BCD （multiplexed）reflecting either feet，meters or yards selectable by a three position switch．The kit comes complete with Parabolic reflector and transducer． Avallable extra is a liquid crystal display board measuring $5 \dagger \times 101$ which can be wired to the BCD output to the above board directly to display the distance in 0.5 inch high digits：
Order as：UDM126／K Kit Form
£24．95
UDM126／B Built and Tested
$£ 34.95$
LCDM4／K LCD Kit Form
$£ 14.30$
$£ 16.95$

FREE READERS' ADS

Buy, sell or exchange through our free service to readers

RS COMPONENTS STE BUS computer system. Five cards with 19in instrument case and PSU. All untested. £200. Tel: Jim 041-334 0802.

WANTED: Mordern dual beam oscilloscope minimum 15 MHz and mono headphones with impedances:- 1 k to 4 k . Phone D. E. Jones 01-249 4829.
TANGERINE DISK SYSTEM wanted. Also Tanram. Good price paid. Tel: (0786) 825393 after 6.00 pm .
ONYX COMPUTERS bits, software, books wanted. Pleàse contact Nick Hacking, 9A Bowmont Terrace, Glasgow G12 9LP.Tel: 041-339 1575. Thank you.

FISHER hi-fi cassette (single) with Dolby $£ 39$ ONO. Also Goodmans turntable: semi auto only $£ 39$ ONO. Ring David (0924) 498248.
OSCILLOSCOPE Scopex 14 D 10 dual trace 10 MHz with instruction/service manual and protective case. Home use only $£ 175$ David, Gt. Yarmouth 721879.
OSCILLOSCOPE Hameg HM204, dual trace, DC-20MHz, triggering: DC to 50 MHz , component tester, sweep delay. As new £330. Essex (0376) 84759
C64 AND 1541C drive plus software. Computer needs some repair Both for $£ 175$. Contact R. Nicol, 40 Ridgehill Avenue, Sheffield S12 2GL.
COMPETENT PROGRAMMER (6502/Z80) with BBC Master seeks interesting, moneysaving project (short-term). Jobs/tasks to D. Aspinall, 16 Viking Way, Brentwood, Essex
SUPERB QUALITY PSU. Ex-equipment, easily upgradable to 5A @ 7A, -12V @ 2A, plus additional 18V 7A AC. Cardframe. WWPCB, UART, 17025, RS232. £35. Tel: (0892) 833590.
OLIVETTI MS-DOS COMPUTER program £49. Advance dual trace 10 MHz scope $£ 150$. Quantity TV/hi-fi video manuals, as new £100. 01-897 9603.
COMMODORE + 4, drive, printer, many extras. VGC $£ 250$ ONO Phone 021-422 5344 (after 6pm).
WANTED - RML 380 Z boards/keyboards in working order. Phone 0214225344 (after 6pm).
WATFORD, 'LE MODEM' communications modem, suit BBC computer etc. complete in original packing with manual, disk. £65 Ring Woking 72120.
CAPACITY AND RESISTANCE BRIDGE, Hunts, also checks insulation and leakage resistance, good working condition. Ring Woking 72120 .
SIGNAL GENERATOR, RF, Advance model E2, 100 kHz to 100 MHz , internal 400 Hz modulation Fine/coarse attenuator. Clean condition. £30. Phone Woking 72120.
OSCILLOSCOPE, doublebeam, Scopex 4D10A, 10 mV sensitivity,
10 MHz bandwidth. TV field and ext. Trigger. Clean, working condition. Phone Woking 72120.
COMPUTER TERMINAL Televideo 970, RS232 com's, printer port, software setup via menu, only $£ 80$. Tel: (0206) 845450

WANTED: UK101 disk drive, DOS and manual, also Bas 3 with improved garbage routine. Steve (0803) 842166, after 600 pm
CIRCUIT DIAGRAMS, PCB foils, Vero layouts, etc, wanted on electric guitar effects, pre/amps. A Tuffery, 9 Grange Park Avenue, Raheny, Dublin 5, Ireland
DIABLO SERIES 30 15in front loading hard disk drives 3 @ £10 each Disks 50p each. Waterlooville (Nr Portsmouth) (0705) 266856 evenings.
IC DATA WANTED: HA11711, AN214, SH, Moridi PO Box 17445-165 Tehran, Iran.
SOLARTRON DVM CT469 laboratory precision voltmeter with many features but needs recalibrating. Not a pocket mode!! £15 Ring Bradford 736106.
LENCO TRANSCRIPTION TURNTABLE variable speed, 18-87 RPM Phone Nuneaton (0203) 327341
REQUIRE INFORMATION wiring diagram for Tandberg language system, 5000 (student tape-deck) any costs met Ring William Angus Ashington (0670) 855135.
ADVANCE TYPE F MODEL 1 A/F generator Triplet 1632 sig, Gem $200 \mathrm{kHz}-120 \mathrm{MHz}$ frequency meter BC 221 AH leak trough line tuners. Offers Tel: (0308) 897625
WANTED: Circuit diagram for GEC Soundeck music centre 5 Spectrum power supplies, 9V $1.4 \mathrm{amps}, £ 15$. J Bakewell. 21 Newbarns Rd, Barrow-in-Furness, Cumbria LA13 9SG.
CLEF ELECTRONIC PIANO six octave, fully touch sensitive. complete with integral amplifier, £495. Tel: (0785) 661391
GEORGE BRAY limited brass encased elements 240 V 650 W . 9in $\times 5 / \mathrm{sin}$ dia (trade price $£ 4247+$ VAT). New for sale $£ 5.50 \mathrm{Te}$): (0274) 593382

WANTED: SUPERBRAIN computer for spare drives. Must be cheap, any offers? V. O. Loan, 8 Springwood Avenue, Stirling
SPECTRUM 48K. LMT68FX2 keyboard, Swiftdisc drive, joystick, printer port, books, magazines, Over $£ 1,000$ software on disk $£ 320$ ONO. Twickenham 01-894 3982
WANTED: TECHNICS TURNTABLE model SL-B2, good price paid. Johnny Andersen Krokliveien 30584 Oslo 5, Norway
EDDYSTONE 730/4 communications receiver $480 \mathrm{kHz}-30 \mathrm{MHz}$ with BFO, includes manual, ideal for SWL, $£ 100$ ONO Tel: John 01-397 7931 evenings
NON-WORKING CALCULATORS. Keypads suitable combo-lock project (ETI April 88) £1 including postage Dave Edwards. 5 Vulcan St, Aberystwyth, SY23 1JH Tel: (0970) 624671
TOA 100 w PA system. 6 horn speakers, mike $£ 100$ Also XY recorder $£ 75$ ONOs 021-426 1197
WANTED old wireless set in Bakalite cabinet. Need not be in working order but cabinet must be in VGC please Phone (0752) 671277 evenings.
AVO Mk8 MULTIMETER 31 scales complete with probe set $£ 80$ Phone (0359) 50634

CONDITIONS

These ads are only for ETI readers not engaged in buying or selling the same items or services on a commercial basis.
Ads will be inserted as and when space permits. Insertion in a specific issue cannot be guaranteed.

- ETI reserves the right to alter or refuse ads whenever this is judged necessary.
- All ads are accepted in good faith, Neither the magazine nor its publishers can be held responsible for any errors in the epproducticin oi ads, not for untruths or misrepresentations, nor for the activities of advertisets of respondents.
Advertisers 'submitting ads for this section shall be deemed to have atcepted these conditions.

Ads should be 20 words or less including the address andior telephone number. Please write in black block capilals or type in the grid provided on this form or a photocopy.

Send the form to:
FREE READERS' ADS
Electronics Today International
1 Golden Square
London W1R 3AB
Enter your advertisement below

| | | | Enter youradverisement below | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |

$$
\begin{aligned}
& \text { ETI PCB } \\
& \text { SERVICE }
\end{aligned}
$$

Miss out the mess with ready-made pre-drilled PCBs for ETI projects

Use the form (or a photocopy) for your order Please fill out all parts of the form.
Make sure you use the board reference number. This not only identifies the board concerned but also tells you when the project was published. The first two numbers are the year of publication and the next two the month. The number after the dash indicates the particular project in that issue.

Terms are strictly payment with order. We cannot accept official orders but we can supply a pro forma invoice if required. Such orders will not be processed until payment is received.

Please make cheques out to ASP Ltd. Payment can also be made through Access and Visa cards by telephone on (0442) 41221.

Send your order to:

ETI PCB Service, ASP Readers Services, 9 Hall Road, Hemel Hempstead HP2 7BH

Price code	Price (inc.	Price code	Price (inc.
C	VAT)	V1.80	N
VAT)			
D	$£ 2.50$	O	$£ 13.10$
E	$£ 3.25$	P	$£ 17.80$
F	$£ 4.00$	Q	$£ 21.80$
G	$£ 4.75$	R	$£ 23.90$
H	$£ 5.50$	S	$£ 25.90$
J	$£ 6.62$	U	$£ 29.00$
K	$£ 7.20$	\mathbf{V}	$£ 32.20$
L	$£ 8.80$	W	$£ 35.80$
M	$£ 10.60$	X	$£ 40.70$

