Aphtionlis indey

THE
FUTURE OF COMPUTERS:

 TMS34010 doos :ing Is.

 The TME34010 extelas a E-MIP parivi purpase instratimp

 - promar for a stisll computer.

OVP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES
world-wide reputation for quality. reliability and performance at a realistic price Four models avalable to sult the needs of the professional and hobby market. I.e. Industry. Leisure nower supply, Integral heat sink Glass fibring prices. NOTE all models include Toroida power supply, Integral heat sink, Glass ibre P.C.B and Drive circuis to power compa
Vu meter Open and short circuit proof
Supplied ready built and tested.

OMP100 Mk II Bi-Polar Output power. 110 watts R.M.S. into 4 ohms. Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 001%, S.N.R. - 118 dB . Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+$ f3.00 P\&P.

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical
0.002%. Input Sensivy 500 mV SN -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $£ 39.99+$ f 3.00 P\&P.
OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250. Slew Rate $50 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.001%. Input Sensitivity 500 mV . S.N.R. -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE PRICE $£ 62.99+\boldsymbol{£ 3 . 5 0 ~ P \& P}$.
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350. Slew Rate 60V, uS, T.H.D. Typical 00008%, Input Sensitivity 500 mV , S.N.R -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $\mathbf{f} \mathbf{7} .99+\boldsymbol{£ 4 . 5 0}$ P\&P.

NOTE: Mos Fets are supplied as standad 1100 KHz bandwidin \& Inpul Sensilivity 500 mV) if required Vu METER Compatible with our four amplifiers detailed above A
 very accurate visual display employirg 11 LF F diodes 17 green. 4 red) plus an additional on off indicator Sophisticated logic control circuts tor very fast rise and decay times Tough m PRICE $\mathbf{f 8 . 5 0}$ - 50p P\&P.

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans Large S.A.E (28p) for free dètails.

POWER RANGE

B" 50 WATT R.M.S. Hi-Fi/Disca
 $12^{\prime \prime} 100$ WATTR R.M.S. Hi-Fi/Discio
50 oz magnet 2" ally vorce

```
50 oz magnet 2" ally vorce col Gro
```

Freq
MCKENZIETT R.M.S. C1285GP Lead guitar/keyboard/Disco
2" ally voice coil Ally centre dome Res Freq 45 Hz Freq. Resp. to 65 KHz Sens 98dB PRICE $£ 29.99$ £2.00 P\&P ea.
12" 85 WATT R.M.S. C. 1285 TC P.ADDisco $2^{2 \prime}$ ally voice coil. Twin cone
Res. Freq. 45 Hz Freg.
Res. Freq. 45 Hz Freq. Resp. to 14 KHz PRICE
$15 " 150$ WATT R.M.S. C 15 Bass Gultar/Disco
$3^{\prime \prime}$ ally voice coil Die-cast chassis Res. Freq. 40 Hz Freq. Resp. to 4 KHz PRICE $£ 57.87+£ 4.00 \mathrm{P} \& \mathrm{Pea}$ 10 " 60 WATT R.M.s. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. P.A. 2". voice coil. Res. Freq. 75 Hz Freq. Respe. to 7 TKHz Sens. 99 dB PRICE $£ 19.99+£ 2.00 \mathrm{P} \& \mathrm{P}$ ${ }_{21}^{10 "} 200$ WATT R.M.S. C10200GP Guitar, Keyboard, Disco.
$2^{2 "}$ voice coil. Res. Freq. 45 Hzz . Freq. Resp 107 KHz . Sens. 101 dB PAICE $£ 44.76+£ 3.00 \mathrm{P} \& \mathrm{P}$

Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB PRICE $£ 89.52+£ 4.00$ P\&P.
WEM
5 " 70 WATT R.M.S. Multiple Array Disco etc.
"voice coil Res. Freq. 52 Hz Freq. 52 Hz Freq Resp. to 5 KHz Sens. 89 dB PRICE $£ 22.00+£ 1.50$ P\&Pea

$10^{\prime \prime} 300$ WATT R.M.S. Disco/Sound re-entorcement etc.

$12^{\prime \prime}{ }^{1 / 200}{ }^{300}$ WATT R.M.Se coil Res. Freq. 35 Hz Freq. Resp. to 4 KHz Sens. 94 dB PRICE $£ 47.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea
SOUNDLAB (Full Range Twin Cone)
UND WAB (Full Range Twin Cone)
R.S. Hi -Fi/Multiple Array Disco
voice cail. Res. Freq. 63 Hz . Freat Resp. to $20 K \mathrm{~Hz}$. Sens. 86 dB PRICE $6999, ~$
60 WATMRM $00 \mathrm{P} \mathrm{\& P}$ ea

O" 60 WATT R M.S. Hi-Fi/Disco etc.
60 WATT R.M.S. Hi-Fí Disco etc. omponents complete with instructions FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (3 volt) Price: $£ 8.62+75 \rho$ Ps.P.
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controtled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 voth) Price: $f 14.49+75 p$ PAP
SINGLE CHANNEL RADIO CONTROLLED TRANSMIPTER/ RECEIVER 27MHz. Range up to 500 metras. Double coded modulation. Recaiver output operstes relay with 2 amp/ 240 vott contacts. |deal for many apprications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ($9 / 12$ volt). Price: P\&P +750 each. S.A.E. for complete list.
 3 watt FM
Transmitter

PRICES INCLUDE V.A.T. \star PROMPT DELIVERIES \star FRIENDIY
BURGLAR ALARM
Thandar's famous Minder' Burglar Alarm System. Superior microwave principle Supplied as three units. complete with interconnection cable. FULLY GUARANTEED.
Control Unit - Houses microwave radar unit. range up to 15 metres adjustable by sensitivity Indined 30 second Exit and entry detay
Indoor alarm - Electronic swe pt frea Indoor alarm
Outdoor Alarm - Electronic swept frec siren. 98dB output. Holused in a tamper-proof heavy duty metal case
Both the control unit and outcoor alarm contan re-
cnargeable batteries cnargeable batteries which provide tull protection
durng mains tallure. Power requirement $200 / 260 \mathrm{Volt}$ during mains allure. Power requirement $200 / 260$ Volt
AC $50 i$ OOHz Expandable with door sensors. panic buttons etc. Complete with instructions
SAVE $\boldsymbol{\pm} 1 \overline{3} \overline{\mathbf{8}} . \overline{\mathrm{U}} \mathbf{U}$ Usual Price $£ 22885$
BKE's PRICE $£ 89.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS
The very best in quality and value. Made specially to sunt todays need for compactress with high sound output ieves linshed in hard wearing back vynit? with protective cor ners, grille and carry
handle. All models 8 ohms Full range $45 \mathrm{~Hz}-20 \mathrm{Kz}$ Size $20^{\prime \prime}$.

OMP 12-100 Watts 1 190dB. Price $£ 149.99$ per pair.
OMP 12-200 Watts 102 dB . Price f 199.99 per pair.

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S into 4 ohms). MF200 (100 + 100IW. $£ 169.00$ Securicor MF400 $(200+200)$ W $£ 228.85$ Delivery MF600 $300+300$ W $£ 299.99 \quad £ 10.00$

1 K-WATT SLIDE DIMMER

BS800 * Suitable for both resist. ance and inductive loads. In industry. the hom
disco's, theatres PRICE $£ 13.99$ - 75p P\&P

BSR P295 ELECTRONIC TURNTABLE * Electronic speed control 45 \& 33 Minus varabe pirch control * Bert driven * Al
minumplatter with si:obed rum * Cue lever * An skate (bias device) \& Adjusiable counter balance Supplied complete with cut out templa
Operation $9-14 v D$ C. 65 mA

ADC O4 mag. cartridge tor above Price $£ 499$ e

PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution The low dynamic mass (no voice coll) of a Piezo iweeter"produces an
improved transient response with a lower distortion level than ordina iv dynamic tweeters As ossover is not required these units can be added to existing speaker systems of up to 100 watt TYPE 'A•(KSN2036A) 3" round with protectivewire mesh, ideal for houkshelf and medium sized H_{1}-f
 TYPE 'B' 'KSN1005Al 3^{1} 's' super horn For general f5.99 each $\cdot 40 \mathrm{p}$ P\&P. TYPE C' (KSN6016A
horn. For quality HI-fi systems and quality discos etc Price f6.99 each 401 P\&F. TYPE "D' (KSN1025A) 2" * 6" wide dispersion horn. Upper irequency response retained extending down to mid range (2 KHz) Suitable for high quality H1-fi systems and quality discos. Price $\mathbf{f 9 . 9 9}$ each 40p P\&P
TYPE '
TYPE 'E' (KSN1038A) $33 / 2$ " horn tweeter with attractive silver finish rim . Suitable for $\mathrm{H}_{1}-\mathrm{fi}_{1}$ montor
systems etc. Price $£ 5.99$ each +40 p . Systems etc. Price $£ 5.99$ each $+40 p$ P\&P
LEVEL CONTROL Combines on a recessed ing plate level control and cabinet inpussed mount-$85-85 \mathrm{~mm}$ Price f3.99 40 P\&

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \&

 R. graphic equalisers and 1 win 10 segmentL.E.D. Vu Meters. Many outstanding features 5 Inputs with individual faders providing a useful combination of the following: 3 Turntables (Mag), 3 Mics, 4 Line plus Mic Pan Pot. L. \& R. Master Output controls Ou: put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$ rice 513499 - $5300 \mathrm{P} \mathrm{\& P}$

Geoff Bains: Editor
Ian Pitt: Deputy Editor
Paul Chappell: Project Editor
Jerry Fowler: Technical Illustrator
Alisdair Chisholm: Ad. Manager Nicola Baty:
Classified Sales Executive Andrew Selwood: Copy Control
Dave Bradshaw: Group Editor

- Electronics

PUBLISHED BY:
Argus Specialist Publications Ltd. 1 Golden Square, London W1R 3AB. DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4JS (British Isles)
TYPESET AND ORIGINATION BY:
Design International.
PRINTED BY:
Adlard \& Son Ltd, The Garden City Press.
COVERS DESIGNED BY:
Argus Design
COVERS PRINTED BY:
Loxley Brothers Ltd.

| ISSN |
| :--- | :--- | :--- |
| 0142-7229 ABC | \(\begin{aligned} \& Member of the

\& Audit Bureau\end{aligned}\) of Circulation

[^0]
EDITOR!AL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

15 YEARS . 12
ETI is fifteen years old this month and we're not going to let you forget it.

GRAPHICS PROCESSORS 15
Ian Sherlock gives a run down on the history of graphics on personal computers and explains what's in store for the future.

HARDWARE DESIGN

CONCEPTS23

Mike Barwise is still at the workbench building a pulse generator.

This month he looks at the PCB design.

CIRCUIT THEORY

28
It's easy enough to string a few 'black boxes' together into a circuit and call that 'design', but for the real electronics enthusiast, something a little more learned is required. Paul Chappell elucidates.

PROJECT INDEX

1972-1987 Centre Pages
The first part of our pull-out guide to an unbeatable 15 years of ETI projects.

PROJECTS

24HR SUNDIAL

Not a misprint . . . it's April! If you build no other ETI project make sure you build this one (that'll teach you to scorn our projects)!

PLL FM TUNER33

John Linsley Hood continues his top notch FM tuner project with a description of how to put the whole project together.

THE ETI FAKER 38
Difficulty connecting up RS232 devices is a problem of the past thanks to Mike Bedford's handy patch box.

BBCMICROMIDIINTERFACE. . . 42 Music meets the micro. A dual channel MIDI interface to build, courtesy of John Yau.

ROBOTICS TECH TIPS
 47

Andy Armstrong has produced a special bumper bunch of motor drive and sensor circuits for the robotics enthusiast.
Motor Speed Sensor
Shaft Position Indicator
Coherent Optical Proximity Detector
Inductive Track Follower

REGULARS

01-208 1177 Trchnomatic Lid 01-208 1177

BBC Micro Computer System

Second Drive Kit
UPGRADE KITS
1770 DFS Upgrade for Model B $\mathbf{£ 4 3 . 5 0}$ (d)
12 OS ROM $\mathbf{£ 2 2 . 5 0 \text { (d) }}$
DNFS ROM......................... 17.50 (d)
ADFS Rom (for B with 1770
£26 (d)
ECONET ACCESSORIES Econet Starter kit Fonet Bridge Printer Server Rom Adv. Econet User Guide
COMMUNICATIONS ROMS c49 (d
Commstar... 28 (d) BBC FIRMWARE \& SOFTWARE
Processors, Languages, Spreadsheets, Utilities For full details on the wide range of above

RS232 Interface $+2 K$ Buffer
Ribbon KP810/910/815/915
. $63(\mathrm{c})$
£6.00 (d)

Rpare Daisy Wheel00 (d)
Ribbon...
E12.00 (d)
Tractor Feed Attachment 149 (a)
Shert Feeder...
E239 (a)
$5116($ a)
Ribbons Carbon or Nylon.. (d)
ed Correction Aibbon $\quad \mathbf{E 2 . 0 0}$ (d)

Printer Leads can be supplied to any length.

MODEMS

- All modems listed below are BT approved

MIRACLE 3000:

MIRACLE WS2000 V21/23 Manual . . . $\mathbf{£ 9 5}$ (b) MIRACLE WS4000 V21/23. (Hayes Compatible Intelligent, Auto Dial/Auto Answer).. £149 (b) MIRACLE WS3000 V21/V23 As WS4000 and with BELL standars and battery pack up for memory
MIRACLE WS3000 V22 As WS 3000 V21/V23 bu with 1200 baud full duplex 450 (a) MIRACLE WS3000 V22 bis As V22 bis As V22
MIRACLE WS3000 V22 bis As V22 and 2400 MinA full duplex.............................. 245 (a)
MIRACLE WS3022 As WS3000 but with only 1200/1200.
MIRACLE WS3024 As WS3000 but with (a)
2400/2400.
DATA Cable from Ws series/PC or XT. $£ 7$ (d)

DATATALK Comms Package *If purchased with any of the above modems* PACE Nightingale Modem V21/V23 Manúal

Serial Test Cable
Serial Cable switchable at both ends allowing pin optionstobe re-routed or linked at eitherend usinga 10 cable contiguration on site. Available as M/M or M/F

DISC DRIVES

These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with $40 / 80$ track switching as standard. All drives can operate in single or dual density format.
PD800P $(2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS) with built in monitor stand..................... $£ 249$ (a)
$0(2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$
TD800 (as PD800 but withou
psu) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(226$ (a)
DS £114 (b)

3M FLOPPY DISCS

High quality discs that offer a reliable errorfree performance for life. Each discis individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box
51/3 DISCS
PS400 with psu $1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K}$ 40/80T DS 3.5" DRIVES
$1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ DS TS35 PS35 1 with psu 1 (b) $2 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ DS TD35
PD35 2 with psu ... (b)

31/2" DISCS $40 T$ SS DD $£ 10.00$ (d) $40 T$ DS DD $£ 12.00$ (d) $80 T$ SS DD $£ 20.00$ (d) 80 T SS DD $£ 14.50$ (d) 80 T DS DD $£ 15.50$ (d) 80 T DS DD $£ 25.00$ (d)

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives:.... $31 / 2^{\prime \prime} £ 16$ (d), $51 / 4$ " $£ 14.50$ (d)

	10 Disc Library Case........................乏1.80(c)	
	40 Disc Lockable Box $£ 8.50$ (c)	100 Disc Lockable Box $£ 13$

MONITORS

All 14" monitors now available in plastic or metal cases, please specify.

MICROVITEC: 14" RGB 14" RGB with PAL \& Audio 1431 Std Res................ £225 (a) 1431 AP Std Res 1999 (a) 1451 med Res £225 (a) 1451 AP Med Res.............. £259 (a) 1441 Hi Res £365 (a)
Swivel Base for Plastic 14"Microvitecs .. 220 (c)

20" RGE with PAL A Audio
2030CS Std Res.................... £380 (a) 2040CS Hi Res $\mathbf{8 6 8 5}$ (a)

TAXAN SUPERVISION II 12" High Resolution $£ 279$ (a)
TAXAN SUPERVISION III with amber/green option, BBC \& IBM.... £279 (a) MITSUBISHI XC1404 14" RGB Med Res IBM \& BBC Compatible.. $£ 219$ (a) PHILIPS 8501 RGB Std Res . 139 (a)

MONOCHROME MONITORS:

TAXAN KX1201G Hi Res 12 Etched Green Screen 90 (a) TAXAN KX1202G Hi Res 12" Long Persistence (P39) TAXANKX1203A $12^{\prime \prime}$ Hi Pes Green Screen Screen

Swivel Base for Taxan Monochrome fitted with Digital Clock £21 (c)

ATTENTION

SPECIAL OFFER
2764-25£2.50
27128-25 2.75
6264LP-15£2.80

All prices in this double page advertisement are subject to change without notice.
ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Test
Minitors RS232C and CCITT V24
Transmiss ions, indicating status with dual colour LEDs on 7 most significant lines.
Connects in Line.
1
GANG OF EIGHT INTELLIGENT FAST EPROM COPIER
Copies up to eight eproms at a time and accepts all single rail eproms up to 27256. Can reduce programming time by 80% by using manufacturer's
suggested algorithms. Fixed $V p$ of $21 \& 25$ volts and variable Vpp factory set at 12.5 volts. LCD display with alpha moving message £395(b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532,2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page on TV - has a serial and parallell/O routines. Can be used as an emulator, cassette intertace, Adaptor for $2764 / 2564.825 .00(\mathbf{c})$

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1B erases up to 6 eproms at a time.... $£ 47$ (c) UV1 1 as above but with a timer £59(c)
UV141 as above but with a timer........... $\mathbf{£ 8 8}$ (b)
Serial Mini Patch Box
Allows an easy method to reconfigure pin functions
without rewiring the cable assy.
Jumpers can be used and reused.

CONNECTOR SYSTEMS

EDGE CONNECTORS			AMPHENOL CONNECTORS		
	-	0.155°			
${ }^{2} \because 6$-way (commodore)			36 way plug	Solder	20c
2×12-way (vic 20)		350p	${ }^{36}$ way skt	550p	500p
	175p	1420	24 way plug	475p	
${ }^{2 \times 1}$	${ }_{2000}^{225 p}$	${ }^{220} \mathrm{p}$	24 way skt		
込 2×38-way (Spectrum)	${ }_{250 p}$		1 EEE		
1×43 way 2×22 way	${ }^{2600}$		PCB M	kt Ang	
${ }_{2 \times 43}$	${ }_{395}$		24		
(${ }^{1 \times 77 \text { way }} \mathbf{} \times 50$ way(S100conn)	${ }^{4000}$	500p	GENDER CHANGERS25 way D type 25 way D type		
EURO CONNECTORS					
DIN 41612	Plug	cket	Male to Fem		E10
2×32 way St Pin2×32 way Ang Pin	230p	5p	Female to F	nale.	
		320p	RS 232	JUM	ERS
		00p			
3×32 way Ang Pin 37IDC Skt $A+B$		400p	24"Single en		£5.00
IDC Skt A + C		400p	24." Single end	male	${ }_{5} 5.25$
For 2×32 way please specify spacing ($A+B, A+C$).			244" -emale Fer		
			24". Male Fema		£9.50
MISC CONNS 21 pin Scart Connector.200p 8 pin Video Connector:200p			$\begin{aligned} & \text { 4-way } 90 p \\ & 8 \text {-way 120p } \\ & \hline \end{aligned}$	way 0-way	$\begin{aligned} & 105 p \\ & 140 p \end{aligned}$

RIBBON

19rey/metre)			
10.way	40p	34 -way	
16.way	60 p	40 -way	180 p
20.way	85 p	50 -way	200 p
26-way	120p	$64 \cdot$ way	280 p

DIL HEADERS		
	Solder	IDC
14 pin	40p	100p
16 pin	50p	110p
18 pin	60 p	-
20 pin	75p	- 150
24 pin	100p	150p
28 pin	160p	200p
40 pin	200p	225p

TECHNOLINE VIEWDATA SYSTEM Using 'Prestel' type protocols
for information and orders for information and orders service, 7 days a week.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

- Eagle International markets a wide range of public address and audio equipment, intercoms, test instruments and accessories. All of these products are now described in a single, 40-page colour catalogue which is available free-of-charge. Contact Eagle International, Unit 5, Royal London Estate, 29-35 North Acton Road, London NW10 6PE. Tel. 01-965 3222.
- The Institution of Electrical Engineers will shortly begin to review the current (15th) edition of the Regulations for Electrical Installations, the standard work covering safety requirements for electrical equipment in buildings and elsewhere. The new 16 th edition will generally follow the format used in preceding editions but will include an on-site guide to make it easier to find frequentlyused material. A wide range of professional bodies will be consulted during the preparation of the new book and the IEE expects it to be ready sometime after 1990.
- The new Verospeed catalogue lists almost 14,000 different product lines including components, cases, tools, software, computers and computer peripherals. Everything is despatched from stock and orders received before 3.00 pm will go out the same day. Copies of the catalogue are free from Verospeed, Stanstead Road, Boyatt Wood Industrial Estate, Eastleigh, Hampshire SO5 4ZY. Tel (0703) 641111.
- The three highest-earning semiconductor suppliers in the world last year were all Japanese, a ccording to business information company Dataquest. NEC took the first place with Hitachi and Toshiba close behind, forcing American companies qut of the top three for the first time ever. Other companies making it into the top ten were, in order, Motorola, Texas Instruments, Philips-Signetics, Fujitsu, Matsushita, Mitsubishi and Intel.
- Several new British Standards relating to home and car security have been published during the last year. They include BS4737: Intruder Alarm Systems In Buildings, BS6799: Code of Practice ForWire-Free Intruder Alarm Systems and BS6803, a code of practice for vehicle security systems fitted after vehicle manufacture There is also a standard covering the installation of DIY home alarm systems, known as BS6707. For prices and details of other publications, contact the British Standards Institution, 2 Park Street, London W1A 2BS, Tel. 01-629 9000.

Hand-Held Oscilloscope

A
novel new instrument from Lefax Ltd offers the versatility of an oscilloscope in a handy, probe-type form.

Call ed the Scope-Probe, it uses an array of LEDs to display signal waveforms from $0-20 \mathrm{kHz}$ and can also indicate DC levels up to 20 V .

The probe is similar in many respects to the ETI LEDscope featured in the January 1987 issue (for which Lefax supplies kits). it measures $46 \times 46 \times$ $120 \mathrm{~mm}(113 / 16 \times 113 / 16 \times 43 / 4$ ins) and is powerd form an internal alkaline battery which gives around twleve hours continuous use. The probe tip can be detached and replaced with a set of
standard test leads, allowing the Scope-Probe to be used as a bench instrument.

Frequencies from 10 Hz to 20 kHz are covered in five switched ranges while DC voltage is handled in two ranges, $0-10 \mathrm{~V}$ and $0-20 \mathrm{~V}$. The controls include fine sweep-frequency adjust, amplifier gain and Yposition and the input can be switched for AC or DC coupling. There is also a battery check facility.

The Scope-Probe costs $£ 106.32$ inclusive and is available to order from Lefax Ltd, Unit 6, Genesis Business Centre, Redkiln Way, Horsham, West Sussex RH13 5QH, Tel (0403) 54135

Dialling-Up A PC Board

The Orator ISCM system turns any IBM-compatible personal computer into a versatile communications centre. Data can be updated or transferred automatically at pre-set times and when connected to a telephone handset the system can answer calls and record incoming messages.

Orator consists of a plug-in board plus a software operating system and uses digital signal processing techniques to store voice
messages on computer discs. Different messages can be recorded for calls arriving at different times and calls can be diverted to other numbers during certain hours.
Orator will be available through selected computer dealers and is expected to cost around $£ 800.00$.
Lion Systems Developments Ltd, Oxford Road, Stokenchurch, High Wycombe, Buckinghamshire HP14 3SX, Tel (024 026) 3951.

BBC Music Keyboard

Hybrid Technology's Music 5000 synthesiser for the BBC micro has gained a keyboard.
Called the Music 4000, it has four octaves and is designed to rival professional equipment. This is not the cheap rubbish you buy for a Commodore 64' said Hybrid's Chris Jordan.

The keyboard plugs into the BBC micro's user port and comes complete with software which enables it to work with the Music 5000 system. The keyboard is always 'live' when the Apple programming language of the Music 5000 is in operation and it can be used for entering notes onto the editing staff or for playing in the same way as any other synthesiser keyboard.
The software is supplied on disc and allows the Music 4000/ 5000 combination to play eight voice polyphony with effects such as sound changing, echo and transposition. A 'multi-track recorder' section will store a performance from the keyboard for playback or transcription either into Apple's own internal music code or the conventional 'sticks and blobs'.

The Hybrid Music 4000 costs $£ 140.00$ plus VAT from Hybrid Technology, Unit 3, Robert Davies Court, Nuffield Road, Cambridge CB4 1TP, Tel (0223) 316910.

A Reel
 Improvement

STC has announced the formation of Cablemaster, a new distribution service which can supply wire and cable for just about every possible application.

Cablemaster offers ex-stock delivery of a wide range of cable types, from heavy duty power distribution cables through to specialist products for computing, thermocouple and telephone applications. STC claims that Cablemaster is the first distributor to offer such a comprehen sive range.

The Cablemaster catalogue gives detail specifications for the cable types available and the company provides a technical advice service. Orders can be placed by post or over the telephone and there are no postage and packing charges. Same-day despatch is guaranteed for all orders received before 5.30 pm .
Catalogues and further information are available from Cablemaster, Edinburgh Way, Harlow, Essex CM20 2DF, Tel (0279) 639 639.

ComputerControlled Broadcasting

The spinning turntables and banks of buttons in your local radio station could soon be a thing of the past.
A new system from America makes it possible for one person to control all the major functions of a radio station using a touchsensitive computer screen.
Microphones can be switched in as required, taped sound effects can be selected from a menu and music tracks held in a remotecontrolled multiple CD player can be brought into play bytouching the screen. Telephone chat shows can also be controlled by the sytem and a text window on the screen allows news and other information to be flashed up in front of the presenter so that it can be read out.
The system is called Touchstone and consists of a software package for use on IBM PCs and a mechanical switching unit. The switch unit is controlled through the computer's RS232 port and can be used to operate tape machines and most other items of station equipment.

The CD player is a broadcastquality unit which can hold 100 discs. Any one of 1000 tracks.can be selected instantly by means of an external controller or computer such as the Touchstone system.

Touchstone is already in use in America. By enabling the presenter to take complete control, the system eliminates the need for a separate mixing desk operator and so reduces staffing costs.

Touchstone is distributed in the UK by Incomtel Ltd, 225 Goldhawk Road, London W12 8SB. Tel 01-743 5511.

Long Arm-Band Of The Law
 Criminal Justice agencies in

 America are using electronic tracking devices to keep tabs on paroled convicts and people awaiting trial.The system uses an arm or ankle band which is fitted to the person being monitored. Signals from the band are picked up by a local receiver so long as the transmitter is in range. If the signal ceases, the receiver informs a central computer which sounds an alert. About 45 such programmes are operating in 20 American states and the National Institute of Justice says they offer a significant improvement in supervision at moderate cost.

Patch Sockets for DIL ICs

D au Components has introduced a range of adaptors which allow connections to be made between ICs and sockets with different pin-outs.

The adaptors are intended for use in test and development work and consist of a plug and socket at either end of a small aluminium case. Each pin on the plugis linked to the corresponding pin on the socket via a DIL switch, allowing the connection to be broken when not required. New connections are made using wire links between two rows of miniature sockets. In this way, any pin can

Surface Mount Trial Board

The problems posed by sur-face-mounting components can be evaluated using a new trial board from OK Industries.

Designed in conjunction with British Aerospace, the board provides the correct tracking configurations for most currentlyavailable surface-mount devices and can be worked using direct heat, hot gas or any of the other standard surface-mount soldering techniques. Component packages with up to eighty pins can
quickly be connected to any other pin.

The adaptors are available in thirteen sizes from 14 to 64 pins and feature turned-pin socket contacts and gold-plated pin contacts. Prices range from around $£ 25.00$ plus VAT for the 14 -pin version up to $£ 95.00$ plus VAT for the 64 pin adaptor. A complete set of thirteen adaptors will set you back around $£ 350.00$ plus VAT.

Dau Components Ltd, 70-74 Barnham Road, Barnham, West Sussex PO22 OES, Tel (0243) 553031.

be accomodated and the board features track spacings down to 0.032 ins $(0.812 \mathrm{~mm})$.

The surface-mount trial board costs $£ 4.98$ plus VAT. OK has plans to introduce a supporting kit which includes dummy versions of some of the more expensive types of surface mount-components.

