

Our very latest kit for the discerning enthusiast of quality sound and an exotic feast for lovers of designs by John Linsley-Hood. A combination of his ultra high quality FM tuner and stero decoder described in "ELECTRONICS TODAY INTERNATIONAL" and the Synchrodyne AM receiver described in wireless Worla The complete unit features in the FM section to include ready built pre-aligned front-end, phase locked loop demodulator with a response down to DC and advanced sample and hold stereo decoder together make a tuner which sounds better than the best of remains easy to build. The Synchrodyne section with it's selectable bandwidth provides the best possible results from Long and Medium wave channels, so necessary in these days of split programming. If you want the very best in real Hif listening then this is the tuner for you Since all components tuner is not cheap. but in terms of it's sound it is incredible value for money. To cater for all needs four versions are available with variations up to the top of the range full AM/FM model, with any unit being upgradeable at any time. Send for our fully illustrated details

STUART TAPE RECORDER CIRCUITS

Complete stereo record, replay and biss system for reen-toreel recorders. These circuits will give studio quality with a ood tape deck. Separate sections for record and replay give optimum performance and allow a third head monitoring 250 mV input and output levels. These circuits are ideal for bringing that old valve tape recorder back to life. K900W Stereo Kit with Wound Colls and Twin Meter
 CASSETTE HEADS

20

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than new Slandard mountings make fitting spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel. The following is a list of our most popular heads, all are suitable for use stock
HC20 Permalloy Stereo Head. This is the standard head fitted as original equipment on most decks HS16 Sendust Alloy Super Head. The best head we can find. Longer life than Permalloy, higher output than Ferrite, fanHO551 4-Track Head tor auto-reverse or quisadrophonic use HQ551 4-Track Head for auto-reverse or quadrophonic use.
Full specification record and playback head....... $£ 14.60$ HX100 Stereo Permalloy R/P head. Special Offer $£ 2.49$ MA481 2/2 Language Lab R/P head. £13.35 SM166 2/2 Erase Head. Standard mounting. AC type.
SM150 2/2 Erase Head, DC Type .. 80 HQ751E 4/4 Erase Head for Portastudio etc. $£ 46.80$ Full specifications of these and other special purpose heads in our lists

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level, head azimuth and tape speed. Invaluable when
Tape Head De-magnellser. Handy size mains operated unit ape head prevents bulla on playback ... Curved Pole Type for inaccessible heads $£ 4.85$ Send for your Iree copy of our LISTS, Overseas please send 2 IRCs to cover surfae Post or 5 IRCs for Airmail.
Ploase add part cost of post, packing and insurance as followe INLAND OVERSEAS
Orders up to $£ 10-50 \mathrm{p}$ Please send sufficient to cover Orders up to 1 10-50p
Orders $£ 10$ to $£ 49-£ 1$ Orders over $£ 50-£ 150$
lease send sufficient to cover Surface or
required.

Personal callers are always very welcome but please note that we are closed all day Saturday

19" RACK CASES

* Suitable for instruments, high quality amplifiers and many other applications that demand strength and protessional finish * New improved construction and tinish * Black anodised aluminium front panels * Separate front mounting plate, no fixing screws visible on the front anhanced with two professional handles * With ventilation slits and plastic feet * Rear box manufactured from 1.1 mm steel finished in black. Rack mounting or free standing. Comes in quick assembly flat package spare front panels available.
 $\begin{array}{lllll} & W & \text { W (inch) } & \text { W D D } & \\ \text { U-10 } & 19 \times 1.75 & 17 \times 1.5 \times 10 & 2.4 \mathrm{~kg} & 23.50 \\ 2 \mathrm{U}-10 & 19 \times 3.5 & 17 \times 30 \times 10 & 29 \mathrm{~kg} & 24.50 \\ 3 \mathrm{U}-10 & 19 \times 5.55 & 17 \times 50 \times 10 & 35 \mathrm{~kg} & 26.50\end{array}$

15% discount on

 1U-10 2U-103U-10 with this edvert.$$
\begin{array}{lllll}
2 \mathrm{U}-12 & 19 \times 3.5 & 17 \times 3.0 \times 12 & 3.3 \mathrm{~kg} & £ 25.50 \\
3 \mathrm{U}-12 & 19 \times 5.25 & 17 \times 5.0 \times 12 & 4.0 \mathrm{~kg} & £ 27.50 \\
4 \mathrm{U}-12 & 19 \times 7.0 & 17 \times 6.5 \times 12 & 4.6 \mathrm{~kg} & £ 29.95
\end{array}
$$

Please add $£ 3.00 \mathrm{P} \mathrm{\& P}$ for the firs
No VAT to be added to the price

TEST EQUIPMENTS

C83A Digital Power Supply/Voltmeter (0/35 Volts 1.5 A)

C86A 60 MHz Counter/Timer

A range of low cost, high quality, metal cased laboratory instruments. Mains operated and easily portable. Please add $£ 3.00 \mathrm{p} / \mathrm{p}$ per item ($£ 1.00$ for MV338)

To order send cheque/postal order. Quantity discount available. Customers who require further information please send S.A.E. Trade and overseas orders welcome. Mail order only.
T.J.A. DEVELOPMENTS

Dept. ETI, 19 Welbeck Road, Harrow, Middlesex HA2 ORN.

AUDIOKITS PRECISION COMPONENTS

THE VIRTUOSO POWER AMPLIFIER

INSIDE AN UPGRADED VIRTUOSO POWER AMPLIFIER
BUILD THIS SUPERB POWER AMPLIFIER WITH AUDIOKITS TOP QUALITY COMPONENTS FOR THE ULTIMATE IN SOUND QUALITY
FULL DETAILS DESCRIBED IN APRIL-JUNE 1988 ETI. COMPLETE KITS AVAILABLE FROM AUDIOKITS OR ALL

PARTS SUPPLIED SEPARATELY
SEND LARGE SAE IOVERSEAS 3IRC'SI FOR FULL PRICE LIST OF KITS \& COMPONENTS TO
AUDIOKITS PRECISION COMPONENTS.
6 MILL CLOSE, BORROWASH, DERBY DE7 3GU
TEL: 0332674929

GII

$\begin{array}{l}\text { ISSN } \\ 0142-7229\end{array} \mathrm{ABC}$	$\begin{array}{l}\text { Member of the } \\ \text { Audit Bureau } \\ \text { of Circulation }\end{array}$

ETI is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright convertions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company, ol 1988 Argus Specialist Publicitions Ltd. All reasonable care is taken in the preparation of the magazine contents but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data concained in advertisements are accepted by us in good faith nor the publishers can be held responsible however, for any variations affecting price or availability which may occur after the publication has closed for press.

- Subscription rates UK $£ 16.80$. Europe: $£ 21.00$. Middle East: $£ 21.20$. Far East: $£ 22.80$. Rest: $£ 21.50$ or US $\$ 32.00$.

ARGUS PRESS GROUP

I Golden Square London WIR 3AB Tel: 01-437 0626 Telex: 88|1896

Geoff Bains: Editor Jez Ford: Assistant Editor Paul Chappell: Projects Editor Jerry Fowler: Technical Illustrator Jeff Hamblin: Design

Ed Davis: Photography
Christopher Harris: Ad Manager Julie Capstick: Classified Sales Andrew Selwood: Copy Control Mark Webb: Group Editor

Volume 17 No. 5

Lucid Dream Stimulator

Paul Chappell has lain awake nights thinking how to create a device to control your dreams. Now he's done it.

32

Dynamic
Noise

Reduction

This month's First Class project for beginners is a hi-fi noise reduction system for Manu Mehra which requires no special source material.

Published by Argus Specialist Publications Ltd., I Golden Square, London WIR 3AB. Tel: 01-437 0626. UK newstrade distribution by SM Distribution Ltd., 16-| 8 Trinity Gardens, London SW9 8DX. Tel: 01-274 861I. Overseas and nonnewstrade sales by Magazine Sales Department, I Golden Square, London WIR 3AB. Tel: 0l-437 0626. Subscriptions by Infonet Ltd., 5 River Park Estate, Berkhamsted HP4 IHL. Tel: (04427) 7666I. US subscriptions by Wise Owl Publications, 4314 West 238th Street, Torrance, CA90505 USA. Typesetting and origination by Multiform Ltd., Cardiff. Printed and bound by Adlard \& Son Ltd., Letchworth. Covers printed by Loxley Brothers Ltd., Sheffield.

MAY 1988

Virtuoso

Power

Amplifier
Graham Nalty continues to build his top flight power amplifier. This month it's the all-important power supply which takes shape.

Spectrum
 Co-processor

Graeme Durant rounds off this ingenious project with a discussion of the software and presents the co-processor operating system listing and a demonstration Spectrum Basic program to use the complete system.

Tech Tips

More circuits from readers around the world RIAA Program
Blockbusters
Pseudo Co-processing
QL Port

Playback

Open

Channel

Book Look

Classified
Ads

Ad Index
53
PCB Service
54

Backnumbers

Photocopies

Cover background photograph courtesy Don Carroll and The Image Bank. Bicycle from Cycle Logical, New Cavendish Street, London W1.

Nens

 KICK ASTRAThe delay in getting the Astra STV satellite into the skies has enabled them to rejig the twiddly bits and increase the power.
Inside the improved 52 dBW footprint the transmissions should now be receivable on a 60 cm dish (but try before you buy) rather than the 85 cm required before the requirement.
Astra now has a definite Arianne comprising launch date (well another definite launch date) in the last week of October and should be operational within three weeks of blast-off.
Satellite Technology Systems of Bristol will be producing half a million 60 cm dishes next year for British and European systems suppliers and is keen to introduce dishes in pastel colours to blend into the environment (right on manl).
For details of Astra's elevation and azimuth see January's ETI.
Satellite Technology Systems are at Satellite House, Blackswarth Road, Bristol BS5 8AU. Tel: (0272) 554535.

STRIPPERS COME OF AGE

Ceka (the toolmaker) has introduced a new wire stripper that can be precisely set to the wire diameter and length of insulator to be cut, enabling fast and accurate stripping.
The stripper cuts axially (see photograph) which will be useful in tight corners where conventional strippers are cumbersome.

The price for accuracy is quite high - the wirestripper currently retails at $£ 25.50$. Contact Ceka, Pwllheli, Gwynedd LL53 5LH. Tel: (0758) 612254.

Tndelible optical data storage medium at $1 / 3 p$ for a megabyte is the impressive claim ICI is making for Digital Paper - 'a new concept in data storage.'
ICI Digital Paper is a dye polymer optical recording medium coated onto a polyester based substrate so the paper can be flexible and rolled onto tapes or stuffed into cassettes.
A $1 / 2$ in tape on a $101 / 2$ in spool is capable of storing 600 gigabytes -
enough to store 1000 CDs or 300 full length feature films.

Creo of Vancouver is working with ICl on a drive for a one terabyte tape (on a 12in spool with tape 35 mm wide).

Digital Paper flexible disk drives are also being developed. Watch this space for developments.

Contact ICI, PO Box 6 Bessemer Road, Welwyn Garden City AL7 1HD. Tel: (0707) 323400.

PASS THE PORT

User ports can be added to the Amstrad PCW using a new parallel input/output interface from SM Engineering.

The interface measures $11 \times 5 \times 3 \mathrm{~cm}$ and connects to the Amstrad's expansion socket using an IDC edge connector and 50 -way ribbon cable.

Four 8 bit ports are provided with 5 V and 10 V supply lines for whatever you choose to plug into it.

SM is also selling a range of addons to be used with the interface, including an 8 -channel ADC, a "breakout' module (no, not the game - it provides further facilities for add-ons) and anI/O test module which checks if your software does what you think it does.

The interface itself costs 855.95 , the breakout is $£ 18.95$ and the $A D C$ is $£ 39.95$. Modules get 10% discount if bought with the interface.

Contact SM Engineering, St Georges, Lion Hill, Stone Cross, Pevensey, East Sussex BN24 5ED. Tel: (0323) 766262 .

THE LIGHTS GO DOWN

Lights can be dimmed at the touch of a pinkie with the latest kit from Electronic and Computer Workshop.

The kit can handle a $2 A$ lighting load and switches on or off at a brief touch, dimming up and down in a $31 / 2$ second cycle if contact is maintained - in a similar manner to the ETI programmable touch dimmer back in April 1980.

The kit is available for $£ 16.22$ inclusive from ECW, Unit 1 , Cromwell Centre, Stepfield, Witham, Essex CM8 3TH. Tel: (0376) 517413.

WANTED

International Education Services Iof Tokyo is looking for graduates and professionals to teach in Japan. The employment contract usually lasts for a year and involves teaching anything from technical briefings to learning to shake hands properly.

British teachers are especially welcome but should be prepared for a hard working week and the culture shock of living in a very different country.

Interested applicants should write to International Education Services, Shin- Taiso Building, 10-7, Dogenzaka 2 -chrome Shibuya-ku, Tokyo 150, Japan.

THE
 LISTENING BANK

Bankers with the Royal Bank of Scotland can now phone their local branch computer direct and make transfers and order services by speech recognition.
The service is called Phoneline and is operating in only four branches at the present time. Customers are given a PIN and can choose their own password (within reason...). These are compared to the caller's voice by British Telecom's Telephone Banking System which responds with the dulcid tones of a sampled Royal Bank of Scotland employee.

Facilities available are state ments, details of your last six transactions, transfer between accounts and bill paying to certain accounts (such as BT themselves).
The bank and BT are rumning an example transaction phone-in, which you can hear on (0473) 227848. For full details of the service ring The Royal Bank of Scotland on $031-5568555$.

Iyou are searching for a calculator to see you through the summer, the new Casio $f x-5000 \mathrm{~F}$ is worthy of consideration although it may take you several weeks to learn to use it

The fx-5000F carries a mammoth 288 functions, which include 128 common formulae (which unfortunately cannot be unprogrammed for exams, honest they can't Sir).

Your own programs can be up to 675 steps and can be edited versions of the preprogrammed formulae, a reasonably simple task which saves a lot of time.

The fx-5000F also handles hex, octal and binary and can convert to and from decimal.
And not only does it handle alphabetic characters, it even has the whole Greek alphabet.
The $\mathrm{fx}-5000 \mathrm{~F}$ retails at $£ 39.95$ and is available from all Casio stockists.

CHIP KITS FOR KIDS

Chip Kit is a complete low cost electronics teaching package aimed at GCSE physics and electronics departments across the country.

The Polytechnic of Wales has developed the three modules covering transistors, op-amps and logic design. They are designed to fit precisely to the syllabus and provide all the necessary theory and background for both the teacher and student.

In many schools electronics is being taught by rather confused metal and woodwork teachers as part of the Craft, Design and Technology courses. The Polytechnic is

ON DRAUGHT

The new catalogue of draughting aids for electronics designers is now available from Circuitape in Aylesbury.

The 52 page catalogue contains just about every artwork symbol you can think of for PCB design and circuit diagrams - and several that we couldn't understand.
Circuitape can also produce custom printed draughting aids for those really obscure symbols that you've invented yourself.

The catalogue and price list are available from Circuitape, Chamberlain Road, Aylesbury, Bucks HP19 3DF. Tel: (0296) 23451.
 paAUG
offering training courses to enlighten these wary non-specialists and the workbooks use a step by step approach which can provide a course structure and simplify teaching.
The kits could also be useful for companies and graduates working in fields other than electronics who require a basic grounding in practical circuits and theory.
The three kits each cost about £35. For full details contact Dr Murray-Shelley, The Electronics Centre, The Polytechnic of Wales, Pontypridd, Mid-Glamorgan CF37 1DL. Tel: (0443) 480480 ext 2536.

A

HIRE PLACE

 pha Electronics has intro duced a hire department offering normally prohibitively expensive test equipment on a dally, weekly or monthly basis.A leaflet outlining the system is available free from Alpha with prices and hire information.

Prices are about 5% of retail price for a week's hire.

Contact Alpha, Unit 5, Linstock Estate, Atherton, Manchester M29 OQA. Tel: (0942) 873434.

BATTERY ASSORTMENT

STC is offering a free 8 -page colour brochure covering their range of cells and batteries useful to have at hand after you've read Vivian Capel's treatise on the world of batteries in this month's issue.
The catalogue ranges from the normal zinc-carbon and large leadacid products to memory protecfion lithium chromium oxide and lithium oxide types.

For your copy contact The Battery Group, STC, Edinburgh Way, Harlow, Essex CM20 2DF. Tel: (0279) 626777.

DIARY

Electronic Packaging Seminar - April 7th
The Welding Institute, Cambridge. Report on recent visit to Japan. Contact The Welding Institute on (0223) 891162.
HF Radio Systems And Techniques - April 11-13th
The IEE, London. Conference organised by the IEE and The Institute of Mathematics and its Applications. Contact IEE on 01-240 1871.
Safe Nuclear Power - April 12th
Scarborough Lecture Theatre, University of Durham. Lecture by C Smitton. Contact IEEIE on 01.8363357.
Scottish Computer Show - April 12-14th
Scottish Exhibition Centre, Glasgow. Contact Cahners Exhibitions on 01-891 5051.
Computer Recruitment Fair - April 15-16th
New Century Hall, Manchester. Contact Intro Ltd on (0491) 681010.
Computer Recruitment Fair - April 22-23rd
Watershed, Bristol. Contact Intro Ltd on (0491) 681010.
Softeach 88 - 23-24th April
Heathrow Penta Hotel, London. Contact Softsel on 01-568 8866.
ATE 1988 (Automatic Testing \& Test Instrumentation) - April 26-28th
Metropole Exhibition Centre, Brighton. Contact Network Events on (0280) 815226.

British Electronics Week - April 26-28th
Olympia, London. Contact Anne Jackson on (0799) 26699.
Miltest 1988 (Military Testing Equipment) - April 26-28th
Olympia, London. Contact Network Events on (0280) 815226.
Second Power Sources And Supplies Conference - April 26-28th
Olympia, London (at British Electronics Week). Contact Anne Jackson on (0799) 26699.

Electronics And The Stock Exchange - April 28th
IEE, London, Lecture by D C Mariborough. Contact IEE on 01-240 1871.
Electronics And The Space Program - May 4th
IEE, London. Lecture by J Egan. Contact IEE on 01-240 1871.
TITLE 88 (Technology In Tourism \& Leisure Exhibition) - May 17-19th
Business Design Centre, London. Contact PLF Communications on (0733) 60535.

Rural Telecommunications - May 23-25th
IEE, London. International conference. Contact IEE on 01-240 1871.

Computer North - May 24-26th

G-Mex Exhibition Centre, Manchester. Contact Cahners Exhibitions on 01.8915051.

Engineering Products And Technology North - May 25-26th
Exhibition and Conference Centre. Doncaster. Contact Trinity Exhibitions on (0895) 58481.
Special Effects Seminar - June 3-5th
Pinewood Studios. Contact British Kinematograph Sound and Television Society on 01-242 8400.
Information Technology And Office Systems Exhibition - June 7 10th
Barbican Exhibition Centre, London. Contact BED on (09328) 65525.
European Satelite Broadcasting - June 8-9th
Tara Hotel, London. Contact Online International on 01.8684466.
Electronic Publishing 88 - June 14-16th
Wembley Conference \& Exhibition Centre, London. Contact Online International on 01-868 4466.
Software Tools 88 - June 14-16th
Wembley Conference \& Exhibition Centre, London. Contact OnlineInternational on 01.8684466.

PACKING A PUNCH

Last month we received in the post a large polythene sack containing semishredded sheets of paper. An attached note from the Post Office apologised that 'an unfortunate accident' had occurred because of 'thin or unwieldy packaging.

Disgorging the contents onto the ETl carpet we were amused to dis cover the ravaged sheets were advertising the Internepcon Show featuring The Electronic Packaging Centre!

Ah well, back to the parcel tape.

Next Moath

 픔 ELECTRONICS TODAY INTERNATIONAL\square

The June ETI

It takes nearly one hundred years to grow the trees from which ETI is made. While the Crystal Palace lay smouldering on the grassy slopes south of London, while the Metropolitan underground line first opened its doors to the fare dodgers and while Australia was celebrating its centenial, brave pioneering Canadians first planted the tiny larch saplings in the snow-capped Rockies.

Felled by teams of check-shirted lumberjacks the mighty logs are floated down the rushing, foaming, relatively pollution-free torrents of the Hudson to the coast to await shipment to the hungry pulp mills of Golden Square.

It takes more than 200,750 hours of sunshine and $2,628,000$ gallons of water to feed the trees in their long life. 750 men work long hours for months on end to fell, ship and pulp the wood to make the June issue of ETI.

After all that work, it would be a shame to miss it.
The June 1988 issue of ETI includes the last part of the Virtuoso Power Amplifier project, the stand-alone Lucid Dream Stimulator, the ETI Universal Panel Meters (OK, so we promised that for this month but next month it's a cert) and a metal detector as the First Class beginners project. Plus, there's the first part of a feature and project on the much maligned analogue computer and a bumper bunch of test gear Tech Tips.
 Meworws ind PERFORMANCE. COMBINED WITH
Po 100 W to 450 W (Dependant upon chosen PSU Voltage

0/P Power

100 W to 450 W ($+/ .50 \mathrm{~V}$ to $+/ .72 \mathrm{VDC}$
0.0001% (1ppm) A World first!
685/us (Zero transient compression)
0.5 Hz to $350 \mathrm{kHz}-3 \mathrm{~dB}$ (linear phase)

80amps and total reactance drive capable
0.0085 ohms (damping factor 940 into 8Ω

THE MOST ADVANCED POWER AMPLIFIER IN THE WORLD
 Ultra linear 70\% efficiency, PURE CLASSA Throughour

Don't buy another power amplifier until you've checked ALL these facts! Take the guess work/risk out of power amp construction, our modules are ready built, tested, guaranteed and come with a signed certificate of performance comformity.

Some manufacturers build technically excellent amplifiers whilst turning a deaf ear to component sonic quality.
Other manufacturers use audiograde components whilst totally ignoring BASIC technical performance.

CIAGE Sales Dept, Construction House, Whitley Street, Bingley, West Yorks. BD16 4JH. England
SABE
คปปl[Tel: (0274) 568647. Tlx: 517783, Fax (0274) 551065
8
ustom made matched MOSFETS, completely symmetrical design HOLCO resistors for non-critical areas and for critical areas we use the very best lazer trimmed SMD resistors, super to bulk foils with 5 imes lower inductance. Minimal capacitor design using extended foil and polypropolene types.

[^0]
READ $\overline{\text { WRITE }}$

 SIMPLE WALSH

 SIMPLE WALSH}

Prospective Walsh Synthesists (Music Circuit Potpourri, January 1988 ETI) who intend only to use Walsh functions for music or audio purposes rather than for, say, a bench function generator, may be relieved to know a much simpler circuit than the one published can be used.

Just as the Fourier series:

$F(t)=\Sigma\left(A_{4} \sin (a \omega t)+B_{2} \cos (a \omega t)\right)$ $a=0$
can be reduced to:

$$
F(t)=\sum_{a=1}^{n}\left|C_{2}\right| \sin (a \omega t)
$$

for practical purposes, so may the Walsh functions be reduced. There are four stages of reduction of the Fourier series.

- The term where $a=0$ is a constant and makes no useful contribution to an audio signal.
- In practice it is only necessary (and possible) to use a finite series. - Since the ear is not sensitive to phase, the sine and cosine terms can be collected together in one
term with one coefficient, C. Lastly, -sin is only \sin with a phase shift so only positive coefficients C are required.

All these stages are equally applicable to Walsh functions, so W(0) can be dropped and as pairs of Walsh functions are just phase shifted versions of one another $W(1)$ and $W(2), W(3)$ and $W(4)$ etc), one of each pair can also be dropped. The final reduction means that all the switches, opamps in the mixer circuit can be removed to leave the simple circuit shown below.

Thanks to Bruno Hewitt for some very interesting circuits.