E8107-1	System A Disc input board MC-MM
E8107-2	2 Systern A pre-amplifier Main
E8108-1	System A Power Amp
E8109-2	System A PSU
E8201-2	Infant Guard
E8202-5	MM Stage Disc Pre-amp (Tilsbrook)
E8206-5	Logic Lock
E8208-1	Playmate Practice Amp (3bds)
E8212-1	ELCB
E8301-2	Analogue to digital conv $2 \times 81 /$ Spectrum)
E8305-3	Dual Audio Power Supply, Linsley Hood .. G
E8305-3	Balanced Input Preamplifier
E8307-2	Flash Trigger-sound or FR
E8308-1	Graphic Equailser $1 / 3$ Oct M
E8308-2	Servo Fail-safe C
E8309.1	NICAD Charger/Regenerator
E8310-3	Typewriter Interface - EX42 F
E831]-1	Minj Drum Synth
E8311-8	Moving Coll Pre-Pre-amp
E8312-3	Light Chaser EPROM Controlled (2 Bds)
E8402-1	Speech Board M
E8402-2	Modular Pre-amp Disc Input Mono F
E8402-3	Modular Pre-amp Stereo Ourput F
E8402-4	Modular Pre-amp Relay. PSU F
E8402-5	Modular Pre-amp Tone Main Mono F
E8402.6	Modular Pre-amp Tone Filter, Stereo F
E8402.7	Modular Pre-amp Balanced Output F
E8402-8	Modular Pre-amp Headphone Amp F F
E8404-2	Mains Remote control Receiver F
E8405-1	Auto Light Switch F
E8405-2	ZX81 EPROM Programmer
E8405-3	Mains Remote Control Transmitter
E8405-4	Centronics Interface
E8405.6	Drum Synth
E8406.1	Oric EPROM Board
E8406-2	Spectrum Joystick
E8406-3	Audio Design RIAA Stage G
E8406-4	AD Buffer/Pilter/Tone
E8406-5	AD Headphone Amp
E8406-6	AD Preamp PSU
E8406.7	AD Power Amp
E8406.8	AD Power Amp PSU
E8406-9	AD Stereo Power Meter
E8406-10	AD Input Clamp C
E8407.1	Warlock Alarm M
E8408-2	EPROM Emulator
E8408-3	Infra-red Alarm Transmitter
E8408-4	Infra-red Alarm Receiver
E8409-1	EX42 Keyboard Interface
E8409-2	Banshee Siren Unit
E8410-1	Echo Unit
E8410-2	Digital Cassette Deck
E8410-3	Disco Party Strobe
E8411-5	Video Vandal (3 boards)
E8411.6	Temperature Controller
E8411.7 M	Mains Failure Alarm D
E8411-8 K	Knite Light D
E8411-9 S	Stage Lighting interface
E8411-10 P	Perpetual Pendulum
E8412-1	Spectrum Centronics Interface
E8412.4 A	Active-8 Protection Unit
E8412-5 A	Active-8 Crossover
E8412-6 A	Active.8 LF EQ F
E8412.7 A	Active. 8 Equaliser F
E8501-3 D	Digital Delay (2 bds)
E8502-1 D	Digtal Delay Expander N
E8502.2 D	Data Logger
E8503-1 C	Combo Preamplitier
8503-2	THD Meter mV \& oscillator boards (2 bds) . K
E8503-3 T	THD Meter Mains PSU
E8504.1 Fr	Framestore Memory

E8107-2 Systern A pre-amplifier MainK
E8109-2 System A PSUFE8202-5 MM Stage Disc Pre-amp (Tilsbrook)
E8208-1 Playmate Practice Amp (3bds)K
E8301-2 Analogue to digital conv 2X81/Spectrum)E
G
Balanced input Preamplifier F
E8308-1 Graphic Equaliser $1 / 3 \mathrm{Oct}$ M
8309.1 NICAD Charger/Regenerator F
E8311-1 Mini Drum SunthE
E8312-3 Light Chaser EPROM Controlled (2 Bds)K
E8402-2 Modular Pre-amp Disc Input Mono F
E8402-4 Modular Pre-amp Relay. PSU F
E8402.6 Modular Pre-amp Tone Filter, Stereo F
FE8402-8 Modular Pre-amp Heanced Output
E8404-2 Mains Remote control RecelverFE8405-2 2X81 EPROM Programmer
E84054 Cent Transmitter H
E8405.6 Drum Synth F
E8406-2 Spectrum Joystick EE8406-4 AD Buffer/Filter/ToneH
E8406-5 AD Headphone Amp F
Please supply
Quantity Ref. no. Price Code Price Total Price£0.75
Total enclosed£

Please send my PCBs to: (block capitals please)

Name

Address

Postcode

ACCESS and VISA credit card orders can be taken on (0442) 41221 during office hours.
E8406.7 AD Power Amp H
J
E8406-9
E8406-10 AD Input Clamp CE8408-2 EPROM EmulatorN
E8408-4 Infra-red Alarm Receiver F
E8409-2 Banshee Siren Unit FE8410-2 Digital Cassetre DeckNE8411-5 Video Vandal (3 boards)N
E8411. 7 Temperanure ConfollerD
ghtF
8411-10 Perpetual Pendulum$\stackrel{E}{E}$
E8412.4 Active-8 Protection Unit$8412-5$ Active-8 CrossoveF
E812. 7 Acive 8 LF EQF
E8501-3 Digital Delay (2 bds)N
2 Data Logger J
E8503-2 THD Meter mV \& oscillator boards (2 bds)K
F
E8504.1 Framestore Memory M

E8504-3	Framestore Controlith. N	E8705-5	Budget Power Meter
E8504-4	Buzby Metert.............................. E	E8706-1	
E8504-5	CCD Delay . .eytro.......................... F F	E8706-2	MIDI Keyboard CPU .a........................ U
E8505-5	Stereo Simulatoris................... F	E8706-3	
E8506-1	Audio Mixer Main J	E8706-4	Flame Simulator
E8506-2	Audio Mixer PSU	E8707-1	MIDI Keyboard PSUeme H
E8506-3	Audio Mixer RIAAer D	E8707-2	Telephone Alarm-.......... . J
E8506-4	Audio Mixer Tone Control D	E8707-3	Nuclear Strategy Simulator anme......es. . . J
E8506-5		E8708-1	
E8507-1	Noise Gate	E8708-2	Rear Wiper Alarm
E8508-1	RCL Bridgese................. N	E8708-3	Rev Counter
E8508-2	EX42/BBC Interface	E8708-4	Car Alarm F
E8508-3	EPROM Emulators...................... L	E8708-5	Knight Raider ..en+......e.t.................. . J
E8509-1	Spectrum EPROM card F	E8709-1	Boiler Controllertoni.ut... G
E8509-2		E8709-2	Amstrad Sampler (2 bds) \quad P- . . . P
E8510-9	Sunrise Light Brightener K	E8709-3	Portable PA \qquad G
E8511-1	MTE Waveform Generator ,................ H	E8709-4	EEG Monitor (2 bds)
E8511-2	Millifaradometer	E8710-1	Concept CPU board
E8511-3	Cymbal Synth J	E8710-2	Concept Power board
E8511-5	Chorus Effect	E8710-3	Concept display board x.................. G
E8511-7	Enlarger Exposure Meter F	E8710-4	
E8511-8	Switching Regulator . .a....................... E	E8710-5	
E8511-9	Second Line of Defence	E8710-6	Big Digits minute board F
E8512-1	Specdrum Connector F	E8710-7	Big Digits battery board
E8512-2	MTE Pulse Generator H	E8711-1	Quiz Controller
E8512-3	Specdrum nown L	E8711-2	256K Printer Buffer N
E8601-2	Walkmatet..... L	E8712-1	Heating Management System O
E8601-3	MTE Counter-timere.t.a. M	E8712-2	
E8602-1	Digibaro :	E8712-3	Dream Machine (free PCB) D
E8603-2	Programmable Logic Evaluation Board H	E8801-2	Passive IR Alarms......... H
E8603-3	Sound Sampler Analogue Board	E8801-3	Deluxe Mains Conditioner G
E8604-1	JLLH PA PSUan..................... H	E8801-4	RGB Dissolve ...s.i....i.............
E8604-2	Matchbox Amplifier ..	E8802-1	Electric Fencer E
E8604-3	Matchbox Amp Bridging Version C	E8802-2	Telephone Intercoms.s........ L
E8604-4	MTE Analogue/Digital Probe ${ }^{\text {M }}$ M	E8802-3	Transistor Tester (2 bds) L
E8605-1	Microlight Intercom-x. E	E8802-4	Spectrum Co-processor CPU
E8605-2	Baud Rate Converter M	E8803-1	Co-processor RAM board
E8605-3	Baud Rate Converter PSU Board C	E8803-2	Beeb-Scope (3 bds) O
E8605-4	Portable PA H	E8803-3	Jumping Jack Flash
E8606-1	MIDI-CV Converter Board H	E8804-1	Spectrum Co-processor lnterface Board N
E8606-2	MIDI-CV Converter PSU D	E8804-2	
E8606-3	Troglograph ...t............................... . F	E8804-3	Kitchen Timer
E8606-4	80m Receiver H	E8805-1	Virtuoso 2U PSU
E8606-5	Sound Samplerr....... R	E8805-2	Virtuoso 3U PSU .n........................ N
E8607-1	Direction	E8805-3	Bicycle Speedometer F
E8607.2	Upgradeable Amp, MC stage (Stereo) G	E8805-4	Dynamic Noise Reduction :....s.n........... E
E8607-3	BBC Motor Controller	E8806-1	Universal digital panel meter L
E8608-1	Digital Panel Meteris..........: G	E8806-2	Universal bar graph panel meter mevernes. . K
E8608-2	Upgradeable Amp, MM stage (mono) H	E8806-3	Virtuoso power amp board .e.s.a.i.m.s.as... N
E8609-1		E8806-4	Virtuoso AOT boarde.... marno...an G
E8609-2	Experimental pre-amp ...tat.......suredis F	E8806-5	Metal detector
E8609-3	Upgradeable amp, Tone board (mono) H	E8806-6	Bicycle dynamo backup ...t.e.d.aid.an. . D
E8609-4	Upgradeable amp, Output board (mono) F	E8807-1	Bar Code Lock (2 bds) .n me.tre....usar....... N
E.8610-1	Audio Analyser Filter Board L	E8807-2	Analogue Computer Power Board sjom...... L
E8610-2	Audio Analyser Display Driver K	E8807-3	
E8610.3	Audio Analyser Displayt+t. H	E8807-4	Logic Probe -
E8610.4	Audio Analyser Power Supplys. F F	E8807-5	Updated FM stereo decoders.e............ J
E8611-1	Audio Switcher (2 bds) H	E8807-6	Breath Rate display board F
E\$611-2	PLL Frequency meter (4 bds)ars....t. Q	E8808-1	Breath rate main board H
ES611-3	Upgradeable Amp PSU J	E8808-2	Breath rate switch board ...n.............. C
E8611-4	Call meter, main board O	E8808-3	Telephone recorder us........................... D
E8611-5	Call meter, interface board N	E8808-4	Analogue computer main board (2 bds) M
E86121	Bongo Boxni.................... J	E8808-5	Random number display esiestat........... O
E8612-2	Biofeedback monitor (Free PCB) E	E8809-1	Spectrum EPROM Emulator .
E870\%.1	RGB Converter +a............e. . - F	E8809-2	Frequency meter (2 bds)
E8701.2	Mains Controller :.............................. D	E8809-3	Travellers' Aerial Amp .a........................ E
E8701.3	Flanger .n.t.e........................ H		
E8701.4	Audio Selector main board M		
E3701.5	Audio Selector PSUo......is. H		
E8701.6	Tacho-Dwell F		
E3702-1	Ratemeter main board K		
E8702-2	Ratemeter ranging board F		
E8702-3	Photo Process Controller (3 bds) O		
E8702-4	LEDline display board (2 off)		
- 58702.5	LEDline PSU and controller (2 bds) G		
58703-1	Capacitometer F		
E8703-2	Geiger Counter .is.......i.u.................sise L		
Es703-3	Credit Card Casino E		
E8704-1	BBC micro MIDl interface L		
E8704-2	ETIFaker patch box ...t...................... H		
ES704-3	24 Hr Sundial ${ }^{\text {a }}$.		
58705-3 EST05. 4	MIDI Keyboard keyswitch boards (3 bds) W Batlite		

