NUCLEAR STRATECY

Electronic simulator to build

PLUS:

SURFACEMOUNTING
PROGRAMMABLELLOGIG
BEMCS
TRANSUSSONLNE SPEAKERS
TELEPHONEALANM

AMPLFIER MODULES	
OMP POWER AMPLIFIER MODULES Now enor a $^{\text {O }}$ vorid-wide reputation for quality, reliability and performance at a realistic price Four models available to suit the needs of the protessional and hobby market ie., Industry. Leisure, Instrumental and H_{1} FI etc. When comparing prices. NOTE all models include Toroidal nower supply. Integral heat sink. Glass fibre P.C B and Drive circuits to power compatible Vu meter Open and short circuit proof Supplied ready built and tested.	
	OMP100 Mk II Bi-Polar Output power 110 watts R.M.S into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$. TH.D. 001%. S.N.R. - 118 dB . Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+\boldsymbol{f 3 . 0 0}$ P\& ${ }^{2}$ P.
	OMP/MF100 Mos-Fet Output power 110 watts RMS into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate 45 V uS. T.H.D. Typical 0002%, Input Sensitivity 500 mV . S.N.R. 125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $539.99+\mathbf{f 3 . 0 0}$ P\& ${ }^{2}$.
	OMP/MF200 Mos-Fet Output power 200 watts RMS into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate 50V/uS. T.HD Typical 0.001%. Input Sensitivity 500 mV . S.N.R 130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE PRICE $\mathbf{f 6 2 . 9 9}+\boldsymbol{£ 3 . 5 0}$ P\& ${ }^{1}$ P.
	OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350. Slew Rate 60V uS, T.H.D. Typical 0.0008%, Input Sensitivity 500 mV S.N.R -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $\mathbf{f 7 9 . 9 9 + £ 4 . 5 0 ~ P \& P . ~}$
NOTE Mos-Fets are supplied as standard $(100 \mathrm{KHz}$ bandwidth $\&$ Input Sensitivity 500 mV) if required PA version (50 KHz bandwidth \& Input Sensilivity 775 mV) Order - Standard or PA	
very accurate visual display employing $11^{\circ} \mathrm{LF} D$ diodes 17 green 4 red) plus an additionat on off indicator Sophisucated logic contro circuiss for very fast rise and decay times Tough moulded plastic case with tinted acrylic front Size $84 \cdot 27 \cdot 45 \mathrm{~mm}$ PRICE f 850 -50p P\&P.	

PN N N N NOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range 100/300 metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $\mathbf{5 8 . 6 2 + 7 5 p \text { P\&P }}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controhed professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Price: f $14.49+75 p$ P\&P.
SINGLE CHANNEL RADIO CONTROLLED TRANSMIPTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ($9 / 12$ voit). Price: ERP $+75 p$ each. S.A.E. for complete list.
($9 / 12$ voh). Price: $\mathbf{f 1 1} .29$ POSTAL CHARGES PER ORDER $£ 1.00$ minimum. OFFICIAL
ORDERS WELCOME, SCHOOLS, COLLEGES. GOVERNMENT BODIES, ETTC. PRICES INCLUSIVE OFV.A.T. SALES COUNTER VISA/ACCESS/C.O.D. ACCEPTED

3 watt FM

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDIY SERVICE * LARGE S.A.E. 28p STAMP FOR CURRENT LISI

BURGLAR ALARM

Thandar's famous 'Minder' Burglar Alarm System. complete with interconnection cable FULLY GUARANTEED.
Control Unit
up to 15 metres adjustable by sensitivity control hree position, key operated facia switch - off - test Indoor alarm - Electronic swept irea indoor alarm
Outdoor Alarm - Electronic swept freq. siren 98dB output. Housed in a tamper-proot heavy duty metal Both the control unit and outdoor alarm contain re-
 AC. 50/60H2 Expandable with door seal
Butlons etc Comolete winh instructions
SAVE ± 138.00 usual prive f 22885
BKE's PRICE 189.99 + £4.00 P\&P

OMP LINNET LOUDSPEAKERS The very best in quality and value. Made specially to surt odidys
need for compaciness wath high sumad oupoul levels finished need tor compaciness with high sound outpul evels Finshed in
hard wearing black vnit? with protective corners. grilie and cary

OMP 12-100 Watts 1 OOdB. Price $f 149.99$ per pair.
OMP 12-200 Watts 102 dB . Price $f 199.99$
per pair.

Professional 19" cased Mos-Fet stereo amps- Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies. XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 4 ohms). Input Sensitivity 775 mV . MF200 (100 + 100)W. £169.00 Securicor MF400 $(200+200)$ W. £228.85 Delivery MF600 $(300+300)$ W. £322.00 £10.00
\qquad

* Suitable for both resist ance and inductive loads in numerable applications
industry, the home. discos. theares PRICE f 13.99 - 75p P\&P

BSR P295 ELECTRONIC TURNTABLE \star Electronic speed control $45 \& 331$
Minus varable pitch control minum piatiter with stiobed rum * Cue lever * Ant1 Matual arm * Standard ${ }^{2}: "$ cartige fixings **
Supplied complete with cut out template * D. Operation $9-14 v \mathrm{D} . \mathrm{C}$
Price $£ 36.99 \quad 65 \mathrm{~mA}$
$£ 300 \mathrm{P}$

ADC 04 mag. cartridge for above Price 54.99 e

PIEZO ELECTRIC TWEETERS • MOTOROLA
improved transient response with a lower distortion level than ordina, y dynamic tweeters As crossover is not required these unis can be added to existing speaker systems of up to 100 wat
(more if 2 put in Series) FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER TYPE 'A•(KSN2036A) 3" round with protective wire mesh, ideal for hookshelf and medrum suzed H_{1}-f speakers Price f4.90 each * 40p P\&P. TYPE B (KSN1005A) 3'," super horn For general f5.99 each 40 P P\&P TYPE 'C'. (KSN6016A) 2" , 5" wide dispersion horn for quality Hi_{1} fis systems and quality discos etc Price f6.99 each 40p P\&P.
TYPE ' ${ }^{\prime}$ (KSN1025A) ${ }^{\prime \prime}$ ' TYPE ' ${ }^{\prime}$ ' (KSN1025A) 2" " $6^{\prime \prime}$ wide dispersion horn Upper frequency response retained extending
down to mid range (2KHz) Sutable for high guainy down to mid range (2KHz) Suitable for high quality
 TYPE ' E ' attractive silver finish tim Suitable for Hi-fimonitor systems etc. Price E 5.99 each +40 p P\&P.
LEVEL CONTROL Combines on a recessed mount ing plate, level control and cabinet input jack socket.
$85: 85 \mathrm{~mm}$ Price $\mathrm{f} 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segmertt
L.ED Vu Meters. Many outstanding features 5 Inputs with individual faders providing a useful combination of the following:
3 Turntables (Mag), 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor Pan Pot. \& R. Master Output controls Out put 775 mV Size $360 \times 280 \times 90 \mathrm{~mm}$
Price $£ 134.99-£ 3.00 \mathrm{P} \mathrm{\& P}$

Cover photograph courtesy ESA/Meteosat

Geoff Bains: Editor

Ian Pitt: Deputy Editor Paul Chappell: Projects Editor
Jerry Fowler: Technical Illustrator
Angela Farrell: Ad Manager

Nicola Baty:

Classified Sales Executive Andrew Selwood: Copy Control Dave Bradshaw:
Group Editor - Electronics PUBLISHED BY:
Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB DISTRIBUTED BY:
Argus Press Sales \& Distribution Lid.
12-18 Paul Street, London EC2A 4/S
(British Isles)
TYPESET BY:
Project Three.
PRINTED BY:
Adlard \& Son Ltd, The Garden City Press. COVERS PRINTED BY:
Loxley Brothers Ltd.

Electronics Ioday is normally published on the first Fri day in the month preceding cover date ithe contents of this publication including all articles, designs, plans.
dramings and programs and all copyright and other in. drawings and programs and all copvright and other in-
teilectual property lights therein belong to Argus tellectual property ights therein belong to Argus
Specialist Publications Limuted All rights conferred by Spechalst Publications Limuted All rights conterred by
the Law of Copyright and other inteliectual property the Lath of Copright and other inteliectual property
rights and by virtue of international copyright convenhights and br virtue of internationd copyright convenPublications Limited and any reproduction reauires the prior written consent of the Company. © 1987 Argus Specralist Publications Ltd.. All reasonable care is t. iken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for
errars Where mistakes do occur, a correction will norerrors Where mistakes do occur, a correction will nor-
mally be published as soon as possible afterwards All mally be published as soon as possible afterwards All
prices and datal contaned in advertisements are acprices and data contained in advertisements ade ac-
cepted by us in good iath as correct at time of going to press Netther the advertisers nor the publishers can be held responible however, for any varidions aftecting
price or dvalability which may occuratiter the publica tion has closed tor press

- Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$. USA: $\$ 29.50$. Airmail: £49.50.

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

ALL ABOVE BOARD 13
Is small really beautiful? Mike Bedford certainly thinks so and he's been looking into the increasingly popular use of tiny surface mounting components.

CIRCUIT THEORY

 18Paul Chappell continues to fathom Fourier and finds it's all not as tricky as it first appears.

HARDWARE DESIGN

CONCEPTS
Top breeders recommend PAL. Who is Mike Barwise to argue with that?

He's found PALs are no use for strong bones and a healthy coat but wonderful for saving space and money.

RED CURRY

 26Helen Armstrong talks to Sinclair's main rival in the 'Founding father of British home computing' stakes.

PROJECT INDEX

1972-1987 \qquad Centre Pages
The final pull-out part of the indispensable guide to all of ETI's long history of projects.

PROJECTS

NUCLEAR STRATEGY

 SIMULATOR.... 28
is is not all it's cracked up to be. His simulator lets you prove the point for yourself.

THE ETI KAPELLMEISTERS 33
Vivian Capell's novel transmission line loudspeakers are cheap to build, small and sound wonderful. What more could you ask for?

MIDI MASTER KEYBOARD 40 John Yau's keyboard is really shaping up now with the final circuit board and details of the cabinet construction.

TELEPHONE ALARM

44
Barry Taylor has come up with an ingenious way of keeping tabs on his house. Intruders beware!

TECH TIPS

52
Some more circuit ideas hot off the backs of readers' envelopes.

REGULARS

NEWS 6
KEYNOTES 49
NEXT MONTH OPEN CHANNEL 49
DIARY PCB SERVICE
50
50
READ/WRITE 11
READERS' FREE ADS 53
SPECIAL OFFER 38
PHOTOCOPIES 54
BACKNUMBERS 54
PLAYBACK 48
BOOK LOOK 48
PCB FOILS 56
VELLEMAN KITS OFFER 58
CLASSIFIED ADS
60
60
AD INDEX 62

01-208 1177 Tecinomatic Lid 01-208 1177

BBC Micro Computer System

BBC Master Series
AMB15 BBC MASTER includes one free ROM cartridge \ldots. computer AMC06 Turbo (65 C C102) Expansion Module.
ADF14 Rom Cartridge
ADF10 Econet Module
ADJ22 Ref. Manual Part 1
ADJ23 Ref. Manual Part
ADJ24 Advanced Ref Manuai
ACORN ADD-ON PRODUCTS
Universal 2nd Processor
TORCH ZEP 100
Muliform 280 2nd Processor
Acorr Teletext Adaptor
Acorn IEEE Interface.
B8C Masle
SYSTEM 1
128K, Single 640 K Drive $\&$ bundied
128K, Single 640 K Drive \& bundied
sottware............................$~$ 385 (a)
SYSTEM 2
System 1 with a 12" Med Res RGB
Monitor
SYSTEM 3
System 1 with a 14" Med Res RGB
Monitor599 (a)

EPSON

X86NLQ (80 col) $\mathbf{8 1 9 9}$ (a)
Ex800
EX1000
EX1000 (80 col.
LQ1000 (136 col)
JX80 4 colour
FX800.
FX100
TAXAN KP815 (80 col) NLQ TAXAN KP915 (156 col) NATIONAL PANASONIC KXP1081 (80 col)
NATIONAL PANASONIC
KXP 3131
STAR NL 10 (IBM interface) $2 \mathbf{1 0 9}$ (a) (a) JUKI 6100 Daisy Wheel
BROTHER HR2O
NTEGREX Multicolour
HITACHI 672 A3 Plotter
Paper:
2000 Sheets Fanfold:
9.5" $\times 11$ "....................................13 (b)
14.5" $\times 11^{\prime \prime}$.................................580 (b)

Labels: (per 1000)
$3.5^{\prime \prime} \times 17 / 16^{\prime \prime}$ Single row .e.e.e.e.25(d)
$27 / 16^{\prime \prime} \times 17 / 16^{\prime \prime}$ Triple row25.00 (d)

£ 99 (c)

Second Drive Ki

1770 DFS Upgrade for Model B $£ 43.50$ (d)
1770 DFS Upgrade for Model B $\mathbf{\Sigma 4 3 . 5 0}$ (d)
Basic II ROM (d)
12 OS ROM......................
$\begin{array}{r}22.50(d) \\ \hdashline 1750 \text { (d) }\end{array}$
ADFS Rom (for B with 1770
. . $\mathbf{5} 26$ (d)
DFS \& B Plus)
ECONET ACCESSORIES
Econet Starter kit.
.585 (d)
Econet Socket Set
Econet Bridge
Printer Server Rom
10 Station Lead se Adv. Econet User Guide
COMMUNICATIONS ROMS
Termulator \qquad $\ldots . .{ }^{2} 25$ (d) Communicator549 (d)
$\ldots 28$ (d) DATABEEB. BBC FIRMWARE A SOFTWARE Database Management Systems, Word Processors, Languages, Spreadsheets, Utilities For fuli details on the wide range of above packages please write to us.

spson

ACCESSORIES

FX plus sheet feeder.................................... 129.00 (b) XX00 Sheet feeder ..en (b)
 3143 Ap232... (c)
 Sertal \& Peraliol Interfaces with larger buffers avallable. Rilbbons: RXXFX 100/100+ 00 (d)

 FX80 Tractor Attachment (c)

RS232 Interface + 2K Buffer .563 (c) Ribbon
JUKI:
JSKI:
Spare Daisy Wheel Ribbon. beet Feeder. rector Feed182

Sheet Feeder.....

Ribcons Carbon or Nylon................................. 83.00 (d)
Rod Correction Ribbon2.200 (d)
BBC Printer Lead:
Parallel (1.2 m)
Serial $(1.2 \mathrm{~m})$
Printer Leads can be supplied to any longt

MODEMS

- All modems listed below are BT approved

miracle 3000:

MIRACLE WS2000 V21/23 Manual $\boldsymbol{£ 9 5}$ (b) MIRACLE WS4000 V21/23. (Hayes Compatibie,
Intelligent, Auto Dial/Auto Answer) . $£ 149$ (b) MIRACLE WS3000 V21/V23 As SW4000 and with BELL standards and battery pack up for memory …..............................295 (b) MIRACLE WS3000 V22 As ws3000 V21/V23 but with 1200 baud full duplex 2495 (b) baud full duples
The price The price of WS4000 \& WS 3000 Modems Cable.

GANG OF EIGHT INTELLIGENT FAST
 EPROM COPIER

Copies up to eight eproms at a time and accepts all single rail eproms up to 27256. Can reduce pro gramming time by 80% by using manufacturer's suggested algorithms Fixed Vpp of $21 \& 25$ volts display with alpha moving message £395(b).

SOFTY II

This low cost inteligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV - has a serial and parallel $1 /$ O routines Can be used as an emulator, cassette interface
 Adaptor for $2764 / 2564$ £25.00(c)

UV ERASERS

All erasers UV1B era
UV1 T as above tot eproms at a time. ... E47 (c) UV140 erases up to 14 eproms at a time. $\overline{\text { cis }}$ (b) UV141 as above but with a timier......... c88 (b)

DATATALK Comms Package purchased with any of the above modems* PACEI. Nightingale Modem V21/v23 Manual

DISC DRIVES

These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format. All floppy drives carry a two year warranty.

PD800P ($2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS) with built in monitor
stand $£ 249$ (a)
DS)229 (a)
TD800 (as PD800 but without
psu) $\cdots \ldots \ldots \ldots \ldots \ldots \ldots 199$ (a)

3M . .
High quality discs that offer a reliable error free performance for life. Each discis individuallytested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box

51/4"DISCS 31/2"DISCS

PS400 with psu $1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K}$ 40/80T DS .
£129 (b) 3.5" DRIVES
$1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ DS
TS35 1 $\mathbf{\Sigma 7 5}$ (b) PS35 1 with psu (b) $2 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ D. $\mathbf{~} \mathbf{1 1 9 \text { (b) }}$ TD35 2.
PD35 2 with psu 187 (b)
$40 T \mathrm{SS} \mathrm{DD} £ 10.00$ (d) $40 T \mathrm{DS} \mathrm{DD} \mathbf{£ 1 2 . 0 0}$ (d) $80 T \mathrm{SS} \mathrm{DD} £ 20.00$ (d)
$80 T$ SS DD $£ 14.50$ (d) $80 T$ DS DD $£ 15.50$ (d) $80 T$ DS DD $£ 25.00$ (d)

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives :... $31 / 2 " £ 16$ (d), $51 / 4 " £ 14.50$ (d) Single Disc Cable.................................. 88 (d) Dual Disc Cable E858 (d) 10 Disc Library Cas Box.... E1.80(c) 30 Disc Case 88.50 (c) 100 Disc Lockable Box .. $.28(c)$
$.813(c)$

MONITORS

All 14" monitors now available in plastic or metal cases, please specify.
MICROVITEC: 14" RGB 14" RGB with PAL \& Audio
1431 Sid ResE179 (a) 1431 AP Std Res £199 (a)
1451 med Res £225 (a) 1451 AP Med Res............. 2259 (a)

1441 Hi Res $£ 365$ (a)
Swivel Base for Plastic 14" Microvitecs ... 220 (c)
20" RGB with PAL 8 Audio
2030CS Std Res.
.2885 (a)
TAXAN SUPERVISION 625 with amber/green option, BBC \& IBM . £329 (a)
MITSUBISHI XC1404 14" RGB Med Res IBM \& BBC Compatible . . £219 (a)

TAXAN KX 1201G Hi Res 12" Etched Green Screen
TAXAN KX1202G Hi Res 12" Long Persistence (P39)
TAXAN KX 1203A Hi Res 12" Etched Amber Screen
PHILIPS BM7502 12" Hi Res Green Screen

Swivel Base for Taxan Monochrome fitted with Digital Clock
£21 (c)

SPECIAL OFFER

2764-25 22.50
27128-25 £2.75
6264LP-15
£2.80

Berial Mini Patch Box

Allows an easy method to reconfigure pin functions
Jumpers can be used and reused.
$\mathbf{5 2 2}$ (d)

All prices in this double page advertisement are subject to change without notice.
ALL PRICES EXCLUDE VAT Please add carriage 50p uniesa indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Teet
Minitors RS232C and CCITT V24
Transmissions, indicating status with dual colour LEDs on 7 most significant Inres.
Connects in Line.

CONNECTOR SYSTEMS

CONNECTOR SYSTEMS			
1.D. CONNECTORS	EDGE CONNECTORS	AMPHENOL CONNECTORS sader	RIBBON
(Speedblock Typel	$\begin{array}{lll} 2:: 6 \text {-way (commodore) } & \frac{0.1 "}{150 \mathrm{p}} & 0.156^{\prime \prime} \\ 2 .<10 \text {-way } & 30 \mathrm{p} \end{array}$		grey/metre)
No of ways		36 way plug 500 p 475 p 36 way akt 550 p $\mathbf{5 0 0 p}$ 24 way plug	10-way 40p 34-way 16-way 60 p 40-way 20-way 85 p 50 way 26-way 120 p 64-way
$10{ }^{10} 900 \mathrm{p}$	2×12 way (vic 20) - 350p		
$\begin{array}{llll}20 & 145 \mathrm{p} & 125 \mathrm{p} & 195 p \\ & 1750\end{array}$	$\frac{2 \times 18 \text {-way }}{}$		
	2×23-way ($\mathrm{ZX81}$) $\quad 175 \mathrm{pp} \quad 220 \mathrm{p}$	IEEE 475p 475p	
		24 way skt 500p 500p	
$50 \quad 235 \mathrm{p}$ 200p 390 p	2×36 way 250 p	IEEE 500p 500p	DIL HEADERS
D CONNECTORS	2×22 way	24 way 700p, 36way 750p	14 pin 40p 100p
No of Ways	$\begin{array}{lll}2 \times 43 . \text { way } \\ 1 \times 77 . \text { way } & 395 p & - \\ 400 p & 500 p\end{array}$	24 way 700 p	16 pin 50p 110p
$\begin{array}{llll}9 & 15 & 25 & 37\end{array}$	 2×50-way	ENDER CHANGERS	18 pin 80 p
AngPins $120 \quad 180 \quad 230350$	EURO CONNECTORS		24 pin 100p 150p
$\begin{array}{llllll}\text { Solder } & 60 & 85 & 125 & 170\end{array}$	DIN 41612 Ping socket		$\begin{array}{lll}28 \mathrm{pin} & 160 p & 200 p \\ 40 \mathrm{pin} & 200 \mathrm{p} & 225 p\end{array}$
IDCMALE: 175275325.	DIN 41612 2×32 way St Pin 230p 275p	Male to Female £10 Female to Female. 10	40 pin 200p 225p
St Pin 100140210380	2×32 way Ang Pin 275p 3×32 way St Pin 260 p 300 p 3000	RS 232 JUMPERS:	
Angpins 160210275440		RS 232 J way D)	TECHNOLINE
$\begin{array}{lrrrr}\text { Solder } & 90 & 130 & 195 & 290 \\ \text { IDC } & 195 & 325 & 375\end{array}$	$\text { IDC Skt } A+B$	24"S Single end Male \quad E5.00	YIEWDATA SYSTE
$\begin{array}{llllll}\text { St Hood } & 90 & 95 & 100 & 120\end{array}$	IDC Skt A + C , 400p	24': Single end Female 24" Female Female	Using 'Prestel' type protocols
$\begin{aligned} & \text { Screw } \\ & \text { Lock }\end{aligned} 130150175$.	For 2×32 way please specify spacing ($A+B, A+C$).	$24{ }^{\prime \prime}$ Mate Male $\mathbf{8 9 . 5 0}$ $24^{\prime \prime}$ Maie Female $\mathbf{8 9 . 5 0}$	for information and orders
TEXTOOL ZIF	MISC CONNS		phone 01-450 9764. 24 hour service, 7 days a week.
SOCKETS 24 -pin 87.50 28 -pin 89.00 40 -pin 812	21 pin Scart Connector.200p 8 pin Video Connector:200p	4.way 90p 6-way 105p 8 -way 120p 10 -way 140 p	

NEWS: NEWS: NEWS: NEWS: NEWS: NEWS: NEWS:

- Greenweld is planning to celebrate summer by having a clear out of all its old 'Bargain list' stock. From June 15th there will be big price reductions on many items with some on sale for half price. Those who already have a Greenweld catalogue can obtain a sale price list free-of-charge while new customers will have to pay $£ 1.00$ for the catalogue and price list. Greenweld Electronics Lid, 443 Millbrook Road, Southampton S01 0HX. Tel: (0703) 772 501.
- Test equipment specialist Alpha Electronics has issued its Spring 1988 catalogue. Its six pages list a selection of analogue and digital multimeters plus attenuators, leads, pocket electrical testers and probes measuring temperature and rotational speed. The catalogue is free from Alpha Electronics Ltd, Unit 5, Linstock Trading Estate, Wigan Road, Atherton M29 0QA. Tel: (0942) 873434.
- The City \& Guilds of London Institute is an examining body which offers qualifications in a wide range of craft and technical subjects, most of which can be taken on day release as well as on full-time courses. A new pamphlet from the Institute lists the qualifications available in subjects such as electronics, electrical installation and computing and explains how these are recognised by industry and professional bodies. A helpful graph shows how students progress through the various levels of qualification and there are some brief case histories of people who are taking or have taken CGLI courses. The City \& Guilds of London Institute, 76 Portland Place, London WIN 4AA.
- We often tell you about companies publishing guides to their product lines but here's one publishing a guide to the guides. Axiom distribute Motorola products and they have put together a complete guide to the literature available on Motorola devices. For details contact Axiom Electronics Ltd, Turnpike Road, Cressex Industrial Estate, High Wycombe, Buckinghamshire HP12 3NR. Tel: (0494) 442181.
- The range of control knobs and accessories manufactured by Sifam Lid is described in a 16-page A4 colour catalogue recently issued by the company. Collet, push-on and slide potentiometer knobs are among the types covered and the catalogue also lists knob caps, dials, pointers, assembly tools and push-button switch caps. Contact Sifam Lid, Accessories Division, Woodland Road, Torquay, Devon TQ2 7AY. Tel: (0803) 63822.

Digital Storage

Thandar Electronics has introduced a portable, low-power digital storage unit which allows waveforms to be captured and stored on an ordinary real-time oscilloscope.

At its minimum sampling rate the unit can capture slowlychanging waveforms lasting more than an hour whilst the maximum rate of 200 kHz allows it to capture fast transients and similar events. The operating modes available are real-time, refresh, roll and singleshot and the trigger facilities allow the unit either to start sampling when a trigger signal is received

Scope Add-On

or to sample continuously and use the trigger pulse to define the mid-point or end of the sampling period.

The unit has variable input sensitivity down to 5 mV and uses a 1K memory to store data. Operation is from batteries or from the mains via an $A C$ adaptor and data stored in the memory can be retained for up to four years when batteries are fitted.

The TD201 costs $£ 195$ plus VAT and is available from Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ. Tel: (0480) 64646.

Hi-Fi Kit Claims High Performance

Gatehouse Audio says its new Gate One amplifier is no ordinary kit design.
Selling for $£ 161$, the amplifier is said to provide a sound quality equal to that of amplifiers in the $£ 300-£ 400$ class while sacrificing nothing in terms of facilities or appearance.
The Gate One provides 40 watts per channel into 8 R (80 watts into $4 R$) and accepts inputs from moving-coil cartridges and CD players as well as from moving magnet cartridges, tuners and tape recorders. Features include a tone cancel switch which removes the
treble and bass controls from circuit when not required, a subsonic filter to remove noise on discs and a bass boost facility for use with loudspeakers which have a poor bass response.
Full instructions are included and the PCB is screen printed with component numbers and locations to simplify assembly. The amplifier is also available readybuilt for £201.25. Prices include carriage and VAT.

Gatehouse Audio, 105 High Street, Evesham, Worcestershire WR11 4EB. Tel: (0386) 48873.

IC Firms Fight Health Scare

Electronics companies in America's Silicon Valley are fighting to retain their non-union working policies following the publication of a report which highlights increasing health problems among female workers.
The report was drawn up by researchers at the University of Massachusetts and catalogues the health problems of female production workers at a DEC semiconductor plant. Labour and womens' rights groups have seized on the findings and used them to challenge the safety of semiconductor manufacturing plants around the world.

Worried by the bad publicity, some companies have refused to employ women on production tasks. Women's rights groups insist this is discrimination and say the companies should concentrate on finding the cause of the problems.
A coalition of concerned groups wrote to the heads of 15 major semiconductor manufacturers and invited them to meet and discuss the report. Many refused, believing that to respond to the letter would confer recognition on the groups as workers' representatives and so open up the way to unionisation. This would remove the manufacturers' ability to cut costs rapidly when necessary simply by sacking thousands of workers.
Instead, the industry has responded with an attempt to discredit the report, describing it as 'too small to make it applicable to the industry as a whole'. An internal report is being planned by the Semiconductor Industry Association (SIA) to determine how best to mount a health study. However, many people are critical of the SIA's decision not to accept an offer of help from the University of California, widely recognised as a centre of excellence in occupational health matters.

TV Sound In The Balance

The BBC and the IBA are planning to conduct a series of tests to investigate the intelligibility of dialogue in television programmes.

The initiative follows comlaints from people with hearing difficulties who say they cannot follow dialogue easily when it is accompanied by background music, sound effects or audience noises. A working party set up by the two organisations will assess the intelligibility of dialogue both for people with hearing difficulties and those with normal hearing.

Z80 Features, Sixteen Bits

FEollowing the success of the 8-bit Z80 microprocessor, Zilog has introduced a CMOS 16-bit version which offers full compatibility and improved performance.
The Z280 can operate in 8 or 16-bit mode, allowing it to use all existing Z80 applications software and to be interfaced easily with Z80 peripherals. In 16-bit mode it can be used with Zilog's family of Z-BUS peripherals.
Improved features include clock speeds from 10 to 25 MHz , a 16 M byte on-chip memory management unit and a 256 byte instruction and data cache which can be used in conjunction with the burst mode access facility on modern DRAMs. A number of functions which would previously have been carried out by peripheral devices have been built-in to the Z280 including three 16-bit counter/ timers, a full duplex UART and four channels of DMA.
Zilog claims to have captured over 35% of the 8 -bit market with the $\mathbf{Z 8 0}$ and says the library of software available for the device is the most extensive in the world. The $Z 280$ will allow companies to preserve the value of their investment in $Z 80$ hardware and software while gaining the benefits of improved performance, higher levels of integration and low power consumption.
The Z280 is available now and costs about $\$ 27$ in quantities of a thousand.
Zilog, 1315 Dell Avenue, Campbell, California 95008, United States of America.

A Job - If You're Quick Enough

Students who don't start job hunting until they have finished their studies are taking an unnecessary risk according to a new report from PA Personnel Services.

Competition for graduates has been building up for several years, and employers now start recruiting as early as October in the final year in order to secure the best students.
Those studying shortage subjects such as electronic engineering or computer sciences may still be able to find jobs once the exams are over, but in general employers are only taking the best and those who show real initiative. Late entry into the employment market is inadvisable in today's climate of high unemployment, the report says.
The Pay Research Unit, PA Personnel Services, Hyde Park House, 60A Knightsbridge, London SW7X 7LE. Tel: 01-235 6060.

Small PSU For Small Budgets

$T^{\text {h}}$he Minipower PSU is a singlerail bench power supply which has been designed to offer good performance at a low price.

At just over $£ 30$ inclusive, the Minipower is expected to prove popular with schools and colleges, hobbyists, model-makers and any individual or organisation operating on a tight budget.
The Minipower provides a regulated DC voltage which is continuously variable between 0 and 30 V (35V absolute maximum)
at currents up to 1.5A. An automatic current limiting circuit protects the supply from overload. The output voltage remains constant to within 0.01% from zero to full load, line regulation is to within 0.3% and the total output noise level is 150 uV .
The Minipower PSU costs £31.70 including VAT and postage and is available from Wednesday Electronics, 4 Church Street, Offenham, Worcestershire WR11 5RW. Tel: (0386) 40314.

Optical Communications The Easy Way

Anew data communication link from Hitachi offers all the advantages of fibre optic cable but is as easy to use as an ordinary digital serial interface.

The HAC105 cable has two fibre optic cores to allow full duplex operation and has all the neces sary transmit and receive circuitry built into the moulded plugs at each end. A simple PCB-mounting socket allows the cable to be connected directly to logic circuit boards while an active adaptor is available to enable the cable to be used with RS232 links.

The cable is available in standard lengths of 5,10 and 20 metres with other lengths available to order in suitable quantities. Power for the
cable circuitry is derived from the board circuitry where a PCB socket is used or from a mains power unit when the RS232 adaptor is being used.