ND Thalmann

Address unknown
Your reductions certainly simplify matters considerably. Perhaps other readers may now be fempted into giving Walsh synthesis a go.

We should also be pleased to answer other points raised in Mr Thalmann's letter if he would drop us a line with his address.

NOW WITH ADDED SPINE

Thave to express my amazement is the only use for a home - that Hugh Young should criticise computer!). ETI for publishing hex dumps of EPROMs used in projects. (READ/ WRITE January 1988). Heaven forbid we should castigate ETI for giving us too much information!

Personally I believe it is an act of absolute spinelessness to purchase a pre-programmed EPROM when you can have all the fun of programming one yourself.

An EPROM programmer has got to be one of the easiest projects to build, requiring only a couple of binary counters to clock through the address lines and a $21-25 \mathrm{~V}$ pulse to write in the data (surely this

By 1 o'clock in the morning when you have finally got all the code correct, the feeling of satisfaction has to be experienced to be has to
believed.

Whatever happened to the spirit of amateur electronics?

H Bramley
Hove, East Sussex
Are all ETI readers masochists or is it just something in the air in Hove? We're all pretty spineless at ETI and so we'd advocate preprogrammed EPROMs but if your fingers need exercising, the hex dumps are there.
BLUEPRINT
Qtarting soon in EII will be a new column (at the back of the mag, nestling amongst the Playback, Keynotes, Once Over and so on) called Blueprint. The aim of the column is to design circuits to order, to help readers out of a tight spot.

Of course, we cannot design an entire hi-fi amplifier to your specification but if you require a peculiar form of a standard building block or a complete device to solve a novel problem, Blueprint can help. *:

So, if that niggling problem has been holding up your latest masterpiece, jot down the details - what it is you want the circuit to do, what you have already tried (if anything) - and send it to Blueprint, ETI, 1 Golden Square, London W1R 3AB

JOHNNY COME LATELY

I^{n}
In your April 1987 issue you 1 mentioned new designs by John Linsley Hood for a new Audio Design amp and a new lower power design to replace the 30 W amp. These would be published in the 'fairly near future' and it was said that kits from Hart Electronics would be available.

Where does a year go? It has indeed taken rather longer than expected for the new JLH amps to see the light of day.
We can only offer solace with the assurance that these amps will appear in ETI soon(-ish). The new Audio Design amp is designed and
It's now 1988 and in the process of testing and final these new designs from JLH. What gether by Hart. Watch this space if anything is happening?

Michael Lowe
Loughton, Essex

Have you noticed how young postmen are these days? Well here is your chance to even the score. You can prematurely age a postman of your choice with a vast stream of mail to the ETI office. Of course the best thing to send is packets of gold bars and we can assure you these will be received with not inconsiderable pleasure. However, if this is not possible, a close second best is to send us a letter for publication on this page
(well, not this page but avery similar one due out in a month's time).

Set down your thoughts in clear precise prose of words of not more than three syllables (we're not too bright here at ETI) and send the resulting literary masterpieces to:

ETI

1 Golden Square
London W1R 3AB

Vivian Capel charges us to take a closer look at batteries and rechargeable ones in particular

CELL, CELL, CELL!

0ne of the effects of the proliferation of electronic devices is the enormous increase in the use of batteries. Once upon a time torches and valved radios were virtually the only applications. Now almost everything - watches to lap computers, calculators to CB radios, remote controls to portable televisions, and a host of other things (including of course torches and portable radios) require a constant diet of batteries.

The result is a bewildering range of types and sizes. For users of commercial equipment, the choice is mainly between zinc-carbon, alkaline or NiCds of the appropriate size.

Cost is a major consideration here. NiCds are about twelve times the cost of zinc-carbon cells so if your radio requires new batteries every six months, it would take six years to recoup the cost (by which time the NiCds may be worn out anyway!)

However, if your high-powered ghetto blaster seems to eat batteries, NiCds would certainly be worth considering. Alkaline batteries too offer cost savings over ordinary cells although dearer to buy, unless the current drain is very low.

For designers and constructors, the choice is much less easy. In this article we will take a look at the various types in general use and their features, with a more detailed consideration of the increasingly popular NiCd .

Zinc-carbon

The basic, lowest cost cells are zinc-carbon (Fig. 1). These consist of a zinc case that serves as the negative terminal and a carbon rod which is the positive. The electrolyte is a paste of ammonium chloride. During discharge zinc is eroded from the inside of the case and hydrogen gas is formed around the carbon rod.

If discharge is heavy the hydrogen bubbles completely surround the rod thereby insulating it and blocking further action. This condition is termed polarization and the cell must be rested to allow the hydrogen to clear before it will deliver further current.

Manganese dioxide (which has a strong affinity for hydrogen) is introduced to minimise the effect and is known as a depolarizer. The oxygen in the chemical combines with the hydrogen to form water which thereby slightly thins the paste. The depolarizer takes a while to act, so the cell can still become polarized with a heavy discharge.

So zinc-carbon cells are not well suited for applications involving heavy discharges. Improved performance in this area is offered by the various high-power versions. These have modifications which include the use of more depolarizer which is especially pure and fast acting.

These cells are dearer but do not have a greater capacity. Their advantage lies in being able to sustain heavier currents for longer without polarizing. For example, a D-cell of normal construction will give 0.5A for about 18 minutes before polarising whereas a high-power version

Fig. 1 The Zinc-carbon cell
will run for up to three hours at the same discharge.

If the discharge is low or intermittent, there is no advantage in using high-power cells. Small cells, such as the AA type, are more likely to be subject to high currents in proportion to their size and capacity and so the standard cell has been superseded by the high-power variety.

It is worth noting that occasional small discharges will make a zinc-carbon cell last much longer that no discharge at all. This is the reason why doorbell batteries often last for years, while the same battery stored for a few months on a shop shelf would be useless.

Zinc-carbon cells are considered to be non-rechargeable and the manufacturers in particular point out that attempts to recharge could be dangerous - well they would wouldn't they! However, under special charging conditions, recharging has been successfully and repeatedly carried out with no ill effect. Charging from an ordinary battery charger or other DC supply is not recommended, not least because it is ineffective.

Alkaline Cells

Alkaline cells (Fig. 2) are made in the same sizes as the zinc-carbons. They use compressed manganese dioxide as the cathode instead of carbon which serves as its own depolarizer. The anode is again zinc and potassium hydroxide.

The cell has a lower internal resistance than the zinc-carbon and so will deliver a heavier current which it can sustain for longer periods before polarizing. It is also less affected by
temperature extremes and has a longer shelf life.
The cost is around three times that of the zinc cell but with capacities about five times greater, so they are more economical as well as more convenient because battery changes are much less frequent.

With zinc-carbon cells, capacities differ according to discharge rate, being greatest for small intermittent currents and smallest for large sustained discharges. In the case of the alkaline cell, capacity differences between light and heavy discharges are much less, between 10-20\%.

So unlike zinc-carbon cells capacities can be specified for average use. For standard cells these are:

C-cell $5,000 \mathrm{mAH}$

AA cell $1,500 \mathrm{mAH}$
Alkaline cell makers continue to improve their products to keep competitive with others and capacities of some 20% greater than the above average figures are now claimed.

Layer-type Batteries

When more than 6 V is required, the standard round cell is somewhat inconvenient to assemble as well as being wasteful of space due to their cylindrical form. For this reason, the zinc-carbon batteries are made in a stacked rectangular configuration, the most common now being the PP9, PP6 and the PP3. Experience has shown that the maximum current before polarizing for these are:

PP9 65 mA
PP6 25mA
PP3 10 mA
There is an alkaline version of the PP3 which is very useful because it combines small size with reasonable capacity (about 300 mAH). This is an excellent power source for small to medium current drains, having a greater capacity than the much larger zinc-carbon PP6.

For larger currents at 6 V the lantern battery is

Fig. 2 The Alkaline-manganese cell
very useful. The spring contacts can be partially unwound and block connectors fitted to the wire ends. It is one of the most cost-effective of the zinc-carbons and has an approximate capacity of $3,200 \mathrm{mAH}$. Even so, this is less than the alkaline C-cell and much less than the alkaline D-cell.

Lithium Cells

A more recent appearance on the scene, the lithium cell has a very long shelf life - in excess of six years - and a remarkable power/weight ratio which is typically 1248 watt-hours $/ \mathrm{kg}$. Nominal voltage is 2.95 V per cell. An example is one cell which is slightly smaller than a C-cell which has a capacity of $1,000 \mathrm{mAH}$, yet with a weight of only 20 g .

Button Cells

The most common button cell is the mercury cell in which the negative electrode is zinc and the positive is compressed graphite and mercury oxide. The electrolyte is potassium hydroxide.

An unusual feature of this type of cell is that the voltage remains constant to the end of its life when it drops off suddenly. Off load, the voltage is 1.35 V falling to 1.2 V at the rated current. This is maintained until the sudden drop indicates the end of its life at below 1 V .

The advantage is that there is no deterioration of performance of the device being powered during the life of the cell. The disadvantage is that the stage of the cell cannot be determined by its voltage and it can fail suddenly without warning.

Mercury cells are extensively used for watches, hearing aids, lapel microphones and any thing requiring small size with low current drain. Their low internal resistance and absence of polarization make them ideal for many applications including photographic equipment. They appear in a wide range of sizes and formats including an AA version with cell combinations to give up to 5.6 V .

Button cells are also made in alkaline versions with about the same capacity for size but with a 1.5 terminal voltage. There are also rechargeable silver oxide cells.

Lead-acid

Now we come to the rechargeable or secondary cells of which the lead-acid type is the best known. All rechargeables can be charged and discharged (Fig. 4) many times though not indefinitely - after a specified number of charging cycles the cells lose their ability to hold a charge and progressively deteriorate.

The lead-acid cell consists of positive plates of lead peroxide interleaved with negative ones of spongy lead, immersed in an electrolyte of dilute sulphuric acid. They have high capacities and can deliver high currents for sustained periods - which is why they are used for car batteries.

The main snags are weight, size and danger of acid spillage. Another problem is that active material from the plates flakes off with age and eventually forms a conductive bridge across them at the bottom of the cell. With some models a sump is formed in the cell-case bottom which accommodates this debris and so delays the build-up but this reduces the capacity/volume ratio.

Acid spillage can be overcome by using jelly acid or porous separators that absorb most of the acid. In one type the plates and separators are

Fig. 3 The NiCd
compressed together in a block to obtain a high capacity/volume ratio and also retention of the active plate material. The disadvantage is that the power/volume ratio and power/weight ratio are impaired.

These have a zinc negative and silver oxide positive set of plates with potassium hydroxide for the electrolyte. This can be free or held in porous separators. Construction is similar to lead-acid types.

Power/volume and power/weight ratios are the highest of any secondary cell in general use. Silver-zinc cells are about a third the volume and weight of a comparable lead-acid battery. A feature is the nearly constant 1.5 V over almost the whole of its discharge cycle. Furthermore, very high currents can be taken from the cell without damage. A cell can be discharged within a few minutes if required.

These cells can also be recharged at high rates very quickly, although care must be taken not to overcharge. However, as the voltage rises quickly to over 2 V when fully charged, it is quite easy to arrange for a cutout on the charger.

Cost is one obvious disadvantage but another is the limited number of discharge cycles which can be expected. Up to 50 is specified for high discharges although up to 150 can be obtained with more moderate currents. This compares with some 500 cycles for lead-acid cells and up to 2,000 for NiCds.

NiCds

Believe it or not, the NiCd cell is over 86 years old. The first patent was taken out in 1901. However, practical cells took over 50 years to produce commercially.

Their construction (Fig. 3) is very similar to the electrolytic capacitor. A strip of perforated sintered nickel mesh and one of sintered cadmium are rolled up together separated with a dielectric strip impregnated with a solution of potassium hydroxide. The roll is inserted into a nickel-plated steel can with connections to the terminals and the can is sealed with a top plate having a vent to allow gas to escape under abnormal charging conditions.

This gives a big area of active material and permits large charging or discharging currents to flow. The C -cell will pass 4A and the D -cell 8A. The cylindrical cell construction is of similar size to the standard torch cells and allows NiCds to be used as chargeable replacements for them.

It should be noted though that the voltage is less (1.25 V instead of 1.5 V) which may affect
device performance. NiCds are also made in rectangular batteries.

NiCds do not polarize or require rest periods to recover so they can support sustained currents - a valuable feature in some applications. Furthermore, the full current can be maintained until the cell is fully discharged.

Most cells deteriorate if kept inactive especially if stored in a discharged state. NiCds can be stored in any state of charge without deterioration although the charge itself will leak away slowly. However, charge retention is quite good and is dependent on temperature. At $20^{\circ} \mathrm{C}$ the loss of charge is about 10% of the full charge every 10 days, at higher temperatures the loss is greater - perhaps double (20\%) per 10 days at $30^{\circ} \mathrm{C}$.

Lower temperatures produce smaller losses. At freezing point 10% is lost after 30 days. So, at normal temperatures, some 70% of the charge is still available after a month and it takes 100 days to fully discharge.

Fig. 4 Discharge characteristics of the three types of rechargeable cells of similar weight and discharge rate

NiCds will operate over a wide temperature range, from $-22^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{C}$, but the optimum is $20^{\circ} \mathrm{C}$. Above and below this temperature the capacity decreases -80% of maximum at freezing point and at $30^{\circ} \mathrm{C}, 70 \%$ at $35^{\circ} \mathrm{C}$. Unlike most other types of cell, the performance is only slightly impaired at low temperatures.

Terminal voltage is also affected by temperature. There is a negative temperature coefficient of $-4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, that is voltage is lower at high temperatures. The difference across the whole temperature range is about a third of a volt.

The actual voltage of a cell depends on its state of charge and the discharge rate, in addition to the temperature. On charge the voltage rises to $1.4 \mathrm{~V}-1.5 \mathrm{~V}$. When fully charged the voltage drops quickly for the first 10% of the discharge to below 1.3 V then it remains at 1.25 V during light discharges, or 1.2 V during heavier ones. For very heavy discharge rates the voltage may be as low as 1.1 V . These voltages are sustained throughout the discharge until there is a rapid drop to 1.0 V when the cell is considered effectively discharged.

Charging Rates

The capacity of a cell is governed by the discharge rate and is usually specified as that available when the cell is discharged at the 'five hour rate' - that is when a steady continuous current exhausts it in five hours.

Charge and discharge rates are denoted by the letter C which is the cell capacity combined
with multipliers or sub-multipliers. The above discharge rate is described as $C / 5$, while a rate of charge or discharge completed in one hour is $\mathrm{C} / 1$ and so on.

High rates of charge are given by the multipliers, twice capacity rate being 2 C , four times 4C and upward.

A high rate means a fast time, the time being approximately but not exactly inversely proportional to the rate of charge. Table 1 lists the times required for fully charging typical sintered NiCd cells at different rates.

To use the D-cell as an example, the normal charge of this 4 ampere-hour cell at the 1 hour rate is 4 hours. At $\mathrm{C} / 2$ which is 2 amps , it is $2 \frac{1}{4}$ hours. However, at $8 \mathrm{~A}(2 \mathrm{C})$ the required time is 27 minutes.

An important feature of NiCd charging is that overcharging is permissible only at low charging rates. The continuous charging sometimes employed for standby batteries in vital equipment can only be allowed at the $\mathrm{C} / 8$ rate or less. This rate takes 12 hours to complete from the fully discharged state and is the one normally recommended for maximum capacity and cell life.

Notice from the table that the maximum permissible overcharge decreases as the charging rate increases. At fast rates of 4C and higher there is no margin at all and the time to fully charge the cell is also the maximum. Charging must therefore be carefully timed and the cell must be fully discharged at the start otherwise it will be overcharged.

The absolute maximum charging rate is 10 C for which the timing is very critical. When charging at these rates gas will escape from the vents so adequate ventilation must be allowed. In the case of D-cell, 10 C charging would be at the rate of 40 A . Maximum charging rate for AAA type cells and similar size is 2 C .

Going in the other direction, the minimum charge for sintered cells is $\mathrm{C} / 40$, taking 70 hours. Below this there would be no charging effect.

Some small cells such as NiCd button cells and PCB types for direct mounting on circuit boards are of a different construction to the sintered type. They are termed mass-plate cells and cannot be subject to the high charging rates possible with the sintered variety.

For continuous charge, the rate should be $C / 100$ and the maximum rate $C / 10$. This rate takes 14 hours to fully charge but there is a wide overcharge tolerance of up to 300% - up to a permissible 42 hours.

Chargers

The low internal resistance of a NiCd cell means it is unwise to use an ordinary constant voltage charger. The current varies according to the voltage of the cell and so the calculation of precise charging time is difficult if not impossible because the voltage changes as the charge proceeds.

A fully discharged cell takes a high current initially. The use of an ordinary charging circuit is possible at low charging rates at which there is a large overcharge tolerance, and in particular for indefinite charge arrangements in back-up circuits.

For normal charging and particularly fast charging, a constant current charging circuit must be employed. With this the current is fixed throughout the charging cycle.

A phenomenon which is to be found with some NiCds is the so-called memory effect. If a cell
has been only partly discharged before it is recharged, especially at the higher rates, it loses some of its capacity permanently. It is as though the cell remembers its level of discharge and this sets the capacity level for all subsequent charges. The effect is thought to be due to crystals forming in the active material.

Some makers claim their cells do not suffer from memory effect but in the absence of such an assurance it is prudent to fully discharge all cells before attempting a recharge.

By fully discharge I mean down to the normal 1.0 V level at which the cell is deemed to be exhausted, not down to zero volts. However, there is no need to be too fussy about the exact voltage. The easiest way is to leave the equipment that it powers switched on until it is evident by the performance that the cells are well discharged.

There is a danger in discharging a battery of several cells. If discharged below the 1.0 V point, the voltage drop can be rapid to zero. Now this does not harm the cell in itself but where several cells in series are taken down to this level, one may drop to zero before the others. They will continue to discharge through the load and will proceed to charge the fully exhausted cell in the opposite

Cell type	Voltage	Capacity (mAH)		harging cycles	Energy/ weight ratio (WH/ Kg)	Energy/ volume ratio (WH/ litre)
Zinc-carbon D	1.5	2,000	0.5		35	48
Alkaline						
D cell	1.5	10,000			115	242
C cell	1.5	5,000			115	185
AA cell	1.5	1,500			88	100
PP3	9	300			53	120
Lithium	2.95	1,000			148	98
Mercury oxide						
Lead-acid jelly porous separator	2.0	1-110AH	80-700	500	30-36	75-84
	2.0	4-90AH	20-200		22-35	42-70
Silver-zinc	1.5	1-10AH	40-400		40-70	65-125
NiCd						
D cell	1.2	4,000	8	2,000	29	77
C cell	1.2	2,000	4	2,000	30	60
AA cell	1.2	500	1	2,000	24	27
PP3	8.4	110	0.5	2,000	24	44
PP9	8.4	1,200	1.6	2,000	23	36

Table 1. Chart of cell characteristics
direction because the current flowing through it is of opposite polarity to that if its terminals. This reverse charge will damage it.

So for absolute safety, cells should be discharged individually if there is any chance of the discharge going below 1.0 V . Otherwise discharge only to the 1.0 V level.

A discharger can easily be made from one of the multiple cell holders used to series connect several cells. A 5 R0 wire-wound resistor should be wired across each compartment. This will discharge cells at the rate of 200 mA in a few hours depending on the amount of charge left in the cells. For C and D-cells a 2R0 resistor would give a faster discharge of around 500 mA .

Some authorities say the discharge should be higher than normal to disperse any crystals that might have formed. So a value down to 1R0 could be used for the larger cells.

コリ

John Linsley Hood looks at audio circuits and tells you where to put your capacitors

ast month I looked at the construction of different types of capacitors and the materials that are used in their manufacture. Now that you've absorbed all that (haven't you ..?) we can get to grips with their applications in audio circuits

Circuit Applications

It is practicable to design audio amplifiers without very many capacitors at all and most IC op-amps only have one, used to stabilise the circuit at high frequencies by reducing its HF gain

In audio circuitry, capacitors will be used as DC blocking elements such as C 1 in Fig. 1 to prevent inadvertent DC offsets that occur in early stages of the system from being amplified along with the wanted AC signal and ending up as a very big DC offset at the speaker output terminals.

A similar function is performed by the series capacitor in a negative feedback circuit (C2 in Fig. 1) where ' A ' is some kind of gain block (an op-amp or equivalent). The gain of this stage at some frequency where the impedance of C 2 is low enough to be neglected is ($\mathrm{R} 2+\mathrm{R} 3$)/R2. However at DC, where the capacitor (if it is a perfect component) is an open circuit, the gain reduces to unity so any DC offset between the 'tin' points of
 the amplifier will not be made worse by the $A C$ stage gain. The corollary to this is of course that the gain of the stage will decrease as the operating frequency decreases and the impedance of the capacitor increases, so it must be big enough.

A further important function is in the decoupling of the supply lines to the amplifier (C3 and and C 4 in Fig. 2).

Most amplifier circuitry is designed in the expectation that the $\pm \mathrm{DC}$ supplies to it will be stable and free of ripple, unwanted signal components or general noise and rubbish. The performance of the amplifier may be impaired especially in relation to its stability margins, which are very important - if any output signal can find its way back into the signal circuit by way of the supply lines. The easiest way to secure clean smooth supply voltages is in theory to decouple them to a good neutral ' 0 V ' line by way of a very low impedance capacitor.

The final circuit positions where capacitors are needed is in time-constant generation circuitry, in tone controls, frequency response shaping circuitry (such as RIAA), LF and HF filters, and HF loop stabilisation functions. Fortunately, in most of these positions the actual capacitance values required are fairly small, so problems of cost or physical bulk are usually minor ones.

Now let us look at these applications and see what characteristics are particularly required.

Fig. 1 Capacitors in audio amplification

Fig. 2 Capacitors as supply decouplers

DC Blocking

Looking at the circuit in Fig. 1, the important needs are that the impedance of C 1 at any valuable part of the audio signal bandwidth should be sufficiently low (in comparison with R1 and the input impedance of the gain block ' A ') that the input signal is not attenuated significantly.

For the blocking function to be adequately performed, the leakage resistance of the capacitor must also be very high. Fortunately with modern film dielectric capacitors this can usually be taken for granted.

This might not be true in the case of electrolytics especially if the polarity is inadvertently reversed through careless installation or incorrect interpretation of circuit operating potentials.

Generally, in circuitry with hi-fi pretentions it is well to avoid electrolytics in this position and if necessary rearrange the circuitry so that large capacitance values are unnecessary.

The impedance presented by the other parasitic elements (inductance and series resistance) is unlikely to be significant, certainly in audio use, in comparison with the combined input impedance of R1 and the gain block.

It could also be argued that for hi-fi circuitry the effective capacitance value of C 1 should remain constant (especially as a function of the voltage applied across it) so that it does not introduce subtle waveform distortion effects.

Once again, plastic film dielectric capacitors (the so-called 'non-polar' types) are unlikely to suffer from this defect at typical small signal voltage levels to an extent which is detectable. It might though be a problem with electrolytics.

Feedback Path Capacitors

The other DC blocking function is typified by C 2 in Fig. 1. Here the problems are greater since circuit constraints are likely to force the use of a relatively low value for R 2 , and the LF roll-off frequency (the ' -3 dB ' point) occurs where the impedance of C 2 $(1 / 2 \pi \mathrm{fC})$ is equal in value to R 2 .

In the past, C2 would have almost always have been an electrolytic type, aluminium or tantalum, but in current practice it is likely that a non-polar component would be employed to avoid any possible 'dulling' of the sound. The values of R3 and R2 would be increased as much as other circuit demands allowed

The same needs exist here as in the input DC blocking capacitor, but are all greatly magnified because the circuit impedance is usually so much lower so that small changes in series impedance or capacitance value are likely to be much more important.

