

OPOWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES

Nowenjoya compana and hoboy ma kel models industry Tosure tibre PC B and Drive circuits to power compatible Supplied ready built and tested OMP100 Mk II Bi-Polar Output power 110 watts R.MS into 4 ohms, Frequency Res SNR $-118 \mathrm{~dB} \mathrm{KHz}^{-3 \mathrm{~dB} \text {, THD } 001 \% ~}$ 500 mV at 10 K size $355 \times 115 \times 65 \mathrm{~mm}$ PRICE $£ 33.99+£ 3.00$ P\&P.
OMP MF100 Mos-Fet Output power 110 watts RM S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 0002%, Input Sensitivity 500 mV . SNR -125 dB Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE PMP MF200 Mos-Fet OtP watts R M S 10104 ohms Frequency ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate 50V uS. THD Typical 0001%. Input Sensitivity 500 mV , SNR PRICE $\mathbf{f 6 2 . 9 9 + £ 3 . 5 0} \mathbf{P \& P}$.
OMP/MF300 Mos-Fet Output power 300 watts RMS Mos-Fet Ouptr power 300 ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350. Slew Rate 60V uS. THD Typica 00008%, Input Sensitivity 500 mV . SNR
-130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$ PRICE -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$ PRICE PRICE $£ 79.99$ - $£ 4.50$ P\&P.
\qquad
 Vu METER Cor
very acurate v
redus an ad
circults for ver
case wilh lined
PRICE $£ 850$
 PRICE $5850-50 \mathrm{p}$ P\& F

LOUDSPEAKERS 5 " to $15^{\prime \prime}$ up to 400 WATTS RM. S Cabinet Fixing in stock, Huge selection of McKenzie Loudspeakers available including Cabinet Plans Large S.A.E. (28p) for free dètails POWER RANGE
 850 WATT R M. S Mi-FI, Disca
 $12100 \mathrm{WA} \Pi_{2} \mathrm{M} \mathrm{S}$ Hi-Fi/Disco

MCKENZIE

${ }^{2 \prime}$ 㫙 WATT R.M.S. C1285GP Lead guilar/keyboard/Disco
"ally voice coil Ally centre dome Res Freq 45 Hz Freq. Resp. to 65 KHz Sens. 98 dB PRICE $£ 29.99$ E.30

85 WATT R.M.S. C1285TC P.A/Disco 2" ally volce coll. Twin con 15" 150 WATT R.M.S. C15 Bass Guitar/Disco.
ally voice coil Die-cast chassis Res. Frec. 40 Hz Freq Resp. to 4 KHz PRICE $£ 57.87+£ 4.00$ P\&Pea 0" 60 WATT R.M.S. 1060 GP Gen. Purpose/Lead Gultar/Keyboard/MId. P.A voice coil, Res. Freq. 75 Hz Freq. Resp. to 75 KHz Sens. 99 dB . PAICE $£ 19.99+£ 2.00 \mathrm{P} \& \mathrm{P}$ ", voice coil Res. Freq 45 Hz Freq Resp to 7 KHZ . Sens. 101 dB PRICE $£ 4476+£ 3.00$ P P P 15 " 200 WATT R.M.S. C15200 High Power Bass.
Res Freq. 40Hz. Freq Resp to SKHz Sens. 101 idB PRICE $£ 62.41+£ 400 \mathrm{P} \mathrm{\& P}$
15" 400 WA Freq. 40 Hz . Freq. Resp to 4 kHz Sens. 102
WEM
5" 70 WATT R.M.S. Multiple Array Disco elc.
" voice coil Res. Freq. 52 Hz Freq. 52 Hz Freq. Resp. to 5 KHz Sens. 89 dB P PIICE $£ 22.00+£ 1.50$ P\&Pea $8^{\prime \prime} 150$ WATT. A.M.S. Multiple Array Disco etc.
$1 "$ voice coil. Res. Frec. 4 Hz Freq. Resp to 5 KHz Sens. 92 dB PRICE $£ 32.00+£ 1.50$ P\&P ea 101300 WATT R.M.S. Disco/Sound re-enforcement etc.
$12^{\prime \prime} 300$ woil Res. Freq. 35 Hz Freq. Resp. to 4 KHz Sens. 92 dB PRICE $£ 3600+£ 2.00 \mathrm{P} \& \mathrm{P}$ ea $12^{\prime \prime} \mathbf{2}^{300}$ voice coil Res. Freq. 35 Hz Freq. Resp. to 4 KHz Sens. 94 dB PAICE $£ 47.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea
SOUNDLAB (Full Range Twin Cone)
5" 60 WATT R.M.S Hi-Fi/Multiple Array Disco etc.
$6_{1}^{\prime,} \mathbf{6 0}$ WATT RMS. Hi-Fi/Multiple Array Disco ett ", voice coll Res Freq 56 Hz Freq Resp to 20 KHz Sens 89dB PRICE f 1099 8" 60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc
10 " 60 WATT R.M S. Hi-Fi/ Disco etc
(1) NTH HOBBY KITS. Proven designs including glass bre printed circuit board and high quality components complete with instructions FM MICROTRANSMITTER (BUG) 90/105MHz with very sensitive microphone Range 100 . protessional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 voth) Price: $f 14.49+75 \rho P \&_{1}^{\circ} P$
SINGLE CHANNEL RADIO CONTROLLED TRANSMIPTER/ RECEIVER 27 MHz . Range up to 500 metres. Doubie coded modulation. Recoiver output operates relay with 2 amp/ 240 volt contacts. Ideal fol
many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ voll $)$. Price:
 P\&P +75 p each S.A.E for complete list. BIDIES, ETC. PRICES INCLUSIVE OFV A.T SALES COUNTER VISA/ACCESS/C.O.D ACCEPTED

PRICES INCLUDE V.A.T * PROMPT DELIVERIES * FRIENDLY
BURGLAR ALARM
Beller lo be 'Alarmed then terntied
Thandar's famous'Minder' Burglar Alarm System. Superior microwave principle Supplied as three units GUARANTEED.
Control Unit -
up 10 is metres adjustate by senstivivil
Three postion key operated tocia swich
Indoor alarm
Outdoor Aiarm
outpul Holsed
Both in

Butlons etc Complete
BKE'S PRICE $£ 89.99$
E4.00 P\&P

OMP LINNET LOUDSPEAKERS The very best in quality and value Made specially 10 sult iotas
need tor compact mess winh high sound oupul levels

OMP 12-100 Watts 1 คOdB. Price $£ 149.99$ per pair.
OMP 12-200 Watts 102 dB . Price $£ 199.99$ per pair.

PIEZO ELECTRIC TWEETERS MOTOROLA

STEREO DISCO MIXER

STEREO DISCO MIXER with 2 : $\equiv=E-1$ -

 R graphic equalisers and twn 10 iserr 5 Inputs with individual acessing 5 Inputs with individual faces zreuseful combination of the toll 3 Turntables (Mag)
With talk
Pan Pot L \& R Mas:e
put 775 mV Size $3 \in 0$.

ET ELECTRONICS TODAY INTERNATIONAL

Page 10

ETI is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights cherein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other
intellectual property rights and by virtue of international intellectual property righiss and by virtue of ince to Argus Specialist Publications Limited and any reproduction requires the prlor written consent of the Company. 01988 Argus Specialist Publications Ltd. All reasonable care is taken in the preparationof the magazine contents but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be pubilshed as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible however, (or any after the publication has closed for press.

- Subscription rates UK $£ 16.80$. Europe: £21.00. Middle East: $£ 21.20$. Far East: $£ 22.80$. Rest: $£ 21.50$ or US $\$ 32.00$.

I Golden Square London WIR 3AB Tel: 01-437 0626 Telex: 88।196

Geoff Bains: Editor Jez Ford: Assistant Editor Paul Chappell: Projects Editor Jerry Fowler: Technical Illustrator Heather Hopkinson: Design

Ed Davis: Photography Christopher Harris: Ad Manager Julie Capstick: Classified Sales Andrew Selwood: Copy Control Mark Webb: Group Editor

Volume 17 No. 6

Next Month

Read/Write

The Forgotten Computer

Paul Cuthbertson relates his personal experiences of designing analogue computers - a much maligned breed in these days of digital everything

Op-amps
Paul Chappell turns the attention of Circuit Theory to the humble-op-amp - a much used but frequently misunderstood circuit building block

20

Transient

Capture
Mike Barwise continues to point the Chip In spotlight at the ADC-301 and ADC-302 flash convertors with a look at using them in fast data logger designs

Print And Be

 Damned!Mike Bedford takes a look inside computer printers to find out how they work. Both the everyday dot-matrix and daisywheel models and more exotic laser and bubble jet types come under his scrutiny

Seno
 Workstation

Peter Shaw spurns the kitchen sink for a brand new PCB etching system for the hobbyist and now reports on the lack of stains on the carpet.

PRDIECT

Universal Digital Panel Meters
Richard Grodzik has produced panel meters which can be programmed to give the scaling and range you want. What's more they even come in two types with a digital or bar graph display

Readers:
 Survey

Reveal all in ETI's biggest census since the last one

Published by Argus Specialist Publications Ltd., I Golden Square, London WIR 3AB. Tel: 01-437 0626. UK newstrade distribution by SM Distribution Ltd., 6 Leigham Court Road, London SWI6 2PG. Tel: O1-677 81 II. Overseas and non-newstrade sales by Magazine Sales Department, I Golden Square, London WIR 3AB. Tel: 01-437 0626. Subscriptions by Infonet Ltd., 5 River Park Estate, Berkhamsted HP4 IHL. Tel: (04427) 7666I. US subscriptions by Wise Owl Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Multiform Ltd., Cardiff. Printed and bound by Adlard \& Son Ltd., Letchworth. Covers printed by Loxley Brothers Ltd., Sheffield.

JUNE 1988

РВојест 38

Still Life

Ziad Mouneimne and Nick Flowers can ride home safely at night thanks to this simple bicycle dynamo backup unit. Think once, think twice, thing ETI!

PROJECT Every Breath You Take

42

Paul Chappell presents his final (!) design for a ratemeter to measure your breath/pulse count on the way to his lucid dream stimulator

PROJECT

Going For Gold

Keith Brindley goes hunting for lost valuables armed only with a radio and this month's Ist Class beginners project.

$\frac{62}{\text { PCB Service }}$

Oops!

Open

 Channel

Cable \&

Satellite TV Show Report
What was on show at this years event for the sky watcher.

Once Over

Graham Nalty completes his super-fi power amplifier with a description of the power amp
board itself and the final constructional details
 =

PCB Foils

Page 38

News

 A MERGER

 A MERGER MADE IN MADE IN HEAVEN?

 HEAVEN?}

Lossmaking STV station Super Channel is discussing merger plans with Sky, according to The Financial Times. The two stations would combine to provide a single service across Europe.

Apart from the obvious economies of scale and cooperation, this would increase advertis. ing revenue by removing the competitive barriers between the two channels. These barriers have stopped advertising rates from rising with the size of the market.

Another bonus for Sky would be the freeing of a satellite channel for Eurosport, a joint venture with the BBC (among others).

However the merger could flounder if either NBC or the Television Broadcasting Company succeed in acquiring a majority stake in Super Channel. The TBC consortium of Carlton Comms, Thames TV, LWT, Dixons and the Saatchis would prefer to keep control of Super Channel as a separate service.

CD-ROM JUKEBOX

Listening booths may find their way back to record shops and megastores if the CD-ROM jukebox catalogue from Robert Maxwell's Nimbus Records takes off.

Nimbus has put its classical catalogue onto CD-ROM in a package for IBM machines that looks more like CD-I than CD.ROM.

The catalogue can be accessed under title, composer, artist or music type and for each item provides information on both composer and artist.

Then (and this is the clever bit) the album cover is displayed on screen and a CD-quality excerpt is played.

If other record labels produce similar catalogues (and Nimbus is working on it) record shops could mount the whole lot in a jukebox arrangement with search and select facilities for the punters. Hey presto, record buying is fun again.

For further details contact Nimbus Records, Wyestone Leys, Monmouth NF5 3SR. Phone: (0600) 890682.

BICC Vero (maker of Veroboard) is introducing a novel and effective new method of circuit prototyping for the hobbyist.

Entitled Easiwire, connections with the stuff) since connections are made without soldering by board and crossing wires can be placing components on a polypropylene matrix board (like Veroboard but without the strips). Links are made by wirewrapping from a penlike instrument fed by a wirespool atop the pen. Component leads are linked by wire as they would be by tracks on a PCB.

CICC Vero at Flanders Road, Hedge End, Southampton SO3 3LG. Tel: (04892) 88774.

MIX AND MATCH

KTek, suppliers of the M\&A or broadcast applications. Series 4 Mixer (see review in K-Tek sell the plans of each March 1987 ETI) has produced a boardat between $£ 9$ and $£ 16$ - and new range of audio mixer masterboards called Series X.
 The boards vary from the X8-2 with 8 line inputs and one mic channel to the X32-2 with 32 line and one mic. Extra mic inputs may be added with the $\mathrm{Xi}-1$ board and the XR. 2 and XR 4 mix either two K. KR- and XR-4 mix either two K.Tek, PO Box 172A, Surbiton or four stereo inputs for say disco KT6 6HN. Tel: 01-399 3990.

ELEVENTH HEAVEN

The latest DX keyboard from of all operators at the same time) Yamaha is the DX11, an eight and it costs less than the DX9 did note polyphonic instrument with a three years ago - $£ 679$ RRP. five octave velocity sensitive

Meanwhile a hilarious limited keyboard.
The voices have four operators duced to mark Yamaha's as in the DX21 and DX9 (remember centennial last year. Finished in that?) but the DX11 is multitimbral 'celebration silver' with golden so you can layer all eight voices - sliders, it has a 76 -key extended 32 shaped operators - under a keyboard and costs (gulp) £2999. single note if you so desire.

Extraordinarily rich readers who The DX11 has a ROM slot and want one should contact Yamahaeffects memories, a new quick edit Kemble, Mount Avenue, Bletchley facility (to change the attack rates MK1 1JE. Tel: (0908) 71771.

Strip chart recorders for temperature and humidity are being supplied by Electronic Temperature Instruments of Worthing. The Rustrak recorders are compact and reasonably versatile, ideal for keeping track of conditions in computer rooms for example.

The basic temperature-only module retails at E 199 from ETI (no relation), PO Box 81, Worthing, West Sussex BN13 3PW. Tel: (0903) 202151.

HOME HUNTING

Tome Searcher is a database researcher for IBM PCs that accesses the European Space Agency's databases in Frascati, Italy.
The software is designed for free expression (AKA natural language AKA user friendliness) to understand and speak English so that no knowledge of data base searching is required.

The subject area is outlined by the user and narrowed down by the extensive semantics (expert in Electronics, Computing and IT) until an acceptable search strategy is established where Tome's estimate of the number of references expected from the ESA matches the limit set by the user. Each reference will cost about 30 p in 'online time' so narrowing down the field is essential if you don't want your IBM puling 3 million hits out of the system.
Considering that a search on the British Library's rival system averages about £45, Tome Searcher (actually orginally funded by the British Library as Plexus in 1983) has an affordable price tag of £495+VAT.
Contact Tome Associates, PO Box 1, Stotfold, Herts SG5 4LT. Tel: (0483) 810905.

STUFFED WITH POWER

Sage Audio's Supermos 2 is the new flagship of the remarkable Superseries class A power amp modules.
The Supermos 2 weighs over 2 kg and can deliver 500 W into 4 R
Les Sage claims his 'no compromise' design work has produced an astonishing set of specifications: slewrate above $685 \mathrm{~V} / \mu \mathrm{s}$, THD at 0.0001% at full output, unmeasurable intermodulation distortion and zero crossover distortion.
The key to these performance levels is the active class A circuit operation which maintains pure class A operation right up to the maximum output stage current

PCB CLONES

Amstrad users have two new PCB design packages to choose from.
The first, PC-B, is from Labcenter Electronics and runs on PC clones with an EGA card and the Amstrad 1512 and 1640.
Its speed, component library and icon driven operation are remark able for the price and Labcenter provides a plotting service for users without a suitable hardcopy device.
PC-B costs just $£ 80$ and a demo disk can be supplied for $£ 2$.

Contact Labcenter, 14 Marriners Drive, Heaton, Bradford BD9 4JT. Tel: (0274) 542868.
The second package is Easy PC which runs on PC compatibles with at least 512 k memory.
Easy PC can handle large boards (up to 17 in square) with 4000 pads, 1500 symbols and 12000 track segments.

It can create multilayer designs of up to eight copper layers and provides drilling templates and solder resist details.

Easy PC costs $£ 275+$ VAT from Number One Systems, Harding Way, Somersham Road, St Ives, Huntingdon, PE17 4WR. Tel: (0480) 61778.
capacity - typically a massive 50 80A.
The Sage design eliminates output emitter resistors and stabilising zobel networks, it uses no fixed bias on the output stage so temperature tracking errors cannot occur and the number of signal capacitors has been drastically cut (along with their sound colourations).
The sound of PSU components is eliminated by clean clipping and feed-forward PSU correction.
For an eight-page brochure giving full technical details (£1) contact Sage Audio, Construction House, Whitley St, Bingley, W Yorks BD 16 4 JH . Tel: (0274) 568647.

Sony has committed itself to producing 3in CD singles aimed at a price and playing time similar to existing vinyl 12 in singles.

The mini-CD format will be launched alongside Sony's 4in square Pocket Discman this summer.
Normal size (5in) CDs poke out of the Discman D88 and whizz round at high speed - presumably hampering the portability of the unit substantially.
Sony says the record industry is very excited about the CD single. Who should be cited as proof of this enthusiasm? Surprise surprise, it's CBS Records. Who was it that bought out CBS Records last month? Good heavens, it was Sony.

Contact Sony at Sony House, South Street, Staines TW18 4PF. Tel: (0784) 61688.

TITLE 88 (Technology In Tourism \& Leisure Exhibition) - May 17. 19th
Business Design Centre, London. Contact PLF Communications on (0733) 60535

Rural Telecommunications - May 23-25th
IEE, London. International conference. Contact IEE on 01-240 1871.
Computer North - May 24-26th
G-Mex Exhibition Centre, Manchester. Contact Cahners Exhibitions on 01.8915051.

Engineering Products And Technology North - May 25-26th
Exhibition and Conference Centre, Doncaster. Contact Trinity Exhibitions on (0895) 58431.
Commodore Computer Show - June 3-5th
Novotel, London. Contact Database Exhibitions on (0625) 878888.
Special Effects Seminar - June 3-5th
Pinewood Studios. Contact British Kinematrograph Sound and Television Society on 01-242 8400.
Information Technology And Office Systems Exhibition - June 710th
Barbican Exhibition Centre, London. Contact BED Exhibitions on (09328) 65525.

European Satellite Broadcasting - June 8-9th
Tara Hotel, London. Contact Online International on 01-868 4466.
Electronic Publishing 88 - June 14-16th
Wembley Conference \& Exhibition Centre, London. Contact Online International on 01-868 4466.
Software Tools 88 - June 14-16th
Wembley Conference \& Exhibition Centre, London. Contact Online International on 01-868 4466.
Denby Dale Mobile Rally - June 19th
Shelley Hill High School, Huddersfield, West Yorkshire. Contact Denby Dale Amateur Radio Society on (0484) 602905.
Networks 88 - June 21-23rd
Wembley Exhibition \& Conference Centre, London. Contact Online International on 01-868 4466.
Private Switching Systems And Networks - June 21-23rd
IEE, London. Conference on telephone exchange technology. Contact IEE on 01-240 1871.
British Science And Tecnnology Exhibition - June 22-26th Brands Hatch. Contact Sci-Tech 88 on $01-8346680$.
Intersatellite Links: Systems and Technology - June 29-30th Royal Garden Hotel, London. Contact ERA Seminars and Exhibitions on (0372) 374151.

Computer Recruitment Fair - July 1-2nd
Rainbow Rooms, London. Contact Intro Ltd on (0491) 681010.
IEE Vacation School On Local Telecommunications Network July 10-15th
Aston University, Birmingham. Contact IEE on 01-240 1871

freebies

This month's ETI guide-to-getting-more-mail starts with the Greenweld Spring Supplement - 24 pages long with a good selection to add to their main catalogue for 1988.
Greenweld has just started an inhouse credit card scheme (details of which you'll no doubt receive with the supplement). For your copy phone (0703) 772501.
STC has produced a huge 320 page instrumentation catalogue covering everything from computers to oscilloscopes, chart recorders and design aids. Phone (0279) 641641.

Even huger than this is the PMI analogue data book, with 1200 pages of data on DACs, ADCs, opamps and other ICs. Free from Jermyn on (0732) 450144
Lastly, Marston Palmer's 1988 heat sink catalogue is available with engineering profiles of over a hundred spiky heat sinks. Phone (0789) 773347.

The ETI Readers' Services Department has gone into the glue business
In conjunction with Adhesive Brokers we're offering a promotional pack of adhesives comprising two 20s cyanoacrylates (one thin and fast, one thick and slow), two 40 g epoxies (a two part adhesive and a fast set) and finally a 20 g general purpose threadlock compound.
The set costs $£ 9.95+50$ p postage (normal price £13.71) from ADH, Readers' Services, 9 Hall Road, Hemel Hempstead HP2 7BH. Credit cards on (0442) 41221.
= ELECTRONICS TODAY INTERNATIONAL
Next month's ETI sees your very own analogue computer to build, a logic probe project for beginners to electronics and an ingenious electronic lock using bar codes as the key. As if that wasn't enough there's also part two of the satellite TV competition and the usual blend of wit and wisdom that go to make ETI the best there is.

Following last month's history of the paper that goes to form the pages of this illustrious magazine, we have been inundated with requests to reveal all about the luscious inks and pigments, the Swisstempered staples and the felt-tip pens the ETI editorial staff use to shade in the colours on each copy of pages such as this.

Now we can reveal all.
The ink is unique to ETI. We have a storehouse housing the drums of ink that date back to 1798 when Duke Carshalton was pioneering the great tramways of the Gobi desert, now sadly lost in the sands of time (or more specifically buried in the sands of the Gobi.) The tramways were a disastrous investment for Lord Carshalton. Although some 2400 miles of track were laid on platforms 60 feet above the dunes, they were frequently obliterated by storms and destroyed by marauding nomads who enjoy that sort of thing ... Carshalton's greatest disaster was that no-one had yet invented the tram, nor would they for another hundred years.
The only byproduct of the Gobi Tramway project was the enormous number of Esquado beetles thrown up by the excavations. These beetles were so surprised at being dug up in the middle of the desert by a pioneering English Duke that they died instantly and had to be stockpiled in their billions.
As the beetles decayed in the bright Gobi sun, their juices seeped onto the sands staining them a dark indigo. Enterprising as the British were in those days, the Duke bottled and kegged the juice and sent it off to England where it lay in a bonded warehouse until 1927.
At that time an eminent Scottish entymologist visiting London recognised the aroma of decayed Esquado beetle as he was passing the warehouse in Limehouse. Intrigued, he had the kegs opened and the contents blessed by the Bishop of Woolwich (who was in the area opening a ferry service).
Pope Pius XI was suitably enraged at this flagrant betrayal of the mother church and quickly decreed that Esquado was to be henceforth banished from all Christendom. 32 kegs saved from the mob were hidden by members of the extremist animal rights group the 'Esquado Front' in underground vaults beneath Golden Square to be discovered by accident in 1972 when freak storms flooded the area bringing them to the surface. By happy coincidence ETI was just starting up the morning after and desperately in need of a supply of ink.
The July issue uses up the last of the Esquado juice stocks and so it may be the last. Make sure of your copy!

st a sample of stock. Ask for items not listed						Super Project Kit Bargains				
						Z80 Based Controller Board This super little micro board using the very powerful Z80A CPU running at 4 MHz has all the necessary hardware to control menial to the most complex tasks. The PTH PCB Measuring only 107×118 comprises 2K EPROM (Empty), 2K static RAM, 16 input lines using two 74 LS244 and 16 output lines using two 74LS373. The port connections are via four 10W pin strips, each having eight data lines, one ground and either NMI, INT, WAIT or RESET. A must for the small application. Order as: Z80A-CTRL/K Kit Form Z80A-CTRL/B Built and Tested 284C-CTRL/K Cmos Kit Form Z84C-CTRL/B Cmos Built and Tested $£ 31.45$				
		FIXED V VITGE								
		REGULATORS								
			$\begin{array}{ll}\text { 20 way } & 15 \\ 22 \text { way } & 18 \\ 28\end{array}$		RESISTORS Carbon film 0.25 watt 5% 1R-10MS 0.5 wate 5% $10 \Omega 210 \mathrm{~m} \Omega$					
		+8V 15 A 68 +1215 A 36 +15 V 1 A 36 86								
		$\begin{array}{rr} +24 v 1 \mathrm{~A} & 68 \\ -5 v 1 \mathrm{~A} & 39 \\ -12 \mathrm{~A} 1 \mathrm{~A} & 2.10 \\ 18 \end{array}$	28 way 40 way	$\begin{array}{lll} 100 \mu F 16 v & 06 \\ 100 \mu F 25 v & 07 \\ 100 \mu F 35 v & 08 \end{array}$						
			turned pin			232 to Centronics Converter				
				$\begin{array}{ll} 100 \mu F 50 v & 19 \\ 100 \mu \mathrm{~F} 63 \mathrm{v} \end{array}$		This handy little interface is ideal for running parallel printers from a serial port, the low cost way out of buying expensive				
				$\begin{array}{lll}200 \mathrm{FL} 10 \mathrm{v} & 06 \\ 330 \mathrm{FF} 16 \mathrm{v} & 19\end{array}$	THERMISTOR BEAD (NTC) [4.7kO]					
						from a serial port, the low cost way out of buying expensive parallel ports for your computer. Originally designed for theSinclair OL and Northstar Dimension in mind. The PCB				
		6w O.1A 2w0.1A				measuring 60×62 comprises of the 6402 UART, Baud rate ribbon cable and 36 W centronics plug. (For "D" Type connector and hoods see selection on left. Sinclair QL SER1 Plug available extra @ $£ 1.68$ order as $900-71052 F$.) Order as: RS232-8/K Kit Form £18.40 RS232-8/B Built and Tested £23.90				
		15vola	$\begin{aligned} & 22 w \\ & 24 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1.000 \mu \mathrm{~F} 10 \mathrm{v} .23 \\ & 1.000 \mu \mathrm{~F} 16 \mathrm{v} \end{aligned}$						
			28 way 40 way							
			CONNECTORS							
						Distance Measuring InstrumentA invaluable handy instrument ideal for quickly measuring rooms no bigger than 50 feet square. The ultrasonic processing PTH PCB measuring only 77×85 has all the necessary components to output the distance in four digit BCD (multiplex)reflecting either feet meters or yards selectable by a three reflecting either teet meters or yards selectable by aposition switch. The kit comes complete with Parabolic reflector and transducer. Available extra is a liquid crystal display board measuring 51×101 which can be wired to the BCD output to the above board directly to display the distance in 0.5 inch high digits.				
Dept. 23, Samuel Whites Estate, Bridge Road, Cowes, Isle of Wight, PO31 7LP Please add $£ 1$ for 1 st class post and packaging and 15% VAT to total. Stock listing available soon, please send SAE to be put on the mail list.										
						Order as: UDM126/K Kit Form $£ 34.95$UDM126/B Built and Tested 34.95LCDM4/K LCD Kit Form $£ 14.30$LCDM4/B LCD Built and Tested $£ 16.95$				

READ $\overline{W R I T E}$

 I have just bought April's ETI and I perused it for the traditional April Fool article - but none could be found. That is until I read the Virtuoso Power Amplifier article. I do not believe Graham Nalty can be serious,To take one of the many examples, can we please have an end to the myth that cables are in some way implicitly 'directional.'