The cable and adaptors are only available in large quantities at present but Hitachi hope to arrange dealerships which will make them available in smaller quantities. A one-off price of around $£ 30$ is anticipated for the cable with the ADPRSI RS232 adaptors costing around $£ 65$.
A brochure giving full technical details of the system is available from Hitachi Electronic Components (UK) Ltd, 21 Upton Road, Watford, Hertfordshire WD1 7TP Tel: (0923) 46488.

The latest edition of Ferranti's MOSFET handbook contains over 340 pages of data on the company's range of enhancement mode \mathbf{N} and \mathbf{P} channel devices. Surface mounting types are now included along with the more traditional TO-92, TO-39 and TO-220 packages and the handbook also features a comprehensive cross reference list of industry part numbers. Copies are available free-of-charge from Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldham, Lancashire OL9 8NP. Tel: 061-624 0515.

- A new 44-page colour brochure from PKS-Digiplan Ltd contains a wealth of information on motion control techniques as well as describing the company's range of motor drive and control modules. The topics covered include open and closed loop control of DC and stepper motors, motor and drive selection criteria, torque calculation and inertia matching. There are also worked examples for a variety of different applications. PKS-Digiplan Ltd, 21-22 Balena Close, Creekmoor, Poole, Dorset BH17 7DX. Tel: (0202) 690911.
- Omni Electronics is a recentlyestablished, family-run company which supplies electronic components, kits, tools and accessories. Everything listed in their catalogue is normally available by return of post and the company will also try to obtain 'difficult' components to order. The catalogue costs 38 p inclusive from Omni Electronics, 174 Dalkeith Road, Edinburgh EH16 5DX. Tel: 031-667 2611.
- A potentially serious bug has been found in the 32-bit multiplier logic of Intel's 80386 microprocessor. About 100,000 of the devices have already been sold but most have been used In 16-bit DOS applications where the bug is not apparent. However, Intel believes that many companies are now planning to use the 80386 in more critical applications and reckons it has about nine months to correct the fault. The cost of field-replace ment for faulty devices could run as high as $\mathbf{\$ 3 0}$ million, a heavy blow for the company which has just returned to profitability after a period of heavy losses.
- Yes, we know, the supposed safety problem with Amstrad's PC1512 IBM clone was the absence of a mains earth, not the absence of a mains lead as we reported last month. A suitable revenge awaits our news writer should we ever find him again, but just at the moment he seems to have gone to ground

CARS CARS CARS

The August issue of ETI contains a whole bundle of stuff for the motorist and the DVLC has graciously decided to bring out a new registration number prefix (E for ETI) in August in our honour.

Keith Brindley has been taking a look at the world of auto electronics. Although high technology has been comparatively slow to filter through to the conservative car industry it looks like things are changing at last.

There's several short and easy projects for the DIY motorist in the August issue too-everything from a car alarm to a very novel rev counter.

PLUS

For readers reliant on public transport, next month's ETI has all the old favourites which go to make up Britain's best loved magazine for the electronics enthusiast. There's projects, features, news, diary, Tech Tips, ads, special offers, letters and so much more.
the august ISSUE OF ETI - OUT 3rd JULY MISS IT AT YOUR PERIL!

From Woodworker, Britain's leading woodworking magazine...

make your home more secure: doors, windows, alarms, fire precautions and child proofingit's all in this invaluable do-ityourself manual.

At your newsagent NOW! or order direct for $£ 1.50$ + 50p p\&p from Infonet, 10-13 Times House, 179 The Marlowes, Hemel Hempstead, Herts. HP1 IBB.

The Italian Collection

W/est Hyde has extended its range of instrument cases with the introduction of several new low-cost designs from Teko of Italy.
They come in free-standing and wall-mounting varieties, in a range of colours and can be specified with lacquered aluminium front panels, internal PCB mounting slots and many other features. Contact West Hyde Developments Lid, 9-10 Park Street, Aylesbury, Buckinghamshire HP20 1ET. Tel: (0296) 20441.

Changing Attitudes To Information Technology

Britain is in a good position to Rake ad dunatage of intormation technology and meet the challenges of the 21st century, according to a new report from the National Economical Development Office.
However, if we are to take up the challenge we need to pay far more attention to education and training and we need to change many of our attitudes.
The report considers the
changes likely to result from the application of information technology in Britain in the period up to the year 2010. As well as taking such a long-term view it takes account of values.

To bring about positive changes we need to overhaul our educational system. The report describes education as 'massively under-resourced' and calls for expansion coupled with a shift of emphasis from theory to practical
application. The present policy of providing science and engineering places at the expense of arts places is rejected by the authors who feel our society will need more of both types of student in the future.

The report is entitled IT Futures IT Can Work and costs $£ 20$ inclusive from NEDO Books, Millbank Tower, Millbank, London SW1P 4QX. Tel: 01-211 5989.

- 'Nuclear Power in The UK' is the latest in a series of energy factsheets produced by the Public Affairs Board of the IEE. It aims to provide basic technical information at a level suitable for the intelligent layman and covers such topics as the history of nuclear power in this country, the physical principles underlying reactor operation, the question of safety and the economics of nuclear energy. Copies may be obtained free-of-charge from the PAB Secretariat, IEE, Savoy Place, London WC2R OBL. Tel: 01-240 1871.
- If you hadn't heard of Clare Instruments until you saw the ST300 Clamp Tester in last month's News Digest (you did see it, didn't you?) now is your chance to find out more. The company has issued a catalogue covering its complete range of ELCB testers, high voltage flash testers, 500 V megohmeters and other specialised safety equipment plus more general items such as watt-meters, resistance bridges and milliohmeters and of course, clamp ammeters. Contact Clare Instruments Ltd, Woodsway, Goring-bySea, Worthing, West Sussex BN12 4QY. Tel: (0903) 502551.

DIARY: DIARY: DIARY: DIARY: DIARY: DIARY: DIARY: DIARY:

UK Telecommunications Networks: Present \& Future - June 2-3rd
IEE, London. Conference. Contact the IEE at the address below.

CableSat '87 - June 2-4th
Metropole Hotel, Brighton. Exhibition and conference. Contact Online at the address below.

International ISDN Conference - June 15-18th
London. Conference on the Integrated Services Digital Network. Contact Online at the address below.

Networks '87 - June 16-18th London. for details contact Online at the address below.

Scottish Technology Week - June 16-18th Scottish Exhibition Centre, Clasgow. Single event combining the Scottish Electronic Technology Show \& Conference, the Scottish Factory Efficiency Show \& Conference and OEM Scotland. Contact Cahners at the address below.

Radio Frequency Techniques - July 19-24th University of Bradford. Vacation school organised by the IEE. Contact them at the address below.

Condition Monitoring For Safety - June 25th Regent Crest Hotel, London. Seminar and Exhibition. Contact ERA Technology on (0372) 374151.

Satellite Communication Systems - July 26-31st
University of Surrey. Vacation school organised by the IEE. Contact them at the address below.

Designing For Electromagnetic Compatability - September 13-18th

University of Sussex. Vacation school organised by the IEE. See address below.

7th International Display Research Conference - September 15-17th
The IEE, London. Conference covering all aspects of electronic display research. Jointly organised by a number of professional bodies. Contact the Institute of Physics on 01-235 6111.

Design Engineering Show - September

 15-18thNEC, Birmingham. Exhibition and conference covering all areas of engineering including electronics and CAD/CAM. Contact Cahners on 01-891 5051.

IDEX '87 - September 21-23rd Metropole Exhibition Halls, Brighton. See April '87 ETI or contact Nutwood Exhibitions on (04848) 25891.

Semiconductor International - September

NEC, Birmingham. Covers materials, design assembly and testing of semiconductors. Contact Cahners at the address below.

Internepcon - October 6-8th
Metropole Convention Centre, Brighton. Exhibition and conference covering wire, cables, power supplies, components and racks/cases. Contact Cahners at the address below.

[^0]Conference For Young Engineers - October 16-18th
Strand Palace Hotel, London. Weekend conference on commercial awareness and business skills for young engineers (under 30) of all disciplines. Events include an engineering company simulation game which tests the ideas under discussion. Contact the IEE at the address below.

Radar '87 - October 19-21st

Kensington \& Chelsea Town Hall, London. International conference on civil and military systems organised by the IEE and the American IEEE. Contact the IEE at the address below.

International Video \& Communications Exhibitions - October 18-21st
Metropole Exhibition Centre, Brighton. Exhibition with seminar programme covering video equipment, services, programme production, etc. Contact Peter Peregrinus L.td at the IEE address below.

Testmex '87 - October 20-22nd
Business Design Centre, London. Exhibition covering all areas of electronic test and measurement. Contact Network Events on (0280) 815226.

[^1]

READ/WRITE

Missing MIDI

am considering building the MIDI Master Keyboard from the May issue and I have had difficulty in contacting Clef Products for the keyboard mechanism.

It seems that this company is no longer trading. Is there another suitable source for the key switches?

Jonathan Templar
Richmond, Surrey.
Cleff Products do seem to have ceased trading but suitable keyboard mechanisms are available elsewhere. Maplin can supply the keyboard mechanics and the individual contact springs and bus bars. Unfortunately the mechanics are only available in 49 and 61 note versions but a $\mathbf{7 2}$ note keyboard could easily be constructed from two of these cut down (wasteful but a good source of spares!).

WEM (Tel: 01-761 6568) can provide two octave keyboard mechanics (which can be joined end to end), complete with bus bars. These may require a little modification but cost only $\mathbf{£ 8}$ a time.

Radio Activity

My hobby has always been constructing and experimenting with VHF broadcast transmitters $(88-108 \mathrm{MHz})$. I have built and quite often use a stereo FM transmitter with 120W output from solid state devices. The response from listeners over 40 miles away is fascinating.

Perhaps this subject is a bit taboo but I would be pleased to hear from others who tinker with broadcasting equipment.

Paul Smith
(Address supplied).
The Department of Trade and Industry would be most pleased to hear from likeminded people too! This activity is not at all taboo, it's just downright illegal.

Although low power transmitters are legal in some other European countries and plans for similar legislation here have been made (and shelved) it is still against the law to transmit in this way without a licence (which will not be granted for this kind of use).

If you get caught (which should not be difficult for the DTI as you must stick out like the radio equivalent of a sore thumb) the DTI will come down on you like the proverbial ton (or even tonne) of bricks with a hefty fine or a spell at Her Majesty's pleasure and confiscate all your gear.

If any other readers still want to get in touch with Mr. Smith they can write to him care of ETI (enclose a stamped envelope) but don't say we didn't warn you!

Decline And Fall

With less children today interested in an electronics career and talent scouts with cheque books from the States awaiting our graduates, I had hoped the recent budget would have done more for our homebased science and technology.

Are we going to see a repeat of the hospitals where a nurse finds a more lucrative career serving in a shop nine to five?

The new Silicon Glen in Scotland is very impressive but when you tour this country and see the wilderness of the forgotten heroes, listen to their despair in Durham, Sheffield and Lincoln, you realise every city needs a Silicon Valley of new industries.

Incidentally, I very much enjoyed Anna Paczuska's contribution on 'Bad Health in Electronics' back in the August 1986 ETI. More please! With man pushing the frontiers of Electronics Technology to unknown limits for space travel and defence it is extremely interesting to read the problems behind the science of
man's capabilities.
However, the limits of the science were clearly realised recently when a friend accidentally wired a $10 \mu 63 \mathrm{~V}$ capacitor the wrong way across a 50 V power supply. He nearly lost an eye and the metal top of the radial lodged in the ceiling tiles nine feet up. He now leaves the room before switching on!

Keith Lawrence
Ilkley, West Yorkshire.
We couldn't agree more. Interest in electronics as a hobby has certainly declined over the last few years and government funding for research and development and for investment in industry seems set to do its best to kill off what is left of the British electronics manufacturing base.

Any millionaire ETI readers should find a local electronics firm to invest in immediately.

Shock, Horror, Probes

W/hat a surprise you would get if you held the ends of the probes from a resistance meter and got the reading I did. Please explain this one.
C. Ford

Easy one this, for any regular reader of ETI. If you're not a regular reader go and stand in the corner immediately. If you are a regular reader but didn't read the pieces on biofeedback and galvanic skin response back in the November and December 1986 issues, go and stand in two corners (at once).

Skin has a fairly low resistance anything from about 5 k 0 to $\mathbf{1 M 0}$. The variations in resistance tell you all sorts of interesting things about your body and state of mind. In the ETI office we go around the whole time with probes sticking into bits of our anatomy just to see if we're still awake!

CORK

The ETI post room staff are planning to walk around China at the end of the year in aid of the campaign to save the South Yorkshire Mongoose and so they need plenty of training lugging heavy mail sacks. All ETI readers are formally requested to send in one interesting letter each for this page. Write to:
Electronics Today International
1 Golden Square
London W1R 3AB.
ETI

TRANSFORMERS Ex-stock

MAINS ISOLATORS Pri/Sec 120V $\times 2$ OR 240 10 415/440V		$30 / 15 \mathrm{~V}$ or $15.0-15 \mathrm{~V}$$2 \times 15 \mathrm{~T}$ TAP SECSS		
				17
20	$7.60{ }^{2.18}$	2	8.47	. 92
100	11.51 13.4 2.31 2.59		${ }_{1}^{9.72}$	2.20
200	${ }_{19.03}{ }_{3}^{19.10}$	$5 \mathrm{M} / 10$	14.49	2.31
250	${ }^{23.01} \quad 3.24$	${ }_{6}^{6}$ P ${ }^{12}$	2 16.40	595
500		${ }^{8} 1$		
(1500	54.28 82.92 4.62 8.85	12		2.85
2000	${ }^{99.76} \quad 6.36$	15		. 51
3000	${ }_{298989}^{13.89}{ }^{\text {OA }}$			
		$50 / 30 \mathrm{~V}$ or $30.0-30 \mathrm{~V}$$2 \times 30 \mathrm{~V}$ TAP SECS		
	5v. ${ }^{\text {c }}$	50V 30V		
	A 1	0.5	${ }_{\text {5 }}^{5} 69$	1.85
	$410.84{ }^{2} 200$		8.15	1.20
		3 P	${ }^{16.12}$	2.34
${ }_{6}$			${ }^{18.23}$	2.78
			${ }^{26.50}$	3.02
12	2443.873 .80	${ }_{10}$		
		122	49.98	4.65

TOROIDALS wound to order

BARRIE ELECTRONICS LTD

PROFESSIONAL QUALITY MODULES AT REALISTIC PRICES!!

THESE AMAZING QUALITY AUDIO MODULES represent real value, each one comes with full wiring \& application details together with a 3 YEAR GUARANTEE! YOU CAN'T GO WRONG!!

HA20 HEADPHONE AMP

- Gain + 20dB nominal
- Frequency response of $20 \mathrm{~Hz}-20 \mathrm{KHz}$

Distortion - 0.0014\%

- Noise - 105dBu

ONLY £29.95 + P\&P
Only $£ 29.95$ + P\&P

EBU 28 BALANCED OUTPUT

Gain + 6 dB

- Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHz}$
- Distortion 0.0025\%
- Nóise - 105 dBU
- Headroom + 21dBU I/P
+26 dBU Balanced O / P
Only $£ 9.95+\mathrm{P} \& \mathrm{P}$
PMA 30 RIAA PRE-AMP
- Designed to exacting RIAA specification.
- Contact us for full details

Only £144.95 + P\&P
Microphone Amp $£ 19.95+$ P\&P, Hi-Power Headphone Amp £34.95+P\&P, "PEAK" LED Indicator £4.99+P\&P, Reverb

Control $£ 34.95+P \& P$.....Call now for more details and specifications.

NEMPRO•CORNWALLIS HOUSE•HOWARD CHASE• BASILDON•ESSEX•SS16 3BB•0268 286668•TLX:995092* Allow £1.50 P\&P

ALL ABOVEBOARD

Mike Bedford takes a look at surface mounting components and techniques - the miniature future of electronics.

Fig. 1 Poor space utilisation on a typical 64 pin DIL device.

Throughout the realm of electronics and especially in digital applications, one type of component has become increasingly predominant over the past 15 years or so - the 'chip' or integrated circuit housed in one of the various DIL packages.

Of course it is a misnomer to refer to a DIL package as a chip. The actual chip is a small square of silicon embedded inside. The plastic or ceramic housing is provided for purely mechanical reasons. An unpackaged chip could be difficult to handle, prone to damage by environmental factors and impossible to make connections to by conventional manufacturing methods.

Although in the early days the space overhead of DIL packaging was not very significant (most devices requiring only 14 or 16 external connections) this can no longer be said for todays VLSI devices requiring 40 or 64 pins. Figure 1 shows how in a typical 64 pin DIL package, there is a very high area ratio of packaging to silicon.

Clearly this is inefficient in PCB space and recent moves in IC packaging are providing much greater economy of space. The new ICs also require a departure from conventional PCB assembly methods.

Traditionally, components are mounted through holes in the board making solder connections to the copper tracks on the opposite side to the components. Newer packaging methods are intended for surface mounting which, as the name suggests, means the components are mounted on the surface of the PCB and the solder contact is made on the same side of the board as the components. Figure 2 illustrates the two mounting methods.

Advantages

The most notable advantage of surface mounting is the space saving achieved. This is a result of two factors. Surface mounting packages take up less room than their DIL counterparts. This is not an inherent advantage of surface mounting but results from the fact that a need for efficient board utilisation was a major consideration when the new packages were designed.

Surface mounting devices can also be fitted to both sides of a board.

SIL and DIL Modules

When is a surface mounting package not a surface mounting package? When it is a SIL or DIL module. These forms of packaging provide a means of taking some advantage of the space saving achieved by using surface mounting without the initial capital outlay required to convert to true surface mounting assembly. A SIL module is a small PCB with PLCC packages already mounted on it by the semiconductor manufacturer and pins spaced at 0.1 in along its edge. This board can be through mounted on a conventional PCB as a single component. Dynamic RAMs are currently available in this format, a typical SIL pack containing, say, eight $64 \mathrm{~K} \times 1$ devices giving a capacity of $64 \mathrm{~K} \times 8$. A DIL module on the other hand is a ceramic substrate with pins along two edges allowing it to match the standard DIL footprint. LCCC packages are mounted on the ceramic substrate and this format is often used for static RAMs.

Fig. 2 (a) Through hole construction. (b) Surface mounting.

To the home constructor, a slightly larger PCB is not usually a problem but in a commercial environment PCB 'real estate' is a very valuable commodity. Quite apart from the extra cost of a larger board, there is the possibility the required circuitry will not fit onto a single board. If two boards have to be used in place of the one, costs really escalate as expensive and potentially troublesome interconnections have to be made. If the increased size results in the need for a larger case, space saving becomes even more significant.

As well as allowing smaller printed circuit boards, surface mounting also results in PCBs which are less expensive than expected from the size comparison alone. This is because the manufacturing cost of PCBs depends on a number of factors, a major one being the number of holes to be drilled. PCBs for surface mounting are not devoid of holes since there is still a requirement for through plated holes to connect between the two sides of a double sided board but there will clearly be a marked reduction in their number.

The assembly of boards may be slightly more difficult when surface mounting components by hand (a much smaller soldering iron bit and a steady hand are required) but when automated PCB assembly is considered there are significant gains of speed and costs to be achieved. Although the actual copper pads on the PCB are smaller
for surface mounted components, the need for accurately placing leads through small holes is obviated. A moderate degree of inaccuracy in terms of position and rotation of components can be tolerated. A further consideration is that pre-forming passive component leads prior to fitting into holes is no longer required.

Conventional assembly equipment is no longer applicable and so there is a capital outlay requirement on first adopting the technology. However, a long term saving is still achieved.

Surface mounting also claims the advantages of increased reliability (especially where the circuit board is subject to vibration), improved frequency response and decreased immunity to electromagnetic radiation. Of course these later two points are directly attributable to the smaller package size which allows shorter track lengths both within the IC package and on the PCB.

Surface mounting has necessitated improved methods of PCB printing and etching to be developed to cope with the narrower tracks and decreased gaps. Current technology has reduced track widths and spacings to 0.15 mm and the through holes to 0.3 mm which is sufficient for current surface mounting packages but a further reduction to 0.075 mm and 0.1 mm respectively will be required for some proposed new packages. Heat dissipation is also a potential problem and is exagerated by the reduced surface area of the new packages. Some manufacturers have attempted to reduce this problem by incorporating fins onto the packages but the general concensus is that overheating is better avoided than cured. Accordingly many manufacturers are converting to CMOS for the new devices.

Packaging

For well over a decade there has been a high degree of standardisation as far as IC packaging is concerned. ICs for through hole mounting will usually be standard DIL packages.

Surface mounting components are available in a bewildering array of different packages. Clearly there is a need for standardisation in this area and for one or two package types to be accepted as the standard in the same way as the DIL package has been for many years.

DIL Package

The DIL package is currently the standard IC package for through hole PCB assembly. All packages have straight pins spaced at 0.1 in in two rows. The row spacing is dependent on the total number of pins in the package. Devices with up to 20 pins use a 0.3 in row spacing. For 22 pins the spacing is 0.4 in, for 24-40 pins it's 0.6in and for larger devices the row spacing is 0.8 in .

New packages (such as the 'skinny DIP' $^{\prime}$ with a row spacing of 0.3 in for all ICs, the shrink DIP with pin spacing reduced to 0.07 in and the pin grid array used for high pin count ICs with a grid of pins on 0.1 in centres) all represent attempts to reduce PCB space but are less effective than surface mounting techniques.

SOP or SOIC

The Small Outline Package (SOP) or Small Outline Integrated Circuit (SOIC) tend to be used for pin counts up to 24 - the range in which they are most efficient in terms of board space occupied. SOICs have the same pin arrangement as DIPs but on a smaller scale, pins being separated by 0.05 in and the two rows by $0.15 i n$ for $8-16$ pins and 0.3 in for larger pin counts.

Standard TTL and CMOS logic families are now available in SOP and since these packages have a clear similiarity to DIPs, the pin outs are identical. Some analogue devices are also available in this format. In order to allow them to be surface mounted, SOICs have so called 'gull wing' pins.

PLCC

The Plastic Leaded Chip Carrier (PLCC) is a greater departure from DIL packaging having leads on all four sides of a square or rectangle. Like SOICs, the leads are spaced at 0.05 in , half the distance of DIPS, but unlike SOICs, the leads are bent under the plastic package in what is referred to as a J-bend.

Pin counts available in PLCC are 18, 20, 28, 44, 68 and 84. Currently, logic families, memories, microprocessors, peripherals, gate arrays and analogue devices are available in PLCC format.

1) 64 pin DIL
2) 28 pin DIL
3) 14 pin DIL.
4) 24 pin skinny DIL
5) 68 pin ICCC
6) 68 pin PLCC
7) 68 pin flat pack
8) 80 pin FPP
9) 28 pin SOIC
10) 16 pin SOIC
11) 8 pin SOIC
12) SIL module
13) Discrete components

Size Considerations

Surface mounting components are significantly smaller than their DIL counterparts. Figure 3 illustrates this more quantitatively, comparing the surface area of DIL, SOIC, FPP and chip carrier (PLCC or LCCC) packages. (See the box for explanations). Although this graph shows how a very significant saving in board area is achieved, it should be borne in mind that whereas the surface area increases with the square of the linear dimensions, the volume and hence the weight increase with the cube. In other words, the saving in weight will be even more significant so long as we compare similar packaging materials (both plastic or both ceramic).

Discrete Components

As the advantages to be gained by surface mounting integrated circuits would be considerably reduced if discrete components still had to be through mounted, most discrete components are either already available in surface mounting packages or under development. Resistors, capacitors, inductors, diodes and transistors may now be obtained in the surface mounting format from a number of suppliers. Connectors and variable components, on the other hand, are yet to make their

Fig. 3 Size comparison of DIL and various surface mounting devices.

The Leadless Ceramic Chip Carrier (LCCC) is similar to the PLCC but has no leads at all, the J-bend leads of the PLCC being replaced by metal contacts moulded into the ceramic body. As LCCCs are thinner than corresponding PLCCs and they lack leads protruding from the package, they are more robust and easily handled by automatic placement equipment. However, they are the most expensive surface mounting package and tend to be used primarily for military applications.

Non military uses are mostly microprocessors and EPROMs where a quartz window is required. There are a number of different variants of the LCCC package to accommodate chips of different shapes. For example, there is both a square and a rectangular version of the 28 pin LCCC.

The Flat Plastic Package (FPP) has probably achieved less overall acceptance than the other three packages but nevertheless is used quite extensively by some manufacturers. Having gull wing leads on all four sides, spaced at even smaller gaps than SOIC, PLCC and ICCC packages, the FPP is well suited for large pin counts.

Currently, FPPs are available with up to $\mathbf{1 0 0}$ pins and the $\mathbf{2 0 0}$ pin package is under development. FPPs have various different pin spacings: $1.0 \mathrm{~mm}, 0.8 \mathrm{~mm}$ and 0.65 mm versious being available and a move to a 0.55 mm (0.02 in) spacing looking likely.

As the pin spacing decreases as the pin count increases, packages up to 100 pins are all the same size. Clearly a major application of FPPs will be in semicustom chips, gate arrays, etc - an area in which pin out has traditionally been a major limitation.

Further types of surface mounting package abound and include leaded ceramic chip carriers (which are not a ceramic version of the PLCC), PLCC variants (in which the pin count is increased by having two rows of pins in a castelated arrangement) and flat packs which can have leads protruding directly out of the sides of the pack. They can, however, have their leads pre-formed for either through hole or surface mounting assembly.

A further packaging strategy developed by British Telecom uses neither plastic nor ceramic but, in an attempt to overcome problems of thermal mismatch and strain between board and component, it uses epoxy glass PCB laminates as the chip carrier. Essentially, this is a surface mounting version of the pin grid array.
appearance in large numbers.
My information on discrete components is based mainly on the Mullard range of surface mounting devices. Although different internal constructions may be adopted by other manufacturers, the case sizes conform to an internationally accepted standard. Discrete components are small but the percentage improvement over through hole mounting components is not as great as with integrated circuits. Since most modern circuit boards are predominently populated with ICs, however, size is not as critical with discrete components.

One important characteristic of surface mounting discrete components is their ability to withstand high temperatures. The need for this will become clear when we consider assembly.

From a user point of view, there isn't much to be said about a surface mounting resistor except that they follow the accepted E24 range of values and are very small.

The length is only 3.2 mm and the width 1.6 mm , which compares to a body length of 5 mm for a comparable $1 / 4 \mathrm{~W}$ conventional resistor. The internal construction consists of a ceramic block on which is deposited a resistive coating which is then trimmed by laser. Metal contacts are fitted at each end in place of leads.

Three technologies are available in surface mounting capacitors - ceramic multilayer, aluminium electrolytic and solid tantalum. The multilayer and tantalum types are similar in appearance to the resistors described above. The electrolytics on the other hand are closer in construction to their through hole counterparts with the aluminium cylinder then encased in a plastic block. Once again small dimensions are a notable feature of these components. Figure 4 shows a surface mounting resistor and two types of capacitor.

Discrete Semiconductors

Transistors, MOSFETS and Darlingtons are available for surface mounting in packages called SOT-23, SOT-89 and SOT-143 (SOT stands for small outline transistor). These SOT packages are very similar in appearance to a diminutive SOIC package with 3 or 4 pins. The SOT- 23 and SOT-43 packages are only $3.5 \mathrm{~mm} \times 2.7 \mathrm{~mm}$ and the SOT-89 is a little larger as it tends to be used for Darlington transistors which require a greater heat dissipation. The package used for diodes is the SOD-80. Some typical discrete semiconductors are shown in Fig. 5.

Assembly Methods

Conventional assembly involves first inserting the components through holes in the board either by hand

Fig. 4 Passive components. (a) Resistor (b) Multilayer capacitor (c) Electrolytic capacitor.

Fig. 5 Discrete semiconductor packages.

1) Conventional transistors
2) SOT-89 transistors
3) SOT- 23 transistors
4) Conventional diodes
5) SOD-80 diodes
6) Conventional resistors
7) Surface mounting resistors
8) Conventional capacitors
9) Electrolytic SM capacitors
10) Ceramic SM capacitors
or by automatic insertion equipment and then passing the PCB through a wave soldering machine.

As the component leads pass through holes in the board the components are held in place while soldering is taking place. This would clearly not be the case with surface mounting components. In this case, some form of adhesive has to be used to secure the components until they are finally soldered. The adhesives used for this purpose fall into two categories - inert adhesive and solder paste.

Ordinary adhesive is used simply to fix the package to the board and is obviously applied to an area of the component well away from its electrodes (for example in the centre of a LCCC package). This type of adhesive is used with wave soldering, but an obvious difference between this and the wave soldering used with throughmounting components is that the solder wave is applied to the component side of the board. This explains why surface mounting packages are designed to withstand high temperatures. Figure 6 illustrates the solder wave method of PCB assembly.

The other type of adhesive (solder paste) is used with a family of assembly methods known as reflow methods. Solder paste is a form of adhesive which actually contains a high proportion of solder powder. This paste is applied to the copper pads of the PCB and the component is fixed to the board by its electrical contacts. The board is then heated to about $260^{\circ} \mathrm{C}$ at which temperature the solder in the paste melts and forms a solder joint between PCB and component.

Various methods are used for this reflowing. The most widely accepted is vapour phase. In this, the board is placed in the vapour of a boiling inert liguid, usually a fluorinated hydrocarbon. The advantage of vapour phase over other reflow methods is that it enables the reflowing to be carried out at a comparatively low temperature. \AA constant temperature is achieved without the need for complex control circuitry and the use of an inert atmosphere eliminates the possibility of oxidation. Figure 7 shows a typical arrangement for vapour phase reflow soldering.

Other methods used for reflow heating are infrared, convection, hot air jets, laser and pulse heated solder tools. Of these only infrared and possibly convection offer a viable large scale alternative to vapour phase, the other methods being used for small volume production or repair.

It will be obvious that both board and components are raised to a high temperature during soldering and subsequently both return to room temperature. If the materials used for the PCB and the components have different co-efficients of expansion, there is a very real possibility of stress being placed on the assembly.

In the case of the LCCC and most passive components, this is exagerated due to the lack of leads which would allow some degree of flexibility. For this reason, a great deal of research has been carried out to find new and more suitable materials for the PCB. New materials used for PCBs for the surface mounting of ceramic chip carriers and which have similar co-efficients of expansion include ceramics and insulated aluminium or copper.

The Future

There is no doubt that surface mounting is the way ahead in the electronics industry, the only questions are How much? and How soon?. Today a relatively small percentage of applications have gone to surface mounting due mostly to a resistance to change, the capital outlay required and the higher cost of surface mounting components.

Fig. 6 Dual wave soldering.

Fig. 7 Vapour phase reflow soldering.

It is generally considered that this price premium is only a short term situation and that by the end of the decade it will be the DIL components which are the more expensive. It is also significant that even now some of the new microprocessor peripherals coming onto the market are only available in PLCC or LCCC packages. Despite these factors, however, the move to surface mounting is perhaps not taking place quite as rapidly as predicted only a couple of years ago.

Japan is the current world leader in this technology, being the first country to use it on a large scale in cameras and other consumer goods where space saving is important. About 30\% of electronics manufacturing used surface mounting during 1985 in Japan and it is suggested that this will rise to about 50% by 1990.