OK Industries UK Ltd, Barton Farm Industrial Estate, Chickenhill Lane, Eastleigh, Hampshire SO5 5RR. Tel (0703) 619841.

ETI APRIL 1987

- Bopla manufactures enclosures and accessories for electronic equipment including 19" rack systems, moulded terminal and keyboard housings and a variety of plastic cases in various sizes. The range is described in a 20 page A4 catalogue from West Hyde Developments Ltd, 9-10 Park Street Industrial Estate, Aylesbury, Buckinghamshire HP20 1ET, Tel (0296) 20441.
- ACCumulator is the newsletter of the Amateur Computing Club and the latest issue includes articles on serial output expansion, baud rate conversion and using the Rugby Clock broadcasts. Membership of the club costs $£ 6.00$ and details can be obtained from Andy Leeder, Church Farm, Straton St. Michael, Norwich NR15 2QB.
- AB Engineering now distributes the range of fasteners, spacers, ducting and other cable accessories manufactured by Japanese company Kitagawa Industries. Detailed information on Kitagawa's products is contained in a 40page A4 illustrated catalogue which is available free-of-charge. Contact AB Engineering Company, Timber Lane, Woburn, Milton Keynes MK17, Tel (052 525) 322.

A new club has recently started up in the Manchester area for electronics and computer enth usiasts. It meets on the second and fourth Tuesday of each month at a local school and aims to provide information and guidance on various aspects of the hobby. For details contact Mike Darlington at 18 Somerset Road, Failsworth, Manchester M35 0WA, Tel 0616820274.

- The latest edition of the Data Converters and Reference ICs handbook from Ferranti contains information on both new and established ADCs, DACs and voltage reference devices. Application notes are included and there is a new section on interfacing ADCs and DACs with the Z80 and 6500 families of microprocessors. For a free copy contact Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldham, Lancashire OL9 8NP, Tel 0616240515.
- Chris Curry's Red Boxes (see ETI December 1986) are now available for use with the Amstrad 464,6128 and 6256 computers. They can be used to relay information from security devices and other sensors or to control mainsoperated appliances, all using the existing mains wiring as a signal carrier. Contact Electronic Fulfilment Services Ltd, Chesterton Mill, French's Road, Cambridge CB4 3NP.

INIEMUTIDNAL ANARGUS SPECIALIST PUBLICATION

MIDI MASTER KEYBOARD

At last! A musical instrument that cannot produce a single sound! MIDI instruments can be controlled by an external keyboard and that is just what this top-spec beast is built for. Eat your heart out Roland (and Yamaha and Casio, and . . .).

MORE MUSIC

The May issue of ETI is positively bristling with goodies for the budding (or even more than budding) musician. Not only the MIDI keyboard but the start of a new regular column on musical equipment and the business and a Tech Tips special of musical circuits.

THE TRUTH ABOUT HI-FI

The real truth is we promised this one for this issue. However, this time we mean it! All you really wanted to know about hi-fi but were afraid to make up.

PLUS...

There's the most up-to-date news tor the electronics enthusiast, the most informed and opinionated columns, the most objective reviews, the most vigorous of letters, the free-est of readers' ads, and all the rest that each month make ETI the one worth waiting for.

THE MAY ISSUE OF ETI - ON SALE 3rd APRIL GO FOR IT!

TELEQUIPMENT D75 Dual Trace 50 MHz Delay Sweep COSSOR CDUU150. Dual Trace 35MHz Solid Portable $8 \times 10 \mathrm{~cm}$ display. With Manual GOULD OS255. Dual Trace 15 MHz	COMMUHICATION RECEIVERS Hacal RA17L $500 \mathrm{KHz}-30 \mathrm{MHz} \ldots \mathrm{OHLY}$ £ 140 ach K manual Eddystone $730 / 4480 \mathrm{KHz}-30 \mathrm{MHz}$ only $£ 110$ ea with manual.	
Manual	$3+K$ Precision CRT Restorer/Analyser Moder 467.-	
Porrable AC or Extemal DC operation $8 \times 10 \mathrm{~cm}$ displa		
	LABGEAR Colaur Bar Generator KG1. 8 Test Pallerns.	
TELEQUPPMENT D43. Dual Trace 15MHz. With		
Manual E_{100}		
	White RF \& Video Outputs. Tuner	
Philips PM32	dis (PGP ¢4)	
	ADVANCE AM SIGNAL GENERATOR SG62B. 150 KHz 220MHZ - A. SiGNAL GENERATOA TYPE 62 E 150 advance am signal generalua type 62.150 kHz	
AVO 9 Mk 4 (Identical to AVO 8 Mk 4 but scaled div.ferently) Complete with Batteries \& Leads.. \&55		
	MEILIPS WDBBULATOR GM2B77S $5-220 \mathrm{MHz}$ \& $440-$	
AVO 8 Mk 2 Complete with Batreries \& Leads 45		
Above Items in Gooo wohking order - appear-	(P\&PP E4) .	
ance not A1 hence the price AVO TEST SET No 1 (Military version of AVO 8)	${ }_{836}^{\text {RACAL }} 32 \mathrm{MHz}$ UNIVERSAL COUNTER TIMER TYpe	
Complete with batteries, leads \& Carrying		
Case Model $7 \times$ Complete with batereries, eads \&	20 Hz -1500MHz; AC/DC/Ohms AC 300 mV -300V	
carying case840	VALVE VOLTMETER TF2600 10 Hz -	
AVO Model 73 . Pocket Multimeter (Analogue) 30ranges. Complete with batteries \& leads.... $£ 18 \mathrm{l}$	PHILIPS COLOURBAR GENER	
ranges. Complete with batteries \& leads..... $£ 18$ AVO 72 - Similar to above but no AC current range.	(P\&P \&5) \qquad £ 100 Philips colourbab out. Many Functions \qquad	
AOVANCE/GOULO 0 DVY 15Auto ranging; max Teading $20.00 \mathrm{AC/DC}$ volts -		
	NEW EQUIPMENT	
AVO TRANSISTOR TESTER IIIG9 Handled. GO/NO G0 for In-situ Testing. Complete with batteries, leads \& instructions. ($\mathrm{p} \& \mathrm{p}$ £3) NOW DNLY £1?	HAMEG OSCILLOSCOPE 605 . Dual Trace 60 MHz Component Tester With 2 Probes $£ 298$ All Other Models Avaiable	
isolating transformers 240 V INPUT - 240 V OUTPUT		
DISK ORIVE PSU. 240 V IN: $5 \mathrm{~V} 1.6 \mathrm{~A} \& 12 \mathrm{~V} 1.5 \mathrm{~A}$ out. SLze: W125mm, H75mm, D180mm. Cased, Un-used, Only $£ 10.00$ gach (P\&P £2) Qwerty keyboard (as in Lynx Micro). Push to make. Cased $£ 5$ each (P\& £ $£ 2$)		
	HUNG CHANG OMM 7030. $31 / 2$ digit. Hand held 28 ranges including 10 Amp AC/DC 0.1%. Complete with Battery and Leads P\&P £4 £39.50	
	OSCILLOSCOPES PROBES. Switched $\times 1 ; \times 10$. P\&P	
Varíous $51 / 4$ Floppy Disk Drives and Stepping Motors Available		
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods \& Carriage.		
STEWART DF READING 110 WYKEEHAM ROAD, READING, BERKS RG6 1PL Telephone: 0734 68041Callers welcome 9 am- 5.30 pm Mon.-Fri. (until 8 pm Thurs.)		

FREE 100 PAGE CATALOGUE

1000's Major \& Minor Electronic components

Audio, Hifi, Car Radios, Amps, Kits, Computer Bits, Meters scopes, Test Gear, Transistors, Disco, Hardware Tools. write or phone:

> SMITH ELECTRONICS 57 CHAPEL STREET, LEIGH, LANCS WN7 2AL Tel: (0942) 606674.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

The new Electrovalue catalogue is said to be their biggest yet at sixty pages. It lists a wide range of components, tools, test equipment, computer accessories and books and features an extensive selection of Siemens capacitors and other products. Prices are guaranteed for the four-month life of the catalogue. Copies are available free-of-charge from Electrovalue Ltd, Freepost, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 8BR, Tel (0784) 33603. Note the Freepost address, which means that you don't need a stamp on your envelope.

- Many, many apologies to the poor people whose telephone number we gave at the end of our 1986 index in the January 1987 issue. The number was included for the benefit of those who wished to obtain backnumbers. The correct number is (0442) 48432 - only one digit different - which gets you through to Infonet in Hemel Hempstead. They will be happy to help with all enquiries regarding backnumbers.

Beating The Dread Noughts

Tired of entering strings of noughts into your calculator when dealing with electrical quantities?
The new FX580 calculator from Casio handles multipliers such as micro and kilo directly and gives the result in the most appropriate units. It is also pre-programmed to handle equations involving most common electrical units and can correctly distinguish between the real and imaginary parts of calculations involving complex numbers.
The FX580 has a 10 -digit liquid crystal display and haldes 180 scientific functions. It accepts all multipliers from pico to Giga plus the less-familiar femto, atto, Tera, Peta and Exa and understand the relationships between watts, volts, amps, ohms, farads, coulombs and seconds. Power is supplied by two lithium batteries and each set should last for around 16 weeks.
The FX580 will be available from Casio dealers at a recom-

mended retail price of $£ 27.95$. Casio Electronics Company Ltd, Casio Electronics Company Ltd,
Unit 6, 1000 N orth Circular Road, London NW2 7JD, Tel 01-450 9131.

Blind Mice?

Researchers at IBM have developed a hand-held device which enables blind people to read from a computer screen.
It is similar in most respects to a conventional computer mouse but has a matrix of tiny pistons on its upper surface. The mouse is moved around to select areas of the screen and the pistons move in and out to form characters which can be felt.
The device has been developed from existing equipment which has been in use for many years. The advantage is that the new system uses standard parts and will be relatively cheap to manufacture, unlike the old system which cost around $£ 6,000$ per unit. It is also far faster, more convenient and less bulky.
The mouse has been developed specifically for use with IBM computers but the engineers who designed it say there should be no problems adapting it to work with other computers.

DIARY:DIARY:DIARY:DIARY:DIARY:DIARY:DIARY:DIARY:DIARY

The International Open Systems Conference - March 3-6th

London. For details contact Online at the address below.

Wind Power - March 11th
White Horse Hotel, Dorking, Surrey. Lecture organised by the IEEIE. Contact M.P. Lott on 01-921 1129.

Energy In The World - March 12th
The IEE, London. Lecture by Sir Hermann Bondi of Cambridge University. Contact the South East Centre Honorary Secretary on (0462) 53331 ext. 292.

CADCAM '87 - March 14-16th
Metropole Hotel and NEC, Birmingham. See March ' 87 ETI or contact Christine Smith on 01-608 1161.

The Code-Breaking Computers Of 1944 March 26th
The IEE, London, 2.15 pm followed by lecture in the evening. See March ' 87 ETI or contact the IEE at the address below.

Digitally implemented Radios - April 1st The IEE, London. Colloquium. Contact The IEE at the address below.

Fibre Optics In Communications - April 2nd
University of Cambridge, 7.00 pm . Lecture organised by the IEEIE. For details'phone 018633357.

The Role of Alternatives In The World Energy Scene - April 7-9th
University of Reading. See March ' 87 ETI or contact the IEE at the address below.

Frequency Control And Synthesis - April 810th
University of Surrey. Conference. Contact the IERE on 01-388 3071.

Reliability '87 - April 14-16th

Birmingham. Conference and exhibition organised in conjunction with the IEE. Contact the Institute of Quality Assurance on 015849026.

Electricity And The Body - Friend Or Foe? April 23rd
The IEE, London. Lecture by Dr. A. T. Baker of the Royal Hallamshire Hospital. Contact the IEE at the address below.

The Electronic Data Interchange Conference - April 28/29th

The Barbican Centre, London. See February ' 87 ETI or contact Online at the address. below.

Cellular \& Mobile Communications '87April 28/29th
London. For details contact Online at the address below.

British Electronics Week 1987 - April 2830th
Olympia Exhibition Centre, Londón. See February '87 ETI or contact the Evan Steadman Communications Group on (0799) 26699.

Digital Audio Tape Recording - April 30th The IEE, London.SeeMarch'87 ETl or contact the IEE at the address below.

Tool Kits And Sneaky Tricks - May 15th
The IEE, London, 2.00 pm . Discussion meeting. Contact the IEE at the address below.

TV Displays: The Next Ten Years - May 20th
The IEE, London, 2.00 pm . Discussion meeting. Contact the IEE at the address below.

Computer North - May 27-29th
G-Mex Complex, Manchester. Business computer show. Contact Cahners on 01-8915051.

International ISDN Conference - June 1518th
London. Conference on the Integrated Services Digital Network. Contact Online-at the address below.

Networks '87 - June 16-18th
London. For details contact Online at the address below.

CableSat '87- June 2-4th
Metropole Hotel, Brighton. Exhibition and conference. Contact Online at the address below.

UK Telecommunications Networks: Present \& Future - June 2-4th
IEE, London. Conference. Contact the IEE at the address below.

IDEX '87 - September 21-23rd
Metropole Exhibition Halls, Brighton. International Defence Electronics Exposition conference and exhibition. Contact Nutwood Exhibitions on (04848) 25891.

Addresses

Institution of Electrical Engineers, Savoy Place, London WC2 OBL, Tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, Tel 01-868 4466.

Devizis

 THE 110 NAME FOR ELECTRONICS \mathcal{A}COMPUTER PERIPHERALS

STATE OF THE ART POWER AMPLIFIER MODULES

High grade mosfet design for hi fi quality. Each unit comes complete with onboard power supply featuring a toroidal transformer. 3 models to choose from - note these prices are for built and tested units complete. Just plug in and go!!

SOUND TO LIGHT
SYSTEM CONTROLLER

120 WATTS (4 OHMS) ONLY $\mathbf{£ 3 9 . 9 9}$ 200 WATTS (4 OHMS) ONLY $\mathbf{£ 4 9 . 9 9}$ 300 WATTS (4 OHMS) ONLY $\mathbf{f 5 9 . 9 9}$

5 CHANNEL LIGHT
SEQUENCER
ONLY
£29.99
$+£ 2 p \not)^{2}$

Rack mounting or free standing 5 -channel light sequencer with additional constant channel. Speed and direction conrools for sequencer, with 5 LED

+ £2 p\&p

STROBE LIGHT complete

Top quality high ourput strabe light with parabolic reflector Housed in rack-mounting cass to malch other special effect equipment. Variable speed conrrol. On/Off swich. Flash rate.- $5-25 \mathrm{~Hz}$.

Rack mounting or free standing 3 -channel sound to light ysing external
cornaction trom spazke lead io elirainate backy connection from spraker lead io elininate backgraund nuise pickup. Bass.

QUALITY LOUDSPEAKERS AT LOW, LOW PRICES!!!
$\square_{\text {to }} 3 \mathrm{kHz}^{12^{\prime \prime}} 50$ watts response $\quad \mathbf{f 1 9 . 9 9}$

- $12^{\prime \prime} 100$ watts response to 7 kHz (PA)
] $12^{\prime \prime} 200$ watts response to 3 KHz

BRITISH MADE McKENZIE

- $12^{\prime \prime} 85$ watts response 108 KHz
£29.99
£34.99

Datel were the first UK company to bring sound sampling to the home micro at realistic prices!! Now we can offer systems for Spectrum/Commodore/Amstrad. Digital sampling allows you to record any sound into the memory of your computer and then replay it at any pitch, forwards, backwards, with echo, reverb, endlessly looped etc. Complete musical pieces can be composed within the sequencer from a single sampled sound. Sequences can be loaded and saved from tape or disc.
System is complete hardware/software package
\square Free microphone supplied Tape or disc (please state)
Spectrum/Plus/128K only $\mathbf{£ 4 9 . 9 9 + £ 1 . 0 0 p \& p}$
Amstrad 464/664/6128 only $\mathbf{£ 4 4 . 9 9}+£ 1.00 p \& p$ Commodore $64 / 128$ only $\mathbf{f 4 9 . 9 9}+£ 1.00$ pधp
only
£129.99
£3.00 p\&p

5-channei stefeo disco mixer with buidt in twin 5 -band graphic equalizer LED bargraph oulput menitor. Input and output headplione monitorialg, rades mix channels a and 2
Microphone talkover swich. Equalizer defeat button.

Please Add: $£ 2.00 \mathrm{p} \& \mathrm{p}$ for $12^{\prime \prime}$ model, $\mathrm{£} 4.00 \mathrm{p} \mathrm{\& p}$ for $15^{\prime \prime}$ model. All units are 8 ohms.

$\begin{aligned} & \square 12^{\prime \prime} 85 \text { watts response } \\ & \text { to } 15 \mathrm{kHz} \text { (PA) } \end{aligned}$	£31.99
$\begin{aligned} & 15 " 150 \text { watts response } \\ & \text { to } 4 \mathrm{kHz} \end{aligned}$	£54.99
[$15^{\prime \prime} 200$ watts response to 4 KHz	£59.99

to $15 k h z$ (PA)

5 CHANNEL STEREO MIC/AUDIO MIXER

STERE $0^{-} 5$-channel disco mixer Switchable headphone monitor. Left and right VU meters. On/Off swith. Cabinat mounting, fush fittung.

ROBOTICS \& MODEL CONTROL MADE EASY ON YOUR MICRO

Robod

FOR THE SPECTRUM/PLUS/128K oniy $\mathbf{£ 2 9 . 9 9}$
$\square 8$ inpuis, 4 outpuis with onboard relays
Complete with ribbon connecting cable for mobile projects \square Simply controlled from basic or M/C
FOR COMMODORE 64/128 ONLY $\mathbf{f 3 9 . 9 9}$
$\square 4$ buffered inpuis 4 outputs via onboard relays
Anałogue input for measurement etc.
Microphone input for voice control
Comprehensive sottware featuring sequencer § measurement modules - very effective
\square Complete with cables \& microphone etc.
FOR AMSTRAD 464/664/6128 ONLY $\mathbf{f} \mathbf{2 9 . 9 9}$
$\square 8$ buffered inputs $\square \square$ outputs via onboard relays
\square Complete with ribbon cable Through bus
Simply controlled from basic or M/C

PLEASE STATE WHICH COMPUTER WHEN ORDERING
OTHER COMPUTER PERIPHERALS

COMMODORE 64/128 CAction Replay - the ulimate disk/ tape/disik backup cartridge - $\mathbf{f 2 4 . 9}$ \square Disk Mare 2 - lass load rannidge plus
adval ced disk user iecilicies - $\mathbf{f 1 4 . 9 9}$ $\square \square$ Turbo RIM - advanced replacemen kenat with tast load etc. - flo. 10.99 $\square P_{\text {ninier }}$ IV - ior MPS 801, printes
contains lour improved lypofaces - f 19.99 conlains lour imp rowed yppefaces - f 19.99 \square 8k peudd ROM cartidge - ba
backed. easy to use - $\mathbf{~} 16.99$
$\square 3$ slor mother board - acceps 3 3 Eanivges at lick of swith - $\mathbf{f 1 6 . 9 9}$ MMICD intirlace - works w SPECTRUM/PLUS/128K Ci Ouickshot 2 including interface TKempsiar Syserm) only- $\mathbf{f 1 3 . 9 9}$ \square Inerprinter centronins pariter interface
Tasword compatible $-\mathbf{£ 2 4 . 9 9}$
\square Snapshot 2 - - 9 pep/microdrve/Opus backup sysilem - $\mathbf{£ 2 4 . 9 9}$ \square Gamesale - iovsick interface - ollus
delwers sound through $\mathbb{N V}-\mathbf{f 1 0 . 9 9}$ AMSTRAD \square Acrion replay AMXX The masi advanced
tapa/disc/ape system - $\mathbf{f 3 4 . 9 9}$ Please state tape or disc (fif applicabie).

READ/WRITE

The Cortex Caper

Some Years ago I bought a Powertran Cortex kit and recently I discovered that the firm Powertran has disappeared.

I know there was a newsletter service for the Cortex but I did not join it, so I lost track of it. Today I would like to join the service but I am unable to find the name and address of the administrator.

I would further like to buy some hardware add-ons, like the RGB interface, but I do not know if there is anybody selling Cortex add-ons.

I hope that you can provide the right addresses so I can get started again.

Magne Ertresang
Nesttun, Norway.

I
am writing in the hope you can help a Cortex owner.
Some time ago I built a Cortex computer from a kit supplied by Powertran Cybemetics. Due to carelessness on my part I have succeeded in destroying the entire EPROM set.

I obviously require replacements but it appears that Power tran has ceased trading. Can you tell me of anywhere I can obtain them or, if Powertran has simply moved, its new address.

Dr. S.F. Butler
Littlehampton, Sussex.

Powertran has indeed ceased trading. Unfortunately ETI knows of no company actively supporting the Cortex. The newsletter is no longer available and spare parts and add-ons for this excellent project can only be bought on the second hand market.

The best course of action for anyone wanting help or parts for the Cortex is to advertise in the ETI Free Readers' Ads.

Amp Thoughts

When John Linsley Hood has completed his series on FM receivers he will have published designs for the core of an audio system which approaches the state of the art.

I am sure that I am not alone in wishing this was available as a matching kit containing the ETI Audio Design amps, the Synchrodyne AM receiver described in Wireless World, and the ETI FM
receiver.
The lack of a kit from a reliable supplier may not concern the dedicated hobbyist but undoubtedly deters the occasional constructor and inhibits the growth of interest in electronics.

The disadvantages of kits are that the supplier will choose components on the basis of cost rather than quality and that the kits will be designed around cases which are too small to allow upgrading. However, these problems only arise if the supplier assumes kits are primarily of interest to those who cannot afford an 'ordinary' brand amplifier/tuner.

The days have passed when it was possible to build more cheaply than buy except at the upper end of the market. Nowadays kits are more likely to attract customers who are weary of being told that X is best without any plausible reason being given, and who would like to put these opinions to the test and have more control over the sound than the ability to sign a cheque.

Hart Electronic Kits at present offer two JLH amps: a 30 watt integrated and a 100 watt power amp. The former is housed in a small box about $430 \times 300 \mathrm{~mm}$ and $1-2 \mathrm{U}$ in height. The latter is in a larger box about 3 U in height. These boxes will stack together quite neatly and are attractive and unobtrusive.

Could Hart be persuaded to increase the range?

One item which could complete the JLH/ETI range would be a small integrated amp to replace the 30 watt mentioned above.

This is a good design but is now rather out of date and I am sure could be improved upon. For the last 6 years I have used two of the 30 watt amps and, good as they are, I cannot help feeling inside there is an even better amp trying to get out. However, they have always given me a great deal of pleasure and have been chosen by a number of friends in preference to more expensive commercial designs of impeccable pedigree.

Since it is now over two years since you published the 'Audio Design' amps and as yet no kit is readily available perhaps it is a good time to ask JLH if he has had any further thoughts on the design whetheralowerpowerversion would be possible, the advantages and disadvantages of different PSU con-
figurations, the advantages of dual mono construction, which components in the circuits are most likely to influence sound quality and benefit most from upgrading, whether it is better to mount PCBs horizontally or vertically, etc.
D.W. Macdonald.

Truro, Cornwall.
Great minds, it seems do indeed think alike. JLH has already suggested to us some improvements very much along the lines you mention.

In the reasonably near future we hope to publish an improved version of the Audio Design amp, complete with a kit from Hart, and a totally re-worked lower power design offering similar high quality to replace the old 30 W amp and also available from Hart in kit form.

Pull the Other One

After many years of furious use, the controls on my guitar have finally (and inevitably) started to crackle beyond even my level of tolerance. I have tried everywhere to find replacements without any luck.

The problem is that I need a rotary pot with an on/off switch built-in and operated by pushing and pulling the pot knob - not the usual rotary switch.

Can you help me with a source of these pots. The only possibility I have been offered so far is a special order (probably all the way from the guitar factory in the States) and far too costly.

Colin Harris,
Cottingham, Humberside.
Potentiometers with integral push/pull switches are indeed difficult to find. Fortunately, Cirkit has recently started to stock these devices. They are available in 5k, 10k, 20/25k and 100k log and 10k, 20/25k and 100 k lin versions, all with DPST switch and costing $£ 1.60$ each. Cirkit is on (0992) 444111.

ETI welcomes letters from readers on any topic. If you disagree with our learned contributors or just think it's time for a general election, don't sit there and seeth in silence. Write and tell us all about it. Write to:
Electronics Today International,
1 Golden Square,
London, W1R 3AB. ETI

FIFTEEN YEARS OF ETI

Wallow in a little nostalgia as ETI checks out its un-chequered history.

Wpay back in 1970 a new electronics magazine was launched in Australia. It was called Electronics Today International and it quickly became very popular indeed.

It proved so successful that the owners decided to try their luck with an overseas edition.

Thus it was that in April 1972 a British version of ETI appeared. It was based on the format established by its Australian predecessor and proved just as popular, quickly finding its place among the leading British electronics journals. Within a few years ETI had built up a large and devoted readership and gained a reputation for its topical features, strong project articles and of course, its off-beat sense of humour.

In The Beginning

So what was this exciting new magazine like, and how did it differ from the present-day ETI?

One noticeable difference is that the early ETI was aimed less at hard-bitten electronics enthusiasts and more at the general reader. The editorial page in the launch issue -

boldly headed 'Tomorrow Starts Today' - spoke of the ever-increasing impact of electronics on our dailylives. In a world where the daily pinta was electronically checked and the morning mail electronically sorted, it argued, everone had an interest in electronics and would need up-to-date information. ETI set out to provide it.

Accordingly, the early issues had far more feature articles than is normal today and correspondingly fewer projects. The first ETI contained fourteen features and product tests plus news, reviews and a suppliers guide. Many of the articles were very short, some of them no more than a page. However, the topics chosen covered a very wide field and there was plenty to interest both the intelligent general reader and the more dedicated hobbyist.

The book reviews in particular covered a surprisingly broad range. In addition to the dictionaries of electronics, constructors guides and data books the first few issues carried reviews of The Population Bomb by Paul Ehrlich, Beyond Freedom And Dignity by the psychologist B.F. Skinner and Charles Reich's controversial book on the organisation

of society in a technological age, The Greening of America.

The launch issue included articles on space tracking stations, triacs and room acoustics and there was also an early look at a topic which has occupied our attention more recently - bio-feedback. Tech Tips was there right from the start (although the first circuits were taken from manufacturers' data sheets rather than being sent in by readers) and by issue three the editors had received enough correspondence to start a regular letters page (called 'Input Gate' - anyone remember than?).

Sound Start

Another big difference between ETI then and now is the amount of space devoted to different aspects of electronics. In 1972 computers hadn't reached the home construction market and audio was the in thing. There were specialist hi-fi magazines around but few of them covered the electronics side of audio in any depth.

ETI responded to this challenge with a wealth of articles, backed up by a special agreement with a firm of acoustical consultants which enabled

Power cuts hit Britain in 1974, but ETI readers weren't left in the dark.
us to offer comprehensive and authoritative advice on almost all audio matters.

The first issue included a review of the newly-launched Dolby noise reduction system and a 'scoop' review of the first reel-to-reel tape recorder with built-in Dolby - the Ferrograph Model 7HD.

The magazine also included record reviews in those days, around three to four pages each month being taken up with a look at the latestjazz, classical and pop releases. The review section was among the first of the regular features to be dropped but it says much about the supposed readership of the magazine that the editors felt it worth retaining the classical record reviews long after pop and jazz had gone.

Computing The Changes

Much has changed since those first few issues, and arguably the greatestchange has been in the field of computing. ETI was the first electronics magazine in this country to describe a DIY computer design for the home constructor, presenting first the System 68 modules in 1977 and then the Triton single-board computer in 1978.

We also launched one of the first specialist computing magazines available in this country, Computing Today. It appeared as a pull-out supplement in the November 1978 issue of ETI and was published as a separate magazine from March 1979 onwards.

Sadly, CT is no longer around. Like many other non-trade, non-machine-specific computer magazines it lost out in the fierce circulation wars a year or so back and
ceased publication. Nonetheless it will be remembered with affection by many past readers.

There have also been some interesting changes behind the scenes over the last fifteen years. ETI's original owner was an Australian called Colin Ryrie who also published the professional music magazine Sonics and a number of other audio and technical magazines. Tragically, Colin was killed in a boating accident whilst returning home one night across Sydney harbour. Control of the company passed to his son Kim who ran it successfully for some years.

In 1979 Kim Ryrie and a close friend came up with an idea for a futuristic musical instrument. In order to develop the idea they needed a large sum of money fairly quickly so Kim sold off his magazine holdings. He achieved the best price by selling the Australian and British interests separately. Thus ETI acquired British owners and the world gained a new musical instrument, named after the suburb of Sydney where Ryrie lived. It was called The Fairlight.