It is tripe like this that casts doubt on the professional integrity of "hi-fi purists' and shows that we are still not recognising the extremely subjective nature of hearing. So come on, stop pretending we can hear
the customers for the same price or perhaps you are running out of material.

J Dussart
Morpeth, Northumberland
Mixed reaction to our April redesign, with much of the criticism aimed at the 'white space' margins in articles. What many of you have
things we can't and just sit back and enjoy the music

Ian Harvey
Trinity College, Cambridge We do try to listen to both points of view ... our article The Truth About Hi-Fi (May 1987) knocks much of the more extreme hi-fi mythology. There are a great many readers, atherwise apparently sane, who reckon there's a definite difference in quality from wire direction and so forth. Subjectivity is indeed the operative word.
Er ... by the way, the April Fool article was the Transatlantic Timezone Corrector.

TERMINAL PROBLEM

Ihave today received the April copy of ETI and I could not believe my eyes. Sixty pages includ ing front and back with articles reduced by a quarter page blank margin. Titles twice the normal size and blank spaces in a two page contents.

1 think that you are, as many others are nowadays, giving less to diagrams and photos filling the margins we now fit more on a page than we did before! As for the charge of plagiarising The Guardian ... the mere suggestion is ridiculous - witness our design for the next ETI logo below.
 missed is that the print size has come down a notch and with many

STARS ON SUNDAY

Further to your recent Doctor hazardous for me to use my new Who correspondence, I feel microwave oven. What should we that the public should be aware of do?
the increasingly disturbing relevations appearing in the Lost in Space shows on Channel 4 during Sunday lunch (set in 1997).

According to these programmes within ten years we will all be wearing Bacofoil jumpsuits and using 1950s computer hardware.
Space exploration will leap ahead while robotics still has metal men waving their arms up and down like Zebedee in The MagicRoundabout.

All very disturbing, especially since the jumpsuits will make it very

Yours in chainmail undies, Gavin The Opera Singer, Tewkesbury, Gloucs.
Don't worry. In another two years Moonbase Alpha will break orbit from the sun in the pilot of Space 1999 and the resulting climatic disturbance and solar radiation break-through will render your microwave redundant as all meat will be cooked at source. Meanwhile you may like to see a (The) Doctor.

I
wonder if you or your readers can help me solve a problem I'm having with telephones.

BT have recently installed a BT modular master socket in my home. This works well with a phone I purchased from a retail outlet. However, I have two extension sockets and have obtained two exrental BT phones to use.
I fitted suitable plugs and cords and the two ex-rental phones dial out correctly but will not ring with an incoming call. The phone from a retail outlet rings on any socket.
I can only conclude that the connections in the ex-rental phones must be different when used with line jacks.

Can anyone help?
Mr A Wint
Ilkeston
Derbyshire
Well firstly we are duty bound to point out that those phones you have adapted for use on BT master sockets and associated wiring/ sockets are only approved for the original old type BT connections and not on your new connection. Use of them as such is distinctly naughty of you.

However, if nothing we can say will deter you, we will answer your query.

Inside the telephones you will find two rows of terminals numbered $T 1$ to $T 9$, and $T 10$ to T19. If you connect a jump lead from T17 to T18, the bell will ring with incoming calls.

STRIP IN ETI

Many thanks for publishing your timer project with a stripboard design as well as the normal PCB (April ETI).

I hope there will be more like this as PCBs cost so much if you haven't got your own tank (and I haven't but I do have drawers full of stripboard).

Mr K Picton
St Helens, Merseyside
The 1st Class series of projects will all feature stripboard designs (so hang on to your drawers) although we'll continue to include the PCBs for readers who like their neatness and ease of construction.

HENRY IS MISSING!

WFith reference to the letter in April's EII from R A J Howard concerning the transistorprotection diode, may I clarify the issue.
Your magazine is correct to say that with the diode in place, the voltage at the collector of the transistor cannat exceed that of the supply plus about 0.7 V .
But the formula without the diode in place should include the inductance of the relay:

$$
V=\frac{L d i}{d t}
$$

Don't forget the Henrys!
C J Hinchcliffe
Cowplain, Portsmouth

We know what it's like filling in surveys. They never ask exactly what you want to say and it's so hard to be expressive with box-ticking as your sole form of communication.

So write to us as well. Send a letter. Give it to the postman, Drop it right in his sack.

Let us know, teli us everything at once. We care, we really do.
Send your donations, er mean letters ... to:

ETI
1 Golden Square
London
W1R 3AB

Paul Cuthbertson reveals the analogue computer is not dead but alive, well and usefully living in Aberdeen

The analogue computer has been with us in one form or another for some considerable time. Despite this, it could be called the 'forgotten computer.' Today the public imagination is swamped by notions of word processing, high resolution graphics and digital communications all (rightly) the domain of the digital computer.

However, there are many analogue computers around. They lack the glamour and fascination of their digital counterparts and can be found incorporated into industrial controllers, dedicated to keeping steel at such a thickness and ketchup at such a consistency. Otherwise, they are mostly found languishing in dusty cupboards.

Analogue computers deserve a better fate than this. They are a valuable tool for the scientist, engineer and mathematician providing a direct means of modelling systems as diverse as control mechanisms, vehicle suspension units and animal populations.

The history of the analogue computer is as varied and interesting as that of the digital computer. There were a few mechanical versions about in the 19th century (the slide rule is really a mechanical analogue computer and you could argue certain ancient navigational instruments are too) but the first really successful mechanical
designs arose about 1930 or so in such places as MIT and Cambridge. Electronic versions appeared in the 1940s. RCA built the first accurate design in 1950, since when the advent of integrated circuits has made the design of analogue computers easier, in just the same way as digital computers.

Many of the pre-war analogue computers had militaristic purposes such as bomb or gun aiming and were very successful. Connected directly to the airspeed, height and heading instruments in the aircraft, even the primitive versions of

THE FORGOTTEN COMPUTER

automatic bombsights were vastly superior to eye alone.

Further improvements used a gyroscope to allow for the aircraft banking and allowed the operator to input a drift rate to compensate for the effects of the wind. Anti-aircraft guns used a 'computer predictor' which computed a trajectory for a shell assuming that the target was holding a steady course, or that any change was at a constant rate.

Mechanical Matters

Mechanical analogue computers use the amount of rotation of a shaft or the length of a piston as the variable. Multiplication by a constant is achieved simply be meshing two gears of a certain ratio. Summation can be done by levers.

Integration (see photo) was performed in an intriguingly elegant manner by a 'spinning disc integrator.' A roller bears on the surface of a disc which spins at constant speed. This roller is free to move along its axle towards the periphery or the centre of the spinning disc. The shaft of the roller will accumulate a rotation depending on how near the roller is to the periphery of the disc. If the roller is at the centre of the disc, then no rotation occurs. If the roller is moved right over the centre and onto the other side, then the direction of accumulation reverses.

Figures, 1-4 show some examples of mechanical computer functions.

One of my friends who works in a fisheries research establishment tells me that there used to be a mechanical model of fish populations standing in one corner of his lab. Nowadays electronics has taken over and they use a big VAX computer system for such things.

Fig. 1 A mechanical coefficient multiplier using two gears at 2:1 ratio (rotary motion)

A digital computer deals with data in the form of discrete numbers and processes these in turn according to a sequence of instructions. The bitlength of the word dictates the resolution. The electronic analogue computer represents quantities as voltages. These voltages are analogous to the quantities we wish to represent and vary in a manner analogous to the manner in which the quantities vary - hence of course the term analogue computer

To make an example of the differences in operation, suppose we fire a shell from an artillery piece and this shell will attain an altitude of 10 km before its vertical motion stops and it starts back to earth. In the digital computer we might calculate the altitude of the shell at discrete intervals. If we calculate to the nearest metre, the number 2000 would represent $2 \mathrm{~km}, 1000,1 \mathrm{~km}$, and so forth. A binary word of 16 -bits would easily accommodate the maximum altitude of 10 km .

However, in the analogue computer the altitude of the shell would be represented by a continuously varying voltage - 1 V might represent 1 km . This is a far more direct method than the digital but each has its own advantages and disadvantages:

- Noise and drift (due to temperature and ageing) and tolerances in the circuitry all contribute errors in the analogue computer. There are no such errors in the digital computer, excepting gross fault conditions which cause a bit to change state.
- The digital computer suffers from rounding errors. In fact a small number added to a much larger one can vanish entirely under certain conditions! The resolution of the analogue computer is infinite (in any practical sense) and there are no rounding errors. We can minimise rounding errors in a digital system by increasing word length but then we suffer the cost of extra hardware or increased processing time.
- The digital computer is an essentially serial device performing primitive operations on fragments of numbers in sequence. This makes for slow arithmetic. An analogue computer is inherently parallel. A single summer could take an unlimited number of inputs, multiply each by a coefficient and add them all in a few microseconds. There may be tens or even hundreds of these 'computing elements' working simultaneously.
- Results are available continuously from an analogue computer. In the digital computer the results will progress by discrete jumps at intervals. A number which may be precise at the instant of its calculation will usually be progressively less accurate until replaced by its successor.
- There is a certain minimum hardware requirement for a digital computer. We have to have a processor, RAM, ROM and IO (even if these are all on the same chip). A useful analogue computer which might be used to solve a second order differential equation can be built from a few opamps. The total cost of the components for such would be less than a pound. In fact an analogue computer model of a filter - a state variable filter - needs three or four op-amps, a few resistors and two capacitors. The display for an analogue computer can be a meter, an oscilloscope or a DVM.
- The method of interconnection of the analogue computer elements is a very direct way of numerically solving systems of equations, even those which might defy analysis. Compared with these methods the digital computer is an abstraction, requiring massive underpinning of languages,
operating systems and such.
- A sensor such as a potentiometer can be wired straight into the analogue computer inputs. The outputs can drive an audio amplifier, or servo amplifiers.
- The operator can interact directly with the analogue computer in an experimental fashion to 'try things out.' This is less easy on a digital computer.

Fig. 4 The principal of the spinning disc integrator

An analogue computer cannot be used as a word processor or the like as it has no way of representing characters. The digital computer is ideal for that task. An analogue computer is a purely numeric machine.

The parallel nature of the analogue computer makes testing easy. Each computing element can be tested independently and if needs be ignored until a service is done.

- The digital machine can store information indefinitely. This is not possible on an analogue computer.

I would identify inability of the analogue computer to store information or to handle text as the two major reasons for the ascendancy of the digital computer. Hybrid machines do exist where numeric computation is performed by the analogue computer and the digital section is responsible for generating functions, for storage of output or for performing any long term integration or summation where speed is not important. Connection between the two parts is via DAC and ADC convertors

Attempting to patch the analogue computer connections from the digital computer is a complex business. Interestingly enough, the arrival of a new generation of crosspoint switch chips on the scene a short while ago may herald a more compact and effective hybrid computer.

Fig. 5 The electronic coefficient multiplier symbol and circuit

Fig. 6 The summer symbol and circuit

If you were to see an analogue computer and one of the more usual desktop digital computers side by side, the superficial differences would be glaringly obvious. In fact you might not recognise the analogue computer as being a computer at all, as all the more usual keyboard, video monitor, printers and disk drives are entirely absent. Instead we might have a large panel on which is an array of sockets, a set of knobs, one or two switches and an analogue meter movement (or possibly a simple scope or DVM).

The array of sockets is known as the patch panel and the analogue computer is programmed by linking (patching) various of the computing element sockets together, rather in the manner of the old time telephone exchange. The analogue computer software is easy to see. It is the wiring on the patch panel! There is no confusion about where the software 'is' on an analogue computer.

Let's examine the individual computing elements before discussing how they might be interlinked. The three most commonly used are the coefficient multiplier, the summer and the integrator. Useful work can be done on systems of linear equations with no more than these three types of elements. We built our own analogue computer at Aberdeen University recently. It incorporates all these three. Our approach has been slightly unconventional and where there are differences between the Aberdeen unit and the usual case, I'll mention them.

The coefficient multiplier multiplies an incoming voltage by a constant. The coefficient must be between zero and one. Physically the multiplier is usually a potentiometer, with one end connected to OV (Fig. 5).

When the output of this arrangement is patched to the input of the next element, the set coefficient will tend to droop, due to the next element's non-infinite input impedance. Our own analogue computer has the slightly unconventional addition of an op-amp buffer after the potentiometer, which does away with this problem. Some of our potentiometers are also double ended - neither end is taken to 0 V . This is occasionally useful and again unconventional.

Fig. 7 The circuit for a basic conventional computing element

The summer (Fig. 6) takes a number of voltages as inputs and adds them together, inverting in the process. The actual circuit consists of a single op-amp and a number of resistors. In our version the input resistors are trimmable through a limited range to eliminate initial tolerances. Any practical circuit must also include a nulling potentiometer. The inputs on our version are each
tied to 0 V via a 10 k resistor. This means the input may easily be left open without disturbing the impedance balance of the circuit too much, thus minimising offsets.

The input resistors are connected direct to the op-amp circuit, the general trend being to keep these separate. In a conventional computer this gives access to the virtual earth point and allows the operator to introduce feedback networks other than the ones supplied. Figure 7 shows a typical analogue computer summer element which illustrates this.

The conventional circuit also doubles as an integrator if you should switch in either of the capacitors, and another element's input resistors could be hijacked if necessary. In our circuit the elements are fixed and trimmed for accuracy, which does not allow this flexibility.

The integrator element integrates the sum of the input voltages with respect to time. If we suppose that the input x is a constant, the output voltage will change by $x V$ in 1 second. Note that there is an inherent sign reversal as in the summer.

The Aberdeen unit is unconventional in that the initial conditions input is not sign reversed. The relays are to do with setting the element to its initial conditions or holding the computation at any point. We chose IC analogue switches instead, principally because they do not bounce. Figure 8 shows the symbol for an integrator.

Figure 9 shows the elements of the Aberdeen unit as they might appear on a problem flow chart. The triangle is an inverter. Normally one would press a summer into service as an inverter because of the way our circuit is built, there is a spare inverter with each summer, which is brought out to the front panel. The numbers refer to gains - 10 is a $\times 10$ input. Use of stackable hermaphrodite connectors removes the need for the usual multiple outputs on elements.

There are numerous other circuits which can be used on analogue computers. Among the most important we could mention are four quadrant multipliers and the various diode circuits for modelling nonlinearity, discontinuities and hysteresis. In fact, any circuit which behaves in a fashion analogous to a physical system can be pressed into service. None of these non-linear elements are incorporated on the Aberdeen unit ... yet.

So how do we patch these together to produce something useful? We can appreciate what is happening better if we devise a model of a system and set out to solve it. I have chosen the classic mass spring damper model of a car suspension, beloved of generations of long suffering fifth formers ever since Newton. It is not too complex to imagine what is happening in the mind's eye but at the same time it is not a trivial example. Figure 10 shows the arrangement.

The deviation of the spring from its natural (unstretched) length I have called x. This is a distance of course. The rate of change of distance with time is called velocity. The rate of change of velocity with respect to time is acceleration. I have called the velocity \dot{x} ('x-dot') and the acceleration \ddot{x}

Fig. 8 The integrator symbol

$\rightarrow-1$ $\rightarrow-10$ $\rightarrow-1$

(a)

(b)

Fig. 9 Symbols for the Aberdeen unit computing elements (a) Summer (b) Inverter (c) Integrator
('x-double-dot') which is mathematicians' parlance for the derivative and the double derivative of x .

Now, you needn't worry about all this calculus. The only important point to remember for this purpose is that integration is the opposite of differentiation.

As the spring is stretched or compressed, it will exert a force equal to the stiffness times the distance we have stretched it. If we call the stiffness k , the force is kx . So far so good.

There is also a force exerted by the damper. The damper only exerts force when we try to move it. If we call the damping factor d , then the force exerted by the damper will be d times the velocity which is $\mathrm{d} \dot{\mathrm{x}}$.

These are the only forces on the mass, so we can add them together to get the total force:
$\mathrm{F}=-\mathrm{d} \dot{\mathrm{x}}-\mathrm{kx}$.
There are two important points to note here. We have ignored such complications as air resistance and mass of spring (and a good thing too, I hear someone saying). We also have to decide which direction is positive and I have decided that up is positive. When distance is negative, the spring is compressed and the force it exerts is upward hence the negative sign in front of the spring's force. Similarly when the motion of the mass is downward (negative) then the damper exerts an upward force.

Fig. 13 Damping

Fig. 14 Adding the spring
These forces make the mass accelerate. Newton (bless him) said that force is mass times acceleration, so
$\mathrm{m} \ddot{\mathrm{x}}=-\mathrm{d} \dot{\mathrm{x}}-\mathrm{kx}$
All right then, that's our model of how the system behaves. How to get it into the computer? Let's indulge in some algebra and get m (the mass) out of the way to leave x on its own
$\ddot{x}=-\mathrm{d} \dot{\mathrm{x}} / \mathrm{m}-\mathrm{kx} / \mathrm{m}$

I mentioned earlier that integrating is the opposite of differentiating so if we fix up an integrator as in Fig. 11, it's a good start. We get $-\dot{\mathrm{x}}$ out (remember the sign inversion).

If I integrate a constant times \ddot{x} I will get the same constant times $-\dot{\mathrm{x}}$. So, if I put in a coefficient multiplier set to $1 / \mathrm{m}$ as in Fig. 12, we can see the result. Then we can add in a coefficient multiplier for d (Fig. 13) and then another integrator and coefficient multiplier for k (Fig. 14). Finally we can add these two in a summer (Fig. 15). It's fairly easy to see how the patching is built up. Figure 15 shows the 'open loop' flow diagram for the problem.

But there's still one last thing. We do we get \ddot{x} from in the first place? Lo and behold, we have what seems to be the right thing coming out of the summer. We can make the left hand and right hand sides of the equation equal if we connect the input and the summer output together as shown by the loop in Fig. 16. This is the closed loop flow diagram and is the patch that we need to solve the problem.

Provided we've got the plusses and minusses right, the solution is a decaying sine wave. Mathe-

Fig. 10 The mass-spring. damper problem

matically it's possible to have a 'daft damper' which assists motion instead of retarding it. That gives an increasing sine wave. It's also possible to have a 'silly spring' which pushes in the wrong direction as we stretch it. The solution in this case would probably be an exponential (depending on the ratio of k and d).

This problem is quite easy to solve analytically. The analogue computer really comes into its own where we encounter sets of differential equations which are difficult to analyse. These are no more difficult in principle to solve on an analogue computer. For example air resistance, double acting dampers, spring masses and the like can all be built in. All we have to do is derive a set of equations which describe the system. We can build several separate models and interconnect to feed the results of one into the next.

The model we have just used does not account for gravity or a 'bumpy road.' We can add in any acceleration we like at the summer, including that of gravity. We can connect an oscillator to

Fig. 11 First steps

Fig. 12 Accounting for mass

Fig. 16 An alternative patch with fewer coefficient multipliers
the same place, to inject 'bumps.' (This oscillation is known as a forcing function). This illustrates the direct nature of working with an analogue computer.

So far we have not attempted to quantify the settings of the pots. To get a useful quantitative result we must scale the problem. Ideally the model will use full dynamic range of the machine $(+10 \mathrm{~V}$ in our case) without going appreciably outside those limits (which may cause clipping and invalid computation).

It's a similar problem to that encountered by anyone confined to integer arithmetic or the user of a slide rule. The slide rule user has to keep track of all the zeroes or he will end up a factor of ten-to-the-something out. Similarly, the integer user may run out of bits.

I don't propose to go into scaling in any detail, except to say that there are well defined procedures for doing it which consist basically of writing out an equation for each computing element, estimating the maximum value a variable can be expected to take and dividing through, calculating the pot settings as we go. Some operators get by using try-it-and-see methods.

Anyone who is particularly interested in the rigorous scaling of problems is recommended to read 'Systematic Analogue Computer Programming' by Charlesworth and Fletcher which gives a detailed treatment of this and other facets of analogue computing.

My own interests in analogue computers started when I was asked to look at one which appeared faulty. Unfortunately it was an extremely poor design and was sent packing. Subsequently we decided to develop our own system. The photographs shows views inside and outside the machine.

On the right is a panel (the control unit) which contains a large analogue meter movement, three rotary switches, three push buttons and a variety of lamps and 4 mm sockets. On the left are four narrower panels.

The control unit is the nerve centre of the computer. As well as controlling the hold and reset functions, it allows for monitoring of the progress of a computation and it also provides access for a BBC micro to gain control and monitor and store the results. Thus the Aberdeen analogue computer is 'hybridisable.' Two D-type connectors on the rear can be fitted with cables which plug into the user port and the analogue port of the BBC.

The meter is used to set up the potentiometers and to monitor the progress of computations. There are four yellow sockets which are used to input signals to the meter. A meter select switch routes the signals, as well as selecting reference or supply voltages to be monitored. A hold and a reset button toggle the hold and reset states on and off - an LED shows which state is selected. An unusual feature is the bandwidth control which switches capacitors in all the integrators, to allow faster operation.

Of the four smaller paneis, one contains five integrators, one has five summers and five inverters and the two remaining panels each contain six coefficient multipliers, along with sockets to provide +10 V and $O \mathrm{~V}$ to the programmer.

These four panels can be plugged into the frame in any of the seven possible positions as the bus structure is not position sensitive. The three spare slots allow the introduction of similar or other panels as they become available. The control unit must however be in position at the far right.

All the sockets are colour coded. Blue sockets are outputs. Yellow sockets are $\times 1$ inputs. White are $\times 10$ inputs. The initial conditions sockets on the integrators are brown. The red, black and green are for $+10,-10$ and 0 V respectively.

This makes it easy to find your way about. There are no legends, hieroglyphics or diagrams on the panels but there are group markings encircling sets of sockets which are associated with the same computing element. The five indicators on the summing and integrating panels are overload indicators. They latch on in the event an output exceeds about 11.5 V . Resetting is by a common pushbutton marked OVV on the control unit.

The control unit houses a motherboard and several daughter boards. There is a logic board which controls the hold and reset functions and a meter amplifier board which is controlled by the meter range switch.

There are two apiece of the others generalised optical interface boards used by the BBC interface and generalised analogue conditioning used to switch signals or to attenuate and shift the normal +10 V range of the analogue computer to suit the BBC ADC inputs.

The power supply board is on the rear panel of the frame, along with the transformer, filter, rectifier and reservoir capacitors which are all off board. This power supply performs well. No voltage deviation registers on $41 / 2$ digit DMM when full load (500 mA) is applied. I couldn't believe it at first. No current limit is necessary as the supplies are not available externally.

The supplies are +15 V for the analogue circuitry and +7 V for the digital circuitry, which is all CMOS. The 0 V line is not a supply, and does not carry supply currents. It is purely a reference. This also helps lessen noise. An interesting feature of the supply is its sequencing. The 15 V rails cannot come right up until the 7 V rails are established. This prevents damage to the CMOS analogue switches.

Paul Chappell starts an in-depth look at the designer's favourite chip

OP-AMPS

In circuits built from discrete components, a large proportion of the design effort is absorbed in trying to minimise the imperfections and unpredictability of the components used. In building a low frequency gain stage with a bipolar transistor, for example, beginners quickly learn that a current bias circuit (Fig. 1a) is no good because the wide variation in current gain between different samples of transistors of the same type means the base bias resistor must be selected by trial and error for each individual device.

The potentiometer bias circuit (Fig. 1b) reduces the circuit's sensitivity to transistor gain - with suitable choice of resistor values this circuit can accommodate any transistor of a given type without modification. The price paid for this convenience is partly that the signal 'headroom' is reduced because of the voltage across the emitter resistor but mainly that the circuit as a whole has very much less gain than the transistor itself.

The technique of trading off gain (or giving it up altogether) in return for better performance in other respects is a very useful one. Figures 1c and 1 d show two non-amplifier applications of the idea. The first is a simple (and not very satisfactory) Miller integrator, where the transistor is used to linearise the charging of a capacitor. The second uses a transistor to simulate a very large capacitor (roughly $\mathrm{h}_{\mathrm{re}} \times \mathrm{C}$) at least as far as charging is concerned.

The drawback of transistors is that individually they don't have a lot of gain to give up. Useful circuit building blocks are made not from one but several devices. They also suffer from being direct embodiments of a basic physical process and make about as much concession to practicality as a piece of school laboratory equipment. The 0.7 V base-emitter voltage exists not because designers want it that way but because that's how transistors are. It's how the physics works.

A good case can be made for the view that opamps have more in common with discrete components than with other ICs. Used raw - without any associated passive components - they are totally unmanageable, but just connect a few external components and a very wide range of useful circuit building blocks can be made.

The most striking advantage of op-amps over transistors is that the available gain is several orders of magnitude higher, allowing very precise control over the circuit's characteristics with a single device. What's more, the external connections are arranged for the convenience of the designer, not constrained by the demands of physics.

However, like discrete components, op-amps have their own imperfections and idiosyncrasies. Technology has moved the decimal points a few places but greater performance seems to lead inevitably to greater expectations. There is always somebody who can think of an application which would be possible if only the latest device were just that little bit better!

Coaxing the best performance from op-amps is still the same mixture of art and science as for discrete components. In this series of articles I intend to cover the basic techniques and also to touch on some of the finer points of designing with these versatile devices.

Op-amp ICs

With most families of ICs the pin configuration for each member has to be learned individually but with op-amps it's easy. They come packaged in ones, twos or fours and the pin connections are almost always the same for any brand (Fig, 2a). High performance devices are usually packaged individually in the 8 -pin DIL or TO99 package and the spare pins may be used for offset cancellation or external compensation but the basic configuration of inputs, outputs and supply connections is usually adhered to.

Op-amps are very tolerant of supply voltages. Most will operate with single supplies from below 10 V to above 35 V . Some (particularly those intended for battery operation) will run from as little as 4 V . Voltages above 40 V are rare but you can have that if you want it (and can afford it!).

