

OVP POWER AMPLIFIER MODULES

PRICES INCLUDE V.A.T. ^ PROMPT DELIVERIES \& FRIENDLY OMP POWER AMPLIFIER MODULES

vowenoy

avalable to suit the needs of the professional and hobby market. ie., Indusiry. Lersure Instrumental and H_{1} - F1. etc When comparing prices. NOTE all models include Toroidal bower supply. Integral hear sink, Glass fibre P app and Orive circuits to power compatib
 OMP100 Mk ready built and tested. watts R.M.S into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D 0.01%, S.N.R. -118 dB . Sens. for Max output
500 mV at 10 K Size $355 \times 115 \times 65 \mathrm{~mm}$. 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$.
PRICE f 33.99 f 3.00 P P

OMP MF100 Mos-Fet Output power 110 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80 Slew Rate 45 V uS T. T.H.D Typical
0.002%, Input Sensitivity 500 mV , S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $£ 39.99+£ 3.00$ P\&P.
OMP/MF200 Mos-Fet Output power 200 watts RM.S into 4 ohms. Frequency Response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250, Slew Rate 50 ViuS . T.H.D. Typical
0.00%, Input Sensitivity 500 mV . S.N.R. 0.001%, Input Sensitivity 500 mV , S.N.R.
-130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$ PRICE PRICE $£ 62.99+£ 3.50$ P\&P.
OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350. Slew Rate 60 V uS, T.H.D. Typical -130 dB Size $330 \times 147 \times 102 \mathrm{~mm}$ PRICE PRICE $\mathbf{f} 79.99+\boldsymbol{f 4 . 5 0}$ P\&P.

NOTE: MOS.Fets are suputed
(100KHz bandwidit inpul Sens tivity 500 mV if required

Vu METER Compatible with our four amplifiers detaled above A very accurate visual display employing 11 LFD diodes 17 green. 4
ecd plus an additional on off indicator Sophisicated logic contiol circuits for very fast rise and decay umes Tough moulded plastic PRICE fB 50 - 50 p P\&P.

BURGLAR ALARM

Better to be Alarmed' then terrified.
Thandar's famous Minder' Burglar Alarm System. Superior microwave principle Supplied as three units. GUARANTEED
Control Unit Houses microwave radar unt range up to 15 metres adjustable by sensitivity control Three position. key operated facia switch - off - test armed 30 second ext and entry delay
Indoor alarm
104 dB output.
Outdoor Alarm - Electronic swept trea siren 98dB case
Both the control unit and outdoor alarm contain re-
cnargeable batteries which provide full protection during mains falure. Power requirement 2001260 volt butions etc Complete with insiructions SAVVE $\boldsymbol{t} \mathbf{1} \overline{\mathbf{B}} \mathbf{0}, \hat{O} \bar{U}$ Usual Price $£ 22885$
BKE's PRICE $£ 89.99+£ 4.00$ P\&P

bly boards!
OMP LINNET LOUDSPEAKERS
The very best in quality and value. Made specially to sult todiays
need for compactness with high sound output levels. Finished in hard wearing black vyni' $\boldsymbol{\text { with }}$ protective corners, grille and carry handle All models 8 ohms Full range 45 Hz - 20 KHz Size 20^{\prime}
$15^{\prime \prime} .12^{\prime \prime}$ Watus R.M S per cabinet. Sensitivy 1 W 1 mm dB
OMP 12-100 Watts 1 OOdB. Price $f 149.99$
per pair.
OMP 12-200 Watts 102 dB . Price $£ 199.99$ per pair.

OVP 19" STEREO RACK AMPS

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections MF600 Fan cooled. Three models (Ratings R.M.S. into 40 hms). hum Sensimity 775 ming MF200 (100 + 100)W. $£ 169.00$ Securicor MF400 (200 + 200)W. $£ 228.85$ Delivery MF600 $(300+300)$ W. $£ 299.99$ £10.00

BS800

* Suitable for both resistance and inductive loads in numerable applications
imdustry. the home Imdustry. the horm
disco's, theatres etc PRICE $f 13.99-75 p$ P\&P

PIEZO ELECTRIC TWEETERS - MOTOROLA
\qquad
\qquad ED WITH EACH TWEETER mesh, ideal for hookstzelf and medium sized Hi.f speakers. Price C 4.90 each. 40 p P\&P.
TYPE 'B' (KSN1005A)
M

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Goldén Square, London W1R 3AB. Telephone 01-437 0626.
 Telex 8811896.

FEATURES

MICROCOMPUTER-AIDED

 CIRCUIT DESIGN 19 Julian Burt examines active components and program overlay techniques in this second instalment of his series.DANGER - ELECTRONICS AT
WORK . 24
There are no government health warnings where the electronics industry is concerned, but Anna

Paczuska says that electronics is a major hazard.

FIBRE OPTICS AND LASERS . . . 27
Roger Bond rounds off with a round up of applications.

HARDWARE DESIGN
CONCEPTS 30
Hardware consultant, Mike Barwise, kicks off a series aiming to get to the heart of microcomputer peripheral design.

PROJECTS

Ian Pitt: Deputy Editor
Paul Chappell: Project Editor
Jerry Fowler: Technical Illustrator
Paul Stanyer: Ad. Manager
Duncan Neilson
Classified Sales Executive
Andrew Selwood: Copy Control
Dave Bradshaw: Group Editor - Electronics

PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Golden Square, London W1R 3AB.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4JS
(British Isles)
TYPESET AND ORIGINATION BY:
Design International.
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED BY
Argus Press Design.
COVERS PRINTED BY:
Alabaster Passmore.

ABC
 Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans,
drawings and programs and all copyright and other indrawings and programs and all copyright and other inSpecialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction reoulres the prior written consent of the Company. © 1986 Argus Specialist Publications Ltd \square All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for mally be published as soon as possible afterwards All prices and data contained in advertisements are ac cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or avallability which may occur after the publication has closed for press.

- Subscription Rates. UK: £18.10. Overseas: £22.50. USA: \$29.50. Airmail: £49.50.

DIGITAL PANEL METER.
 41

VALVE PRE-AMPLIFIER 32 Jeff Macaulay goes down the tubes.

INTELLIGENT CALL METER 36 Chris Ranklin's design will help you with the rate data and the day rate on a day-to-day basis. Right!

For those who missed out on our special offer, here's a DPM to build yourselves.

UPGRADEABLE AMP

Graham Nalty's magnetic moves....!

REGULARS

DIGEST

READ/WRITE
A midi-sized debate

CIRCUIT SOLUTION52

Paul Wood's speaking alarm clock is a veritable treasure house of circuit and software ideas.

TECH TIPS 56

ETCETERA

62
Open Channel on the airwaves, Playback hears the case for digital audio tape, we review one of the latest books and Alf sets another puzzle.

CROSSWORD 66

INFORMATION

SUBSCRIPTION COUPON 11

NEXT MONTH'S ETI

READER'S SERVICES 12
PCB FOIL PATTERNS 59

PCB SERVICE 60
AD INDEX 62
CLASSIFIED ADS 64

HOUS Hom

 Thefabulous TELEBOX an INVALUABLE MUST for the OWner of AN Video monitor with a a composite input colour or monochrome
Made by a major $U K$ Co as a TOP OUALTY, stand alone UHF Muner and costing OVER \&75 to manufacture' this opportunity to
tuive your monitor a DUAL FUNCTION must not be missedl Yhe give your monitor a DUAL FUNCTION must not be missed! The muouldod case containing aLL electronics tuner, power supply etc
to imply plug in and convert your roviously dedicated computer o simply plug in and convert your previously dedicated computer
monitor into a HIGH QUALTY COLOURT TV SET, giving a reat mene fit to ALL the family! Don't worry if your monitor doosn't have sound-THE TELEBOX evenhas an integral 4 watt audio amplifier foudrivingan external speaker, PLUS an auxiliary output for superb Other features include: Compact dimensions of only 15.75" wx Lunable7 channei push buttontunerer Auto AGC circcit SAW filter,
LD status indicator full isolated $240 \mathrm{~V} A C$ power supply for tota safety, Mains UMITED OUANTIT

ONLY £24.95 OR £19.95 if purchased with ANY of our video monitors. Supplied BRAND NEW with full instruc

GOLOUR \& MONOGHROME mONITOR SPECIALS

SYSTEM ALPHA' 14" COLOUR MULTI INPUT MONITOR
Made by the famous REDIFFUSION Co. For their own professional computer system this monitor has all the features to suit your immediate and future
requirements Two video inputs RGB and PAL Composite Video allow direct requiremints Two video inputs RGB and PAL Composite Videa allow direct
connetion to BBCIBM and most other makes of micro computers or VRF including our very own TELEBOX An internal speaker and audio amp may be
connected to computer or VCR for superior sound quality. Many other features PIL tube, Matching BBC case colour, Major controls on front panel Separate Contrast and Brightness, even in RGB mode Separate Colour and audio
controls for Composite Video input BNC plug tor composite input 15 way ' D '
 Supplied GRAND NEW and BOXED, complete with DATA and 90 day
 DECCA $8016^{\prime \prime}$ COLOUR monitor. RGB input.
Little or hardly used manufacturerss surplus enables us to offer this special
converted DECCA RGB Colour Video TV Monitor at a super low price of only E99.00, a price for a colour monitor as yet unheard ofl Our own interface, Es9.0, a price ty moditican and special 16 "' high definition PlL tube coupled with the
safCCA 80 series TV chassis give 80 column definition and quality found only
Det on monitors costing 3 TIMES OUR PRICE. The quality for the price has to be seen to be believed! Supplied complete and ready to plug direct to a B8C
MICRO computer or any other system with a TTL RGB output Other teatures are internal speaker, modular sonstruction, auto degaussing circuit, attractive guarantee Although used, units are supplied in EXCELLENT COndition
ONLY E99.00 + Carriage.
DECCA $80,16^{\prime \prime}$ COLOUR monitor. Composite video input. Same as above model but fitted with Composite Video input and
VCR or AUDIO VISUAL use. ONLY E99.00 + Carr
REDIFFUSION MARK 3, $20^{\prime \prime}$ COLOUR monitor. Fitted with standard 75 ohm composite video input and sound amp This large screen colour display is ideal
for SCHOOLS SHOPDS DISCOS CLUBS and other AUDIO VISUAL applit for SCHOOLS, SHOPDS, DISCOS CLUBS and other AUDIO VIS
cations Supplied in AS NEW or little used condition ONLY $£ 145.00+$ Carr

BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors. All units are fully cased and set for 240 v standard working with composite video
inputs Units are pre tested and set up for up to 80 column use. Even when inputs Units are pre tested and set up tor up to 80 column use. Even when
Minor screen burns exist - normal data displays are unaffected 30 day Puarantee $320-1$ \& W b bandwidth input will display up to 132×25 lines $£ 32.95$ $12^{\prime \prime}$ GREEN SCREEN version of KGM $320-1$. Only ${ }^{\prime \prime}$ KGM 324 GREEN SCREEN fuly Cased very Compact unit Only $£ 49.00$

GOULD OF443 enclosed, compact switch mode supply with DC regulated
outputs of $+5 v @ 5.5 \mathrm{a},+12 v @ 0.5 \mathrm{a},-12 v @ 0.1 \mathrm{a}$ and $-23 v @ 0.02 \mathrm{a}$. Dim 18 x outputs of $+5 v @ 5.5 a,+12 v @ 0.5 a-12 v @ 0.1$ and $-23 v @ 110$ or $240 v$ input. BRAND NEW only $£ 16.95$
$11 \times 6 \mathrm{~cm} 110$
GOULD G6-40A $5 v 40$ amp switch mode supply NEW $£ 130.00$
GOULD G6-4OA 5 V 40 amp switch mode supply NEW £130.00 AC-DC Linear PSU for DISK drive and SY STEM applications. Constructed on a
rugged ALLOY chassis to continuously supply fuliy regulated DC outputs of +5 v
 protected. 100 or 240 V AC input. Dim $28 \times 12.5 \times 7 \mathrm{~cm}$ NEW £49.94

RTHMARS

Manufacturers BRAND NEW surplus DEC LA34 Uncoded keyboard with 67 quality gold plated switches on X-Y
matrix-ideal micro conversions etc $£ 24.95$
AMKEY MPNK AMKEY MPNK-114 Superb word processor chassis keyboard on single PC
with 116 keys Many features such as On board Micra Single 5 v rail, full ASC
ASt - coded character set with 31 function keys numeric keypad cursor pad

Double sided $40 / 80$ track disk drives (1Mb (Mral drive), PSU, 4 K of memory mapped screen RAM, disk controller, RS232, CENTRONICS and system expansion ports, and if that's not enough a ready to plug into STANDARDB" DRIVE port for up to FOUR $8^{\prime \prime}$ disk drives, either in double density or IBM format The ultra sim 92 key, detachable keyboard features 32 user definable keys, numeric keypad and text editing keys, even its own integral microprocessor which allows the main 280 A to devote ALL its time to USER programs eliminating "lost character problems found on other machines. The attractive detachable 2 monitor combines a green, antrglare 2.2, user manuals and full 90 day guarantee Full data shevar

> C2000 System with CPM Etc.