E8705-5 Budget Power Meterter, _............. E
E8706-1 Hi-fi Power Meter .6.................................. N

E8706-4 Flame Simulator
E8707-1 MIDI Keyboard PSU
E8707-2 Telephone Alarm .. Nuclear Strategy Simulator
E8708-1 Remindalite
F
E8708-2 Rear Wiper Alarm G
-
E8708-5 Knight Raider ...
Boiler Controle
E8709-3 Portable PA

E8710-3
E8710-4 Hyper-Fuzz .n.................................... F
Big Digts digit boa

Quiz Controller
E8712-1 Heating Management System O

E8712-3 Dream Machine (free PCB) D
E8801-3
E8801-4 RGB Dissolve ...s................................... L

E8802-3 Transistor Tester (2 bds)
8802-4 Spectrum Co-processor CPU
E8803-1 Co-processor RAM board …..........isaze. N
E8803-3
E8804-1 Spectrum Co-processor Interface Board N
88804-2 Combo-lock
E8805-1 Virtuoso 2U PSU
E8805-2 Virtuoso 3U PSU N

E8806-1 Universal digital panel meter L
E8806-2 Universal bar graph panel meter nej.eane... K
,ituoso power amp board
E8806-5 Metal detector ...
806-6 Bicycle dynamo backup
E8807-2 Analogue Computer Power Board s.jw....... L
E8807-3 Bell Boy
E8807-4 Logic Probe
88807 -6 Breath Rate display board
E8808-1 Breath rate main board H
E8808-2 Breath rate switch board C
E8808-4 Analogue computer main board (2 bds) M
E8808-5 Random number display exisi O
E8809-1 Spectrum EPROM Emulator M
E8809-2 Frequency meter (2 bds) P
E8809-3 Travellers' Aerial Amp ._............................ E

Printer Buffer (November 1987)
The listed software for the EPROM has three errors The byte at 039A should be 20, at 039B 14 and at 049230 (all hex) Connections toi 21 c and 22 c in the circuit diagram disagree with Table 1 . The table is correct. C3-28 are 100n as listed in the parts list and not 10 n as in Fig 2 C 1 is orientated with the positive terminal to the right.

Dream Machine (December 1987)
The transistors used in this project are ST1702 $\mathrm{BC108s}$ can be substituted

Heating Management System
(December 1987)
A 4116 is not a suitable alternative to the 6116 specified A 4016 RAM chip will suffice \ln Fig. 1 the junction of R1/D5 should connect to D1-4/C1 and not cross The zener diodes above the temperature sensor ICs (IC16-19) should be deleted. C4 should be 220 n and not 220μ. C7-10 should be 10μ. Q2-7 should be 2N3904 and not BC3904

RGB Auto-Dissolve (January 1988) In Fig 5 there are marked two D6's. The right hand one should be D5 (they are both 1N148's anyway). In the text the reference to zener diode D5 should read ZD1

Power Conditioner (January 1988)
There is confusion between the values of R7 and R8 in the Parts List and Fig 1. These should be: R7-27k, R8-10k and not as given in the Parts List In addition, ZD1 is incorrectly orientated in Fig 3 The positive terminal should be at the southern end

Passive Infra-Red Alarm
(January 1988)
Fig 2(a) shows the base of Q1 connected to ground and to R14 It should be connected only to R14

Transistor Tester (February 1988)
The foil pattern for the main board was printed reversed left-right on the foil pages

Spectrum Co-processor (March 1988) Mogul Electronics, given in the Buylines as suppliers of the RAM chips, have moved to: Unit 11. Vestry Estate, Sevenoaks TN14 5EU Tel: (0732) 741841

Dynamic Noise Reduction (May 1988)
The L.M1894 is no longer available from the sources listed but it can be obtained from the author, Please address orders to Manu Mehra, 88 Gleneagie Road, Streatham, London SW16 6AF.

QL Output Port (Tech Tips May 1988)
Several problems with the diagram for this one A5 should read AS - that is, address strobe Pine 22 and 24 should be connected to +5 V and the junction of the (only) resistor and diode connected to VPA on the QL

PCB Foil Patterns

The frequency meter main board foil pattern

The frequency meter pre-amp board foil

The aerial amp screening topside foil

The aerial amp solderside foil

HEMRY'S
ELEGTRONICS FOR TRADE INDUSTRY, EXPORT, EDUGATION AND RETAIL

HERRY'S 404 Edgware Road, London W2 1ED Tel:01-724 0323 mat \pm

- ALSO AT Audio Electronics 301 Edgware Road W2 $01-7243564$ SALES OFFICE $01-2581831$ Telex 298102 Fax 01.7240322

To: A.S.P. Readers Services, 9 Hall Road, Maylands Wood Estate, Hemel Hempstead, Herts. HP2 7BH. Telephone: 044241221
Please send me_Adhesive Packs ADH @ $£ 995$

UK Inland Postage: 50 p
enclose cheque/P O payable to A S.P Ltd TOTAL Please debit my Barclaycard/Access Accoumt Number

EII 0
 ELECTRONICS TODAY INTERNATIONAL

CLASSIFIED
Heather Wust
01-437 0699 Ext 292
Send your requirements to:
Heather Wust, ETI Classified Department, ASP Ltd., 1 Golden Square, London W1
Lineage: 54p per word VAT inclusive (minimum 15 words) Semi Display: (minimum 2 cms)
£12.80 per single column centimetre + VAT
Ring for information on series bookings/discounts
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

SPECIAL OFFERS

CASSETTE MOTORS large and small 2 for £1.00. Mono and stereo cassette tape heads. 2 for £1.00. Microphone small for cass. tel etc. 2 for $£ 1.00$. Telephone buzzers at £250 each Please add 75p p\&p no VAT Access card accepted. Golden Orange Supplies, Brockhollands Road, Woodside, Bream Lydney, Glos. Tel: 0594563009

FREE MEMBERSHIP to the NATIONAL COMPONENT CLUB
For details and a free gift of components worth over $£ 10$ send only $\mathbf{£ 1 . 0 0}$ p\&p to Higher Ansford, Castle Cary. Somerset BA7 7JG

SECURITY ALARMS. Power amplifiers £5, 10W@12V/TMI and 40W@30V/TM2 reliable, + circuits!! 100W slaves $£ 10$, built. KIA-8, CunliffeRd, IIkley LS29 GIVEAWAY NEXT MONTH ... IT'S AMAZING!!

fOR SALE

GWM RADIO LTD, $40 / 42$ Portland Foad, Worthing, Sussex BN11 1ON Tel: (0903) 34897. Special purchase power supplies. Power-one international series type HB15 - 1.5A output 15 VDC at 1.5 A , unused boxed with spec sheet, open frame psu, £15 inc p\&p. Gould Econoflex type EX5-20/n, open frame - switch mode - output 5 V at 20A, unused boxed with spec sheet, $£ 30$ inc p\&p.

TO CLEAR. Part stripped equipment, ex-government. Hobby 500 ks , manuals, etc. Ring Chorley 75769 (02572) 24 hrs

Ring HEATHER WUST on 01-437 0699 for details of series discounts

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17 Telephone 01-531 1568				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	402	202
81034	363	209	1.10	0.88
351039	382	231	127	093
40 to 43	600	320	225	161
441047	-867	580	349	275
48	1596	958	638	3.69
SILVER PLATED COPPER WIRE				
141030	-1010	520		197
TINNED COPPER WIRE				
14 to 30	- 397	241	139	094
	Orders under $£ 300$ add 500			
SAE for list of copper and resistance wire Dealer enquities wercome				

S.H. COMPONENTS presents 18 pages of very competitively priced semi-conductors, switches, optoelectronics, etc. plus sample, send 85 p to: 17 Beeley Road, Grimsby, S. Humberside.

COMPONENTS AND EQUIPMENT

PROMs - EPROMs - PALs ANY PROGRAMMABLEIC SUPPLIED OA BLOWN
Typical prices (excluding VAT) $2716 £ 420$.ntr $2732 £ 385$ 2764 £2 $85 \quad 27128 £ 440$

BIPOLAR PROMS from $£ 1.35$
 eg B2S153. $76 L 5$ EP3io
Full design and protoryping service Any quantity programmed - SAE or
P.L.S., 16 Central Road

Worcester Park, Surrey, KT4 4 HZ . Phone: 01-330 6540

FROM DINKY TWEETERS TO MASSIVE WOOFERS

They are all in our latest illustrated cata logue of quality spares and accessories Send today only 75 p (refundable against first order) Fast by-return service

STRACHAN ELECTRONICS

(ET55), 9 Croall Place
Edinburgh EH7 4LT

ALARMS

MEIGHBOURHOOD WATCH

BURCLAR ALARM D.I.Y. KIT
will offer a professional
system at a DIY price
Ham mini beam 10, 15, 20 metres. Parts integrated circuits, transistors, diodes, valves, resistors, etc.
Service Manual and parts for Spectrum and Amstrad Send a 8" $\times 5^{\prime \prime}$ SAE for list.

