THE ERASABLE CD

TO BUILD:
PLL AUTORANGING FREQUENCY COUNTER
AUDIO ANALYSER
SPECIAL PULL OUT
STARTING YOUR OWN ELECTRONICS BUSINESS
PLUS: FREE READERS’ ADS
OVM POWER AMPLIFIER MODULES

Now enjoy a wealth of new features and improved performance at a realistic price. Four models available to suit the needs of the professional and hobby market; i.e. Leisure, industry, Security, and multiple applications. OVM's complete line includes: Power Amplifier, Hi-Fi Amplifier, Drive circuit etc. Complete with interconnection cable FULLY GUARANTEED.

SUPPLIED READY BUILT AND TESTED.

OVM MF90 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response 15Hz - 30KHz - 3dB. T.H.D. 0.01%.

OVM MF90 Dual Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response 15Hz - 30KHz - 3dB. T.H.D. 0.01%.

PRICE £339.99 - £530.00.

Note: Mos-Fets are supplied as standard 100KHz bandwidth & Input Sensitivity 500mV. Frequency Response: 15Hz - 70KHz. Sensitivity 500mV. S.N.R. >125dB. Size 300 x 123 x 40mm. PRICE £79.99 - £150.00.

LOUDSPEAKERS 5" to 15" up to 400 WATTS R.M.S.

Cabaret. Fixing stock in large quantity. Selection of McKenzie Loudspeakers available including Cabinet. Sizes: 8" - 15". Speaker plus metal or acrylic front plate. £50.00 - £100.00.

PRICE £100.00 - £200.00.

BURLINGTON ALARM

THE FABRICATOR.

A Thander's famous "Burlington" Alarm System. Supercapacitor microphone supplied with combination lock and interconnection cable FULLY GUARANTEED.

Control Unit - House microphone, relay unit, range up to 15 metres adjustable by ten callers. Three position, key operated tact switch - off - test - alarm. Outdoor siren - Electronic swept tone siren 1000Hz - 2000Hz. Supercapacitor - Japan 100w, 800 volt. Fast recovery from battery operated. Complete with mains D.C. supply, belt driven, automatic testing device, spring return. £138.00. S.A.E. 28p STAMP.

PRICE £149.99.

OVM LINNET LOUDSPEAKERS

The very best in quality and value. Made specifically for compactness with high sound output. Finished in hard wearing black vinyl with protective corners, grille and carry handle. All models 8 ohms. Full range round cabinet, with brass grill offered in 5" - 10", 15", 20", 25" - 30". £12.00 - £40.00.

P-A-E TRICI

5.5" T.K. STEREO RACK AMPS

1 WATT SLIDE DIMMER

- Control loads up to 10W
- Compact Size 75 x 12 x 175
- Easy snap in fixing.
- Cabinet cut out
- Isolated, plastic case

PRICE £120.00.

PIEZOELECTRIC ELECTROYNAMS

Now the Pro revolution. The low dynamic mass in the voice coil of a Piezoelectric transducer gives much improved transient response with a lower distortion level than ordinary dynamic transducers. As a result it is not required. These units can be fitted in any existing tweeter system. Each is a 1/4" drive in a standard FREE EXHAUST LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE A

3" Piezoelectric transducer - Produces Hi-Fi tweeter performance, ideal for bookshelf and medium sized Hi-Fi speakers. P/N 90 each - £40.00 each.

TYPE B

4" Piezoelectric transducer. superb high frequency response. For portable hearing aid etc. P/N KSN2036A, £59.00 each - £100.00 pair. KSN1038A, £60.00 each - £120.00 pair.

TYPE C

6" Piezoelectric transducer. £59.00 each - £110.00 pair.

TYPE D

8" Piezoelectric transducer. £59.00 each - £110.00 pair.

TYPE E

6" Piezoelectric transducer. £59.00 each - £110.00 pair. 8" Piezoelectric transducer. £59.00 each - £110.00 pair.

PRICE £119.99 - £210.00.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2 x 5 band L & R graphic equalisers and twin 10 segment L.E.D. Vu Meters. Many multiple applications. £375.00.

5 Inputs with individual faders providing 100% full control of the following: Vol Inc, Vol Dec, Vol Off, Gain, Tone, Mid, Treble, Bass, Pitch, Time, Volume, Pitch, etc. £119.99.

PRICE £134.99 - £210.00.

HOSHI KITS.

Proven designs including glass fibre printed circuit board and high quality components complete with instructions.

FM TRANSFORMER (BGJ)

90/100 KHz with very sensitive microphone range 5/200-10000, £21.99 each.

FM TRANSFORMER

3 WATT 85/115MHz variable controlled professional range up to 3 miles 35 x 64 x 12mm. £11.99 each.

SINGLE CHANNEL RADIO CONTROLLER TRANSFORMER/ RECEIVER 27MHz, Range up to 500 metres.

B. K. ELECTRONICS DEPT E.T

B. K. ELECTRONICS DEPT E.T.

714 W. DON COLO DATE, TEL. 702-527572
editorial and advertisement office
1 golden square, London W1R 3AB, telephone 01-437 0626.
Telex 8811896.

Features

Hardware Design Concepts 17
Mike Barwise looks at the very idea of a co-processor.

Micro-Computer Aided Circuit Design 20
Julian Burt rounds off this series with a brief look at Fourier transformers.

CD-ROMS - The Future of Mass Storage 22
Those awfully clever Philips' people may have come up with the perfect mass storage medium.

Special Pull-Out Supplement (No. 1)

Projects

Trigger Happy 26
Our free PCB competition winner, by a hair.

PLL Frequency Counter 28
A remarkably accurate and fast autoranging counter, design by Graeme Durant.

The Audio Analyser 43
Are your sound waves sound? Will your room colour your perception? R. Penfold helps you out.

Low-Cost Framestore 48
Daniel Ogilvie with the ADC-DAC and video circuitry.

Intelligent Call Meter 53
In which Chris Rankin outlines some software and much important data.

Due to shortage of space, the Upgradeable Amp article scheduled for this month has been held over.

Regulars

Digest 7
It's news, it's different!

Read/Write 14
You tell us your grousers, but piously.

Auntie Static's Problem Corner 15
The grand old lady returns.

Tech Tips

Power Booster for MOSFET Amplifiers, and a useful Over Voltage Indicator.

Etcetera 65
All makes a rash promise and speaks cryptically while Keith Brindley's Open Channel looks forward to some competition and tips a not-so-new company for success.

Crossword 66

Information

Subscription Coupon 11
Readers' Services 63

Free readers' Ads (Coupon) 51
Next Month's ETI 67

PCB Foils 38
Classified Ads 68

PCB Service 60
AD Index 70
DISC DRIVES
These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables and manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives are available in single or double density format.

PD0800 (2 x 400k/2 x 400k/400k/80T DS) with built in monitor
£249 (a)

PD0800 (2 x 400k/2 x 400k/400k/80T DS) with built in monitor
£205 (b)

PCD0800 (2 x 400k/2 x 400k/400k/80T DS) with built in monitor
£103 (b)

30MB FLOPPY DISCS
High quality discs that offer a reliable error free performance. Each disc is individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.

5¼" DISCS
40T DD £10.50 (d)
40T DD £12.50 (d)
80T DD £20.00 (d)
80T DD £25.00 (d)

3½" DISCS
10 Disc Library Case
£8.00 (d)
30 Disc Case
£15.00 (d)
40 Disc Lockable Box
£16.00 (d)

MICROFICHE
All monitors now available in plastic or metal cases, please specify your requirement.

14" RGB
14" RGB with PAL & Audio
£179 (a)
£195 (a)

1413 Std Res
£260 (d)
£275 (d)

1451 Med Res
£260 (d)
£275 (d)

1413 Hi Res
£355 (d)

Swivel Base for Plastic 14" Microfiche
£20.00 (d)

2030CS Std Res
£390 (d)

MONOCHROME MONITORS:

14" LCD
12" Hi Res 12" ETched Screen
£90 (a)

1412GB Hi Res 12" Long Persistence
£80 (a)

TAXAN KX2015B Hi Res 12" ETched Screen
£179 (a)

PHILIPS BM7502 12" Hi Res Screen
£75 (a)

Swinetole for Kaga Monochrome fitted with Digital Clock
£21 (c)

ATTENTION
All prices in this double page advertisement are subject to change and all ALL PRICES EXCLUDE VAT
Please add carriage 30p unless indicated as follows: (a) £2.50 (b) £1.05 (d) £1.00

SPECIAL OFFER
2764-25 £2.00
27128-25 £2.50
6264L-15 £3.40

CONNECTOR SYSTEMS

DIL HEADERS

14 pin 50p 100p
22 pin 50p 200p
32 pin 50p 225p

TECHNOLINE VIEWDATA SYSTEM
Using teletext type protocols for information and control phone 01-450 9764, 24 hour service, 7 days a week.
SPECTRUM REPAIRED FOR ONLY £19.95

Ten repairs most welcome

- While you wait service including parts over the counter.
- All computers fully repaired and fully featured return.
- Fully insured for the return journey.
- Fixed low price of £19.95 including post and packing. Not a between price of really up to £30.00 which some of our competitors are doing.
- Discounts for schools and colleges.

Best service - Best prices!

Are you another customer - fed up waiting weeks for your estimate?

Need your computer repaired fast? Send it now to the Number One Repair Company in the U.K. or call in and see us at our new fully equipped 2,500 square foot workshop, with all the latest test equipment available. You are more than welcome.

We will repair your computer while you wait and help you with any of your technical problems.

Commodore Computers repaired for only £19.95. Please note we will tell you if there are repairs to be done. Don't just repair the fault and send your computer back, give your computer a -

OVERHAUL WITH EVERY REPAIR WE DO:—

- We correct Colour, Sound, Keyboard, Check the loading and saving chip. New feet on the base if required. Check for full memory. Check all sockets including ear/mike and replace if faulty for an inclusive price of £19.95 including VAT, post and packing. No hidden extras whatsoever. We don't have to boast too much about our service as we have thousands of customers from all over the world highly delighted with our service. A first class reputation for speed and accuracy. Don't forget, we are only twenty minutes from Manchester City Centre so why not call in, have a coffee with us and see your computer being repaired.

** Expansion ribbon £5.50 plus £1.50 P & P**

- 56 Way ribbon cable to extend your ports for your peripherals £10.95 plus £1.50 P & P

Replacement Power Supply

- Spectrum replacement power transformer suitable for all makes of computer £5.50 plus £1.50 P & P

SPECIAL OFFER

- Spectrum plus spare keyboard membranes £12.90 plus £1.50 P & P

SPECIAL OFFER

- XZ 81 Membranes £3.00 plus £1.50 P & P

SPECIAL OFFER

- Commodore replacement power transformer £9.95 plus £1.50 P & P

Special Offer

- 5 great free games £33.00

SPECIAL OFFER

- Normal discounted price for every Spectrum Repair on offer £19.95

VIDEOVAULT HEALTH WARNING!!!

- Sending your computer to any other Repair Centre can seriously damage its Health

140 High St, West, Glossop, Derbyshire, England

Telephone: Glossop (STD 04574) 66555/6771

Videovault Ltd.

© Copyright Videovault Ltd. No 100706
DIGEST

New RS Components Distributor

T hose of you who read ETI regularly will know how often our authors specify items from the extensive RS Components range for our projects. Unfortunately, RS only supply to trade and professional customers, which makes life very difficult for those who are not employed in the industry or whose companies will not allow staff to purchase items on the company account.

In the past, we have had to recommend companies who will act as intermediaries, obtaining RS parts for our readers. Now with the launch of Electromail, anyone can order RS parts directly and receive a professional, fast-despatch service at minimal extra cost.

Electromail offers the full RS range of over 12,500 components and charge the usual RS price for each item. The only additional cost is a fixed charge of £2.25 for the check and VAT credit cards. The catalogue is more or less identical to the standard RS catalogue. Only the covers and the pages containing the ordering information appear to be different and contains the same mix of individual product data and general technical information. In addition, the range of RS Data Sheets containing more detailed product information will also be available free on request from Electromail.

To obtain a copy of the catalogue send £2.50 to Electromail, PO Box 33, Corby, Northamptonshire NN17 9EL, or telephone 0536-204 555 and quote your Access/Visa number.

Low-Power Gas Sensors

P lessy have introduced a range of single-wavelength LEDs and photosensors which can be used to detect and monitor gas and moisture contents using reflection and absorption techniques. They claim that gas sensors using this system require far less power than existing gas sensors, making them ideal for use in portable and other battery-operated equipment.

The LEDs emit light in the infrared region, at wavelengths between 0.75µm and 1.95µm. The wavelength options available are tailored to suit the absorption bands of the various component elements or compounds which the sensors may be called upon to detect.

- A new, 16-page A4 brochure from Hitachi describes their range of ROMs, EPROMs and EEPROMs. Both low-power and ultra-high-speed type are covered and the information given includes pin-outs, instructions for use, and advice on noise and static precautions. Contact Hitachi Electronic Components (UK) Ltd, 21 Upton Road, Watford, Hertfordshire WD1 7TB, tel 0923-46488.

- Barrie Electronics have sent us a 4-page A4 brochure which gives a brief guide to the range of components they stock. Among the items listed are valves, inverters and special-purpose lamps as well as the usual resistors, capacitors, semiconductors, etc, but the bulk of the space is taken up with details of some of their extensive range of transformers. Included are safety isolating, constant voltage, phase protection and audio transformers and they can wind to order if they don’t have anything in stock to suit your needs. Barrie Electronics Ltd, Unit 211, Stratford Workshop, Burford Road, London E15 2SF, tel 01-555 0228.

System A PCBs

A number of problems have come to light regarding the boards for this project. First, on some versions of all the System A boards, a number of the pads seem to have spread and created short circuits.

Second, some examples of the main preamplifier board (E8107-2) have Q12 base connected to Q8 collector, not Q9 as it should be and Q1 base similarly connected. We will happily replace faulty boards as soon as we have corrected boards available but you may prefer to tackle the fault yourself to save time.

Finally, some of the main amplifier boards (E8108-1) seem to be grossly corrupted. Please check carefully before applying power to your system.

Solderable Heatsinks

Now from Redpoint Ltd is a finned heatsink which can be soldered in the same way as other electronic components.

The TV905 Powerfin heatsink is manufactured from copper-plated aluminium, a material which combines the low cost and weight of aluminium with the soldering properties of copper. It is generally similar to Redpoint’s popular TV1505 heatsink and is designed for direct PCB-mounting. Samples are available now and Redpoint have plans to introduce other models made from the same material.

Redpoint Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QN, tel 0793-37861.
Power Up

The TS3021 from Thandar Electronics is a laboratory quality variable linear power supply capable of providing up to 2A at up to 30V. Dual half-inch, 3½-digit LCD displays show output voltage and current at the same time and can be used to preset output voltage and/or current limit before connection to load. The PSU can operate in constant current or constant voltage modes and voltage can be set to within 5mV. The output is protected against forward and reverse voltages and the supply current is varied logarithmically to give accurate control at low values. Thandar claim 0.01% line and load regulation and ripple and noise figures better than 1mV. They also note that 'linear regulation and the use of LCD meters ensure that RFI and interference generated by the display is minimised.' This seems to be an increasingly important consideration in the electronics industry. A dual version of the PSU features two identical and independent units in one case. The TS3021 single unit retains at £150 plus VAT while the TS3022 double unit is £240 plus VAT. Contact Thandar at London Road, St. Ives, Huntingdon, Cambs, PE17 4HJ (tel: 0480 64646).

On The Surface

A new report from Electronic Trend Publications forecasts that usage of surface mounted devices will grow rapidly over the next few years. By 1990, says the report, 41% of all electronic components will be SMDs and 50% of all PCBs will utilise SMDs. The report claims that cost considerations combined with a felt need for improved reliability and higher performance underly the growth in SMD usage. 'Advances in design, assembly, and test equipment,' say the report's publishers, ETP, 'coupled with the availability of a complete range of SM devices have made board size reduction up to 70% and cost reduction up to 50% a reality.' The report, priced at $1250, 'represent a “hands on” guide to the application of SMT (surface mount technology) in new equipment design.' Although not completely ignoring the issue of smaller scale users of electronic components, who may find the capital cost of SMT prohibitive, the report has little to say about the long term implications of surface mounting for small manufacturers, the repair and servicing sector and home constructors. The eventual but inevitable dominance of surface mount devices will probably have a greater impact here than has the almost universal adoption of PCBs or integrated circuits.

Bigger Acorns — Small PCs

The forward march of MS-DOS and PC-DOS continues as the former brings hope of the UK computer industry, Acorn, unveils two new models designed to soften its maverick image. The Master 512 belongs ostensibly to the BBC range but is built around an 8016 processor (running at 10MHz) and comes bundled with a mouse, Digital Research's GEM software and DOS Plus which resembles MS-DOS. It is priced at £345.26 plus VAT. Somewhat more expensive is the Acorn M19, which is claimed to be a true (IBM) PC compatible. This machine — designed by Acorn's parent company, Olivetti, but badged Acorn — features twin 360K 5.25” disc drives, a high resolution monochrome monitor and 256K of memory in the basic version (AIM 20), all of which makes it rather expensive at £1499. Numerous upgrades and the option of Eiconet compatibility suggest that Olivetti are still unwilling to commit Acorn completely to the MS-DOS/IBM route, but the prognosis is not good for UK computer design. Acorn may be contacted at Cambridge Technopark, 645 Newmarket Road, Cambridge CB5 8PD (tel: 0223 214411).

Seal Of Approval

Seal Electronics of Reading have produced a peripheral for BBC B and Spectrum computers designed to enable their use as logic analysers. The additions come in matching cream or black cases intended to be placed underneath the computers. They incorporate internal 10MHz clocks, offering a range of sample rates. An external clock can be used. There are inputs for up to 16 data lines in two groups of eight) and the computers' own vdu or TV screens display all 16 lines under selectable cursors. Clock rate and data format (hex, octal, decimal or binary) can be selected and the analyser is capable of storing up to 1999 4-bit samples and displaying any chosen sequence. A preset 4-bit word triggers sampling according to the state of the four least significant data lines and results can be shown graphically or numerically. The analyser can also operate in real time. The SL16 Logic Analyser costs £200 in the Spectrum version and £250 in the BBC version, inclusive of software, manual and p&p. Contact Seal at T Hargbourne Close, Woodcote, Reading, RG8 0RZ.

Digisound Advice

We're sorry to have to inform readers that Digisound of Blackpool — a company we've had a happy association with over the years — has ceased trading. A number of the projects Digisound was involved with will, fortunately, carry on. In particular, the PCBs for the ETI Project 80 synthesizer will now be available from Tim Higham, 16 Lauriston Road, Wimbledon, London SW19 4TQ (mail order only). Higham will also supply construction notes and some front panels — while ETI can, of course, supply photocopies of the original articles. Higham informs us that he has a price list available and is planning some new modules for the Project80 (we'll keep readers informed). The Project 80 uses ICs from Curtis Electro-music, which Digisound had the exclusive rights to distribute. All these ICs are now available from Circuit Engineering, 54 Gibson Square, London N10RA (tel: 01-226 9778), who will be happy to supply details.

8
THE WORLD OF RS

FOR ONLY £2.50

ELECTROMAIL - A BRAND NEW WAY TO BUY RS PRODUCTS.

• Over 12,000 products from a single source.
• The quality range - proven by industry.
• Excellent stock availability.
• 24 hour ordering.
• 688 page catalogue.

Write or phone today for your copy of the new Electromail catalogue.

It's an invaluable technical reference packed with photographs and detailed descriptions of the complete product range.

Send £2.50 or, if phoning, quote your Access/VISA number.

The Electromail service is only available to UK customers.

ELECTROMAIL

Dept. 100, PO Box 33, Corby, Northants. NN17 9EL

TELEPHONE:

0536 204555
MULLARD UNILEX AMPLIFIERS

1. Interchangeable 8V and 16V card for each channel.
2. Mains transformer strength is controlled by a "Mains Control" knob.
4. Frequency response from 20 Hz to 20 kHz.
5. Solid-state reliability.

12 VOLT MOTOR BY SMITHS

1. 12V motor with high torque.
2. Speed control from 0 to 1200 rpm.
3. High efficiency.

25A ELECTRIC PROGRAMMER

1. 25A capacity.
2. Digital display.
3. Interchangeable with 12V motors.

THE AMSTRO AUDIO TUNER

1. Excellent tuning accuracy.
2. Sensitive to changes in tone and frequency.
3. Easy to use.

FANS & BLOWERS

1. 5"x5" £1.25 each.
2. 6"x6" £1.50 each.
3. 4"x4" £1.00 each.

MINI MAMP on p.c.b. 4 x 6" (20W)

1. Fitted valve control.
2. Built-in automatic mains voltage stabilizer.
3. Frequency response from 20 Hz to 20 kHz.

J & N BULL ELECTRICAL

128 PORTLAND ROAD, HOVE, BN3 5LG

OVER 400 GIFTS

YOU CAN CHOOSE FROM

TWO POUNDERS

1. Wall mounting thermostat, high precision with Mercury switch and thermometer.
2. Mains operated 8V for model control.
3. Mains switched 8V for sets of stereo for Mullard Unilet.
4. 10V mains for sets of stereo for Mullard Unilet.
5. Mains operated 8V for 3 sets of stereo for Mullard Unilet.

CAR START/CHARGER KIT

Flat Batteries! Don't worry you will start your car in a few minutes and save £200. With this kit you will save on insurance, car owners club fees. Repairs, etc. with cash £16.50 or with cheque £16.00 post paid.

VENNER TIME SWITCH

1. Interchangeable 12V and 24V models.
2. 12V model has 3 red lights.

SOUND TO LIGHT UNIT

1. Interchangeable 3V or 6V.
2. Switch for on/off.

Mains transformer strength is controlled by a "Mains Control" knob. This transformer has three transformers, one for 200V, one for 110V, and one for 120V. This transformer is used to increase the voltage from the mains to the required voltage for the equipment. The transformer also has a fuse to protect the equipment from overload. The transformer is mounted on a base plate which is attached to the wall. The base plate has a switch which can be turned on or off. The transformer is used with 12V or 24V power. For prices of models bought see our "NEW TWO POUNDERS".
Powerful Semiconductor Laser

Siemens have succeeded in integrating up to forty laser diodes on a single substrate to produce a semiconductor laser with more than thirty times the power of existing types.

The mirrors of conventional laser diodes are seldom able to handle more than 50mW of output power. The use of a laser array allows the individual diodes to operate at higher efficiencies, reducing the thermal stress on the mirrors. Siemens claim output powers of more than 1.5W using this system.

The arrays consist of optically coupled laser diodes spaced 8-10um apart across a substrate. The wavelength of the light output is 0.88um with good coherence properties and the overall efficiency exceeds 30%.

Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS, tel 09327-85691.

- The Geiger-Mite is a pocket-sized Geiger ratemeter which flashes an LED to indicate ionizing events. It also has an output for a crystal earpiece and can be connected to a computer for count analysis. A complete kit (including ZP1310 Geiger-Muller tube) costs £49.92 inclusive from Becker Phonosonics, 8 Finucane Drive, Orpington, Kent BR5 4ED, tel 0689-37821.

- Sifam's new dual movement panel meter allows you to keep an eye on both channels of a stereo system at the same time. Known as the Type 74, it is intended for use in peak programme meter (PPM) systems and meets all the relevant BBC and BS/IEC standards. Contact Sifam Ltd, Woodland Road, Torquay, Devon TQ2 7AY, tel 0803-63822.

-ITT-Cannon have extended their AXR connector range to include a type designed especially for use with loudspeakers. The AXR-PDN plugs and sockets are available in both cable and chassis-mounting form and feature rugged metal shells and a lock coupling to prevent accidental disengagement. The cable entries are designed to accept both round and figure-of-eight cables and the cable boot and insulating inserts are available in either blue or white to aid identification in stereo setups. Contact ITT-Cannon (UK), Jays Close, Viables Industrial Estate, Basingstoke RG22 4BW, tel 0256-473171.

- B & R Electrical Products specialise in switches, relays, connectors and other electromechanical components and their 188-page, A4 catalogue contains a number of unusual items. It is also notable for the amount of information it gives, including photographs, detailed specifications and dimensioned drawings where appropriate. Contact them at South Road, Temple Fields, Harlow, Essex CM20 2BC, tel 0279-34561.

- The new Crackleywood Electronics catalogue is now available. Its 24, A5 pages list a wide range of components, from the commonplace through to more unusual items such as valves and VDRs, and it comes complete with a pre-paid envelope and mail order form. Credit card telephone orders are also accepted. Crackleywood Electronics Ltd, 40 Crackleywood Broadway, London NW2 3ET, tel 01-450 0995.

FOR ALL THE DETAILS OF THIS AND MANY OTHER ELECTRONICS PROJECTS, GET

ELECTRONICS TODAY

SUBSCRIPTION RATES

<table>
<thead>
<tr>
<th>UK</th>
<th>Overseas (Surface Mail)</th>
<th>Overseas (Airmail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>£18.10 for 12 issues</td>
<td>$21.00 for 12 issues</td>
<td>$22.50 for 12 issues</td>
</tr>
</tbody>
</table>

Filled this form with your remittance to:

ELECTRONICS TODAY INTERNATIONAL, Henley Road, Hersham, Nr. Guildford, Surrey, GU5 0ED.