COST OVER 玉1400

Vat etc. $\varepsilon 1700$

Only E399 NOW only E499

SURPLUS SFEGILS ON

 over £90.00
DECCAFAX VP1 complete Professional PRESTEL DECCAFAX
system in sltmine complete professional PRESTEL
dep unit containing Modem, Numeric keypad, CPU, PSU etc. Connects direct to
standard RGB cour monitor. Many other features standard RGB colour monitor. Many other features
include: Printer OUtput, Full keyboard input, Cassette
port etc. BRAND NEW with DATA. A FRACTION OF COST only $£ 55.00$
ALPHATANTEL. Very compact unit with integral FULL ALPHA NUMERIC keyboard. Just add a domestic TV receiver and you have a super TELEX service to be found!! Many features: CENTRONICS Printer output DIY mod for AGB or Composite video outputs. AS NEW only $£ 125.00$

Ex-STOCR LUTEFRTHD CIRCUTIS

4164200 ns D RAMS 9 for E11 4116 ns

 68A09 \&8 6BBO9 £ $108085 A \subset 5.508086 £ 15$ 8088 £ 8 NEC765 £8 WD2793 £28 $8202 A$ $£ 228251$
Z80A CPU $£ 2748$ £ 275 Z Thousands of IC's EX STOCK

DISK DRIVES

Japanese $51^{\prime \prime}$ half height, 80 track double sided disk drives by TEAC, CANON, TOSHIBA et Sold as NEW with 90 day guarantee ONLY $£ 85.00$ TEC FB-503 Double sided HH 40 TRK NEW £75.00 SUEARN SA400 SS FH FS 40 TRK $£ 65.00$ carriage on $51 / 4 "$ drives $£ 5.50$
Brand NEW metal $51 / 4$ DISK CASES with internal PSU.
DSKC1 for 2 HH or 1 FH drive DSKC1 for 2 HH or 1 FH drive $\mathbf{£ 2 9 . 9 5}+\mathrm{pp} £ 4.00$ $\begin{array}{ll}\text { DSKC } 2 \text { or } 1 \text { HH drive } & \mathbf{E 2 2 . 9 5}+\mathrm{pp} £ 3.50 \\ \text { DKSC } 3 \text { AS DSK } 1 \text { LESS PSU } & \mathbf{E 1 2 . 9 5}+\mathrm{pp} 2.50 \\ \text { DSKC } 4 \text { AS DSK }\end{array}$ DSKC 4 AS DSK2 LESS PSU ${ }^{\prime}$ E10.95 +pp $£ 2.00$ SHUGART $800 / 801$ SS $\quad £ 175.00$ +pp 88.50
 COMSHUGAROS51 2 Mb tal MITSUBISHI M2894-63 8" DS 1 Mb equiv. to SHUGART SAB50R. BRAND NEW at £275.00
DYSAN
E Alignment disk DYSAN 8 Alignment disk
Various disk dive PSU's Ex Stock SEE PSU section. HARD DISK DRIVES
RAR DIABKDRIVES 302.5 Mb front load $\mathbf{~} \mathbf{~} 525.00$ Exchangeable version £295.00. ME3029 PSU £95.00 DIABL $44 /$ DRE 4000 A B $5+5$ Mb from $£ 750.00$ CDCHAWK $5+5 \mathrm{MbE795.00}$. CDC $978280 \mathrm{MbRMO3}$ etG
PERTEC D3422 $5+5 \mathrm{Mb}$
RODIME $51 / 4$ Winchesters ex-stock from E 150 CALL Clearance Items-Sold as seen-No guarantee. CLiarance $\mathbf{B R A N D}$ NEW $14^{\prime \prime} \mathrm{Mb}$ - Removable gack hard disk drive cost OVer $£ 2000$ with data ONLY $£ 99.00$
BASF $6172 \mathbf{B}^{\prime \prime} 23 \mathrm{Mb}$ Winchesters BASF 6172 8" $^{\prime \prime}$ 23Mb Winchesters 199.00 Unless stated all drives are refurbished with 90 day
guarantee. Many other drives and spares in stock guarantee. Many other drives and spares in stock-call

Join the communications revolution with our super
range of DATA MODEMS, prices and specifications range of DATA MODEMS, prices
to suit all applications and bucgets BRAND NO SicO Auto answer 123 Multi standard 300-300, 1200.75 Auto answer etc
DACOM DSL $23 A Q$ Auto dial, smart modem with
muiti standard AUTO SPEED detect and data buffer muiti standard AUTO SPEED detect, and data butfer
with flow control etc. with flow control eta
DACOM DSI21 23GT The CREAM of the intelligent
modems auto dial modems, auto dial, auto caln etc
etc etc etc etc
Steebeck S81212 V22 1200 baud FULL DUPLEX
£465.00 Sync or async optional auto dial位 Ex BRITISH TELECOM full spea, CCITT, ruggedised, bargain offers. Sold TESTED with data Will work on any MICAO or system with RS232 interface.
MODEM 13A 300 baud unit, only $2^{\prime \prime}$ high Mone CALL mode only Ms subscriber end to PRESTEL, TELECOM GOLD, MICRONET etc $\mathbf{E 3 9 . 9 5}$ +pp $£ 6.50$ MCRON 20-2 $1200-75$ baud Same as $20-1$ but for
MODEN
computer end
£65.00 + pp $£ 6.50$ Computer end
DATEL 2412. Made by SE Labs for BT this two part unit is for synchronous data links at 1200 or 2400
baud using $2780 / 3780$ protocol etc. Many features include 2 or 4 wire working self test, auto answer etc. COST OVER E800. Our price ONLY $£ 199$ tpp £8.00
DATEL 4800, RACAL MPS4800 baud modem, EX DATEL 4800, RACAL MPS4800 baud modem, EX
BT good working order, ONLY £295.00 +pD 8.00 MODEM TG2393. Ex GT UP to
duplex 4 wire or half duplex over 2 wire bine ONLY

SPECIAL BULK PURCHASE of these compact, high speed matrix printers. Buitit in Japan or oration this unit features quality construction giving 100 cps bidirectional, full pin addressable graphics, 6 type fonts, up $103.5^{\prime \prime}$ single sheet or
tractor paper handing, RS232 and CENRONICS paralle interface. Many other features. BRAND NEW
and BOXED. COST $£ 420$. Our price Only £199.00
rechargeable sattirifs Dry Fit MAINTENANCE FREE by Sonnenschein A300 07191315 12v 3Ah NEW 13.95
$\varepsilon 9.95$ A300 07191312 6v 3Ah NEW
A300 $071912026-0-6 v 1.8 A h$ TESTED Ex
\qquad
Standard VDU data entry termingla QUME OVT108 ${ }^{\text {ot give away prices }}$ Quminal with detachable keyboard, state of the art 2 page RAM, TVI 925 , Hazeltine, ADMSA emulations 2 page Ra
software se
Printer por Printer port, Function keys etc. BRAND NEW
BOXEDAT ALMOST HALF PRICE Only E425.00 BOXED AT ALMOST HALF PRICE Only £425.00 screen 24×80 display, graphics, cursor addressing. printer port etc. Very good condition TESTED complete
with manual only E225.00 with manual only e225.00
FS232 interíace and printer port TESTED. ONLY £125.00. Carriage on terminals $£ 10.00$

DIGEST

World's First Gallium
 Arsenide Microprocessor

McDonnell Douglas have developed what is claimed to be the world's first gallium arsenide microprocessor chip.

It can process information as fast as conventional silicon microprocessors can but uses only one-tenth of the power.
The MD2901 is a four-bit device which has been designed as a direct substitute for existing four-bit silicon microprocessors. It occupies a one-eighth inch square chip, contains 1860 transistors and uses just 135 milliwatts of power. It will complement the company's existing range of static random access memories and gate array chips.

Gallium arsenide offers the promise of computers which not only use less power than their
silicon equivalents but also operate at many times the speed. McDonnell Douglas say they are studying ways to improve the speed of the new chip and hope to reach a target of 100 million operations per second.
Although a number of gallium arsenide memory chips have been developed, the company say they do not know of anyone else who has successfully built and tested a microprocessor using the material. They are now working on the development of a 32-bit microprocessor using gallium arsenide.

McDonnell Douglas Ltd (European Operations), Albemarle House, 1 Albemarle Street, London W1X 3HF, tel 01-491 1492.

Pocket-Sized Digital Multimeter

The DM1000 digital multimeter from $A B$ European Marketing is only a little larger than a credit card and is light enough to be carried around in a shirt pocket.
It features a $31 / 2$-digit, 10 mm high display, measures AC and $D C$ voltages, resistance and continuity (but not current), and comes with permanently-attached test leads in a plastic wallet. Its maximum dimensions are 108 x $54 \times 8 \mathrm{~mm}$ and it weighs less than 80 grams.
Function selection is by means of a rotary switch and the meter is fully autoranging on voltage and resistance measurements with maximum readings of 450 V and 2MO. The most significant digit flashes to indicate over-range and indicators on the display remind the user which function has been selected and warn when the bat-

tery runs low. The continuity tester uses an audible warning device so that the operator can concentrate on the item under test and not have to look at the display, and there is also a diode checkfunction. Power is provided by two LR44 long-life button cells.

The DM1000 sells for $£ 24.60$ plus VAT complete with case, batteries and instructions. AB European Marketing Forest Farm Industrial Estate, Whitchurch, Cardiff CF4 7YS, tel 0222-618 336.

32-Bit RISC Chip From Acorn

Acorn Computers, Manufac turers of the BBC microcomputer and the Master series, have introduced their much-heralded Reduced Instruction Set Computer chip.
Said to be considerably cheaper than any other single-chip RISC device, the new chip is complemented by a range of optional controller ICs and will be available towards the end of the year.
The VL86C010 ARM (Acorn RISC Machine) is fabricated in CMOS and has only 44 basic in-
structions. It has an average execution rate of four million instructions per second, a twophase 8 MHz clock and comes in an industry-standard ceramic leadless chip package. The associated family of controller chips currently includes devices for memory, video, sound and 1/O operation and further ICs are under development.
The use of a small set of fundamental instructions, coupled with extensive use of internal registers to reduce the need for
external fetch and carry operations, allows machines using RISC architecture to execute code very quickly and efficiently (see the article on RISC in last December's ETI). The ARM has 25 internal 32 bit registers which partially overlap, allowing fast interrupts to occur without the need for time consuming shifts to store. Acorn say the device handles high-level languages efficiently and that it is particularly suited to use in situations which require real-time response to external interrupts and high processing throughput.

The VL86C010 ARM is to be manufactured by VLSI Technotogy Incorporated in San Jose, California, under an agreement with Acorn. The first samples will be available in mid-summer at a price of $\$ 99$ and full production should be reached during the third quarter of the year. VLSI are also planning to make an evaluation kit available and Acorn will be marketing a development system cum evaluation kit.
Acorn Computers Ltd, Cambridge Science Park, Newmarket Road, Cambridge, tel 0223-214 411 extension 409.

Dual-Purpose Portable Iron

Anovel new tool from Camping Gaz International combines the functions of portable soldering iron and burner.

Called the Spotflam, it consists of a brass burner which screws onto a gas cartridge and a soldering bit which can be attached to the burner. The flame temperature is adjustable, giving up to $1800^{\circ} \mathrm{C}$ for burning and $400^{\circ} \mathrm{C}$ for soldering, and one gas cartridge will last for up to five hours.

The soldering attachment can
be used for most commonly-encountered soldering operations while the burner is suitable for removing paint from small objects, releasing seized nuts and many more jobs. A patented device allows the burner to be used at any angle without flaring.
Recommended retail price of the Spotflam is $£ 9.95$ and replacement CV360 gas cartridges cost £1.70 each. Camping Gaz (GB) Ltd, 126-130 St. Leonards Road, Windsor, Berkshire, tel 95-55011.

MANCOMP．т．
（Dept．E．T．I．8），Printworks Lane， Levenshulme，
Manchester M19 3JP．
Tel：061－224 1888／9888
add $£ 0.50$ P\＆P ORDERS ABOVE $£ 5$ add $£ 1.80$ P\＆P $+15 \%$ VAT to all orders．

Tis T89920	0	8039
5	8039	
80804		

$$
5
$$

 3引35今， $L M 1017$
$L M 1014$
$L M 1801$
$L M 1801$
$L M 1872$
$L M 1886$
$L M 1899$.