Op-amp circuits are usually run from split rail supplies (Figs. 2b, 2c). This is because the limits of the input and output voltages for correct operation fall short of the supply voltages, so the central 0 V rail is a useful bias and reference point. (Note that although data sheets often give absolute maximum

Fig. 2(a) Op-amp pin connections
input voltages as being equal to the supply voltages, this rating shows the most the IC will suffer without damage, not the range in which it will operate properly).

Op-amp Basics

Let's indulge in a flight of fancy for a moment. We've just received a sample of the very latest opamp. It has extremely low drift and offset, superb common mode rejection, very low noise, bias currents of $\ln \mathrm{A}$ - in short it's the kind of IC any manufacturer would love to produce. Unless I say otherwise, it's this $£ 200$ Rolls Royce of op-amps that we'll be using in this article. Let's see how it behaves.

The IC has a voltage gain of 10^{6}. This means the output will be $10^{6} \times$ difference in the input voltages, taking into account which is the higher in voltage. If the +input is $1 \mu \mathrm{~V}$ higher than the - input, the output will be at +1 V . If the - input is $1 \mu \mathrm{~V}$ above the + input, the output will be at $-I V$. If the two inputs are at the same voltage, the output will sit firmly at 0 V .

Connect together the two inputs and vary their common voltage ('common' in electronics means 'both have the same' as in 'having something in common' - and not 'ordinary' as in 'common or garden' or even vulgar as in 'common as muck'!) by means of a pot (Fig. 3a). The output will sit firmly at OV regardless of the setting of the pot (it won't follow the input voltage) because there is no difference between the two input voltages. This shows that the IC has excellent (perfect, in fact!) common mode rejection - it ignores voltages common to both inputs.

Figure 3b shows the IC's response to a differential mode signal. You have to imagine here that if the pot is set at the centre of its rotation, both voltage sources are zero.If it is rotated clockwise, v_{1} gives a light positive voltage and v_{2} gives an equal negative one. If the pot is rotated anticlockwise, v_{1} will be negative and v_{2} the same amount positive. If you are happier looking at a more concrete circuit, Fig. 3c shows one that will do the trick.

The centre-zero microvolt meter M1 registers the differential mode voltage. The output of the opamp will be one million times the voltage shown on the meter.

Figure 3d combines a common mode voltage (set by RV1 and shown on M1) and a differential mode voltage (set by RV2 and registered on M2). When the two inputs are not at the same voltage, their common mode voltage is defined as the voltage exactly halfway in between, so $\mathrm{V}_{\mathrm{cm}}=$ $1 / 2(v(+)+v(-))$. The differential mode voltage is centred neatly on the common mode voltage.

Varying RV1 will have no effect on the output voltage, regardless of the setting of RV2. Varying RV2 will give an output exactly one million times the reading on M2, regardless of the setting of RV1. Just to make sure you've got the hang of it, if M1 shows -6.22 V , M 2 shows $+3.2 \mu \mathrm{~V}$, what is the common mode input voltage? The differential mode input voltage? The voltages at the + and inputs? Most important of all, what is the output voltage? Answers at the bottom of the page.

Fig. 2(b), (c) Split rail power supplies for op-amp circuits

 1910002Z '9puo +8666 IZ'9 - aıd sındul - pud + ачł

 абоұоп арош |р!!иадағ!!

ұndu! дрош иошшоз 247: :ало 'ком ач7 ко 'ио גə!
ayt of siamsun ay.L

Amplifiers

About the first thing anybody learns about opamps is that they can be used to make amplifiers with a gain precisely controlled by the values of a pair of resistors. Figure 4a shows one of the ways this can be done.

Having read somewhere that the gain is given by -R2/R1, my fantasy is that the circuit of Fig. 4a has a gain of -10 . I'll try to prove it to you.

The first thing to notice is that if v_{in} is 0 V , the output will also be at 0 V . If it tried to go just a teensy bit positive, the potential divider action of R1 and R2 would put a positive voltage on the input, which would tend to push the output back towards 0 V . If it tried to go negative, the resulting negative voltage on the - input would force it back up again.

In a way it's like one of those children's toys with weighted bases that always settle in the

vertical position after being knocked. Any attempt to push the op-amp's output voltage by brute force results in a restoring force which will push the output back to 0 V as soon as you 'let go.'

Suppose that $v_{\text {in }}$ is increased to $1 V$. If I'm right about the gain being -10 , the output will now want to settle at -10 V . If so the voltage at the -input will be 0 V , exactly the same as at the + input so the output must also be at 0 V . What's gone wrong? It can't be at -10 V and 0 V at the same time!

The fault lies in my faith in rule-of-thumb calculations. The formula -R2/R1 for the gain is a very good approximation for most practical purposes, but it's not spot on.

Suppose that $\mathrm{V}_{\text {out }}$ settled at just a little above -10 V . This would allow just enough positive voltage on the - input to be amplified up a million times and maintain the output at this voltage. Once
 again, the weighted base action comes into play. Any attempt to shift the output from this voltage results in a restoring force (using the term loosely!) which tends to force it back again. If you find the idea of 'just a little above -10 V ' too vague, don't worry. The calculations will be along in just a moment.

One way of looking at the circuit is to see it as a kind of voltage lever. The arms of the lever will be proportional to the resistor values and the pivot will be at the -input terminal of the amplifier. Pushing down on the input (lowering the voltage) makes the output rise ten times as far. The pivot is just a little bit loose - it moves just one millionth of the distance of the output arm, in the opposite direction.

If you don't care for mechanical analogies, perhaps reasoning from basic electronic principles is more up your street. Assuming the amplifier
input only takes $\ln A$ of current and since we are dealing with tens and hundreds of $\mu \mathrm{A}$ flowing in R1 and R2, it's reasonable to say that for practical purposes all the current in R1 must also flow in R2. Now, if there is the same current flowing through two resistors then by Ohm's law the voltage across each will be proportional to its resistance.

In other words, if 1.2 V is dropped across R 1 , and the very same current is flowing in R 2 , you can say without further ado (and without bothering to calculate the current) that the voltage dropped across R2 will be ten times as great: 12 V .

Now, whatever voltage appears at the output of the amplifier, the voltage at the - input will only be one millionth as much. There's very little point in taking it into account at all. We might as well say that it stays at 0 V . So the input voltage will be the voltage across R 1 , the voltage across R 2 will be the output voltage and we've already worked out that this will be ten times as great (or -10 , taking into account that it moves in the opposite direction). In other words, the circuit has a gain of -10 .

If all this business about ignoring little errors makes you feel uncomfortable, the only way to settle the matter is to do the calculations. Looking at Fig. 4c, by Ohm's law we can write:

$$
i=\frac{v_{\text {in }}-v(-)}{R 1} \text { and } i_{2}=\frac{v(-)-v_{\text {out }}}{R 2}
$$

Now, if the op-amp's input takes negligible current (I'll have to fudge this bit for the time being or things will get impossibly complicated. I'll come back to it later) then $i_{1}=i_{2}$, so

$$
\frac{v_{\text {in }}-V_{(-)}}{R 1}=\frac{V_{(-)}-v_{\text {out }}}{R 2}
$$

We also know that the gain of the op-amp is 10^{6}, so $\mathrm{v}(-)=-10^{-6} \mathrm{~V}_{\text {out }}$, giving:

It's usual at this stage to point out that the terms involving 10^{-6} vout are very much smaller than either of the other two terms (can you spot a condition where one or other wouldn't be?) and so can be neglected, giving:

$$
\frac{v_{\text {in }}}{R 1} \simeq-\frac{v_{\text {out }}}{R 2} \text { or } \frac{v_{\text {out }}}{V_{\text {in }}} \simeq-\frac{R 2}{R 1}
$$

which leads to the usual rule-of-thumb formula for the gain of $-\mathrm{R} 2 / \mathrm{R} 1$. If we pursue the calculation to the bitter end without eliminating the two inconvenient terms, we end up with the exact formula for the gain, which is:

$$
\frac{v_{\text {out }}}{R_{\text {in }}}=-\frac{R 2}{R 1+10^{-6}(R 1+R 2)}
$$

Using this formula, the circuit of Fig. 4a, which I said would have a gain of -10 , actually has a gain of -9.99989. So the rule of thumb in this case is not too far from the truth. In fact in comparison with the 5\% resistor tolerances likely to be used in a practical circuit, it's pretty damn good!

My fudge factor - assuming the inputs take no current - doesn't affect the validity of the formula, although a proof of this and an investigation of just what effect it will have must wait for another time. There's more to these op-amps than meets the eye!

픔

SOLDERLESS WIRING

Construct your electronic circuits the new, quick and easy-to-learn way, WITHOUT solder: with Circuigraph Easiwire from BICC-VERO

With Easiwire all you do is wind the circuit wire tightly around the component pins. No soldering, no chemicals, no extras, simplicity itself. Circuits can be changed easily, and components re-used.

Easiwire comes in kit form. It contains all you need to construct circuits: a high-quality wiring pen with integral wire cutter, 2 reels of wire, a tool for component positioning and removal, a flexible injection moulded wiring board, double-sided adhesive sheets, spring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available separately too.

To take advantage of the special introductory offer, complete the coupon on the right and send it to:

BICC-VERO ELECTRONICS LIMITED,
Flanders Road,
Hedge End,
Southampton, SO3 3LG

Please rush me..............Easiwire kits, retail price £18.-; special introductory offer £15.-. (includes p \& p and VAT).

I enclose cheque/postal order for.............., made payable to BICC-VERO Electronics Limited

Card Number
redit card as follows

Expiry Date
Name
Address

Signature

or phone 0489288774 now with your credit card number (24-hour answering service).

Mike Barwise shows how to be quick on the trigger with the ADC301 and $A D C 302$ as rapid data loggers

TRANSIENT CAPTURE

Last month we looked at a couple of fast flash analogue to digital converters made by DATEL. These devices (ADC301 \& 302) are implemented in ECL and I am going to show you how to interface them to TTL/NMOS.

The logic signals in and out of these devices are the differential input clock and the single-ended digital data outputs.

The device for interfacing the outputs is the MC10125 quad ECL to TTL translator (Fig. 1a). This contains four differential input ECL to singleended TTL converters. Supply rails are ground, -5.2 V (ECL) and +5 V (TTL). A reference voltage output (VBB) is available for use when driving the input single-ended, which is what we are going to do.

Each converter has its non-inverting input tied to VBB and the input signal applied to the inverting input. The result is an inverting interface, so the polarity control pins (see last month) of the ADC should be strapped to inverting mode if you want true data output to your memory. Two 10125s provide the complete 8 -bit output interface.

Fig. 1 (a) ECL to TTL translator. (b) TTL to ECL translator

Interfacing the clock input is apparently just as simple, but you have to watch out for timing problems. The interface part is the MC10124 quad TTL to ECL translator (Fig. 1b). This contains four converters, each having a single TTL input and sharing a common TTL strobe or enable - we only want one of the four internal parts so the unused inputs should be pulled up by about 10 k each to VCC. The differential outputs of the selected part are connected to the clock inputs of the ADC with the oscillator connected to the TTL input.

So far - so good, but now we look back to last month and the clock timings. Let's take the 50 MHz part (as the most critical). We see that we cannot use a $50 / 50$ clock and still run the ADC at maximum rate. The total clock cycle at 50 MHz is 20 ns and T1 must be no shorter than 15 ns. This leaves only 5 ns , which (surprise, surprise!) is the minimum duration of T 2 .

However this assumes a perfect and lossless 3:1 clock generator which is in fact impossible to accomplish - there will always be some time absorbed in making logic state transitions, particularly in TTL.

It is possible to generate a $3: 1$ clock mark: space ratio (MSR) at a slightly slower frequency (say 45 MHz max) which will serve, alternatively you could use a nominally $50 / 50$ clock at say 30 MHz max, which would yield a 16.5 ns half period, with T1 and T2 equal.

Of the two alternatives I prefer the latter for experimentation, as the generation of the $3: 1$ MSR demands the use of a times four counter and selected state decoding. This means a 180 MHz oscillator, so we're back to ECL again.

Okay, so we have a 30 MHz max clock for the faster part. The slight apparent loss in performance is a small price to pay for easy implementation. The next consideration is how we are going to control the ADC and collect the data.

Making It Work

There are two alternative approaches to very fast data logging (burst logging). The first is the conventional one used at all speeds - the system is held ready to start (armed) and a trigger signal starts a logging sequence which continues at a predefined rate until the data store is full and then stops. The store will then hold a record of events from a time just after the trigger until some time later.

This mode of operation is the simplest to configure, but it has one major drawback at high sampling rates. If the trigger is experiment-derived, the events coinciding with the trigger event may well be of importance. We therefore need an alternative mode of operation.

If we could produce a system which would record events prior to and including the trigger event, we could then observe the points of interest. At first sight this seems a crazy suggestion - how can we start the logging sequence before the trigger event which starts it?! Wait, though. There is a way. Let us look first at the simple option and then I will show you how to do the impossible.

The Post-Trigger Logger

This is the first case where the logger captures data after the trigger until the store is full. The simplest implementation would be to couple the ADC output (via the ECL-TTL translators) to the input of one of the fast FIFO memories I have described before (ETI Sept 1987), connect the acquisition clock to the FIFO WRITE control in such a sense that the FIFO negative going WRITE pulse occurs concurrently with the ADC T2 half cycle and use a flip-flop to enable the acquisition clock.

The flip-flop would be set (clock runs) by the trigger input and reset (clock stops) by the FIFO FULL flag. The flip-flop will need a little sophistication to allow a predictable clock state at enable

Fig. 2 Schematic of post-trigger logger
time, but this is not difficult to achieve.
Using an IDT 720N FIFO has the advantage that any writing after the device is full is ignored, so we can allow ourselves to be a little sloppy about stopping the system. A generalised schematic of this mode of operation is shown in Fig. 2. The only drawback of this design is that the fastest IDT FIFO has a 65 ns write cycle, allowing a maximum 15 MHz throughput - about half that available with our chosen 30 MHz max clock. The answer here is to use a two-FIFO commutator (ETI Sept 1987), where practically speaking the full 30 MHz will be available.

The Pre-Trigger Logger

This is seemingly impossible. However, just stop and think for a minute.
If we were to invert the action of the flip-flop in the previous example, the logger would run all the time until stopped by the trigger (discounting the FIFO FULL condition). If we scrap the FIFO and replace it with a conventional memory chip with a counter coupled to its address lines and if we allow the counter to roll over at the end of its count sequence, the inverted flip-flop action will indeed stop an otherwise free-running continuous acquisition. As it proceeds, new data acquisitions overwrite old data in memory, so that when stopped, the memory always holds the last N data points, where N is the size of the memory.

This is the halfway point to our pre-trigger logger. As such it is not very useful, but let us propose another wheeze.

Instead of stopping the acquisition clock/ address counter, the trigger pulse starts a down counter that has been pre-loaded with the number of samples we want to save after the trigger occurs. This is also clocked by the acquisition clock.

What happens now is that the acquisition continues, decrementing the down counter until it underflows. The underflow signal from the down counter is used to stop the acquisition sequence. There you are! Wasn't so impossible was it?! A schematic of this (preferred) mode of operation is given in Fig. 3.

Added sophistications could include a variable clock divisor (at 35 MHz the 74 F 525 could come in useful) and programmable post-trigger data volume.

The trigger pulse may also be written as a logic bit into a spare bit of the memory (using nine bit instead of eight bit memory). This would allow
direct control of say a scope bright-up at the trigger point.

During the last month DATEL have announced the ADC-304, a 20 MHz TTL compatible device which I would recommend for experimentation unless you really need higher speeds. Also, should you be interested in the very fastest conversion rates, there is the ECL ADC. 303 (not pin compatible) which has a 100 MHz max conversion rate. Details are available fromDATEL on (0256) 469085

That's about it on fast ADC handling for the moment. It will probably turn up again as time goes by (play it again Sam) but in the meantime I am going to give you the gen on opto-electronic devices. That should be illuminating!

Fig. 3 Schematic of pre-trigger logger

PRINT AND BE DAMNED！

From golf balls to bubble jets，Mike Bedford outputs his look at the advancing world of printers

Yea verily did Johan Gutenberg in the year of our Lord 1450 bring forth from his works the first volume of moveable block type，it being the Holy Bible．And thus proceeding in 1474 did William Caxton devise the Historyes of Troye entitled The Recuyell．And at the last and most fearful time of the year 1972 did come forth the work known to the wide kingdom as ETI．

Thus have the landmarks of printing unfolded． In 1988 we live in the age of the＇paperless office＇ and printer technology that must reproduce the ever more complex images that can be created on the video screen．From dot－matrix through ink－jet and thermal transfer to ion deposition，the tech－ nology goes beyond electronics to include mechanics，optics，physics and chemistry．

Type Cast

Early printers for computers mimicked typewriter designs with characters embossed on cylinders， golfballs or the petals of a daisy wheel．These character printers were joined by line printers

Fig． 1 Dot matrix characters
equipped with a full array of embossed characters for each of the print positions across the page， enabling a complete line to be printed at once．

Early graphics were addressed using electro mechanical versions of pen and paper，and indeed pen／graph plotters maintain their popularity today against the influx of new technologies，thanks to their versatility and wide range of prices．

Join The Dots

Most readers will be aware of the basics of dot matrix printing．There are no embossed characters，instead a vertical row of wires （typically nine but 24 in more recent machines） strike the paper through the traditional inked ribbon．

Figure 1 shows how characters are formed and how their resolution can be improved by making a second pass with the carriage displaced by half a dot spacing．

Since individual characters do not exist as such within a dot matrix printer，microprocessor control is used．This gives much greater flexibility and the number of characters and font types are limited only by the amount of internal memory． Furthermore，control of the individual pins can be passed to the host computer enabling bit－mapped graphics to be produced．

A major limitation（and irritation）with dot matrix machines is that the ribbons are reusable and formed in continuous loops．As the ribbon becomes unevenly worn，printing becomes uneven which is especially evident on graphic displays．

Colour is becoming increasingly common these days with a four colour ribbon（yellow， magenta，cyan and black）moved up and down relative to the print head．For printing text the seven colours（plus white）produced by over－ printing these ribbons are arguably sufficient．To reproduce graphics where hundreds（nay， thousands）of shadings may be used，a further sophistication is required．

All Of A Dither

On a VDU different shadings are achieved by mixing the three primary colours in different intensities but on most hardcopy devices a dot is either there or not－there are no half measures．

Instead printers use a method called dither－ ing．Dithering relies on the hardcopy device having a greater dot resolution than actually required so that a block of actual printer dots can be used to represent one pixel．

In this way a number of different intensities can be created as shown in Fig． 2 which uses a four dot dither cell to produce five possible intensities． With a three colour ribbon this can create 125 （ 5^{3} ） colours．A nine dot dither cell can produce 1000 colours and so on－you have a trade－off between resolution and the number of colours．

Fig. 3 Drop-on-demand ink jet print head

Non-impact Printers

All these impact printers - where something actually strikes the paper to deposit ink - have a large number of moving parts and tend to be noisy and prone to mechanical failure.

Most of the newer generation of printers use non-impact technologies, with ink jet and thermal transfer generally considered the most promising for low cost, high quality colour hardcopy in the short term.

Early ink jet printers operated by generating a continuous stream of electrostatically charged ink directed towards the paper. A cylindrical electrode either allows the stream to reach the paper or deflects it back into the ink reservoir.

More recent ink jet printers operate on the 'drop on demand' principle which is illustrated in Figure 3. Ink is inserted into a small chamber, one side of which consists of a piezoelectric crystal. By applying a voltage to this crystal, a vibration is set up, forcing out a droplet of ink in the direction of the paper. For a colour machine, four such ink chambers are incorporated into the print head.

The head either moves across the carriage like that of a dot matrix printer or, on higher speed devices, the paper is attached to a high speed rotating drum and the head moves along the length of the drum hence building up the image as a spiral.

In general ink jet printers tend to be fairly inexpensive to run, as most of the ink consumed actually ends up on the paper and they can typically produce A4 copies in about 2 to 5 minutes.

They can be somewhat unreliable, however, and ink jet clogging can be a messy business. Consequently much current ink jet development is concerned with chemistry to produce inks which are less prone to cause clogging and also to find ink/paper combinations which give fully saturated (bright) colours without compromising resolution.

More recent ink jet derivatives include solid ink types and the bubble jet. In the solid ink type, the possibility of jet clogging due to evaporation of the solvent from the ink is eliminated. A pellet of solid ink is heated to melt a small amount into the drop-on-demand chamber from where it is squirted onto the paper in the usual manner. These printers provide a very high quality result with an 'embossed' feel.

In the bubble jet printer (this is actually the trade name of a Canon product) the ink is forced
through the orifice by vapour pressure caused by instantaneously vaporising the ink in the chamber by use of a small heating element. This is claimed to give increased reliability over the piezo-electric ink jet method.

Hot Stuff

Early thermal printers were direct thermal devices with the printer head heated and cooled as it passed across specially sensitised paper. The disadvantages were that no colour was available and that the paper was expensive.

In the thermal transfer printer, the temperature of the head causes wax-based ink from a donor ribbon to melt onto the paper as shown in Fig. 4. Colour images can be produced in four passes yielding very bright colours and resolution up to 240 dots per inch. The printers can also output onto materials other than paper - such as acetates for overhead projection.

Some thermal transfer printers can be used as direct thermal printers if the ribbon is removed which much reduces the cost of monochrome printing.

Fig. 4 Thermal transfer mechanism

Electrostatic Plotters

At the high end of the price bracket the electrostatic plotter is making considerable inroads on what used to be pen-plotter territory.

Figure 5 shows the basic mechanism. As the paper passes the writing nibs it acquires a charge under the control of the electronics. As the ink is given an opposite charge, it selectively adheres to the charged areas of the paper. Four passes are

Fig. 5 Colour electrostatic plotter mechanism
made for colour printing, with registration (colour alignment) assured by the placing and optical detection of a registration mark outside the printing area.

Electrostatic nibs are much cheaper than say an ink jet printhead, so electrostatic plotters can have nibs across the entire length of wide carriages (42in. in one common machine) so output is very fast.

Fig. 6 Laser printer operation

Lasers and Ions
Laser printers are perhaps the most publicised non-impact technology at the moment.

There are large floor-standing line printers,
normally attached to mainframes and designed to output monochrome text at 100 pages a minute and with price tags around $£ 1 / 4$ million.

Probably more interesting is the desktop high resolution monochrome equivalent (low cost colour versions are under development). Prices are still quite high but the $£ 1000$ laser printer may well be a reality within a few years. The attractions of laser printers are the low cost per copy, the speed (low end printers manage $5-20$ pages a minute) and the resolution (typically 300 dpi).

Figure 6 shows how it operates - it owes much to the office photocopier. The mechanism is based around a rotating drum which is charged with an electrostatic potential. A rotating mirror causes a modulated laser beam to scan and selectively discharge the drum, leaving charge only where the image is required.

As the drum passes the toner dispenser, toner is attracted only to those portions where charge remains. The toner is then transferred to the paper under high temperature before the drum is cleaned for re-charging.

Another photocopier derivative is the LED printer where the light is generated by an array of LEDs across the width of the drum rather than using a single scanned laser beam. In other respects the laser and LED printers are identical.

A further close relative is the ion deposition printer. It operates by creating an electrostatic image on a rotating drum coated with aluminasapphire. A toner is attracted to the charged areas of the drum from where it is transferred to the paper under high pressure at room temperature (in contrast to the high temperatures used in laser printers).

The way in which the electrostatic image is created on the drum is quite different to the laser and LED machines. Ions are first created as a plasma using a high frequency electric field. They are then accelerated by a second field towards the drum through an array of small apertures in the ion cartridge. As the ions hit the drum a charge is selectively created corresponding to the image required.

Paper Out

It seems that there is virtually no end to the number of ways pigment can be deposited onto paper to give the much prized computer hardcopy. There are direct film devices (which give output onto 35 mm slides) and laser photoplotters and no doubt many other technologies which have yet to emerge from the research laboratories.

It is interesting to postulate what the future may hold in the way of innovative new hardcopy devices. Certainly resolution and speed will increase, coupled with a larger range of colours but a recent release by Tektronix may point to the way ahead in the CAD/CAM arena - the 4126 3D graphics terminal.

Unlike previous so-called 3D VDUs and workstations which present the 3D image as a projection into two dimensions, the 4126 creates wire frame and solid models which actually appear in 3D with full perception of depth. This is achieved by creating a pair of differently polarised stereo images which are then viewed through special polaroid spectacles.

As yet there is no way to reproduce this three dimensional image on paper. Perhaps the holographic hardcopy device is the machine of the future!

E11

HART ELECTRONICS are specialist producers of kits fu
designs by JOHN LINSLEY-HOOD All kits are APPROVED designer

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high qual ity low noise sterec cassette recorcer Circuits are otitimsed for our
HS16 Super Ouality Sendust Alloy Head Switched bas and HS16 Super Quality Sendust Alloy Head Switched blas and
equalisation to cater for chrome and ferric tapes very easy to equalisation to cater for chrome and ferric tapes Very easy to
assemble on plug-in PCBs Complete with full instructions

Complete Stereo Record/Play Kit
VU Meters to suit
£2.30 each
Reprints of originail Articles
860 K Stereo Mic Amplifler
75p no VAT
LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Hoods articles in HiFi News
Ultra easy assembly and set-up with sound quality to please the most discerning istener ldeal bassis for any domestic sound system if quality matters to you Buy the kit complete
and save pounds oft the ind ividual component price

ALH4\&5 Reprints of Original Articles from Hi-FI News
-un. 5

HIGH QUALITY REPLACEMENT CASSETTE HEADS

atirl

Do your tapes lack trebie? A worn head could be the problem Fitting one of our replacement heads could restore perform ance to better than newt Standard mountings make fitting easy and our TC1 Test Casselte heips you set the azimuth
spot-on We are the actual importers which means youcet the benefit of lower prices for prime parts. Compare us with other suppliers and seet The following 15 a list of our most popular heads, all are suitable for use on Dolby machines and are ex${ }^{\text {Stock. }}$ as originaliloy Stereo Head. This is the standard head titted HS16 Sendusi Alloy Super Head. The best head we can find. Longer life than Permalloy, higher output than Ferrite. fan-
tastic frequency response. $£ 14.86$ tastic frequency response..................................... 86
H0551 4-Track Head for auto-reverse or quadrophonic use. Full specification record and playback head........ $£ 14.60$ HX100 Stereo Permalloy R/P head Special Offer $£ 2.49$ MA481 2/2 Language Lab R/P head............ $£ 13.35$ SM166 2/2 Erase Head, Standard mounting, SM150 2/2 Erase Head. DC Type................. $£ 3.60$ HQ751E 4/4 Erase Head for Portastudio etc ... £46.80 Full specifications of these and other special purpose

HART TRIPLE-PURPOSE TEST CASSETTE TC1

head azimuth and tape speed Invaluable when fitiong new heads. Only $£ 4.66$ plus VAT and $50 p$ postage
Tape Head De-magneliser. Handy size mains operated unit noise on playback
 Send for your free copy of our LISTS Overseas please send?