On the other hand, it looks as if Europe will be using only 35% by the end of the decade. Indications are that it is in the area of active components that the changeover will be most apparent.

Already the world usage of passive components is about 25% surface mounting but the vast majority of transistors used are still leaded. By 1990 it is predicted that the figure for transistors will be approaching 75%.

Certainly time will tell but in the meantime it could be worthwhile getting in some practice with a very small soldering iron and a very steady hand!

CIRCUIT THEORY

Paul Chappell continues to explore the labyrinth of the Fourier series.

Last month I promised you an easy example of a Fourier Series. In all good textbooks (and bad ones for that matter) it is de riguer to begin with a square wave. Since the calculations are easy, I'll do the same!

In the calculations of the Fourier coefficients, the integrations are carried out over the interval 0 to 2π, so to make things really easy let's have a square wave which completes one complete cycle within this period (Fig. 1a). Our starting point is the series:
$f(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+$

$$
a_{2} \cos (2 t)+b_{2} \sin (2 t)+\ldots
$$

If $f(t)$ is the square wave, this simply says that it is composed of an unknown amount of ' DC^{\prime}, an unknown quantity of 'fundamental' (which is split into a sine and cosine component to avoid the complications of trying to find a phase angle), an unknown amount of 'second harmonic' and so on. Our aim is to find the quantities of each ingredient.

By looking at Fig. 1 it is obvious that the DC component a_{0} is going to be $1 / 2 \mathrm{~V}$, but we'll do the calculation anyway. If we integrate the series from 0 to 2π all the sine and cosine terms do the vanishing act we saw last month and we are left with:

$$
\int_{0}^{2 \pi} f(t) d t=\int_{0}^{2 \pi} a_{0} d t
$$

This may bring back terrifying memories of school maths but it's really quite harmless. The left hand side says 'find the area under the square wave over the interval 0 to $2 \pi^{\prime}$. Looking at Fig. 1, this is going to be $1 \times \pi$.

The right hand side says 'find the area under a straight line of 'height' a_{0} over the interval 0 to $2 \pi^{\prime}$ '. From Fig. 1b, it's going to be $\mathrm{a}_{0} \times 2$. The 'equals' sign in the middle says 'make the two areas the same'. Once again, it's obvious that the value of a_{0} which will make the two areas the same is $1 / 2$.

Although it's obvious what the result will be, we'll press on regardless. Replacing $f(t)$ with the square wave it represents, the result is:

$$
\int_{0}^{\pi}(1) \mathrm{dt}+\int_{\pi}^{2} \pi(0) \mathrm{dt}=\int_{0}^{2} \pi \mathrm{a}_{0} \mathrm{dt}
$$

What has happened now is that the area under the square wave has been replaced by the area under it when it's equal to 1 (over the first half of the interval from 0 to π) plus the area under it when it's equal to zero (over the second half of the interval from π to 2π), which I'm sure you'll agree is the same thing.

Now we do the integrations and end up with:

$$
\pi+0=a_{0} \times 2 \pi \Rightarrow a_{0}=\frac{\pi}{2 \pi}=1 / 2
$$

We knew it all along, but doesn't it boost your confidence to see the maths trot out the same answer? No? Well, can't please everyone I suppose!

Finding the other coefficient is just as easy. Take b_{1} as an example. Again, start with the series:

```
f(t) = a a + a cos(t) + b b 㕸(t) +
a}\operatorname{cos}(2t)+\mp@subsup{b}{2}{}\operatorname{sin}(2t)+
```


(a)

(b)

Fig. 1 Integrating the square wave Fourier series. (a) The square wave itself. (b) the first term of the series.

Now, somehow we have to get rid of all the terms in the series (Fig. 2a) except for the one involving b_{1} (the coefficient we're concentrating on for the moment). If the series is multiplied throughout by $\sin (\mathrm{t})$, the result is shown graphically in Fig. 2b. It results in all the components having equal areas above and below the axis except for the $\sin ^{2}(t)$ part. If we now integrate over one period, the areas above and below the axis cancel out, so all the terms disappear except for the one we're interested in. So, first we multiply through by $\sin (t)$: $f(t) \sin (t)=a_{0} \sin (t)+a_{1} \cos (t) \sin (t)+b_{1} \sin ^{2}(t)+a_{2}$ $\cos (2 t) \sin (t)+b_{2} \sin (2 t) \sin (t)+\ldots$

Now we integrate from 0 to 2π (Fig. 2c):
$\int_{0}^{2} f(t) \sin (t) d t=\int_{0}^{2 \pi}$
$\int_{0}^{2 \pi} a_{0} \sin ^{2}(t) d t+\ldots$
Since all the terms except the one involving b_{1} are zero (Fig. 2d) this leaves:

$$
\int_{0}^{2 \pi} f(t) \sin (t) d t=\int_{0}^{2} \pi b_{1} \sin ^{2}(t) d t
$$

Finally, replacing $f(t)$ by the square wave it represents, the left hand side follows sin(t) for half a cycle, then becomes zero for the rest:

$$
\int_{0}^{\pi} \sin (t) d t=\int_{0}^{2 \pi} b_{1} \sin ^{2}(t) d t
$$

Now, the left hand side of this equation says 'find the area under one cycle of a half-wave rectified sine', the right hand side says 'find the area under $b_{1} \sin ^{2}(t)$ (the two mountain peaks, or whatever else your imagination may make of them, in Fig. 2d). The 'equals' sign says 'make the two areas equal.' This time it's not obvious what value of b_{1} is needed to make the two areas equal, so we'll have to continue with the maths.

There's no need to 'do' the integration on the right hand side - from the orthogonality properties of sines we already know that $\int_{0}^{2 \pi} \sin ^{2}(\mathrm{t}) \mathrm{df}=\pi$
The result is:
$[-\cos (t)]_{0}^{\pi}=b_{1} \pi=>2=b_{1} \pi \Rightarrow b_{1}=\frac{2}{\pi}$
The other coefficients are calculated in exactly the same way, so there's nothing to be gained by going through another in detail (but do try one for yourself). To save time, l'll do all the rest at once:

$$
\int_{0}^{\pi} \sin (n t) d t=b_{n} \int_{0}^{2 \pi} \sin ^{2}(n t)
$$

The left hand side is the result of multiplying the square wave by $\sin (n t)$. It's equal to $\sin (n t)$ over the first half of the interval (0 to) and zero thereafter. The right hand side is the remaining term after all except the one involving b_{n} have vanished.

$$
\left[-1 /{ }_{n} \cos n t\right]_{0}^{\pi}=b_{n} n \Rightarrow b_{n}=\left\{\begin{array}{l}
0 \text { for } n \text { even } \\
\frac{2}{n \pi} \text { for } n \text { odd }
\end{array}\right.
$$

A similar calculation for the cosine coefficients shows that every single one of them is zero, so the Fourier expansion of a $0.5 \mathrm{~Hz}, 1 \mathrm{~V}$ square wave is:
$f(t)=1 / 2+{ }^{2}(\sin (t)+1 / 3 \sin 3 t+1 / 5 \sin (5 t)+\ldots)$
So, a square wave has a DC component and a series of sine components which diminish with frequency. There are no even harmonics at all.

What happens if we want to find the spectrum of a higher frequency square wave? Or a higher amplitude one? Or one centred on 0 V instead of above it? Do we need to do the calculations all over again?

You'll be relieved to hear that having found the spectrum for one square wave, we've found them all. Because integration is a linear operation (double the amplitude of a wave and you double the area under it, for instance) all we need to do is scale the coefficients. The time axis can also be scaled for different frequencies. I said earlier that the 0 to 2π interval represents 2π seconds, but I could equally well have said 2π milliseconds, or any other scale I happened to choose.

When calculating a Fourier series it is usual to choose the easiest possible values to work with, which generally means an angular frequency of 1 radian per second and a peak value of 1V. The use of normalised values (easy values which can be scaled afterwards to suit your purposes) is very common in linear circuit theory. (It doesn't work with non-linear maths or circuits because the values can't be scaled!)

Fig. 2 Calculating a term in the Fourier series. (a) The series. (b) Multiply by sin(t). (c) Integrate. (d) All the other terms vanish allowing the coefficient to be easily calculated.

As an example, to find the Fourier expansion of an 8 V peak-to-peak square wave at 1 kHz , varying between -2 V and +6 V , first multiply the coefficients by 8 : $f(t)=4+{ }^{16}(\sin (t)+1 / 3 \sin (3 t)+\ldots)$
(this wave is of frequency $0.5 \mathrm{~Hz}, 0$ to 8 V). Scale up the frequency from 0.5 Hz to $1,000 \mathrm{~Hz}$ (increase frequency by a factor of 2000π)
$f(t)=4+{ }^{16}(\sin (1000 \pi t)+1 / 3 \sin (3000 \pi t)+\ldots)$
(this is 1 kHz wave, 0 to 8 V). Finally, adjust the DC level - the whole wave is shifted 'downwards' by 2 V , so the mean level will also be 2 V lower:
$f(t)=2+{ }^{16}(\sin (1000 \pi t)+1 / 3 \sin (3000 \pi t)+\ldots)$
(this is 1 kHz wave, -2 V to +6 V .
A question I raised last month, but left unanswered, was the range of functions which can be expanded as a Fourier series. In the broadest sense of the question it seems clear that since all the harmonic components repeat after each interval of 2π the series is only appropriate to continuous, repetitive waveforms. Euler (who derived the 'Fourier series' before Fourier did) would have agreed. Fourier himself, with his cavalier attitude to the niceties of maths had no difficulty in accepting that if he could make the series fit over the length of his iron bar, what it did elsewhere was irrelevant.

It's a notion we feel comfortable with today, but to the mathematicians of Fourier's time it was a huge conceptual stumbling block. If we do care what the series does beyond the interval of interest, it's a job for the Fourier integral, which is a story for another day.

On another level, what guarantee do we have that the Fourier series actually matches the initial waveform? Last month I showed graphically how adding extra sines in the correct proportions brought the partial sum (the sum of the harmonic components 'so far') closer and closer to a square wave - for the first three at least. Could there be a series in which adding extra sines takes the waveform further and further from the original?

The process of getting a better approxmation as more terms are added is called convergence. If the approximation gets worse as more terms are added, the series is said to diverge. The notions of 'better' and 'worse' are too loose to work with but think about this for a moment.

Suppose I choose some point along the time axis ($\pi / 2$, say) for the square wave of Fig. 1, and note the value at that point (it will be 1). Now I'll take the Fourier series for the square wave and calculate the first few partial sums at that point. Taking only the first term, the DC component, it's $1 / 2.50 \%$ out! Not too good so far. Add in the next term, which is $2 / \pi \sin (t)$. At $\pi / 2$ this will have a value of roughly $2 / 3$. Adding to this the first term gives $1 / 2+2 / 3=19_{6} \cdot 1 / 6$ too high. The next term has a value of roughly $-2 / 9$ at $\pi / 2$; adding this in gives $17 / 18$. The value is low again, but only $1 / 18$ out.

With each successive term, the partial sum oscillates about the required value, but the general trend is to get closer to it quite rapidly. From a 50% error to a little over 5% in three terms is not too bad! If this happens for every single point on the square wave and the partial sums remain within any arbitrarily small distance from the true value if enough terms are taken, the series can certainly be said to converge.

The notion of a series converging at every single point is called (naturally enough) pointwise convergence. This aspect of the Fourier series was investigated in detail by Dirichlet (1805-1859). He concluded that a Fourier series will match any continuous waveform with a finite number of turning points. (It can have a million billion of them, a googolplex of them, a moser of them, as many as you like as long as it's finite). If the waveform also has a finite number of discontinuities, it will have a Fourier series which matches it everywhere except at the discon-
tinuities, where it will have a value half way between the points on either side.

An example of a waveform with discontinuities is the square wave. We are used to seeing square wave approximations displayed on 'scopes, where they have 'vertical sides' from a finite rise and fall time, but really a square wave should be drawn as in Fig. 3a. A true square wave leaps instantaneously from one value to another this is known mathematically as a discontinuity. Dirichlet's claim is that the Fourier series for the square wave actually adds in spurious points as in Fig. 3b!

It's easy to see that the series will indeed add in these points. Think about the point $t=\pi$ where Fig. 1 drops from 1 to 0 . Here, every single sine term will have a value 0 , so all that remains is the constant term of $1 / 2$, which puts in a point smack in the middle of the two square wave values!

What's going on here! For practical purposes the appearance of a single extra point at each transition makes no difference. After all, a single point lasts for exactly no time at all, so no circuit will ever notice it. But it's still rather disconcerting to find that the maths is wrong. Thanks to Dirichlet it's predictably wrong, but wrong all the same.

This is by no means the end of the story. Take the wave in Fig. 3c, for example. It is a square wave except for a few odd points which have gone astray. The Fourier series for this is exactly the same as for a perfect square wave! The common sense reason is that since the Fourier coefficients are calculated by integration, the points have no area beneath them and are therefore 'invisible' to the process.

It's interesting to see how far this notion can be pushed. Clearly, any finite number of points (a million billion, a googolplex, a moser - you name it) will be invisible to the integration. If one point has no area beneath it, a million points will have no area beneath them. There are even some infinite sets of points which will do the trick. If the square wave goes astray on every point in the interval which can be expressed as a rational number (a 'fraction') the Fourier coefficients will still turn out with the same values. To see how outrageous this is,

Fourier would probably have thought of himself as a politician rather than a physicist (although he should not be confused with Charles Fourier, the utopian socialist, who was born and died within a few years of J. Fourier). Today he is remembered almost exclusively for his 'Theorie Analytique de la Chaleur' (Analytic Theory of Heat) published in 1822.

Fourier's study of heat conduction led him to believe, by physical rather than mathematical reasoning, that the temperature distribution in a rectangular bar could be expressed as a series of sines and cosines.

He then set off on a most bizarre calculation which involved a Taylor series expansion of functions which didn't actually have one and division by (in effect) infinity. He ignored everything that didn't correspond to his preconceived idea of what the answer ought to be!

Fourier was not the first person to propose sine wave expansions or even to calculate what we now call the Fourier coefficients (Euler had done it some 45 years previously). His outstanding contribution was to recognise the full extent of the validity of the expansion. It had previously been supposed to apply to only a very limited range of functions.

For this insight, Fourier was awarded the Grand Prize of the Academy without having proved a single correct result about the series that bears his name!
consider that any interval, however small, has a rational number in it. There is not the tiniest portion of the modified square wave where its Fourier series matched it at every point!

At this stage there are two options. You can say 'Enough of this nonsense!' and refuse to admit that square waves with points scattered here and there have a Fourier series at all. Alternatively, you can shift the goal posts - devise a new definition of convergence which allows for the fact that it seems to be possible to derive a Fourier series for some very bizarre functions.

Mathematicians, needless to say, have taken the latter course. Research into Fourier series is still a fertile area to this day and a definitive answer to the question of which functions do and do not have a Fourier expansion is still not in sight.

HARDWARE DESIGN CONCEPTS

Mike Barwise takes a look at programmable logic devices and finds they are not exclusively the province of commercial designs.

Programmable logic devices (PLDs) are frequently considered a great mystery. There is a myth that they are very difficult to use, possibly due to their requirement for programming equipment beyond the pocket of most amateurs.

Designing with PLDs is in fact extremely easy and several suppliers of these devices now run programming services at quite moderate cost (a $£ 25$ setup charge is typical) and so the use of PLDs in logic design no longer has to be solely the domain of manufacturing industry.

PLDs come in three basic official categories, PAL, PLE and PLA. It is, however, seldom pointed out that the now familiar EPROM is also a programmable logic device. The assumption that EPROMs only store PROGRAMS is a very limited view of their potential.

I have been asked to mention at this point that PAL and PLE are trademarks of Monolithic Memories, who arguably invented the PAL concept.

Conventional Logic

I do not intend to go into the theory of Boolean algebra here, as there are many good textbooks available. The fundamental concept behind PLDs is worth stating though. The concept is: Any logic function can be reduced to a sum-of-products expression. A sum-ofproducts expression is a formula equating an output with a set of inputs via the operators AND, OR and NOT. For example the EXCLUSIVE-OR function can be expressed as:

$$
Y=A^{*} \bar{B}+\bar{A}^{*} B
$$

where A and B are two inputs, Y is the output, * means AND, + means OR, the bar means NOT (invert) and = means equals! This relationship is shown as logic gates in Fig. 1.

This axiom holds true for both combinatorial (gates only) and sequential (clocked logic), the only difference being that race conditions establish the timing of combinatorial networks, whereas the outputs of sequential circuits are synchronised by the clock. The conventional symbol for equals in sequential logic equations is $:=$ (colon-equals) which is interpreted as results in after clock.

PAL, PLE, PLA: The Differences

Assuming that a finished logic network is constructed according to the axiom given above, there will be considerable variation in the interconnection density at the different levels according to the nature of the logic function implemented. Some functions may need lots of inputs to each AND gate while others need few inputs per AND term but lots of OR inputs from a large AND array. To accommodate these differing requirements, the three types of device have been produced - PAL, PLE and PLA. See Fig. 2.

PAL consists of a programmable AND array with true and inverting inputs to each AND gate, coupled to one fixed OR array per output (Fig. 3). PAL is the most useful
when you are designing AND intensive circuits like counters and shift registers. The range of alternative matrix configurations is greater than that of PLE (this is necessary as there is a limited number of AND terms

Fig. 1 The 'sum-of-products' representation of an exclusive OR gate.

Fig. 2 The graphic convention for PLD gate arrays.
allocated to each OR/output term due to pinout and programming constraints), and many parts have additional 'higher level' functions built in, such as registers with feedback into the AND array, or exclusiveOR networks at the inputs to provide additional terms to the array.

PLE is the logic designers' definition of the familiar PROM. It has a fixed, exhaustively decoded AND array (all possible combinations of all inputs available and no don't care' inputs) and a programmable OR array. This is beneficial when you want a complex random logic sequence, or for random block decoders, in fact anywhere your number of alternative output states is the measure of complexity.

Some PLE devices are available with output registers, allowing safe feedback into the PLE or its own outputs. If you can handle the brain strain, this is a method of generating surprisingly complex logic sequences and is the basis of microcontroller design. It is quite possible to cause fed back inputs to conditionally modify the output sequence by gating them externally with real world stimuli.

The PLA is the most complex of the three to work with, but arguably the ultimate in versatility. It has both programmable AND and programmable OR arrays, and
is the next best thing to a fully custom chip layout (Fig. 5). However, design tools for PLA tend to be expensive and flashy (in the $£ 1000$-plus bracket) so we won't give these devices much further attention at the moment.

Designing Your Logic'

Let us take a very simple problem to start with. Suppose we want to create our own 1-of-8 decoder equivalent to the TTL 74LS138. It can be implemented in a PROM (PLE, EPROM) very easily. There are two common routes to the solution. One is to write out an exhaustive truth table (the whole size of your PROM!) of the data for all addresses (including those not actually required) and then key the PROM output data into a programming file.

The other method is to express the problem as a set of Boolean equations (one for each of the eight PROM outputs) and let a PLE assembler generate the actual programming data. In fact, the limited number of states required (nine) suggests that the latter is the only sensible approach.

The first task is to define the input and output requirements. We must:

- Recognise eight unique input patterns of three bits but only if all enable signals are active.
- Provide a standard null output for all other input patterns.
- Provide eight unique outputs which correspond to the literal binary values of $0-7$ in accordance with the relevant inputs.
Supposing we want a direct replication of the 74LS138, we have two low enables and one high enable. However, let us make a small improvement and add another high enable. This gives us three address inputs and four enable inputs (a total of seven) which dictates a PROM size of 128 bytes. We also need eight outputs, so the minimum device is a 128×8 PROM. The sensible EPROM

Fig. 3 A simplified view of PAL architecture.

Fig. 4 A simplified view of part of a PLE (a PROM).
solution is a $2716(2 \mathrm{~K} \times 8)$ with the three high address lines grounded.

If we design our decoder in EPROM by the truth table method, it is necessary to consider the best choice of address pin for each input. If, for example, the enables were allocated to low address lines (A0, A1, A2, A3) the active data in the EPROM would be widely distributed throughout its memory map (consecutive control bytes 16 addresses apart) which would make data entry very tricky.

The alternative (selection of inputs to simplify the generation of the PROM table) could make the resultant device less easy to connect up in use. A PLE assembly tool such as MMI's Pleasm would automatically handle this problem. As there are no design tools for EPROM, however, we must be our own PLE assembler and we must find a short cut if we want to minimise the possibility of errors and optimise the resultant device. Any short cut will become obvious as soon as the equations for our decoder have been generated, so let's do that next.

The Boolean Solution

The description of the 1 -of- 8 decoder in sum-ofproducts form is really very simple. We consider each output in isolation. First we must declare our input and output signals (the constants and variables in our equations).

Let us call our inputs HE1, HE2 (the active high enables), LE1, LE2 (the active low enables), A0, A1, A2 (the three address inputs), and our outputs M0-M7 (memory chip selects).

The universal condition for operation is that all enables are active. So there is a common term to all eight output equations, which is:

ACT $=$ HE1*HE2*LE1*LE2

where ACT is a macro name (a shorthand reference) for the right hand expression. This can be used to reduce the typing burden and improve readability in the remaining equations. The active low enables have been negated to demonstrate their active low status.

Whenever ACT is TRUE (HE1 and HE2 are high and LE1 and LE2 are low) the decoder will generate one of the selectable outputs. ACT is only a theoretical term (the full right hand expression will always by substituted for it eventually) so it can be considered as active high (the default) for convenience.

The equation for M0 (the lowest addressed output) is thus:

$$
\overline{M 0}=A C T * \overline{\mathrm{~A} 2} * \overline{A 1} * \overline{\mathrm{AD}}
$$

so M0 will go LOW when all enables are active and all three addresses are LOW).

The remaining equations are:

$$
\begin{aligned}
& \overline{\mathrm{M1}}=\mathrm{ACT}^{*}{ }^{\mathrm{A} 2}{ }^{*} \overline{\mathrm{~A}} 1^{*} \mathrm{~A} 0 \\
& \overline{\overline{\mathrm{M} 2}}=\mathrm{ACT} * \overline{\mathrm{~A} 2}^{*}{ }^{\mathrm{A}}{ }^{2} * \overline{\mathrm{~A} 0} \\
& \overline{\mathrm{M} 3}=\mathrm{ACT}^{*} \overline{\mathrm{~A} 2}{ }^{*}{ }^{\mathrm{A} 1}{ }^{*} \mathrm{~A} 0 \\
& \overline{\mathrm{M} 4}=\mathrm{ACT} * \mathrm{~A}^{2} *{ }^{\mathrm{A} 1} * \mathrm{~A} 0 \\
& \overline{\mathrm{M} 5}=\mathrm{ACT} * \mathrm{~A}^{*}{ }^{*} \overline{\mathrm{~A}} 1^{*} \mathrm{~A} 0 \\
& \overline{\mathrm{M6}}=\mathrm{ACT} * \mathrm{~A} 2 * \mathrm{~A} 1 * \overline{\mathrm{~A} 0} \\
& \overline{\mathrm{M} 7}=\mathrm{ACT}{ }^{*} \mathrm{~A} 2^{*}{ }^{*} 1^{*} \mathrm{~A} 0
\end{aligned}
$$

Note that the outputs are labelled with the NOT symbol to indicate that they are active LOW. All the equations are interpreted in a similar manner to the first.

When this set of equations (which exhaustively describes the 1 -of- 8 decoder) is fed into a PLE (PROM) assembler, all the internal mapping and address correlation is automatically taken care of and the user only has to specify which device pins he has chosen to perform each function. Similarly, the EPROM user has to decide which pins are which but instead of working out and then keying the whole table into an EPROM programmer, we use our short cut. This consists of

Fig. 5 A portion of a theoretical PLA.
referencing the chosen inputs and outputs to their theoretical binary weight.

Mapping Into The EPROM

First you choose a convenient input pin for each device input in terms of the physical layout of the final device. You might, for example, want all your enables together at the top left of the chip, and your address inputs below them. At this point you must also decide which inputs are to be used. Note that any EPROM enables must be considered as unused, as these tri-state the device, which we don't want. We are concerned here with address inputs and data outputs only.

Having defined the function of all inputs, you proceed similarly with the outputs. A table of the result of this process demonstrates that each active pin has been assigned a 'binary weight' resulting from its conventional EPROM AD or D values (Table 1). By substitution of these binary weights into both sides of each equation in turn, you arrive at a data byte expected at each of eight unique input addresses (Fig. 6).

Poking these bytes into a table the full size of your EPROM (2 K) will produce the desired result (Fig. 6). The large number of 'non-active' states (when the enable term ACT is not true) can be handled by pre-writing the whole EPROM table with FFh. This equates in logic terms to 'all outputs high'.

Any truly 'don't care' inputs (spare address lines) can be hard wired to ground to minimise the size of the required table, otherwise the equations you create must include them as phantom terms. If, for example, eight address lines were present and you have chosen to use the low seven (A0-A6) the table you generate must be duplicated in both the upper and lower halves of the EPROM (selected by $A 7$) unless $A D$ is assumed hard wired to ground, when only the lower table is needed.

Do not expect much performance from the EPROM decoder. It is really a demonstration rather than a viable option. However the same process applied to a 128×8 or 256×8 bipolar PROM yields a perfectly useable device.

PLE or PAL?

While the 128×8 PROM (PLE) version of the decoder is quite adequate, the number of used terms (in particular the lack of OR terms) makes this decoder a prime candidate for implementation in a PAL.

A PAL is chosen for a given implementation, after the Boolean equations have been written, according to the following criteria:

- How many input pins do you need?
- How many outputs pins do you need?
- How many OR terms per output? If this varies from output to output, is the distribution of OR terms in a given PAL adequate?
This looks surprisingly like the decision set for choice of PLE (PROM), doesn't it! The major difference is the third item. The number of OR terms per output in PAL is fixed so the OR terms matter. Next month we will look in more depth at PAL implementation and consider some more complex examples where PAL scores heavily in terms of neatness and ease of use.

Function	EPROM pin	Binary Weight (hex)	Function	EPROM pin	Binary Weight (hex)
HE1	1 AD7	180	Vcc	24 Vcc	Vcc
HE2	2 AD6	140	GND	23 AD8	I 100
LE1	3 AD5	120	GND	22 AD9	I 200
LE2	4 AD4	110	Vcc	21 Vpp	Vcc
A2	5 AD3	18	GND	20 OE	GND
A1	6 AD2	14	GND	19 AD10	I 400
A0	7 AD1	12	GND	18 CS	GND
GND	8 AD0	11	M7	17 D7	Q 80
M0	9 D0	Q1	M6	16 D6	Q 40
M1	10 D1	Q 2	M5	15 D5	Q 20
M2	11 D2	Q 4	M4	14 D4	Q 10
GND	12 GND	GND	M3	13 D3	Q 8

Table 1 Binary Weight Table for 1-of-8 decoder in 2716 EPROM. $I=$ input, $\mathbb{Q}=$ output, GND $=$ NOT for weighted terms.

[^2]Fig. 6 Manual function mapping. An example substitution for M0.

FINDING LOVE

 through

 through}

John Scott and Anne Coburn， Wiltshire－engaged．
Anne found there were scarcely enough nights in the week once she joined Dateline， and just ten weeks later she met John－but she was John＇s first date．John felt slightly shellshocked when he realised his first date was the one for him．＇Life now is so enjoyable＇says Anne．All their friends are very impressed and Anne＇s sister has now ．joined Dateline too！

Dateline works－

so joining makes sense．

Cindy and Tony Smith－ fourteen years on
Cindy and Tony met through Dateline way back in 1970 and have now celebrated fourteen years of＇computer matched marriage＇．Cindy at the time was a 28 year old PA with a small son．She was fed up with＇getting involved with men 1 shouldn＇t＇．Tony was a 33 year old electronics engineer．When they met through Dateline they found they had so much in common．For Cindy and Tony joining Dateline was a recipe for lasting love．

[^3]When you join Dateline you meet so many people that if you choose to stay on your own，you know it＇s not through lack of opportunity．The problem is，of course，that faced with that special person you＇ve always hoped to meet，the joys of the single life fade fast．
Dateline arranges over half a million introductions each year－people of all ages，all walks of life，and from all over the country join Dateline and are matched specifically to the type of person they want to meet in the area they choose．

WHY DATELINE？

－Dateline has operated a computer dating service in this country since 1966， many years longer than any other company，and is now the largest and MOST SUCCESSFUL computer dating service in the world
－Our experience over more than 20 YEARS has created a professional， reliable and confidential service which we are proud to offer our clients．
－We want Dateline to be successful for you so take great CARE that your requirements are met．
－Dateline is the only national computer dating company to allow you to choose the area you would like your dates to come from．
－Dateline provides the BEST VALUE FOR MONEY service，with more people to meet than any other agency．
－Despite having the LARGEST membership，Dateline is not just a box number service．You can call at our offices to discuss your membership and to read the thousands of letters from happily matched Dateline members；or telephone us on 01－938 1011．We are always happy to help．

Dateline is a member of the Assuciation of British Introduction Agencies 29 Manchester St．London W
Over the years Dateline has been featured many times by press，radio and television and has been acclaimed by many thousands of clients who have found happiness through our services．If you are interested in learning what Britain＇s largest，longest－established and most successful computer dating service can do for you，complete this coupon and post it today to：Dateline， 23 Abingdon Rd．， London W8 6AH．

FREE
START HERE
Do you consider yourself：

Computer Test to Find Your Ideal Partner

－lam over seventeen and would like you to send me

Folk music $\quad \square$ Science or technology $\begin{array}{ll}\square \text { Folk music } & \square \text { Creative writing／painting } \\ \square \text { Jazz } & \square \text { Poetry }\end{array}$ \square Politics
\square Classical music
\square Art／Literature
\square Rive theatre
\square Science or technology
\square Creative writing／painting
\square Poetry
\square Philosophy／Psychology／Sociology
\square History／Archaeology
\square Conversation
$\square-\infty-8$

Indicafe which activities and interests you enjoy by
placing a＇ 1 ＇（ona）in the appropriste box．Hyou dislite placing a＇ 1 ＇（ona）in the appropriate box．Hyou dislike a particular activity，write a＇ 0 ＇（nought）in the appropriate box．If you have no preference．leave the column blank
\square Pop music Fashion Pubs \square Sport Pets \square Travelling \square Cinema

Generous Outdoor type Creative Creative Practical \square Practical －ーーーーーー・
comptetely free and without obligation a description of my ideal partner．Plus a free full colour brochure and lots more information about Dateline．I enclose two tirsi class stamps．
3 Your sex ．．．．．．put M or F Your Height ．．．．．ft ．．．．．ins Your Age yrs．Age you would like to meet Min．Max Christian Name

Surname

Address

TELE	D83 Dual Trace 50 MHz . Detay Sweep L	SCOPE CDU150.
		Delay Sweep. Soli
	. W	Manual N0w 0hty £180ea
S.E	ort	
AC or	al DC	SOLARTRON OSCILLOSCOPE CD1400 Dual Beam 15MHz
Manuat 165		
SCOPEX 4DIOA Dual Trace 10 MHz Solid State with		
telepuipment d61 Dual Trace 10MHz. With Manual£150		DISK DRIVE PSU. 240V $1 \mathrm{~N}: 5 \mathrm{~V} 1.6 \mathrm{~A} \& 12 \mathrm{~V} 1.5 \mathrm{~A}$ out. Size W125mm H75mm. D180mm Cased Un-used. OWLY £ 10
telequipment s54a Single Trace 10MHz Solid State.		
dentica		[pep £3] DATRON 3000 PROM COPIER (copies up to 10) £150em
AVO 8 Mk2 Complete with Batteries \& Leads $£ 45$		
Above items in GOOD WORKING ORDER - appearance not A1 hence the price.		COMmUMICATION RECEIVERS acal RA17L $500 \mathrm{kHz}-30 \mathrm{MHz}$. . . ONLY ₹ 140 aech- with
		Racal RA17L $500 \mathrm{kHz}-30 \mathrm{MHz}$... ONLY \& 140 sach- with
VAO TEST SET No 1 (Military version of AV0 8) Complete		Eddystone $730 / 4480 \mathrm{KHz}-30 \mathrm{MHz}$ only $£ 1 \mathrm{lo}$ each,
TEST LEADS suitable for AVO METERS Red \& Black with 2 croc-cups \& 2 prods ($\mathrm{p} \& \mathrm{p}$ £2) \& 5		AVO TAANSISTOA TESTER TT169
AVO Model 72 Pocket Multimeter (Analogue) 30 ranges. With Bateries \& Leads analogue pocket multimeters philips/Taylor etc With Batteries \& Leads \square		
		500Va $£ 15$
ADVANCE/GOULO OVM5 Auto ranging; max reading $20,000 \mathrm{AC} / \mathrm{DC}$ volts resistance only $£ 50$ pap $£ 5$		B + K Precision CRT Restorer/Analyser Model 467 Supplied with 2 bases and Manual. (P\&P £7) 0\#Ly £125 each LABGEAR Colour Bar Generator KG1 \& Test Patterns. (P\&P £4) OMLY £40 each
GENERATORS MARCONI TF1066B AM/FM $10-470 \mathrm{MHz}$. $£ 350$ MARCONI TF995A/5 1.5-220 MHz Narrow Deviation£250 FARNELL SINE/SQUARE type LFM2 $1 \mathrm{~Hz}-1 \mathrm{MHz}$ Compact. ADVANCE SG62B AM $150 \mathrm{KHz}-220 \mathrm{MHz}$.. $£ 45$ Mary others available		
		BLACK STAR FREQUENCY COUNTERS P\&P £4 Meteor $100-100 \mathrm{MHz}$
		Square/Triangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$. P\&P £4 £110
	STEPPING MOTORS	ORION. PAL TVIVIDEO COLOUR PATTERN
Type	$\begin{aligned} & 200 \mathrm{~s} \\ & \text { Torque } \end{aligned}$	HUNG CHANG DMM 7030. $31 / 2$ digit Hand held 28
	$6 / 12$ Steps per rev 3 Phase $12 / 24 \mathrm{~V}$ (will w	As above DMM6010 0.25% \qquad
Typ	CAN PHILIPS 24 mps 0.250 rpm	OSCILLOSCOPES PROBES. Switched $\times 1$; $\times 10$. P\&P £2 \qquad
Used equipment - with 30 days guarantec Manuals supplied if possible. This is a VERY SMALL SAMPLE OF STOCK SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods \& Carriage.		
STEWART OF READING 110 WYK̇EHAM ROAD, READING, BERKS RG6 1PL Telephone: 0734 68041Callers welcome 9 am-5.30 pm Mon.-Fri. (until 8 pm Thurs.)		