Please state in full:

NAME

ADDRESS

Postcode

Signature

Date

Please use BLOCK CAPITALS

**Please use BLOCK CAPITALS for post and publications Ltd.
NEW NAME IN ELECTRONIC COMPONENTS
OMEGA COMPONENTS AT UNBEATABLE PRICES BY
RETURN DESP.
ALL NEW HI-SPEC LATEST AND FASTEST DEVICES

COMPUTER IC'S

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4008 0.12</td>
<td>4009 0.12 4010 0.12 4011 0.12 4012 0.12 4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47</td>
</tr>
<tr>
<td>4009 0.12</td>
<td>4010 0.12 4011 0.12 4012 0.12 4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47</td>
</tr>
<tr>
<td>4010 0.12</td>
<td>4011 0.12 4012 0.12 4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47</td>
</tr>
<tr>
<td>4011 0.12</td>
<td>4012 0.12 4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47</td>
</tr>
<tr>
<td>4012 0.12</td>
<td>4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47 £0.47</td>
</tr>
</tbody>
</table>

LOW LOW PRICES

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 0.12</td>
<td>4001 0.12 4002 0.12 4003 0.12 4004 0.12 4005 0.12 4006 0.12 4007 0.12 4008 0.12 4009 0.12 4010 0.12 4011 0.12 4012 0.12 4013 0.12 4014 0.12 4015 0.12</td>
<td>£0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28 £0.28</td>
</tr>
</tbody>
</table>

ON ORDERS OVER £25 P&P FREE ADD 15% VAT OTHERWISE ADD 50p P&P - 15% VAT. OVERSEAS ORDERS WELCOME NO VAT ADD £2.00 P&P.
ANY IC SUPPLIED - IF IT EXISTS WE WILL FIND IT QUOTATIONS FOR QUANTITY ON REQUEST.

OMEGA ELECTRONICS
189 Beverley Drive
Edgware, Middx. HA8 5NL
MAIL ORDER ONLY
Prices are subject to change without notice.

12
DIARY

Radio Amateurs' Examination Course — September 3-5th onwards
North Trafford College, Manchester. For details see September '86 ETI or contact the college, Talbot Road, Stretford, Manchester M32 0XH, tel 061-872 3731 extension 53.

The Evolving Local Telecommunications Network — September 7-12th
Aston University, Birmingham. For details see September '86 ETI or contact the IEE at the address below.

Electrical Measurements, DC to VHF — September 7-12th
Imperial College of Science and Technology, London. For details see August '86 ETI or contact the IEE at the address below.

Radio Amateurs' Examination Course — September 8-10th onwards
Paddington College, London. For details see August '86 ETI or contact the college, 25 Paddington Green, London W2 1NB, tel 01-402 6221.

ESSDERC '86 — September 8-11th
University of Cambridge. For details see September '86 ETI or contact the Institute of Physics, 47 Belgrave Street, WC1 4BP, London.

Commodore Horizons Show — September 13/14th
UMIST, Manchester. For details contact Database Exhibitions at the address below.

Television Engineering Course — September 17th onwards
The IBA, London. For details see September '86 ETI or contact the Royal Television Society at the address below.

People and Computers: Designing For Usability — September 22-16th
University of York. For details see September '86 ETI or contact the BISL Conference Department, The British Computer Society, 13 Mansfield Street, London W1 M0P9.

Electron & BBC Micro User Show — September 26-28th
UMIST, Manchester. For details contact Database Exhibitions at the address below.

Electromagnetic Compatibility — September 30th-October 3rd
University of York. See August '86 ETI or contact the Institute of Electronics and Radio Engineers, 99 Gower Street, London WC1E 2AZ, tel 01-388 3071.

Sound Comm '86 — October 1/2nd
New Century Hall, Manchester. For details see September '86 ETI or contact Brenda White on 06286 - 67633.

Wideband Communications — October 1/2nd
Tara Hotel, London. For details contact Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex MA5 2AE, tel 01-868 4466.

Amstrad Computer Show — October 4-5th
Novotel, London. For details contact Database Exhibitions at the address below.

Lighting Workshop — October 17-19th
BBC Engineering Training Centre, Woodnorton, near Evesham. A rare opportunity to learn lighting techniques from BBC and ITV broadcast lighting directors. The weekend course has been designed both for the newcomer and for those with some theoretical knowledge and the emphasis is on practical experience. For details contact the Royal Television Society at the address below.

Addresses
Database Exhibitions, Europa House, 68 Chester Road, Hazel Grove, Stockport SK7 5NY, tel 061-456 8835.
Institution of Electrical Engineers, Savoy Place, London WC2 OBL, tel 01-240 1871.
Micro Economics

Dear Sirs,

In your issue of December 1985 you indicate that the cost of the 6809-based microcomputer would be about £450 including twin disk drives, video monitor, keyboard and power supply.

Micro Concepts quote, for the bare PCB, case and operating system, £253. They advise that the cost of the components for the PCB would be approximately £290 — a total of £543. To that one has to add the cost of the units referred to in the first paragraph above. The realistic overall cost would seem to be more than double that which you suggest.

I cannot think that you would have been negligent to this extent, nor that you have intended deliberately to mislead. Can you please tell me how I may assemble the computer for anything like £450? And where is the evidence that the price "is coming down to less than £450"?

You also state that the computer's disk controller will support double-sided drives. Micro Concept's specification gives the disk interface as being for single-sided disks only, and at a maximum capacity of 700K bytes. Can you please say if it is possible to extend the system to a greater disk capacity?

Yours faithfully,
J.H. Eastaugh,
Chesham,
Buckinghamshire.

——

£109.25 from Micro Concepts and our own estimate of the cost of the components is around £215.00, bringing the total cost of the fully-populated board to about £325.00. That includes VAT and postage, etc, and we arrived at our figure using prices quoted by Technomatic, CMC, Watford and Electromech in the September issue of ETI plus telephone quotes from the suppliers mentioned in Buylines for the more specialised components. No doubt anyone prepared to spend an evening or two going through all the amateur component catalogues available could trim this figure still further. If the disc drives, monochrome monitor, keyboard and power supply are all purchased as new, branded goods they may indeed cost as much again, but if you are prepared to consider surplus gear and shop around a little, you should be able to purchase the lot for around £200.00. That would bring the total to within £30-75 of the figure we quoted.

Regarding the disc interface, the WD1770 controller used on the 6809-based microcomputer does not include a side-select facility and therefore cannot handle double-sided discs. However, the kit supplied by Micro Concepts includes notes on using the PIA to select sides and the firmware supports this option. The formatted capacity available will then be 750K bytes per disc. — Ed.

A Bit Of A Stink About Ozone

Dear sir,

You published an article in your July 1986 issue on an air ioniser.

I would have built an ioniser some time ago, but have been stalled by claims that they produce ozone. One article in an issue of Popular Science magazine claimed this to be one of the beneficial properties of the ioniser. However, I have read elsewhere that the ozone produced can be harmful to your health. I would like you to state if the design published in your magazine produces ozone and if it is in fact harmful.

I enjoy your magazine very much, keep up the diversity of your articles. I would like you to publish some on Dynamic Range Expanders and Electronic Crossties, I can only locate a couple of these designs.

Yours truly,

O. Phillips,
St. Andrew,
Jamaica, W.I.

Many years ago, it was considered healthy to breathe ozone, and a number of gadgets (the 'Ozonette' springs to mind) were designed to produce ozone in the home. It is now generally agreed that high concentrations of ozone can be harmful, although the small quantities produced by electric motors, TV sets, electric train sets, and so on, are no cause for concern.

Modern ionisers aim to produce oxygen ions, which are not the same thing at all. Nobody has questioned the health-giving properties of negative ions, but for some reason the old ozone idea lingers on. If you are at all worried, it is easy to tell when ozone is present — it has a strong, pungent smell, like a sparking electric drill. The ions produced by the ETI ioniser are odourless.

As regards your final suggestions, we'll bear them in mind when planning future issues. — Ed.

Getting His Heaters In A Twist

Dear Sir,

I've just read your article on the Valve Preamplifiers (ETI August 1986). Although you suggest that the layout shown in the photograph should not be followed too closely, the heater wiring should be done in a particular way and not as you've shown it. I enclose a diagram from Amateur Radio Techniques by Pat Hawker, published by the Radio Society of Great Britain.

Yours,
A. Moody,
BBC Radio Engineering Services,
 Broadcasting House,
London.

As we pointed out in the text, the £450.00 quoted was the cost of the prototype. This did not include a case (as mentioned elsewhere, the prototype board was simply screwed to the wall above the workbench!) and also took no account of the sum subsequent constructors would have to pay for the software and boards. Unfortunately, we didn't realise this at the time and quoted the £450.00 figure in the belief that others would be able to build the microcomputer for the same amount.

Having said that, we're not sure the costs are as high as you suggest. The boards and operating system cost
We have received several letters regarding the heater wiring on the Valve Preampflier. All make the point that the wires supplying the heater current should be twisted tightly together. In addition, the section on hum reduction in the book mentioned by Mr. Moody recommends arranging the wiring so that no complete loop is formed under a valve. The illustration shows how this can be done.

In fairness to Jeff Macaulay (the author of the Valve Preampflier article) we should point out that the preampflier shown in the photographs was a hastily-constructed replacement for the original prototype which went astray in transit. Hence our suggestion in the photo caption that readers should not follow the wiring too closely! — Ed.

AUNTIE STATIC'S PROBLEM CORNER

Dear Auntie,

Will you please inform me where I might purchase the following: A dictionary of electronic terms that is comprehensive, yet can be understood by a novice.

A book that would allow me to build a 16-bit microcomputer which explains in detail how the microprocessor, ROM and RAM ICs work, and how to connect them together.

R. King,
Orpington, Kent.

Every electronics dictionary seems to have its own little quirks, omissions and questionable definitions, and I have not yet come across one which I could recommend without reservation. For something cheap, readily available and fairly comprehensive, you could do worse than to choose the Penguin Dictionary of Electronics, which you will probably find in your high street newsagents. The definitions tend to be pedantic and are not always very enlightening, but it will cover most of the things you would want to look up.

The Encyclopaedia Dictionary of Electronic Terms by John E. Traister and Robert J. Traiser (published by Prentice Hall) is a larger, more expensive book which covers every entry in much greater detail than the Penguin book. Another book we happen to have around the ETI Offices is the Encyclopaedia of Electronics, edited by Stan Gibilisco and published by Tab Books, which is similar in style to the last, but more comprehensive.

Both of these books are good if you want a fairly detailed explanation rather than a definition. However, this is one case where I hope that you will not take Auntie's advice, but go to a bookshop with a good technical section and choose one that suits you.

To build a 16-bit computer, a book called 'How to Build Your Own Working 16-bit Computer' sounds like just the one you are looking for. It is available by post from Maplin, who advertise in ETI, and costs £4.95.

— Auntie

MODULAR CIRCUITS FOR MUSIC APPLICATIONS

DELTA PHYSICS

Delta Physics' range of built and tested modular circuit boards enables the home constructor to realise a complete 35-45W Lead Guitar/Keyboard amplifier with an authentic professional sound at low cost.

The system comprises 3 modules each designed for ease of fixing and interconnection. Full wiring details are given with each module. For more details a 4-page leaflet will be sent on receipt of an S.A.E.

1. P.36 Reverb Preampflier. £29.50 + VAT (p.p inclusive)
 Authentic 4-stage reverb or keyboard reverb features an innovative patented 500µs delay and 40ms exponential decay. Controls: Delay and Decay.

2. P.36 Power Amplifier. £16.40 + VAT (p.p inclusive)
 Compact easily-fixed power module gives 38W rms into 8 ohms, 45W into 4 ohms, at 1% distortion (mainly 2nd harmonic). Output is D.C. blocked and short-circuit protected for reliability. Input 500 mV into 40k; D.C. requirement 56-66 V in 1 A. 100 x 90 x 35 mm.

3. P.45 D.C. Supply. £15.25 + VAT (p.p inclusive)
 For use with up to two P.36 and one P.66. Low profile enables use in 2" high chassis. Single socket fixing via 1/4", Output 56-65 V. Fuse protection against shorted loads. Supplied for 220-240V mains unless specified. 140 x 90 x 40 mm.

4. Accessories. £5.00 to £12.00
 Includes: C.10 panel fittings, C.11 header panel, C.12 individual socket panel, C.33. Available in red, blue or black with metric legend (please specify colour). Use with 1/4" jack or C.2 £7.75 + VAT.

DELTA PHYSICS

52 Codrington Hill, Honor Oak Park, London SE23 1ND.
BBC Microcomputer System

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master 128K Memory</td>
<td>£160.00</td>
<td>20.00%</td>
<td>£192.00</td>
</tr>
<tr>
<td>Master 256K Memory</td>
<td>£200.00</td>
<td>20.00%</td>
<td>£240.00</td>
</tr>
<tr>
<td>Master 512K Memory</td>
<td>£240.00</td>
<td>20.00%</td>
<td>£288.00</td>
</tr>
<tr>
<td>Master 1M Memory</td>
<td>£320.00</td>
<td>20.00%</td>
<td>£384.00</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM upgrade for B Plus</td>
<td>£20.00</td>
<td>20.00%</td>
<td>£24.00</td>
</tr>
<tr>
<td>DRAM ROM</td>
<td>£25.00</td>
<td>20.00%</td>
<td>£30.00</td>
</tr>
<tr>
<td>BASIC 2nd Processor</td>
<td>£30.00</td>
<td>20.00%</td>
<td>£36.00</td>
</tr>
<tr>
<td>Acorn 2202 Second Processor</td>
<td>£30.00</td>
<td>20.00%</td>
<td>£36.00</td>
</tr>
<tr>
<td>IDE Drive</td>
<td>£30.00</td>
<td>20.00%</td>
<td>£36.00</td>
</tr>
<tr>
<td>BBC Prestel Receiver</td>
<td>£150.00</td>
<td>20.00%</td>
<td>£180.00</td>
</tr>
<tr>
<td>Parallel Printer Cable</td>
<td>£7.00</td>
<td>20.00%</td>
<td>£8.40</td>
</tr>
<tr>
<td>Extension Module (Module)</td>
<td>£4.00</td>
<td>20.00%</td>
<td>£4.80</td>
</tr>
<tr>
<td>ADF 280</td>
<td>£60.00</td>
<td>20.00%</td>
<td>£72.00</td>
</tr>
<tr>
<td>ADF 281</td>
<td>£60.00</td>
<td>20.00%</td>
<td>£72.00</td>
</tr>
<tr>
<td>ADF 282</td>
<td>£60.00</td>
<td>20.00%</td>
<td>£72.00</td>
</tr>
<tr>
<td>ADF 283</td>
<td>£60.00</td>
<td>20.00%</td>
<td>£72.00</td>
</tr>
<tr>
<td>Printer Letter size</td>
<td>£8.00</td>
<td>20.00%</td>
<td>£9.60</td>
</tr>
<tr>
<td>Print Erase 72 Track</td>
<td>£10.00</td>
<td>20.00%</td>
<td>£12.00</td>
</tr>
<tr>
<td>Four Track</td>
<td>£15.00</td>
<td>20.00%</td>
<td>£18.00</td>
</tr>
<tr>
<td>11-Inch Letter (Box)</td>
<td>£10.00</td>
<td>20.00%</td>
<td>£12.00</td>
</tr>
<tr>
<td>8-Electro Socket (Box)</td>
<td>£9.00</td>
<td>20.00%</td>
<td>£10.80</td>
</tr>
</tbody>
</table>

MemosTech Microcomputer System & Accessories

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memotech Memory (Block)</td>
<td>£15.00</td>
<td>20.00%</td>
<td>£18.00</td>
</tr>
<tr>
<td>1MB Disk Drive with PSU</td>
<td>£164.95</td>
<td>20.00%</td>
<td>£197.94</td>
</tr>
<tr>
<td>Drive Interface (Basic)</td>
<td>£29.95</td>
<td>20.00%</td>
<td>£35.94</td>
</tr>
<tr>
<td>KBPS System</td>
<td>£10.00</td>
<td>20.00%</td>
<td>£12.00</td>
</tr>
</tbody>
</table>

Expansions (Fitted inside main case)

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.25" Drive</td>
<td>£95.00</td>
<td>20.00%</td>
<td>£114.00</td>
</tr>
<tr>
<td>3.5" Drive</td>
<td>£120.00</td>
<td>20.00%</td>
<td>£144.00</td>
</tr>
<tr>
<td>3.5" Double Drive</td>
<td>£125.00</td>
<td>20.00%</td>
<td>£150.00</td>
</tr>
<tr>
<td>5.25" Double Drive</td>
<td>£150.00</td>
<td>20.00%</td>
<td>£180.00</td>
</tr>
</tbody>
</table>

External Peripherals

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232 & RS422</td>
<td>£79.00</td>
<td>20.00%</td>
<td>£94.80</td>
</tr>
<tr>
<td>RS232 & RS422 & SC</td>
<td>£89.00</td>
<td>20.00%</td>
<td>£106.80</td>
</tr>
<tr>
<td>TRIA32</td>
<td>£29.00</td>
<td>20.00%</td>
<td>£34.80</td>
</tr>
<tr>
<td>32K Memory Expansion</td>
<td>£25.00</td>
<td>20.00%</td>
<td>£30.00</td>
</tr>
<tr>
<td>64K Memory Expansion</td>
<td>£37.50</td>
<td>20.00%</td>
<td>£45.00</td>
</tr>
<tr>
<td>128K Memory Expansion</td>
<td>£50.00</td>
<td>20.00%</td>
<td>£60.00</td>
</tr>
<tr>
<td>256K Memory Expansion</td>
<td>£62.50</td>
<td>20.00%</td>
<td>£75.00</td>
</tr>
</tbody>
</table>

DIY Drive Range

<table>
<thead>
<tr>
<th>Component</th>
<th>Price (Exc. VAT)</th>
<th>VAT (Exc. VAT)</th>
<th>Total (Exc. VAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single 100K drive, single 40 Track</td>
<td>£350.00</td>
<td>20.00%</td>
<td>£420.00</td>
</tr>
<tr>
<td>Single 100K drive, single 30 Track</td>
<td>£325.00</td>
<td>20.00%</td>
<td>£390.00</td>
</tr>
<tr>
<td>Single 100K drive, single 20 Track</td>
<td>£300.00</td>
<td>20.00%</td>
<td>£360.00</td>
</tr>
<tr>
<td>Single 40K drive, single 40 Track</td>
<td>£175.00</td>
<td>20.00%</td>
<td>£210.00</td>
</tr>
<tr>
<td>Single 40K drive, single 30 Track</td>
<td>£150.00</td>
<td>20.00%</td>
<td>£180.00</td>
</tr>
<tr>
<td>Single 40K drive, single 20 Track</td>
<td>£125.00</td>
<td>20.00%</td>
<td>£150.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 40 Track</td>
<td>£225.00</td>
<td>20.00%</td>
<td>£270.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 30 Track</td>
<td>£200.00</td>
<td>20.00%</td>
<td>£240.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 20 Track</td>
<td>£175.00</td>
<td>20.00%</td>
<td>£210.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 10 Track</td>
<td>£150.00</td>
<td>20.00%</td>
<td>£180.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 5 Track</td>
<td>£125.00</td>
<td>20.00%</td>
<td>£150.00</td>
</tr>
<tr>
<td>Dual 40K drive, single 2.5 Track</td>
<td>£100.00</td>
<td>20.00%</td>
<td>£120.00</td>
</tr>
</tbody>
</table>

Access and Barcaycard Welcome

All prices subject to change without notice.
Mike Barwise considers ways of performing high speed arithmetic operations in small microprocessor systems.

Eight bit microprocessors can only handle very small numbers in any single operation (from 0 to 255 or -128 to +127), and can only perform very limited operations upon them. About the most complex arithmetic instruction available on any eight bit microprocessor is the ADD WITH CARRY.

As a result, in order to perform even basic arithmetic to reasonable precision, many repetitive operations have to be performed, and one calculation must be complete before the next can be started. This means that software arithmetic is slow. This becomes very obvious when we ask the poor micro to calculate something horrid like the 67th power of 13.5.

Alternatives

There is a range of alternatives open to the micro user in mathematics. The cheapest one is to run the program now and come back next week for the results. However, the more realistic options are:
- Buy a very high speed micro or mini computer (prohibitively expensive);
- Install a standard arithmetic chip set (a so called arithmetic co-processor);
- Find a cheaper alternative.

The arithmetic co-processor is a dedicated micro which accepts instruction codes and data from the host and goes away to calculate answers, with which it returns after a while. Typical devices are the Intel 8231A APU and 8232 FPU. These chips both cost in the region of a hundred pounds in small quantities, and they are designed to operate with 8080 family systems using the 8237 DMA (direct memory access) controller. They are both extremely fast but they are remarkably complex to implement in both hardware and software terms unless you design a microsystem around them. I hasten to add that these problems are not exclusive to Intel, but inherent in all standard hardware arithmetic.

The Cheaper Alternative

In spite of the foregoing reservations, the concept of the co-processor can be carried across to establish a much cheaper solution.

It is very important to understand the significance of speed in micro arithmetic. If you have a single calculation to perform, albeit a complex one, the total run time increase in your program will probably be acceptable even if the maths is done in host software. The real snag materialises when you want to raise every value in the 9th column of your spreadsheet to the power (sin A). If each operation takes 30ms (quite realistic at, say, 400 KIPS on a 3MHz 6502), you multiply this by the number of values after adding a factor for the data transfer time to and from the spreadsheet file. The result is exactly lots.

However, we could transfer quite a number of bytes from the spreadsheet file to some other hardware in 30ms, so the immediate thought which springs to mind is buffers.

Suppose we create a dedicated micro from a CPU, RAM, ROM and interfaces (our buffer of last month), and provide it with a set of maths calculation routines fronted by an evaluation handler.

To use this, maths statements are transferred to it by the host, which then waits for an interrupt from this co-processor which indicates an answer is available. Obviously there will be no time saving when a single calculation is performed, but there is the advantage that the maths software is not in the host map, so there is more user memory available.

Maximum efficiency is realised when the input of a complete expression for evaluation takes just a little less time than the calculation of the result. The host has then just finished loading the co-processor with the second expression when it receives an interrupt saying 'first result ready', and so on to the penultimate expression. Beyond this point, results will be coming back to the host but there is nothing more to send.

Implementation

The starting point for the arithmetic co-processor (ACP) is a buffer system similar to that described last month. It differs, though, in two ways. Firstly, both ports open onto the same bus, since the output is mapped to the same host CPU as the input. Secondly, the buffer can be smaller than last month's print buffer.

In fact it consists of two such buffers (Fig. 1). The first transfers input data (expressions for evaluation) between the ACP input port and the evaluation/calculation scratchpad; the second transfers results from the scratchpad to the ACP output port.

Between the two buffers is the essence of the ACP: the evaluation and calculation software. The evaluation section interprets
incoming expressions and decides what information to pass to which calculation section, and recombines the various elements of the problem into a result for output.

Using this dual-buffer method, it is perfectly feasible to supply the ACP with (and recover results in) straight ASCII decimal expressions, greatly simplifying the problems of data format associated with integrated arithmetic chips. Of course, any other format you choose is also possible, but all operations internal to the ACP must be performed in conventional twos-complement arithmetic.

The string. Having done this, the interpreter just has to pass each element to the correct calculation routine.

The calculation routine set should include as a minimum:
- the four primary arithmetic functions (add, subtract, divide, multiply);
- log and antilog;
- the basic trig functions (sin, tan, cos), and their inverse functions (arccos, arctan, arccos).

This set will allow most general maths up to A-level standard to be performed. The provision of constants (π, e, and so on) is optional, but very easy.

![Fig. 1. Block diagram of the arithmetic co-processor.](image)

The expression input buffer will have to be considerably larger than the result output buffer, as expressions can usually be up to 256 characters in length, whereas even real numbers are normally represented in five bytes (twos complement) or about nine digits (ASCII decimal integer) on eight bit systems.

Performing calculations

The first process is the analysis of the input problem by the input interpreter. If the problem is entered as ASCII, it can be scanned as a literal string and interpreted element by element. A slightly more sophisticated system would be to pre-scan the whole string and enforce conventional maths hierarchy. This can be done either by setting pointers to the required interpretation sequence, or by creating a rearranged copy of

Of course, there is nothing to stop you installing encryption/decryption algorithms, or anything else you fancy. This could prove interesting as, in spite of the recent publication of information and tips about NBS encryption chips, these remain impossible to obtain except under ridiculously stringent licensing agreements.

The four primary arithmetic operators can be performed adequately by software routines, in view of the 32 bit precision generally required. It does not look unduly efficient to implement trigonometry or logarithms as software routines too. An alternative (considering that nearly 32 Kbytes of our ACP map should still be free) is to provide EPROM look-up tables for these functions.

Whichsoever method you choose, it is best to use the fastest processor (CPU) you can get. The restriction on processor speed in

most small micros is mainly due to the limits imposed by peripheral interfaces of the LSI and VLSI variety (programmable parallel port chips, video controllers, and so on). Our design approach uses RAM, EPROM and TTL, all of which are able to run at much greater speeds. The real limitation is going to be the EPROM, which is currently the slowest of the three.

The fastest processors (in terms of operation execution rate versus clock speed) are the 6500 and 6800 families, the 6502 and 6809 being the standard choices. The 6809 is available in the 2MHz version, and the 65CO2 (CMOS) can be obtained in a version capable of an incredible 4MHz! This latter CPU will improve throughput in your ACP, not 'arf!

Of course, at 2MHz and beyond you must be more fussy about system timings. Sloppy design and marginal timings are much more apparent at these higher speeds, and will manifest themselves as intermittent random behaviour or 'crashing'.

Particularly at 4MHz, you must ensure that every critical timing is given at least a 30% safety margin. Thus, at 2MHz (6502) the total machine cycle is 500ns, divided into two equal halves, for the address set-up time and data set-up time. You must ideally choose a memory device which can handle data transfer within 175 to 200ns of a stable address being applied, and your address path must stabilise within the same time limits.