Please add part cosi of post, packing and insurance as follows INLAND OVERSEAS Orders up to $£ 10-50 \rho$
Orders $£ 10$ to $£ 49-£ 11$
Orders over $£ 50-£ 150$

OSCILLOSCOPES		
TELEQUIPMENT D83 Dual Trace 50 MHz Delay Sweep Large Tube with manual f350 S.E. Laes SM111 Dual Trace 18 MHz Solid Slate Port- able AC or Exernal DC operation $8 \times 10 \mathrm{~cm}$ disp ay with	COSSOR OABILLOSCOPE CDU150 Duai Trąe 35 Delay Sweep Dual State Porable $8 \times 10 \mathrm{~cm}$ O sol :,	
	nual	
	2 F	
SCOPEX 4010A Dual Trace 10MHz	TRON OSCILL	
GOULD/ADVANCE OS255 Dual Trace 15MHz $£ 225$ with Manual HAMEG 207 Single Trace 8MHz Wih Manual $f 50$	W 125 mm H 75 mm D 180 mm Casec Un-used onty f 10	
JTIMETER		
e wilh Bateries \& Leads from		
AVO 8 Miv Complete with taneries Leads $\&$ Case f 90 AVO TEST SET No 1 (Military version of AVO 8) Com plete with Batteries Leads \& case	f 12 each $p \& p f 3$	
plete with Batteriou L ads \& case	DISK DFIVES 51/4" - Double Sided Deude Eiensty 80	
	From	
AVO Model 73 Po	20uW-10w With Manual (PQ P L 77)	
Complete wilh bateries \& leads	MARCONIRF Power Meter TF $1152 \mathrm{~A} / 10 \mathrm{C}$-500Miz: 0.5 	
batteries \& leads ANALOGUE POCKET MULTIMETEAS Philips \& Tayloretc With Batleries \& Leads from f 10		
	MARCONI AM/FM Sıg Gen TF100 0 E : $0-470 \mathrm{MHz} \mathrm{f} 250$ MARCON AM/FM Sig Ger TF995 range ircm. f150 FARNELL SINE/SOUARE TVpe LFM2 1Hz-1MHz Compact	
COMMUNICATION RECEIVERS EDDYSTONE 730/4 480khz-20mhz with manual		
	SG62 AM 150kHz-220VGz ${ }_{\text {c }}$	
LABGEAA Colour Bar Generator KG1. \& Test PatternsONLY $£ 40$ eachO\&P $[4)$	WECUIPMENT	
AVO TRANSISTOR ANALYSER Mk2 (CT446) Suitcase Silyle complete with Batleries \& Operating instructionsonly $£ 35$ each ($P \& P \mathrm{P} 7$)	HAMEG OSCILLOSCOPE 2036 Oual Trace 20MHz Component Tester \& 2 Probes All Other Models Ayariable	
ISOLATING TRANSFORMERS 24OV INPUT 240 V Oul 500 VA f 15 (p\&o f5) 100VA f6(p\&p f2) 24 V Out 500VA - 66 (p\&p 55) 200VA f 4 (p\&p E4)		
STEPPING MOTORS	Meleor $1000-1 \mathrm{GHz}$	
Type 1200 Steps per rev 4 Phase (5 wire) 1224 V Torque $250 z$ inch will run on 5 V wilh reduced	Sine/Square/Triangle 01 Hz -500K Hz P\&P $£ 4 \quad \mathrm{f} 110$	
Type 2	BLACK STAA ORION PAL TV NIDEO COLOUR PATTEAN GENERATOR	
	HUNG CHANG DMM 70303% digı Hand held 28 ranges	
	8 leads P8P $£ 4 \times 15$	
Type 4 wire 5V 3 3 3 Amps 0250 20rpm 0.200 PPs fers each		
	As above DMM 6010 025\%	
	OSCILLOSCOPES PROBES Swilched $\times 1 \times 10$ P8P $E 11$	
Used equipment - with 30 days guarantee Manuals supplied if possible. This is VERY SMALL SAMPLE OF STOCK SAE or Telephone for Lists Please check availability before ordering CARAIAGE all unils f 16 VAT to be added to lotal ol loods \& Carriage		
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL 073468041 Callers welcome 9 am - 5.30 pm Mon.-Fri. (until 8 pm Thurs.)		

Peter Shaw takes
Peter Shaw take a look at a PCB prototyping system for the small pocket

At first sight, the Seno Workstation from Mega Electronics (and available through Cirkit) seemed like just the sort of thing I'd been looking for - a one-stop solution to making PCBs which didn't require any further extension of my overdraft.

The workstation comprises four main elements: PCB art-working materials, five UV sensitive photo-resist boards of different sizes, four lots of chemicals for treating the boards and Seno's own 'etch in the bag' kit, which has been around for some years. There are a number of extras, including a tray to do all the work in without soaking the carpet, a water spray bottle and other items.

I'd perhaps foolishly gained the impression from the information I'd seen that this workstation didn't require a source of UV light - unfortunately it does but this need not present too much of a problem.

To someone who has had the luxury of working at $2: 1$ for some time using re-positionable crepe tracks, being supplied with $1: 1$ definitely non-re-positionable transfers (unless you call peeling them off with sticky tape repositioning!) was a culture shock. However, after a couple of attempts, I found I could get results which pleased me and which were not that much larger than the same circuit prototyped from 2:1. But I wouldn't wish to tackle a complex digital circuit this way...

Innovation

The major innovation in this kit is in the resist developer, which is not sodium hydroxide. In fact according to the literature the chemical used is entirely non-toxic (but that still didn't make me drink a whole bottle to check this out - dedication even to ETI readers has its limits). This and the other chemicals are supplied in a push-sponge applicator (similar to the bottle containing the stuff that I use in my vain attempts to make my trainers some colour other than grey).

The developer seemed to be at least as effective as the conventional stuff. Applying gently then wiping with the sponge quickly made an image appear and got rid of the unwanted resist. After rinsing, the board is ready to etch.

The etch-in-the-bag system, as its name suggests, uses a plastic bag to contain the nasty, staining, irritant ferric chloride. Unfortunately, I'm a rather messy type and I've got the stain on the carpet to prove that the system isn't foolproof (but don't tell my other half, she hasn't spotted it yet). Still, it is a useful advance over slopping the stuff around in a tray next to the kitchen sink. And a really nice touch is that you are provided with a bag
of chemicals to solidify the ferric chloride once it's exhausted - but please don't bury it in the editor's new back garden, unless your name happens to be Nirex.

After etching and rinsing, it's back to more of those tasty non-toxic chemicals to strip off the remaining resist, another lot to deoxidise the copper tracks and then after buffing up the tracks with a block of polyfix (supplied in the kit) you can apply flux to aid soldering.

Results

As l've already said, I did get quite pleasing results from this kit, and with no more trouble and rather less risk than using conventional techniques.

There is the problem of the UV source for exposing the board, but even on the worst of English summer days there's an extremely large UV source just hanging in the sky which can certainly give sufficient exposure in a few minutes.

Of course, some experimentation is needed to get the dose right, but the boards seem to have a reasonable degree of latitude.

Also I noticed that the edges of the tracks are well defined with this system - particularly apparent on the holes which don't seem to 'fill in' as readily (when you're using a power-drill which is virtually bearingless and should have been retired some years ago, nice sharp edges to the hole you're just about to drill make quite a difference).

An alternative UV source to the sun is a UV lamp which might be a little more controllable, if not to say more reliable. UV lamps are considerably cheaper than UV boxes and again give a reasonable point source, if placed on the other side of the room.

Gripe Time

Finally, there has to be a gripe. The instruction manual which came with the kit (A4 photocopied and bound) tried to collapse into separate pages from the first time I opened it. A few staples might not have gone amiss (and if I can find the pages I lost I'll certainly apply a few myself).

In conclusion, I can commend the kit to anyone who has no equipment for making PCBs. If you do have some gear, I would suggest the resist developer and stripper are well worth adding as they remove one nowunnecessary risk.
The Seno Workstation costs £45+VAT and postage available through Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts EN10 7NQ. Tel: (0992) 444111 or from Mega Electronics Ltd, 9 Radwinter Road, Saffron Walden, Essex CB11 3HU. The author's thanks go to Cirkit for providing a review sample.

UNIVERSAL DIGITAL PANEL METER

Digital panel meter ICs have been out and about for some time. The chances are that if you pull the front off that budget digital multimeter you were given last Christmas you'll find an ICL7106 doing all the work.

The problem with commercial DPM ICs is their inflexibility. They couldn't for example display on a logarithmic or exponential scale, and any specialised display signals are out of the question. Normally you would need to build a mass of logic around your LEDs to switch segments and digits as the conditions dictated or else abandon hope and submit to the industry standards.

This design enables you to overcome these limitations using programmable logic. There are two digital panel meters featured here - one displaying on LED segment bar graphs, the other on LED 7 -segment digits. Both follow identical design patterns and are universally programmable for 'one-off' user requirements.

Fig. 1 shows the block diagram for the system. The heart of the system is the EPROM. This stores the patterns to be displayed by the LED digits or bars for each possible 8 -bit output from the $A D C$. The ADC output addresses the EPROM and each
bit of its 'data' output controls one segment of a display.

Two higher address bits (A8 and A9) are used to select the image data from the EPROM for each digit. These bits cycle through the four combinations in response to a decade counter clocked by the ADC. These two address lines are also used to direct power to each of the four digits in turn.

In this way the four digit display is multiplexed, with each digit's display independently determined by the contents of the EPROM for each possible output from the ADC.

Lighting The Lights

Obviously the way the display operates depends on how you program your EPROM. The EPROM has enough memory for two complete sets of image data (two completely different ways of displaying the input - say on a linear or \log scale). You switch between the two using SW1 to control the MSB (A10) of the EPROM address, switching between $\& 0000-\& 3 F F F$ and $\& 4000-\& 7 F F F$.

We'll look at the bargraph board first - once you've grasped that, the digit display is very straightforward.

Richard Grodzik presents a panel meter that uses programmable logic to display the way you say

Fig. 1 Block diagram for the Universal Digital Panel Meter

Fig. 3 LED dot segment data

An input voltage range of 0 V to 25.5 V to the panel meter will (after attenuation and conversion) give an addressing range of $\& 00$ to $\& F F$ for the EPROM.

The image data for the first segment column is stored between $\& 00$ and $\& F F$, the image data for the second column between $\& 100$ and $\& 1 \mathrm{FF}$, for the third column between $\& 200$ and $\& 2 F F$, for the fourth column between $\& 300$ and $\& 3$ FF.

The segment addresses for a linear scale display are shown in Fig. 2. You can see that for a display range of $0 \mathrm{~V}-25.5 \mathrm{~V}$ each segment represents 0.8 V and is lit from any one of eight consecutive addresses.

The data coding required to enable any individual segment is shown in Fig. 3.

So an input voltage of 19.2 V (for example) would address the EPROM at \& 0 BF , then $\& 1 \mathrm{BF}$, $\& 2 \mathrm{BF}$ and $\& 3 \mathrm{BF}$ in turn (as the decade counter increments). The data is sent to columns $1,2,3$ and 4 respectively.

In order to light only the 19.2 V segment, Fig. 3 tells us that the data in these addresses should be \&FF, \&FF, \& 7 F and \&FF.

The complete hex dump for this scale display

only half of the EPROM. The other half (addresses \& 400 to $\& 7 \mathrm{FF}$) can be used for a bar graph display where all LEDs up to the input voltage segment are lit. To use the second half of the EPROM, SW1 is switched making the MSB of the address (A10) high so that column 1 now takes data from addresses \& 400 to \& 4FF, column 2 from \&500 to $\& 5 \mathrm{FF}$ and so on.

The data needed to enable all segments up to the required one is shown in Fig. 4 with the resulting hex dump in Listing 2. All addresses from $\& 438$ to $\& 4$ FF contain $\& 00$ since for any voltage above 5.6 V all column 1 segments should be lit. Similarly for column 2 all addresses between \& 578 and 5 FF contain $\& 00$, and for column 3 between 6 B 8 and $\& 6 \mathrm{FF}$.

Digit Display

Figure 5 shows the required hex codes to produce numeric characters on the 7 -segment displays.

D7 DO	HEX	Display
11000000	C0	0
11111001	F9	1
10100100	A4	2
10110000	B0	3
10011001	99	4
10010010	92	5
10000011	83	6
11111000	F8	7
10000000	80	8
10011000	98	9
01111111	F7	-

Fig. 5 LED digit display data
Decoding from the ADC is straightforward since 1 bit has a loading of 0.1 V so a maximum input voltage of 25.5 V will output \&FF from the ADC . The hex dump of Listing 3 displays the input voltage in a standard numeric fashion. If we take an example of the decoding for an input voltage of 12.8 V , the following addresses will be generated:

Addresses	$\& 380$	$\& 280$	$\& 180$	$\& 080$
Data	$\& F 9$	$\& A 4$	$\& F 7$	$\& 80$
Display	1	2	-	8

Construction

The overlay diagrams for the two boards are shown in Figs. 8 and 9. Construction of the PCBs should be straightforward.

IC sockets are recommended for all ICs and should certainly be used for the EPROM and ADC (IC6 and IC1). The ADC is a CMOS device so static handling precautions should be taken.

The main difference between the two boards is that the LED digit panel meter is a double sided PCB and has some 19 through-hole pins. These should be soldered in at the start of construction.

The LED bargraph board has several wire links which must also be fitted early on since some of them sit under resistors. Then proceed in the

HOW IT WORKS

Basically the meter consists of an ADC to convert the input voltage to a digital equivalent, and an EPROM which contains the code conversion required by the LED display.

The block diagram (Fig. 1) is the same for both panel meters and the circuit diagrams are shown in Figs. 6 and 7.

The analogue input voltage is first attenuated by a potential divider formed by R1, R3 and RV1. This attenuates by a factor of 10 to give a maximum voltage of 2.5 V for the ADC (IC1). RV1 can be used to set full scale deflection.

The ADC is in free-running mode, continuously converting and providing an 8 -bit digital output. Pin 5 of the ADC toggles after each conversion providing a clock signal to the decade counter IC4. When IC4 reaches 100_{2}, pin 8 goes high, is inverted by IC5 and enables the EPROM.

At the same time the two LSBs of IC4s output are driving IC7 and send pin 1 of IC7 low switching on transistor 1. LED1 is thus powered and driven by the EPROM contents.

Further ADC conversions clock IC4 and select LED2. 3 and 4 in turn, sending EPROM data from the addresses formed by the ADC conversion plus MSBs from pins 9 and 12 of IC4.

Switching SW1 to the 'on' position will enable EPROM addresses $\& 400$ to \& FFF , thus providing an alternative code conversion for the display.

Address	Data
20000－40007	\＆FE
$80008-6007$	\＆FD
20010－\＄0017	＊FB
8001B－4001F	\＆F7
80020－80027	＊EF
＊002日－8002F	\％DF
＊0030－80037	\＆ 8 F
\％003日－2003F	\＆ 77
80040－8013F	\＆FF
＊0140－8．0147	＊FE
8014日－2014F	$8 F D$
80150－80157	8 FB
＊0158－4015F	\＆F7
80160－80167	\＆EF
8016日－8016F	EDF
＊0170－80177	8 8F
\％0178－8017F	\＆7E
80180－8027F	8 FF
80290－20297	\＆FE
8028日－802日F	$8 F D$
80290－80297	8 8B
80298－8029F	\＆F7
402A0－\＆02A7	\＆EF
\＆02AE－	\＆DF
80280－80287	\＆ FF
802B日－802BF	\％ 7 F
802C0－803BF	\＆FF
\＆03C0－803C7	\＆FE
203CB－803CF	\＆FD
\＆03D0－\＆03D7	\＆FB
803DE－\＆03DF	\＆FB
\＆ $03 E 0-803 E 7$	\＆EF
\＆03E日－\＆03EF	\＆DF
\＆03F0－\＆03F7	\＆${ }^{\text {BF }}$
\＆03F日－\＆03FF	87F
Listing 1 Hex data for scale display	

PARTS LIST

RESISTORS（all $1 / 4 \mathrm{~W} 5 \%$ unless specified）	
R1	820k
R2	33k
R3	47k
R4	680R
R5	4k7
R6－13	22R Df
R14－17	100R
RV1	100k preset
CAPACITORS	
C1． 7	10 H 16 V tantalum
C2	150p polystyrene
C3－6	100n ceramic
SEMICONDUCTORS	
IC1	ADC0804
IC2， 3	7407
IC4	7490
IC5	7404
IC6	2716 EPROM
IC7	7445
01.4	BC327
2 D 1	ZN423T
LED1－4	Either 0.5 in 7 －segment digit common anode display or 10 －bar DIL array

MISCELLANEOUS
 SW1 Single pole toggle
 Case．Wire．Nuts and bolts． 5 V power supply．

usual order－resistors，capacitors，IC sockets， zener diode and transistors．

The LED bar graph columns need a little preparation before mounting．Only the bottom eight segments of each column are used and the anodes of these are bent up or cut short，then soldered together in common anode configura－ tion．These are then connected to the two unused （and unbent）anodes which fix into the PCB．

Fig． 7 Component circuit for the LED digit display meter

Fig． 8 Component overlay for the bar graph display

With the LEDs in place you can program your EPROM to behave as you desire，put your ICs into place and enjoy the luxury of your own uniquely personal digital panel meter．

Address	Data
8，0400－8：0407	\＆FE
4040日－2040F	RFC
20410－80417	\＆FE
＊041日－8041F	\＆FO
80420－80427	\＆${ }^{\text {a }}$
\％0428－8042F	\＆ CO
80430－80437	480
8．0438－8043F	800
\＆0440－\＆04FF	\＆00
\＆0500－8053F	\＆FF
20540－20547	\＆FE
4054日－2054F	8 FC
80550－80557	\＆FB
20558－k055F	8 FO
\＆0560－80567	\＆EO
\％0560－2056F	\＆ CO_{0}
80570－80577	\＆80
8057日－8057F	800
80580－\＆05FF	200
\＄0600－\＆ 067 F	\＆FF
80680－80687	\＆FE
40688－4068F	\＆FC
80690－80697	GFE
\％ 0698 － 2069 F	8 FO
\＆ $26.60-80647$	\＆${ }^{\text {co }}$
\％O6AE－\＆ $064 F$	8 CO
\％ $0680-80687$	880
＊ $068 \mathrm{BE}-806 \mathrm{BF}$	800
\＆ 06 C0－206FF	800
＊0700－ 807 BF	SFF
30750－807C7	8 FE
807C8－807CF	8 FC
207D0－ $207 \mathrm{D7}$	8 FB
\＆07D日－807DF	\＆FO
207E0－807E7	\％EO
\＆ $07 E 8$－ 207 FF	8 CO
\＆07F0－807F7	\％80
\％07F日－207FF	200

RHBCMT plus magnetic contacts, bell boxes, P.A. switches etc. etc. I Dept. BTV/6, 51 Poppy Road, Princes LiMIIED THE SECURITY SPECIALISTS om

SEND OR TEL FOR FULL DETAILS OR CALL AT OUR SHOWROOM \& SEE THE UNITS ON DEMONSTRATION. MON.-FRI. 9-5. CLOSED ALL DAY SAT. \& SUN P\&P UK orders - 75p Exports add - 10%.

SPECIAL OFFER

FOR SPECTRUM AND BBC MICRO OWNERS
Now your computer can take control for an affordable price. These tried and trusted interfaces from DCP Microdevelopments are offered at $\mathbf{£ 2 0}$ off the normal price.

Both units are extremely easy to use from both Basic and assembler/machine code and are supplied ready built and complete with all the documentation you need.

To order by post fill in the form below (or a copy) and send it with your remittance to ASP READERS' SERVICES (RO ET5/6)
9 Hall Road, Maylands Wood Estate, Hemel Hempstead, HP2 7BH
Please make cheques payable to ASP Ltd.
Overseas orders add $£ 5$ (Interspec) or $£ 10$ (Interbeeb) for airpost.
Access and Visa card holders can also place their order by phone on (0442) 41221
Allow 28 days for delivery.
Please supply...... Interspecs (RO ET5) at £29.95 plus $£ 1.95$ p\&p per order.
Please supply Interbeebs (RO ET6) at $£ 49.95$ plus $£ 1.95$ p\&p per order.

Name

INTERSPEC

$£ 29.95$
The Interspec unit plugs directly onto the expansion edge connector of the Spectrum to provide a full range of interfacing facilities.

The unit is housed in a plastic case approximately $4 \frac{1}{2} \times 3 \times 1$ in which contains the top quality double sided PCB and interface connections.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- 15-way expansion bus

All sections of the interface are I/O port mapped and designed for maximum compatibility with existing Spectrum peripherals. Power is supplied through the Spectrum edge connector.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. Connection is by multi-way PCB connector and all the information required for adding further devices is given.

INTERBEEB

$£ 49.95$
The Interbeeb unit connects to the BBC micro's 1 MHz bus expansion connector and is supplied complete with its own power supply unit.

The interface unit is housed in a plastic case approx $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connectors.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12 V 1 A outputs
- eight channel multiplexed analogue to digital converter
- precision 2.5 V reference
- external power supply
- 15-way expansion bus

All sections of the interface are memory mapped in the 1 MHz expansion map for maximum ease of use and compatibility with existing peripherals.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. All the information required for using additional devices is included

READERS' SURVEY

It's survey time again and your chance to win one of $\mathbf{2 5}$ six month ETI subscriptions

This year's readers' survey is bigger and more comprehensive than ever. Although some of the questions may not seem to relate directly to the magazine, please complete the whole questionnaire. Your answers not only help us to steer the editorial content of the magazine in the direction you want but they also help us to build up an overall profile of readers to present to advertisers who require such data to select
suitable magazines for their products.
Note that no names and addresses will be disclosed to any third party and all information will be treated in the strictest confidence.

As an incentive for your hard work, all entries received by 10 th June will be entered in a free draw for 25 six month subscriptions to ETI.

1. If you could make one improvement to ETI, what would it be?
2. Please indicate what you think of the following aspects of ETI's coverage:

Product News
Industry/Technology News
Diary
Advanced Projects
Basic Projects
General Features
Tutorial Features
Product Reviews

Poor	Average	Good
\square	\square	\square

3. Would you like to see a greater or lesser proportion of ETI devoted to the following:

Beginners' Projects
Advanced Projects
Short Projects
Long Projects
Computer Projects
Audio Projects
Music Projects
Radio Projects
Home Improvement Projects
Bio-electronics/Health Projects
Test Equipment Projects
Security/Alarm Projects
Car Electronics Projects
Robotics Projects
Photographics
Novelty/Gimmick Projects
Basic Elementary Theory
Advanced Electronic Theory
General Science/Technology
News
Product Reviews
Letters
Open Channel/Playback/Keynotes/etc
Design/Circuit Ideas
Competitions
Others (please specify)
4. Indicate which of the following equipment you use:
Own Don't own but regularly use
Home micro
Professional Micro
Hi -fi
Electronic Musical Instrument
MIDI Equipment
PA/Recording equipment
Photographic/Darkroom Equipment
Ham Radio/CB
\square

5. Do you read any of the following magazines

	Never	Occasionally	Regularly
Practical Electronics	\square	\square	\square
Everyday Electronics	\square	\square	\square
Elektor Electronics	\square	\square	\square
Maplin Magazine	\square	\square	\square
Electronics \& Wireless World	\square	\square	\square
Personal Computer World	\square	\square	\square
Byte	\square	\square	\square
Music Technology/			\square
\quad International Musician	\square	\square	\square
Home \& Studio Recording	\square	\square	\square
Hi-fi News \& Record Review	\square	\square	\square
New Scientist	\square	\square	\square
Scientific American	\square	\square	\square
Dolt Yourself/DIY Today/		\square	\square
Practical Householder	\square	\square	\square
Practical Wireless/Radio \&		\square	\square
\quad Electronics World	\square	\square	\square
Ham Radio Today	\square		\square

Ham Radio Today
$\square \quad \square$
Electronics Product News/
Electronics Equipment
News/New Electronics/
Electronic Product Review
6. If read, please indicate what you think of the following magazines
Not as good As good Better as ETI as ETI than

Practical Electronics
Elektor Electronics
Everyday Electronics
Maplin Magazine

\square	\square	\square
\square	\square	\square
\square	\square	\square
\square	\square	\square

7. Which of the following do you buy and how frequently?

Never Sometimes Regularly
Electronic Components
Complete Electronic Kits
ETI PCBs
Stripboard/Wirewrap Etc
Cases/Case Materials
Tools
PCB making Equipment/Materials
Pre-programmed ROMs
Computer Software
Floppy Disks
Electronics Books
Data Books
Second Hand Equipment
\square
8. Please indicate what you think of the services offered:

	Poor	Average	Good	Not used
PCB Services	\square	\square	\square	\square
Photocopy Service	\square	\square	\square	\square
Project Errata/Updates	\square	\square	\square	\square
Foil Patterns	\square	\square	\square	\square
Buylines	\square	\square	\square	\square
Technical Advice	\square	\square	\square	\square
Special Offers	\square	\square	\square	\square
Subscriptions	\square	\square	\square	\square
Back numbers	\square	\square	\square	\square

9. Do you watch any of the following TV programmes:
Tomorrow's World
QED
Equinox
Horizon
Micro Live/File
10. If you own or regularly use a computer please indicate which it is:
Spectrum
BBC Micro/Master/Electron
Commodore 64/128
Amstrad CPC
Amstrad PCW
IBM PC Compatible
Atari ST
Amiga
Archimedes
Cortex
Other (please specify
11. How many ETI projects have you built in the past 12 months? None
1-3
4-6
7-12
More than 12
12. Do you find ETI projects:

	Yes	No
Reliable	\square	\square
Easy to build	\square	\square
Useful	\square	\square
Instructive	\square	\square
Technically		
\quad understandable	\square	\square
Work first time	\square	\square

13. Do you modify ETI project designs? Not At All
A Few Mods
Many Mods
14. Do you prefer to built ETI projects from complete kits when they are available? Yes \square

No -
15. Do you make your own PCBs?