Changes in the world of electronics have also been faithfully reflected in our pages. The December 1972 issue introduced that marvellous device, the light emitting diode, while readers of the December 1974 issue were treated to some advice on how to handle the newlyintroduced and very delicate CMOS ICs. MOSFETs and gallium arsenide are among the other new developments charted in our pages and the list of new techniques and applications we have covered is far too long to go into here.

Some other developments have stood the test of time less well. Bubble memories were all the rage for a long time but somehow never made it commercially. Quadrophonic audio was another idea

Times change: in 1972 we published Tech Tips with valves in them.
which generated a lot of interest at the time, and who now remembers the Elcassette?

Our projects too have frequently broken new ground. Aside from the computers mentioned earlier, we were the first electronics magazine to publish a design using switched

November 1978: ETI presents the Triton single board computer and the first issue of Computing Today.
capacitor filters. Some of our audio projects in particular have set new standards in their fields and it was pleasing to see a music magazine recently recommending the ETI/ Powertran Vocoder to its readers, even though the design is now over six-years old.

Very Interesting, But . . .

And of course, ETI wouldn't have been complete without a few silly articles. Among our personal favourites were the guide to Murphy's Law (October 1972, repeated in September 1977), Phil Walker's Super Selective Music Filter (April 1984) and the Adzap (April 1986). We also produced one or two items which were perfectly functional even if the function was a little odd. In this category we recall the UFO detector (which certainly detected something even if it wasn't UFOs) and are happy to carry on the tradition with the 24-hour Sundial in this issue.
And so, we hope, it will go on. The changes over the past fifteen years have been enormous and we can reasonably expect just as much to change in the next fifteen years. But whatever happens in electronics, so long as their are enthusiasts around who need to be informed and entertained, we hope ETI will be there to do it.

See you in 2002.
ETI

SPECIAL OFFER ... SPECTRUM AND BBC OWNERS!

Computers In Control At An Affordable Price

MM DCP Interspec: only $£ 29.95$ for ZX Spectrum owners (normally $£ 49.95$)
\angle DCP Interbeeb: only $£ 49.95$ for BBC Micro users (normally $£ 69.95$)

To order by post please send the order form (or copy) with your remittance to: ASP READERS' SERVICES (RO ET5/6), 9 Hall Road, Maylands Wood
Estate, Hemel Hempstead, Herts.
Please make cheques payable to ASP Ltd.
Phone ACCESS or VISA only: (O442) 211882
Overseas airpost: add 55 (Interspec) £10 (Interbeeb)

The Interspec and Interbeeb both include the following features:

* 8-bit input port
* 8-bit output port
* four switch sensor inputs
* four relays switching 12V 1A outputs
* 8-channel multiplexed analogue-to-digital converter
* 15-way expansion bus

All parts are I/O-mapped (including the expansion bus) and have been designed for maximum compatibility with existing peripherals. In addition to the above facilities, the Interbeeb includes a separate power supply (the Interspec takes its power from the Spectrum edge-connector) and a precision 2.5 V voltage reference in the ADC (the Interspec uses a simple zener diode reference). The ADC is based on the 0809 device and has a stated conversion time of lms and an accuracy of 1LsB.
These units are extremely easy to use and are supplied, built and tested, with all the documentation necessary to get you up and interfacing.

GRAPHICS PROCESSORS

Ian Sherlock looks into his high-res, bit mapped crystal ball and find the graphical future of computers is not that far away.

The ability to present graphical information is one of the most important features of any computer system. This applies not only to the large (and horrendously expensive) engineering workstations at the top end of the market but right down to the humble home micro.

There has been a trend recently to incorporate graphics based operating systems in business computers and even in some of the more domestic aimed machines (the Apple Mackintosh and Atari ST micros).

The graphical power of micros has steadily increased since their introduction some 10-15 years years ago (Table 1). However, the abilities of the conventional

Screen Resolution	Number of Colours	Bit-map Size	Approx. 'Dot Frequency'
256×200 (low)	16	25 K	5.4 MHz
640×480 (medium)	256	307 K	22 MHz
1280×1024 (high)	64 k	2621 K	100 MHz
Tabie 2	Bit-map memory usage of different displays		

methods of handling computer graphics have just about reached their peak. To go further a new approach is required. This is provided by the 'graphics processor'.

Development Of Graphics

To appreciate the importance of graphics processors we need to look at the recent history of microcomputer graphics systems.

Graphics systems have developed significantly since small computers first appeared in the early seventies. Figure 1 shows the simplified system design of an early micro-computer such as the Nascom or UK101. The microprocessor has access to all system memory, and that area of memory dedicated to the screen can also be accessed by a character generator. The character generator scans through screen memory recognising character codes and then putting the appropriate dot sequence on the screen. Such a character generator can only produce a very limited display of text and so-called 'chunky' graphics.

The next system to emerge, and that used widely today, replaced the character generator with a graphics

The Nascom 3 micro - an early character generatorbased computer.

Fig. 1 Character generation in early micros.
controller chipaccessing screen memory configured as a bit-map. Such a system is used by the BBC micro and is shown in Fig. 2.

The bit-map differs from the arrangement of memory used with a character generator in that each bit in the bitmap corresponds directly to information displayed on the screen. In a very simple black and white system there might be one bit in memory mapped directly to each screen pixel (ie one = pixel on, zero = pixel off).

This scheme allows the microprocessor to display absolutely any picture within the system's resolution limits by changing the pattern of ones and zeros in the bit-map by means of the graphics controller.

The graphics controller relieves the host microprocessor of some of the work involved in managing the bit-map. For example, in some systems the host microprocessor can send simple instructions to the controller of the form:

Fig. 2 Modern micro design with a graphics controller and DRAM bit-map.

Draw a line from point $(0,0)$ to $(100,100)$.
Draw a circle radius 20 centred at $(60,80)$.
Draw a filled rectangle on the diagonal between $(10,10)$ and $(70,30)$.

The controller interprets these instructions and sets up the bit-map accordingly. If the user requires an unusual pattern to be drawn the host microprocessor has to intervene directly to alter the bit-map. Such intervention draws heavily on the host's processing power and slows the system unacceptably.

The simple bit-map and controller arrangement described has certain obvious disadvantages:

- In its simplest form it does not allow for colour or grey scale displays.
- It will not handle text efficiently.
- It is slow.
- It is limited by any pre-defined functions designed into the graphics controller.
To an extent, these problems can already be solved but the development of a graphics processor still provides a big leap forward in performance.

Providing colour for a bit-map display is quite easy and can be achieved by mapping several bits in memory to each pixel on the screen. For example mapping four bits per pixel would allow either 16 different colours or perhaps 16 different intensities of one colour to be displayed on a screen.

To achieve the resolution required for, say, the electronic publishing of a colour magazine would require a bit-map holding at least 25 bits per pixel -8 bits or 16 intensities for each of the three primary colours.

It is fairly clear that a bit-map of any size will eat up large chunks of memory. Some examples are shown in Table 2.

It is for reasons of economy of memory and speed of operation that even graphics controller based systems tend to handle text in the same way as character generators. A word processor displaying 25 lines of 80 character text would require about 2 k of memory if it used a character generator.

Producing the same display from a black and white bit-map would require about 12 times more memory, and considerably more than that if a colour bit-map were
used. In addition to the need for more memory the bitmap display of text would be much slower in operation than the character generator display since moving a character about would entail shifting several bytes of information, not just a single byte character code.

Clearly there is a trade off in design. A graphics controller displaying text in the same way as a character generator, uses little memory and is quick. However, mixing chunks of text and graphics can pose difficulties which stem from the different ways in which the two entities are stored in memory.

But now ...

It would seem then that the problems of bit-mapped graphics driven by a controller can be eased but not mitigated completely. We shall see later that the first graphics processors now becoming available are suffi-

The BBC micro - a typical graphics controller-based micro

MSX computers contain a forerunner of the graphics processor.

FEATURE: Graphics Processors

ciently quick in operation to allow text and graphics to be handled in the same way in the bit-map, while at the same time overcoming the problems of the limited instruction set of the graphics controller. Using a graphics processor, an electronics engineer can now put together a low cost system with the following features.

- Full colour, variable intensity, bit-mapped display.
- Text from a variety of fonts mixed with complex graphics.
- Very high speed number crunching for 3D animation.
- A graphics system which is totally programmable and can even operate without intervention from the host microprocessor.
A useful analogy can be drawn between a graphics system and a hand held calculator. A graphics controller provides fixed graphical functions in the same way that a calculator provides fixed mathematical functions. In contrast a graphics processor can be programmed to execute a series of instructions giving it much the same flexibility and sophistication that sets a programmable calculator apart from a simple hand operated machine.

Having taken a brief look at the development of graphics systems the following question arises: Why has it taken so long for manufacturers to devote funds to the production of a properly optimised graphics processor? The answer to this question lies largely in the realms of memory development. Until recently the DRAM chips available for graphics bit-maps have imposed an unacceptable constraint on the performance of any graphics system, no matter how efficiently the driving processor or controller. This memory problem has recently been solved, opening the way for the design of very powerful systems.

VRAM

The system shown in Fig. 2 hints at the memory problem which is associated with bit-map bandwidth and stems from the need to update the screen continuously from memory.

A typical computer display can spend 90% of its time updating the screen with the other 10% of its time taken by the blanked electron beam retracing its scan path. During the screen update period information has to be read from the bit-map.

Using conventional DRAMS it is not possible to read out data sequentially to the screen while updating other areas of memory at the same time. So the graphics system is limited to making alterations to the computer display during the 10% of time when the screen is blanked.

This is an unacceptable communications bottleneck. Toappreciate how it has been overcome we first need to look at the operation of a DRAM in greater detail.

Figure 3 (a) shows a simplified diagram of a single Dynamic RAM chip. The DRAM is accessed in the normal way by providing a row address signal (which the DRAM latches to select a row of information) followed by a column address signal (which the DRAM latches so that one bit in the selected row can be identified). The condition of the DRAM Read/Write line then determines whether the selected bit is read from or written to.

If a bit-map were to be made entirely from DRAM then, as explained, severe limitations would beimposed on the performance of the graphics system.

One solution to the problem involves using two port video RAMs or VRAMs, devices which first became available commercially in 1984. A single VRAM is shown schematically in Fig. 3(b).

Shift Registers

VRAM looks like a DRAM with a shift register attached and indeed VRAM supports the normal DRAM read and write accesses. However, VRAM will also accept a row address followed by a special transfer strobe which signals the device to copy the selected row to the shift register. When the transfer has been completed an external shift clock can be applied to shift the row data out of the VRAM. During shifting the VRAM is free to be updated.

Of course in reality DRAMS and VRAMs are much larger than indicated in Fig. 3(b), typically they might be built as 256×256 bit arrays rather than the 4×4 bit array shown.

A VRAM bit-map is able to update its display by transferring rows to the shift register to be clocked out to

Fig. 4 The internal architecture of the TMS34010.
the screen driver. From the moment of transfer the VRAM would be free to be modified. For a typical screen display the VRAM would be busy for only 5% of the time. This compares favourably with the 90% busy figure for the DRAM bit-map. In the future the vast majority of high performance graphics systems will have to rely on the VRAM as the bit-map memory component.

The TMS34010

The availability of VRAM has made the development of graphics processors a worthwhile activity. The first device to reach the market is the Texas Instruments TMS34010. A 1.8 micron CMOS device made up of over 200,000 transistors, the TMS34010 is a complete 32 bit microprocessor in its own right but with certain features added to optimise its graphics performance.

The chip was designed in England and is currently avail able in sample quantities costing roughly $£ 230$ each. However, as production steps up over the next few years that price should fall below $£ 20$ per device at which point add-on boards will start to become available for personal computers, bringing work station quality graphics to the home micro.

The internal architecture of the TMS34010 is shown in Fig. 4. The central processing unit functions are located in the middle of the diagram. These include 30 32 bit general purpose registers which are all available to the user. There is also a 256 byte instruction cache built into the TMS34010, shown in Fig. 4 above the CPU. The cache holds a copy of a small region of processor memory. As the TMS 34010 executes code it looks in the cache for the next instruction. If the instruction is present in the cache it can be fetched with virtually no delay, saving time which would otherwise be lost accessing extended memory.

Graphics code commonly contains large numbers of short machine code loops used, for example, to draw lines and circles. The cache has been designed to accommodate these short loops and can execute them very quickly, making few external memory accesses.

Running down the left of Fig. 4 are a series of dedicated I/O registers. Seven registers control the way in which the processor responds to an interrupt and the way in which the processor interacts with the system host processor (assuming there is one).

There are a further 15 registers dedicated to video timing. These can be programmed by the user to set the length of the horizontal and vertical sync and blanking signals. One processor can be used to produce signals compatible with a whole range of video standards. The generation of video signals can also be disabled and the chip locked to an external picture source to allow the mixing of different video signals.

The last set of six $1 / O$ registers control the local memory interface. The processor's local memory can be made up of VRAMs for the bit-map, DRAMS to hold program data and even EPROMs to hold boot-up code for a system in which the TMS34010 does not have a host.

All the local memory control logic is resident in the processor so VRAM and DRAM chips can be connected directly to the processor with a minimum of glue logic and no dedicated memory controller is required. The TMS 34010 is also exceptional in that its address space extends over 128 Mbytes to accommodate the biggest VRAM bit-maps.

The largest area of Fig. 4 and the largest area on the silicon chip is taken up with the microcontrol ROM which orchestrates the movement of data within the chip as it executes each machine code instruction. The size of the control ROM is a reflection of the large number of optimised instructions built into the TMS 34010. These instructions allow the programmer to refer to the
bit-map directly using an X, Y co-ordinate address mode, leaving the chip to compute the absolute memory address itself.

Another strong graphics feature hinges on the ability of the processor to move large amounts of data about in memory very quickly. The processor also has the ability to look at data not just at bytes and words but also as pixel groups whose bit size can be preset by the user. So it is possible to effect pixel block transfers ('pixblts') easily from machine code, particularly if use is made of the x, y addressing mode.

The pixblt operations enable 2D bit arrays to be moved around in memory at high speed and are especially useful for moving graphical entities about within the bitmap. For example, characters from a text font can be treated as 2D arrays of pixels and pixblt operations may be used on them to achieve smooth scrolling effects.

Pixel blocks can also be combined with each other arithmetically before displaying them on the screen so transparency masks can be set up to protect certain parts of the display or to protect certain colours.

The IC mask of the Texas TMS 34010 graphics processor.

Fig. 5 Outline architecture of future computers.

This month's cover shows TM34010 demos. (a) two rotating cubes in a wire frame tunnel demonstrating real time 3D animation. (b) a screen full of text with an inset of scrolling text, all performed by the graphics processor. (c) high speed pattern-fill demos. (d) solid cube rotated in real time with salient measurements. (e) video image processing zoom. (f) perspective projection of a surface. (g) colour blend demo with only four bits per pixel. (h) ETI in the numerous fonts supported by the TMS34010. (i) simulated ECG display - the traces move!

Typical System

Figure 5 shows a typical system incorporating a TMS34010 in a configuration that could set the norms for personal computers of the future. Such a system could be designed to provide a display of resolution 1024×1024 using perhaps 4 bits per pixel. The colour palette shown in Fig. 5 acts as a look up table such that the 4 bits per pixel can define any 16 colours from a palette of 4096 . The 16 selected colours can also be changed at the end of each displayed line by reloading the palette control registers.

It should be remembered that the TMS34010 is designed as a general purpose 32 bit processor optimised for graphics work so micro designers looking to cut costs could dispense with the host section of the architecture altogether!

The resulting system, built entirely around a TMS34010 would retain the graphics performance of the personal computer while being cheaper and simpler to manufacture, a system ideally suited to the home micro market.

With a machine cycle time of 160 ns the graphics processor is capable of drawing lines at the rate of 1.25 Mpixels per second and placing bit-map text at 43 k characters per second. The number crunching capacity of the chip also enables it to cope with the real time

These four screen shots show a black and white video image captured with the graphics processor and then manipulated in memory. Top: the original picture. Upper middle: The effect of a low fass filter with loss of sharp edges. Lower middle: historgram equalisation of the image. Bottom: Demonstration of a zoom.

FEATURE: Graphics Processors

animation of 3D graphics. Rotating wire frame diagrams poses no great problem and the programming effort can be minimised by providing the user with high level language procedures to apply three dimensional perspective and rotational transformations. The programmer simply has to dump the co-ordinates of his 3D object into an array, apply the transform and perspective procedures and let the chip do the rest.

There are obvious applications for graphics processors in displaying computer graphics on VDUs but these processors are also able to control laser printers. A laser printer operates by dumping information to be printed into a memory bit-map. The contents of the bitmap can then be scanned out to a laser which writes on a spinning photosensitive drum.

The drum becomes electrostatically charged according to the scan pattern of the laser and attracts powdered ink. The inked drum can then print to paper in the same way a photocopier prints to paper. Laser printers offer exceptionally high speed and high resolution printing. To achieve their full potential the information in the bitmaps has to be managed efficiently and graphics processors can provide the necessary management functions.

Future

The graphics processor is now being designed into the next generation of personal computers as a standard feature. In two or three years time when the cost of the device has fallen even further it will begin to look very attractive to the manufacturers of micro-computers. The
graphics processor could appear as an add-on board transforming the performance of an existing micro or alternatively it could be placed at the heart of a custom designed machine.

The appearance of these advanced micros will posea challenge to the writers of software who will be able to produce real-time animated 3D graphic displays of outstanding quality. Games software will become considerably more sophisticated to utilise the more powerful hardware. Micro operating systems will also tend to imitate those of the bigger office machines in that there will be a move towards the control of computers through mouse and VDU rather than through the keyboard.

Image Processing

One of the most intriguing applications of future micros may lie in the area of image processing. It so happens that the VRAMS which make up the bit-map can be made to work in reverse so that a digitised bit stream from a camera can be fed into the shift register and dumped to the memory array. Once captured an image could be processed for enhancement or special effects purposes before being redumped to a screen.

The emergence of the graphics processor will stimulate several exciting developments over the next few years. Although the current price puts these devices outside the range of most ETI pockets we shall all surely be seeing a lot more of the graphics processor in the future.

ETI

$\not \mathbb{Z}^{\text {Zenith Electronics. }}{ }^{\text {® }}$ Kits - Modules - Hardware

YOU KNOW US FOR OUR TRANSMITTER KITS NOW TAKE A LOOK AT OUR GROWING RANGE OF QUALITY KITS AND READY-BUILT PROJECTS: MODULES AND ELECTRONIC HARDWARE
The following are examples of our proven product designs in kit form:
\star Miniature FM Transmitter; $60-145 \mathrm{MHz}$. Kit £6.95; R/Built £8.95.
$\star 3$ Watt FM Transmitter, $80-108 \mathrm{MHz}$. Kit $£ 13.99$; R/Built $£ 18.99$.

* 10 Channel Variable Speed Running Light; Drives LEDs or mains lamps. Kit $£ 14.97$.
* 3 Note Electronic Door Chime unit; 9 volt operation, 3 melodious tones; variable frequency. Kit $£ 9.83$
$\star 300$ Watt Light Dimmer unit for 240 volt mains lights. Kit £6.95
* 5 Code Digital Code unit plus Key Pad-select own code; 9 volt. Kit f14.21.
* 5-100 Watt Electronic Loudspeaker Overload Protector, adjustable. Kit $£ 11.11$.
\star VU Meter 10 LED indicator; -5 to +12 dB range. Kit $£ 12.59$.
\star Automatic light controller; automatically turns on and off lights at pre-set times and triggered by darkness. Kit £25.08.
\star Mains Wiring and Metal Detector; complete with case. $£ 11.00$
\star Digitial Clock module; 12-24 hour timing; LED type--£17.49, or LCD type- $£ 22.80$.
\star Amplifier Power Meter; 10 LED indicator from 0.25-100 Watt Input-9 volt operation. Kit $£ 9.52$.
\star Light sensitive relay unit; variable sensitivity trigger control; senses light or dark-selectable. Kit $£ 8.45$.
ALL KITS CONTAIN FULL INSTRUCTIONS: P.C.B.S AND COMPONENTS. ALL PRICES INCLUDE VAT AND POSTAGE \& PACKING. OVERSEAS ORDERS-ADD 10\% TO ABOVE PRICES. PLEASE SEND CHEQUE OR POSTAL OROERS WITH ORDER.
S.A.E. For
- FREE Data Pack

 by the designer.
LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
LED DISPLAY DIGITAL
ELECTRONIC CLOCK MODULE
Electronic clock module with MOS LSI circuit. 4 -digit $05^{\prime \prime}$ LED display. power supply and other components on a single
PCB. Only needs a transiomer and switches to construct a complete pretested digital ctock/timer for many applications. Suitable for 50 or 60 Hz mains supplies. Direct (non-multiplexed) LED difive eliminates AF interference
Supplied complete with 240 v mains transformer and wiring
diagram/data. Order as SOL 144 Alarm Clock Module $£ 6.85$ diagram/data. Order as SOL 144 Alarm Clock Module $£ 6.85$

LIQUID CRYSTAL DISPLAY WATCH MODULE With LCD display, 2 pieces of Polarising material. backlight
diffuser. micro lamp. precision crystal trimmer, battery condiffuser. micro lamp, precision crystal. trimmer, battery con-
tacts and open microciruit. Untested 5 for $£ 1$

PLESSEY MAINS INTERFERENCE SUPPRESSORS
Fitter unit for mains borne interference Max current 1.5A. Our
Price urand new Same item, store soiled only $\mathbf{£ 1 . 6 1}$ Similar Unit but 10A. Brand new

10W POWER AMPLIFIER MODULE
Mutlard LP1173 Amplifier module Needs 24 v DC Supply to give 10 watts into 4 ohm speaker. Size $112 \times 70 \times 29 \mathrm{~mm}$. Com-
plete with heat sink $\ldots . .$. Only $£ 2.40$ complete with Data
ALPS FF317U FM FRONT END
Beautiful precision made High Quality variable capacitor range of 87 to 109 MHz 12v supply ONLY $£ 8.90$ CAR RADIO FM IF AND STEREO DECODER

Miniature PCB with 10.7 MHz ceramic fitters. 2-transformer ratio detector. AX010 noise suppression IC and end to make I FM tuner or car radio Complete with circuit. Incredible value at .. Onty $£ 1.99$

Complete record and replay circuits for very high quality low noise stereo cassette recorder. Circuits are optimised for our
$H S 16$ Super Ouality Sendusi Alloy Head. Switched bias and equalisation to cater for chrome and ferric tapes. very easy to assemble on plug-in PCBs. Complete with full instructions.
Complete Stereo Record/Play Kit 53370
 860X Stereo Mic Amplifier . 8.70

LIMSLEY HOOD 300 SERIES AMPLIFIER KITS Superb integrated amplifier kits derived from John LinsleyHoods articles in 'HiFi News'
Uitra easy assembly and set-up with sound quality to please sound system if quality matters to you Buy the kit complete sond save pounds off the individual component price.
K300-35. 35 Watt Discount price for Complete Kit . $\mathbf{8 9 8} .79$ K300-45. 45 Watt. Discount price for Complete Kit $£ 102.36$
RLH485 Reprints of Original Articles from Hi-Fi News RLH4\&5 Reprints of Original Articles from Hi-Fi News

LINSLEY-HOOD SYNCHRODYNE AM RECEIVER

 Very high quality kit for this recent design featured in Wireless World'. This unit represents the first attempt to make a much needed HIGH QUALITY AM Tuner since pre-FM days. This will give you Radio 4. or even 1 in better quality than your by the Author, uses 3 double sided PCBs in a stacked layou for total stability. ease of construction and minimal wiring This module will form the AM section of an ultra high quality AM/FM switched bandwidth tuner to match our 300 serie amplifiers. Power supply and tuning gang will be includedwith the FM section. K450 JLH Synchrodyne Kit Special Price $\mathbf{\Sigma 5 9 . 9 5}$

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than new! Standard mountings make fitting
easy and our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and see! The following is a list of our most popula heads. all are suitable for use on Dolby machines and are exstock. as original equillereo Head. This is the standard head fitted as original equipment on most decks $\mathbf{5 7 . 6 6}$ Onger life than Permalloy. higher output than Ferrite, fanastic frequency response.............................. £14.86 Full specification record and playback head........ $£ 14.60$ Full specificalion record and playback head......... $£ 14,60$
Please consult our list for technical data on these and other Special Purpose Heads. MA481 Latest version Double Mono (2/2) Record/Play head.
Replaces R484.. 113.35 SM166 Standard Mounting $2 / 2$ Erase head. Compatible with H524 Standard Erase Head. Semi double gap. high eiffici-

HART TRIPLE-PURPOSE TEST

CASSETTE TC1

One inexpensive test cassette enables you to set up vu level, head azimuth and tape speed. Invaluable when fitting new heads. Only $£ 4.66$. plus VAT and 50 p postage.
Tape Head De-megnetiser. Handy size mains operated unit revents build up of residual head magnetisation causing Curved Pole Type for inaccessible heads Send for your free copy of our LISTS. Overseas please send 2
IRCs to cover surfae Post or 5 IRCS for Airmail RCs
Plouse add part cost of post, pacidng and insurance as followe: INLAND
Orders up to £10-50p
Orders
Orders over $£ 50-£ 1: 50$

OVERSEAS
Please send sufficient to cover
Surface or Air Post as Surface or

Personal callers are always very welcome but please note that we are closed all day Saturday

24hr SALES LINE
(0691) 652894

ALL PRICES EXCLUDE VAT UNLESS STATED

Design your own

PCB

with the

BBC COMPUTER

Lay out double sided PCB on the screen, separating the layers by colour. Store design on disc, recall for editing or plot it on an Epson HI-80. A-4 plotter ready for $2: 1$ photo reduction. 40 or 80 Trac disc based software $£ 20$.

VINDEREN ASSOCIATES, PO BOX 130,
BELFAST BT9 6NB. TEL: 0232667885
A11,

'S \star BRAND NEW CATALOGUE $\star p^{\prime}$ OMNI ELECTRONICS

We stock a wide range of components:
transformers, switches, pots, ICs, capacitors, resistors, diodes, boxes, triacs, LEDs, cable, connectors, PCBs-
in fact, all you need for your projects.
Send for our new catalogue $-20 p+18 p$ postage or call at our
shop Mon-Fri 9am-6pm, Sat 9am - 5pm.

> | 174 Dalkeith Road |
| :---: |
| EDINBURGH EH16 5DX |
| 031-667-2611 |

* FREEPOST your order or enquiry to us *

HARDWARE DESIGN CONCEPTS

Mike Barwise continues his pulse generator design. This month he looks at criteria for designing the PCB and adds a range expander to the system.

We have now reached the final, practical stage of our pulse generator design. I have chosen to distribute the generator across several PCBs. It would otherwise be difficult to find a convenient case for it and anyway the various functions are better kept separate for performance reasons.

This modularity also allows potential future upgrades. Using the industry standard extended single Eurocard ($100 \mathrm{~mm} \times 220 \mathrm{~mm}$), a half width (8.5in) Eurocase will accommodate our design, which will consist of four boards in the first instance.

The common connector between boards is a DIN41612 C indirect with 96 ways. This allows the A and B rows to be used for the pin-intensive programming register bus (44 bits) and clocks, leaving the C row for use by the control microprocessor. When dealing with such a large pin count, confusion between pin names is likely to arise, so all microprocessor signals will be prefixed 'PRO...'.

Increasing Generator Range

Referring back to the February 1987 issue, we see that the basic 1000:1 range of the pulse generator can be increased by the addition of a decade programmable clock divider. This is the board we will build this month. It provides four decade ranges for each of the parameters of the pulse - period, delay and width. This divider is a lot simpler than the pulse generator, as the counters are allowed to free run.

In order to create decade ranges, the 74F168 decade counter is used. This is a direct plug-in replacement for the 74F169 used elsewhere in this design.

The circuit (Fig. 1) consists of a master clock oscillator, a four decade synchronous divider chain and a four to one multiplexer for each of the three outputs required. One multiplexer is obligatory (pulse period), the delay and width multiplexers being optional but highly recommended as they allow much greater control. The cost of two extra multiplexers (about $£ 5$) is well worth it.

The multiplexer outputs are buffered by a 74F244 to allow sufficient drive for the pulse generator board. If you want to go cheapskate and use only one multi-
plexer then the three signal lines are paralleled just before the buffer inputs by fitting LK1 and LK2.

There are a couple of unusual points about this circuit. First, the use of a proprietary oscillator is recommended, as the construction of stable high speed crystal oscillators is not to be taken on without experience.