These requirements are much more important during write operations than reads, due to the risk of writing to the wrong location. During a read operation, transient passage through an incorrect address at the start of the data half cycle is unimportant, as the output data are sampled by the processor at the end of the cycle, whereas during a write, the address is latched in the memory at the beginning of the second half cycle. If this address is not yet stable, the address latched will not be the one you wanted.

A realistic compromise is the use of 150ns RAM and 250ns EPROM at 2MHz, and 120 to 150ns RAM and 150 to 200ns EPROM (this means CMOS) at 4MHz.

Maximum efficiency is realised when the input of a complete expression takes just a little less time than the calculation of the result...
address, and must be stable within about 30ns of the end of the 250ns cycle. This allows you to maximise the primary addressing (memory chip select).

You will probably find FAST or A5 TTL essential here.

The TTL interfaces, unless really messy in design, will always come up to expectations, but in all cases decoding should be as parallel as possible. The beginner (and many an unthinking professional, too) may be tempted to daisy chain decoders, which leads to very long cumulative propagation delays (Fig. 2).

Now for the shock: we have just drafted a design for a generalised co-processor. What it does between the output of the host input buffer and the input of the host output buffer is entirely up to you. This mechanism can be used time and time again to handle almost any slow non-real-time task.

Next month I will go into more detail on the implementation of the host/co-processor interface.

Whichever method you choose, it is best to use the fastest processor you can get...

INSTRUMENTS • COMPONENTS • EQUIPMENT • ACCESSORIES

DIGITAL MULTIMETERS
- 3½ digit LCD displays
- 100 MHz bandwidth
- 2000:1 auto-ranging
- 6000 counts
- 1.5% ±0.75% of full scale
- 2000:1 true RMS (model C100 only)
- HCM161
- $19.96

Oscilloscopes
- 50 MHz bandwidth
- 20000:1 auto-ranging
- 10000:1 true RMS
- $35.00

Counters and Timers
- 4 MHz clock
- 1PPS output
- 0.1% resolution
- 50 MHz bandwidth
- $125.00

Analog Multimeters
- 1½+3½ digit LCD display
- 2000:1 auto-ranging
- 1% ±0.75% of full scale
- 2000:1 true RMS
- $11.96

Switch Mode PSU’s
- 0-30V, 0-5A
- 0-15V, 0-20A
- 0-12V, 0-1A
- 0-5V, 0-2A
- $29.00

Digital Capacitance Meter
- 0-3000 µF, 0-3000 nF
- 0-30V, 0-30A
- 0-3000 µA
- 0-3000 µW
- $50.00

Probes/Pulse
- 0-3000 µA, 0-3000 nA
- 0-30V, 0-30A
- 0-3000 µW
- $30.00

DISCOUNTS AVAILABLE FOR ALL EDUCATION/RADAR/TRADE, DEM AND EXPORT SUPPLIED

SOFTWARE
- PC software
- 128K RAM
- $25.00

DC POWER SUPPLIES
- 0-30V, 0-5A
- 0-15V, 0-10A
- $95.00

Electronic Insulation Tester
- 0-1500V
- 0-10A
- $195.00

AC CLAMP METERS
- 0-500A
- 0-100A
- $295.00

Computer Meters
- 0-500A
- 0-100A
- $295.00

Voltage Regulator
- 0-15V, 0-5A
- $25.00

ORDER BY POST OR PHONE OPEN 6 DAYS A WEEK FOR CALLERS.

HENRY’S AUDIO
- 30 Edgeware Road, London W2 1EN
- 01-224 5564
- 304 Edgeware Road, London W2 1ED
- 01-292 1000
- 301-258 1831

FEATURE: Design Concepts

Note that the 2000ns EPROM in the 1.47MHz is pushing it just a little: the data nominally become stable 200ns from a stable input.

Fig. 2 Good and bad decoding.

ETI OCTOBER 1988
The idea of splitting a complex waveform into its constituent sine waves is a familiar one—whenever we talk of a signal's frequency spectrum or a circuit's frequency response, we are implicitly referring to the sine wave spectrum or response. If a waveform can be described by a mathematical function of time, there is a simple integral transform, similar to the Laplace transform described in previous articles, which can be used to calculate the frequency spectrum: the Fourier transform. For computer analysis, we are faced with two difficulties: firstly, that it is often well nigh impossible to give a reasonable analytic expression for many waveforms which occur in electronic circuits; secondly, that computers are notoriously bad at dealing with integration of arbitrary functions.

Discrete Fourier Transform

If the waveform can be sampled, a reasonable approximation to the frequency spectrum can be obtained by means of the discrete Fourier transform (DFT). As this involves summation rather than integration, it is much easier to implement in software; the accuracy of the result will depend on the number of sample points used. For electronic waveforms, samples can easily be generated with an A-to-D converter.

The main drawback of the standard DFT is that it is slow. The number of calculations that the computer must perform is proportional to the square of the number of sample points, and for large samples the time taken to produce a result can become unacceptably long. Much time and energy has been devoted in recent years to improving the basic algorithm and producing fast Fourier transforms (FFTs). Listing 1 is based on a FFT developed by Cooley and Tukey in 1965. For a set of sample points which fill 1K of your computer's memory, this is about 100 times faster than the standard DFT.

Graph Plotting

The output from the analysis programs can conveniently be produced in tabular form, but often a graph is more revealing and easier to interpret. A simple way to produce graphs uses the PRINT TAB(B) statement. This avoids dedication of a large area of RAM to a graphics mode print routine, and eliminates the problems involved in transferring graphics output to certain types of printer.

Listing 1 Routine to implement the Cooley and Tukey fast Fourier transform algorithm.
The plotting method used in Listing 2 is simply to print a ‘*’ on the screen or printer at a position proportional to the value of the function. The data points to be plotted are held in the array RESULTS(N,2), where N is the number of data points. RESULTS(i,1) will be the x co-ordinate of the i-th sample point, and RESULTS(i,2) will be the corresponding y co-ordinate. The graph is printed with the y-axis running across the paper to allow any number of data points to be plotted along the length of the paper.

The program first searches for the largest value of RESULTS(i,2) to choose a suitable scaling factor so that there is room across the width of the paper or screen to accommodate all the points to be plotted. The y-axis is then printed and numbered. Next, the program prints the numerical value of the first x co-ordinate, prints the x-axis, and then the corresponding data point, the y co-ordinate being adjusted by the scaling factor. This is repeated until the contents of the array are exhausted.

Conclusion

This series has, of necessity, covered only a small portion of an ever growing subject. If you wish to follow up any of the ideas without further reading, it would be well worth considering a visit to your local college or university library. Most of them will issue readers’ tickets during vacations.

Many of the books about computer aided circuit design were written with the users of large computers in mind, so you may find that the algorithms involve the use of more memory than you have available on your home micro. Often, increased speed has been achieved at the expense of memory, so it is not practical to modify the program without losing the benefits. Having said that, there are many algorithms that can be implemented on home computers, or programs (often in FORTRAN) which can be translated into BASIC.

Listing 2 A graph plotting routine.

Two books which I have found particularly useful are:

CD-ROMS —
THE FUTURE OF MASS STORAGE?

Gary Herman looks at the past and future of optical memory.

There can be little doubt that the single most
important issue in the development of computing,
post-microprocessor, is that of mass storage. Com-
puting speed only becomes an issue at all when large
amounts of data need to be handled or when complex,
memory-intensive, tasks need to be undertaken. And,
beside all the ballyhoo, memory size (or, more par-
ticularly, address space) is rendered an almost marginal
question in a virtual memory machine. Even 64K can
cope with most demands if it has fast access to capacious
enough mass storage devices.

If mass storage has never yet seemed to be an issue of
singular importance, it is because it has — in a sense —
been circumvented. The mass storage devices most
associated with microcomputers are either inherently
very slow (cassette tape) or quite limited in capacity
(floppies and ROMs). Improvements in performance
have tended to focus on more obvious and manageable
areas of technological progress — processor speed and
address space.

Now that micros of 1Mb core storage and more are
routinely appearing on the market, we may confront
situations in which a machine can hold more data than it
can store in a single operation. For mainframes and
minis, able to use expensive hard discs and tape
streamers as back-up and constructed for the most part
as tailor-made systems to fit a particular use, storage has
never seemed to be a problem. The developing micro
has thrown the issue into relief, however, and now the
talk is all of mass storage and the way in which it
can create flexible small systems of unimagined
sophistication.

Optical Illusions

Optical devices have long been front-runners in the
race to find the perfect medium of mass storage. Because
light is — in theory — capable of much finer resolution
than even a beam of single electrons, an optical medium
should be able to store data much more densely than
any straightforward electronic, electrical or electro-
magnetic medium. (The converse is also true, that it
requires vast amounts of memory to store a visual image
with all the detail we have come to expect of, say, an
ordinary colour photograph).

Of course, the theory meant nothing until there was a
practical way to store and recover data using light. Once
again, that old ‘solution in search of a problem’ — the
laser — came to the rescue.

Visions Of The Future

In July, 1967, a small group of researchers under the
leadership of Dr. Pieter Kramer began what was to
become a massive and far-reaching programme at Philips
Research Laboratories in Eindhoven, Holland. The object
was to record and recover video and audio signals using
laser light in conjunction with a permanent storage
medium. The system that the Philips' researchers
imagined would have had several advantages over the
then emerging videotape devices.

It was to use a disc, which is easier to move at speed
than tape (an important consideration for the recording
and replay of large bandwidth video signals). A disc is
also easier to reproduce in quantity if the information on
it can be stored in the form of surface features. While a
tape has to be copied piece by piece, such a disc can be
mass reproduced using a die and a stamping machine.

This is an important commercial consideration.

The use of a laser was another advantage — especially
for reading the disc. The laser — a heterostructure
semiconductor device of a type developed by Philips
in the sixties — could be used to read a disc
without physical contact since its reflected light
could be modulated by surface features. This immedi-
ately eliminated the problems of wear which made video
recorder head design and videotape manufacture so
difficult. It also meant that the disc could travel with
significantly less friction. The laser disc system would
be more reliable, longer lived and qualitatively superior to
tape systems.

By 1972, Philips were able to give the first public
demonstration of a video disc using the LaserVision
system. In 1978, LaserVision was introduced commer-
cially into the USA and in 1982 it reached Europe. The
system faced unbeatable competition from videotape,
which was good enough for most consumers and had the
added bonus of ‘recordability’, but few could deny its
potential.

Visions Of The Past

Dr. Kramer recently commented that the idea for the
LaserVision formwatt was already present in telegraph-
type punched tape using Morse code and even in the
slotted and folded cardboard strips (known as ‘books’)
which encode the music played on a barrel organ. 'It is,'
said Kramer, 'just another set of dimensions.'

LaserVision discs contain picture information as tiny
pits on their surfaces. These pits represent the positive peaks of an FM signal. The video signal is modulated on a carrier of 7 MHz and the pits have dimensions in the order of one micron.

About an hour's worth of video material can be recorded on one side of a 12" video disc in a tight spiral of pits making some 54,000 turns to cover the disc surface. Track separation is 1.6 microns, which means that the video disc has a density of about 16,000 tracks per inch (tpi). The pit density corresponds to a data density of about 25,000 bits per inch, all of which gives the video disc about ten times the capacity of any practical magnetic disc, including a Winchester.

From the outset, LaserVision was seen as a technique for storing more than old movies. The problem was that a slightly irregular or scarred disc surface could effectively destroy invaluable data, although old movies might survive.

Even so, the technology associated with video discs achieved a great deal. Techniques used in IC manufacture were adapted to get the precision and resolution required to make a master disc using blue laser light on a polished glass disc coated with photosensitive lacquer. A nickel mould was made from the master using an electroplating process developed from that used in gramophone record pressing. The plastic discs have to be made quickly and cheaply from the nickel stampers, with the result that they are neither very regular nor very flat. To read them, powerful servo-motors are used to control the tracking and focus of the laser read head.

So bad are some video discs that they are known as 'potato chip' discs. Yet the lens of the read head must be kept within about 1/4 micron of its fixed distance from the disc surface and the laser beam must be kept to the centre of the track with a margin of only 1/10 micron. The lens itself is a minor miracle, being a single-element aspheric piece of plastic manufactured by a simple pressing process and with a depth of focus of 2 microns. The servos, sensors, correcting motors and controlling logic — which owe quite a lot to robotics and magnetic disc drive technology, but which require almost instantaneous responses — are really the supports on which the whole LaserVision system rests.

Thanks For The Memory

LaserVision technology provided the mechanisms by which digital optical recording (DOR) could be made workable, but it didn't provide the motivation nor the required degree of reliability. In fact, the reliability problem and the motivation were interlinked.

The motivation was really quite simple, and that was the desire to store large amounts of data as cheaply as possible. The video disc offered the possibility of extraordinary bit densities combined with extreme cheapness of manufacture and the ability to replace discs within a drive. It was versatile as a floppy and being more capacious than a Winchester and probably cheaper to produce in the long term than a cassette tape. It was, of course, limited by its read-only nature, but then there have always been plenty of uses for ROMs and, in any case, the video disc might provide the perfect medium for database storage.

Just as the floppy was first developed as a short-term storage medium for loading programs on to mainframes, so DOR systems were first considered as long-term storage media for reference data: dictionaries, maps, mailing lists, device libraries for circuit design packages and so on. These could all be stored permanently on a DOR device and data transferred to programs or short-term storage media as necessary. The discs themselves would be cheap enough to throw away if information on them became obsolete. If, on the contrary, you were faced with a growing volume of discs in one database, there was a ready solution in copying the familiar jukebox. DOR discs, unlike hard discs, could easily be swapped around within a single drive.

Shortly after the introduction of the video disc, Sony very noisily dropped out of the market saying that they intended to concentrate on non-domestic applications of the technology. By 1980, they had become involved with Philips in the development of the laser-based digital audio system which was to become known as Compact Disc or CD. Almost certainly, the two companies calculated that the domestic market for quality audio would be big enough to bring down unit prices within this technology. Indeed, CD Players have fallen to something like 20% of the price with which they greeted the world in 1982-83 (although the discs themselves remain fairly expensive for an audio medium).

The vision of gigabytes of data brought with it a nightmare in the form of uncorrectable errors. With the sort of data density to be expected from a DOR and given the goal of cheap mass production, data errors became extremely likely — particularly block errors caused by physical defects in the disc or read devices. In a system operating at a data rate of 1 Mbit/sec, it only requires an error rate of 10^-4 to ensure an average of one error every second. This is unacceptable in data processing applications, although an audio system can simply mute if an uncorrectable error comes along and the result will be no worse than a scratch on an ordinary vinyl disc.

This may have been another consideration leading Philips and Sony to develop CD technology for audio applications first. The point, however, is that the audio and data storage applications use exactly similar techniques so that CDs and CD-ROMs (as the data storage discs have come to be called) can exploit the same manufacturing plant and can share economies of scale.

Constant In A Different Way

CDs are in many ways similar to video discs. The most noticeable difference is that the CD is smaller at 12 cm, not 12", in diameter. Even at this size, a CD can store up
to 74 minutes of near-perfect audio programme material on one surface.

Data are stored in the form of pits along a 1.6 micron track spiralling out from the centre. With a CD, these pits represent binary numbers not FM signals. Unlike magnetic, video or vinyl discs, the CD rotates with constant linear velocity (CLV) to maximize storage capacity (Fig. 1). Information is stored as serial data in blocks which all have the same physical length. This results in a much more efficient form of storage than with, say, a floppy but means the process of actually finding a piece of information (the seek operation) is compromised.

Each block is addressed using a time code: 0–73 minutes for a CD or 0–59 for a CD-ROM, 0–59 seconds and 0–74 blocks. Because of the CLV, each block is read in exactly the same time, although the disc itself will be spinning at anything from 200 to 500 rpm depending on which block is being read. Seek time is increased by the need to turn the address into a physical location (with a floppy this is simplified by the track/sector sort of coordinate system) and by the process of adjusting the disc's rotational speed to maintain the CLV. The data rate for an audio CD is 176.4 Kbytes/sec while for a CD-ROM it is 153.6 Kbytes/sec.

The standard CD read laser scans the surface of the disc at just over 1 m/s and operates from a clock of 4.3218 MHz. Each data bit read is represented by the state of the disc surface in one clock cycle. A single feature is 0.3 microns in length and may or may not be along the bottom of a pit. Actually the coding system ensures that no features of less than 0.9 microns (and none of more than 3.3 microns) will be present. That is, the coding system — called 'eight-to-fourteen modulation' (EFM) — is run-length limited, as with high quality magnetic drives.

In fact, the coding system is quite complex. The basic unit of data is a frame, consisting of 24 8-bit bytes plus 1 byte of disc identification, timing and similar data plus 8 bytes of error correcting code computed from the 24 bytes of user data. Ninety eight of these frames form a block and, with CD-ROM only, 288 block bytes are used for further error correction, while 12 block bytes are used for synchronization and four hold the absolute address of the block to enable random memory access. There are 270 K blocks on a CD.

Each 8-bit byte of each frame (33 in all) is converted into a 14-bit code by the EFM encoder, which then adds a further 24 bits for synchronization and a 3 bit merging sequence following the 24-bit and 14-bit sequences. Each frame provides 192 user bits but actually consists of 588 channel bits. Channel bits are, in effect, coded instructions to the recording laser: a one representing a change of state (begin making pit or finish making pit) and a zero representing no change (Fig. 2). During a read operation, the channel bits are demodulated and appear at the output as data bits. In the course of the read operation, a sophisticated set of error detection and correction systems come into play.

Audio CDs and CD-ROMs use the same error correction technique on each frame — a cross-interleaved Reed-Solomon code (CIRC) based on a system developed in 1960 by Irving S. Reed and Gustave Solomon specifically to correct block (rather than single bit) errors in data transmission and reception. RS codes are widely used in satellite and deep space links, the basic technique relying on a result of the arithmetic of Galois fields, a rather arcane branch of mathematics invented by the French mathematician Evariste Galois (1811–1832) shortly before he was killed in a bar brawl. In short, RS codes allow an error affecting any subsequence of up to a specified length of any sequence of specified length to be corrected.

With the CD, each sequence of 24 bytes of user data is used to produce a 4 byte error code. These 28 bytes are then interleaved to break up block errors (Fig. 3) and a further 4 bytes of error code are produced. On replay, the processes are reversed. The first decoder accepts 32 bytes and can correct one byte only. Other errors are flagged but not corrected. The four error correcting bytes are stripped from the sequence and the 28 bytes are 'de-interleaved'. The second decoder accepts this sequence and, using the 4 byte error code and the flags produced by the first decoder, it can correct up to four bytes in sequence. This system is capable of dealing with error bursts of up to 450 bytes, which are most likely to result from easily visible physical defects. If longer error bursts occur, the CD will either mute itself or calculate a reasonable interpolation for the unreliable data.
To perform all this decoding on a CD player requires an IC which is the largest logical circuit in any item of consumer equipment. The CD-ROM has a further level of error correction operating on whole blocks of data. The theoretical incidence of uncorrectable errors for a CD-ROM is below 10^{-15}, or roughly once in every 200 years. The observed rate is actually better than 10^{-15} or once in 2 years.

The WORM Turns

Writeable DORs have been around since 1983. The first types used 12" discs with a capacity of around 1 Gbyte per surface. The drives cost around £5,000 each and were aimed at the minicomputer market. Like all the writeable discs currently available, these were ‘write-once’ devices (or, more colourfully, WORMs — standing for, ‘write-once read-many-times’). This means that any part of the disc can be written to once (and once only) enabling users to store their own data. With 1 Gbyte capacity, these discs make plausible alternatives to hard discs.

The surface of the discs consists of a metal film, maybe 0.03 microns thick, deposited under a vacuum. A powerful laser is used to heat a pinpoint of metal rapidly to beyond melting point so that it forms a tiny rimmed hole in the surface on cooling. These surface features are used to represent data. A considerably less powerful laser is used to scan the features and read the data.

To heat even a tiny area by several hundred degrees Celsius in a few nano-seconds requires a power density in the order of 1 MWatt/cm2. Fortunately, suitable semiconductor lasers were being developed at around the same time as the discs themselves. The write lasers need to be powerful to avoid heat diffusing into the substrate of the disc. On the other hand, the read lasers (usually aluminium gallium arsenide type) must be low powered to avoid degrading the surface. Any heat generated during the read operation tends to be dissipated by the metal surface, which makes sure that the surface will maintain its integrity during reading.

But metals do not necessarily provide the best surface for alterable or erasable optical discs. To remove surface features means that the metal would have to be left smooth and that no metal be evaporated in the write or erase operation.

Read, Write

Three possibilities are currently being investigated in research on erasable optical discs: tellurium-selenium alloys, organic compounds and magneto-optical materials. Although many predict that magneto-optical materials will prove to be the eventual winners, comparatively little practical progress has been made with them or with organic compounds. By far the most is known about tellurium-selenium alloys. In fact, a tellurium disc is currently in commercial use in Philips’ Megadoc document storage system.

In all cases, the best results have been obtained using infrared GaAs lasers operating at about 800nm with a writing power of 10mW overall and a 50ns pulse length. (By comparison the reading power is about 0.5mW). Tellurium-selenium is a polycrystalline alloy usually compounded with small quantities of other elements (for example, arsenic which gives better control of melting point and the stability of the material). Holes can be made in the alloy by local heating to 1100°C for a period of one pulse. By heating the alloy to 450°C for a period of about two pulses, the surface is melted and rendered amorphous. No holes are formed, although the amorphous area reflects differently on read-out and can register as erased data. The alloy may be heated again to about 400°C for about two pulse periods to return an amorphous area to its crystalline state.

The Philips’ team — Gys Bouwhuis, Kramer and Klaas Compaan.

Amorphous magnetic gadolinium-iron-cobalt has been known about for some time. This is a magneto-optical material which utilises the phenomenon of phase change. Several companies are currently involved in researching it and similar substances.

A laser is used to heat the material locally which reverses the magnetic polarity of a small area and freezes it in that state. Polarised laser light can then be used to read the pattern of magnetized areas due to a phenomenon known as the Kerr effect whereby the magnetic field rotates the direction of polarisation of the reflected light. To erase the data, the area is heated again while an external magnetic field is applied in the original direction of polarization.

With both tellurium alloys and magneto-optical materials the main problem is simply that it is at present impossible simply to overwrite data. Also, fatigue occurs after some thousands of erase-rewrite cycles, although that may not be a problem if there is enough capacity on the disc in the first place and if suitable algorithms can be developed to handle reading and writing.

Organic compounds do not as yet offer erasability. Research is based on dyes that absorb a great deal of light and have a high reflectivity even when applied in very thin layers. The dyes presently being investigated can be melted locally rather like tellurium alloys. Less energy is involved since the dyes are only superficially melted, the memory effect being obtained by registering difference in reflectivity due to the reduced thickness of the dye layer. The dyes can be very easily applied by spin-coating and are apparently resistant to heat and moisture.

The future for mass storage may be glimpsed in the vision of the CD-ROM jukebox. Already, NEC have shown a prototype jukebox using writable optical discs. It holds two stacks of 100 discs each and two separate drives. With a capacity of 120 Gbytes and a physical volume of only 5 cubic feet, this is surely the prototype of the memory devices of the future.
TRIGGER HAPPY

In March, we invited readers to send in their ideas for circuits to build on your free PCB. From the entries received, we've chosen a variable hysteresis schmitt trigger, sent in by Michael Harris, as the best taking into account Michael's age — 17 at the time of the competition — as well as the usefulness of the design. What follows is based on that design with afterthoughts by Paul Chappell

"It must be said, as a prelude, that the level of entries for our free PCB competition was disappointing. We looked in vain for the fabled ingenuity of ETI readers. In the past, such competitions have inspired clever designs and outrageous designs (including the never-to-be-forgotten caged lion constructed from an IC and a few odds and ends in response to our request for the most original application of the IC in question).

This time we were moved to wonder whether anybody had actually understood the competition — we asked for a design based on the PCB and we got designs based on the PCB and the LM358 IC. A bit lacking in originality. For this reason alone, we have felt unable to offer a first prize to anybody. The design which follows has the virtues of simplicity and usefulness and for these it wins a runner-up prize of £20.

The Circuit

The circuit is a voltage controlled switch and is shown in Fig. 1. Switching levels are set by choosing appropriate values for R1, R2 and R3. If the input voltage begins at 0V and rises the output will be low until V_n reaches the voltage at the junction of R1 and R2, whereupon it will go high. Once high, the output will not go low again until the input falls to the voltage at the junction of R2 and R3.

If R1, R2, and R3 are all of the same value, the upper switching point will be at $1/3$ of the supply voltage, and the lower point will be at $1/3$ of the supply. Reducing the value of R2 will bring the two switching points closer together, keeping them symmetrical about $1/2V_C$. Adjusting the values of R1 and R3 will raise or lower both switching points together.

Applications

The circuit can be used to clean up digital waveforms — the variable switching points allow the circuit to be matched with almost any line driver, or any logic system. It can be used to provide logic pulses from various transducers, for instance the variable reluctance magnetic transducer shown in Fig. 2.

Another application is to prevent overheating, say, a transformer. The upper switching point would be chosen to trigger when the highest allowable temperature was reached. The output would operate a relay to disconnect the load from the transformer. The other switching point would be set to a lower temperature to allow the transformer to become reasonably cool before loading it again (Fig. 2).

Layout

The suggested layout for the circuit on the free PCB is shown in Fig. 3. The LED is optional — you may wish to have a visible indication of the circuit's status for some applications; in others it would not be necessary. The resistor and LED can be replaced by a resistor and 4V7 zener to give a TTL logic output. In this case, the resistor would be about 470R and would connect to the output of IC1a. The zener would go from the free end of the resistor to ground. The TTL output would be taken from the junction of the resistor and zener.

