WIN
Satellite TV
system worth
£1300
(see inside back cover)

BEGINNERS
1st CLASS Logic probe project

ANALOGUE COMPUTER
Build your own

OP-AMPS
The theory continues

HEALTH AND HAPPINESS
Breath/heart rate meter project

BAR CODE LOCK
The striped protector

AUDIO • COMPUTING • MUSIC • DOMESTIC
OMP POWER AMPLIFIER MODULES

OMP POWER AMPLIFIER MODULES

- OMP100 Mk II Bi-Polar Output power: 110 watts R.M.S. into 4 ohms. Frequency Response: 10Hz - 100KHz. S/N Ratio: 118dB Sens. for Max output 500Vrms x 2. Size: 350 x 175 x 65mm. PRICE £33.99 - £30.00 P&P.
- OMP100 Mk III Mos-Fet Output power: 110 watts R.M.S. into 4 ohms. Frequency Respon- se: 10Hz - 100KHz. 3dB Damping Factor 80. Slow Rate 45V/us. T.H.D. Typical 0.02%. Input Sensitivity 500Vrms x 2. S/N Ratio 130dB. Size: 300 x 160 x 100mm. PRICE £62.99 - £52.50 P&P.
- OMP200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms. Frequency Response: 10Hz - 100KHz. 3dB Damping Factor 250. Slow Rate 500V/us. T.H.D. Typical 0.0008%. Input Sensitivity 500Vrms x 2. S/N Ratio 130dB. Size: 330 x 147 x 102mm. PRICE £79.99 - £64.50 P&P.

LOUDSPEAKERS 5" to 15" up to 400 WATTS R.M.S.

POWER RANGE

<table>
<thead>
<tr>
<th>Power Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 watts R.M.S.</td>
<td>Hi-Fi Disco</td>
</tr>
<tr>
<td>15 watts R.M.S.</td>
<td>C125 GP Lead guitar/keyboard/Discos</td>
</tr>
<tr>
<td>25 watts R.M.S.</td>
<td>C125 GP Lead guitar/keyboard/Discos</td>
</tr>
<tr>
<td>50 watts R.M.S.</td>
<td>C125 GP Lead guitar/keyboard/Discos</td>
</tr>
</tbody>
</table>

PRICE INCLUDES V.A.T. • PROMPT DELIVERIES • FRIENDLY SERVICE • LARGE & 20P STAMP FOR CURRENT LIST.

BURGLAR ALARM

TEDCÈNT SAFEGUARD MINDER Burgle Alarm System.

- Stand alone wireless. Fully wireless equipment.
- No mains power required. Fully mains powered.
- Guaranteed.
- Control unit - Houses microprocessor based unit. Takes up to 15 metres adjutment and keypads side by side. Three position key switch: 1st - test. 2nd - armed. 3rd - to a patented genuine burglar alarm.

19" STEREO DISCO RACK AMPS

BSR P295 ELECTRONIC TURNTABLE

- Electronic speed control 45, 33, 1/3, 78 rpm
- Three separate independent pickup systems
- Professional quality

PEIZO ELECTRIC TWEETERS - Motorola

- High quality 40mm dome
- Unique dome shape
- Threaded mount
- Complete with motorists

STEREO DISCO MIXER

STEREO DISCO MIXER with 2 - 5 bands.

- Graphic equalisers and twin 7 segment LED meters.
- Many output features.
- Ideal for mobile disco and portable work.
- Supplied with complete manual.

STereo DISCO MIXER with 2 - 3 bands.

- Graphic equalisers and twin 7 segment LED meters.
- Many output features.
- Ideal for mobile disco and portable work.
- Supplied with complete manual.

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572
Construct your electronic circuits the new, quick and easy-to-learn way, *WITHOUT* solder: with Circuigraph Easiwire from BICC-VERO

With Easiwire all you do is wind the circuit wire tightly around the component pins. No soldering, no chemicals, no extras, simplicity itself. Circuits can be changed easily, and components re-used.

Easiwire comes in kit form. It contains all you need to construct circuits: a high-quality wiring pen with integral wire cutter, 2 reels of wire, a tool for component positioning and removal, a flexible injection moulded wiring board, double-sided adhesive sheets, spring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available separately too.

To take advantage of the special introductory offer, complete the coupon on the right and send it to:

BICC-VERO ELECTRONICS LIMITED,
Flanders Road,
Hedge End,
Southampton, SO3 3LG

| Please rush me... Easiwire kits, retail price £18.-; special introductory offer £15.- (includes p & p and VAT). |
| Card Number | Expiry Date |
| Name | Address |
| Signature |

or phone 04892 88774 now with your credit card number (24-hour answering service).
Degrees Of Freedom

Win one of six Maplin min/max thermometers in this free-to-enter competition

Op-amps

Paul Chappell's Circuit Theory continues to study the humble op-amp and finds a use for a myriad different configurations for this useful circuit element.
Brothers Ltd., Sheffield.

PBt]JEIT 38

Analogue Computer
Paul Cuthbertson shows how to put an end to the digital revolution with your very own analogue computer to build.

PBt]JEIT 44

Logically Speaking
Rashid Adat presents a remarkably simple Logic Probe for this month's beginners' 1st Class project.

PBt]JEIT 47

Competition & Results
Unmask the secrets of this month's cover to win a subscription to ETI and see the results of February's DCP interfacing modules competition.

PBt]JEIT 48

The ETI Bell Boy
Now you can tell if anyone has been to your door while you're away thanks to the ETI Bell Boy from Jim Main.

ETI JULY 1988
RECORDING CD IN 1989

Volvo Launches RDS

Volvo is the first manufacturer offering a car radio system to use RDS (the Radio Data System). RDS enables the Volvo SR701 radio to identify the time, the station and other alternative frequencies broadcasting that station. If the present signal degrades below a preset level, the radio searches for a better signal and will switch automatically thus ensuring consistent reception through local disturbances (hills and built-up areas) and long-distance hauls (national frequency variations). The radio can also latch onto local radio traffic flashes and interrupt anything else (national radio or a tape player) to give the driver regular local travel information.

The Volvo radio doesn't exploit RDS to the full — it doesn't continuously monitor the alternative frequencies looking for a better signal for instance, it only searches when the present signal becomes unacceptable.

A double headed receiver would be more effective and would also avoid the audible switching that occurs as the SR701 searches.

The programme data is transmitted onto the VHF band and is carried in a digital signal called the Radio Data System (RDS) which is separate from the normal sound carrier signal. The data is sent in bursts of five to ten seconds duration and contains station identification, station call signs and other useful information.

A receiver for the RDS signal will include a receiver to tune to the normal FM or AM radio service, a processor to extract the data, and a display, timer and alarm to show the information.

More and more cars are being fitted with RDS systems so the information is becoming more available. The BBC will add a RDS code to the RDS datastream.

RDS transmits data on a 57kHz subcarrier added to the main transmission at source. The Volvo SR701 costs £595, which is pretty expensive, even for a high spec radio. Although the future of RDS is assured by the major broadcasting given by the BBC, consumer interest is likely to remain low until prices fall and facilities are enhanced.

Contact Volvo, Globe Park, Marklow, SL7 1VZ, Tel: (06284) 77972.

ETI JULY 1988

NEW GENERATION

Following the white paper detailing the plans for electricity privatisation a new private generation company, Thames Power, has been announced.

The company is to be set up jointly by Taylor Woodrow (the construction group), Balfour Beatty, BICC and Schroders (the merchant bank).

The company plans power stations to be built from scratch rather than refurbished from ex-CEBT units. The first is to be a 1000MW station at Barking, using low-speed gas turbines.

CAPS IN HAND

Exclusive to ETI readers, the audio module making KIA Electronics is giving away presents again.

The freebies are destined to continue into next year, with each offer supported by a datapack of specifications.

This month’s free gift is a wide ranging collection of 40 capacitors. To get them just clip the coupon in the Classified section and send it with a 50p coin for post and packing to: KIA, 8 Cunliffe Road, Ilkeston, DE7 9DZ.

Tandy has taken everyone by surprise by announcing the successful development of a record and erase compact disc system.

Entitled ‘THOR-CD’ (Tandy High-intensity Optical Recording), the first machines will be available in the US at the end of 1989 for around $500, with the price expected to fall still further as development continues. There will be only a minimal delay getting them onto the UK market through Tandy and other licensed outlets.

This is no WORM system, the discs are fully or partly erasable with no deterioration (erasing simply returns the dye polymer type media to its original state). The pits, formed thermally by laser, are structurally different but optically identical to the pits on a conventional CD. This gives complete compatibility — THOR recordings are playable on existing CD players.

Tandy THOR-CD is concentrat- ing the initial launch on the CD audio market where it should receive a rapturous reception since it offers all the facilities of DAT plus fast access times, a lower price and the major advantage that present CD owners can simply upgrade to THOR-CD without rendering their existing CD collections redundant.

The copy protect question that hinges over DAT (directly recording other CDs) applies equally to THOR. European and Japanese companies are shortly to hold a convention that will discuss copy protection on DAT and reach an agreement to bind all involved companies.

Tandy THOR says it will not consider itself bound by such an agreement and has yet to reach its own decision.

Tandy intends to licence the THOR technique to other hardware manufacturers while continuing development into both CD audio and CD-ROM. It claims strong interest to be coming from several major companies.

Philips denies any plans to use the THOR system, to work with or license from Tandy. It is developing its own record/erase system, but will be applying it principally to CD-ROM and other marketplace applications.

Sony points out that Tandy cannot even use the words compact disc without license from itself and Philips. Both companies doubt Tandy’s ability to invent such a system “massively ahead” of their own development, pointing out the help the announcement has given to Tandy’s share price.

Sony also made it quite clear that as soon as Tandy machines hit the marketplace, Sony would be able to match the technology overnight.

For more but certainly not full details on THOR, contact Tandy, UK, Learmore Lane, Walsall, WS2 7PS. Tel: (0922) 71.0000. Tandy THOR-CD is based in Fort Worth, Texas on 0101 (817) 390-3693.

CALIBRATE AND RADIATE

Repairs and calibration of any- thing from an Avometer to a 40GHz microwave source can be carried out by MSL of Hitchin.

Most of MSL’s time is spent calibrating and upgrading mega-bucks hardware for the likes of Plessey, the MoD and the armed forces but the company is more than happy to take in small jobs from individuals and growing businesses.

The cost of the job obviously depends on the amount of work to be done — MSL can quote procedure before they repair — but calibration of an Avo would normally cost about £18.

Meanwhile upstairs at MSL, some rather more sensitive testing is proceeding. Screening VDUs against EM emissions which can be received and read at some distance is an enormously expensive task. The Tempest test rigs (see photo) supplied by MSL’s ‘Secure Systems’ division can scan an enormous frequency range and lock onto any interesting emissions in the area.

The units are designed to check that your own equipment is sufficiently protected and the 40 or so Tempest rigs presently at large were supplied to the MoD (in Cheltenham but we’re not allowed to say exactly where ...).

MSL is anticipating an imminent mushrooming of interest in Tempest as commercial companies (particularly in the city) realise just how safe their own — and their competitors’ — classified information really is.

For more information on calibration or Tempest contact MSL Calibration, Wilbury Way, Hitchin, Herts SG4 0TA. Tel: (0462) 421234.
At 56 miles, the new fibre optic link from mainland Britain to the Isle of Man is the longest unboosted fibre link in Europe and probably the world. But it will hold the record for mere months — BT has already laid a link due for operation in the late summer between Holyhead and Portmanock in Eire — an un-regenerated 80 miles. Both links operate at 140Mbits/s with six pairs of fibres capable of handling 12000 simultaneous phone calls. Distributed feedback (DFB) single line lasers with very narrow spectral width enable the longer wavelength of 1550nm to be used, reducing attenuation and extending the range achievable without submarine boosters. STC has put the system together and is now planning a still longer link from Southern England to the Channel Islands (83 miles).

Out in the rest of the world, STC is linking Barcelona to Macorca, Siemens has linked Europe to Asia by running fibre optics along the mile wide bridge spanning the Bosphorus in Turkey, and Cable and Wireless is inviting tenders to link the United States to Japan in co-operation with PTC of the US and IDC of Japan.

Back home, some 19000 miles of optical fibre is already installed Central London making it the most advanced local network system in the world. A further 19000 miles is to be laid to complete the network which will eventually stretch from Euston to Covent Garden, London Bridge and Wapping.

Further information from BT on 01-588 3291 and Cable & Wireless on 01-242 4433.

Spectrum owners can now join the computer-aided PCB design fraternity with a new package from Rensoft. PCB Designer runs on the 48K (or greater) machine and features all the basic copy, rotate and block move functions, plus a good sized library of pads, busses, edge connectors and so on.

The program is available on tape, microdrive, 3½ or 5¼ disc format but you will need an Epson or compatible printer and interface to get hardcopy output.

PCB Designer is reasonably priced at £19.95 including post and packing from Rensoft, The Woodlands, Kempsey, Worcester WR5 3NB. Tel: (0905) 820188.

The scrambled Belgian STV channel Filmnet can be watched by British viewers with a new decoder being marketed by Supersat of Wolverhampton. British viewers are unable to subscribe to Filmnet at present because the films are only licensed for broadcast to mainland Europe (similarly Premiere can only sell subscriptions inside the UK).

Supersat is planning a similar decoder for Premier broadcasts which will enable viewers to sidestep the annual £70 subscription rates — so long as the scrambling system isn't changed.

Both scramblers will retail at around £90. For full details contact Supersat, 32 Temple Street, Wolverhampton WV2 4AN. Tel: (0902) 773122.
The news that Britain will be helping out with Western Europe's Columbus space project is a great relief to just about everyone. Doubt that our contribution is particularly generous (less than a quarter of that of Italy, a sixth of Germany and half that of France). Nor is it in keeping with the 'all for one principle of the up and coming unified Europe.

Britain's contribution will be almost entirely used for constructing the commercially useful polar-orbiting platform - handy for spotting mineral deposits and agricultural data as well as holding a nice little corner in the lap of British Aerospace.

However, the long delay and apparent U-turn in confirming our commitment to Columbus will undoubtedly lead other countries to regard Britain as an unreliable partner in such ventures, especially where Government approval and funds are involved.

Canada must be feeling more than a little miffed at our sudden withdrawal from its Radarsat project - we had planned some £100m of investment (with significant business coming to British firms). The Canadian Science and Technology Ministry say they are 'disappointed' by our withdrawal. You bet they are.

The Government's original objection to the Columbus project was the European Space Agency's alleged inefficiency, coupled with doubts regarding the commercial benefits of investment in space. No doubt Britain's hesitation has helped tighten up the ESA's workings, but the Government should recognise the long-term benefits of such research and of involvement with Europe.

Some things cannot be done alone, and space investment is one of them. This decision should not have been such a close call.

The UK component industry is too insular and too small to survive, concludes an industry overview from Key Note Reports. In 1987 the UK and world market in components revived from the slump of the previous two years. Prices strengthened and sales expanded. Now the industry is expecting steady but not dramatic growth for the rest of the decade.

In Europe companies are collaborating and merging in a realistic attempt to fight back against the competition from Japan and the USA. However, mixed with this optimism is a strong apprehension that the European industry is still very much under threat and that the revival (as exemplified by Philips, Siemens, SGS and Plessey) may be too late.

The recovery came as companies realised that US and Japanese chip manufacturers would invariably supply their own companies before Europe, making in-house semiconductor capability absolutely essential for development and effective competition.

The UK both Plessey and STC bank on their semiconductor expertise to keep them ahead in their mainstream business.

The formation of GPT on top of the Plessey takeover of Ferranti's semiconductor operations demonstrated the way that restructuring will have to take place, and cooperation with the continent must be the next step. At the GPT launch at the end of March Roger Boardman, External Affairs Director, stressed that in the next few years European markets will become fused into one, and that GPT is, above all, an international company.

Other organisations are crying out for the Government to assist the industry, particularly in funding research and development where under-capitalisation in the industry is a real handicap.

The Electronic Engineering Association proposed changes in taxation, in the hope of winning support, Government purchasing policies and education at all levels without which it says Britain's world position as a major technological nation is under threat. None of its proposals were implemented in the March budget.

A recent report from the DTI, produced in collaboration with a number of major UK companies, advocates a £225m per year Government programme to enhance the competitiveness of Britain's semiconductor industry. It proposes spreading R&D costs among users and manufacturers.

Critics of the report such as Iann Barron of Innos argue that such funding may be more easily justified and should favour the market leaders.

Another report, from the SRI, stresses that R&D (however it is) must be performed properly. About 50% of all R&D fails, it claims, because of inadequate information, unrealistic targets and hopeless transfer (getting from development to production). Cross fertilisation of research teams is vital, it says, while maintaining secrecy from outsiders.

That cross fertilisation will have to come from the rest of Europe.

The Key Note Report costs £105 from Key Note, 28A-82 Barrie Street, London EC1Y 8DE. The EEA report Industrial Growth is available from EEA, 8 Leicester Square, London WC2H 7BN. The SRI report Quality in R&D was published by SRI, Menlo Park House, 4 Addiscombe Road, Croydon CR0 6TT. The DTI report A National Plan for Microelectronics is from HMSO, 49 High Holborn, London WC1.
For Kits & Components
Choose the easy way with ETI slow* & SAE to catalogue (Autumn 1987)

VERSATILE REMOTE CONTROL

This kit contains all necessary components and instructions for assembling a remote control system. It is designed to make a simple sensitive remote control receiver kit.

DKL0000: 3-channel sound to light converter.

HOME-LIGHTING KITS

These kits contain all necessary components and instructions for assembling a remote control system. It is designed to make a simple sensitive remote control receiver kit.

RADIONUCLIDE DETECTOR

This kit is designed to detect radionuclides using a liquid crystal display. It includes all necessary components and instructions for assembling a radionuclide detector kit.

PRICE LIST

LED 007: 2.60
MX10 16-Key Keyboard: 16.50
1013 Box for Transistor: 1.30
MX18 Touchdown: 3.50
T6/16 Extension Kit for 2-way switching: 2.95
LD 3000 Light Dimmer: 4.75

SECURITY PRODUCTS

You can install your own burglar alarm and save pounds. All parts available separately.

900 120 Stair Pressure Mat: 1.70
905 120 Floor Mat 27v-ins: 1.00
900 130 External bell box - an ideal deterrent on its own: 1.00
900 130 Junior Beacon 11v: 1.00
900 140 Flush door/window contacts: 1.25
900 143 Surface mounting contacts: 1.25
900 150 Alarm Control Unit: 1.25
900 162 Alarm Control Unit: 1.00

BARGAIN COMPONENT PACKS

These packs contain all the necessary components and instructions for assembling a large remote control system. It is designed to make a simple sensitive remote control receiver kit.

FREE TOOLS TOOLS TOOLS

These tools are ideal for assembling and using a remote control system. They include:

- 2-Way Switching: 5.00
- 3-Way Switching: 5.00
- 4-Way Switching: 5.00

AUTORANGING DIGITAL MULTIMETER

This high-quality meter is ideal for use with a remote control system. It includes all necessary components and instructions for assembling a digital multimeter.

RECHARGEABLE SOLDERING IRON

This powerful cordless iron complete with table top wall mounting and charging bracket. Reaches soldering temperature in 10 seconds, feels like a lamp which lights when soldering. Comes with wall charger and 12v car battery adapter. Special offer: £19.95

SPECIAL OFFER: £14.95

ELECTRONICS COMPONENTS

These components are ideal for use with a remote control system. They include:

- 560 12v battery: 16.50
- 561 1100 mah battery: 16.50
- 562 12v battery: 16.50

EXPORT ORDERS WELCOME

Send this offer to our office at: 120 Barking Rd, London E13 9SB Tel: 01-576 8910 To order and receive your discount, call us at: 0900 50 50 50

ENJOY YOUR AUTUMN SALE!
Next Month in ETI ELECTRONICS TODAY INTERNATIONAL

The August ETI is out on 1st July 1988

DEGREES OF FREEDOM

WIN ONE OF SIX MAPLIN MIN/MAX DIGITAL THERMOMETERS

We've half a dozen digital min/max thermometers from Maplin (as reviewed in Once Over) up for grabs by six lucky readers.

To enter this free competition just match up the six temperatures on the entry form with each of the six cryptic descriptions. So, if you think the 'Body in question' is talking about -273°C then put a 3 in the first box. The first six correct entries out of the editor's extra large pith helmet get the goodies:

- The body in question
- Bradbury's burning books
- 60% tin 40% lead
- Downright
- The old ice
- Gas Mark 5

1. 32°F
2. 188°F
3. -273°C
4. 451°F
5. 193°C
6. 98.4°F

Name
Address

Complete this coupon and send it to: ETI Thermometer Competition, 1 Golden Square, London W1R 3AB to arrive by 1st July 1988.

Simultaneous readings of internal and external temperatures with minimum and maximum memory and display in Celsius or Fahrenheit.
O n Saturday afternoon when I was in nine places at once and told I could be somewhere else, I found myself with tens of seconds before the National. Switching on a portable TV I still had seven seconds left to see the starting prices and exciting line up of horses for the off.

After loosening my shirt, tie and cufflinks and seeing the on-course bookies with their customised Jags and Terry’s, walkie talkies and radio phones, I reflected on the technical revolution quietly happening all around us.