NEW! from Cirkit SUMMER 1987 ELECTRONIC CONSTRUCTORS CATALOGUE

- £11 worth of discount vouchers
- 6 Multimeters to be won in easy to enter competition.
- Available at your local newsagent or direct from

Cirkit Distribution Ltd Park Lane, Broxbourne. Herts EN10 7NQ Telephone: (0992) 444111 Telex: 22478

AUDIOKITS PRECISION COMPONENTS

The ETI VIRTUOSO PREAMP
(featured ETI July-Sept \& Nov 86)
THE TRUE ENTHUSIASTS PREAMP
\star Superlative sonic performance
\star Versatile case with space for mods, other circuit designs etc.
\star MC stage, upgraded, uses transistors of lowest noise currently available.
\star Two stage MM circuit with passive RIAA equalisation.
\star High performance optional tone stage.
\star Circuits and pcbs can easily be adapted for other audio uses, low noise mic preamps, active crossovers, filters, balanced/unbalanced amps, mixers etc.

* High performance power supply board with up to 4 positive and 4 negative regulated outputs - ideal for many other audio projects.
\star All components incl: case \& pcbs available separately.
* Complete kits cost a fraction of similar quality ready built preamps, saving hundreds of pounds.
For details, please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE (overseas 3 IRCs) to:

AUDIOKITS

6, Mill Close, Borrowash, Derby DE7 3GU
Tel: 0332-674929

RED CURRY

Helen Armstrong finds Chris Curry striving to get back in control.

Chris Curry was in the boardroom of General Information Systems wielding what looked like a twig covered in withered leaves. I remarked the plant did not look well. "On the contrary," Curry announced. "It's getting a chance to procreate". He shook a peppering of seeds from the dried pods into a used envelope, and handed the packet to an assistant with instructions to file it. Chris Curry, former Sinclair collaborator and leading light of Acorn, is still planting for the future.

When Acorn was losing money like a leaky sieve in the race for the cut price micro market and was bought out by Olivetti, co-founder Curry was free to try out a different line of enquiry which had attracted him even before the development of Acorn. He formed General Information Systems (CIS) and with a team of about a dozen people, many former Acorn colleagues, set out to develop and market microprocessor-controlled devices whose application was specific and practical.

Early Days

"When I was first selling microcomputer systems," says Curry, "it was before the micro boom and we were selling to people like ETI readers who already had an interest in technology. I was always asked 'what can I do with it?' This is the most difficult question in the world to answer. If I'd relied on market research, for instance, it would have shown there was no point trying to sell computers because there was no marketl Fortunately, we don't all work by market research.
"Today the answer to that question is 'control, timing, energy management, word processing and desk diary'. Interactive control in the home was always talked about but never really achieved except by a few enthusiastic amateurs."

Curry's latest offspring are Red Boxes. Apart from their fire engine colour, Red Boxes could be a cryptic breed of distribution board. They plug into and operate down standard mains wiring and some of them double as mains outlets, but their real task is control.

The first generation of Red Boxes are marketed as add-ons for already popular home micros (BBC micro, Spectrum and Commodore 64) in the form of a $£ 133$ starter pack with a control module, a 13A switched outlet and a heat-sensitive movement detector. These are known respectively as Red Leader, Red One and Red Two. "Second World War RAF flying jargon," explains Curry.

Red Leader contains its own 6502 processor, ROM, RAM and modem. "The unit itself detects which computer it is connected to and downloads an appropriate terminal program to the micro. Once programmed, it is no longer dependent on the outside computer, which can be disconnected.
"Anybody with a home computer already has an advantage," says Curry. They are familiar with keyboard interfaces. There are three million micros out there - mostly Sinclairs, some BBCs and

Commodores - which are mostly not being used. A machine which makes them useful again is good in a number of ways. Seeing a computer doing something practical, like switching, has great appeal and putting a discarded machine back into use is highly satisfying.'

In The Future

That assumes centralised microprocessor control will be commonplace in the future. Few people have a clear idea of what they want from it in the home. The old question is still, being asked: what do we do with it? "At the moment," maintains Curry, "the answers are energy management, security alarms, or simply automating - like an intelligent timer, but without fiddling with the mains wiring. It's interesting to notice home security systems are being installed at a rate of knots but they are inflexible. A floodlight is a good deterrent, but only at night. During the day something different (such as a siren) could automatically replace it on the same sensing and timing information. A system which expects different things at different times of the day or year would be even more useful." A siren (inevitably christened Red Alert) is on the way.
"The next really important step will be a modem which allows you to phone in and bleep the system to alter settings down the line. It will work both ways. It'll also phone you and indicate if it has received certain readings. No, it won't speak - we aren't using voice synthesisers yet! This is particularly important, because people like to be able to change the system remotely."

With the general extension of remote control into all areas of domestic and business life, the inviolability of these personalised systems has been an important consideration.

Interference

Potential problems of interference between two systems working on the same ring main, and the more sinister threat of accidental or deliberate data tresspass by outside mischief-makers has been forestalled by allocating an incredibly complex address code to each box.
"Anyone trying to break in would have a devil of a time. The data is encrypted in a number of ways. First, there is the large address. Secondly, when the data is sent out it is jumbled with an encryption with a key which is unique to that package of data. Even if they recorded the signal and tried to read it with an oscilloscope, it would remain jumbled. This is unique among máins borne comms systems."

As they stand, Red Boxes are aimed at micro owners. Programming experience is not required, but it helps. "The system has high programmabality at the moment. Red Basic is a bit like BBC Basic with extensions and there is a complete guide to Red Basic in the Basic manual for those who want to get to know the system inside out."

Eventually there will be a Red Box which is not connected to a computer, with a simple single-line
display, a few buttons, and limited programming possibilities. Even so, will homes be a flourishing market for computer-based hardware in the immediate future? Curry's attitude is that although it is early days, his boxes have other outlets.
"You could divide Red Boxes into two concepts. On the one hand it is a mains modem, which actually allows you to send digital information along the mains wiring. On the other hand, it is quite a sophisticated communications protocol for point to point serial transmission of data, with a quite powerful control language to go with it. If you put the two things together there are some interesting industrial applications. I don't have any concrete examples to offer you because the product is too new but at exhibitions a lot of energy management engineers have been showing interest. Security people too. Even in a house, it costs from $£ 500$ to $£ 1,000$ to have a fairly simple system wired in."
"These are devices which people can build applications around, enabling devices for all kinds of purposes. People have the opportunity to use their imaginations.

Communication

General Information Services, says Curry, was set up to develop the processing of information and the use of computers in information technology. "Computers will be used more frequently for communications than anything else but the information to be carried is not yet available in the quality and quantity needed for the market."

With their other main project, the Communicator, GIS is looking at ways of introducing a desktop computer which is essentially a remote database terminal with local data manipulation facilities, built in modem and automatic telephony. It can receive Teletext and, with a small modification, Datacast, and can be built into a local area network. "This Communicator was developed by Acorn and they are still marketing it. It's only available to OEMs at the moment. GIS has the rights to it and we are still working on creating the necessary information base to launch our version. It is a long process, providing a systems house role if you like. We are presenting the hardware with the software, not just the systems software but material people are actually in need of, the raw information.
"We are hoping to appeal to the top end of the consumer market, in which case the software must be available as part of the machine. When the Communicator is ready, it must be absolutely straightforward to extract information. You should be able to feed a demand into the computer, and it will search for the database and do the rest. It must be capable of reprocessing the data, of extracting the exact details or figures you want and giving a printout that you don't have to analyse further. It has half a megabyte of storage - it's not just a dumb terminal."

So what is it that appeals to him personally? Developing new ideas, or developing the company as a whole?
"Success. Whether it's a successful product or a successful company. Both, preferably. The pleasure of seeing something well received, and the added pleasure of seeing it make a profit for the company. I think the two go together. In a small company, which GIS is, if you're not very close to the conceptual development of a product then you are not close to the company. I'm also very close to the corporate development and strategy of the company. I make no claims to be close to the technical development of

the products - there are people much better than me to look after that. But no matter how clever the technology is, if the concept is wrong, the product fails, and vice versa, of course."
"There are lots of really clever products that have failed because they weren't marketed properly. The development of a company is an expensive gamble. If you don't get the market and the product right, you will lose a lot of money.
"Having said that, there are a lot of independent commercial organisations these days where people with an idea can go to get support, without laying out a lot of money. They can get a bit of market research done, or management advice on how best to produce and market the product. That type of support didn't exist a few years ago. People ought to take full advantage of it, while being careful not to to be taken advantage of. Some provide venture capital as well, but I think one should try to separate venture capital from management services. Some sources of capital are offshoots of banks, who probably know less about the management problems of a small company than the inventor of the idea!
"But if you are looking for ongoing management support, it is very important to remember that you must have a good, personal working relationship with any partners. People with ideas don't like being interfered with. Unfortunately, there are no set rules. You can't separate being the boffin from running the business in a small company.
"I'm a great believer in working back from the market's needs. You have to try and imagine what the customer will want and work back to the product without detracting from the craft. As the developer of a product, you are leading the customers. If you ask them what they want, they won't know. It's only when they see it they can make a decision. We have to use our imaginations to show people the possibilities open to them. But if the product isn't right, they won't have it however clever it is."

NUCLEAR STRATEGY SIMULATOR

Deterrence is dead, the victim of precisely-targetted Cruise and Trident missiles. So says David Guinness and he sets out to prove it with the aid of a map and a little logic.

Most of us have got used to thinking of nuclear weapons as a simple deterrent: if they launch theirs against us, we'll launch ours back at them. That way, everyone loses so it is in both our interests not to fire first.

This concept of Mutually Assured Destruction (MAD) is out of date in the view of many people. It relied on the fact that missiles were not terribly accurate and a large number would have to be launched against an enemy to ensure complete destruction of important targets. Such an attack could be detected with relative ease long before any missiles arrived, giving the enemy plenty of time to launch their own missiles in response.

Now we have highly accurate weapons such as Cruise and Trident, many of which can fly at low altitude so that they are very difficult to detect until shortly before they hit their target. With this sort of accuracy, missiles can be directed at enemy missile silos and have a good chance of destroying them before the missiles can be launched in return.

The result is a complete reversal of deterrence theory. When it is possible to destroy enemy missiles with little risk to oneself, the best means of defence is to fire first. You may not get enough warning to fire second.

This view is inevitably controversial. Governments don't way to give away a possible advantage so they certainly won't announce that they have a first strike capability in these terms. Indeed, most refuse to concede

Fig. 1 Circuit diagram of the Nuclear Strategy Simulator.

HOW IT WORKS

With SW2 closed and SW4 open, the Nuclear Strategy Simulator is set to the DEMO and DETERRENCE modes. One input of IC1a and IC1d will be held high and a logic high will appear on the inputs to the two latches (IC2a and b). These inputs are active low so outputs Q_{0} and \mathbf{Q}_{1} will not latch.

When SW1 is pressed the previously high input to IC1a is pulled low and a low output level is passed to pin 7 of IC2. The output from pin 9 will go high and remain latched in this state when SWI is released.

The high level output from the latch is combined in AND gate IC4a with the signal from IC7 and its associated circuitry. IC7 is a 555 timer which generates a low-frequency (roughly $\mathbf{1 H z}$) square wave. This output is passed via IC3C and IC5e to IC4a and produces a square wave output which drives $\mathbf{Q 1}^{1 / Q 2}$ and causes LP1-5 to flash steadily on and off. These lamps represent USSR cities.

The high level on IC2 pin 9 is also passed to IC1b whose output in turn feeds IC4c. The other input of IC4c receives the square wave output from the oscillator circuitry so the output of this gate will also be a square wave. This is passed via IC5d to Q5/Q6 and causes LEDs 11-20 to flash. These LEDs represent USA missiles.

When SW4 is set to the REAL position, IC3c receives a low on one of its inputs. This stops the oscillator output being passed to the rest of the circuitry. Instead, the output of IC3c goes low and is inverted by IC5e so as to provide a high level on the inputs of the four AND gates, IC4a-d. Pressing SW1 or SW3 now causes one output of IC2 to latch as before and produces a high level on the other input of two AND gates. The resulting high output level is inverted by the buffers IC5a and cor IC5b and d to provide a low level into the transistor pairs. Pressing one of the buttons in the REAL mode therefore
causes one set of missile lights and the opposite set of city lights to go out completely.

Moving SW4 from DEMO to REAL also puts a low level on the input of IC6b and a short high level pulse emerges from the differentiating network, C2/R34. This is inverted by IC6a to form a short, lowlevel pulse into the active-low reset inputs of IC2. Moving SW4 back to DEMO sends a high level to the other differentiating network, C1/R33, producing a short high level pulse which is again inverted by IC6a. In this way the two latches are reset every time SW4 is operated.

Opening SW2 transiers the simulator from DETERRENCE to FIRST STRIKE mode. R2 pulls up one input on each of the two AND gates, IC3a and b. If SWI is pressed now, the resulting high on the output of latch IC2a will take the other input of IC3a high and place a high level on one input of the OR gate, IC1c, causing its output to go high as well.

The output of IC1c feeds one input of OR gate IC1d which drives the input of latch IC2b. This high level will prevent the active-low input of IC2b being triggered. In this way, pressing SWI first prevents SW3 being used and vice versa.

The output of IC1c also feeds the AND gate IC4b, the other input of which receives the square wave output from' the oscillator circuitry. This signal will be passed to inverter IC5b and the transistor pair Q2/Q3, causing LEDs 1-10 to flash. These IEDs represent USSR missiles.

LEDs 11-20 (representing USA missiles) and LP1-5 (representing USSR cities) will also flash, having been enabled in the normal way by the high output on latch IC2a. The difference between DETERRENCE and FIRST STRIKE modes is in the addition of the extra set of flashing LEDs.

Just as in the DETERRENCE mode, moving from DEMO to REAL in the FIRST STRIKE mode removes the flashing oscillator from the circuit.
that such a scenario is militarily feasible and continue to talk in terms of nuclear deterrence.

Because of this, we have no firm idea just when either of the superpowers is likely to achieve full first strike capability. Estimates for the USA range from 1992 (put forward by Robert Alridge in his book First Strike) to as close as 1988 (according to the book Death Of Deterrence). Even the most optimistic independent sources expect the change to take place before 1995. There are fewer estimates regarding progress in the USSR because less information is available but given their oft-stated intention to match US capabilities it is unlikely they will be more than a few years behind.

The Nuclear Strategy Simulator
described here is a simple demonstration unit which allows the concepts of deterrence and first strike to be explored in the form of a game. One player (or a group of players) takes the part of America while the other is Russia. Both have cities to protect (represented by white lamps on a large map) and both have missiles they can fire at the enemy (represented by red LEDs on the map).

The Simulator has two very simple modes of operation. In DETERRENCE mode, the missiles are assumed to be fairly inaccurate on both sides and therefore threaten only the enemies' cities. Firing one set of missiles destroys the opponents' cities but leaves them with missiles which they can fire back.

The missile lights go out once the missiles have been fired and the city lights go out when the cities have been destroyed.

In the second mode (FIRST STRIKE) the missiles on each side are assumed to be accurate enough to destroy enemy missile sites as well as cities. Firing either set of missiles now causes all the lights on the opposite side to go out and prevents the enemy mounting a return attack.

A DEMO mode allows missiles which have been fired and cities which have been destroyed to flash rather than go out. This is helpful while the rules are being explained to players.

Construction

All the main circuitry is carried on one printed circuit board which mounts on the back of the map board. The lamps, LEDs and switches are mounted directly through the map board and wired with ribbon cable to three sockets on the PCB.

The only item not mounted on the back of the board is the transformer which will be required for mains operation. This is housed in a separate earthed metal box and only the lowvoltage output taken to the Simulator.

The board as it stands is designed to operate from a $6-8 \mathrm{~V}$ supply, AC or DC. If preferred, the values of the LED series resistors (R12-31) can be altered to allow the Simulator to run from a 12 V AC or DC supply such as a car battery. The filament lamps would also need to be changed from 6 V to 12 V for this. Decide before proceeding which voltage you want the Simulator to run from and select the appropriate resistor values (330 R for $6-8 \mathrm{~V}$ operation, 510 R for 12 V operation).

The PCB component layout is shown in Fig. 2 Begin assembly by installing the connectors, the fuseholder and the IC sockets (if you plan to use them). The fuseholder has a screw-cap on one end and should be positioned so that this overhangs the side of the board. Insert the resistors and capacitors next and then the transistors. Last of all, solder the ICs into place or install them in their sockets.

The board can be tested by connecting it to a 6 V battery or a suitable power supply (you won't need a large battery at this stage because the board draws very little current without the lamps and LEDS). Connect the supply to

SK2 and leave plugs PL1, 3 and 4 empty. Assuming nothing nasty happens at switch on, connect one of the 6 V bulbs between V_{c} and the collectors of Q2, Q4, Q6 and Q8 in turn. The bulb should light in each case.

If all seems well, take a piece of wire and briefly short it between 0 V and the 'TO SW1' connection of PL1. Go back and check the collectors of the four output transistors again. You should find that the bulb lights up when connected to Q8 but flashes when connected to Q2, 4 or 6 .

The next stage is to stick the map firmly to its backing board. When complete, it is a good idea to protect the edges of the map and board with tape or edging strip.

Refer to Fig. 3 and drill the holes for the LEDs and filament lamps. Drill the holes from the front of the board and take care not to rip the map.

Drill a further set of holes for the switches, one directly above the other in the lower middle part of the board and one at each side directly below America and the USSR.

The PCB is attached to the back of the board using woodscrews and spacers and the LEDs, lamps and switches are wired using ribbon cable. The LEDs and lamps representing American missiles and cities are wired to one piece of 12 -way cable, the LEDs and lamps on the USSR side
are wired to another 12 -way cable and the four switches are wired to a 6 -way ribbon cable.

The wiring of the lights and switches should be obvious from the circuit diagram and component overlay. Each LED has its own resistor on the PCB so ten of the twelve ways on each of the larger connectors are for the LEDs. The remaining connections are a common OV lead for the five lamps and a common $\vee_{c c}$ connection for both the lamps and the LEDs. The only point to watch is that the LEDs must, of course, be wired the right way round.

If you intend using the Simulator from a mains supply, a transformer unit will be needed. This should consist of a metal box with a suitable transformer firmly fixed inside it. The box should be earthed and all the usual care must be taken with the mains input lead and wiring. Use a strain relief bush and include a fuse in the mains circuit.

In Use

The Simulator can be used by any number of people from two upwards. Provided clear instructions are printed in a prominent position, it can be left unattended

PARTS LIST

RESISTORS (all $1 / \mathbf{W}$)		LP1-10	6V 60 mA wireended filament	
R1, 2, 3, $32 \quad 3 \mathrm{k} 3$				
R4, 6, 8, 10 2k2			lamps (or 12V	
R5, $7,9,11$ 802R			60 mA - see text)	
R12-31	330 R (or 510R -	PL1	6-way 0.1" PCB	
	see text)		plug	
R33, 34, 36	100k	PL2	2.1 mm DC power	
R35	1M0		plug	
CAPACITORS		PL3, 4	plug	
C1, 2, 6	10n	SK1	6-way $0.1^{\prime \prime}$ insulation displacement	
C3	14035 V tantalum			
C4	470u 16V axial	SK2	connector	
	electrolytic		2.1mm DC power socket, PCB-	
C5	470u 10V axialelectrolytic			
			mounting	
		SK3, 4	12-way $0.1{ }^{\prime \prime}$ insula-	
SEMICONDUCTORS			tion displacement	
IC1	4071	SW1, 3	connector non-latching	
IC2	4044		non-latching,	
IC3, 4	4081		push-to-make	
IC5	4049		switch	
IC6	4001	SW2,4	SPST toggle switch with long shank	
IC7	555			
IC8	$78 \mathrm{L05}$			
Q1, 3, 5, 7 Q2, 4, 6, 8 LED1-20	8C109	PCB; world map; backing board; wood-		
	BFY51	screws	rs to mount PCB;	
			ay and 12-way; IC	
	preferably high	sockets	$1 \times 8 \text { pin, } 4 \times 14 \text { pin, }$	
	intensity types	2×16 p	ing wire; tape, glue,	
	S005 bridge rectifier	etc.		
BR1		Option chassis-	transformer unit: mains transformer	
MISCELLANEOUS		with $6-8 \mathrm{~V}$ output rated at 2 A or more		
FS1	2A 20 mm fuse and PCB-mounting holder (fully enclosed type with screw-on end cap - see Buylines)	(eg., RS/Electromail 207-504 giving 6V at 3.3A); metal case; fuseholder and 1A fuse; cable strain-relief bushes; 3-core		
		mains	2-core low voltage	
		cable;	etc for transformer	
		mountin		

and people approaching it will work out for themselves what to do. This makes it ideal for use in libraries, in the foyer at conference centres or in any other position where people are passing by.

Where larger groups are expected it is helpful if someone is around to demonstrate the Simulator and explain its significance. In this case, the people present should be divided into two groups ('Russians' and 'Americans'), each of which selects a 'President' to operate the button.

Start with the Simulator set to DEMO and DETERRENCE so that all the lights are on. Explain to the players that the red lights represent missiles and the white lights represent cities. Get one of them to press their button so that one set of missiles and the opposite set of cities start flashing. This represents one superpower using its missiles to threaten the cities on the other side.

Now tell the other side to press their button and show that they can return the threat, causing their missiles and their opponents' cities to flash. Thus either side can launch an attack

Fig. 2 Component overlay for the Simulator PCB.

on the other, but the result will be a return attack on their own cities.

Now set SW4 to REAL (which will reset the flashing lights to full on) and ask both sides how best they can defend themselves. If they have understood the rules correctly they should realise that it would be suicidal to launch an attack.

Switch SW2 from DETERRENCE to FIRST STRIKE and set SW4 back to DEMO. If anyone has been foolish enough to press their button, this will reset all the lights back to full on.

Ask one side to press their launch button now and point out how different the result is. The red missile lights on the attacking side will flash to indicate that the missiles have been fired, but both the city lights and the missile lights on the other side will flash rather than just the city lights as before.

Tell the other side to press their launch button and observe that nothing happens. Because their missiles have been destroyed, they have nothing to fire back.

Now switch SW4 to REAL (which again will reset the flashing lights to full on) and ask both sides once more how best they can defend themselves. If they are anything like the groups which which the Simulator has already been tried, they will rapidly realise that the safest thing to do is attack first. With large groups, this can become quite heated with both sides screaming at their 'President' to press the button quickly.

A Final Word

This simulator shows two very simple scenarios and makes no attempt to represent all the complexities of the international arms race. The aim is to get people thinking about the implications of greater missile accuracy, and once this point has been absorbed there is much that can be discussed and presented by other means.

The simulator itself could also be modified to show more complex scenarios. For example, what if only one side has a first strike capability, or if one or both sides have a first strike capability
which does not destroy all of their opponents' missiles? What if Star-Wars technology is added to the equation on one or both sides, allowing any missiles not destroyed by a first strike to be wiped out before reaching their targets? This makes a first strike even,more tempting.

BUYLINES
Most of the components for this project are readily available from the usual mailorder suppliers. The 6 V wire endedlamps and the fuseholder came from RS/Electromail (order codes 587-069 and 413-147) and the six and twelve-way PCB connectors came from Maplin. The S005 rectifier was also obtained from Maplin but other 2A, 50V bridge rectifiers should do just as well. Push-button switches with long shanks for SW1 and SW3 are easy enough to obtain but you may have more difficulty with long-shank toggle switches. The ones used on the prototype came from a surplus store.

World maps can be purchased from local booksellers or stationery stores. The one used on the prototype was a 48×26 in 'Pioneer' map from the London Map Centre, Caxton Street, London SWY.