M.J. SEAWARD (Mail Order)

Dept. (ET), St. Olafs Road, Stratton, Nr. Bude, Cornwall. Telephone: 02884892

Audio Mixer Kits suitable for studios, broadcast, discos, cassette opying, churches, MIDI set-ups Prices from only $\mathbf{£ 9 . 9 2}$

$$
\text { Send } 18 \mathrm{p} \text { for catalogue } 10:-
$$ K. Tek, P.O. Box 172A, Surbiton, Surrey KT6 6HN. Tel: 01-399 3990

F.J P. KITS-COMPONENTS Tel 054356487
readorsiprofoessional user alike Electronic components and capac lors swilchss, oplo, solder, cable boxes. pco maleral Semiconductors inc lis: EC107 109 14p ea, BFY 50-51 28p, 2 N 549650 pets 5 pall carb lilm Metal $111 \mathrm{~m} 1 \%$ CF seres ALLSp Eligclio yics Q.33-100, ' 8 p. $10-25 \mathrm{v}$ radala axial 9 P Phono plugs 15p, sockels Tems Corms Cheques POs, Cash, Access Visa wilh order To FJJ Kils Componenis 63 Princess Sireet Chadsmoor, Cannock Slalls 15 purchase $£ 5$ or over. Postage $£ 5$ plus liee, other 60 p.

BOOKS

FULL WORKSHOP
SERVICE MANUALS Any Video Recorder - $£ 1000+$ LSAE Any Colour/Mono TV, Any Audio, Music System - $£ 5.00+$ LSAE Amateur Radio Test, Vintage, Military etc
State Make/Model/Type with order FREE Catalogue Unigue Repair and Data Guices with all orders.
MAURITRON TECHNICAL SERVICES (ETI), 8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 9 GY

Advertise your
Books and Publications in ETI today 01-4370699

GOVERNMENT SURPLUS EQUIPMENT

ANCHOR SURPLUS LTD.
 The Cattlemarket, Nottingham NG2 3GY Tel 0602864902
 The UK's Largest Genuine Government Surplus Dealer

Always a large stock of Radio. Test,
Service and General Equipment in stock. Pye, Racal, Marconi, Tek Redifon, Plessey, Mullard:

Special: Eddystone $730 / 41-30 \mathrm{MHz}$ RX
£75- £110. Pye PF2 LB FM from $£ 25$.
Phone Rob(G4ROE) For Details.

ELECTRONICS TECHNICIANS FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCLL)

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)

1 YEAR

BTEC National Certificate (ONC) ELECTRONIC ENGINEERING
1-INFORMATION TECHNOLOGY
(Electronics, Satellite TV, CD, Networks, Telecomms)
2-ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis)
3-SOFTWARE ENGINEERING
(Electronics, Assembler, BASIC, PASCAL, CADCAM)
4-COMPUTING TECHNOLOGY
(Electronics, Computing Sottware/Hartware, Microelectronic Testing Methods)

10 MONTHS

BTEC Higher National Certificate (HNC)
COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Sysiems, Fault Diagnosis: ATE, Robotics)
HESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRAGFICAL WORK TO ENHANCE FUTURE EMPLOYMENTPROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
SHORTENEDGOUBSES OFFROM 3 TO 6 MONTHS CANBE ARRANGEDFOR
APPLICANTS WITH PREVIOUS ELECTRONICS KYOOWLEDGE
O.N.C. 19th September 1988

FULL PROSPECTUSFROM

LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENNYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

PLANS AND DESIGNS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue SAE to Plancentre Publications. Unit 7 Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

KITS

SURVEITETNCE KIIS

Micro Transmittar Kit $\mathbb{\$ 3 . 9 5}$ Long Range. Tuneable 80.115 MM Me . Senstive Telephone Monitor Kit © 14.95 Automatically records all incoming ansl outgoing calls, connects between iolephong flime ard assetse racorder (Not BT approved]
Pjesese sidd SOD Cheques PO:sro
QUANTEK ELECTRONICS LTD. (Dapt. ETI) Thestre Houne
4EA Stavion Road Birmingham B3y 3 TE .

PCB'S

PCB
 Manufacturers Which to Choose See Page 15

HAVE your electronic ideas become areanity, Let Highiand llec devolop and manufacture your circuils at a low cost for protorype and smail production runs with comprehensive docymentation which includes: Silk screen layouts, photo-artworks, pad-masters, soldermasks, bil of parts. Manutacture includes: sided. Finish: Aoller-tinned and drilled. For more details Tel: (0463) 226505 or F2x (0463) 226506.

```
- Kits
- Courses
- Surveillance
- Switches
- Plans
- Designs
Market your
Expertise in
ETI by calling 01-437 0699
```

PRINTED CIRCUIT BOARDS A very compelitive rates: 4 pence per square centimetre (less fororders of 10 plus) 1 offs; 100 offs. Enquiries: Watling Wires. 52 Watling Street, Nuneaton, Warwickshire. CV11 6 JL Telephone (0203) 382296.

MISCELLANEOUS

HEATHKIT U.K. Spares and service cenire Cedar Eleclromics. Unit 12 Station Drive, Bredon, Tewkesbury. Glos Tel. 0684 73127

WANTED

Turn your surplus transistors, IC's etc., into cash. Immediate settlement We also welcome the opportunity to quote for complete factory clearance. Contact:

COLES HARDING \& CO. 103 South Brink 103 South Brink
Wisbech, Cambs.
ESTABLISHED OVER 10 YEARS Tel: 0945584188
Fax Number: 0945588844
IDEAS/INVENTIONSwanted Call I.S.C. 014341272 or write, Dept ASP 99 Regent St, London W1.

SERVICES

ADS REPAIR AMPLIFIERS ! ! ! 1 Regent Road, Ilkley LS29 ... 100 Watt slaveamp modules/is Glass/pcb + 16 swg-heatsink ... ir $20 \mathrm{~Hz} 1030 \mathrm{KHz} \pm 3 \mathrm{db}$. . new and tested + directions.

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 100$. Components and P.C.B's available Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

SURVEILLANCE

ESKAN ELECTRONICS

LEADING MANUFACTURERS AND SUPPLIERS OF
SURVEILLANCE AND
SECURITY EQUIPMENT
MINIATURE TRANSMITTERS TELEPHONE MONITORING EQUIPMENT, AND MANY OTHERS
Send stamped addressed envelope for your free catalogue to:
172 Caledonian Road, London N1 OSG.

Telephone 01-278-1768 VISA
Trade Enquiries Welcome

DEADLINES

Next copy

Deadlines
are:

NOVEMBERISSUE 19th August 1988 DECEMBERISSUE 20th September 1988

TERMS \& CONDITIONS

CLASSIFIED ADVERTISING TERMS \& CONDITIONS Our lerms tor new advertisers (semi-display and lineage) are strictly pro-lorma payments (excluding reconnised adverising agencies Cheques and P.O's should be crossed and made payable to ARGUS SPECIALIST PUBLICATIONSLTD and sentlogether with the advertisements to

No. Classiried Dept., London W1R 3AB.
There are no reimbursements for cancellations Advertisements arrivingtoolate for a particular issue will be inserted in the following issue
unless accompanied by instructions to the uniess accormpanied by instructions te the
contrany tisthe responsibility of the advertiser toensure that the first insertion of every series is published correctly, and corrections musl be notified in ume for the second inserion, otherwise the publishers will not acceipt liability or offer any reduction in charges
Alladvertising sales are subject to Government
Regulations concerning VAT. Adverisers are responsible for comply ying with the various legal requirements in forceee, The Trade Description Acl, sex discrimination act \& the business advertisemenis (disclosure) order ising
Full Tems \& Conditions of Advertising availabie on reques

EDINBURGH OMNIELECTRONICS
stock a wide range of electronic components at 174 Dalkeith Road, Edinburgh EH16 5DX Tel: 0316672611 Open: Mon-Fri Gam-6pm, Sat gam-Spm
Send 2×1 日p stamps for latesl catalogue

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street Tel: 0512360154
47 Whitechapel. Tel: 0512365489 Liverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9 30-5 30

SOUTH GOAST
Classified advertising
could work for you.
Ring Heather Wust
Today to discuss
your plans.

「CLĀS̄STIFED̄COUPŌN

- ELECTRONICS TODAY INTERNATIONAL. CLASSIFIED ADVERTISEMENT department. no. I goloen square, London wir 3ab.

- |l|l|
- COMPONENTS
- WANTED

Rates: Lineage 54 p per word (VAT inclusive) minimum 15 words. Semi-display $£ 12.80$ per single column cm plus VAT. No reimbursements for cancellations. All ads must be pre-pald.
Name

-KITs

- PCB'S
\square OTHERWISE STATE

FOR SALE	\square COMPONENTS	\square WANTED	\square KITS	- PCB'S	\square OTHERWISE STATE
					1

OPEN CHANNEL

7 ithin a couple of years or so (well, three to be precise) drivers in London should have access to an automatic route guidance system, which is fitted into the car's dashboard

The Autoguide system will provide drivers with voice synthesised instructions regarding route at each junction, allowing drivers to miss busy spots and traffic hold-ups In theory, the system will save hours of drivers time at the wheel
A network of infra-red beacons linked to a central computer system will communicate with passing cars fitted with Autoguide and relevant information will be passed to the driver. The central computer system is to be frequently updated with traffic information including accidents, holdups and roadworks

Having spend many an hour fit to burst behind the wheel of my trusty rustbucket, I can appreciate the potential of such a product but I stil have reservations. The system is planned with beacons only on main routes in the capital and if one route is blocked chances are the adjacent ones will probably be busy too (particularly if most other drivers receive the same instructions) so it may be of only minor efficiency
Only the first drivers who chance to come upon a hold-up will benefit from the instructions to change route After a few minutes the alternative route will be taking twice the traffic it normally does and so will be blocked itself.