Supply Line Decoupling

Here the overall need is for the effective impedance to be as low as possible and to remain low over the whole of the frequency spectrum. The preservation of a low decoupling impedance well beyond the limits of the audio range is important for loop stability reasons. Improvements in the purity of the supply lines are usually apparent in the sound quality.

Electrolytic capacitors are usual for this and have a relatively high series impedance by comparison with a non-polar type of the same value. Modern practice is to quote the 'equivalent series resistance' (ESR) of electrolytics in the manufacturer's specification (usually for power supply reservoir capacitor applications).

A low ESR component is usually a good choice if only because it implies that the manufacturers have tried to lessen the inevitable series resistive components by greater care in design or construction. At HF the problem need not be serious, since the main capacitor can always be bypassed by a smaller non-polar type and that if necessary bypassed yet again by a smaller one still.

The reason for this piggy-back activity is that the method of construction of large value bipolar units is likely to lead to higher values of inductance and winding resistances. Indeed for RF bypass use (as in the HF stages of FM tuners) small value disc ceramic capacitors are obligatory because of their very low self-inductance. No wound component would ever be adequate here. Unfortunately disc ceramic devices are usually only available at low working voltages, say $25-30 \mathrm{~V}$, a bit low for audio circuitry. Stacked film bipolar types are a good equivalent for audio circuit use.

At the very low frequency end of the passband no capacitor of any sensible size is ever likely to be entirely adequate, and here an electronically stabilised power supply is by far the best answer, especially since if it does its job effectively it will provide an absolute barrier between the operational circuitry and everything on the power supply side of the hardware. This frees the user from worries about whether he ought to replace his mains cable with quarter inch copper bars, or his mains transformer with a filing cabinet sized substitute.

Time Constant Components

Here the overriding need is for accuracy in value and for reasonably low levels of stray inductance, since this could have some effect on the characteristics of filters or feedback circuits. However, spurious inductance effects can normally be ignored for modern components used in sensibly designed AF circuitry, and the effects of stray series winding or loss resistances are likely to be swamped by the general circuit impedances.

Choice In Circuit Applications

In general and bearing in mind the manufacturing details discussed last month, my own order of preference in the capacitor world is polystyrene, polycarbonate, polypropylene and polyester. And I prefer film/foil to metallised foil.

The most critical application, in my opinion, is as the DC blocking capacitor in an NFB loop, though other DC blocking usages must be scrutinised.

Supply line bypass duty requires other qualities and a good quality electrolytic of adequate size and rating bypassed by one or more polyester capacitors of descending values will be quite adequate.

In HF stabilising or time constant duty, polystyrene is the first choice if available in adequate capacitance values. Otherwise use any close tolerance non-polar types.

Above all remember that no single type should always be first choice. It is a matter of 'horses for courses.'

Mike Barwise examines the set-up of the ADC301 and ADC302 to achieve rapid data logging

Many designs for analogue data loggers have appeared in print (not least in ETI) over the last couple of years. This is definitely a growth area as more and more everyday monitoring and control jobs are automated, creating the need for precise signal analysis.

The majority of monitoring tasks are relatively low-speed and long-term - environmental monitoring, for example, requires data points generally no closer than a minute or so apart due to the inherent inertia of the systems being monitored.

There is however another class of problem altogether, where very fast data capture is required over short periods. This is often referred to as transient capture and comes into its own when events of very short duration and/or unexpected occurrence are being examined. Typical examples are body shell impact testing in automotive design, catastrophic failure testing in general mechanics and electrochemical experimentation.

In these and many other fields (increasingly frequently these days) data capture is required at sampling rates ranging from 0.1 MHz through 20 MHz and even beyond.

There is a general misapprehension that submicrosecond analogue conversion and storage are somehow almost impossible to achieve except at enormous expense.

It is true that for high resolution work (12 bits and above) there are some special considerations at very high speeds - there is generally a trade-off between speed and precision. It is also true that high speed high resolution systems can be appallingly expensive, even if you build them your-
self - a 1 MHz 12bit ADC can cost as much as $£ 500$ per chip.

Nevertheless it is perfectly possible and quite cheap to produce fast 8 -bit analogue capture equipment. I intend to prove this by introducing the DATEL ADC-301 and ADC-302 analogue to digital converters. These are so-called flash (or parallel) 8 -bit converters with maximum conversion rates of 30 MHz and 50 MHz respectively.

The very high speed of these devices necessitates their implementation in ECL (Emitter Coupled Logic) technology but as the conversion rates are well within the bandwidth of Fast series TTL, it is possible to interpose ECL/TTL interfaces to allow their use in the more familiar TTL logic environment. This is also beneficial due to the considerable cost and power dissipation of ECL memory compared with that of fast CMOS or NMOS devices.

The Datel Devices

Let us first look at the ADC chips themselves. Figure 1 is an internal schematic of both devices. Note that only a few of the 256 comparators are shown. One input of each comparator is connected to the signal input, and the other to the relevant point on a resistor chain fed by a reference voltage.

The outputs from adjacent comparators are ANDed together and fed to a latched 6 -bit encoder which in turn feeds a latched 8 -bit encoder. This means that there is a data delay of one clock cycle, data point 1 emerging at the chip output on completion of conversion 2 and so on.

Figure 2 gives a recommended circuit which should not be departed from. There is no room

Fig. 2 Recommended connection diagram.
here for unorthodox approaches. Remember that in ECL, power supply polarity is reversed so rails are GND and -5.2V (the extra 0.2 matters! Use an adjustable regulator and get it right) and logic levels are high (logic 1$)=-0.9 \mathrm{~V}$ to gnd, low (logic 0) $=-1.75 \mathrm{~V}$ nominal.

All outputs are shown pulled down - this is to reduce signal reflections in the output bus. The two power supplies (analogue V_{s} and digital V_{s}) must be independent. The ideal method is to use two separate regulators.

Four items in Fig. 2 have been generalised code select, clock, the reference and the obligatory input amplifier. Let us deal with each of these in turn.

Code Select allows the data format to be modified. As seen from Fig. 2, pins 1 and 14 (LINV and MINV) control exclusive OR gates as programmable inverters in the output path. MINV (controls the MSB bit 1) and LINV controls the other seven bits. It is thus possible to output true, inverted or two's-complemented data. The code select pins are either left open (logic 0) or pulled to ground via 3 k 9 resistors (logic 1).

It is worth pointing out here that the dynamic range of these ADC chips is 0 V to -2 V . Table 1 gives the various programming options and their resultant output codes.

Next, let us look at the clock input. The clock is a typical ECL two pin differential clock signal. The chip timing diagram (Fig. 3) shows us this. The critical timing constraints amount effectively to no more than minimum half cycle periods. The clock need not be $50 / 50$ mark/space ratio. For the 30 MHz part T1 must be not less than 25 ns , and T2, 8 ns . For the 50 MHz part, Tl and T 2 are minimum 15 ns and 5 ns respectively. Study the timing diagram carefully and you will be able to follow this. T 1 is the comparator settling time, and T2 is the digital encode/latch time.

Driving the clock is no problem in ECL as line drivers with differential outputs are always used to distribute clock signals. We are going to cheat, however, but more of that later. Now let us look at the requirements for the reference.

Apart from the negative polarity, there is nothing odd about this reference. It can be just

Fig. 3 Timing diagram for ADC301 and ADC302.

MINV LINV	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
0.0000 V	11111111	10000000	01111111	00000000
-0.0078V	11111110	10000001	01111110	00000001
-0.9961V	10000000	11111111	00000000	01111111
-1.0039V	01111111	00000000	11111111	10000000
-1.9922V	00000001	01111110	10000001	11111110
-2.0000V	00000000	01111111	10000000	11111111

about anything. Eight bit precision can be achieved using a conventional three-terminal regulator as a reference with care, or alternatively one of the various precision reference diodes can be used. In this case, the regulator has a distinct advantage. The reference current is quite high and the regulator can supply this current directly, whereas a reference diode has a very low output current so a buffer amplifier would have to be interposed between it and the ADC.

Functional Specifications Typical at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=-5.2 \mathrm{~V} D \mathrm{C}, \mathrm{V}_{\mathrm{B}}=-2.0 \mathrm{~V}$ unless otherwise stated				
Performance	ADC-301	ADC-302		
Resolution	8 Bits	$\begin{aligned} & \hline 8 \text { Bits } \\ & 50 \mathrm{MHz} \\ & +1 / 1 / \mathrm{LSB} \\ & +1 / 2 \mathrm{LSB} \\ & 1.5 \% \\ & 0.5^{\circ} \\ & 30 \mathrm{ps} \\ & 25 \mathrm{MHz} \\ & 550 \mathrm{~mW} \end{aligned}$		
Conversion Rate (Min)	30 MHz			
Non-Linearity (Max)	+ $1 / 2$ LSB			
Diff Non-Linearity (Max)	$+1 / 2$ LSB			
Diff Gain (Max)	1.5\%			
Diff Phase (Max)	$0.5{ }^{\circ}$			
Aperture Jitter (Typ)	45 ps			
Input Bandwidth (Typ)	15 MHz			
Power Dissipation (Typ)	420 mW			
Inputs	Min	Тур	Max	Units
Reference Input Voltage	-2.2	-2.0	-1.8	V
Reference Resistance	70	80	100	Ohms
Analog Input Voltage	-2.2	-	0.1	V
Analog Input Capacitance	-	35	40	pF
Analog Input Bias Current				
(ADC-301)	. -	60	90	$\mu \mathrm{A}$
(ADC-302)	-	75	115	$\mu \mathrm{A}$
Offset Voltage				
V_{1}	7	9	11	mV
V_{b}	15	17	19	mV
Digital Input Voltage				
$V_{\text {h }}$	-1.0	-0.9	-0.7	V
V_{1}	-1.9	-1.75	-1.6	v
Digital Input Current				
$\left(\mathrm{V}_{\mathrm{h}}=-0.9 \mathrm{~V}\right)$	0	-	0.4	mA
$\left(\mathrm{V}_{1}=-1.75 \mathrm{~V}\right)$	-0.05	-	0.35	mA
Outputs				
Digital Output Voltage				
$V_{\text {h }}\left(\mathrm{R}_{\mathrm{L}}=620 \mathrm{R}\right)$	-1.0	-	-	V
$\mathrm{V}_{1}\left(\mathrm{R}_{\mathrm{L}}=620 \mathrm{R}\right)$	-	-	-1.6	v
Output Data Delay				
Power				
Supply Voltage, $\mathrm{V}_{\text {s }}$	-5.7	-5.2	-5.0	V
Supply Current	-100	-75	-	mA

Table 2 Specifications for ADC301 and ADC302

This is relatively complex and can introduce thermal drifts which might decalibrate the system.

As to actual values, Table 2 gives the operating conditions and specifications of these chips. The -2 V reference is fed into a resistance of 70R to 100R. For latitude let us say 50R.

So, we must be able to supply 40 mA without the reference noticing.

A suitable device is the LM337 adjustable
 negative regulator. This comes in a TO-220 power transistor package with an output current of 1.5A. Line rejection (the ability to ignore input changes) is quoted at $0.07 \% /$ volt change in and thermal drift is quoted as worst case $0.04 \% / \mathrm{W}$ and 0.6% over junction temperature range $\left(0-125^{\circ} \mathrm{C}\right)$.

Considering that we are looking at 1 part in 256 or about 0.4% precision, we could finish up with an error of 1 LSB (least significant bit) if we calibrated the unit at a junction temperature of $0^{\circ} \mathrm{C}$ and then let it rise to $125^{\circ} \mathrm{C}$. In the real world $\left(18^{\circ} \mathrm{C}\right.$ to about $100^{\circ} \mathrm{C}$) there should never be more than $1 / 2$ LSB error due to using this regulator as a reference.

The last of the less-than-obvious is the input amplifier. Why do we need one?

Although the comparator inputs have an inherently high DC resistance (probably in the

Fig. 4 Typical connection diagram for AM1435.
order of 10 M or more) there is considerable capacitance at the signal input (not surprising connect 256 of any component in parallel and you get a lot of stray capacitance). The actual value is $35-40 \mathrm{p}$. Not a lot, you might think, but when you consider that the voltage across this capacitance has to be stabilised within half of T1 (Fig. 3) it becomes obvious that some pretty hefty currents are going to flow briefly.

So, to avoid dragging the input signal around, a buffer amplifier is required. This amplifier should have two important characteristics in addition to its ability to drive a load with high transient current demand. These are:

- a resistance to instability when driving capacitative loads;
- a high slew rate. Slew rate is a nominal parameter describing how quickly the amplifier responds to a change in input. The most common test is to apply a very fast (in this case 1-2ns) transition between nomina! 0 V and nominal maximum output swing to a unity gain configured specimen, and to measure how long it takes for the output to arrive at the same voltage, normally expressed in $\mathrm{V} / \mu \mathrm{s}$.

To take full advantage of the speed of these ADC chips, the amp must have a slew rate calculated as follows:

The maximum legal swing at the ADC is 0 V to -2 V , in other words normalised 2 V . Assuming the faster component T1 is 15 ns , the comparator input must be stable by halfway through T1, so we have a signal slew time of say 7 ns . We must be able to slew 2 V in 7 ns , so the slew rate we need is $1000 / 7 \times 2$, or approx $285 \mathrm{~V} / \mu \mathrm{s}$.

This would allow us (just!) to log a square wave with a frequency of half our maximum sampling rate. In practice, because of the Nyquist Limit (which imposes the condition that the sampling rate must be twice the frequency of the highest harmonic present) we can only log a sinusoid (no higher harmonics present) at the maximum sampling rate anyway, so this slew rate requirement can be relaxed to some extent.

I would not like to go much below 200 $220 \mathrm{~V} / \mu \mathrm{s}$ though, unless the incoming signal is expected to be exceptionally free of transients and fast transitions. A suitable amplifier is the DATEL AM-1435 (Fig. 4), which has a slew rate of about $300 \mathrm{~V} / \mathrm{\mu s}$.

Next month I will show you the principles of a couple of complete transient capture units using these chips.

crivg ald
 SURFACE MOUNT KITS AND COMPONENTS FOR HOME CONSTRUCTION

KITS

SM20: High sensitivity sound triggered switch. Complete with microphone. Variable sensitivity. LED indication $£ 13.95$
SM21: Digital dice. Touch control, roll down speed with authentic dice readout on SM LEDs
f15.95
SM22: VHF FM Transmitter. Complete with mic. Tunable over 88 -108 band. Very sensitive, excellent quality . $£ 12.95$
SM23: Live Wire Detector. Non-contact indicator of live wires, blown fuses etc. LED and piezo indicator
£9.95
SM24: VHF FM Bleeper. Transmitter signalling unit. Sends a pulsing bleep to nearby FM radio. Tunable 88 - 108 band $£ 13.95$
SM25: Water Activated alarm. Piezo warning when triggered Sensing area can be mounted remotely
f9.95
SM26: CMOS Logic Probe. Indicates logic 1,0 and pulsing using two SM LEDs. Narrow shaped board can be tube mounted $£ 9.95$
CHJ22: Component holding jig. Greatly simplifies construction of all SM kits by holding component firmly leaving both hands free
$£ 6.95$

COMPONENTS

Resistors, ceramic capacitors, electrolytics, trimmers, coils transistors, diodes, 4000 CMOS, linear, etc. Ali components supplied individually packed. Send 9×4 S.A.E. for further information. Prices shown are inclusive but please add $£ 1.50$ per order to cover $P \& P$.
All kits are of proven design and come complete with solder resist PCB, all components individually packed, full assembly and circuit details and even solder.

Introducing Digital Audio:

CD, DAT and sampling Ian R. Sinclair
112 pages $\cdot 216 \times 138 \mathrm{~mm}$ 55 line drawings ${ }^{\circ} 5.95+50 \mathrm{p}$ p\&p ISBN: 1870775058
The techniques of digital audio involve methods and circuits that are totally alien to the technician or enthusiast who has previously worked with audio circuits. This book bridges the gap of understanding and explains the principles and methods of digital audio, but the mathematical background and theory are avoided.
Digital electronics and signals. Analogue to digital conversion Digital to analogue conversion. Studio digital methods. The CD system. Consumer digital tape systems, S-DAT and R-DAT Sound synthesis. Electronics Handbook Mike Tooley
January 1988 - 208 pages
$216 \times 138 \mathrm{~mm} \cdot 100$ line drawings $€ 6.95+50 \mathrm{p}$ p\& ISBN: 1870775007

'A very useful book'

Elektor magazine
A practically based introduction to digital electronics for enthusiasts, technicians and students.
Digital circuits. Logic gates. Bistables and timers. Microprocessors. Memory and input/output devices. RS-232C interface. IEEE-488 and IEEE-1000 microprocessor buses. The oscilloscope.
Full constructional details for nine test gear projects. TTL and CMOS pinouts; binary conversion tables.
\qquad copy(ies) of Introducing Digital Audio ($£ 6.45$ each) _____ copy(ies) of Practical Digital Electronics Handbook (7.45 each)

I enclose my cheque for \qquad made payable to PC Publishing.

Name
Address
Send this coupon to PC Publishing, 22 Clifton Road, London N3 2AR

BICYCLE SPEEDOMETER

Leycester Whewell not only knows where he's going but how fast he's getting there too

This article in fact describes my Mark II cycle speedometer. Since Mark I was built (in 1982) new semiconductor chips have enabled projects such as this to be built from fewer and more compact components and yet provide a greater number of features than originally possible.

As well as being suitable for a bicycle, this speedometer could also be adapted for other tasks of a similar nature.

The main aim of the design is to produce a unit low on power, simple to maintain and operate, reliable and capable of giving as much useful infor-

Mode	Display		Function
Set up Mode 0	-1-		X=0 for Imperial, 1 for metric units
Set up Mode 1	$-2-X X$.		Wheel size, from 18.00 in to 28.00 in
Mode 0	XXXXXX	XX	Total Distance (miles/km)
Mode 1	XXXXXX.	XX	Trip Distance (miles/km)
Mode 2	XXXX.XX	XX	Total Time (HHHH.MM.SS)
Mode 3	XXXX.XX.	XX	Trip Time (HHHH.MM.SS)
Mode 4	XXX.	X	Current Speed (mph)/kmh)
Mode 5	XXX.	XX	Top Speed (mph/kmh)
Mode 6	XXX.	XX	Average Speed (mph/kmh)
Mode 7	XXX.	0	Time Trial Distance (miles/km)
Table 1 Display modes			

mation as possible. I also wanted the Mark II version to behave more like a mechanical
 odometer in that it would not have to be turned on or off every time it was used and that the information would be preserved indefinitely without worrying too much about battery life.

Finally, since only a few units were to be built, the components had to be cheap and easy to use - no mass production here to bring down costs.

Choosing Chips

Several families of CMOS microprocessors have become readily available since building the Mark I (which used the 1802). These include the 80 C 35 and 80 C 85 series, the HD6303 and HD6305 series and the 146805 series.

Apart from the HD6303 which has an awkward 0.07 in pin pitch, each series has a suitable member for making a speedometer. The 146805 was chosen since I already had an assembler for it and knew several sources from which it was readily available.

The four digit LCD on the Mark I was a limitation when it came to displaying elapsed time. To fit in a decade of hours, the seconds count had to be reduced to tenths of a minute. After numerous hours riding, a mental conversion back to seconds had to be done before the reading became meaningful.

The advent of triplexed LCDs and their respective driver chips has enabled more digits to be fitted into a display without an absurd number of connections. An eight digit LCD has been incorporated into this speedo with an ICM7231BFIPL driver.

Elapsed time can now be shown in seconds, minutes and four decades of hours. Distances need no longer wrap around to zero after 999.9 miles. The other main advantage of the triplexed LCD used is the annunciator arrow - there is one beneath each digit and these are used to indicate the operation mode.

A useful feature of most single chip or related low chip count systems is the standby mode. The 146805 has two, called WAIT and STOP. In the WAIT state the crystal oscillator and timer operate but when the timer counts down to zero or there is an external interrupt then normal processing is restarted.

The speedometer enters the WAIT state between regular timing intervals and the external interrupt caused by one revolution of the wheel. During this period the current consumed is about 1.5 mA compared to $7-8 \mathrm{~mA}$ during normal processing.

The relative proportions of time spent processing and WAITing determine the overall power consumed by the speedometer. A fixed proportion of time is spent servicing the time interrupts but the amount spent on wheel interrupts is directly proportional to speed. So whilst stationary about a 2 mA is consumed and this rises to $2.5-3 \mathrm{~mA}$ at 20 mph .

The STOP state consumes less current than the WAIT state, because the crystal oscillator and timer also stop. If after a period of about a minute there is no interrupt due to the rotation of the wheel then the speedometer will clear the display and enter the STOP mode. To the user this gives the impression of it having turned itself off.

An interrupt from the wheel ends the STOP state and the speedometer updates the display and continues as before. This obviates the need for an on/off switch and allows data to be preserved from one period of use to another. About 0.5 mA is consumed during the STOP state, so a set of four NiCds with a capacity of 450 mAh will last 28 days if the speedometer is used for two hours a day. Changing the batteries every two to three weeks will allow a safe margin for leakage and variations in cell capacity due to ageing.

To preserve data in the processor when changing batteries, a lithium data retention battery and a diode prevent the supply voltage from dropping below about 2.5 V . The batteries should only be changed when the speedometer is in the STOP state, this prevents excessive use of the lithium battery and (worse) running the processor from a
supply voltage that is too low for the crystal frequency used. If this happens and the processor crashes then all data contained within it will be lost.

The Hall effect switch used to detect rotation of the wheel in Mark I worked perfectly in all conditions. However, as it consumed a relatively massive 3 mA , an alternative had to be found which would not drain a set of batteries in a few days. The only form of detector that does not require a steady current source involved direct contact switching. A reed relay mounted so its axis was parallel to that of a bar magnet mounted on the wheel and perpendicular to the adjacent spokes was found to be suitable.

Debouncing of the contacts is performed in software, the current consumption is reduced to grounding a pull-up resistor when closed and only two wires are needed from the speedometer.

Initial operation of the relay proved to be problematic, each wheel revolution caused the relay to close three times in quick succession. I found that the relay was passing too close to the magnet and induction through the relay contacts was responsible. Increasing the minimum separation between them to over 5 mm for that particular magnet cured the problem.

Operating Modes

Ten modes of operation are available. Eight are for normal use with two special ones for parameter setting. Special mode 1 is entered after the poweron reset which occurs when the batteries are inserted for the first time only. This mode is used to set the units used - imperial units are represented by a 0 and metric units by a 1 . Changing from one to the other is done by pressing the reset switch. A third option, number 2, has been reserved for metric units with speed in metres/second although the additional program to do this is not written.

Pressing the mode switch selects special mode 2 which selects the wheel size to be used. Eight of the most common wheel sizes are displayed in turn by pressing the reset switch and range from 18 in to 28 in with 700 mm being displayed as 27.56 in . Pressing the mode switch again then selects the first of the normal modes.

Each of the normal modes is associated with one of the annunciator arrows under each digit of the display. When the modes are changed, as listed in Table 1, the arrow moves one digit to its right and back to the digit on the far left when the Total Distance mode is re-entered. If both switches are pressed together for over a second then the special modes are re-entered for a change in units or wheel size.

HOW IT WORKS

There is not a lot to be said about this circuit that isn't aiready said in the main text. The full circuit diagram of the speedometer is shown in Fig. 1.
The microprocessor (IC1) contains its own clock oscillator, requiring only the external components, X1. R6, C3, 4. The twa 8 -bit ports of the chip's built-in PIA are used to directly interface the LCD driver chip (IC2). the two control keys (SW1, 2) and the reed relay sensor. The latter also acts on the processor interrupt input.

The EPROM (IC3) containing the speedometer program is the only external device occupying the memory space of the processor and is directly mapped using IC5C and IC4.

Power is provided by either the NiCd batteries B1 with protection diode D1 or through the standby dataretention cell B2. Power on reset is provided by R1, C1.