Never
Sometimes
Always
16. Do you primarily build electronics projects
To save money on commercial goods
As a satisfying pastime
As an instructional exercise
17. As far as electronics design and construction is concerned, do you consider yourself:
Novice
Proficient
Accomplished
Expert
\square
\square
\square \square
18. Estimate the value of your electronics test gear and construction equipment as new: Under $£ 25$
£25-£100
£101-£200
£201-f500
£501-£1000
£1001-£2000
£2001-£4000
over $£ 4000$
19. How much do you estimate having spent on equipment and components during the past 12 months?
Nothing
under $£ 25$
£ $25-£ 50$
$£ 51-£ 100$ £101-£200
£201-£500
£501-£1000 over $£ 1000$
31. If your copy of ETI is read by other people, please give details of their age and sex

Age: $9-14$ yrs
$15-24$ yrs
$25-34$ yrs
$35-44$ yrs
45-54 yrs
55-64 yrs
Over 64 yrs
Sex: Male Female
20. Are you responsible for recommending/ specifying electronic equipment in your job? Yes \square

No \square
21. How long do you keep your copies of ETI for:
Less than one month
One month
Three months
Six months
A year or more
22. If kept, how often do you refer back to issues of ETI?
Once a week or more
About once a month
Once every three months
Less often
Never
23. How long do you spend reading your copy of ETI?
Over 2 hours
11/2-2 hours
1-1 $1 / 2$ hours
$1 / 2-1$ hour
Less than $1 / 2$ hour
24. How long have you been an ETI reader? Less than 3 months
3-6 months
7-12 months
$1-2$ years
2-5 years
Over 5 years
25. How often do you buy ETI?

Occasional issues
Most issues
Every issue
26. How much of ETI do you read?

Read only some articles
Read most articles
Read all articles
27. With regard to the advertisements in ETI, do you?
Read or look through most or nearly all the ads
Read or look through some of the ads
Just read or look through the
occasional ad
Very rarely/never look at the ads
28. Thinking specifically about the advertising content, would you please rate the two main types of advertisement:

Very useful
 Useful
 Quite useful
 Not very useful
 Not at all useful

Display Classifieds
29. Which of the following would you most like to see featured with the magazine? (one box only).
Cover mounted gifts
Additional supplements
Competitions
Money saving offers
30. Does anyone else read your copy of ETI? No, only myself
One or two other people
Three of four other people
More than four other people

Person 1 Person 2 Person 3 Person 4

\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square

32. Are you aware of the scheduled publication date of ETI
33. If the answer to the last question is YES, do you normally attempt to purchase the magazine on that day?
Yes \quad -
No \square
34. How do you normally obtain your copy?
Chance purchase
Newsagent shop collection
Newsagent home delivery
Subscription
Passed on copy
35. If you are a subscriber, on which date did you receive this issue?

36. If you are a subscriber, how long have you subscribed to this magazine?
1-6 months
7-12 months
1-2 years
3-5 years
$6-10$ years
Over 10 years
37. If you do not obtain your copy by subscription, is it due to one of the following:
Subscription too expensiye
Not every issue required
Not aware subscription service available

38．Are you aware that to subscribe to this magazine in the UK costs the same as purchasing it in a shop？
Yes
No \square

39 Would you like to receive further details on taking a subscription？
Yes \square
No \square
40．If you do not subscribe，from which type of newsagent do you most often obtain your copy？
High Street Shop
Estate shop
Corner shop
Travel point
Other（please specify）

41．If you have subscribed to this magazine but now lapsed，is it due to：
Subscription too expensive
Every issue no longer required
Lateness in receiving subcription copy \square
Poor service from our subscription bureau

42．Which，if any，of these sports and activities do you play or take part in nowadays？
Cricket
Fishing
Golf
Rugby
Soccer
Sailing
Skiing
Shooting
Swimming
Squash
Tennis
Weight training
Windsurfing
43．Do you own your own home，rent or live with your parents？
Own
Rent
Live with parents
Other（please specify）

44．If you own your own home，what is the approximate value（your principal residence if you have more than one）？
Under $£ 50,000$
£50，000－£74，999
£75，000－£99，999
£100，000－£149，999
$£ 150,000-£ 200,000$
Over $£ 200,000$

45．Is one or more of your cars a company vehicle？
Yes $\square \quad$ No \square

46．Do you usually buy your cars new？
Yes \square
No \square
47．How many cars are there in your household？
None
One
Two
Three or more
ロロロ

48．What cars do you own？

49．How often do you tend to change your car（s）？
Once a year or more often
About every two years
About every three years
Less often
50．Please tick the box which represents the annual total of your gross income
Under $£ 6,500$
f6，501－£8，000
£8，001－£10，000
$£ 10,001-£ 12,500$
$£ 12,501-£ 15,000$
£15，001－£19，000
£19，001－£25，000
Over $£ 25,000$

51．Name the three television programmes you watch most regularly

52．Do you listen to commercial radio stations？
Yes \square No \square
53．Do you smoke：
Cigarettes
Cigars
Pipe
Don＇t smoke
54．Do you own a：
Stereo／hi－fi system
Tape player／recorder
Video recorder
TV
None of the above
55．Which of the following do you have？
Bank current account
Bank deposit or savings account
Life assurance policy
Any stocks or shares
Access card
Barclaycard（Visa）
American Express
Diners Club
Unit Trusts
Private medical insurance
Personal Accountant
Building Society account
A mortgage
Any HP agreements
Telephone
56．What is your age？
Under 15 yrs
15－18 yrs
19－21 yrs
22－24 yrs
$25-34 \mathrm{yrs}$
35－44 yrs
45－54 yrs
55－64 yrs
Over 64 yrs
57．Which of the following newspapers do you read？
The Times
The Daily Telegraph
The Financial Times
The Guardian
The Independent
The Daily Express
The Daily Mail
The Daily Mirror
The Sun
Today
None of the above

58．Which of the following Sunday news－ papers do you read？
The Sunday Times
The Observer
The Sunday Telegraph
The Sunday Express
The Mail on Sunday
The Sunday Mirror
The People
The News of The World
News on Sunday
None of the above

59．Other than items purchased for electronics，have you bought any other types of goods by mail order during the past 12 months？
Yes \square No \square
60．If the answer to the last question is YES please state the type（s）of goods purchased．
\qquad

61．What is your marital status？
Married
Single
Divorced
62．Sex：
Male \square
Female ㅁ

63．Are you a member of a book club？
Yes \square
No \square

64．Are you a member of a record club？
Yes \square
No \square

65．Are you：
In full time employment
In part time employment
Not employed at present
Retired
Student－full－time
Student－part－time

66．If in full－time employment，please state your occupation：

67．If a student what subjects do you study？
\qquad

68．Which of the stores listed below have you been shopping in during the last six months？
Boots
W．H．Smith
John Menzies
Dixons
Currys
Laskys
Rumbelows
Burtons
Austin Reed
Hornes
Next
Fosters

69．Where do you buy most of your drink from？
An off－licence
A supermarket
A Public House
Other（please specify）
70. If you have children, please indicate their age and sex (give details of the four youngest if you have more than four)

Age: $1-3 \mathrm{yrs}$	First	Second	Third	Fourth
$4-8 \mathrm{yrs}$	\square	\square	\square	\square
$9-12 \mathrm{yrs}$	\square	\square	\square	\square
$13-16 \mathrm{yrs}$	\square	\square	\square	\square
Over 16 yrs	\square	\square	\square	\square
Sex: Male	\square	\square	\square	\square
Female	\square	\square	\square	\square
	\square	\square	\square	\square

71. How many of the following items do you buy, on average, over a month?
$\left.\begin{array}{lcccccc} & \begin{array}{c}\text { Less than }\end{array} & \mathbf{1} \text { or } 2 & \mathbf{3} \text { or } 4 & \mathbf{5} \text { or } 6 & \text { More } & \begin{array}{c}\text { Never } \\ \text { buy }\end{array} \\ & \mathbf{1} \text { per month }\end{array}\right)$
72. How many rooms does your home (or principal residence) have?

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Bedrooms	\square	\square	\square	\square	\square	\square
Reception rooms	\square	\square	\square	\square	\square	\square

73. Please indicate below when you last did any of the following:
In last

week \begin{tabular}{c}
In last

month

Ate out at a Restaurant

Entertained at home

Longer

ago
\end{tabular}

74. Which of the following do you drink?

More than once a week	Once a week	Less often
\square	\square	\square

Beer
Lager
Wine
Sherry
Port
Brandy
Gin
Rum
Vodka
Whisky
Liqueurs
Don't drink
75. Do you have any of the following cards either yourelf or jointly with another person?
Cash dispenser card
Retailer card/store card

Thank you for completing the ETI readers' survey. To qualify for entry in the free draw for one of 25 six months ETI subscriptions you must fill in your name and address below, pull out the centre four pages, fold as shown and post to arrive not later than 10th June 1988.

Name \qquad
Address \qquad

To post, fold on the dotted line A. Fold again at B and C and tuck B into the flap formed by C.

A

POWER CONDITIONER
FEATUREDINET JANJARY 1988

Tre ullirale mains Iort owering he nolse
ne lloor and improving the top-tight aucio equipmen

The ma sswe lifier section conlains thirleen capacilors and
wo current talanced induclors logether wilh a bank of six IWo current balanced induclors logether wilh a bank of
vDAs lo remove every iasi trace ol impu sive and AF interlerence A len LED logarthmic display gives a second by Our approved parts set consisls of case PCB all components sincluding high permeability loroidal cores ic ansislors class X ano Y suppression capacilors VDAs. PARTS SET £28.50 + VAT

Somè parts ate ayal dale separately Please send SAE lor Ists or

THE DREAM MACHINE
FEATURED IN ETI DECEMBER 1987

Adjusi the controls io sul your mood and let the genlle relaxing sound drill over you At hirst you might hear soll ran the sound draw your irough dislant trees Almost hypnolic sleep
For many the thoughl of waking retreshed and aler fitm perhaps ihe irs Ifuly restlul sleep in years is exciling enough in iself For more adventurous souls inere are slrange and mys Innous drearn experiences waling Take lucid creams
lor inslance Imagne being in control oi your dreams and able to change them al will io acl out you wishes and lan lastes With the Dream Machine it 5 easy!
The approved parls sel consisis ol PCB all componenis controls loudspeaker, knobs, lamp luseholders, 1
power supply, prestige case and lull insliuctions PARTS SET $£ 16.50$ + VAT
AVAILABLE WITHOUT CASE FOR ONLY $£ 11.90$ +VAT

MAINS

CONDITIONER
FEATURED IN ETI SEPTEMBER 1986

Cleans up mains pollulio You II hardly be lieve , he
 dit'lerence
equipment

PARTS SET $\mathbf{4 . 9 0}+\mathrm{VAT}$ RUGGED PLASTIC CASE $£ 1.65$ + VAT

KNIGHT RAIDER
FEATURED IN ETI JULY 1987
 To any olher car loot thal malier) Piclure this engh powertul ights in
Iine along ite ront and erght a ang the rear You lick a swilch on the dashboard conlrol box and a ponin of light moves lazly trom lell 10 righl leaving a comet sal behino it Fip the swlch zgan and ine
poinl ol Ighi becomes a bar bourcimg backwards and lowards along ine row Press againand ify one ol the other six pallerns An LED cisp ay on the contiol box lel s you see whal the mann lighis The Knghl haider can be tillod lo any car (II makes an excellent log light') or whit low powered bulbs I can lum any chid s pedar car or
bicycle inlo a spectacular TV-age lay' The paris sel consis sol bex PCB ano componenis ior conlr
and components lor sequence board and full insiruclions amps nol Inciuces

CREDIT CARD
CASINO
FEATURED IN ETI
MARCH 1987

This wickeo inte pocxel

play all kncs ol cas
games including

- Rouletle
- Craps - Pontoon
ur approveo parts sel comesconeste with case sell-adhesive lascia inned and कilled printed circuit board al components. narjuar
dilterent games to piay'
PARTS SET ONLY E5.90!
Five exlra games FREE with every order!

MAINS CONTROLLER
FEATURED IN ETI JANUARY 1987

Have you Ever wondered whal people do wilh all lhose compuest nieraces ${ }^{\text {? }}$ Pul your
compure in conliol say the
 ads The Specriabeeb nas elghi TTL oulpus
you conirol wilt a Π L outpul' A lorch bulb? The ETI Mans Coniriolier Is a logic lo mans interiace whath alows youl o control loads ol up to 500 W rom your compuler er logic controller can ecoupier gyes so solion ol al east 2500 V so ihe and conliol projects in complete sately Follow your compule inlerlace with a mans conlroiles and you fe really in ousiness aulomalk controi'
externa controler conneclis direclly 10 mosi TTL lamiles will adation ol a lransisllor and (wo resistors sy CMOS wilh the Your man ns conlrodler paris ser conlans nign cually rover tinned hardware ana healsurk compound all components incuuing snubber componennis lor swiching induclive loads. transislor and PARTS SET $\mathbf{£ 6 . 2 0 ~ + ~ V A T ~}$

- Lighting wizard - brings any rock band 5 slage
- Lighting wizard -
petormance to lifel
- Sound operated |lash - pholograph bullels in filgh!! - Vorce swith and sound to action control er with endles applical ons

The parts sel consisls of a high qually PCB and all componenls ICs oplo isolator Iriac heat sink pots etc lo build the circuil board What you do nexl is up lo you! make lhe mosic ol J Fs capablites

PARTS SET $\mathbf{£ 6 . 9 0}$ + VAT

810.
 FEEDBACK

FEATURED INET DECEMBER 1986
Bio-teedback comes of age wilh this highly responsive, self-balancing skin
 this MOSEET design conservatively rated - youll get nearer 100 W biques, resulting an the linest minimalist design lech nent makes a precisely defined conted circuit in which every compo Can read ail about it in the July cositribution to the overall sound You when your ears will tell you so much of PE, bul why bother with words Parts set includes top grade PCB and ali components

SPECIAL INTRODUCTORY PRICE FOR FULLY UPGRADED HODULES
SINGLE PARTS SET £14.90 + VAT STEREO PAIR $£ 25.90$ + VAT! PCE ONLY (Ifmiled number arat

poweriul cricull has lound application in clinical situations as well as on the bio-leedback scene II will open your eyes to whal GSR lechniques are really all about The complete paris sel includes case, PCB, all componenis, leads, electrodes, conduclive gel and luli instructions
PARTS SET £13.95 + VAT
BIO-FEEDBACK BOOK £3.95 (no VAT)

Please note ine book by Slern and Aay is an aullhorsed gude the polential of bo-leedback lechniques li/is not a hobby book, and will only be of nterest to intell gent adul is.

BRAINWAVE MONITOR

ine moss indonishing projeci ever to have appeared in an e ectronics magazine Similar in principle to a medical EEG machne, Inis projecl a lows you to hear the characleristic nym ns o your own mind The alpha bela and thela lorms inlormation on iner inlerprelation and powers In conunction with Dr Lewis s Alpha Plan, the monilor can used to overcame shyness to help you feel conliceni in Stresstul siluations and to train yourself to excel a thinges you
Our approved parls set contans case, two PCBs, screening can lor bo-amplitier all componenis including three PMI precision PARTS SET $£ 36.90$ + VAT
ALPHA PLAN BOOK $£ 2.50$ + VAT
Pars sell vualable separaiely We also have a range ol accessorres

LM2917
 EXPERIMENTER SET

Consists of LM297TIG. ipeciat pinted crturboard and detailed insituctions with data and cirtuits tor eight different propect to build Car be used to experment with the curcuds in the Nexl Great Litte IC Teature (ET), December 1986). LM2917 EXPERIMENTER SET $£ 5.80$ + VAT

LEDS

Green rectangular_EO lor bar-graph 1 so aj) 50 tor $£ 350 \quad$ इ00 10r $£ 25$ 100 lor E6 Moslore45

 DIGITALAND 2UEO EOUTPMENT LEDS
outing an encl 10 insomna Allilhough some ol the claims may be er aggeraled the is is no ooubl inal ionsed ar s much cleaner and purer and seems muth more invigoralling than dead air "appeared as a cons Inuctional prolecl in ETI All ast an ioniser -at was comparable with hbel er han? comnnecrall provucls Aas rellable good to duild and dun' Apart from the serous appicalions some ol ine suggesieg experimenls were ouliageou
 -isigner lo buil din is urique propecl the sel incluzes a roler Ano even the parts tor the lessigr According to one customer he Wha! more can we say?
24PTS SET WITH BLACK CASE $£ 11.50+$ VAT maluded =ARTS SET WITH WHITE CASE $£ 11.80$ + VAT

POWERFUL AIR IONISER

JULY 1986

教

vila mins ol he arl by the
neall magazines ano have (2917 Ex

Spacialist $=$

 SALES DEPT, ROOM 107, FOUNDERS HOUSE, REDBROOK. MONMOUTH, GWENT.
STILL LIFE

Ziad Mouneimne and Nick Flowers are visible at all speeds thanks to this bicycle dynamo backup unit

Dynamo lighting systems for bicycles suffer rather dangerously from the lack of output at standstill - when waiting at traffic lights or road junctions. Apart from this obvious disadvantage dynamos compete favourably with battery-powered lights because they:

- are lighter
- require no costly battery replacement
- provide higher light output (except at low speeds)
- are far more reliable than battery-powered

Fig. 1 The circuit diagram
systems. The latter suffer from the infuriating habit of frequently needing a kick before they operate!

Because of the great similarity in the output characteristics of dynamos available on the market (see Legal Lighting in Bicycle magazine October 1983 for a comprehensive survey) the system described here will operate in conjunction with any dynamo set to provide safe lighting down to standstill. The supply to the front and rear lamps is switched from the dynamo to the rechargeable batteries as the bicycle speed (and so the dynamo output voltage) falls below a predetermined value.

The unit is cheap (about $£ 5$ plus the batteries), simple to make and install, and could prove to be a lifesaver.

Features

By using rechargeable batteries in the backup unit, the need for battery replacement is eliminated. The batteries are on charge whenever the dynamo operates.

To keep losses to a minimum, no electronic devices are placed in the source/lamps circuit.

On dynamo systems, the bicycle frame is normally used for the return current by solidly connecting one terminal of the dynamo to the frame. Some commercial backup units require that the dynamo is isolated from the frame easier said than done. The system described here does not impose such a restriction thus making it easier to install by current and future dynamo users.

The output characteristics of all dynamos are closely matched to the lamp load. On most sets a 3 W dynamo supplies a $6 \mathrm{~V}, 0.4 \mathrm{~A}, 2.4 \mathrm{~W}$ front bulb and a $6 \mathrm{~V}, 0.1 \mathrm{~A}, 0.6 \mathrm{~W}$ rear bulb. Unfortunately when the front bulb blows the rear bulb follows in seconds. When the rear blows the increase in brightness of the front bulb drastically shortens its life. In fact the authors measured the open circuit voltage of one wheel-driven dynamo and managed to read 180 V peak-to-peak on the scope by pedalling in 10th gear!

Choosing The Battery

Typical AA-size NiCds have a capacity of 500 mAh and recommended charging currents of 50 mA and 150 mA for 15 and 4 hours respectively. When the bicycle is at standstill, the total current to both lamps supplied by a battery of four NiCd cells is around 0.45 A . So a fully charged battery will last for about 45 minutes without dynamo intervention. Obviously the battery will not be used like this in normal circumstances.

Where space is very tight the smaller $1 / 2 \mathrm{~A}$ sized NiCds have the same capacity as the AA size but take up only about half the space.

Non-rechargeable cells can also be used if required. The charging circuit components D2, D3, R2 and C2 may then be omitted. If over-voltage protection is not required the zener's diodes can be also eliminated. The PCB overlay is shown in Fig. 2.

Construction

The prototype is shown in the photographs. The PCB measures only $45 \times 32 \mathrm{~mm}$ so it was possible to fit all the items (PCB, battery and switch) in a compact box measuring $112 \times 62 \times 31 \mathrm{~mm}$. The unit can be neatly fitted on the bicycle tubular frame by two 25 mm terry clips, chrome versions of which are available from any bicycle or hardware shop. Though less attractive (but cheaper) two capacitor clips were successfully used on the prototype.

The best position for the unit was found by the authors to be on the back of the seat down-tube

HOW IT WORKS

Figure 1 shows the complete circuit diagram for the unit. D1, C1 and R1 provide DC supply to the relay coil. The bicycle speed at which the supply to the lamps changes over from the battery to the dynamo is determined by R 1 . For the dynamo used (a Union model), 120R gave a smooth changeover with the least light flicker.
$\mathrm{D} 2, \mathrm{D} 3, \mathrm{C} 2$ and R 2 constitute the charging unit. Voltage-limiting is achieved by the back-to-back zener diodes ZD1 and ZD2. There are two modes of operation:
a) Normal. SW1 on. When the dynamo is stationary the lamps are connected to the battery. When the dynamo voltage rises, the relay picks up and the lamps are connected to the dynamo. The peak charging current in this mode is about 50 mA .
b) Fast charge, SW1 off. If the dynamo is engaged with SW1 off, the charging current increases to about 90 mA . This is useful to accelerate the battery charging during daylight riding. $\mathrm{ZD1}$ and ZD 2 limit the voltage. Without them the charging current will reach excessive levels and damage the NiCd cells.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$ unless specified) R1 120R (see How It Works) R2 $22 \mathrm{R} \frac{1}{2} \mathrm{~W}$

CAPACITORS

C1, $2 \quad 22 \mu 25 \mathrm{~V}$ electrolytic

SEMICONDUCTORS

2D1, 2 1N5339B 5V6 5W
 D1-3 1N4001

miscellaneous

B1	$4 \times 1.2 \mathrm{~V}$ NiCds
FS1	1A anti-surge fuse
RLA1	6V 120 R coil, SPDT ultra-miniature relay
SW1	SPST toggle switch

PCB. Case. Waterproaf cover for switch. Mounting clips. Fuse clips. Nuts and bolts.

BUYLINES

Most of the components for this project are easily obtainable from normal sources. The relay used in the prototype was from Electramail (Tel: (0536) 204555 part no.345-022) as were the zener diodes (283-148). The $1 / 2 \mathrm{~A}$ size NiCds are also available from Electromail as part no. 592-335.
The PCB is available from the ETI PCB service.

Fig. 2 The component overlay diagram
just ahead of the rear mudguard, as shown in the photograph. This gives the unit extra protection from rain - the seat (and rider) acting as an umbrella!

No battery holder is used. Instead, the NiCd cells are connected in series by soldered connections. This is deliberate. It eliminates the problem of bad contact which bedevils all battery systems and it is more compact. Obviously if nonrechargeable AA cells are used, a holder will be necessary and the box made larger.

At the time of writing three units had already been used for two years with excellent results.

71

NEW THIS MONTH

* STAR BUY

GREEN SCREEN HI-RES 12

MONITOR CHASSIS
Brand new and complete except for case, the super high definition (1000 lines at centre) makes this monitor ideal for computer applications, Operates from
12 VDC at 11 A . Supplied 12 VDC at 1.1 A . Supplied complete with circuit diagram and 2 pots for brillance/contrast, \& connecting machines, slight mod (details included) machines, slight mod
for other computers.

Only $£ 24.95+£ 3$ carr

SWITCH MODE PSU's

Just arrived - a quantity of Advance high power PSU's - Full details on Bargain list OF482 130W unit: 5V @ 15A/12V @ 4A: -12V@ 2A: -5V@1A (list $£ 110$) P350 250W unit: 5V @ 50A (list $f 190$) Hiflex 750W unit: 5 V @ 130A; 12V @ 20A (List f800= Hiflex 1000W unit: 5V @ 200A (list f800)
SINGLE BOARD COMPUTER
28825 Plessey PME68-1B high 28825 Plessey PME68-1 B high 128 K DRAM, 16 K EPROM. Real time clock, 3 serial and 1 parallel $1 / 0$ interfaces. 185 page manual, Brand new interfaces. 185 page manual Brand new
and boxed. Originally over $f 1000$. Our price $£ 150.00$.
Manual $£ 10$ returnable deposit
ANALOGUE 1 /O SYSTEM
28826 Phillips PG3650 Compatible with and directly interfaces to the VMR bus above. Features: High \& Low leve inputs, 32 single ended or 16 diff, inputs Address selectable with whole 16 MByte memory space 12 bit resolution. AMP gains $1-100030$ page manual. Brand new and boxed $£ 100.00$.

Manual $£ 5$ returnable deposit.

INTERFACE

28827 Diecast box $150 \times 80 \times 50 \mathrm{~mm}$. Mounted centrally on top is a 25 way D type socket This is wired to a PCB within which has $12 \times 20 \mathrm{~mm}$ wire ended fuses $\& 2412 \mathrm{~V} 1 \mathrm{~W}$ zener diodes. A 13 core lead 2 m long from this board terminates in a 25 W D plug. There is also a seperate earth lead, f4.00.
SET TOP CONVERTER
28828 Made by Thorn EMI, this was used to receive cable television. 2 part aluminium case $211 \times 158 \times 82 \mathrm{~mm}$ (no front panell contains 2 PCB's (a) control board with multi way switch, dual 7 Seg plug in display + a couple of chips. (b main board with mais transformer, tuner, RF section etc. Rear panel has with moulded on 13A plug $£ 9.00$.
RELAYS + LAMPS Over 11,000 just arrived-details on Bargain List 38 . E.g. 2255
$\mathbf{Z} 327$ 6.5V 0.15A MES 1 amp $10 \ldots$...... $\mathbf{f 1}$ COIN OPERATED MECHANISM
Made by Coin Controls, this will accept various size coins by simple adjustment various size coins incorporates various security measures - magnet bent coin release etc. Microswitch rated 5A 240 V Front panel 115×64. Depth 130 mm . Cost $£ 10.85$. Our Price $£ 4.00$ REED SWITCHES
K669 A selection of about 15 types from 12 to 50 mm long, mostly from A, few from C. Pack of 30.
Z797 Min 15.3mm long.
20/£1.50; $\quad 100 / £ 6 ; \quad 250 / £ 12$ 2798 Large 50.8 mm long. 10/£1.50; 25/£3; 2799 Changeover 40 mm long 5/f1.50;

100/f10

TOOLS
$100 / \pm 20$
Scoop purchase of high quality surgical instruments ideal for electronics use. 2308 5" lightweight long nose pliers
Z309 51/2' as above but with ratchet. This enables pliers to be locked together - for holding small components, or as heat shunt etc.
Other types on Bargain List 36 .