It may be that the system would need to re-route drivers along routes normally unused (sidestreets) as well as alternative main routes to ensure congestion doesn't occur. But 1 suppose residents in those sidestreets might object to my suggestion

High-tech Cops 'n' Robbers The Police computer system is to be upgraded by 1990 with a new network This will allow nationa! access to an index of records incorporating photographs of convicted people, criminal records and so on. It looks as though the network will allow access to the Swansea computer which holds and vehicle licensing data, too

High-tech Phone

British Airways aims to commence customer trials of satellite-linked public telephone calls from transatlantic Jumbo jets by the end of the year Initial non-customer trials have been successful, routed via British Telecom's Goonhilly earth station in Cornwall:

Eurocrypt - Tomb With a

 Vicw?Agreement about an international

standard for encryption of European direct broadcast satellite (DBS) television services has been reached after much argument. The standard covers scrambling of the transmitted picture and conditional access of the signal by individual televison receivers
The agreement means that hardware manufacturers can now press ahead to develop receivers complete with chip sets for the European market, instead of purely national ones The exception to this appears to be British Satellite Broadcasting (BSB) and its foreseen transmission standard D-MAC All other countries will be using D2-MAC. Careful design, however, should ensure either transmission standard can function with the Eurocrypt conditional access system

Meanwhile, BSB has been concen trating on placements of chip and module orders, in an effort to ensure they are available when manufacturers start to put together design plans for receivers. It has been reported that four million D-MAC transmission standard chips have been ordered from ITT subsidiary Intermetall (ITT already make the European-preferred D-MAC chips). An order has also been placed with General Instruments, to supply conditional access modules
Instead of going for a brand new chip design, BSB has accepted that the General Instruments modules are to use existing technology. However, it doesn't appear to be clear whether the BSB-chosen conditional access system follows the Eurocrypt standard If not, does it really matter? What seems to be important is that BSB is pulling its finger out nice and early, to ensure receiver manufac turers will have the goodies when they need them
This is an important move by BSB (itself merely a programming and organisational body) and does prove a high level of commitment by them to ensure that British DBS television services are going to work, right from day one, and right on schedule.

BT/Mercirn Can Work

Together!
British Telecom and Mercury are starting work with France Telecom to lay the first fibre optic cable across the Channel. The cable will start full-time operations next year France Telecom is to own 50% of the cable, British Telecom and Mercury have 25% each. The deal marks the first international link by Mercury

Linking Brighton to Dieppe, the cable will be the longest multi-fibre connection without signal repeaters.

Keith Brindley

PLAYBACK

oudspeaker designers have a problem. The engineers use a controlled environment (anechoic chamber) in which to perform measurements but this is hardly representative of the average consumer's living room.

It may only be some months after a product's launch that a manufacturer can accurately gauge the broad compatibility (or otherwise) of a new loudspeaker

Those innovative people at KEF are fully aware of this problem, having come unstuck themselves in days gone past. However they have recently announced a new drive unit technology under the banner of UniQ - an attempt to address the inherent difficulties of controlled speaker directivity

Directivity (both horizontal and vertical) is the key element here for it is the off-axis response of the loudspeaker that determines how favourably the system will interface with a given environment.

There is little point having a smooth on-axis response if sharp discontinuities appear as soon as you listen slightly off-axis. Furthermore, any ragged off-axis signals that are reflected from neighbouring boundaries will mix and colour the perceived on-axis response
Recent evidence suggests that vertical reflections from floor and ceiling tend to result in the most damning subjective colourations rather than the equivalent horizontal reflections occuring off nearby walls.

This may well be due to the relative ear/dispersion symmetry - the brain judging quality through dissimilarities between signals arriving at the ears.

As such it is the horizontal dispersion that influences the perception of stereo space and whether these reflections detract from absolute accuracy or not, any extra spatial effects are usually quite pleasing.

Anyway, though KEF have no control over the type of listening room used they have decided to at least minimise any unpleasant interactions by manipulating the off-axis characteristics of the speaker itself.
The Uni-Q driver adopts a co-axial construction but one that enjoys a truly coincident source. This has been achieved by placing a soft-dome high frequency unit in the throat of the main low frequency driver. KEF have therefore achieved a single physica coincidence of the drivers - close to the ideal point source This technique also avoids the uneven path lengths, subsequent time delays and crossover anomalies suffered by other two-way loudspeakers.
Tannoy's dual-concentric driver has been used for many years now but its

method of construction differs in several important respects. Here the treble unit is mounted behind the main driver and fires through several phase-compensating tubes machined out of the central pole piece. This is terminated in a concentric HF horn whose flare is continued by the exponential curve of the LF cone itself
Tannoy then employs a 'phase coherent' crossover network to align the acoustic centres at one point on the axis However, an electrical delay is only appropriate for on-axis correction It is certainly no substitute for pure physical alignment
KEF has achieved this goal by recourse to a new magnet material that offers up to 10 times the energy product of conventional ferrite, this being machined into a motor assembly small enough to sit right inside the voice coil of the bass driver!
Composed of neodymium, iron and boron this very expensive alloy magnet is sourced from Sumitomo in Japan The Delco Remy division of General Motors have a similar material on their books known as Magnequench. It is apparently slightly cheaper but offers a lower total energy product

A standard ferrite magnet is employed for the bass motor assembly while the cone is formed from BBC polypropylene, its curvature providing the optimum loading for the inset tweeter

So in short, KEF have succeeded in manufacturing the first coincident co-axial drive unit that offers a matched directivity throughout the crossover region and a carefully controlled directivity off-axis

Four new loudspeaker models ($£ 159-£ 599$) incorporate the fruits of this Uni-Q technology - the C35, C55, C75 and C95 but the results of any listening tests will have to wait until a future issue. . Oh yes, KEF will be catering for the DIYer's amongst you, the Uni-Q driver is seemingly ideal for home constructor projects.

Paul Miller

This month's Blueprint request comes from S.A. Bowen of the Birmingham and Black Country Bat Group
Bats emit ultrasonic sounds between 35 kHz and 80 kHz and we in the Birmingham \& Black Country Bat Group would like to build our own detector to convert these frequencies into the audible range. There are detectors on the market but they cost around $£ 150$ which is beyond our price range.

There are three obvious methods to tackle your problem and they have different disadvantages The most obvious is to record the sounds on a reel-to-reel tape recorder at a high speed and replay at a slower speed
This will decrease the frequency of the tones in proportion to the reduction in speed of tape. The duration of the tones is also increased, of course, and you can't listen until you have rewound the tape In addition, most tape recorders cannot be modified to handle such high frequencies.
The second possible method is similar in concept. The sounds from the bats would be picked up by a microphone, buffered and fed into a bucket brigade delay line at high speed. When the delay line is full the signals would be read out at (say) 01 times the read-in speed Thus 10 ms of sound would be stretched to 100 ms at 0.1 times the frequency

The big disadvantage here is that the bats are only being monitored for 10% of the time. However, the technique is suitable for moderate frequency changes, for example to correct the sound of speech on a tape recorder played too fast. I may provide a project along these lines next year,

This column is a savice to reaters to pravide chestrontc costans to ordef. Many a poliect never gers further than whe draving kosed because of difficuliea with one small part ll you aro stuck for a cireut or a technique. fot the El experf telo you edt Sond your regurementit, with as much detal as possible to EII Ruspotht: ? Golden Square, Whir 3AB.

The third possible approach would be to heterodyne the frequencies down so that some of the range would be audible. This has two obvious disadvantages. First of all, the bandwidth of sounds used by bats is 45 kHz , while the human ear is capable of hearing an absolute maximum of 20 kHz . Secondly, harmonic information is lost in the conversion.

For example, if a 35 kHz tone has a harmonic at 70 kHz , the $2: 1$ relationship will be lost if the frequencies are reduced so that the 35 kHz becomes 1 kHz and the 70 kHz becomes an inaudible 36 kHz This technique would, however, give immediate and continuous monitoring of the bats

Fig, 1 shows a possible system to achieve the required frequency shift. This circuit produces sum and difference frequencies of the oscillator and the bat sounds but only the difference frequency is audible A frequency of 45 kHz would be converted to approximately 10 kHz and 55 kHz to approximately 20 kHz . so the higher range of frequencies would be inaudible. However, if the higher range is needed then the low pass filter frequency and the oscillator frequency could be raised as appropriate - perhaps two switched frequencies would be useful

Fig 2 shows a possible circuit to Eo the job I would emphasise that this circuit has not be prototyped and may require some alterations when tes:ed but it should be workable in princig.e - the only piece of circuitry bst similar to something I have wested is the multiplier That is destgned :o conform to the information th the date

book but what the data book rell's is sometimes not the whole starys

In addition it ts very easy io overlook a small poins at the invid! design stage. so somplaxpermentation with access bo an uscillaror covering $35-80 \mathrm{ktiz}$ and an osoliloscope may be necessary.

This circuit sta from thenonginay to implementhet teterodyne sustern illustrated in Fig. if but is has the advantage that most pansuf the cinvoit are convertional and shpuld wots with minimumdetiouly, Thelongpats filter on the :npuiccould perhapshave been omitted becausu signals above 80 kHz are unlisely so be present. An input bufter was cosedadsoa titar has been inciuded tif minlmile the dance of unwarted mequatites peusing intermodulation.