Secondly, referring back to our previous discussion of cascaded counters, we find that the outputs are normally short 'ticks' from the RCO pins and it is worth mentioning that there can be unwanted glitches at these pins.

This glitch hazard is covered by the logical AND combination used in the pulse generator proper but it is obvious that for both these reasons an individual RCO output is unsuitable here as a clock signal (which should be a clean square wave).

The solution is to double the speed of the input clock and then use the Q0 (divide by two) output of each counter. The output is then a good $50 / 50$ markspace ratio square wave at half the effective rate of each counter.

So the first stage effective rate is the input clock rate (say 20 MHz) yielding an output of 10 MHz , the second stage effective rate is 2 MHz (divide by ten) yielding an output of 1 MHz and so on.

Resolution And Clock Rate

A couple of readers have told me I did not make my comments on pulse generator resolution quite clear enough, so here goes with some further clarification.

The programmable counters are clocked at the input clock rate selected by the range board. It is not possible, however, to program a counter to divide by one. The lowest functional modulo is in fact two. This means the shortest period programmable is twice the clock period.

However, it is possible to program the period to all other multiples of the clock period up to maximum. So the programmable increment in period (the resolution) is equal to the clock period with a minimum of two clock periods. With a 10 MHz clock you can program pulses of $200 \mathrm{~ns}, 300 \mathrm{~ns}$ and so on, and with a 20 MHz clock, $100 \mathrm{~ns}, 150 \mathrm{~ns}, 200 \mathrm{~ns}$ etc.

Fig. 1 The circuit diagram of the range board.

Once we use our counters to create a pulse generator this minimum period of two clock periods must be taken into account for each counter. It is apparent that when both delay and width are programmed to their minima of 200 ns (10 MHz clock), the overall period must be programmed to 400 ns or greater, yielding a maximum frequency of 2.5 MHz . Even though 100 ns increments generally provide adequate resolution for our pulse generator, the use of a 20 MHz clock giving 50 ns resolution to each counter doubles $f_{\text {max }}$ to 5 MHz .

The final circuit of the generator board (coming next month!) will allow a zero delay option to permit working to around 10 MHz depending on the oscillator selected.

I am standardising on the 40 MHz crystal $(20 \mathrm{MHz}$ clock) for the moment (the software depends on it to some extent) so I would recommend it all round.

I hope this dispels any confusion about resolution.

Fig. 2 The suggested layout for the range board.

The pulse generator as a whole has about half the resolution of a single programmable counter, due to the cascaded delay and width stages.

The PCB

I have already mentioned how the 74AS and 74F series TTL required for the 20 MHz version of the pulse generator require special consideration when laying out the PCB.

If normal 74 LS series TTL is used (for a 10 MHz pulse generator) the PCB layout is not critical. However, assuming that we are using the 74 F or 74 AS high speed TTL chips, the bulk of the handling precautions are accomplished by a board topside consisting entirely of Vcc and ground planes. This is shown in Fig. 4.

Note that the IC packages should be well spaced apart but that interconnections should generally be no more than two inches or so long.

The topside foil has been designed for use with both the pulse generator board and the range board so more pilot holes for the IC pins are given than necessary for this particular circuit. For many pins in these positions the holes in the foil should be widened with a countersink drill bit (as they are at the backplane connector) to give clearance from the ground and Vcc planes as required by the circuit.

The PCB tracking on the underside should be as fine as possible, ideally in the region of 0.02 in , and the track density should be no greater than 0.05in. Each track should be of consistent width.

Tracks which vary in width cause problems when it comes to predicting their dynamic characteristics (impedance, resonance and so on) at high speeds. Of course, tracks which carry heavy currents (eg output tracking from the driver/buffers) should be thicker, but not much more than say 0.05 in , and the track to gap width ratio should be kept to about 50%.

BUYLINES

All the parts for the range board are available from usual suppliers (such as Electromail and Vero) except the oscillator IQX0-500 40 MHz . This is available direct from 1QDM North Street, Crewkeme, Somerset TA18 7AR. Tel: (0460) 74433.

Pin	A	B	C
1	$+5 V$	$+5 V$	$+5 V$
2	KEYCK	PROCK	-
3	WCK	-	-
4	DCK	-	-
5	PCK	-	-
6	-	-	-
7	-	-	-
8	-	-	-
9	-	-	-
10	-	-	-
11	-	-	-
12	-	-	-
13	-	-	-
14	-	-	-
15	-	-	-
16	-	-	-
17	-	-	-
18	-	-	-
19	-	-	-
20	-	-	-
21	-	-	-
22	-	-	-
23	-	-	-
24	-	-	-
25	-	-	-
26	-	-	-
27	-	-	-
28	RSYNC	-	-
29	WRO	WR1	-
30	DRO	DR1	-
31	PRO	PR1	-
32	GND	GND	GND
$10 t$			

- not used for the range board.

Fig. 3 The backplane connector pinout used by the range board.

Fig. 4 The topside foil for the general purpose high speed TTL board.

These specifications represent a good rule of thumb for minimal crosstalk (spurious interaction) between adjacent TTL digital signals at up to about 50 MHz . Tracks thinner than 0.02 in are difficult to etch (although boards using 0.01 in tracking prove excellent
for small signal logic - if you can make them reliably). With tracks wider than about 0.05 in, track capacitance starts to become significant in the 20 MHz region.

The track/gap width ratio is mainly responsible for controlling the track to track crosstalk, and the (cons-
tant) spacing with respect to the ground plane on the topside is the primary factor controlling the characteristic impedance of the track.

Tracking should be straight line/angular rather than 'soft curve', but corners should (ideally) be turned in 45 degree increments rather than 90 degree. More acute junctions than 45 degree are never permitted. Not only can these radiate at high frequencies but they pose considerable etching and soldering problems.

Construction

The only safe approach when using a 20 MHz or faster system is to use a PCB. Remember that your master clock oscillator is running at 40 MHz . Sockets should be used for all components, including the oscillator, as this allows easy servicing and upgrade. Only good quality low profile turned pin sockets should be used. If these look a little expensive, Augat produce a very good coined contact alternative which is available from various sources, but standard Vero sockets are ideal.

Turned pin sockets have integral stand-offs on the pins. Where ground and Vcc connections are needed, these should be soldered direct to the supply planes on the topside. Pins not grounded or connected to Vcc should pass through clearance holes in the ground plane.

If you have to countersink these holes yourself, it is quite important to leave some copper between adjacent pins to screen them from each other. However, it
doesn't take much so don't risk pins shorting to ground by being too cautious with the countersink. Note that a spot face cutter is not suitable. Its nose angle is too obtuse so it will be very difficult to get the cutouts centred about the holes in the PCB.

Of course any links on the topside of the board must be insulated. It pays to form the links tidily with a pair of pliers. The best stuff is 22 SWG or 24 SWG tinned copper wire and 0.7 mm bore PTFE (heatproof) sleeving (both available from RS).

Though neatness is a lot of trouble, the results will well repay the effort. At the speeds we are talking about, neatness almost equates to reliability.

For decoupling, try to get multi-layer miniature ceramic capacitors. The ordinary single layer discs are too big for comfort. The aim is to keep the board profile as low as possible, in any case not more than 0.6 in total including the lead projection on the solder side. This is not very difficult to achieve in practice, but it is important, as the boards will have to be mounted together on a 0.8 in pitch.

Despite these contstraints, the only component that you won't be able to get from normal chip shops will be the oscillator. This is available from IQD, North Street, Crewkerne, Somerset TA18 7AR. Tel: (0460) 74433).

Next month 1 shall give the recommended PCB underside foil pattern. Meanwhile you are welcome to try your hand at designing your own.

Next month 1 shall also look at the design of the main pulse generator board.

ELECTRONICS \& COMPUTING

INDIVIDUALS You don't have to continue working on things you don't believe in, with people who'd want you locked up if they knew what you really thought.

Promoting Equality of Opportunity. For businesses and people who want a say in how their technology is used. EfP Lid., 28 Milsom St, BATH BA1 1DP (0225) 69671
EXCHANGE RESOURCES
RECRUITMENT AGENCY
\& BUSINESS CONSULTANCY
BUSINESSES How would you like to try an agency that rewards you for ethical decisions? And deal with businesses which respect your views?

BATH 022569671

The initial development system has 64 K of RAM, a 4 MHz Z80A CPU, parallel ASCIIkeyboard interface, VOU Interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Any size (including $8^{\prime \prime}$ double density) can be used, but our 1 Megabyte $3.5^{\prime \prime}$ drives are proving very popular because they can fit into the system rack, (and they only cost $£ 94.00$ each + VAT). CP/M Plus is available, giving access to thousands of "public domain" programs.
The system can be described as "future proof" because it uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system was first made in 1977 so (unlike almost all other computers) it has stood the test of time.
Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc.

- Greenbank

Greenbank Electronics (Dept T5E), 460 New Chester Road, Rock Ferry, Birkenhead, Merseyside L42 2AE. Tel: 051-645 3391

\section*{| WSTR |
| :---: |
| $\begin{array}{c}\text { WITH } \\ \text { FREE } \\ \text { CASE }\end{array}$ |
| a |
 }

Difitral mutimeters

* 105 I4 Range 2A ac. 2 Mohm * 62815 Range 0 Range 10A OC. 2 Mohm He Mo test \star G010 28 Range 10A AC/DC 20 Mohm (D.2MA AC/DC)
$\star 57820$ Range 10A AC/DC 2M. Buzzer Display Hold Auto Range Memory (20MA AC/DC)
$\star 501028$ Range 10A AC/AC 20 Mohm [20 $\mu \mathrm{A} \mathrm{AC/AC)}$
\star 5010EC 34 Range 10A AC/0C 20 Mohn Hée test
Capacitance test Conductance
* ME540 Auto/manual IOA AC/DC 20M
$\star 6013$ Digital Capacitance meter 8 ranges 200p1-2000 MFD

ANALOGUE MULTIMETERS

$\star 1015$ I5 Range Pocket 10K/N

* 1035 I9 Range Pocket 20K $/ \mathrm{N}$ * 102BZ 19 Range $20 \mathrm{~K} / \mathrm{V}$ 10A DC Hie Buzz 10 Mohm
$\star 20119$ Range 20K/V 12A AC/OC 10 Mohm
* 201020 Range 30K/V IOA IC 20 Mohm
* 30108224 Range 30K/V 10A OC Buzz 10 Mohm
\star 830A 26 Range 30K/VIOA AC/OC 10 Mohm 5050 E 41 Range 20MEG FET 12A AC/OC 1000 MEG POWER SUPPLIES
D01c 13.8 V 3A वC $£ 14.95 \quad 1545 / 15 v$
$2430 / 24 \mathrm{~V} 0 / 3 \mathrm{~A}$ OC, $£ 49.75$ 0/4A OC $\mathbf{£ 3 8 . 2 5}$ 0.30V I.5A OC $\quad \mathbf{£ 3 4 . 4 4}$

LOGIC PROBE

 $\begin{array}{ll}07 \text { 20MHZ Lagic Probe } \\ \text { IIL crnos elc } & \mathbf{£ 1 0 . 9 5}\end{array}$
STOCKISTS FOR

Frequency Counters - Cenerators • Power Suppiies -
Tools - Computer Equipment • TV/Video Accessories Nicads - Compuer Equipmen - TV Video Accessories Public Address \& Audio - [See catalogue

ELECTRONICS CAD

IBMPC (and compatibles) R.M. NIMBUS, BBC MODEL B, B+ and MASTER AMSTRAD CPC and SPECTRUM 48 K .

Number One Systems Limted
Linear Crrcuit Analysis Program ANALYSER iI
Circuit Name: IFAMP3
30th September 1986 television I.F amplifier with traps

GAING.* PHASE P.+ ANY TWO *

OSCILLOSCOPES WIIH
UK FREE OELIVERY FREE HAMEG Oual trace wilh com- PRD:SS
ponent testers $\mathrm{B} \times 10 \mathrm{~cm}$ screen:$\begin{array}{lc}\text { ponient testers } \mathrm{B} \times 10 \mathrm{~cm} \text { screen:- } & \mathrm{i} 10 \mathrm{~B} \\ 203 / 6 \text { Oual } 20 \mathrm{MHZ} & \mathbf{£ 3 2 . 7 0} \\ 204 \text { with a sweep delay } & \mathbf{£ 4 6 2 . 3 0}\end{array}$ CROTECH with component tester single trace: $\begin{array}{ll}303151 / 4 \times 6 \% / \mathrm{cm} \text { Oisplay } & £ 224.25 \\ 3036 \mathrm{~B} \times 10 \mathrm{~cm} \text { Oisplay } & £ 239.20\end{array}$ HUNG CHANG 620 Dual $20 \mathrm{MHZ}+$ component testi ${ }^{\circ}$ 2339.25 £458.85 635 Dual $30 M H Z$ Sweep delay £458.85
ALLPRICESINCLUDEVAT

FREE
catalogue Ref TG/E Send s.a.e.
(min $\left.12^{\prime \prime} \times 9^{\prime \prime}\right)$ with E. stamp UK
allers/exporl $£ 10$

CIRCUIT THEORY
 Paul Chappell starts a new series looking at the theory behind circuit design.

The fact that simple circuits behave in complicated ways was illustrated by last month's article on snubber networks. When faced with a problem like misbehaving snubbers, trial and error may eventually lead to a working circuit but you can never be sure that the component values selected in this way are the best ones for the job. There may be some problem which will only make itself known when the circuit catches fire a week later or if you make up another circuit with the same component values and slight variations in their characteristics cause it to fail. The only way to be sure is to analyse the circuit.

Analysis is one side to the circuit theory coin. The other is synthesis. Suppose that you come to the conclusion that a new music processor you are designing needs a network with certain phase and frequency response characteristics. How do you go about making one?

The techniques of circuit theory aim to make the analysis and synthesis of circuits as simple as possible. It may seem otherwise when the ideas are unfamiliar to you but as every student of Zen knows - the road may be hard and painful, but the eventual enlightenment will make it all worthwhile! I'll begin by taking some of the main playing pieces out of the box to see what kind of moves they make.

Linear Circuits

Every electronics enthusiast has an intuitive idea of the meaning of a linear circuit. If pressed to give a definition, I imagine most would come up with something like: 'A circuit in which the output is proportional to the input'. This is a good description of a special class of linear circuits (often called 'DC circuits') but it's not the full story.

To qualify for the title 'linear', a circuit must have two properties. The first is that the output must vary in proportion to the input, but needn't be the same shape. (If it is the same shape, we have the special class of DC networks - amplifiers, attenuators and suchlike).

This is known as the principle of proportionality (what else?), and stated formally it looks like this:

If an input $e(t)$ produces an output $r(t)$, then an input $K e(t)$ must produce an output $K r(t)$.

An illustration of proportionality is shown in Fig. 1. The circuit is shown with a square wave input, but to qualify for proportionality this property must hold for any input whatsoever.

The second property is this: if you know the output produced by one waveform and you also know the output produced by another then the output caused by the two waveforms added together must be equal to the two individual outputs added together. It's a bit of a mouthful, but I hope that Fig. 2 will make it clear. This is known as the principle of superposition. Stated formally it is:

> If an input $\mathrm{e}_{7}(\mathrm{t})$ produces an output $r_{1}(t)$ and an input $e^{2}(t)$ produces an output $r_{2}(t)$, then an input $\mathrm{e}_{1}(t) \mathrm{e}_{2}(t)$ must produce an output $r_{1}(t)+r_{2}(t)$.

Once again, this must hold for any pair of inputs whatsoever. The reason for using e for the input, by the way, is that if we want to be pedantic about it, it is called the excitation (or stimulus, so I suppose we could equally well use s). Also, $i(t)$ suggests that the input must be a current. It can be, but it needn't. The output is formally called the response - hence the r.

The reason that linear circuits are dear to the hearts of electronics engineers is that they are so well behaved and easy to analyse.

Fig. 2 The principle of superposition.
Superposition is a great blessing because it means that if you are faced with the problem of deciding the output produced by a complicated waveform, it can be split into parts and each part can be dealt with individually. The response to the complicated waveform is then obtained by adding the simple parts together.

You've probably done this yourself on numerous occasions without even being aware of it! Whenever you arrange the DC conditions for an op-amp, for example, you make the implicit assumption that the DC level and the AC signal can be dealt with independently. This is a special case of superposition in which one of the inputs is a fixed voltage.

There is another application of superposition that is so deeply ingrained in the thought processes of any electronics person that it seems an unquestionable eternal truth. l'll come on to it next month, but in the meantime you might care to fathom out what it is.

Figure 3 shows some linear and non-linear circuits. Before reading any further you might like to try deciding which are which. If they pass the proportionality test and the superposition test then they are linear. If they fail either one, they are not.

Figure 3a is an inverting amplifier. I don't think I need to say too much to convince you that this is linear. Amplifiers belong to the special class of linear DC circuits which have the property that the output is equal to the input multiplied by a constant.

As an exercise, you might care to try proving that all such circuits must exhibit proportionality and superposition. It's not difficult and will give you a chance to flex your mathematical muscles a little.

(a)

(b)

(c)

(d)

(f)

177
(9)

(h)

Fig. 3 Linear and not so linear circuits.
Figure $3 b$ is a simple resistor attenuator and belongs to the same class of linear circuits as the amplifier. In fact, any resistor network whatsoever is linear and will produce an output equal to the input multiplied by a constant.

Figure 3 c is clearly not a DC network - the response to any constant voltage level will always be zero. However, it is linear, and could very well be the circuit inside the box of Figs. 1 and 2.

Figure 3 d is a comparator. It fails the proportionality test immediately. Any input will either produce a switch from one voltage level to another or no output at all. That is not linear!

Figure 3 e is a Sallen and Key low pass filter implementation (common or garden variety) and is linear.

Figure $3 f$ passes the proportionality test for any old waveform but fails on superposition. A pair of inputs that would catch it out on superposition would be two square waves 180° out of phase.

Figure 3 g is linear. In fact, to give the game away, any combination consisting only of resistors, capacitors, inductors and amplifiers will be linear.

Respect

The only limitation I can think of is that inputs and outputs must be respected. That is to say no two amplifiers should have their outputs connected together, the input to a network should not feed directly into the output of an amplifier, and so on. A formal proof would be tedious and unenlightening but rests on the fact that resistors, capacitors and inductors are themselves linear, so any combination of them will also be linear.

Fig. 4 A real life capacitor composed of ideal elements.
Figure 3h. What can I say about this one? Anybody can recognise it at a glance as a comparator with hysteresis, so it seems to contradict my previous statement. Or does it? The reason it works as a comparator is that the output of the op-amp bangs up against one or other of the supply rails. In other words, it works because of the practical limitations of real-life opamps. Strictly speaking, the circuit is an amplifier with infinite gain!

Circuit theory does not recognise any practical limitations on components. All resistors obey Ohm's law to the letter. Capacitors don't leak, inductors don't saturate and amplifiers aren't restricted by supply voltages. This may seem like pedantic nonsense but there's a good reason for it.

Imagine that your TV set suddenly goes on the blink. You could reasonably claim that any method of analysis which did not predict that on the 12 th of March at 10.15 pm your picture would go wonky is in some way flawed. If it happened in the middle of the Dirty Dan show, you might express that very opinion to the repair man in rather ruder terms.

Ideal Components

There are two approaches we could take to make the analysis more realistic. We could draw a circuit and label it like this: R1 is a low grade resistor that's likely to fail at any moment, L1 is a coil with a loose core, C 1 does peculiar things when it gets hot, and so on. If you want to analyse a circuit like that, good luck to you!

The other approach is to pretend that all components are ideal, and to add in more ideal components to represent the deficiencies. You've all seen circuit models similar to Fig. 4, where the ideal capacitor is made a good deal less ideal by the addition of resistors to represent leakage and effective series resistance, and an inductor to represent the inductance of the internal foils (and to a much smaller degree the inductance of the leads). The advantage of this approach is that you can see exactly what's causing the problem. Since all the individual components are ideal they are nice and well behaved when you come to write equations about them.

Let's face it, there's no such thing as an op-amp in real life. What you can buy are devices which behave enough like op-amps over a very limited range of voltages and frequencies to be allowed the name.

Resistors are well behaved over a limited range. Too much current and the nice Ohm's law line begins to sag. Much more current and they burn.

Capacitors are much less well behaved. Certain types of ceramic things are so unlike capacitors in their behaviour that I'm surprised the consumer organisations allow them to be sold under that name! Probably they've never studied circuit theory.

Well, Zen students, that's quite enough for you to meditate on for this month. Ommm, Ommm, Ommm ...

24HR SUNDIAL

The April issue of ETI would not be the same without at least one foolish item. This year we present the project for the man (or woman) with everything.

The humble sundial is the oldest accurate timepiece. Once early scientists had sorted out what was happening in the heavens above they soon found a sundial provided a reading of the passage of time as accurate as could be expected in those days.

The conventional sundial works on a very simple principle. The Sun, as any informed 16th century astronomer will tell you, moves around the Earth in a pretty predictable manner.

So it casts a shadow from a stationary edge that will move across a scale and mark out the passage of the elusive time.

In the UK the conventional sundial suffers from a few problems. First, it requires a suitably exposed stretch of garden to put it in. With 50 -odd million

Fig. 1 The circuit diagram of the 24 hr Sundial.

Fig. 2 The component layout for the 24 hr Sundial PCB.
people now crammed into this country, suitable gardens are getting hard to come by.

Sunlight

More importantly, during the night there is no sunlight. Although the conventional sundial will work with moonlight, this is not a very effective solution.

Just to make things worse, sundials situated in the UK find very little sunlight even during the day! It is only fitting in this 15 th anniversary issue that we present a project that would not be necessary in the country of origin of ETI - Australia!

Sunlight, then, is both the crucial ingredient and the downfall of the conventional sundial in the UK. So the ETI 24 hr Sundial has been created to provide a timepiece with all the simplicity

and charm of the original but better suited to the modern British lifestyle.

Artificial Sun

The major breakthrough is that the ETI Sundial more closely imitates the true nature of the Solar System. Now the source of the light remains stationary and the dial revolves round to indicate the time on a suitable scale.

The ETI Sundial is designed to sit in your living room close to a suitable source of artificial light. All you need do then is plug it into the mains and let nature take its course.

Construction

Building the PCB should present few problems. Care should be taken to insert all the capacitors the correct way around as shown in Fig. 2.

The wiring of the stepper motor will depend on the model used. For the RS motor used in the prototype the wiring is as shown.

The link should be fitted from pad A to either pad B or C. This determines the direction of rotation of the dial. This may have to be altered to suit the stepper motor used.

The secondary of the mains transformer should be connected to the pads shown and the primary connected to a mains lead via a $1 A$ fuse. The mains earth should be connected to the PCB earth as shown for safety.

The operation of the stepper motor and its correct direction of rotation can now be checked.

The gearbox specified simply bolts onto the stepper motor after a small sprocket (supplied) is glued onto the motor spindle. The whole motor assembly is then bolted to the underside of the top of the case using countersunk bolts with the final drive spindle protruding through a hole.

The dial itself should be drawn onto a piece of stiff card or the design given here (Fig. 3) photocopied and stuck onto a suitable base. This should then be

stuck onto the gearbox spindle. A small plastic gear was used on the prototype to form a mounting for the dial.

The shadow caster can be anything from a simple rod stuck on top of the spindle to the more elegant swept triangular shape fixed to a (stationary) piece of clear plastic mounted above the dial as shown in Fig. 4.

For the correct baroque effect it is essential the sundial is mounted on a suitable pillar. These are available moulded in

HOW IT WORKS

The circuit is simple enough, based as it is on the SAA1027 stepper motor driver chip (IC3).

A 50 Hz signal is obtained from the transformer secondary and inverted by Q1 to give 50 pulses per second.

IC2 is an octal counter with the sixth output connected to the reset to give a divide by six action and 500 pulses per minute at the number one output (pin 1).

This is used to clock the motor driver chip (IC3) and provide a rotation of 625 revs an hour. The gearbox has a gear ratio of 15,000:1 and reduces this to one revolution per 24 hours.

BUYLINES

All the parts of the ETI $\mathbf{2 4 h r}$ Sundial are

 easily available with the exception of the stepper motor and gearbox. These are available from Electromail (Tel: (0536) 204555) as type numbers 332947 and 336-400 respectively.

Fig. 3 A suitable dial for the $\mathbf{2 4 h}$ Sundial.
genuine 16th century plastic from your local garden centre.

The clear elegance and practicality of this project is perhaps best summed up by the comments of one member of the ETI staff (who shall remain

PARTS LIST

RESISTORS all indicated	1/w except where
R1	47k
R2	10k
R3	12k
R4	100R
R5	270R 1/2w
CAPACITORS	
	$220 \mu 25 \mathrm{~V}$ radial electrolytic
C2, 3	$10 \mu 25 \mathrm{~V}$ radial electrolytic
SEMICONDUCTORS	
IC1	7812
IC2	4022
IC3	SAA1027
Q1	BC109
BR1	W005
MISCELLANEOUS	
T1	12V 1A transformer
M1	$7.5{ }^{\circ}$ stepper motor
GB1	15,000:1 gearbox
PCB; fuse and fuseholder; case; pillar; dial; card; acrylic plastic; nuts and	
dial; card; acrylic plastic; nuts and bolts.	

nameless to protect his employment and his kneecaps).

He suggested the gearbox should be fitted back to front, the dial replaced by rotors so the whole circuit then doubles as a helicopter!

COUNTER TlWIRS

> | PFM200A | $£ 75.50+$ VAT |
| :--- | :---: |
| 20 Hz - 200 MHz in 2 ranges, 4 gate times. 10 mV sensitivity. | |
| 8 -digit LED display. Battery/mains operation. | |

7
-
-7
-1

10 prescaler $100 \mathrm{MHz}-1 \mathrm{GHz} 10 \mathrm{mV}$ sensitivity

£F1000 £495 + VAT
$\mathrm{DC}-100 \mathrm{MHz}$ on both channels, 6 gate times. Frequency, period, period average, time interval, time interval average, frequency ratio and totalise. 20 mV sensitivity. HF filter, attenuator, trigger controls, trigger hold-off. 8-digit 0.6" LED display. Mains operation.
TF1100 E595 + VAT
As for TF 1000 but with 70 MHz to 1 GHz prescaler (frequency only); 10 mV sensitivity.
TP600 £45 + VAT
$\div 10$ prescaler, $40 \mathrm{MHz}-600 \mathrm{MHz} .10 \mathrm{mV}$ sensitivity.
P1000 £75 + VAT
 ELECTRONICS LIMITED $\begin{aligned} & \text { Thandar Electronics Limited, } \\ & \text { London Road, St. Ives, Huntingdon, } \\ & \text { Cambridgeshire PE17 4HJ, Engiand. } \\ & \text { Telephone (0480) 64646 Telex 32250 Test. } \\ & \text { THE LOGICAL CHOICE }\end{aligned}$

CCTV CAMERAS FROM ONLY £69.50 EACH!

PLUS CARRIAGE \& VAT
Crofton Electronics are pleased to announce that they are now able to supply C.C.T.V. cameras complete with standard lens, starting at the amazing price of $\mathrm{f} 69.50+$ VAT \& carriage. Two models are available. Model ' A ' incorporates a $3 / 3^{\prime \prime}$ vidiçon tube, and model ' B ' has a $1^{\prime \prime}$ tube. Both models employ vidicon racking thus allowing locusing from a few inches to infinity. Both models also have a standard ' C ' mount and thus will accept a wide range of different lenses. Model ' B ' can be driven from external sync pulses and produce a composite/non composite output. Though not new each camera has been completely refurbished to a high standard in our own workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with a domestic TV set by the addition of a simple modulator - kit available.) From an input of 240 v ac, the cameras produce an output of 1 volt peak-peak and are equipped with standard tripod mounting bushes. With applications as diverse as education, amateur dramatics and shop/industrial/domestic/ farming security systems, demand is sure to be high and orders will be dealt with in strict rotation.
Model ' A ' all inclusive price $£ 85.10$ subject to availability.
Model 'B' all inclusive price $£ 97.75$ subject to availability.
DON'T DELAY - PLACE YOUR ORDER TODAY!
Also available on special offer - Brand New Time Date Generators at the amazing price of $£ 132$ inciusive. Normal price $£ 477$. These generators are mains driven and accept normal composite video in. They produce video out with time/date/dayimonth/and year added to the signal, and with the option of nermal or inverse video of the added data. The position on the screen of the added data is adjustable. Switchable character size is also provided for, on an internal DIL switch. A REAL MUST FOR SECURITY APPLICATIONS WHEN RECORDING. There are only a limited number of these, so hurry to avoid disappointment. Orders will be dealt with on a strictly first come first served basis.