ROBOTICS

Robot arm
Robot motor controller
Servo arm interface
SECURIM

Alarm alarm		Jul	1977	29
Alarm extender		Nov	1983	39
Alarm module		Mar	1983	63
	Errata	Aug	1983	70
Alarm, ZX-based		Dec	1983	31
Anti-theft auto alarm		Jan	1974	16
Automatic car-theft alarm		Aug	1972	50
Automatic light switch		May	1984	19
Automatic porch light		Jul	1980	77
Bansheee siren unit		Sep	1984	35
Burglar alarm system		Apr	1977	57
	Errata	Jun	1977	9
Burglar proof your home		Jul	1974	30
Car alarm		Mar	1975	24
	Errata	Jul	1975	68
Car alarm		Dec	1978	16
Car alarm		Oct	1983	66
	Errata	Nov	1983	96
Car security device		Apr	1980	50
CMOS burglar alarm		Apr	1975	51
CMOS house alarm		Jan	1978	16
Combination lock		Mar	1981	74
Ecolight		Jul	1984	55
Electronic combination lock		Mar	1975	46
Home security system		Aug	1981	18
Infant guard		Jan	1982	80
Infra-red intruder alarm		Jul	1972	54
Infra-red intruder alarm		Feb	1981	62
Infra-red Intruder Alarm	part 1	Jul	1984	61
	part 2	Aug	1984	59
	Errata	Jul	1986	56
Logic lock	part 1	Jun	1982	79
	part 2	Jul	1982	39
	Errata	Nov	1982	75
Porch light		Feb	1978	28
Proximity switch		Oct	1978	75
Radar intruder alarm		Aug	1975	21
Second line of defence, the - simple house alarm				
Ultrasonic burglar alarm		Aug	1980	86
Warlock alarm system		Jul	1984	35
Watchdog home security system		Aug	1981	18
ZX-based alarm		Dec	1983	31

TELEVISION AND VIDEO

CCTV camera Colour board for the Ace microcomputer		Dec	1977	46
Digital framestore		Apr	1984	41
	Errata	May	1984	69
	part 1	Dec	1984	61
	part 2	Jan	1985	44
	part 3	Feb	1985	55
Low-cost framestore	part 4	Mar	1985	59
	part 5	Apr	1985	48
	part 1	Sep	1986	36
	part 2	Oct	1986	48

Audio frequency meter		Jul	1973	66
Audio millivoltmeter, ' A ' weighted		Apr	1976	26
Audio noise generator		Apr	1976	22
Audio oscillator		Nov	1980	27
Audio oscillator with LCD DFM		Nov	1978	71
Audio power meter		Jun	1976	29
Audio power meter		Mar	1979	67
Audio spectrum analyser		Mar	1978	27
Audio wattmeter		Oct	1973	46
Autoranging capacitance meter	part 1	Mar	1982	48
	part 2	Apr	1982	108
	Errata	Jul	1982	35
Basic power supply, 4.5A-12V, 0.4A		Oct	1974	53
	Errata	Nov	1974	71
Bench amplifier		Aug	1979	67
Berich amplifier		Dec	1980	74
Bench amplifier (Short Circuit)		Feb	1977	52
Bench PSU, $20 \mathrm{~V} / 2.5 \mathrm{~A}$ or $40 \mathrm{~V} / 1.25 \mathrm{~A}$		Jul	1976	18
Bench PSU, 3-8V/2.5A and $\pm 8-16 / 0.5 \mathrm{~A}$		Feb	1984	41
Bench PSU, $25 \mathrm{~V} / 1.5 \mathrm{~A}$ (Short Circuit)		Apr	1977	47
Cable tester		Oct	1979	23
Capacitance meter, 10pF-10uF		Aug	1980	93
Capacitance meter, autoranging	part 1	Mar	1982	48
	part 2	Apr	1982	108
	Errata	Jul	1982	35
Capacitance meter, direct-reading		Nov	1984	41
Capacitance meter (ETI Capacitometer)		Mar	1987	45
Capacitance meter, large value (ETI Millifaradometer)		Nov	1985	44
Capacitance meter module for				
DVMs (Free PCB project)		Mar	1986	30
Circuit probe, analogue/digital (ET\| Modular Test Equipment)		Apr	1986	36
CMOS IC tester		Aug	1984	64
	Errata	Sep	1984	68
CMOS IC tester, simple		Feb	1976	19
Component bridge (RCL bridge)		Aug	1985	30
Component tester (for semiconductors)		Dec	1981	69
Continuity tester, audible (ETI Loudspeaker Squeaker)		Nov	1984	17
Continuity tester (Short Circuit)		Sep	1977	38
Counter/timer module (ETI Modular Test Equipment)		Jan	1986	54
Cross hatch generator		Sep	1978	33
Crystal calibrator		Mar	1981	39
Curve tracer		Dec	1978	73
Decade resistance box		Dec	1972	38
Digital frequency meter				
(Short Circuit)		Jun	1977	19
	Errata	Aug	1977	8
Digital frequency meter, $0-150 \mathrm{MHz}$		Jan	1980	56
Digital multimeter		Oct	1976	42
	Errata	Nov	1976	8
Digital multimeter		Aug	1978	23
Digital oscilloscope trigger		Sep	1983	51
Digital test meter (DMM/DFM)		Sep	1980	79
Digital voltmeter		Mar	1977	35
	Errata	Jun	1977	9
Digital voltmeter module		Oct	1975	18
Direct-reading capacitance meter		Nov	1934	41
Distortion Meter	part 1	Jan	1985	55
	part 2	Feb	1985	37
	part 3	Mar	1985	43
Dual logic probe		Sep	1982	68
Dual power supply		Apr	1972	50
Dual trace adaptor		Oct	1974	18
Dual trace adaptor (Design Competition)		Feb	1983	72
Dual trace adaptors . (Readers' Designs)		Jul	1981	27
Dummy load for audio testing		Jan	1982	71
FET DC voltmeter		Dec	1972	36
Frequency counter module, 1 MHz		Nov	1975	11
Frequency counter module (ETI Modular Test Equipment)		Jan	1986	54
Frequency counter, PLL	part 1	Oct	1986	28

	part 2	Nov	1986	29
Frequency meter, audio Jul 1973				
Frequency meter, digital, $0-150 \mathrm{MHz}$		Jan	1980	56
Frequency meter, digital (Short Circuit)		Jun	1977	19
	Errata	Aug	1977	8
Frequency meter, linear				
Frequency meter module for DVMs (free PCB Project)		Apr	1986	46
Function generator, 1 kHz				
Function generator, $1 \mathrm{~Hz}-100 \mathrm{kHz}$		Dec	1979	20
Grid dip oscillator		Aug	1975	34
High impedance instrument probe		Apr	1982	57
IC power supply		Jan	1973	34
IF strip tester (Free PCB project)		Oct	1982	26
Impedance meter, direct reading		Jun	1975	17
Instrument probe, high-impedance		Apr	1982	57
Insulation tester, 500 V		May	1982	73
Laboratory PSU, 0-30V, 1, 2A		Sep	1981	87
LCD digital multimeter		Aug	1978	23
	Errata	Oct	1978	13
LEDline logic analyser		Feb	1987	50
LEDscope AF flat-screen oscilloscope		Jan	1987	57
Linear frequency meter,				
Linear IC tester		Nov	1974	30
Linear ohmeter, $1 \mathrm{k}-1 \mathrm{M}$ FSD		Jun	1980	34
Logic/analogue probe				
Logic analyser (ETI LEDline)		Feb	1987	50
Logic clip, 16 point, TTL/CMOS		Nov	1983	91
Logic IC tester, TTLCMOS		Jan	1976	19
Logic probe		Sep	1972	32
Logic probe		Dec	1975	32
Logic probe, CMOS, single point		Mar	1983	73
Logic probe, dual		Sep	1982	68
Logic probe, TTL/CMOS		Dec	1979	101
Logic Pulser		Dec	1975	37
Logic tester, CMOS		Aug	1980	73
Logic-trigger for oscilloscopes		Mar	1979	39
Loudspeaker squeaker		Nov	1984	17
Low-ohm meter, 0.1-100R FSD		Apr	1981	40
Marker generator		May	1976	25
Memory 'scope display		Nov	1985	28
Meter mount (multimeter stand)		Jan	1973	43
Millifaradometer - large-value				
Millivoltmeter, audio, ' A ' weighted		Apr	1976	26
Modular test equipment	part 1	Oct	1985	38
	part 2	Nov	1985	36
	part 3	Dec	1985	37
	part 4	Jan	1986	54
	part 5	Apr	1986	36
	Errata	Jun	1986	55
Multimeter (DMM/DFM)		Sep	1980	79
	Errata	Apr	1981	8
Multimeter, digital		Oct	1976	42
	Errata	Nov	1976	8
Multimeter, LCD digital		Aug	1978	23
	Errata	Oct	1978	13
Ohm-meter, linear, 1 k -1 M FSD		Jun	1980	34
Oscillator, audio		Nov	1980	27
Oscillator, audio, with LCD DFM		Nov	1978	71
Oscillator, sweep		Aug	1977	10
Oscillator, wide range		Jun	1978	90
Oscilloscope, 10 MHz	part 1	May	1982	53
	part 2	Jun	1982	30
	part 3	Jul	1982	63
	Errata	Feb	1983	41
Oscilloscope calibrator Oscilloscope, flat-screen AF		Apr	1972	2
Oscilloscope, flat-screen AF				
Oscilloscope logic trigger		Mar	1979	39
Oscilloscope memory display		Nov	. 1985	28
Oscilloscope probe, high-impedance		Apr	1982	57

Oscilloscope, television	part 1	Jul	1983	21
	part 2	Aug	1983	30
	Errata	Sep	1983	46
Oscilloscope, television (Videograph)		Apr	1979	27
Oscilloscope trigger, digital		Sep	1983	51
PLL frequency counter	part 1.	Oct	1986	28
	part 2	Nov	1986	29
Power meter, audio		Jun	1976	29
Power meter, audio		Mar	1979	67
Power meter, RF		Oct	1978	30
Power meter, stereo		Mar	1984	35
Power supply, 0-30V/1.2A		Sep	1981	87
Power supply, 4.5-12V/0.4A		Oct	1974	53
	Errata	Nov	1974	71
Power supply, 3-8V/2.5A and $\pm 8-16 \mathrm{~V} / 0.5 \mathrm{~A}$		Feb	1984	41
Power supply, $10 \mathrm{~V} / 1 \mathrm{~A}$ or $15 \mathrm{~V} / 0.5 \mathrm{~A}$		Jan	1973	34
Power supply, $25 \mathrm{~V} / 1.5 \mathrm{~A}$ (Short Circuit)		Apr	1977	47
Power supply, 30V/1A		Aug	1978	75
Power supply, $20 \mathrm{~V} / 2.5 \mathrm{~A}$ or $40 \mathrm{~V} / 1.2 \mathrm{~A}$		jut	1976	18
Power supply board		Oct	1985	38
Power supply, dual, 0-20V/1.8A		Apr	1972	50
Power supply, programmable		Jan	1983	83
Pulse generator board		Dec	1985	37
Pulse generator, precision		Nov	1982	39
Pulse generator, single/delayed		Feb	1981	46
RCL bridge		Aug	1985	30
Reșistance box, decade		Dec	1972	38
RF attenuator		Sep	1976	62
RF power meter		Oct	1978	30
SCR tester (Short Circuit)		Jan	1977	36
Semiconductor tester		Dec	1981	69
Signal injector/tracer (Short Circuit)		May	1977	37
Signal generator				
(ETI Modular Test Equipment)		Nov	1985	36
	Errata	Jun	1986	55
Signal tracer		Mar	1980	26
Simple CMOS IC tester		Aug	1984	64
	Errata	Sep	1984	68
Simple frequency counter		Nov	1975	11
Sound pressure level meter		Feb	1981	74
Spectrum analyser, audio		Jun	1978	27
Spectrum analyst		Nov	1982	52
	Errata	Dec	1982	83
Stereo power meter		Mar	1984	35
Stereo test amplifier (Short Circuit)		Jul	1977	30
Sweep oscillator		Aug	1977	10
Telescope (television oscilloscope)	part 1	Jul	1983	21
	part 2	Aug	1983	30
	Errata	Sep	1.983	46
THD meter	part 1	Jan	1985	55
	part 2	Feb	1985	37
Tone burst generator	part 3	Mar	1985	43
	part 1	Feb	1976	25
	part 2	Mar	1976	57
Transistor tester		Jul	1974	63
True RMS voltmeter		Mar	1978	13
TTL supertester		May	1975	30
TV bargraph		Jul	1982	50
TV pattern generator		Nov	1976	31
TV storage 'scope	part 1	Jul	1983	21
	part 2	Aug	1983	30
	Errata	Sep	1983	46
Videograph TV oscilloscope		Apr	1979	27
Versatile grid dip oscillator		Aug	1975	34
Voltmeter, digital		Mar	1977	35
	Errata	Jun	1977	9
Voltmeter, FET DC		Dec	1972	36
Voltmeter module, digital		Oct	1975	18
Voltmeter, true RMS		Mar	1978	13
Voltmeter, wide range		Apr	1972	36
	Errata	Feb	1973	58
Wattmeter, audio		Oct	1973	46
Wide range oscillator		Jun	1978	90
Wide range voltmeter		Apr	1972	36

4 number of errors have come to light since the publication of the first part of this index in the April 1987 issue. The correct entries are given below in the sequence in which they appear.

Under the heading AUDIO (page I of the index):-
2040 II active loudspeaker, September 1982 page 46: a correction concerning this article was published on page 75 of the November 1982 issue;

Balanced line preamplifier: this article appears on page 38 of the May 1983 issue, not page 63 as stated;

FM tuner with digital frequency display: this article appears on page 21 of the September 1978 issue, not page 71 as stated;

Headphone adaptor; this article appears on page 53 of the March 1976 issue, not page 52 as stated;

Moving coil preamplifier, Audiophile: the first errata for this article appears on page 17 of the February 1980 issue, not page 29 as stated;

Preamplifier, RIAA: this article appears on page 98 of the September 1980 issue, not page 73;

Under the heading CLOCKS and TIMERS (page III of the index):-

STAC timer: this article appears in the September 1978 issue, not the September 1981 issue.

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.
If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code. Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.
ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN
This space is donated in the interests of high standards of advertising.

THE ETI KAPELLMEISTERS

Vivian Capel has been hard at work in the garden shed and now emerges to show off his high quality but novel loudspeaker design.

The perfect loudspeaker which exactly reproduces the sound field obtaining at the original performance does not, of course, exist. So many of the requirements are incompatible when applied to practical loudspeaker design. If we want one feature we must sacrifice another.

The designer usually tries to effect a compromise, giving us some of both as far as that is possible. One designer may favour one characteristic and so slant his design in that direction, while another may consider the other to be of greater importance.

The Kapellmeister speaker was designed to fulfil a particular pattern of priorities. Some unorthodox methods were used to achieve them and constructing the prototypes though not difficult, was time-consuming. However, the results obtained more than justified the time and effort expended.

Requirements

The overriding consideration was that of size. In many homes, so much has to be accommodated in a modest living space there just isn't room for two large speaker boxes. However, most of the furniture stands around the walls so it is cabinet width that is the most critical dimension. Depth is of less importance and (within reason) height is no problem at all.

I found that eight inches was the maximum width I could allow for each speaker. This didn't seem very hopeful for a hi-fi unit!

For small size, the infinite baffle seemed the obvious choice, yet I wasn't too happy with the prospect. Pressure acting on the back of the cone is non-linear because it increases as the cone

moves back. As the cone can only move in accord with all forces acting on it, its movement is thus not in exact proportion to the applied electrical signal.

The effect is more pronounced at lower frequencies. Indeed, the measured distortion of infinite baffle enclosures is high' in the bass region. Internal reflections lead to standing waves and hangover, while high internal pressures produce panel resonances in the cabinet which require rigid construction, careful selection of materials and various forms of damping.

Bass resonance can be tamed only by critical adjustment of
cabinet volume in conjunction with the driver parameters. Many designers adjust the cabinet Q to give moderate bass resonance to enhance the bass response.

However, in my priorities, low distortion and lack of coloration came higher than a pronounced bass response. Infinite baffles, especially small ones, need a lot of amplifier power which I did not have, so the infinite baffle enclosure was out.

Reflex enclosures suffer from similar drawbacks although there are some very good ones. These also were rejected.

The rear-loaded folded horn is
an attractive speaker with many advantages - low power requirement being one of them. However, the lowest bass frequency it will produce is proportional to the width of the horn flare. My eight inches wouldn't even get into the upper bass register, so this prospect too had to be abandoned.

I have always had a hankering after the transmission line principle. It provides a long folded path behind the driver which eventually emerges into the free air. Thus there are no high internal pressures, no non-linear cone excursions, no reflections and no panel resonances.

Wadding stuffed into the path absorbs much of the rear wave but its effect is gradual. There are no hard boundaries to cause reflections. The snags are purely practical ones. The area of the rear passage should ideally equal that of the driver cones throughout its run. There should be no sharp turns otherwise the woodwork at the bends could absorb and release energy thus adding coloration, as well as producing back reflections. To get a reasonable bass response, this rear path should be at least eight feet long.

To achieve all this, designs tend to be large, and then there are usually some comromises. So this type of enclosure too seemed a non-starter. However, before rejecting it finally, I decided to resolve some of the other factors.

Frequency Response

A wide frequency response is usually considered a top priority and most commercial models vie with each other in getting the widest range possible in their specifications.

Often this is just a case of one-up-manship. A wide range is indeed desirable and within certain limits essential for hi-fi but there can be overkill, especially if it is at the expense of other features.

The upper limit of human hearing extends to about 16 kHz in the young but falls increasingly over the age of 30 . BBC FM music radio broadcasts have 15 kHz as their upper limit. A response above 15 kHz was therefore deemed superfluous, especially if only achieved at the expense of other factors.

As for the bass, the lowest note produced by any orchestral instrument is 29 Hz from the
contra-bassoon, while piano goes down to 27.5 Hz . In practice it is rare that even these instruments get down that far. When they do, spectrum analysis reveals that the fundamental is very weak anyway and most of the character is imparted to the tone by the harmonics.

The lowest harmonic which is the second in the above cases, is 55 Hz and 58 Hz respectively. So while it may be desirable to reproduce down to the lowest frequencies, it is by no means essential. In fact sub-bass response can reveal rumble, record warp and even subway trains passing near the studio! A bass response below 45 Hz was thus deemed not really essential and given a low priority rating.

Multi-speaker Systems

Crossover networks are generally held to be a necessary evil. Tone burst testing around the crossover frequencies shows that ringing (continued oscillation after the signal has stopped) takes place due to the reactive components in the networks. They introduce losses thus reducing the sensitivity of the speaker, and phase shift also occurs.

A multiplicity of drivers means more crossover networks hence

Fig. 1 Side plan of Kapellmeister speaker.
more spurious signals and phasing problems, with lower sensitivity. Not only this but trying to make the drivers work together can create difficulties. Sensitivities must be carefully matched to ensure an even response, and even when this is done there can be response vagarities around the crossover points due to overlap.

A particular problem is phasing. As the cones of tweeters, mid-range units and bass drivers are of different depths, they are at different distances from the listener when mounted normally.

The resulting phase differences vary with frequency and the total wavefront pattern from all units is quite different from that of the original sounds. These phase anomalies are compounded by those arising from the crossover networks.

Phasing is particularly important in the reproduction of the stereo signal because stereo information is largely conveyed by subtle phase differences between the channels, as well as by amplitude variations. Some commercial speakers have stepped front baffles so that all the cones are in line (and in phase). This is an improvement on the conventional arrangement but only one listener right on axis will gain any benefit. Those off axis still have to suffer phase differences. Others have the tweeter reverseconnected to minimise phase shifts in their crossover networks, but all these are really palliatives.

All this casts grave doubts on the desirability of multi-speaker units. The problems can so easily be resolved by using a single fullrange speaker if some limitation of the frequency range is accepted. The question is, how much?

Investigation into available drive units revealed a full-range elliptical 8 -inch by 5 -inch with centre HF cone that had a frequency response of 45 Hz to $16,000 \mathrm{~Hz}$ - just the frequency range I had decided on!

Power rating seemed rather low at eight watts RMS, but without the inherent loss of the infinite baffle enclosure and those of the crossover networks a high efficiency could be anticipated, giving ample sound output.

Freedom from the clutter of extra drivers could well make a transmission line possible too.

A single driver also approaches the ideal point source, something achieved with considerable complication and expense in the prestigious Quad ELS-63 electrostatic. Coupled with the narrow eight inch cabinet width, this should produce outstanding stereo imaging.

Is there any disadvantage with using a single driver apart from restricting the frequency response? Doppler effect is one sometimes mentioned. High frequencies are modulated by the
forward and backward cone movement made when reproducing bass at the same time. However, with an acoustically efficient system, cone movement due to bass is limited so the effect is small.

Even so, a point sometimes overlooked, is that the microphone diaphragm itself originally experienced doppler effect by responding to some high and low frequencies at the same time, although its bass movements are much smaller than those of a speaker cone. The motion of a single-speaker cone is therefore closer to that of the microphone diaphragm than those of the cones of a multiple-speaker system.

Design Considerations

The transmission line type of enclosure is top of the league for pure uncoloured reproduction providing good design principles are observed. These are not easy to achieve in practice, and usually mean considerable bulk.

The Kapellmeister speakers use some novel and highly successful methods of overcoming the problems, while occupying only 8×11 in of floorspace.

One of the requirements is for the area of the transmission line to equal that of the driver cone throughout its length. Any variations result in sound pressure differences, back pressure and other complex effects which upset the smooth passage of sound along the line.

This ideal is frequently compromised in practical designs because of another rule that there should be no sharp bends. These can cause reflections, absorbtion and release of energy from wooden baffles angled to deflect the sound around the corners. All of this results in coloration.

Conventional designs usually house all the drivers in a cubicle which extends to the back of the cabinet. From this the path, considerably reduced in area, descends to follow its course through horizontal and vertical sections. At the back of the cubicle there is usually a deflection back to the drivers.

For reasons already mentioned, we use only one driver and this simplifies matters because we can dispense with the cubicle. The driver is thereby mounted at one end of the line which does not vary in area throughout its length, so totally fulfilling one of the
main requirements.
The path followed is shown in Fig. 1. It is in three sections; the sound travels downwards, then up through the centre section, and finally down again through the rear one to exit at the bottom.

This arrangement appears to violate the other main rule regarding bends and deflectors. However, that rule does not apply if deflectors could reflect the sound perfectly along the required path without back reflection and without adding coloration.

Wood does not fulfil that requirement but other materials can do. One excellent one is ceramic tile with concrete backing. (Note how sound bounces around in a tiled swimming bath). So, the deflectors are glazed ceramic tiles set on concrete corner blocks. These might seem to be a nuisance when considering construction, but they are easily formed in situ, and are the real secret of the quality obtainable from these speakers.

The tiles are set at an angle of 45° to reflect the sound accurately around the bends. It will be noticed that there is also a tile at the top just above the driver. The purpose of this is to reflect sound generated by the top part of the cone downward.

The wave-front radiated by the back of a loudspeaker cone travels outward along an axis that is perpendicular to the surface of the cone. If the cone is at an angle of 22° the tile should be set at an angle of 56°. If the speaker has a different angle from this, the difference for the angle of the tile should be halved, so a 20° cone should have a tile angle of 55․ Most loudspeakers of this size have cone angles in this region, but the angle varies slightly with cone curvature anyway, so the above figure can be used in most cases and is not too critical.

As the sound pressure on either side of the baffles is almost the same they are not excited into vibration to produce coloration, and this is true also of the back. The top and bottom pieces are of stout timber lined on their insides with the concrete and tiles, so they too are prevented from vibrating.

Only the front panel has a sound pressure differential between its faces but this is much lower than with a totally enclosed cabinet. Also its narrow width makes for high rigidity which inhibits vibration. The material of

Fig. 3 (a) First stage in construction. The front is glued to top and bottom cheeks using $1 / 4$ in supports to lift front into correct position. First pair of side pieces fitted and triangular blocks (small ones at the top) in position. Apply concrete, fit tiles and lay wadding. (b) Fix first baffle, glueing and pinning down to ensure close fit. (c) Fit second pair of side pieces and four triangular blocks (all blocks from now on are regular size). Apply tiles, concrete, and wadding. Tuck two extra lengths of wadding through aperture into first channel. (d) Fit second baffle glueing and pinning. Aperture goes at the top. (e) Glue in third pair of sides and last pair of blocks. Fit tile and concrete, lay wadding and fit back. Double an extra length of wadding around the ends of the full lengths. Sand down, fill crevices, finish top and bottom cheeks, fit fabric and fix legs.
the enclosure thereby adds very little to the sound.

Closed Pipe

The transmission line is in effect a pipe that is closed at one end but open at the other. As such it inhibits a fundamental resonance plus odd harmonics. There are no even harmonics. The fundamental resonance occurs where the total length equals a quarter wavelength of the frequency. Here, the length is just over eight feet, so the resonance is at 35 Hz , which is below the lower limit of the driver at 45 Hz . However, being broadened by the dampening material in the pipe, it can influence the range of the speaker, usefully extending it by a few Hertz.

The antinodes (points of maximum air motion) at the third harmonic occur at the third and two-thirds positions, that is at the bends. Extra wadding at these points serve to suppress this harmonic. Extending the extra wadding up the first channel and also at the exit dampens out two of the three antinodes of the fifth harmonic. Above the fifth, the harmonics are smaller and the normal wadding fitted throughout the length of the pipe tames them.

The speaker unit is an 8 in x 5in ellipitical unit which, allowing for the frame and surround, has 7in $x 4$ in cone. Thus the approximate area is $21 \mathrm{in}^{2}$. Area of the channels is a 7 in x 3in rectangular, which is the same as the cone.

Parameters of the driver are not too critical, so if the specified one is not available any similar unit will do. The size is important and this includes the front to back measurement which should be about $2 \frac{1}{2}$ inches. It should be a full-range speaker with a response from 45 Hz to 15 kHz or better. Generally you will find that an extension at one end is at the expense of the other.

High power is not essential because of the good acoustic and electrical efficiency, but eight watts RMS minimum is recommended. General good quality construction with a magnet of not less than 9,000 gauss should be looked for.

Construction

Although quite a lot of woodworking is needed, none of it is difficult and it consists mostly of cutting straight edges. These must
be straight though, so if your saw cuts tend to wander, get the timber yard to cut them for you. The measurements are uniform with many pieces being the same, which helps.

Use standard 8 in $\times 4$ in ceramic tiles, cut down to 7 in x 4in. That is just one straight cut per tile. The exception is the top tile over the speaker which because of its different angle must be

7in $\times 3^{1 / 2}$ in.

Triangular blocks are used to support the tiles as shown in Fig. 1. These are made by first cutting four 3in squares, then sawing diagonally to give eight triangles. The two blocks for the over-speaker are made by halving a 3 in $\times 2$ in rectangle. A standard 3:1 mix of sand and cement is used to fill the space behind the tiles. In some cases the cement is applied first between the blocks and the cement applied at the back afterwards.

In all cases screw two or three stout screws at random angles into the wood where the cement is to be laid leaving about an inch out of the wood, so that they will be buried in the cement. These will then secure the concrete block in place when it is dry. Thoroughly wet the back of the tile before applying it to the cement. In some cases the front of the tile may need to be held in place while the cement sets, with panel pins knocked into the wooden sides. It does little harm to leave them in place afterward.

All jointing is done by a strong wood glue. Evostik wood glue was used for the prototypes which is very strong and convenient to apply. If not available, a substitute can be used but make sure it is a wood glue and not a general purpose adhesive.

Construction must proceed in numerous stages (Fig. 3) to allow the glue and concrete to set before continuing with the next, so some patience must be exercised. Make both speakers at the same time so that each stage can be completed on both and some time saved.

Stages

Having cut all the pieces, we start with the front panel. Lay it face downward supported on some scrap $1 / 4$ in ply or hardboard. Glue the top and bottom edges and fit the top and bottom
boards. The front edges of these should not rest on the ply supports but directly on the work
surface. They will then protrude a quarter of an inch beyond the panel. They should also be positioned to give an equal overlap at either side. The idea is for the top and bottom cheeks to overhang the front, sides and back. Weights should be applied to the free sides of the cheeks to hold them against the panel while drying.

Measure the distance between the rear edges of the top and bottom cheeks to ensure that it is exactly 33 in and therefore the top and bottom are parallel. Wait for the glue to set and harden.

Next, fit the first pair of side pieces, glueing the ends and the edge contacting the back of the front panel. Ensure the pieces are flush with the edge of the front panel. Measure across the upper edges to make sure they are $73 / 4 \mathrm{in}$ and so are true. Now glue the triangular blocks in place at the bottom and top as shown in Fig. 3. The top ones are the special sized onces. Glue the edges as well as the face that contacts the sides, but be careful in pressing them into place that you do not move the sides. Leave it to set.

Now fit the speaker, screwing it in place over the aperture, and solder a pair of wires which are run down the panel to a hole drilled in the bottom. Leave a few inches free, and make sure both speakers are connected the same way to colour-coded wire. It is prudent to cover the front of the speaker with a piece of card secured by drawing pins to protect the cone during subsequent operations.

Fit supporting screws to the base and top, then fill the space between the bottom blocks with cement (not too wet) and bed the tile. Fit the top narrow tile on the blocks and fill in behind it with cement. Allow time to harden. If desired, a quick-drying additive can be used to speed matters up.

Saw suitable lengths of quadrant and glue into the corners between the front panel and the sides. If they are warped they should be held in place with panel pins. Glue two further strips of quadrant at the top inside edge of the sides and pin to secure.

Cut three lengths of BAF wadding to size and lay them in the cabinet so that two start at the bottom of the speaker and the third lies over it to the top of the case. Fill the space above the speaker with a rolled up piece of
wadding. Make the lengths a few inches longer than the channel so they bend up at the bottom over the tile. The three layers will fill the channel without compression.

Now fit the first baffle with the cut-out at the bottom, glueing to the top edge of both sides and the upper quadrant surface. Also glue to the top and bottom cheeks. Secure with panel pins to ensure a close fit. Next, fit the second pair of side pieces and two pairs of blocks top and bottom. Fit quadrant to the corners, as with the first channel, and to the top edges of the sides. Wait for all the glue to dry.

Fit the tiles and cement as with the first pair, but this time the top one will be bedded and the bottom one rear-filled. Wait for the concrete to set.

Cut two pieces of wadding about 18 in long and push half the length of each up the lower channel through the cut-out, and lay the other half length back along the top channel. Now lay three full length strips over these along the complete upper channel. This gives the extra density at the first bend needed to dampen the third harmonic antinode.

Next comes the second baffle which is glued and pinned as the first but with the cut-out at the top. Fit the third and final pair of sides, also the last pair of blocks plus the quadrant in the corners and top edges. Allow the glue to harden.

Now for the last tile. Don't forget the screws in the top to secure the concrete block inside. Mount the tile on the blocks using panel pins to keep it in place; this will be easier if the enclosure is stood vertically upside down. Return to the horizontal, and fill in rear with cement: Wait until set.

Lay three strips of wadding in the channel making sure the bend is filled. Put some extra here if necessary to fill completely. Cut another strip about 24in long and tuck half the length under the other three at the outlet, and bring it over the top so that it covers the rough ends.

Lastly glue and pin the back in place. Now for the finishing. Sand down any ridges in the sides, but do not be too fussy, for they will be completely covered with fabric. Check carefully for any cracks or crevices in the jointing and fill

PROJECT: Kapellmeisters

with wood glue. Sand, then stain or varnish the top cheek and the edges of the bottom one. There is no need to do the underneath. Paint the body with matt black.
This is not strictly necessary, but if it isn't done, bare wood can show through the fabric. Take care not to get any paint on the loudspeaker cone as this would affect its flexibility.

Cut the fabric to the exact size to cover the body between the cheek overhangs, but leave a 4 in flap 8 in wide, at the start. Secure the vertical starting edge at one edge of the back of the enclosure with tacks so that the flap overhangs the bottom. Then pull it around, keeping it taut overlapping the start and securing it with a wooden strip (previously painted) down the middle of the back. Trim the flap to fit between the prongs of the bottom and fix it across the exit port with gimp pins.

Fit some 2 in high legs. The rear ones should be inclined backward to give greater stability as in Fig. 1. Pack filler around the hole in the bottom through which
the speaker wire passes to make it airtight, and fit a connecting block underneath.

Performance

Well, was it all worth it? That's what I wondered when the prototypes were complete. It took very few listening sessions to provide the answer. Ambience and sense of presence was perhaps the first noticeable effect. Woodwind was clear, easily identifiable and rounded in tone. Brass was brilliant yet mellow, stacatto passages really were stacatto, not slurred as they sometimes sound.

A recording of harpsichord was remarkable, revealing tones and subtleties never heard before. A solo violin sounded natural with no moments of discomfort in the higher passages. One passage in an orchestral work which I always thought was performed by the cellos playing pizzicato, could be clearly identified as played on the lower registers of a harp. I am now really hearing many of my recordings for the first time.

Stereo broadcast drama is quite dramatic, with postive
locational identification even in crowd scenes. Sensitivity of the speakers enabled a 4+4 watt amplifier used for initial tests to provide ample undistorted volume. This opens up the possibility of using low-powered class A amps for even higher fidelity. Just one drawback though, I now find I cannot listen to other speakers with enjoyment (especially infinite baffle systems) so be warned!

BUYLINES

The speaker used is the ALTAI 8553DU, a full range 8 in x 5in elliptical with centre HF cone. Frequency response: 45-16,000Hz, 8W RMS power. Any similar unit can be used, but it must be no more than $21 / 2$ in deep.

Maplin can supply the Altai model (part number WY13P) or Wilmslow Audio (Tel: (0625) 529599) can supply an equivalent (part number EMI99140EB).

FEATURES

- Totally portable
- Powered by ordinary lighter fuel
- Up to 60 minutes continuous use
- Adjustable temperature equivalent to 10-60 watts
- Top temperatures to max. of $400^{\circ} \mathrm{C}$
- Refill in seconds
- High performance - small size $175 \mathrm{~mm} \times 19 \mathrm{~mm}$
- Meets all safety standards

To ETI READERS SERVICES. 9 Hall Road, Maylands Wood Estate,
Hemel Hempstead, Herts, HP2 7BH
PLEASE SUPPLY THE FOLLOWING:
ORDER CODE.
\qquad Price. Price. Price. Postage
| I enclose my cheque payable to ASP for
Please debit my Access/Barclaycard No.
| Name..
\qquad

OFFER PRICE

- ONLY £15.35 + 40p P\&P
ORDER CODE ROSL 1
also available at special prices to eti readers

@ゅロFROM JAYTEE

THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS
ILP have long been recognised as manufacturers of top quality amplifiers.

All ILP products are built to extremely high specification for the ultimate in hi-fi performance. They're unique in being completely encapsulated with integral heatsinks, and can bolt straight onto the chassis. They're also extremely robust, ensuring high levels of reliability as well as performance

ILP Amplifiers are now avaitable through Jaytee. The UK Distributor with the availability and service to match the quality of the amplifiers. POWER BOOSTER AMPLIFERS
The C15 and C1515 are power booster amplifiers designed to increase the output of your exisiting car radio or cassette player to 15 watt rms. C15 ... 15 watts
 ILP LOUDSPEAKER
power................ 350 watt rms size................... 12 inches impedance 8 ohms range 20 Hz to 5 KHz

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

PREAMPLIFIER MODULES
All modules are supplied with in line connectors but require potentionmeters, switches, etc. If used with our power amps they are powered from the appropriate Power Supply.
Type Application Functions Price
HY6.......MonoPreAmp Full Hi Fifacilities.................... $\mathbf{£ 8 . 9 5}$

HY66......StereoPre-Ar.1p... 14.55 HY78......Stereo Pre-Amp As HY66 less tone controls $\mathbf{£ 1 4 . 2 5}$ NEW! HY83 Guitar and Special EffectsPre-Amp as HY 73 Plus Overdrive and Reverb E18.95 for HY6 £0.95. B66 for HY66-83 £1.45.