ELECTRONIC
COMPONENTS

1988 CATALOGUE

OUT NOW 88 pages of bargains from resistors to disco mixers Price includes latest bargain list, discount vouchers, order form. Don't be without your copy send $£ 1.00$ now!
SPEECH SYNTH KIT
2315 All parts inc. PBC to make a speech z316 V216 case, 1 m 20W cable + connecto 216 case, 1 m 20W cable + connector

2811 Cumana Touch Pad for the BBC computer. This remarkable add-on enables you to draw on the screen using a stylus with the touch sensitive pad. Supplied with 2 stylii, power/data connecting lead \& demo tape with 4 progs. Originally being sold at $\mathbf{£ 9 . 9 5}$ later limited quantity of these brand new and boxed for just $£ 19.95$ boxe

TRANSFORMER

2023 Phillips, nicely cased. Mains input via 2 m lead. $6 \mathrm{~V} 35 \mathrm{VA}(6 \mathrm{~A})$ output to screw
terminals f 3.20

SOLDER SPECIAL!!
$\star 15 \mathrm{~W} 240 \mathrm{~V}$ ac soldering iron
\star High power desolder pump
\star Large tube solder
ALL FOR
£7.95
SOLAR CELLS
Giant size, 90 mm dia. giving 0.35 V 1.1 A output Mega size $-300 \times 300 \mathrm{~mm}$. These incorporate a glass screen and backing panel, ldeal for charging nicads $£ 24.00$ deal
SWITCHED MODE PSU'
2026 Astec model AC9355. 65W unit $115 / 230 \mathrm{~V}$ AC input. Outputs: +5 V 6A $+12 \mathrm{~V} \quad 1.5 \mathrm{~A} ;+12 \mathrm{~V} \quad 2.1 \mathrm{~A} ;-12 \mathrm{~V} \quad 0.25 \mathrm{~A}$. Normally over £70.... Our Price £24.95 Astec type AA7271. PCB $50 \times 50 \mathrm{~mm}$ has 6 transistor cct providing current overload protection, thermal cut-out and excellent filtering. Input 8-24V DC. Output 5V 2A.
Regulation 0.2%....................... $£ 5.00$

2810 KEYBOARD Really smart alpha numeric standard qwerty keyboard with separate numeric keypad, from ICL's 'One Per Desk'. Nicely laid out keys with good actile feel. Not encoded - matrix output rom PCB taken to 20 way ribbon cable Made by Alps, Size $333 \times 106 \mathrm{~mm}, 73$ keys
2004 Skeleton Joystick, switch type. Good quality, made by $A B$ Brass spindle has 44 mm long black plastic handle attached. Body has 4 mounting holes These really are a fantastic bargain!!
ENTERPRISE PANELS
2658 PCB 325×158 with 64 k of RAM ($8 \times$ 4864), Z80A microprocessor +21 other chips, UHF modulator, speaker etc, ROM and Nick and/or Dave chips missing supplied with cct and data $\mathbf{f 8 . 0 0}$ VIEWDATA LTU 2697 Interface Panel 166×150 with $3 \times$ LM324, LM339, LM393, 4066, 11 ransistors, 3 reed relays etc. 3 m lead with BT plug attached. Supplied with comprehensive data and ccts $\mathbf{£ 2 . 9 0}$ All prices include VAT; just add $f 1.00$ P\&P. Min Access $£ 5$. No CWO min. Official Orders from schools welcome - min. invoice charge $£ 10$. Our shop has open 9-5.30 Mon.-Sat. Come and see us! HOW TO CONTACT US:
By post using the address below; by phone (0703) 772501 or 783740 (ansaphone out of business hours); by Fax
$(0703) 787555$ by EMail: Telecom Gold 72:MAG36026; by Telex 265871 MONREF G quoting 72:MAG36026.
443A MILLBROOK ROAD SOUTHAMPTON SOI OHX

CRIGM.

WRITE OR PHONE NOW FOR OUR FREE, SPRING COMPONENTS CATALOGUE

WHEN YOU CAN'T FIND IT ELSEWHERE

 WE'LL HAVE IT!from the U.K.'s number one 100% components shop - no gimmicks, no gadgets, no computers, just millions of components, all easily available by mail order, calling at shop, or credit card telephone orders. Just pick upne, or a pen, to get the catalogue (no SAE required) - posted FREE to any

CRICKLEWOOD ELECTRONICS LIMITED

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET
Tel: 014500995 \& 014520161 Telex: 914977

VISA

19" RACK CASES

* Suitable for instruments, high quality amplifiers and many other applications that demand
strength and professional finish * New improved construction and finish \star Black anodised strength and professional finish « New improved construction and finish \star Black anodised and the side of the enclosure \star Heavy gauge front pane is of brushed aluminium finlsh enhanced with two professional handles * With ventilation slits and plastic feet * Rear box manufactured from 1.1 mm steel finished in black, Rack mounting or Iree standing. Comes in
quick assembly flat package spare front panels averlable.
$\begin{array}{ll}\text { Order Code Panel Size } & \text { Rear Box } \\ \text { W H (inch) } \\ \text { W }\end{array}$
$\begin{array}{lllll}\mathrm{IU}-10 & 19 \times 1.75 & 17 \times 15 \times 10 & 2.4 \mathrm{~kg} & 29.50\end{array}$
$\begin{array}{lllll}2 \mathrm{U}-10 & 19 \times 3.5 & 17 \times 30 \times 10 & 2.9 \mathrm{~kg} & 24.50 \\ 3 \mathrm{U}-10 & 19 \times 5.25 & 17 \times 50 \times 10 & 3.5 \mathrm{~kg} & 26.50\end{array}$
15% discount on 1U-10 2U-10 3U-10 with this advert.

$$
\begin{array}{lllll}
2 \mathrm{U}-12 & 19 \times 3.5 & 17 \times 3.0 \times 12 & 3.3 \mathrm{~kg} & £ 25.50 \\
3 \mathrm{U}-12 & 19 \times 5.25 & 17 \times 5.0 \times 12 & 4.0 \mathrm{~kg} & £ 27.50 \\
4 \mathrm{U}-12 & 19 \times 7.0 & 17 \times 6.5 \times 12 & 4.6 \mathrm{~kg} & £ 29.95
\end{array}
$$

Please add $£ 300 \mathrm{P} \mathrm{\& F}$ for the first item and $£ 1,50$ for each additional item

No VAT to be added to the price

TEST EQUIPMENTS

C83A Digital Power Supply/Voltmeter ($0 / 35$ Volts 1.5 A)
$£ 49.50$ C83B Digital Power Supply ($0 / 30$ Volts 1 A)
C89A Function Generator (2 Hz to 200 KHz) C86A 60 MHz Counter/Timer
C87A Autoranging Capacitance Meter (0.1 pF to 99.9 mF)
T.J.A. DEVELOPMENTS Dept. ETI, 19 Welbeck Road, Harrow, Middlesex HA2 ORN.

> En route to the Lucid Dream Machine, Paul Chappell takes your breath away ... and counts it

EVERY BREATH YOU TAKE

Last month I hinted how I intended to go about designing the breathing rate monitor. Now, a lot of things can happen in a month - countries can be invaded, dictators overthrown, Steven Hendry can shave at least twice and to cut a long story short, coming straight to the point without beating about the bush, I've . . . er . . . changed my mind.

The circuit I had in mind last month was perfectly good, it's just that I like the new one better. So as not to leave any hanging plot lines, as they say in the soap opera trade, l'll begin by showing you what I originally intended to do.

Before . . .

I sketched out a diagram last month for a kind of digital-to-analogue averaging circuit and pointed out that although the idea was OK, it was a dud for practical purposes because of the excessive number of ICs. There's nothing wrong with using a shift register, the problem arises from the need to have access to the output of every single stage.

What we're really interested in is the number of 1 s inside the shift register chain at any time, so why not tot them up as they go in and cross them off as they come out again? Figure 1 shows how this can be done.

If you imagine that the circuit powers up with the counter and shift register both set to zero, for the first minute the counter will simply clock upwards on each breath. It will end up showing the

Fig. 1 Breathing monitor using shift register
number of breaths taken in the first minute.
After that each breath will cause it to clock upwards, whereas each overflow from the shift register will take it one count downwards. If no breaths and no overflow take place, the counter
stays put. If a breath and an overflow occur at the same time, they cancel out and the counter also stays put. The result is that the counter keeps a running average of the number of breaths over the preceding minute, updated once a second.

If you fancy turning this idea into a working circuit, bear in mind that the logic is slightly simplified. You'd have to make sure that each input pulse (which could be present over several clock cycles) was only counted once, so static logic won't quite do the job.

Also notice that the SR needn't have sixty stages. As long as all the stages clock through in exactly one minute (adjust the clock frequency so that they do!) and there are sufficient to give the resolution you want, the SR can have as many stages as you like. This makes the choice of IC a little easier!

The circuit can be modified to do away with the shift register altogether, or at least to replace it with a counter and to alter the averaging period I'll leave you to work out the details for yourself.

After

Now on to the circuit I intend to use, which incorporates one of the more interesting devices available in 4000 series CMOS - the 4527 rate multiplier IC. Strictly speaking it's not a multiplier at all, but a special kind of divider. Figure 2a shows the essential connections to the IC.

In effect the IC takes the clock frequency, divides it by ten, then multiplies it by the number that appears on its BCD inputs. With a clock frequency of 10 kHz , for example, a 3 on the BCD inputs would give an output of 3 kHz , a 9 would give 9 kHz and so on.

In reality, the operation is not quite as tidy as I've made out. The IC creates these different frequencies by missing a certain number of pulses in every group of ten input cycles. Figure $2 b$ shows the output for a $B C D$ input of 5 - it doesn't even miss alternate pulses to give a regular output.

A complete functional diagram for the IC is shown in Fig. 2c. The TC and TC (terminal count) outputs mark the end of each group of ten clock cycles, CLR sets the counter to zero, PL sets it to 9, $\overline{\mathrm{CE}}$ allows it to count (or freezes it when high), STR and CAS are inputs which allow two or more ICs to be cascaded.

Rated Breath

The notional block diagram for the project is shown in Fig. 3. The clock and divider chain produce an output of 100 pulses per minute. The rate multiplier divides this frequency by 100 and multiplies by the number stored in the BCD counter, which will also be the number shown on the display. The result is an output from the rate multiplier of the same number of pulses per second as is shown on the display. The logic compares this with the breathing rate input. If higher, the counter is clocked down, decreasing the frequency; if lower
the counter is clocked up. The action of the circuit as a whole is to continuously try to match the internal frequency (and so the display reading) to the breathing rate.

At its simplest, the logic can simply clock up the counter on every input pulse and clock it down on every internally generated pulse. The trouble with this approach is that even when the two frequencies are perfectly matched, this display will still be stepping continuously up and down. At the cost of a few flip-flops, it can be arranged so that the counter ignores alternate pulses and only responds when two or more of one variety occur
the divider network over (in this circuit) almost 2,000 output cycles, the resulting repetition rate will be very stable indeed!

How To Catch Your Breath

The complete circuit of the breathing rate monitor is shown in Fig. 4. The counter and display section (Fig. 4a) needs little comment. The 4543 ICs are BCD to 7 -segment decoders to drive the display. Depending on whether link 1,2 or 3 is made, the circuit will accommodate LED displays of either polarity, or an LCD display. The LCD displays are the obvious choice for battery operated equip-

Fig. 3 Block diagram for rate monitor
between subsequent pulses of the other kind, giving a far more stable display and an equally fast tracking rate.

Another refinement can be made at no cost at all. The ragged output from the rate multiplier section would also disturb the display, but all that needs to be done to cure this problem is to swap the order of the divider and rate multiplier. It will make no difference at all to the final frequency, but since the rate multiplier output will be averaged by

Fig. 4 (b) The rate multiplication circuit
ment, but are more expensive than LEDs and (to my eyes, anyway) don't look as good.

The remainder of the circuit is simply three cascaded BCD up/down counters (cascaded right to left to get the digits in the proper order!) If you're wondering why I didn't opt for one of the combined counter and driver ICs, which would certainly have made the PCB layout easier, it's simply a matter of cost. This is quite a large project and the expense soon mounts up; the half-dozen CMOS ICs are less than half the price of the cheapest counter/driver IC, so there you are. All done for the sake of your pocket.

The meaty part of the circuit is shown in Fig. 4 b . As promised, the rate multipliers precede the divider IC. The four flip-flops decide whether two input pulses have appeared between subsequent timing pulses or vice versa, and provide a clock pulse and the appropriate up/down command to the counter.

The power-on reset gives a signal to load the counters with a suitable starting level of 14 breaths per minute, which is the average adult resting breath. With SW2 in position 2, the counters are loaded instead with the number 80 - I'll explain why in a moment.

The rate multipliers take their inputs from the counter. If the display shows 123 for instance, the input to the first 4527 IC will be 0001, to the second will be 0010 and to the third will be 0011 . The first IC is required to produce 100 counts for every 1000 clock pulses, the second to produce 20 and the third only 3 . The way it works is like this.

All things being equal, the rate multipliers step around their output pattern once every ten clock cycles. One thing that can alter this is if the count enable input ($\overline{\mathrm{CE}}$) is held high. The first IC in the chain has its count enable grounded, so will step round continuously. The second has its count
enable connected to the terminal count output of the first and since this only goes low for one clock cycle in every ten, it only responds to a tenth as many clocks as the first. The third gets an even smaller share - driven from the terminal count output of the second it only sees one clock pulse in every 100.

Outputs

The maximum number of outputs that any of the rate multipliers can give is nine pulses in every ten. This means that no matter what input is fed to the first multiplier, there will always be at least one 'gap' in the pulse train. Furthermore this gap position - the ninth pulse, if the count is considered to go from zero to nine - is never used in any of the other patterns either. There is always a space on the ninth count, which by a lucky chance (or not) happens to be just the time when TC goes low, giving the next IC a chance to make its contribution.

The pulses on the CAS inputs of the second and third ICs slip straight through to appear at the output, so every pulse produced by the first 4527 will appear at the clock input of the 4040 . Once every ten clock cycles, the second IC will have a chance to add a pulse to the stream, which will also slip through to the end of the chain. Once every hundred cycles, the third IC gets a chance. So with an input of 123, after 1000 clock cycles the first will have stepped round 100 times, giving 1 pulse each time, or 100 pulses in all. The second will have stepped round 10 times, adding in two pulses each time giving 20 extra and the third IC will only have stepped around once to give its three outputs, making a total of 123. And there will still be a gap on the 999th pulse for yet another IC to be added to the chain!

The analogue section of Fig. 4 c serves to detect your breathing rate and turn it into a suitable digital signal to drive the logic circuitry. The sensing part of the circuit depends on the fact that the air you breathe out is considerably warmer than when it went in. If you want to measure the breathing rate of mad dogs and/or Englishmen in the mid-day sun the principle might need some more thought, but for use indoors in chilly England, even with the central heating at full blast, it works well.

The sense element is nothing more exotic than a 1 N4148 (or any other type, for that matter) diode. With sub-miniature thermistors (which you need for their low thermal inertia) weighing in at around $£ 2.50$ a time, it's another economy measure. And it does the job without fuss!

The input circuit is essentially a differentiator, with the rising frequency response slugged by C 4 The output drives a comparator, which in turn drives the logic (via the schmitt of Fig. 4b, which gives good fast edges to the signal). The LED circuit is optional - it lights one or other of the diodes according to whether you are breathing in or out, so is a good test facility to make sure the sense diode is properly positioned and the input circuit functioning. On the other hand it's an extra current drain on the circuit, so the choice is up to you.

The remaining op-amp simply serves to establish a reference at half the battery voltage for the other ICs.

In The Next Breath

As this project has progressed, it has also grown. The thing about something as general-purpose as a
rate meter is that there's no end to the additions that can be made to it. I have to draw the line somewhere, but couldn't resist adding in a heart-rate monitor too. This is the reason for the three digits and the initial 80 on the display - about the average resting heart rate of a non-athletic adult. Unless you wake one morning (from uneasy dreams?) to find yourself transformed into a giant rabbit, there's no way your breathing rate will get that high!

I haven't forgotten the lucid dream stimulator either, that's on its way too. Those of you who want just one or two of the facilities can simply miss out the extra components. In the same box then, you can have a breathing rate meter, a heart rate monitor and a lucid dream stimulator. Never let it be said that ETI doesn't have the most comprehensive, exciting (and outrageous?) projects!

GII

Fig. 4 (c) The analogue breath detection circuit

ETI JUNE 1988

Keith Brindley finds buried treasure and avoids nailing through the water pipes with this simple but effective metal detector

Although this metal detector is certainly small, it does require a few extras. You don't need a car battery for power, a rucksack (to put it all in) and a six-foot dipole aerial to make the project work but you do need a small transistor radio.

The metal detector works by transmitting a weak radio wave carrier signal around itself, which has to be picked up with a nearby tranny.

The carrier signal main frequency is in the vicinity of the lower end of the longwave band (around 120 kHz) and is of sufficient strength to interfere with a radio within about a foot or so, tuned into the medium or long wave. The interference is heard as a whistle from the radio's loudspeaker. As the whistle changes frequency, you know the metal detector is approaching a metal or metal like object.

Sensitivity is pretty good considering how simple the project is. With a remote pickup coil metals can be detected from a distance of six inches or so. Even when the pickup coil is mounted on the project's case (as ours is) metals can be detected from around three or four inches.

Construction

Two ways are suggested to build this project either on PCB or stripboard. Both methods are straightforward and apart from a few points are more-or-less self-explanatory.

On PCB, construction needn't follow any particular order, although it's probably best to leave the transistor and coil till last. Whatever, go

HOW IT WORKS

The circuit is a Colpitt's oscillator, formed around transistor 01 which is connected as a common base amplifier. Positive feedback is applied from collector to emitter via the AC potential divider formed by series connected capacitor C2 and C3.

Capacitors C2 and C3 also form one arm of a parallel LC circuit. The circuit's resonant frequency is given by the relationship:

$$
f=\frac{1}{2 \pi \sqrt{(L C)}}
$$

and is around 120 kHz . Conversely, we can calculate from the relationship that the coil inductance is around 0.88 mH . Try it for yourself.

Coupled in this way, the transistor amplifier becomes a weak radio transmitter, transmitting a carrier wave frequency of around 120 kHz . Now, this is actually slightly below the frequencies which are normally found on the dials of long and medium wave radios (long wave is typically from about 150 kHz to 300 kHz and medium wave is from about 500 kHz to 1600 kHz). This means that if the metal detector's transmitted carrier was pure, long wave and medium wave radios could not be used to

Fig. 1 Circuit of the ETI Metal Detector
easy on the heat. Solder only one leg of each component at a time then leave the component to cool before moving on to solder the next leg.

On stripboard it's probably best to stick to a conventional order, still maintaining heat precautions. Insert and solder the single wire link, followed by resistors, capacitors and the flying leads to peripheral components. Lastly insert the transistor Q1 and, when you've made it, the coil.

Whichever construction method you choose, check that no unwanted solder links or bridges are present between component leads.

The coil L1 needs to be wound. First, find a former on which to wind it - something with an external circumference of about 220 mm , although this measurement is by no means critical. For reference, we used the widest part of a 250 ml
pick up the oscillations. Fortunately, oscillations are not of a pure sine wave nature, so many harmonics of the resonant frequency are also formed, going right up through the long and medium wavebands and beyond.

The project functions as a metal detector simply because the actual inductance of the resonant frequency's coil varies with the proximity of local metallic bodies. Ferromagnetic bodies particularly concentrate the magnetic flux within the coil, so increasing the coil's inductance and lowering the resonant frequency of the oscillator.

A local transistor radio is used to pick up the weak carrier signals produced by the metal detector, along with a carrier wave of another radio transmission (of a more legal, broadcast nature). The two carriers heterodyne (interfere) to produce an audible beat frequency from the transistor radio's loudspeaker. The beat tone is stable, until a metal object approaches the metal detector's coil. Then the coil's inductance varies, causing the resonant oscillation frequency to vary and in turn causing the beat tone to vary. So the user hears, simply by a change of the beat tone's pitch, that the coil is somewhere near a metal object.

Fig. 2 The component overlay for the Metal Detector PCB
bottle of Sainsbury's Baby Lotion - no prizes or guessing who's been left holding the baby! Alternatively, a piece of thick card about 110 mm long could be used to hank-wind the coil. Make 100 turns of 30 swg enamel covered copper wire, leaving sufficient ends to connect between the coil's final position and the PCB.

When you've wound the coil, fasten it together in two or three places around its circumference with tape and slip it off its winding former. Adjust its shape to suit.

Before you solder the ends of the coil into the PCB, make sure you scrape off the enamel from the copper wire for about 5 mm from each end, so they can be soldered. If you are using polyurethane coated insulated copper wire, there is no need to scrape off the insulation as the copper is selffluxing on application of heat from a soldering iron.

Any suitable sized box can be used to house your project, although the PCB is exactly the right size to fit the box used (see Buylines). The only real

PARTS LIST

RESISTORS (all $1 / 4 \mathbf{W}, 5 \%$)
R1 $\quad 150 \mathrm{R}$
R2, $3 \quad 33 \mathrm{k}$

CAPACITORS

PCB. Case. Type PP3 battery and clip. 30swg enamel covered copper wire for coil L1.

BUYLINES

All parts are easily obtained from component suppliers. The case used was a Type 1 general purpose Vero case. The PCB is available from the PCB Service.
precaution you need to take is to mount the coil on the outside of the case (if it's on the inside its inductance is fixed primarily by the PCB and associated components - not by metals you wish to detect!) or better still, remotely.

Setting Up

Setting up is simplicity itself. Turn on your radio and, while you press the metal detector's pushbutton on/off switch, adjust the radio's frequency tuning control until you hear a whistle. When you release the push-button the whistle should stop. If not, the whistle isn't caused by the metal detector and you should re-adjust the radio's frequency tuning control.

Test the metal detector by moving it closer to metal. The whistle from the radio will change frequency.

Now you're all set to find your fortune buried in the compost heap in the back garden.

515

Fig. 3 Stripboard component overlay. Note there are no track cuts required for this design

That's what an incredibly small number of people have achieved by contributing articles to ETI. The rest of us have had to make do with total obscurity and enough money for a couple of pints. Nevertheless it's all worthwhile and we need your contributions now!

FEATURES

If you know what you're talking about and it hasn't all been said before, we want you to add to our wide ranging and informative features. If you have a great idea for a feature or two, send in a brief resumé. If you don't have the ideas but you think you have a commanding knowledge of a suitable subject area we want to hear from you too.

PROJECTS

ETI has built its reputation on novel, worthwhile projects well designed and accurately presented. If you have recently designed and built a world-beater we want to hear from you. In the first instance send us a brief description of your masterpiece along with a circuit diagram.

Whatever you can contribute to ETI, take the plunge now. We can offer a modicum of fame and a very reasonable

Write in to:
The Editor ETI
1 Golden Square
London W1R 3AB

[^0]
VIRTUOSO POWER AMPLIFIER

In the third and final article on the Virtuoso Power Amplifier I will look at the power amplifier board itself and at the decisions that were taken concerning its design. First comes the choice whether to operate in class A, sliding class A or class $A B$.

The class A output stage (Fig. 1) is always ideal but even the larger version of the Virtuoso case would have barely enough heatsink for much more than 10 W per channel into 8R (very high levels of heat are dissipated for small output powers).

The Virtuoso has been designed to operate as a fairly low current class AB .

In a true class B amplifier (Fig. 2) each output transistor drives the load speaker for half the current cycle and no current flows through the transistors under quiescent conditions. In practice a fixed current adjusted by the bias voltage is usually set.

The disadvantage is that switching delays (as each transistor current reaches zero at the end of

Fig. 1 Class A
output stage
each half-cycle) cause audible distortion, especially at high frequencies.

Sliding bias can prevent the non-driving output transistor switching off but require a voltage feed from the main supply and can cause ripple rejection problems.

On The Way Out

The output devices of this amplifier are bipolar darlington power transistors. These have a lower output-stage non-linearity than MOSFETs (and so greater signal headroom) and much greater peak output current capability. Also MOSFETs have a high input capacity and require high current from the driver stage for good high frequency performance - hence some MOSFET power amps having an emitter follower or source follower prior to the output.

The next question to be answered is how to arrange the input and output coupling.

Fig. 3 shows the basic circuit chosen, with C 1 blocking $D C$ to the input and $C 2$ blocking $D C$ in the feedback so that any DC offset at the input is not amplified at the output. This C2 capacitor is large and expensive (more than $£ 10$ in the upgraded amp - C45 in Parts List).

Fig. 3 AC input DC output amplifier

> Graham Nalty describes the amplifier board that completes his super-fi project

On The Way In

The input stage of the Virtuoso is essentially a differential input long tail pair (see Fig. 4), perhaps the most popular power amplifier input circuit.

Some designers (particularly in the USA) prefer fully symmetrical differential inputs, but using cascode circuitry and increasing the dynamic impedance of constant current sources would make such a design extremely elaborate. Attempting to keep the numbers of transistors practical would affect sonic performance.

The full circuit for the amplifier board is shown in Fig. 6. Its operation is exactly as described in How It Works for the simplified circuit (Fig. 5). The individual parts have been expanded to perform their function to a higher standard.

Fig. 5 Simplified circuit diagram of Virtuoso
R 41 holds the input of C 41 at 0 V so that no thump is heard from the speakers when the input is connected. C41 is bypassed by C 42 to improve its high frequency performance and together with R44 provides low frequency input filtering. Q41 to Q44 form the input long tail pair.

The darlington arrangement keeps the input base current much lower than with single transistors so that the output DC offset is low even at high values of R44 and R55.

C56 (across Q41,42) is required for high
 frequency stability (dual matched transistors are used in the upgrade).

The cascode transistors Q45,46 remove ripple from the power supply before they reach Q41-44, improve the high frequency performance and lower the transistor generated distortion in the input transistors.

The second stage amplifier is Q49. Its collector voltage is held constant by cascode transistor Q50 (mounting on a heatsink will reduce temperature generated distortion). A constant current source is provided by Q51, 52 and R58, 59 . C54 and C55 provide low high-frequency impedance at the power supply for the output transistors (which are duplicated in parallel for higher output current capability). This prevents high frequency instability of the amplifier.

The quality and value of the emitter resistors (in series with the output transistors) are critical. A fair amount of power is dissipated in these resistors.

Fig. 4 Long tail pair input

HOW IT WORKS

The basic circuit of the Virtuoso Power Amplifier is shown in Fig. 5 (component numbering is the same as in the complete circuit Fig. 6).

DC blocking at the input stage is carried out by C41.
A lowpass filter is formed by $\mathrm{A42}$, C43 to prevent very fast high trequency signals reaching the amplifier.

R44 biases the base of the input transistor.
The input stage is a long tail pair fed by a high dynamic impedance constant current source. The output to the next stage is taken from R46 to an amplifier comprising 049 and 050 . A constant current source provides its load.

The output stage comprises darlington transistors with series emitter resistors. These are biased by a constant voltage network made of RV1, R60 and 053. High frequency stability is maintained by C51 and R65.

Loudspeakers are protected by a fuse which is within the feedback for minimum sonic distortion.

When a transistor heats up, its base-emitter voltage decreases. The series resistor provides an increase in voltage with increased collector current. If the resistor value is high enough, thermal runaway is prevented. The use of darlington transistors with two V_{b} junctions requires almost twice the resistance that might be required in a more common circuit with separate driver transistors.