Fig. 1 Circuit of the voltage controlled schmitt.

Fig. 2 Two applications utilising a variable reluctance magnetic transducer and a thermistor. A suitable variable reluctance sensor is available from RS Components or Electromail — see the item in this month's News Digest.
PROJECT: Schmitt Trigger

HOW IT WORKS

Suppose the input voltage rises from 0V. Initially, the outputs of both IC1a and IC1b will be at 0V. As the input rises, pin 3 of IC1a will be held low by the low output of IC1b, via D2, so nothing will happen until \(V_o \) reaches the voltage at pin 6 of IC1b — the upper switching voltage. When this happens, the output of IC1b will go high, allowing pin 3 of IC1a to go high too. The output of IC1a will go high, and hold pin 5 of IC1b high via D1. If the input voltage now falls, it will have no effect on IC1b, which is now held on by D1. Nothing will happen until it reaches the voltage at pin 2 of IC1a — the lower switching point. When it reaches this level, the circuit will once again switch to its ‘low’ state.

PARTS LIST

RESISTORS (all \(\frac{1}{4} W, 5\%)\n
- R1, 2, 3 see text
- R4 1k0
- R5, R6 680k

SEMICONDUCTORS

- IC1 LM358
- D1, 2 IN4148
- LED1 standard LED (but see text)

MISCELLANEOUS

- PP3 battery connector,
- PP3 battery, sensors as required.

Fig. 3 Component overlay for the schmitt.

UNIVERSAL COUNTER/TIMERS

The TF1000 and TF1100 are high performance Universal Counter/Timers with frequency, period, period average, time interval average, time interval average, frequency ratio and totalise measurement modes.

The Counters also feature a bright 14mm LED display and many additional facilities which make them truly precision measurement instruments.

- Direct frequency measurement to 100MHz
- Frequency range extended to 1GHz on TF1100
- Period measurement from 50ns to 100s
- Time interval measurement from 1ns to 106s
- Totalise and frequency ratio modes
- Matched high sensitivity 100MHz inputs
- AC/DC coupling, attenuator and HF filter
- Slope and trigger level controls, with monitor output
- Standard timebase or high stability option

TF1000 £495 + VAT
TF1100 £595 + VAT
High stability timebase option £75 + VAT

For further information contact:
Thandar Electronics Ltd., London Road, St. Ives,
Huntingdon, Cambridgeshire PE17 4HJ.
Graeme Durant describes a fully-autoranging, 10MHz frequency counter which is pretty nifty when it comes to measuring low frequencies.

Over the past few years there have been numerous designs for digital counters published in various electronics magazines, many based on a certain Intersil wonderchip and all boasting roughly the same features and facilities. Like so many of the others, the design described here has a four digit display. It is also fully autoranging, which is not too rare. However, the feature which sets it apart from the rest can be deduced from the title — the use of phase-locked loop (PLL) circuitry to reduce updating time.

The minimum updating time is normally dependent upon the measurement resolution required. The frequency to be measured is first converted into an equivalent train of logic pulses, then fed to a digital counting circuit for a fixed period of time. If a frequency of 1kHz must be measured to four digits of accuracy, the counting time must be one second and the circuit will count up to one thousand. For a 100Hz input, the counting time must be ten seconds to achieve the same measurement resolution. For a 10Hz signal the counting time will be one hundred seconds. Should you wish to tune a signal generator to an exact frequency under 100Hz or measure the bass resonance frequency of a loudspeaker, this delay is likely to prove very awkward.

Two different methods can be used to reduce the updating time without losing measurement resolution. One system involves measuring the time taken for one wavelength of the input signal to occur and then calculating the reciprocal of this period. This method obviously requires much computational hardware or the use of a microprocessor. The alternative is to use a phase-locked loop to multiply the input frequency by some exact integer value prior to measurement. This is the approach taken here.

A phase-locked loop uses the principles of feedback control systems to lock a variable frequency oscillator onto the same frequency as an input signal, or if desired, to some predetermined multiple of it. In this design, low frequency inputs are multiplied by some power of ten prior to measurement. In this way, the counting time to achieve a particular resolution can be divided by the same power of ten and the speed of updating dramatically increased.

This design will measure frequencies from 10Hz to 10MHz with four digit resolution and it updates its display two-and-a-half times per second on all ranges. The counter is fully autoranging, the current range being displayed as an exponent to the right of the main readout. For example, a figure two would indicate that the main reading should be multiplied by 10^2. A 'hold range' feature is also provided, allowing users to avoid the disturbing flicker which results when an input signal frequency is wavering undecided just between ranges.

The Circuit

Figure 1 shows the internal workings of the frequency counter in block diagram form. Approximately signals are first amplified and then squared-off by a Schmitt trigger to produce clean, logic-compatible pulses. The circuit will operate correctly from input signal levels as low as 35mV at moderate frequencies.

The output from the squaring circuit is split several ways. It is fed to a detector which provides a logic-low signal to the rest of the circuitry whenever there is an input signal. It also goes to the range-setting circuitry built around the phase-locked loop, the frequency dividers and the two electronic switches.

The function of the range-setting circuitry is to adjust the
The incoming frequency of the incoming signal is so that the output of the main counting logic always lies between 10kHz and 99.99kHz. When the incoming frequency is already within these limits, no adjustment is necessary and the output from the signal squaring circuit can be passed directly to the main counting logic (position 4 of the switches). If the input frequency is above 99.99kHz, the output from the squaring circuit will be passed either through one or both of the two +10 stages, allowing measurement of input frequencies up to 999.9kHz and 9999kHz (9.9MHz) respectively (positions 5 and 6 of the switch).

If the input frequency is below 10kHz, a phase-locked loop is used to multiply it. Under conditions of lock, the VCO output frequency will be n times the input frequency where n is the division ratio between the VCO output and the comparator input. By using one, two or three +10 stages, the VCO output frequency can be made 10, 100 or 1000 times higher than the input frequency. This allows frequencies down to 10Hz to be multiplied-up to the 10kHz minimum required by the counting logic.

The counting logic takes the output selected by the range switching and counts the number of pulses arriving during a 100ms period. This period is set by the timing circuits, which also drive an LED when the count is taking place. The count at the end of the period corresponds to the signal frequency and is fed to the main, four-digit display. If no input is connected to the counter, the signal detector mentioned earlier provides a logic-low on the reset line and sets the display to zero.

Count data from the main counting logic is passed to the range data and control circuits. These perform a number of functions, one of which is to produce 'range too high' and 'range too low' signals when the input to the main counting logic lies outside of the acceptable frequency range. These signals are used to control a ranging counter which sets the positions of the two electronic range switches. The output of the counter is decoded to produce the single-digit range display. The range data and control circuits are also responsible for blanking both the main display and the range display while counting is in progress.

Data from the counter is also fed back to the range data and control circuits and compared with the count data coming from the main counting logic. If the count rate is too high and the ranging has already selected the highest range, an 'over-range' LED is illuminated on the front panel. This indicates that the frequency of the input signal is too high for the instrument to measure. Like other indicators on the instrument, this LED is flashed slowly using the 'flash rate' output from the timing circuits.

The hold-range facility is designed to over-ride the autoranging circuitry and 'freeze' the instrument on whatever range it happens to be on at the time the button is pressed. Another flashing LED is used to indicate that this facility has been selected. A lock detector monitors the state of the phase-locked loop circuits and resets the hold if the input signal goes out of the circuit's frequency range.
HOW IT WORKS — COUNTING AND DISPLAY CIRCUITS

IC11 and IC12 form the heart of the counter's timing circuit. They provide a precise 100ms gate pulse during which counting takes place, a latch pulse to latch to the count and display circuits, and finally a reset pulse to start the whole sequence off again. IC11 is a 4060 CMOS oscillator and divider which is driven from the 2.276μs crystal. A variable capacitor, CV1, is included to allow fine adjustment of the oscillator frequency. The reference frequency is divided down by 2^10 to give a 200Hz clock which is passed to IC12, a 4520 dual binary counter.

The first half of this IC consists of input pin 9 and the output pins 11, 12, 13 and 14. Its configuration is as a decade counter by D16, D17 and R24 which reset the counter to pin 15 when the count reaches 10. The output from Q3 (pin 14) drives the input of the second counter stage (pin 1) which is configured as a standard 4-bit binary counter. The output from Q1 (pin 4) of this stage will have a frequency of 5kHz.

The gate signal is produced by inverting the Q1 output (by means of IC13c) and combining it in a diode gate (D18, D19, R26) with the Q2 output from pin 5 of IC12. The result is a pulse of 100ms (the period of the 'low' half of the 100ms pulses in the 4520's output) to 10ms intervals. This signal enables IC14b which carries the main counter input from the range switching circuits. It also drives LED4 which indicates that the counter is being updated.

The Q output of IC16a is also used to clock IC17b which blanks the display whilst ranging is taking place. Its data input is connected via D36 and D37 to the leading zero latch, IC16b, and the overflow latch, IC16c, one or other of which will be high during ranging. Under these conditions, the main display (via pin 1 of IC23) will be blanked and the range display (via D35) will all be low.

Blanking can be inhibited as described in the reset pulse of IC16a (pin 10) high via D42 or D43. D43 is driven by the Q output (pin 13) of the hold-range latch, IC15. This prevents the display being blanked when hold-range is selected, even though the range may technically be incorrect. The other situation in which display blanking must be inhibited is when no signal present line also must be low-frequency output from the tone counter, IC12. The output of IC19c also used to reset the main display to zero via D29. The 'high if no signal present' line also enables IC19d whose output is connected to the low-frequency output from the tone counter, IC12. The output of IC19d is connected to the blinking pins on the main display and the output of IC19c is connected to the tone counter via D41. The last that when no signal is present at the input to the counter, the range display will not be illuminated and the main display will show four zeros and will flash slowly along with the decimal point.
Incoming signals are applied to the voltage-limiter consisting of R1, D1 and D2 which reduces the input to a maximum of ±600mV. R1 is rated at 1W so that large input voltages can be handled safely and C1 is included to ease the passage of high-frequency signals.

The input amplifier and squarer is based around Q1, Q2, and IC1. The FET, Q1, is used in a self-biasing arrangement with a 1kΩ resistance, R2, tying the gate to ground. This ensures that the counter has a high input impedance. R4 provides the necessary negative source bias and is decoupled to AC by C3 so as to roll-off the frequency response below about 20Hz. Q2 shifts the level of the signal to drive IC1, a TTL NAND gate with Schmitt trigger inputs. This ensures that the logic-compatible output pulses have fast-rising edges. R7 and C2 provide a smoothed supply to the input circuitry.

The output from IC1 drives all of the other sections of the circuit, including the 'signal present' detector built around IC2b, IC2c and D3. These components form a monostable with a normally high output which goes low for about 200ms when triggered. The mono-stable is triggered by falling edges and is re-triggerable, which means that an incoming frequency of more than 5Hz will cause it to remain permanently in the low state.

The input signal from IC1 also goes to IC7, a 74LS253 dual data selector which performs the function of an electronic switch. This is controlled by the ranging counter, IC10, a 4518 BCD dual up/down counter. The three least significant bits of its data output (pins 6, 11 and 14) form the range signal which controls IC7.

Just after every count period, IC10 will receive a 'clock for autorange' pulse from the reset circuitry and will check the 'range too high' and 'range too low' lines. Both signals will increment the counter via the clock input, pin 15, passing through D5 and D6 and then IC9c. In addition, 'range too low' signals will pass directly to the UP/DOWN input, pin 10, forcing this pin high and causing the counter to increment upwards rather than downwards.

IC10 has a preset facility which is used here to return the counter to range four when no signal is being measured. This is useful because range four is around the middle of the instrument's measuring range and is therefore a good place for the autoranging circuits to start from when adjusting to a new signal. When no input is applied, the signal present detector will reset IC10 pin 1 via D7. The counter will also be reset should it accidentally stray onto a non-existent range. This is achieved by using D10-12, R19 and D8 to reset IC10 when all the data lines are high (range seven) and by using D13-15, R21, IC8d and D9 when all the lines are low (range 0).

When the ranging circuitry has settled upon a suitable range, IC7 responds by selecting the appropriate input and passing it on to the counting circuitry. IC7 contains two, four-into-one selectors, one of which handles the lower three ranges while the other handles the upper three ranges. When one of the upper three ranges is required, the most significant bit of the data input will be high and pin 15 of IC7 will be taken low by IC8a. This enables one half of the
PLL AND AUTORANGING CIRCUITS

selector which has pins 10, 11 and 12 as its inputs and pin 9 as its output.

When range four is required, IC7 routes the signal from IC1 directly through from pin 10 to pin 9. When range five is required, the signal is taken via IC4 and pin 11 of IC7. IC4 is a 74LS59 decade counter which is used here to divide the incoming frequency by ten. A TTL device is used because CMOS would not be able to cope with the highest frequencies handled by the instrument; R17 is included to convert the TTL level so that it is CMOS compatible. When range six is required, the signal is taken via IC4 and the first half of IC5 and into pin 12 of IC7. IC5 is a 4518 dual BCD up counter which divides the signal by ten again. A CMOS device is quite adequate here because incoming signals will already have been divided by ten by the TTL device.

When the ranging counter selects one of the lower three ranges, the most significant bit of the data lines will be low and the first section of the electronic switch will be disabled via pin 15. Pin 2 of IC9a will also be driven high by the output of IC8b, and in the absence of a signal from IC7, IC2 will pull pin 3 of IC9b high. This allows signals from pin 4 of IC3, the phase locked loop, to be passed directly to the counting circuitry via IC9a and b.

IC3 also takes its input from IC1. The VCO output passes both to the counting circuitry and to a chain of three counters, each arranged as a divide-by-ten stage. One of those is the second half of the 4518, IC5, and the others are the two halves of a second 4518, IC6. The second of the two four-into-one selectors in IC7 routes one of the outputs on this chain of dividers to the comparator input of IC4 (pin 3). By selecting a suitable division ratio between the VCO output and the comparator input, the phase locked loop can be made to multiply the input signal by 10, 100 or 1000 as required. R14 ensures compatibility between CMOS and TTL levels. R12, R13 and C8 set the operating frequency of the phase locked loop VCO and R10, R11 and C7 form a two-pole, lag-lead low pass filter. This allows faster locking on step changes in frequency than other filter types.

The circuitry around IC6 is a detector which provides the first indication of locking in the PLL. When the PLL is locked, the output of the unused phase comparator (pin 2) will be low except for some very short duration pulses which result from the inherent phase difference between the signal and comparator inputs. The phase pulses output, pin 1, will be high except for some short duration pulses which arise for the same reason. In this condition the output of IC8c will go low and the unwanted pulses are then filtered out by R15, R16, D4 and C9.

This 'low when locked' signal passes to the circuit consisting of IC2a, IC2d and IC9d where it is compared with the 'high if no signal present' line and the output of IC8a. This latter line will be high when the counter is on one of the lower ranges and the phase locked loop is in use. Using this data, the 'high if not locked' output will reflect the condition of the lock detector provided a signal is present. If the counter is used on one of the higher ranges where the phase locked loop is not needed, the output will still indicate lock so long as there is a signal present.

The power supply is perfectly conventional and uses the two secondary windings of 9-0-9V mains transformer to feed a full-wave rectifier. The output is then smoothed by C23 and an IC regulator, IC24, provides a steady output voltage regardless of loading. A power-on indicator, LED1, is driven from the supply via R28.

This project will be concluded with a further article on the construction, testing and setting-up of the frequency counter.

LOUTRONICS

HITACHI 3" S/S Drives £29.95 P/P £2.00
TOSHIBA 3½" D/S Drives £59.95 P/P £2.00
CDC 5¼" D/S Drives 80T £79.95 P/P £2.00
TANDON 5¾" (Full Height) D/S 40T £60.00 P/P £2.00
NEC 20MB ½H Winchesters £345.00 P/P £5.00
SHUGAR 5MB (Full Height) £80.00 P/P £5.00
DISCTRON 10MB (Full Height) £125.00 P/P £5.00
HARD CONT Card (OMPTI/W Digital) ½ Length £149.50 P/P £1.00
5¾" ½H DRIVE CAB + PSU (cream) £14.95 P/P £2.00
XT CLONE Cases, PSU’s, Cards etc (phone for prices)
NEWBRAIN Mother PCB’s brand new £3.95 P/P £0.75
NEWBRAIN RAM PCB’s (4116 × 32K) £1.95 P/P £0.75
NEWBRAIN PSU’s £3.95 P/P £1.00
All prices inc VAT. Redundant stocks wanted for cash.

LOUTRONICS

11 Hercules Road, Hillingdon, Middlesex UB10 9LS
Tel: 0895-55399 (Wed closed)
The TELEBAX, an invaluable must for the owner of any video monitor, with a compact, versatile, and user-friendly system. It is supplied with a 240V AC power supply and can be fitted to any monitor, whether in home or office. The TELEBAX includes a 16-bit A/D converter, a 16-bit D/A converter, and a 16-bit microprocessor. It offers a wide range of features, including a menu-driven interface, automatic gain and offset control, and a built-in VCR interface. The TELEBAX is designed to be easy to use and features a simple and intuitive user interface. It includes a built-in VCR interface, allowing users to easily switch between the TELEBAX and a VCR, and a menu-driven interface for easy configuration. The TELEBAX is available in a variety of configurations, including a standalone model and a model that can be integrated into a larger system. This makes it a versatile and powerful tool for anyone looking to improve the performance of their video monitor. The TELEBAX is the perfect solution for anyone looking to improve the performance of their video monitor.
TAKING CARE OF BUSINESS

From now until the end of the year, we'll be taking a close look at the subject of starting your own business in the electronics field. The possibilities for the group or individual with determination and energy are great: component supply, specialist equipment supply or manufacture, circuit design, PCB design, prototype manufacture, small run PCB manufacture, consultant engineering, equipment repair, hiring out and operating PA systems, technical writing and more.

You could design a particular piece of equipment — an audio amplifier, say, or a computer peripheral. You could sell it as a built unit or as a kit, or you could sell the rights to an established manufacturer or kit supplier. You could provide technical services at a price — consultancy, tapeing up PCB artwork, writing documentation and manuals, even training. You could buy and sell components or second-hand equipment or just open a retail shop. Electronics offers opportunities in practically every kind of business enterprise.

These days, lots of people are thinking about starting small businesses and thinking seriously. Most of them will have no experience of business at all and despite an apparent commitment to supporting new enterprise from banks, government, local authorities, and the EEC and the local Chambers of Commerce, starting up in business is still a difficult and risky undertaking.

The new entrepreneurs will be greeted by a veritable jungle of regulations and restrictions. They will have to face the realisation that the small electronics business is, in practice, no more encouraged today than it was ten years ago. Researchers at Edinburgh's Heriot-Watt University have demonstrated that small companies and the job creation that is supposed to go along with them have not been noticeably stimulated or encouraged during the past five years in Scotland's loudly-trumpeted Silicon Glen. The Small Business Bureau have pointed out how the possible merger (as I write) of GEC and Plessey may destroy over 150 small firms. Others have argued credibly that the British electronics industry's dependence on military contracts is actually crippling to small businesses. For the start-up company and the would-be entrepreneur, the road is not easy.

We hope to smooth the journey a little with this short series. Each month you will be able to pull-out the business section to provide a handy information pack for you to refer to as and when you need it. We'll tell you how to get financial backing and what to do about tax. We'll try to enlighten you on the murky topic of protecting your inventions, ideas, designs and trade names. We'll cover partnerships, sole-traders, co-operatives and limited companies and we'll give you an invaluable list of addresses and contacts as well as offering easy-to-use advice on research, planning, marketing and the law.

On top of all that, we'll be profiling some of the people who've set out on that hazardous road to self-employment, starting this month with a success story to gladden the hearts of even the most pessimistic. In short, if you think you might like to start a small business, or if you've already started one, we'll help you.
Doug Simmons is one of those familiar names you can't quite place. Add 'of Maplin,' and you probably have the face as well as the place. Mr. Simmons confronts his public from the pages of Maplin Electronic Supplies' catalogue, but they might be forgiven for missing him between the epic sci-fi covers and 450 pages of components and data within. More elusive still, co-director Roger Allan appears only as one of 100 postage-stamp staff portraits.

Greater exposure is given to a scaled-down version of the cover painting, and its story... sprinkled like grains of sand among the stars are the outposts of mankind; drawn together over the unimaginable distances by the giant trading fleets that cross and re-cross the galaxy...'. At the foot of this most conspicuous page are the all-important phone numbers: 'Sales only... Trade Sales... Cashel... Sales desk open 9 am to 5.30pm Monday to Friday' and the addresses of the company's five shops.

At a time when electronic construction by private individuals is beginning to look like a vanishing craft of old England, Maplin have expanded their services resolutely in precisely that market as well as in the professional sector. Yet they had a classic 'small beginning', with Allan and Simmons starting business in a converted bedroom at Roger Allan's home in 1972. Serious hobbyists, they were unhappy with their component suppliers, and believed they could do better.

Simmons had been working for the Post Office (now British Telecom) with the Special Projects Planning Group, and Allan was a service engineer at a newspaper print works, but Simmons stresses that the blueprint for Maplin came from their spare time interests, particularly electronic music.

'We started doing electronic organ and synthesizer kits. None of them are left now, but the first really good seller we had was the Practical Electronics synth kit in 1973, and then the ETI 4600 synth, which was an enormous seller over the years. They went like hot cakes. I don't know how many we sold, but I remember packing them evening after evening. Fortunately, we had our own premises by that time.' Business was good enough to extend to a shopfront by Christmas 1974, but real expansion came with a new approach some years later.

'We didn't make a decent profit until the first classic Maplin-style catalogue appeared in 1978. After that, turnover doubled every year for some years.

'The catalogue came out at Christmas. We advertised it, and mailed out about 30,000. We couldn't physically move until they were gone. Then it just went mad. We were working nights and weekends, we doubled staff. It took three months to get back to same-day service. We had complaints, all right. At the worst point, we were a week behind. We had to put a computer in, a PDP 11/70. Before that, two or three people were just looking up orders, full time. It could take two days to find one order.'

The Maplin computer took a year to set up. At first, the company employed an outside consultancy to write the software but, characteristically, they eventually took over the job and finished it themselves.

The impetus behind the catalogue was 'to give hobby electronics a more professional image. We wanted a catalogue which looked like a mail order catalogue—not like another electronics catalogue. Electronics had a

Doug Simmons — the serious hobbyist made good.
"junk shop" image. Some of it still does, but if the hobby market has changed at all in the last ten years, it's insomuch as people are more technically knowledgeable. Component quality used to be very poor; now people are more quality conscious. Otherwise, the demand for types of components hasn't altered that much.

'The things they build have changed, though. Whenever ready-made products come from the east, a market dies. Synthesizer and organ kits aren't viable any more. We did very well with microcomputers at first, but that collapsed when they went into the shops. Why build something you can buy ready-made for less?'

'Burglar alarms and any kind of novelty projects are popular now,' says Simmons.

Maplin's other venture has been into publishing. The quarterly Electronics — The Maplin Magazine has drawn fully on their company machinery.

'The magazine started in November 1981, and we're up to issue 20. Fifty per cent go through newsagents and 50% by subscription, which is very cheap and our subscriber base is very high. There is no advertising, and the production and distribution costs are paid for by the cover price. Project development is costed against the sale of kits.'

'All our projects are developed in-house, or by one or two reliable writers. Project writers aren't very practical people: they tend to come up with hard-to-obtain parts, or projects where only the prototype ever works. We can build all our prototypes here, and they very rarely need amending, unless a component goes out of production. It's a self-regulating system — our project service chap is here, and he keeps a close eye on the designers so that they don't make more work for him!'

Electronics is Maplin's second venture into publishing. Electronics and Music Maker (now E&M, published by Music Maker Publications in Cambridge) was another Maplin project.

'We decided to try a monthly as a new production area, and chose music because we liked music,' explains Simmons. 'It didn't work out because we didn't get the money in from the advertisers efficiently enough. We really weren't interested in that aspect of publishing, so we sold it to the present owners. They were very committed to it, and have done a great job.'

Home constructors are still Maplin's main customers but Simmons admits, the growth area is in trade sales. Maplin's trade desk, MPS, has up till now been something of a sideline. The new year will see a more concentrated effort, with MPS being split off and set up as a separate company — if it grows.

'We have had a 20% increase this year, mostly trade,' says Simmons. 'A lot of it is from small businesses starting up, but we have had some big accounts from around the country changing to us.'

'We sat down and said, "we're going to be millionaires". . . .'

Maplin have managed to keep expanding steadily while others have drawn in their tentacles. How does Doug Simmons think they have achieved this?

'The change of catalogue had a lot to do with it, with the new sense of professionalism. Another thing was keeping up with the times. Some of our competitors have had a hard time when markets collapsed just as they invested in them. I could have happened to us if we hadn't got out of computers when we did. There's still a good trade in add-on bits, but overall it's dropping steadily.'

'Also, we've never really taken money out. I'm still on a working wage rather than a Director's wage. Everything has been reinvested in the business. Perhaps in a few years' time we can get the company onto the Stock Market to generate more capital, and we can take some of the profits out. The Unlisted Securities Market would be the first stage. We're a long way from that, yet, but we're still expanding. The shops do ever so well — 20% of retail and trade business is over the counter — so we're looking for two more sites at the moment. There's a new computer going in, because the old one is too slow now, and we'll be running Unix with C, instead of Extended Basic.'

When Simmons and Allan started, did they realise that their bedroom business would be a full-time living?

'Oh yes,' Simmons says immediately, 'We sat down and said "We're going to be millionaires," and we thought we'd still be sitting in the bedroom. We never thought of ourselves as managers.'