As their names suggest, the Total Distance and Time modes keep a record of the total usage of the speedometer. They cannot be cleared using the reset switch. Neither mode will wrap around to zero in a hurry - it takes a million miles $/ \mathrm{km}$ or 10,000 hours to do so!

The Current Speed mode does just that, displaying with a resolution of $0.1 \mathrm{mph} / \mathrm{kmh}$ and the Top Speed mode displays with a resolution of 0.01 $\mathrm{mph} / \mathrm{kmh}$. Measuring to $0.01 \mathrm{mph} / \mathrm{kmh}$ is meaningless as far as absolute readings are concerned because of the error in the diameter of the wheel but it is useful when a comparison is made to a previous effort. Top but not Current Speed may be reset.

The remaining four modes are linked by the need for a common measurement origin. Trip Distance and Time display data in the same format as their Total Distance/Time counterparts and Average Speed is simply their ratio. Average Speed uses a time base of $3.6 \mathrm{sec}(0.001 \mathrm{hr})$, distance in units of 0.01 miles $/ \mathrm{km}$ and produces a result in $0.01 \mathrm{mph} / \mathrm{kmh}$. Its accuracy increases with both distance and time, so after about an hour

Fig. 1 Circuit diagram of the speedometer

THE 146805E2

The 146805 E 2 is a CMOS microprocessor based around a cut down version of the 6800 . It contains one 8 -bit accumulator (A), an 8 -bit index register (X), a 5 -bit condition code register, a 13 -bit program counter (giving an 8 K addressing range) and a 13 -bit stack pointer.
The upper seven bits of the stack pointer are fixed so that the stack uses the top 64 of the 112 bytes of internal RAM (which runs from $\& 0010$ to $\& 007 \mathrm{~F}$). All remaining locations in the memory map are available for use by external hardware with the interrupt vectors placed at the very top.
Two 8 -bit I/0 ports and their corresponding data direction registers are also in the zero page memory map along with the timer and its contral register. The input to the timer may be from the processor clock or from the TIMER pin (or both ANDed) and a software selectable prescaler can be used to divide the input by powers of 2 128. The output from the prescaler goes into an 8 -bit timer counter which can generate an interrupt when it counts down from $\& 01$ to $\& 00$

An on-board oscillator simplifies the clock circuitry and crystals up to 5 MHz may be used when $\mathrm{V}_{c c}=5 \mathrm{~V}$. The maximum crystal frequency allowed falls linearly with supply voltage to 1 MHz at $V_{c c}=3 \mathrm{~V}$.
Five clock periods are used per bus cycle, the relative timings for which are given in Fig. 2. To save pins, address lines 0-7 are multiplexed with the data bus. The falling edge of the address strobe (AS) latches the address in the earlier part of the cycle leaving the latter part of the cycle for data.

Data may be placed on the bus when the Data Strobe (OS) is high and is latched by the receiving device on its falling edge.

Fig. 2 Timing diagram for the 146805

some meaning can be attached to the $0.01 \mathrm{mph} /$ kmh digit.

Pressing the reset switch in any of the three modes will clear the data in all three.

The Time Trial mode is the most complicated to use and yet one of the most useful. This mode displays a trial distance in whole miles/km ranging from 1 to 100 inclusive. A short press of the mode switch will change to the next mode but if depressed for over a second then the trial distance will count round until it is released. Then on the falling edge of a press of the reset switch, the trip functions are all cleared and a decimal point on the far right of the display is set.

The speedometer will then function as normal until the Trip Distance reaches the value set in the Time Trial mode. The far right decimal point is then turned off and the trip functions are inhibited until they are reset. This allows the time and average speed at the trial distance to be preserved until a suitable time is found for them to be read.

Software

The Speedometer program is driven by two sources of interrupt, one from the internal timer which times out at 80 Hz and the other from the wheel relay at one per revolution. The timer interrupts are used to update the time modes and scan the mode and reset switches. By making full use of the 8 -bit counter the period of the wheel rotation can be measured to a resolution of $1 / 20480 \mathrm{sec}$.

This leaves the diameter of the wheel as the sole source of any significant error. Each wheel revolution triggers a background program to update the distance and calculate the speed average speed is only calculated when needed for display.

The main problem with having two indepen dent interrupt sources is the potential for conflict when both occur together. This is more serious for the wheel interrupt since delays in reading the time at which it occurs will result in the wrong speed being calculated. To ensure wheel interrupts are not delayed, the timer interrupt routine clears its source immediately and enables interrupts before continuing with advancing the time.

In return, the wheel interrupt must be very short so there is no possibility of another timeout before the previous one has been properly processed. Therefore the wheel interrupt simply reads the current time (and checks if a timeout is imminent to check for overflows), sets a flag and terminates.

A background program continuously tests this flag and when set it updates the distance counters, calculates the speed (and average speed if need be) and checks for top speed. When that is done the flag is cleared ready for the next wheel interrupt. The time taken to do all that is com parable to the time interrupt period and therefore cannot be included within the wheel interrupt routine.

Each time a wheel interrupt routine has been processed by the background program, the display is updated. One consequence of this is that in the average speed mode, the reading will not gradually decrease while the bike is stationary simply because no wheel revolutions are occurring to trigger a new calculation and display update. If a wheel interrupt has not occurred for one minute then the display is blanked and the STOP mode entered.

When the background program is not being executed the power-saving WAIT state is entered. Processing halts although the crystal still oscillates and instruction execution commences on receipt of the next wheel or timer interrupt.

The setup modes determine several parameters for the main program. The wheel size determines the amount which is added to the sub $0.01 \mathrm{mile} / \mathrm{km}$ distance counters each time the wheel revolves. Each time that $0.01 \mathrm{mile} / \mathrm{km}$ is passed, an amount corresponding to $0.01 \mathrm{mile} / \mathrm{km}$ is deducted from the counter and the trip and total distance registers are incremented. Both are kept in BCD format which makes it simple to send to the display - and saves a lengthy series of calculations every time the display is updated.

A binary count of the trip distance is updated in parallel to the BCD count. This is used for calculating the average speed in a form ready for division by the trip time.

The total and trip time registers are also updated in $B C D$ format for the same reasons as

山ЭJIOUd
the distance registers. A binary count of the trip time is also kept ready for calculating average speed. To save on processing time (and hence power) the average speed is only calculated in the mode in which it is displayed. Each time the display is updated the distance is multiplied by 1000 before a 32 -bit division by the trip time takes place. This produces the result in the correct units for display. All that is left now is a series of divisions by 10 to convert the binary result into BCD.

When selecting between imperial and metric units, all that is done is to select a different table for the wheel sizes. Each entry in the metric list is 1.609344 times as big as its imperial counterpart so the distances come out in km rather than miles. No other changes are necessary since the time base used to calculate speed is the same in both cases.

One feature of the speedometer is that when a change of units is made, the total and trip distances are corrected accordingly. This involves converting the BCD counts to binary, scaling up or down by a factor of 1.609344 and then converting back from binary to BCD. Going to and from another set of units usually results in a loss of $0.01 \mathrm{mile} / \mathrm{km}$ due to rounding off in the division routine.

Construction

A single sided PCB (see Fig. 3) has been produced for the speedometer which fits into a $120 \times 65 \times 40 \mathrm{~mm}$ plastic box. Boxes of exactly the

BUYLINES

A few of the components required for this project are difficult to come by. The processor (IC1) can be obtained from Jermyn Distribution (Tel: (0732) 450144) as can the LCD driver (IC2). The LCD itself can be purchased from Verospeed (Tel: (0703) 644555) or from Farnell Electronics (Tel: (0532) 636311) as part number 175595. Farnell is usually unwilling to trade with the public but all Farnell components may also be obtained from Triegic (Tel: 10274) 684289).

The author can supply programmed EPROMs for this project for $\mathrm{E6}$ (if EPROM supplied - note this project uses a low power 2716) or $£ 14$ inclusive of the EPROM. The EPROM source code is available copied onto a BBC micro disk (40 or 80 track disk supplied) for $£ 7.50$ or with the 6805 eross assembler for $£ 15$. The author will also make up buards from the ETI PCB Service without the case or EPROM for $£ 41$.

Please address software board make-up enquiries and crders to Leycester Whewell, 1 Park Terrace, Berrington Road, Tenbury Wells. WR15 8EJ.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$ unless specified)	
R1	100k
R2	47k (1\%)
R3	10k
R4, 5	22k
R6	10M
CAPACITORS	
61	100 n ceramic
C2	$4 \mu 7$ tantalum
C3, 4	22 p ceramit
SEMICONDUCTORS	
IC1	MC146805E2 or CDP6805E2T
IC2	ICM72318FIPL
IC3	ETC27160
IC4	74HC373
IC5	74 HCl 10
01	1N4001
D2	1N4148
LCD1	8 -digit triplexed LCD
miscellaneous	
B1	$4 \times 1.2 \mathrm{~V}$ NiCd batteries and holder
B2	3.6V AA lithium cell
SW1, 2	SPST push switch
RLAI	Reed relay
X1	3.2768 MHz crystal

PCB. Bar magnet. 2×24-way socket strips for LCD (if required). Connecting cable. Case. Clear sticky plastic.
same size are also made in diecast aluminium and both have four 3 mm screws to attach the lid to the rest of it.

The four corners of the PCB must be radiused so clearance is provided for the columns into which the lid screws fit. The PCB is marked for this.

The first thing to do is to solder the wire links into position on the PCB. There are nearly 20 of these and some run underneath the ICs. Insulating wire should be used (wire wrap is best) since a number of links are close together. The next stage depends on your use of IC sockets.

If the EPROM is the only device destined for an IC socket then the other ICs can be soldered straight in - paying particular attention to their orientation. The remaining passive components can also be soldered straight in - extra support should be given to the liquid crystal display with double sided sticky foam.

CONNECTIONS TO EACH DIGIT

	COM1	COM2	COM3
\mathbf{X}	f	e	AN
r	a	g	d
z	b	c	DP

Fig． 6 Connections and multiplexing of the triplexed LCD

TRIPLEXING

An important consideration for the design of any display with a large number of independent elements is the arrangement of connections to the driver circuitry．

With large displays this is a large problem since the number of connections which have to be made means it is difficult to keep pins to a DIL format．

The simplest way to cut the number of connecting pins（and as a consequence，the complexity of the drive circuit）is to multiplex the display．This means that each character of the display is only active for a short period of time（of the order of several ms）before giving way to the next one．

The cycle for the whole display must be repeated at least 30 times per second so the human eye responds to a time－averaged light level from each character．It cannot normally detect that each digit is on for a fraction of a second．

Multiplexing LEDs is very straightforward．Each character of the display has atther all the anodes for cathodes）of the component LEDs joined together and these are fed to separate drive outputs．Each cathode for anode）of a LED in a character is wired to the correspenting one in each of the other characters． These also go to a set of drive circuits．

So．for a 4 －digit display of seven segments each． there would be four connections for the digit common wires and seven connections for the segment wires－a total of 11 wiras to drive 28 display elements．

For each character in turn，current is allowed to flow through its common terminal only while current is allowed to pass through those segments of that character which are on．The remaining digits are all blank until it is their turn in the cycle．

Multiplexing does have limitations．For an n－ character display，each can only be active for $1 / n$ of the time for each cyele，so n is usually under 10 ．Otherwise there is a problem with overall brightness．

The same principle of multiplexing applies to liquid crystal displays as well．However，it is far more complex because an ordinary LCD is driven with atternating current－a feature which is necessary to prevent electrolysis of the display fluid．

Care must be taken in soldering in the LCD．I have come across two types which are suitable for this display．One type has the pins bonded directly to the glass substrate and I strongly recommend that a socket is used for these as too much heat from can easily damage the tin／indium strip which connects the pins to the rest of the display．

The second type has a special contact strip for each side of the display．When assembled the whole can be soldered in directly to the board

A square wave signal（about $30-200 \mathrm{~Hz}$ and $3-4 \mathrm{~V}$ peak－to－peak）is applied to the backplane of the display． The amount of contrast produced by each element depends upon the difference in voltage levels compared with the backplane．An element which is off has the same voltage levels applied to it as the backplane so the difference is always zero．An element that is on has the opposite voltage to the backplane applied to it which keeps a constant difference between them．

Since each element must always be kept at the same or opposing voltage to the backplane，a new approach must be found for multiplexing．As indicated earlier，the cantrast depends upon the difference in voltage levels between the segment and the backplane．Since the whole system is running on alternating current it is pessible to calculate a coot mean square（RMS）voltage difference between the two beyond which an element will appear to be on and below which it will appear to be off．

An RMS voltage of under 1．1V produces a low contrast so that the element appears to be off．Above 2．1V the contrast is such that the element is on．These thresholds dacraase as temperature increases at a rate of about 7 mV per ${ }^{\circ} \mathrm{C}$ ．

The greater the ratio of RMS voltages for＇on＇to＇off＇ elements the better because this also increases the display viewing angle．

In the display used in the speedometer there are three backplanes running parallel to another along the length of the display．Each digit has three connections to it called segment lines（they run across the display）which make a matrix of nine points with the backplanes．

A display element is placed at each crossing point （see Fig．6）so there is sufficient capacity for the seven segment digit，a decimal point and an annunciator arrow．

A waveform must be applied to each of the back－ plates and to the segment lines so a sufficient RMS voltage can be created at any point in the matrix（and so furn on that element）while at the same time，the RMS voltage across the elements that are off is kept below 1.1 V ．
without much problem of heat damage．There will probably be 26 pins per strip for the display but only the middle 24 are needed，so the outer ones can be cut off．

If you use IC sockets throughout then check for clearance between the display driver chip and the display above it before soldering．The procedure for the rest of the assembly is as above．

The final component to be soldered is the data retention cell which is mounted on the underside．

万月荅	

COM1，COM2 8 COM3 ACTIVE ON $01\left(01^{\prime}\right)$ ． $02\left(02^{\prime}\right)^{2}$ \＆ $03\left(03^{\prime}\right)$ DIAGRAM SHOWS TIMINGS FOR SEGMENTS ON LINE Y OF DISPLAY
Fig 7 Timing of the triplexed LCD

Figure 7 shows the voltage waveforms that are applied to the three backplanes as well as some examples of segments that are off and on．Within the display driver chip there are three 75 k resistors in seritis Which are used to generate the intermediate voltage levels $1 / 3 V_{\text {Disp }}$ and $2 / 3 V_{\text {DISp }}$ ．One end of the resistor chain is attached to the +5 V supply of the chilp and the other is connected to another pin so the voltage across the display can be controlled
Since this project is powered by NiCd batteries which have good voltage／discharge characteristics，a constant voltage can be applied across the display just by tying the open end of the chain to ground with a 1% resistor （R2）．

The mean voltage applied to the backplanes is V／2． For the parts of the cycle in which a particular backplane is not being used its voltage is kept at either $V / 3$ or $2 V / 3$－a difference of $V / 6$ ．When it is in use，either V or 0 V is applied which is a difference of $\mathrm{V} / 2$ ．
For a given backplane，if the segment on a particular segment line is off then the voltage applied to it is between $V / 2$ and that of its backplane．This keeps the RMS voltage between the two as low as possible for that segment and yet not too high for the other segments in that line for them to be turned on when they shouldn＇t．
When a particular segment is on，the valtage applied to it is the complement of that on its backplane．This causes the RMS difference between them to go above the＇on＇threshold and yet that of the other segments is still kept below the＇off＇threshold．
The main drawback of multiplexing LCDs is that the RMS valtage across off segments is not zero（unlike non－ multiplexed displays！．This causes some polarisation of the fluid which reduces the display angle by perhaps 20°
It is for this reason that it is difficult to read a com－ puter LCD screen（greatly multiplexed）at more than 30° to the normal but not a simple $L C D$ watch which does not have a multiplexed display．These problems have very little effect on the speedometer since the rider is viewing it from a nearly constant position．
strong enough by themselves to support it indefinitely against the vibrations of the road．

Alternatively，two wires could be used to join the cell to the board so that it is free to rest on the base of the case．

Once the PCB is completed，the EPROM（see Listing 1）can be inserted and some testing carried out by temporarily connecting the batteries， switches and reed relay．Correct operation can be verified by running through the operating modes of

This should not be connected until the batteries have been installed．This simplifies checking the power on reset and avoids draining the cell with the processor running．Foam strips with adhesive on both sides should be used to fix the cell to the board as well as insulate it from the tracks．

Before soldering，a piece of wire should be used to tie the cell to the underside of the board using the two remaining unused holes．Experience has shown that the contact leads on the cell are not

O5FO FB BG OD AA FO B7 OO B6 33 OF 63 O2 AA 20 日 701
 $\begin{array}{llllllllllllllll}0610 & \text { 日6 } & 2 E & \text { 日7 } & 01 & 19 & 00 & 16 & 00 & 1 E & 00 & B 6 & 2 D & B 7 & 01 & 19\end{array} 00$

 $\begin{array}{lllllllllllllllll}0670 & 1 F & 86 & 44 & \text { 日7 } & 22 & \text { B6 } & 45 & \text { 日7 } & 23 & C D & 18 & \text { DD } & \text { B6 } & 22 & \text { A1 } & \mathrm{FF} \\ 0680 & 27 & 32 & 3 F & 26 & \text { A6 } & \text { A } & \text { 日7 } & 27 & \mathrm{CD} & 1 \mathrm{~B} & \mathrm{Dq} & \mathrm{B6} & 1 \mathrm{~F} & \mathrm{B7} & 12 & \mathrm{CD}\end{array}$

 670

 $\begin{array}{lllllllllllllllll}0780 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ 0790 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$ $\begin{array}{lllllllllllllllll}0770 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ 0740 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$ $\begin{array}{lllllllllllllllll}07 B O & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 \\ 07 C O & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$ $\begin{array}{llllllllllllllll}\text { OTCO } & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 & 00 \\ 07 D 0 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ 00\end{array}$ $\begin{array}{lllllllllllllllll}\text { OTEO } & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ \text { OTFO } & 00 & 00 & 00 & 00 & 00 & 00 & 1 A & 39 & 1 A & 39 & 1 A & 17 & 1 F & 7 D & 18 & 20\end{array}$

Fig. 5 The mounting of the reed relay and magnet on the bicycle forks and wheel
the speedometer, checking its function by opening and closing the relay with a magnet 'by hand.'

The plastic box normally includes some PCB supports which run in vertical grooves in the walls of the case. I have used these to hold the board at the correct height so the display can be seen through a hole cut in the case (Fig. 4). A little trimming of the board where the supports go may be needed in order to achieve a good fit.

To prevent rain getting into the case, it is used upside down so the lid is on the bottom with the display showing through what was the base. Clear self adhesive plastic film covers the display cutout to create a watertight seal.

The four AA NiCd cells are held in a 4×1 battery holder mounted at the base of the case, on the lid. The two screws holding the battery holder to the lid of the case are also used to attach it to the support bracket. I used a bent strip of aluminium to fix the speedometer box to the front brake assembly.

Low profile switches with short leads are the easiest to mount on the box. Two small holes were made in the case for each switch for the leads. Wires were soldered to the switches and passed through the case before gluing. No problems have ever been encountered in the rain with this arrangement of switches.

The reed relay lead passes through a small hole in the lid to where the relay is mounted at the bottom of the forks. If the clearance between the wire and the case is very small then no glue is needed to make a seal since surface tension will prevent water from seeping into the case.

The relay can be mounted on a small aluminium bracket bolted to one of the front forks on the axle (Fig. 5). It is a good idea to encapsulate the mounted relay and any bare wiring to prevent triggering by rain. Silicone bath sealant or epoxy
glue is suitable for this or even paint at a pinch.
The magnet is positioned on a spoke so that it passes within about 10 mm of the relay (but does not touch it). The exact distance will vary with the type of magnet and reed relay used and must be found by trial and error.

The magnet can be fixed either by gluing/ tying it to the spoke, by making another small bracket or by fixing it to one of the clip-on spoke reflectors which are easily and cheaply available from bike shops.

Once the reed relay and magnet are mounted and wired in, the case can be bolted to the handlebars, front brake calipers or wherever it can be conveniently read and operated and you can then peddle off into the sunset confident in the knowledge of exactly how fast you are going.

Complate Paris Sets for Top Projects

THE LUCID DREAM STIMULATOR

Paul Chappell's heavy breathing monitor can give you the night of your dreams

Let's face it, this is going to be an odd sort of project. Athletes, cyclists, swimmers, marathon runners and keep fit enthusiasts will find some good parts. Brainwave monitor owners have been considered, those with an interest in dreams will enjoy their bits and athletic brainy dreamers will get nourishing family goodness through and through. Let me explain.

It all started with the Dream Machine project, which you will no doubt remember from the November and December issues last year. The idea of the Dream Machine was to help you get a good refreshing night's sleep and to put you in the right frame of mind for some vivid and spectacular dream experiences. Shortly after the project was published, a letter dropped into the ETI mailbox why not design a lucid dream stimulator? Then another, saying much the same. Then another. And another

Well, we don't always go rushing off to design a project at the request of a single reader but the combined weight of a mailbag full of letters is some-

Everybody dreams. Although dreams can occur at any time of the night, it is generally agreed that most of them happen during a special phase of sleep called paradoxical or REM (rapid eye movement) sleep. Not only are dreams much more frequent during the REM phase, they are also of higher quality and greater density.

The REM phases last for around fifteen minutes and may happen four or five times during the night. If you were watching someone else sleeping, you might notice that they became totally relaxed during these times. You might also see their eyes moving rapidly back and forth behind their closed lids.

When the REM phase was first discovered, it was thought to be nothing more than light sleep with dreaming. The brainwave traces in this phase then gave the first clue that something strange was going on - they looked just as if the sleeper was fully awake! Yet the muscles are more relaxed during this phase than in the deepest of ordinary sleep. Paradoxical indeed!

Many people have experienced a type of

The ETI Dream Machine and Brainwave Monitor, predecessors and possible basis for the Lucid Dream Stimulator
thing we have to take seriously.
Many readers suggested modifying the Brainwave Monitor project to do the job but since it only
 appeared last year it's a bit too soon to think about doing another version. I'll give a few hints a bit later on, though, for anybody who has built one and would like to adapt it.

The way I eventually decided to tackle the project was to design a respiration rate meter (this is where the athletes come in) and to give it an output suitable for triggering a lucid dream stimulator. So this is what you get for your money: a short refresher course on sleep and dreams (lucid or otherwise), some Tech Tips style hints on modifying the Brainwave Monitor for lucid dream stimulation, a breathing rate meter for sports training and a breathing rate triggered lucid dream machine. Good value, eh?

Sleep And Dreams

When Bagpuss wakes up (and all his friends wake up) the chances are that he has dreamed, even although he may not remember anything about it (because he's stuffed).
dream called a lucid dream, when the states of sleep and wakefulness become mixed up. In the mildest form, you might find yourself rushing downhill in a go-kart towards a pane of glass, and after a moment of panic think - so what? I'm only dreaming!

Some people manage to go a stage further and take control of their dream. Why have a pane of glass? Why not a feather pillow? And there it is, a nice, soft landing. Once you've got the hang of taking an active part in your dream life, there's no end to what you can do!

Lucid dreams can happen spontaneously and can often be brought on just by reading about them. But if they don't happen, there's not much you can do about it. Or is there?

One thing which seems to have a good success rate at bringing about lucid dreams is to disturb the sleeper slightly during a dream. A small electric shock seems to be the approved method - it sounds horrific but I'm talking about a little tingle, not an electric fencer zap.

The problem is - when do you administer the shock? Until someone comes up with a mind

Fig. 1 Modification to the brainwave monitor for delta wave detection
occur from time to time and the trace begins to show evidence of the very slow delta waves.

The third and fourth stages both show large, slow delta waves - the third stage having some faster waves in evidence and the very deepest sleep of all being almost entirely delta waves.