Twenty years ago I would have switched on a thermionic valve television, it would have taken about four minutes to come on and I wouldn’t even have seen the starting prices (but with a sixpenny bet would have probably kept my Van Heusen shirt).

Born into the days of the newly invented Mazda thermionic valve, shaped like a 60p with 12v you were able to build your own paper capacitors the same size, it is incredible that all this is now done with a micro-chip and it has happened in my lifetime.

I can’t help but wonder what would have happened if the silicon chip had been invented instead of the valve. The answer would surely be a couple more steps today into tomorrow’s world with surface mount miniaturisation in ETI every month. After all, how many articles and advertisers in ETI today mention valves, yes when I was 13 I built several valve amplifiers for the budding school Beatles combo, with EX80/81 rectifiers, matched pairs of ECL66 and a ECC83 pre amplifier and mixer. Together naturally with a billet-winder speaker transformer the size of a teapot.

Looking back at all the technical stages of innovation... the first crystal, the valve, the germanium transistor, the switch to silicon transistors and hence the silicon microchip, it would be interesting to see ETI in the year 4448. Obviously there is a limitation to the miniaturisation of silicon chips and components but by then silicon chips will be the thermionic values of yesterday.

ETI readers will-type their electronic components from a keyboard directly onto a substrate header the size of a miniature box. The Portasol offer will give way to the ‘computerised assembly printer’ and a soldering iron will be an antique. High above the earth the shuttle and space stations will be an everyday occurrence, probably by teleportation, reducing matter to a transmitted digital code which upon arrival is decoded and reassembled.

Even if not possible with existing organisms it will most certainly be used for freight, so who will need the electronic car with a British Telecom Teleportation on every street corner ready to whisk you away to your destination... no refuelling, petrol and graffiti included!

 Naturally, with the world population explosion we will all be watching the gorgeous Bonnie Langford on Doctor Who with a flexible loan bank manager circumnavigating moon orbit... Of course we won’t need money anymore. Everything will be direct debit by telepathy to our personal robot. In politics the Conservatives will still be in power with the Rt Hon Margaret Thatcher (the ninety second robotic world leader). Tony Benn will be head of the USSR Ultimate Soviet.

Oh well! Time to turn off the dream machine and return to the rhyme ‘n reason of washing my car!

Keith Lawrence
Ilkevy, West Yorkshire

That all seems perfectly reasonable to us... except the bit about Bonnie Langford being gorgeous!

A couple of years ago I constructed the Frequency Meter Module described in the April 1986 ETI. To calibrate the unit I built the crystal and divider arrangement shown then which used the 4060. Your figure shows the 4060 with outputs Q1 to Q14 with no Q11 and this agrees with measurements taken with the frequency meter.

Last year I was thumbing through some data sheets from Maplin and noticed that they showed the 4060 with outputs from Q3 to Q13 with no Q10. I asked Maplin which pin configuration was correct and they replied (not surprisingly) that their data sheet was accurate. I decided to let the matter rest but your comment in Read/Write in April regarding ‘sееthing in a mouse’ prompted me to seek your views on whether Mr Choppell or Maplin is correct.

Maplin’s 1988 catalogue confuses the matter still further by agreeing with Mr Choppell and disagreeing with their own data (page 335).

W. Lochead
Largs, Ayrshire

The situation is that ETI and Maplin are both right (or both wrong depending on how you choose to look at it). The 4060 contains 14 flip-flops internally, with outputs available from FF4 to FF14 missing out FF10. If you number the outputs according to which flip-flop they come from then you get what Maplin put on their data sheet.

If you adopt the convention of labelling the outputs according to type and margins criticised by Mr Dussart last month are actually quite useful for notes and amendments which can now be added close to the original project, where they won’t get lost when the project is complete.

The two page index makes it difficult to identify the different types of articles (prospects, theory and so on). If the types of article could be given a distinctive appearance or perhaps a short description could be included, it might help.

Good luck,
Hugh Doherty
Castlewellan, Co. Down.

How true! We actually chose wide margins to look nice and make the pages more readable but yes, notes could be fitted in there. We’ve also marked projects out in the index this month — hope that helps.

COUNTING ON ETI

WANTED: BLUEPRINT

Here at ETI we are planning to introduce a new catalogue so back the of the mag among the Playbook and Open Channels. The title will be Blueprint, and the idea is for us to design circuits that readers are having problems with — Tech Tips to order.

Obviously we don’t intend to custom design entire systems — don’t expect the circuit for a complete computer. We’re thinking more of helping you over any hurdles that are preventing you continuing or embarking on an otherwise attainable design.

So if you have any such problem, write down the details — the more the better — and send it to:

Blueprint
ETI
1 Golden Square
London W1R 3AB

NOTELED MARGINS

Continuing the correspondence on the ‘new look’ ETI. The wide margins criticised by Mr Dussart last month are actually quite useful for notes and amendments which can now be added close to the original project, where they won’t get lost when the project is complete.

The two page index makes it difficult to identify the different types of articles (prospects, theory and so on). If the types of article could be given a distinctive appearance or perhaps a short description could be included, it might help.

Good luck,
Hugh Doherty
Castlewellan, Co. Down.

How true! We actually chose wide margins to look nice and make the pages more readable but yes, notes could be fitted in there. We’ve also marked projects out in the index this month — hope that helps.

HERE WE GO AGAIN

No, no, no.
You’ve got it all wrong. Doctor Who is good (but not that good). Lost in Space was one of the better results of the 1960’s but what we really need is the true gems of 25 year old sci-fi state-of-the-art embarrassment: — The Time Tunnel and Lord of the Gargoyles.

Now, armed only with an un-usually copacious wallet and the marvels of modern science, you too can benefit from all this culture, courtesy of the Sky and Super Channel satellite TV channels.

Thrill to the adventures of two men transported through time to desolate movie lots while mission control suffers yet another ‘power surge.’ Gast at a world filled with inhabitants the size of houses and paper maché plant life. Listen in horror to the appalling theme tunes.

Yeah, well I expect you get the idea. Good these satellite TV systems, aren’t they?

George Cratchet
Longport, Oxon.

It’s good to know that satellite TV is being put to good use to benefit all mankind!

READ/WRITE

ETI JULY 1988

NOTED MARGINS

C

H

A

WANTED: BLUEPRINT

N

E

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H

A

WANTED: BLUEPRINT

N

E

R

E

O

P

T

I

A

NOTED MARGINS

H
TTL (Transistor-Transistor Logic) has been the most popular logic family since it was introduced way back in the early 1970s. Over the years the family has grown and many sub-families have been introduced which are faster and less power hungry.

Many hobbyists and even some professional electronic designers use only the lower numbered chips in the TTL range. There are probably many reasons for this. The high numbered chips look expensive and many hobbyists still use elderly TTL data books dating from before the introduction of many of the more modern devices.

Whatever the reasons, this article makes a start at opening up the upper reaches of the TTL range by presenting full details on some of the more interesting devices and giving a summary of others.

Another useful device is the 74LS682. This is an 8-bit comparator chip. In microcomputer address decoder and data analysis circuits it is sometimes required to perform comparisons of two 8-bit numbers. This used to require two 74LS86 XOR gate packages and two other gates to total all the outputs of the 74LS86 — as shown in Fig. 4. Using a 74LS682 chip for this job, as shown in Fig. 5, we have reduced the package count from four to one.

In addition to signalling that one input is equal to another, the chip also detects when one of the number is equal to another, the chip also detects when one of the number is equal to another, the chip also detects when one of the number is equal to another, the chip also detects when one of the number is equal to another, the chip also detects when one of the number is equal to another. The 74LS687 performs the same comparator function as the 74LS682 but has two active low enable inputs to switch on or off the comparison function. This allows you to select which circuit is the two designs detailed without account of the needed for the version shown in Fig. 4.

The 74LS687 performs the same comparator functions as the 74LS682 but has two active low enable inputs to switch on or off the comparison function. This allows you to select 'windows' when comparisons have to be made.

PADing

Figure 6 shows a circuit diagram for a programmable address decoder using a 74LS687. Such a circuit is very useful in a microcomputer when device addresses need to be adjustable to any 256-byte boundary — perhaps depending upon how much memory is fitted to the machine.

On power up the RESET signal (from the system power-on reset source) forces the NOR
gate latch into its reset state. This disables the G1 input of the 74LS687. The computer initialisation program decides where in the address space it wishes to place the device connected to the CS output of the circuit. It writes the upper eight bits of the desired address into the 74LS374 latch which should be addressed as an I/O port at a known address in the I/O page.

So the upper eight bits of the desired address are loaded into the 74LS374 and this action also causes the NOR latch to be set enabling the G1 input of the 74LS687. The other enable input of the 74LS687 is enabled whenever the MPU signals that the address bus contains a valid memory address. In Fig. 6 the signal ADDRESS BUS VALID is only theoretical and you should substitute a signal from your particular MPU which indicates a valid address on A0-A15. In a Z80 system for example this will be MREQ. In a 6800 system it will be VMA.

The purpose of LK1 is to permit the circuit to be used to select a range of valid addresses (when addressing a memory array). With LK1 connected from CS to P>Q you can produce a chip select signal whenever the address output from the MPU is above the value in the 74LS374.

The 74LS590 is an 8-bit counter with an output register (or latch) — all in a 16-pin DIL package. Figure 7 shows the pin out of this chip.
The counter section is capable of operating with clock speeds of up to 20 MHz. Another attractive feature of this chip is the tri-state outputs from the latch. (The 74LS591 is the same chip but with open collector outputs). This tri-state output capability makes the 74LS590 ideal for use in microprocessor bus oriented systems. Figure 8 shows a block diagram of the chip logic. The signal descriptions are as follows:

QA-QH The register outputs. Whenever a positive going edge occurs at this input the register is loaded with the contents of the counter.

RCO This is the carry output from the counter. A positive going edge will occur on this output whenever the counter contents change from &FF to zero.

CLR An input which, when taken low, clears the counter to zero.

CCK The clock input to the counter. The counter increments by one whenever a positive edge occurs at this input.

EN An input which must be taken low to enable counting to take place, and high to prevent it.

RCK A positive going edge on this input loads the output register with the counter contents.

G When this input is high the QA-QH outputs are in a high impedance state (tristated). When taken low, the data in the register is available at the QA-QH outputs.

Figure 9 shows how the 74LS590 can be used as an event counter in a microprocessor based system.

Table 1 gives a brief list of some of the devices in the 74400-742000 range which readers may find useful. Although hobby outlets may not have all the high numbered TTL chips in stock, they can usually obtain them for you quite quickly if you ask.

NEW TTL

ETI JULY 1988
Device Functional description
74440 Quad tri-directional bus transceivers
74490 Dual decade counter
74593 8-bit counters with input registers and tri-state output
74595 8-bit shift registers with output registers
74800 Memory refresh controller
74904 Octal 12-input multiplexed latches — tri-state outputs
74608 Memory cycle controller
74610 Memory mapper
74630 16-bit ECC circuit
74632 32-bit ECC circuit
74673 16-bit SISO shift registers
74674 16-bit PISO shift registers
74677 16-to-4 bit address comparator
74850 16-to-1 multiplexer with tri-state outputs
74870 Dual 16-by-4 register files
74200 Direction discriminator

Table 1 Other chips of interest in the high TTL range

Cricklewood is able to supply any T1 TTL chip by mail order. Contact Cricklewood Electronics, 40 Cricklewood Broadway, London NW2 3ET. Tel: 01-450 0995.

The TTL range will no doubt continue to grow, both in terms of device types and fabrication technologies. There is room for some more functions, for example some longer length counters would be nice! But whatever happens, TTL looks to have an assured future.
Malcolm Brown finds PCB design a doodle with Pineapple’s autorouting software for the BBC micro

Although a computer based drawing package is a definite advantage when designing a PCB for a project, it still doesn’t help with the really difficult and time consuming part — the actual design. It is deciding where to take the tracks to avoid crossing them and to keep links to the minimum which is the most skilful and the hardest part.

Many professional PCB design workstations offer the facility of ‘autorouting’ the tracks — letting the computer work out the best design in much the same way it might work out strategy for a chess game.

That’s fine for the professional workstations but some of these cost many thousands of pounds and are a little beyond the scope of the home enthusiast.

Pineapple’s PCB package for the BBC micro has been around for quite a while (see the review in the March 1987 issue of ETI) and has commanded a great deal of respect as a remarkably professional design tool for the home constructor.

Now PCB has been given an upgrade to give it the autorouting capability of its high priced professional brethren and it will only cost you £55 to add on the extra.

PCB-AR (as the autoroute package is rather anonymously called) is, like PCB itself, supplied on ROM. The existing PCB ROM can detect the AR ROM’s presence in the micro and so is extended in its capabilities accordingly.

At the tracking stage of a PCB design (after the component positions and labels have been defined) a function key is pressed to bring PCB-AR into action. Rather than now draw tracks between the pads on the on-screen board, the required connections are made directly. Each pad on the board is linked with a straight line to each other pad it is to connect to (see screenshots).

The resulting ‘rats nest’ is a visual representation of the entire circuit. A cursor is moved to the first pad and then a line is ‘rubber banded’ to the desired connection — it couldn’t be easier.

However, it must be said that it is far from easy to make all the right connections with any complexity of circuit. It must be worked through methodically and logically to keep errors to a minimum. Many of the professional systems make things easier with printouts of a list of all the connections, with pre-defined labels for each pad, to enable a thorough check to be made.

PCB-AR does not produce a list and so it is all too easy to miss a couple of connections or to, say, connect the power supply to the wrong pin of an IC.

However, a few practice runs with the software begin to get you into the swing of thinking of circuits in this strange way and errors become less likely.

The rats nest can be stored on disk at any stage (so you can perform this tedious task in a few short, concentration-packed bursts) and it can be easily edited.

The editing procedure is simple too. The cursor is moved to one end of the connection under question and another function key pressed. This removes the connections to all other pads to leave a clear view of the suspect line. This can now be deleted or moved elsewhere.

The connections don’t have to be from pad to pad. They can join two empty points on the board or a pad to a track already drawn in ‘by hand’. This is especially useful for power or data buses around a board.

As each connection is entered some guidance is given for the automatic routing to come. Each connection (and its resulting track) can be biased to the top or solder side of the board or to both equally. To give the autoroute routine a bit of a hand the connection can be given a starting direction to try too.

When all the desired connections are made, another function key is pressed and the software gets on with routing them. This, of course, is where the really clever bit comes in.

You are given the choice whether to route tracks between adjacent pins on ICs and whether the connections list is to be sorted to give a bias of horizontal tracks on one side of the board and vertical ones on the other.

The autorouting algorithm takes a while to route any complex board but since it draws the tracks as it goes, it provides quite a tension filled spectacle to pass the time.

The algorithm works not unlike many game playing ‘strategy’ algorithms. Movement from any point is limited to North, South, East or West. Starting at a pad the program checks for obstructions in each direction and then checks each direction a distance further out from the original point and so on until a clear route to the destination is reached.

This is done for each of the connections you entered, in the same order as you entered them, until they have all been tried.

When it’s finished, it reports any connections it cannot complete. Pressing a function key then highlights the connections it couldn’t manage which can then be altered or drawn in by hand.

PCB-AR is not the end of PCB foil design problems. It does require methodical work to input the circuit connections and almost a knack for seeing how to turn its inevitable quirks to your advantage.
However, I tried it out re-designing the PCB for the Dynamic Noise Reduction system (May’s First Class project) and after a little fiddling, I must say I was impressed with the results.

It has some clear limitations. A maximum of 190 connections per board can be autorouted and the program will not (for the sake of speed) investigate connection routes outside a rectangle eight times the rectangle with the two connections at its opposite corners.

There is also a maximum rectangle of investigation of 3136 pixels — equivalent to a 3.7in x 3.7in square.

Finally PCB-AR always uses the same width of track — about 0.5mm — with the same minimum spacing. However, thicker connections can always be added later, manually.

Despite these constraints, PCB-AR is a truly remarkable piece of software. There is nothing to touch it at anything like this price. A couple of years ago, anyone suggesting this could be done on a standard model B BBC micro would have been considered naive at best.

For Beeb owners with any kind of regular interest in PCB design the PCB and PCB-AR combination is difficult to beat and thoroughly recommended.

PCB AR £55 as upgrade to PCB
£185 PCB + PCB-AR.

Pineapple Software,
39 Brownlee Gardens,
Seven Kings
Ifford IG3 9NL.
Tel: 01-599 1476.
BROUGHT TO LIGHT

For the next couple of months I am going to digress from the purely electronic into the field of basic opto-electronics — an increasingly important area in electronic systems design. At its simplest it impinges even on thoroughly familiar systems in quite unexpected ways. The other end of the opto-electronic spectrum (for want of a better word!) is in the still experimental spheres of optical computing and data storage, which is a subject that could fill several complete issues of ETJ just describing the groundwork. However — let's start at the beginning.

The basic opto-electronic devices are the photo-diode and photo-transistor which are both detectors, and various sources of light (lamps, LEDs and lasers).

The Photo-Diode

Starting with the photo-diode, this looks like a conventional diode (very often silicon) but instead of being sealed in an opaque package, the diode junction is exposed via some kind of window so that light can fall on it.

There are two generally used characteristics of such a diode which yield alternative modes of operation. The first is the ability of the diode to generate an illumination dependent current. When light shines on the diode junction, electrons are released from the cathode and drift towards the anode.

The resulting current flow is tiny, but proportional to the amount of light falling on the junction — within the extreme limits of the threshold (the minimum amount of light that causes any electrons at all to be released) and saturation (the maximum number of electrons per second the diode can release, regardless of illumination level) of the diode. A theoretical circuit for this mode of operation is shown in Fig. 1.

The second characteristic of value is the change in diode reverse leakage with illumination. In this mode the diode is reverse biased using a voltage as high as possible subject to the reverse breakdown voltage of the diode and the signal is detected as shown in Fig. 2.

This is again a linear relationship within the same limits, but the output signal from the diode is much greater. The penalty for this is a much higher noise level. It must be remembered that a reverse biased diode (a zener diode for example) has long been used intentionally as a noise source in electronic systems.

The photo-transistor functions in much the same way as the first diode case: light falling on the device generates a base current to turn the transistor on.

There are other detectors in common use, such as selenium cells, but these are mostly slow response low precision devices used more in solar batteries and so on than in detection or measurement systems.

Basic Emitters

Apart from sunlight (the oldest emitter of them all!) the earliest opto-emitter used in electronics was the filament lamp — a very inefficient light source. Most of its output is in the form of heat, its life is severely limited and it is impossible to make a precise spot source without mirrors and lenses (which further reduce the amount of light emerging).

The first major breakthrough in emitters was probably the LED. This is a diode made of a special material (usually a compound based on gallium arsenide) which emits light when forward biased (when it is carrying a current) in addition to behaving just like any other diode. Heat generation is remarkably low and of course the size of the emitting element can be precisely controlled by normal semiconductor manufacturing techniques. Light output is not usually very great for the current consumed, although there are some so-called "high efficiency" LEDs, but the output spectrum extends well into the infra-red where detector diodes are normally most sensitive.

These are the two most basic emitters. Apart from one or two unusual applications, the filament lamp is of no further interest to us and we will use nothing but LEDs from here on in. One of those unusual applications is worth mentioning though: a peculiarity of the filament lamp is that when switched on or off, the filament brightens and dims exponentially. It brightens faster and faster the brighter it gets and dims slower and slower the dimmer it gets.

This is useful in the production of a very clean, distortion-free sine wave oscillator. If the lamp is driven by an amplifier output and shines on a photo-detector in the amp gain control chain, a classic feedback oscillator is created, which is constrained to a sinusoidal waveform by the lamp filament characteristics. However... onward, ever onward!
Optical Couplers

It is very unlikely that emitters and detectors will be widely used except in coupled pairs of some form or other. The first and most obvious case is the interrupter (Fig. 3). This device is present in one or other of its two forms in the vast majority of computer printers, disk drives, video recorders, tape recorders... the list is endless. Anywhere a moving object is to be detected, the interrupter is in use. The emitter (LED) is permanently lit and when an object enters the interrupter's field of view, the light path to the detector is broken (transmission system) or completed (reflectance system).

The next case is the opto-isolator. This is an LED+photo-transistor pair or LED+photo-diode pair encapsulated in some compact opaque package, frequently an IC DIP. The point of the opto-isolator is twofold. Electrical isolation between the input circuit and output circuit can be as high as several kilovolts (so HT circuits can control or be controlled by logic or small signals with safety). Also the signal bandwidth of the opto-isolator can be controlled by a suitable choice of detector diode at design time. This serves an important role in noise reduction, typically in computer communications. This is worth going into in more detail, so here goes.

RFI Reduction

RFI is a new buzzword — Radio Frequency Interference, that's all! New legislation is coming in to control the extremely far-reaching effects of RFI caused by all the computers and communication channels now in operation.

So where exactly does RFI come from? Basically, every time a logic level changes in a PCB track or wire in your computer or its external cables, there is overshoot or undershoot, followed by ringing. Although the logic state may be switching at only a few kilohertz, the ringing frequency depends on the resonance of the wiring and may cover a bandwidth of several meghertz.