'We've fallen for all the pitfalls — most of them, anyway. We did lots of silly things, we despaired a few times.' Would they do it again? 'If I was at the same age, yes. Not again at my age. It can be very traumatic, and it affects your personal life. You have to be completely committed.'

'And it has got more difficult. You need a new angle, not necessarily a new idea, but a new way of approaching something. It's all been done now, hasn't it?'

Doug Simmons and I did not discuss the 'right' age for starting up a new business. The 'right' age is the age when you can see the new angle, and find the commitment. Right?
Amanda Hopkinson asks a few pertinent questions — starting with 'Why begin in business?'

S

o you think you want to set up in business. Why? Because you can’t stand another week of subsisting on the dole, odd jobs or redundancy money? Because the kid’s granny or the workaholic-but-unemployed-DIY-maniac-next-door are driving you out? Or because being a cog in the wheel, servant to a master or exploited employee has lost its compensatory lustre?

Wrong answers, the lot of them, however commonplace. Wrong because they’re negative, about knowing what you want freedom from not freedom for, and taking escapism as your prime motivation. Appropriate answers would be positive but not fantastical, showing a realistic awareness of the business world and a capacity for self-evaluation. A sense of independence needs to ride with a sense of responsibility, moral as well as financial.

If you don’t believe your product or service is a thing of beauty or usefulness, it’ll be all the harder to believe in its commercial viability. And as for yourself, you may be convinced of how healthy and hard-working you are already, but can you combine financial shrewdness with flexible management? The stolidity of an ox with the delicacy of a diplomat? A grasp of the necessary complexities of business life with the ability for simplifying priorities?

A BUSINESS-LIKE APPROACH

If the opening questions seemed appealing and the latter prissy, then perhaps setting up in business is not for you. Much better to find out beforehand with a bit of careful questioning and foresight than later, in some spectacular fiasco. And the first questions to ask yourself are, of course: Why? Why now? What do I want to put in to and get out of the project? Where do I see myself in six months, a year and five years time? (If the last answer involves stashing the loot away in Malaga, you get a double disqualification.)

Get Rich Slow

For a start, getting-rich-quick is not necessarily an example of sound business sense. In the early years, your business is likely not to show a paper profit, since everything you make should be ploughed back into its development and expansion. Part of your realistic outlook is dropping the bit about the dazzling rise to rapid millionaire-dom: there’s only one Richard Branson, but thousands of well-upholstered stockbrokers. If your devotion is to making a quick buck, maybe you should consider changing your line of enquiry.

On the other hand, no-one goes into business to lose money. A subsequent article in this series will examine the types of assistance available for obtaining and administering start-up capital and for handling the subsequent cash-flow. But before entering into the practicalities of business management, it’s worth assessing your reasons for going into it, and ways of staying sane while you do.

Make a checklist of the qualities you imagine are necessary to your success. Tenacity, determination, commitment, common sense and tolerance should appear near the top. The ability to seek and take advice and to delegate competently need to feature in bold type. This means you need the humility to find recommended professionals to instruct you in fields you find boring or thought you knew all about already. Just because you personally undertook the conveyancing on
your house purchase, don't assume you don't need advice on how to set about obtaining business premises, or planning permission for a change of use of your home.

You will have to be prepared to figure out how you yourself are best used: Dynorod may be an expensive means of unblocking drains, but is it really the most profitable use of your skills to spend the morning with an arm jammed up the outflow?

Finally, if you can't delegate, then you need the consultation of a Martian or an angel, and so there will never be a holiday or an illness in your life. There's an arguable correlation here. The cemetery, as they say, is full of indispensable people — make sure you're not one of them.

Making Time

It's essential to plan, programme and organise your time with care. I'm instinctively opposed to theses such as that of James Noon, author of 'A Time, proposing that new business managers prepare themselves for a minimum 80-hour-a-week workload; for regular late week-nights at the office; and for bringing work home at weekends. This sounds like the perfect recipe for breakdown — on the part of the business person, his or her marriage and, sooner or later, the entire enterprise.

How do you evaluate arguing with the driver who delivered the wrong order, or trying to get through to directory enquiries?

The issue is to work out realistically what time is available to you after discounting that spent in sleeping, eating and travel to and from work. You may not be left with more than 12 out of every 24 hours. These can then be further divided into 'must', 'ought to' and 'renewal' times, all three of which are equally important even when not of equal length.

The 'must' time might occur between 9am and 4pm — especially if, as with myself, you work from home and have school or nursery age children. The 'ought to' hours I use to catch up on work I may have been unable to do during 'must' time. These hours extend from after 8.30pm to — theoretically, at least — before 7.30am. Between 4pm and 8pm on weekdays and all of most weekends is time often taken up with family. This partly counts as 'renewal' time since at least some of it is delightful, but it's crucial to define a time for being alone.

This may sound strange counsel to someone whose principal problem of adaptation could be the isolation of becoming established as a sole trader after years of happily thronging along as one of the crowd. But it's important not to fall for the fallacy that 'a change is as good as a rest'. The maxim simply doesn't apply when you've emerged from the rut of routine work and to fill each evening and weekend with family picnics or swapping bar tales may give the transitory stimulus of companionship but doesn't relieve you of the responsibility of replenishing your own inner reserves.

Keep a record, if only for a day, and you'll be surprised at how much time gets wasted or spent on nondescript endeavours. (Well, how do you evaluate arguing with the driver who delivered the wrong order, or trying to get through to directory enquiries?)

Some of that time could be relocated to learning how to enjoy a walk alone, get into the lotus position, even how to practise relaxation or meditation techniques. If this sounds foreign to you, it's probably because there's an oriental theory underlying it. But we all know how well the Japanese succeed in their business enterprises, don't we?

USEFUL ADDRESSES

STARTING OFF... GET ADVICE!

Small Firms Service

The service operates a network of Small Firms Centres and helps with new and established businesses. They offer information, advice and training. They also publish useful booklets. The pack that you are at the thinking stage of setting up you will help and there's no limit on the type of business. They can also help to put you in contact with people in local authorities, government departments, and chambers of commerce. More complex and individual enquiries are dealt with by counsellors. They give three counselling sessions, free and there's a nominal charge for subsequent sessions.

The London branch is at

Ebury Bridge House
Ebury Bridge Road
London SW1 8QD
Telephone 01 730 8451 or ring the operator and ask for Freephone 2444 or Freephone Enterprise.

Bristol 0272 294546
Birmingham 021 643 3344
Cambridge 0223 63132
Cardiff 0222 396116
Edinburgh 031 337 9229
Glasgow 041 248 6074
Liverpool 051 236 5756
Leeds 0532 445151
Manchester 061 832 3282
Newcastle 0632 32533
Nottingham 0602 5821205
Reading 0734 597133

Enterprise Agencies

They offer a variety of services to small firms on a free or subsidised basis. Their activities include training programmes, small firms counselling and promotion, advising on premises and a service to link small firms with new investors and partners. There are many agencies throughout England and space limits us to giving the London address only. If you experience difficulty finding your local Enterprise Agency contact the local council's Industrial Development Officer.

LENTA (London Enterprise Agency)
69, Cannon St.
London EC4N 5AB
(01 236 2676)

COSIRA (Council for Small Industries in Rural Areas)

This is an agency for the development commission which aims to help small firms in rural areas where the population is declining or disadvantaged. It offers help in areas of up to 10,000 population. Local information, professional consultancy and advice and training are offered. There is no charge for preliminary discussion with an organiser. The address below is for the central office in England. For Wales contact the Welsh Development Agency, Scotland the Scottish Development Agency and N. Ireland the Department of Economic Development.

141, Castle St.
Salisbury
Wiltshire SP1 3TP
(0722 336255)

Local Councils

What they do to help the development of small businesses varies. To find out what is happening in your area talk to your council's Industrial Development Officer. The ways in which local authorities can help are:

- Premises: Some develop disused buildings into seed bed premises, offering workshops for new business to use until they can expand and move out.
- Advice and Information.
- Loans and Grants: Some local authorities also give loans and grants to certain types of new and small businesses.
- Finance: Help with premises and advice is often available for Co-operatives.

ARC (Action Resource Centre)

This was set up in 1973 by a group of businessmen to research and demonstrate how business skills can be used to benefit the community. Since 1976 they have concentrated more on helping to create employment opportunities and work on selected projects. There are Action Research Centres throughout the country, to find out if they can help you contact the regional manager.

ARC (Greater London) CAP House 3rd Floor 9-11 Long Lane London EC1 9HD (01 726 8987)

BSC (Industry) Ltd. (British Steel)

They concentrate on industrial regeneration in areas of steel closure. They have centre road activity on providing small industrial workshops and offices. They also have a consultancy service to assist in the marketing viability of a business plan. They have access to special EEC funds and a detailed knowledge of UK grants. Their help is available to anyone setting up in one of the
SPECIAL PULL-OUT

designated areas.
British Steel Corporation (Industry) Ltd.
NLA Tower.
12, Addiscombe Rd.
Croydon CR9 3JH
(01 686 0366)

National Federation of
Self-employed and Small Businesses
Membership £18 pa. The federation is a pressure group which acts on behalf of the self-employed and small business. Amongst other benefits, membership includes VAT tribunal representation, and defence in any Health and Safety prosecution.
32, St. Annes Rd.
West Lytham St. Annes
Lancashire FY8 1NY
(0253 720911)

Alliance of Small Firms and Self-
employed people.
Membership £15 pa. for additional fee.
insurance is available in the event of legal
prosecution in relation to business activities.
Advice on VAT, company law, planning legis-
lation, tax and insurance.
33, The Green
Caine
Wiltshire SN11 8B)
(0249 871003)

Small Firms Information Service
British Institute of Management
Parker St.
London WC2B 5PT

The Small Business Bureau
Membership £15 pa. Gives you access to an
advisory service and a copy of its monthly
newspaper 'Small Business'.
32, Smith Square
London SW1P 3HH
(01 222 9000)

Ideas and Resource ExChange
(IREX)
A computer-based exchange which offers
members a service through which they can
offer or seek ideas, finance, skills etc.
Snow House
103, Southwark St.
London SE1 OTF
(01 633 0424)

Paul Bogle Enterprise Trust
Helps new black businesses. Advice on
finance, training and help with accountancy,
advertising, tax and law.
189, Kentish Town Rd.
London NW5 2JU
(01 267 6476)

UK-Caribbean Chamber of
Commerce, Business Advisory
Service
99, Stoke Newington Church St.
London N16 0UD
(01 254 4532)

Project Fullemploy
Self-employment resource centre for those
who want to work for themselves. Tutorials
and one-to-one advice as well as use of
resources.
Unit T20
31, Clerkenwell Close
London EC1 0AT
(01 251 4083)

Head Start in Business
A scheme to help young people set up in business.

Robert Hyde House
48, Bryanston Square
London W1H 7LN
(01 723 4075)

Manpower Services Commission
Operates Youth Training Schemes and similar
work experience programmes.
Head Office:
Morriston
Sheffield S1 4PG
(0742 753275)

The Small Firms Technical
Information Service
The production Engineering Research Associa-
tion operates this service for the Department of
Industry. Ring PERA (0664 64133 ext. 444)
for more details.

The Technology and Innovations
Exchange Ltd.
Aims to bring together inventors and de-
velopers of new products and those with the
money and technical expertise to support
them. Inventors contact the company with
their ideas which is assessed by legal and
technical experts. If an idea is accepted it is
placed on the TIE listing.
TIE Listings
13 Golden Square
London W1
(01 734 8341)

Exchange Resources
An agency dedicated to helping firms and
individuals working in non-military areas of
electronics and computing. For details of
annual fee etc., write or phone:
Towsend House
Green Lane
Marshfield
Nr. Chippenham
Wiltshire SN14 8BR
(0225 891710)

CO-OPERATIVES

National Co-Operative
Development Agency
Represents the interests of the co-operative
sector and offers advice and information.
Local CDAs can offer advisory services. They
can assist with finding premises, developing
your business plan, drawing up a structure
for your co-op and advice on funding
and grants. Your local town hall can give you
information, or contact:
Broadmead House
21, Panton St.
London SW1 4DR
(01 839 2988)

Industrial Common Ownership
Movement (ICOM)
Advice available on all aspects of running
a common ownership business is available
through ICOM. It can provide 'tailor made'
constitutions and has a network which con-
tains lawyers and accountants. It also or-
ganises a database of workers' co-ops and has
training schemes.
The Common Exchange
Leeds LS1 7BP
(0532 461737/8)
London ICOM
7, Bradburn St.
London N1
(01 249 2837)

ICO Womens' Link Up
For women in co-ops.
City Road
London EC1
(01 837 7020)

Industrial Common Ownership
Finance
Formed by ICOM but now operating inde-
pendently it provides short to medium term
loans.
4, St. Giles St.
Northampton NN1 1AA
(0604 375263)

The Co-operative Union
The Co-operative College is based here and
courses are run, Full time and part time edu-
cation secretaries of the union are available
for advice and help and are based through-
out England.
Education Department
Stanford Hall
East Leake
Loughborough
Leicestershire LE12 5QR
(050982 2333)

Greater London Enterprise Board
(GLEB)
GLEB may offer assistance and investment
capital but only in cases where the group have
already prepared a business plan. Alolca CDA
may help with this.
Co-ops Unit
Structural Investment Division
63-67 Newington Causeway
London SE6 BID
(01 403 0300)

Mutal Aid Centre
Research and development work on Co-ops.
18, Victoria Park Square
Bethnal Green
London E2 9PF
(01 980 6263)

Job Ownership Ltd. (JOL)
JOL is an independent non-profit making con-
sultancy unit for the promotion of worker
owned businesses.
9, Poland St.
London W1.
(01 437 5511)

Co-operative Advisory Group
272-276, Pentonville Rd.
London N1 9YJ
(01 633 3915)

Community Accountancy Services
An accountancy service for co-ops.
The Works
TOA, Tomarano Avenue
London NW5 2RX
(01 482 2866)

Registry of Friendly Societies
Information about legal requirements of
forming a co-op.
15-17, Great Marlborough St.
London W1V 2ZG
(01 437 9992)

Assistant Registrar of Friendly
Societies
58, Frederick St.
Edinburgh EH 2NB
(031 226 3244)

Each month we'll bring you more useful addresses
to create your own directory of opportunities.

(List compiled by C.M. Herman).

ETI

ETI OCTOBER 1986
VARIABLE TRANSFORMERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>220V</td>
<td>110V output</td>
<td>1 kW</td>
<td>£220.00</td>
</tr>
<tr>
<td>330V</td>
<td>220V output</td>
<td>1.5 kW</td>
<td>£330.00</td>
</tr>
<tr>
<td>440V</td>
<td>330V output</td>
<td>2 kW</td>
<td>£440.00</td>
</tr>
<tr>
<td>550V</td>
<td>440V output</td>
<td>2.5 kW</td>
<td>£550.00</td>
</tr>
<tr>
<td>660V</td>
<td>550V output</td>
<td>3 kW</td>
<td>£660.00</td>
</tr>
</tbody>
</table>

INSULATED TESTERS NEW!

Test to IEE Spec. Rugged metal construction suitable for bench or field work. Instantaneous speed control. Suits 110, 220, 415 V, weight 60 lbs. £49.00 (exc VAT). £58.80 incl VAT.

GROD'S

MN7 60-200 DOUBLE ISOLATION TRANSFORMER £79.00 (exc VAT). £94.80 incl VAT.

SOLDIER RELAYS

Solid state relay with mains switch or 250V AC 10 amp and 250 mA 25 amp. For relay work. 5 amp mains switch. £15.00 each. £30.00 pair. £55.00 three.

24V DC CENTRIFUGAL BLOWER

900 CFM, 240W. £225.00 inc VAT.

FAN ASSEMBLY

For 3000 CFM fans. £195.00 inc VAT.

SERVICE TRADING LTD

57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BT. Tel: 01-955 1560

ACCOUNT CUSTOMERS MIN. ORDER £10

If an advertisement is wrong we're here to put it right.

If you see an advertisement in the press, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority

ASA Ltd, Dept 3 Brook House, Torrington Place, London WC1E 7HN

If you see an advertisement in the press, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority

ASA Ltd, Dept 3 Brook House, Torrington Place, London WC1E 7HN
AFFORDABLE ACCURACY
Quality Multimeters from
Cirkit
A comprehensive range of Analogue and (Pushbutton or Rotary Switched) Digital Models

CIRKIT DISTRIBUTION LTD
Park Lane, Buxton, Herts. EN6 7QN
Telephone (0992) 441111 Telex 22478

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser’s money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Argus Specialist Publications Ltd will consider you for compensation if the Advertiser should become insolvent or bankrupt. In this event:

(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of this publication, summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last minute to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims made by readers who have complied with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent. Up to a limit of £6,000 per annum for any one Advertiser so affected and up to £6,000,000 in respect of all insolvent Advertisers. Claims may be paid in higher amounts, or when the above procedure has not been complied with, at the discretion of this publication but we do not guarantee to do so in view of our need to set any limit to this commitment and to learn quickly of readers’ difficulties.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc. received as a result of answering such advertisements). Classified advertisements are excluded.
The drawbacks of top notch analysers are that they cost more than most hi-fi systems, and are not realisable as equipment that many people would build or buy if (as is likely) they will need them no more than occasionally. On the other hand, a relatively simple type can be built at reasonable cost, and represents an interesting and useful constructional project. The unit described in this article is straightforward design which has eight bargraph display with ten LEDs per bargraph and logarithmic scaling. Each bargraph corresponds to an audio band approximately one octave wide. In order to reduce the cost and complexity of the unit the the display is a multiplexed type having just a single bargraph driver, but this does not compromise results in any way. This section of the unit could easily act as the basis for other projects which require a multiple bargraph display.

System Operation

At the input there is a high gain amplifier which enables the unit to be fully driven from practically any microphone, including low and medium impedance dynamic types, and crystal microphones. The sensitivity is adjustable, and it can be backed off to the point where the unit will operate properly with line level input signals.

Eight bandpass filters are used to split the amplified signal into octave bands (actually each band has to be marginally more than one octave in order to cover the full audio range in eight bands). The blocks marked as bandpass filters in Fig. 1 also provide rectification and smoothing so that the output signals are DC levels proportional to the AC input. In common with other types of audio level indicator, the smoothing circuit has a fast attack time of a few milliseconds, and a slow decay time of a few seconds. This gives a stable and easily read display, and it also ensures that brief transients do not pass unnoticed.

An eight-way analogue switch is used to feed the DC signals through to the input of the bargraph driver one at a time, and is continuously cycled by a clock oscillator at over 100Hz via three stages of a seven-stage binary counter.

Multiplexing the input signal is only half the problem solved, and the eight bargraphs must somehow be driven from the single bargraph driver. They must also be synchronised properly with the analogue switch so that each analogue input consistently drives the right bargraph.

This is achieved by driving the cathodes of the bargraphs from a one-of-eight decoder which provides a path to the negative supply for one bargraph at a time and is itself driven from the same clock used for the analogue switch. A common reset pulse for the binary counter and the one-of-eight decoder sets them at a predictable and repeatable starting point, so that each channel always drives the appropriate bargraph.

Construction

Apart from the input socket, mains transformer and controls, the components are all fitted on to four PCBs. The display driver and filter boards (Figs. 2 and 3, respectively) are the most complex boards, but offer little out of the ordinary as far as construction is concerned. Bear in mind that ICs 2, 3 and 4 on the display card are CMOS types, and require normal antistatic handling precautions. IC1 is not a particularly cheap device, and it is worthwhile fitting this on a socket even if none are used for the other non-MOS types.

There is a complication with the filter board in that some components are repeated in each filter, and appear on the board in eight different locations. These components have been given numbers on the overlays to indicate which channel they are in, and channel 1 is the lowest frequency channel.

Table 1 indicates the value of the filter components themselves which vary from channel to channel. To avoid confusion over the right quantities, the parts list shows the total number of each value or type required in brackets, while Table 1 lists the components not individually itemised in the parts list.

Details of the power supply board are shown in Fig. 4. Fuse F51 is mounted on the board in a pair of 20mm fuse clips, and you should...
Fig. 2 Component overlay for the display driver board (clock included).

Fig. 3 Component overlay for the filter board (note the number of repeated components).
PROJECT: Audio Analyser

PARTS LIST

RESISTORS (all 0.4W 1% metal film unless stated)
R1 - R10 180Ω 1W 5% carbon (10 off)
R11, 12, 23, 24, 30 180Ω (5 off)
R13 100k
R14 - R21 1kΩ (5 off)
R22 47k
R25 3.3k
R26, 27 3.3k (2 off)
R28, 31 10k (2 off)
R29, 32, 35 1MΩ (10 off)
R33 220k (8 off)
R34 68k (8 off)
Rc, Rd See Table 1
RV1 10k log pot

CAPACITORS
C1 10µF 16V radial elect
C2 100µF polyester layer
C3 220µF 25V radial elect
C4, 5 100nF ceramic (2 off)
C6 47µF polyester layer
C7, 8 220µF 16V radial elect (2 off)
C9 2µF 63V radial elect
C10 1µF 63V radial elect (8 off)
Ca, Cb, Cc See Table 1

SEMICONDUCTORS
IC1 LM3815N
IC2 40518E
IC3 4024BE
IC4 4022BE
IC5 uA 7812
IC6 NE555
IC7 LF353
IC8 1458C (4 off)
IC9 LM324 (4 off)
Q1 - Q10 BC 327 (10 off)
Q11 - Q18 BC 337 (8 off)
Q19 BC 547
D1 - D4 IN 4002 (4 off)
D5, 6 IN 4148 (16 off)
LED1 to 80 5mm red LEDs (80 off)

MISCELLANEOUS
SW1 Rotary mains switch
SK1 3.5mm jack socket
T1 Mains primary, 12V 1A secondary
FS1 20mm 1A quickblow
Metal instrument case about 300 x 150 x 100mm; PCBs; two control knobs; six 8-pin DIL IC holders; five 14-pin DIL IC holders; two 16-pin DIL IC holders; one 18-pin DIL IC holder; pair of 20mm fuse clips; small finned heatsink (plastic power type); ribbon cable, mains lead.
Fig. 6 Circuit diagram of the display driver.

Fig. 7 PSU and clock circuits.

Ensure that these are properly inserted before soldering them in place. IC5 - the 12 V regulator — must be fitted with a small heatsink.

The display board is probably the most difficult from the construction point of view, and details of this board are provided in Fig. 5. It is best to start by fitting the 32 necessary wire links. The LEDs are then fitted, taking great care not to fit any the wrong way round (note the alternate anode - cathode, cathode - anode orientation of the columns). It is probably best to work through the LEDs one column at a time, checking each completed column for errors using a multimeter before progressing to the next one. It could be a little awkward to correct errors in the middle of the board after completion. Try to make the board as neat as possible, including keeping the LEDs at a consistent height above the board. The LEDs should not be allowed to protrude any further above the board than is really necessary or it might be difficult to find sufficient space to accommodate the completed board inside the case, and mounting it could be difficult.

All the boards are fitted with pins at the points where interconnections will be made. Connections are made to the rear (copper) side of the display board, and so double-sided pins should be used on this one.

Case

A metal instrument case having approximate outside dimensions of 300 x 150 x 100mm will comfortably take the four boards and other components. The prototype has the power supply at
PROJECT: Audio Analyser

HOW IT WORKS

The display driver circuit is shown in Fig. 6, and is built around IC1, an LM3915N bargraph driver (the logarithmic version of the popular LM3914N device). The logarithmic scaling provides indications at 3dB intervals, and enables a reasonably wide dynamic range to be covered with a ten LED display. The device supports both hot and true bargraph operation. The latter is used here, giving a relatively high level of current consumption. Bar mode provides a much clearer form of display, especially in a multiple bargraph application.

IC1 can sink up to 30 mA per output, which is inadequate in this case as the current may be shared between eight LEDs — giving only 3.75 mA per LED. Q1 to Q10 are used to roughly double the drive current, and they also effectively convert IC1 from a current sink to a current source.

IC2 is the 8-way analogue switch, and IC3 the binary divider which controls it using three of its seven stages. IC4 provides the one-of-eight decoder action, but provides an inadequate output current capability and is therefore buffered to the display by switch transistors Q11 to Q14. C2 and R13 form the common reset circuit for IC3 and IC4.

The power supply and clock circuits are shown in Fig. 7, and are both quite simple. The power supply uses bridge rectification and a monolithic voltage regulator IC5 to give a well smoothed and stabilised 12 volt output. A current of over 500mA can be drawn when all 80 LEDs are turned on, but the supply is well capable of providing this.

The clock oscillator is a standard 555 astable circuit. Since IC3 and IC4 require antiphase clock signals in order to achieve proper synchronisation, Q19 acts as an inverter which generates the second clock phase.

The input amplifier circuit (Fig.8) consists of a low gain non-inverting amplifier ahead of gain control RV1, and a high gain inverting type following it. The voltage gain ahead of RV1 has to be kept low in order to maintain reasonable headroom for high level signals, and the main purpose of the input stage is to act as a buffer to give the unit a high input impedance of 1MO.

IC8 operates as a bandpass filter and is repeated eight times for each channel. The circuit is a standard op-amp configuration and gives reasonable performance without needing large numbers of components. The Q value of the filter is made quite low so that there is no significant variation in gain over its frequency range, a factor which is crucial if the unit is to give good results. An inevitable consequence of this is that there is some overlap between one filter and the next, and with a signal at the centre of one passband the adjacent channels will respond to it to some extent. This is something that has to be tolerated in a cost design, but with about 16dB or so of attenuation (equivalent to a range of about 5 or 6 display LEDs) from the centre of one pass and to the next, the level of performance compares quite well with other low-cost analysers.