¢8888888N

乩云 $\begin{array}{r}48 \\ 8 \\ 0 \\ 3 \\ 3 \\ \hline\end{array}$

Awards Off Course

aunched by component dis-- tributors, Cirkit, in 1985 and cosponsored.by Texas Instruments and tradejournal Electronics Times, the Young Electronics Designer of the Year Award is intended to encourage young designers and promote the teaching of electronics in schools. Judging by the standard of entries in this its second year, the scheme seems none too successful.

The award presentation for 1986 took place recentlyat Westminster school and was introduced by Maggie Philbin, co-presenter of TV's Tomorrow's World and a somewhat less notable personality than last year's Duke of Edinburgh.

First prize in the junior category was awarded to Gareth Arthurs (above) for a circuit to switch bicycle lights between dynamo and battery according to the output from the dynamo, preventing the lights from being extinguished when the cycle is at rest. Runners up were a wheelchair control device and a thermometer for the blind.

In the intermediate category (15 to 18), the winner was Tim Price with a sound processor using a 16-bit MPU, 128 K of RAM and 12-bit conversion ICs. The runner up, and only female finalist, was Rosemary Erskine with a digital anemometer. Third prize went to a stage lighting controller for the BBC micro.

The senior category was the most disappointing with many
entries not even up to the standards of the intermediate category. The joint winners were Stephen Osborne and Howard Mitchell of Essex Universitywith a netball scorer. Runners up were an 'electronic Lego' set and a rehabilitation aid to exercise the arms of stroke victims.

The netball scorer won on marketability, thanks to a team of judges who included Peter van Cuylenberg - Tl's European head - and Jason Swift, electronics correspondent of the Financial Times.

The outright winners in the senior category received $£ 500$ in cash, a $£ 450$ a year sponsorship for the remainder of their course of study, a vacation job with TI and a reserved place in Tl's graduate intake-in otherwords, theywon a job, which is not be sneezed at these days.
It was noticeable, however, that the overall standard of this year's entries was poorer than that of a well-constructed ETI project in some respects and the scheme seems not to have mined the same vein of talent that was evident in last year's crop of entries. It may be that ETI readers could do better. Certainly, they are welcome to apply even if not at present in full-time education.

Entry forms for 1987 can be obtained by writing to:

Carla Sharyk, Young Electronics Designer Awards, Standard House, 16-22 Epworth St., London EC2A 4SH.

I Can See Clearly Now

Eleven scientists from the USA, Holland and Britain have been awarded three joint prizes totarling $£ 115,000$ for contributions to the growing field of optoelectronics. The awards were made iri early June by the Rank Prize Fund at a ceremony at the Royal Institution in London.
The prizes were awarded for pioneering work in three major areas of opto-electronics: the invention of compact and video discs; the development of large screen television displays and the design of thermal imaging cameras.
Three Philips research scientists shared $\mathbf{£ 4 5 , 0 0 0}$ for their invention of the laser disc-initially as a video medium but increasingly thought of as an audio and data medium. Dr. P. Kramer, Mr. G. Bouwhuis and Mr. K. Compaan invented the laser disc in the early seventies. In his acceptance speech Dr Kramer observed that his team had built on the work of many predecessors and also indicated that work was currently in progress on the use of crystalline

While on the subject of prizes (see the other ariticles on this page), the free PCB competition announced in our March issue has attracted a disappointing number of entries. If you recall, we asked readers to come up with designs for an original and interesting circuit using the PCB we gave away with our March issue. So far, we have not received any entries worthy of an outright

Drawing Fruit

Dineapple Software, whose Diagram circuit drawing program for the BBC micro is to be reviewed soon, have announced two new products, also for the Beeb

Autilities discproduced by one of the company's customers provides six additional features for the diagram package including the ability to specify a border, to identify the screens in large diagrams and to move diagrams either horizontally or vertically to make more space.

Pineapple also announced a PCB drawing program - supplied on a 16 K EPROM and capable of handling double sided boards up to $8^{\prime \prime} \times 5.6^{\prime \prime}$ in size. PCB (as the package is known) operates with any BBC B compatible computer with a disc drive, medium resolu tion monitor and Epson FX-type
and magneto-optical materials for erasable, re-usable discs.
A prize of $£ \mathbf{4 0 , 0 0 0}$ went to the four scientists who invented the liquid crystal light valve at Hughes Aircraft in California. The LCLV acts as a kind of optical transistor, accepting light from a low intensity source (like a CRT) and using it to modulate a bright source (for example, a xenon arc lamp) thus creating a high intensity version of a low intensity image.
The LCLV operates in real-time and is the device behind the giant screens used at pop concerts, sports meetings, for video conferencing and in NASA astronaut training.

A $£ 30,000$ prize was also awarded to four British researchers at the Royal Signals and Radar Establishment in Malvern and at the English Electric Valve Co. who between them developed a highly portable thermal imaging camera used in fire-fighting, rescue work and medical imaging.
The Rank prizes were established by Lord Rank just before he died in 1972. They are designed to promote research in the two fields which most interested him during his lifetime - nutrition (he was president of Rank Hovis McDougall) and opto-electronics (he founded the Rank Organisation film company).
win (shame on you all!) and since the closing date for submissions was the 2nd May - we don't suppose we will. However, we've been working night and day to rescue something from the ruins, so watch this space next month for a PCB special. By the way, the PCB is still available from our PCB service at its commercial price.
printer. Three standard track widths are available and the system operates on a standard $0.1^{\prime \prime}$ grid.
A sample of the program's output is shown in the illustration, this being the component side of a double sided board.
PCB retails for $£ 85.00$ plus VAT (p\&p incl.) and Diagram Utilities for $£ 10$ plus VAT. Further details and programs may be obtained from Pineapple Software, 39 Brownlea Gardens, Seven Kings, Ilford Essex IG3 9NL (tel: 01-599 1476).

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

Self-Contained Switching Regulator

New from SGS is a series of Switch-mode voltage regulators which require no external components.
The GS-R400 series devices are available with outputs of 5.1 V , $12 \mathrm{~V}, 15 \mathrm{~V}$ and 24 V and there is also a variable output version offering between 5.1 and 40 V . A special version of the 5.1 V regulator includes a voltage-checking facility and produces an output signal when the voltage is correct. All models feature output current limiting at 4 A and have a minimum voltage over-head of 3 V .

The regulators use a switching frequency of 100 kHz and efficiencies range from 75% for the 5 V version to 90% for the 24 V model. The ripple level is typically 0.25%. The metal package provides screening and also allows the regulators to be used without further heatsinking in many cases.
Further information is available from Unitel Ltd, Unitel House, Fishers Green Road, Sevenage, H rtfordshire SG1 2PT, tel 0438314393.

ETI PCB Service

With fingers firmly crossed (doesn't half make typing difficult) we are re-introducing the PCB Service as from this issue. A new pricing structure has been agreed and new PCB Service pages prepared (see pages 58 and 59). All orders placed from now on should use the new order form and prices; those given in previous advertisements no longer apply.

We are now in a position to run the service normally with the usual allowance of up to 28 days for orders to be fulfilled. Most customers who placed orders more than $\mathbf{2 8}$ days ago should by

- Oxfam receive a large quantity of electrical and electronic items for sale in their $750+$ shops nationwide, butsaytheyare often unable to use donated goods because of a shortage of qualified and experienced volunteers to carry out checks and simple repairs. If you would be prepared to give up some time to help in this way or would like to know more about other voluntary work with the charity, contact Faye Wark at Oxfam, Freepost, London N12 9BR tel 01-446 6888.
now have received either the board(s) ordered or a refund (last month's statement that ALL ordershad been fulfilled was, unfortunately, incorrect: a small number of boards are still unavailable because of technical problems). Anyone who has waited 28 days and not heard from us should contact our Readers' Services department at Hemel Hempstead (tel 0442-41221).
Some boards previously advertised in the PCB Service have been temporarily withdrawn while problems with foils, etc, are sorted out. These boards will be returned to the service as soon as possible.
- Unfortunately, ETI contributor Barry Porter was unable to take part in the British Heart Foundation's London to Brighton cycle ride because of illness (see News Digest last month). However, we gather that the ride itself was a great success, although it is not known at the time of going to press just how much money was raised for heart research. Barry is now well on the way to recovery (that is, if the state of his sense of humour is anything to go by) and we wish him better luck next year.

FH) 4 Hulltho

WHEN WE SAY 'SEPTEMBER ETI!' FREEZE . . .

Low Cost Framestore

A little over a year ago, we produced a do-it-yourself design for a video framestore or framegrabber with some advanced features. Despite some very expensive hardware, a resolution of 640×512 pixels and the corresponding large amounts of RAM, the framestore was a very popular project. Now the designer has come up with a low-cost version offering 256×256 pixel resolution, storage of two complete images and the ability to perform a comprehensive range of logical operations on the images. And all at a price within almost everyone's reach.

> Battery Power - The Charge Of The Light Brigade
> Perhaps some of the most exciting developments in electronics involve new forms and uses of battery power. We provide a round-up from alkaline to zinc-carbon and from lithium to lead-acid, taking in solar cells along the way. Power to the people...

Plus:

Clean up your mains with our mains filter, find out whether transistors really sound different to valves, get close to your proximity detector and check out the circuit for a single-board controller which emulates a BBC micro.

THE SEPTEMBER ISSUE ETI - ON SALE 1st AUGUST

All the articles listed above are at an advanced stage of preparation, but circumstances beyond our control may prevent their publication.

DIARY

Radio Receivers And Associated Systems - July 1-4th
University College of North Wales, Bangor. For details see July'86 ETI or contact the IERE at the address below.

Voice Processing - July 2/3rd
Wembley Conference Centre, London. Conference. For details contact Online at the address below.

The History of Physics For the. Physicist - July 2-4th
Oxford. Summer school which aims to bring together physicists, physics teachers and othersto explore ways in which knowledge of the history of physics can be used in the development of the subject itself. Contact Dr. J.J. Roche, Linacre College, Oxford OX1 3JA.

Cable '86 - July 8-10th
Metropole Hotel, Brighton. Conference and exhibition. For details contact Online at the address below.

Satellite Communications Systems - July 20-25th
University of Surrey. Vacation school organised by the IEE. For details, contact them at the address below.

Fourth Official Acorn User Show - July 24-27th
Barbican Centre, London. Exhibition of software, services and peripherals for the BBC micro, the Electron and the new Master series machines. Tickets cost $£ 3.00$ for adults, $£ 2.00$ for childreñ, $£ 1.00$ less if purchased in advance. Contact Editionscheme Ltd, HR House 447 High Road, Finchely, London N12 OAF, tel 01-349 4667.
Optical Fibre Telecommunications - August 31 st-September 5th University College of North Wales, Bangor. Vacation school organised by the IEE. For details contact them at the address below.
Electrical Measurements, DC to VHF - September 7-12th Imperial College of Science and Technology, London. Vacation school organised by the IEE. For details contact them at the address below.
Radio Amateurs' Examination Course - September 8-10th
Paddington College, London. Twice-weekly evening class which prepares students for the City \& Guilds Radio Amateurs' examination in May 1987. Course includes practical as well as theoretical skills and assumes no previous knowledge of electronics. Enrolment takes place between 1.00 to 4.00 pm and 6.00 to 8.00 pm on the dates shownat the college, 25 Paddington Green, London W2 1NB, tel 01-402 6221.
Commodore Horizons Show - September 13/14th
UMIST, Manchester. For details contact Database Exhibitions at the address below.
Software Engineering for Microprocessor Systems - September 2126th
City University, London. Vacation school organised by the IEE. For details contact them at the address below.

Electron \& BBC Micro User Show - September 26-28th
UMIST, Manchester. For details contact Database Exhibitions at the address below.

Electromagnetic Compatibility - September 30th-October 3rd University of York. Conference with supporting exhibition devoted to electromagnetic compatibility (EMC) between systems at all levels from board components through to antenna systems. Topics covered will include measurements, suppression, safety, etc, and the first day's tutorials have been designed with the newcomer to EMC in mind. For details contact the IERE at the address below.

Addresses

Database Exhibitions, Europa House, 68 Chester Road, Hazel Grove, Stockport SK7 5NY, tel 061-456 8835.
Institution of Electrical Engineers, Savoy Place, London WC2 0BL, tel 01-240 1871.

Institution of Electronic and Radio Engineers, 99 Gower.Street, London WC1E 6AZ, tel 01-388 3071.
Online Conference Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex. HA5 2AE, tel 01-868 4466.

BRIDGE RECTIFIERS

ENCLOSURES

Beige ABS Cases $100 \times 120 \times 40 \mathrm{~mm}$ - Four part snap together assembly 3.99

CONNECTORS

Turned Pin .1 Sockets
S.ILL 36 way

S.I.L. 36 way	Din	90 p	D.I.L. 72 way
Pin Headers - in	$63 p$	D.I.L. 72 way	1.80

CABLE ASSYS \& WIRE

Centronics to 34 way IDC
5.00

Phono to Phono with 2 mtrs cable
1.00

Phono to Co-Ax 75 ohm with 2 mtrs cable
1.20

Please add $£ 1$ to all cash orders to cover P \& P.
All prices are exclusive of VAT. Please add 15% to cash total inc. P \& P.
PHONE 0243771748 FOR OUR SPECIAL OFFERS.