During paradoxical sleep, a strange change in brainwave pattern takes place. Although the body is at its most relaxed, the brainwaves are those of alert wakefulness. One way to detect paradoxical sleep (with its high probability of dreaming) is to look for the reappearance of the faster daytime waves during the night.

If you are going to experiment with sleep and dreams, you may like to modify your brainwave monitor to pick up delta waves. I didn't make any provision for this in the original design, my reasoning being that if you were fast asleep, you wouldn't be awake to operate the monitor. Very logical it seemed at the time!

The mod is not strictly necessary but it's so simple that you might like to do it anyway. Figure 1 shows how. The three-way rotary switch selecting the ranges on the original monitor is replaced by a four way switch, and two extra resistors (R47 and R48) are added.

reading machine, there's no way to be absolutely sure when a sleeper is dreaming. The usual method is to detect the onset of paradoxical sleep and let statistics work for you: that's when there's the best chance of a dream taking shape. This is exactly what we shall be doing in this project, in several different ways!

Brainwaves And Lucid Dreams

Orthodox sleep is divided into four stages on the basis of brainwave traces. The first stage is drowsiness, which may or may not be followed by complete sleep. The alpha and beta rhythms of wakefulness diminish and slower theta waves appear. The overall EEG trace has a relatively low amplitude in comparison both with wakefulness and with deep sleep.

In the second stage, which could be called 'dozing off,' distinctive spindle-shaped waves

Compare Fig. 1 with Fig. 36 in the September 1987 Brainwave Monitor project and you'll soon see what needs to be done.

There is no room for the extra resistors on the PCB but they can be soldered directly to the switch (if you use a 3-pole 4-way type, it will have plenty of spare tags) and wires taken to the appropriate points on the underside of the PCB. It shouldn't look too untidy!

The pad type electrodes held on by pressure are perfectly good for daytime use but will soon become dislodged at night. Small disc type electrodes held on with sticking plaster are probably the best bet for home use.

There are two ways of detecting the onset of paradoxical sleep you might like to try. One is to look for the appearance of alpha waves during the night, for which the best electrode position will be the same as you use during the day. The other is to
detect the eye movements associated with this phase of sleep. One active electrode on each temple and the reference electrode in the centre of your forehead will give a good signal from the eyes.

If you decide on the second approach, use the Alpha range on the monitor anyway to screen out theta and delta waves. Set the mode control to 'integrate' and adjust the gain control to the least sensitive point where the monitor reliably begins to sound after half a dozen or so eye movements. Don't forget to mute the output before settling down to sleep - you don't want to be woken up in the middle of a pleasant dream!

A suggested circuit to complete the lucid dream stimulator is shown in Fig. 2. The output of the circuit will give you a mild electric shock which should be just enough to disturb your sleep but not enough to wake you up.

The output, from a small mains transformer connected 'back-to-front', is taken to a pair of metal electrodes, which you can tape or bandage to your arm or leg. Both electrodes should be attached to the same limb to prevent a conduction path through your heart. As for all devices which make electrical contact with your body, it must be run from batteries and not from any kind of mains power supply.

With the electrodes in place, press the 'test' button and adjust RV2 to give something more than a tickle, but less than an aaaaaargh! Set RV2 to maximum resistance before you start - it's best to begin with a tickle and work your way upwards rather than the other way around! Set RV1 to give

If you don't like the thought of an electric shock (however mild) you can probably rig up something to use the brainwave monitor's internal sounder to disturb you slightly. The only objection to using it unmodified is that it will continue to sound during the entire period of REM sleep, which may very well wake you up. Some kind of timer to allow it to sound for a few seconds and then shut it up for half an hour would be needed.

Since researchers into dreams seem to favour the shocks, I can only assume that they are more effective than the sounder in bringing on lucid dreams but the final choice is up to you.

Breathing Rate Monitor

Now we change direction and begin the breathing rate monitor. Anybody who takes a serious interest in sports or athletics (beyond watching them on TV!) will find this a very useful aid to training. On a very broad level, two guidelines to general fitness are your resting breathing rate (which should decrease as fitness improves) and the time your body takes to recover from exertion - the quicker the better.

The specific training requirement for different sports vary so widely that there's not a lot I can say about them here, other than to direct you to the sports section of your local library. If you belong to any kind of sports or fitness club, there will no doubt be somebody who can advise you on how best to train.

The main problem with designing a breathing rate monitor is that the information arrives so

the duration of shock - a second or so should be enough.

When you are ready with all the electrodes in place, press the 'reset' button to clear the counter (IC1) and let yourself drift off to sleep. After about half an hour, the counter will have reached the point where O22 goes high. This arms the rest of the circuit and freezes the clock (via D1) so that it remains in a state of readiness until you dream.

When the brainwave monitor decides that you have entered the REM phase of sleep, IC2 is triggered which imparts your dose of electricity and resets the counter to disarm the circuit for another half an hour. With any luck, you'll be having a lucid dream in the meantime, and several more during the night at the start of each period of REM sleep.

The period of the counter can be altered as indicated in Fig. 2 by taking the output from a different pin of the IC. Fine control can be achieved by adjusting R7 - a larger value for a longer time period, a smaller value for a shorter one.
slowly! A common approach to rate meters of any kind is to count events over a certain period, updating the display at the end of each counting period. Let's suppose we do that with the respiration meter.

To make life easy, we could just count the number of breaths occuring over one minute, dump the result into a display and hold it while we collect another minute's worth of data. But what's the use of a display that only updates once a minute? A minute is an awfully long time if you're sweating away on an exercise cycle or pounding round a track! Cyclists will often train with thirty second bursts of maximum effort - they want to know what's happening while they're doing it, not a minute later!

OK, so how about we count the number of breaths over six seconds, multiply by ten to get the number of breaths per minute, then plonk that in the display and update it ten times a minute. But suppose the breathing rate is 15 per minute.

During the six second sample period, one of two things can happen: we record one breath, or we record two breaths. There is no other possibility. Sometimes the display will show ten breaths per minute, sometimes it will show twenty. Never will it show fifteen! Reducing the sample period only reduces the resolution.

Right, we'll have twenty data collection units, each staggered by three seconds and updating the display in turn. Too expensive!

We'll measure the time between subsequent breaths, take the reciprocal and display that, updating after every breath. But will the input circuit reliably trigger at exactly the same point on each breath? Every bit of jitter will be displayed. Does the user really want to see the display flicking about as the time between subsequent breaths changes slightly? Probably not.

However the input is derived, we're clearly going to need some kind of running average circuit. One that settles fairly quickly and doesn't have excessive ripple. And so as not to bore you with my own analogue-versus-digital debate, I'll tell you without further ado: I'm going to do it digitally.

This sounds like heavy stuff - microprocessors, number-crunch ICs, crystal clocks and the like. No way! Do-it-all ICs may be convenient but they are also expensive and, unless you intend to use them to their full extent, not worth the silicon they're diffused on.
Figure 3 shows a little circuit for you to think about. In case you're just about to faint at the thought that I might be expecting you to solder a dozen shift registers together, let me reassure you quickly that it's not the circuit of the project, it just demonstrates the principle (although I did originally design it for a practical purpose but
thereby hangs another tale, as they say).
The way it works is quite simple. Suppose that the clock is set so that any data at the input takes exactly one minute to make its way though the shift register chain and drop out of the other end. Suppose that each breath causes a single 1 to be fed into the first shift register. At all other times the input is zero.

When the circuit has been running for a while, the number of 1 s making their way through the chain will be exactly equal to the number of breaths taken in the previous minute.

If you look at the output of the circuit, you'll notice that if the shift registers were entirely full of 1 s , the output would be at $+\mathrm{V}_{\mathrm{DD}}$. If they were full of 0 s , the output would be at V_{ss}. Suppose that there were 100 shift register sections in the chain, each connected through a resistor R to the output buffer. You might have a sneaking suspicion that each extra output that went to a 1 would step up the output voltage by 1% of V_{DD}. And you'd be absolutely right!

The voltage at the output measures the number of 1 s in the chain, which measures the number of breaths taken over the previous minute.

Of course, there's no need for 100 shift register sections. By juggling the clock rate, the number of ICs and the gain of the output buffer, you can have any resolution, scale factor and averaging interval that your heart may desire.

The disadvantage of the circuit is plain to see. In a nutshell, too many IC's. If you enjoy logic puzzles, see if you can come up with a way of making this into a practical circuit. Oh yes, and I'd like a digital output suitable for driving seven segment displays please. I've got to do it intime for next month's issue, so wish me luck!

 T I

YM

DYNAMIC NOISE REDUCTION

Manu Mehra has cut noise to the minimum with this simple project for beginners to electronics

In many audio applications a 'complementary' noise reduction system such as a compander or Dolby cannot be implemented. These involve encoding the program material before recording it and decoding it prior to playback. The encoding involves compressing the dynamic range of part or all of the signal whilst decoding involves expanding the dynamic range back to its original form.

In systems where such complexity is not desirable or encoded material is unavailable, a noncomplementary system proves more effective.

Fig. 1 Block diagram of the dynamic noise reduction system

Such applications include FM stereo receivers, cassette and tape decks without a noise reduction system or even a turntable where noise reduction would not go amiss.

The system described here is known as dynamic noise reduction and is introduced into the signal path between the source circuit and amplifier. The system is neatly packaged with a single IC - the LM1894.

Dynamic Noise

Dynamic noise reduction utilises three important facts for its functioning. The first is that noise caused in an audio channel by heating of resistive components in the circuitry (thermal noise) is distributed over the entire output bandwidth of the circuit (although its amplitude differs with signal frequency).

The second is that the total output noise level is proportional to the square root of the system bandwidth. So if the bandwidth is reduced, so is the total noise level at the output.

The third fact is known to anyone who has listened to a 'hissy' FM broadcast. Certain sounds seem to drown the noise and sound clearer. This is known as auditory masking and occurs due to the program sound stimulating the same regions of the ear as the noise and overshadowing the noise. It is

BUYLINES

The LM1894 is a relatively difficult IC to buy. It can be obtained from Macro Marketing (Tel: (06286) 4422) or from Thame Electronics (Tel: (084421) 4561).

HOW IT WORKS

Figure 2 shows the full circuit diagram of the dynamic noise reduction system. Capacitors $\mathrm{C1}, 2$ block any DC component of the input signal before it is passed to the variable low pass filters inside IC1.
These filters each consist of a variable transconductance amplifier followed by an op-amp configured as an integrator. C3,4 form the reactive feedback loop of this integrator and set the bandwidth permitted to $27 \mathrm{~Hz} / \mu \mathrm{A}$ of transconductance current. The transconductance itself is carried by the direct current provided by the control signal. The DC control signal therefore determines the amount of current supplied to the integrator and hence the bandwidth of the low pass filter.

The input signal is used to form the control signal Both left and right channels pass to the inputs of the summing amplifier A1. The output of A1 is fed into a high pass filter with a cut-off frequency of 1.6 kHz formed by C5 and RV1. As mentioned, this prevents low frequency, high amplitude sounds from fully opening the output bandwidth. RV1 also determines the amplitude of
the control path signal and hence the width of the output bandwidth.

The high pass filter also serves to eliminate any low frequency signals which may amplitude-modulate the control path signal.

The control path signal is amplified by A2 and passed into the peak level detector. The detector can respond to a peak in the input signal of around 0.5 ms . The time taken to respond to a peak (attack time) and then resettle (decay) is determined by C6.
$\mathrm{C7}$ and C8 provide output coupling. IC2 is an 8V, 100 mA regulator and together with C9 and C10 (to improve power supply rejection) forms an on board power supply to get a longer useful life from the battery.
Switch SWI can be used to bypass the system when required. This is achieved by grounding the input of the peak level detector which causes the output bandwidth to fully open and let through input signal unaltered. A bypass is introduced in the control circuitry rather than the audio signal path to prevent switching noise and the unnecessary use of shielded cables to take the audio signal from its main path to the switch.
 5
most prominent with high frequency sounds containing lots of harmonics.

This noise reduction system uses two low pass filters (one for each channel) to widen and narrow the system bandwidth in response to the input program signal (Fig. 1). The bandwidth is altered by controlling the cut off frequency of the low pass filters with a DC control signal derived from the program material's amplitude and frequency content.

Auditory masking is relied upon when the bandwidth is fully open to drown any noise - such a condition does not usually occur for too long during a piece of music or speech.

It must be appreciated that the circuit cannot respond immediately to a sudden change in program signal frequency and needs time to alter the cut off frequency of the bypass filters to allow the signal to pass through.

The LM1894 takes 0.5 ms to adjust to this change. Fortunately the ear has difficulty responding to any distortion caused during this short change.

Note that only one control signal is used to control both left and right channel filters to maintain a stable stereo image. Note also that a high pass filter is included in the control path. This is to prevent low frequency, high amplitude sounds causing a high DC control signal to the filters and unnecessarily raising the cut-off frequency. This in turn would imply the bandwidth has been excessively widened and more noise can get through to the output. The high pass filter ensures the cut off frequency is just above the highest significant harmonic of the program material.

The output of the control path is not proportional to the input signal frequency. It is weighted to provide more noise reduction (greater control of signal amplitude) in the $2-10 \mathrm{kHz}$ band where the ear's sensitivity is greatest and noise most audible.

Construction

The noise reduction system can be built either on a PCB or using stripboard. Which you choose will depend on your expertise and your pocket.

The system is of a professional quality and so it does not pay to spare expenses. C3 and C4 should be polystyrene type capacitors while a polypropylene capacitor should be used for C 5 . Use

Fig. 2 The circuit diagram

the highest quality socket you can find for IC1.
Shielded, co-axial cables should be used to connect the input and output terminals to the signal source and amplifier. If the system is to be used in a stand alone configuration (not part of an audio system) stereo jacks should be used to take the audio signal to and from the circuit. Ordinary single core wires may be used to connect SW1 and the power supply to the circuit.

Fig. 4 The component overlay and track cut positions for the stripboard versions

Solder IC1's socket into the board first followed by the five wire links if you're working on stripboard. Next solder in all axial capacitors and cut off the excess leads. Checking polarity, solder IC2 followed by the electrolytic capacitors. Finally the shielded cables, battery and SW1 can be connected.

The PCB and a 9 V battery will fit comfortably into a $125 \times 50 \times 25 \mathrm{~mm}$ case. Use a metal case for shielding the circuit against radio interference.

The LEDs and their associated current limiting resistors ($\mathrm{R} 1,2$) are not essential and can be left out altogether.

Setting Up

Plug in a suitable signal source and amplifier. This project should be fitted between pre-amplifier and power amp. If you have an integrated amp the project can be connected into the auxiliary send/ return loop like a graphics equaliser or even (at a pinch) between the cassette deck (the worst noise culprit) and the amp.

Switch on (SW2) and switch SW1 to the noise reduction position. RV1 should now be adjusted for the optimum noise reduction setting. Turning the preset clockwise will increase the amount of noise suppression.

Too much noise reduction will give a loss of high frequencies. The correct setting is a compromise and is best achieved by repeatedly switching the bypass in and out (SW1) as RV1 is adjusted to find the best setting for your system and your ears.

Although cassette systems are the worse noise offenders and stand to gain the most from this project, it will also perform well with tuners and even record decks as the sound source.

SPECIAL OFFER

Now your computer can take control for an affordable price. These tried and trusted interfaces from DCP Microdevelopments are offered at $£ 20$ off the normal price.

Both units are extremely easy to use from both Basic and assembler/machine code and are supplied ready built and complete with all the documentation you need.

To order by post fill in the form below (or a copy) and send it with your remittance to

ASP READERS' SERVICES (RO ET5/6)
9 Hall Road, Maylands Wood Estate, Hemel Hempstead, HP2 7BH
Please make cheques payable to ASP Ltd. Overseas orders add $£ 5$ (Interspec) or $£ 10$ (Interbeeb) for airpost.
Access and Visa card holders can also place their order by phone on (0442) 41221 Allow 28 days for delivery.

Please supply Interspecs (RO ET5) at $£ 29.95$ plus $£ 1.95$ p\&p per order.
Please supply Interbeebs (RO ET6) at £49.95 plus $£ 1.95 \mathrm{p} \& \mathrm{p}$ per order.
Name
Address \qquad

Please debit my ACCESS/VISA card No \qquad

INTERSPEC

$£ 29.95$
The Interspec unit plugs directly onto the expansion edge connector of the Spectrum to provide a full range of interfacing facilities

The unit is housed in a plastic case approximately $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connections.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- 15-way expansion bus

All sections of the interface are I/O port mapped and designed for maximum compatibility with existing Spectrum peripherals. Power is supplied through the Spectrum edge connector.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. Connection is by multi-way PCB connector and all the information required for adding further devices is given.

INTERBEEB

$£ 49.95$

The Interbeeb unit connects to the BBC micro's 1 MHz bus expansion connector and is supplied complete with its own power supply unit.

The interface unit is housed in a plastic case approx $41 / 2 \times 3 \times 1$ in which contains the top quality double sided PCB and interface connectors.

- 8-bit input port
- 8-bit output port
- four switch sensor inputs
- four relay-switched 12V 1A outputs
- eight channel multiplexed analogue to digital converter
- precision 2.5 V reference
- external power supply
- 15-way expansion bus

All sections of the interface are memory mapped in the 1 MHz expansion map for maximum ease of use and compatibility with existing peripherals.

The expansion bus provides all the data and address/control signals for the addition of further DCP modules or home-built devices. All the information required for using additional devices is included.

WE'RE BACK!!!

After an absence of several years in ETI. Greenweld are back with even better bargains. This ad shows only a tiny fraction of our stock - send for the 1988 Catalogue + Supplements -128 pages of bargains for just $£ 1$ inc. post, or call in and see us.

NEW THE MONHL

RELAYS + LAMPS Over 11,000 just arrived - details on Bargain List 38. E.g. 2255 6V DPCO plug in relay 80p; 2327 6.5V 0.15A MES 1 amp 10

LCD + DRIVER PANEL
20272 PCB's $93 \times 42 \mathrm{~mm}$ linked by ribbon cable. One has a $31 / 2$ digit LCD in holder, the other a ICM7211AM 1PL + 4070 (value over $f 14$) $£ 5.00$ 2028 As above, but without display

CHIPS

INS8048/9/50 single chip micro with $1 \mathrm{k} / 2 \mathrm{k} / 4 \mathrm{k}$ ROM \& 64/128/256 RAM, $271 / 0$ lines. 40 pin. Supplied with data sheet
f3/E4/f5
SPEECH SYNTH KIT
2315 All parts inc. PBC to make a speech synth for the BBC micro $£ 4.99$ 2316 De-luxe version - also includes V216 case, 1 m 20 W cable + connector

Z811. Cumana Touch Pad for the BBC computer. This remarkable add-on enables you to draw on the screen using a stylus with the touch sensitive pad. Supplied with 2 stylli, power/data connecting lead \& demo tape with 4 progs. Originally being sold at $£ 79.95$, later reduced to $£ 49.95$ - but we can offer a limited quantity of these brand new and boxed for just $£ 00.00$ PRESSURE SWITCHES
Both types need only very low air pressure to operate-just blow down the tube
202480 mm dia. $\times 45 \mathrm{~mm}$ thick. SPCO switch rated 16A 250 V AC 37 mm 80p 2025 Sim to above, but 37 mm 80p

TRANSFORMER

ZO23 Phillips, nicely cased. Mains input via 2 m lead $6 \mathrm{~V} 35 \mathrm{VA}(6 \mathrm{~A})$ output to
COIN OPERATED MECHANISM
Made by Coin Controls, this will accept various size coins by simple adjustment of 4 screws. Incorporates various security measures - magnet bent coin release etc. Microswitch rated 5A 240V Front panel 115×64. Depth 130 mm .
Cost $£ 10.85$. Our Price $\mathbf{£ 4 . 0 0}$

Our Price $\mathbf{f} 4.00$
REED SWITCHES
K569 A selection of about 15 types from 12 to 50 mm long, mostly from A, ew
from C. Pack of 30 $\mathbf{£ 2 . 7 5}$ rom C. Pack of 30
2797 Min 153 mm long 20/f1.50; 100/f6;
2798 Large 50.8 mm long
$10 / \mathrm{f1} .50$; $25 / \mathrm{f3}$;
2799 Changeover 40 mm long
5/£1.50; 25/モ6;

TOOLS

Scoop purchase of high quality surgical instruments ideal for electronics use 2308 5" lightweight long nose pliers

99p
$230951 / 2$ as above but with ratche This enables pliers to be locked together for holding small components, or as Other types on Bargain List 36

ELECTRONIC
COMPONENIS

SWITCHED MODE PSU'
2026 Astec model AC9355, 65W unit $115 / 230 \mathrm{~V}$ AC input Outputs +5 V 6 A . $+12 \mathrm{~V} 15 \mathrm{~A}:+12 \mathrm{~V} 2.1 \mathrm{~A}:-12 \mathrm{~V} 025 \mathrm{~A}$ Normally over $f 70$. Our Price $f 2495$ Astec type AA7271 PCB $50 \times 50 \mathrm{~mm}$ has 6 transistor overload protection thermal cut-out and overload protection, therma cut-out and Output 5V 2A. Regulation $0.2 \% \quad £ 5.00$

Z810 KEYBOARD Really smart alpha numeric standard qwerty keyboard with separate numeric keypad, from ICL's 'One Per Desk'. Nicely laid out keys with good tactile feel. Not encoded - matrix output from PCB taken to 20 way ribbon cable. Made by Alps. Size $333 \times 106 \mathrm{~mm}$ 73 keys ... $£ 8.95$ 2004 Skeleton Joystick, switch type has quality, made by AB . Brass spindle attached Bong black plastic handes These really are a fantastic bargain! ONLY $\mathbf{f} 1.00$
ENTERPRISE PANELS
Z658 PCB 325×158 with 64 k of RAM (8 4864), Z80A microprocessor + 21 othe hips, UHF modulator, speaker etc. ROM nd Nick and or Dave chips missing upplied with cet and data

VIEWDATA LTU

2697 Interface Panel 166×150 with $3 \times$ LM324, LM339, LM393, 4066, 11 transistors, 3 reed relays etc. 3 m lead with BT plug attached. Supplied with comprehensive data and costs .. $£ 2.90$

SOLDER SPECIAL!!

T5W 240V ac soldering iron
High power desolder pump
Large tube solder
ALL FOR
f7.95

SOLAR CELLS

Giant size, 90 mm dia giving 0.35 V 1.1 A output, $£ 4$ each; $10+£ 3.50$ Mega size $-300 \times 300 \mathrm{~mm}$. These incor porate a glass screen and backing panel ldeal for charging nicads Ideal for charging nicads $£ 24.00$

Newsrain

2494 Motherboard microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB for omputer. 280 , char EPROM, etc 68 ponents plugs, skits, etc $\mathbf{£ 5 . 5 0}$ 2674 DATA PACK. Interfaces and connector pin-out, i/p, o/p, port map, cct diagram + data on COP 420 C $£ 2.00$ probably faulty
NEWBRAIN' PSU Stabilised Supply heavy duty ABS case withed Supply in heavy duty ABS case with rubber feet ransformer via ac to heavy duty Reguted 0 a 135 V @ 3 A - 12 V @ 05 A .rvoners readily acoessible for mod etc Chunky heatsink has $2 \times$ TIP31A Mains lead (fitted with 2 pin continental plug) is 2 m long 4 core output lead 15 m long fitted with 6 pole skt on $0.1^{\prime \prime}$ pitch Overall size $165 \times 75 \times 72 \mathrm{~mm}$ f5.95 each 10 for $f 40$

NSER
 CREAM DISPENSER

2801 Coin operated machine for dispensing hand cream. Cabinet $620 \times$ $365 \times 200 \mathrm{~mm}$, wt 10kg, contains coin mech, PCB, counter, pump mech consisting of high torque geared 6 V motor driving cam that pumps cream, \& sensing components, all powered by internal 6V 2.6A rechargeabie battery

All prices include VAT; just add $£ 100$ P\&P Min Access $£ 5$. No CWO min Official Orders from schools welcome min invoice charge $£ 10$. Our shop has enormous stocks of components and is open 9-5.30 Mon -Sat Come and see us! HOW TO CONTACT US:
By post using the address below; by phone (0703) 772501 or 783740 (ansaphone:out of business hours); by
Fax (0703) 787555 by EMail: Telecom Fax (0703) 787555 by EMail: Telecom MONREF G quoting 72:MAG36026.
443A MILLBROOK ROAD SOUTHAMPTOM SOI OHX

Graham Nalty follows the regulation of his super-fi amplifier

VIRTUOSO POWER AMPLIFIER

Iam sure it is not necessary to explain to ETI readers the sonic benefits of regulated power supplies in an high quality amplifier like the Virtuoso. The low current regulator here uses a very simple circuit modified to improve the sonic performance.