We also have for disposal a whole host of used items such as cooling fans, power supplies etc - so please ask for list. Our complete range of products include plugs, sockets and cables, T aerial accessonies, monitors, computer products, security telephonas and door entry/alarm equipment, and surveillance and counter surveillance equipment. If you would like all our cats please send a 40 p SAE.

MOST MAJOR CREDIT CARDS ACCEPTED

Professional Monitor Drive Board \& Tube

This Crofton Monitor
Kit comprises a $12^{\prime \prime}$ P3 Cathode Ray Tube and Drive Board. The Drive Board requires 12 volts at 1.25 Amp continuous (1.85A surge), separate line, field and video at TTL levels. By the addition of a few standard components this board can be driven from standard composite signals.
The Drive Board has a bandwidth of 24 mHz and is capable of displaying 25 lines of $80+$ characters.
This is a professional board and tube as supplied to manufacturers of terminals, and out performs monitors costing many times this price.
A few boards and tubes are also available mounted on a metal frame.
A circuit diagram, together with full instructions, are provided with each board and tube.
You will be absolutely delighted with the performance.
Board and Tube $\mathbf{£ 3 4 . 5 0}$ inclusive of VAT
Board and Tube on Metal Frame $£ 40.25$ inclusive of VAT
Carriage is $£ 13.50$ or come and collect direct from our Warehouse.

Crofton Electronics,
"Kingshill", Nextend, Lyonshall, HR5 3SX. Telephone: 05448557

PROJECT INDEX

Project
 AUDIO

2W Power Amplifier
$50+50$ watt power amplifier module 50/100W amplifier modules 100W disco mixer/amplifier 100W guitar amplifier

100W MOSFET power amplifier
100W stereo disco console

150W MOSFET amplifier
200W power amplifier 300 W amplifier module
204011 active loudspeaker Active-8 loudspeaker

Active bass loudspeaker
Active crossover, two or three way
Active loudspeaker
Active loudspeaker, 2040 II
Amplifier, 2W power
Amplifier, 15 w.p.c.
SQ quadrophonic
Amplifier, 50 w.p.c. stereo
Amplifier, 100W disco mixer
Amplifier, 100W guitar
Amplifier, 100W MOSFET
Amplifier, 150W MOSFET
Amplifier, 200W
Amplifier, 12 V DC portable radio booster
Amplifier, Audio Design

Amplifier, bench (Short Circuit)
Amplifier, bench
Amplifier, bench
Amplifier, combo (ETI Sonneti)
Amplifier for personal hi-fi systems
(ETI Walkmate)
Amplifier for record players
(Using the LM380)
Amplifier for stereo testing
Amplifier, guitar effects
Amplifier, guitar practice
Amplifier, miniature (ETI Matchbox)
Amplifier module, $50+50$ watt
Amplifier module, 300W
Amplifier modules, 50/100W
Amplifier, portable PA
Amplifier, simple, 1.5 W
Mih Yr Pg Projec
Mth $\mathrm{Yr} \quad \mathrm{Pg}$

Amplifier, simple stereo
Amplifier, stereo, 5 w.p.c.
Amplifier, stereo (ETI Microamp)
Amplifier, stereo, International-25

Amplifier, stereo, 'Sweet Sixteen' Amplifier, System A

Amplifier, the Audiophile
Amplifiers, phono, high qualit
Attenuator, variable 0-59dB
Audio analyser
Audio buffer
Audio Design amplifier

Errata

part 1	Aug	1974	23
part 2	Sep	1974	60
	Feb	1979	64
	Feb	1973	52
Errata	Apr	1973	90
	Aug	1980	64
Errata	Sep	1980	11
	Jun	1982	48
	Apr	1978	43
part 1	May	1975	195
part 2	Jul	1984	24
part 3	Aug	1984	44
part 4	Sep	1984	59
Errata	Oct	1985	58
	Feb	1977	52
	Aug	1979	67
	Dec	1980	74
	Mar	1985	22
Errata	Jul	1985	27

Errata
part 1
part 1 Apr 1986
part 2 May 1986
part 1 Sep 198445
part 2 Oct 198456
part 3 Nov 198436
part 4 Dec 1984
Jan 1985
Dec 1975
part 2 Jan 197638
Nov 1983
May 1984
Sep 1982

Jan 198641
Dec 1974

Aug 1982
Sep 1982
Apr 1982121
Apr 198640
Jan 1976
Apr 1980
Mar 1977

Sep 1974
an 197633
Mar 197718
Feb 1979 64 52 90 64

51
63
8

43
58
5
6
3
5
1

68
69

46
75
72
16
23
60
64
90
64
48
43

34
70
30
28 121

33
58
18

Project		Mth Yr		Pg	Project		Mth	Yr	Pg
Combo amplifier (ETI Sonneti)	Errata	Mar	1985	22	International-25 stereo amplifier	part 1	Oct	1975	26
		Jul	1985	27		part 2	Nov	1975	54
Compander (compressor/expander)		Nov	1977	11		Errata	Dec	1975	76
Compression gate, direct injection		Dec	1985	46	International FM tuner	part 1	Sep	1975	26
Compressor/limiter		May	1983	32		part 2	Oct	1975	32
	Errata	Jun	1983	11		Errata	Nov	1975	77
Digital audio selector	part 1	Nov	1986	26	LED VU meter		May	1980	78
	part 2	Dec	1986	47	Limiter, audio		Dec	1976	58
	part 3	Jan	1987	52	Line amplifier for microphones		Jul	1975	24
Direct injection box	part	Sep	1985	43	Loudhailer (Short Circuit)		Sep	1977	56
Direct inject compression gate		Dec	1985	46	Loudhailer, simple		Oct	1973	70
Disco console, 100W stereo	part 1	Sep	1976	42	Loudness control		Aug	1975	25
	pait 2	Oct	1976	51	Loudspeaker, active		Nov	1983	68
	part 3	Nov	1976	63		Errata	May	1984	69
	Errata	Nov	1976	8	Loudspeaker, Active-8	part 1	Sep	1984	45
Disco mixer	part 1	Jul	1981	39		part 2	Oct	1984	56
	part 2	Aug	1981	76		part 3	Nov	1984	36
	part 3	Sep	1981	42		part 4	Dec	1984	24
Disco mixer, 4 into 2		Feb	1977	16	Loudspeaker, active, 2040 II		Sep	1982	46
Discrete SQ decoder for quadrophonic systems		Jun	1974	60	Loudspeaker, active bass	Errata.	Nov Jan	1982	75 15
Distortion meter	part 1	Jan	1985	55	Loudspeaker crossover, active,				
	part 2	Feb	1985	37	two or three way	part 1	Dec	1975	11
	part 3	Mar	1985	43		part 2	Jan	1976	38
Double Quad - ESLs in parallel		May	1975	44	Loudspeaker, ETI, ER II		May	1977	31
Dummy load for audio testing		Jan	1982	71		Errata	Jun	1977	9
Dynamic noise reducer		Sep	1979	35	Loudspeaker, novel		Jun	1984	57
Dynamic record noise filter	part 1	Feb	1976	37	Loudspeaker protection module		Jul	1980	95
	part 2	Mar	1976	62	Loudspeaker squeaker		Nov	1984	17
Equaliser, combined graphic/ parametric (ETI Paragraph)					Loudspeaker, V3		Oct	1981	22
	part 1	Feb	1985	31	Low-distortion stereo decoder		Feb	1987	46
	part 2	Mar	1985	49	Low-cost audio mixer		Jun	1985	38
ETI 422 stereo amplifier 50 w.p.c.	part 1	Aug	1974	23		Errata	Jun	1986	55
	part 2	Sep	1974	60	Mains audio link		Sep	1981	76
ETI ER II loudspeakers		May	1977	31	Mains audio link, FM		Jun	1980	15
	Errata	Jun	1977	9	Matchbox amplifier		Apr	1986	40
ETI Master Mixer	part 1	Apr	1973	66	Microamp stereo amplifier		Feb	1986	38
	part 2	May	1973	30	Microamp stereo test amplifier		Jul	1977	30
	part 3	Jun	1973	56	Microphone switching unit		Jul	1.982	20
	part 4	Jul	1973	63	Millivoltmeter, audio, ' A ' weighted		Apr	1976	26
	Errata	Oct	1973	52	Mixer, disco, 4 into 2		Feb	1977	16
Expander/compressor		May	1976	29	Mixer, disco	part 1	Jul	1981	39
Experimental preamplifier		Sep	1986	45		part 2	Aug	1981	76
FET four-input mixer		Jul	1972	66		part 3	Sep	1981	42
	Errata	Aug	1972	9	Mixer, FET, four input		Jul	1972	66
Five watt stereo amplifier		Jan	1977	10		Errata	Aug	1972	9
	Errata	Apr	1977	7	Mixer, four input		Dec	1980	19
FM mains distributor		Jun	1980	15	Mixer, low-cost		Jun	1985	38
FM tuner, the audiophile		Jan	1981	62		Errata	Jun	1986	55
FM tuner, the International	part 1 part 2	Sep	1975	26	Mixer/preamplifier for professional PA	part 1	Apr	1973	66
FM tuner with digital frequency display	Errata	Nov	1975	77		part 2	May	1973	30
						part 3	Jun	1973	56
		Sep	1978	71		part 4	Jul	1973	63
FM tuner, PLL	part 1	Feb	1987	46		Errata	Oct	1973	52
	part 2	Mar	1987	34	Mixer/preamplifier, four input		Dec	1973	55
	part 3	Apr	1987	33	Mixer, stage, 16 into 8	part 1	Jul	1975	26
Four input mixer		Dec	1980	19		part 2	Sep	1975	33 55
Frequency meter, audio, $50 \mathrm{~Hz}-10 \mathrm{kHz}$		Jul	1973	66	Modular preamplifier	part 1	Dec	1983	55 55
Frequency shifter		Mar	1978	40		part 3	Feb	1984	51
General purpose preamplifier		Nov	1976	26	Moving coil head amplifier		Nov	1983	31
Graphic equaliser, 1 octave filters		Jan	1975	23	Moving coil preamplifier, Audiophile		Jan	1980	29
	Errata	Feb	1975	71		Errata	Feb	1980	29
Graphic equaliser, 1 octave filters		Sep	1977	27		Errata	Apr	1980	15
Graphic equaliser, 1/3 octave filters	part 1	Aug	1983	18	NAB equalisation stage				
	part 2	Sep	1983	41	(Free PCB Project)		Mar	1986	35
	Errata	Nov Feb	1983	96	NDFL 60W power amplifier		May	1983	24
Graphic/parametric equaliser	part 1	Feb	1985	31		Errata	Sep	1983	46
	part 2	Mar	1985	49 121	Noise filter, dynamic, for records	part 1	Feb Mar	1976	37 62
Headphone adaptor		Mar	1976	52	Noise gate		Jul	1985	38
Headphone amplifier		May	1979	77	Noise gate with compressor				
	Errata	Nov	1979	13	and DI box		Dec	1985	46
High quality phono amplifiers		Feb	1982	45	Noise generator, audio		Apr	1976	22
Hi-lo pass filter, variable		Feb	1980	39	Noise limiter for tape		Feb	1979	41
Hum filter (50 Hz notch filter)		Dec	1979	46	Noise reducer, dynamic		Sep	1979	35
Improving the response of economy loudspeakers		Feb	1973	58	Novel loudspeaker Over-LED amplifier clipping		Jun	1984	57
Induction loop, portable		Jul	1983	52	indicator		Nov	1973	56

Paragraph equaliser (combined graphic/parametric)

Phaser, CCD
Playmate guitar effects amplifier
PLL FM tuner
Plus-Two add-on decoder/amplifier

Portable PA amplifier

Power-bulge - inverter for Power meter, audio

Power meter, audio, LED
Power meter, stereo
Preamplifier, balanced input Preamplifier, experimental
Preamplifier, general purpose
Preamplifier, modular

Preamplifier, RIAA
Preamplifier, RIAA
Preamplifier, upgradeable (ETI Virtuoso)
Preamplifier, valve

RIAA equalisation stage (Free PCB project)
Rumble filter, stereo
Scratch and rumble filter, variable Series 5000 bridging adaptor Series 5000 MOSFET amplifier
Signal line tester
Simple amplifier, 1.5 W
Simple bass-reflex cabinet
Simple loudhailer
Simple loudness control
Simple stereo amplifier
Sonneti combo amplifier
Sound bender (ring modulator)
Sound pressure level meter Spectrum analyser, audio
Spring line reverbration unit
SQ decoder for quadrophonic systems
Stabilised PSU for hi-fi systems
Stage mixer, 16 into 8
Stereo decoder, low-distortion
Stereo image co-ordinator
Stereo image width enhancer
Stereo power meter
Stereo rumble filter
Stereo simulator
Stereo simulator (Short Circuit)
Stereo to quadrophonic up-grade
Super stereo - effective width enhancer

Sweet Sixteen stereo amplifier
System 8000 tuner/amplifier

System A amplifier

Tape noise limiter
Tape recorder bias optimiser

part 1	Feb	1985	31
part 2	Mar	1985	49
	May	1978	57
Errata	Jul	1978	7
part 1	Aug	1982	28
part 2	Sep	1982	16
part 1	Feb	1987	46
part 2	Mar	1987	34
part 3	Apr	1987	33
	Nov	1974	54
part 1	Apr	1986	19
part 2	May	1986	43

$\begin{array}{lll}\text { Oct } & 1978 & 41 \\ \text { Mar } & 1979 & 67\end{array}$
Jun 197629
Mar 198435
May 198338
Sep 198645
Nov 197626
part 1 Dec 198355
part 2 . Jan 198455
part 3 Feb 198451
Sep 198073
Nov 198039
part 1 Jun 198634
part 2 Jul 198638
part 3 Aug 198647
part 4 Sep 198649
part 5 Nov 198646
Aug 198632
Mar 198635
Jan 197552
Feb 198039
Jul 198285
Jun 198248
Dec 198297
Sep 197432
Apr 197257
Oct 197370
Aug 197525
Mar 197526
Mar 198522
1985
Oct 198188
un 197827
Dec 197446
une $1974 \quad 60$
May 198318
part 1 Jul 197526
part 2 Sep 197533
Feb 198746
Jun 198068
Errata Aug 198013
$\begin{array}{llll} & \text { Sep } & 1972 & 38\end{array}$

- Mar 198435
an 197552
May 198550
Sep 197716
Nov 197454

Sep 197238
Errata Oct 197243
part 1 Jun 197930
part 2 Jul $1979 \quad 79$
Errata Sep 19798
part 1 Jul 198152
part 2 Aug 198140
part 3 Sep 198166
Errata Oct 198113
Errata Feb 198654
Feb 197941
Jun 198044

THD meter	part 1	Jan	1985	55
	part 2	Feb	1985	37
	part 3	Mar	1985	43
Three channel tone control				
Tone burst generator	part 1	Feb	1976	25
	part 2	Mar	1976	57
Tuner/amplifier, System 8000	part 1	Jun	1979	30
	part 2	Jul	1979	79
	Errata	Sep	1979	8
TV sound tuner		Sep	1980	73
TV sound tuner		Dec	1981	37
Upgradeable preamplifier (ET\| Virtuoso)	part 1	Jun	1986	34
	part 2	Jul	1986	38
	part 3	Aug	1986	47
	part 4	Sep	1986	49
	part 5	Nov	1986	46
Upgrading amplifiers PSUs		Feb	1982	26
Valve preamplifier		Aug	1986	32
V3 loudspeaker		Oct	1981	22
Virtuoso preamplifier See Upgradeable preamplifier				
Visual complex sound analyser		Apr	1981	21
Voice-over unit		Nov	1981	26
VU meter, LED		May	1980	78
Walkmate (amplifier for				
Wattmeter, direct reading, 0-50W		Oct	1973	46
White noise generator, digital		Dec	1979	67

BIO-ELECTRONICS

Biofeedback monitor	part 1	Nov	1986	23
	part 2	Dec	1986	50
	Errata	Mar	1987	63
		Jul	1986	30
Direct-Ion	Jul	1977	11	
GSR monitor	Aug	1981	31	
Heart beat monitor	Dec	1976	19	
Heart rate monitor	Mar	1980	56	
Muscle meter (Electromyogram)		Jun	1982	19

CLOCKS AND TIMERS

1-2 hour timers		Oct	1976	28
Comparator module for the digital stopwatch		Jan	1976	41
Digital alarm clock/calendar		Sep	1973	16
Digital clock		May	1981	65
Digital stopwatch		Jan	1974	40
Digital stopwatch		Dec	1975	20
Egg timer		Aug	1977	26
Humane alarm - alarm clock				
Long period timer, 1 Min - 20 hrs		Dec	1979	55
Meter beater		Feb	1975	28
Micropower pendulum		Oct	1981	37
Modifying the ETI digital alarm				
Multi-option clock	part 1	Nov	1977	23
	part 2	Dec	1977	19
Musical alarm clock		Dec	1980	32
Process controller/timer		Jan	1980	71
Rugby clock	part 1	Aug	1982	60
	part 2	Sep	1982	39
	Errata	Nov	1982	75
School timer		Apr	1984	59
Speaking clock		Sep	1981	30
STAC timer		Sep	1981	71
	Errata	Oct	1978	13
STD timer		Nov	1976	10
Stopwatch/calculator		Apr	1976	10
	Errata	May	1976	8
Universal timer		Aug	1976	18
Universal timer		Jan	1981	36

PLL FM TUNER

John Linsley Hood describes the construction of the main boards and the setting-up procedure for the complete tuner.

The complete stereo tuner is assembled on five PCBs. The construction of the stereo decoder board has already been described (ETI February 1987) and the overlays for the remaining four boards are given in Figs. 1-4. Each of these boards carries one section of the circuitry described last month with the exception of the largest board which carries both the VCO and the CA3189.

Construction of the boards should present no problems provided the overlay diagrams are followed carefully. If you plan to
use sockets for IC3 and IC4 it is a good idea to solder these into place first. The remaining components can then be installed in the usual sequence, beginning with the resistors and capacitors and moving on to the diodes, transistors and ICs. A ready-wound coil can be used for L1 (see parts list) but more adventurous constructors may prefer to wind their own. The coil used on the prototype consisted of 21 turns of 36 SWG silk-covered enamelled wire on a 4 mm slug-tuned ferrite former.

OOPS!

A few errors have crept into the component numbering on this project. Two C28s are shown, one in the stereo decoder circuit (Fig. 6, page 48, ETI February 1987) and one in the IF amplifier circuit (Fig. 8, page 37, ETI March 1987). To avoid confusion, the C28 in the IF amplifier circuit has been re-numbered as C61. The original (and correct) C28 is also missing from the parts list on page 49 of the February issue. It should be 100 n ceramic type.

A similar problem has affected the potentiometers. There are two RV2s, one in the stereo decoder circuit and one in the CA3189 circuit (Fig. 9, page 37. ETI March 1987), and two RV3s, one in the stero decoder circuit and one in the VCO circuit (Fig. 5, page 36, ETI March 1987). RV2 in the CA3189 circuit has now been re-numbered as RV7 while RV3 in the VCO circuit is now RV8. The original RV2 and RV3 are not listed in the parts list in the February issue. They are both 10 k
presets like RV1, as shown correctly on the accompanying circuit diagram.

These three component number changes have been incorporated in the parts lists and overlay diagrams published this month.

In Fig. 5 on page 36 of the March issue, ZD3 is shown as a 3 V 5 zener diode. It should, of course, be a 3 V 6 type, as stated correctly in this month's parts list. C49 in the same figure should be a 220 p polystyrene type, as given in this month's parts list.

Three capacitors were omitted entirely from the circuit diagrams last month. C65 is a decoupling capacitor in the muting circuit (Fig. 11) and connects between +15 V and 0 V . C66 is a decoupling capacitor in the 3189/PLL circuit (Figs. 5 and 9) and connects between +12 V and 0 V . C67 connects directly across the mains transformer primary. All three are included in the parts lists given this month.

Fig. 1 Component overlay for the 3189 PLL board.
PARTS LIST - 3189 PLL BOARD

RESISTORS		C42	1n0 ceramic disc
R51	10k	C44	$100 \mu 16 \mathrm{~V}$ radial
R52	330 R		electrolytic
R53	47R	C45	150p polystyrene
R54	47k	C46, 50, 51, 66	470 n multi-layer
R55, 57	3k9		ceramic
R56, 58, 67	1k0	C47	68p polystyrene
R59	470R	C48	100 p polystyrene
R60	18k	C49	220p polystyrene
R61	39k		
R62	22k	SEMICONDUCTORS	
R63 ${ }_{\text {R64, }}$	390 R	IC3	CA3189
R64, 65 R66	$2 k 2$ 33 k	IC6	7812
R68	15k	Q17	BC212
R69	150k	Q18, 19	BC182
RV4, 7	47k horizontal		$3 V 6400 \mathrm{~mW}$ zener diode
RV8	preset 22k horizontal	vC1	BB105B varicap diode
CAPACITORS		MISCELLANEOUS	
C33, 34, 35 C36, 38, 40,4	10 n ceramic disc	11	$2.7 \mu \mathrm{H}$ slug-tuned
	ceramic		(see text)
C37	$2 \mu 216 \mathrm{~V}$ radial	PCB; 16-pin DIL socket for IC3; metal	
	electrolytic	cover or box for screening; piece of metal for IC6 heatsink, nut and bolt	
C39,43	$47 \mu 16 \mathrm{~V}$ radial electrolytic	metal for IC6 heatsink; nut and bolt to mount IC6.	

input sensitivity of just $1 u V$. If appropriate precautions are not taken, the strong signal from the oscillator will almost certainly find its way into the amplifier input and upset the operation of the tuner. The solution is to screen the VCO entirely and to make sure its output wiring is kept well away from the IF amplifier input wiring. Sticking closely to the suggested layout will help. The Hart motherboard is arranged so that a metal box can be placed over the VCO for screening. Those not using the motherboard could place the entire VCO/3189 board inside
a screened box which should then be connected directly to the 0 V line.

The construction of the stereo decoder board was described in the February issue and the overlay diagram includes all the off-board connection details. Note that the stereo/mono switch (SW1) and the stereo width switch (SW2) have been combined in the Hart kit to form a single rotary control labelled Bandwidth. Constructors who are not using the kit may like to adopt this approach.

There are also some small changes to the circuit which could

Fig. 2 Component overlay for the 10.7 MHz IF amplifier board.

PARTS LIST SELECTIVE IF AMPLIFIER

usefully be made before the board is assembled into the tuner. As pointed out in the text, the decoder was intended for use with other stereo tuners as well as in the circuit described here. Since the completion of the prototype, it has become clear that some small changes to the filter characteristics would enable it to better match the performance of this tuner. The changes are shown in Fig. 6 and involve the addition of one capacitor in each channel, a change in one resistor value and the removal of one stage of output filtering. Constructors who have

Fig. 3
Component overlay for the power supply board. Note that the AFC and AGC voltage networks are not mounted on the PCB and that IC6 is on the 3189/PLL board.

PARTS LIST - POWER SUPPLY \& CASE

 muting circuit board. Note that R70 (see last month's circuit diagram) is not mounted on the PCB.

PARTS LIST MUTING CIRCUIT

RESISTORS	
R70*, 76, 79, 80	100k
R71	27k
R72, 75, 77, 78	15k
R73	33k
R74	2k7
RV5	10 k horizontal preset
CAPACITORS	
C52	$220 n$ polyester
C53	33 n polyester
C54	$47 \mu 25 \mathrm{~V}$ radial electrolytic
C65*	100 n multi-layer ceramic

SEMICONDUCTORS

IC4	TL072/LF353
Q20	BC212
Q21	2N5457
D1,2	1N4148

MISCELLANEOUS

M1*
100μ A panel meter SPST switch: toggle, pushbutton, etc, as appropriate
PCB; 8-pin DIL socket for IC4 if required.

[^1]made their own PCBs using the pattern given should have no difficulty fitting in the extra capacitors, while those who have yet to etch their boards will find it easy enough to add another set of pads in the space available. Stereo decoder PCBs supplied by Hart will include the extra set of pads and holes.

Setting Up

Good.test instrumentation will make this task easier but it is possible to do a good job with quite basic equipment. The only essential item is a DC voltmeter and even this could be made up by soldering a 100 k resistor in series with the 100uA tuning meter!

Set all the preset potentiometers and the slug in coil L1 to the middle of their travels. Put the mute, AGC and AFC switches in the off position and, with no aerial connected, switch on the tuner.

Before proceeding further with the setting-up, the AFC voltage needs to be set to a temporary middle value. Measuring the voltage on the wiper of RV6 and

Fig. 5 Suggested layout for the tuner boards.

Fig. 6 Component changes in the stereo decoder circuit. Two capacitors are added (C63, C64), two resistors change from $2 k 2$ to $2 k 7$ (R17, R23) and the second stage filtering components (R18/C12, R24/C16) are removed entirely.

Fig. 7 Connections to the FF317U tuner head.
adjust it to +6 V . A more precise adjustment will be made later. Measure the voltage at test point A on the VCO (the junction of Q18 collector, VC1 anode, C45 and R62) and adjust RV8 to give a reading of +9.5 V relative to ground. Connect the aerial to the input and turn the tuning dial until a strong signal is indicated on the tuning meter. Using an amplifier to monitor the (mono) signal at the output of the muting circuit (pin 7, IC4), adjust the slug in L1 until a signal is heard. Continue turning the slug so as to determine the limits beyond which the loop

BUYLINES

All the parts for this project will be available from Hart Electronic Kits Ltd, Penylan Mill, Oswestry, Shropshire SY10 9AF, Tel (0691) 652 894. The complete kit includes case, tuner head, tuning dial and everything else you need to build the tuner and costs $£ 111.69$. A kit containing just the components and the PCB is available for £82.82, the components and PCB for the stereo decoder section can be supplied separately for $£ 15.21$, and the FF317V tuner can be purchased on its own for $£ 10.81$. The PCBs for each section can also be purchased separately. All prices include postage and packing and VAT. Those who prefer to find the parts individually should not encounter too much problems. The resistors, capacitors and semiconductors are all widely available and the only 'difficult' items are L1, CR1-4 and CV1, all of which can be obtained from Cirkit, Park Lane, Broxbourne, Hertfordshire, EN10 7NQ. Tel: (0992) 444 111. Please note the PCBs will not be available through the PCB Service.
drops out of lock then leave it set to a position midway between these two extremes.

The next stage in the setting up is to adjust the HF output level from the VCO using RV4. Although the setting is not critical, the linearity and transient performance of the PLL will suffer if the 3189 is driven too hard. Begin with RV4 at maximum resistance (equals maximum output) and reduce the resistance until the signal disappears. Then slowly increase the value again until there is no further increase in signal strength.

The AGC and AFC circuits are set-up next. Adjust the tuning so that no signal is received and measure the voltage at the input to the muting circuit (junction of C52, R58 and R70). Note the reading and then transfer the test meter leads to the slider of RV6 and reset this potentiometer to give the same voltage. Ideally, the voltage at the input to the muting circuit should be same when the tuner is off-station and when it is receiving a signal at maximum strength. If it is not, tweak the slug in coil L1 until it is or until the best compromise is obtained.

The AGC signal is adjusted by RV7 and is not particularly critical. A suitable setting can be obtained by tuning to a signal which reads full scale on the tuning meter and then adjusting RV7 to give a reading of about 80% of FSD when

AGC is switched in.
The final adjustment is to set the mute threshold using RV5, and the position chosen will be largely a matter of individual taste. A high setting will ensure complete silence when tuning between strong signals but will cause some weaker signals to be missed entirely. A low setting will allow
weak signals to be picked up but may also allow some noise to get through on the skirts of the capture range. A good compromise is to set the threshold so that the signal disappears at a level just above the onset of noise as the loop loses lock.

Instructions for setting-up the stereo decoder board were given

- Details of $B B C$ radio transmitter locations and frequencies are contained in a booklet called BBC Radio Transmitting Stations 1986. The booklet is free and can be obtained by post from:

Noel Hooper, BBC, Broadcasting House, 21 Whiteladies Road, Clifton, Bristol BS8 2LR.

Mike Hounsell, BBC, South Western House, Canute Road, Southampton SO9 1PF

Garth Jeffrey, BBC Studio Centre, St. Catherine's close, All Saints Green, Norwich NR1 3ND John Nestor, BBC, Broadcasting Centre, Woodhouse Lane, Leeds LS2 9PX

at the end of the article in the February issue so there is no need to go through them here. The setting-up procedure is unaffected by the circuit changes mentioned earlier.

In Use

This circuit was developed from an earlier design which has been used by the author for some years. The original was generally considered by those who heard it to be superior in tonal quality and stereo image to any commercial unit which had been tried. In particular, the quality was such that differences between the signals offered by various BBC transmitters could easily be detected. For example, there were obvious differences in quality between the same programme signals coming from Rowbridge on the Isle of Wight, which has a direct radio link from the Post Office tower, and from North Hessary Tor which re-broadcasts the off-air signal from the Wenvoe transmitter.