RACK MOUNTING CABINET

*Suitable for instruments, high quality amplifiers and many other purposes * Black anodisied aluminium front panel enhanced with two handles *Aluminium version, wholly made of black black with aluminium front panel. Customer who requires further details, please send SAE $\begin{array}{ll}\text { Panel Slze Rear Box } & \text { Price } \\ \text { WH (Inch) WH D } & \text { Steel AL }\end{array}$

Discontinued sizes. special price valid while stock last. Please add $£ 3.00 \mathrm{P} / \mathrm{P}$ for the first item and $£ 1.50$ for each additional item. Quantity discount available. A limited quantity of electronic kits at give away prices. Large SAE for details.
Mail order only. Fo order send cheque/postal

> cheque clearance.

TJA DEVELOPMENT
53 Hartington Road, London E17 8AS

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System

BBC Master Series

 AMB15 BBC MAScomputer 128 K Computer 128 K 395 (a)
AMB12 BBC MASTER EConet 128 K (only ANFS) AMC06 Turbo (65 C 102) Expansio Module

PRINTERS EPSON

LX-80NLQ
Optional Tractor Feed
FX85 (80col) NLQ 8K RAM
FX105 (136col)
JX80 4 colour printer
LQ800 (80 col)
LQ1000.
LQ1500 (136col) 2K buffer.
. £195 (a)

LQ1500 (136col) 32K buffer c950 (a)
Integrex Colour Printer........549 (a)
PLOTTERS
EpsonH180: A4 4 colour Plotter..... 245 (a)

TAXAN

KP810 80 COI NLQ $\mathbf{\Sigma 2 3 0}$ (a)
KP910 156 Vol NLQ $\mathbf{K} 379$ (a)
JUKI 6100 Daisy Wheel £249 (a)
HR15LX (Serial) £285 (a)
HR15LX (Serial) 365 (a)

Paper:

2000 Sheets Fanfold:
 $14.5^{\prime \prime} \times 11^{\prime \prime}$ ع18.50 (b) Labels: (per 1000)
$3.5^{\prime \prime} \times 17 / 16^{\prime \prime}$ Single row55.25(d)
$27 / 46^{\prime \prime} \times 17 / 16^{\prime \prime}$ Triple row25.00 (d)

ACCESSORIES

EPSON

MODEMS

- All modems listed below are BT approved NM_{2} MIRACLE 3000:

A new range of microprocessor based modems oftering of upto 2400 baud, full
duplex. Features include 'HAYES' protocol compatibility, auto answer, auto dial, speed buffering, orinter port, datasecurity optionetc. Mains powered
WS3000 V2123 (V21 \& V23).............. 2295 (b) W53000 V22 (as above plus 1200 baud full duplex) baud full duplex) baud full duplex)
AIRACLE 2000
A world standard modem covering V21, V23 (Bell 103/113/108 outside UK) and including $75,300,600,1200$ baud ratings. Optional Auto computer keyboard. WS2000 £102 (b)

GEC DATACHAT 1223 BABT approved modem comply BABT approved modem complying with
CCITT V23 standard. Supplied with software................................... 75 (b) Data Cables for above modems available for most computers.

DISC DRIVES
These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with $40 / 80$ track switching as standard. All drives can operate in single or dual density format.
$\mathrm{PD} 800 \mathrm{P}(2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T} \quad \mathrm{PS} 400$ with $\mathrm{psu} 1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K}$ DS) with built in monitor 40/80T DS
3.5" DRIVES
$1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ DS TS 35

$2 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T}$ DS TD35

PD35 2 with psu (b)

3M FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed forlife. Tendiscs are supplied in a sturdy cardboard box.

5\%" DISCS
3y/2 DISCS $\begin{array}{ll}40 \text { SS DD } £ 10: 50 \text { (d) } & 40 T \text { DS DD } £ 12: 75 \text { (d) } 80 T \text { SS DD } \mathcal{L} 18 \text { (d) } \\ 80 T \text { SS DD } £ 14.75 \text { (d) } & 80 T \text { SS DD } £ 16: 00 \text { (d) } 80 T \text { DS DD } £ 25 \text { (d) }\end{array}$

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives :... $31 / 2^{\prime \prime} £ 16$ (d), $51 / 4^{\prime \prime} £ 14.50$ (d) Single Disc Cäble.................................. $\mathbf{\varepsilon 6}$ (d) Dual Disc Cable $\mathbf{\varepsilon 8 . 5 0}$ (d)
10 Disc Library Case.. .$\varepsilon 1.80$ (c)

MICROVITEC

All 14" monitors now available in plastic or metal cases, please specify your requirement.

14" RGB	$14^{\prime \prime}$ RGB with PAL \& Audio
1431 Std Res £179 (a)	1431 AP Std Res £199 (a)
1451 Med Res...................... £2291(a)	1451 AP Med Res £275 (a)
1441 Hi Res............................£375 (a)	
Swivel Base for Plastic 14" Microvitecs.	$\ldots220 ~(c) ~$
20' RGB with	PAL \& Audio
2030CS Std Res.................. £380 (a)	2040CS Hi Res $\mathbf{2 6 8 5}$ (a)
TAXAN 12" RGB K12SV3 with mono	amber/green option, IBM
compatible 5324 (a)
SUPERVISION III with amber/green	tion . £330 (a)
MITSUBISHI XC1404 14" RGB Med	IBM \& BBC Compatible . . $\mathbf{\text { 2 } 2 1 9 \text { (a) }}$
MONOCHRO	MONITORS:

TAXAN KX1201G Hi Res $12^{\prime \prime}$ Etched Green Screen £90' (a)
TAXAN KX1203A Hi Res 12" Etched Amber Screen
PHILIPS BM7502 12" Hi Res Green Screen.
.$£ 105$ (a)
PHILIPS BM7522 12" Hi Res Amber Screen
. .879 (a)
Swivel Base for Kaga Monochrome fitted with Digital Clock .. (c)

SPECIAL OFFER
 ATTENTION

2764-25£2.00
27128-25
. $£ 2.50$
6264LP-15
.£3.40

All prices in this double page advertisement are subject to change without notice.
ALL PRICES EXCLUDE VAT
Please add carriage 50p unless indicated as follows:
(a) $£ 8$ (b) $£ 250$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Test
Minitors RS232C and CCITT V24
Transmissions, indicating status with dual colour LEDs on 7 most signiticant lines.
Connects in Line.

Serial Cabie switchabie at both ends allowing pin options to bere-routed or linked at either end using a 10
way switch making it possibls to produce atronst eny cable configuration on site.
Available as M / M or M / F

Alfows an easy method to reconfigure pin functions whourswing the cable assy,
$\varepsilon 22$ (d)

GANG OF EIGHT

 intelligent fast EPROM COPIERCopies up to eight eproms atatimeand accepts all single rail eproms up to 27256 . Can reduce prosuggested algorithms. Fixed Vpp of $21 \& 25$ volts and variable Vpp factory set at 12.5 volts. LCD display with alpha moving message. £395(b).

SOFTYII

This low cost intelligent eprom programmer can program 2716, 2516,2532, 2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page on TV - has a serial and parallell/ O routines. Can be used as an emulator, cassette interface.
Adaptor for $2764 / 2564 . \mathbf{2 5 . 0 0}$ (c)
UV ERASERS
All erasers with built in safety switch and maine indicator.
UV1B erases up to 6 eproms at a time. $\quad \varepsilon 47$ (c) UV1 \dagger as above but with a timer E59(c) UV141 as above but with a timer.......... $\mathbf{5 8 8}$ (b)

E 88 (b)

\section*{CONNECTOR SYSTEMS}
 EDGECONNECTORS

EDGECONNECTORS			AMPHENOL CONNECTORS Solder		
$2 \because 6 \cdot$ way (commodore)$2.610 \cdot$ way	0.1	0300 p			
	150p		36 way plug	500p	475p
2×12-way (vic 20)		350p	36 way skt	550p	500p
2×18-way - 1400			24 way plug		
			IEEE	475p	475p
2×28 way (Spectrum) $\quad 200 \mathrm{p}$			24 way skı		
2×36 way 250 p			IEEE	500p	00p
1×43-way	260 p		$\begin{gathered} \text { PCE Mtg Skt Ang Pin } \\ 24 \text { way } 700 \mathrm{j} \text { 36way } 750 \mathrm{p} \end{gathered}$		
2×22 way 190p					
			24 way 700p 36way 750p		
	4000 $600 p$	00p	GENDER CHANGERS 25 way D type		
EURO CONNECTORS					
DIN 41612 Plug Socket			Male to Female £10Female to Female. £10		
2×32 way St Pin 230 p2×32 way Ang Pin 275 p3200					
3×32 way St Pin 260p 300p			RS 232 JUMPERS		
3×32 way Ang Pin	$375 p$	400p	24" Single end (25 way D)		
IDC Skt $A+8$		400p			
IDC Skt A + C		400p	$24^{\prime \prime}$ S Single end	emale	± 5.25
For 2×32 way please specify spacing ($A+B, A+C)$.			24" Male Male "24" Male Fem		$\begin{array}{r} 10.00 \\ 89.50 \\ \mathbf{c o s} \end{array}$
MISC CON 21 pin Scart Conne 8 pin Vidso Conne	NS ctor. 2 tor 20	$\begin{aligned} & 00 p \\ & 10 p \end{aligned}$	4-way 90p 8 -way 120 p	-way 10-way	$\begin{aligned} & 105 p \\ & 140 p \end{aligned}$

RIBBON

DIL HEADERS		
14 pin	40p	100 p
16 pin	50 p	110p
18 pin	80p	
20 pin	75p	
24 pin	$100 p$	150 p
28 pin	160p	200p
40 pin	200p	225p

TECHNOLINE VIEWDATA SYSTEM
 for: intomation and orders
ohone $01-450: 9764,24$ hour phone $01-450$. 9764,24
service, 7 days a weck.

READ/WRITE

Dear ETI,
A colleague has recently shown me a copy of your June issue, with R.A. Penfold's MIDI to CV converter project in it. Potential constructors be warned! His design contains serious deficiencies and will not work with all MIDI equipment.

1) Its inability to receive on channel 1 is a limitation because this is the most commonly used channel. For example, a synthesiser with built-in sequencer may transmit keyboard 'note on/ off' events on channel 1 (code 0) and sequencer events on channel 2 (code 1), without any ability to change these channel numbers. In a case like this the only way to receive keyboard data is to put the converter in OMNI mode, which will mean that it has no choice but to receive sequencer data as well whether you want it to or not.
2) The gate output is simply toggled, rather than being turned on by 'note on' codes and turned off by 'note off' codes. This means that it will only work properly if the incoming codes follow a strictly alternating on/off sequence. They often won't. If the player hits a key before releasing the previous one, a second 'note on' will be produced for that key before the 'note off' for the previous one occurs. This 'note on' would be interpreted as a 'note off', and if the 'note off' for the first key pressed were then produced it would be interpreted as a note on'.
3) Some equipment does not re-issue the status byte (9n for 'note on' or 8 n for 'note off') if it is the same as the status byte for the previous event. This technique is being increasingly used, too. Its advantage is speed - even though at 31.25 kHz the MIDI baud rate is high compared with RS232, it is only barely adequate for the kind of timing accuracy required of it. The circuit described would ignore successive event data without preceding status bytes.
4) There are two ways MIDI transmits 'note off' codes - either by a 'note off' command, or by a 'note on' with a key velocity of zero. Since, however, the design does not even decode the incoming status codes at all, I
suppose the fact that it does not take this into account is only a minor quibble!
5) The design assumes that the only status bytes received will be 'note on' and 'note off' codes. This is a very dangerous assumption. MIDI handles considerably more than just this information, and some means of detecting and ignoring other status codes should have been provided.
6) The MIDI THRU socket is simply connected in parallel with the MIDI IN. This is dodgy - and certainly not correct. The 5 mA current loop contains a total of three 200R series resistors - two in the transmitter and one in the receiver. If more than one receiver is connected to a single transmitter, the loop current is shared between a number of receivers and is therefore reduced in each receiver, which could cause data errors. Done properly, the MIDI THRU should be driven by a buffer connected to the optoisolator output. The MIDI THRU also has no ground connection to pin 2 , which means that the MIDI THRU lead will be unscreened.

MIDI is a horrible cross between a de jure and a de facto standard, for example the specifications published by Yamaha and SCl differ. Before releasing any MIDI design it should be tested with as wide a variety of commercial equipment from as many manufacturers as possible before accepting it. In this case I suspect that neither Penfold nor yourselves can have done so.