The singut stage ls alth cun htogured to provict gain, 贾的 level of whoth is set by R4 and R5 The walueschosen should wahbutil lessigein is reeded the value of R : can be incrassed. The gaioshowin to the choult is the caaximum which is, sergsible with ine IC chosen ower the thequendy range It higher gain is needed then two resisors --ouplatheadded to the crrcuit of IC2 (the tigh pass fiter) to provide grain in thets stage aswell.
It is netesssay to provide enough Signal to iC3 to give a good signal to nolse talla, whithout overloading the input of the maltiplier The gain needed canbe determined by experithent: and will depend on the microphone chosen

The muxiplier uses the 3080 op evesonał transconductance amplifier. This device provides an output nourrent (rather than a voltage) proportional to the differential input volage multiplied by the bias current fed into pin 5 This is not exactly what is required because zero output must

occur at half scale bias current. To achieve this result, the input signal from the microphone is fed to the inverting input of the multiplier and a non-inverted signal is fed forward via R10 to cancel the inverted output signal at approximately half scale bias current

The output stage is simply a current summing stage with frequency roll-off to remove ultrasonic frequencies

The sinewave oscillator which provides the signal to multiply by the input signal is of a conventional design, using an integrator (which provides a 90° phase lag) and a lowpass filter (which provides a 90° phase lag at the corner frequency given by the formula $1 /(2 \times \pi \vee R 17 \times R 18 \times C 7 \times C 81)$ The oemponent values in the integrator are chosen to give enough voltage sain at the operating frequency to provide about $\pm 4 \mathrm{~V}$ peak output The amplitude of oscillation is stabilised by D1 and D2 but the distortion products generated by these diodes are filtered out by the filter and the integrator, so the output is a clean sinewave.

The microphone must be able to respond to frequencies up to at least 50 kHz to give a useful response and not all types will manage this 1 can only suggest experimentation as a means of finding a suitable type but probably an electret microphone would be more likely to work,

No audio amplifier design is shown because audio amplifiers for sma!! circuits are commonly available One suitable amplifier would be the Matchbox amplifier as published in the April 1986 ETI (photocopies from the ETI Photocopy Service folks)

First of all. RV1 should be adjusted to null out any offsets. The left hand end of RV2 (marked X) should be temporarily connected to 0 V and RV1 set to provide OV on the output of IC4

To adjust RV2, connect a signal generator providing about 40 kHz to the input of the circuit and adjust RV2 (still connected to 0 V) for no output from IC4 It is best to use an oscilloscope for this although an AC voltmeter may be usable If a signal generator is not available, the output signal from the oscillator could be used The signal level is much too large to feed to the input directly. so it must be potted down via a 10 k potentiometer

When RV2 has been adjusted, reconnect it to IC6, and the circuit is ready for field trials. When there are bats to listen to, RV3 should be set to adjust the oscillator frequency to reduce the frequency of the bats by the correct amount The unit should now be working

Androw Armstrong

The world of satellite television rears its head again this month with three new books on the scene Interest here for both the newcomer to the subject and for STV die-hards.

Satellite and Cable TV Scrambling and Descrambling by Brent Gale and Frank Baylin. £19. Vincent Technical Books, 24 River Gardens, Purley RG8 8BX.

A tricky subject this one Even the (American) authors note in the acknowledgements that all the other contributors wished to remain anonymous! However, it is debatable whether it is illegal to descrambie STV signals not intended for your reception and it is certainly not illegal to read about it!

This is an excellent book with just one (major) downfall - it is very American. This not only means it is written in that wearing style apparently loved on the other side of the pond but more importantly that few of the scrambling systems talked about have relevance in Europe
Nevertheless the book gives a good background to the whole subject and should be considered a useful read if you are contemplating building your own decoder (shame!)

The first third of the book is devoted to the principles of television reception and display Although this naturally concentrates on the American NTSC system much mention is made of PAL (and SECAM for that matter) and so it provides a good framework of reference
The rest of the book is devoted to the principles and practices of encryption The discussion of techniques used is quite fascinating After reading 70 pages of the trials and tribulations of broadcasting and receiving a TV picuture to see all the methods used to louse up the process is almost amusing
This section is really useful Not only are the technicalities of it all discussed in quite some detail (suf-

BOOKS
ficient for a competent TV engineer to go about designing a decoder) but example screen pictures are given for many of the scrambling methods This means that when you're presented with a moving mess on your TV screen you can have an intelligent stab at guessing the scrambling system being used

Unfortunately, the rest of the book (around half) is devoted to discussions of the innumerable commercial scrambling and descrambling units available in the US. Much information is given, including numerous photos of the boxes concerned and interconnection details
However, little of this is of any use to the European would-be viewer (although the various versions of MAC are well covered). Unless you are intending to try your hand at satellite TV DX-ing and grab some US TV, this is all largely wasted

It is interesting to see how the theory of the earlier chapters has been put into practise by the manufacturers but otherwise there's not a lot here for us limeys.

You are unlikely to find this book in your local library (although you could always try to persuade them to get it in for you) so the limited use that a read of it will give you is only available for the rather steep price of $£ 19$

The Hidden Signals on Satellite TV by Thomas Harrington and Bob Cooper. £20. Vincent Technical Books, 24 River Gardens, Purley RG8 8BX.

This is another one aimed at an American audience. It is about two years old and is now available in this country through STV specialists Vincent Technical Books This one came as something of an eye-opener for me I had no idea there was quite so much going on up there

Everyone knows about the satellite TV transmissions (that's what you get a dish for in the first place). The same satellites can also carry non-video material such as radio, teletype data, telephone channels, teletext and who knows what else
Many US satellites do indeed carry such information and this book goes into quite some detail of the technical methods of transmission of the data and the commercial (or otherwise) contents of these 'hidden' signals
Much of the information in this book is by way of experimental data - a write-up of what the authors have found in many years of searching the frequency spectrum and investigating the signals they've found
Of course the authors haven't been looking at the same satellites as you and I have available above the
horizon. This means all their findings are next to useless for UK readers or are they? Many of the techniques used for encoding the carrier signal with non-video data are used as much in this neck of the woods as in the US Indeed, some services mentioned such as Reuters' news-view service are international ones and can of course be received over here

The big problem is that this book is entirely (well, except for a few brief paragraphs at the end) concerned with the C-band satellites which make up the majority of transmissions in the US These are at a frequency of $37-4.2 \mathrm{GHz}$ as opposed to the 117-12 7GHz 'Ku-band' satellites which broadcast all the TV signals in this country and in Europe generally

There are many C-band satellites above our skies too but you'll need a second LNB and probably a second dish to pick them up
1 am sure there are a good many hidden transmissions coming from the European Ku-band satellites too (teletext is standard on the Sky and Superchannel stations and a satellite radio channel has recently started, broadcasting on a secondary audio frequency from one of the main STV satellites) but these are a different kettle of fish and this book does little to encourage the weary newcomer to venture off his receiver's pretuned settings

An Introduction To Satellite Television by F. A. Wilson. $£ 5.95$. Bernard Babani Publishing, The Grampians, Shepards Bush Road, London W6 7NF.

At last the Babani stable is getting into satellite television with this eminently understandable and all-encompassing guide to the subject.
Infact, it's even a little overencompassing. An awful lot seems to be standard chapters regurgitated with no real thought as to their relevance to STV enthusiasts Do we really need sections on scientific notation or SI

units? Are the internal technicalities of rocket motors or even amplifiers that relevant?

Where the book does concentrate on the subject in hand it does a good job The prose is pleasantly readable and despite the vast number of mathematical equations and formulae, it remains for the most part unforeboding and positively encouraging for the newcomer.

Considering this is a Babani book, not enough emphasis is put on the DIY aspects of STV. It quite correctly points out that building an STV receiver is beyond all but the most dedicated (and knowledgable) electronics enthusiast. However, only scant duty is paid to installation - an area where most ETI readers, for example, can easily not only save a bob or two but often perform a better job than many so-called professionals
Nevertheless, like most Babani offerings, this volume does offer a solid grounding in the subject Refreshingly it approaches the maths of it all neither skirting around the subject nor attempting the 'baffle 'em with science' approach
Little is said about the material on offer or scheduled to grace our screens in the future. Although the preface points out that in a restaurant it is hardly necessary to understand the chemistry of cooking to enjoy the food' this whole book makes a meal out of the theory with few programming appetisers
For a basic reference work, as a clear tutor through the labyrinth of dish efficiencies, free space path loss and the like, this one is cheap and readable.

Martin Tame

STAN WILLETIS 37 HICH ST, WEST BROMWICH, WEST MIDLANDS B70 GPB Tel: 021-553 0186

GRUNDIG INFRA-RED

 REMOTE-CONTROL SYSTEM VIF-K1 (13 function), consists of transmitter TPV 355 and VIF-E1 receivers, suitable for use with GRUNDIG 2×4 SUPER Video. Brand new and boxed, complete with battery, £4.99 p\&p £2.00.VIF-E1 receivers in boxes of 10, £9.99 p\&p £4.

GRUNDIG 2×4 video heads complete with head assembly, £24 p\&p £4. Complete power pack, £19.99 p\&p £4.00.

2×4 SUPER PANELS $=$ DFT - SERVO VIDEO -

 CROMA - STERITON, Meter-board, Modulator and Tuner, £5.99 p\&p £1.00.GRUNDIG REMOTE-CONTROL, $£ 2.99 \mathrm{p} \mathrm{\& p} £ 1.00$.
V2000 VIDEO TAPES, "MEMOREX", brand new and boxed; VCC360, £6.99; VCC480, £7.99.

VHS VIDEO TAPES: "VIDEOLAB" PREMIUM QUALITY brand, which we recommend and guarantee, one for one exchange, £1.99 p\&p $£ 1.00$.
TDK, SCOTCH, FUJI, £2.99; MEMOREX, £2.69.

VIDEO HEAD CASSETTE CLEANERS

£1.99, with full instructions. VHS or BETA, p\&p $£ 1.00$.

VIDEO HEAD CASSETTE DEMAGNATISER

Electronic circuit, LED indication degausses one second. £7.99 p\&p £1.00.

VIDEO RECORDER, SONY C5

AND C7 SANYO,, etc, perfect working order, £39.99 (caller only).