The basic circuit, probably familiar to many readers, is shown in Fig. 1. The output voltage is set by ZD1, Q2, R2 and R3.

It works like this.
If the voltage across the zener diode is 12 V then the voltage at the base of Q 2 is about 12.6 V . Assuming the current through R2 and R3 is large compared with the base current of Q2, then R2 and R3 act as a voltage divider and the output voltage will be:

$$
12.6 \times \frac{(\mathrm{R} 2+\mathrm{R} 3)}{\mathrm{R} 3}
$$

If the voltage falls, Q2 base current and collector current fall accordingly. This reduces the current through R1, thereby raising the voltage at the base of Q1 and hence restoring the output voltage.

If the output voltage rises, the current through Q2 increases and lowers the base voltage of Q1.

Better By Design

The power supply circuit is shown in Fig. 2. The design of the Virtuoso regulator is required first and foremost to achieve a good sonic performance.

For this reason, power transistors are used for all those transistors in which the dissipation varies with the voltage or current of the audio signal, even in the smallest way. They are also attached to a heatsink to ensure that temperature generated distortion is kept to an absolute minimum.

Another feature of the design is that apart from the reservoir capacitors, which are bypassed with plastic film capacitors for fast high frequency response, capacitors in the regulator circuit are kept to a minimum, and those that are used are of the highest quality (lowest loss factor).

In my experience low power zener diodes add distortion to the audio signal, so in the actual circuit the zener diode ZD1 of Fig. 1 is replaced by a transistor (Q11, Q12) and two resistors. Capacitors C11 and C12 are fitted to lower the

Fig. 1 The basic circuit of the regulated power supply

Q2 4, 7,9,11 $=$ BD 139
$\mathrm{OL}=\mathrm{BC} 214 \mathrm{C}$
$\mathrm{OC}=\mathrm{BC}$
$O 6=B C 164 C$
$D 1-4=1 N 4003$

Fig. 2 Circuit diagram of the regulator board. The left channel is shown.
impedance of this circuit at high frequencies.
Another requirement for good sonic performance is low power supply ripple at the output. In the circuit of Fig 1, ripple voltages (due both to rectification and to variations in load current) at the input can be fed to the base of Q1 and the output ripple performance will not be too good. This can be improved considerably by replacing R1 with a constant current source.

In Fig 2 , the constant current is provided by $\mathrm{R} 4(\mathrm{R} 5), \mathrm{R} 8(\mathrm{R} 9), \mathrm{Q} 9(\mathrm{Q} 10)$ and $\mathrm{Q} 11(\mathrm{Q} 12)$. This is a standard two transistor constant current source.

By adding constant current diodes D5 and D6 in series with R8 and R9 the impedance considerably increases, which raises the dynamic impedance of the current source feeding the regulator.

Current limiting is provided by Q5(Q6) and R6(R7). When the current limit of 60 mA is reached, a voltage of 0.6 V is reached across the base emitter junction of the transistor. This causes the transistor to conduct and to starve the base of Q11 of current.

In this way the current from the current source is reduced and the output voltage drops.

As the power dissipation of the series transistors is much greater than the power dissipated when the output is short circuited no further limiting is required.

C9 and C10 are fitted to maintain high frequency stability.

A Case Of Power

Two PCBs have been designed for the regulated power supply. For installation in the 2 U case version a horizontal PCB is used, whilst a vertical PCB is used for the 3 U case.

There are two major reasons for choosing to use a 3 U case. Firstly it enables larger power supply components to be used in a mono bridged amplifier of around 200 W to 400 W rating into 8Ω.

Secondly the 3U version has been developed using much larger reservoir capacitors for the power supply to compensate for the effect that upgraded cables and passive components can have on the perceived balance between bass and treble instruments (better quality components allow more high frequency energy through while reducing lower resonances).

Other modifications on the 3 U version include three bypass capacitors for each of the main reservoirs and the facility to use fast-recovery diodes on a heatsink for rectification.

The Ameliorated Amp

Before describing how to build the regulator, I want to say a few words about some of the special components used in the upgraded versions.

The Holco resistors listed are more expensive than standard metal film resistors, but when you consider how much you pay for metalwork and transformers in a big amplifier, the quality is well worth the cost. I have not suggested using bulk foil resistors, but that option is certainly open to constructors who want to get the absolute best performance

Bypassing is used to speed up the response to all signals at all frequencies. The larger the capacitor the greater the inductance, and the more important it is to bypass it. That is why a high quality long life electrolytic capacitor is used as a bypass. The LCR EXFS/RP extended foil polystyrene capacitors were first used for the RIAA
equalisation in the Virtuoso pre amplifier and have proved to be of the highest sonic quality.

The solder you use can affect your sound quality, and strong claims are made for an American solder called Wonder Solder. (Many manufacturers of very expensive interconnecting leads use it).

Construction

There is only one way to build the main power supply shown last month - slowly and carefully.

At the input side you are dealing with mains voltage, while the transformer secondaries have extremely high current capability and the reservoir capacitors will go bang very loudly if shorted.

The circuitry is easy but ensure you have checked and rechecked each connection, in particular the main input socket, the bridge rectifier connections, the earth connections and the reservoir capacitor polarity (a wrongly connected reservoir capacitor will give a low DC reading and gradually get warm, so can be detected before damage is done).

BUYLINES

All components that are not readily available from nermal suppliers can be ebtained from Audiokits, 6 Mill Close, Borrowash, Derby DE7 3GU. Tel: (0332) 674929.

PARTS LIST

Components X1, X2, X3 are used in the left channel of the board, components X101, X102, X103 in the right. Capacitors C7a, C7b refers to pairs of components used in the 3 U version only.
RESISTORS

R4, 5, 104, 105
R6, 7, 106, 107
R8, 9, 108, 109
R10, 11, 110, $111 \quad 15 \mathrm{k}$
R12, 13, 112, 113 470R
R14, 15, 114, 115 5k6
R16, 17, 116, 117 6 k 8

CAPACITORS

C5, 6, 105. 106
C5a, 6a; 105a,
106a
C5b. 6b, 105b,
106b
C7, 8, 107, 108
$2 \not 22$ MKC
C7a, 8a, 107a,
108a
C7b, 8b.
107b, 108b
C. 10,109,

110
C11, 12,
111, 112

SEMICONDUCTORS

Fig. 3 Component overlay for 2 U -version regulator board.

Building Regulation

Building the regulator boards is quite straightforward (the overlay diagrams are shown in Figs 3 and 4).

Components would be best installed in the order: resistors, small capacitors, diodes, small signal transistors, power transistors mounted on the heatsink, and finally the large capacitors.

Mount the resistors so that the colour codes or printed values (in the case of Holco resistors) can be easily read for error spotting.

Before testing the power supply and regulator you will need to make the AC connection from BR1 to the low current power supply as these and the leads from the mains transformer are attached to the same $1 / 4$ in connector.

It is important to make sure the ends of these leads cannot short, and possibly the best way is to bolt the low current power supply PCB in place with the two relevant pins soldered on. The wires can then be attached to these pins.

It is always a wise precaution when testing new equipment to assume there is a short circuit at the input (just one wrongly connected diode could do precisely that). To this end I advise using a 22R to 100 R carbon resistor in series with the supply before switching on.

Next check that the earths E4, 5 and 10 are connected to 0 V .

Now switch on.
Each of the outputs should read +45 V or -45 V (or $\pm 38 \mathrm{~V}$ if you are using a 30 V AC transformer and 4 k 75 for R16, 17, 116, 117).

Test Voltages

The DC voltage across each reservoir capacitor should read about $11 / 2$ times the rated AC voltage of the transformer secondary ($\pm 50 \mathrm{~V}$ for a $35-0-35$ transformer).

The voltages across the following components should all read 0.6 V : R4, R5, R12, R13, Q7 base-emitter, Q8 emitter-base, Q11 emitter-base, Q12 base-emitter.

You should read 20 to 23 V between Q13 and Q14 emitter to 0V. Across R16 and across R17 you should read 20.6 to 23.6 V .

If you want to get the full output power from your amplifier, it is essential that the low current power supply is set to the maximum usable value. In practice when the mains is running low (5% below normal) the total voltage drop across the current regulator is not less than 2 V . If the rectified DC reads 50 V the regulator output should not be less than 45.5 V .

The output voltage can be set by varying any of R10 to R17 but for convenience adjust the +ve supplies by varying R14, 114 and the -ve by R15, 115. The values shown in Parts List are carefully chosen but the optimum is affected by V_{be} and H_{fc} characteristics for Q11-14.

The output voltage can be calculated as:

$$
\mathrm{V}_{0}=\mathrm{V}_{\mathrm{R} 16} \times \frac{(\mathrm{R} 14+\mathrm{R} 16)}{\mathrm{R} 16}+\mathrm{Q} 11 \mathrm{I}_{\mathrm{b}} \times \mathrm{R} 14
$$

where $V_{R 16}$ is the voltage across R16 and Q11I I_{b} is the base current of Q11 for a gain of 50 .
Q11I \times R14 is typically about IV .
I have purposely not used a preset here so that the sound quality will not be degraded. Changing resistor values is inconvenient but a small price to pay for quality.

So with your power ready and regulated, next month we can move on to examine the amplifier board that will complete the Virtuoso Power Amplifier.

Fig. 4 Component overlay for 3 U -version regulator board.

SPECTRUM CO-PROCESSOR

Graeme Durant rounds off his Spectrum's big brother with the operating system software and a look at putting it to work

Now the hardware is all assembled we should take a look at what actually happens in the co-processor, once it has received a valid command. Of course, this rather depends on what the command is.

When not executing commands, the coprocessor is looping round a short routine, basically wasting time. When a command arrives, causing an interrupt to occur, the co-processor first disables its interrupt, thereby preventing other commands from interfering, and then copies the values from the four shared ports into four of its memory locations which form a command buffer called COM0-3, (see Fig 1). Having received a command, the co-processor must decode it to find out what it has to do next.

Self Test

If the command is decoded as Execute Self Test, the co-processor simply jumps off to execute this routine. Three tests are carried out on the system. The EPROM checksum is verified, the CPU scratchpad RAM is checked and the DRAM pages zero to seven are tested. The results of the self test are then encoded into two bytes and stored in two reserved RAM locations called TST0 and TST1 (see memory map) for subsequent examination.

The format of the results is shown in Fig 2. When the test is completed, the normal handshaking protocol described last month is used to return control to the host.

Block Moves

If the command is a block read or write, then a whole new handshaking scheme is entered, nested within the main command protocol outlined last month. The format of the block move command from the Spectrum is shown in Fig. 3.

The block move command makes use of all four shared registers at the same time. For the sake of clarity, we shall refer to the shared ports by the names TX0 to TX3 when they are used as output ports and RX0 to RX3 when they are used as input ports.

Looking at the command 'packet' above, port TX3 holds the command itself (block read or write) in its top four bits, with bit D7 set to force a coprocessor interrupt. The required memory page (0-7) is held in the lower four bits of port TX3.

Port TX2 and TX1 hold the starting address within the selected page, from which the block

move will begin. Port TX0 holds a number between 0 and 255 , which represents the length of the block to be moved, in pairs of bytes. Note that in this case, 0 represents 256 , and not zero!

Once the command packet has been received by the co-processor, the data starts to be moved. Again all four ports are used together to move two bytes of data at a time from the block.

The handshaking scheme repeatedly transfers these 'packets' of data until the entire block has been moved over the interface. The format of the block-move data packet from either the coprocessor or the Spectrum is shown in Fig 4. Ports TX0 and TX1 hold the two data bytes themselves. Port TX3 holds a constant pre-defined label which identifies the information as a data packet. The
actual values of this label in the Spectrum and coprocessor data packets were given last month.

Port TX2 holds a 'packet count,' termed the Datacount, which starts at zero and is incremented by one as each packet is sent. This value is used as the basis for the block-move handshaking protocol illustrated in Fig. 5.

As mentioned before, the handshaking involved in transferring the block-move command to the co-processor is exactly the same as the normal process described last month. The data movement itself is embedded into the section reserved for 'processing' in the command handshake scheme.

Regardless of whether a block read or write is taking place, the first part of the protocol is identical. The Spectrum sends the command packet described above to the co-processor, thus forcing an interrupt. Note that the contents of TX0-2 should be sent by the Spectrum before TX3, so that once the co-processor is interrupted all the command information is present and valid. This applies any time the command information consists of more than just port TX3.

The Spectrum then waits for a response from the co-processor, this time in the form of the DATA label in port RX3, signifying the start of a data block move.

Once the co-processor has received and decoded the command packet as a block move, it clears its Datacount port TX2, such that the value there is neither one nor zero. The basis for the data move handshake protocol is one of waiting for a Datacount value from the other processor, which is one greater than the last.

Once received, this signifies a readiness for data transfer. The very first value expected, signalling that data is ready or data is required, is either zero or one, depending on the direction of transfer in operation. Obviously, if the handshake port initially contains this expected value before the transfer is possible (as a result of a previous and unconnected command sequence) then an erroneous transfer will result. The initialisation of the contents of port TX2 avoids such a condition.

After port TX2 has been cleared, the DATA label is sent as an acknowledgement to the Spectrum that the command was received and understood. Then after the co-processor's Datacount variable has been initialised to zero, the coprocessor waits for the Spectrum to signal its own readiness for entry line into the actual block-move routine. The Spectrum does this by sending a DATA label to co-processor port RX3.

Once the Spectrum receives the DATA label from the co-processor, it also goes on to clear its Datacount port TX2 for exactly the reason outlined above. Then the command interrupt is removed from the co-processor by sending a DATA label to the co-processor via port TX3.

This DATA label is an 8 -bit value with its MS bit zero and also serves to tell the co-processor that the Spectrum is now ready to move data. Finally, before the data move routine itself is entered, the Spectrum Datacount variable is initialised to zero, as in the co-processor.

The data move routine is now started. It is from this point that the block read and block write schemes differ. However, the 'transmit' routine in the co-processor for block read is identical in operation (if not in implementation) to the 'transmit' routine in the Spectrum for block write.

Similarly for the 'receive' routines.
We shall now look at the generalised transmit and receive routines in more detail.

The transmitting processor sends the next two bytes (initially the first two bytes) of data to the receiving processor via ports TX0 and 1. The current Datacount value (initially zero) is then written into port TX2 by the transmitter to signify to the receiver that data is now available for transfer. The transmitter increments its Datacount value and awaits this new incremented value from the receiver in port RX2 to show that the data has been collected.

Meanwhile the receiving processor reads port RX2 repeatedly until it contains its current Datacount (initially zero) and then reads the data stored in ports RX0 and 1, putting it into the appropriate memory locations. The receiver's Datacount is then incremented and sent to the transmitter via port TX2 to acknowledge the fact the data has been read. This newly incremented receiver data-

Fig. 2 Self test results format

Port TX0	Port TX1	Port TX2	Port TX3 D7... D0
Block length (byte pairs)	Start address LS byte	Start address MS byte	Command Mempage 0-7

Fig. 3 Block move command format

Port TX0	Port TX1	Port TX2	Port TX3
(n)th Data Byte	$(n+1)$ th Data Byte	Datacount (Byte pairs)	DATA label

Fig. 4 Data packet format
count (and indeed the corresponding datacount value in the transmitter) now represents the number of data byte pairs transferred.

In both the receiver and the transmitter, these Datacounts are compared to the originally stated blocklength value from the Spectrum's command, to see if the block move has been completed. If the Datacounts are still less than the blocklength, then both the transmitting and the receiving routines loop back to transfer the next two data bytes.

If however the datacounts are equal to the blocklength, the most recently transferred byte pair was the last. The normal command handshake routine then takes over to complete the process, before a new command can be executed.

Executing User Code

The other two commands left to look at in detail are the User Code Execution command and its associated Break from execution command. These also work within the 'processing' sections of the command handshake scheme but do not require the elaborate specialised handshaking that the block moves use. The scheme used is shown in Fig. 6, along with the format of the command packet from the Spectrum.

0010	0	∞	∞	－	∞	∞	∞	00	00	0	00	00	∞	0	000
0020	00	00	∞	∞	∞	\bigcirc	00	0	00	∞	－	00	00	∞	∞
0030	∞	－	∞	∞	∞	∞	∞	00	F3	F5	DB	9F	32	00	11 DB
0040	BF	32	01	11	DB	DF	32	20	211	D8	FF	32	03	11	C3 0
0050	02	0	∞	－	00	00	00	00	00	00	00	00	00	00	0000
0060	00	－	00	－	－	00	2 A	Oc	C 11	E9	00	00	00	0	0000
0070	00	00	∞	－	00	00	∞	00	00	0	Oo	00	00	00	0000
0080	DB	FF	Es	80	20	FA	3E	7F	D3	FF	32	O8	11	C9	0000
0100	31	FF	10	3E	FF	D3	FE	SE	O 0	D3	9	03	BF	D3	DF
0110	FF	D3	FF	18	OB	∞	00	0	00	0	00	0	∞	∞	0000
0120	21	∞	∞	SE	－	11	∞	－	01	FF	OF	日6	ED	AO	EA 28
0130	01	21	FF	OF	EE	28	06	DD	21	0	0	18	04	DD	21 FO
0140	0	21	∞	10	36	FF	$3 E$	FF	F 01	FF	03	11	01	10	ED Bo
0150	21	00	10	01	00	04	ED	Al	120	1 E	EA	56	01	FE	0028
0160	07	21	－	10	36	00	3E	O 0	18	DE	DD	22	05	11	3 A 05
0170	11	F6	OF	32	05	11	18	04	4 DD	22	05	11	SE	FF	ED 47
0180	D3	FE	3E	FF	21	00	14	436	FF	01	FF	E日	11	01	14 ED
0190	B0	21	∞	14	01	00	EC	ED	A1	20	21	EA	97	01	FE 0
01AO	29	09	21	∞	14	36	00	3E	E 0	18	DE	3A	04	11	37 1F
0180	32	04	11	ED	57	3D	FE	F7	720	C4	18	OA	3 A	04	11 CB
0150	3F	32	04	11	18	ED	3E	FF	D3	FE	2 F	ED	47	21	$30 \quad 02$
01 DO	22	OA	11	3E	7 F	32	09	11	1 CD	80	00	FB	18	FD	0000
0	00	oo	Oo	00	Oo	00	00	00	0	00	00	00	00	00	0
01 Fo	00	∞	00	00	00	00	0	0	00	∞	00	∞	00	0	∞
0200	3A	09	11	FE	FF	28	35	5 F1	13	03	11	C	7F	29	21 Eb
0210	50	CA	AD	02	3A	03	11	1 Eb	F0	FE	Co	28	5B	3A	03
0220	FE	EO	CA	00	01	3A	03	311	1 FE	F0	28	04	2A	OA	11
0230	3E	EO	32	O日	11	D3	FF	CD	－ 0		ED	40	3 A	03	11 FE
0240	FO	20	1 D	3 E	Fo	32	O日	11	1 dJ	FF	F1	CD	0	04	$3 E$
0250	32	09	11	31	FF	10	3E	FF	D3	FE	CD	80	0	C3	DB
0260	3E	EO	32	아	11	D3	FF	DB	FF	Es	¢0	20	FA	3E	FF 32
9270	08	11	D3	FF	F1	FB	ED	4D	3E	FF	2	08	11	D3	FF 32
0280	09	11	3A	03	11	E6	07	$7 \mathrm{2F}$	D3	FE	DB	FF	Eb	B0	20 FA
0290	3A	02	11	67	3A	01	11	16	CF	F3	ED	56	CD	00	04 3E
02A0	7F	32	09	11	3E	FF	D3	3 FE	CD	日0	00	ED	4D	3E	7F D3
0280	DF	3 E	FE	32	о日	11	D3	3 FF	3A	03	11	Eb	07	2 F	D3 FE
02C0	3A	01	11	6F	3A	02	11	187	706	00	DB	FF	F6	80	FE FE
02D0	20	F日	DB	FF	Fb	日0	FE	FE	E 20	FO	3A	03	11	CB	6F 29
O2EO	2C	7E	D3	9	23	7E	DJ	BF	F 78	D3	DF	04	23	D日	DF Be
02F0	20	FB	DB	DF	咟	20	Fb	${ }^{3} 3$	00	11	B日	20	E4	3E	FF 32
0300	O日	11	D3	FF	3E	FF	D3	3 FE	CD	日0	0	ED	4 D	DB	DF B6
0310	20	FB	DB	DF	晫	20	Fb	${ }^{6}$ DB	9F	77	23	D9	BF	77	23
0320	78	D3	DF	3A	oo	11	晫	20	0 E4	3 E	FF	D3	FE	CD	80
0330	ED	4D	00	00	00	00	00	00	00	00	00	00	00	0	00
0400	ED	43	10	11	ED	53	12	211	122	14	11	1 FS	c1	ED	43 of
0410	11	D9	ED	43	18	11	ED	53	314	11	22	$1 \mathrm{1C}$	11	D9	06 FS
0420	c1	ED	43	16	11	о日	dD	22	215	11	FD	22	20	11	ED 57
0430	32	22	11	C9	00	00	0	00	0	00	00	00	00	00	0000

Listing 2 Hex dump of the Co－processor

 EPROMcommand is received．
If the command received whilst code was executing is the correct Break code then the co－ processor sends a Break Acknowledge flag （BRKACK）via port TX3 to the host．Again，the $Z 80$ registers are dumped into reserved memory for later examination and the code executing flag is set to IDLE．Now the co－processor stack is purged （user code may have made use of the stack and so stopping execution midstream leaves it in an unpredictable state）．

Meanwhile，on receiving the BRKACK flag from the co－processor，the Spectrum removes its interrupt according to the standard command handshake protocol．Then this protocol takes over at both ends of the interface to complete the process before a new command is sent to the co－ processor．

New Commands

Having now looked in some detail at the five commands which can be accepted by the co－ processor，a word or two about extending this capability．

If the co－processor receives a command not defined in its interpreter，its operating software jumps off to execute code pointed to by the contents of the reserved memory location called USECOM（see Fig 1）．

During initialisation，the co－processor puts a default value into USECOM．If left unchanged， unlisted commands call a routine in the EPROM to

Fig． 5 The block－move flow diagrams

Fig. 6 The Execute User Code/Break execution flow diagram.
send the INVALID flag to the host and complete handshaking as normal before a new command is accepted. (Note also that this routine is executed anyway if a Break instruction is received whilst user code is not running).

The user can extend the range of commands accepted by changing the address in USECOM to the start address of a user routine somewhere in memory which will recognise and act upon new commands. Such an extension is quite simple but the user should have a reasonably thorough understanding of the workings of this co-processor before adding new commands in this way.

The Example Program

Looking at the flow diagrams is all very well but the time has come to look briefly at some real code. As promised last month, we reproduce here a complete listing in Spectrum Basic for the Interactive Z80 software development tool (Listing 1). It has been written not with efficiency in mind, but for absolute readability. The comments literally took longer to write than the program!