Yours sincerely,
Alan Robinson,
London N11.

We have contacted R.A. Penfold

 about this letter. He accepts most of the criticisms made, but points out that none of these apparent deficiencies are likely to cause problems if the converter is used as intended.As was pointed out in the original article, the circuit was designed to enable MIDI-equipped instruments or computers to control older monophonic synthesisers fitted with GATE/CV inputs. Only 'note on' and 'note off' information will be of
relevance to a monophonic machine and such information should be purely sequential - if two notes are pressed at once it can only be because of sloppy playing! The inability to receive on channel one may prove a limitation in some cases, but on most MIDI equipment the channel functions can be defined as required. The points regarding the THRU socket and the re-issuing of status bytes are taken, but neither of these has caused any problems in use. More sophisticated decoding could be added if required, but the original aim was to provide only what was absolutely necessary in order to keep costs to a minimum. The prototype converter has been used for some time now to enable a polyphonic SCl synthesiser to control an older, monophonic SCI synth, and it has also been used with a Yamaha DX7 as the controlling synthesiser. In neither case have any problems arisen.

An Auntie Matter

Dear Sir,
Thank you for your reply to my letter about temperature compensating resistors (Auntie Static, ETI June '86). The principles you explained have proved very useful to me. Now all l've got to do is find someone who supplies copper wire wound resistors with a temperature coefficient of 3900 PPM!

Yours sincerely,
A.). Dolan,

Ilford,
Essex.

Driven to Write ...

Dear Sir,
Two months ago, I sent a cheque for just under $£ 100$ to Watford Electroncis for a Mitsubishi Disk drive. I was informed by the bank that the cheque was cashed after about two weeks.

Five weeks after having sent my cheque I rang Watford to ask where the disk drive was, and was told by a very grumpy member of staff that "Mitsubishi put their prices up, so all the cheques are being refunded".

I understand that today's

AUNTIE STATIC'S PROBLEM CORNER

Dear Auntie,
I keep coming across the expression 'common mode' But I'm not sure I know what it means. Will you please explain?

D. Garfield
Surbiton,
Surrey.

The term 'common mode' is most easily explained by reference to a particular circuit (Fig.1). This represents an amplifier with a gain of two which amplifies the difference in voltage between $v_{\text {in }}(+)$ and $v_{\text {in }}(-)$. The output of the amplifier will be $2\left(v_{\text {in }}(+)\right.$ $\left.v_{\text {in }}(-)\right)$, so any change in the voltage difference between the two input terminals will be amplified, whereas any input which causes both to rise or fall by the same voltage will not change the output, since the difference in input voltages will remain constant.

A change in the voltage of one input terminal with respect to the other is known as a 'differential mode' input; an equal change in both input terminals is a 'common mode' signal. any arbitrary input can be thought of as a combination of common mode and differential mode signals. For example, if $\mathrm{v}_{\text {in }}(+)$ rises by 3 V and $\mathrm{v}_{\text {in }}(-)$ by 5 V , this is a differential mode input of -2 V about a mean change of 4 V (from ($3 \mathrm{~V}+$ $5 \mathrm{~V} / 2$). This average is the common mode. In a perfect circuit, the differential mode component would be amplified by a factor of 2 , the common mode component would be ignored,
and the result would be a change in output voltage of -4 V .
In a practical differential amplifier, there will always be a certain amount of amplication of common mode signals. With the circuit of Fig.1, the most significant cause of this would be resistor tolerances - the ratios R2/R1 and R4/R3 must be exactly equal for proper operation. Often, it is a matter of concern that common mode signal amplification should be kept to an absolute minimum.

Induced noise voltages on balanced lines appear as substantially common mode inputs at the amplfier. A circuit with very small common mode gain, or,

to put it another way, good common mode rejection, will greatly attenuate noise voltages. This is one good reason why balanced lines are often used in preference to single-ended ones for low-level signals. In instrumentation circuits, transducers are often incorporated in a bridge arrangement; common mode signals can arise from drifts in supply voltage, temperature
change in transducer characteristics, and so on. It is essential that these spurious outputs are rejected by the measuring apparatus.

Common mode rejection ratio (CMRR) is often used as a figure of merit in the specifications of instrumentation amplifiers. The CMRR is simply the ratio of the differential mode gain to the common mode gain ($A_{d m} / A_{c m}$), often seen expressed in $d B$ as $20 \log _{10}\left(A_{d m} / A_{c m}\right)$. A well designed differential amplifier will have a common mode rejection of around 10^{4} to $10^{5}(80 \mathrm{~dB}$ to 100 dB$)$.

In a slightly different context, you may see common mode and differential mode inputs mentioned in op-amp and comparator data sheets. In this case, the figures given usually refer to electrical limits on the IC's operation. For instance, the LF400C op-amp has an absolute maximum differential input voltage range of $\pm 40 \mathrm{~V}$. This is the maximum voltage that can appear between the input terminals without causing damage to the IC. (There is also the additional constraint that neither input must go below the negative supply voltage).

The input common mode voltage range is given as $\pm 11 \mathrm{~V}$ minimum for a supply voltage of $\pm 15 \mathrm{~V}$. This means that the LF400C will function according to its specifications with a common mode voltage on the inputs anywhere within this range. In normal operation, unless the op-amp is being used in comparator or switching applications, both inputs can be considered to be at the same voltage for practical purposes, and the common mode voltage will be equal to this.

Auntie.
business policies mean selling the goods before you actually own them (Sinclair was the pioneer of that), but it appears that some of the older companies are starting to follow this trend as well, protecting themselves but not the customers with "prices subject to change without notice". I understand all this, but why didn't they have the decency to at least write or ring to tell me what was happening.

Now, two months after sending my cheque off, I still haven't seen a single sign of my money, or an apology. I rang up Watford to talk to the complaints department, and ran out of money on the phone trying to find out what had happened to my money. The staff at the other end helped me to waste a phone call, and refused to
phone back because they said they have no outgoing lines!

The purpose of this letter is to warn anyone out there who is thinking of trading with Watford Electronics that here at least is one person who will never even think of buying from Watford again.

Yours faithfully,
A.F. Stratton,

Zeals,
Warminster,
Wiltshire.
We have received several complaints from readers regarding the disc drive special offer we ran in conjunction with Watford Electronics in our January and March 1986 issues.

We have followed up individual complaints with Watford and as far as we know all those who placed orders should by now have received either a
disc drive or a refund. If anyone is still having problems, we suggest they get in touch with us immediately. We have also had some complaints from people who received their disc drives but found the free utility disc was missing. In this situation we suggest you write directly to Watford. - Ed.

Beyond the DES

Dear Sir,

For some time before your magazine wrote the first article on data encryption (September 1985) I had been working on the design of an 'Electronic One-time Pad' IC. At the moment I am about to assemble the circuit board which contains around 40 standard logic ICs, which will do the job of the final chip.

The final system will plug into
any eight or 16-bit computer and will work like a standard memory device. An eight - byte key is entered into eight locations and the data to be encrypted is written into another eight. The encrypted data is read out immediately after the final write operation. To decrypt, the encrypted data is written into the system and the decrypted data is read out. The system will contain two ICs: the data encryption chip and an EPROM programmed to drive the encryption chip in the most suitable way for the computer it is used with. The key is changed automatically between each encryption operation and can be read out at any time, but knowing the current key would not help anyone to break the system.

My system has similarities to the DES, but the security of the DES system hàs been brought into question, as anyone who saw the 'Horizon' TV program on the subject will know. The NSA have deliberately weakened it to allow them to intercept messages. My
system has not been interfered with in this way.

I am hoping to find a company who will help me to develop my circuit into a single IC and provide some financial assistance. Will you please print my complete address so that anybody who is seriously interested can contact me?

Yours sincerely,
P.R. Moyes,

62, Lingway Gardens,
Leicester,
Leicestershire
LE3 OLU.

Sale Of Effects?

Dear ETI,

At a recent jumble sale I bought an LED light effect unit called a Starburst and a ham radio receiver, an Eddystone 990R. There were, however, no instructions or other written information with either of my bargain buys.

Can you or any of your publicspirited readers help out with a photocopy of the original 'Starburst' article from Hobby Electronics, September 1979, and
any information whatsoever on the Eddystone unit, especially operating manuals, circuit diagrams, addresses of crystal suppliers, etc. Do Eddystone still exist and if so do you have an address for them?

I will pay for any photocopying and postage etc and I will also pay a modest sum for any Eddystone material supplied.

Yours sincerely,
Alistair Bell,
Handsworth,
Birmingham.

Although our sister magazine Hobby Electronics has long since ceased publication, photocopies of articles are still available through the ETI Photocopy Service. There is a standard charge of $£ 1.50$ and your cheque or postal order should be made payable to ASP Ltd. Send your order to the address given on the contents page. We don't have any information on the 990R but we do have an address for the company: Eddystone Radio Ltd, Eddystone Works, Alvechurch Road, Birmingham B31 3PP, tel 021-475 2231. - Ed. ETI

MicroCOMPUTERAIDED CIRCUIT DESIGN Julian Burt continues his investigation of circuit design and analysis techniques for use on microcomputers with a look at active components, DC analysis and program overlay techniques.

Last month we restricted ourselves to passive two port networks. Active components, however, can be represented by equivalent circuits containing passive components and voltage and current sources. To explain how to handle networks with active compoents, we'll use the example circuit of Fig. 1 - a simple low pass filter with a cut-off frequency of about 1.5 kHz .

Suppose we wish to find the response of the circuit at 1 kHz . The two rules for formulating a nodal admittance matrix specify that $Y_{n n}$ should be equal to the sum of all admittances connected to node n and $Y_{n m}$ should be equal to minus the sum of all the admittances connecting node n to node m. That being the case we can assume the matrix we're after to be composed of two separate matrices added together. One will represent the admittances due to passive components and one will represent the admittances due to active circuitry. Notionally, we remove the op-amp from the circuit, use $2 \pi f C$ to calculate the admittance of capacitor C1 and $1 / R$ to calculate the admittances of the resistors and come up with the passive admittance matrix:

node	1	2	3	4	5
1	10^{-3}	0	0	0	-10^{-3}
2	0	$10^{-3}-6.10^{-4} j$	0	0	$-10^{-3}+6.10^{-4} j$
3	0	0	10^{-4}	-10^{-4}	0
2	0	0	-10^{-4}	10^{-4}	0
5	-10^{-3}	$-10^{-3}+6.10^{-4} j$	0	0	$2.10^{-3}-6.10^{-4} j$

Next, we must consider the op-amp by itself. A simple equivalent circuit for the op-amp is shown in Fig. 2. On the asssumption that the op-amp displays no frequency dependent characteristics, the input and output impedances can be expressed as purely resistive. Input voltage is the voltage difference across the inverting and non-inverting inputs to the op-amp and is multiplied by gain, A_{0}, to provide the output voltage.

The op-amp equivalent circuit has four nodes and we require four equations to produce its admittance matrix. Formulation is complicated by the need to account for the dependent voltage source in the output half of the
equivalent circuit. To get round the problem, we will formulate the circuit description equations 'by hand'. On the input side:
$\mathrm{I}_{1}=Y_{\text {in }}\left(V_{1}-V_{2}\right)$ and
$\mathrm{I}_{2}=Y_{\text {in }}\left(V_{2}-V_{1}\right)$.
The output equations can be obtained by applying the principles of superposition and proportionality touched on last month:
$I_{3}=Y_{\text {out }}\left(V_{3}-A_{0}\left(V_{1}-V_{2}\right)-V_{4}\right)$ and
$I_{4}=Y_{\text {out }}\left(V_{4}+A_{0}\left(V_{1}-V_{2}\right)-V_{3}\right)$.
These can be rewritten in matrix form to obtain the general op-amp admittance matrix:

$\|$| $Y_{\text {in }}$ | $-Y_{\text {in }}$ | 0 | 0 |
| :--- | :--- | :--- | :--- |
| $-Y_{\text {in }}$ | $Y_{\text {in }}$ | 0 | 0 |
| $-A_{o} Y_{\text {out }}$ | $A_{o} Y_{\text {out }}$ | $Y_{\text {out }}$ | $-Y_{\text {out }}$ |
| $A_{o} Y_{\text {out }}$ | $-A_{0} Y_{\text {out }}$ | $-Y_{\text {out }}$ | $Y_{\text {out }}$ |

Typical input and output admittance values fora 741 op-amp are in the order of $Y_{\text {in }}=10^{-6}$ and $Y_{\text {out }}=10^{-2}$ Siemens. Assume a gain of $2 \times 10^{5 \mathrm{in}}$ and the matrix looks like this:
$\left\|\begin{array}{cccc}10^{-6} & -10^{-6} & 0 & 0 \\ -10^{-6} & 10^{-6} & 0 & 0 \\ -2.10^{-3} & 2.10^{-3} & 10^{-2} & -10^{-2} \\ 2.10^{-3} & -2.10^{-3} & -10^{-2} & 10^{-2}\end{array}\right\|$

Fig. 2 Ideal op-amp equivalent circuit.