With this in view, let us take the case of a simple RS232C channel. The logic switching rate is normally no higher than 40kHz and the specifications calls for a signal rise time no faster than 1μs, but the data cable is essentially unbalanced and therefore a lot of ringing of unpredictable frequency can take place. This gets referred via the computer's imperfect ground path and radiated from the whole length of the cable, as well as being superimposed on the signal itself.

The interposition of opto-isolation at each end of the cable between the comms device and the line driver chips dissociates the cable ground from the ground noise in the communication device and also (if its bandwidth is suitably chosen) will eliminate practically all the ringing in the signal, improving data haul distance.

The next step in opto-isolation is to separate the emitter and decoder and interpose a piece of optical fibre. This opens the door on all sorts of clever options which we will look at later on, but just for now let's stick with the RS232. In the previous example we had an electrical signal being converted into an optical signal and back again at each end of our comms link in the interest of isolation and reduction of RFI emission. However, external electrical noise can still be picked up by comms cable and it can be bad enough to spoil our data.

Now, instead, we introduce the magical optical fibre with an emitter at one end and a detector at the other and the long signal haul performed on an optical signal. So long as the fibre is in an opaque jacket, absolutely nothing (for practical purposes) can be emitted or picked up by the data transmission link.

This is obviously a much better solution, but how does it work?

Optical fibre consists of a concentric arrangement of transparent materials (plastics, silica glass) of different refractive index (Fig. 4). This is a measure of the angle by which a beam of light of a given colour is deflected as it passes through the material. Different colours are deflected or refracted by different amounts, which is why we see rainbows through things like prisms, but a given colour (wavelength) of light is always refracted by the same amount, all other conditions (temperature and so on) being equal. This is the fundamental rule by which optical fibres work.

When light is passed into a perfectly straight piece of optical fibre, some of the light passes directly down the central axis but most of it diverges. Any particular beam following a divergent path will eventually strike the transition between the differing materials in the fibre. These are so chosen that practically all the light is refracted back into the centre of the fibre.

The real case in which the fibre is not perfectly straight works just the same, although a bit more light gets lost.

The Distance/Speed Trade-Off

I will not delve into numbers here as the problem gets quite difficult to quantise, but the principle is very simple. As we have seen, light entering the fibre takes a variable but large number of different paths. These will consist of different numbers of refractions and are therefore of different lengths. As light travels at a finite speed, the different bits of light which started out at the same time will arrive at different times.

Assuming a perfect square wave going into the fibre (which is theoretical and a best case, as all emitters take a bit of time to turn on fully) when the difference between the arrival time of the earliest and latest bit of light equals the half wavelength of the input square wave, the signal is totally lost due to the latest light from the last bit coinciding with the earliest light from the next bit.

In practice the situation is worse than this. RS232 is an asynchronous communication protocol. This means that reliable decoding of the incoming signal relies on a specific relationship between the on and off periods (marks and spaces) and also a predictable absolute duration. The tolerance for out of timing data bits is about 10%, so a “ mushiness” due to differential propagation paths of this order will kill the data link.

The good news is that the length of fibre required for this problem to manifest itself is pretty long. You will most likely run out of optical power long before that length if you are using conventional LEDs, particularly if you use the cheap (affordable) plastic fibre, which is very lossy compared with (expensive) silica fibres.

In order to obtain much greater transmission distances, the use of silica fibre with laser diodes, or at least source of coherent light (some kind of laser) is essential. More of this next month. In the meantime, a good selection of plastics fibre optic components can be obtained from Electromail on (0536) 204555.
Last month I was looking at the basic parallel (or shunt) feedback circuit of Fig. 1a and concluded that the rule of thumb formula for the gain $-R_2/R_1$ was accurate to almost 0.01% for the resistor values shown. The formula predicts a gain of -10, whereas the actual gain is -9.99989. I hinted that there might be circumstances where the formula would not be so good and now it is time to find out why.

Suppose that I take an op-amp with a gain of 10^6 and connect the resistors shown in Fig. 1b. This would seem to give the entire circuit a gain of -10^6 and since this is what the op-amp itself would give without the resistors, it doesn’t seem an unreasonable request.

Applying the exact formula for the gain:

$$V_{\text{out}} = -\frac{R_2}{R_1+R_2}$$

which the rule of thumb formula depends on the IC’s own gain. (b) Demanding a gain equal to the op-amp’s gain

where R_2/R_1.

Therefore it is reasonable to expect the actual gain to reach 10% and at 10^6 the true gain is approximately 5 x 10^9, which is only half the gain predicted by the rule of thumb formula.

Table 1 shows the circuit gain for different resistor ratios against the value predicted by $-R_2/R_1$. At a predicted gain of -10^6 the true value is about 0.1% out, at -10^4 the error is about 1%, at 10^8 it has almost reached 10% and at 10^9 the true gain is only half the predicted value.

The last two entries represent an optimistic attempt to force more gain from the circuit than the IC itself has. It doesn’t work. The circuit gain approaches the gain of the IC but never quite reaches it and certainly never exceeds it.

The reason for the discrepancy is illustrated by Fig. 2 which compares the case where the resistors ask for a gain very much lower than the IC’s own gain (Fig. 2a) with one where the required gain is equal to the IC’s gain (Fig. 2b).

In the first case, the 10μV necessary to sustain the output of the op-amp at -10V is negligible in comparison to the input voltage, so the formula works well. An input of 1V gives an output of -10V so the circuit has a gain of -10 as we’d expect.

In the second case, the 10μV needed at the inverting input of the IC to sustain the -10V is very comparable indeed with the input! The idea, on

Fig. 3 (a) A circuit with a gain much lower than the op-amp’s gain. (b) Demanding a gain equal to the op-amp’s gain

If any one of the input voltages varies from 0V, a current will flow in the corresponding resistor and to maintain the –ve input at 0V the op-amp will cause the same current to flow in R_f. We have chosen to make R_f equal to the input resistor, so the voltage across it will be equal in magnitude to the input voltage. In other words, a voltage of v_i on any input will result in $-v_i$ at the circuit’s output.

Since this applies to any input, by superposition the output from voltages appearing simultaneously on all inputs will be equal to (minus) the sum of all the input voltages. The circuit is often used to sum audio signals (and has even been used as a complete audio mixer in more than one hobby project!) or to sum voltages in analogue computer or control systems.

Replacing the feedback resistor (R_2 in Fig. 1a) with a capacitor gives another useful circuit — an integrator (Fig. 4a). Once again, the op-amp acts to maintain the two input terminals at the same voltage and so draws all the input current through the capacitor.
ETI JULY 1988

\[I_1 = \frac{V_{in}}{R_R} = I_2 = -C \frac{dv_{out}}{dt} \]

\[\text{so } v_{out} = -\frac{1}{CR} \int v_{in} \]

The response of the circuit to a constant input voltage (it's often used in this way) is to produce a linear ramp which rises or falls at a rate determined by \(C \), \(R \) and \(v_{in} \). For \(R=1\text{M}, C=1\text{nF} \) and \(v_{in} = -1\text{V} \), the output will ramp upwards at 1V per second.

The other common variation on the theme is to substitute a capacitor for the input resistor to give the circuit of Fig. 4b: a differentiator. Here the output voltage is given by:

\[v_{out} = CR \frac{dv_{in}}{dt} \]

This circuit is useful if you are interested in the slope of a signal rather than its actual level. A practical example is last month's breathing rate monitor circuit, where \(C1 \) and \(R5 \) correspond to \(C \) and \(R \) of Fig. 4a. In the monitor, the input voltage will vary according to the type of diode chosen (or even between different samples of the same type), the room temperature and so on. On the other hand, whether the voltage is rising or falling at a fairly fast rate will depend primarily on whether the user is breathing in or out, so detecting the change in voltage rather than the voltage itself screens out a lot of unwanted effects. The reason for the other components used in the monitor will become clear when we start to think about turning the basic ideas into practical circuits.

A much less common variation is shown in Fig. 4c. Can you work out what it does? Why do you think it's not used more often? Can you think of any feature of the circuit that might be put to good use? Answers next month.

Series Feedback

The basic non-inverting (or series feedback) amplifier configuration is shown in Fig. 5. For an intuitive understanding of this circuit it's best to think in terms of voltages rather than currents. If \(v_{in} \) is at 0V, the output will also settle at 0V — the action of the output voltage and the two resistors won't let it settle anywhere else.

Suppose the input rises to 1V. This would push the output voltage upwards until the voltage at the +ve terminal rises to (near as damn it) 1V. The action of the circuit is once again to maintain the two input terminals at the same voltage. If the +ve terminal is to be at \(v_{in} \), then the output voltage must be at \(R1 \cdot v_{in} / (R1+R2) \) so the rule of thumb gain formula for this configuration is:

\[A_v = \frac{R1}{R1+R2} \]

Once again, this is very accurate for low gains, and less and less accurate as the requested gain is increased.

I've done most of the work so far, so here's something for you to think about. Is it possible to make a non-inverting integrator and differentiator from Fig. 5 by replacing \(R1 \) or \(R2 \) with a capacitor? If not, what effect would the substitutions have?

I've just about exhausted the basic configurations possible with an op-amp and a pair of resistors but there's one more common circuit I should include. It's shown in Fig. 6.

With this circuit, if the input is at 0V then the output could also be at 0V. All the voltage conditions would be satisfied. But instead of the 'wooby toy' effect, where a disturbance of the output gives a signal which pushes it back to its proper place, this circuit is more like an attempt to balance a razor blade on its edge.

The slightest movement of the output from its 0V position will result in a voltage at the +ve terminal which will tend to push it even further away. This creates an even larger voltage at the output, which increases still more the voltage at the +ve input, which gives a still larger voltage ... and we have what used to be called a 'regenerative action' which causes the output voltage to topple until it hits one or other of the supply rails.

Given that the circuit has two artificially stable positions (artificial because the theoretical tendency is for the voltage to keep rising for ever — it's only the practical limitation of a finite supply voltage that stops the process) the question is: what will cause the circuit to switch between them?

Suppose the input is at 0V and the output is pushed hard against the positive supply rail at, say, +10V. We'll give the resistors values of \(R1=10k \) and \(R2=100k \). The +ve input of the op-amp will be around 1V above the -ve input, so the output has every encouragement to stay just where it is! The only thing that would cause it to change would be if the +ve terminal went negative with respect to the -ve terminal, which would happen if the input voltage dropped below -1V. If this happens, the feedback action will cause the output to move smartly from the +10V rail to the -10V rail.

To get it to change back again it's not enough for the input to go back above -1V. Because \(R2 \) is connected to the output, which is now 20V lower than before, the input must go above +1V before the circuit will switch back. The result is a switching circuit with two different switching points. The voltage between them (in this case 2V) is called the 'hysteresis' and is what distinguishes this circuit from an ordinary voltage comparator. The circuit is often used to recover signals, particularly digital or switching ones, from noise (Fig. 6b). It's also useful where a circuit has to respond when a slowly changing signal reaches a certain voltage — a comparator without hysteresis might be inclined to switch this way and that when the signal is close to the reference point, whereas the circuit of Fig. 6a makes a decision and sticks to it!

Next month I'll be looking at some of the practical considerations that have to be taken into account when designing with real op-amps.
BAR CODE LOCK

Paul Wilson looks high and low for the bar

How would you like to impress your friends and confuse your burglars by unlocking your front door with a can of beans? Or a bottle of shampoo? Or a shrinkwrapped piece of Lymeswold blue? Or more sensibly with a small coded plastic key that you wipe over an innocent-looking sensor beside the door.

The ETI bar code switch is programmable to recognise a 14-bar key which is read by a reflective optical sensor. Verification of the code produces a short ‘code accepted’ pulse which can be used to open an electrically operated bolt or to trigger a relay for any purpose you may desire.

Attempts to operate the switch using the wrong key (or the wrong brand of beans) will sound an on-board alarm for a preset period — or until the correct key is used.

The barcode switch consists of two boards. The main decoder board contains the mains transformer and 12V PSU, code programming switches, decoding circuitry and also the piezo sounder. A 12V CMOS-compatible or open collector output is available to interface with external equipment.

A small pre-amp board fits in a small box with the optical sensor that scans the key. This sensor is the most important component in the system because its resolution determines the convenience of the key. If for instance the sensor could only resolve bars which were 5mm wide then a 14-bar key would end up being over 5in long. A key this long would not look very elegant attached to a key ring!

To produce a key of credit card size we need to resolve a narrow bar of 1mm and a thick bar of 2mm. There are two possible sensors depending on how rich you are.

If money is no object then the Hewlett Packard HBSC1100 reflective sensor with its resolution down to 0.19mm and its £27.00 + VAT price tag may be used. This device is designed to be used in bar code wands such as those used in many shops.

If this is too expensive then an RS sensor (see Bynlens) may be used with the simple modification of partially covering its two sensing windows with a light proof material. Although the Hewlett Packard sensor wins hands down for performance and resolution, the RS price of about four quid is likely to persuade most constructors, myself included.

The key itself is a bar code such as that in Fig. 1 printed on paper and encapsulated in a plastic enclosure called a Pronta-pouch (honest!). This forms a flexible, waterproof and cheap key, something like a credit card.

A program in BBC Basic is provided to

The correct wiping action to operate the lock.
produce the bar code on an Epson or compatible printer. The program should be easy to alter for other home micros.

As can be seen from Fig. 1 the code begins with a 3mm black border. No white can show before this. Following this is the 1mm black reference bar (this must always be a thin bar as the decoder uses it as a reference to determine the length of the bars of the actual code). Then comes the actual bar code which is a simple binary code of up to 14 bars, in any combination of thin 1mm and thick 2mm black bars - a possible 16384 combinations.

Eight bars are used for the code in the key shown, giving the binary code 01101100 where 0 = thin and 1 = thick. A 3mm black border at the finish ends the code. All the white inter-bar spaces are 1mm wide.

Note that the key shown in Fig. 1 is symmetrical so it does not matter which way it is wiped across the sensor (this should help when getting used to using the switch).

The operation of the bar code switch can best be understood by looking at the block diagram in Fig. 2. The optical sensor consists of a LED which emits light onto the surface being scanned. Light will be reflected back to its receiver from white spaces. The output from this is amplified and then with a reference voltage (by the bar comparator) to determine whether a bar or space is present. Its output will be low (0) for a space and high (1) for a bar.

The bar counter is incremented by this comparator as the leading edge of each bar passes over the sensor so that each of the counter’s outputs 1 to 14 become active when the corresponding bar in the code is over the sensor.

Two integrators are used to measure the time taken for the bars to pass over the sensor (see Fig. 3). As the thin reference bar is over the sensor, the reference integrator ramps negative (from its normally positive condition), ideally reaching about half the supply voltage and remaining there for the rest of the sweep.

The timing integrator is reset during each white space of the code. Its time constant is \(\frac{1}{2} \) that of the reference integrator so that its output goes (ideally) to 8V during a thin bar, and 4V during a thick bar. This is compared to the (ideal) 6V of the reference by the bar length comparator producing a zero output for a thin bar and a one for a thick bar.

There is a fair tolerance regarding the speed the key can be swept across the sensor. So long as the speed is constant the timing integrator should still cross the voltage set by the reference integrator at the correct points — the only difference being the voltage at which this reference voltage is set.

More important is the effect of changes in speed as the key is swept. An increasing speed could prevent thick bars reaching the reference voltage and a decreasing speed could push ramps from thin lines over the reference threshold, either effect giving a false decoding.

This circuit allows for an increase or decrease of almost 25%, which should cause few problems.

Fig. 1 An example bar code key

Fig. 2 Block diagram of the bar code switch

Fig. 3 Timing diagram for integrators using example bar code key

particularly after a little practice.

The output of the bar length comparator (0 for thin, 1 for thick) is then compared with the output for the code programming switch for that bar (also 0 for thin, 1 for thick) by XORing them in the correct code comparator.

If they match, the output will be low. If they are different it will be high and this will set the wrong code latch high (where it will remain for the rest of the sweep regardless of later successful comparisons). The state of this latch determines whether the key is accepted or not.

The last bar detect line is connected to the last output of the bar counter that is needed for the length of code used. In the case of the code in Figs. 1 and 3 this is output 8. On the falling edge of this line (after the last bar on the key has been scanned) two things can happen.

If the wrong code latch has not been set high, the pulse generator will produce a short 100ms pulse which will in turn reset the wrong code counter and beep the piezo sounder. This indicates that the correct key has been used.

If the wrong code latch has been set high then the code accepted pulse will be inhibited and the wrong code counter will be incremented. If this counter reaches an internally set number, say five, then it means that five consecutive attempts have been made to operate the switch with a wrong key and the piezo sounder will run continuously for a preset period to warn of the fact. If the correct key is used the sounder will be deactivated.

The reset circuit resets the system 100ms after the last bar passes the sensor. The bar code switch is then ready to decode another key.
HOW IT WORKS

The circuit diagram is shown in Fig. 4. The output of mains transformer T1 is rectified by D1 and D2 (Fig. 4b), then filtered by the reservoir capacitor C1 to provide +16V raw DC. Series regulator IC7 is used to provide the +12V regulated supply for the circuit.

R100 (Fig. 4c) provides about 35mA of current from the raw supply to illuminate the LED emitter in SENS1, keeping the dissipation in IC7 down. The varying current in the receiver phototransistor is converted into a voltage by IC100 and rises as more light is reflected. The sensitivity of this stage is adjusted by RM100. The output of IC100a is AC coupled in a X47 inverting gain stage consisting of IC100b, R105 and R106.

The output from the preamplifier goes into the inverting input of IC1 (Fig. 4a). Its output is high for a space and low for a bar — IC2b inverts this and the low to high transitions clock IC3b, a 4-bit binary counter. The counter drives IC4 to form a 1 to 6 sequential enabler. The active high output is incremented as the start of each bar passes over the sensor.

As soon as the leading edge of the first bar passes the sensor output SW1 becomes active. This is fed into the integrator formed by components D7, R20, C7 and IC1b. The output of IC1b will ramp negative until the leading edge of the next bar passes the sensor, ideally reaching 0V — this is the reference integrator's output (see main text). As each of the remaining 14 bars passes over the sensor they are timed by the timer integrator (D29, R23, C5 and IC1c).

IC2b provides a high level on the timer integrator's input for as long as the bar is over the sensor. A slightly stretched version of this is produced by D3, R8, C5, R12 and IC2a, and is used to reset the timer integrator during each space on the key.

The outputs of the integrators are compared by IC1d, producing a high for a thin bar (the timer integrator doesn't have time to ramp down as far as the reference) or a low for a thick bar (the timer ramps below the reference).

As the key is passed over the sensor each one of the bank of switches is selected sequentially by IC4's outputs S2 to S15. These switches have been programmed for the correct key — a closed switch requires a thick bar, an open switch for a thin bar. The state of each switch is compared with the relevant bar by IC5a, producing a low if they match.

As long as all the bars match the switches then IC5a's output to the D input of flip-flop IC6a will remain low. IC1a clocks the data through to the flip flop output and if all the codes match then the Q output of IC6a will remain high. The negative going edge of the last counter output clocks the data at Q to the D input of IC6b. If the correct key was used, the output Q of IC6b will be high and will turn on transistors Q1, Q2 and Q3. Q2 turns the sounder on and Q3 illuminates LED1.

The output of IC6b remains high until reset by IC2c going high when C6 is discharged by R13 (100ms). C6 gets charged by D4 and R9 during white spaces.

If at any bar the key failed to match the set switches, the Q output of IC6a will be high and is latched high by D25. R24 prevents this state being altered by any subsequent matches. So at the end of the sweep, the Q of IC6b is low and no code accept pulse is generated.

In addition, as IC6a goes high, the positive edge clocks binary counter IC3a to count the number of times the wrong key has been used.

After either five or nine attempts (link selectable) the piezo sounder is switched on as a warning, cleared either by using the correct key or automatically after a time set by C4, R11, R12 and IC2d.

Construction

The sensor may be mounted in any suitable box, or even behind a window. The box should be at least 3in long to allow the key to be wiped smoothly across the sensor window. The prototype used a standard 29mm deep surface mounting box and a standard blanking plate to match the mains and lighting boxes in my home.

A hole is required in the blanking plate for the optic sensor, about 10mm by 15mm as shown in Fig. 5a. On the prototype the sensor was mounted behind this using a bracket of aluminium (or tin plate) cut to the dimensions shown in Fig. 5b and folded to a 90° angle along line XY.

The unit was put together as shown in Fig. 6. Note how the bracket should overhang one of the 15mm edges by about 1mm.

The red filter for the front of the blanking plate should be about 85mm x 35mm, fixed into place with Bostic, Evostick or some other suitable brand name. When you've done that, you'll realise that you've just covered the mounting screws with the filter and you can't screw it to the wall. You'll need...
to drill from the back of the box through the filter using a small drill bit, then from the front with a larger (5mm) bit.

Increasing Resolution

Figure 7 shows how the two windows of the sensor should be blanked off with tape leaving only a 1mm slit — necessary if the sensor is to resolve a 1mm bar code. Crepe tape (as used in PCB design) is better than insulating tape which may 'creep' if it gets warm. Take some time over this, as an accurate slit can avoid a good deal of fiddling compensation later.