The updated design retains all the tonal quality of its predecessor and the differences in signal quality between various transmitters are even more apparent. This, plus the improved signal-to-noise ratio made possible by the 3189 , makes it a design which should satisfy the most demanding listener.

THE ETIFAKER

Mike Bedford follows his explanation of computer interface standards last month with a useful RS232 patch box to build.

The RS232 interface is a very 'un-standard standard' because it is widely employed outside its intended area of application. The consequences of this in the interfacing of two apparently standard pieces of equipment can be decidedly tricky to the uninitiated.

This article describes the construction of a piece of equipment to simplify the whole process of RS232 interfacing. Although the hardware is very simple, the unit should save many hours of soldering and trying out the numerous lead configurations.

It will be recalled that RS232 specifies a serial interface for the connection of data terminal equipment (DTE) to data communications equipment (DCE). Figure 1 (a) shows such a

Fig. 1 Simple, possible and impossible RS232 connections.
link employing just the transmitted and received data lines and return, the control lines being omitted for clarity.

If we attempt to connect together two DTEs (or two DCEs), on the other hand (a situation which is contrary to the RS232 \$pecification but frequently required) the situation in Fig. 1(b) or Fig. 1(c) applies.

Obviously these configurations just won't work. In such a situation the solution is to provide a cable with a crossover such as that shown in Fig. 1 (d) so that each transmitter feeds into a receiver.

It is not the intention of this article to go into great detail about RS232 control lines but exactly the same sort of situation can arise when the interface includes control lines. Once again we can

The completed ETIFaker RS232 patch box. Accurate and comprehensive labelling of the front panel is essential.

get pairs of transmitters and pairs of receivers connected together in a DTE/DTE or DCE/DCE
configuration. Further crossovers in the cabling are required between certain pairs of control signals such as DTR/DSR and CTS-RTS/DCD.

Another situation which can arise is when two pieces of equipment (which could be any combination of DTEs and DCEs) are to be connected and where one supports a full range of control signals but the other uses perhaps just a three line configuration. The system with the full complement of control lines will be expecting the other piece of equipment to indicate its status by means of these lines, something which clearly is not possible.

The overall result is the first

piece of equipment will never accept the other peripheral is present and ready. The answer to this problem is to tie together control lines locally on the one piece of equipment to fool it into thinking that the other equipment is producing control signals.

In such a configuration, of course, no hardware handshaking is possible and flow control methods such as XON/XOFF would be required.

In practice it will be found that certain pairs of signals may or may not require crossing and certain
pairs of signals may or may not require linking together. Figure 2 shows a number of the more likely configurations which may be encountered.

Design Considerations

The requirements of simplifying RS232 interfacing are fulfilled in a unit with a D-type connector on each end and a means of allowing any pin on one connector to be connected to any pin on the other connector and inter-linking between pins of the
same connector. An additional useful facility is the provision of LEDs to indicate the status of certain signals. Such units are available commercially (usually at very high prices) and are called such names as 'patch boxes' or 'interfakers'. They often use DIL switches to make or break the straight through circuits from one connector to the other and wire links to make crossover or link connections once the appropriate DIL switches are open.

The main disadvantage of these units is although they are flexible,

Fig. 3 The circuit diagram of the ETIFaker.
wire links very easily get lost.
A further drawback is that they only have two connectors, usually a male and a female. Actually whatever combination of two connectors is picked, there will be a requirement for two additional convertor cables to cope with all possibilities. Alternatively one of the commercially available connector sex changers or 'gender benders' as they are sometimes called would be required.

The ETIFaker overcomes both these problems. Firstly DIL switches allow all the common configurations to be selected without resorting to wire links and secondly there is both a male and a female connector for both the input and the output. A very large number of switches would be required to allow any of 50 points to be connected to any of the others, so pins to which wire links may be connected have also been provided to allow more obscure configurations to be achieved. LEDs are available on the more common signal lines as well as a couple of general purpose indicators which may be
connected to any signal by use of more wire links.

The circuit diagram is shown in Fig. 3. From an electronic point of view it is so simple there is little point saying anything further about it other than the fact that the resistors between certain lines and the bases of the LED driving transistors are of a sufficiently high value to avoid any significant loading on the drivers of these lines.

Construction

Construction of the circuit board is simple. The only opportunity for error is in the polarization of the LEDs. Ensure that the flat on one side of the body (which indicates the cathode) matches the ' k ' near the LED on the component overlay diagram (Fig. 4).

The Molex pin strips will probably not be available in the required lengths but these can easily be cut down or butted up end to end to achieve the correct lengths.

The D-type connectors are

Fig. 4 The component overlay of the ETIFaker.
intended to be fitted onto flying leads rather than directly onto the PCB. In order to keep the PCB to a single sided design without a large number of links, the pads for these connectors are not in the same configuration as on D-type connectors. Accordingly ribbon cable and IDC D-types should not be used. Instead it is recommended that 25 -way screened $7 / .01$ multicore cable be used, using a further length to loop between SK1 and PL1 or SK2 and PL2. Cable ties should be used to provide strain relief for these cables.

The slider on/off switch may not be available in a PCB mounting type, in which case this will have to be bolted to the board having cut a hole to accommodate the depths of its body.

One final point concerns the length of component leads. The transistors should be fitted with very short leads so that their bodies are as close as possible to the PCB. Alternatively they can be bent down flat to the board. otherwise the transistors cause the tops of the DIL switches to sit well below the surface of the lid of the box. The lead length on the LEDs should be sufficient to allow the tip to just protrude through the lid.

Having built up the PCB, the ABS box should be prepared. This involves drilling holes for the LEDs and the link strips, cutting rectangular holes for the DIL switches in the lid and cutting semi-circular notches for cable entry in the top edges of the two longest sides of the box.

It is also strongly recommended that a circuit diagram or a legend such as that shown in Fig. 6 is placed on the lid. As a minimum, this could be a photocopy of Fig. 6 glued onto the lid but better would be a label made from this artwork using a sign making material such as 'Permasign'. Clearly either type of label requires holes cutting in it to match the holes in the lid of the box.

The wire links are simply made from crimp type socket pins for D-type connectors and short lengths of insulated wire.

Two three-socket daisy chained links and three standard links should be sufficient. Sufficient 'parking space' is available to accommodate these.

Using The ETIFaker

The ETIFaker will probably be utilised in two sorts of application.

Fig. 5 The full RS232 interface pinout.

Fig. 6 The ETIFaker front panel legend.

PARTS LIST

PCB; ABS box; 25 way cable; $2 x$ cable ties; Battery clip; Battery holder for 4xAA; 4x AA batteries; Wire for links; D-type socket crimp pins for links.

BUYLINES

All parts for the ETIFaker are easily available from normal suppliers. The crimp pins are available from Electromail (Tel: (0536) 204555) as stock number 469-493.

The first is when there is a requirement to interface a pair of devices for a particular purpose but with little likelihood of wanting to repeat the exercise. The second is to use it to determine the connections required for interfacing two pieces of equipment so that a cable can then be made up for future use.

It is probably obvious just how to make use of the ETIFaker, particularly if a legend has been applied to the unit as suggested but it is worthwhile clarifying a few points.

Firstly a LED is illuminated when the line to which it is connected is in the 'space' state (equivalent to 'on' for control lines). For data lines this will mean they are only illuminated as data is being transferred.

The second point is with regard to the blocks of switches which are grouped in sixes. Although this can be seen from the circuit diagram or legend on the unit, it is useful to remember the following rules.

Each of the three blocks of six switches operate on a pair of signals. The top switch links together these two signals on the
right hand connector and the bottom switch connects them together on the left hand connector. The middle two switches switch the two signals straight through and the remaining pair of switches implement a crossover when both are closed.

Although a switch has been provided to take pin 7 to open circuit, to make the unit totally flexible, this corresponds to the common return and will nearly always be closed.

Since the LED indicators are referenced to this signal, unless this switch is in the closed position the status of the LEDs cannot be relied upon when monitoring signals from SK1/PL1.

It should also be mentioned that the pins marked 'link parking' have no electrical connections whatsoever. They are provided solely to park the link wires when not in use hence reducing the likelihood of their getting lost.

Since the ETIFaker has more than just the two D-type connectors, it is also possible to connect a third device in order to monitor data passing between the main two pieces of equipment.

BBC MICRO MIDI INTERFACE

John Yau describes a two channel MIDI interface to get the BBC mic singing.

The project presented here is a MIDI interface for the BBC microcomputer. It enables the computer to communicate with MIDI equipped synthesisers, drum machines, effects units and other peripherals. Since the subject of MIDI has already been covered (see ETI January and February 1987), we shall deal directly with the interface itself and present some trial software to experiment with.

A suite of more serious software is available to accompany this project. This is available from the author and ranges trom general MIDI utility programs to more sophisticated packages like voice and track dump programs for the Yamaha TX/DX7 synthesiser and Roland TR707 drum machine, and a voice editor for the Yamaha TX/DX7

The BBC micro MIDI interface also serves as a useful diagnostic tool for those who wish to construct the ETI MIDI MASTER

KEYBOARD coming next month.

Operation

The interface has four DIN sockets, two for MIDI IN and two for MIDI OUT. The primary reason for the dual channel capablility is to enable one MIDI channel to control a MIDI synthesiser whilst the other is connected to a MIDI drum machine such as the Roland TR707, as shown in Fig.1.

This configuration can be used when the BBC micro operates as a MIDI sequencer, using the drum machine as an external synchronisation source.

Another useful configuration is shown in Fig. 2. Here, a MIDI mother keyboard is connected to an external synthesiser module via the MIDI interface. Using suitable software both the mother keyboard and BBC micro can communicate with the synthesiser module. This is particularly useful
for combining performance with voice dump and edit operations.

Construction

The interface is constructed on a compact sized double sided PCB. Figure 4 shows the component overlay. Mount all the resistors and terminals first, soldering the leads to both' sides of the PCB where applicable. Next add the capacitors and diodes, leaving just the integrated circuits to be mounted. The important word here is that the IC devices must be mounted directly onto the PCB without IC sockets, since many of the pins require soldering on both sides of the PCB. Sockets can, however, be used to mount the opto isolators ICL7 and IC8. Indeed, this is suggested due to the relatively high cost of the devices.

There are two power supply alternatives. The first is to mount a 5 V regulator on the PCB (IC10)

HOW IT WORKS

Figure 3 shows the complete MIDI interface circuit. The circuitry is centred around IC5 and IC6, which are 6850 ACIAs (Asynchronous Communication Interface Adaptors). The two devices are interfaced to the BBC micro's 1 MHz expansion bus using IC1, IC3 and IC4. IC1 is used to 'clean up' the NPGFC bus signal as recommended by Acorn in the applications notes for using the 1 MHz bus. IC3 and IC4 provide the address decoding necessary to map the two ACIAs into memory locations \&FCF0-1 and \&FCF23, respectively, in the BBC micro's address space. One of the bistables in IC2 is used to divide the BBC micro's 1 MHz system clock down to the 500 KHz required for the ACIAs. The remaining circuitry built around IC7, IC8 and IC9 make up the MIDI IN and MIDI OUT terminals. The open collector inverters act as current sinks, forming the MIDI OUT terminals. The MIDI IN terminals reach the ACIAs via optoisolators in order to minimise the risk of earth loops occuring resulting from interconnection of MIDI equipment.

Fig. 3 The circuit diagram of the MIDI interface.

along with associated components and powering the whole unit from an unregulated DC power source. An ordinary mains battery eliminator giving out 9 volts at 300 mA will be sufficient for the purpose. If you already have a regulated 5 volt source then the regulator circuitry components (IC10, C3, 4, RG and LED1) can be simply omitted and bypassed.

Once the PCB has been assembled, check for shorts and unsoldered pads on both sides of the PCB. If everything is satisfactory then proceed with wiring up the 5 pin DIN MIDI sockets as shown in Fig. 3 .

The case used to contain the board is not crucial. Any suitable plastic case will serve.

Using The Midi Interface

The program presented in Listing 1 is a simple monitoring program. Connect a MIDI keyboard to the first MIDI IN socket of the interface and run the program. Any data transmitted by the MIDI keyboard will then appear on the screen. Notice that multi byte MIDI events are displayed on the screen if any keys are played, if a program change is made, or if a pitch bend or modulation wheel is moved.

The operation of the program is as follows. The ACIA in the MIDI interface is programmed to interrupt the BBC micro every
time it receives a byte of MIDI data through the first MIDI IN terminal. The BBC micro responds to the interrupt by placing the data in a buffer in memory. Whilst all this is happening the Basic program is running checks to see if this buffer is empty. If not, it prints out the contents one by one until it is empty again. Such a FIFO (first in first out) buffer is implemented because a simple Basic program to print out MIDI data as it arrives would not respond fast enough to the relatively high data rate of the MIDI messages.

Listing 2 is a program which allows the BBC's micro QWERTY keyboard to play any MIDI synthesiser that is set to receive on channel 1. The Basic INKEY keyword is used to detect whether a particular key is held down or

BUYLINES

None of the components used for the MIDI interface are difficult to obtain. A Verobox type 103 was used for the prototype. This is available from Maplin, as are the 6850 ACIAs.

The 6N138 opto isolators are available from Electromail (Tel: (0536) 204555) as catalogue number 302126.
not. If pressed, the procedure PROCnoteon is called. This transmits the three data bytes of a MIDI note-on event. The program then waits until the key is released, when it transmits a noteoff event. This very simple program only permits monophonic playing, ie only one note at a time. However, it serves to demonstrate note-on and note-off events,

PARTS LIST

RESISTORS R1-9 R10-15	$\begin{aligned} & 1 \mathrm{kO} \\ & \text { 220R } \end{aligned}$	$\begin{aligned} & \text { D1, } 2 \\ & \text { LED1 } \end{aligned}$	regulator 1N4148 Red LED
CAPACITORS C1, C2, C3 C4	$0.1 \mu \mathrm{~F}$ polyester $1 \mu 025 V$ electrolytic	MISCELLANEOUS SW1 2 pole, toggle (see tex	
SEMICONDUCTORS		$\begin{aligned} & \text { SK1-4 } \\ & \text { CON } \end{aligned}$	5 pin DIN sockets 34-way IDC PCB
IC1	74LS75		mounting bus
IC2	74LS74		connector (male)
IC3	74LS04	PCB, heatsink for IC10 (if used),	
IC4	74LS30		
IC5, 6	6850 ACIA	suitable power input socket, plastic	
IC9	74LS05	case, 34-way IDC plug, 34-way IDC	
1 C 10	78MO5 voltage	ribbon	and bolts.

```
10 REM BEC micra MIDI interface
20 REEM Receiver Program by J.F.S.Yau
100 mODE7
110 PROC=1/\mp@code{yyy}
120 FOR IX=0 TO 1:VDU132;VDU157:VDU141:VDU
131!PRINTGPC (6)"MIDI Reciever Program",NEXT
31IPRINTSPC (6)-MIDI F
    130 VDUZE,1,24,3
    150 REPPEAT
    160 IF ?outptrx=?inptrX GOTD 210
    170 dataz-buf fz? (?outptrx)
    100 IF (ditax AND 12g)<>0 THEN PRINT
    190 PRINT dataxI
    200 Poutptrz=?outptrx+1
    210 UNTIL FALSE
    220 END
1000 DEFPRROCasEm
1010 DIM startx 100,buttz 25%
1020 Ex=4; symvecx=4701 ir q2vx=1.0204
030 inptrz=&72ioutptrx=$73
040 ACIA_CX=FFCFOIACIA DX-&FCF1
loso FOR PassX=0 TO 2 STEP 2,
luso PZ=startxi:DPT passx:SEI
1000 LDA ir q2vz+1:STA sysvecx +1
1090 LDA maciaz MOD 256; STA irq2vz
1100 LDA taciaz DIV 256:STA irq2vz+1
1110 LDA ##OS:STA ACIA_Cx:STA &FCF2
1120 LDA ##95:STA ACIA_CX:STA &FCFS
1130 LDA *OISTA inptrX:STA outptrX
1140 CLI:RTS
1150 -aciax
160 PHA: TYA: PHA: PHP
1170 LDA ACIA_CX:ANOD #12B:BEO exitx
11日0 LDY inptrX:LDA ACIA_DX:STA buffX,Y
1190 INC inptrx
1200 - exitx
TMY:PLA:JMP (sysvecz):]
220 NEXT pass%
1230 ENDPROC
Listing 1：The BBC Basic MIDI receiver program．
```

```
10 REM BBC micro MIDI interfac*
    20 REM key test program by J.F.S.Yau
```

 100 DIH NX 23
 110 攺 11
120 PROCINIt,DCTX=4:LX=0
130 ACIA_CX $-A F C F O I A C I A _D X=1$ FCF
140 TACIA_CX-E3: PACIA_CX=15

160 REPEAT
170 Proncnoteof f (LX)
180 REPEATIJJHINKEY (0) ILNTIL J\$く>" -
$190 \mathrm{KX}=1 \mathrm{NBTR}$ (De, J*)
200 IF KZ=0 BOTD 180 (LI

230 IF INHEY (- NXTKK) THEN 230
240 UNTIL FALSE
240 UNTIL FALSE

1020 ENDPROC
1030 DEPPROCNIt 1
1040 REPEATI LNTIL TACIA CX AND EO2:ENDPRRC
1040 REPEATIUNTIL YACIA_
1080 PAOC
1080 PADC
1070 PRDCHALTX: ?ACIA $D X=0:$ ENDPRDC
1000 DEFPROCnotwon (NTX)
1090 PROCwaitTx: PAC:A_DX=144:PROCwaitTx: ?AC
A_DX=NTX
$1 \overline{100}$ PRDCmait Tx: ?ACIA_DX=100: EMDPRRDC
1110 DATA $97,17,50,34,18,35,52,20,36,53,09$
37
1120 DATA 54, 38,39,55, 40,56, 72, 25, 57, 121,4
Listing 2 The program for playing
MIDI instruments from the
BBC Micro.

POSITION A $=$ THRU POSITION B＝NORMAL

Fig． 5 Wiring the optional＇Thru＇ switch．

which are the most frequently used MIDI messages as far as synthesisers are concerned．

Applications

Applications for the MIDI interface depends on what MIDI equipment it is to be used in conjunction with．The most immediate application is to use the BBC micro＇s disc filing system to store synthesiser voice programs or drum machine track programs．More complex software to use the MIDI communication protocols found in the data manuals for the equipment concerned can also be written to make full use of the interface．

For synthesisers such as the Yamaha DX7 it is possible to write a voice editor to program new voices from the B BC micro． When programming a new sound for the DX7 only one parameter can be accessed at any one time． With a voice editor program all the parameters can be seen on the screen at once and freely accessed．Voice editing from the BBC micro，along with the advantages of its disk filing system， forms a powerful sound management system for the DX7．

Thru Switch

The THRU toggle switch shown on the front panel of the prototype unit serves to link the MIDI IN1 to the MIDI OUT1 for use when the BBC micro is not running software

The author has a range of software on $51 / 4$ in disk to make full use of the MIDI interface. Orders and requests for further details should be addressed to John Yau, 7 Maurice Place, Edinburgh, EH9 3EP.

- Track dump software for the Roland TR707 drum machine. This enables the currently held patterns and track programs to be stored and read from floppy disk. - Voice Dump/Editor software for the Yamaha DXTX7. This software allows single voices or complete banks of voices to be stored and read from floppy disk. This software also enables $D X$ voices to be edited from the BBC micro. All the parameters are displayed on the screen and can be modified using a simple slider control which plugs into the BBC micro's analogue user port. Wiring details for the slider control are supplied. - Four track step time MIDI Sequencer for synthesisers arranged as in Fig. 1 with external synchronisation.

The programs cost $£ 12, £ 18$, and $£ 16$ respectively.

which actively merges the MIDI IN1 input stream with the MIDI OUT1 output stream. The switch simply links pin 6 of IC7 to pin 1 of IC9 while isolating them from their original connections to Tx and Rx of IC5. This arrangement allows data to pass unaltered from MIDI IN1 to MIDI OUT1, even when
the BBC micro is switched off. The THRU option was added as an afterthought and the PCB does not include this feature but it can be easily included with the minimum of alterations if this feature is required.

PINEAPPLE SOFTWARE

Programs for the BBC models ' B ' with disc drive with FREE updating service on all software
 DIAGRAM
 PCB

Stilt the only drawing program available for the BBC micro which gives you the ability to draw really large diagrams and scroll them smoothly around the screen stopping to edit them at any time if required.
Pineapple's unique method of stonng the diagram information on disc means that the size of diagrams is limited only by the free space on disc, and not the amount of computer memory you have available (A blank 80 track disc will allow up to 39 mode 0 screens of diagram).
The superb print routines supplied with the program enable large areas of the diagram to be printed in a single print run in a number of different sizes and rotated through 90 deg. if required. Full use can also be made of printers which have a wider than normal carriage available.
The program is fully compatible with the Marconi Tracker ball described below.
PLEASE STATE 40 or 80 TRACK DISC \& WHETHER STANDARD BBC or MASTER VERSION IS REQUIRED PRICE E25.00 + VAT

DIAGRAM UTILITIES

A suite of six utility programs which add additional features to the 'Diagram' drawing program. The utilities include the saving and loading of areas of diagram to and from disc. The ability to display the whole of your large diagram on the screen at one time (in either $4 \star 4$ or $8 \star 8$ screen format). The addition of borders and screen indents to diagrams, and the ability to shift a whole diagram in any direction.

PRICE $£ 10.00$ + VAT

MARCONI TRACKER BALL

This high quality device comes with it's own Icon Artmaster drawing program and utilities to enable it to be used in place of keyboard keys, joysticks, or with your own programs.

PRICE $\mathbf{8 6 0 . 0 0}$ + VAT p\&p $£ 1.75$
PRICE INCLUDING 'DIAGRAM' SOFTWARE $£ 79.00$ + VAT p\&p $£ 1.75$

TRACKER BALL for MASTER series

The Pointer ROM is supplied instead of the Icon Artmaster disc and enables the Tracker ball to work directly with the MASTER series computers (e.g to use with TIMPAINT etc.). Prices are the same as for the standard tracker ball.

POINTER

The Pointer Rom is available separately for people already owning tracker balls, and comes with instructions for use with the MASTER computer.

PRICE $£ 12.50$ + VAT

This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any FX compatible dot-matrix printer
The program is supplied on EPROM and will run with any 32 kBBC micro (including Master series). Also supplied is a disc containing a sample PCB layout to demonstrate the programs features.
By using an EPROM for the program code the maximum amount of RAM is available for storing component location and ASCII identification files etc. (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). These is no limit to the number of tracks for a given PCB, although the maximum size of board is restricted to $8^{\prime \prime} \cdot 5.6^{\prime \prime}$
Using a mode 1 screen, tracks on the top side of the board are shown in red, while those on the underside are blue. Each side of the board may be shown individually or superimposed. A component placement screen allows component outlines to be drawn for silk screen purposes and component numbers entered on this screen may be displayed during track routing to aid identification of roundels.
The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition 1:1 or $2: 1$ scale, enabling direct contact printing to be used on resist covered copper clad board.
This program has too many superb features to describe adequately here, so please write or'phone for more information and sample prinouts.

PRICE $\mathbf{5 8 5 . 0 0}$ + VAT

CONVERTER LEADS

Converter leads to enable the Trackerbal to run mouse software and the mouse to run trackerball software (inc. DIAGRAM). Please state which way round when ordering.

PRICE 88.00 + VAT

MICROSPICE

A new addition to our range of engineering software Microspice is a very powertul DC and AC analogue circuit simulator package for any model BBC computer
As well as all the usual facilities arailable with this type of program, non-linear effects, smalt signal, noise measurements and sweeps may be performed. Component values may be swept, allowing component tolerances to be investigated as we!l as thermal performance etc Comprehensive transistor modelling is incorporated using a 20 parameter Ebers Moll description. The program is supplied on disc with a very comprehensive 49 page manual Please write or 'phone for more information

PRICE E99.00 + VAT P\&P FREE
ALL ORDEFS SENTEY RETURN OFPDST

39 Brownlea Gardens, Seven Kings, Ilford, Essex 1G3 9NL. ซ Tel: 01-599 1476

ROBOTICS CIRCUITS

Motor drivers and sensor Tech Tips for the mechanically minded.

Motor Speed Regulator

This circuit uses the LM2907 tachometer as part of the control loop to maintain a constant motor speed. To measure the motor speed a shaft encoder is necessary. Some expensive motors for industrial applications already have encoders fitted but your average model motor does not The answer is to use a disc with holes drilled in it with a slotted opto switch or a metal toothed wheel and a variable reluctance magnetic pickup, as illustrated in Fig. 2. As the average slotted opto detector is not very sensitive, a transistor may be needed to amplify the output signal. A suggested circuit is shown in Fig. 3.

The functioning of the control loop itself is straightforward. The output voltage from pin 4 of IC1 is proportional to the pulse rate fed into it, and because this signal is fed to the inverting input of IC2 this tends to reduce the speed. RV2 sets the voltage on the positive input of IC2, tending to increase the motor speed.

A stable speed results when the balance of the two provides the motor with the voltage it needs to maintain its speed.

Any reduction in motor speed will increase the voltage fed to it while any increase in speed will reduce the voltage. The gain of this control system is set by adjusting

Fig. 2 Shaft encoders.

Fig. 3 Optical shaft encoder amplifier.

RV1 to the lowest value that does not cause speed oscillation due to overcorrection during the response time of the motor. In most cases the permissible gain will be suffcient to ensure that wide load variations on the motor alter the speed very little.

The LM2907 tachometer works as follows. On each input cycle, C2 is charged to a set voltage, and the charge is transferred to C3. The voltage on C3 does not rise indefinitely but stabilises at the point where the discharge current through $R 2$ is equal to the average current due to the transfer of charge. The output stage of the chip is simply wired as a buffer to feed the signal to the display.

The output voltage of the LM2907 is given by the formula:

Fig. 1 The circuit of the motor speed regulator.

Vout $=$

V supply x Frequency x C2x R8
The component values here are suitable for a fairly high pulse rate from the encoder wheel and a high motor speed. For lower pulse rates C2 should be increased. To keep the ripple within reasonable bounds C3 may also have to be increased but if it is increased too far the time constant may become comparable with the mechanical time constant of the motor and the control system will oscillate.

If a higher pulse rate is required and it is not practical to drill twice as many holes or cut twice as many teeth then a second detector half a hole out of phase may be used. If the accuracy of the encoder is good enough, combining the two outputs in an exclusive OR gate will give a double frequency output. The waveforms are illustrated in Fig. 4.

Shaft Position Indicator

This gadget indicates the angular position of a shaft to a resolution of three bits. The same principle with much more complexity can be used to provide more resolution but for simple robotics control this design should do just fine.

It works by using two linear Hall effect devices at points 90° apart on the rotation of the shaft to measure the position of a bar magnet. The field distribution of the magnet on its own is not likely to be ideal so pole pieces should be used. Figure 1 shows a suitable arrangement.

The idea is to get an approximately sinusoidal distribution of field strength for the hall device to detect.

To increase the magnetic field available to the Hall devices, a disc or ring of iron or mild steel should be positioned on the opposite

Fig. 2 The positioning of the magnet and Hall probes.
side from the magnet and pole pieces.

The circuit contains two identical channels for the two Hall devices, with one extra comparator on the output. I shall describe just Channel A.

IC3a works as a subtractor to provide an output dependent only on the difference between the differential outputs of the Hall device. RV1 is fitted to compensate for any offset on the output of the Hall device and allows the subtrac-
tor to be adjusted to $O V$ in the absence of any magnetic field. IC4a is a comparator which switches during the zero crossings of IC3a's output.

To generate a magnitude signal to compare with the other channel, IC3c is used as a simple precision rectifier. It works as a resistive divider during positive half cycles, the output being VinxR12/(R10+R11+R12). During negative half cycles the circuit works as a half-wave inverting rec-

Fig. 1 The circuit of the indicator and ideal waveforms.

tifier, with an output of VinxR11/ R10. The component values are chosen to make the gain on each half cycle as near as possible the same, given an E12 choice of resistor values. The outputs from the precision rectifiers in each channel are fed to a final comparator which generates the final logic signal.

Some experimentation with the shape of the pole pieces will be necessary to achieve good results. The figure shows ideal waveforms. A and B are both the magnetic field received by the Hall transducers and the outputs from the differential amplifiers, IC3a and IC3b. The outputs from the Hall transducers are differential, which is all to the good as these devices can drift.