Each filter feeds into a separate precision half-wave rectifier (IC9a) and buffer amplifier (IC9b). The values in these provide the required fast attack and slow decay times. Note that the LM324 is suitable for single supply rail operation — an essential feature of this circuit.

The LED display circuit (Fig. 9) is an ordinary 8 x 10 diode matrix built up from individual 5mm diameter red LEDs (suitable ready made displays seem to be unobtainable).

The unit is completed by hardwiring the boards using multicoloured ribbon cable except for the lead to SK1 which must be a screened type and the mains lead.

In Use

When the analyser is switched on, some of the bargraphs will show a strong initial indication, soon falling back to zero. As a quick check of the unit, connect an input lead to SK1 and touch the non-earthly side. This will probably cause all the display LEDs to light up at first. By carefully backing off RV1 it should be possible to obtain a strong indication from the two lowest frequency channels, with little or no response from the others (since the signals picked up in your body will be predominantly low frequency mains hum).

With each bargraph having ten LEDs at 3dB intervals the unit covers a fairly wide dynamic range, but for optimum results in some applications it is still necessary to adjust RV1 carefully. Best use of the available dynamic range is made by advancing RV1 just far enough to cause the top LED in one of the bargraphs to light up on peak signals. Of course, in some applications the idea is to adjust things so that an equal response is obtained from all eight bargraphs, and RV1 can then simply be given any setting that results in a few LEDs in each bargraph lighting up.

The unit will operate well with most types of microphone, but with some types the high input impedance of the unit is less than ideal. However, this is easily corrected by adding a resistor across SK1 to shunt the input impedance to the required figure. Operation with line level inputs is possible, but an external attenuator will be needed for signal levels of more than about 3V peak-to-peak in order to avoid overloading the input amplifier.

BUYLINES

Most of the components are standard, readily available items. The case is available from Maplin — who advertise in this issue — order code XY49D.

Probable the cheapest way of buying the 80 LEDs is to buy 100 from a supplier who offers a quantity discount and to keep some spares. The mains transformer can be a type having a 12V, 1A secondary, but types with twin 6V, 1A secondaries are suitable if the two secondary windings are wired in series.
LOW COST FRAMESTORE

Dan Ogilvie discusses the ADC/DAC and video circuitry

In the last exciting episode I looked at the design of a real-time storage video framestore, and in particular at the logic and memory interfacing. This month I shall describe the video input and output stages and the external synchronizing circuit.

I mentioned briefly last month that the analogue-to-digital conversion has to be performed within 200ns and that a new and cost-effective integrated circuit from STC will be used for this. It will be pertinent to look in more detail at this IC — the UVC3101 — now (see Fig. 5).

High Speed ADC

Flash converters, or parallel converters as they are sometimes called, have been covered in ETI recently so I shall only briefly mention the principle involved.

An n-bit flash converter will contain 2^n comparators. One input to these comparators will be the analogue input, the other input will be a tap of a resistor ladder. The resistor ladder is connected in this case between ground and a voltage reference of 2V, provided on the chip.

The higher the analogue input the more comparators that change state so the output from the converter is a kind of bar graph. Our converter has 8-bit resolution, so 256 comparators are used. The 256 outputs are fed to a priority encoding network which converts them to 8-bit binary form.

One useful feature of the UVC3101 is the provision of an input amplifier for the DAC. The input to a flash converter usually sees a large number of comparator inputs and hence a large capacitance. Worse still, the impedance changes depending on the state of the comparators which, in turn, depends on the voltage input. We therefore normally need to provide a low impedance output driver for the ADC capable of charging and discharging the 100pF or so input capacitance at 5MHz.

The input amplifier saves us the trouble, its input impedance being 100k in parallel with 10pF. This can be comfortably driven from most op-amps.

The input amplifier also allows us to clamp the input signal. We mentioned last month that the back porch of the line sync is defined as black. By generating a pulse in this part of the signal and using it to DC restore the incoming video we can ensure that the black in the image is always stable.

Jumping DAC Flash

The UVC3101 is not finished yet. Also fabricated on chip is a 10-bit R-2R DAC. An internal 2V reference for this is also provided as are two output amplifiers. One provides buffering for the DAC, the other allows us to mix in an additional video signal. Switching between amplifiers is accomplished by a TTL level signal on pin 39.

Genlock

A composite sync output is provided from the framestore board. It is meant to drive the genlock input to a video camera. This input will synchronize the camera to the framestore and ensure stable pictures are obtained when loading. Switching between internal and genlock mode may be automatic or manually achieved.

Camera genlock is the preferred mode of operation, but not all cameras have a genlock input, while video tape recorders and TV broadcasts never have the facility. The BBC are unlikely to accept a request to synchronize all their studio equipment from your framestore, so provision has been made for the framestore to lock to the incoming video. Switching is performed by pulling low pin 1 of IC41, the select input of a 2:1 multiplexer (see Fig. 2, p. 38, ETI September, 1986).

The incoming video has the sync pulses stripped from it. Mixed sync and blanking signals are derived from it and replace the...
IC34 (Fig. 6) is a high speed op-amp which amplifies the incoming video from 0.7V to 2V. This is AC coupled into the ADC by C5. The video input is terminated in 75Ω by R65, but this may be removed if necessary. R63 and C6 form a low-pass filter to reduce the amplitude of high frequency signals and prevent aliasing. The AC coupled input to the ADC is clamped internally by a pulse on pin 23. IC38 generates this pulse which is arranged to lie in the back porch of the line sync pulse — black by definition. This ensures the blacks in the picture do not shift with changing light levels or with different camera iris settings. The top 4 bits of the 8-bit converter are used and are present on pins 27-30 of IC39. Pin 27 is the MSB.

The top four DAC bits are on pins 4 to 7 of IC39 (MSB first). Resistors R58-R61 pull these inputs low when their driver, IC17, is tristated. This occurs in the blanked areas of the picture. The DAC has two output amplifiers which are selected by a pulse on pin 39 — the mixed sync signal. One of these amplifiers buffers the DAC output while the other buffers an input on pin 38 of the IC which, in this case, forms a variable sync pulse level. The mixed sync pulses are used to switch between the DAC output (video) and the sync pulse level — set by RC1. The resulting composite output is on pin 2 which is buffered by Q3 to enable it to drive 75Ω.

The video input is also presented to one quarter of IC35 which amplifies and inverts it. The output is sent to the -ve input of a comparator IC36 and also to a peak detector formed by D5 and C9. C9 holds the peak level of the signal, in this case the voltage corresponding to the sync pulse tips. R68 and R69 discharge C9, forming the time constant of the peak detector. They also form a potential divider allowing some 90% of peak detector output to form the -ve input or reference input to IC36.

— One further quarter of IC35 buffers the high impedance of the peak detector. The comparator inputs see both the sync pulses and a reference voltage derived from them at some 90% of their peak value. By using this as the comparator, the derived sync pulses are formed on pin 1 of IC36. These are inverted by Q4 to form the genlock sync input. They are also used to trigger half of IC37 to form the line sync blanking pulse, and are integrated by R74 and C10 which, with IC36, detect the field sync pulses. The line and field blanking signals are then mixed by D6 and D7 and inverted by Q2 to form the external blanking signal.

These two pulses are switched in to replace the internally generated signals when pin 1 of IC41 (a 2:1 multiplexer) is pulled low (see Fig. 2, p.38, ETI September 1986). The crystal oscillator is then also replaced by IC40 (a VCO) which is locked by the inhibit signal on pin 6 to ensure it starts in the same position in its cycle every line. RV2 sets the oscillator frequency for IC40 — which should be 10MHz. If you have no oscilloscope, set the picture width equal to that of a non-genlocked signal.

Fig. 6 The video circuit.
normal internally generated signals. The clock oscillator is also locked to the incoming video, ensuring that it starts at the same point with every line. (Incidentally, Fig. 2 fails to show the connection between pin 14, IC29, and the CLK line. This was an oversight.)

This circuit will provide a stable lock from nearly all video inputs. However, because the switching between the two modes of operation is not automatic if the input is removed in genlock mode, refresh to the memory is not guaranteed and picture corruption may occur if this condition persists.

Construction

It is recommended that the plated-through-hole PCB provided with the kit (see below) is used to construct the framestore, although a wirewrapped prototype performed satisfactorily. The board has a silk screen legend to aid component location. The components can be inserted in any order you desire. Sockets are not required for the ICs and are not provided with the kits, although sockets can be used for any of the components without problems. If you do not have a bench power supply available a simple PSU can be built using the ubiquitous 7805 for the digital +5V and a further 7805 and a 7905 for the analogue ±5V. Current consumption for the framestore is about 700mA for the digital supply and 150mA for each analogue supply.

Once all the components have been positioned check the orientation of ICs, diodes and transistors and wire up to a power supply. Although a solder resist is provided on the PCB a quick check for solder bridges would not be wasted.

Two links must be made on the board before you switch on. Both pin 1 of IC28 and pin 5 of IC32 must be taken to 0V with a short piece of insulated wire. These two inputs are normally controlled from an external microprocessor, but are not required yet and must be linked.

You are now ready to switch on. If you are still with us and have access to an oscilloscope it is worth checking the oscillator output (10MHz at pin 6 of IC15), mixed sync and blanking (IC22 pins 3 and 4) and the RAS and CAS signals. If all is well (or if you were unable to check) switch off and wire up the load switch, PL2 pin 17, to 0V and the video output to a TV monitor. Switch on again. If possible use a scope to set the sync pulse amplitude on the output to 0.3V into 75 ohms with RV1. Alternatively set it to obtain a stable lock on the monitor.

If necessary use the horizontal and vertical hold controls on the monitor to obtain a stable picture. Some form of fixed pattern should be obtained on the screen. This is the random data held in the memory on switch on. Press the load switch. The random pattern should be replaced with a black or near black image. If this is so, the other switches may be wired up in accordance with Table 1.

If you have been unlucky and none of what should have happened has, but you have access to an oscilloscope, you should check the circuit methodically for correct signals. The timing diagram given on p. 40, ETI September 1986, should help. Check that all the links and switches have been correctly wired up and that the supplies are delivering the right voltages.

If you still have no success, the author offers a repair service on the boards supplied by Oggitronics that have been assembled with due care and attention. A charge of £25 + parts + VAT will be made.

Next month we will look at interfacing the framestore to a microprocessor and some of the uses for the TTL arithmetic unit.

We've had to hold over the parts list and overlays until then, too.

BUYLINES

No problems should be found in purchasing any of the components for the framestore. The only special component, the ADC, can be obtained from STC, Mercator, Telephone 0493-844911. The PTH, silk screened PCB is available from Oggitronics at 7, Saywell Brook, Chelmsford Essex CM1 6JR for £25.00 + VAT but including postage. A complete kit of parts including the PCB is available for £170 + VAT, also from the above address.

A complete framestore, boxed and with its own power supply is available also for £395 + VAT, again from Oggitronics.
Free Readers' ADS!

Buy, sell or exchange through our free service to readers

CONDITIONS

1. These advertisements are offered as a free service to readers who are not engaged in buying or selling the same equipment or services on a commercial basis. Readers who are should contact our advertising department who will be pleased to help.

2. Advertisements will be inserted as and when space becomes available.

3. The insertion of advertisements will be on a first-come, first-served basis, subject to condition (2). As a result, it will not be possible to guarantee the inclusion of a particular advertisement in any particular issue of the magazine.

4. Readers should either write out their advertisements in BLOCK CAPITALS or type it, underlining any words that are to appear in bold. The magazine cannot accept any responsibility for printers' errors in the advertisements; however, we will do our best to ensure that legibly written advertisements are reproduced correctly. In the event of a gross error, at the Editor's discretion, a corrected version of the advertisement will be printed (at the advertiser's request) in the earliest issue in which space is available.

5. The magazine or its publishers will not accept responsibility for the contents of the advertisements, and by acceptance of these conditions, the advertiser undertakes to indemnify the publisher against any legal action arising out of the contents of the advertisement.

6. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary, for whatever reason.

7. Advertisements are accepted in good faith; however, the publisher cannot be held responsible for any untruths or misrepresentations in the advertisements, nor for the activities of advertisers or respondents.

8. Advertisers must fill in their names, addresses and (if available) telephone number in the space provided, and sign the form to indicate acceptance of these conditions (forms returned without a signature will not be used).

9. All that is to be reproduced in the advertisement should be entered in the space provided on the form printed in the magazine — note that a photocopy is not acceptable. All advertisements must give either a telephone number and/or address for respondents to contact, and this must be included in the wording of the advertisement.

10. Advertisements must be 15 words or less in length (telephone numbers and names normally count as one word, addresses as two).

I accept the conditions above.

Signature

Send this form to: Free Readers Ads, Electronics Today International, 1 Golden Square, London W1 R 3AB.
INTELLIGENT CALL METER

Chris Ranklin describes the software which drives his all-singing, all-dancing telephone call charge meter.

In the first article on the call meter in ETI August ’86 we looked at the basic facilities offered and the hardware. In this article we will look at the operation of the meter in more detail as we consider the functions performed by the software.

The software consists of the main programme stored in EPROM (0000-07FF) and the system parameters and other data which are stored in RAM as required (0800-0FFF). The system memory map is shown in Table 1 and a separate list of the data stored in the top 62 bytes of RAM is given in Table 2.

At switch-on, the hardware resets the programme counter to memory location 0000. The code at this location instructs the microprocessor to zero the RAM in the stack area and set the stack pointer at 0856.

The software then jumps to the main area of the programme, a short loop extending from 0103 to 0115. This causes the time to be displayed on the LCD (using time data from the RAM) and also monitors data bits 0 and 3 on the input port to see if the 'phone has been lifted or the user switch pressed.

At 1/50th of a second intervals, the NMI will interrupt the programme and direct the processor to memory location 0066. The code there produces the 7-day clock data and is illustrated in Table 3. Each interrupt causes the value stored at 0FFE in RAM to be increased by one, and the total is then checked. If it is less than 50, the R and C counters are incremented to update the display and the code then returns to the main area of the program. If the total is more than 50, the code passes through the next instructions (zero 1/50ths second and increment seconds) and then updates the RAM, checks the total and increments the counter as before. The procedure is repeated for minutes, tens of minutes, hours, tens of hours, and days. At the end of each update, the programme returns to the main area of the code at 0103.

If, whilst the main programme loop is running, data bit 3 on the input port goes high to indicate that the USER switch has been pressed, the processor will execute the code beginning at line 0116. This allows the user to read and alter the data stored in lines 0857-0FFF of the RAM. The record of the last 135 calls made

<table>
<thead>
<tr>
<th>EPROM</th>
<th>0000-07FF</th>
<th>Software program</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>0801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0802</td>
<td>unit cost of call in 1/10p</td>
<td></td>
</tr>
<tr>
<td>0803</td>
<td>unit cost of call in pence</td>
<td></td>
</tr>
<tr>
<td>0804</td>
<td>Stack: 82 bytes</td>
<td></td>
</tr>
<tr>
<td>0855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0856</td>
<td>not used: 10 bytes</td>
<td></td>
</tr>
<tr>
<td>0857</td>
<td>135 numbers and costs stored in 14 byte blocks: 1890 bytes</td>
<td></td>
</tr>
<tr>
<td>0FC1</td>
<td>RAM list: 62 bytes</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 System memory map.

<table>
<thead>
<tr>
<th>EPROM</th>
<th>0000-07FF</th>
<th>Software program</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>0801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0802</td>
<td>unit cost of call in 1/10p</td>
<td></td>
</tr>
<tr>
<td>0803</td>
<td>unit cost of call in pence</td>
<td></td>
</tr>
<tr>
<td>0804</td>
<td>Stack: 82 bytes</td>
<td></td>
</tr>
<tr>
<td>0855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0856</td>
<td>not used: 10 bytes</td>
<td></td>
</tr>
<tr>
<td>0857</td>
<td>135 numbers and costs stored in 14 byte blocks: 1890 bytes</td>
<td></td>
</tr>
<tr>
<td>0FC1</td>
<td>RAM list: 62 bytes</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Contents of the top 62 bytes of RAM.
(number dialled and cost) can be read or reset, the 7-day clock data can be checked and altered, and the unit cost charges can be adjusted to take account of changes in BT's rates. In addition, this area of RAM can be reset to zero (as would be required immediately after switching on) and the charging software can be instructed to take account of a bank holiday. The 7-day clock obviously cannot cope with holidays, so if calls are to be metered at the correct rate, the user must set the appropriate bit before using the phone. At the end of any user adjustments the programme is returned to the main loop.

If the telephone line becomes active, the main programme will detect data bit D0 going high and will jump to line 0248 (Table 4). This causes the area of RAM reserved for current call data to be zeroed and the software then monitors both D0 and D1. If D1 goes high, the activity on the line is caused by an incoming call and no charge need be calculated. The software returns to the main loop.

If D1 is low and D0 remains high, the receiver has been lifted to make an outgoing call and the system proceeds to identify the number dialled by counting the pulses.

If D0 goes low for more than 700ms, the programme will revert to the main loop. Otherwise, the incoming pulses will be counted, the counter returning to zero and starting on the next digit after each 400ms interdigit pause. When eight digits have been counted, they will be compared with a table of numbers in the software so as to identify the relevant charge band.

Data bit 1 is also monitored; this line will be high when a local call causes reverse battery voltage to appear on the line.

The table of numbers in software is stored between lines 0400 and 04FC. Up to 73, 3 and 4-digit STD codes are used, these being entered by the user when the EPROM is programmed. The codes are all obtained from the local code book, and where codes of more than four digits are given the final digits are ignored since they shouldn't affect the charge rate. International dialling codes will, of course, be the same from any part of the country, so these codes are already included in the main software (100 numbers stored between 049A and 04FC).

Table 3 The NMI routine which produces the 7-day clock data.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0066</td>
<td>Exchange Registers</td>
</tr>
<tr>
<td></td>
<td>Does user wish to alter the time?</td>
</tr>
<tr>
<td></td>
<td>Increment 1/50 sec</td>
</tr>
<tr>
<td></td>
<td>Increment 1/100 sec</td>
</tr>
<tr>
<td></td>
<td>Increment Seconds</td>
</tr>
<tr>
<td></td>
<td>Zero Seconds</td>
</tr>
<tr>
<td></td>
<td>Increment minutes</td>
</tr>
<tr>
<td></td>
<td>Zero Minutes</td>
</tr>
<tr>
<td></td>
<td>Increment 10 minutes</td>
</tr>
<tr>
<td></td>
<td>Increment 100 minutes</td>
</tr>
<tr>
<td></td>
<td>Increment 1000 minutes</td>
</tr>
<tr>
<td></td>
<td>Increment 10000 minutes</td>
</tr>
<tr>
<td></td>
<td>Increment total hours</td>
</tr>
<tr>
<td></td>
<td>Increment total days</td>
</tr>
<tr>
<td></td>
<td>Increment total weeks</td>
</tr>
<tr>
<td></td>
<td>Increment total months</td>
</tr>
<tr>
<td></td>
<td>Increment total years</td>
</tr>
<tr>
<td></td>
<td>Return</td>
</tr>
<tr>
<td></td>
<td>Increment R/counter</td>
</tr>
<tr>
<td></td>
<td>Increment C/counter</td>
</tr>
<tr>
<td></td>
<td>Exchange registers</td>
</tr>
</tbody>
</table>

Table 4 The call check, pulse counting and code identifying routine.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0248</td>
<td>Zero Telephone parameters</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>D 1 high ringing in Jump to MAIN</td>
</tr>
<tr>
<td></td>
<td>D 0 high = phone up</td>
</tr>
<tr>
<td></td>
<td>COUNT PULSES (number being dialled)</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Phone down for 700ms Jump to MAIN</td>
</tr>
<tr>
<td></td>
<td>Bit 0 low</td>
</tr>
<tr>
<td></td>
<td>Increment pulse counter</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Interdigit pause 400ms YES</td>
</tr>
<tr>
<td></td>
<td>Bit 0 high</td>
</tr>
<tr>
<td></td>
<td>Start of next pulse</td>
</tr>
<tr>
<td></td>
<td>8 numbers stored YES</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Bit 1 high = negative on line Jump to LOCAL</td>
</tr>
<tr>
<td></td>
<td>Bit 0 high</td>
</tr>
<tr>
<td></td>
<td>Start of next pulse</td>
</tr>
<tr>
<td></td>
<td>(sort code on present numbers)</td>
</tr>
<tr>
<td></td>
<td>Check for International</td>
</tr>
<tr>
<td></td>
<td>Yes Jump to INTERNATIONAL</td>
</tr>
<tr>
<td></td>
<td>Check for B1</td>
</tr>
<tr>
<td></td>
<td>Yes Set B1 in Band Index</td>
</tr>
<tr>
<td></td>
<td>Check for B</td>
</tr>
<tr>
<td></td>
<td>Yes Set B in Band Index</td>
</tr>
<tr>
<td></td>
<td>Check for A</td>
</tr>
<tr>
<td></td>
<td>Yes Set A in Band Index</td>
</tr>
<tr>
<td></td>
<td>Check for Local</td>
</tr>
<tr>
<td></td>
<td>Yes Set Local in Band Index</td>
</tr>
<tr>
<td></td>
<td>Check for Spurious</td>
</tr>
<tr>
<td></td>
<td>Yes Set Local in Band Index</td>
</tr>
<tr>
<td></td>
<td>Jump to CHECKLINE</td>
</tr>
</tbody>
</table>

Table 5 The checkline routine which sorts calls not immediately identified.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>033B</td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Check band index if local bypass ringing</td>
</tr>
<tr>
<td></td>
<td>Bit 2 high means ringing</td>
</tr>
<tr>
<td></td>
<td>Bit 1 high means -ve</td>
</tr>
<tr>
<td></td>
<td>Bit 0 high means phone is up</td>
</tr>
<tr>
<td></td>
<td>Last 2 numbers Yes Jump to COUNT PULSES</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Bit 0 high means end of pulse</td>
</tr>
<tr>
<td></td>
<td>Phone down 700ms phone down Jump to MAIN</td>
</tr>
<tr>
<td></td>
<td>Port in A (is it a proper ring?)</td>
</tr>
<tr>
<td></td>
<td>Bit 2 low</td>
</tr>
<tr>
<td></td>
<td>Less than 0.28 sec high means not a proper ring</td>
</tr>
<tr>
<td></td>
<td>Bit 2 high</td>
</tr>
<tr>
<td></td>
<td>Port in A (wait for ring to stop)</td>
</tr>
<tr>
<td></td>
<td>Bit 2 high</td>
</tr>
<tr>
<td></td>
<td>Port in A (check line again)</td>
</tr>
<tr>
<td></td>
<td>Bit 2 high</td>
</tr>
<tr>
<td></td>
<td>Bit 1 high means local -ve</td>
</tr>
<tr>
<td></td>
<td>Bit 0 low for 700ms Jump to MAIN</td>
</tr>
<tr>
<td></td>
<td>Bit 2 low = less than 2.4 sec</td>
</tr>
<tr>
<td></td>
<td>Through (all calls except local or international)</td>
</tr>
<tr>
<td></td>
<td>Set clock 1 second period Jump to TIMER</td>
</tr>
<tr>
<td></td>
<td>(local -ve on line not operator call)</td>
</tr>
<tr>
<td></td>
<td>Set clock to 5 second period Jump TIMER</td>
</tr>
<tr>
<td></td>
<td>INTERNATIONAL</td>
</tr>
<tr>
<td></td>
<td>(calls beginning with 010)</td>
</tr>
<tr>
<td></td>
<td>Set clock to 1/10 sec clock period</td>
</tr>
<tr>
<td></td>
<td>Port in A</td>
</tr>
<tr>
<td></td>
<td>Bit 4 low = top button pressed Jump to TIMER</td>
</tr>
<tr>
<td></td>
<td>Bit 0 low for 700ms Jump to TRANSFER</td>
</tr>
<tr>
<td>03EF</td>
<td>Return</td>
</tr>
</tbody>
</table>
A full listing of the program will be published along with the constructional details of the call meter in a later article.

If the call is identified, the program will jump to the appropriate point on a table in the software (beginning at 0500). The table gives an amount of time paid for by one unit of charge for each period of the day in each of the charge bands: local, A, B, B1, Ireland, and international charge bands A to G. The value found will then be loaded into the RAM.

If the call is not identified, the program moves on to a sequence known as CHECKLINE (beginning at line 0331B — see Table 5). It checks each of the major line parameters and includes the appropriate action, either returning to the main loop if the receiver has been put back on its rest or returning to count pulses if a number is still being dialled. If the number is finally found to contain a local or international code, the programme will jump to the appropriate section where a clock period will be set (five seconds for local calls, 0.1 seconds for international calls). The programme will then jump to the timer sequence. If the call is found to be a number in any of the other charge bands, a period of one second will be set and the programme will then jump to the timer as before.

The timer sequence begins at line 0640 (Table 6) and is responsible for setting a final charge rate according to the time of day, day of week, etc., then incrementing the cost values in the RAM. This information forms the basis of the value displayed on the LCD as the call progresses. The timing sequence continues until data bit 0 goes low to indicate that the receiver has been put back on its rest. The total cost recorded and the number dialled are then transferred to the RAM, the numbers already there being moved down 14 bytes each to make space. The program then returns to the main loop, awaiting further outgoing calls or user instructions.