The complete matrix for the circuit of Fig. 1 is formed by re-arranging the above matrix into a 5×5 matrix with rows and columns corresponding to the nodal matrix for the passive part of the circuit and then adding the active and passive matrices.

The re-arranged matrix looks like this:
$\left\|\begin{array}{||lcccc||}0 & 0 & 0 & 0 & 0 \\ 0 & 10^{-2} & 2.10^{-3} & -10^{-2} & -2.10^{-3} \\ 0 & 0 & 10^{-6} & 0 & -10^{-6} \\ 0 & -10^{-2} & -2.10^{-3} & 10^{-2} & 2.10^{-3} \\ 0 & 0 & -10^{-6} & 0 & 10^{-6}\end{array}\right\|$

And the combined and final matrix like is produced by adding the elements of each matrix in their proper positions. The result can then be simplified using the techniques discussed in the first part of this series.

Model Techniques

Equivalent circuits for active components are really models of component behaviour. The models presuppose a particular circuit configuration and are limited to small signal changes around a given operating point. The models familiar from text-books are often extraordinarily complex. Approximations and acceptable shortcuts are commonplace. But the remarkable growth of computing power in recent years means that complexity need no longer be a barrier to accuracy.

Fig. 3 Hybrid π model with capacitance.
Take the models for a bipolar transistor in common emitter mode. for example. Two familiar models are the hybrid- π model ($F i g$ 3) and the hybrid parameter model (Fig 4). The hybrid- π model is popular in America, while hybrid (or h) parameters seem to be increasingly used elsewhere. Of course, the two systems are convertible (as they both are with the third popular model, the Tnetwork) and conversion formulae can be found in any basic textbook. Once having found or calculated the h-parameters ($h_{\text {be }}$ or base circuit resistance; $h_{\text {re }}$ or reverse voltage transfer ratio; $h_{\text {fe }}$ or forward current gain; and $h_{\text {oe }}$ or output admittance), we can formulate a nodal admittance matrix for a bipolar transistor in common emitter mode by means of these equations:

$$
\begin{aligned}
& Y_{i e}=1 / h_{i e} \quad Y_{r e}=-h_{r e} / h_{i e} \quad Y_{f e}=h_{f e} / h_{i e} \quad \text { and } \\
& Y_{\mathrm{oe}}=\left(h_{i e} h_{o e}-h_{r e} h_{\mathrm{fe}}\right) / h_{\mathrm{ie}}
\end{aligned}
$$

Fig. 4 Hybrid parameter model.

The matrix looks like this:

$$
\left\|\begin{array}{lll}
Y_{i e} & Y_{r e} & -Y_{i e}-Y_{r e} \\
Y_{f e} & Y_{o e} & -Y_{f e}+Y_{o e} \\
-Y_{i e}-Y_{f e} & -Y_{r e}-Y_{o e} & Y_{i e}+Y_{r e}+Y_{f e}=Y_{o e}
\end{array}\right\|
$$

As with any models, equivalent circuits can be indefinitely improved upon. The op-amp model we used earlier includes no frequency resonsive elements. A quick look at the frequency repsonse of a 741 (Fig. 5) should confirm that it will only beacceptable from DC to about 200 Hz . To account for the fall-off in frequency response beyond 200 Hz , we could improve the model by adding a simple RC low pass filter to the ideal op-amp (Fig. 6). Matrix reduction can ensure that extra nodes introduced by adding such'compensatory' components can always be eliminated before active and passive matrices are combined.

Fig. 5 Op-amp frequency response.
Op-amps and bipolar transistors are probably the most popular active components in linear circuit analysis, but models are available for most components. A selection of the more useful models is shown in Table 1. We now have the tools to analyse any two port network It will be useful to examine some of the ways in which the resulting long programs can be implemented on small micros (referring throughout to the BBC and Acorn Electron computers).

Fig. 6 Op-amp equivalent circuit with frequency compensation.

Program Overlay

A good analysis program will have three main data entry properties:

1) choice of input sources (for example, file or keyboard);
2) capability of obtaining all the results of analysis from one set of data and one run of the program;
3) ability to edit data.

The inclusion of these facilities, and the requirements of user friendliness and comprehensiveness mean that the program is likely to be very long. The BBC B micro has
a maximum of 28.1 K user RAM which is cut down to 25.3 K if the disc filing system is used. The Acorn Electron is in a worse position. This means that if a cassette filing system is used we must limit ourselves to a very basic program. If a disc system is used, however, the problem can be greatly reduced by means of program overlay.

Partial overlay is one method used on mainframe computers. It can be adapted for use on most disc systems which allow loading addresses to be altered. BBC BASIC has four resident pseudo variables which give information about the memory. PAGE returns the start address of user programs, TOP the address of the first free byte above a user program, LOMEM the start of the BASIC area used to store dynamic variables and HIMEM the address of the first byte of screen memory.

FIELD EFFECT TRANSISTDR

$\mathrm{Y}\left(\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{dg}}\right)$ IS THE ADMITTANCE OF $\mathrm{C}_{\text {gs }}$ PLUS THE ADMITTANCE OF C_{dg} ETC.

Table 1 Some equivalent circuits and their nodal admittance matrices

These variables can be altered to allow storage of more than one program. A complete program can be broken up into a main program containing all the commonly used subroutines and procedures and the program logic and several sub-programs which perform specific tasks and make use of the main program's subroutines and procedures. The subprograms can only be held in memory one at a time, so they are not allowed to call or direct program flow to other subprograms.

A circuit analysis program may contain subprograms to interpret circuit data, set up active component model matrices, complete nodal admittance matrix formulation, reduce matrices and present the results of analysis. The actual process of overlaying is relatively simple.

On the Acorn machines, the start of BASIC lines is signified by a carriage return byte plus a two-byte line number. The end of a BASIC program is signified by a line-number high byte of over 127. Since TOP carries the address of the next free byte after the end of the program, an extra section of program has to be loaded at address TOP-2. This can be done by means of the command ${ }^{\text {LOAD " }}$ name" / hexaddress/. Normally, LOMEM and TOP are equal but if they are allowed to remain equal the extra section of program will be overwritten by dynamic variables. LOMEM must be reset to TOP plus the length (in bytes) of the largest subprogram to be used. This length can be found by loading the subprogram by itself into memory as normal and then returning the value TOP-PAGE. Resetting LOMEM will then also prevent main program variables being lost when a subprogram is loaded. This resetting should be done at the very beginning of the main program. (More information about this technique, if required, can be found in the article'Disc Overlays' by Patrick Quick, ACORN USER, November 1983).

Using Data Files

The advantage of partial overlay is that only one area of memory is required. But it takes time to load each subprogram from disc and one subprogram cannot call on the services of another.

Another method of overlay avoids these problems. It is suitable for all disc based systems and makes use of data files. The complete program is written as a number of independent programs which would be used in a specific order. The first program would be an editor, allowing data on the circuit to be entered and edited and then stored in a data file. Next, an interpreter would be loaded and this would reload the data file and create the circuit description matrices for the passive and active parts of the circuit. The matrices would then be saved to a data file and the next program loaded. In the case of AC analysis, this would contain all the procedures for forming the complete nodal admittance matrix from the matrix information in the data file. It would al so reduce the matrix and calculate the results for a range of frequencies. The results would be written to a data file and then the final output program would be loaded to display the results or print them out.

The advantage of this system is that the data file will, at the end of the program, containall the important information of the circuit and so can be used again. If the data file is created in the proper manner, it can also be used with a word processor to contribute to the documentation. Another advantage is that it becomes a relatively simple matter to add extra programs to the suite to further analyse the data.

The Acorn computers have 26 reserved variables, $A \%$ to $Z \%$, which are not changed when a new program is loaded. These can be set to different values so that each analysis subprogram can select what program to load next by examining the contents of these variables. This method can be implemented on other computers by POKEing values into a block of memory not affected by program loading. Then by PEEKing at these bytes the required action can be determined.

Some micros allow direct screen access, so data on the circuit can be stored in byte form in this area allowing larger circuits to be analysed. Obviously, the program should not then use the screen for text as this will cause
information to be lost.

DC Operating Point Analysis

An area of analysis we have so far overlooked is DC operating point analysis. We can employ the nodal admittance matrix technique again here, if we assume that any capacitors represent open-circuits to DC and any inductors represent resistors of between around 10 and 100 ohms depending on the value of the inductor and its physical characteristics. Replacing capacitors and inductors by open circuits and resistors can be done by the program, especially if it is acceptable to assume equivalent resistances.

Now the matrix can be formed in the usual way. If the method for creating two reactive matrices for AC analysis is used, the formation of the DC matrix is a matter of replacing any non-zero element in the inductive matrix with the conductance figure for the appropriate equivalent resistor and then adding the modified inductive matrix to the resistive one.

To find the voltages at each node we need to solve the set of linear equations represented by the single nodal admittance matrix equation. This equation consists of a current vector containing the currents meeting at each node, the nodal admittance matrix itself and a vector containing the unknown nodal voltages. Kirchoff's Current Law demonstrates that the internal nodal currents sum to zero while signal input and output currents are undefined. For DC conditions, however, we can ignore signal input and output nodes which will be effectively disconnected. On the other hand, we can't ignore the power supply as we would with an AC analysis. This is connected to an external current source producing an unknown nodal current.

Norton's Theorem allows us to convert a voltage source into a current source, which is a necessary first step towards finding the unknown nodal current. The theorem says, in essence, that the Thevenin equivalent of a linear circuit - voltage source plus impedance in series - is effectively the same as a current source shunted by an equal value impedance (see Fig. 7). We can incorporate the current source into the circuit description equations by introducing an extra node.

If the power supply is connected to node ' k ' at one end of the notional shunt impedance and extra node at the other end of the shunt impedance - is called ' j ' (and if we assume the impedance to be purely resistive), then both $Y_{j k}$ and $Y_{k j}$ will be equal to -1/R while the new value of $Y_{k k}$ will be the old value plus 1/R (where R is the value of the shunt resistance). This change is easy to implement in BASIC if arrays have been used and the node numbering has started from 1 . We simply give the extra node the number zero. We don't have to redefine the nodal admittance matrix and the nodal equations for a circuit with a single-rail power supply of $V_{c c}$ volts become:

$\mathrm{V}_{\mathrm{cc}} / \mathrm{R}$
0
0
.
0
0

where n is the number of nodes and all currents apart from $V_{c c} / R$ are zero.

The method we use to solve such systems is known as Gauss-Jordan elimination. The method is very efficient requiring, for example, only 441 multiplications to solve a nine-node circuit, as compared to up to 3.10^{6} if deter-
minants are used. In essence, the technique uses repeated multiplication and addition or subtraction to eliminate all but one variable from each equation. In matrix terms, we can say that if a system of equations has a unique solution, row reduction can be employed to reveal the solution by the systematic elimination of coefficients to produce the identity matrix.

can always be reduced to:
1

1	0	\ldots.
0	1	$\ldots \ldots$
.	$*$	$\ldots \ldots \ldots$
.	.	\ldots
0	0	$\ldots \ldots$

where J_{k} is produced by the arithmetic operations involved in the elimination of every coefficient from the $\mathbf{k}^{\text {th }}$ equation. In the particular case of the DC operating point matrix above, J_{k} will be a function of $V_{c c} / R$ and the relevant admittances.