The idea is that you can type in the program (or squidge in the program if you still use the Spectrum rubber keyboard) in order to test and get to know your co-processor before writing new applications of your own.

The program has been written so that routines from the Basic can be poached and used again in completely new applications to satisfy the various handshaking protocols in use.

The more adventurous among you may wish to rewrite the handshaking routines at the Spectrum end in assembly code. Data transfer using this Basic program is pretty slow and if the handshake routine was implemented in assembly code it would speed things up dramatically. The example program was written in Basic primarily so that everyone can follow what is going on and so that changes can be easily made for experimentation purposes.

The program makes use of most of the coprocessor's facilities - block moves, user code execution/breaks, self test and so on. It is fully menu driven and so using it should be self explanatory. However, a few words must be said about some of the software techniques used in the program, so they can be applied to the user's own code later.

The first point to remember is that data transfer via the interface is completely asynchronous. Reading and writing from either end can occur at any time. It is possible for one of the machines to be reading data which is at the same time being updated by the other machine. If the data being read has not had time to settle, then an erroneous transfer could result.

When the data being read is a single bit value, such as the presence of the interrupt bit from the host, then there is no problem - the bit is either one or zero and there can be no confusion. However, if the data being read is a multi-bit value then at the instant of the read, some of the bits could still be changing (having been updated fractionally before) whilst others could have already settled. The result is invalid data.

To avoid this problem without resorting to hardware arbitration, the software in both the Spectrum and the co-processor reads any handshake flag twice if it consists of more than one bit. The results of the two reads are compared and if they are identical then the flag is considered valid (such successive reads occur several microseconds apart). If they are different then further reads are performed until two consecutive results agree.

Note that it is unnecessary to treat ordinary non-handshaking data in this way, since the validity of this data is assured by the presence of the handshaking flag.

All Spectrum-to-co-processor commands, the co-processor-to-Spectrum flags and the shared port addresses themselves are given names at the start of the program to improve readability. The program then continues with the main menu screen handling and user input selection. At every stage the co-processor is being tested to ensure that it is idle and ready to receive a command.

If at any time the co-processor stops being idle without a new command having been sent (say, a hardware reset has occurred or the co-processor power has been removed) the Spectrum will wait for the idle state to return.

When the user selects an option, the program jumps to the appropriate routine to do the work. The first option loads data or code from cassette into the Spectrum starting at location 48000 (decimal) thus the longest block of data which can be loaded in one go is 16 K .

The second option moves data from the Spectrum memory, starting from location 48000, into the co-processor memory starting from any desired location. Although the co-processor operating software only handles block moves of up to 512 bytes at a time, this Basic routine can handle up to 16 K blocks in one go. This is achieved by actually moving the data in several 512 byte (or shorter) chunks.

The third option displays the memory contents of the co-processor from any desired starting address. Again blocks up to 16 K locations may be displayed by moving several 512 byte blocks over the interface. Note that this routine only displays the transferred information. If it is necessary to store this data, a simple modification must be made to the program to poke the data into the Spectrum memory as it is transferred.

The fourth option runs user code previously moved into the co-processor and will start execution from any desired address. Once code is running, the user has the option of breaking from execution.

The fifth and final option runs the self test. After the co-processor has completed its self test, this routine goes on to execute a two byte block move of the test status data and displays the results obtained.

One point to note is that this application program can never send invalid commands to the co-processor so it never checks for the INVALID

BUYLINES

To save you hours of laborious typing at the dreaded rubber keyboard, a copy of the 280 Development Tool software, as listed in this article, is available on tape from the author for $£ 3.00$

The two PROMs - one holding software, the other an address map - are available ready programmed and tested from the author. The co-processor operating software EPROM costs $£ 10.00$ and the address map PROM for the 256 k DRAM card $£ 6.00$.

A comprehersively commented assembly listing for the co-processor operating system is also available for \$3.50.

All prices include postage and packing. Please send cheques ar pastal orders made payable to the author at 52 Bishops Cout, Trumpington. Cambridge CB2 2NN, allowing 28 days for delivery.
flag being returned. In some user applications such a check may be necessary and should not be omitted as it was here.

Co-processor OperatingSoftware

Finally, with the Spectrum end of things out of the way, a few words about the co-processor operating software. This resides in the EPROM on the CPU card and implements the handshaking protocols described previously when triggered by new commands from the host.

Limitations in available space prevent a full listing of the co-processor source code (it runs to some twenty pages!). A hex dump of the EPROM contents (Listing 2) is reproduced for all those of you with enough spare time to type it all into a programmer. Alternatively, a copy of the listing and pre-programmed EPROMs is available from the author (see Buylines).

It should be quite possible to make use of the co-processor without reference to the operating software listing by following the flow diagrams presented in this and last month's issue, and by looking at the Basic example program reproduced here. However, to make full use of the software resident in the CPU EPROM, it is of great benefit to work in conjunction with the listing.

There are a couple of small points worth noting. Despite the limitations imposed, the coprocessor stack is used as little as possible. This makes the co-processor less prone to errors caused by the stack being inadvertently corrupted by the user code.

In addition, at the end of every command routine the co-processor sets the memory page to zero regardless of what it was doing during the execution of the command. This acts mainly as a visual indication that the command has completed (by way of the page LEDs on the memory cards) and is a useful monitoring facility.

Having described each part of the coprocessor hardware and software in some detail, it is now up to you to familiarise yourself with its operation, before using it in your own applications. All that remains is for me to wish you success with all your co-processor aspirations!

ACKNOWLEDGEMENTS

The author wishes to thank the following companies for their help during the development of this project.
Sarel Ltd, Luton.
Inmes Ltd, Bristol
Dage (GB) Ltd, Aylestury
Mogul Electronics, Drpington

Circuits and other ideas for Tech Tips should be sent to ETI at 1 Golden Square, London W1R 3AB. All items used will be paid for. Please include a SAE for acknowledgement

RIAA Computer Program

R Williamson
Peterborough

The mathematics of the complex networks for RIAA/IEC equalisation have been covered extensively in the June 1987 issue of ETI. If the designer decides upon one of the four possible configurations, finding the values of the two resistors and capacitors is straightforward arithmetic. However, whilst this may yield finite values, the problem of finding off-the-shelf real values remains. So, if one could arbitrarily choose say one of the resistors in a preferred value range, then by using a fast computer program it would be relatively easy to establish the other three components in easy-to-obtain values as well.

This short program, written in one of the advanced basic languages (Fast Basic by Computer Concepts for the Atari ST) does just that. It can of course be easily altered to any other Basic dialect, mainly by adding line numbers and modifying the syntax where appropriate

I selected one particular configuration (b in Wilfred Harm's excellent June article) simply because it appeared to yield more readily nearpreferred values for all four components. The designer can choose either one resistor (the principal one that decides the basic gain) or the Z of the network. Provided you also opt for a sensible degree of gain (not less than 30 dB , for example) then the computation is to a high degree of accuracy. For a very extensive treatment of the subject, a paper written for and published by the Audio Engineering Society in 1978 by Professor Lipshitz of the University of Waterloo, Canada is valuable reading. This program was derived from his work.

Electronic Blockbusters

W A Jameson
Chester

This circuit was devised to determine which of two players first hit their answer button and to allow a preset time for the answer when playing the 'Blockbusters' game from Waddingtons (based on the TV game).

The circuit gives both visual (an LED) and audible (a warble) indications that a button has been pressed and locks out the other button. A continuous tone is given as the 'time up' signal at the end of the allotted answering time.

IC1a,b and IC3a,b debounce the two answer buttons SW1 and SW2 respectively. Assuming Reset has just been pressed, both LEDs will be off and pin 3 of IC 1 b and IC3b will be low. One of these pins will go high if an answer button is pressed.

If SW1 is pushed, pins 12 and 13 of IC1c will both be high taking the output low. IC1d inverts this action, lighting LED1. Q2 is turned on supplying power to R8, C3 and R10 which switch on Q3
and power IC4 giving a warble from the piezo buzzer. Approximately 0.3 s later Q4 is turned on cutting off the power to IC4 and curtailing the warble.

When IC8 goes high it takes pin 9 of IC2a and pin 12 of IC2b high also. This takes pin 13 of IC3 low, locking out the action of SW2.

If SW2 is pressed first, the action is reversed with SW1 locked out.

Whichever button is pressed, power is supplied via Q1 or Q2 to Q5 after C4 has charged (about 3.5s). After the delay Q5 conducts turning off Q6 and turning on Q7 which enables a continuous tone from the buzzer.

The whole system is reset by the switch SW3 which discharges C 4 and resets the push button logic.

Current consumption is about 10 mA in standby and 20 mA when buzzing (depending on the buzzer used). A PP3 battery should cope without problems.

Extra switches can of course be added in parallel with the ones given for playing the game in teams.

Pseudo Co-processing

 A Thompson

 A Thompson}
Chester-Le-Street

T
his circuit provides a use for an old computer by placing it under the control of another machine. This can find applications as a printer buffer, for interfacing incompatible hardware, multi-processing, interfacing incompatible programs and many other ideas.

The principle is simply to control the old computer via its keyboard. The prototype system used a Sinclair QL controlling a Dragon 32. All that is needed on the new computer is an 8 -bit output port.

The keyboard of the slave micro is controlled by the three analogue switch ICs. The outputs marked K are connected to the ribbon cable connected to the keyboard matrix in the slave machine. Experimentation is required to find which key is connected to which terminal of the ribbon connector.

64 keys can be controlled in this way. The shift key is required to be controlled separately (so it can be used in conjunction with the others). Bit 7 of the output port controls the Shift key.

The host computer can, with this interface, type programs into the slave micro, run them, enter data and all manner of other tasks.

OL Output Port

A Thompson
 Chester-Le-Street

This circuit provides just about the simplest ever add-on 8-bit output port for the Sinclair QL.

All the signals necessary are available at the QL's expansion socket.

The general standard of VHS video recorders has improved considerably over the last few years in terms of sound and picture. Of particular interest to me is the widespread introduction of 'hi-fi' sound. I have long been used to a sound quality from my video which, even with the Dolby switched on, sounded like Hissing Sid with the bass and treble attenuated.

Sound Advice
I shall not attempt to go into the technicalities of the hi-fi recording standard. Suffice it to say that a stereo audio signal is encoded in with the video information on hi-fi machines.
The previous sound standard, an analogue recording track at the edge of the tape, is also implemented in such machines, but in mono and without Dolby just to allow compatibility with old recordings (and to allow tapes recorded on the gleaming new design machines to play on older types).
Another sound facility which some machines offer is the ability to decode stereo television transmissions, as and when these become available. The Nicam stereo system was first tested by the BBC and rumour has it that they transmit some programs in stereo for test purposes. I haven't caught them at it yet but as the rumour also states that Wogan is the program they do in stereo from time to time, there is little chance of me catching a stereo transmission.
It appears that because the BBC is so short of money (?) they can't afford to move into full scale stereo in the near future. It is entirely possible that pressure from advertisers will force the independent channels to introduce stereo first. This could occur in as little as a year, though my guess is that it will take at least two.

Stereo Woe

As an aside, there is some difficulty in deciding how to make stereo TV into an advantage rather than a disadvantage. The difficulty is that it seems unrealistic to have people's voices coming from a direction significantly different from that of the screen. One idea is to keep speech in mono and have stereo background music, sound effects and so on.
I have compared the sound quality on several different machines, and would say that hi-fi sound represents a major improvement over analogue sound. To my ears, the sound quality is almost (but not quite) up to CD standard.

On one prerecorded rock music video, recorded in hifi and analogue stereo, it was possible to hear the pick hit the guitar string for the first time on a hi-fi machine.
Most hi-fi machines are designed with the casual user in mind and they incorporate automatic record level adjustment. This is not generally too obtrusive but for the truest sound it is better to have manual settings available. A few top of the range machines sport this facility.
As a logical extension of hi-fi sounds with video, some machines offer half speed hi-fi without video. This permits up to 8 hours recording on a VHS cassette, with a quality above that available from most other recording media.

Pseudo DAT
DAT it isn't but it would seem to perform the same function as far as most people are concerned. One distinct advantage of this recording medium is that it is available now, unlike DAT.

From many people's point of view it could be more attractive for home recordings than DAT. The size of cassette would be the main disadvantage. The advantage is that if you are going to have a video recorder anyway, why not record sound as well and save the $£ 800$ or so which a DAT machine would cost. With E180 cassettes offering six hours recording for around $£ 4$, the cost of digital audio cassettes would also appear uncompetitive.
'But,'I hear you say, 'DAT offers better quality.' No doubt this is true, but is it important? It is generally accepted that VHS is the worst videocassette system for both sound and picture, yet it dominates the market. Perhaps if video hire shops were to carry a large stock of 8 mm films then 8 mm would catch on in a big way. And if 8 mm caught on, video films would be available in 8 mm . This is a circle I doubt will be broken.
In the same way, it is possible that VHS recorders offering good quality half speed audio recording will cut the potential mass market away from DAT. It will be interesting to find out.

Andrew Armstrong

OPEN CHANNEL

About eleven years ago, somebody decided it would be a good idea if all computers could talk to each other. You may be proud to learn that in fact this somebody was the British delegation to an International Standards Organisation (ISO) Plenary meeting in 1977 when we proposed that the possibility of standards for computer interconnections should be looked into.

But, as you'll imagine, this would be no mean feat. For any computer anywhere in the world to be able to communicate with any other, a number of problems have to be overcome. Not least is the conformity which all computers would need in both hardware and (more particularly) software.

The Plenary ISO meeting decided to investigate the matter through a sub-committee, which came up with a reference model into which the necessary standards could fit, known as the ISO Reference Model of Open Systems Interconnection (OSI).

OSI is defined as comprising seven layers, incorporating hardware and software standards. Effectively these layers correspond to the different communications requirements of two communicating computers, from hardware through to software. The layers are known as: physical, datalink, network, transport, session, presentation, application.
OSI became rather a key word in the early part of the decade and many attempts were made to standardise the model itself but it wasn't until 1984 that the ISO actually published the standard (ISO 7498: 1984).
Bearing this in mind, it's not surprising that other relevant standards to get OSI up and running have been a long time coming (and will be a long time yet).

Many current communications standards have been used or adapted to form the lower layers of the model, where the model refers simply to straightforward wiring between plugs and sockets or the codes, tones and so forth which convey data across wires.

However, the higher layers are yet to be fully standardised. Too many computer manufacturers spoil the broth as the saying goes, and each manufacturer wants to get his oar in (or is it ladle?). Still, work is going on nicely, mostly concentrating on the application layer.

Talking of Which Apparently, a new standards institute is to be set up to standardise standards throughout Europe, if

that makes sense. Following a European Commission Green Paper last year recommending the opening up of telecommunications markets within Europe, many manufacturers feel that a more standard approach to the subject is required, and that common standards are required.
I thought the definition of a standard meant it was common. Oh well.

One + One $=$ One
At last, it appears the proposed merger of GEC and Plessey's telecommunications divisions is to be allowed, following the Department of Trade and Industry's recent goahead.
Given that GEC is not allowed to buy more than a 15% share of Plessey and that nothing be done which would require referral back to the Monopolies and Mergers Commission, the merger looks set to take place once the Plessey shareholders agree to it.
At the time of writing merger had not been ratified but by publication of this month's ETI, things should have been decided.
The dream of GEC Plessey Tele. communications Holdings looks, eventually, like becoming a reality. Not before time. The increased marketing power (not to mention development power) the new company will have can only be of benefit to both GEC and Plessey, as well as being good for Britain.

Beep, Beep
If you have ever worked for an organisation which demanded that every employee be contacted quickly if needed, you'll know the benefits of radio pagers - those blasted little boxes people clip to their top pockets or belts which go 'beep, beep' at the most irritating times. Once paged, the user goes rushing off to the nearest phone to see who wants him and what for.
There are nearly half a million of these animals (yes, that's what I said, half a million!) currently in use in Britain in one form or another and forecasts suggest this figure will more than double in the next three years.

Showing Off Incidentally, May sees one of the biggest exhibitions in the communications world (well, in Europe at least). Communications 88 runs at the National Exhibition Centre, Birmingham from 10-13 May. And it's a show not to be missed.

Keith Brindley

f someone had told me two years ago that the new method of printed circuit board assembly was to use a PCB without holes, leadless components which are stuck onto the PCB with glue and then the PCB (held component side down) is passed through a wave solder machine which completely immerses the components in solder, I would have thought that person to be slightly wacko.
Such procedures, however, are definitely not the dealings of a demented engineer but are now one of the standard surface-mount component assembly methods.

The 1988 Smartex Exhibition at London's Barbican centre was an opportunity for engineers involved in electronics design and manu facture to see the latest SMT machines, components and materials.

The range of components available in surface-mount has expanded considerably since Smartex 87 and many more semiconductor manufacturers have committed themselves to SMD production. Familiar names such as Texas Instruments, Ferranti, Siliconix and Siemens were all represented, with sales engineers eager to acquaint you with the latest technology.

The limited range of capacitors available in SMD has been a handicap to circuit design. However, this situation is being rectified by companies such as Integrated Ceramic Components Ltd, Siemens, AVX, Syfer and WimpeyDubilier (Wellies and donkeyjackets not included).
RBS Components Ltd demonstrated their ability to manufacture surface mount inductors but the range is limited to $1000 \mu \mathrm{H}$ and current ratings are rather on the low side.
The simplest way of 'populating' a surface-mount printed circuit board with components would be to pick up each component with a pair of tweezers and place it in the required position on the board. A fine tip soldering iron could then be used to solder it in place. This method would call for a very dexterous operator.

The work is made many times easier by manually operated pick

and place machines, examples of which were exhibited by Coopertools and Groatmoor Ltd. These machines incorporate a manually guided head on which can be mounted an adhesive dispenser and a vacuum probe for picking up the SMDs. Glue dots are placed on the PCB where the body of the device is to be located and the device is then picked up by the vacuurn probe and placed in the desired position. Soldering would then be performed by passing the PCB along a dual wave-soldering machine.
An alternative method is to use a solder paste dispenser to apply paste to the pads of the PCB and after placement of the SMD a hot air pencil is used to reflow the solder paste to effect the soldered joint. These manual machines are mainly intended for small production runs or prototype manufacture and are still somewhat dependent upon the dexterity of the operator, who needs to have 20-20 vision!
Automatic pick and place machines are a must for volume production and among the manufac. turers exhibiting such machines were Universal Dynapert, Precima and Zevatron.

Components are supplied in tape and reel packing, and these machines have to be programmed either by an operator who simply 'teaches' the machine by moving its placement head to a component and then placing it in the desired position, or the $x-y$ coordinates of each component's location are loaded in via a terminal or downloaded from a CAD system.
These machines can pick and place up to 5000 components per hour with an accuracy of $\pm 0.1 \mathrm{~mm}$.
The manufacturers' representatives indicated that many refinements to their automatic placement machines had been made since Smartex 87 in an attempt to reduce down time and increase reliability.
There weren't any wave soldering machines on demonstration for obvious reasons of ventilation,

however there was a faint whiff of flux fumes in the air due to the presence of an infra-red reflow soldering machine and various rework stations.

Solder re-flow is an alternative to wave soldering. The solder, in paste form, is printed onto the PCB pads and after component placement the solder is then melted by placing the entire PCB in a hot vapour atmosphere. A more up to date method is heating the board in an infra-red oven. The now molten solder flows around the component leads and completes the joint.

When things go wrong, soldering defects are often given colourful names such as the 'Drawbridge effect' (chip resistor or capacitor lifted at one end) and the 'Manhattan effect' (chip component actually standing on end).

Machine manufacturers are striving for 'Utopian' zero-defect production but in reality errors do occur and have to berectified. Large expensive boards cannot be scrapped because of one or two faults and so inspection and rework facilities are essential.

Removing faulty resistors is comparatively simple but the removal of a 68 -pin PLCC calls for something more sophisticated than a 15 W iron and a solder-sucker. OK Industries exhibited their new GEC/Marconi hot gas rework system and on asmaller scale Zeltek demonstrated the DR Tresky Engineering improved hot air and vacuum pencil rework facility.

Surface mount is an exciting new technology and allows a considerable reduction in PCB sizes compared with conventional throughhole technology. The component prices in SMD however are disappointingly higher than their through-hole counterparts especially for discrete components. However, I am told prices will fall as production volumes go up. The manufacturing processes can be heavily automated which reduces labour costs although the purchase of the machines calls for heavy capital investment which many companies may think twice about.

Acouple of 'useful' enthusiast's books come under scrutiny this month. It seems there is no end to this type of publication. How. ever, that must be a pretty good thing for those of us who are keen on the idea of electronics as a hobby.

CMOS Circuits Manual by R M Marston, Heinemann Newnes. $\mathbf{5 9 . 9 5}$

Mr Marston will be a familiar name to longer standing ETI readers. This is the first in what looks like a potentially enormous series of 'manuals' for Heinemann Newnes.
(Isn't it terrible when two publishing companies join together and both names are famous and so have to be kept - the result begins to sound rather like a local firm of solicitors. Anyway, back to the book).
The CMOS circuits manual is really an organised collection of Tech Tips with some basic background theory thrown in for good measure.
The book starts off looking at what CMOS is, how basic CMOS gates work and why they don't mix too well with static.

All the equivalent circuits and transfer characteristics are quite interesting but it seems a little over indulgent in the light of the rest of the book.
This appears to be essentially a practical book aimed at actually working with the devices in question. I can't help feeling that many details of exactly what goes on inside the little black plastic lumps won't reaily find many takers.

Maybe it's just my inbred hatred of most things mathematical Still, the first chapter only lasts about a dozen pages so I shouldn't complain too much.

Next is a whole chapter devoted to the 4007. This is again a little theoretical (and rather mathematical!) for me but it is a lot more useful at the same time. The 4007 is the basic building block of CMOS and so it does justify such attention.

There's quite a lot of good practical advice hidden amongst the equations and graphs too so it's well worth a read.

The rest of the book is split up into chapters covering particular functional areas. Each area is liberally illustrated with circuits of basic CMOS gates and the dedicated CMOS chips.
Many subjects are covered Inverter, gate and logic circuits; Bilateral switches and selectors; Clock generators; Pulse generator circuits; Clocked flip-flops; Up and up/down converters; Down counters and decoders and various miscellany.
Each function area has a basic introduction and description, a look at some basic principles, tips and things to watch for, the relevant chips and some (rather contrived) example circuits.

The chapter on bilateral switches and decoders for example covers the 4016, 4066, 4051-3, 4067 and 4097, and has circuits for latching switches, touch switches, digital resistance, capacitance and gain control and a sample and hold circuit to name but most of them.

In the process of delving into all these subjects Marston manages to cover most of the common CMOS ICs. There are some notable exceptions (notable in my eyes at least) and absolutely no mention of 74 HC series chips but I guess those really are another story.

The big problem with the CMOS Circuits Manual is why read it in the
first place. It's hardly easy reading, it's not a text book to plough through and learn the subject nor is it really a reference work to pick up for snippets of information.

However, it is thoughtfully put together and covers the ground well. It taught me several things I didn't know and promises to teach me more as I use it again. If you're in that limbo state of beginning to grasp the fundamentals of electronics but a little unsure as to how to actually progress onto meaningful project design, this one will serve well.

Optoelectronicg Clrcuit
Manual by R M Marston.
Heinemann Vemmes. $i 0.95$
The series blossoms. Don't ask me why this one's a quid more. It's marginally shorter and otherwise consists of very similar stuff.

Still, if the good lord had meant us to understand book prices he wouldn't have given us publishers.

This one very much follows the same line of attack as the CMOS tome. The first chapter looks at basic principles and this time they are a lot more basic - what are bulbs, neons, LEDs, LCDs, photocells and even (pushing it a bit, this) a look at cathode ray tubes.
Again, the other chapters are devoted to a subject each and go into in greater depth - LED display circuits; LED graph circuits; Seven segment displays; Light sensitive devices; Optocoupler devices; Brightness control techniques; Light beam alarm; and Remote control systems.