To be continued...
Happy Memories

<table>
<thead>
<tr>
<th>Part type</th>
<th>1 off</th>
<th>25-99</th>
<th>100 up</th>
</tr>
</thead>
<tbody>
<tr>
<td>4164 150ns Not Texas</td>
<td>.95</td>
<td>.85</td>
<td>.80</td>
</tr>
<tr>
<td>41256 150ns</td>
<td>2.40</td>
<td>2.15</td>
<td>2.05</td>
</tr>
<tr>
<td>2114 200ns Low Power</td>
<td>1.75</td>
<td>1.60</td>
<td>1.55</td>
</tr>
<tr>
<td>6116 150ns</td>
<td>1.40</td>
<td>1.25</td>
<td>1.20</td>
</tr>
<tr>
<td>6264 150ns Low Power</td>
<td>2.40</td>
<td>2.15</td>
<td>2.05</td>
</tr>
<tr>
<td>2716 450ns 5 volt</td>
<td>2.90</td>
<td>2.60</td>
<td>2.45</td>
</tr>
<tr>
<td>2722 450ns Intel type</td>
<td>2.70</td>
<td>2.40</td>
<td>2.25</td>
</tr>
<tr>
<td>2764 250ns Suit BBC</td>
<td>2.15</td>
<td>1.90</td>
<td>1.75</td>
</tr>
<tr>
<td>27128 250ns Suit BBC</td>
<td>2.45</td>
<td>2.20</td>
<td>2.10</td>
</tr>
<tr>
<td>27256 250ns</td>
<td>3.85</td>
<td>3.45</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Low profile IC sockets: Pins: 8 14 16 18 20 24 28 32 Pouce: 5 9 10 11 12 15 17 24

Please ask for quote on higher quantities or items not shown. All memory products Japanese or American manufacture.

74LS Series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by phone or mail welcome. Non-Military Government & Educational orders welcome for minimum invoice value of £15 net.

Interak 1

AN EXPANDABLE DISK-BASED Z80A DEVELOPMENT SYSTEM YOU CAN BUILD YOURSELF!

Universities, Colleges, Industry, Enthusiasts:

Unlike home computers, development systems have entirely "open" architectures, use standard TTL etc. chips (ie no LSI's), and are built in a proper engineering fashion. Usually these superior products carry a correspondingly superior price tag, but you can build Interak yourself board by board and thus afford a system which would normally be out of your reach and/or understanding.

The initial development system has 64K of RAM, a 4 MHz Z80A CPU, parallel ASCII keyboard interface, VDU Interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Any size (including 8" double density) can be used, but our 1 Megabyte 3.5" drives are proving very popular because they can fit into the system rack, and they only cost £87.00 each + VAT.

CP/M 2.2 is available, giving access to thousands of "public domain" programs.

The system can be described as "future proof" because it uses plug in 4.5" or 8" cards in a "open" architecture, a 4.5" drive interface for an industrial quality 5.25" drive, and a 2.25" drives are available, giving access to thousands of "public domain" programs.

The system has been established since 1970, and this system was first made in 1977 so (like virtually all other computers) it has stood the test of time. Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices.

Greenbank Electronics

Greenbank Electronics (Dept T7E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG. Tel: 051-645 3391

Crofton PM101

THE VIDEO SPECIALISTS

SUMMER OFFER £40

inclusive VAT and carriage £49.45 total

Be sure to ask for our various catalogues. We have a full range of products including:

1. Discrete listening devices
2. Plugs/sockets/ connectors/leads
3. Sockets/sockets/ connectors/leads
4. TV accessories
5. Security products
6. Computer products
7. NEC cased and uncased monitors
8. Monitors, Cameras, and Monitors, Ask For Details.

Just starting to refurbish CCTV Cameras, and Monitors, Ask For Details. First Come First Serve, these are very popular items and won't last long.

SPECIAL OFFERS

BRAND NEW professional board and green tube to make 12" T.T.L. or open home monitor. ONLY £30 - VAT and carriage Z251 Full sized keyboard in metal case £13.00 COMPUTER DESKS £20.

CCTV camera at attractive prices

CCTV camera at attractive prices

This 9 inch metal cased, mono-chrome monitor offers you the chance to obtain a high quality product at a budget price!

SPECIAL OFFERS

BRAND NEW professional board and green tube to make 12" T.T.L. or open home monitor. ONLY £30 - VAT and carriage Z251 Full sized keyboard in metal case £13.00 COMPUTER DESKS £20.

If you would like all our catalogues - Please send a 38p 9 x 12 S.A.E.

THERE'S ALWAYS A SPECIAL DEAL FOR YOU AT CROFTON

If we haven't listed what you are looking for, please ask, we probably have it in stock.

CROFTON ELECTRONICS

Kingshill, Nextend, Lyonshall, Nr Kington, Herefordshire HR5 3HZ.

Phone for today's best price

ETI OCTOBER 1988
TECH TIPS

Over Voltage Indicator
Andy Fiore, Maldon, Essex.

Although this is a simple circuit, it does combine high input impedance with full-wave response.

For output signals below the threshold of about ±2.9V (for the low-current LED used in the prototype, or ±3.3V for a standard red LED), the op-amps acts as an ordinary non-inverting amplifier with its gain determined by R3+R4/R2. At the threshold level, the bridge rectifier and LED combination start to conduct, clamping the negative feedback and hence the voltage on the inverting input. The op-amp begins to act as a comparator as the input voltage level rises, and the output is driven into clipping at the supply rails, turning the LED fully on all the time the threshold is exceeded.

The use of a separate return for the 0V connection to the LED/bridge connection is necessary because the switching current can cause interference with sensitive audio circuits. For the same reason, dual or quad op-amps should be avoided — I used an LM301A because it’s cheap, it can supply enough current to light the LED, and because I like it!

A table of preferred E24 resistor values is given so that you can adjust the input sensitivity to your needs. The values assume the use of the same type of LED as in the prototype (a low-current red LED as sold by RS); as already noted, different types and colours of LED will have different forward bias voltages, so you will have to re-calculate the R2 and R3 values to suit.

As an alternative, a version with sensitivity adjustable between -62dBm and +6dBm is also shown.

Power Booster For MOSFET Amplifiers
E. A. Harrington Sheffield

Many MOSFET power amplifiers are designed in such a way that the gates of the output transistors cannot be taken beyond a point about two volts away from either supply rail. If the output voltage does get close enough to a rail, the reduced gate-source and drain-source voltages will limit the output current to less than that necessary to properly drive the load. This is the point at which the amplifier begins to clip. However, if the gate voltages were able to go higher, the output current and voltage, and hence the output power would be increased.

To achieve this, the MOSFET drive amplifier is powered by a supply with higher voltages than the main supply. These voltages are derived from the main supply by means of charge-pump circuits.

Consider the circuit on the positive rail. As the transformer voltage rises, C1 charges the smoothing capacitor, C2, through D1. The voltage on C2 is limited by the Zener diode D1. When the transformer voltage is falling, D1 becomes forward biased and C1 recharges from the positive rail through it. A similar circuit provides the negative voltage from the negative rail.

The extra voltage produced is such that, at clipping, the output current is limited by the MOSFET drain-source voltage only. There is no more to be gained by creating a higher voltage.

With a main supply of ±30 volts, the output power into 8 ohms is increased from about 35 watts to 45 watts, and from 55 watts to over 75 watts into 4 ohms. Remember that the drive transistors are now operating at a higher voltage and should be suitably rated, and that the power supply must be able to deliver the extra current.
PCB FOIL PATTERNS

Audio Analyser PSU.

Audio Analyser display.
Audio Analyser filter board.

Audio Analyser display driver.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8107-1</td>
<td>System A Disc Input bd</td>
</tr>
<tr>
<td>E8107-2</td>
<td>System A Preamplifier Main</td>
</tr>
<tr>
<td>E8108-1</td>
<td>System A Power Amp</td>
</tr>
<tr>
<td>E8109-2</td>
<td>System A PSU</td>
</tr>
<tr>
<td>E8201-2</td>
<td>Infant Guard</td>
</tr>
<tr>
<td>E8202-5</td>
<td>MM Stage Disc Preamp (Tilsbrook)</td>
</tr>
<tr>
<td>E8206-5</td>
<td>Logic Lock</td>
</tr>
<tr>
<td>E8208-1</td>
<td>Playmate Practice Amp 3bds</td>
</tr>
<tr>
<td>SA1</td>
<td></td>
</tr>
<tr>
<td>E8212-1</td>
<td>ELCB</td>
</tr>
<tr>
<td>E8301-2</td>
<td>Analogue to digital conv (ZX81/ Spectrum)</td>
</tr>
<tr>
<td>E8305-3</td>
<td>Dual Audio Power Supply, Linsley Hood</td>
</tr>
<tr>
<td>E8305-5</td>
<td>Balanced Input Preamplifier</td>
</tr>
<tr>
<td>E8307-2</td>
<td>Flash Trigger-sound or FR</td>
</tr>
<tr>
<td>E8308-1</td>
<td>Graphic Equaliser</td>
</tr>
<tr>
<td>E8308-2</td>
<td>Servo Fail-safe</td>
</tr>
<tr>
<td>E8309-1</td>
<td>NICAD Charger/Regenerator</td>
</tr>
<tr>
<td>E8310-3</td>
<td>Typewriter Interface - EX42</td>
</tr>
<tr>
<td>E8311-1</td>
<td>Mini Drum Synth</td>
</tr>
<tr>
<td>E8311-8</td>
<td>Moving Coil Pre-Preamplf</td>
</tr>
<tr>
<td>E8312-3</td>
<td>Light Chaser EPROM Controlled (2 boards)</td>
</tr>
<tr>
<td>E8402-1</td>
<td>Speech Board</td>
</tr>
<tr>
<td>E8402-2</td>
<td>Modular Pre-amp Disc Int</td>
</tr>
<tr>
<td>E8402-3</td>
<td>Modular Pre-amp Stereo</td>
</tr>
<tr>
<td>E8402-4</td>
<td>Modular Pre-amp Relay, PSU</td>
</tr>
<tr>
<td>E8402-5</td>
<td>Modular Pre-amp Tone Main</td>
</tr>
<tr>
<td>E8402-6</td>
<td>Modular Pre-amp Tone Filter, Stereo</td>
</tr>
<tr>
<td>E8402-7</td>
<td>Modular Pre-amp Balanced Output</td>
</tr>
<tr>
<td>E8402-8</td>
<td>Modular Pre-amp Headphone Amp</td>
</tr>
<tr>
<td>E8404-2</td>
<td>Mains Remote control Receiver</td>
</tr>
<tr>
<td>E8405-1</td>
<td>Auto Light Switch</td>
</tr>
<tr>
<td>E8405-2</td>
<td>ZX81 EPROM Programmer</td>
</tr>
<tr>
<td>E8405-3</td>
<td>Mains Remote Control Transmitter</td>
</tr>
<tr>
<td>E8405-4</td>
<td>Centronics Interface</td>
</tr>
<tr>
<td>E8405-6</td>
<td>Drum Synth</td>
</tr>
<tr>
<td>E8406-1</td>
<td>Oric EPROM Board</td>
</tr>
<tr>
<td>E8406-2</td>
<td>Spectrum Joystick</td>
</tr>
<tr>
<td>E8406-3</td>
<td>Audio Design RIAA Stag</td>
</tr>
<tr>
<td>E8406-4</td>
<td>AD Buffer/Tone Filter</td>
</tr>
<tr>
<td>E8406-5</td>
<td>AD Headphone Amp</td>
</tr>
<tr>
<td>E8406-6</td>
<td>AD Preampl PSU</td>
</tr>
<tr>
<td>E8406-7</td>
<td>AD Power Amp</td>
</tr>
<tr>
<td>E8406-8</td>
<td>AD Power Amp PSU</td>
</tr>
<tr>
<td>E8406-9</td>
<td>AD Stereo Power Meter</td>
</tr>
<tr>
<td>E8406-10</td>
<td>AD Input Clamp</td>
</tr>
<tr>
<td>E8407-1</td>
<td>Warlock Alarm</td>
</tr>
<tr>
<td>E8407-8</td>
<td>EROM Emulator</td>
</tr>
<tr>
<td>E8408-1</td>
<td>Infrared Alarm Transmitter</td>
</tr>
<tr>
<td>E8408-2</td>
<td>Infrared Alarm Receiver</td>
</tr>
<tr>
<td>E8409-1</td>
<td>EX42 Keyboard Interface</td>
</tr>
<tr>
<td>E8409-2</td>
<td>Banshee Siren Unit</td>
</tr>
<tr>
<td>E8410-1</td>
<td>Echo Unit</td>
</tr>
<tr>
<td>E8410-2</td>
<td>Digital Cassette Deck</td>
</tr>
<tr>
<td>E8410-3</td>
<td>Disco Party Strobe</td>
</tr>
<tr>
<td>E8411-5</td>
<td>Video Vandal (3 boards)</td>
</tr>
<tr>
<td>E8411-6</td>
<td>Temperature Controller</td>
</tr>
<tr>
<td>E8411-7</td>
<td>Mains Failure Alarm</td>
</tr>
<tr>
<td>E8411-8</td>
<td>Knife Light</td>
</tr>
<tr>
<td>E8411-9</td>
<td>Stage Lighting Interface</td>
</tr>
<tr>
<td>E8411-10</td>
<td>Perpetual Pendulum</td>
</tr>
<tr>
<td>E8412-1</td>
<td>Spectrum Centronics Interface</td>
</tr>
<tr>
<td>E8412-4</td>
<td>Active - 8 Protection Unit</td>
</tr>
<tr>
<td>E8412-5</td>
<td>Active - 8 Crossover</td>
</tr>
<tr>
<td>E8412-6</td>
<td>Active - 8 LF EQ</td>
</tr>
<tr>
<td>E8412-7</td>
<td>Active - 8 Equaliser</td>
</tr>
<tr>
<td>E8501-3</td>
<td>Digital Delay (2 boards)</td>
</tr>
<tr>
<td>E8502-1</td>
<td>Digital Delay Expander</td>
</tr>
<tr>
<td>E8502-2</td>
<td>Data Logger</td>
</tr>
<tr>
<td>E8503-1</td>
<td>Combo Preamplifier</td>
</tr>
<tr>
<td>E8503-2</td>
<td>THD Meter mV & oscillator (2 boards)</td>
</tr>
<tr>
<td>E8503-3</td>
<td>THD Meter Mains PSU</td>
</tr>
<tr>
<td>E8504-1</td>
<td>Framestore Memory</td>
</tr>
<tr>
<td>E8504-3</td>
<td>Framestore Control</td>
</tr>
<tr>
<td>E8504-4</td>
<td>Buzzby Meter</td>
</tr>
<tr>
<td>E8504-5</td>
<td>CCD Delay</td>
</tr>
<tr>
<td>E8506-1</td>
<td>Audio Mixer Main</td>
</tr>
<tr>
<td>E8506-2</td>
<td>Audio Mixer PSU</td>
</tr>
<tr>
<td>E8506-3</td>
<td>Audio Mixer RIA</td>
</tr>
<tr>
<td>E8506-4</td>
<td>Audio Mixer Tone Control</td>
</tr>
<tr>
<td>E8506-5</td>
<td>EPROM Prog MKII</td>
</tr>
<tr>
<td>E8508-1</td>
<td>RCL Bridge</td>
</tr>
<tr>
<td>E8508-2</td>
<td>EX42/BBC Interface</td>
</tr>
<tr>
<td>E8508-3</td>
<td>EPROM Emulator</td>
</tr>
<tr>
<td>E8509-1</td>
<td>Spectrum</td>
</tr>
<tr>
<td>E8509-2</td>
<td>Direct Injection Box</td>
</tr>
<tr>
<td>E8510-9</td>
<td>Sunrise Light Brightener</td>
</tr>
<tr>
<td>E8511-1</td>
<td>MTE Waveform Generator</td>
</tr>
<tr>
<td>E8511-2</td>
<td>Millifaradomter</td>
</tr>
<tr>
<td>E8511-3</td>
<td>Cymbal Synth</td>
</tr>
<tr>
<td>E8511-5</td>
<td>Chorus Effect</td>
</tr>
<tr>
<td>E8511-7</td>
<td>Enlarger Exposure Meter</td>
</tr>
<tr>
<td>E8511-8</td>
<td>Switching Regulator</td>
</tr>
<tr>
<td>E8511-9</td>
<td>Second Line of Defence</td>
</tr>
<tr>
<td>E8512-1</td>
<td>Spectrum connector</td>
</tr>
<tr>
<td>E8512-2</td>
<td>MTE Pulse Generator</td>
</tr>
<tr>
<td>E8513-1</td>
<td>Spectrum</td>
</tr>
<tr>
<td>E8601-2</td>
<td>Walkmate</td>
</tr>
<tr>
<td>E8601-3</td>
<td>MTE Counter-timer</td>
</tr>
<tr>
<td>E8602-1</td>
<td>Digibaro</td>
</tr>
<tr>
<td>E8602-3</td>
<td>Matchbox Amp Boosting</td>
</tr>
<tr>
<td>E8604-3</td>
<td>Matchbox Amp Bridging</td>
</tr>
<tr>
<td>E8604-4</td>
<td>MTE Analogue/Digital Probe</td>
</tr>
<tr>
<td>E8605-1</td>
<td>Microlight Source</td>
</tr>
<tr>
<td>E8607-1</td>
<td>Mid-CV Converter Board</td>
</tr>
<tr>
<td>E8607-2</td>
<td>Mid-CV Converter PSU</td>
</tr>
<tr>
<td>E8607-3</td>
<td>Baud Rate Converter 2bds</td>
</tr>
<tr>
<td>E8607-4</td>
<td>Portable PA</td>
</tr>
<tr>
<td>E8606-1</td>
<td>Mid-CV Converter Board</td>
</tr>
<tr>
<td>E8606-2</td>
<td>Mid-CV Converter PSU</td>
</tr>
<tr>
<td>E8606-3</td>
<td>Troglograph</td>
</tr>
<tr>
<td>E8606-4</td>
<td>80m Receiver</td>
</tr>
<tr>
<td>E8606-6</td>
<td>Sound Sampler</td>
</tr>
<tr>
<td>E8607-1</td>
<td>Direction</td>
</tr>
<tr>
<td>E8607-2</td>
<td>Upgradeable Amp, MC stage (Stereo)</td>
</tr>
<tr>
<td>E8607-3</td>
<td>BBC Motor Controller</td>
</tr>
<tr>
<td>E8608-1</td>
<td>Digital Panel Meter</td>
</tr>
<tr>
<td>E8608-2</td>
<td>Upgradeable Amp, MM stage (mono)</td>
</tr>
<tr>
<td>E8609-1</td>
<td>Mains Conditioner</td>
</tr>
<tr>
<td>E8609-2</td>
<td>Experimental preamp</td>
</tr>
<tr>
<td>E8609-3</td>
<td>Upgradeable Amp, Tone board (mono)</td>
</tr>
<tr>
<td>E8609-4</td>
<td>Upgradeable amp, Output board (mono)</td>
</tr>
<tr>
<td>E8610-1</td>
<td>Audio Analyser Filter</td>
</tr>
<tr>
<td>E8610-2</td>
<td>Audio Analyser Display</td>
</tr>
<tr>
<td>E8610-3</td>
<td>Audio Analyser Display</td>
</tr>
<tr>
<td>E8610-4</td>
<td>Audio Analyser Power Supply</td>
</tr>
</tbody>
</table>

ETI October 1986
Please use the form below (or a photocopy of it) to make your order. Be sure to quote the board reference number and price code correctly - mistakes will delay your order.

The board reference number tells you when a particular project was published: the first two numbers are the year and the third and fourth numbers tell you the month; the number after the hyphen indicates the particular project. Reprints of all articles are available for a small charge from our photocopy service - see the separate page (not printed in every issue of ETI). Please note that complex projects are usually published in several parts.

Our terms are strictly cash with order. Unfortunately, we cannot accept official orders, but we can supply a pro-forma invoice for you to raise a cheque against. We must stress, however, that your order will not be worked on until payment is received.

The boards listed below are all that are available at the moment. We hope to make more types available in the future, but no details will be available for some while (so please don’t phone us to ask!).

Please allow 28 days for delivery

ORDER FORM

TO: ETI READERS’ SERVICES DEPARTMENT
Argus Specialist Publications Ltd
PO Box 35, Wolsey House, Wolsey Road,
Hemel Hempstead, Herts HP2 4SS, UK

Please supply:

<table>
<thead>
<tr>
<th>No. required per type</th>
<th>Board reference number</th>
<th>Price letter</th>
<th>Price each £</th>
<th>Total for board type £</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>£</td>
<td>p</td>
<td>£</td>
</tr>
</tbody>
</table>

POSTAGE & PACKING
£ 0.75p

TOTAL ENCLOSED
£ . p

ORDER TO BE SENT TO: (BLOCK CAPS PLEASE)

Name ..
Address ..
Postcode ..

(Make cheques payable to ASP Ltd)
ACCESS and VISA credit card orders can be taken on 0442 41221
(office hours only).
Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our products are adapted or accompanied by a project.
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings (e.g. oscillograms if appropriate). With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift);
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions, but in general the enquirer is expected to write straight to the author or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquirers services which receive hundreds of letters, to sift through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows:

UK:
- £16.10
- £22.50 Surface Mail
- £24.50 Airmail Mail (USA)
- £49.50 Air Mail

Overseas:
- £22.50 Surface Mail
- £24.50 Airmail Mail (USA)
- £49.50 Air Mail

Send your order and money to: ETI Subscriptions Department, 179 Times House, Hemel Hempstead, Hertfordshire, HP1 1BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus £50p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, Hemel Hempstead, Hertfordshire, HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are stocks available. Details of the issue you require the number is (0442) 48432. Please allow 28 days for delivery.

We would normally expect to have ample stocks of backnumbers for the last couple of issues, but, obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of individual articles can be ordered instead. These cost £1.50 (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the issue number, the issue date and the title of the month in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects which ran from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other ETI photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, and an index for April 1977 through to December 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1981 index in December 1982, the 1983 index in January 1984, the 1984 index in January 1985 and the 1985 index in December 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us know. We will consider your proposal, and we'll get back to you to say whether or not we’re interested and give you all the boring details. (Don't forget to give us your telephone number.)

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:

- Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
- Keep a copy of all correspondence.
- Check your bank statement to see if the cheque you sent has been cashed.
- If you don’t receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
- If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

PA Amplifier (May 1986)

Although text, diagrams and parts list specify a TL072 for IC102 in the preamplifier stage (pp. 45-47), the component overlay and PCB foil (Fig. 7, p.47) actually show IC102 to be one of half of a TL072 dual op-amp. This is perfectly acceptable.

Digibaro (February 1986)

Capacitors C1, C3, C5 and C7 should be 470uF 25V types as shown on the circuit diagram, not 47uF 25V types as stated in the parts list. We have also been told that one of the companies mentioned in Buylines, Hawke Electronics, no longer supply the MPX100a pressure transducer. The other company recommended, Macro Marketing, should still be able to help.

LEDs on Fig. 7, page 28, the component overlay, is shown as having 16 pins. It should have 18 pins and be extended rightwards to the two pads shown. In the author's prototype the LED displays were used on both MAN6710 2-digit types, LCD4 having pins 16, 17 and 18 removed.

RS232-Centronics Converter (March, 1986)

On the circuit diagram (Fig. 2, p.53), pin 11 of IC2D should be marked pin 13. Pin 10 of IC3 is missing and should be shown connected to ground. Pin 9 of IC7 becomes pin 8 and vice versa. Also, in Table 1, the figure ‘8’ in column SW1b should be a zero and the ‘8’ belongs in the “DATA BITS” column. The specification of TL45121 and TL4507 is wrong, since LS5 types do not exist for these devices. They should be replaced with standard TTL. Finally, some confusion seems to have been generated over XTAL1. Although it is shown in the text, a simple calculation should demonstrate that XTAL1 needs to be 6.144 MHz to produce the baud rates shown.

Microlight Intercom (May, 1986)

In Fig. 1 (p.29) the link between pins 2 and 3 of PL3 is not shown. C13 is shown as a polarised capacitor. The battery check contact on SK1 should be shown as normally closed, the PCB foil pattern on p.59 is shown as from the component side. It should be reversed. The miniature loudspeakers mentioned in the article cost £2.50 each, not per pair as incorrectly noted in Buylines, p.32. The author of the article suggests that it may be advisable to insert a suitable capacitor between R9 and IC3, pin 3.

Baud Rate Converter (May, 1986)

In Fig. 4 (p.35), some confusion has crept in to the ins and outs of the circuit diagram. IC6a and IC5c need to be turned round and pins 20 and 25 of IC2 swapped round. In Fig. 5 (p.36), D4 and D3 are shown the wrong way round on the overlay. This could of course lead to the destruction of C10 as well as the presence of a second +12V rail instead of the required −12V. In Fig. 6 (p.37), SK4.3 and SK3.3 must be swapped over. In the Parts List, C10 should be 100μF, not 100μF.

RF Oscillators (June, 1986)

Fig. 12 (p.23) does not, in fact, show a working oscillator. For a series-fed arrangement, take the link from CV1a,b junction to R3 and Q1 emitter junction and not 0V, remove C1 and move C2 to shunt R2. For a shunt-fed arrangement, break the link between L1 and Vcc and take Q1 collector to Vcc via a 4kΩ resistor.

Speaking Alarm Clock (August, 1986)

In the circuit diagram, Fig. 2 (p.33), diode D3 and resistor R14 should be in parallel not series as shown. The link from IC10, pin 1, to battery positive should be removed.
LIGHTING

THEATRE — BAND — DISCO — CLUB

At MJL we supply a range of stage lighting equipment within everyone's budget. With world wide sales we have the backing and expertise to deliver just the system you need to 'Light Up' that Play, Gig or Dance Floor, from Basic 6 channel dimming to 30 channel rock mixing desks. So if you are a lighting engineer, stage manager or rig technician, or simply an amateur Drama group, we're the Professionals.