MOSFET MODULES	Type	Output Power	Load
Impedence			

BIPOLAR MODULES
Ideal for Hi Fi, Full load protection
integral Heatsink, slew rate $15 v / \mu$ s
integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$

Type	Output Power Watts (rms)	$\begin{aligned} & \text { Load Price } \\ & \text { Impedence } \\ & \cap \end{aligned}$
HY30	15	$48 \ldots$ ¢ 10.95
HY60	30.......... 4	4.8......f10.95
HY6060	$30+30$	4.8..... 122.95
HY 124	60.	4 617.95
HY128.	. $60 . .$.	$8 \ldots17 .95$
HY244	. 120	4 623.45
HY248	. 120 8	8 £23.45.
HY364	. 180 4	4 $£ 34.95$
HY368.	. 180 8	8 ± 36.45
Distortion	less than 0.0	1\%

POWER SUPPLY UNTT
Type For Use With Price PSU30..... PRE AMP....... 9.45 PSU30..... PRE AMP.. 19.45
 PSU412.. 1 or 2 HY60, 1 HY6060, 1 HY124...... 19.35
PSU422.. 1 HY128........................... $\mathbf{f 2 1 . 3 5}$
PSU432. PSU432... 1 MY128....... PSU512... 2 HY 128,1 HY244 PSU512 ... 2 HY 128,
PSU522... 2 HY 124 PSU522... 2 HY 124.
PSU532. 2 MOS 128 PSU532_2 MOS 228
PSU542 ... 1 HY24B

PSU PSU542... 1 HY248...
PSU552... 1 MOS248
PSU712 PSU712... 2 HY244. PSU722... 2 HY248 PSU732... 1 HY364.
PSU742
I
 PSU752 ... 2 MOS248, MOS $364 \ldots \ldots \ldots .131 .25$ Distortion less than 0.01%

Jaytee Electronic Services, 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 All Prices include VAT, Post \& Packing

that there is a real difference at Crick/ewood Electronics That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, competitive prices and service rom the U.K. 's number one 100% component shop No gimmicks, no gadgets or computers, just components, milions of them, all easily available by mail order. calling or credit card telephone orders. Just pick up the phone (or a pen) to get your FREE cOpy now tho SAE required). You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0995/01-4520161
Telex: 914977

Interak 1

AN EXPANDABLE DISK-BASED

 Z80A DEVELOPMENT SYSTEM YOU CAN BUILD YOURSELF! Universities, Colleges, Industry, Enthusiasts: Unlike home computers, development systems haveentirely 'open" architectures, use standard TTL etc. chips (ie no ULA's!), and are built in a proper engineering fashion. Usually these superior products carry a correspondingly superior price tag, but you can build interak yourself board by board and thus afford a system which would normally be out of your reach and/or understanding.

The initial development system has 64 K of RAM, a 4 MHz Z80A CPU, parallel ASCII keyboard interface, VDU' interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Any size (including 8 "double density) can be used. but our 1 Megabyte $3.5^{\prime \prime}$ drives are proving very popular because they can fit into the system rack, (and they only cost $£ 94.00$ each + VAT). CP/M Plus is available, giving access to thousands of "public domain" programs. The system can be described as "future proof" because it uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system was first made in 1977 so (unlike almost all other computers) it has stood the test of time
Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc

Greenbank

Greenbank Electronics (Dept T7E), 460 New Chester Road Rock Ferry, Blrkenhead Merseyside L42 2AE.

MIDI MASTER KEYBOARD

John Yau continues his musical masterpiece with a description of building the power supply and wiring the whole system together.

There is just one more PCB to make to complete the electronics of the MIDI Master Keyboard. This is the power supply board.

This month we shall also look at the construction of the keyboard cabinet and show how to wire up all the boards already constructed (the three keyswitch boards, the front panel and the CPU board) to make up the complete keyboard hardware.

The power supply is of a very ordinary design using three 78 series regulator ICs to provide the +5 V supply required by all the other boards and +5 V for the analogue to digital converter section of the CPU board.

Construction

Building the power supply PCB is straightforward. Ensure correct orientation of the bridge rectifier BR1 and all the electrolytic

HOW IT WORKS

The power supply is constructed on a single $P C B$ and supplies all the necessary power rails for the other boards. The main +5 V power rail derived from IC37 is used by the front panel PCB, keyswitch PCBs and most of the main CPU board. A separate, lower power, +5 V supply rail derived from IC36, along with the -5 V rail from IC38 is used to power the joystick section of the CPU board.

The three regulator circuits are extremely standard and require little in the way of explanation.

Independent supply lines for the analogue joystick circuitry ensure maximum stability and noise immunity from the digital circuitry elsewhere.

External components in the power supply circuitry are the mains transformer, fuse and the $7805+5 \mathrm{~V}$ voltage regulator (IC37). IC37 is bolted to the aluminium cabinet lid, which acts as an effective heatsink. Current consumption from the main +5 V power rail is around 600 mA , whilst the other rails draw substantially less power.

Fig. 1 The circuit diagram of the power supply board.
capacitors (especially the big ones!) as shown in Fig. 2. Mount C20 and C21 using the hole spacings on the PCB which are most suitable for the capacitors' sizes.

Solder regulators IC36 and IC38 directly onto the PCB and add a clip-on heatsink to IC36. IC37, the main 5 V regulator, is to be mounted remotely to a large heatsink. In the prototype the aluminium lid of the keyboard cabinet was used for this.

Finish off the power supply PCB by adding veropins for the wire terminal points.

Cabinet Construction

Figure 3 shows the details of the cabinet used by the author in the prototype. The base is made of 1 cm plywood whilst the end blocks and struts are of hardwood.

Start construction by joining the front trim to the plywood base, using a combination of wood screws and glue. Next prepare the keyboard chassis strut by cutting a recess large enough for the wiring harness to thread through on its way to the CPU board.

Position the strut on the plywood base so that the plastic notes lie just flush along the wooden front trim. Mark and join

PARTS LIST

CAPACITORS	
C20	$4700 \mu 35 \mathrm{~V}$ axial
	electrolytic
C21	$1000 \mu 25 \mathrm{~V}$ axial
	electrolytic
C22,24,26	10\% 16V axial
	electrolytic
C23,25,27	100n polyester
SEMICONDUCTORS	
IC36	78M05
IC37	7805
IC38	79M05
BR1	W01 bridge
MISCELLANEOUS	
FS1	200 mA fuse and fuseholder
T1	9-0-9V mains
	transformer
PCB; mains rocker switch; clip-on	
heatsink for IC36; wire and cable.	

BUYLINES

None of the components used for the power supply board should provide any problems. The PCB will be available from the ETI PCB Service in due course. Details at the back of this issue.

Fig. 2 The component overlay for the power supply board.
it to the base using glue and wood screws from the underside. Glue addítional strutting along the join for extra strength.

After the glue has dried, fix the keyboard to the cabinet by attaching the long brass hinge along the length of the keyboard to the mounting strut. The keyboard chassis should then be
able to pivot freely about the hinge.

The lid for the prototype cabinet was made out of sheet alumiunium, folded and machined to provide all the necessary holes and recesses. Both the front panel and CPU boards are mounted on the underside of the lid. The whole lid is hinged along the
edge of the plywood base using small brass hinges.

This method of mounting allows easy access to the circuit boards.

After the lid of the cabinet has been fabricated, hardwood endblocks should be cut out. These follow the end profile of the cabinet with about 0.5 cm margin all around. The endblocks are joined to the ends of the cabinet base and wooden struts added to form attachment points for the aluminium lid.

The power supply PCB and mains transformer are mounted on the plywood base, positioned close together.

Board Inter-wiring

The inter-board wiring diagram is shown in Fig. 4. The diagram is by and large a topological one. Matters such as cable length and positioning will depend on the final board layout within the keyboard cabinet you have chosen or made.

The first task is to mount the power supply board and components within the cabinet. The power rails to all the other boards should be left to last. Do not connect the power rails until the power supply is checked and functioning correctly.

Great care should be taken to ensure there are no unnecessary mains voltage hazards when assembling the power supply components. All mains wiring should be kept as short as possible and should be sleeved for extra insulation.

Use more sleeving or a silicon rubber compound to insulate the mains transformer and mains power switch wire terminals. It is a good idea at this stage to earth the aluminium cabinet lid and the steel chassis of the keyboard.

Wire up the MIDI OUT DIN sockets to the CPU board and the footswitch sockets to the front panel PCB as shown in Fig. 4, before bolting them onto the aluminium lid. The board clearance of the Front Panel PCB should be such that the push button bank protrudes with the key caps flush with the lid.

Before finally bolting the front panel board into place, make sure the LEDs are all properly slotted into position.

Bolt the two joysticks onto the front panel and make up the wiring harness as shown in Fig. 5. Earth the two potentiometer cases as shown and use screened cable

Fig. 3 Constructing the keyboard cabinet.

Fig. 4 The inter-board wiring for the whole MIDI Master Keyboard.
for the connections to the potentiometer wiper terminals.

Adjust the modulation joystick potentiometer so as to make the wiper voltage register 0 V when the joystick lever is at its lowest point of travel. The potentiometer setting for the pitch bend joystick needs to be set so that the wiper is near the centre of the track when the joystick lever is in its neutral position. The precise position is attained later when adjusting in conjunction with the CPU board powered and operating.

All that remains is to plug all the wiring harness multi-way plugs into their respective destinations - the connectors which jump between the front panel board and CPU board and the one which links the keyswitch PCBs to the CPU board. Prepare the wiring for the power supply rails, but do not finally connect the PSU board until it has been verified that the power supply rails are functioning correctly.

Give the whole assembly a double check for correct interboard wiring, paying particular attention to the power rail connections. Incorrectly

Fig. 5 Wiring the joystick assembly.
connected power rails are catastrophic as far as the integrated circuits are concerned!

Getting the power supply working should be fairly straight forward as very little can go wrong provided all the components are correctly orientated on the PCB. Power on the mains and check the output voltages. If they are incorrect,
switch off immediately and check everything over again. If the power supply regulators are operating properly, switch off and disconnect the mains supply before wiring the power rails to all the other boards.

Next month we shall look at the software to drive the MIDI Master Keyboard and the final setting up and testing.

TELEPHONE ALARM

Anyone breaking into Barry Taylor's house had better watch out. This unit will phone him up and tell him just what's going on.

Abstract

WARNING The Telephone Alarm was originally designed by the author for commercial manufacture and sale. However, this circuit does not have approval from the British Approvals Board for Telecommunications (BABT) and as such should not be connected to a BT line.

Nevertheless, the Telephone Alarm can legally be used with any private exchange equipment and can form the basis of a submission to BABT for approval.

Even the most sophisticated alarm has a major drawback - it is dependent on the response of passers-by to an alarm bell or siren. Many commercial premises are in selfcontained industrial estates with few or no (authorised) visitors walking around after dark. Rural homes and farms can be well isolated and far from any potential help when a break-in occurs.

Moreover, given the frequency of false alarms from all systems and in all premises it is not surprising that few passers-by who do hear an alarm bell starting up in their street do more than curse.

There is clearly a need for an alternative form of alarm. Several companies offer central station monitoring systems to enable alarms to be relayed over the telephone network to a computerised control centre. However, this and the option of systems offering a direct line to the police are well beyond the scope of most pockets.

It's For You-hoo

A cheaper alternative is a unit which would dial up a preprogrammed number and give an audible warning over the telephone that it had been triggered. That is exactly what this project offers.

The Telephone Alarm will automatically dial a preprogrammed number of up to 16

Fig. 1(a) The circuit of the Telephone Alarm line interface.
digits on activation of a set of external contacts. It will then transmit an alarm tone for about three minutes before hanging up. The unit is then automatically reset to dial again should another alarm occur.

Naturally, you may be so far away as to not be able to take useful direct action yourself. However, you can call the police
(or a neighbour) and rest assured that the alarm has been well and truly raised.

The Telephone Alarm is not only suitable for telling you if your home or business is being burgled. Other uses, less criminal but just as vital to your piece of mind are also possible:

- fire alarm (combined with smoke and heat detectors)

Fig. 1(b) The circuit diagram of the main body of the Telephone Alarm.

HOW IT WORKS

The full circuit of the Telephone Alarm is shown in Fig. 1. The line interface uses VMOS FETs (Q7,8) to make and break the telephone line loop to dial the number and to produce the alarm tone.

The diode bridge (D1-4) ensures that the correct polarity is observed across the FETs. When RLA1 operates the unit is connected to the telephone line and 50 V from the line appears across the bridge. This turns on both FETs and completes the loop circuit.

Q7 is turned off and on via optoisolator IC7 to dial the number. Q8 is pulsed on and off via IC8 to produce the audio tone.

At the heart of the main body of the circuit is IC1. This is a MC14408 phone pulse converter. This IC was chosen because it can be made to re-dial simply by taking pin 10 low.

Pins 14 and 15 are permanently tied high to configure the IC for the UK standard of 33% mark-to-space ratio for the dialling pulses and an interdigit time of 800 ms . The on-board oscillator is set for 16 kHz by $11, \mathrm{C} 1$ and C3 to enable a pulse rate of ten per second.

When a valid key is pressed, the keypad encoder (IC2) outputs a strobe
signal on pin 14 followed by the BCD value of the key number on pins 10 to 13. IC1 then pulses out this number on pin 11 (with ten pulses output for key zero) and stores the value in memory. IC5 prevents the number being simultaneously dialled when the unit is being programmed.

When the trigger input is closed it causes pin 8 of schmitt inverter IC6 to go high triggering the monostable IC3a. Pin 13 of IC1 (call request) is then momentarily taken low followed by a low on IC1 pin 10 (re-dial).

The monostable IC3b turns on relay RLA1 for three minutes to connect the unit to the phone line and enables the dial and tone pulses through to the optoisolators via IC5a and IC5b. IC3b also prevents further triggering of the unit by disabling IC3a pin 11.

The two schmitt trigger oscillators formed around IC6d and IC6e make up the alarm tone generation circuitry. This is inhibited by IC5b and IC5c from reaching the opto-isolator IC8 by the mask output from IC1 while dialling is in progress. The alarm tone is then transmitted to the line via IC8 and Q8.
pulses to signal the number being dialled.

When the exchange has then connected the call to the intended destination, the line appears as a 600 ohm balanced line for the audio signals.

The Telephone Alarm circuit is in two sections - the line interface and the main body of
the circuit. These are electrically isolated from one another by opto-isolators. The main body of the circuit is powered by a battery supply although a simple mains power supply could be added to the circuit. The line interface derives its power from the telephone line.

When triggered, the main

Fig. 2 The component overlay for the Telephone Alarm.
body of the Telephone Alarm circuitry produces the correct sequence of making and breaking the telephone line loop to dial the number and then produces an audio tone to signal down the line that the unit has been triggered.

PARTS LIST

BUYLINES

The keypad matrix of 4×3 keys used in the prototype is available from MS Components as part number 7331. MS can also supply the relay as part number 8041. MS Components is at Zephyr House, Waring Street, West Norwood, SE27 9LH. Tel: 01-670 4466.

The opto-isolators (IC7,8) used were CNY17-3 types but any six pin optoisolator which can withstand a Vce of 50 V or more should be adequate.

IC1 and IC2 are available from Watford Electronics (Tel: (0923) 377774).

The case used for the prototype was from Legrand although any suitably sized metal or plastic case will do. None of the other components should be difficult to find.

The PCB will be available from the ETI PCB service in due course.

Construction

Figure 2 shows the component overlay for the Telephone Alarm PCB. All the ICs used are CMOS types and should be treated with the normal respect reserved for these static-sensitive devices. The usual care should also be taken to ensure the diodes and electrolytic capacitors are inserted the correct way around.

It is recommended that terminal blocks are used to connect the trigger input, the battery and the phone line itself (see Fig. 3).

The keypad should be connected last of all the components. The keypad used for the prototype (see the parts list) is mounted above the PCB on spacers secured to the PCB through the holes, A, B, C and D. The ribbon cable from the keypad is terr.inated with a seven way connector which is plugged onto the connector on the main PCB.

The keypad can also be mounted in the lid of the case for easy alteration of the programmed number.

You can make up your own keypad as shown in Fig. 4 on a piece of stripboard. The switches used can be any single pole, push to make buttons such as keyboard switches.

Only the switches for the numbers 0 to 9 are actually required for the Telephone Alarm. Many commercial keypads also

Fig. 3 Wiring up the Telephone Alarm.

Fig. 4 Wiring your own keypad if the commercial model is not used.

have the * and \# keys found on most push button telephone keypads. The Reset and Test buttons could occupy these positions on a keypad of your own making.

Operation

The Telephone Alarm is very simple to use. The number to be dialled when the unit is triggered is programmed using the keypad and the Reset button. After the Reset button is pressed the number to be dialled (up to 16 digits) is then keyed on the keypad.

If either the Test button is now pressed or the trigger input circuit is closed the unit will dial the programmed number and sound a tone down the telephone line for approximately three minutes before hanging up and resetting the whole system.

PLAYBACK

After loudspeakers, I reckon that room acoustics have the greatest effect on the sound of good quality systems. Graphic equalisers can correct some room acoustic problems but I suspect most people use them to provide their own particular idea of what the sound colour should be.

It can be difficult to detect and null out room resonances but when you do remove a serious resonance there is less 'listener fatigue' even though the difference may not be easy to pin down at first.

All this leads me to speculate on some possible future developments. Some $C D$ recorders nowadays have digital outputs, for connection to an external DAC (digital to analogue converter) to reduce the already minuscule noise and distortion on the original.

As microprocessing speed increases, this opens the door to the possibility of having a programmable digital room equaliser, running a high order digital filtering algorithm in up to 32 bits.

Such a microprocessor equaliser could automatically run white noise tests on the system and compute an accurate correction function. By sending many and varied test signals to each channel in turn, it could even provide a digital correction for some system non-linearities, effectively determining what distorted signal has to be fed to the loudspeakers to produce a sound equivalent to the original signal source. The amplifier may occasionally be called on to perform crazy contortions but that is no problem.

If the microprocessor equaliser was actually a computer with a colour monitor, the user could superimpose his own chosen tone correction on to the equaliser characteristic by sketching it on the screen using a mouse or lightpen. A menu of different corrections could be stored and accessed at the touch of a key.

Sound And Vision

You may wonder why I specified a colour monitor. Well, those clever chaps at Phillips are extending the CD medium to include a development of their old Laservision system. This was always technically excellent but it was not what the market had in mind at the time. Their new development will enable five minutes of sound and video plus twenty minutes of

BOOK LOOK

Newnes Computer Engineer's Pocket Book by Michael Tooley (Heinemann) £8.95

At last Newnes (now part of William Heinmann publishers) has produced a version of the run-forever Electronic Engineer's Pocket Book exclusively for the computer enthusiast or professional.

This is the first edition of this computer version but it looks like there will be many more. This one will (as they say) run and run.

The pocket book is basically a reference work. No enrapturing bedtime reading here. What there is, is just about everything you could want to know about computer hardware. Within these pages is condensed data on most of the common processors and support chips, interface standards, operating systems, typical video waveforms, and so on (and on and on).

The pocket book is in the usual Newnes format of a long thin hardback about 8 in by $31 / 2$ in and around 200 pages long. Into these pages is crammed masses of information. The contents page has over 80 headings!

The information ranges over a wide area. The most basic electronics is covered (items such as TTL pin-outs and Karnaugh maps) as well as the more esoteric micro standards (did you know the format of an IBM 3740 disk?).

This is not a book to leave on the shelf for occasional reference, either. This book should be firmly placed within easy reach of your computer desk or even inside your toolkit if you're into these machines for professional reasons. It will soon prove to be worth the (only slightly inflated) cover price.

It's not just the 'things you always wanted to know but had no idea who to ask' that this book is filled with. There is vast quatities of seemingly trivial data (a table of 'devisors of 256 with remainders'. . .). Much of this seems just useless padding until you're sitting at the keyboard desperately straining to work out just what is 256 MOD 21.

It is not the depth and importance of the data that makes this book a must but the sheer quantity, range and compact handiness.
Anyone can get by without the Computer Engineer's Pocket Book but why take the hard way out?

Computer Peripherals That You Can Build by Gordon W Wolfe (John Wiley \& Son) $£ 15.30$

Not a cheap one this, mainly because it comes all the way from the USA. This one's a big book, too - around 280 pages.

The biggest problem facing anyone with a home computer (after they have finished playing the games and learning about computers') is what the hell to do with it. It's depressing but true that most micros don't spend time doing anything useful at all.

The r aison d'etre often quoted is control, automation, and the like. Now it is probable that few if any of the proponents of these claims actually do anything about them themselves. Nevertheless, they leave lots of folk out there wanting to connect up their machines to anything and everything available.

Having got that off my chest, I must say that even if the idea is a little dubious, this book approaches the whole matter in a logical and instructive way. Not a lot of knowledge is assumed at the start but the book covers an amazing amount of ground.

It starts by describing exactly what a computer is and 200 pages later it's showing how to make a flatbed plotter. In between there's paper tape readers, servo controllers, household remote control, and many others.

Each idea is described with a circuit, a brief explanation, and often a short program in Basic or a flow diagram to show how the whole thing can be run. There are next to no constructional details but this is more an ideas book than a list of projects.

The problem is that it is an American book. This raises the usual problem of the odd difficult component and circuits designed for 120 V mains but more importantly all the circuits described are aimed at distinctly American machines. There's not a mention of a BBC micro or a Spectrum here. It's all Apple II, Tandy 1000 , TRS-80 and the like. The good news is that the Commodore 64 is, of course, to the fore.

That aside, you could do a lot worse than this book. Expensive it is. American it is. However, if you're set on wiring up your house to your Spectrum you could learn a lot from this one.

KEYNOTES

So far, 1987 has proved to be a dull year with regard to innovations in music technology. In fact, it is difficult to pinpoint any real innovations and, although the year is only half gone, we shall probably be forced to wait until the next NAMM and Frankfurt trade shows (in January and February respectively) to see anything original emerge.
The question is will the story be the same in 1988 too? Some people are already speculating that the electromusical instrument market may be flattening out from its previously high rate of growth or, in plainer terms, plunging into a recession not unlike the one that began hitting the semiconductor industry several years ago. The symptoms are exactly the sameprices stay fixed and new developments get shelved due to the high cost of R\&D.

The cause might be put down to an increasing saturation of a finite market with cheap keyboards designed to make MIDI, not music. The result may ultirnately be for such machines to paint themselves into the dark and sullen corner of obsolescence with the disgraceful lack of standardisation of the MIDI protocol as their suicidal paintbrush.

Signs of middle-aged flatulence are already in evidence and it is intriguing to compare the socalled new developments of 1987 with the music trends of our time. Old machines are being repackaged in new boxes at the same rate with which club remixes are remixed and cover versions are recovered. Furthermore, manufacturers are currently stealing ideas off each other to a degree that puts the 'sample before you get sampled' ethic of Hip-Hop to shame.

Take Sequential Circuits' Vector Synthesis technique, in which four sounds derived from digital wavetables are mixed under the control of a joystick with X-axis position controlling balance between two sounds and Y-axis position controlling balance between the other two. To be fair, this is a very useful and ergonomic feature, beautiful in its simplicity, but by the same token scarcely deserving of a name as convoluted as Vector Synthesis. With respect to originality, the technique was possible on many modular analogue synths, not unknown on DJ's mixing desks and not very dissimilar to the soundfield control joysticks found on quadrophonic equipment.

Sequential knew their rediscovery would be nicked in due course and trade-marked Vector Synthesis (no doubt patented it also) in order to make the villain's life more difficult.

Undeterred, stray dog Roland went rummaging in the dustbins and came out with a bone Linear Arithmetic Synthesis, whereby only two sounds are mixed by means of a joystick. Boffins with lightbulbs over their heads will immediately realise at this point that joystick technology could even be extended to the control of a single sound. Maybe I shouldn't be giving Roland ideas!

FM Rules OK!

The greatest disappointment of the year is undoubtedly Yamaha's long awaited sequel to the DX7. The original DX7 made such an impact on the music world that we might reasonably have expected a follow-up to be the last nails in the coffins of their competitors but that would be overlooking the obvious. The philosophy behind the DX7 II is that if a machine is selling well then there is no point in changing it - just add a few embellishments and increase the price!

Korg has fixed up a corporate deal with Yamaha which apparently allows them to reap the benefits of Yamaha R\&D. The first visible result of this deal is Korg's new DS8, a DX7 clone with an original feature: on power-up, the LCD greets you with 'Welcome to Synthworld!'

Casio's Phase Distortion is essentially identical to Yamaha's FM (which is actually phase modulation and not FM at all), except the waveforms which do the modulating or get themselves modulated are not necessarily sine waves (as on the DX7). This was a dodge for getting around patent legislation and, predictably enough, Yamaha has in its turn torn a page out of Casio's book with the introduction of the TX81Z expander - a keyboardless synth designed to be controlled by MIDI, usually housed in a 19in rack-mount case. This machine replaces their marginally popular and somewhat limited FB01 (production of which has ceased) and simultaneously provides Yamaha with the opportunity of incorporating a choice of eight operator waveforms. All one can say is that honour among thieves is a thing of the past.

Bruno Hewitt

OPEN CHANNEL

Today, I took delivery of my new Mercury telephone. I ordered it less than a week ago from Mercury Communications Ltd, having made a few rough calculations based on the use of my telephone.

I will be able to use this telephone to connect me to the Mercury 2200 telephone network which now has some 59 access areas. The latest expansion incorporates my address.

Eventually, of course, the whole country will be covered but meanwhile it's worth checking with Mercury (the customer assistance number is 0800424194 and no charge is made by BT for your call, incidentally) to see if you live in one of the current access areas.

The savings in telephone charges by using Mercury 2200 can make the enquiry well worthwhile. For example, a standard rate trunk call via BT can cost around $12 p$ per minute, whereas the same call via Mercury 2200 is less than 9p per minute.

Alternatives

Mercury's alternative telephone network to British Telecom's is, unlike BT's, only a trunk network. In other words, you can't use the Mercury network to dial a local call. (In fact, this not strictly true - it is possible to use the Mercury 2200 network to make local calls by routing them out of the local area onto the trunk network then back into the local area but then it costs more than a BT local call anyway, so it's not worth the bother). So, to make a local call you must still be connected via a local line to the BT network.

However, any calls made which are longer distance and must be connected via a trunk network, can now be made via BT or Mercury. I have a choice of telephone networks for the very first time! At least, I will have a choice of network, when BT finally gives me a new socket.
Apart from a choice of network on trunk calls, I have a choice of prices. Needless to say Mercury's prices generally undercut BT's somewhat. As most of my calls are long distance, I calculate I will make savings of at least $£ 70$ per year by making all my trunk calls using my Mercury telephone.
I applied to BT to have their engineers call and fit me a new socket some seven weeks' ago. At the time, I was told that a date eleven weeks after that was the earliest possible appointment to

do the simple job - and telecommunications in Britain are supposed to be liberated?
Do you think BT will pay up if I send them a bill for $£ 14.80$ (which is $11 / 52 \times £ 70$), to make up for the lost savings in telephone charges which their slow service has caused me?

Looking At A Problem

Users of, potential users of or even just parties interested in, optical fibre communications would do well to get a copy of a new booklet published by BICC Electronic Cables Ltd called 'UFO's Explained'.

The UFO's in question are 'unidentified fibre optics'. The booklet is a well thought out, well written, and well put together tome (no, I had nothing to do with it!) which starts at the beginning and ends at the end of the topic (shouldn't they all?). Somewhere in the middle is also a pretty fair description of optical fibre technology, in a non-technical yet thorough manner.

BICC has obviously seen that one problem in getting.Joe Public to use optical fibres is the sheer reluctance to get to grips with the technology. Most people believe it to be too expensive and too technical for general cabling purposes. 'UFO's Explained' goes a long way to sorting this problem out.
A free copy of the booklet can be had from BICC Electronic Cables, Optical Fibre Technology Unit, Helsby Works, Helsby, Warrington, WA6 6BR. Tel: (09282) 2700.

TDF's DBS

French broadcasting body, Telediffusion de France, intends to launch the country's first direct broadcasting satellite (DBS) later this year. Problems have arisen in the satellite's launch, not because the satellite was not ready but because the launch rocket (Ariane) has been grounded following its failure some time ago.

However, now Ariane's technical problems appear to have been overcome and launch dates are currently being tentatively mooted.
Meanwhile, it has been reported that Germany's DBS satellite launch, although agreed to have been via Ariane, will instead go ahead on a Chinese or Russian rocket if further problems with Ariane occur.

Keith Brindley

ETI PCB SERVICE

Build your projects in style with a properly designed PCB.

> se the form below (or a photocopy) for your order. Please fill in all parts of the form. The board reference number tells you when thePCB foil was published. The first two numbers are the year and the next two the month. The number afterthe dash indicates the particular project in that issue. The terms are strictly cash with order. Make cheques payable to ASP Ltd. We cannot accept official orders but we can supply a proforma invoice if required. Such an order will not be processed until payment is received. Orders can also be made by telephoneon (0442) 11882 forAccess and Visa card holders.. Please allow 28 days for delivery.

TO: ETI READERS' SERVICES DEPARTMENT
| Argus Specialist Publications Ltd, 9 Hall Road, Hemel Hempstead, Herts HP2 7BH
| $\frac{\text { Herts Hease supply: }}{}$

No. required per type	Board reference number	Price letter	Price each £		for type $£$
	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$		$\begin{array}{lll}\text { £ } & \cdot & p \\ \ddagger & \cdot & p \\ \text { f } & \cdot & p \\ \text { £ } & \cdot & p\end{array}$	£ \ddagger \ddagger f	$\begin{aligned} & p \\ & p \\ & p \\ & p \end{aligned}$
POSTAGE \&	PACKING			£	0.75 p
TOTAL ENCL	LOSED			£	p

ORDER TO BE SENT TO: (BLOCK CAPS PLEASE)

Name
Address

Postcode

(Make cheques payable to ASP Ltd)
ACCESS and VISA credit card orders can be taken on (0442) 211882 (office hours only).