Output Stage Protection

The cost of the output transistors (and in the upgraded version the emitter resistors) mean that it is well worth incurring the additional expense of output stage protection circuitry to safeguard against short circuits or overloading into very low impedances. The circuit used would not usually protect against thermal runaway or high-level highfrequency oscillation.

The circuit is shown in Fig. 7. Diodes D1, D2 protect the collectors of Q1,2 from going to the wrong polarity in relation to their emitters.

The characteristics of the protection circuit for the standard Virtuoso amplifier are shown in Fig. 8. These show a margin of safety up to 40 V at 8A. For more current at higher voltages you can add a network made up of a zener diode ($15 \cdot 30 \mathrm{~V}$) in series with a resistor, placed in parallel with each of R70 and R71.

Components C52, 53 and R68, 69 are included to increase power dissipation in momentary periods where the power dissipation

岛
胃
号

Fig． 8 Characteristics of protection circuit

Fig． 6 Complete circuit diagram of amplifier board

Fig. 14 Component overlay for amplifier board
exceeds the DC safe operating area. Such excursions can only be momentary - of the order of milliseconds - and the time constant of R68/C52 and R69/C53 achieves this.

Over The Rickety Bridge

The power output from a bipolar amplifier is limited by its output power transistors. At high collector-emitter voltages, the allowable power dissipation (and current available to drive out of phase loads) is greatly reduced because of secondary breakdown. So even if extra transistors with the necessary voltage rating are connected in parallel, it may not be possible to increase the output power significantly by raising the supply voltage.

Fig. 9 Bridged amplifier using inverting and non-inverting amplifiers

In such cases it is possible to greatly increase the power driving the loudspeakers by bridging two power amplifiers. This involves simply feeding the audio signal directly to one amplifier and inverted to the second amplifier. The voltage between the two output terminals will be twice that between any one terminal and ground. There are also sonic advantages in that each bridged
amplifier has its own power supply so intermodulation effects between channels are eliminated.

Using an inverting amplifier for the audio signal to the second amplifier has sonic drawbacks - this can be avoided by rewiring the second channel in the inverting mode as in Fig. 9.

Fig. 10 Components omitted in inverting upgraded amplifier

Bridging the amplifier doubles the output voltage and quadruples the power (the increase is actually slightly less because of the higher current required to drive the loudspeaker).

If you want to double the power output the supply voltage can be decreased to 70% of its original value, with the maximum current output increased to 140%. Thus the output transistors run at lower voltage and secondary breakdown limitations are greatly reduced.

I am not going into great detail regarding building the inverting amplifier as I expect anyone constructing it will have considerable experience of building power amplifiers. Briefly then, the inverting amplifier is built as follows:

- Build exactly as the non-inverting Virtuoso, but leave out all the parts marked in Fig. 10.
- Add the components shown in Fig. 11.

If you want to use the bridged Virtuoso into loudspeakers of impedance significantly below 8ohms, you may wish to increase the current capability of the output stage. This can be done using the AOT board (additional output transistors) shown in Fig. 12. The overlay is Fig. 13. Connections are made to the power board as shown in the circuit diagram (Fig. 6) and component overlay (Fig. 14).

Construction

The component overlay for the power amplifier board is shown in Fig. 14.

Unless you are building the inverted version for the bridged amplifier you will not need R43, R54, R56, R91, C44 and C57 (the dotted components from Fig. 6).

Start construction by soldering the PCB pins to the board, including two for the leads from the low current power supply. Next attach the six $1 / 4$ in blades. The fuses are best installed with the fuse in place, and you may like to solder fuses FS1, FS2 to their cases to improve the contact.

Three wire links are required - one for the earth line near R65, the other two to link across the missing dotted components mentioned above. Then continue mounting diodes D43-46 and D4952 , followed by the lower powered resistors (in the upgrade R45,52,57,58 are replaced by D41,42, 47,48 mounted on transistor pads with flat faces facing the input side of the board). Resistors R7590 should be mounted so they stand about 2 mm off the board so that in the unlikely event of a short or transistor blow, the board will not be burned by a roasting resistor.

Next attach the smaller capacitors $\mathrm{C} 43,47$, 51,52,53,57 followed by transistors Q41-44,48, 49,52,54,55 (use transistor pads in the upgraded amplifier for all but Q41, 42).

Transistors Q45-47 are TO126 cases attached to a small aluminium heatsink. Q45,46 have their metal side facing the input side of the board, Q47 the other way. Order of assembly from the input side is $3 / 8 \mathrm{in}$ bolt, bracket, Q47, fibre washer, 6BA nut and bolt, fibre washers, Q45, bracket, Q46, 6BA washer, 6BA nut.

Attach the bracket for Q50,51 with fibre washers underneath and mount the transistors Q50 is insulated from the bracket by a T0220 insulator.

Now fit RV1 and the main heatsink bracket. The four output transistors Q56-59 are mounted via flexible T03 insulators and the base and emitter pins are inserted through the PCB. Don't solder them in yet. Attach the $6 \mathrm{BA} \times 3 / 4$ in bolts via a washer on the topside of the transistor. Insert an insulating bush from the other side into the PCB, into the metal bracket over the bolt. A 6BA solder tag and

Fig. 12 Circuit diagram of AOT board

PARTS LIST

R887-90	$1 \times$ OR33 Halco	4×1 R5 Holco H 2
R91	KNA412 3W w/w 10R metal film	108 metal film
R92	used only in invertin	amplifier
RV1	2 k 2 or 2 k 5 carbon preset	2k2 cermet preset

Internal Wiring

Table 1 shows lengths and colour standards for wiring in the 2 U case. High current paths should use 5A cable - some constructors use multistrand, others prefer single-core.

If you use Kimber cable, use two wires twisted together for high current applications, making sure the direction is correct.

If your reservoir capacitors have screw terminals, connect the wires with insulated crimp terminals rather than solder tags (accidental shorting would be rather unhealthy).

The Trial

Remove FS3 and FS4 from each amplifier board and connect the supply. The 470R resistors between supply and the amplifier (normally bypassed by the fuses) will help prevent serious damage if there is a fault when you switch on. The worst that can happen is that the 470 R resistors will get warm.

Before you switch on, turn RV1 on both power amps fully anticlockwise. Now switch on.

If all is well the DC voltages on the high current side should read $\pm 51 \mathrm{~V}$ ($\pm 43 \mathrm{~V}$ for the bridged amplifier). The low current side should be as they were for the regulator circuit (see May issue). The voltage at the speaker terminals should be less than 50 mV .

To make further checks, use a digital meter. The base-emitter voltages of Q41-52 should be 0.50.7 V . The voltage across each of the diode pairs D43, 44 and D45, 46 should be 1.1-1.2V. If you use red LEDs for D43, 44 the voltage will be 3 V - this increases the $V_{\text {ce }}$ across Q41-44 enabling them to operate on the more linear part of their characteristics.

Now adjust RV1 clockwise until a voltage of about 20 mV can be measured across the output emitter resistors (they may vary slightly). The next test is to check that a signal can be amplified - use a signal generator at the input and scope at the output, or if these tools are not to hand use a preamp and loudspeaker. The sound should be clean at low levels but distort badly above 10 W .

If everything seems okay, disconnect the test gear and allow the reservoir capacitors about 10 minutes to discharge. Now insert the fuses FS3 and FS4 on each board (bypassing R63,4) and
nut should be attached to the four bolts nearest the
end of the board, a washer and nut to the other four (screw them finger tight). Then attach Q53 with a $3 / 4$ in bolt, small nylon bush, T0220 insulator, bracket, through the PCB to a washer and nut.

Now screw all nine bolts tight and check with a meter for shorts between the transistors and bracket.

Complete the board with C $41,42,45,46,48$, $49,54,55$ (if you are using Wonder Caps in the upgraded amplifier, you can use the offcuts of wire to parallel all the high current tracks).

Solder all the power transistor leads to the PCB and connect the collectors of the T03 transistors by soldering the solder tags to the PCB tracks.

Your power board is now complete!
With the amplifier boards completed, you can fit everything into the case as shown in Fig. 15.

The heatsink brackets are bolted to the sink by two 4BA $3 / 8$ in bolts and washers. The boards are bolted to the case with 6BA $1 / 4$ in bolts.
switch on.

INVERTING AMPLIFIER

Delete R41, 42, 44
Delete C41, 43

R41	22k metal film	22k Holco H8
R43	10k Holco H8	10k Hocco H8
R44	10 k metal film	10k Holco H8
R56	16 k 2 Holco H8	15k/16k bulk foil
R91	47k5 Holco H8	47k bulk foil
C43	4n7 polystyrene	8n0 LCR EXFS/RP
C44	470p polystrene	470p LCR EXFS/RP
C57	22p polystyrene	22p LCR FSC/P

EXTRA OUTPUT STAGE
R93,94,95,96, 0.47R Holco KNA4123×1R5 Holco H2 Q60, $61 \quad$ MJ11015 MJ1015 Q62,63 MJ11016 MJ11016 T03 transistor pads (4) - Silpad 4177 (standard), Silpad K10 (upgrade). Transistor bushes (8).

Fig. 15 Wiring diagram for 2 U case

If there are no signs of distress you can now couple the amplifier to your other equipment. A precaution I always observe is to connect only the earth side of the speakers to the amplifier before switching on. Then touch the signal lead to the terminal and if the music is coming through then connect it. With the upgraded version make sure the wire or plug doesn't short across the speaker terminals.

Then fetch the port and cheese, sink into your armchair and enjoy the wonderful sound. I.

OOPS!

In part one of the Virtuoso in April, capacitors C2 and C3 should be transposed in Fig. 5 (P28). The diagrams for Figs. 6 and 7 should also be exchanged.

Application	Length (cm)	Colour	
		Standard	Upgraded
Earth E1 to Mains Skt	17	Green	Black
L amp signal to earth E2	20	Green	Black
R amp signal to earth E3	32	Green	Black
L reg board to earth E4	29	Green	Black
R reg board earth E5	20	Green	Black
E6 to L speaker	15+15	Green	Black
E7 to R speaker	$14+14$	Green	Black
L amp to E8	14	Green	Black
R amp to E9	27	Green	Black
E10 to regulator	13	Green	Black
E11 to C3 +	$12+12$	Green	Black
E12 to C1-	$13+13$	Green	Black
Mains input L to fuseholder	10	Brown	Red
Fuseholder to mains switch	29	Brown	Red
Mains input N to mains switch	30	Blue	Red
Bridge rect ac to low current reg	23	Brown	Red
Bridge rect ac to low current reg	25	Brown	Red
Low current reg to L amp+	17	Brown	Red
Low Current Reg to Lamp-	11	Black	Blue
Low current reg to R amp +	14	Brown	Red
Low current reg to R amp-	9	Black	Blue
Bridge rect + to C1 +	$11+11$	Red	Red
Bridge rect-to Cl^{-}	$8+8$	Black	Blue
$\mathrm{C} 1+$ to Lamp +	$15+15$	Red	Red
C1+ to R amp +	$24+24$	Red	Red
C3- to Lamp-	$16+16$	Black	Blue
C3- to R amp -	$29+29$	Black	Blue
Linput to Lampov	36	Green	Black
Linput to Lamp signal	36	Red	Blue
R input to R amo $O v$	22	Green	Black
R input to R amp signal	22	Red	Red
Lamp to L speaker	$23+23$	Red	Blue
R amp to R speaker	$32+32$	Red	Red
TOTAL WIRE LENGTHS			
Standardamp 1A	5A	Upgraded amp	Kimber
Green $\quad 2.13 \mathrm{~m}$	71 cm	Black	3.38m
Brown $\quad 79 \mathrm{~cm}$	39 cm	Blue	2.08 m
Blue -	30 cm	Red	3.34 m
Black 20 cm	53 cm		
Red 58 cm	1.06 m		
Table 1 Wirelengths for 2 U case			

BUYLINES

All components for the Virtuoso Power Amplifier are available from Audiokits Precision Components, 6 Mill Clase, Barrowash, Derby DE7 3GU. Tel: (0332) 674929.

Audiokits also supply the complete kit for all versions of the amplifier and a full price list of both kits and components can be obtained by sending a large SAE.

UPGRADING THE PREAMPLIFIER

Since I designed the Virtuoso Pre-amplifier (ETI JuneNovember 1986) new components have become available which enable constructors to further improve the sound quality as follows:

- Upgrade the 1N4002 diodes to UF4002 fast recovery diodes - or (better still) to schottky 11004 s .
- Upgrade all polycafbonate capacitors to Audiocap polypropylene capacitors (from Audiokits - see Buylines)
- Replace all resistors to buik metal foil type especially cartridge loading. RIAA equalisation and
negative faedback resistors
- Upgrade the volume control to a goldplated switched attenuator with Holco or (better) bulk foil resistors.
- Use Kimber cable for all internal cabling. Where screened cable is required use Van den Hull 0502
- Replace the mains transformer with a higher power version in a remote box.
The summed effect of these improvements is to extend the sonic performance of the pre-amp still further, making it a worthy match for the highest grade Virtuoso Power Amplifier.

Interak

AN EXPANDABLE DISK-BASED Z80A DEVELOPMENT SYSTEM YOU CAN BUILD YOURSELF! Universities, Coileges, Industry, Enthusiasts:

Unlike home computers, development systems haveentirely "open" architectures, use standard TTL etc. chips (ie no ULA's!), and are built in a proper engineering fashion. Usually these superior products carry a correspondingly ally these superior products carry a correspondingly
superior price tag, but you can build Interak yourself board superior price tag, but you can build Interak yourself board
by board and thus afford a system which would normally be out of your reach and/or understanding

 The initial development system has 64 K of RAM, a 4 MHz Z80A CPU, parallel ASCII keyboard interface, VDU interface (TV set or monitor) parallel printer interface, and a floppy disk drive interface for up to 4 drives. Any size (including $8^{\prime \prime}$ double density) can be used, but our 1 Megabyte $3.5^{\prime \prime}$ drives are proving very popular because they can fit into the system rack, (and they only cost $£ 89$ each + VAT). CP/M Plus is available, giving access to thousands of "public domain" programs
The system can be described as "future proof" because it uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system was first made in 1977 so (unlike almost all other computers) it has stood the test of time.
Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc

Greenbank

Greenbank Electronics (Dept. T6E), 460 New Chester Road, Rock Ferry, Birkenhead, Merseyside L42 2AE.

Tel: 051-645 3391

AUDIOKITS PRECISION COMPONENTS

THE VIRTUOSO POWER AMPLIFIER

INSIDE AN UPGRADED VIRTUOSO POWER AMPLIFIER
BUILD THIS SUPERB POWER AMPLIFIER WITH AUDIOKITS TOP OUALITY COMPONENTS FOR THE ULTIMATE IN SOUND QUALITY.
FULL DETAILS DESCRIBED IN APRIL-JUNE 1988 ETI.
COMPLETE KITS AVAILABLE FROM AUDIOKITS OR ALL PARTS SUPPLIED SEPARATELY
SEND LARGE SAE (OVERSEAS 3IRC'S) FOR FULL PRICE
LIST OF KITS \& COMPONENTS TO.
AUDIOKITS PRECISION COMPONENTS,
6 MILL CLOSE, BORROWASH, DERBY DE7 3GU.
TEL: 0332674929

- High quality touch dimmer

500W £12.99

- Mains Wiring and Metal

ORDERING

- All Kits contain full instructions PCBs and components \square All prices include VAT and postage and packing Overseas orders add 10% to above prices Please send Cheque or Postal Order with Order.
Zenith Electronics Dept. I
14 Corllandt Business Centre Hailsham, East Sussex, UK BN27 1AE Telephone (0323) 847973
Telex 878334 FAX 647204

OPEN CHANNEL

In case you're not aware of it (I wasn't!) the UK is ahead of Europe in at least one aspect of telecommunications. Our existing telecoms watchdog regulatory body, Oftel, is the only one of its kind in Europe. Since our telecoms deregulation programme started a few years ago, the powers of the main telecommunications provider, British Telecom, have been somewhat restricted and Oftel was set up to observe its operations to ensure that BT did not remain in control of its previous monopolising powers.

Going Regular

Effectively, this prevented BT from being a regulatory body, one of its previous roles. Instead it is (or should be) purely a provider.
Remarkably, the UK is the only country to have gone down that path in Europe so far. Others will soon be following suit. A ruling by the European Commission expected shortly will force other countries to prevent existing telecommunications regulatory bodies from being telecommunications providers too.Separate organisations, like Oftel in the UK, will have to be set up by the respective governments to ensure this is the case.

This is all part of the recent moves by the European Commission to ensure the total European telecommunications market becomes deregulated, in much the same way that the UK's is. The Commission's idea is that the market will be completely open to all member countries by 1992. Also, the market will become open to foreign traders, with companies such as BT and Plessey able to sell into Europe on a much greater scale than they can do now. Of course, in return, European manufacturers will sell into the UK more than they do now, too. So it'll be swings and roundabouts for a time.

Free Access
One exception to free access within all countries' networks (as is the case in the UK) is that the prime equipment (the master socket) will remain within the control of the network provider. I've voiced my opinion of that in the past and I'll do it again. If that is the case and l've no real objection against the principle, there should be no charge for the fitting of the socket.

A telecommunications network provider is much the same as any mains services provider (gas, electricity, water) in that if the provider wishes the customer to use its service, connection to that service
should not be charged to the customer. The customer should be charged for the service itself making a 'phone call, using electricity, burning gas - but the connection of the gas meter, electricity meter, water meter, master socket, should be the responsibility of the service provider. Perhaps if I say it often enough, Iain Vallance and/or Professor Carsberg will hear me?

After all in the current position, a customer having a master socket fitted is charged for the pleasure and is then not allowed to touch the socket other than plugging in approved equipment. That is wrong and unfair.

Where's the Old Telly?
GEC has started operation of its private mobile radio (PMR) network, National One, which will use frequencies previously allocated to the old 405 -line black-and-white broadcast television service (known as Band III). Can anyone remember it? That was the one with all the snow - and every time a car or bus went past outside, it looked as if the car or bus was going past inside. Hopefully, Band III PMR will be a bit better reception-wise than that!
The GEC network is one of two national Band III operators, the other - a Philips-led consortium called Band Three Radio (inventive name, eh?) began service in October of last year, although only 1000 or so users have so far signed up.
There have been two major problems with Band III PMR hence the apparent long delays. The first has been the inevitable wait for usable and approved equipment. This wasn't a fault of the equipment manufacturers. Anybody who is anybody in the radio world such as Motorola, Storno, GEC, Marconi, Tait and Key Radio (a New Zealand based company, gearing up to UK manufacturing) can turn out a new radio transceiver in the passing of a specification.
The fault is the second problem. There has been no specification. The relevant MPT13 standards were only released in February, so any operating prior to this (Band Three Radio) were jumping the gun a little by running a service. However, I suppose Band Three Radio gambled that the expertise gained by starting a network early would give it a favourable position in the race to sell the system afterwards. It'll be interesting to see how they fare after a couple of years when accurate figures of customers are known.

Keith Brindley

CABLE \& SATELLITE TV SHOW

Wembley, I suppose, is a reasonable venue for an exhibition of this stature. As exhibitions go, the Cable and Satellite Exhibition isn't large. There again, this year's offerings were a considerable improvement on last year's. If things keep on like this exhibitors are going to be a little crowded in the years to come. Current growth of the industry is such that by around 1990, I reckon Wembley will not be able to stage it.

In many respects this is a good thing. It shows that cable and, particularly satellite TV is finally taking off in the UK. On the other hand, the industry is going to lose a lot of its current friendliness which was evident in the good natured atmosphere at this show, Still, you can't have everything.

Alongside the exhibition, Wembley Conference Centre housed a two-day conference on allied topics, addressing important debates regarding encryption and standards. Representatives from British Satellite Broadcasting, SES (the Astra people), IBA, BT, Eutelsat and others spoke about the future of satellite TV and how it will affect us.

As far as the exhibitors (around 90 of them) were concerned, all the big manufacturing names were there, most of them showing lates developments in equipment. New products particularly eye-catching included the Micro Eye SBR 2050 satellite receiver from BEL Tronics. Among other things it features a 96 -channel memory, synthesised audio tuning and selectable de-emphasis. Unlike existing Micro Eye receivers, the SBR 2050 is intended for more of a mass-market, with a price to suit.

Newcomer to satellite television, Pace was there, with the SR640 receiver (see ETI April issue for a comprehensive review) making quite an impression on the stand.

Salora was showing details about the new receiver, the XLE. Salora and its sister company Luxor, by the way, are major backers of the D2-MAC standard. They are members of the Euromac consortium, together with Thomson, ITT, Logica and Philips, which has been formed with the express aim of convincing all parties concerned with European satellite television that it's the D2-MAC transmission standard we should be looking at, not the D-MAC standard. Although no names were specifically mentioned, the Euromac argument is undoubtedly aimed at the decision by British Satellite Broadcasting to use the D-MAC standard.

Nobody from Euromac would deny that D-MAC is technically a better standard than D2-MAC in its features and facilities. The argument is purely that the D2-MAC standard already exists, so why go to the bother and cost of having to develop a new standard, purely for the British market. The cost of any extra development work has ultimately to be borne by the consumer anyway.

Euromac's impressive stand (organised and staffed by Philips) was set up to show that D2-MAC STV is already in existence. Working D2-MAC receivers from Philips were on show and a number of demonstrations of such niceties as compact disc quality multilanguage transmissions and conditional access scrambling were on the stand. In the light of the opposition, BSB may be forced to take a second look at its D-MAC decision.

Of course, it's not only BSB which is against D2-MAC. Most of the existing programme providers are fairly well committed to DMAC. A number of programme dividers had stands, including MTV, Sky Channel, Premiere, CNN, The Children's Channel, Screensport and Lifestyle. Premiere, interestingly, doesn't class itself as a satellite provider instead it is purely a cable programme provider, albeit transmitting its signals to the cable head-end systems via satellite link. The distinction is important for film distribution and hence copyright payment reasons. Generally, all providers were happy to give information regarding current and

future programmes available on their channels.

Last, but certainly not the least interesting, were the Eutelstat and SES stands. Noticeable by its absence was an input from Intelstat. This would have given consumers and trade alike a forum to see all three satellite providers. Eutelsat was going all out to impress visitors to the stand, showing a 'live' demonstration of all 16 television channels which it currently transmits from its three operational communication satellites. Also featured was a display to promote the next generation of satellites - Eutelsat II. These will have transponders of around two and a half times the power of the current Eutelsat I satellites, which will make them around the same power as SES's Astra satellite transponders.

The difference between Eutelsat II satellites and Astra is that Astra is planned to be up by the end of this year. Eutelsat lI satellites are at least three years away. On the other hand, Eutelsat I satellites are already up there, so who's arguing?

Here, at least, the D2-MAC/D MAC argument was of little consequence. Both Astra and Eutelsat have no bias one way or the other. They'll transmit whatever the programme providers want to transmit, in whatever standard, format or language.

The Cable and Satellite industry is still relatively a baby compared with other parts of the consumer electronics market but this year's Cable and Satellite Exhibition and Conference showed the industry is moving past teething problems and is beginning to walk unaided. If everything (satellite launches, product availability, etc) goes as planned, this year will see the industry really finding its voice.

Keith Brindley

ONCE OVER

T n these days of mass produced high tech, it sometimes seems there is little room left for the home constructor. However, sometimes the tables are turned with mass production doing the hobbyist a favour.

Maplin Modules
The subject in question is tempera. ture measurement. Maplin has been selling a range of temperature display modules for a while now so we thought it about time we took a look.

There are two modules on the menu - the straight 'temperature module' and the ' $\mathrm{min} / \mathrm{max}$ ' temperature module. These are pretty similar in many respects and cost $£ 5.95$ and $£ 7.50$ respectively. The straightforward module has a 12

hour clock built in (for good measure) and the min/max module has memories for the minimum and maximum temperatures reached since the last reset. The other functions are the same and it is the simple module we'll look at here.
First, it is tiny! The sparse circuit board holds just one custom chip bonded directly to the PCB. The whole unit measures only $68 \times 35 \times 24 \mathrm{~mm}$ - and most of that is battery. A single HP7 battery is used which clips into the moulded holder on the back of the module. This can be removed with six screws to use an external 5 V supply although the power consumption is miniscule and the battery should last a year or so.
The display is an extremely clear LCD. As far as I can tell this is a non-multiplexed display and so it is very visible from all reasonable angles. The temperature is given in $1 / 2$ in high figures to one decimal place.
The module can manage a temperature range of about -20° to $70^{\circ} \mathrm{C}$ with a quoted accuracy of around $\pm 1^{\circ} \mathrm{C}$, although this seemed a little far off the truth when comparing with a mercury/glass thermometer.

The display is updated every 10 s but this can be altered to every 1 s with a connection on the 16 -way edge connector.
These connections are also used to select between Centigrade and Fahrenheit display, clock/ temperature display and to set the high and low alarm points.
Both Maplin modules have alterable stored over-temperature and under-temperature points which, when reached, produce a 4 kHz alarm tone on one edge connection and swing high one of two connections depending whether it is a high or low alarm.
Simple connection of a piezo buzzer or relay with 1 -transistor buffering turns the module into a high tech temperature alarm or thermostat.
As if that wasn't enough for your money, the modules have a digital temperature data output too. This is a serial TTL output with the temperature in BCD format along with a clock pulse on another pin.
It is simple enough to rig a shift register to convert to serial output or the stream can easily be read directly into a micro system using interrupts. I tried the latter on my BBC micro with wonderful results.
For useful control applications an external sensor is available for $£ 2$ which simply solders onto the PCB in place of the existing one.
The Maplin modules really do show what can be done with custom LSI produced in large quantities. There is no way a home built unit like this could be produced for anything like the price. However, at the same time the modules are eminently useful for incorporating into your own projects.

If's The Humidity

When someone next to you says "It's not the heat, it's the humidity," (not that they're likely to in this country) you can put them straight onto the right track with another module, this time from Solex.
The HT-50 appears in many ways like Maplin's temperature modules. Its functions are similar too. However, this little darling can measure humidity as well. Is there no end to the ingenuity of those clever folk in Hong Kong?

The HT-150 is much the same size as the Maplin jobs but has a smaller display with a little grill to the left of it. This is where the air goes in for humidity testing.
The humidity is displayed by $1 / 3$ in figures as a percentage relative value with an accuracy of 0.1%. There are many ways of measuring humidity and although I don't know which one is used here, none of them achieve accurate results easily.