Circuit Board Construction

The component overlay for the small preamp board is shown in Fig. 8. Construction is very straightforward, beginning with the resistors and working through to the cermet trimmer RV100 and IC100. Check the polarity of the IC and the tantalum capacitors. Any type of 4-core cable can be used to connect to pads E, F, G & H.

Mount the sensor and put the PCB in the box. The main board Fig. 9 is slightly more complicated but should cause no problems.

Start by fitting the ten PCB links. LK1 is as shown for 240V mains. If 110V is to be used, replace LK1 with two links — one across AD and one across BC. LK2 joins the secondary 0V to mains earth.

Next fit the diodes (noting their orientation), then resistors and IC sockets. Take care with the orientation of electrolytic capacitors — especially the tantalums which short circuit very quickly if reverse biased. If using the recommended DIL switches, these should be fitted with identification numbers facing the transformer.

When setting the mains transformer ensure the primary is facing the fuseholder, its pins should then fit into one of the two holes provided on the PCB.

With all components connected, make a final check of polarity and any possible splashes or shorts, then set all the presets to the centre and set the programming switches as shown in Fig. 8. Fit a mains cable to the three pads provided and connect the cable from the sensor to pads E, F and H.

Setting Up And Test

Most of the testing can be done with a voltmeter, though a scope is pretty handy when setting up the optical sensor.

Once mains is connected to the main PCB you must be extremely careful to avoid any part of your anatomy coming into contact with live tracks — at best such contact will produce a string of four letter words, at worst a prolonged silence.

First (with CMOS devices removed) check the PSU functions. The raw voltage at the junction of D1 and D2 should be about 16V DC with about 0.5V of 100Hz ripple on it. The stabilised line on the output of IC7 should be at 12V DC (with about 10mV of wideband noise on it).

Check that these voltages appear at the correct points on the preamp board then switch off and let C1 discharge before inserting the CMOS devices. Switch on again and check that the 12V line is still OK.

Make sure that LK11 goes only to the pad next to D16, corresponding to the eight bars used in the test key (Fig. 1). Place the blanking plate loosely on top of the box and make sure that the sensor is pointing away from any sources of electric light.

If you have a scope look at the output of the preamp IC100b, with your timebase set to 10ms/div and sensitivity at 2V/div (AC coupled).
PARTS LIST

RESISTORS (all resistors 1/4W 2% metal film except where stated)

- R1,4,8,9,10,14,15, 17,21,22,103,104:
 - 105: 10k
 - R3: 20k
 - R5: 2M0
 - R6: 1k0
 - R7: 100R
 - R11,18,19,24:
 - 100k
 - R12,13,20,105:
 - 1M0
 - R16:
 - 1k6
 - R23:
 - 750k
 - R25,101:
 - 22R
 - R100:
 - 430R
 - R102:
 - 2k0
 - RV1,4:
 - 10k 1/4in cermet preset
 - RV2:
 - 1M0 sub min preset
 - RV3:
 - 10k sub min preset

CAPACITORS

- C1:
 - 4700μ 25V radial
- C2,9:
 - 1μ 35V tantalum
- C3,100,101:
 - 10μ 16V tantalum
- C4:
 - 100μ 25V radial
- C5:
 - 100p 10V polystyrene
- C8,102:
 - 10n 250V polyester
- C7,8:
 - 2200p polyester 5%

SEMICONDUCTORS

- IC1:
 - TL064
- IC2:
 - 40106B
- IC3:
 - 4520B
- IC4:
 - 4514B
- IC5:
 - 4070B
- IC6:
 - 4013B
- IC7:
 - 78M12
- IC100:
 - TL062
- Q1,2,3:
 - BC109
- Q4:
 - BCY70
- D1,2:
 - IN4001
- D3,25:
 - 1N914, 1N4148 etc.
- LED1:
 - Red LED

MISCELLANEOUS

- BUZ21:
 - Piezoelectric sounder (see Buylines)
- FS1:
 - 100mA 20mm
- T1:
 - 15-0 15-0 1VA per winding
- SENS1:
 - Opto sensor DPB7030
- SW1:
 - 10-way DIL
- SW2:
 - 4-way DIL
- IC sockets, 20mm fuseholder, Red filter, Sensor housing (80mm box and blanking plate, 22 SWG aluminium for bracket), Nuts and bolts.

When you’ve made a test key to the design in Fig. 1 (you could wipe your copy of ETI across the sensor but it’s hardly elegant) hold it as shown in the photograph with the key on the red filter. Only the 3mm thick boarder should be actually on the box, the rest should hang over the edge. Wipe the key smoothly across the filter lengthways. The easiest way to get the correct speed is to count like you do between lightning and thunder '1 and 2 and 3 and' sweeping from left to right on the numbers and returning the key to its start position on each 'and'. The preamp output should resemble a burst of sine waves (with quite some distortion) each time the key is wiped. If this doesn't happen, adjust the height of the sensor until it does. If instead of sine waves the output just goes high then the slit in the sensor board needs adjusting.

![Component overlay for pre-amp board](image-url)
the sensing window is too wide.

Then adjust the sensor height to minimise the amplitude difference between the two different sine wave frequencies. Adjust RV100 to bring these amplitudes to about 8V peak-to-peak. Sweeping the key should now bleep the piezo sounder to show a correct code (otherwise either you’re not sweeping properly or you’ve set the wrong code in the switches).

Using the scope to look at the output of the reference integrator IC1b, you can get some sweeping training by getting the voltage to drop from its normal 12V to as close to 6V as you are able. If you have a two beam scope you can look at IC1c to produce a display similar to Fig. 3.

Finally, fine tune the system by adjusting RV100 to give the best performance at varying sweep speeds.

Then tighten the sensor to the bracket, mount the preamp board by fitting a 3M x 10mm spacer to the sensor mounting bolt and attaching the PCB to the spacer with a 3M x 5mm bolt. Then close the box. With the box closed, make sure everything still works.

Now change the required code by setting SW1 on the bank of switches ‘on’ and try the key again. After five attempts the piezo sounder should sound for about 90 seconds.

The volume is adjusted by RV3 and the time constant by RV2. For a much longer period change R11 but don’t exceed about 10M. By moving both D5 and R17 to their alternative positions the number of failed sweeps required to sound the alarm is increased to nine. To identify longer codes up to 14 bars, link 11 should be moved to the relevant diode.

When mounting the completed sensor housing, make sure that the sensor doesn’t face an electric light as this will toggle the comparator at 50Hz and eventually trigger the alarm.

For mounting outside, a sealed watertight box should be used and a bag of silica gel (as found in camera cases and so on) in the box would stop any condensation forming.

Applications

Figure 10 shows how the code accepted pulse can be used to toggle an external flip-flop for each correct sweep of the key. This could be used to deactivate an alarm system for instance.

Figure 11 shows how the code accepted pulse can be stretched using an external monostable. This could drive a solenoid in an electrically operated doorlock.

Making The Keys

Making the keys is easy, especially if you have a BBC computer and Epson printer, for which a program is provided in Listing 1.

The program prints the selected bar code twice with a 3mm bar in the middle so the printout can be folded in half and slipped into a Prontapouch (hooray for Prontapouches!). This produces a doublesided key.

The black bars obviously need to be as dark as possible so if your printer has been producing light grey listings recently, now might be a good time to replace the ribbon. Note that the program can compensate for an old or ribbon by overprinting several times (line 90).

Anyone familiar with BBC Basic should understand most of the program with a few side-long glances at the printer manual to sort out the VDU codes. It should run on the model B, B+ or...
Listing 1 BBC Basic program to print bar codes

Master and (if you're lucky) on the Archimedes as well. It has been written to work with any Epson or compatible printer with quad density bit image mode such as the RX80, FX80 and LQ100.

The REM statements need not be typed in but are included to help anyone convert the program.

THE PROGRAM

VDUI is the command to send the next character or number to the printer only. The equivalent to line 240 (VDUI, 27, 1, 80, L dots, 1, Hdots;) in Microsoft Basic shown in Line 250 (PRINT CHR$(27); CHR$(90); CHR$(Ldots); CHR$(Hdots);). When a procedure is called as in line 270 (PROCBar(30,255)), the two values in brackets are assigned to the variables identified in that procedure's definition — line 500 (DEFPROCBar(length, data)). So length = 30 and data = 255.

The DATA statements starting at line 800 hold the binary data for the bar code. Line 800 holds the data for the Reference Bar, line 820 holds the white space. This informs the program when all the data has been read. Both these values should not be altered. Line 810 holds the actual data for the code as set up on the programming switches, and produce your personal bar code.

USING THE HBCS1110 OPTO SENSOR.

For anybody wishing to use the more expensive Hewlett Packard sensor, the pin connections are shown in Fig. 13. The circuit in Fig. 13 shows how to connect the device to the pre-amp using three extra resistors — note that R106 should also be changed to 100k.

To make use of the improved resolution, the integrator time constants will have to be changed. If the bar thickness is halved then C7 and C8 must be halved (from 220pF to 100pF) and use polystyrene or monolithic ceramic rather than normal ceramics (which may cause the reference integrator to drift through leakage). Obviously the barcode printing program will require altering to produce narrower bars.

BUYLINES

Most of the components used in this project should be available from your usual supplier.

In the prototype the following components were obtained from Electromall: BUZ21 (order code 249-794), SW1 (336-680), SW2 (337-548), the red filter (307-913), SENS1 (307-913). Electromall, PO Box 33, Corby, Northants NN17 9EL. Tel: (0358) 204355.

The sensor type is OPB7030 and is also available from other suppliers.

Note that the red filter should not be more than 1mm thick.

The more expensive HBCS1110 opto sensor is available from Farnell (Tel: (0532) 636311) or from Trilogic (Tel: (0274) 684289).

The Prontopouches are available at any Prontoprint shop — check your Yellow Pages or Thomson Local Directory.
POWER CONDITIONER
FEATURED IN ETI
JANUARY 1988

The latest microprocessor-controlled unit is
principally designed for protecting high sensitivity
equipment, but can also be used in a variety of
other applications. The unit is capable of
surpassing the performance of all types of
professional equipment.

The unit is simple to install and is available
with a choice of 4 output voltages. It is
memorised with four different
stabilities which can be
independently set.

PARTS £28.60 + VAT

THE DREAM MACHINE
FEATURED IN ETI
DECEMBER 1987

It is not every time that a product
appears with such a high level of
build and finish that it can
be described as a work of art. At
first sight, you might have
suggested that this unit was
made from solid oak, but as you
make a closer inspection, you see
immediately, it is a beautifully
crafted component.

For many, the thought of waking
repeatedly and then being
plunged into total darkness is
almost unbearable. This
machine, the Dream Watch, is
designed to take away the
worries of nightmares and
insomnia.

The machine has been
specifically designed to work
with existing electric clocks.

The machine has been
specifically designed to work
with existing electric clocks.

The machine has been
specifically designed to work
with existing electric clocks.

PARTS SET £10.95 + VAT

MAINS CONDITIONER
FEATURED IN ETI
SEPTEMBER 1987

Clear up mains pollution
cost-effectively. You can ready your
equipment to work at the different
electricity systems all over the world.

The complete parts set consists of: stator, 3 printed
circuit boards, all components (including 741 op-amp crystal, over
10 resistors, 22 capacitors and 2 potentiometers), knobs, lights,
power supply, printed case and full instructions.

PARTS SET £16.50 + VAT
AVAILABE WITHOUT CASE FOR ONLY £11.90 + VAT

RUGGED PLASTIC CASE £1.65 + VAT

PULSIVEL AIR IONISER
FEATURED IN ETI
JULY 1987

Ion wave has been described as
wonderful to the air by the health
magazines, and books on electronics
all over the world.

Here you are, a device that
produces the same ions that
are being described in the
health magazines. The instructions
are very clear and easy to follow.

The device is a complete kit
and is ready to use. All you need
to do is plug it into the mains.

PARTS WITH BLACK CASE £11.50 + VAT
PARTS WITH WHITE CASE £11.85 + VAT

KIGHT RAIDER
FEATURED IN ETI
JULY 1987

This is the latest in Elliot's range of
amazing, high-quality games that
are sure to keep you entertained for
hours and hours.

The Knight Raider is
especially designed for
people who enjoy
challenging games.

PARTS £23.90 + VAT

THE ETI MARCH 1987
FEATURED IN ETI
MARCH 1987

The exclusive Knights-Gaming machine measures
only 33 cm x 30 cm and weighs only 5 kg.

It comes with a range of games, including:

- Roulette
- Craps
- Pinball
- Arcade
- Slot machines

These games are fully
programmable and can be
used for both professional
and casual gaming.

Our approved parts set consists of case, PBC and components
for assembly. Each component is fully
instructions.

PARTS SET ONLY £35.90 + VAT

Five extra games FREE with
every order!

THE ETI JULY 1988
FEATURED IN ETI
JULY 1988

The exclusive Knights-Gaming machine measures
only 33 cm x 30 cm and weighs only 5 kg.

It comes with a range of games, including:

- Roulette
- Craps
- Pinball
- Arcade
- Slot machines

These games are fully
programmable and can be
used for both professional
and casual gaming.

Our approved parts set consists of case, PBC and components
for assembly. Each component is fully
instructions.

PARTS SET ONLY £35.90 + VAT

Five extra games FREE with
every order!

THE ETI JULY 1988
FEATURED IN ETI
JULY 1988

The exclusive Knights-Gaming machine measures
only 33 cm x 30 cm and weighs only 5 kg.

It comes with a range of games, including:

- Roulette
- Craps
- Pinball
- Arcade
- Slot machines

These games are fully
programmable and can be
used for both professional
and casual gaming.

Our approved parts set consists of case, PBC and components
for assembly. Each component is fully
instructions.

PARTS SET ONLY £35.90 + VAT

Five extra games FREE with
every order!
CONSTRUCTOR SERIES SPEAKER KITS

Based on the famous Kef Reference Series, these three DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-to-earth price!

With a Wilmslow Audio Total Kit it's easy — no electronic or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, wadding, grille fabric, terminals, nuts, bolts etc.

Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and CS9 is based on the Reference 105.2 (but in a conventionally styled encl.).

Model CS1 £117 pair inc. VAT plus carr/ins £6
Model CS3 £143 pair inc. VAT plus carr/ins £12
Model CS9 £99 pair inc. VAT plus carr/ins £16

We also offer a kit (less cabinet) for Elector PL301

Lightning service on telephoned credit card orders!

WILMSLOW AUDIO LTD.
35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Tel: 0625 529599
Call and see us for a great deal on HiFi.
(Closed all day Mondays)

DIY Speaker catalogue £1.50 post free (export £6)

19" RACK CASES

* Suitable for instruments, high quality amplifiers and many other applications that demand strength and professional finish + New improved construction and finish + Black anodised aluminium front panels + Separate front mounting plate, no fixing screws visible on the front and at the side of the enclosure + Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles + With ventilation slots and plastic feet + Rear box manufactured from 1.5mm steel finished in black, Rack mounting or free standing. Comes in quick assembly flat package spare front panels available.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Panel Size</th>
<th>Rear Box W H D</th>
<th>Weight</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ10</td>
<td>19 x 1.56</td>
<td>17 x 1.5 x 10</td>
<td>2.9kg</td>
<td>22.95</td>
</tr>
<tr>
<td>SJ20</td>
<td>19 x 3.5</td>
<td>17 x 3.5 x 10</td>
<td>2.9kg</td>
<td>24.90</td>
</tr>
<tr>
<td>SJ50</td>
<td>19 x 5.25</td>
<td>17 x 5.5 x 10</td>
<td>2.9kg</td>
<td>26.95</td>
</tr>
</tbody>
</table>

15% discount on 1U-10 2U-10 3U-10 with this adver.

2U-10 19 x 3.5 17 x 3.0 x 12 3.9kg £25.90
3U-10 19 x 5.25 17 x 5.0 x 12 4.9kg £37.95
4U-12 19 x 7.0 17 x 6.5 x 12 4.9kg £49.95

Please add £3.00 P&P for the first item and £1.50 for each additional item. No VAT to be added to the price.

TEST EQUIPMENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C83A Digital Power Supply/Voltmeter (0/35 Volts 1.5 A)</td>
<td>£49.50</td>
</tr>
<tr>
<td>C83B Digital Power Supply (0/30 Volts 1 A)</td>
<td>£40.50</td>
</tr>
<tr>
<td>C89A Function Generator (2 Hz to 200 KHz)</td>
<td>£43.50</td>
</tr>
<tr>
<td>C86A 60 MHz Counter/Timer</td>
<td>£55.50</td>
</tr>
<tr>
<td>C57A Autoranging Capacitance Meter (0 pF to 99 9 mF)</td>
<td>£55.50</td>
</tr>
<tr>
<td>MV336 Metal-mains detector</td>
<td>£4.99</td>
</tr>
</tbody>
</table>

A range of low cost, high quality, metal cased laboratory instruments. Mains operated and easily portable. Please add £3.00 p/p per item (£1.00 for MV336).

To order send cheque/postal order. Quantity discount available. Customers who require further information please send S.A.E. Trade and overseas orders welcome. Mail order only.

T.J.A. DEVELOPMENTS
Dept. ETI, 19 Welbeck Road, Harrow, Middlesex HA2 0RN.

Please supply photocopies of the following articles from ETI (complete in block capitals):

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Month</th>
<th>Year</th>
<th>Page (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I enclose a cheque/postal order made out to ASP Ltd. to the value of £1.50 per photocopy ordered.

Total remittance £ ☐ Date ☐

Name ☐
Address ☐
Postcode ☐

Send the completed form and your remittance to:
ETI Photocopy Service
9 Hall Road
Hemel Hempstead
Herts. HP2 7BH

ETI JULY 1988
TOP NOTCH IMPROVEMENTS

Back in ETI February-April 1987, I described a high sensitivity low noise and distortion FM tuner circuit. The constructional kit now available gives a performance which is if anything better than my prototype, mainly I think to more effective internal screening and more careful choice of earthing points — an important point in any RF circuitry.

However, in any circuitry there are always areas of conflicting requirements where some compromise is necessary. One of these areas is the input HF (ultrasonic) filtering which precedes the stereo decoder system.

The update provided here develops a steep cut filter that may be of general interest to readers quite apart from its intended application in the FM decoder.

A Good Reception

The FM stereo signal as broadcast (see Fig. 1) consists of a standard mono L+R signal occupying the 20Hz to 15kHz part of the modulation bandwidth. A further L–R signal occupies the 23-53kHz part of the output spectrum, based on a 38kHz subcarrier. This subcarrier is suppressed to prevent an unwanted intrusion of the L–R signal into the mono reception and a small amplitude, low distortion 19kHz 'pilot tone' is added to the mono signal to enable the 38kHz subcarrier to be regenerated at the receiver if required.

The stereo signal can be recovered by filtering off everything below 20kHz, demodulating to obtain the L–R signal and then simultaneously adding and substracting that from L+R using some kind of matrix.

Alternatively, the recovered 38kHz signal can be used as a switching waveform to route the total 20Hz-53kHz output from the FM demodulator to either one channel or the other. The result is the same as for the matrix system but is much simpler and therefore more popular.

For both systems the phase of the recovered 38kHz subcarrier must be accurately related to the pilot tone — particularly important for the switching method.

The snag is that the switching method works best with a squarewave subcarrier, which contains third and fifth harmonics. These harmonics at 114kHz and 190kHz — will quite happily demodulate any wideband noise products occurring round these frequencies as additional audio noise.

What is required is a filter which has a flat frequency response from 20Hz to 53kHz and a good cut-off at say 100kHz to remove all possible noise products based on 114kHz or other harmonics of 38kHz. The filter must also not greatly alter the phase of the L–R modulation significantly in relation to the 38kHz subcarrier.

Unfortunately there is no such thing as a lowpass or highpass filter which doesn't cause an associated phase shift as a function of frequency. Generally, the more effective the filter and the sharper the cut-off slope, the larger that phase shift will be.

In simple FM tuners this problem is solved by not having any input filtering at all and accepting the somewhat worse S/N ratio resulting. In the original FM stereo decoder I used a straightforward three element 'bootstrap' circuit (Q1, 2, R1, 5 and C3, 4 in the original circuit) because this offered the best compromise between HF cut-off and transient performance. This gives a lowpass roll-off starting at 70kHz and an ultimate slope of about 18dB/octave.

A somewhat more exotic filter based on a bootstrapped ‘parallel T’ is shown in Fig. 2. This has less initial phase shift and a rather greater final attenuation — the frequency/phase characteristics are shown in Fig. 3.

This is just as effective in cutting out wideband input noise but introduces rather less phase shift over 23-53kHz region than the 'bootstrap' and so allows an improvement in stereo channel separation.

The final layout of the stereo decoder incorporating this input modification is shown in Fig. 8, with the overlay in Fig. 9. The need for an input HF filter can be demonstrated by putting a temporary short circuit across points P and Q to cut it out of circuit. You can then hear the extent to which the S/N ratio may be worsened by the commutation of HF noise components down into the audio band.

Fig. 1 FM modulation spectrum

Fig. 2 Parallel T input filter circuit
Fig. 3 Transmission and phase shift characteristics of parallel T circuit

Fig. 4 Basic parallel T notch filter

Fig. 5 Parallel T transmission characteristics

Fig. 6 Bootstrap circuit for parallel T

Fig. 7 Effect of lag components R and C

HOW IT WORKS

A simple 'parallel T' circuit of the kind shown in Fig. 4 will give a 'notch' in the frequency response, as shown in Fig. 5a, at a frequency given by

\[F_0 = \frac{1}{2\pi RC} \]

assuming that it is driven from a low source impedance, and that the load impedance is very high.