Price (inc VAT)

 £
Code

$\begin{array}{ll}C & 1.80 \\ D & 2.50\end{array}$
3.23
4.00
4.75
5.50
6.62
7.20
8.80
10.60
13.10
15.80
17.90
21.80
23.90
25.90
29.00
32.20
35.80
37.90
40.70

E8410-2	Digital Cassette Deck
E8410-3	Disco Party Strobe H
E8411-5	Video Vandal (3boards) N
411-6	Temperature Co
E8411-7	Mai
E8411-8	Knite Light
E8411-9	Stage Lighting In
E8411	Perpetual PendulumE
E8412-1	Spectrum Centronics Inte
E84	Act
E8412-5	Active - 8 Crosso
E8412-6	Active-8 LF EQ
E8412-7	Active-8 Equal
E8501-3	Digital Delay (2 boards) T
E8502-1	Digital Delay Expand
E8502-2	Dat
E8503-1	Combo Preamplifier
E8503-2	THD Meter $\mathrm{m} V$ \& oscillator bds (2 boards) K
E8	THD Meter Mains PSU F
E8504-1	Framestore Mem
E8504-3	Framestore Control
E8504-4	Buzby Meter
E8504-5	CCD Delay
E8505-5	Stereo Simula
E8506-1	Audio Mixer M
E85	Audio Mixer
E8506-3	Audio Mixer RIAA
E8506-4	Audio Mixer Tone C
E8506-5	EPROM Prog MKII
8508-1	RCL Bridge
8508-2	EX42/BBC Interfa
E8508-3	EPROM Emulator
50	Spectrum
E8509-2	Direct Injectio
E8510-9	Sunrise Light Brighten
E8511-1	MTE Waveform Gene
E8511-2	Millifaradomete
E8511-3	Cymbal Synth
E8511-5	Chorus Effect H
E8511-7	Enlarger Exposure Me
E8511-8	Switching Regulato
E8511-9	Second Line of Def
E8512-1	Specdrum connecto
E8512-2	MTE Pulse Generator
E8511-3	Specdrum
E8601-2	Walkmate
E8601-3	MTE Counte
E8602-1	Digibaro
E8603-2	Programmable Logic Evaluation Board
E8603-3	Sound Sampler Analogue Board
E860	JLLH PA PS
E8604-2	Matchbox Ampli
E8604-3	Matchbox Amp Bridging Version.
E8604-4	MTE Analogue/Digital Probe
E8605-1	Microlight In
E8605-2	Baud Rate Conve
E8605-3	Baud Rate Converter PSU Board \qquad
E8605-4	
E8606-1	Midi-CV Converter Board H
E8606-2	Midi-CV Converter PSU D
E8606-3	Troglograph

E8606-5 Sound Sampler R
E8607-1 DirectIon E
E8607-2 Upgradeable Amp, MC stage (Stereo)

G
E8607-3 BBC Motor Controller F
E8608-1 Digital Panel Meter G
E8608-2 Upgradeable Amp, MM stage (mono) H
E8609-1 Mains Conditioner............... E
E8609-2 Experimental preamp F
E8609-3 Upgradeable amp, Tone board (mono)

H
E8609-4 Upgradeable amp, Output board (mono).
. F
E8610-1 Audio Analyser Filter Board..............

Driver...............
E8610-2 Audio Analyser Display
E8610-3 Audio Analyser Display. H
6610-4 Audio Analyser Power F
E8611-1 Audio Switcher (2 bds). H
E8611-2 PLL Frequency meter (4 bds)...QE8611-3 Upgradeable Amp PSU
E8611-4 Call meter, main bd. O
E8611-5 Call meter, interface bd N
E8612-1 Bongo Box. J
E8612-2 Biofeedback monitor (Free PCB) E
E8701-1 RGB Converter F
E8701-2 Mains Controller D
E8701-3 Flanger H
E8701-4 Audio Selector main board M
E8701-5 Audio Selector PSU H
E8701-6 Tacho-Dwell. F
E8702-1 Ratemeter main board. K
E8702-2 Ratemeter ranging board $\ldots F$
E8702-3 Photo Process Controller (3bds). 0
E8702-4 LEDline display board (2 off) K
E8702-5 LEDline PSU and controller (2 bds) G
E8703-1 Capacitometer. F
E8703-2 Geiger Counter L
E8703-3 Credit Card Casino
E8704-1 BBC micro MIDI interface L
E8704-2 ETIFaker patch box H
E8704-3 24 Hr . Sundial E
E8705-3 MIDI Keyboard keyswitch boards (3 boards) W
E8705-4 Batlite C
E8705-5 Budget Power Meter E
E8706-1 Hi-fi Power Meter N
E8706-2 MIDI Keyboard CPU U
E8706-3 MIDI Keyboard Front Panel 0
E8706-4 Flame Simulator
E8707-1 MIDI Keyboard PSU H
E8707-2 Telephone Alarm)

TECH TIPS

3-in-1 Reset

A.J. Holme
 York

This circuit was designed for a 6502 controller board. It provides power-on reset, a TTL compatible input for externally generated resets, and a push button for manual reset.

A PNP output stage is used to prevent $\overline{R E S}$ briefly going high at power-up, before the supply stabilizes at +5 V . It is not strictly necessary and may be replaced by a NAND inverter if preferred.

The state of the EXT RES input is echoed at the $\overline{\operatorname{RES}}$ output while the one-shot generator is in its stable state. There are two possible uses for this:

- Driving EXT $\overline{R E S}$ with a clock causes the processor to continuously repeat its power-on reset sequence. Provided suitable triggering can be arranged, this enables the processor buses to be viewed on an oscilloscope as steady, logic-analyser style traces.
- With the addition of the lower circuit shown a restart from crash facility may be added. Point X is

connected to a signal which regularly changes during normal processor activity. The network on the output of the NAND inverter produces positive pulses which clock the monostable at every falling edge of X. This ensures that the mono is permanently in its triggered state. Should the processor crash (for example from mains-borne inter-
ference) these pulses will cease, causing the mono to reset. The resulting negative edge at Q is capacitively coupled to the EXT RES input and this generates a processor reset which recovers execution.

Some simple software support for this circuitry will be required to enable the processor to distinguish between warm and cold starts.

Simple Audio Limiter

R.J. Eggleton
 St Ives

Audio limiters are useful in many applications such as recording, transmitting or public address systems where over-modulation would cause unwanted distortion.

This circuit has the virtues of simplicity, fairly low distortion and no need for adjustment.

Input voltages below the limit level are amplified by the op-amp eleven times to the output ((R7+R8)/R7). When the output leve rises to the limit level of 775 mV RMS the diodes conduct to the two limiting transistors and limit the level. Since the transistor limiters are inside the feedback loop of the opamp, distortion is reduced significantly.

As the input is immediately limited before entering the op-amp, the circuit can withstand considerable overload. However distortion will rise above 40 dB of limiting (approx 7 volts RMS input).

FREE READERS' ADS

Buy, sell or exchange through our free service to readers

HELP! Does your intelligent callmeter work? If so, contact Jeff, Bristol 303030 Ext. 3294.
WANTED SCIENCE OF CAMBRIDGE MK14 COMPUTER and manual. Preferably working. Shaun, 46 Grosvenor House, A-U-L, Lancs OL OSB. 061-344 1054.
TAYLOR signal generator. $100 \mathrm{kHz}-45 \mathrm{MHz}$. Also Cossor sweep generator $7-70 \mathrm{MHz}$. Both mains valve types. $£ 10$ each. Windsor (0753) 860889.
WANTED parts for ACORN ATOM: EPROM, disk interface, wordproc software. Reasonable prices. Tel: 01-841 0486 evenings.
TEKTRONIX 545B scope $£ 75$. Great Yarmouth. Tel: (0493) 667689.

WANTED: secondhand strobe light. Contact: B. Clark, 73 Greenlaw Crescent, Glenrothes, Fife.
MODULAR 19 INCH RACK units, power supplies, fans, CMDs, optos, panel controls, etc. Cheap. (0725) 22684 evenings.
REVOX A77, $33 / 4 / 71 / 2$, built-in Revox amps plus 100 hrs tapes. $£ 450$. Tel: Nik 01-253 0661 daytime.
WANTED. Technical service manual, circuit diagram, details of expansion ROMs for Acorn Atom. Tel: (0422) 70270.

USED COMPONENTS for sale. Send SAE for list to 23
Dickens Court, Newthorpe, Nottingham, NG16 3RG. Soon!
WANTED valve power amp circuit and board layout. Mr. J. Smith, 93 Breda Road, Belfast, BT8 4BW.

VARIAC type variable auto transformer. 5 amp rating. Enclosed. $£ 20$. Tel: Windsor (0753) 860889.
TWO DIABLO SERIES 30 front loading hard disc drives. Discs required. $£ 100$ each. 091-482 4307.
SOLID STATE MULTIBAND TRS-30 receiver. Coverage $540 \mathrm{kHz}-12 \mathrm{MHz}, 30-50 \mathrm{MHz}, 88-173 \mathrm{MHz}$. Details: Write to Victor McKaig, 15 Islandranny Road, Bushmills, Co. Antrim, N. Ireland, BT57 8YE.

WANTED Grundig Satellite 1400 professional or similar multiband communications receiver. Write to Victor McKaig, 15 Islandranny Road, Bushmills, Co. Antrim, N. Ireland, BT57 8YE.
HELP. Does any reader have a copy of instructions for Quicksilva sound board? Tel: Jim Branston 01-200 7165. CCT100-EXCELLENT terminal (DEC VT100 compatible). Very good condition. A great buy at $£ 200$. Tel: (0273) 203682.

MULTICORE light duty cable. Mostly 5 -core, 100 m reels £5 a reel. Approx 20 reels available. Tel: 01-690 3131.
VOCODER WANTED. ETI Powertran or similar. Working or part assembled (not knackered!) Tel: Jake. (0227) 730410 evenings.
SEIKOSHA GP-100A graphics, 80 column, dot-matrix printer. £65 ONO. Tel: Alan 01-866 4579.
CRIMSON 520 40W stereo power amp. £40. F. Richardson, 20 Callerton Close, Ashington, Northumberland, NE63 9QT.
FOR SALE: Pioneer cassette deck model CT-4. £55. Tel: 051-928 8011 evenings. Possibly deliver.
WANTED any info on DBS satellite TV, plans, circuits, leaflets, etc. Postage refunded. Smith, 12 Shelley Rd., Taunton, Somerset.
200+ OLD RADIO VALVES. 1929/48 mains and battery. Offers. Tel: 051-677 3341. F. Brown, 5 Snowden Rd., Moreton, Wirral, 146 6BH.
100W/CHAN MOSFET POWER AMPLIFIER. Very hi-fi. Ideal power amp for the ETI pre-amp. £100. Tel: 01-558 6129. WANTED: TELEQUIPMENT D43 OSCILLOSCOPE. Modules and/or complete unit. Also manuals, circuit diagrams wanted. R. Neale, 2 Salmond Avenue, Stafford, ST16 3QP.
WANTED: GEIGER RATEMETER and counter, urgently. Nico Taylor, PO Box 1377, Durban 4000, South Africa. tel: 031-846994.

- These ads are only for readers not engaged in buying or selling the same equipment or services on a commercial basis.
- Ads will be inserted as and when space is available. Insertion in a particular issue cannot be guaranteed.
- Ads should be of 20 words or less and in block capitals ortyped. Words to appear in bold should be underlined
- Advertisers should fill in theirname, address, and telephone number and sign the form to indicate acceptance of these conditions. Adverts can be on the printed form ora photocopy of it but they must be accompanied by the token at the top of this page.
- ETI reserves the right to refuse or to alter submitted ads wherever this is judged necessary.
- Ads are accepted in good faith. Neither the magazine nor its publishers can be held responsible for any errors in the reproduction of an ad, nor for untruths or misrepresentations, nor for the activities of advertisers or respondents. By acceptance of these conditions the advertisers undertake to indemnify the publisheragainst any legal action arising from publication of their advertisement.

Enter your advertisement below
Address I
I
Telephone I
I accept the conditions set out here.SignedI
|
Send this form to:1
Free Readers' Ads I
Electronics Today International1 Golden SquareLondon W1R 3AB.

HY - TEK ELECTRONICS

professional power amps. cross-dvers \& graphic equializers 1000 WATT STERO POWER AMP $£ 429.9810$ BAND STERO GRAPHIC £129.98 600 WATT STERO POWER AMP $£ 329.98$ 15 BAND STERO GRAPHIC $£ 167.98$ 300 WATT STERO POWER AMP $£ 249.98 \quad 27$ BAND MONO GRAPHIC $£ 164.98$ 150 WATT MONO POWER AMP $£ 169.98$
150 WATT POWER AMP WITH EO\& 184.98
2

Chassis speakens
HY. TEK stock a vast range of Chassis speakers. midranges
tweeters. x overs. cabine tittings \& piezo drive units Below is a short list. pieas phone and ask lor a full list it y
HY - TEK ELECTRONICS...

```
- Pitch Control
l
Fits standard BSR cut out
Honly slight mod required).
doal valacement tor cartridge
£29.97 (p&tp £3.00) *Magnetic carrridge £9 99
```


HY-TEK ELECTRONICS 48 Dalston Lane London E8 3AH. Tel:01.249 4814 INSTANT GREDIT UP TO $£ 1.000$ PHONE 01-249 4814 FOR SAME DAY MAIL OROER DESPATCH all prices include vat

WSTRUMENITS FROM STOCK

 UK's LARGEST DIGITAL MULTIMETERS 10514 Range 2A OC. 2 Mohm 52814 Range O2A OC. 2 Mohm Hie text 61519 Range 104 DC. 20 Mohm Hie West 501028 Ranga 10A AC/OC 20 Mohm |0.2MA AC/DC 57820 Range 10a AC/DC 2M. Buzzer Display Hold Auto Range memory (ZOwn AC/OC)01028 Renge IOA AC/OC 20 Mohm [20mA AC/OC 5010EC 34 Range IOA AC/DC 20 Mohm His test Capactance lar Cond lican
MES40 Auto/manual 10A AC/OC 20M
8013 Digital Capacitance moter 8 ranges $200 \mathrm{p} 1-2000 \mathrm{mFD}$
ANALOGUE MULTIMETERS 101515 Range Pock $10 \mathrm{~K} / \mathrm{V}$
103518 Ringe Pocket 2OK/V IOA OC 10 Mohm 103ELZ 19 Range 20K/V IOA OC MIN Buzz 10 Mohn 20119 Range 20K/V $12 A$ AC/DC 10 mohm
2010 20 Range 30K/V 10A DC 20 Mohm
30102224 Rango 30K N 10 A OC Buzz Mohm 2s0A 28 Range $30 \mathrm{~K} / \mathrm{V}$ 10A AC/DC 10 Mohm sosae 41 Ranga 20MEG FET 12A AC/DC 1000 MEE

POWER SUPPLIES

001c 13.8v 3А OC £14.95 1545/15v
 0.30 V 1.5月 OC. $\mathbf{2} 34.44$

LCR METER

TCza0 Digital LCD Handhela Textar
OSCILLOSCOPES UK FREE OELIVERY
HANEE Dual trace with component testers $8 \times 10 \mathrm{~cm}$ 203/8 Dual 20MHZ with probes 2361.10 204 with a sweep delay CROTECH with Component tester sing $303151 / 4 \times 61 / 2 \mathrm{~cm}$ Display \quad E228.85 $0368 \times 10 \mathrm{~cm}$ Olisplay £253.01

B20) Dual $20 \mathrm{MHZ}+$ component test $\quad \mathbf{2 3 3 9 . 2 5}$ 635 Oual 30 MHZ swepp delay E 458.85 615 Dual 15mMZ bath int

ALPRICESINCLUDE VAT ORDER BY POST OR PHONE. OPEN 6 DAYS A WEEK FOR CALLERS.

FREE

CATALDGUE Ref TG/E (min 12 s.a.e. with $£ 1$ stamp UK Callers/export $£ 1$

ITS GREAT NEWS AT MJL. WE CAN NOW SELL DIRECT TO THE PUBLIC IN THE UK AT TRADE PRICE - SO MR. TRADE CUSTOMER WHAT ARE YOU READING THIS FOR. ASK FOR YOUR FREE COLOUR BROCHURE AND SAVE YOURSELF A FORTUNE!
MJL (INTERNATIONAL) LTD
$01 / 689 / 4138$
45 WORTLEY RD. W. CROYDON.SURREY CRO 3EB, UK

Please note: The MIDI Master Keyboard CPU foils given last month were shown 64% full size. Photocopies of the full size foils can be supplied on receipt of an SAE. Please send in to ETI MIDI Keyboard Foils, 1 Golden Square, London W1R 3AB.

NOW AVAILABLE FROM ETI READERS SERVICES, 9 HALL ROAD MAYLANDS WOOD ESTATE, HEMEL HEMPSTEAD. HP2 7BH.

240W HIFI AUDIO POWER AMPLIFIER KIT NR. K2587
The introduction of MOSFET transistors in power amplifiers opened a new area in this field.
Wide power bandwidth, low driving power, high output power and an almost ideal transient response are only ä few of the advantages.
This kit is based on this technology. Apart from the poweramplifier, it also includes the power supply, heatsink and easily be housed. Only 2 final adjustments are requlred and only needs a multimeter

Some applications: Discobars and discotheques - Orchestra or theatre - DC coupled power controls.

- Power supply (including transformer) 2×45 VDC/5A

Distonion (1 Hz) 0 O

- Distorion (1 kHz): 0.05\%

Intermodulation distortion: 0.0%
Price $\mathbf{f 1 8 4 . 8 0 + p \& p}$

K610 VU-LED MONO (UAA 180) USING LED'S K611 7W LF AMPLIFIER
K612
DIMMER 1000 WATTS

613
DIMMER DEPARASITE 9 (NOISE SUPPRESSED)
K1771 FM OSCILLATOR
1803 PRE-AMPLIFIER INIVERSAL MONO
$\begin{array}{llr}\text { K1803 } & \text { PRE-AMPLIFIER INIVERSAL MONO } & 5.22 \\ \text { K1804 } & 60 \text { WATT LF AMPLIFIER } & 23.84\end{array}$ K 1861 AMP SWPR SPP WITH LM317 IC $\quad 9.18$

K1874 RUNNING LIGHT (4 CHANNEL)
K2032 LOW COST DIGITAL PANEL METER
K2532 ADAPTOR SOCKET FOR TMS2632 TO
K2543 ELECTRONIC TRANSISTOR IGNITION
K2545 UNIVERSAL CRYSTAL 5OHZ TIMEBASE 14.67

UNIVERSAL CRYSTAL 5OHZ TIMEBASE 18.13

VELLEMAN KIT

 PACKS FOR SCHOOLS5 quallty-components packs and (undrilled) printed clrcult boards in one package. includes Construction manual, data sheet and speclal Instruction for educatlonal experiments.
K 1823 IA POWER SUPPLY O
inel. VAT 35.90 K 2637 2.5 AUDIO AMPLIFIER

NEW PRODUCTS
 K 2649 THERMOSTAT WITH LCD

 DISPLAY53.95

K 2650 TELEPHONE CALLOOOOOOOLLED SWITCH 26.25
K 2651 DIGITAL VOLTAGE METER LCD DISPLAY
K 2652 TOUCH CONTROLLED DIMMER
14.50

K2549 INFRA-RED DETECTOR TRANSMITTER
K 2550 INFRA-RED DETECTOR RECEIVER
\qquad 21.37
21.37
25.26
$K 2553$ STEREO DECODER WITH 19KC FILTER
25.26
16.26

K2553 STEREO DECODER WITH $19 K C$ FILTER
K2554 HIGH QUALITY FM TUNER

AUDIO LABORATORY D I Y TEST GEAR COMPUTERS TOP QUALITY KITS FOR HOME CONSTRUCTION veTleman-kil

K2557 DIGITAL PRECISION THERMOMETER 256820 CM DISPLAY (CATHODE)
2569 TONE CHIME (DOOR CHIME)
$K 2572$ STEREO PRE-AMPLIFIER
$K 2573$ STEREO RIAA CORRECTION AMPLIFIER
37.68
31.93

257 UNIVERSAL 4 DIGIT UP \& DOWN COUNT 10.33
257 WITH COMPARATOR 65.50
1 CHI PROCESSOA DOORBELL(25 TUNES PLU
K2576 4OWATT AUDIO AMPLIFIER 17.10
$K 2578$ MICRO PROCESSOR CONTROLLED EPROM
$K 2579$ PNIVERSAL START \& STOP TIMER
K 2580 POWER SWITCHSDIMMER (600 WATT
K2681 DC COMTROLLED STEREO TONE
K2582 CONTROL
$K 25883$ CHANNEL SOUND TO LIGHT WITH PRE-AMPLIFIE
K2590 LIGHTCOMPUTER WITH EPROM
K2592 20 WATT LF AMPLIFIER KIT
K2594 ZERO CROSS PROGRAMMABL
K2598 CAR BOOSTER 15-30 WATT
K 2578 M EPROM PROGRAMMER (BUILT AND TESTED)
K2600 2A DIMMER
K2601 STROBOSCOPE
K2602 4 CHANNEL RUNNING LIGHT WITH MODULATOR
K 2603 MICROPROCESSOR YEAR TIMER
K2604 KOJAK POLICE SIREN
K 2606 LED AUDIO POWER METER
K2607 THERMOMETER ADAPTOR
K2622 AM \& FM AERIAL AMPLIFIER
K2623 LAB POWER SUPPLY O-24V 3 AMP
K2625 DIGITAL RPM METER
K2626 27640/27128 ADAPTOR KIT FOR K 2578
K2632 HARDWARE EXTENSION KIT FOR K 2603
$K 2636$ AC MOTOR CONTROL
2638 CAR ALARM
K2639 LIQUID LEVEL CONTROL
K2644 FROST INDICATOR
$\begin{array}{ll}\text { K2646 } & \text { MEDICAL-PILL TMMER } \\ \text { K2645 } & \text { GEIGER MUELLER COUNTER }\end{array}$
A FULLY ILLUSTRATED
CATALOGUE IS AVAILABLE
WHICH GIVES COMPLETE DETAILS OF KITS.

GIANT VU METER

KIT NR. K2620

Severai circuits providing different light effects, from the simple lightorgan to real 'lightcomputers', have already
appeared on the market.
This kit is something new... a giant VU.meter with 240 V bulbs. The 12 bulbs are mounted as a lightcolumn whic The input is oalvanically separated and
and the sensitivity is danger when connected to a pre

Input impedance: 20 Kah (non-cooled).
Input sensitivity: adju Kohm
Power supply: $9 \mathrm{VAC} / 0,5 \mathrm{~A}$
scale
Price $£ 36.85+p \& p$

LIGHT UP THE SKY

 20CM DISPLAY 'COMMON ANODE' KIT NR. K2567
 This kit contains a 7 -segment display consisting of 12 leds per segment and 4 leds for the decimal point. With the aid of a supplementary power supply, it is possible to connect thi kit to any existing circuit equipped with common anode displays of any brand and any dimension.
 If the digit and segment drivers of the circuit can supply sufficient current, it will be possible to connect in paralle wo or more displays, or even, leave the small display of the circuit in place and connect the 20 cm display in parallel this latter will not effect the brightness of the 20 cm display - Common anode.
 Power supply: 22 to 26 VDC non-stabilized
 Minimum anode input voltage (on): 2 V .
 Maximum anode input voltage (off): 1.2 V
 Segments input impedance: 10 K .
 Segment current: static ($\mathrm{R} 6=00$): +40 mA multiplex $R 6=220 \mathrm{hm}$): +75 mA .
 Total current consumption in static mode: maximum Ma
 Price $£ 30.26+p \& p$
 20CM DISPLAY 'COMMON
 CATHODE' KIT NR. K2568

This kit is in terms of appearance and application identical to
K2567 COMMON ANODE
As far as specifications are concerned; read cathode for
Price $£ 31.93$ + p\&p

MICROPROCESSOR UNIVERSAL TIMER KIT NR. K1682

This unique timer is in principle a 24 -hour clock provided with 4 relay-switched outputs and a programmation period of 1 week. 20 switching programs can be memorized and via the membrane keyboard be programmed. Outputs or timing periods can be selected at random
All program steps are indicated be leds.
A printed alu frontplate is included in the kit, making bullding-in of this timer a simple affair
This microprocessor timer was primarily designed for industrial and labo purposes, but the amateur can use it in dozens of applications as well.

- 20 daily- or weekly programmable timerfunctions - Memory display of programmed timer functions per output
or per day.
- 4 independent relay outputs (1 relay included).

Display of: day of week - AM/PM - output - clock
ON/OFF - sleep.
The timer is based on the TMS 1122 microprocessor Transformer 12VAC/1A (not included).

Price $\mathbf{f 7 5 . 8 5 + p \& p}$

TAPE/SLIDE SYNCHRONIZER KIT NR. K2565

Actually, a lot of tape/slide synchronizers are available on the market. The price of these devices varies from expensive to very expensive.
Those owning a tape-or cassette recorder can with this simple and inexpensive device, record synchronizing puises and use these pulses to control automatic slide projectors. The circuit is small in size and can easily be housed.
Power supply: 9 to 13 VDC .
Current consumption: 40 mA .
Output amplitude $:+250 \mathrm{mV}$.
Input sensitivity A minimum 1.5 V peak to peak
Input sensitivity B: minimum 100 mV
Oscillator: AMV type.
Input impedance (B): 1 KOhm
Output impedance: 15 KOhm
Price $\mathbf{f 1 2 . 7 5 + p \& p}$

SCREEN WIPER ROBOT

 KIT NR. 2599

Three different time intervals may be selected by using a multipole rotary switch. With small component changes, the intervals may be varied.
Some applications: windscreen wiper delay - diaprojector in the manual you will find a complete dights of the car. build this kit in' a car, with wiring instrete description how to the existing wiper instaltation.
Power supply: 12-15V DC.
Intervals: 5-10-15-seconds
Relay output: $240 \mathrm{~V} / 2 \times 3 \mathrm{~A}$.
Relay output with two change-over contacts.
Current consumption
Output 'OFF': 25 mA .

- Dimensions: $82 \times 56 \times 41 \mathrm{~mm}$.

Price $114.84+p 8 p$

NEW DIMENSIONS IN COMPUTER INTERFACES

The Velleman Interface System starts your computer to measure, convert and control signals. This universal interface links your computer with everyday devices such as light and heat sources, audio amps, pumps, waterheaters, etc..

AUTOMATION, CONTROLLING, MASTERING ROBOTICS

Even the smalles computer can afford powerful applications you wouldn't dare to imagine. Today we have 10 function cards in our system but tomorrow there might be more. And while using this system you keep all communication means originally provided on your computer

VELLEMAN INTERFACE SYSTEM - KITS

K2609 OC OUTPUT BOARD INTERFACE FOR HOME
COMPUTER
K2610 A/D CONVERTER INTERFACE FOR HOME
K2610 A/D CONVERTER INTERFACE FOR HOME
COMPUTER
COMPUTER
K2611 OPTO INPUT BOARD INTERFACE FOR HOME
K2611 OPTO
COMPUTER
K2613 BREADBOARD INTERFACE
K2614 2X 81 SPECTRUM CENTRONICS
26.30
32.43
39.56

K2615 INTERFACE MOTHERBOARD (SPECTRUM) 40.02 K2618 D/A CONVERTER-INTERFACE FOR HOME COMPUTER
K2628 INTERFACE MOTHERBOARD
(COMMODORE)
32.80

K2629 REAL
IME CLOCK INTERFACE FOR HOME
51.65

COMPUTER

VELLEMAN INTERFACE SYS

M2615 INTERFACE MOTHERBOARD SOECTRUM 63.85

M2615	
M2616	INTERFACE MOTHERBOARD SOECTRUM 63.85

M2616 INTERFACE MOTHERBOARD ZX 81
COMMODORE 64
M2609 OC OUTPUT BOARD FOR HOME 80.40
COMPUTERS
M2610 A/D CONVERTER INTERFACE FOR HOME
COMPUTER
COMPUTER
M2611 OPTO INPUT INTERFACE FOR HOME
M2611 OPTO INPUT INTERFACE FOR HOME
COMPUTER
M2614 ZX 81 SPECTRUM CENTRONICS
INTERFACE
INTERFACE
45.60

K2631 EXTENSION BOARD FOR K2640 OR K264121.22
$K 2633$ RELAY CARD
$K 2634$ QUAD TRIAC SWITCH CARD
15.25

K2635 8 TO 1 ANALOG MULTIPLEXER INTERFACE 27.60 K2640 INTERFACE MOTHERBOARD FOR ERFACE 27.60 AMSTRAD
K2641 INTERFACE MOTHER-BOARD KIT FOR MSX K2642 MOTHERBOARD KIT FOR B.B.C. AND MASTER COMPUTERS $\quad 53.13$ K2643 MOTHERBOARD KIT FOR AMSTRAD CPC6128
$\mathbf{5 5 . 3 2}$ COMPUTERS $\begin{array}{lr}\text { K2612 RS232 MOTHĖRBOARD (I.B.M. } & 5.32 \\ \text { COMPATIBLE) } & 123.34\end{array}$

- BUILT AND TESTED

M2618 D/A CONVERTER INTERFACE FOR HOME
COMPUTER
M2629S REAL TIME CLOCK INTERFACE
36.86
(SPECTRUM)
M2629U REAL TIME CLOCK INTERFACE (UNIVERSAL)
M2633 RELAY CARD
M2634 QUAD TRIAC SWITCH CARD M2635 8 TO 1 ANALOG MULTIPLEXER INTERFACE
58.48
58.48
22.31
38.64

EURO CARDS

$\begin{array}{llllll}\text { ECL } & 160 \times 100 \mathrm{MM} & 4.07 & \text { ECS3 } & 160 \times 100 \mathrm{MM} & 4.07 \\ \text { ECS } & 160 \times 100 \mathrm{MM} & 4.07 & \text { ECL } & 80 \times 100 \mathrm{MM} & \mathbf{2} .24\end{array}$
$\begin{array}{lllll}\text { ECS } & 160 \times 100 \mathrm{MM} & \mathbf{4 . 0 7} & \mathrm{ECL}^{1 / 2} & 80 \times 100 \mathrm{MM} \\ \text { ECI } & 160 \times 100 \mathrm{MM} & \mathbf{4 . 0 7} & \text { ECS } 1 / 2 & 80 \times 100 \mathrm{MM}\end{array}$
ECI. ECS3 AND ECC CARDS ARE COMPATIBLE WITH EURODIN CONNECTORS DIN 41617 AND DIN 41612
ALL CARDS ARE MADE OF GLUE (TINNEDI MULTILAYER EPOXY PRE DRILLED.

ECI
ECL
ecs

TOROIDAL TRANSFORMER - KITS TR2623 TOROIDAL TRANSFORMER. KIT $(2 \times 16 \mathrm{~V} /$

MEMBRANE KEYBOARDS

KN1 2 MEMBRANE KEYBOARD 12 KEYS WITHOUT SYMBOLS
KB12S MEMBRANE KAYBARD 12 KEYS WiH SYMBOLS
KB16 MEMBRANE KEYBOARD 16 KEYS WITHOU SYMBOLS

KB16S MEMBRANE KEYBOARD 16 KEYS WITH KB16S ME
SYMBOLS DFIR DISPLAY FILTER

Cost pronce che catalogue (VK

Con Der ch
If invoice is heoumaed please tick here n
Plosse muke cheques/postal orders pavable to ARGUS SPECIAL
Payment by ACCESS - see betow PUBLICATIONS
NAME.
ADDRESS
11 Plopes debit my ACCESS sccount with the emoumt of

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:
48p (VAT incl) per word (minimum 15 words) Semi Display: (minimum 2 cms)

£11.60 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699 Ext 292
Send your requirements to: Nicola Baty ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

COURSES

01-437 0699
= RESULTS
ELECTRONICS
TECHNICIANS
Updating Courses
London Electronics College (Dept ETI), 20 Penywern Road, London SW5 9SU. 01-373 8721.

ENGINEERING

DESIGNERS

Making Your Own Software/Hardware? Need special Standoffs. Riv Brushes. Boxes or Panels?
For FREE estimate contact
ANDREWS ENGINEERING
Unit 42. Middlefield Industrial Est
Sandy. Bedford.