The HT-150 also shows the temperature (${ }^{\circ} \mathrm{C}$ only) on the same display in smaller figures. The humidity and the temperature are both sampled every two seconds but the humidity sensor can take up to two minutes to respond.
Again, high and low alarm points for both temperature and humidity are provided and this module also has maximum and minimum memory.
A serial data output along the same lines as the Maplin modules carries both temperature and humidity data with different timing pins to separate the two.
The HT-150 really provides a remarkable number of functions in a very small space. There are just two problem areas. First is the power. Four $1 / 2 \mathrm{~A}$ sized batteries are used. These are not only relatively difficult and expensive to buy but they only last 40 days. An external power supply is a must with this one.

The second problem is the price - £46. Now that is a lot compared to the under-a-tenner Maplin modules but then this is doing a lot more and humidity sensors are not cheap.
Both the Solex and Maplin modules are remarkable pieces of oriental engineering. Designing and building complex control equipment with these becomes a doddle. It's good to see homemade projects getting the chance to use professional building blocks like these.

WIth the advent of colour television broadcasts, the picture quality available on a normal domestic television has declined. This may seem a surprising statement, so I will explain it.

Illuminating

The luminance information, which comprised the entire video signal in the days of black and white, is transmitted with a bandwidth of 5.25 MHz . The sound is transmitted on a subcarrier 6 MHz away from the vision carrier and the lower sideband of the video information is filtered out at the transmitter, so that the video signal is effectively single sideband at higher video frequencies. All this produces a transmitted signal spectrum as shown in the figure.
To avoid the sound interfering with the picture, most black and white televisions filtered out the last bit of the video information and made use of just under 5 MHz of video. In terms of picture resolution, a monochrome television could give a resolution of up to 400 lines. This means that a series of vertical lines could just be distinguished from one another if 400 were evenly spaced over the whole linewidth. The transmitted linewidth is of course greater than what is displayed on the screen which varies from television set to television set, while the transmitted linewidth is constant.

The Real Res

So with a 625 line monochrome transmission, the vertical resolution on the screen might be 550 lines and the horizontal resolution onscreen might be 380 lines. This in itself seems out of proportion, when you consider that the television screen is wider than it is high and so should have over 600 lines of horizontal resolution to match the vertical resolution.
The use of colour makes this much worse. The colour information is transmitted on a subcarrier 4.43333 MHz from the main carrier. The reason for this obscure

frequency is to interleave the luminance and chrominance sidebands, which will both have peaks at multiples of line frequency (a picture with the same information on each line would have all sideband energy at multiples of line frequency).
Since sidebands are relative to the carrier on which the modulation is imposed, the fact that the colour subcarrier is set half way between two peaks of luminance sideband energy sets the main chroma sideband peaks between the luminance peaks.

Be A PAi

This, of course, makes it easy to separate the majority of the chroma and luminance signals and retain most of the picture definition. All that is needed is a comb filter with the 'teeth' spaced at line frequency multiples $(15625 \mathrm{~Hz})$, obtained by using a line store, isn't it? Of course not. The PAL television system used in the UK has a further complication - the subcarrier phase reversal for every line which keeps the colours realistic even over a bad transmission path.

Storing Fields

A line store based filter will not separate the sidebands and at least a field store is needed for a fudge solution, or a frame store for a completely 'pure' design.
The result of all this is that the normal television set simply filters off all the luminance information which is interleaved with chrominance information, and typically uses a video bandwidth of $3.5-4 \mathrm{MHz}$. The horizontai resolution is up to about 340 lines, though not all sets manage this.
It is this poor resolution which renders VHS video recorders viable. Their 250 lines resolution does not look too bad compared with the picture quality off air. However, at least one TV manufacturer offers a set with a frame store built in and others will follow.

Quality To Come

It is not clear from the advertising whether the frame store is used to improve the luminance friendship but surely this facility will soon be available. With top quality modern SAW filters to separate sound and vision information and a frame store separator for luminance and chrominance, it is possible that a resolution of 500 lines could be achieved. This would make VHS video recorders look pathetic by comparison.

Andrew Armstrong

The universal digital panel meter solderside foil

MIDI Master Keyboard (June 1987) In Fig. 3 and the Parts List there is some confusion as to the correct part numbers for some ICs. These should be: IC17 - 2764, IC18 6522, IC10, 21 - 74LS32.

Car Alarm (August 1987)

In Fig. 1 Q7 is not numbered and its emitter is shown unconnected. This connects to earth. The transistors in the parts list went a little awry. Q2-6 are BC237 and Q7 is a TIP31.
Boiler Controller (September 1987)
In Fig. 2 (a) the primary of T 2 is shown connected to Earth. This should be neutral. In Fig. 2(b) one of the bridge rectifier diodes, D6-9, is shown the wrong way around. This is correctly shown in Fig. 5.
EEG Monitor (September 1987)
in Fig.3a the pins of IC1 connected to the power rails are shown swapped around. In Fig.4a R7 is unlabelled and is between C3 and C6. In Fig. 5 C20 should be $£ 10$ and R18 is unlabelled. It lies between R17 and R19. ETI Concept (October 1987)
The Power Board parts list wrongly lists R6 as 270R. This should be 270 k . Also, note that the power board's 0 V rail must not be connected to Earth or the OV rail of the CPU board
Printer Buffer (November 1987)
The software for the EPROM had three errors listed. The byte at 039A should read 20, at 039B 14 and at 0492 30. All numbers are in Hex.
Dream Machine (December 1987)
The transistors used in this project are ST1702. BC108s can be substituted.

Heating Management System

(December 1987)
A 4116 is not a suitable alternative to the 6116 specified. A 4016 RAM chip will suffice. In Fig. 1 the junction of R1/D5 should connect to D1-4/C1 and not cross. The zener diodes above the temperature sensor ICs (IC16-19) should be deleted. C 4 should be 220 n and not 220μ. C7-10 should be 10μ. Q2-7 should be 2N3904 and not BC3904.
RGB Auto-Dissolve (January 1988)
In Fig. 5 there are marked two D6's. The right hand one should be D5 (they are both 1N4148's anyway). In the text the reference to zener diode D5 should read zener diode ZD1.

PASSIVE INFRA-RED ALARM

(January 1988)
Fig. 2(a) shows the base of Q1 connected to ground and to R14. It should be connected only to R14.

Clean Up Campaign (January 1988)
In the component overlay (Fig. 3) ZD1 is incorrectly orientated. The positive terminal should be the southern end.

Spectrum Co-processor (March 1988)
Mogul Electronics, given in the Buylines as suppliers of the RAM chips, have moved to: Unit 11, Vestry Estate, Sevenoaks TN14 5EU. Tel: (0732) 741841

Transistor Tester (February 1988)

The foil pattern for the main board was printed reversed left-right on the foil pages.

CLASSIFIED
01-437 0699 Ext 291
Send your requirements to:
Heather Wust, ETI Classified Department, ASP Ltd., 1 Golden Square, London W1R 3AB

Lineage: 44 p (VAT excl) per word (minimum 15 words)
Semi Display: (minimum 2 cms) £12.20 per single column centimetre + VAT Ring for information on series bookings/discounts and recruitment advertisement rates.
All advertisements in this section must be prepaid
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate car (available on request)

COURSES

\begin{tabular}{|c|c|}

\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
Start training now for the following courses. Send for our brochure without obligation or Telephone us on Ref: :TI/4/Bs 0626779398

NAME \qquad
\qquad

\qquad
\qquad Introduction to Television
\end{tabular}}}

\hline \&

\hline \&

\hline \&

\hline \&

\hline \&

\hline \&

\hline Radio \& Telecommunications Corre 12, Moor View Drive, Teignmouth, \& unications Correspondence School, e, Teignmouth, Devon. TQ14 9UN.

\hline
\end{tabular}

Market your expertise in ETI magazine. Call Heather Wust - Today
01-437 0626

ILLUSTRATED CATALOGUE

OF QUALITY ELECTRONIC ELECTRICAL AND AUDIO COMPONENTS AND ACCESSORIES FULL OF USEFUL INFOR MATION AND MANY BARGAINS AND

SPECIAL OFFERS ONLY 75 p. (REFUNDABLE AGAINST FIRST ORDER) FAST BY-RETURN SERVICE STRACHAN ELECTRONICS (ETC) 9 Croall Place, Edinburgh EH7 4LT

PROMs - EPROMs - PALs ANY PROGRAMMABLEIC SUPPLIED OR BLOWN
Typical prices (excluding VAT) 716 £4.20 (Data Entry P\&F extra) 2764 £2.85 …................ $27128 £ 4.40$

BIPOLAR PROM S ITOm $£ 1.35$ eg. $82 \mathrm{S123,18S030,745288}$ PALs, PLDs etc. from £3.26 Full design and prototyping service. Any quantity programmed -SAE or phone for details.
P.L.S., 16 Central Road

Worcester Park, Surrey, KT4 日HZ. Phone: 01-330 6540

MAKE YOUR INTERESTS PAY!

More than 8 million students throughotu the worid have found it worth their while! An ICS
home-study course can hele hifeel ICS has over 90 years experience in home-study courses and is the lave more fun out of school in the worid. You learn at your own pace, wher and where you wargest correspondence of expert'personal' tutors. Find out how we can help YOU, Post or phone today for your FREE (Tick one box only')

 \begin{tabular}{|l|l|}
\hline Basic Electronic \& Radio Amateur Licence

\hline

 Engineering (City \& Guilds) $\quad \square$ Exam (City \& Guilds)

\hline Electrical Engineering \& \square \& Car Mechan

\hline Electrical Contracting $/$ \& \& Compurer

\hline
\end{tabular} installation $\quad \square \mid$ Programming GCE over $40^{\prime} O$ ' and ' A ' level subjects \qquad \square

Name Address

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$. Components and PC.B's available Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

PLANS AND DESIGNS

III, wan

Design and build your own electronic
Plans instructions, circuits, parts lists £4.95 inc p\&p
BURLINGTON MOTOR CO. LTD (G9) ARCH 39M, BATH PLACE, LEAMINGTON SPA, CY3 3AQ.

ALARMS

NEIGHBOURHOOD WATCH BURGLAR ALARM D.I.Y. KIT

will offer a professional system at a DIY price Ham mini beam 10, 15, 20 metres. Parts integrated circuits, transistors, diodes,
valves, resistors, etc.
Service Manual and parts for
Spectrum and Amstrad
Send a 8" $\times 5^{\prime \prime}$ SAE for list.

M.J. SEAWARD (Mail Order)

Dept. (ET), St. Olafs Road Stratton, Nr. Bude, Cornwall Telephone: 02884892

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7 , Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire. HR8 2HS.

TERMS \&
 CONDITIONS

[^1]

BUG-87 Matchbox sized surveillance transmitter - can be received by any FM/VHS radio
ROBO-VOX Instantly transforms your voice into Dalek/Robot type also amazing sound effects possible \qquad £11.95 ROBOT CIRCULAR Unique radio controlled robot - can also be converted to control via computer
£16.95
EDU-SCOPE Build your own oscilliscope with solid state display £39.99
EDU-SCOPE CASE KIT £11.99
THERAMIN MUSIC GENERATOR An electronic device based on an ancient legendary mystical instrument
f12.75
RAD-X CONTROL A complete ready built 2 output RADIO CONTROL SYSTEM £14.99
Please add $£ 0.75$ per order for P\&P. For FREE Datapack on all our Products/Kits send SAE.

Cheques/PO's payable to:-
IMAGINA-TRONICS
Aberdeen House, The Street, Charlwood, Surrey RH6 ODS.

SURVEILLANCE

ESKAN ELECTRONICS

LEADING MANUFACTURERS AND SUPPLIERS OF
SURVEILLANCE AND
SECURITY EQUIPMENT.
MINIATURE TRANSMITTERS,
TELEPHONE MONITORING
EQUIPMENT, AND MANY OTHERS.
Send stamped addressed envelope for your free catalogue to:
172 Caledonian Road, London N1 OSG. Telephone 01-278-1768 VISA
Trade Enquiries Weocome

> Classified advertising could be working for YOU! Tel: 01-437 0626

ROOM BUGS

- Ready built, tuned and sealed
- Whisper sensitive condenser microphone - Shock proof capsule $30 \mathrm{~mm} \times 20 \mathrm{~mm} \times 15 \mathrm{~mm}$ - Range upto 200 m on domestic VHF radio. The most practical and easy to use on the market full refund if you disagree.
- ETI readers save $£ 2$, only $£ 14.95$ each inc Please make cheques/PO's payable to. LONGCROFT SECURITY, 30 Longcroft. Huddersfield West Yorkshire HD5 8XW.

SHEEP SHAN'T SLEEP!! 100 watt amplifier modules $£ 7$, Glass/PCB complete \& tested. 8 Cunliffe Road, llkley LS29, KIA GIVEAWAY NEXT MONTH, IT'S IRRESISTABLE.

J.P.G. ELECTRONICS

Resisiors 1\%w 5% castbon E12 $1 T 1$ is metal tim E243P)
 Total content of resisto 1,000
Cable Tias 75 mm 1 1pea $£ 5.95 / 1000 ; \subset 49.50 / 10,000$ Power Transistors T/T 35C, TIP 36 C , $100 \mathrm{~V}, 26 \mathrm{ATOP3}$ Plastic case
100 db Plezo

 Saa 1027 Stepping motor drive chip
50 ohme Miniature smal Transistor kits 100 -10BM high quality Sound ideal for cordiess micropho
Metol Latch Key XLR line Line Sockel Key XLR line plug Line Socket.
Flux cord solder 500 g mixing with $1 / 2$ litre water if 140
reel $f 4.95$ Automatic Squeaze a
SPECIAL OFFERS
computer grade capacitors with serew terminals 5,000 of 60 v E4,47,000 of
$195 ; 87,000$ of 10 v E1.50

, Stereo LW/MW/FM luner, pre-amp complete with | volume too $E 5$ ntrol and tuning |
| :--- |
| makers box |
| 5 , Faulty $E 1.95$. |

Circuir diagram, description and setting up procedure Ior tuner assemble described above 50, CD display 18 digit 7×5 dots matrix $\quad . \quad \& 2.5$ Owerty kerboard M8 key uncased pood qualiay wiches resistors, toois otc. always in stock. Please add $75 p^{+2}$ per order VAT inc.
J.P.G. ELECTRONICS, 276 Chatsworth Hoad,

Chesterfietd S40 2BH, Caffers welcome Accass ordars (0246) 211202

BOOKS

CIRCUIT DIAGRAMS

Most Makes, Models, Types, Audio, Music Systems, Colour, Mono Televisions, Amateur Radio, Test Equipment, Vintage etc. E3.50 plus LSAE
State Make/Model/Type with order Full Workshop Manual prices on request with LSAE
MAURITRON (ETI), A Oxfordshire, OX9 40Y

$$
\begin{array}{|c}
\text { Next Copy Deadline for } \\
\text { August issue is } 23 r d \text { May. }
\end{array}
$$

[^2]CASSETTE MOTORS large and small 2 for £1.00. Mono and stereo cassette tape heads. 2 for £1.00. Microphone small for cass. tel. etc. 2 for $£ 1.00$. Telephone buzzers at $£ 2.50$ each. Please add 75 p p\&p no VAT. Access card accepted. Golden Orange Supplies, Brockhollands Road, Woodside, Bream, Lydney, Glos. Tel: 0594563009.

FREE MEMBERSHIP to the NATIONAL COMPONENT CLUB For details and a free gift of components worth over $£ 10$ send only $£ 1.00$ p\&p to: Higher Ansford, Castle Cary, Somerset BA7 7JG

WANTED

> | Turn your surplus |
| :--- |
| transistors, IC's etc., into |
| cash. Immediate settlement. |
| We also welcome the |
| opportunity to quote for |
| complete factory clearance. |
| Contact: |
| COLES HARDING \& Co. |
| 103 South Brink |
| Wisbech, Cambs. |
| ESTABLISHED OVER 10 YEARS |
| Tel: 0945584188 |
| Fax Number: 0945588844 |

IDEAS/INVENTIONSwanted Call IS.C. 014341272 or write, Dept ASP 99 Regent St, London W1.

AUDIO

Grundig, Infra-Red Remote Control "VIF-K1" consists of transmitter TPV355 and VIF-E1 brand new \& boxed
VIF-E1 \quad f9 99 f4.99 p\&p $£ 2$ Vide $£ 9.99$ for 10 p\&ip 83 Video Heads (Grundig 2×4 Super) with head assembly $f 29$ p\&p $f 2$ each 2×4 Super Panels $\mathrm{f5} 595=$ DTF, Servo Video, Croma, Sterio-ton, Motor-Board Modulator \& Tuner p\&p $£ 1$
Remote Controls Infra-red \& Sonic suitable for use with Ferguson, JVC Philips, Sony, Grundig, AU

SURPLUS STOCK WANTE
Stan Willets (ETI), 37 High S
W. Bromwich, W. Midtands B70 6PB Tel: 0215530186

BRUEL AND KJAER 230 S level recorder, pens, paper £185. Marconi TF2337 Auto Distortion Meter £190. Bryans 26000 A3 Plotter £145. Amber 4400 Audio Test Set £625. Bek 2112 Audio Spectrometer £220. Tel: 01739 5940.

DEVELOPMENT TECHNICIAN

Modern Vitalcall manufacturers of emergency communication systems for the elderly require a young enthusiastic technician to work in the research and development department. Duties include the building and testing of prototype products.
Please send your C.V. to:
Modern Vitalcall Ltd.,
PO Box 25, Redditch,
Worcestershire BN8 9ŃS

Do you need Qualified Staft? Electronics Today International can find them for YOU
Ring 01-437 0626 TODAY!

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos Tel. 0684 73127.

SERVICES

ADS repair amplifiers ... ADS design amplifiers . . . ADS offer 100 watt poweramp modules £8.99 built . . . ADS, 1 Regent Road, Ilkley LS29. Datapack 20p.

At last, an affordable PCB de sign tool for your Amstrad PC Plotting service available.
Send SAE for further details, or $£ 2$ for demo disk.
Labcenter Electronics 14 Marriner's Drive, Bradford, BD9 4JT. Tel: 0274542868

PRINTED CIRCUIT BOARDS At very competitive rates: 4 pence per square centimetre (less for orders of 10 plus) 1 offs: 100 offs. Enquiries: Watling Wires, 52 Watling Street, Nuneaton, Warwickshire, CV11 6JL. Telephone (0203) 382296.

- Components
 - Equipment
 - Kils
 - Surveillance
 - PCBs

If you can supply Products or Services to ETI Readers
Contact Heather Wust on 01-437 0699

AS	D CO				
		TSEWEIT			
prase bearm	cetss anacarca	=			Tol N O
- $\square_{\text {for sale }}$	-component	a wanteo	${ }_{\text {akrs }}$	qpeges	Dotueamse stat
\square					
L					

ADVERTISERS' INDEX

ASP READERS SERVICES
BENCHMARK BOOKS
BICC VERO
ASP BINDERS
BK ELECTRONICS
CRICKLEWOOD
DISPLAY ELECTRONICS
EMINENCE AUDIO
GREENBANK ELECTRONICS
GREENWELD ELECTR
HART ELECTRONICS HENRY'S AUDIO ELECTRONIOS
MAPLIN ELECTRONICS SUPPLIES
NATIONAL COMPONENT CLUB
OMNI ELECTRONICS
RISCOMP LTD
SAGE AUDIO
SPECIALIST SEMICON DEVICES
STEWARTS OF READING
ASP SUBSCRIPTIONS
SUMA DESIGPM
TK ELECTRONICS
XEN ELECTRONICS

THE BENCHMARK BOOK COMPANY

KEY TECHNIQUES FOR CIRCUIT DESIGN GC LOVEDAY
A new book on the design of electronic hardware. The first in a unique series. Provides a sound introduction to this vital subject, dealing with the various stages of the design cycle from the initial target specification through to the final prototype. Covers concepts such as derating, testability, device selection (discretes and ICs) and the use of 'rules-of-thumb' etc.
Essentially non-mathematical with numerous worked design examples and reader exercises - all with model solutions
A must for anyone wishing to do their own electronic design.
ISBN 1871047005 Pbk 128pp price $£ 6.95+60$ p p\&p.
Order a copy from your local bookseller or direct from us:
THE BENCHMARK BOOK COMPANY
59 Waylands, Swanley, Kent BR8 8TN

REACH • FOR • THE • SKY part I

A. Receiver bandwidth
B. Single button channel selection
C. Parental channel lock
D. System styling
E. Receiver remote control
F. Baseband output
G. Unobstructed southerly view

Name

Address

WHAT
 TO DO

This is the first part of the ETI once-in-alifetime Reach For The Sky satellite TV competition. All you have to do for this part of the competition is to place the seven criteria on the coupon in order of importance. For example, if you think the most important feature for a high quality and enjoyable satellite TV system is a parental channel lock then write a 1 in the box opposite feature C .

When you have ordered all seven criteria, don't send us the coupon! Keep it safely until next month when we shall publish the final part of the competition. Then you must send both parts together to ETI as your entry.

REACH FOR THE SKY

See for yourself what all the fuss is about in the electronics world. Enter the ETI Reach For The Sky competition and the lucky winner will be able to pick up multi-channel entertainment, news and sport on their existing TV set.

Satellite TV is here now. Umpteen channels are broadcast everyday from a growing number of satellites positioned high above the Earth's equator. Even as you read this more satellites and more channels are planned. Everything you need to tap into these broadcasts (in addition to your conventional TV) can be won in this chance of a lifetime competition.

The Prize

We've joined forces with Pace - one of the big new names in satellite TV systems - and established dish manufacturer Vivor to offer a complete system of:

- Pace SR640 satellite receiver. A superb piece of equipment capable of receiving all current channels, with infrared remote control and full 39 channel memory
- Vivor high performance 90 cm dish antenna and mount

AEACH

- Ultra low noise LNB
- IRTE Paris low degradation magnetic polarotor
- Accurate dish actuator to move from one satellite to another
- 30m of connecting cable and the necessary connectors to enable the whole system to be set up with nothing more than common handtools
- Installation and operating instructions

If you haven't already read details of the Pace SR640 receiver (see ETI April 1988) you'll find its specification amazing. This is one of the few satellite receivers which is truly easy to use. Yet it maintains a performance which excites even the most stick-in-the-mud satellite engineer. With single push button control, you can alter the satellite, channel, polarisation, skew, etc, etc from the armchair in the living room. Once you've correctly installed your prize,
the receiver will automatically tune in all aspects of programmes, moving the antenna to point to up to 12 satellites, adjusting the polarotor for the best signal, powering the LNB and all the other tasks with just a single push of a button.

We've picked Vivor, a manufacturer of high quality antenna dishes as the supplier of the dish we're giving away. It's a 90 cm antenna complete with mount and actuator to enable itto swing across the satellite belt to point at any satellite up there, now or in the future.

The two main parts of the system are united with an LNB with a noise figure of less than 1.6 dB . Coupled with the low degradation Paris polarotor, the systems carrier-to-noise level is kept as high as possible, enabling the convenient smaller dish size to be used but maintaining good reception.

The Competition

The competition to win this topnotch system is in two parts over two issues of ETI. For Part One you have to arrange a list of features of a satellite TV system in order of importance. Part Two is the world's first ever 'spot the satellite' contest. This month's half of the competition is on the page opposite.

RULES

1. All entries must be on the published coupons or on photocopies accompanied by the published tokens.
2. Entry is open to all UK resident readers of ETI except employees and their families of Argus Specialist Publications, Pace Micro Technology and Vivor Satellite Systems.
3. All entries must be received at the ETI Editorial Offices by July 1st 1988.
4. The judges' decision in all matters is final.
5. All entrants to this competition shall be deemed to have accepted these rules.

[^0]: TOP GUALITY
 AUDIOPHILE
 COMPONENTS SUPRRMOS 2 ((COMPONENTS

 Following the success of the original SUPERMOS we now launch a higher powered version with many new exclusive sound improvements not available on any other amplifier, kit, board, module, or ready made.

 ## FEATURES:

 - Highly efficient distortionless PURE CLASS A throughout (low heat generation)
 - Top audiophile components inc best SMD's.
 - Exclusively made matched custom semiconductors - Minimal capacitor design (without DC servos) - PSU sound colouration eliminated
 - Advanced PSU feedforward ripple elimination includi internally separately regulated vollage AND current t
 ALL stages using SAGE Super-Supply circuitry
 - Total reactance (difficult speaker) drive capable

 THD 0.0001% SIZE $240 \times 100 \times 100 \mathrm{~mm}$ Damping factor 940 , transient power (2ohms) upto 1800W max.
 PLUS By innovative technical design we have eliminated 5 individual sound colouration components found in all other conventional amplifiers.
 $E L / M / /$ NATED - 1) Emitter resistors 2) Zobel networks 3) HF pole compensation 4) Fixed bias Vbe multiplier and temp gen distortions 5) Capacitor sound
 AND THERES MORE .. Sage exclusive CLEAN CLIPPING (not to be confused with soft clipping) eliminates PSU ripple from reaching the output even when severely clipped, this together with individual regulated supplies to all stages (Super-supplies) TOTALLY eliminates PSU component sound
 colourations, (A World firstl) colourations, (A World firstl)
 PREAMPS - The DH-QA32 Hybridop-amp, the only preamp ICever to come anywhere near the ET + SAE

 COMING SOON The SAGE 'ACTIVE PI MODE' CLASS A preamp, THE definitive match to the SUPERMOS power amplifiers.

 ## AND THERE'S MORE

 . . We can't possibly describe this amp fully in this ad to receive a full size 8 page glossy brochure giving full details including active class A information end $f 1$ cheque. PO or coin plus a 26 b SAE (Overseas send 6IRC's). SUPERMOS 2 modules $£ 140$ (P\&P \&2). THE ORIGINAL SUPERMOS MODULES 50.150 W £ 65 plus ($\mathbf{f 1 . 5 0} \mathbf{P \& P}$) Hardware, cases, PSU components/capacitors, gold plated plugs/sockets etc. now available.

[^1]: CLASSIFIED ADVERTISING TERMS \& CONDITIONS Our terms for new advertisers (semi-display
 and lineage) are strictly pro-torma until satisfactory reference can payment (excluding recognised advertising agencies Cheques and P.O.'s should be crossed and Imade payable to ARGUS SPECIALIST PUB advertisements 10 sent together with the

 The C
 No. 1 Golden Square.
 tondon W1R SAB.
 There are no reimbursements for cancella particular issue will be inserted in the following issue unless accompanied by in siructions to the contrary. It is the responinsertion of every series is published firs: rectly, and corrections must be notified in time for the second insertion, otherwise the pubishers will not accept liability or offer any All advertising sales are surges. ment Regulations concerning VAT Advertisrs are responsible for complying with the various legal requirements in force eg. The \& the buscinuss advertisements (disclos act * the businuss advertisements (disclosure) Full Terms \& Conations or

[^2]: TO ADVERTISE HERE - RING HEATHER WUST ON 01-437 0699