The whole tone of this book is a bit easier than the last. It is better suited to the beginner and to practical application. It also has the great advantage that it is great fun for the electronics beginner to play around with flashing LEDs and impress their friends with 'magic' infra-red broken beam switches.

So again, if you want to know that little bit more about using these good fun devices, if you're prepared to experiment a bit with relatively little help, this book will form the basis of an interesting and informative time
If and when this collection of Marston manuals grows, the whole set will undoubtedly provide a solid basis for enthusiast knowledge.
The only problem is that at £10/11 a time (or are these the bottom end of a price curve?) few mere enthusiasts will be able to afford them all.

CONSTRUCTOR SERIES SPEAKER KITS
Based on the famous Kef
Reference Series, these three
DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-to-earth price!

With a
Wilmslow Audio
Total Kit it's easy

 - no electronic or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, wadding, grille fabric, terminals, nuts, bolts etc.
Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and CS9 is based on the Reference 105.2 (but in a conventionally styled encl.).

> CS1 $£ 117$ pair inc. VAT plus carr/ins $£ 6$ CS3 $£ 143$ pair inc. VAT plus carr/ins $£ 12$ CS9 $£ 393$ pair inc. VAT plus carr/ins $£ 18$

We also offer a kit (less cabinet) for Elector PL301

Lightning service on telephoned credit card orders!

WILMSLOW AUDIO LTD.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS Tel: 0625529599 Call and see us for a great deal on HiFi. (Closed all day Mondays)

DIY Speaker catalogue $£ 1.50$ post free (export $\$ 6$)

MULTIMETERS

 Cirkit
Affordable Accuracy

A comprehensive range of quality Multimeters at very competitive prices

DIGITAL

All models feature full ranges, large $31 /$ digit LCD. low battery indication, auto zero and auto polarity, strong ABS casing. 10 Amp range (except DM105) overioad protection. Prices from $£ 21.50$ to $£ 6500$. Battery, spare fuse, test leads and manual included with each model.

ANALOGUE

A choice of four meters with prices ranging from $£ 550$ to $£ 21.00$, with $D C$ sensitivities from $2 \mathrm{k} \Omega \mathrm{N}$ to $30 \mathrm{k} \Omega / \mathrm{V}$. All models include battery, test leads and manual
Please add 15% VAT to all prices and 70p for post and

HC774

 multimeter featuring sized autoranging volts, 200 mV - 750 V AC volts 200 mA and $10 A D C$ or AC current, high and low current resistance ranges $2 \mathrm{k}-2 \mathrm{M} \Omega$ and $200-200 \mathrm{k} \Omega$, 10 mm LCD, display memory and hold, auto/manual range selection and basic accuracy of 05% packing

Cirkit Distribution Lid.

The Virtuoso Power Amp 2 U case power supply board

The Dynamic Noise Reduction system foil

The Bicycle Speedometer Board

MIDI Master Keyboard (June 1987) In Fig. 3 and the Parts List there is some confusion as to the correct part numbers for some ICs. These should be: IC17-2764, IC18 6522, IC10, 21 - 74L S32

Car Alarm (August 1987)
In Fig. 1 Q is not numbered and its emitter is shown unconnected. This connects to earth. The transistors in the parts list went a little awry, Q2-6 are BC237 and Q7 is a TIP31.

Boiler Controller (September 1987)
In Fig. 2 (a) the primary of T 2 is shown connected to Earth. This should be neutral. in Fig. 2(b) one of the bridge rectifier diodes, D6-9, is shown the wrong way around. This is correctly shown in Fig. 5

EEG Monitor (September 1987)
In Fig.3a the pins of IC1 connected to the power rails are shown swapped around. In Fig.4a R7 is unlabelled and is between C3 and C6. In Fig. 5 C20 should be £10 and R18 is unlabelled. It lies between R17 and R19.

EII Concept (October 1987)
The Power Board parts list wrongly lists R6 as 270R. This should be 270 k . Also, note that the power board's OV rail must not be connected to Earth or the OV rall of the CPU board.

Printer Buffer (November 1987)
The software for the EPROM had three errors listed. The byte at 039A should read 20, at 0398 14 and at 0492 30. All numbers are in Hex.
Dream Machine (December 1987)
The transistors used in this project are ST1702. BC108s can be substituted.

Heating Management System

(December 1987)
A 4116 is not a suitable alternative to the 6116 specified. A 4016 RAM chip will suffice. In Fig. 1 the junction of R1/D5 should connect to D14/C1 and not cross. The zener diodes above the temperature sensor ICs (IC16-19) should be deleted. C4 should be 220 n and not 220μ. C7-10 should be 10μ. Q2-7 should be 2 N 3904 and not BC3904.
RGB Auto-Dissolve (January 1988)
In Fig. 5 there are marked two D6's. The right hand one should be D5 (they are both 1N4148's anyway). In the text the reference to zener diode D5 should read zener diode ZD1.

PASSIVE INFRA-RED ALARM

(January 1988)
Fig. 2(a) shows the base of Q1 connected to ground and to R14. It should be connected only to R14.

Clean Up Campaign (January 1988) In the component overlay (Fig, 3) ZD1 is incorrectly orientated. The positive terminal should be the southern end.

Spectrum Co-processor (March 1988) Mogul Electronics, given in the Buylines as suppliers of the RAM chips, have moved to: Unit 11, Vestry Estate, Sevenoaks TN14 5EU. Tel: (0732) 741841.

A complete list of all boands (back to ETI 1981) is availabie th receipt of a large 5 SE

TO: ETI READERS' SERVICES DEPARTMENT Argus Specialist Publications Ltd, 9 Hall Road, Hemel Hempstead, Herts HP2 7BH

Please supply:

I enclose a cheque/postal order made out to ASP Ltd. to the value of $£ 1.90$ per issue ordered.
Total remittance $£$........ Date

54

CLASSIFIED
01-437 0699 Ext 292
Send your requirements to:
Julie Capstick, ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

Lineage: 44p (VAT excl) per word (minimum 15 words) Semi Display: (minimum 2 cms) £12.20 per single column centimetre + VAT Ring for information on series bookings/discounts
All advertisements in this section must be prepaid
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate car (available on request)

COURSES

Newark Technical College
 The Department of Music \& Musical Instrument Technology offers, for students with the relevant practical and musical background, a 2 year full-time course in
 MUSICAL INSTRUMENT ELECTRONICS
 Leading to a B/TEC National Diploma in Musical Instrument
 Technology and if required to higher level technical and degree courses.
 The Department also offers full-time 3 year courses in
 PIANO TUNING MAINTENANCE \& REPAIRS VIOUN MAKING \& REPAIRING
 (Newark School of Violin Making) WOODWIND MAKING \& REPAIRING
 For details and application forms please write to The Principal,
 Newark Technical College, Chauntry Park, Newark, Notts., or
 telephone Newark 705921.

 Nottinghamshire County Council Education

Start training now for the following courses. Send for our brochure without obligation or Telephone us on AEF: ETI/4/88 0626779398

KITS

MICRO TRANSMITTER KIT, 500 m Range, tunable $88-115 \mathrm{MHz}$, sensitive microphone, £3,95. Cheques/PO's to Quantek Ltd., (ETI), 267 Rednal Road, Kings Norton, Birmingham B38 8EB.

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$, Components and PC.B's available: Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

MISCELLANEOUS

TMS320 Starter kit incorporating TMS32020, 16K Eprom RS232. Prices from under $£ 300$ For further details send S.A.E. to Melek Circuits, 18 Kincardine Drive, Bletchley, Milton Keynes MK3 7PG.

HEATHKIT U.K. Spares and service centre Cedar Electronics, Unit 12, Station Drive. Bredon, Tewkesbury, Glos. Tel 0684 73127

COMPONENTS

$$
\begin{aligned}
& \text { PROMs - EPROMS - PALS } \\
& \text { ANY PROGRAMMABLEIC SUPPLIED } \\
& \text { OR BLOWN } \\
& \text { Typical prices (excluding VAT) } \\
& 2716 £ 420 \text { Entry P\&P extra) } \\
& 2716 £ 4.20 \\
& 27128 £ 4.40 \\
& \text { BIPOIAR PROMs from } £ 1.35 \\
& \text { e g. 82S123, } 18 \text { S030, } 74 \text { S288 } \\
& \text { PALs, PLDs etc. from } £ 3.26 \\
& \text { e g. 82S153, 16L8, EP310 } \\
& \begin{array}{l}
\text { Full design and prototyping service. } \\
\text { Any quantity programmed - SAE or }
\end{array} \\
& \begin{array}{l}
\text { Any quantity programmed - } \\
\text { phone for details. }
\end{array} \\
& \text { P.L.S., } 16 \text { Central Road, } \\
& \text { Worcester Park, Surrey, KT4 8HZ. } \\
& \text { Phone: 01-330 } 6540
\end{aligned}
$$

S.H. COMPONENTS presents 18 pages of very competitively priced semi-conductors, switches, Opto Electronics, etc. Send 50p to: 17 Beeley Road, Grimsby, S. Humberside.

PLANS \& DESIGNS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas surveillance devices pyrotechnics and computer graphics tablet. 150 projects. For catalogue. SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire. HR8 2HS.

NEXT COPY DEADLINE FOR JULY ISSUE IS 22nd APRIL

FREE RESISTORS plus hundreds of low price-manufacturers full spec. components, send $£ 1.50$ cheque for samples and lists or $10^{\prime \prime} \times 4^{\prime \prime}$ s.a.e. for lists only. Dept. (E), D\&M Component Supply Service, 2 Glentworth Avenue, Whitmore Park, Coventry, W. Midlands CV6 2 HW .

UNIVERSAL BATTERY CHARCER
C AA AAA PP3 with individua charge indicators and tester. Only $£ 8$ $+f 1 \mathrm{p}+\mathrm{p}$
JUST ONE ITEM FROM OUR HUGE STOCKS OF QUALITY ELECTRONIC AND ELECTRICAL SPARES AND ACCESSORIES.
SEND FOR FREE JUMBO LISTS C.OD. SERVICE AVAILABLE. 9 CROALL PLACE, EDINBURGH EH7 4LT
> - Surveillance
> - Kits
> - Components
> - PCB's

> ETI has the right market. Ring Julie Capstick on 01-437 0626 for more details.

CLASSIFIED

01-437 0699 Ext 292
 Send your requirements to: Julie Capstick, ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

Lineage: 44p (VAT excl) per word (minimum 15 words) Semi Display: (minimum 2 cms) £12.20 per single column centimetre + VAT Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate car (available on request)

ALARMS

LOWEST U.K. DIY PUBLISHED PRICES PHONE OR WRITE FOR YOUR COPY

051-523 8440 AD ELECTRONICS 217 WARBRECK MOOR AINTREE, LIVERPOOL L9 OHU

SPECIAL OFFERS

FREE MEMBERSHIP to the NATIONAL COMPONENT CLUB For details and a free gift of components worth over $£ 10$ send only $£ 1.00 \mathrm{p} \& \mathrm{p}$ to: Higher Ansford, Castle Cary, Somerset BA7 7JG

SURVEILLANCE

ESKAN ELECTRONICS

LEADING MANUFACTURERS
AND SUPPLIERS OF SURVEILLANCE AND
SECURITY EQUIPMENT
MINIATURE TRANSMITTERS, TELEPHONE MONITORING EQUIPMENT, AND MANY OTHERS.
Send stamped addressed envelope for your free catalogue to.
172 Caledonian Road, London N1 OSG.

Telephone

01-278-1768 V/5A
Trade Enquiries Weocome

CASSETTE MOTORS large and small 2 for $£ 1.00$. Mono and stereo cassette tape heads. 2 for £1.00. Microphone small for cass. tel. etc. 2 for $£ 1.00$. Telephone buzzers at $£ 2.50$ each. Please add 75p p\&p no VAT. Access card accepted. Golden Orange Supplies, Brockhollands Road, Woodside, Bream, Lydney, Glos. Tel: 0594563009.

HAPPY EASTER GIVEAWAY 40 new assorted capacitors. FREE!! return advert + 50p coin (P\&P) to: KIA-8 Cunliffe Road, IIkley LS29 . . . 60 watt amplifiers $£ 5$.

KITS

BUG-87 Matchbox sized surveillance transmitter - can be received by any FM/VHS radio
ROBO-VOX Instantly transforms your voice into Dalek/Robot type also amazing sound effects possible \qquad . $£ 11.95$ ROBOT CIRCULAR Unique radio controlled robot - can also be converted to control via computer
$£ 16.95$
EDU-SCOPE Build your own oscilliscope with solid state display
$£ 39.99$
EDU-SCOPE CASE KIT
£11.99
THERAMIN MUSIC GENERATOR An electronic device based on an ancient legendary mystical instrument f12.75 RAD-X CONTROL A complete ready built 2 output RADIO CONTROL SYSTEM \qquad f14.99
Please add $£ 0.75$ per order for P\&P. For FREE Datapack on all our Products/Kits send SAE.

Cheques/PO's payable to:-

IMAGINA-TRONICS

Aberdeen House, The Street, Charlwood, Surrey RH6 ODS.

WANTED

BOOKS

CIRCUIT DIAGRAMS
Most Makes, Models, Types, Audio, Music Systems, Colour, Mono Televisions, Amateur Radio, Test Equipment, Vintage etc. $£ 3.50$ plus LSAE
State Make/Model/Type with order Full Workshop Manual prices on request with $\angle S A E$.
MAURITRON (ETI)
8 Cherry Tree Road, Chinnor Oxfordshire, OX9 40Y.

PARAPHYSICS Journal (Russian Translation): Psychotronics: Kirlianography, Heliphonic Music. Telekinetics. Computer Software. SA.E 4×9 ", Paralab Downton, Wiltshire.

SITUATIONS VACANT

ELECTRONICS Servicing Company require junior assistant (17-20) who can demonstrate keen interest in sound servicing. Write for application form. Azimuth Electronics, 201 Greenheath Centre, London E2 6 JL .

Do you need
Qualified Staff?
Electronics Today
can find them for you!

WORK IN JAPAN

Individuals with a degree or experience in electronics or electrical engineering interested in teaching engineering English for one year in Japan to employees of major corporations/government ministries should write to: International Education Services Shin Taiso Building,
10-7 Dogenzaka 2-chome Shibuya-ku, Tokyo 150, Japan Information on the position will be sent after receiving a detailed resume.

RETAIL OUTLETS

PCB'S

PRINTED CIRCUIT BOARDS At very competitive rates: 4 pence per square centimetre (less for orders of 10 plus and large boards) 1 offs; 100 offs - send artwork (1:1, single sided) or drawings/enquiries. Also artwork carried out. Watling Wires PCB Production, 51 Watling Street, Nuneaton, Warwickshire, CV11 6JL. Telephone (0203) 382296.

At last, an affordable PCB design tool for your Amstrad PC. Plotting service available. Send SAE for further details, or $£ 2$ for demo disk.
Labcenter Electronics 14 Marriner's Drive Bradford, BD9 4JT Tel: 0274542868

AUDIO

Grundig., Infra-Red Remote Control "VIF-K1" consists of transmitter TPV355 and VIF-E1 brand new \& boxed
 Video Heads (Gru.... $£ 9.99$ for 10 p\&p $£ 3$ head assembly 2×4 Super Panels $£ 595$ p\&p $£ 2$ each Vide Super Panels $£ 5.95=$ DTF, Servo, Video, Croma, Sterio-ton, Motor-Board, Modulator \& Tuner p\&p 1
Remote Controls Infra-red \& Sonic suitable for use with Ferguson, JVC
Philips, Sony, Grundig, AU

SURPLUS STOCK WANTED 195 each f \& 1
Stan Willets (ETI), 37 High St
W. Bromwich, W. Midlands B70 6PB.

ETI can Bring you Success in 1988. Contact Julie Capstick on 01-437 0626 for more details.

ADVERTISERS'INDEX	
AUDIOKITS	
B K ELECTRONICS ... 3	
CRICKLEWOOD ELECTRONICS	
ENCORE ENCLOSURES ... IBC	
GREENBANK ELECTRONICS .. 58	
HART ELECTRONICS	
PC PUBLISHING ... ${ }^{\text {O }}$	
SAGE AUDIO ... 48	
SPECIALIST SEMICON DEVICES ... 27	
ADING \qquad 19	
SUMA DESIGNS \qquad 19	TJA DEVELOPMENT ... 19
TK ELECTRONICS .. 3	
WILMSLOW AUDIO	
ZENITH ELECTRONICS	

PINEAPPLE SOFTWARE
 Programs for the BBC model ' B ', B +, Master and Master Compact with disc drive DIAGRAM II - noo also wailible for Recurieves
 Diagram II is a completely new version of Pinaapples popul ar 'Diagram'
 Pineapple's now famous PCB drafting aid produces complex double sided PCB's

Which make it into the most powerful and yet quitk to use drawing features available for the BBC micro. The new features mean that Diagram I now be used for all types of drawings, not just cirouit diagrams, Soale drawings are possible and the facilities for producing oircles and rubber drawing possible. This advert has been produced completely using Diagram II

Sumary of Diagran II features:-

Works on all model BBC computers and makes use of Shadow memory if poss
Rapid line drawing rout ines with automatic joins for Rapid line drawing routines with automatic joins for circuit diagrams. Makes use of the Aoorn GXR rom to produce ellipses, aros, sectors, ohords Pikel drawing mode a?
Pikel drawing mode af lows very fine detail to be added,
Defined areas of screen may be moved, oopied, del eted or saved to diso. Keyboand Keus may be defined to print User nefined Characters be made. new character sets to be used. Wordprocessor, files may be loaded and formatzed into defined areas . Compatible with Marconi Trackerball and most makes of thout shadow. 2. All Diagram Utilities' are included and most mak
3. Completely scaleables are included.
printed either horizontally or through any area of the diagram to be varied in 11 , steps allowing up to 18 mode 0 screens to be printed on 4. Smooth sorolling over the whole area of the diagram,

is unsuit tale for your systen, or it you require ab. 5 " connact dhisc
DIAGRAM II - £55.00 + vat p\&pfree MARCONI TRACKERBALL

All orders sent by return

very rapidly using any model BEC mioro and any FX compatible dot-matrix printer sides program is supplied on Eprom and uses a mode 1 screen to display the two layout soreens are also produced for a silk screen mast, superimposed. Component The print routines allow a separate printout of each side of the board in an expanded definition high oontrast $11 \frac{1}{2}$ or $21 /$ scale, The print time is typically about 5 mins, for a 111 print of a ${ }^{\prime}$ buperb features to adequately desoribe here, so please writegram or phas too many
sone for more details and sample printouts.

 PCB AUTO-ROUTING This brand new addition to the PCB program greatly increases the, power of the software and speeds the design of $\mathrm{PCB}^{\prime} \mathrm{s}$ even more.
A I ist of up to 190 connections may be entered in the form of a 'rats nest' and then the computer does the rest! You may specify which side of the board choice to the computer, and you may al so say wheth
tracks should be allowed to pass bet ween I. tracks should be allowed to pass between I.C. Pins, please write or 'phone for full details. COMPLETE RUTOROUTE PACKAGE
(Including manual Epron)
$185.00+$ U月

ADFS Utilities Rom

tcommands to the ADFs filing system as well ass prouiding an extensive Menu facility with over 35 sub commands covering areas such as repeated disc compaction, saying and loading. Rom images, auto booting of files and many more oreation of the required directories on the ADFS diso. All fanctions automatic compatible with Winohester drives inoluding \&BCKUP which allows backing up of Winchesters onto multiple floppies.
*DIRN *oommands are as follows: - ADDU, *EACKUP *CATAL, *CHANGE, \&DFSADFS,
 PRICE $£ 29.00$ + vat
MTEYSPICE - Powerful A, C, \& D, C, circuit anal yser package - $\begin{aligned} & \text { with Graphics output, } \\ & \text { Send }\end{aligned}$

The Dellar hes fellen... and so have our Prices! 릉민ㅁㅁ MUITMMERRSOUTSTANDING VALUE FORMONEY!

BUY NOW, THE TIME IS RICHT!

Comprehensive With rronsistor, diode and LED tester. Y108 $£ 1995$ $£ 16.95$

SAVEeS

Pocket Rugged general purpose. Y 10669695 $£ 5.45$

[^0]: THE SAGE AUDIO DESIGN PHILOSOPHY - A UNIQUE COMBINATION
 6 ADDITIONAL SAGE EXCLUSIVE (World first) TECHNICAL DESIGN FEATURES ENABLE THE SAGE SUPERMOS 2 TO ACHIEVE A NEW HIGH LEVEL IN AUDIBLE SONIC PERFORMANCE UNMATCHED BY ANY OTHER POWER AMPLIFIER, EITHER MODULE, KIT, BOARD OR COMMERCIALLY MADE AMPLIFIERS.
 1 Active Class A Our unique MOSFET pure class A O/P stage eliminates crossover distortion generated by class AB stages along with all thermal tracking problems, BJT storage effects and will not switch to class B under high drive as conventional low efficiency class A amps will.
 2 Zero THD All semiconductors are exclusive matched selected pairs operating in patented constant current/constant VCE for totally distortionless linear operation
 3 High Slewrate Cascaded 'inputz matched' alternate symmetrical NPN/PNP transconductance/transimpedance stages with localised feedback and low overall feedback ensures ultra high linear symmetrical slewrate some 50 times the normal eliminating TID altogether.
 4 Clean Clipping All amplifiers run into clipping thereby transferring PSU ripple to the O/P. SUPERMOS 2 the first amp to feature CLEAN CLIPPING without PSU ripple, totally eliminating the 'Sound of the PSU comps'
 5 Protection Conventional VII limiters which introduce distortion when driving real speakers have been eliminated. The massive output stage can withstand a S/C this ensures no sound degradation whilst driving up to totally reactive loads with zero resistance.
 6 Balanced circuitry Symmetrical design gives inherent stability and lineararity eliminating the need for DC servos which degrade LF distortion

 ## AND THERE'S MORE

 SONIC COLOURATIONS 'ELIMINATION' In addition, by careful and innovative engineering we have ELIMINATED 5 of the major causes of 'Sound Colourations' associated with conventional amplifiers:-
 O/P Ernitter Resistors The active class A system is inherently thermally stable, not requiring emitter resistors which degrade sound quality, increase $0 / P$ impedance and increased crossover distortion and temperature related distortions. Z Zobel networks Low value R, C (across O/P) the single most significant cause of musical transient compression, Elimited HF Pole Compensation This low feedback design is totally stable not requiring ANY COMPENSATION CAPACITORS which cause HF distortion and phase non-linearity resulting in a true, clear sharply focussed stereo image Fixed bias Vbe multiplier a known source of temperature generated distortion with thermal tracking time lag problems, eliminated. Capacitor Sound
 voltage is allowed to appear across them for the lowest possible source of CAPACITOR SOUND'
 AND STILL MORE . . . We can't possibly describe this unique Super Hi-Fi amplifier fully in this ad, to receive a full size 8 page glossy brochure giving full technical details send $\boldsymbol{f 1}$ and a large SAE (Export enquiries send 6 IRC) Supermos 2 modules $£ 140$ plus $£ 2 \mathrm{p} / \mathrm{p}$ per module. The original Supermos $50-150 \mathrm{~W} \mathbf{£ 6 5}$ plus $\mathbf{£ 1 . 5 0}$ p\&p per unit. User manual $\mathbf{£ 2 . 5 0}$ refunded on purchase
 SPECIAL OFFERS - Grade 1 audio PSU caps brand new Mullard $11422,000 \mathrm{u} 63 \mathrm{~V}$ £ 18 each, 36 amp 600 V bridge recs $£ 4.50$, MOSFET's 10A 170 V TO3P matched pairs $\mathrm{f} 11 / \mathrm{pair}$ MJI Supermos 1 or Supermos 2 modules. Offer for this month only.