Fig. 7 Turning a simple voltage source into a current source by means of Norton's Theorem.
Listings 1 and 2 are both routines for performing Gauss-Jordan elimination. The second listing represents an improvement on the basic procedure of Listing 1, and will reorder the matrix rows and eliminate unnecesary computations (such as multiplication of zero elements) in order to make the process more efficient. The reordering makes sure that the largest coefficients are always on or below the main diagonal point of any column.

```
DEF FROCeliminate
1005:
1010 FOR I%=1 TO N
1020 FOF J%=1 TO N
1030 IF J%=I% THEN GOTO 1090
1040 C=Y(J%,I%)/Y(I%,I%)
1050 FOR K%=1 TO N
1060 Y(J%,K%)=Y(J%,K%)-C*Y(I%,K%)
1070 NEXTK.%
1086 I(J%)=I(J%)-C*I(I%)
1090 NEXTJ%
1100 NEXTI%
1105:
1110 FOR I%=1 TO N
1120 V(I%)=I(I%)/Y(I%,I%)
1136 NEXTI%
1135:
1140 ENDFROC
```

Listing 1 Basic Gauss-Jordan elimination.
As with last month, the routines are written in BBC BASIC, but can be adapted for general use by converting them into subroutines rather than procedures.

```
1200 DEF PROCquick_eliminate
1205 :
1210 FOR I%=1 TO N
1220 MAX=-1
1230 FOR K%=I% TU N
1240 IF ABS (Y(K%,I%))>MAX MAX=ABS (Y(K%,I%))
ROW%=k%
1250 NEXTK*%
1270 FOR K%=I% TO N
1280 TRANS=Y (1%,K%)
1290 Y(I%,K%)=Y(ROW%,K%)
1300 Y(ROW%,k%)=TRANS
1310 NEXT K%
1320 TRANS=I (I%)
1330 I (I%)=I (ROW%)
1340 I (ROW%)=TRANS
1345 :
1360 FOR J%=1 TO N
1376 IF J%=I% THEN GOTO 1430
13B0 C=Y(J%,I%)/Y(I%,I%)
1390 FOR K%=I%+1 TO N
1395 IF K.%=4 THEN GOTO1410
1400 Y(J%,K%)=Y(J%,K%)-C*Y(I%,K%)
1410 NEXT K%
1420 I (J%)=I(J%)-C*I(I%)
1430 NEXT J%
1450 NEXT I%
1455 :
1470 FOR I%=1 TO N
1480 V(I%)=I(I%)/Y(I%,I%)
1490 NEXT.I%
1495:
1510 ENDFROC
```

Listing 2 Improved Gauss-Jordan elimination.
Next month we'll be looking at non-linear analysis and transfer functions. We'll also touch on time domain analysis and useful routines for Fourier analysis and quick line printer plotting.

ETI

PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with dise drive with

 FREE updating service on all software
ARE YOU GETTING THE MOST FROM YOUR DOT MATRIX PRINTER AND DISC DRIVE?

DIAGRAM is a new program which really exploits the full potential of the BBC micro and will enable you to obtain printouts of a size and quality previously unobtainable from your system.

MARCONI TRACKER BALI AND
ICON ARTMASTER PLUS
DIACRAM SOFTWARE

PLUS VAT PEP $f 1.75$
ALI ORDERS SENT BY RETUNNOFPOST

features

- Draw diagrams, schematics, plans etc., n any aspect ration, e.g 10*3, 2*12 screens
- Access any part of the diagram rapidy by entering an hoex name, e.g 1 Rb, RS erc., to disptay a specific section of the diagram, and then scroll around to any other part of the diagram using the cursor kevs
- Up to 128 kons may be predefined for each diagram, eg Transistors, resistors etc., in full mode 0 definition, up to 32 pixels horizontally by 24 vertically.
- Hard copy prntouts in varying print sizes up to 18 mode 0 screens on an A4 slee sheet. compatible with most dot matrix printers.
- Many other features noluding, selectable display colours, comorehensive line drawng facilities, TAB setangs, etc
- The latest version of DAACRAM is now fully compandie with the Marcony Tracker Ball which allows 'scroting' of the screen and many of the editng features to be carried out using the tracker bail

DACRAM is supplied in an attractive narc backed disc wallet with keystrip and comprehensive instruction manual

39 Browniea Gardens Seven Kings Hford Essex ic 3 9NL O Tel 01.5991476

DANGER ELECTRONICS AT WORK

Anna Paczuska finds that appearances are deceptive and that electronics can be bad for your health.

Even the smallest speck of dust can flaw a wafer and make it unusable if it sticks to it during manufacture. For that reason the dust level in semiconductor factories is kept about 100 times lower than in a modern hospital. Workers wear special clothing, headgear and gloves not to contaminate the product in any way. Air conditioning constantly filters the air supply.

The dust-free surfaces, the smartly attired workers, and the air control give an impression of cleanliness. This, in turn, has led to the illusion that work in the semiconductor industry is safe. It isn't. A growing body of evidence shows that in spite of low accident rates, the level of work-related illness for the industry is exceptionally high.

```
A US government survey found
that industrial illness was three
times as common in
semiconductor manufacturing as
among workers in general
manufacturing. . . .
```

Illness is not the only danger. Elfreda was 18 when she left her rural home in the Philippines and went to work at Dynetics, a semiconductor assembly plant in Manila. She worked in the tin-dip and plastic moulding sections.

After three years she developed chronic anaemia, skin problems and swollen lymph glands. She was found to be suffering from cancer of the lymph system. Elfreda died when she was 22 . Her case, though dramatic, is not atypical.

Endemic Illnesses

In 1980, a US government survey found that industrial illness was three times as common in semiconductor manufacturing as among workers in general manufacturing. Chemically caused illnesses, known as systemic poisoning, are twice as high for the semiconductor workers clustered round Silicon Valley as for other industrial workers in California.

In Asia, labour organizations, community health groups and concerned doctors have gathered evidence of a range of industrial diseases and injuries associated with the electronics industry. A 1978 survey of 600
workers at Control Data in Korea, for example, found that almost two thirds of them had ulcers, probably related to work stress. Nearly half the workers who did soldering had skin diseases. Swedish research shows that soldering is associated with four times the average incidence of skin cancer.

In the Philippines there is an abnormally high rate of tuberculosis and pneumonia among electronics workers. In some factories women are forbidden to wear their own clothes underneath their uniforms in case that brings dust into the plant. So women used to a humid tropical climate are obliged to wear thin uniforms in cold, air-conditioned rooms. To compound injustice, they lose their jobs if they get pneumonia or tuberculosis.

In Britain the few statistics available show the same disturbing trend towards ill health. For example, researchers at Birmingham University recently reported that workers employed by Lucas Industries in the West Midlands suffer a higher than expected cancer rate.

Dangers to health have multiplied in the electronics industry since the transistor was developed in 1948. The increased risks, however, were not immediately obvious, partly because rapid innovation meant there was hardly time to investigate one process before it was replaced by another. The main reason for the delay in awareness,

however, was and is that effects are often long term. It can take between two and 50 years after exposure to a cancer causing substance before a cancer appears. Daily use of a microscope can cause permanent eye damage but may take five years to do so.

Delay in visible symptoms is compounded by high labour turnover. By the time workers are suffering the ill effects of production processes they have often left the workplace. In Malaysia workerturnover is 6% per month. Even in Britain workers over 35 may be encouraged to leave to be replaced by school leavers (see p.7, ETI, April 1986, for this).

When older workers are constantly replaced by young workers in this way, awareness of hazards does not carry over. Each intake learns by experience - by which time it may be too late.

The electronics industry is not just dangerous for production workers. It can be lethal for anyone living nearby. According to one 1984 estimate, 80% of chemical storage tanks in Silicon Valley were leaking. At the Fairchild plant in South San Jose in 1981 an estimated 58,000 gallons of solvents and chemicals leaked through the soiland into the community water supply. Poisonous chemicals were found in the drinking water. Birth abnormalities in the area soared to twenty times the normal rate.

Chemicals

Many of the hazards affecting electronic workers are caused by chemicals. They are the raw material of the electronics industry and the growth of the electronics industry has been accompanied by their proliferation.

A thousand new synthetic chemicals are launched on to the world market every year, and the annual rate of production of chemicals doubles every ten years. Most of the chemicals used in industry did not even exist 40 years ago - and there are a lot of them. Hewlett Packard alone keeps records on 3,000 different chemicals at its California headquarters.

Huge sums of money are involved. In 1980 , the world turnover of chemicals was valued at $\$ 550$ billion. Threequarters of production was controlled by a handful of multinationals based in Europe, Japan and the US whose average annual profit rate in 1979 was 25%. With cut throat competition and high stakes, it is inevitable that companies give precedence to productivity and competitiveness. As a result products are not tested adequately and serious threats to workers' long term health are ignored.

Health is threatened at every stage of semiconductor wafer prouction - by the dopants and gases used in crystal growing and deposition, by the acids and solvents used in wafer preparation, and by metals and oxides used in implantation and metallization. Semiconductor assembly and PCB fabrication carry further risks from curing agents, epoxy resins and dyes.

Dopants can be particularly insidious. Doping is, of course, the introduction of controlled amounts of impurities into solid crystalline substrates and is the key process in the fabrication of microelectronic circuits. In the standard diffusion process, dopant vapour is used at temperatures between $900-1000^{\circ} \mathrm{C}$. Ion implantation is a newer and increasingly propular process in which dopants are introduced to the silicon substrate in a vacuum at room temperature. The risk of exposure to dopants is substantial with either process and all dopants are extremely hazardous. They include hydrides, oxides and halides of elements such as arsenic, phosphorus, antimony, cadmium, aluminium and zinc.

Many of these chemicals are well known to be dangerous. Phosphorus was banned for use in match and firework production over 50 years ago because it was known to cause the chronic bone condition'phossyjaw'. Phosphorus compounds used in semiconductor production are known to damage liver and lungs as well as cause severe irritation to the eyes, throat and skin.

In 1983, nearly 200 women at a Japanese electrical factory in Hong Kong were taken to hospital suffering from exposure to phosgene and ozone. At first the women thought they had flu because they felt dizzy, nauseous and had headaches. One woman went into a coma for over four days. At least three pregnant women lost their babies. Some suffered permanent lung damage.

Hewlett Packard alone keeps records on 3,000 different chemicals at its California headquarters....

Abstract

Arsenic compounds, too, are notoriously dangerous and can damage the nervous system and cause leukaemia In 1982, a 23 -year-old US university lab technician was found dead near equipment in which he was replacing a cylinder of arsine (arsenic hydride). His death was the result of massive exposure. The ion implanter he was using is common equipment in the semiconductor industry.

Burns

Poisoning is one chemical hazard, but burns are another. Chemical burns to the skin of the face and hands are often cuased by hydrofluoric acid, the most notorious burn-producing chemical in the semiconductor industry.

As with other chemicals the seriousness of the burn depends on the strength of the acid and how long it stays in contact with the skin. But workers often find out they have been burned only after they take their gloves off and see moisture on their fingers. There may be no pain, or it may be delayed. The symptoms may not appear until they have left work and gone home.

Cancer

No more than 2% of the chemicals available on the world market have been tested properly to see whether they cause cancer. In some cases companies eager to
make sales have falsified or covered up test data. Little or no research has been done on the effects of exposure to combinations of chemicals. Yet the American Government Survey estimates that between one and two fifths of all cancer in the US is due to exposure to chemicals or radiation at work.

For workers in assembly and testing plants in Asia there are other hazards. Multinationals moved the labour intensive sectors of electronics production to where labour was cheap. Chemicals and parts are imported, and health risks come with the cost saving.

Thousands of Asian electronics worker have poor eyesight. Tedious detailed work using microscopes and VDUs causes extensive and permanent eye damage.

A study in South Korea showed that 95\% of workers surveyed in various electronics factories developed eye problems after only a year of work. Their problems included chronic conjunctivitis, short sight and astigmatism. In the Philippines one recent estimate showed that half of the electronics workforce had poor eyesight. Yet factories will only accept new workers if they have perfect eyesight.

> The electronics industry is not just dangerous for production workers. It can be lethal for anyone living nearby

Noise and stress also cause health problems. Cases of what has been called 'mass hysteria' have occurred in Singapore, Malaysia and the US. Workers using microscopes complain they have seen ghosts or evil spirits. One or more start screaming and the whole workforce goes into uproar. One researcher has suggested that evidence points to these outbreaks being related to the lack of union organization or of any ways of making complaints.

Unions

The electronics industry is relatively new and in most countries few of its workers are unionized. Indeed, firms and governments often actively oppose unionization.

US electronics firms offer training and advice in antiunion tactics to managers of multinationals operating in Asia. The US government has set up an Asian American Free Labour Institute (AAFLI) which is linked to government controlled and company unions. The vast majority of their funding (94% by one report) comes from the US Agency for International Development (USAID). According to the authors of a recently published handbook called Health Hazards in Electronics, the aim of the AAFLI is to 'help prevent or undermine any organized labour activities which may threaten free enterprise of US business interests'.

The handbook lists the tactics which multinational employers use to discourage unionization. These include rotating shifts to prevent workers' groups from forming, hiring and firing to weed out 'trouble-makers', the encouragement of individualism against cooperation and the setting up of toothless committees which give workers the illusion of participation.

Intensive competition in the electronics industry means employers are wholly concerned with production figures. Health issues are attended to only when workers raise them, and workers are not encouraged to raise them. Published in Hong Kong, Health Hazards In Electronics recommends that employees set up their own health committees to monitor hazards. This is more than most people in the West are prepared to do even when they are aware of the dangers inherent in the electronics industry.

Sínce most electronics factories are not unionized, there is often no-one to take up issues on the workers' behalf. One organization involved in a wider hazards campaign is the General, Municipal, Boilermakers and Allied Trades Union (GMBATU), currently attempting to get Repetitive Strain Injury (RSI) recognised as a legitimate industrial disease.

Such injury is common to a number of industries where repetitive and awkward movements are required from workers. Although not as dramatic as burns or poisoning, RSI is a major hazard for many manual workers in electronics manufacturing.