THERMOMETER-

COMPASS AND CLOCK (detachable), brand new. £1.99 p\&p 75p.

FREQUENCY TRANSLATOR
8 Channel UHF and tunable mains voltage, used but in working order, £4.99 p\&p £5.00.

PLEASE NOTE WE ARE INTERESTED IN PURCHASING ALL TYPES OF EQUIPMENT

HART ELECTRONICS are specialist producers of kits lor
designs by JOHN LINSLEY-HOOD. All kits are APPROVED designs by JOHN

LINSLEY-HOOD CASSETTE RECORDER CIRCUIT

Complete record ane taplay ciecults for very hign quality low nolse stereo cassifte recorder Clicuits ure optimised for our HS 16 Super Quikhly Sendust Alldy Head. Smilched tias and equalisation lo cater for chronie and terrictapes. Very easy 10

Complete Stereo Record Play K
VU Meters to suit............................ 30 each
Reprints of Original Articles
$860 \times$ Stereo Mic Amplifier
$£ 230$ each
75 p no VAT

LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Superb inlegraled amplitien kitsterived from John Linsley Hoods articies in raffinews
Jilra easy assembly and set-up with sound quallyy to pleàse the most discerning lisioner Ideal basis for afty domestic and save pounds off the individual component pitice.

K300-35 35 Watt. Discount price for Complete K11 $£ 98.79$ K300-45 45 Watt Discount price lor Complete Kit $£ 102.36$ RLH4\&5 Reprinis of Original Arlicies from $\mathrm{HI}-\mathrm{Fi}$ News
£1.05 no VAT

Out very latest hif for the discerning enthusbasy of quatry sound and an exotic least, lor lovers ot designs by Joh Linsley-Hood A combination of his ultra night quality FM toner and stero decoder describad in "ELECTRONICS TODAY INTEANATIONAL and the Synchrodyne AM cifised to match out 300 Steries amplifiers Novel elpeut fenfures in the FM section to include ready built pre-sioned front-end phass lecked loap demodulator with a respons down to DC and ndvanced sample and hold steceo decode logether make a luner which sounds better than the best the high-priced erotica but. Thanks To HART engineerin remains easy io build The Synchrodyme section with if Long and Medtum wave chantre's so necessary in these day af split programming if you want the vely best in read hif Histening then this is the cuines for you since all component are selecled by the designer to give the very hest sound this kalue lor monpy To cater for all needs lour versiana ar hwallacie with variteons up to the top of the range full AMrath model, with nny umf bemng upgracpable at any time send to our fully illustrated deleits

STUAAT TAPE RECORDER CIRCUITS
Complefe stereo record replay and thas Bystem for rajhio 1eel recorders These circuits will que stadro quallyy with gooo tape deck Separate secitons for record and reptay give optimuth pertormmer and atow it thurd head monvioning system to be used where the deck Mos this Fitted Standard ejiminging that ond valve tape recornes bark to ats ldeai to k 000 w Stereo Kil win wo recmoer back to tife
Prive .

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your ispes tack treble? A worn head could be ine probtem fitung ane of our replacement neads could restore pertormhasy and our TCi Test Casselle helps you set the agumuth gpot-on We are the actual importars which means you pop the benctio of tower prices for prme parts Compare us withotiser uppliers and see' The following 15 a list of our most popular stock
HC20 Permalloy Siereo Head. This is the stanclare head lifted as originat equipment on miosi decks 57.66 Si6 sendual Alloy Super, Hesd. The best head we can find sicic traquency rermalloy nigher oulput than Feprite, fan0551 d.Trach Head for aut....... Full apeciticalion record and playback head..... E14.60 KXt00 Siereo Permalloy R/P head Special Olter $£ 2.49$ SM166 $2 / 2$ Language Lab R P head. $\$ 13.35$ M166 $2 / 2$ Erase Head. Slandard mounting M150
48.85

150 2/2 Erase Head. DC Type HO75iE 4/4 Erase Head for Portas uil specifcallons of these and other amacispurpose eads in our lisls.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

head azimuth and tape speed invaluable when fitting new heads Only $£ 4.66$ plus VAT and 50 p postage
Tape Head De-magneliser. Handy size mains overated unit prevents bulld up of resicual head magnetisation causin noise on playback RCs to cover surfae Posi or 5 IRCs for Airman INLAND OVERSEAS
$\begin{array}{ll}\text { Orders up to } £ 10-50 \mathrm{p} & \text { Please send } \\ \text { Orders } £ 10 \text { to } £ 49-£ 1 & \text { Surtace or }\end{array}$
$\begin{array}{ll}\text { Orders } £ 10 \text { to } £ 49-£ 1 & \text { Surtace } \\ \text { Orders over } £ 50-£ 150 & \text { required }\end{array}$

Personal callers are always very welcome but please note that we are closed all day Saturday

24 hr SALES LINE
(0691) 652894

ALL PRICES EXCLUDE VAT UNLESS STATED

ADVERTISERS INDEX

A.S. P. READERS' SERVICES

.58
BICC-VERO ELECTRONICS LTD
25
CRICKLEWOOD ELECTRONICS 52
CRIMSON ELEKTRIK STOKE.. 40
GREENBANK ELECETRONICS .. 66
HART ELECTRONIC KITS LTD 66
HENRYS AUDIO SYSTEMS .
.66
PINEAPPLE SOFTWARE.
. .58
RAUCH PRECISION ENG LTD3
SAGE AUDIO
SLEE ELECTRO PRODUCTS
SPECIALIST SEMICON DEVICES . .9

STEWARTS OF READING . 10
SUMA DESIGNS
.52
TJA DEVELOPMEN
TK ELECTRONICS
.20
WILMSLOW AUDIO . .40

THE 'ALADDINS' CAVE OF ELECTRONIC \& COMPUIIER EQUIPMENT

COLOUR MONITORS

an mily seen on montore postag 3 tmes ou price ready
ET io a host of concure ar vdeo ouputs Manutacturers \% AGB - TTL - SYNC inpul for BEC type interiace etc 2 se COMP 75 ! composze video nput with integral audio Only $£ 99.00$ (E)

HIGH DEFINITION COLOUR

=- C ' EW CENTRONIC 14 " monitors in attractive style moulded

 $20^{11} \& 22^{11}$ AV Specials
asway made. UK manulacture, $A[$ tube, all soird state colou nemas complete with composite video anvd sound inputs, attrac Doscos. Uubs efc. Supplied in EXCELENT Itie used con Nomataitise

27 Montor E185.00 (h

MONOCHROME

2CHWLA M1000-100 5 CRT black \& white compacl chassis

zocications Accepts standard Composite video or indlvidua
soncs Operates from 12v OC at apprx 0 Ba. Some units may
-ror screen marks, but sidil in very usable condition Full ete 30 day guarantee \& full data Only $£ 29.00$ (C) zesed as abowe, with attractwe mourded. desk standing swive
use Dim om 12h,14.5w,26d.
$\mathbf{I 3 9 . 0 0}$ (C - $51-75$ uperation Dim com $\mathrm{cm} 11 \mathrm{~h}, 14 \mathrm{w}, 18 \mathrm{~d}$. Simple DIY circuth data apenvert data and separate syric input lo composite video Erand New $\mathbf{E} 55.00$ (B)
aDu zer Gien Screen. Litte used fuly cased, mains powere
 anser sete tully cased montors, idead for all types of AV or CCT whe aus amp and speaker. Soid in good, used condriont tin

FLOPPY DRIVE SCOOP Drives from Only £39.95

 Fing groproduct at ah time super low grices All unts unies 13 BC shoped to you with a fill 120 day guarantee. All unts ticin $100-24$ IEM competible 40 track FH doub
zaman Bil101. 4 FH 80 track doude sided Only $£ 39.95$ (8)

$$
\begin{aligned}
& \text { Only } 549 . \\
& \text { Canon, } 9 \text { ec, }
\end{aligned}
$$ Brand Ne DISK DRIVE ACCESSORIES

 $\ldots-3$-assis PSU lor 2×8 drives $£ 39.95$ (B) 8" DISK DAIVES
Scit 300 sor singe shed returdisned
Elicisuble sided defubibshed
$\$ 175.00$ (E)
\qquad PRANO NEM OF Sof Sec

COMPUTER SYSTEMS

25i anc aczoon. Big broiber of the famous EINSTEIN,
 בun onsional 3 plece systern comprises: Qualty hight res

3. Tontor Sculptured g2 key keyboard and plintitund con Iz Treck double slded dink dirtves. Many other featires Eranson port 64 fram and ready to nn solware Sup ZhLiO NEW

\#\# Mis \$100 systern capable of nunning other TURBO o Winin writ teatures heavy duty box cortalring a powerfu - 20 cou boards whi 182k of RAM allow the use of
nuluge with upto 4 RS232 serial intertaces. Many otior
serery backed real time ciock, all IC's socketed etc
Wece prose of orly E245.00 (F)

PRINTERS

Ultra Fast 240 cps NEWBURY DATA NDR 8840 High Speed Pinters Only E449!!

POWER SUPPLIES

 LESSEY PL 122 Funy endosed $12 v$ DC 2 amp PSU. Regulated and AC-DC Lnear PSU outputs of $+5 \mathrm{v} 5 \mathrm{Sa}, 5 \mathrm{va} 0.6 \mathrm{a}+24 \mathrm{v} 5 \mathrm{~F}$ Fully redu
 BOSNERT 13088 swith mode supply ideal disk drives $\$ 19.95$ (B
 EOSHERT 13000 same as above spec but outparts of $+5 \mathrm{v} 6 \mathrm{a} .+24$ GAEENDALE 19AB0E 60 Watt switch mode ounputs $+5 v 6 \mathrm{a} .95$ (B) CONVER AC $130-3001$ High 205.5 VDE AFE Tested $£ 24.95$ (B Entach mode PSU Oulputs ghe +5v 15a svia, +8-12v6a. Dim6. F 27 nit 125 Cumeralist price 190 . Our price Now 158.95 .00 (C FARNELL G24 $5 S$ Compact 24v 5 amp switch mode full endosed
New 295.00 (C) Special Offer
EXPERIMENTORS PSU

ONLY
hade to the highest spec for BT this unt glves several fully $-5 v 2 a-8-12 v 1 a-+24 v$ la and $+5 v$ fully floating at 50 ma. ovea ler school labs erc. Quantiy d scount avaiable.