If the 'T' circuit is 'bootstrapped,' as shown in Fig. 6, the steepness of the notch can be increased, as shown in Fig. 5b, to an amount determined by the output signal fed back by RVz. This can be converted into a 'low-pass' filter by the additional components Rx and Cy, which give the kind of frequency response shown in Fig. 7.

AFTERTHOUGHTS

There was a misprint in the values shown for C63 and C64, in the original article, (Fig. 6, page 36, April 1987). The correct value for these should be 330p.

I have also amended a few other values in the light of experience. Components R8, R7 and RV1 have been altered to give a rather higher gain in the decoder unit (to suit the characteristics of the CA3189) and R2 has been altered to slightly increase the mean DC level of the signal channel. I have also tidied up the switching arrangements for the 'stereo image width' selector SW2.

Apart from this and the output DC blocking capacitors C12,16, the only changes in Fig. 8 are those brought about by the modification to the input HF filter circuit.

With the amended input filter circuit, it is probable that the maximum channel separation will be given with RV2 set at, or near to, its minimum resistance value.
Fig. 8 Circuit diagram of the updated stereo decoder

Fig. 9 Component overlay of the updated stereo decoder
PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/8W 5% unless specified)</th>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>C1, 6</td>
</tr>
<tr>
<td>R2, 12, 25</td>
<td>C2</td>
</tr>
<tr>
<td>R4</td>
<td>C3</td>
</tr>
<tr>
<td>R6, 15, 21</td>
<td>C7, 8, 68, 69, 70, 71, 72</td>
</tr>
<tr>
<td>R7</td>
<td>C9, 24</td>
</tr>
<tr>
<td>R8, 39</td>
<td>C10, 14</td>
</tr>
<tr>
<td>R9</td>
<td>C11, 15</td>
</tr>
<tr>
<td>R10</td>
<td>C12, 13, 16, 23</td>
</tr>
<tr>
<td>R11, 12</td>
<td>C17</td>
</tr>
<tr>
<td>R13, 90, 95</td>
<td>R2, 3, 7, 15, 20</td>
</tr>
<tr>
<td>R32</td>
<td>R3, 4, 6, 28, 120</td>
</tr>
<tr>
<td>R34</td>
<td>R25, 28, 120</td>
</tr>
<tr>
<td>R36</td>
<td>R30, 36</td>
</tr>
<tr>
<td>R38</td>
<td>R34, 829, 100</td>
</tr>
<tr>
<td>R41</td>
<td>R40, 329, 100</td>
</tr>
<tr>
<td>R45, 97</td>
<td>R41, 329, 100</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

- SW1, 2: SPST switches, as appropriate
- PCB, 15V power supply. Case: Cable, Sockets etc.

Component numbering has been selected to match the kits supplied by Hart and may consequently appear a little odd.

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>TELESCOPES</th>
<th>TELESCOPES</th>
<th>TELESCOPES</th>
<th>TELESCOPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>D36</td>
<td>D34</td>
<td>D34</td>
<td>D34</td>
</tr>
<tr>
<td>D35</td>
<td>D35</td>
<td>D35</td>
<td>D35</td>
</tr>
<tr>
<td>TAPE D35</td>
<td>TAPE D35</td>
<td>TAPE D35</td>
<td>TAPE D35</td>
</tr>
<tr>
<td>TAPE D35</td>
<td>TAPE D35</td>
<td>TAPE D35</td>
<td>TAPE D35</td>
</tr>
</tbody>
</table>

MULTIMETERS

- AVO 6
- AVO 7
- AVO 8
- AVO 9

AVO TRANSISTOR TESTER

- **TY616**
- **TY616**
- **TY616**
- **TY616**

AVO VALVE TESTER

- **CT160**
- **CT160**
- **CT160**
- **CT160**

DISK DRIVE

- **PSU 240V**
- **PSU 240V**
- **PSU 240V**
- **PSU 240V**

DUAL TRACES

- **10MHz**
- **10MHz**
- **10MHz**
- **10MHz**

BATTERY

- **12V**
- **12V**
- **12V**
- **12V**

SWITCH

- **PSU**
- **PSU**
- **PSU**
- **PSU**

NEW EQUIPMENT

- **HARLEM OSCILLOSCOPE**
- **HARLEM OSCILLOSCOPE**
- **HARLEM OSCILLOSCOPE**
- **HARLEM OSCILLOSCOPE**

SHIPPING COSTS

- **ORDERS OVER £25.00**
- **ORDERS OVER £25.00**
- **ORDERS OVER £25.00**
- **ORDERS OVER £25.00**

<table>
<thead>
<tr>
<th>RESISTORS (all 1/8W 5% unless specified)</th>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>C1, 6</td>
</tr>
<tr>
<td>R2, 12, 25</td>
<td>C2</td>
</tr>
<tr>
<td>R4</td>
<td>C3</td>
</tr>
<tr>
<td>R6, 15, 21</td>
<td>C7, 8, 68, 69, 70, 71, 72</td>
</tr>
<tr>
<td>R7</td>
<td>C9, 24</td>
</tr>
<tr>
<td>R8, 39</td>
<td>C10, 14</td>
</tr>
<tr>
<td>R9</td>
<td>C11, 15</td>
</tr>
<tr>
<td>R10</td>
<td>C12, 13, 16, 23</td>
</tr>
<tr>
<td>R11, 12</td>
<td>C17</td>
</tr>
<tr>
<td>R13, 90, 95</td>
<td>R2, 3, 7, 15, 20</td>
</tr>
<tr>
<td>R32</td>
<td>R3, 4, 6, 28, 120</td>
</tr>
<tr>
<td>R34</td>
<td>R25, 28, 120</td>
</tr>
<tr>
<td>R36</td>
<td>R30, 36</td>
</tr>
<tr>
<td>R38</td>
<td>R34, 829, 100</td>
</tr>
<tr>
<td>R41</td>
<td>R40, 329, 100</td>
</tr>
<tr>
<td>R45, 97</td>
<td>R41, 329, 100</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

- SW1, 2: SPST switches, as appropriate
- PCB, 15V power supply. Case: Cable, Sockets etc.

Component numbering has been selected to match the kits supplied by Hart and may consequently appear a little odd.

BUYNLINES

Most components are easily available but Hart Electronic Kits (0891 612934) can supply all components in the design. Hart also produces the complete kit for John Linsley Head's AM/FM tuner.

READERS SERVICES

9 HALL ROAD, MAYLANDS WOOD ESTATE, HEMEL HEMPSTEAD, HERTS. HP2 7BQ. TEL: 0442 - 41221

GAS ALERT OFFER

As featured in ETI March '88

NO MORE FEAR OF GAS EXPLOSIONS CAUSED BY LEAKS IN YOUR BOAT, CARAVAN OR HOME

IF YOU BUILD THE ETI "GAS ALERT" FULL KIT OFFER FOR MAINS OR BATTERY VERSIONS

BATTERY UNIT - screen printed case, siren, all components - Price £25.75. Order Code GA2

EXTENSION CASE (see ETI March '88). Price £2.95. Order Code GA3

STEWARD OF READING

110 WYKEHAM ROAD, READING, BERKS RGE 1PL

Telephone: 0734 88041 Callers welcome Sat. 9.30 to Sun. 4.30 (except weekends.)
EVERY BREATH YOU TAKE

This month it's time to start nailing things together in our quest for the ultimate breath rate/heart rate/lucid dream stimulator money can build.

Choosing a case for the project was easy. I found a nice little hand-held box with a cut-out for the display, a battery compartment, supports for the PCB — just the thing.

Then I did my arithmetic. Take one small box, divide by 17 ICs, add an LCD display, multiply by several transistors and dozens of resistors and caps ... and I couldn't be entirely sure what the answer was. The last time I worked out a problem like that, it had to do with a suitcase stuffed to bursting point and an extra pair of trousers to be fitted in somewhere. The answer on that occasion was broken straps and shirts over the floor. So much for empirical methods.

The ICs can be soldered direct to the board — there's room to socket them if you like, but since the other ICs for the project have to be soldered directly to the PCB to allow through connections via their leads, there doesn't seem much point.

If you intend to use the LCD display, all the resistor positions on the board must be linked across with wire. For LED displays, resistors should be chosen to suit the display type used. For instance, if the displays require 20mA per segment (which is a reasonable value for most types) and you're running the circuit from 9V, allow a 2V drop for the LCD, then calculate the resistor value by good old Ohm's law: $R = \frac{V}{I} = 200 \div 0.02 = 3300$. Use the nearest preferred value: 330Ω.

If you are not sure about the display type you've got, choose one test segment, start with a 1kΩ resistor, and reduce the value until the display is as bright as you like it. Then use that value of resistor in all the resistor positions on the PCB.

The board connections shown in Fig. 1 are for the LCD display. Although a link is shown in the circuit diagram for selecting LCD or LED, the board is arranged so that a link is only necessary for LED displays. Whatever you do, don't link across the two holes just above the input connections, or you'll short out the battery!

Figure 2 shows the connections and links for LED and LCD displays. The square wave is only needed for LCDs, so the only external connections in this case are to the power supply.

The Case

The thing that seems to cause most problems with home built projects is getting the appearance right. It's worth taking some trouble over, since although a PCB and dangling wires may be a thing of great beauty to an electronics enthusiast, to those of more limited perceptions it's just — how can I put this without offending — it's just a PCB with dangling wires. If you want to impress your friends, command the respect of your boss, get on with the neighbours and avoid having your head nailed to the floor, it's got to look good.

One decision I made fairly late on in the project was to use push-switches instead of toggles — just for the sake of appearance. If you intend to follow my example it means cutting a rectangular hole in the case, which is always more difficult than making circular holes. Even the best equipped workshop will only have a limited number of sizes of rectangular punches, so the chances are if you decide on a rectangular hole, it's got to be knife and forked.

When you have the case in front of you, you'll see that it has a smooth rectangular indentation in the top section, above the battery compartment. If you turn the top section over, you'll see that one of the mounting pillars is moulded below the top left hand corner of the indentation so it's obviously intended as a place to stick a label rather than a guide to an area to be punched out.

However, measuring the switches against the indentation show that it's just the right width and so makes a convenient guide to marking out the hole. It's too good an opportunity to miss, despite the pillar. What happens when you try making the hole by the usual knife and fork method of drilling holes all around the edge, then paring away the
surplus plastic with a Stanley knife, is that you’re left with a small corner of pillar obstructing the top left corner of the hole. The pillar is thick enough to stand having a small notch filed into it, and this completes the hole.

If you just want the breathing and heart-rate functions, that completes the awkward part of fitting out the case. The other two holes for the input sockets are simply drilled at the opposite end of the case. As long as you choose your positions carefully so that the sockets don’t foul either PCB, there’s no problem here. The LED holes (optional) can be drilled almost anywhere at the blunt end of the case — if the leads won’t reach, just extend them a little with some insulated wire.

If you intend to make use of the dream stimulator and other attachments, there’s more to do yet. The monitor connects to the add-ons by means of a 13-way cable, which is best connected using a 15-way D plug and socket. This will look better with the mounting flange behind the panel, but then the flange can cover up a multitude of wobbles if you’re not 100% confident of your hole-making skills.

If you turn over the top section of the case, you’ll see that there’s a mounting pillar just above the battery compartment divider. The pillar isn’t used in the project (a good thing too, since it’s just about to be cut away), so there’s no harm in drilling up the centre of it to give a handy reference point for marking out the case. Once drilled, the hole does two things. It marks the centre of the case, so you can make the hole smack in the middle, and it shows the position of the battery compartment divider. If you cut away more than ½in below the hole, you’ll be in danger of slicing into a part of the case you’d rather like to keep.

It’s OK to make a rectangular hole, but if you want to be a bit more fancy about it, angle the edges to follow the shape of the socket. Even on mass produced plastic mouldings for computers, it’s rare to see any attempt made to curve the edges of the hole to fit the socket exactly. The holes are almost always trapezoidal.

The positions for the fixing holes can be found after making the hole for the socket by putting it in place and scribing through the holes in the flange. Drilling those completes the mechanical work and you can start down to assembling the electronic parts.

Next month we’ll complete the constructional details and do the main board with its profusion of ICs and TARDIS-like dimensions.

PARTS LIST

RESISTORS (all 1/8W 5%)
- R18-38 select for display (see text)

SEMICONDUCTORS
- IC9, 10, 11 4543

MISCELLANEOUS
- DI8P1 LCD or LED display (see text)
- PCB, Case.

BUYLINES

The case can be obtained from either Electronic Temperature Instruments (0903) 202151 or from Specialist Semiconductors at Founders House, Redbrook, Monmouth, Gwent.

The Archer Z80 SBC

The **SDS ARCHER** - The Z80 based single board computer chosen by professionals and OEM users.

- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- **OPTIONS**: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

The Bowman 68000 SBC

The **SDS BOWMAN** - The 68000 based single board computer for advanced high speed applications.

- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067
Paul Cuthbertson describes a small simple-to-build analogue computer for education or experiment.

Many of the early analogue computers were true monsters, requiring four strong persons to lift them — and then with some difficulty. Fortunately, modern integrated circuits have come to the rescue and we can build a sensible small computer which, although no match for the performance standards and facilities of the bigger ones, represents considerable saving in weight, cost and power consumption.

This computer provides eight summing amplifiers, six coefficient multipliers and four integrators with over and under voltage indication. It is housed in two boxes — the power supply and the computer itself — with a cable connecting the two. The PSU can power a number of other units if the user wishes to install extra connectors for this.

There are controls for SET and HOLD on the power supply. The front panel of the computer is rather more complex. There is an overvoltage indicator, the four integrators, eight summing amplifiers, six coefficient multipliers and outlets for the ±10V references.

Such a small system is useful in a school or university laboratory or anywhere that experiments are done on control systems and such.

Mathematicians might like to note that in its present form the computer will solve linear differential equations, but not those which involve a function of two variables. Nor does it provide exponentiation or sinusoidal functions. However, the equipment to do this can be easily designed and if there is sufficient call for it, perhaps a future article may be devoted to such a unit. Even in its present form the system can be usefully employed in a number of ways in the lab.

Construction

Start assembly with the PSU. Mount all the PCB components first. Figure 4(a) shows the component overlay for the PSU board.

Fit the wire links first. There are four holes by the transformer for links. The 240V operation, fit one diagonal link from northwest to southeast. For 120V, fit two links in a west-east direction. The link shown is for 240V operation. The link by the earth pads should not be fitted if you intend fitting the computer into a large system of controls.

Now solder the smaller components in place, making sure metal film resistors are fitted in the right places. Lastly, fit the transformer and the power transistors on their heatsinks. The transistors should be fixed to the heatsinks before inserting and soldering to the board. No insulator is needed.

Fit the board into the case with the transformer to the rear and drill the four fixing holes in the case base in line with the mounting holes in the PCB. Drill a hole for the mains cable, fit a grommet.
HOW IT WORKS: PSU

The power supply provides ±7V and ±15V for any computer unit to use as well as the SET and HOLD signals.

The circuits for positive and negative halves of the PSU are practically identical and are shown in Fig. 1. Preregulators, IC1,2 give ±2V to power the PSU op-amps as they cannot withstand the full unregulated supply voltage (approximately ±21V) across their supply pins.

A reference supply of 5.1V is generated across ZD1, which is then applied to the op-amp IC3. When the voltage at the wiper of RV1 is equal to that of the reference voltage, the feedback loop is in equilibrium. However, if the output voltage tends to drop, the op-amp drives negative, causing more current to flow in the series pass transistor Q1 and thereby raising the output voltage. Similarly, if the output voltage rises, the op-amp output goes positive, cutting down the current flowing in the pass transistor.

Resistors R2,3 are chosen so the pass transistor is able to cut off when the op-amp output is at or near the op-amp supply voltage. Very little current flows in the OV line. It isn't a power supply line as such, but provides a OV reference for signals. This results in quiet, stable operation.

A similar circuit derives the ±15V supply. A special feature is that the 15V supply tracks the 7V supply. The 15V supply will not reach its full voltage if the 7V supply is pulled down or has failed for any reason. This protects the CMOS circuitry which uses the 7V supplies but which may be fed from circuits employing the 15V supplies. The tracking is accomplished by using the feedback signal from the 7V supply as the reference voltage for the 15V supply.

The performance of the supplies as regards load regulation and drift is quite exceptional.
and solder the neutral and earth wires directly to the board with the 100mA fuse in line with the live connection.

Bolt the board to the case and after drilling holes and mounting the two switches (SET and HOLD), the LED and the power D-connector, wire them to the board as shown in Fig. 5. The connector blocks are not essential and the wiring can be made directly to the PCB but removable connectors enable the board to be easily taken from the case for repair or alteration.

![Fig. 2 The -10.00V reference source](image)

![Fig. 3 The voltage reference buffers](image)

HOW IT WORKS: VOLTAGE REFERENCE

The voltage references are shown in Figs. 2 and 3. Fig. 2 shows the master reference providing -10.00V which is located in the PSU and Fig. 3 shows the two slaves located in the computer unit itself.

A band gap reference diode (ZD3) provides approximately 1.26V to an adjustable divider circuit (R21-RV5-R22) the output of which is buffered and multiplied by ten by IC5. This circuit is fed from the +12V and -15V supplies — if the -15V supply should fail then the master reference will be unable to provide possibly damaging voltages to other circuits.

The positive and negative slave references are an inverting and a non-inverting buffer respectively. Their gains are slightly adjustable (about 1% either side of unity) giving fine control over the reference voltage.
PARTS LIST: PSU

RESISTORS (all 5% 1/4W unless specified)
R1,11 1k5
R2,6,12,16 1k0
R4,14 1k5 1%
R5,9,15,19 4k7 1%
R8,18 10k 1%
R10 680R
R20 8k2
R21 1k0 1%
R22 9k1 1%
R23 100k 1%
R24 1M0 1%
RV1,4 10k sub-miniature horiz preset
RV5 2k0 20-turn preset

CAPACITORS
C1,2 2200µF 25V radial electrolytic
C3,4 220µF 16V radial electrolytic
C5,8,11,12 100n ceramic
C6,7,9,10 100µF 16V radial electrolytic

SEMICONDUCTORS
IC1 7812
IC2 7912
IC3,4 LM324
IC5 741
Q1,2 TIP115
Q3,4 TIP100
ZD1,2 5V1 zener
ZD3 ZN423 voltage reference
B81 W005
LED1 red LED

MISCELLANEOUS
F81 200mA fuse and holder
SK1 15-way female D-connector
SW1,2 Push to make switch
T1 15-0-15 12VA PCB mounting mains transformer
PCB Case. TO220 heat sinks. Grommet. 6-way and 3-way minicon PCB connectors. Wire. Nuts and bolts.

BUYLEINES
Most of the components for this project are easily available. The transformer used and a complete kit of parts for the whole computer is available from the Grampian Electronic Components, 266 Clifton Road, Aberdeen AB2 2HY (Tel. (0224) 495494). Further details are available from Grampian.

The PCB is available from the PCB service.

HOW IT WORKS: INTEGRATOR

An integrator is shown in Fig. 7. The resistors R1500-RV1500-R1501 attenuate the incoming signal by a factor of two to render it safe for use in the analogue switch. IC1500. RV1500 adjusts the time constant of the integrator. When the HOLD pushbutton is released, the analogue switch IC1a is closed, allowing a current to flow in R1502, charging the parallel integrating capacitors C1500, 1501 and causing the output voltage of op-amp IC1502 to ramp. Pressing HOLD opens IC1a and integration stops, regardless of the input voltage.

Pressing SET closes IC1501, shorts the integrating capacitor and discharges it. The SET line also forces a reset of the overvoltage circuit.

Initial conditions (the 'starting point' of the integrator) are summed with the integrator output by IC1503. When IC1502 output is at 0V, the initial condition voltage appears at IC1503 output inverted.

The four diodes connect to the overvoltage circuit.
HOW IT WORKS: SUMMING AMPS

The summing amplifiers (see Fig. 8) are the classic inverting circuit. Each of the inputs is either a $\times 1$ or a $\times 10$ input depending on the value of the input resistor [(R107-113)]. Eight summers are provided — three 2×1, one 3×1, four 3×10, and one 5×1, 2×10. Summer 1 (5×1, 2×10) is shown. The circuits for the others are identical and the components numbered 200, 300 ... 800 with resistors R100-103 and R107-110 omitted and the value of R111-113 and R115 altered.

The inverting input of the op-amp (IC100) is maintained as a virtual earth point. The currents from all the inputs are summed at the inverting input of the op-

amp. The sum of these current flows in the feedback resistor (R114).

When inputs are unused, offset voltages due to bias currents might be a problem. These tiny currents need an external path to flow in. We need not tie unused inputs to OV when using the computer, since the grounded 10k (resistors R101-107) provide a path for the input bias currents to follow.

Looking at it another way, when an input is unplugged, the impedance seen by the op-amp input does not change as much as it might, as there is a (relatively) small resistor shunting the other end of the input resistor to 0V. A similar technique is applied at the integrator inputs as well.