FOR FREE COLOUR BROCHURES
Write to:

MJL (International) LTD.
45 Wortley Rd., W. Croydon,
Surrey, U.K. CR0 3EB
or Phone:
01-689 4138

CRICKLEWOOD ELECTRONICS LTD

FREE! catalogue

It's no secret...

that there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE. To order, request competitive prices and service from the UK's number one, P.C., micro, PDP34, other drugs, no gadgets or computers, just complete information on the very very best value. Please make cheques payable to Cricklewood Electronics. Limited. Use telephone; free phone for a pen to get your FREE copy now (min 3m. delivery). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0985/01-452 0161
Telex: 81 4877
OPEN CHANNEL

Britain’s very own computer giant, ICL, is joining forces with Mercury Communications in a venture designed to obtain a 20% stake in the business communications market by 1990 — estimated, in total, to be around £1 billion. The venture will provide computer networks which, ICL hopes, an awful lot of companies worldwide will take advantage of. Apparently, Mercury was ICL’s first choice as co-producer of the networks before British Telecom, because BT has less experience of operating international data networks and charges more for services too. The aim is high, but if it’s on target, and ICL is capable of the task at hand, the pot of gold at the end of the rainbow is there for the taking. I wish the venture success.

Talking of BT

If you think my use of English is bad, at least it’s not as bad as the service I’ve recently suffered in the hands of Britich Smellycom, when for a total of four days my phone was up the Swanee, and not a sight of an engineer with 32 characters in hand, so he devised an encoder and decoder which scrambled the messages at random and tried to put them together again by trial and error at the other end. He used 17½ chips, two transistors, 15 resistors, a crystal and several short lengths of wire. Then he strung a few feet of five-way ribbon cable between the stores cupboard and his workbench and started sending himself secret messages. ‘What’s all this?’ demanded Jean-Paul Eno, the head janitor, when he saw the shambles (or breadcrumb, as Alf calls it). ‘You can’t make a mess like this. You haven’t got permission.’ It is within my power,” said Alf lothly, ‘to make this circuit work with only two ICs. Furthermore and notwithstanding,’ he continued, warming to his theme, ‘I shall use the same IC for encryption and decryption.

calls on my patient neighbour’s telephone apparatus to report the fault, an engineer arrived and repaired the fault within an hour.

I wouldn’t normally go into print about technical problems with products because it gives an unfair advantage over the product producers who can’t easily answer back. But, in this case, I feel I am justified. Over the last year I have reported problems to BT on five occasions. Prior to the latest debacle, I’m the first to admit, prompt service has always been effected. But it’s not really the length of time which it takes to repair faults which I’m annoyed at — it’s the frequency of occurrences. Furthermore, I don’t have what I would regard as an adequate quality of line: what with all the crackles and pops and hisses and whines, it is difficult to hear and be heard. Also, data communication via modem is virtually impossible.

According to Mercury Communications’ plans, it should be possible to hook-up to its rival telephone network service by the end of this year, thus effectively not using BT’s network. It is a possibility I’m looking into.

Open The Box

A recent decision by Yorkshire Television to commit itself to 24-hour television broadcasts, okayed by the Independent Broadcasting Authority, has resulted in the use of Richard Branson’s top video channel, Music Box, as an experimental all-night programme. If successful it is likely that similar deals will be negotiated with other independent television companies — the possibility of nationwide coverage of Music Box has even been suggested.

Music Box, of course, is already available to those few cable viewers in the country, and also to those of us with satellite reception equipment, but regrettably they are in a minority. Byusing the all-night slot which may become available on existing, land-based television channels, however, the audience will be far greater. One more nail in the DBS coffin, as far as I’m concerned.

One To Watch

As of late, there has been a seemingly new name being bandied around the telecommunications world and indeed in the financial world — Vanderhoff. The company — new (about ten years old) and definitely British (despite its name) — is well and truly on the up and up.

Although until recently Vanderhoff has simply been a supplier of specialised telecommunications equipment to buyers such as British Telecom (there they are again) and Mercury, with a series of takeovers of companies such as Eagle Telecoms, Elcom Systems and Recordacall (from Thorn Ericsson), they now become retail suppliers with an extensive network of dealers, acquired automatically through the takeovers.

All the names of companies recently taken over by Vanderhoff are well known, particularly Recordacall and no doubt will boost the organisation’s turnover considerably.

When I first had business dealings with Vanderhoff, some four or five years ago, turnover was, if I remember correctly, somewhat below £1m. This year’s turnover is around £11 and is expected to be boosted to over £16m next year by another takeover, yet to be announced. Such rapid growth is typically only preceded by companies in the computer market, and we all know what happens to them — what goes up … and all that! Let’s hope the telecoms market is more stable, and that Vanderhoff continues to rise in a controlled fashion. If plans to join the stock market come to fruition, shares will be worth looking at.

Keith Brindley

ALF’S PUZZLE

Alf’s been reading up on cryptography. The other day he devised a secret alphabet with 32 characters and started riffling through his stores cupboard for a chip set capable of encoding messages in his secret alphabet and decoding them at the other end. There were no suitable ICs to hand, so he devised an encoder and decoder which scrambled the messages at random and tried to put them together again by trial and error at the other end. He used 17½ chips, two transistors, 15 resistors, a crystal and several short lengths of wire. Then he strung a few feet of five-way ribbon cable between the stores cupboard and his workbench and started sending himself secret messages.

‘What’s all this?’ demanded Jean-Paul Eno, the head janitor, when he saw the shambles (or breadcrumb, as Alf calls it). ‘You can’t make a mess like this. You haven’t got permission.’ It is within my power,” said Alf lothly, ‘to make this circuit work with only two ICs. Furthermore and notwithstanding,’ he continued, warming to his theme, ‘I shall use the same IC for encryption and decryption.

‘It’s probably against regulations,’ muttered Jean-Paul as he swept out with vigorous strokes of the broom. After Jean-Paul Eno had left, Alf regretted his rash claim. How on earth was he going to do it?

To Alf, ICs are either 741s, 555s or CMOS logic, and as the first two didn’t seem too promising he started leafing through his ‘Penguin Guide To CMOS’ book in search of something that would do the trick. He eventually came up with an IC that would do for both encryption and decryption — it left one of the five data lines unencrypted, but to Alf that was a minor point. On further study of his book, he came to the conclusion that the IC he had chosen was also the only one that would work.

‘You’re almost right,’ said Auntie. ‘There’s another similar IC that would also work.’

Which ICs were they?

The answer to last month’s puzzle:

LED7 and LED8 would light up first. LED6 would never light at all because LED3 drops about 1.7V and LED6 requires about 1.9V to light.

Why search for an ordinary job?

We wish to recruit

TRAINEE TECHNICIANS

(Communications Science and Technology Officers)

to be trained for Telecommunication and Electronics support Technicians or Computer Software Technicians.

Applicants must hold, or expect to obtain in 1986, a BTec or SCOTEC Certificate, Diploma or Higher in Telecommunications, Electronics or Computer Engineering, English Language ‘O’ level is required and preference will be given to candidates under 25 years on 31 December 1986 who hold GCE ‘O’ levels in Maths and Physics. We are looking for candidates who can demonstrate an interest in both analogue and digital communications.

TOTAL PAY PACKAGE (including Special Pay Additions) as a Trainee aged 18 years — £6,088 pa rising to £8,642 pa after 3 years.

For further details and application form please telephone or write to the Recruitment Officer at the address shown below:

GCHQ
THE RECRUITMENT OFFICE, GCHQ, ROOM A 1108 OFFICE, WINDLE STREET, CHELTENHAM
GL52 5AQ OR TELEPHONE (0242) 528123

ETC

ETI OCTOBER 1986
Complete Parts Sets for ETI Projects

Mains Conditioner
Featured in ETI, September 1986
The ETI mains conditioner is designed to combat highharmonic distortion and to improve the performance of ETI projects. For further details, please refer to the manual or contact the supplier.

Powerful Air Ioniser
Featured in ETI, July 1986
The ETI powerful air ioniser is a unique project that produces charged ions to improve indoor air quality. It is suitable for use in homes, offices, and other enclosed spaces. For detailed specifications and pricing, please contact the supplier.

Phillips Digital Multimeters
4 digit, auto-ranging. Complete with batteries and leads.

Direct ion parts set £5.90

Special Offer!
Free Matchbox Amplifier PCB with every ETI Kit purchased.

Complete Single IC Amplifier Parts Set £15.50

Complete Bridged Amplifier Parts Set £11.90

Solution to Crossword No. 8

ACROSS
1) Colour which represents zero (5).
2) Metallic element, the oxide of which is used in the production of magnetic tape (8).
3) The space in which a force such as electricity or magnetism exerts its influence (7).
4) A write-protected disc or memory (4,4).
5) In computer terms, a complete block of data to which a directory name has been given (4).
6) A critical analysis (4).
7) You call him out when the television blows up (8).
8) The restoration of a signal to its original frequency/amplitude relationship following, say, the phono or tuner input of a pre-amplifier (2-8).
9) A resistor used to preset a load to the open collector output of an IC (3-2).
10) One of Acome computer programs (8).
11) Basic command which loads a program without destroying the program already resident (5).

DOWN
1) Area of computer memory used for temporary storage of input/output data, strings, etc (6).
2) In machine code, a direct jump with a return address stored on the stack (4).
3) A type of aerial, or means of flogging (4).
4) Print CHRS (58) and this will appear on the screen (5).
5) Peripheral which converts an analogue signal value into digital form (9).
6) To resist AC signals (6).
7) An element which when added to pure silicon produces an excess of electrons, giving an N-type semiconductor (5).
8) Instrument for measuring power (9).
9) Linear (abbreviation) (3).
10) Prevent a voltage or current exceeding a preset value (5).
11) A small variable capacitor in series with and for adjusting the value of a larger tuning capacitor (6).
12) The AC component of a DC voltage, such as the 50 Hz signal found across a power line (6).
13) Marks on the phosphor of a CRT, or is it acne? (5).
14) A collection of neutrons, protons and electrons (4).
15) Short term for sinusoidal (4).

ETI October 1986
DOES YOUR BLOOD PRESSURE RISE?

FREE BioFeedback Monitor FREE
Over the next two months, we'll deal with the theory of biofeedback and describe a practical monitor circuit. In fact, there are two circuits — one for a basic model and one for a slightly more sophisticated version. We're giving away the PCB for both models and the components for the basic version.

Power MOSFETs
Are these devices really as mysterious as they're made out to be? what lurks within the little black plastic bags? We investigate the facts and let you know everything you need to get to grips with some elegant circuitry.

The Next Great Little IC
The LM2917 is set to follow in the giant footsteps of the tiny 741 and 555. Sold as a tachometer chip and basically a frequency-to-voltage converter, it is a lot more besides. We think it's got a great future, so stick with us while we tell you why.

THE NOVEMBER ISSUE OF ETI — ON SALE 3rd OCTOBER

All the articles listed above are at an advanced stage of propulsion, but circumstances beyond our control may prevent their publication.

POCKET INSPECTION MICROSCOPE
The self-illuminated pocket microscopes are about the size of a long slim pack of cigars. They weigh 4½ ounces and provide a clear 30-power magnification (with the Spirig-30 £18.90), or a 100-power magnification (with the Spirig-100 £27.90) model of any surface on which it is easily focused.

No Sp III the compact design of the SPIRIG microscopes allow to almost any surface to be closely inspected.

For further information call Guildford (0483) 505260 or write to COBONIC LTD, 32 LUDLOW ROAD, GUILDFORD, SURREY GU2 5NW or telex 28604 ref 1321.

FREE COMPONENTS

PLUS:
All our regular features, circuit ideas, Tech Tips, projects, letters, news and views. Also, the second part of the ETI Business Supplement with more inside on how to be your own boss... And More.
ALARMS

FREE BOOKLET

on BURGLAR ALARMS

with LOWEST U.K. DIY PUBLISHED PRICES

PHONE OR WRITE FOR YOUR COPY

051-523 8440

AD ELECTRONICS

217 WARREBBRC MOOR

AINTREE, LIVERPOOL L9 0HU

BOOKS

COMPUTER ADD-ONS

16K FOR £165!!! Sideways ram unit for BBC micro. Includes software. No soldering required. Viking Micros, 5 Kirby Hill, Bridgnorth, Isle of Man.

COILS & CHOKES

MAXI-Q

COILS AND CHOSES

PREVIOUSLY MADE BY DENC0

S.A.E. PRICE LIST

8 BRUNEL UNITS, BRUNEL RD, GORSE LANE IND. ESTATE, CLACTON, ESSEX CO15 4LU.

TEL: (0255) 424512

COOKS & LAMPS

METAL FILM RESISTORS AT CARBON FILM PRICES

0.25 Watt 5% and 2%, Specification mix: 1% IS1104A, J18-C-4200, IEC 115-1

£1.00 per 1000. For 10,000 or more.

£12.00 for 100,000 or more.

LEADS CUT AND BEND TO YOUR SPEC. £6.00 per 1000 OFF.

Prices exclude VAT. Please add £1.50 per order less than £20.00.

FOR SALE

METAL FILM RESISTORS AT CARBON FILM PRICES

0.25 Watt 5% and 2%, Specification mix: 1% IS1104A, J18-C-4200, IEC 115-1

£1.00 per 1000. For 10,000 or more.

£12.00 for 100,000 or more.

LEADS CUT AND BEND TO YOUR SPEC. £6.00 per 1000 OFF.

Prices exclude VAT. Please add £1.50 per order less than £20.00.

MINI Surveillance F.M. transmitter kit £5.00. Also many surplus components 021-355 3724 or 021 354 1383 6.00pm - 8.00pm.

STEREOAMPS 120 watt (60-60).

Case-D.I.N. sockets and controls. 9.40V/smoothing. Protected outputs 3/15 QMHz tested and diagrams £10/Inc. KIA 8 Cunliffe Road, Ilkeston.

BACK ISSUES ETI and Hobby Electronics, many complete years. Most in binders. Offers. Mr Yarnell (01) 472 9834.

KITS

6808 SINGLE board computer, contains 80 T/D/S disc interface, colour display, 8K monitor etc. Rare P.C.B. or built. Also 8080 micro-set system and tangerine conversions. S.A.E. for details. (state which) Ralph Alan Eng Forncett-End Norwich.

ETI KITS assembled and tested

by electronic trainees under supervision within a purpose built electronic workshop for as little as £10** (depending on type of kit and complexity). Contact: A.J. Smith, Dept K.A. Electronics Workshop, Lincoln I.T.E.C. Dean Road, Lincoln LN2 4JZ Tel: 0522 43532.

LINSLEY HOOD Designs. Send S.A.E. for details to Teleradio Electronics, 325 Fore Street, London N10 0PE.
EQUIPMENT

KITS AND READY BUILT

FM TRANSMITTERS Same day dispatch. MINIATURE MODEL frequency 65-145 MHz, range 1 mile. Glass fibre P.C.B. All components, Full instructions 9-12 P.M. Premium broadcast reception. Super sensitive microphone. Pick up on FM/VHF radio. £6.95 inc or ready built £9.95 inc. £25 x £19.10mm. HIGH POWER MODEL 3 watts 80-108 MHz. Professional broadcast performance. Low drift variable capacitor. Range up to 7 miles, 12V operation. Any input audio/micophone. All components, P.C.B. diagrams and instructions. Size 103 x 39 x 29mm. Kit 13.99 inc or ready built £18.99 inc. TONE GENERATOR 3-selectable functions, PieP, Warble and pulse tone. All components, instructions & P.C.B., feed into any audio input or transmitter. Variable frequency and gating controls. 6-12V operation 53 x 36 x 14mm. £6.95 inc. TONE TRANSFORMER POWER AMPLIFIER. All components, instructions and P.C.B. Turntable generator into a high power amplifer for alarms, etc. 12V watts max. at 12-15V. 62 x 36 x 14mm £7.00 inc. Optional LED DISPLAY, 12/24 hour & seconds (0.7inch LED) display, 8-functions. Applications: uncommitted output transformer for switching on Tape recorders. Lighting, Security, etc. External Loudspeaker Power. Output 84 x 38 x 18.25mm. Full components & Modular PCB £17.49 inc. MAINS TRANSFORMER for above is included. £17.49 inc. DIGITAL CODE LOCK MODULE: 4 18V.DC operation; 10,000 combination quality key pad; programmable code, low-power 3 outputs (0.2A); 3-LED status indicators; all components, instructions & P.C.B. Applications: Alarms, garage doors, cars etc. 39 x 15 x 10mm. Kit £15.95 inc. Ready built £19.95 inc ZENNIN ELECTRONICS 21 Station Road, Indst. Estate, Hallsmill, E. Sussex BN27 2TE. Tel: 04353 2847.

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel. 0684 73127.

ORGAN KEYBOARDS

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out. Special Offer皇冠 Electronic Musical Instruments, 40A Dalston Lane, London E8.

PLANS & DESIGNS

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage tester, van de Graaff surveillance devices, antennas, pyrotechnic, new solar generator, 150 more projects, catalogue. £9.95 inc. Plant Centre, Old String Works, Byre Street, Ledbury HR8 2AA.

POWER SUPPLIES

240V AC ELECTRICITY from two 12V batteries!! Encapsulated ready-built electronic modules with screw terminals!! Comprehensive instructions supplied. Just add transformer and other easily obtained accessories. 250W output. Limited number available. £52 (inclusive). Chaligue Products, Green Lane, Great Horkesley, Colchester, Essex CO6 4HD. (Proprietor J.A. Richardson.)

150W SWITCHMODE PSU 12V at 12A, +12V at 4A, +24V at 1.7A; -12V at 0.2A. Perfect working order, over £70 in Henries Radio £99 + Carr. 0245-50927 after 6.00pm.

PAXX POWER Modules 5-18V 8A £9.95 inc P&P SAE into JCE PO Box 31, Bridgewater, Somerset TA6 2LQ.

TRAINEE COURSE

PROFESSIONAL ELECTRONIC TECHNICIANS Short re-training courses (1-3 weeks)

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only £1.00. Components and P.C.B.'s available: Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

SERVICES

ELECTRONICS

* PROFESSIONAL PCB DESIGN
* SINGLE SIDED TO PTH
* PRODUCTION FACILITIES AVAILABLE
* QUICK TURN AROUND

For quotes or further details contact us at: JMJ ELECTRONICS 14, BLEINHEIM CLOSE, SHEPRETH, NR. ROYSTON, Herts. Tel: (0763) 62184

REPAIRS

FIXED CHARGE REPAIRS to Spectrum, Commodore, BBC, Electron E.G. Spectrum £17.95, Commodore £29.95. Mansfield Computers, 33 Albert Street, Mansfield NG18 1EA. Tel: 0623 31202

BBC REPAIRS FROM £15.00 by Microfix, the Acorn Specialists. Also disc drives, printers etc. Microfix, 191 Freston Rd, London W10. (01) 968 9214.

WANTED

MICHELLED TO A MEMBER of the NATIONAL ELECTRONICS CLUB. For details and a free gift of components worth over £10 send only £1.00 p&p to Woodside, Dowsett Lane, Ramsden Heath, Essex CM11 1JL.

SUPPLIES

BENCH POWER SUPPLY Stabilised output. 5-12 & 12V at 1A. Overload protected. £22.95

DUAL POWER SUPPLY Fully regulated and current limited. Metered voltage and current 0-25v, 1 amp. £55.95

LOGIC PROBE Switched to TTL, or CMOS, £17.95

INFRA-RED REMOTE CONTROL High security. Numerous applications, switching house and car alarms, garage doors, car locks, etc. £20. Prices include p&p. All products carry a 12 month guarantee. Trade enquiries welcome. Phasor Circuits, 12 Kendall Road, Leicester LE4 7GP. Tel: (0533) 830953.

SATELLITE T.V.

CROSSHATCH DINGO in U.K. £9. Large array of dishes (12-3mm). Transmitters, antennas, monitors, line-amps, splitters, cables, etc. £116. Installation price. £295. Switched to TTL, or CMOS, £17.95

INSTALLATION HELPLINE Contact us at £500 plus £20 to pay VAT. All major credit cards accepted. Continuous demonstrations at our Retail Trade outlet.

COMPASS Hi-Tech 317 London Rd (A.30 opposite Cannon Cinema) Camberley, Surrey GU15 3HE. Open 7 days/week 10am-7pm

Tel: (0276) 22617

FREE TOOLS OF THE TRADE

LOWEST PRICES IN U.K.!! £290 Large array of dishes (12-3mm). Transmitters, antennas, monitors, line-amps, splitters, cables, etc. £116. Installation price. £295. Switched to TTL, or CMOS, £17.95

INSTALLATION HELPLINE Contact us at £500 plus £20 to pay VAT. All major credit cards accepted. Continuous demonstrations at our Retail Trade outlet.
ETI — ADVERTISEMENT INDEX — OCTOBER 1986

<table>
<thead>
<tr>
<th>ADL TECHNOLOGY</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIKITS</td>
<td>52</td>
</tr>
<tr>
<td>BNRS & ES</td>
<td>67</td>
</tr>
<tr>
<td>B.K. ELECTRONICS</td>
<td>IFC</td>
</tr>
<tr>
<td>J. BULL</td>
<td>10</td>
</tr>
<tr>
<td>CIRKIT DISTRIBUTION LTD</td>
<td>42</td>
</tr>
<tr>
<td>COBONIC</td>
<td>67</td>
</tr>
<tr>
<td>CRICKLEWOOD ELECTRONICS LTD</td>
<td>64</td>
</tr>
<tr>
<td>CROFTON ELECTRONICS</td>
<td>56</td>
</tr>
<tr>
<td>DELTA PHYSICS</td>
<td>15</td>
</tr>
<tr>
<td>DISPLAY ELECTRONICS</td>
<td>34</td>
</tr>
<tr>
<td>ELECTROMAIL</td>
<td>9</td>
</tr>
<tr>
<td>ELECTROMECH INDUSTRIES LTD</td>
<td>16</td>
</tr>
<tr>
<td>FIELD ELECTRONICS</td>
<td>42</td>
</tr>
<tr>
<td>GCHQ</td>
<td>65</td>
</tr>
<tr>
<td>GREENBANK ELECTRONICS</td>
<td>56</td>
</tr>
<tr>
<td>HAPPY MEMORIES</td>
<td>56</td>
</tr>
<tr>
<td>HART ELECTRONIC KITS LTD</td>
<td>52</td>
</tr>
<tr>
<td>HENRY'S AUDIO ELECTRONICS</td>
<td>19</td>
</tr>
<tr>
<td>ICS</td>
<td>62</td>
</tr>
<tr>
<td>JAYTEE ELECTRONIC SERVICES</td>
<td>62</td>
</tr>
<tr>
<td>KESTREL COMPONENTS</td>
<td>41</td>
</tr>
<tr>
<td>LOUTRONICS</td>
<td>33</td>
</tr>
<tr>
<td>MANCOMP</td>
<td>IBC</td>
</tr>
<tr>
<td>MAPLIN</td>
<td>OBC</td>
</tr>
<tr>
<td>MICRO CONCEPTS</td>
<td>21</td>
</tr>
<tr>
<td>MICROKIT</td>
<td>55</td>
</tr>
<tr>
<td>MJL</td>
<td>64</td>
</tr>
<tr>
<td>OMEGA ELECTRONICS</td>
<td>12</td>
</tr>
<tr>
<td>OMNI ELECTRONICS</td>
<td>62</td>
</tr>
<tr>
<td>PINEAPPLE SOFTWARE</td>
<td>52</td>
</tr>
<tr>
<td>P.F. RALFE</td>
<td>41</td>
</tr>
<tr>
<td>RISCOMP LTD</td>
<td>15 + 27</td>
</tr>
<tr>
<td>SERVICE TRADING CO</td>
<td>41</td>
</tr>
<tr>
<td>SHERWOOD DATA</td>
<td>12</td>
</tr>
<tr>
<td>SOCIETY OF ELECTROSCIENCE</td>
<td>12</td>
</tr>
<tr>
<td>SPECIALIST SEMICONDUCTORS</td>
<td>68</td>
</tr>
<tr>
<td>STEWART OF READING</td>
<td>66</td>
</tr>
<tr>
<td>TECHNOMATIC</td>
<td>4/5</td>
</tr>
<tr>
<td>THANDAR</td>
<td>27</td>
</tr>
<tr>
<td>TJA DEVELOPMENTS</td>
<td>41</td>
</tr>
<tr>
<td>TK ELECTRONICS</td>
<td>13</td>
</tr>
<tr>
<td>UNIVERSAL SEMICONDUCTOR DEVICES LTD</td>
<td>33</td>
</tr>
<tr>
<td>VIDEOVAULT</td>
<td>8</td>
</tr>
<tr>
<td>WILMSLOW AUDIO</td>
<td>62</td>
</tr>
</tbody>
</table>

INTERNATIONAL

CLASSIFIED ADVERTISING COUPON
Post to: ETI, 1 Golden Square, London W1A 3RB

Rates:— 42p per word (min. charge £6.30). Semi display (min. 2cms) £11.60 per single column centimetre. Please debit my Access/Barclaycard No. £ for insertions.

Please use BLOCK CAPITALS and include postcodes.

Classification

Name (Mr. / Mrs. / Miss / Ms.)

Address (delete accordingly)

Signature

Daytime Tel. No.
Lowest possible prices?
Top quality components?
Fast reliable service?
Large range?

Just the ticket.

Pick up a copy of our new 1986 catalogue from most branches* of W.H. Smith for just £1.45.
Or post this coupon now, to receive your copy by post for just £1.45 + 40p p & p. If you live outside the U.K. send £2.50 or 11 International Reply Coupons. I enclose £1.85.

Name
Address

*Some branches are now out of stock.