The AMAZING TELEBOX
Converts your monitor inte:
 yming, same tito a tatulous coiour TV. Dont worty if your montor Herc a soeat er plus an auxilary output for Headphones or HI FI sys case lians powered. Buil to BS sately specs, Many oither uses for TV Canmoe code (B)

Ty SOUND TUNER
ONLY
£59 95

MODEMS
 Modeme contaci ou technical sum suogets
 RECHARGEABLE BATTERIES

SPECLAL PURCHASE
V22 12ONLPUAMHODEMS
ONY Y 149 I

MASTER SYSTEMS type 212 ,ricropoges
sor oxntroleo VZ2 hin duplen 1200 beid. in for ogntroled V22 has duplen 1200 beid. The features for error tac oaka cornms ax the stag gening speec of $12 x$ srarassers per second dita connect time I! Aod riest facts to
qive away prce and pu nae a sijpert buy give away prce and ou ra-te a sjpert buy Remale erro dagnostics SYNC or ASYNC use SP condtion wimeded ExCE ENT sightity used

OUANNN Only $£ 149(0)$

CONCORD Y22 1200 baud as new 5330.00 (E)

 CONCORD V22 $1200-2400$ BIS E399.00 E RIXON EXBT Modem 27 V22 1200 E225.00 (E modern for 4800 baud syncuse modern for 4800 baud sync use. E295.00 (E) EXBThilly tested.EXBThtly tested.
MODEM $20-175-1200$ BaUD tor 109.00 (E) PRESTEL Etc EXBT flliy lested TRANSDATA $307 A 300$ baud $£ 49.00$ (E) with RS232 1/O Brand New $£ 49.00$ (E) RS232 DATA CABLES 16 ft lorg $25 w$ D plug to 25 way D socket. Brand New Onty $£ 9.96$ (A) $\begin{array}{ll}\text { As above but } 2 \text { metres iong } & \text { £4.89 (A) } \\ \text { Br plug \& cable for new type socket } & \boxed{2} 95 \\ \text { (A) }\end{array}$
canterance tree
430012 J 3 Ah A300 6V 3 Ah NICKEL RFE $\begin{gathered}2.95 \\ \text { £ } \\ \text { (A }\end{gathered}$ NICKEL CADMIUM
Quality 12 V 4 Ah coll pack, Orginally made this unit contains 10 high quality GE nicad, 6 ype cells, configured in a smart robust BRAND NEW $\mathbf{2 4} 95$ (B 12v 17 Ah Ullua rugged, all weather, virtuall ALCAD. Unir features $10 \times$ NICAD slack by XL 1.5 cells \ln wooden crate. Supplied to the oufput aurrents \& whilistand long perióds a storage In discharged state. Dim cm61 $\times 14 \times$ 22 Cont over $£ 250$ Supplied unused 8 tested COMDNele with ositicions
EX EQUIPMENT NICAD oells by GE
Aermoved from equipment and believed In good but used condtion 'F' size 7Ah 6 for

BRAND NEW 85 Mb

End of line purchase errables thts brand ne Init to be offered at an all tirme super low pnice full CPU contro and industry standard SMD interface, Ultra high speed data transier and access times leare the good dod ST506 mer ace standing Supplied BRANO NEW whth ull manuar Ondy E 399.00 (E AT unth in case with PSU pub system ior iB interace caros for upto a dlves on 1 BM A

COOLING FANS

SPECIAL INTEREST

Please call for avaidability or further into.
RACAL-REDAC real time. colou drafting PCB layout system $£ 3950$ docetc $11 / 750$ inc 2 Mb Ram OZ and fu HP7580A 8 per digital A1 drum pioter with ceintenace As New 84750 CHEETAH Telex machine 1.5 hw 115 v EO Hz power source $£ 950$ 500 watt INVERTER $24 \mathrm{~V} D \mathrm{C}$ to 240 VAC sine Wave 50 Hz OUTDU Machine for PCB rranslacture Cased UNIX system complete with sotwan and 40 Mb winchester disk drive E2750
WAYNE KERR RA200 Audio, real ume re quercy response analyzer TV test 53000 TEKTRONIX R140 NTSC TV test ${ }^{2690}$ tandard.
MP 3271 Correator system $\Sigma 350$ ink ive portable Microwave speech / data ink 12v DC, 70 mle range The pair $£ 275.00$

MAIL ORDER \& OFFICES LONDON SHOP

SINGLE-ACTION WIRE-STRIPPERS

Extremely quick and easy to use Just place wire in jaws and squeeze handles. Wire is neatly stripped in one simple action. Also includes tension adjustment and cutter. NEW LOW PRICE

HELPING HANDS

Remarkably low price on this most useful piece of equipment Two iully adiustable crocodile clips hoid pcos setc. fimly and glass magnifier allows close inspection.

votolins SUPPLY THE TOOLS! SO YOU CAN FINISH THEE JOB WITH BASE!

(2. SALES 0702554161

SOLDER by/hI 륜 지

TRMin oyyar 10 matince OUR NMW BREND

(=£5.99+VAT)
PER REEL

($=£ 4.34+$ VAT $)$
PER REEL
(SC20W price £99.80).

HOBBY VICE

Lever operated suction grip base holds tightly to smooth non-porous surfaces Ideal for holding small components and assemblies. Metal faced jaws $37 \times 11 \mathrm{~mm}$, open to 35 mm Base $60 \times 60 \mathrm{~mm}$. Height 68 mm

Top qualitystandard ilux-cored solder designed for hand and machine soldering of electronic components. Manufactured to BSZ19 Grade KP, BS441 Grade 2 and BS5625 Class 5 a . The solder is a $60 \% \mathrm{tin}, 40 \%$ lead alloy containing a non-corrosive flux. Solder starts to melt at $183^{\circ} \mathrm{C}$ and is fully molten at $188^{\circ} \mathrm{C}$. Availabie on $1 / 2 \mathrm{~kg}$ reels in 0.7 mm dia. $(22 \mathrm{swg})$ and 1.2 mm dia. (18 swg). Perfect for use with allihand soldering irens including Antex, Weller ete
UNBEATABLE TRIAL OFFER PRICE ON AIRETETO FINE QUALITY SOLDERS.

"The finest soldering irons in the world." - Maplin recommend Antex.
Precision soldering irons that are a pleasure to use Low leakage currents, ceramic
element, shatterproof hanidie It all adds ûp to the number one soldering equipment for the hobbyist. Use CS type for very fine work, XS for general use.

SOLDERING IRON STAND

Suitable for most soldering irons.

All 1 deroltis Electronics P.O. Box 3, Rayleigh, Essex, SS6 8LR. MANY MURE PRODUCTS INSIDE!

Shops at: OSuthon New Rodd, Erangiton Birmingham. O302 Gloucestre Road, Aristol. 0.159 .161 king Stret. Hammersmilh: London 980×10 d Aload, Manchester 346 -48 Sevois Vality Rozd. Southamplon O282:284 London Roro, Southend. on. Sea.

[^0]: rop outult AUDIOPHILE COMPONENTS

 ## NEW FROM SAGE AUDIO
 HIGHEST POSSIBL TECHNICAL (1]: $51 \mathrm{a}\binom{100 \mathrm{~W} 1050 \mathrm{~W}}{ \pm 50 \mathrm{~V} 10 \pm 75 \mathrm{~V}}$ PEAFORMANCE

 THE MOST ADVANCED HI-FI AMP IN THE WORLD
 Following the success of the original SUPERMOS we now launch a higher powered version with many new exclusive sound improvements not available on any othe amplifier, ki1, board module or ready made.

 ## FEATURES:-

 - Highly efficient distortionless PURE CLASS A throughout (low heat generation)
 - Top audiophile components inc best SMD's
 - Exclusively made matched custom semiconductors
 - Minimal capacitor design (without DC servos).
 - PSU sound colouration eliminated
 - Advanced PSU feedforward ripple elimination including
 internally separately regulated voltage AND current to
 ALL stages using SAGE Super-Supply circuitry
 - Total reactance (difficult speaker) drive capable

 THD 0.0001%, Slewrate $685 \mathrm{v} / \mathrm{us}$, f-3dB $0.5 \mathrm{~Hz}-350 \mathrm{kHz}, \mathrm{O} / \mathrm{P}$ Current 80 amps , Damping factor 940 , transient power (2ohms) up to 1800 W max.

 PLUS By innovative technical design we have eliminated 5 individual sound colouration component found in all other conventional amplifiers

 EL/M/INA TED - 1) Emitter resistors 2) Zobel networks 3) HF pole compensation $4 \mid$ Fixed bias Vbe muitiplier and temp gen dislortions 5) Capacitor sound
 AND THERES MORE ... Sage exclusive CLEAN CLIPPING \{not to be cunfused with soft clippiagr eliminates PSU rippie from reaching the output even when severaly clipped, this together with individual regulated supplies to all stages (Super-supplies) TOTALLY eliminates FSU component sound colouratiens. (A Worlo forsti)

 COMING SOON The SAGE 'ACTIVE P/ MODE' CLASS A preamp, THE definitive match to the SUPERMOS power amplifiers.

 ## AND THERE'S MORE.

 . . . Whe cantl possibly describe this amp futly in this ad, to receive coin plus a 260 ,

 THE ORIGINAL SUPERMOS MODULES SO-r5OW EE5 plus (5.50 os) 8140 ($\mathrm{p} \& \mathrm{p}$ £2)

 ## Send to
 SRIE
 AUCIC
 Wendy (Sales Dept.), Construction House, Whitley
 Street, Bingley. W Yorks, BD16 4JH England
 Tel. (0274) 568647 , Tlx: 517783. Fax: 0274) 551065