The resistor on the non-inverting input (R115) of any op-amp is always chosen to be approximately equal to the parallel value of all the input resistors (R107-113).

See Table 1 for a list of the values used in these circuits.

The two diodes D100, 102 route the output voltage to the overload detector. More on this later.

SUMMING	INPUT RESISTORS	R107 VALUE		
AMP		(207 ...)		
	1mΩ	10k	100k	
5x1	2x10	Five	Two	39k
3x1	Three	—	330k	
2x1	1x10	Two	One	82k

Table 1 R107 values for different summing amplifiers

The overvoltage circuit is shown in Fig. 9 and consists of a window comparator and a latch. The potential divider R36-38 develops approximately $+5.1V$ at the non-inverting input of IC7a and $-5.1V$ at the inverting input. Two rails carry information about the maximum voltages present on any of the outputs of the summers and integrators, are applied to the potential divider R32, 33. A similar pair of rails concerned with minimum voltages is applied to the divider R34, 35.

Normally the outputs of the two op-amps IC7a, b are positive. Whenever a voltage greater than about 10.2V plus one diode drop appears on the 15V overvolt rail or a voltage greater than about 5.1V plus one diode drop is applied to the 7V overvolt rail, the op-amp IC7a will go negative, pulling down the inverting input of IC7c via D1 and R39. The output of IC7c will swing positive, turning on Q5 and LED2.

Due to the hysteresis (positive feedback) applied by R41,41, IC7c stays latched in the positive condition, even when the output of IC7a swings back positive. R40 ensures the inverting input of IC7c stays at 0V when not disturbed by an overvolt condition. Should the SET button now be pressed, $+7V$ is applied to the anode of D3, causing the latch IC7c to be reset, turning off Q5. Negative voltages out of range are dealt with in the same way with IC7b output swinging negative. The diodes tied to the overvolt rails provide an analogue wired-OR, preventing the monitored circuits from interfering with one another. Sections of the integrators which are powered from ±7V (and cannot be expected to attain ±10V) are tied to the 7V overvolt rails. All others are tied to the 15V overvolt rails.

How it works: OVERVOLTAGEn

Next month the construction of the main computer unit and use of the whole system will be described.

Fig. 8 A 5×1, 2×10 summing amplifier

Fig. 9 The overvoltage warning circuit
INTERAK can be read as 'Interak'.

Rock Ferry, For in available diagrams really lvlade the Greenbank Tel: 01 450 0995 - the catalogue YOU CAN'T FLIND IT slowly and at bay code 95; beg and Users Group, and newsletter. Hundreds of programs on disk at little or no cost from the Users Group Program in machine code (Assembler), Basic, C', Forth, etc. Database, Word Processing, Scientific applications. Cassette tape operation or disk (up to 4 drives, 1 Megabyte 3.5" available from us, but you can add 3", 5.25", or if you want). Disk operating system CP/M Plus. 64K RAM, 280 based at present with potential for expansion to a 16 Megabytes address space and Zilog's latest Z80280 in the future. Security of supply - from Greenbank Electronics, established in 1970.

For more details write or phone us: Greenbank, Elkswood Dept. (TTE), 460 New Chester Road, Rock Ferry, Birkenhead, Merseyside L42 2AE. Tel: 051-645 3991

Build your own computer

CRICKLEWOOD ELECTRONICS LTD
WRITE OR PHONE NOW FOR OUR FREE, SPRING COMPONENTS CATALOGUE

WHEN YOU CAN'T FIND IT ELSEWHERE WE'LL HAVE IT!
from the U.K.'s number one 100% components shop - no gimmicks, no gadgets, no computers, just millions of components, all easily available by mail order, calling at shop, or credit card telephone orders.

CRICKLEWOOD ELECTRONICS LIMITED
40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET
Tel: 01 450 0995 & 01 452 0161 Telex: 914777

SALE SPECIAL!
ISW 240V ac soldering iron
• Large tube solder

ALL FOR £7.95

SOLAR CELLS
Standard quality solar cell, 2.5"x2.5": £4 each, 10: £35.00
Small size - 300: £100.00. These incorporate a pass screen and backing panel, with nickel sheet attached. 12V 200mA output. Ideal for charging candles...
£24.00

Z801 KEYBOARD Really smart alpha numeric standard quality keyboard with separate numeric keypad, from ICL's 'One Pak' Desk. Nicely laid out keys with good tactile feel. Not encoded - matrix output, 45 pins, £5.25. Also includes a 25 pin ribbon cable. Made by Alps, Size 333 x 106mm. Keys £8.95

2004 Skeleton Joystick, switch type. Made by Arnold, £10. Also includes a 25 pin ribbon cable. Made by Alps, Size 333 x 106mm. Keys £8.95

2004 Skeleton Joystick, switch type. Made by Arnold, £10. Also includes a 25 pin ribbon cable. Made by Alps, Size 333 x 106mm. Keys £8.95

ENTERPRISE PANELS
2688 PCB 32x128 with 4k of RAM (x 8451). Z80A microprocessor + 21 other chips. Modulator, speech I/O, RAM and Nick and or, Dave chips missing supplied with act and data £6.00

GREENWELD ELECTRONIC COMPONENTS

1988 CATALOGUE
OUT NOW 88 pages of bargains from resistors to disco mixers. Price includes all VAT & P&P. No minimum order, order form. Don't be without your copy - send £1.00 now!

STAR BUY!
GREEN SCREEN HI-RES 12" MONITOR CHASSIS
Brand new and complete except for case, the super high definition (1000 lines at the centre) monitor ideal for computer applications. Operates from 100-120V or 220-240V. Supplied complete with circuit diagram and 2 pots for brilliance/contrast and a setting instructions sheet. Standard input and output for the PC, Mac, IBM, etc. machine, small mod (details included for other computer.) Only £24.95 + £3. Carr.

SWITCH MODE PSU's
Just arrived - a quantity of Advance high power PSU's - Full details on Bargain list 59.

50W 12V plug unit: 5V @ 15A @ 12V - 2A @ 5V (1A list) £35.00
P350 25W unit: 5V @ 50A (list £10.00)

Hilfix 75W unit: 5V @ 130A @ 12V @ 20A (list £80.00)
Hilfix 1000W unit: 5V @ 200A (list £160.00)

SINGLE BOARD COMPUTER
Z8025 Plessey PM66-18 high performance board 16 bit 68000 CPU, 128K DRAM, 16K EPROM - Real time clock, 3 serial and 1 parallel I/O interfaces 185 page manual. Full new and boxed. Originally over £1000. Our price £150.00.

Manual £10 returnable deposit

ANALOGUE 1/0 SYSTEM
Z8026 Phillips PG3560 Compatible with Z80 and directly interfaceable in the VME bus above. Features: High & Low level inputs. 32 single ended or 16 diff. inputs. Address selectable with switchable 16Mbyte memory space, 12 bit resolution. AMP gains 1-1000 30 page manual. Brand new and boxed £100.00. Manual £5 returnable deposit

INTERFACE
Z8287 Datacat box 160 x 80 x 50mm Mounted centrally on top is a 25 way D type socket which is wired to a PCB which has 12 x 20mm wide ended fuses & 24 12V 1W zener diodes. A 13 core lead 2m long from this board terminates in a 25V D plug. There is also a separate earth lead, £4.00.

SET TOP CONVERTER
Z8288 Made by Thorn EMI, this was used to receive cable television, 2 part aluminium case 211 x 154 x 23mm. Front panel contains 2 PCB's (a) control board with multi way switch, dual 7 Seg display in place + a couple of chips, (b) main board with mains transformer, fuse, JP section etc. Rear panel has input and output sockets. 2 mains lead with moulded on 13A plug £9.00.

SPEECH SYNTH KIT
Z316 All parts inc. PCB to make a speech synth for the BBC micro...

Z316 De luxe version also includes V216 case, 1m 20W cable + connector £7.99

VIEWDATA LTV
Z677 Interface Panel 166 x 150 with 3 x L3M24, L3M39, L3M43, 168, 11 transistors, 3 reed relays etc. 3m lead with BT plug attached. Supplied with comprehensive data and ots...

£12.90

All prices include VAT, and P&P

How to contact us
By post using the address below: by phone (0703) 777501 or 783740 (ansaphone is open during business hours), by fax (0703) 777555 by EMail: sales@telecom Guild 72.MAG38026, by Telex: 256871 MONTREIF quoting MAG38026

443A MULBROOK ROAD SOUTHAMPTON S01 0HZ

ETI JULY 1988
One of the more difficult aspects of electronics is dealing with an errant circuit. What to do when things go wrong? Some test gear is essential when diagnosing faults. For analogue circuits a simple multimeter is the bare minimum. For digital projects, the equivalent of a multimeter is the logic probe.

Impressive sounding though it is, a logic probe is in fact less complex than a multimeter — a simple version like this one can be built for just a few pounds.

A logic probe is a voltmeter which acts only digitally. It tells you if a part of the circuit under test is at a high or low logic level. This probe is designed to work with TTL circuits only (CMOS circuits usually use too high a supply voltage), levels it will detect are 2.5V for a high level and 0-0.8V for a low level.

Construction

Like all 1st Class projects this one can be built either using the printed circuit board design given (Fig. 2) or on stripboard (Fig. 3). The PCB design is marginally smaller and simpler to construct but using stripboard is considerably less messy than...
getting the etching tank out!

There are very few components for this project and so order of assembly hardly matters at all. Make the stripboard track cuts carefully and check the positioning of each component before soldering.

Leave soldering the LED display until last as this is the most easily damaged component and the most expensive. Go easy with the soldering iron when you come to it and leave it to cool a little after soldering each pin.

There is no need to use an IC socket for IC1 as these chips are so cheap that you would have to damage a couple before recovering the cost of the socket.

Probing Stuff
The most difficult aspects of assembling this project are the mechanical ones — what to use for the probe tip itself and what to house the completed board in.

A large darning needle was used for the prototype probe. This serves quite well but is a little vicious. A few inches from the pointed end of a metal knitting needle would perhaps be the ideal.

Whatever is used for the probe tip, be sure to solder it firmly into position as all the strain of stabbing at the errant circuit is taken at this solder joint.

Any convenient small case can be used to house the probe. After some searching, the prototype was finally dressed in the wide and colourful plastic body of a highlighter felt tip pen with the probe projecting where the nib once was and the two flying leads protruding from the pen top.

In Use
Of course we hope you never have to use this project! However, assuming the worst happens, simply attach the red crocodile clip to a part of the circuit connected to the positive supply (5V) and the black clip to the earth (0V). Touching the probe tip to any part of the circuit will now display 0 for a low logic level, 1 for a high level and P for a pulsing voltage.

HOW IT WORKS
The circuit diagram of the logic probe is simple in the extreme and is given in Fig. 5. The one IC is a quad NAND gate IC containing four NAND gates of which only three are used. All of these have their two inputs connected together to be used as inverters. Whatever logic level is presented at the input is reversed at the output — a high level (1) input gives a low level (0) output and vice versa.

If the probe (connected to point A) is touched to a high voltage then NAND gate IC1a inverts this to give a low at point B which allows current to flow from the supply, through current limiting resistor R1 and LED segment e (lighting it) to the point B.

When the probe is low, point B is high and at the same potential as the supply, so no current can flow through segment e.

The gates b and c invert the probe signal again and so when the probe is high, point C is low and point D high, extinguishing segments a, b and g. When the probe is low these three segments light.

Segment f is always lit and segments c, d and the decimal point are not used. So the two possible segment patterns (see Fig. 3) depend on the voltage at the probe tip.
POWER SUPPLY KIT

- 25/30 Watt MOSFET Audio Power Amplifier 4-8 Ohms Kit £21.97 R/Built £26.00
- 10 Channel Variable Speed running light Kit drives LEDs or Mains lamps. Includes LED display board and LED lamps Kit £15.99 R/Built £19.15
- Mains Add-on interface board for controlling Mains lamps from our running light unit Kit £4.95 R/Built £5.00
- Plus 3 Menu regulated power supply 1-Amp state 5, 12, 15, 24 Volt Kit £11.62 R/Built £14.62
- Variable Delay Relay Unit Kit £5.71 R/Built £7.71
- Selectable long generator 9-12v operation Kit £5.50 R/Built £7.50
- 3 Note Electronic Door Chime unit, 9 volt operation, 3 melodious tones, variable frequency, Kit £9.83 R/Built £12.00
- Miniature FM Transmitter, 60-145MHz Kit £6.95 R/Built £8.95
- 3 Watt FM Transmitter, 80-106MHz Kit £13.99 R/Built £18.99
- 300 Watt Light Dimmer unit for 240 volt mains lights Kit £6.95 R/Built £8.95
- 4 Code Digital Code unit plus Key Pad – Select own code 9 volt Kit £16.31 R/Built £19.95
- 5-100 Watt Electronic Loudspeaker Overload protector, Kit £11.40 R/Built £16.50
- Vu Meter 10 LED indicator, 5 to 12v range Kit £13.63 R/Built £18.63
- 18 Watt Car/home Power Amp 12-V Kit £14.50 R/Built £18.60
- Amplifier Power Meter, 10 LED indicator from 0-250 Watt Input – 9 volt operation Kit £12.94 R/Built £14.94
- Light sensitive relay unit; variable sensitivity trigger control: senses light or dark – selectable Kit £8.91 R/Built £10.91

PRODUCTS

- Wireless FM Duplex telephone - sold in pairs for Office/Home £54.00
- 5mm LCD digital sports Chronograph hand held £90.95
- Digital Blood pressure meter/monitor LCD readout £44.83
- Digital LCD temperature module for panel mounting – 19° C to + 68° C £16.82
- 3.5" digital LCD Professional series digital multimeter, reads: Capacitance, Temperature, Conductance, Diodes, Transistors AC/DC voltages & Continuity £83.25
- Zenith Speakphone processor P-202 £29.50
- High quality touch dimmer £20.00 £12.99
- Mains Wiring and Metal Detector £11.00

AFFORDABLE ACCURACY

A comprehensive range of quality Multimeters at very competitive prices

DIGITAL

All models feature full ranges, large 3½ digit LCD, low battery indication, auto zero and auto polarity, strong ABS casing. 10 Amp range (except DM110S) overload protection. Prices from £21.50 to £65.00. Battery, spare fuse, test leads and manual included with each model.

ANALOGUE

A choice of four meters with prices ranging from £5.50 to £21.00, with DC sensitivities from 2mV to 30kV/V. All models include battery, test leads and manual.

Please add 15% VAT to all prices and 70p for post and packing.

NEW LOW PRICE!

HC774 = £3.00

A compact, pocket sized autoranging multimeter featuring: 200mV-19V DC, 200mA-6A AC, 10 VAC and 10 A DC or AC current, high and low current ranges 2Ω-2MΩ and 200-2000Ω, 300mV LCD, display memory and hold, automatic range selection and basic accuracy of 0.5%

Cirkit Distribution Ltd.
Park Lane, Broxbourne, Herts EN10 7QH.
Telephone (0992) 44411.

PROFESSIONAL SURVEILLANCE EQUIPMENT KITS

- **MTX** Micro-miniature VHF transmitter. The smallest kit on the market, measuring a mere 1.2" x 1.7" x 1.9" including on-board side. Super sensitive, pin-point accuracy, kit includes a transmitter, all battery, spare fuse, test leads and manual. Ranging up to 1000m. £9.95
- **VT500** High power version of the MTX, with on-board PA amplifier and includes 250mW of RF. Measures just 20m x 20m, 40mm power requirements. 9-12V Excellent sensitivity and stability, fully tuneable. Available 500-5000Z 50-10000Z. £79.95
- **VOX75** Voice activated transmitter. Variable sensitivity, trigger level switches transmitter on when sounds are detected. Sensitive for tone delay variables between 1-200 msec. Fully tuneable around carrier frequency band. Very sensitive and low standby current through CMOS circuitry. 9V operation, range up to 2000m. Measures 50x40x40mm. £29.95
- **CTX900** Sub-carrier scrambled transmitter. Audio & data modulated providing very secure transmissions. Any unauthorised listener will not be able to demodulate signal without DX900 Decoder unit. Variable modulation on-board, fully tuneable output covering FM band. Ranges up to 5000m. Measures 50x40x40mm. £39.95
- **DSX900** Decoder unit for CTX900. Connects to telephone output of receiver to descramble signal from CTX900. Monitor using small speaker or headphones. Very lightweight, variable decode frequency, on-board best resolution. 9-12V operation. Measures 35mm x 50mm x 40mm. £17.95
- **TLX700** Micro piezoelectric telephone transmitter. Connects onto line at any point and requires no batteries. Clearly transmits both sides of conversations on both incoming and outgoing currents. Undetectable by phone users. Measures just 20mm x 20mm. £9.95
- **ATR2** Micro piezoelectric telephone recording unit. Connects onto line at any point and operates into any normal cassette recorder, standard or micro recorder. Requires no batteries. Suitable for incoming or outgoing calls, switches off when phone replaced. Replaces both sides of conversations. Undetectable by phone users. Measures 10mm x 40mm. £10.95
- **XML9000** Bug detector. Wide band input circuitry detects presence of the MTX and transmits encoded LED and phone blips. Takes up to 4000 feet of wire. Transmitter is encased to within 10" of wires. Kit comes with 2x MTX or similar MTX and Markers. £19.95

PROFESSIONAL SURVEILLANCE

All kits come fully documented with concise assembly and operation instructions. High quality fiberglass PCB and all components necessary to complete the model. All prices are inclusive but do not include battery, tester leads or manually test leads. Please add £1.00 to cover P&P. Orders over £50.00 post free. Please state requirements clearly and consult our price list on request. Access to AMEX accepted. (Tel: 081 747 11476).

price

Phone orders on: ACCESS or AMEX accepted. (Tel: 081 747 11476).

NOTE: It is illegal to operate a transmitter in the UK without a licence.

SUMA DESIGNS, THE MEMORIES, OS MAIN ROAD, BAXTERLEY, Nr. AUSTERWICH, GEMPUS CV9 2LE. Telephone 0287 714476.

ETI JULY 1988
DCP RESULTS

The competition in the February 1988 issue to win one of DCP Microdevelopments' interfacing modules, the Interpacks, attracted a high standard of entry.

The winning idea for the most original and ingenious application for an Interpack module was from Neil Connor of Glasgow (though currently in Oman) who suggested connecting hospital patients' ECG signals to a computer through the ADC of an Interpack 1 where they could be selected and monitored on screen and an alarm automatically raised if certain limits exceeded. An Interpack 1 and a BBC micro Intercard has been despatched to Mr Connor.

DCP was so impressed by the entries that two extra runners up prizes of £10 discount vouchers for DCP products have also been awarded to Simon Green of Ashford and J H Greenstein of Liverpool.

Our thanks to all who entered and our congratulations to the winners.

THE GENTLE GIANT
Described by one leading reviewer as a "gentle giant", the 3U case up-graded Virtuoso power amplifier must certainly be the very best power amplifier available as a complete kit. Based upon the latest research into Sound Quality by Graham Naulby using the highest quality audiophile components available, the Virtuoso power amplifier sets new standards in audio amplifier sonic performance.

BUILD THIS AMPLIFIER YOURSELF AND ENJOY IT'S SUPERB SOUND QUALITY.
Full circuit description in ETI April-June 1988
Complete kit available from Audiokits - price £840.00 + £8 p&p U.K.

NEW COMPONENTS
Contact Audiokits now for details of larger IKVA mains transformer and special audiophile Quality mains cables, matching loud speaker cables and inter-connects of highest quality. For full details of Audiokits components and kits please send 9x4 SAE (U.K.)/3 IRCs (Overseas) to:

AUDIOKITS PRECISION COMPONENTS
6 MILL CLOSE, BORROWASH, DERBY DE7 3GU.
TEL: 0332 674929

BAR CODED

Since ETI is never a magazine to do things by halves, we've decided that two competitions in a single issue isn't nearly enough so we're throwing in another one for good measure.

On this month's cover there is a bar code pattern (you did notice that didn't you?). Of course there are some numbers along the bar code but take it from us that these do not bear any relationship with the bar code itself (they're our ISSN number, actually). We've got a six month subscription to this worthy mag up for grabs for the first person who can correctly tell us what numbers the bar code represents. If you can break that code and find the message hidden in those numbers as well, then we'll make it a year's subscription.

Send in your entry to arrive before 1st July to:
Bar Code Competition
ETI
1 Golden Square
London W1R 3AB

NATIONAL COMPONENT CLUB

* SPECIAL OFFERS * SPECIAL OFFERS *

50 ASSORTED SEMI- CONDUCTORS (IC'S - TRANSISTORS - DIODES) £1
100 RESISTORS MIXED £1
100 DIODES (MIXED) £1

70 ASSORTED CAPACITORS (POLYFARADS - 220uF) £1

20 ASSORTED IC'S (TTL, LINEAR, CMOS) £1
10 ASSORTED HEATSINKS (AT LEAST 5 HIGH - POWER TO 220 & 303 TYPES) £1

* ALL SIX PACKS FOR A FIVER!

P.O.or Cheque to: NATIONAL COMPONENT CLUB, DEPT ETI, HIGHER ANSFORD, CASTLE CARY, SOMERSET BA7 7JG. Please add 75p P & P but do not add VAT.