The next two waveforms show the magnitude of the A and B
signals regardless of polarity. The final three waveforms show the result of comparing A with $0 V, B$ with $O V$, and the magnitude of A with that of B, respectively.

As the waveforms show, only one of the three output signals changes at each transition between position areas. There is no incorrect transitional state as would be possible with the normal binary counting sequence. It is not unknown for encoders using a normal binary sequence to give a false state of, for example, 101 between 011 and 100.

Despite the fact that the sequence is different, each combination possible with three bits is used, so the position may be displayed with the aid of a 3 line to 8 line deoder. The outputs simply have to be arranged in a
different order. Figure 4 shows a simple indicator.

Fig. 3 A simple position indicator.

Coherent Optical Proximity Detector

This optical proximity detector can either detect the proximity of reflective objects over fairly short ranges or it can be arranged to detect objects interrupting the beam. Unlike the author it is coherent. It will respond to its own optical signal and ignore quite high levels of extraneous light.

IC1a is connected as a square wave oscillator. This oscillator switches the LED, and also controls the synchronous detector. The synchronous detector itself switches between inverting and non-inverting amplification, with the same gain in either direction.

When non-inverting the LED is ON and the signal received is the wanted signal added to the extraneous signal. When the detector is inverted only the extraneous signal is received, and this is subtracted.

The functioning of the synchronous detector is simpler than it appears from the circuit diagram. IC2a acts as a logic inverter to drive IC2b out of phase with the other analogue switch parts. In the invert mode, the gain is R4/ R11 ($=4.7$) and in the non-invert mode the gain is R14+R11+R12)/ (R11+R12) (=4.7). The addition of

R12 compensates for the extra gain which would be present in the non-inverting mode of the circuit.

If the mark/space ratio of the oscillator is adjusted correctly the output of IC1c averaged by R15 and C3 will be exactly zero. This is in fact the method of setting the mark/space ratio. Disconnect the LED and adjust for OV on C3 using a sensitive voltmeter.

If the LED is reconnected, any signal from the LED received by the phototransistor will give a net positive output on C3. IC1d is wired as a comparator which switches low when signal from the LED exceeds a preset threshold.

The circuit has many applications. It could form the basis of an object counter or a simple but reli-
able intruder alarm, in which case a matched infra red emitter and receptor should be used and R6 reduced to increase the LED power and range.

Most usefully the circuit can be used as a proximity detector. In this an angled infra red emitter and receptor assembly (available from Electromail) should be used. This is focused at about 5 mm , and can be used to form a reliable limit switch.

To get more range, to use it more as an optical radar, a discrete LED and detector can be used with an opaque screen between them to prevent the direct passage of light. It is in this application that the ability of the unit to reject the extraneous light is most useful.

Inductive Track Follower

This project is used to steer mobile robots along a trail of aluminium foil by sensing the absorption of high frequency energy from an LC oscillator.

Two similar oscillators are used but they operate on different frequencies to avoid interaction. Figure 1 shows the basic oscillator configuration. This circuit will oscillate powerfully - into clipping in fact. The frequency will be close to the resonant frequency determined by L and C, although not exactly so because the clipping will lower the effective Q of the circuit.

Any slight amount of power absorption from the circuit by nearby metallic objects will reduce the clipping slightly. As a result the frequency will change a little.

Looking at the first oscillator in the circuit diagram, an extra transistor is added to stabilise the output level. When the signal on the 20 turn end of the inductor exceeds about $0.6 \mathrm{~V}, \mathrm{Q} 2$ starts to conduct to reduce the current through Q1. The presence of R3 in the circuit means that voltage gain is introduced. However much Q2 has to raise the emitter voltage of Q1 to stabilise the output, the collector voltage of Q 2 is raised that much more in the ratio of R3 to R1.

Both oscillators should settle to give the same control voltage (apart from the effect of component tolerances which RV1 com-
pensates for). This pot should be adjusted to give no voltage difference between the collectors of Q2 and Q4 with no aluminium around.

The outputs of the two detectors are fed to a subtractor circuit which is biased to give an output of half the supply voltage when the two inputs are equal. The presence of a piece of aluminium closer to one detector than the other will unbalance the control voltages because the power absorbed by the aluminium will

reduce the voltage needed to stabilise the oscillator power.

The motor drive circuit is arranged as a bridge configuration with a dead band so that small unbalances will not cause the motor to move. Q5 and Q6 follow the op-amp output (with crossover distortion) and provide the current drive needed for the steering motor. Q9 and Q10 serve as level shifters to drive Q7 and Q8 which are connected to switch to the polarity inverse of that of the opamp output.

Assuming the motor turns the steering in the correct direction, the robot will turn to follow any aluminium track so long as it is initially positioned with the detectors either side of the track.

The assembly of this unit is slightly critical. OV connections should be kept as short as is practical, and the decoupling capacitor C4 should ideally be connected to a point between the two oscillators. A tantalum type is used here because it has good high frequency performance and will decouple the power supply better at the frequencies in use.

The coils are wound on short lengths of ferrite rod - about an inch to an inch and a half. A suitable wire diameter is 0.25 mm , but this is not critical as the current is very low.

The detection system has only been tested with the pickup coils parallel, but it seems likely that angling them as shown will give better performance. At any rate, it is worth a try.

FREE P\＆P on orders over $£ 20$（UK only），otherwise add $75 p$＋VAT．Overseas P\＆P：Europe £2．75．Elsewher £6． 50 ．Send cheque／PO／Barclaycard／Access No． with order．Giro No． 529314002. LOCAL AUTHORITY AND EXPORT ORDERS WELCOME GOODS BY RETURN SUBJECT TO AVAILABILITY

PHILIPS BURGLAR ALARM

IDEAL FOR FLATS MAISONETTES
AND SMALLER OFFICES OR HOUSES SUPPLIED WITH PRESSURE MAT MAG REED SWITCHES CABLE SOUNDER AND CONTROL BOX WITH TIME DELAY ENTRANCE AND EXIT
£29．99
$+£ 2.80 \mathrm{pp}$
MADE TO SELL FOR $£ 59$

VHF STEREO TUNER
 KIT－£8．95＋ $\mathbf{2} 2.50$＋ p ．

Easy to build 3－band stereo AM／FM tuner kit
deslgned in conjunction with PE．For ease of construction
and alignment It Incorporates 3 Mullard modules and an I．C．IF．System FEATURES：VHF，MW，LW Bands，interstation muting and AFC on VHF．Tuning Meter Two back printed PCBs．Ready made chassis and scale．Aerial：AM－ferrite rod，FM － 75 or 300 ohms．Stablilsed power supply with＇C＇core mains transformer．All com－ ponents supplied are to strict P．E．specification．Front scale size： $101 / 2 \times 21 / 2^{\prime \prime}$ approx． Complete with diagram and instructions．

ENHANCE YOUR TV SOUND
WITH AN ACCESSORY BY POST FROM RTVC £29．50
$+£ 2 p p$

In the cut－throat world of consumer electronics the sound quality of the domestic TV set is one of the first casuafties．Small speakers and no tone controls are common and this is really quite sad as the TV companies do the best to transmit the highest quality sound．Given this background a compact，independent TV SOUND TUNER that connects direct to your hirl is a must for quality reproduction．The unit is mains operated．The unit offers full UHF
coverage with 5 pre－selected tuning controls．It can be used in conjunction with your video coverage with 5 pre－selected tuning controls．
recorder．Dimensions： $101 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 71 / 2^{\prime \prime}$ ．
 Caflers to Acton or 323 EDGWARE ROAD， allow 14 days delivery．Payments to RTVC Litd．

BIRD'S EYE VIEW

The ETI office receives a large amount of mail, much of which consists of technical queries from readers. Putting aside, for the minute, the fact that ETI does not aim to answer technical questions on projects that originate outside these pages, I came across a missive the other day that amply demonstrates one of the more worrying aspects of 'hobby' electronics. It ran (in a less abbreviated form) like this:
1 recently bought a book which included a circuit for transmitting signals over the mains wiring system. I built a simple oscillator and I connected the output to the Earth and Neutral of a 13A plug.
1 also connected a loudspeaker to the earth and neutral of another plug and put both plugs into separate sockets in our house's mains.
I then turned on the oscillator hoping the sound would come out of the speaker. However, in our house we have an Earth Leakage Detector. If any electrical apparatus in the house should develop a fault it turns off all the electricity. This obviously makes the house much safer but it also turned off the electricity when I turned on the circuit $/$ built.
Could you tell me a way of still transmitting signals over the mains wiring but not triggering the Earth Leakage Detector.
I won't reveal the correspondent's name for his own sake. However, he is not alone in falling foul of circuits in books.
As I see it, there are two problems with his intercom. First of all, sooner or later it will kill somebody. Secondly, if the house burnt down as the result of an electrical fault, his insurance company would make a silly fuss about paying out. They may even say it was his own fault.
The obvious solution is to remove or short out your ELCB. After all, it's only there for safety! Anyone who would suggest connecting neutral and earth together via a few ohms of speaker can't have regard for such wimpish things.
I hope you'll excuse my heavy handed irony but somehow or other I have to make the point as emphatically as possible: DON'T TRUST BOOKS OF HOBBY CIRCUITS.

More often than not, they are a case of the blind leading the blind. Much of the time the circuits are poorly designed, won't work or are downright dangerous. The diagram shows a little gem I came across recently.

No kidding, this is described as a variable voltage DC Power supply. There are so many things wrong with it that it's hard to know where to begin.

It's very dangerous. The capacitor is not isolated from the mains and off-load, the voltage across it will atways rise to the peak mains voltage regardless of the setting of the pot.

What's more, the capacitor will retain its charge of up to 340 V or so when the circuit is disconnected and a capacitor charged to that kind of voltage is something to be treated with great respect!

The regulation is so poor that the circuit is useless for any practical purpose anyway and the wrong setting of the pot will quickly blast the SCR to eternity. Need I say more?

Anybody who tried to flog this thing to the unsuspecting public would face a huge fine and almost certainly a long prison sentence. Yet there it is in a book of 'hobby projects'.

In my opinion the irresponsible publication of this kind of circuit is deplorable. Many of the people who buy these books are unable to teil the difference between a good circuit and a bad one and, more importantly, a safe one or a dangerous one. Many have a touching faith that because it has been published, it must be OK.
A fitting punishment for those who perpetrate this kind of crime would be to have their house fitted out with all their own circuits! l'd give them a life expectancy of a week at most.

John Bird

OPEN CHANNEL

T- hings are changing in the City of London. By the end of this year, for example, British Telecom hopes to complete over $60,000 \mathrm{~km}$ of optical fibre cabling in a move to install a new telecommunications network costing about $£ 50$ million in the City itself. This is in direct response to Mercury Communication's fibre optic network which already has a thousand or so users.
It's interesting to stand back and watch this David and Goliath battle for customers. On the one hand there is the established giant who traditionally has had all (well, not quite all - see later) customers purely by chance of its monopoly. On the other hand is the new boy who must fight for every customer it can get.

At the moment the BT giant would have us think Mercury's David is no more than a thorn in the side. But the City of London, remember, is only the first battleground and British Telecom may well soon be having to fight tooth and nail to retain its customers.

If the pay dispute, currently being fought between BT and the National Communication Union as 1 write, continues and escalates as it seems to be doing then Goliath may already be toppling.

North of Watford

To those City-dwellers who believe that life stops at Luton and that the few unemployed souls who do venture further up the map wander around eating Mrs. Currie's fish and chips wrapped in yesterday's Sun (wouldn't you just guess I'm a northerner?), here's a gentle reminder that communications up in tnorth is something a bit better than smoke signalling.
Telephone users in the Hull vicinity are connected not to BT's national phone network but to Hull's own telephone network the only private network to exist in Britain prior to the telecommunications liberalisation of recent years.

Now that Mercury is in the pot, Hull system users have a choice when making a call outside the vicinity - whether to use BT or whether to user Mercury. Furthermore, choice is directly up to users, merely by keying a twodigit pre-dialling sequence.
Each customer is informed of the tariffs charged by the two networks (which vary according to where the call is placed) so bills

can be easily minimised. Beat that, city-folk!

Skynet Satellites

NATO has recently awarded a £100 million plus contract to British Aerospace and Marconi to deliver two Skynet IV military communications satellites to replace existing satellites which are approaching the end of their useful life. This is not only good news for the two companies involved, but is alsogood news for Britainas a whole. The satellites to be replaced are of US origin.

If flights of the European rocket, Ariane, commence on schedule in 1988 (having been temporarily grounded with serious problems) it's likely the satellites will be going up in late 1990 - just in time before the existing satellites conk-out.

Thou Shalt Not ...

Back on the ground, users of cellular teleph ones and anyother mobile communciations systems will now have to be wary about making and taking calls on the move. The latest edition of the Highway Code tells drivers not to use hand-held microphones or handsets while on the move except in an emergency.

Furthermore, hands-free communictions should only be used if the driver's attention is not distracted from the road. Theoretically, drivers'nicked' under these clauses could be prosecuted for careless driving or improper use of a vehicle.

1 find this interesting. Firstly, because I have long felt that it should be illegal for drivers to use mobile communications while on the move. Drivers are (or, should be) responsible for the control of a lethal weapon and any obstruction to the driver's control must be avoided.

Handsfree types of communications may not, arguably, distract the driver, but trying to use a handset certainly does.

Secondly (and more involved perhaps) why was this situation not thought of when cellular systems were first being evolved? Only a few percent of new and existing celluar users have handsfree equipment which means that all suppliers are effectively committing most of their customers to some time or another break the law.

Keith Brindley

BOOK LOOK

t is the dream of many an electronics hobbyist to surround themself with all manner of gadgetryand gimmickryto(supposedly, at least) make their life one of luxury.

These three recent publications aim to help the struggling pioneer of home automation.

Electronic Circuits for the Com-

 puter Control of Robots
R.A. Penfold (Bemard Babani)

 E2.95First up is a familia looking work from the bottomless publishing well of Babani and the irrepressable Robert Penfold.

Like most of Penfold's works this is more a collection of related circuits than a course in practical robot building. To be accurate none of these circuits could easily be used for much more than the intelligent 'buggy' type of robot. Dreams of humanoid tin men are not going to be realised here.

There are about 27 circuits in this book, divided into two categories - motor control circuits and various sensors.

The motor driver circuits range from the inevitable simple power darlington model motor drive to stepper motors driven with SAA1027 chips. The sensor circuits cover similar ground from microswitch bumpers to ultrasonic range finders.

Any regular reader of ETI will have seen many of these before in one guise or another as Tech Tips (and there's plenty more in this issue, in the Robotics Tech Tips Special). However, as an introduction to the field and as a springboard to experimentation this follows in the excellent footsteps of previous Babini produce.
Build a Remote Controlled Robot for Under $\$ 300$
David Shircliff (John Wiley \& Sons) $\mathbf{£ 9 . 0 0}$

This book is an entirely different kettle of fish. It's American and aims to show you how to construct a fully-fledged electronics manservant (thingservant?).

Questor (as the author's prototype is called) comes complete with optional extras such as a drinks dispenser and a vacuum cleaner.

The title says all this is possible for under $\$ 300$. That presumably seems little to transatlantic builders but to me it seems rather a lot. For that money I would expect a little more than a trundling aluminium box, which is really all

that Questor is.
However, that aside, this book certainly shows you just how to build a professional aluminium box! In fact most of the pages are given over to constructional details - plans and domensions of various parts of Questor's superstructure and numerous tag strip layouts.
The electronics content is fairly minimal (as anyone who actually tries to create such a beast soon finds - it's the mechanics that cause the most headaches).

Questor is based on a platform with castors driven by model motors. Control is via a remote control box that works on a very simple direct wiring principle. His arm is just a fixed pipe down which suitable refreshment can flow under the control of a small pump (it's what your right arm's forl).

Even the refinements of fancy paintwork and a light-up bow tie fail to cover up that Questor is basically a Neanderthal beast.
If you're really serious about constructing a home help then judicious design borrowed from the likes of Mr. Penfold would add up to a more useful beast and probably for less than $\$ 300$ too.

62 Home Remote Control and

 Automation ProjectsDelton Horn (John Wiley \& Sons) $£ 11.60$
In its waythis is a much better book than the last American import. The 62 circuits cover a wide range. The book starts off with simple low voltage relay controlled mains circuits and works up to comparative ly complex touch tone remote control.

The whole thing is done in a tutorial fashion. With each circuit there is a circuit diagram, parts list and a description of how it all works. However, there are no PCBs.
The book's main let down is its foreign origin. Not only do some of the circuits use components that are not easily available in the UK but a few also talk about 120 V 60 Hz mains. This is going to help neither the construction nor the anderstanding of these projects.

This book is also criminally short of computer control circuits but otherwise provides a good grounding. Most importantly it increases the confidence of anyone going into automation for the first time, and actually encourages some experimentation.

Malcolm Brown

ALF'S PUZZLE

The latest gadget to emerge from Alf's workshop is a distortionless amplifier. As usual, Alf's reasoning is not at all clear but with the aid of his notes that we found on the back of a coffee stained envelope we eventually pieced together the way it works.

Alf started by thinking about an ordinary amplifier (Fig. 1a). If you put in a signal v, what should come out is $A v$ - the input multiplied by the gain A.

However, what comes out of any real amplifier is Av+d, where d is a term which includes all the distortion, noise and general crud introduced by the amplifier.

Muddling

Ever since Alf started his evening classes at the local Tech, he has been obsessed by something he calls 'muddling'. It sounds like something that would suit Alf down to the ground but he probably means 'modelling'.

According to Alf, an amplifier can be represented by a distortionless amplifier with an extra pretend input with an imaginary distortion signal (Fig. 1b). Seems reasonable so far.

Alf's next idea was to derive a signal -d/A which would be fed into the input of the amplifier together with the signal v. The way he went about deriving this signal is shown in Fig. 1c. Alf worked out that the output of
the amplifier would now be $A(v-d / A)$ from the amplified input, plus drom the amplified pretend distortion input, giving Av. The world's first distortionless amplifier!
Alf is willing to concede that the two unity gain amplifiers may introduce a little distortion of their own. However, he maintains that this can be made so small that even the most sensitive and well calibrated hi-fi buff could not detect it.
Furthermore, Alf says the initial amplifier needn't be very good. In fact, it could be absolutely awful. His circuit changes the most grotty low-fi amplifier into purest hi-fi.

So, what's wrong with Alf's reasoning?

Last Month's Puzzle

The answer to Last Month's puzzle:

It is possible (though not certain) that Alf's triacs were being triggered into conduction by the sudden voltage rise across them. The critical $d v / d t$ (see Snubber Networks, ETI March 1987 for explanation) varies widely between one device and another.
A glance through the TAG data book shows figures of anything between $10 \mathrm{~V} / \mu \mathrm{s}$ for triacs with otherwise similar ratings. Alf's may have been on the low side.

ETI PCB SERVICE

Build your projects in style with a properly designed PCB.

107-1	System A Disc Input bd MC-MM. \qquad
E8107-2	System A Preamplifier Ma
E8108-1	System A Power Amp
E8109-2	System A PSU
E8201-2	Infant Cua
E8202-5	MM Stage Disc Preamp (Tilsbrook) \qquad
206-5	Logic Lock
E8208-1	Playmate Practice Amp 3bds SA1
212-1	ELCB
E8301-2	Analogue to digital conv (ZX81) Spectrum)
E8305-3	Dual Audio Power Supply, Linsley Hood
E830	Balanced Input Preamplifie
E8307-2	Flash Trigger-sound or FR F
E8308-1	Graphic Equaliser $1 / 3$ Oct/Chnl \qquad
E8308-2	Servo Fail-safe C
E8309-1	NICAD Charge
310-3	Typ
E8311-1	Mini Drum Sy
E8311-8	Moving Coil Pre-Preamp F
E8312-3	Light Chaser EPROM Controlled (2 Boards)
E8402-1	Speech Board M
E8402-2	Modular Pre-amp Disc Input Mono \qquad
E8402-3	Modular Pre-amp Stereo Output \qquad F
E8402-4	Modular Pre-amp Relay, PSU \qquad F
E8402-5	Modular Pre-amp Tone Main Mono \qquad
E8402-6	Modular Pre-amp Tone Filter, Stereo
E8402-7	Modular Pre-amp Balanced Output \qquad F
E8402-8	Modular Pre-amp Headphone Amp \qquad
E8404-2	Mains Remote control Receiver
	Auto Light
E8405-2	ZX81 EPROM Programmer... N
E8405-3	Mains Remote Control Transmitter \qquad H
E8405-4	Centronics Interface
E8405-6	Drum Synth F
E8406-1	Oric EPROM Board O
E8406-2	Spectrum Joystick E
E8406-3	Audio Design RIAA Stage G
E8406-4	AD Buffer/Filter/Tone H
E8406-5	AD Headphone Amp F
E8406-6	AD Preamp PSU K
E8406-7	AD Power Amp H
E8406-8	AD Power Amp PSU J
E8406	AD Stereo Power Meter F
E8406	AD Input Clamp C
E8407-1	Warlock Alarm M
E8408-2	EPROM Emulator N
E8408-3	Infrared Alarm Transmitter ... E
E8408-4	Infrared Alarm Receiver
E8409-1	EX42 Keyboard Interface
E8409-2	Banshee Siren Un
E8410-1	Echo Unit

E8410-2 Digital Cassette Deck N
E8410-3 Disco Party Strobe H
E8411-5 Video Vandal (3boards) N
E8411-6 Temperature Controller D
E8411-7 Mains Failure Alarm D
E8411-8 Knite Light D
E8411-9 Stage Lighting Interface F
E8411-10 Perpetual PendulumE
E8412-1 Spectrum Centronics Interface
E8412-4 Active-8 Protection Unit F
E8412-5 Active-8 Crossover F
E8412-6 Active-8 LF EQ................. F
E8412-7 Active-8 Equaliser............. F
E8501-3 Digital Delay (2 boards) T
E8502-1 Digital Delay Expander N
E8502-2 Data Logger J
E8503-1 Combo Preamplifier F
E8503-2 THD Meter mV \& oscillator
bds (2 boards) K
E8503-3 THD Meter Mains PSU F
E8504-1 Framestore Memory A
E8504-3 Framestore Control N
E8504-4 Buzby Meter E
E8504-5 CCD Delay..................... .
E8505-5 Stereo Simulator F
E8506-1 Audio Mixer Main J
E8506-2 Audio Mixer PSU F
E8506-3 Audio Mixer RIAA D
E8506-4 Audio Mixer Tone Control ... D
E8506-5 EPROM Prog MKII O
E8508-1 RCL BridgeN
E8508-2 EX42/BBC Interface E
E8508-3 EPROM Emulator L
E8509-1 SpectrumF
E8509-2 Direct Injection Box E
E8510-9 Sunrise Light Brightener K
E8511-1 MTE Waveform Generator ... H
E8511-2 Millifaradometer H
E8511-3 Cymbal Synth
E8511-5 Chorus Effect H
E8511-7 Enlarger Exposure Meter F
E8511-8 Switching Regulator...........E
E8511-9 Second Line of Defence M
E8512-1 Specdrum connector.......... F
E8512-2 MTE Pulse Generator H
E8511-3 Specdrum L
E8601-2 Walkmate . L
E8601-3 MTE Counter-timer M
E8602-1 Digibaro....................... O
E8603-2 Programmable Logic Evaluation Board H
E8603-3 Sound Sampler Analogue Board R
E8604-1 JLLH PA PSU
E8604-2 Matchbox Amplifier C
E8604-3 Matchbox Amp Bridging $\begin{gathered}\text { Version C }\end{gathered}$
E8604-4 MTE Analogue/Digital
Probe
E8605-1 Microlight Intercom E
E8605-2 Baud Rate Converter M
E8605-3 Baud Rate Converter $\begin{aligned} & \text { PSU Board G }\end{aligned}$
E8605-4 Portable PA.................. H
E8606-1 Midi-CV Converter Board H
E8606-2 Midi-CV Converter PSU D
E8606-3 Troglograph F
E8606-4 80m Receiver , H
E8606-5 Sound Sampler R
E8607-1 Directlon E
E8607-2 Upgradeable Amp, MC stage (Stereo). G
E8607-3 BBC Motor ControllerG
E8608-1 Digital Panel Meter(mono). H
E8609-1 Mains Conditioner E
E8609-2 Experimental preamp F
E8609-3 Upgradeable amp, Tone board(mono) HE8609-4 Upgradeable amp, Outputboard (mono). F
E8610-1 Audio Analyser Filter Board 1
E8610-2 Audio Analyser Display Driver. K
E8610-3 Audio Analyser Display H
E8610-4 Audio Analyser Power Supply
H
E8611-1 Audio Switcher (2 bds)
E8611-2 PLL Frequency meter (4 bds)...Q
E8611-3 Upgradeable Amp PSUE8611-5 Call meter, interface bd...... . N
E8612-1 Bongo Box.N
E8612-2 Biofeedback monitorE8701-1 RGB Converter
E8701-2 Mains ControllerD
E8701-3 Flanger HE8701-5 Audio Selector PSUH
E8701-6 Tacho-Dwell. F
E8702-1 Ratemeter main board K
E8702-2 Ratemeter ranging board F
E8702-3 Photo Process Controlle (3bds). O
E8702-4 LEDline display board (2 off) K
E8702-5 LEDline PSU and controller (2 bds) G
E8703-1 Capacitometer. F
E8703-2 Geiger Counter L
E8704-1 BBC micro MIDI interface
.
H
E8704-2 ETIFaker patch box H

Baud Rate Converter (May, 1986)
In Fig. 4 some confusion has crept in to the ins and outs of the circuit diagram. IC6a and IC5C need to be turned round and pins 20 and 25 of IC2 swapped round. In Fig. 5, D4 and D3 are shown the wrong way round on the overlay. This could of course lead to the destruction of C10 as well as the presence of second +12 V rail instead of the required -12V. In Fig. 6, SK4.3 and SK3.3 must be swapped over. In the Parts List, C10 should be $1000 \mu \mathrm{~F}$, not $100 \mu \mathrm{~F}$.

RF Oscillators (June, 1986)

Fig. 12 does not, infact, show a working oscillator. For a series fed arrangement, take the link from CV1a,b junction to R3 and Q1 emitter junction and not OV, remove C1 and move $\mathbf{C} 2$ to shunt R2. For a shunt-fed arrangement, break the link between L1 and Vcc and take Q1 collector to Vcc via a 4 k 7 resistor.

Speaking Alarm Clock (August, 1986)
In the circuit diagram, Fig. 2, diode D3 and resistor R14 shoudl be in parallel not series as shown. The link from IC10, pin 1, to battery positive should be removed.
Biofeedback Monitor (December, 1986)
The capacitor C4 is shown the wrong way around in the component overlay diagram (Fig. 4).

The Intelligent Call Meter (December, 1986) The hex dump listing of the ROM for this project (Table 3) was badly printed with the byte at location BF missing. This should read 7F.

The Better Flanger (January, 1987)

In the circuit diagram (Fig. 2) D1 is not labelled. This is connected to Q1. In the component overlay (Fig. 5) several components are missing. A link should connect the two pads to the left of C1. Q1 is situated next to D1 and connection point P4 is situated between R16 and R33. In addition, the positions of R16 and C11 should be swapped.

Aerial Without Holes (In-Car Tech Tips, January, 1987)
Using enamelled wire of only 0.5 mm diameter for the bifilar coils could cause overheating problems and even a fire risk with some cars. A much thicker wire (1.5 mm should be sufficient) should be used.
Credit Card Casino (March, 1987)
The circuit diagram (Fig. 1) incorrectly showed a connection between C2 (negative lead) and the positive rail. The PCB foil is correct.

Capacitometer (March, 1987)
The circuit diagram (Fig. 1) should show pin 1 of IC1 connected to 0 V . The zener diode (ZD1) should be connected between the junction of R10/R11 and $0 V$. The PCB foil is correct.

PCB FOIL PATTERNS

The MIDI Interface board.

The FM Tuner power supply board foil pattern.

The underside and ground plane foils for the FM Tuner Selective Amplifier board.

PCB FOIL PATTERNS

The underside and ground plane foils for the FM Tuner 3189/PLL board.

The FM Tuner Muting Circuit foil pattern.

The $\mathbf{2 4 h r}$ Sundial board.

FREE READERS' ADS

Buy, sell or exchange through our free service to readers

PRINTER. Serial 8056. As new. Thermal. Suitable QL or Spectrum. Swop for Mono Monitor or $£ 25$.
(096273) 4599.

WANTED SONY TC-377 R/R recorder or similar Sony. Baker, 17 Chapel Lane, Upwey, Weymouth, Dorset.
WANTED: Microbox II owners interested in exchanging ideas or software. Phone Mark on (0244) 301225 after 6 pm.
LINSLEY HOOD (Hart) low-noise tape recorder. Complete or part-built wanted by pensioner. (0747) 3515.