SUPPLIES

QUALITY WALKIE TALKIES 49 MHz , long range satisfaction or refund. $£ 24.99$ /pair (normally £31.49), 48 hrs delivery, Xenon (dept ET 19) 24 Wharncliffe Street, Barnsley, Yorkshire.

SCOPES

MENDASCOPE LTD.

repair \& aecalibrate OSCILLOSCOPES.
all makes all models.
NATIONWIDE COLLECTION \& delivery
FREE ESTIMATES
Phone 069-172-597

FOR SALE

CORTEX COMPUTER Complete with two SSD Disc Drives, with CDOS, RS232 Port, EBUS implemented, Centronics Printer Port, RGB Display adaptor. Closest offer to $£ 150$ secures. Tel:0480-860821

ALARMS

KITS AND READY BUILT

ETI VALVE PREAMP, complete kit $£ 59.95$. Bass unit kit, Jan.85, including drivers, $£ 59.95$. Supplied by the designer. Fully inclusive prices, D.I.Y. Valve amps. List SAE, Dept ETI, Bewbush Audio, 47b Elmer Road, Bognor Regis PO22 6DZ.
LINSLEY HOOD Designs. Send S.A.E. for details to Teleradio Electronics. 325 Fore Street London N9 OPE

ETI KITS assembled and tested* by electronic trainees under supervision within a purpose built electronic workshop for as little as $£ 10^{*}$ (* depending on type of kit and complexity). Contact:- A.J. Smith, Dept K.A. Electronics Workshop, Lincoln I.T.E.C. Dean Road, Lincoln LN2 4JZ. Tel. 0522 43532.

SPECIAL OFFERS

> FREE MEMBERSHIP to a new NATIONAL ELECTRONICS CLUB. For details and a free gift of components worth over £10 send only $£ 1.00 \mathrm{p} \& \mathrm{p}$ to Woodside, Dowsett Lane, Ramsden Heath, Essex CM11 1J

PRO-DISCO 90L AMAZING OFFER. JUST £8. . . . to your shack!!.. 100 watt poweramp. wired \& tested - glass/PCB + integral 2N3055 Heatsink!! KIA likley.

FM TRANSMITTERS Same day despatch MINIATURE MODEL frequency $60-145 \mathrm{Mhz}$, range 1 mile. Glass fibre P.C.B. All components. Full instructions 9 12 V operation, broadcast reception. Super sensitive microphone. Pick up on FM/VHF radio. $£ 6.95$ inc or ready built $£ 8.95$. Size $57 \times 19 \times 12 \mathrm{~mm}$. HIGH POWER MODEL. 3 watts $80-108$ MHz . Professional broadcast performance. Low drift varicap controlled. Range up to 7 miles. 12 V operation. Any input audio/microphone. All components P.C.B. diagrams and instructions. Size $103 \times 39 \times 29 \mathrm{~mm}$. Kit 13.99 inc or ready built $£ 18.99$ inc. Send S.A.E. for our DataPack on other products. ZENITH ELECTRONICS. 14 Cortlandt Business Centre, Hailsham, East Sussex BN27 1AE. Tel: 0323847973.

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$. Components and P.C.B's available: Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

BOOKS

PARAPHYSICS Journal (Russian Translation); Psychotronics; Kirlianography, Heliphonic Music. Telekinetics. Computer Software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

PROMs - EPROMs - PALs ANY PROGRAMMABLE IC SUPPLIED OR BLOWN PAICES (Including Programming)
$2716 \quad £ 3.45 \quad 2732 \quad £ 3.60$ $2764 \quad £ 2.85 \quad 27128 \quad$ £3.20 etc BIPOLAR PROMs from $£ 1.35$
e.9. 82S123, 18SO30, 745288
e.g. 82S153, 16L8, EP300

Full design and prototyping service Any quantity programmed - SAE or phone for details
P.L.S., 16 Wordsworth Drive, Cheam, Surrey, SM3 8HF Phone 01-644 8095

0asks

$3^{3}{ }^{3} C F 2$ Ansoft branded disks
 $3.5^{\prime \prime}$ DS unbranded disks $5.25^{\prime \prime} 96$

$5.25^{\prime \prime} 96$ tpi DS. unbranded, labels etc
Cannon P
($2.69 \begin{gathered}\text { Citizen } 1200 \\ \text { Epson } 1080\end{gathered}$
 Epson MX/RX/FX80 Kaga Taxan Epson MX/RX/FX100
Epson mx/ax ${ }^{2} 10$
All prices inc. P\&P. Please add VAT @ 15\%
T-syatems Lid Tel: 068922196 The Signal Cahin, 61 High Street Orpington, Kent BRG OJF

I.G.S. COMPONENTS, NO 18 QUEENSWAY, SHELLEY, ONGAR, ESSEX. CM5 OBN.
Reslators $1 / 4$ W 5\% carbon film E12 $1+2$ p, $25+1.5 \mathrm{p}, 100+1 \mathrm{p} 4 \mathrm{R} 7$ to 10 M anymix, 10 off each above $=770$ resistors $£ 4.40 .5 \mathrm{~mm}$
LEDs red $1+8 \mathrm{p}, 25+6 \mathrm{p}, 100+5 \mathrm{p}$, green or yellow $1+11$ p, $25+9$ p, $100+8$ p. IDC Ribbon
Cable Grey 0.05 in pitch, 10way
12p/ft,16way 18p/ft.20way 23p/ft,26way
connectors also available full list free on
request. All prices inc VAT. Orders under £ 10.0050 p extra.

LOUDSPEAKERS

UK MADE HIGH QUALITY LOUDSPEAKERS AVAILABLE.
Dome Tweeters. Dome Mid-Range. Wooters and Sub-Woofers. UNIQUELY ENGINEERED.
ALUMINIUM VOICE COILS
For further information please phone 0473-719212

SERVICES

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork Prototype and small batch production. ALAB ELECTRONICS Grantham (0476) 860089.

LOW COST PCB'S. At last a totally affordable design and manufacture service aimed at the person with low quantity in mind. From Designers to Home Hobbyists send your details for a quote to Gardner Printed Circuits, 55 Withermoor Road, Winton, Bournemouth, Dorset BH9 2NU.

EQUIPMENT

McKENZIE LOUDSPEAKERS;
compare our prices! C1285 GP £26 + £3 p\&p, C15150 BS £54 + £ 4 p\&p, C10200GP $£ 40+£ 3$ p\&p. C15400 BS £80 + £4 p\&p. Projek Sound and Lighting, Unit 1 St. Andrews Street, Greenock, Scotland, (0475) 43089.

WANTED

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB 0532435649

We purchase for cash or immediate settlement surplus stocks of I.C's, Memories, Transistors, etc. Please contact
P.C.S. (Marketing) LTD FAX:0767 318200 TEL:0767 317388 TELEX NO:825616

| Turn your surplus |
| :---: | :---: |
| transistors, IC's etc., into |
| cash. Immediate settlement. |
| We also welcome the |
| opportunity to quote for |
| complete factory clearance. |
| Contact: |
| Coles Harding \& Co. |
| 103 South Brink |
| Wisbech, Cambs. |
| ESTABLISHED OVER 10 YRS |
| Tel: 0945 584188 |

EDINBURGH

PROGRESSIVE RADIO
87/93 Dale Street Tel: 0512360154 47 Whilechapel. Tel: 0512365489 Liverpool 2
stock a wide range of electronic components at 174 Dalkeith Road Edinburgh EH16 5DX Tel: 0316672611
situated midway between
Commonwealth Pool and Cameron Toll
LIVERPOOL
'THE ELECTRONICS SPECIALISTS
Open: Tues-Sat 9.30-5.30
LONDON
Fill the gap Ring Nicola Baty on 01-437 0699

TYNE AND WEAR
ELECTRONIC COMPONENTS AND KITS

STATION ROAD, CULLERGOATS NORTH SHIELDS, TYNE \& WEAR NE30 - 1012514363.

MON-SAT 9.30 to 5.30
CLOSED THURS.

PLANS \& DESIGNS

Design and build your own electronic dashboard.
Plans, instructions, circuits. parts lists £4.95 inc p\&p
BURLINGTON MOTOR CO. LTD. (G5) ARCH 39M, BATH PLACE

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, String Works, Bye St. Ledbury HR8 2AA

REPAIRS

INSTRUMENT REPAIRS oscilloscopes, generators, multimeters and more. Viking Electronics, Potkins Lane, Orford, Suffolk IP12 2SS (0394) 450006.

mIScELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel. 0684 73127.

ELECTRONICS CAD

IBM PC (and compatibles) R.M. NIMBUS, BBC MODEL B, B + and MASTER AMSTRAD CPC and SPECTRUM48K.

ANAL YSER I and II compute the A.C. FREOUENCY RESPONSE of linear (analoque) circuits GAN and PHASE, INPTT IMPEDANCE, OUTPUT IMPEDANCE and GROUUP DELAY exxcep: Sectrum version) are calculated over any frequency range required. The programs are in use
recularly for frequencies oet : zen 0.1 Hz to 1.2 GHz . The effeets on performance of MOXIFICATIONS wo both cirruit and component vatues can be speedily evaluated.
Circuits cuncaining any combinaion of RESISTORS, CAPACTIORS, INDUCTORS, TRANSFORMERS, BIPOLAR AND FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 60 nodes and 180 components (IBM version).
Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS AUDIO AMPLIFIERS MP SFIEAS AERIASSATER NETNORRS, WTDE-BAND AMPLIFIERS, TUNED R.F LINEAR INIEGRATED CIRCUMS ece
STABILIT' CRTERIA AND OSCIL.ATOR CIRCUITS can be evaluaxed by "breaking the loop" Tabuiar curput on Analyser I. Full graphical output, incrrased circuit size and active component librany lacilities on Analyser II.
Check out yout new designs in minutes rather than days.
ANALYSER can grealy reduce or ceen eliminate the need to breadboard new designs.
Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINF 2Nd FREE updat service. IDEAL FOR TRAINING COURSES, VFRY EASY TO USE. Prices from EOO- 195 .

For further details and example computation or for details on our draughting program please write or phone
NUMBER ONE SYSTEMS LTD,
Ret. ETI, Crown Street, St Ives, Huntingdon, Cambs. PE17 4EB. Tel: (0480) 61778

ADVERTISER'S INDEX INDEX

\qquad
BK Electronics . IFC
Barrie Electronics . 12
Cirkit Distribution . 25
Cricklewood Electronics . 39
Crofton Electronics . 62
Dateline. 24
Display Electronics . IBC
GReenbank Electronics . 39
Hart Electronics . 32
Henrys Audio Electronics . 55
Hytek Electronics . 55
ICE King . 62
ICS . 12
Jaytee Electronics . 39
Maplin Electronic Supplies OBC
MJL Systems . 55
Nemesis 12
No 1 Systems . 62
Specialist Semiconductor Devices 10
Stewarts of Reading . 25
Super Alpha Electronics . 33
Technomatic . 4,5
TJA Development 62
TK Electronics . 12
Velleman Kits . 58,59
Zenith Electronics . 25

\qquad

\qquad
Zenith Electronics 25
\qquad

PERFORM IN CIRCUITEMULAIONCHEAPERWIH IHE NEWICE-KING. SIGLE STEP OR BREAK POINT PROCRAMS - TEST RESULTS MMEDATELY? SYSTEM CONSISTS OF POO WIHFLATCABE CONNECTORS. PLUSA 27 EA EPRONIIO PLUG NIOROM (SIDEWAYS) SOCKET. DEAL FOR SMAL SYSTEMOEVELOPMENT, EUCAION, TRANING. ROBOTCISTS, ETC

COMPIETE SYSTEM E250 + VAT
SAE FORFURTHERDEI KEKING, LANCASTER CONSULTANTS.
POBOX65. LANCASTER LAl IPG

RACK STYLE CABINET

* Suitable for instruments. high quality amplifiers and many other purposes * Top, side and rear covers removable for access * Black anodised aluminium front panel * Separate front mounting plate * Heavy gauge front panel is of brushed aluminium finish enhanced with two painted in black. Rack mounting or free standing Comes in quick assembly flat package

Please add $£ 3.00$ P\&F for the first item and $£ 1.50$ for each additional item. To order send cheque/ postal order - please allow up to 7 days despatch for cheque clearance. Quantity discount available. Customers who require further information please send S.A.E. Mail order only.
Overseas orders welcome.
T.J.A. DEVELOPMENTS

Dept. ETI, 53 Hartington Road, London E17 8AS.

CCTV CAMERAS FROM ONLY £69.50 EACH! pLUS CARRIAGE \& VAT

Crofton Electronics are now able to offer C C.T.V. cameras fromas little as $£ 69.50+$ VAT \& carriage. These cameras have been refurbished to a bigh standard. The output is 1 volt $\mathrm{p}-\mathrm{p}$ and will work with most video equipment. These cameras are powered from 240 volt mains. and have a vidicon rack giving a focusing range from an inch or two to infinity. A standard 16 mm lens is also supplied. The sensitivity is in the order of 10 lux which allows their use in the domestic environment. Pictures can be prodiced with only 2.5 lux but with a worse signal to noise ratio. Low light versions are available having sensitivities of 0.1 lux (half moonlight) at \#350 + VAT and carriage. Many other lens are avaiolable from stock. A mounting bush is standard. Many other cameras are available from stock both reconditioned and new, ie brand new mini 12 volt camera at only $£ 80$ plus VAT and carriage. lens extra Many other items of CCTV equipment such as monitors (both new and refurbished) switchers. panning units, housings, time and date generators are available from stock). We also supply camera and monitor tubes, as well as scanning yokes for a wide range of equipment.

SPECIAL SPECIAL SPECIAL SPECIAL

Currently on offer is a professional drive board and tube to make a superb 12" professional green panelled tube monitor at $£ 23.50$ inclusive. Would normally cost well over $£ 200+$. Buy 10 off and they will only cost you $£ 180.00$ inclusive. Be sure to ask us to quote for any of your camera/monitor requirements we will never be beaten on price

HURRY HURRY HURRY

(Not many left. First come first served.)
Brand New Time Date generators at a fraction of their original price. Only $£ 132$ inclusive. Normal price £477. These generators are mains driven and accept nomal composite video in. The produce video out with time/date/day/month/and year added to the signal in normal or reverse video. Adjustable positioning anywhere on screen. Switchable character size also provided. A REAL MUST FOR SECURITY APPLICATIONS WHEN RECORDING. We also have a host of used items such as cooling fans power supplies at give away prices, so why not ask for a list?

Send a 40p SAE for our complete range of catalogues
MOST MAJOR CREDIT CARDS ACCEPTED
CROFTON ELECTRONICS
05448557
'KINGSHILL', NEXTEND, LYONSHALL, HEREFORDSHIRE HR5 3HZ

GOMPUWHR WARMIOUSA
 1000's or Rahcains ROA cAThation

 The fabulous TE LE BOX an INVALUABLE MUST for the owner of ANY video monitor with a composite input, colour or monochrome
Made by a major UK Ca as a TOP QUALITY, stand alone UHF tuner and costing OVER E75 to manufacture, this opoortunity to
give your monitor a DUAL FUNCTION must not be missed! The HELEBOX consists of a compact, stylish two tone charcoat moulded case, containing ALL electronics tuner, power supply etc
to simply plug in and convert your previously dedicated computer monitor tinto a HIGH QUALITY COLOUR' TV SET, giving a real
benefit to ALL the family! Don't worry if your monitor doesn't have sound-THE TELE BOX even has an integrai 4 watt audio amplifier fordriving an external speaker, PLUS an auxitiary outputfor superb
quality television sound via your headphones or HI FI system etc. Other features include: Compact dimensions of only $15.75^{\prime \prime} \mathrm{w} \times$
$7.5^{\prime \prime} \mathrm{d} \times 3.5^{\prime \prime} \mathrm{h}$ latest technology, BRITISH manufacture fully tuneable 7 channel push button tuner, Auto AGC circuit, SAW filter, LED status indicator, fully isolated $240 \vee A C$ power supply for total

ted auantir- dont miss this offerl!

video monitors OR $£ 24.94$ if purchased with ANY of ou
GOLOUR 8 MONOGHROME MOUITOR SPEGIALS

SYSTEM ALPHA' $14^{\prime \prime}$ COLOUR MULTI INPUT MONITOR

Made by the famous REDIFFUSION Co. for their own professional computer
system this monitor has all the features to suit your immediate and future system this monitor has all the features to suit your mmediate and future connection to BBC/IBM and most other makes of micro computers or VCR's
including our very own TELEBOX An internal speaker and audio amp may be connected to computer or VCR for superior sound quality. Many other features: PIL tube, Matching BBC case colour, Major controls on front panel Separate
Contrast and Brightness - even in RGB mode Separate Colour and audio
controls for Composite Video input BNC plug for RGB input, modular construction etce.tc
This Must Be ONE OF THE YEAR'S BEST BUYS. PC USER Supplied BRAND NEW and BOXED, complete with DATA and 90 day guarantee ONLY £159.00 as above OR IBM PC Version $£ 165.00$
15 Day 'D' skt $£ 1.00$ BNC skt 75 p BBC intertace cable $£ 5.50$
DECCA $8016^{\prime \prime}$ COLOUR monltor. RGB Input.
Little or hardly used manufacturer's surplus enables us to offer this specia
converted DECCA RGB Colour Video $T V$ Monitor at a super low price of only £99.00, a price for a colour monitor as yet unheard of! Our own interface safety modification and special $16^{\prime \prime}$ high definition PIL tube, coupled with the
DECCA 80 series TV chassis give 80 column definition and quality found only on monitors costing 3 TIMES OUR PRICE. The quality for the price has to be
seen to be believed! Supplied complete and ready to plug direct to a BBC Seen to be believed Supplied complete and ready to plug direct to a BBC are internal speaker, modular construction, auto degaussing circuit, attractive
TEAK CASE, compact dimensions only $52 \mathrm{~cm} W \times 34 \mathrm{H} \times 24 \mathrm{D}, 90$ day guarantee Although used units are supplied in EXCELLENT condition.
DECCA $80,16^{\prime \prime}$ COLOUR monitor. Composite video Input. Same as above model but fitted with Composite Video input and
VCR or AUDIO VISUAL use ONLY £99.00 + Carr
REDIFFUSION MARK 3, $20^{\prime \prime}$ COLOUR monitor. Fitted with standard 75 ohm or SCHOOLS SHOPDS, DISCOS, CLUBS and other AUDIO VISUAL applit cations Supplied in AS NEW or little used condition ONLY $£ 145.00$ + Carr.
BUDGET RANGE EX EQUIPMENT MONOCHROME video monltors. All units are fully cased and set for 240 v standard working with composite video inputs Units are pre tested and set up for up to 80 column use. Even when
MINOR screen burns exist - normal data displays are unaffected 30 day 2"'KGM $320-1$ B/W bandwidth input, will display up to 132×25 lines. $£ 32.95$ $12^{\prime \prime}$ GREEN SCREEN version of KGM 320-1. Only $£ 39.95$
$9^{\prime \prime}$ KGM 324 GREEN SCREEN fully cased very compact unit Only $£ 49.00$

GOULD OF 443 enclosed compact switch mode supply with DC regulated GOULD $\mathbf{G B}$-40A $5 v 40$ input. BRAND NEW only $£ 16.95$ AC-DC Linear PSU for DISK drive and SYSTEM NEW E 130.00
rugged ALLOY chassis to continuously supply fully regulated. Constructed on a

RHEMROS

Manufacturer's BRAND NEW surplus matrix-ideal micoded keyboard with 67 qua
AMKEY MPNK-114 Supersions etc. $£ 24.95$ with' 116 keys Many features word processor chassis keyboard on single PCB 7 and character set with 31 function keys, numeric Single $5 v$ rail full ASCl Only $£ 89.00$ with data Carriage on Keyboards $£ 3.50$

DON'T MISS THE CPM Deal OF the CENTURY The FABULOUS GPH TATUNG PC2000
Professional Business System

PC, CPM system, recently on sale at OVER £1400, at a SCOOP price just over the cost

 Not a toy, the BIG BROTHER of the EINSTIEN COmputer, the DUAL PROCESSOR PC2000 comprises a modern stylish three piece system with AL L the necessities for the SMALL BUSINESS, INDUSTRIAL, EDUCATIONAL or HOBBYIST USER. Used with WORDSTAR, FAST, DBASE2 etc, the PC2000 specification, at our prices, CANNOT E BEATEN!The central processor plinth contains the $\mathbf{6 4 K}$, Z80A processor, DUAL TEAC $55 \mathrm{~F} 51 /$ CENTRONICS and system expansion ports, and if that's not enough a ready to plug into STANDARD8"ORIVE port for up to FOUR $8^{\prime \prime}$ disk drives, etther in double density or IBM format The ultra slim 92 key, detachable keyboard features 32 user definable keys numeric keypad and text editing keys, even its own integral microprocessor which allows the main Z80A to devote ALL its time to USER programs, eliminating"lost character" problems found on other machines The attractive, detachable 12" monitor combines a green, antrglare etched screen, with full swivel and tilt movement for maximum user comfort Supplied BRAND NEW with CPM 2.2, user manuals and full 90 day guarantee. Full data sheet and info on request

> PC2000 Business System with CPN and 'Ready to Run' FAST Sales and

hase ledger, supports up to
 cos anioo
 only E399 Now only E499

SURPDUS SEFCILLS ON

 bratil- wiwohth- titay Lessey vie

 cisicitisisi
ALPHATANTEL. Very compact unit with integral FULL ALPHA NUMERIC keyboard. Just add a domestic TV eceiver and you have a superb PRESTEL system and
via PRESTEL the cheapest TELEX service to be found! Many features. CENTRONICS Printer output DIY mod tor RGB or Composite video outputs AS NEW only £125.00
ExSTOCR IWTECRITED CIECDITS 4164200 ns D RAMS 9 for E11 4116 ns £1.50 2112 £10.00 2114 £250 2102 £2.00

 $£ 228251$ £ 8748 £ 15 Z80A DART £ 6.50
Z8OA CPU £2.00. Thousands of IC's EX STOCK

DIGK DRIVEs

drives by TEAC, CANON, TOSHIBA etc.
Sold as NEW with 90 day guarantee ONLY $£ 85.00$
TEC FG-503 Double sided HH 40 TRK NEW $£ 75.00$ SUGART SA400 SS FH 35 TRK E555.00
SIEMENS FDD100 SS FH 40 TRK £65.00
carriage on $514^{\prime \prime}$ drives 85.50
Brand NEW metal $51 / 4^{\prime \prime}$ DISK CASES with internal PSU.

 $8^{\prime \prime}$ IBM format TESTED EX EQUIPMENT.
 SHUGART 851 OS
 SAB50R. BRAND NEW at $\mathbf{~} 275.00$
DYSAN $8^{\prime \prime}$ Alignment disk
Various disk drive PSU's Ex Stock SEE PSU ${ }^{£ 29.00}+\mathrm{pp} £ 8.50$ arious disk drive PSU's Ex Stock SEE PSU section.
HARD DISK DRIVES HREJDIABLO Series
Exchangeable version £295.00. ME3029 PSU £95.00 DIABLO 44/DRE $4000 \mathrm{~A}, \mathrm{~B} 5+5 \mathrm{Mb}$ from $£ 750.00$
CDC HAWK $5+5 \mathrm{Mb} £ 795.00$. COC 976280 Mb MO etc.
PERTEC $034225+5 \mathrm{Mb}$
£2500.00. PERTEC D $34225+5 \mathrm{Mb}$
RODIME $51 / 4^{\prime \prime}$ Winchesters ex-stock from £150 CALL Clearance ltems - Sold as seen - No guarantee.
ICL 2314 BRAND NEW $14^{\prime \prime}$ Mb Removable ICL 2314 BRAND NEW $14^{\prime \prime}$ Mb Removable pack hard disk drive cost ovar $£ 2000$ with data ONLY £99.00
BASF. $61728^{\prime \prime} 23 \mathrm{Mb}$ Winchesters ARF. 6172 8 Mb Winch Unless stated all drives are refurbished with 90 day
guarantee Many other drives and spares in stock - call

Join the communications, revolution with our super
range of DATA MODEMS, prices and specifications to suit all applications and budgets.....
BRAND NEW State BRAND NEW State of the art products DACOM DSL2123 Mulți standard 300-300, 1200-75 DACOM DSL $2123 A Q$ Auto dial, smart modem with
multi standard AUTO SPEED detect and data buffer with flow control etc.
DACOM DSL2123GT The CREAM of the intelligen modetc Sync or async, optional auto dial 1 RANSDATA 307A Acoustic $\mathbf{£ 4 6 5 . 0 0}$
 Ex BRITISH TELECOM full spec CCITT, ruggedised any MODEM $13 A 300$ baud unit, only $2^{\prime \prime}$ high fits under MODEM 20-1. 75-1200 baud. Compact unit for use as Subscriber end to PRESTEL, TELECOM GOLD MODEM 20-2 Computer end
DATEL 2412. Made by SE Labs for BT this two
24 baud using $2780 / 3780$ protocol etc. Many features COST OVER $£ 800$. Our price ONLY $£ 199+$ pp $£ 8.00$ DATEL 4800, RACAL MPS4800 baud modem, EX
BT good working order, ONLY £295.00 + pp 8000 SPECIAL OFFER
MODEM TG2393. EX BT, up to 1200 baud full £85.00 PER PAIR + pp $£ 10.00$

SPECIAL BULK PURCHASE of these compact, high
speed matrix printers. Built in Japan for the Hazeltin irectional full pin addressable graphics, 6 type fonts, up to 95 single sheet or
tractor paper handling, RS232 and CENTRONICS parallel intertace Many other features BRAND NEW
and BOXED COST $£ 420$ Our price Only $£ 199.00$ REGMRGEABLF BITIERIFS

A300 07191315 12v 3Ah NEW $£ 13.95$ A300 07191202 6-0-6v 1.8Ah TESTED Ex 9.95

Standard VDU data entry tarminala DUME OVT 108 at give away prices!
erminal with detachable keyboard, state of the ar page RAM, TVI 925 . Hazeltine, ADMSA Gemulations
software setup, 25×80. Clock Swise Printer port, Function keys etc. BRAND NEW and
BOXED AT ALMOSTHALF PRICE Only $£ 425$ O AJ510 - EX RENTAL, Z80 controlied $15^{\prime \prime}$ gree screen 24×80 display, graphics, cursor addressing, with manual only $£ 225.00$
ADDS 520 - Dumb terminal, used, $12^{\prime \prime}$ b/w screen ONLY £125.00. Carriage on terminals $£ 1000$

DEFLAY

Retretus established companies $£ 20.00$. Where post and packing not indicated please ADD £1.00 + VAT. Warehouse open Mon-Fri 32 Biggin Way Uoper Norwood LondonsE19.3XF
 2-CHANNEL DIGITAL PROPORTIONAL RADIO CONTROL SYSTEM

- for the price of the RC system alone!

All this is included in the price:
Ready-built $1 / 14$ scale model car (overall size $325 \times 186 \times 130 \mathrm{~mm} .12 .8$
$\times 7.3 \times 5.1$ in.).
Front and rear low-profile semi-pneumatic rubber tyres
Front wheel independent suspension.
High or low gear selection.
Sealed box with differential gearing
Powerful motor gives scale speeds up to 140 mph
Front and rear coil-spring shock absorbers.
2-channel digital proportional radio control transmitter (and receiver). (Standard 27 MHz AM - no licence required in UK).
Servo-controlled proportional steering.
Proportional motor speed control in forward and reverse

> "Batteries and ni-cad charger not included. Car requires 8 AA cells (ni-cad recommended YG00A $£ 1.35$ each). Transmitter requires 6 AA cells, (alkaline SX69A 55p each or ni-cad as above). NB - and if you have a collision at 100mph or more, you'll be pleased to hear that spare parts are available.

I'LL BE RACING THIS SUMMER WITH MY SUPERB APACHE CAR!
Please rush me my Apache model racer. with 2 channel digital proportional radio control system. I wish to receive:

	Code	Qty	Price
Apache model racer	SX08J		
AA ni-cad battery	YG00A		
AA alkaline battery	SX69A		
All prices include VAT. Please add 50ρ towards postage. Horder below 55.00, please add 50 . handling			

If order below 55.00 , please add 50 p handling
I enclose cheque/postal order made payable to Maplin Electronic Supplies Ltd. or see credit card details.
Here are my personal detalls
Customer Number
Name
Address

Post Code

Send to:

have never been a Maplin Customer, but I would be pleased to receive details of the super Summertime special offers.

If you have already received the Summertime special offers please use the Order Coupon supplied with that.

Please register me in the prize draw
authorise you to debit my Credit Card account for the cost of goods despatched

Credit Card Number \square
Access/American Express Mapcard Visa

Note: Goods will be despatched only if the address given is the cardholder's address f ordering by Credit Card please sign
Signature:
Expiry Date

M A Acoritr

Maplin Electronic Supplies Ltd
P.O. Box 3, Rayleigh, Essex, SS6 8LR. Telephone, Credit Card Sales (0702) 554161 Enquiries (0702) 552911

[^4]
[^0]: Automotive Electronics - October 12-15th The IEE, London. International conference organised by the IEE in conjunction with many other professional bodies. Contact them at the address below.

[^1]: Addresses:
 Cahners Exhibitions L.td, Chatsworth House, 59 London Road, Twickenham TW1 3SZ. Tel: 01-891 5051.

 Institute of Electrical Engineers, Savoy Place, London WC2 0BL. Tel: 01-240 1871.

 Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE. Tel: 01-868 4466.

[^2]: Boolean equation:
 $\overline{\mathrm{M0}}=\mathrm{HE} 1^{*} \mathrm{HE} 2 * \overline{\mathrm{LE}} * \overline{\mathrm{LE} 2} * A 2 * A 1 * A 0$
 Assume all inputs/outputs default high:
 Input pins AD7-AD0
 Output pins D7-D0
 Any included GND = NOT
 Expand the equation:
 $M 7^{*} M 6^{*} M 5^{*} M 4^{*} M 3^{*} M 2^{*} M 1^{*} \overline{M 0}=$
 HE1*HE2* ${ }^{\mathrm{LE}} 1^{*} \overline{\mathrm{LE} 2} * \overline{\mathrm{~A} 2} * \overline{\mathrm{~A} 1} * \overline{\mathrm{~A} 0} * \overline{\mathrm{GND}}$
 Substitute EPROM pin names:
 D7*D6*D5*D4*D3*D2*D1* $\overline{\mathrm{D} 0}=$
 $\mathrm{AD}^{*} \mathrm{AD}^{*}{ }^{\mathrm{AD} 5} * \overline{\mathrm{AD}}^{*} \overline{\mathrm{AD}} 3^{*} \overline{\mathrm{AD} 2}{ }^{*} \overline{\mathrm{AD} 1} * \overline{\mathrm{AD} 0}$
 Sum the binary weights:
 FE (hex) $=\mathrm{CO}$ (hex)
 In other words, program EPROM byte CO (hex) with data FE (hex)

[^3]: －All couples featured in Dateline advertising are genuine Dateline members who have met through the Dateline service．

[^4]: Shops at: Lynton Square. Perry Barr. Birmingham. Tel: 021-356 7292. 159-161 King Street. Hammersmith. London W6. Tel. 01-748 0926 8 Oxford Ra.. Manchester. Tel: O61-236 0281 46-48 Bevois Valley Rd. Southampton. Tel. 0703 25831. 282-284 London Rd. Westcliff-on-sea Essex Tel 0702-554000