 FREE CLUB MEMBERSHIP

BINDERS

FOR YOUR VALUABLE COLLECTION
OF ELECTRONICS TODAY INTERNATIONAL MAGAZINES

SMART - EASY TO USE - TOP QUALITY

Please supply Electronics Today International Binders £5.95 inc. P&P

Total £...... (Please make cheques payable to ASP Ltd.)
Years Required — 198........198........198........198

Name
Address

Please allow 21 days for delivery

ETI JULY 1988
Now James Main knows when the Avon lady has called

Are you one of those people who doesn’t spend much time indoors? I am. If I’m not working, I’m off down the shops or taking the car for a run. The end result is that I never know whether anyone’s been at the door looking for me. Whatever your reason for being out, it would be useful to know how many people had been at your door when you weren’t around to answer it.

This simple unit will count up to 99 callers (which is ample for most people, unless you’re bothered by double glazing salesmen) and display at the touch of a button when you get back in.

The Bells, The Bells

Doorbells come in all shapes, sizes and bell voltages so it was felt an opto-isolator chip should be used to keep the two apart. The unit will therefore operate with any type of door bell — AC or DC — with a suitable series resistor.

Figure 2 shows how the unit is connected to your doorbell circuit.

People will often ring a door bell repeatedly. This would give rise to counting errors if pushing the bell-press incremented the counter directly. To prevent this, a 60 second delay is incorporated so the counter can be clocked only once every 60 seconds. Hopefully your caller will have given up and gone home inside that minute!

Construction

Construction is very straightforward. Details of the circuit board are shown in Fig. 3.

Fit the three wire links first, followed by the resistors, the diode and the capacitors. The ICs come next. Being CMOS, you should really use sockets for the 4026s and the 555C. Having said this I didn’t bother, as there was limited headroom in the box I was using.

If you observe static procedures (earth yourself frequently or use a proper wrist earthing strap) you shouldn’t experience any problems with soldering them straight in. Remember that IC2 is the ‘wrong’ way around on the circuit board.

The box shown is a plastic calculator-style box which I found to be well suited to this application. It has a built in battery compartment with slide off lid and a stylish cut-out for the display. The

Fig. 1 The circuit diagram of the Bell Boy
circuit board fits snugly into the upper half, fastened by a single self-tapping screw at the bottom. Two holes for the push switches at the top and a small hole at the bottom for the bell interconnection wire are the only other things required.

Testing And Use

The first thing you need to ascertain is the voltage your bell works at. Check this with a multimeter or look at what it says on the battery or transformer.

For testing purposes, a spare PP3 can be used as the bell input. Temporarily fit the corresponding resistor (1k5) for R1. After checking carefully that all the IC's are in the right way round, apply power. Check that the Display button works. You should see 00 on the display.

If nothing appears, switch off and check all your connections again. Assuming everything is OK, take out your spare PP3 and apply 9V across the trigger input of the unit. Pin 2 of IC2 should go low when you do this.

Check the voltage on pin 3 (output) of IC2. Don't worry if this is found to be high before you apply a trigger, as the IC will trigger when you first connect the power rail. Wait until the output goes low, then apply a triggering voltage. Pin 3 will go high for approximately 60 seconds. Check the display, which should have incremented. Check that pushing the reset returns the count to zero. Finally, count up to ten and check that both digits are working.

HOW IT WORKS

The full circuit diagram is shown in Fig. 1. Bell voltages of 1.5V upwards can be accommodated by selection of the value of R1 (see Table 1) which is in series with the internal diode of the opto-isolator, IC1.

D1 protects against excessive reverse voltages appearing across the internal diode which could damage it. The input to the unit is taken directly from the bell on buzzer.

When IC1 is activated, the internal phototransistor conducts, taking pin 2 of IC2 low. IC2 is the CMOS version of the popular 555 timer IC, using less current and requiring fewer external components than a conventional 555.

IC2 is configured as a monostable multivibrator, with a period of 80 seconds. A high to low transition on pin 2 triggers the IC, taking the output at pin 3 high, the rising edge of which increments counter/driver IC4. R3 and C1 are the monostable timing components, the values of which you can play around with if you require a longer or shorter delay.

IC3 and IC4 are a pair of cascaded 4026 CMOS counter/driver ICs. Each timing cycle of IC2 will clock IC4. As IC4 changes from 0 to 1, a carry pulse is produced at pin 5 which clocks IC3 (the tens counter), and so on.

Pins 15 of IC3 & IC4 are taken high to reset the count to zero. When the unit is first connected, C2 charges via R5 producing an initial reset pulse. Any subsequent resets are provided by taking pin 15 high via push switch SW1.

For power saving, the display is normally disabled. This does not interfere with the counting operation however, and the count can be displayed at any time by taking pin 3 high via push switch SW2.

Resistors R6-R19 form the series resistors to the dual digit common cathode LED display. These are of a value to keep power consumption to a minimum whilst maintaining a visible display.

<table>
<thead>
<tr>
<th>Bell voltage</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5V</td>
<td>50R*</td>
</tr>
<tr>
<td>3.0V</td>
<td>300R</td>
</tr>
<tr>
<td>4.5V</td>
<td>600R</td>
</tr>
<tr>
<td>6.0V</td>
<td>900R</td>
</tr>
<tr>
<td>9.0V</td>
<td>1k5</td>
</tr>
<tr>
<td>12.0V</td>
<td>2k2</td>
</tr>
</tbody>
</table>

*)Omit D1 and replace with a wire link

Table 1 Values of R1 for different bell voltages

Assuming you know your bell voltage, fit the correct value (see Table 1) otherwise work your way down from a high resistance until you find one that works reliably. The value is not critical as the opto-isolator will work over a wide range.

Wire the input leads directly across the Transducer in the bell box. If it doesn't work, reverse the leads.

BUYLINES

Most of the parts used for the doorbell counter are available from usual suppliers. The optoisolator used in the prototype was from Maplin (part no. W1350) as was the display (BY66W) and the case (YK24B).

The PCB is available from the PCB service as usual.
PARTS LIST

RESISTORS (all 1/4W, 5%)
R1 See Table 1
R2 1k
R3 1M
R4 5 33k
R6-19 1k

CAPACITORS
C1 3uF 63V axial electrolytic
C2 1uF 16V tantalum

SEMICONDUCTORS
IC1 Opto isolator (see Buylines)
IC2 4556
IC3 4 4026
D1 1N4001
LED1 dual digit common cathode display

MISCELLANEOUS
BP3 battery and clip
SW1 SPST push switch
PCB, Case, Filter for display. Bell wire, Nuts and bolts

Further Uses
As the circuit is basically a counter, it can be used in a wide variety of applications at home and in the classroom. To use the unit as a straight-forward counter, reduce the timing components R3 & C1 to a value such that they merely provide a debouncing action on the input trigger — so glitches and contact bounce will not clock the counter erroneously.

PIEAPPLE SOFTWARE

Programs for the BBC model 'B', 'B+', Master and Master Compact with disc drive

DIAGRAM II

Diagram II is a completely new version of a Pineapple regular 'Diagram' drawing software. The new version has a whole host of additional features which makes it into the most powerful and versatile drawing program available for the BBC micro. The new features mean that Diagram II can now be used for all types of drawing and is an excellent add-on to the basic drawing programs. The facility for producing circles and regular shapes is now turned on so that more complex drawings are possible. The following are just some of the features that are now available:

- Provides automatic circle drawing

Summary of Diagram II features:

1. Works on all model BBC computers and makes use of shadow memory if present.
2. Quick line drawing routines and automatic measurement of circuit diameters.
3. Rubber banding and circle drawing modes.
4. Rigid grid used to produce ellipses, arcs, sectors, chords and lines.

Further Uses
- Programs for the BBC computer and Pelican keyboard
- Programs for the BBC computer and Pelican keyboard
- Programs for the BBC computer and Pelican keyboard
- Programs for the BBC computer and Pelican keyboard

PCB

Pineapple's new famous PCB drafting aid produces complex double sided PCB's very quickly using any model BBC micro and any RX compatible dot-matrix printer. The program is supplied on cassette and uses a mode 1 screen to display the two sides of the board in red and green on an enhanced definition high contrast 11" x 8.5" scale. The print time is typically about 5 minutes. For this price two to three features are adequately described here, so please write or phone for more details and sample banknotes.

DIAGRAM II — £55.00 + vat F. L. P free

For Marconi Trackerball
- £55.00 + vat F. L. P free

All orders sent by return

39 Brownlea Gardens, Seven Kings, Ilford, Essex IG3 9NL Tel 01-599 1476 Microlink No. MAG 12085

ETI JULY 1988
AF Signal Generator

The 'traditional' audio signal generator (a Wien bridge oscillator, thermistor stabilisation to generate the sinewave output and amplifier/clipping circuit to produce a squarewave signal) works well but the thermistor required is both expensive and difficult to obtain. Worthwhile if a genuinely hi-fi sinewave output is required but otherwise there are cheaper choices.

This design is of the Wien bridge/clipping variety but uses an operational transconductance amplifier as the basis of the stabilisation circuit. The harmonic distortion is well under 1% over the audio frequency range and there are no significant variations in the output level over the full frequency range (15Hz to 150kHz in four ranges). The maximum output level is 1.5V peak-to-peak for sinewave signals and 6V peak-to-peak for squarewaves.

The familiar Wien network is present at the front end of the circuit with RV1 giving continuous tuning over each range capacitors. These capacitors should have an accuracy of 5% or better to give good frequency setting accuracy on all ranges using a single frequency scale and to ensure that there are no gaps in the frequency coverage.

For oscillation, the Wien network must provide positive feedback over an amplifier with a voltage gain of at least three. However, a gain only fractionally higher than this results in strong oscillation and a clipped output. In practice the only way of obtaining a consistent output level is to use some form of automatic gain control circuit to stabilise the circuit.

In this circuit IC2a operates as a standard transconductance VCA circuit. The LM13600N (and the almost identical LM13700N) have a built-in output buffer that avoids the need for an external buffer stage.

High input impedance is needed so that there is minimal loading on the Wien network and IC1 is accordingly used as a voltage follower at the input. R9 biases IC2a for quite high gain and the circuit oscillates strongly initially. Some of the output signal is rectified, smoothed and fed to the base of Q1 which biases it hard into conduction so it diverts the bias current for IC2a, stopping the oscillation. There is a negative feedback action in force here and after a settling time of around two seconds the circuit oscillates gently with a good quality sinewave output signal. The feedback accurately maintains the output level if there is any shift in the amplifier's gain or a change in the losses through the Wien network. Transconductance amplifiers are not the most linear of devices but by keeping the output level down to about 1.5V peak-to-peak it is possible to obtain good distortion performance.

IC2 is a dual device with its spare section used as a high gain amp to clip the sinewave signal and provide the squarewave output. SW3 is used to select the desired waveform, RV2 is the volume control attenuator and SW4 can be used to reduce the output by 40dB.
Current Tracer

Most electronic service work is based on voltage rather than current checks for the very good reason that current checks require a break to be made in the circuit but voltage tests do not.

A few commercial test instruments attempt to make current checks as simple as the voltage variety — the most sophisticated use a Hall effect sensor to detect the magnetic field produced by a current flow. Units of this type are very expensive.

An inexpensive alternative is to use a circuit that is really a highly sensitive voltmeter giving an indication of relative current by placing the two test prods a few millimetres or more apart on a printed circuit track or component leadout wire.

The resistance present (although low) causes a voltage drop proportional to the current flow. In practice this means detecting voltages that will often be less than a millivolt.

This method does not give exact measurements of current flows. The resistance through the track or leadout wire, and the contacts between the prods and the conductor will affect readings. However a few experiments with a current tracer of this type on a couple of circuit boards will soon give a good idea of the sort of readings to be expected. Subsequent checks on faulty equipment will reveal current flows that are obviously incorrect.

The circuit has IC2 in what is a form of precision full wave rectifier, with the output driving a panel meter — a tuning or level meter having a full scale sensitivity of about 100μA would suffice. The reason for using a full wave rectifier is that the input could be of either polarity and might even be AC.

D5 protects the meter against severe overloading. IC2 provides amplification as well as linearising the rectifier circuit. SW1 provides three levels of sensitivity. With R8 selected the gain of circuit is quite high (about 1000) leading to possible strong voltage offsets so RV1 has been included in the circuit as an offset. This is adjusted to zero the meter with no input applied and R8 switched into circuit (adjustment of RV1 is much easier if a multi-turn type is used). Input resistor R4 is very low to avoid stray pick up of electrical noise.

The circuit requires dual balanced supply rails, but IC1 acts as a supply splitter to give ±4.5V from a 9V battery.

When using the unit bear in mind that readings are proportional to the distance between the two test prods. Using the greatest possible distance will give strong readings and a clearer indication of the current flow, especially when tracing relatively small currents. In general, range 1 is suitable for currents of a few milliams to a few tens of milliams, range 2 for higher currents of up to several hundred milliams and range 3 is only needed when tracing high currents.

Q1 provides a 1MHz clock signal to IC3 which operates as a sort of 'divide-by-N' counter, providing brief output pulses at regular intervals of between 1 and 9 clock cycles depending on SW2. IC1 and IC2 form divide-by-ten circuits to extend each clock cycle from 1µs to 10 or 100µs.

The pulses then set a simple flip/flop based on IC4c and IC4d and reset a second divider/counter circuit. This circuit is much the same as the first one, providing a reset pulse to the flip/flop after a period of time controlled by SW3 and SW4.

In order to obtain longer output cycle and pulse times it is necessary only to add divider stages into both counter circuits and to use switches with the appropriate number of positions for SW1 and SW3. For example, three extra divider stages per counter would extend the maximum cycle/pulse times to some 900ms in 100ms increments.

IC4a inverts the output of the flip/flop to produce the Q output — high for the period set on SW1, 2 and low for the period set on SW3. 4. IC4b inverts this signal to provide the Q output.

The circuit is shown as having a 9V supply rail, but it works well with any supply voltage of 5-15V. The supply voltage must match that of any digital circuit driven from the outputs.

Pulse Generator

This circuit produces repetitive signals with a wide range of pulse widths and mark-space ratios — extremely useful when developing and testing digital circuits.

Simple circuits based on C-R timing networks have the drawback of possible inaccuracies and with crystals and digital ICs now costing relatively little, a crystal controlled circuit with pulse widths and frequencies guaranteed to a very high degree of accuracy can be constructed quite cheaply.

This circuit provides output cycle durations of 1-9µs in 1µs increments. These can be multiplied by 10 or 100.

The pulse duration can be varied over the same range but obviously the pulse width cannot be greater than the time permitted for one complete output cycle! Anti-phase outputs are provided.

The circuit can be easily extended to give longer cycle and pulse times if desired.
Though a multimeter is the standard instrument for DC voltage checks, there are alternatives. For difficult (high impedance) circuits an electronic voltmeter or an oscilloscope can be used. At the other end of the scale there is the relatively recent development of the voltage probe — a simple hand-held instrument with LEDs forming a bargraph display.

The most simple circuits for probes are purely passive and are of limited value in electronic testing due to their low and inconstant input resistance. Active circuits are more suitable for electronic circuit testing but the most sophisticated of voltage probes still provide only a very rough indication of the voltage levels present. However, much voltage testing (checking that a suitable supply voltage is present for example) does not require great precision of measurement and a voltage probe used in context can be a very handy test instrument.

This design has four LEDs with normal voltage indication points of 2, 4, 6 and 10 volts with an input attenuator that enables the sensitivity to be doubled or halved. This enables DC voltages in the range 1-20V to be gauged with reasonable accuracy.

The unit has an input resistance of around 400k. While this does not compare well with a digital multimeter, it compares quite well with a decent analogue multimeter. The circuit incorporates overload and reverse polarity protection.

R1-3 and SW1 form the input attenuator which has attenuation levels of 0, 6 and 12dB. Protection against excessive input voltages is provided with D1 normally clipping the input at about 8.2V and becoming an ordinary forward-biased silicon diode to clip a reverse polarity voltage input at about 0.65V.

The bargraph driver is based on quad op-amp IC2, all four amplifiers operating as voltage comparators. The inverting input of each comparator is fed with a reference voltage and the input voltage is fed to the non-inverting inputs, so that an input voltage exceeding the reference level will send the amp high and activate its LED indicator. Reference voltages of 1, 2, 3 and 5V are required. The 5V reference is provided by monolithic voltage regulator IC1 and the other voltages are derived from this via a potential divider (R5 to R8). Note the LM324 is used as it is suitable for single supply rail operation.
Deluxe Voltage Probe

The standard LED voltage probe described above is an extremely useful piece of ‘take anywhere’ test gear, but the lack of precision can be frustrating on occasions.

This ‘deluxe’ version gives the low cost and portability of an ordinary type but with a degree of accuracy much closer to that of an analogue multimeter. This is achieved by using a miniature meter rather than the LED bargraph to provide the readout. The small scale of the meter and its non-linear nature still limit the accuracy of the unit slightly and the unit could be built as a high precision bench unit with a full-size meter if preferred.

The unit has three ranges with FSD of 1V, 10V and 100V. The input impedance is about 20MΩ on the 1V range and 10MΩ on the other two.

Touch contact switching gives a convenient means of range switching for a hand held unit. A CMOS quad analogue switch IC6 forms the basis of this part of the circuit.

R19 forms an input attenuator in conjunction with R14 to R18 selected via three switches by IC3, a CMOS 4017BE ‘one of ten’ decoder. IC3 is reset when the fourth output goes high so it is effectively a ‘one of three’ decoder, with each output driving one of the switches. LEDs indicate which voltage range is currently in operation.

The clock signal for IC3 is provided by IC2, a low power 555 timer operating as a low frequency astable circuit. However, it only oscillates when the operator’s skin resistance bridges the touch contacts. In order to change ranges it is just a matter of touching the contacts until the unit cycles through its ranges to the point where the appropriate range indicator lights up.

Of course the electronic range switching could be replaced with a mechanical switch if preferred but a standard rotary type is rather large and cumbersome for a hand-held unit.

The voltmeter circuit requires dual supplies but the unit is powered from a single 9V battery with IC4, R11 and R12 acting as a supply splitter to effectively give dual 4.5V supplies. IC5 is used in a configuration that is reminiscent of an AC milli-voltmeter circuit and this results in the unit responding properly to inputs of either polarity.

Using RV1, calibrate the unit against a known voltage that is close to FSD on one range — for example you could use a multimeter to measure the true output voltage of a 9V battery and then use this to calibrate the unit on its 10V range. Provided R14-19 are all 1% tolerance components the unit should then be very accurate on all three ranges.

D5 provides the meter with overload protection and ZD1,2 protect the circuit against excessive input voltages.

IC1 is used as a voltage compressor and this gives input polarity indication via D1. D1 is switched on if the input is of reverse polarity.

Assuming the unit is constructed in probe form, the obvious scheme of things is to have the meter at the rear of the case, a long metal probe fitted at the front, with SW1 and the touch contacts anywhere on the body of the unit where they are easily operated. The negative test lead can consist of about 1/2 metre of flexible insulated wire terminated in a small croc clip. Note that miniature (32mm square) meters are available from Electrovalue.
Transistor Checker

This simple gadget is an in-circuit transistor checker. It alternately forward biases the test device and short circuits its base and emitter terminals. An LED indicator is connected in the collector circuit of the transistor under test and should flash if the device is serviceable.

The circuit has IC1 operating in the free running astable mode with an output frequency of a couple of Hz. Switching transistors Q1 and Q2 are driven from its outputs, and these provide the base-emitter short circuiting for PNP and NPN devices respectively. R4 or R5 provides a forward bias to the base terminal of the test transistor during the half cycles when Q1 and Q2 are switched off.

Separate LEDs are used for the NPN and PNP modes. This helps to simplify the NPN/PNP switching and reduces the risk of the unit being inadvertently used while switched to the wrong mode.

When making in-circuit tests it is important to realise that components connected to the device under test can affect results. This will sometimes result in the LED not fully switching off and could result in it not switching on properly (although this never seems to happen in practice).

If the LED switches on and off properly it is highly unlikely that the tested device is faulty.

If the LED fails to switch properly, check the suspect transistor out of circuit to make quite sure it really is a 'dud.'
A

Soon after the now defunct Audio Research Corp. had released the Hifon LP-300, perhaps the most hi-fi audio component ever offered to David Green, the original hi-fi telly reviewer at the Sunday Telegraph, I was fortunate enough to take delivery of a unit for a review. After some initial misgivings, I was very pleased with the result. The HI-3000 was a state-of-the-art, high-resolution, high-fidelity audio component. The review was published in the April 1984 issue of Hi-Fi News and Record Review, and it received high praise from the reviewers.

The HI-3000 featured a single-ended push-pull output stage, which was capable of delivering over 100 watts of power into 8 ohms. The unit also had a full complement of inputs and outputs, including a phono input, a line input, and a tape input. The HI-3000 was a significant improvement over the previous generation of hi-fi audio components, and it quickly became a favorite among audiophiles.

As the years went by, the HI-3000 was replaced by newer models, but the design philosophy remained the same. The HI-3000 was a benchmark product that set the standard for high-end audio components.

The HI-3000 was a challenging component to write about, and I had to make a number of concessions in order to fit it into the review format. However, I was able to provide a detailed and comprehensive review that highlighted the strengths of the unit and gave readers a good understanding of its capabilities.