DRAMS. 50 new 41256 DRAMs. Suitable for upgrading IBM-PC etc. Will split. $£ 1.40$ each. 01-625 6394.

FOR SALE: Pye Cambridge VHF AM radio telephone base station. Offers. Tel: 041-6475098.
COLLECTORS: Anyone want ETI 77-79+, PE 78-84, almost complete? I want Elektor 59, WW1 583 and 1596, ETI PRE 77. Tel: (0633) 277037.
PYE POCKETFONE PFI receiver, transmitter, battery charger and manuals. All working. $£ 19$ ONO the lot. (0602) 251920.

CORTEX 16-bit computer. Extra ports. Cassette recorder. All documentation. Texas Technical manuals. £240. (0624 87) 363.
CIRCUIT DESIGN for Bio-feedback monitor (Alpha waves) wanted. Lawrence D, Ellesmere Port Itec, Meadow Lane, Ellesmere Port, South Wirral 0513551178.

WANTED: one child's hand-held electronic game: 'SCARE KONG'. R. Hart, 29 Hillfoot Street, Dennestoun, Glasgow. 041-556 6438.
OSCILLOSCOPE. Tektronix 547 with 50 MHz dual Y amplifier, dual delaying time base and manuals.
£100. 01-953 4994.
WANTED: Texas TMS1000N-MP0027A-CS107-1 pre-programmed 24 tunes IC used in 'Chromatronics' chroma-chime musical door chime. Tel: (0734) 581855/415343. T. Dixon.
OLIVETTI M20 twin disc, monitor, WP, M/Plan, MSBasic, Manuals. Business 16-bit computer. $£ 300$. Tel: (0395) 265301.
CORTEXWORKING. $£ 120$. All chips for disc, RS232, E-Bus except 74LS2001. Yeovil (0935) 72413 after 6 pm.
C64 MODEM. Still in box. Used twice. $£ 50$. Cardiff (0222) 384877 after 2 pm.

CLAUD LYONS regulac transformer. Input 240V. Output $0 / 275 \mathrm{~V} .8$ Amps $50 / 60 \mathrm{~Hz}$. Offers wanted. Mr. Priestley (0274) 593382.
APPLE Ile. Extended 80 column card (64 k). New, still in original box. $£ 105$ ONO. Tel: (0873) 880112.

PYE Cambridge dash and boot, low band. Offers. Tel: (0308) 897625.
FERGUSON TX9 colour TV wanted. With or without chassis. Alan Charles, Chorleywood (09278) 3579.
CCTV SYSTEM. Quality camera, zoom lens, 9 in monitor and all cables. $£ 200$. (0735) 292996. Berkshire.
ONLY $£ 50.40$ track $51 / 4 i n$ single sided, cased disc drive, in good working order. Tel: (0903) 41647.
WANTED non-working Marconi scope type TF2203. Also diode type 1N3716. Tel: (022023) 4210, 7-8 pm.
STIMSON 600T1616 MULTIMETER. Peak hold, analogue bargraph $<5 \mathrm{~Hz} \rightarrow 5 \mathrm{kHz}$. $>=50 \mu \mathrm{~s}$ pulse detection. $£ 75$. Mr. Crow, 64 Basement, City Road, Bristol BS2 8TX.

[^2]
Name

Address

Telephone

I accept the conditions set out here.
Signed
Send this form to:
Free Readers' Ads
Electronics Today International
1 Golden Square London W1R 3AB.

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:

48p (VAT incl) per word (minimum 15 words) Semi Display: (minimum 2 cms)

Send your requirements to: Nicola Baty
ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

ALARMS

SPECIAL OFFERS

```
FREE MEMBERSHIP to a new
NATIONAL ELECTRONICS
                    CLUB.
For details and a free gift of
components worth over &10
compon only E100 p&p }
    send only &1.00 p&p to
    Woodside, Dowsett Lane,
        Ramsden Heath,
            Essex CM11 1JL.
```

INSULATING TAPE 10p roll. 200 carbon film resistors $£ 1$. Out now I.C Electronics latest discount catalogue. Send name, address \& £1. (refundable) IIC Electronics, Mail Order Dept B2, P.O Box 130, Aberdeen AB9 8 HQ .

MAGNETIC PICKUP PREAMP.

LIFIERS!!.... Post advert $+£ 1$. coin (p\&p) to... Kia - 8, Cunliffe Road. likley... Matching Poweramplifier Modules!!. 60 watt /£5.... 100 watt/£8.

SOLDERING IRON SCOOP! 25W fast heat model B.S approved, well balanced. Complete with bit and solder - only £5.75 including p\&p! Full catalogue of great offers - Send name, address $+£ 1$. (refundable) I.C Electronics, Mail Order Dept B3, P.O Box 130, Aberdeen, AB9 8 HO

SWITCHES

VOICE/SOUND ACTIVATED

 SWITCHES easy to follow dia grams and uses only $£ 1.00$. Components and P.C.B's available Herrington, 63 Home Farm Rd Hanwell, London W7 1NL.
WANTED

Turn your surplus transistors, IC's etc., into cash. Immediate settlement.

We also welcome the opportunity to quote for complete factory clearance. Contact:

Coles Harding \& Co. 103 South Brink Wisbech, Cambs.
ESTABLISHED OVER 10 YRS TAR: 0945584188

We purchase for cash or immediate settlement surplus stocks of I.C's,
Memories, Transistors, etc. Please contact by:
Telephone or Telex No: 825616 or 0767317388.

POWER SUPPLIES

220/240v AC Electricity from 12v batteries. Encapsulated modules with screw terminals. Microchip design. Just connect transformer and 8 heat sinked transistors to terminals $400 \mathrm{~W} / 12 \mathrm{~V} £ 28$; $600 \mathrm{~W} / 24 \mathrm{~V}$ £ $30 \mathrm{p} \& \mathrm{p} £ 0.75$ Detailed assembly instructions provided. Chataigne Products. Green Lane, Great Horkesley. Colchester, Essex, CO6 4HD. (Prop chester, Essex,

COURSES

ELECTRONICS
TECHNICIANS
Updating Courset
London Electronics College,
(Dept ETI), 20 Penywern Road,
London SW5 9SU. 01-373 8721.

SERVICES

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us Competitive hourly rates, and high standard of work. Halstead Designs Limited, Finsbury House, 31 Head St. Halstead, Essex CO9 2BX. Tel: 0787477408.

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork. Prototype and small batch production. ALAB ELECTRONICS Grantham (0476) 860089.

01-437 0699 = RESULTS

SATELLITE

SATELLITE T.V. Receiver Kits £155-£1,800. For Technical How To Build Manual send $£ 3.50$ or catalogue only $£ 1$ to: C \& S T.V 11. Wensley Gardens, Leeds 7

SCOPES

OSCILLOSCOPES. Dual trace delay sweep. Hameg 70 MHz delay sweep. Tektronix 24 MHz from $£ 95$. 585 A 85 MHz from $£ 235.556$ Eight-Trace 50 MHz £495. 549 storage 30 MHz from $£ 325.561 \mathrm{~B}$ 875 MHz sampling £195. Fine condition Tel. 01-868 4221

BOOKS

PARAPHYSICS Journal (Russian Translation); Psychotronics; Kirlianography, Heliphonic Music, Telekinetics. Computer Software. S.A.E. $4 \times 9^{\prime \prime}$, Paralab. Downton, Wiltshire.

SUPPLIES

QUALITY WALKIE TALKIES 49 MHz , long range satisfaction or refund. £24.99/pair (normally £31.49), 48 hrs delivery, Xenon (dept ET 19) 24 Wharncliffe Street. Barnsley, Yorkshire.

FOR SALE

1000's NEW 5mm red L.E.D's 0.09p - p\&p 0.50p; pay - Mr. K. Varia : 70 Cornbrook Road Aylesbury, Bucks. HP21 8QY.

KITS AND
 READY BUILT

Design and build your own electronic dashboard
Plans, instructions, circuits, parts lists £4.95 inc p\&p
BURLINGTON MOTOA CO. LTD.
(G3) ARCH 39M, BATH PLACE
LEAMINGTON SPA CY3 3AQ

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, survellance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications. String Works, Bye St. Ledbury HR8 2AA.

FM TRANSMITTERS Same day despatch MINIATURE MODEL frequency $60-145 \mathrm{Mhz}$, range 1 mile. Glass fibre P.C.B. All components. Full instructions 9 12 V operation, broadcast reception. Super sensitive microphone. Pick up on FM/VHF radio. $£ 6.95$ inc or ready built £8.95. Size $57 \times 19 \times 12 \mathrm{~mm}$. HIGH POWER MODEL. 3 watts 80-108 MHz . Professional broadcast performance. Low drift varicap controlled. Range up to 7 miles. 12 V operation. Any input audio/microphone. All components P.C.B. diagrams and instructions. Size $103 \times 39 \times 29 \mathrm{~mm}$. Kit 13.99 inc or ready built $£ 18.99$ inc Send S.A.E. for our DataPack on other products. ZENITH ELECTRONICS. 14 Cortlandt Business Centre, Hailsham, East Sussex BN27 1AE. Tel: 0323847973.

ETI KITS assembled and tested by electronic trainees under supervision within a purpose built electronic workshop for as little as £10* (* depending on type of kit and complexity) Contact:- A.J. Smith, Dept K.A. Electronics Workshop, Lincoln IT.E.C. Dean Road, Lincoln LN2 4JZ. Tel. 0522 43532

LINSLEY HOOD Designs. Send S.A.E. for details to Teleradio Electronics. 325 Fore Street. ondon N9 OPE

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive. Bredon, Tewkesbury, Glos. Tel. 0684 73127

 LEFAX LTD.
Unlt 6, Genesis Business
Centre, Redklln Way,
Horsham, West Sussex
RH13 5QH (0403) 54135

The Sctentific Wire Company 811 Forest Road, London, E17. Thephone 01-531 1588 enamelled copper wire				
SWG	1\%	802	402	
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48 SILVER PLATED ${ }^{15.96}{ }^{9.58}$ COPPER WIRE ${ }^{\text {S }}$				
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.9
Fluxcore				
Solder	5.90	3.25	1.82	0.94
Flease add 15\% VAT. Orders under ¢3 add				
SAE for list of copper and resistance wire. Dealer enquiries welcome.				

```
100 WATT MOSFET AMPLIFIER
Including Toriodal Power Supply \(£ 37.95\)
DATABITS, 65 Latimer Road, Cropsion, Leicester LE7 7GP.
```

LOGIC PROBE KITS R, Y, G LED's CMOS TTL analogue send only $£ 5.95$. Digitone 11 Pollards Gossops Green, Crawley, RH11 8ES

RING NICOLA BATY
 ON 01-437 0699 FOR
 ADVERTISING DETAILS

COMPLETE GEIGER counter (with Tube) for radiation measurement - Under £50. Send for details Radiation Detectors 46/47 Pall Mall, London SW1Y 5JG. Tel (01) 8393143.

PLAN YOUR ADVERTISING CAMPAIGN WITH E.T.I.

COMPONENTS

5.25" disks, bulk RPS. DS 96tpi $\mathbf{E 0 . 4 6}$ Resistors. 25 W 5\% E12 values $\mathrm{E0.0}$ Caps. .01, .015, .022, .033, .047.
Elec. Caps. $1 / 63,10 / 16,100 / 1650.0$ 100 27256 Eprom 27256-2, 12.5 Vprog $£ 3.95$ DiN plugs $\&$ skt's 5,7 in ED' 5 mm red. arn amber All prices inc. P\&P please add

T-systems Ltd rel. 068922196 The Signal Cabin, 61 High Street, Orpington, Kent, BR6 0JF

$\square_{\text {alams }}$	$\square_{\text {krs }}$	\square for	$\square \square_{\text {¢ofen }}^{\text {spem }}$		
CLASSIFIED COUPON THL			Name.		
				,	
			Dartimet	No.	
PLEASE DEBIT MY ACCESS/BARCLAYCARD NO			signatue.	.-.....	Dato
IF YOU DO NOT WISH TO CUT YOUR MAGAZINE, PHOTOCOPY THIS FORM					

That there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety. competitive orices and service from the U.K.'s number one 100% component shop. No gimmicks, no gadgets or computers, just components, millions of them. all easily available by mail order calling or credit card telephone orders. Just pick up the phone for a pent to get your FREE copy now (no SAE required). You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-4500995/01-4520161 Telex: 914977

VISA

ADVERTISERS INDEX

BK Electronics IFC
Cricklewood Electronics 62
Croften Electronics 32
Datel 10
Display Electronics IBC
Electromech
Exchange Resources 26
GCHQ 20
Greenbank 26
Hart Electronics 2
Henry's Audio Electronics 7
ICS 22
Jaytee Electronic Supplies 7
Maplin Electronics OBC
NOI Systems 27
Omni Electronics 22
Pineapple Software 46
RTVC 51
Specialist Semiconductor Devices 21
Stewarts of Reading 8
Technomatic 4, 5
TJA Development 26
TK Electronics 51
Thandor Electronics 32
Turbo International 22
Vinderen Associates 2
VW \& E Smith 8
Zenith Electronics 20

COMIUHER WARATOUSG
 Cox ,

 THE "ALLADINS' CAVE OE COMPUTER ARD ELECTRONC EQULPHENT

 THE "ALLADINS' CAVE OE COMPUTER ARD ELECTRONC EQULPHENT}

The ORIGINAL FREE OF CHARGE dial up data: base. Buy, browse or place YOUR OWN AD for: goods or services to sell. 1000's of stock items ON LINE NOW. CCITT, 8 bit word no parity For 300 baud modems call 01-679 1888
\qquad Your monitor from its computer!! For
only $\mathbf{£ 2 4 . 9 5}$ it becomes a SUPERB HIGH QUALITY * COLOUR * TV SET
The fabulous TE LEBOX, an INVALUABLE MUST for the owner of ANY video monitor with a composite input colour or monochrome tuner and costing OVER £75 to manufacture this opportunity to give your monitor a DUAL FUNCTION must not be missed! The moulded case containing ALL electronics tuner, power supply etc onply plug in and convert your previously dedicated computer
monitor into a HIGH QUALITY COLOUR* TV SET, giving a real benefit to ALL the family!! Don't worry if your monitor doesn't have
sound-THE TELEBOX even has an integral 4 watt audio amplifie ordriving an external speaker, PLUS an auxiliary output amplifie qualliy features include: Compact dimensios or HI FI system etc " ${ }^{\prime \prime} \times 3.5^{\prime \prime}$ h, latest technology, BRITISH manufacture fully
tuneable 7 channel push button tuner, Auto AGC circuit, SAW filter satety, Mains ON-OFF switch etc Many other uses ONLY ERIMITED QUANTITY - DON'T MISS THIS OFFERI! video monitors orei9.95 if purchased with ANY of our

GOLOUR E MONOGHROME WCUTGE GEDGLS

'SYSTEM ALPHA' 14 " COLOUR MULTI INPUT MONITOR

Made by the famous REDIFFUSION Co. for their own professional computer system this monitor has all the features to sult your immediate and future
requirements Two video inputs: RGB and PAL Composite Video, allow direct connection to BBC/IBM and most other makes of micro computers or VCR' a,
including our very own TELEBOX An internal speaker and audlo amp may be
connected to computer or VCR for superior sound quality. Many other features connected to computer or VCR for superior sound quality. Many other features
PlL tube, Matching BBC case colour, Major controls on front panel, Separate
Contrast and Brightness - even in RGB mode. Separate Colour and audio Contrast and Brightness - even in 'RGB made. Separate Colour and audio controls for Composite Video input BNC pl
Supplied BRAND MEW ONE OF THE YEAR'S BEST BUYS. PC USER
 DECCA $8018^{\prime \prime}$ COLOUR monitor. RGB input
Little or hardly used manufacturer's surplus enables us to offer this special E99.00, a price for a colour monltor as yet unheard of! Our own interface satety modification and special $16^{\prime \prime}$ high definition PI tube, csupled with the
DECCA 80 series TV chassis give 80 column definition and quality found only on monitors costing 3 TIMES OUR PRICE. The quality for the price has to be seen to be believed! Supplied complete and ready to plug direct to a BBC
MICRO computer or any other system with a TTL RGB output Other features are internal speaker, modular construct 5 , aum $\mathrm{W} \times 34 \mathrm{H} \times 24 \mathrm{D}, 90$ day
TEAK CASE, compact dimensions only 52 cm guarantee Although used units are supplied in EXCELLENT condition.
DECCA $80,16^{\prime \prime}$ COLOUR monitor. Composite video input. Same as above model but fitted with Composite Video input and
VCR or AUDIO VISUAL use ONLY $£ 99.00+$ Car
REDIFFUSION MARK 3, $20^{\prime \prime}$ COLOUR monltor. Fitted with standard 75 ohm
composite video input and sound ama This large screen colour display is ideai composite video input and sound amp This large screen colour display is ideai cations Supplled in AS NEW or liktle used condition ONLY £145.00 + Carr. BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors.
All units are fully cased and set for 240 V standard working with composite vit All units are fully cased and set for 240 v standard working with composite video
nputs Units are pre tested and set up for up to 80 column use. Even when
MINOR screen Till 12" GREEN SCREEN version of KGM 320-1. Only $£ 39.95$
$9^{\prime \prime}$ KGM 324 GREEN SCREEN fully cased very compact unit. Only £49.00

GOULD OF443 enclosed, compact switch mode supply with DC regulated
outputs of $+5 v @ 5.5 a,+12 v$ @ $0.5 a,-12 v @ 0.1 \mathrm{a}$ and $-23 v @ 0.02 \mathrm{a}$. Dim $18 \times$ GO 6 cm . 10 or 240 V input BRAND NEW amp switch mode SUpply NEW E130.00 AC-DC Linear PSU for DISK drive and SYSTEM applications. Constructed on a
rugged ALLOY chassis to continuously supply fully regulated DC outputs of +5 v @ 3 amps, $-5 v$ @ 0.6 amps and $+24 v @ 5$ amps, Short circuit and overvoltage
protected. 100 or $240 v$ AC input. Dim $28 \times 125 \times 7 \mathrm{~cm} \mathrm{NEWE49.94}$

RHMORES

Manutacturers BRAND NEW surplus AMKEY MPNK-114 Superb word processor chassis keyboard on single PCB coded character set with 31 function keys numeric keypad cursor pad

DON'T MISS THE CPM Deal OF the CENTURY The FABULOUS CPM TATUNG PC2000

Professional Business System

PC, CPM system, recently on sale at OVER 1 1400, at a SCOOP price just ove

Not a toy, the BIG BROTHER of the EINSTIEN computer, the DUAL PROCESSOR PC2000 comprises a modern stylish three piece system with ALL thenecessities for the SMALL BUSINESS, INDUSTRIAL, EDUCATIONAL or HOBBYIST USER. Used with the THOUSANDS of proven, tested and avallable CPM software packages Such as
WORDSTAR, FAST, DBASE2 etc, the PC2000 specification, at our prices, CANNOT BE BEATEN!

Double sided $40 / 80$ track disk drives (1 Mb per drive), PSU, 4 K of memory mapped screr CENTRONICS and system expansion ports and if thats not enough aready to plug into STANDARD ${ }^{\prime \prime}$ DRIVE port for up to FOUR $8^{\prime \prime}$ disk drives, either in double density or IBM format. The ultra slim 92 key, detachable keyboard features 32 user detinable keys, numeric keypad and text editing keys, even its own integral microprocessor which allows the main Z8OA to devote ALL its time to
USER programs, eliminating "lost character" problems found on other machines. The attractive detachable 12" monitorcombines a green, ant 2.2, user manuals and full 90 day guarantee. Full data sheet and info on request

PC2000 System
PC2000 Business System with CPM
PC2000 Wordprocessor System

NOW only 839 NOW only 8499

SUEPLUS SPKCHLS OU

 integrai modem etc. for direct connection to PRESTEL
VIEWDATA etc. Designed to sell to the EXECUTIVE at
Over E600ll Our price BRAND NEW AND BOXED at Only E99.00 VP1 complete Professional PRESTEL system in slimline desk top unit containing Modem, standard RGB colour monitor. Many other features include: Printer output, Full keyboard input, Cassette
port etc. BRAND NEW with DATA. A FRACTION OF COST only $£ 55.00$
ALPHATANTEL. Very compact unit with integral FULL
ALPHA NUMERIC keyboard. Just add a domestic TV receiver and you have a superb PRESTEL system and via PRESTEL the cheapest TELEX Service to be
foundt Many features: CENTRONICS Printer output,
Memory dialling etc Supplied complete with data and Memory dialling etc. Supplied complete with data and
DY mod for RGB or Composite video outputs. AS
NEW only $£ 125.00$

 6116 £2.50 EPROMS $2716 £ 4.502732 £ 3.00$ $2764 £ 4.9527128 £ 5.506800 £ 2.506821 £$
 8088 £8 NEC765 £8 WD2793 £28 8202A
£22 8251 \&78748 £15 Z80A DART £6.50

DIFK DRIVA
Japanese $51 / 4 "$ half height, 80 track double sided disk
drives by TEAC, CANON, TOSHIBA etc. Sild as TEW with 90 day guarantee ONLY $£ 85.00$
Sold SUGAR-503 Double sided HH 40 TRK NEW $£ 75.00$ SUGART SA400 SS FH 35 TRK E55.00
SIEMENS FDD100 SS FH 40 TRK $£ 65.00$
carriage on 514^{4} drives E5.50
Brand NEW metal $514^{4 \prime}$ DISK CASES with internal PSU.
DSKC1 for 2 HH or 1 FH drive $\begin{array}{ll}\text { DSKC1 for } 2 \text { HH or } 1 \text { FH drive } & \mathbf{2 9 . 9 5}+\mathrm{pp} £ 4.00 \\ \text { DSKC } 2 \text { for } 1 \text { HH dive } & \mathbf{£ 2 2 . 9 5} \text { +pp } £ 3.50 \\ \text { DKSC } 3 \text { As DSK1 LESS PSU } & \mathbf{~ 1 2 . 9 5}+\mathrm{pp} £ 2.50\end{array}$ DSKC 4 As DSK2 LESS PSU
$8^{\prime \prime}$ IBM Iormat TESTED EX EQUIPMENT. 95 +pp $£ 2.00$ $\begin{array}{ll}\text { SHUGART 800/801 SS } & £ 175.00+p p £ 8.50 \\ \text { SHUGART 851 DS } & \text { £250.00 +pp £8.50 }\end{array}$ TWN SHUGART851's 2 Mb total capacity In smart case MITSUBISHI M2894-63 8" DS 1 Mb equiv. to SHUGART SAB50R. BRAND NEW at £275.00 DYSAN $\mathbf{8}^{\prime \prime}$ Alignment disk E29.00 + pp £1.00
Various disk drive PSU'S Ex Stock SEE PSU section Various disk drive PSU S Ex Stock
HARD DISK DRIVES DRE/DIABLO Series 302.5 Mb front load $\mathbf{£ 5 2 5 . 0 0}$ Exchangeable version £295.00. ME3029 PSU E95.00 DIABLO 44/DRE4000A, B5+5 Mb from $£ 750.00$
CDCHAWK $5+5$ Mb E795.00. CDC $976280 \mathrm{MbRMO3}$

 Clearance items-Sold as seen-No guarantee
ICL 2314 BRAND NEW $14^{\prime \prime}$ Mb Removable disk drive, cost Over £2000 with data ONLY $£ 99.00$ BASF $61728^{\prime \prime} 23 \mathrm{Mb}$ Winchesters \quad E199.00 Uness stated all drives are refurbished with 90 day
guarantee. Many other drives and spares in stock- call
range of DATA MODEMS prices and specifications to suit all applications and budgets.....
BRAND NEW State of the art products. DACOM DSL2123 Mulțl standard 300-300, $1200-75$
AUto answer etc
E288.00 multi standard AUTO SPEED detect, and data buffer
with
E385.00 With flow control etc
DACOM DSLL2123GT The CREAM of the Intelligent
modems auto dial auto etc. etc Sync or async optional auto dial duplex originate only, RS232 interface 300 baud full Ex BnITISH TELECOM full spec, CCIT, ruggedised any MICRO or system with RS232 interiace. phonem as subscriber end to PRESTEL, TELECOM GOLD, MICRONET etc
MODEM 20-2 1200.75 baud Same as 20.1 b computer end
DATEL 2412. Made by SE Labs for BT this two part unit is for synchronous data links at 1200 or 2400
baud using $2780 / 3780$ protocol etc. Many features include 2 or 4 wire
COST OVEA $£ 800$, DATEL 4800, RACAL MPS4800 baud modem, EX
BT good working order, ONLY $295.00+$ p $\varepsilon 8.00$ SPECIAC OFFER

MODEM TG2393

 duplex 4 wire or half duplex$£ 85.00$ PER PAIR + pp $£ 10.0$

Speed matrix printers Buitt in Japan for the Hazeltine Corporation this unit features quality construction giving 100 cps bidirectional, full pin addressable graphics; 6 type fonts, up to 9.5° single sheet or tractor paper handling. RS232 and CENTRONICS paralle interface. Many other features. BRAND NEW REGURCEIBIF ATTIERIISS

A Yuasa.
A300 $0719131512 v 3$ Ah NEW A300 07191312 6v 3Ah NEW
A300 07191202 6-0-6v 1.8Ah TESTED Ex

VOD TETMILALS

 Standard VDU data entry terOUME OVT108. Current product, state of the art page RAM TVI 925, Hazeltine, ADMSA emulations software setup, 25×80, Clock, Swivel and tilt base

Printer port, Function keys etc. BRAND NEW and OXXD AT ALMOST HALF PRICE Only £ 425.00 AJsio - EX RENSAL, 280 controled,
scrent 24 x 80 display, graphics, cursor addressing,
printer port etc. Very good condition TESTED complete dinter port etc. Very good
with manual only \&225.00
ADDS 520 - Oumb terminal, used, $12^{\prime \prime}$ b/w screen
RS232 interface and printer port. TESTED. RS232 interface and printer port. TESTED
ONLY $£ 125.00$. Carriage on terminals $£ 10.00$
100 's of other terminals in stock CALLfor more details established companies $\mathbf{£ 2 0 . 0 0}$. Wherimum BONA FID E account ordersfrom Government Depts., Wehohn, Universities and 9.30-5.30. Sat 10.30-5.30. We reserve the right to change prices and specifications without notice. Trade, Bulk and Export ELTRDAHE

1.17 1 (OtO) 1 ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) Sales: 554161, Enquiries: 552911; Trade sales: 554171, Trade enquiries: 552961.

Shops

Birmingham: Lynton Square, Perry Barr. Telephone: 0213567292.
London: 159-161 King Street, Hammersmith W6. Telephone: 017480926.
Manchester: 8 Oxford Road. Telephone: 0612360281.
Southampton: 46-48 Bevois Valley Road. Telephone:0703225831.
Southend-on-Sea: 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702554000.
All shops except Manchester closed all day Monday.

Pick up a copy of our 1987 catalogue from any branch of W.H. Smith for just $£ 1.50$. Or to receive your copy by post just send $£ 1.50+40$ p $p \& p$ to Mail Order address. If you live outside the U.K. please send $£ 2.50$ or 11 International Reply Coupons.

[^0]: Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles. designs, plans. drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction requires the prior written consent of the Company. © 1987 Argus Specialist Publications LId All reasonable care is the publishers cannot be held legally responsible for errors. Where mistakes do occur a correction will nor errors. Where mistakes do occur, a correction will norprices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, tor any variations affecting price or availability which may occur after the publica-
 tion has closed for press.

 - Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$. USA: $\$ 29.50$. Airmail: £49.50.

[^1]: * = Components not mounted on PCB.

[^2]:

 - These ads are only for readers not engaged in buying or selling the same equipmentor services on a commercial basis.
 - Ads will be inserted as and when space is available. Insertion in a particular issue cannot be guaranteed.
 - Ads shouldbe of 20 words or less and in block capitalsortyped. Words to appear in bold should be underlined.
 - Advertisers should fill in their name, address, and telephone number and sign the form to indicate acceptance of these conditions. Adverts can be on the printed form ora photocopy of it but they must be accompanied by the token at the top of this page.
 - ETI reserves the right to refuse or to alter submitted ads wherever this is judged necessary.
 - Ads are accepted in good faith. Neither the magazine nor its publishers can be held responsible for any emors in the reproduction of an ad, nor for untruths or misrepresentations, nor for the activities of advertisers or respondents. By acceptance of these conditions the advertisers underake to indemnify the publisher against any legal action arising from publication of their advertisement.
 Enter your advertisement below