The HI-3000 was a significant milestone in the history of hi-fi audio components, and it continues to be a favorite among audiophiles today. The HI-3000 is a testament to the dedication and expertise of the designers and engineers at Audio Research Corp., and it is a true classic of hi-fi audio equipment.

With the market for programmable logic getting on for £1 billion and rising still, it is surprising that no comprehensive manual and reference work exists to help the engineer get to grips with the situation. Could this be it?

This work of some 240 pages bravely attempts the almost impossible - to be exhaustive yet concise, to cover the whole sphere of programmable logic from cell architecture and history via logic principles to examples of complete designs of some sophistication.

I cannot, with as much pessimism as I can muster, say that it has wholly failed.

For someone in my professional position (the experienced occasional user of PLD) it is a worthwhile reference work but one which I would get my boss to pay for rather than buy for myself.

The early chapters look at semiconductors in general and the principles of logic, examining the currently available architectures in so doing. He continues with design methods and programmable logic applications.

Mr Bostock has indeed brought together under one cover a wealth of information but I feel that there is little present in this work which is not fairly readily available in the many excellent PLD manufacturers' support manuals.

On the positive side, I do think that the Programmable Logic Handbook could serve a useful purpose as a bench book for final year undergraduate project work, as it is.
PCB FOIL PATTERNS

The Bar Code Lock main board

The Bar Code Lock pre-emp board

The Logic Probe PCB foil pattern

The example bar code

ETI JULY 1988
The Analogue Computer power supply board

The updated FM Tuner Decoder board
The Bell Boy foil pattern

The Breath Rate Meter display board
ETI PCB SERVICE

E8804-1 Spectrum Co-processor Interface
- Board .. N £13.10
- E8804-2 Combo-Lock E £3.25
- E8804-3 Kitchen Timer E £3.25
- E8805-1 Virtuoso 2U PSU M £10.60
- E8805-2 Virtuoso 3U PSU N £13.10
- E8805-3 Bicycle Speedometer F £4.00
- E8805-4 Dynamic Noise Reduction E £3.25
- E8806-1 Universal digit panel meter L £8.80
- E8806-2 Universal bar graph panel meter K £7.20
- E8806-3 Virtuoso power amp board N £13.10
- E8806-4 Virtuoso AOT board G £4.75
- E8806-5 Metal detector E £3.25
- E8806-6 Bicycle dynamo backup D £2.50
- E8807-1 Bar Code Lock (2 bsd) N £13.10
- E8807-2 Analogue Computer Power Board L £8.80
- E8807-3 Bell Box F £4.00
- E8807-4 1st Class Logic Probe C £1.80
- E8807-8 Updated FM stereo decoder J £6.25
- E8807-6 Breath Rate display board F £4.00

A complete list of all boards (back to ETI 1981) is available on receipt of a large SAE.

TO: ETI READERS' SERVICES DEPARTMENT
Argus Specialist Publications Ltd,
9 Hall Road, Hemel Hempstead,
Herts HP2 7BH

Please supply:

<table>
<thead>
<tr>
<th>No. required</th>
<th>Board reference per type</th>
<th>Price letter</th>
<th>Price each</th>
<th>Total for board type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>£ p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>£ p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>£ p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

POSTAGE & PACKING

£ 0.75

TOTAL ENCLOSED

£

ORDER TO BE SENT TO: (BLOCK CAPS PLEASE)

- **Name**
- **Address**
- **Postcode**

(Make cheques payable to ASP Ltd)

ACCESS and VISA credit card orders can be taken on (0442) 41221 (office hours only).

ETI JULY 1988
FREE READERS' ADS
Buy, sell or exchange through our free service to readers

WILL EXCHANGE your components, publications with photographs, recordings, craftwork or whatever you require from Nigeria. Bala Turundu, Box 29, Kaduna, Nigeria.

C64 MUSIC SOFTWARE, music studio, system, maker and electrosound. £4 each. Sound sampler hardware £15. 90 Western Avenue, Bentley, Walsall.

WANTED working TV sound tuner, preferably battery powered. Made up or kit acceptable. Phone (0969) 22598.

HEWLETT PACKARD programmable calculator. Excellent condition, manuals, case. Serious offers please. Tel: (0209) 216874.

WANTED instructions for Midland Ross Cambion units used on BBC micro. Mrs Doris, 212 Stuble Lane, Dronfield, Sheffield, S18 5YP.

QAP needs chart recorder. Repairable would do. Tel: Truro (0872) 573574.

WANTED non-working BBC computer for spares and processor board from Oric MCP40 printer/plotter. Tel: Leeds (0532) 866589.

ALTOBASS meaty audio amplifiers. KT88 push-pull output. Secondhand, used. Four available. Tel: Charlie (0909) 733680. £20. Each ONO.

SWAG PROFESSIONAL POWER AMP MOSFET CP600 £925. Stereo 15 band graphic equaliser £150. Tel: (0743) 240226 after 7.00pm.

BBC B OS 1.2 100K disk, Wordwise, Replay, Acorn DFS £240. Phone 061-973 1894 after 6pm.

SUPERTESTER MULTIMETER AC/DC volts/amps, ohms/low ohms, reactance, capacitance, etc. Top make. 1% accuracy with case, leads, instructions only £16.50 incl. p&p. (0532) 662798.

LASERS 10mW Spirographic with control desk as new £550. 1.0mW sound scanner £150. 23 Middle Street, Worcester (0905) 296690 after 6pm.

48K SPECTRUM Saga Elite keyboard, UTX5000, microdrive, 1VT1 faulty Opus disc drive, Fullerbox, ZX printer Cheehtah RAT µSpeech, joystick £300. Mike 01-387 1224.

LIGHTS FANTASTIC. ZZ48 D10 firing modules £3 each. Goodmans 12in 8 ohm speaker units pair £20. FAL 3 chart recorder sound-light unit £10. Tel: Windsor (0753) 860889.

WANTED: TANDY TRS-80 pocket computer printer/zip case. Reasonable price paid for reasonable condition. Tel: 061-973 3559.

120mm FANS, 240V, slightly used, 4 off, £6 each or £20 the lot. Phone (0543) 491867 (North Lichfield).

CLEANING WORKSHOP. Computers, drives, terminals, printers, PSU's. All under £30. Ring (0626) 852310 (Chudleigh) after 6 or weekends for details.

WANTED central electronics transmitters multiphase 100V working or damaged for use in restoration of damaged museum model. Phone Bashford 01-377 3301.

GOT A DEAD SCOPE? I'm looking for an old timebase unit to adapt my X-Y display. Phone Nick on 041-339 1575.

ENTERPRISE USER GROUP WANTED. Also constructional projects, books, technical information, software. Publish here your address. I'll contact from Spain.

SANYO 555 video board for IBM compatible (Lotus, etc) with software. Unused: £50. Tel: 031-449 6104.

OSCILLOSCOPE Advance OS240 dual trace. Probe, service manual: £150. Quantity service manuals, computer, video, TV, hi-fi as new condition. £100. Tel: 01-897 9603.

WANTED urgently. In VGC, Redditch Electronics RE-350 PIO ready built. Phone Alan Hall on 041-423 1001 after 6pm.

WELLER de-soldering station wanted. Phone Mark 01-761 7259.

WANTED any technical data referring to interfacing of Oric Atmos computer. Jonathan Rogers, 49 Algarth Rise, Pocklington YO4 2HX (0759) 305080.

WANTED ETI December 1985 and January 1986. Please phone Reading (0734) 415061.

POCKET COMPUTER: Casio PB-110 with printer, interface, expansion module tape recorder, software case, paper manuals. New condition £150 ono (0734) 730874.

I WANT TO correspond with someone about practical and digital electronic. Contact Hasan Ozer, 100 Yil Sitesi, 14615, Bulgat, Ankara, Turkey.

SONY PORTABLE B&W VIDEO equipment plus small studio 200M camera and videos with monitor plus all manuals. £200. Tel: (0252) 621505.

ADVANCE 86B IBM compatible, 2 floppies, 256K memory, latest EPROMS, software and manuals. £275. ONO. Tel: 01-949 7426.

WANTED VERY EARLY TRANSISTORS in any conditions. Types and prices on request. Andrew Wylie, 5 Lyncroft Gardens, London, NW6 1LB.

OSCILLOSCOPE, CROTECH 3132 dual type trace 20MHz, with probes, manual, etc. Condition as new. £180. Tel: Bristol 631382.

Adverts should be 20 words or less including the address and/or telephone number. Please write in black block capitals or type in the grid provided on this form or a photocopy.

Send the ad to:
FREE READERS' ADS
Electronics Today International
1 Golden Square
London WIR 3AB

Enter your advertisement below
CLASSIFIED

01-437 0699 Ext 291
Send your requirements to:
Heather Wust, ETI Classified Department,
ASP Ltd., 1 Golden Square, London W1R 3AB.

Lineage: 44p (VAT excl) per word (minimum 15 words)
Semi Display: (minimum 2 cms)
£12.20 per single column centimetre + VAT
Ring for information on series bookings/discouts —
and recruitment advertisement rates.
All advertisements in this section must be prepaid.
Payments are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

COURSES

Start training now for the following courses. Send for our brochure —
without obligation or Telephone us on
06267 79398

REF: ETI/6/88

NAME ____________________________

☐ City & Guilds Exam 271
☐ Radio Amateur Licence
☐ Micro-

rocessor
☐ Introduction to Television

Radio & Telecommunications Correspondence School,
12, Moor View Drive, Teignmouth, Devon. TQ14 9UN.

COMPONENTS AND EQUIPMENT

PROMs - EPROMs - PALs
ANY PROGRAMMABLE IC SUPPLIED
OR BLOWN
Typical prices (excluding VAT)
(Data Entry P&P extra)
2716 £3.90 2718 £3.65
2764 £2.80 2729 £3.40
BIPOLAR PROMs from £1.35
e.g. 82102, 18500, 74288
PALs, PLDs etc. from £3.26
e.g. 82153, 1616, EP101
Full design and prototyping service.
Any quantity programmed - SAE or
phoned for details.
P.L.B., 16 Central Road,
Worcester Park, Surrey KT4 9HZ.
Phone: 01-330 6540

Audio Mixer Kits

TODAY INTERNATIONAL

Start training now for the following courses. Send for our brochure —
without obligation or Telephone us on
06267 79398

REF: ETI/6/88

NAME ____________________________

☐ City & Guilds Exam 271
☐ Radio Amateur Licence
☐ Micro-

rocessor
☐ Introduction to Television

Radio & Telecommunications Correspondence School,
12, Moor View Drive, Teignmouth, Devon. TQ14 9UN.

COMPONENTS AND EQUIPMENT

PROMs - EPROMs - PALs
ANY PROGRAMMABLE IC SUPPLIED
OR BLOWN
Typical prices (excluding VAT)
(Data Entry P&P extra)
2716 £3.90 2718 £3.65
2764 £2.80 2729 £3.40
BIPOLAR PROMs from £1.35
e.g. 82102, 18500, 74288
PALs, PLDs etc. from £3.26
e.g. 82153, 1616, EP101
Full design and prototyping service.
Any quantity programmed - SAE or
phoned for details.
P.L.B., 16 Central Road,
Worcester Park, Surrey KT4 9HZ.
Phone: 01-330 6540

Audio Mixer Kits

TODAY INTERNATIONAL
REET OUTLETS

LIVERPOOL
PROGRESSIVE RADIO
87/93 Dale Street Tel: 051 236 0154
47 Whitechapel Tel: 051 236 9489
Liverpool 2
'THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

LONDON
CHICHESTER
FOR COMPONENTS
LOTS OF NEW DEVICES
LOTS OF LOWER PRICES
Phone for our catalogue:
01 452 0361/650 0965. Telex: 914 977
49 Cricklewood Broadway,
London NW2 3ET.

SOUTH COAST
Classified advertising could work for you.
Ring Heather Wust Today to discuss your plans.

TYNE AND WEAR
ELECTRONIC COMPONENTS AND KITS
STATION ROAD, CULLERCOATS,
NORTH SHIELDS, TYNE & WEAR NE30 4QF
091 201 4853
New 1988 Catalogue now
available £1.65 incl. P&P.
MON-SAT 9.30 to 5.30
CLOSED THURS.

PCB'S
Labcenter
PC-B £80
At last, an affordable PCB design tool for your Amstrad PC. Plottng service available.
Send SAE for further details, or £2 for draft.
Labcenter Electronics
14 Marriner's Drive, Birmingham,
B94 4JT. Tel: 0274 542868

PRINTED CIRCUIT BOARDS AT
very competitive rates. 4
per square centimetre (less for
oRders of 10 plus) 1 offs; 100 offs.
Enquiries: Watling Wires, 52
Watling Street, Nuneaton,
Warwickshire, CV11 7UL.
Telephone (0203) 382296.

PCB'S. ARTWORK. Single/Double
sided, one off or multilayer; drilled,
tinplated Also Avo repairs; Profes-
sional quality; competitive rates.
SAC for details.
Dane Electronics Services,
17 Conisont Avenue, West
Jesmond, Newcastle NE2 3EY.

MISCELLANEOUS
HEATHKIT U.K. Spares and
service centre. Cedar Electronics,
Unit 12, Station Drive, Bredon,
Tewkesbury. Glos. Tel. 0684
73127.

TO ADVERTISE
CALL HEATHER WUST
ON 01-437 0699
LINSLEY-HOOD CASSETTE RECORDER CIRCUITS

Our very latest kit for the discerning enthusiast of quality sound and an exciting hobby for lovers of design by John Linsley-Hood. A combination of high quality AM tuner and stereo decoder described in *Electronics Today International* as "superb work." The complete unit is based on our 300 series amplifiers. Novel circuit arrangement ensures that the kit is ready built pre-aligned from a printed circuit board. The self-contained decoder complete with a response to the complex stereo decoder together make an ideal kit for the home enthusiast who wishes to build his own kit. We have used the latest in semiconductor section with a selection of original parts. The amplifier is of the latest design with a triode amplifier section for the best performance. Great care has been taken to ensure the best possible performance. The kit is complete with a fully designed circuit board.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Tuner</td>
<td></td>
</tr>
<tr>
<td>FM Tuner</td>
<td></td>
</tr>
<tr>
<td>Stereo Decoder</td>
<td></td>
</tr>
<tr>
<td>Power Amplifier</td>
<td></td>
</tr>
</tbody>
</table>

Complete Kit

- **Price:** £33.70
- **VAT incl:** £33.70
- **Regrets of original Articles:** 75p incl.
- **Microphone Amplifier:** £3.90

LINSLEY-HOOD 300 SERIES AMPLIFIER KITS

- **Complete kit:** £98.70
- **Discount price for Complete Kit:** £98.70
- **Reprints of Original Articles from *Hi-Fi News***: £1.95 incl.

STUART TAPE RECORDER CIRCUITS

Complete stereo sound, replay and playback system for replacement recorders. The circuit will give. Hi-Fi quality with a good tape deck. Suitable for high end equipment and allows a simple tape monitor system to be used where the deck has the features of a 2-track tape system back to back. Further details.

- **Price:** £85.67
- **VAT incl:** £85.67
- **Reprints of Original Articles:** £1.90 incl.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your cassette decks need replacing? A worn out head could be the problem. Fitting one of our replacement heads could restore performance to your deck. Standard mountings make fitting easy. Our TC1 Test Cassette helps you to select the right head. Specifications include price, dimensions, protective caps, working voltages and head magnetisation. The heads are all for use on Dolby machines and are stock.

- **HDC2 Pemalloy Stereo Head:** £7.66
- **HS16 Sendust Alloy Super Head:** £11.78
- **HK100 Stereo Permabloy PFR head:** £46.50
- **BA201 2/3 Language Lab/RP head:** £13.35
- **SM166 1/2 Erase Head:** £8.50
- **SM159 1/2 Erase Head:** £3.00
- **HCT51E 1/4 Erase Head:** £46.50
- **Full specifications of types and other special purpose heads in our list.**

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette allows you to set up a VU meter, head alignment and tape speed. Irresistible when fitting new heads. Only £4.66 plus VAT and 20% postage.

- **TAPE HEAD DIAGNOSTIC:** £4.66
- **FULL TESTS:** £8.00

Send for your free copy of our LISTS. Overstock. Please send 2 IRCs to cover surface or 3 IRCs for Airmail. Please allow post cost of packing and insurance in your requirements.

OVERSEAS

Our prices are subject to change due to exchange rates, our prices are subject to change due to exchange rates. All prices exclude VAT unless stated.

Personal callers are always very welcome.

ALL PRICES EXCLUDE VAT UNLESS STATED

24hr SALES LINE

(0691) 652894

HART ELECTRONICS LTD.

O'REILLY STREET, SMITHFORD, DUBLIN 6.

ETI JULY 1988

65
The second part of this once-in-a-lifetime competition is a 'Spot-the-satellite' puzzle. Study the picture below and mark with a cross your estimate of the exact position of the missing satellite's transponder aerial. Of course, the satellite is a little lower in this picture than it would normally be! Mark just one cross then cut out the whole coupon and send it stapled to last month's coupon to: ETI Reach For The Sky Competition, 1 Golden Square, London W1R 3AB.

Readers who missed part one of this competition can obtain a valid part 1 coupon by sending a SAE to ETI at this address.
REACH FOR THE SKY

See for yourself what all the fuss is about in the electronics world. Enter the ETI Reach For The Sky competition and the lucky winner will be able to pick up multi-channel entertainment, news and sport on their existing TV set.

Satellite TV is here now. Umpteen channels are broadcast everyday from a growing number of satellites positioned high above the Earth's equator. Even as you read this more satellites and more channels are planned. Everything you need to tap into these broadcasts (in addition to your conventional TV) can be won in this chance of a lifetime competition.

The Prize

We've joined forces with Pace - one of the big new names in satellite TV systems - and established dish manufacturer Vivor to offer a complete system of:

• Pace SR640 satellite receiver. A superb piece of equipment capable of receiving all current channels, with infrared remote control and full 39 channel memory

• Vivor high performance 90cm dish antenna and mount

• Ultra low noise LNB

• IRTE Paris low degradation magnetic polarator

• Accurate dish actuator to move from one satellite to another

• 30m of connecting cable and the necessary connectors to enable the whole system to be set up with nothing more than common handtools

• Installation and operating instructions

If you haven't already read details of the Pace SR640 receiver (see ETI April 1988) you'll find its specification amazing. This is one of the few satellite receivers which is truly easy to use, yet it maintains a performance which excites even the most stick-in-the-mud satellite engineer. With single push button control, you can alter the satellite, channel, polarisation, skew, etc, etc from the armchair in the living room. Once you've correctly installed your prize, the receiver will automatically tune in all aspects of programmes, moving the antenna to point to up to 12 satellites, adjusting the polarator for the best signal, powering the LNB and all the other tasks with just a single push of a button.

We've picked Vivor, a manufacturer of high quality antenna dishes as the supplier of the dish we're giving away. It's a 90cm antenna complete with mount and actuator to enable it to swing across the satellite belt to point at any satellite up there, now or in the future.

The two main parts of the system are united with an LNB with a noise figure of less than 1.6dB. Coupled with the low degradation Paris polarator, the systems carrier-to-noise level is kept as high as possible, enabling the convenient smaller dish size to be used but maintaining good reception.

The Competition

The competition to win this top-notch system is in two parts over two issues of ETI. For Part One you have to arrange a list of features of a satellite TV system in order of importance. Part Two is the world's first ever 'spot the satellite' contest. This month's half of the competition is on the page opposite.

RULES

1. All entries must be on the published coupons or on photocopies accompanied by the published tokens.
2. Entry is open to all UK resident readers of ETI except employees and their families of Argus Specialist Publications, Pace Micro Technology and Vivor Satellite Systems.
3. All entries must be received at the ETI Editorial Offices by July 1st 1988.
4. The judges' decision in all matters is final.
5. All entrants to this competition shall be deemed to have accepted these rules.

Video Cassette

KIT PRICE

ONLY £19.95

ORDER CODE LM27E

A superb 1kW Mosfet amplifier, a major new source in sound! Full details in Project Book 26 (XA26D) Price 85p. This project is made up from 4 kits.

MOSFET AMPLIFIER

ONLY £11.95

ORDER CODE LM27E

POWER BREAKTHROUGH!

A superb 1kW Mosfet amplifier, a major new source in sound! Full details in Project Book 26 (XA26D) Price 85p. This project is made up from 4 kits.

MOSFET AMP

ONLY £11.95

ORDER CODE LM27E

HECTHOSE UNMARKED

capacitors with this versatile, low-cost, piece of test equipment. Full details in Project Book 23 (XA23A) Price 85p.

KIT PRICE

ONLY £24.95

ORDER CODE LM28F

NUCLEAR RADIATION MONITOR

capable of measuring the level of Alpha and Beta particles, and Gamma and X-Rays. Full details in Project Book 24 (XA24B) Price 85p.

NUCLEAR MONITOR

ONLY £19.95

ORDER CODE LW51F

MUSICAL DOORBELL

with 28 tunes and chimes with selectable piano to organ like sounds. Note: case and front panel not in kit. Full details see Project Book 13 (XA13P) Price 85p.

KIT PRICE

ONLY £14.95

ORDER CODE UK57M