Electronics assembly work can be particularly risky, although RSI can affect typists, packers and bricklayers as well. One case recorded by the GMBATU involved an assembly-line worker in a Scottish electronics factory whose repeated gripping and wrist movements resulted in Carpal Tunnel Syndrome - loss of movement and feeling in the hand caused by swelling in the channel in the wrist through which nerves and tendons pass from arm to hand. An operation on both wrists relieved some of the pain but the disability persists and the woman is still unable to work

Her case was taken up by the GMBATU and she was awarded $£ 1,500$ by the Appeal Court in Scotland to cover pain and injury and a further $£ 2,100$ for loss of earnings. She may never work again, but she may have helped to get the problem of hazards in the electronic industry recognised.
'Occupational Medicine: State Of The Art Reviews', vol. 1, no. 1, The Microelectronics Industry, ed. Joseph LaDou. (Available from Hanley and Belfus, 210 South 13th Street, Philadelphia, Pennsylvania 19107, USA).
'Health Hazards In Electronics: A Handbook,' Thomas H. Gassert. (Asia Monitor Resource Centre, 444 Nathan Road, 8/B Kowloon, Hong Kong).

FIBRE OPTICS AND LASERS

Roger Bond completes this series of articles with an examination of the ways in which fibre optics and lasers are used.

Lasers have found applications in areas as diverse as surgery, communications and entertainment. In many cases, the power and precision of the laser give considerable improvements over alternative techniques, whilst in others the benefits are mainly economic. The following examples are by no means exhaustive, but they will give an indication of the present applications and future potential of laser technology.

Communications

Until recently, the electronic signals required for telephony, television, data and other services were carried either as radiated electromagnetic waves through the air or through cables. Then, in the early 1970s, a great deal of effort was put into developing low-loss optical fibres which could be used in place of copper wires for communications purposes.

The advantages offered by optical fibres are considerable. Optical signals are immune from electrical

Cable type A	Application	Repeater Spacing	Bandwidth (Channels)	
0.63 mm	PCM	2000 yds		(24 or 30)
0.63 mm	audio	-	4 kHz	
Coaxial 1.2/4.4 mm^{*}	FDM	4 km	4 MHz	(900)
Coaxial 1.2/4.4 mm^{*}	FDM	2 km	12 MHz	(2700)
Coaxial $2.6 / 9.5 \mathrm{~mm}^{*}$	FDM	9.7 km	4 MHz	(900)
Coaxial $2.6 / 9.5 \mathrm{~mm}^{*}$	FDM	4.5 km	12 MHz	(2700)
PCM = pulse code modulation FDM = freuqency division multiplex * figures are diameters of inner and outer conductors respectively.				
Table 1 The types of cable used on the existing inland network.				

interference and the fibres do not rust as copper does. This latterfeature is extremely useful since underground cables often get wringing wet in a storm. There is also the advantage of wide bandwidth.

Optical fibre is also cheap compared to copper wire, the price of which depends on world copper prices. Since optical fibre is light in weight compared to copper wire, it is easier to pull through ducts and transport from factory to site. It is also thinner and therefore occupies less duct space. In cities where there are so many underground services - gas, electricity, drains, transport, etc - any saving in space is welcome.

The use of optical fibres in communications can be divided into two broad categories, inland systems and intercontinental (submarine cable) systems.

Fig. 1 The response of a typical optical fibre.

Inland Systems

Table 1 shows the make up of the inland network in this country, the volumes of traffic carried and the types of carrier. Table 2 shows the probable structure of the digital network in the future. Although the higher bit rates are carried by monomode fibre operating at 140 $\mathrm{Mbit} / \mathrm{s}$, the multimode fibre is useful for the lower bit rates since the fibre is generally easier to use and join.

A field trial of the first optical fibre system in the UK took place between Stevenage and Hitchin from 1977 to 1980 . The cable consisted of four copper wires to carry direct current to the regenerators and three fibres for communications. A central steel member was used to give the cable strength and the whole cable was no more than 7 mm in diameter. From Hitchin to Stevenage is a distance of 9 km and there were two intermediate repeaters spaced at 3 km . The system carried 140 Mbit/s.

Intercontinental Systems

Before installing long lengths of optical fibre to span the oceans, it is as well to examine the frequency response of a fibre with a view to determining at which

Fibre types	Bit rate (Mbit/s)	Regenerator Spacing (km)	Wavelength (um)	No. of Speech channels
Multimode	2	10	$0.85-0.95$	30
Multimode	8	10	$0.85-0.95$	120
Monomode	34	30	$1.3,1.5$	480
Monomode	140	30	$1.3,1.5$	1920
Table 2 The types of fibre optic link likely to be used for				
inland traffic in the future.				

frequencies the loss is minimum. It is normal to speak in terms of wavelength rather than frequency when dealing with optical fibre since at these high frequencies the wavelength is small enough to be associated with the fibre dimensions.

Figure 1 shows the response of optical fibre to different wavelengths and it can be seen that the lowest losses are achieved at 1.3 um and 1.55 um . By operating monomode at 1.3 um, the resulting loss is so low that regenerators will only be required at intervals of 30 km or more. Compare this with the performance of coaxial cable where, as Tables 1 and 2 show, even the larger diameter type requires repeaters every 4.5 km .

The world's first international optical fibre system is presently being installed. Called UK-Belgium 5 , it will run between the UK and Belgium and cost $£ 7.25$ million. Over the 122 km distance there will be three intermediate repeaters at a spacing of 30 km . It will operate at 1.3 um monomode and each fibre pair will carry $280 \mathrm{Mbit} / \mathrm{s}$. Therefore the total of three fibre pairs will offer about 12,000 circuits.

Another cable that is currently planned for 1988 is the TransAtlantic No. 8 (TAT8) costing about $£ 250$

Fig. 2 The branching arrangement on the TAT8 cable showing the provision of spare fibre optic links.

million. It will be 6600 km long and run from the USA to the UK and France. Existing submarine cables land in one country before proceeding to another, but TAT8 will have a branching unit off the European continental shelf. Three fibre pairs will run from the USA to the branching unit. From the branching unit, two pairs will go to the UK and two to France. In normal operation A would be connected to D and C to G. The others will be spare (B, $\mathrm{E}, \mathrm{F})$.
in case of failure of one of the American cables, B would bea replacementor in case of the Eurpean ends, E or F could be used. The UK and France could also be connected via E and Fif necessary, and the total capacity of TAT8 wil be about 8,000 circuits.

Medical Applications

Communications aside, one of the most important fields in which lasers and fibre optics have been used is medicine. The hair-like strands of a fibre system can be inserted into the stomach or lungs of a patient without too much discomfort and allow more detailed internal examination than was previously possible. Light can be carried on fibres to illuminate the area to be examined while other fibres carry back an image which can be projected onto a screen.

Lasers are used in eye surgery to 'spot weld' peeling retinas. Referring to Fig. 3, if the retina tears, the vitreous humour gets behind it and the pressure starts peeling more of it off. This finally results in blindness.

To spot weld the retina back, the light must pass through the front part of the eye without being absorbed. Formerly a xenon arc lamp was used, and

Fig. 3 A cross-section through the human eye.
because the eye had to be exposed to the light for a long time, anaesthetic was required and the eye had to be clamped. With lasers, 1 joule of energy for only 300 uS is all that is required. This means that anaesthetic and clamping are not required.

Naturally, this type of repair results in a blind area of retina and a compromise must be reached between keeping the blind area to a minimum and producing a large enough weld to hold the retina in place. The scar left by xenon arc lamp welding is around 800 um long, whereas that produced by a laser is only 50 um or so.

Industrial Applications

Lasers are used in a wide range of welding, cutting and drillingoperations in industry. The precise control of position and energy which lasers offer makes them ideal for delicate welding processes in the microelectronics industry, allowing only a very small area to be raised in temperature. The same advantages also make

Fig. 4 Using a laser to cut metal.
lasers an attractive proposition for critical metal cutting operations in the aircraft industry and elsewhere. The hot swarf produced during cutting can be burnt away using oxygen (Fig 4).

Metal grill bits can be used to produce holes as small as 250 um diameter, but smaller drill bits would not be able to take the stress. Lasers can focus down to

Laser light travelling through a fibre bundle, as demonstrated by former STC Chairman and Chief Executive Sir Kenneth Corfield.

10um, allowing holes of this size to be made quite easily. The watch industry in particular uses neodynium lasers for drilling holes in ruby jewels.

Optical fibres are alsowidely used in industry. Signals transmitted along optical fibres are not generally affected by external electromagnetic fields, so they're immune to electromagnetic interference. This make optical fibres very useful for control and other applications in electrically noisy environments.

There is one respect in which light transmitted along optical fibres will be affected by external fields, and that is in terms of polarisation. The plane of polarisation of a light beam will be twisted in the presence of a strong magnetic field (the Faraday Effect), the degree of twisting being proportional to the length of the light path through the field and the strength of the field. Most sensors used with optical fibres will not detect changes in polarisation and are therefore immune to such effects, but there applications in which is desirable to know the strength of an incident field, and sensors which register changes in polarisation can be used to detemine this. An example is the use of optical fibre wrapped around a high voltage bus-bar to measure current. Using this technique, it is possible toavoid the risks associated with using metal cables.

At Home And Beyond

Fibre optics first came to the attention of the general public in the form of small plastic vases in which mushroom bundles of fibres were illuminated with coloured light. These simple domestic ornaments have long since fallen from favour, but laser and fibre optic technologies have continued to find applications in the home and in the field of entertainment. Among the most notable recent developments has been the compact disc system, which users a laser to read a series of minute pits on the

surface of the disc. Other examples include the use of laser holograms in discotheques and some have suggested the use of laser holography as the basis of a threedimensional television system in the future.

In the office, too, lasers have provided new solutions to old problems. The accuracy they offer is used to good effect in laser printers. These use a laser to control a toning process not unlike that used in photocopiers, offering the high print quality associated with golf-ball and daisywheel systems coupled with the speed and versatility of dot-matrix and thermal print systems. As we reported in a recent News Digestarticle, the versatility of the system is such that it can cope with the large print and special type faces used by partially sighted people as well as more common print styles.

In yet wider fields, lasers can be used to check for the presence of various substances in the atmosphere. There is widespread concern that the accumulation of freon from aerosol cans will eventually deplete the ozone layer and allow harmful ultra-violet radiation through. By shining a laser of the appropriate wavelength through the atmosphere and measuring the absorption, the extent of the damage can be assessed.

HARDWARE

DESIGN CONCEPTS

Mike Barwise begins a series of short articles on the considerations and concepts underlying the design of intelligent peripherals with some ruminations on the nature of the printer buffer.

The aim of this series is to suggest to the reader a mode of thought necessary for successful systems design, and in passing to introduce some of the less familiar standard mechanisms of digital logic control and data handling.

I must stress that I am presenting a personal viewpoint throughout. There are almost limitless ways of implementing practically any medium complexity logic problem, and almost all of them have been used by someone already. The more you learn, the more you realise how difficult it is to be really innovative.

Except in Silicon Valley (where innovation per se seems more important than utility these days), it is usually much better for the end user to have a simple, obvious, reliable solution to their problem than a whizkid gadget which is impossible to debug when inevitably it crashes.

There are almost limitless ways of implementing any medium complexity logic problem, and almost all of them have been used by someone already....
The first peripherall want to discuss is the printer buffer. Incidentally, there are dozens of other uses for these buffers. The main variation between implementations will be in their port design and speed capabilities.

Basic Principles

Buffers generally work on the principle of a store of data bytes which can be read out sequentially in the same order they were written in. This mechanism is called a FIFO (First In First Out) memory.

There are many different types of FIFO, implemented in both hardware and software. Hardware FIFOs vary in size between 16 bytes and several Megabytes, and in speed between about 30 ns and 2 ms per read or write operation (30 MHz to 500 kHz operation).

They are also sub-divided by protocol. The main variants are SYNCHRONOUS, where reading and writing are performed under the control of a common clock and the data bus may be shared; SEMI-SYNCHRONOUS, where read and write requests may be made at any time, but are internally arbitrated and synchronized within the FIFO to a common clock, and ASYNCHRONOUS, where data may be freely written to and read from the FIFO at different rates or even at random intervals
without conflict, so long as the FIFO is never empty or full. This last asynchronous FIFO is inevitably a dual port device.

Different buffer applications will require different modes of FIFO operation, so it is important to be able to analyse the job in hand and choose the best type of FIFO for it. Large hardware FIFOs get very expensive, even at quite low speeds. Software solutions are usually used for data rates lower than 500 Kbytes per second, particularly when buffer sizes greater than 256 bytes are needed - so, let's talk software.

The Printer Buffer

What do we demand of a printer buffer? The primary aim is to release the host micro from the task of driving the print stream sooner than is possible at the real printing speed of the mechanical hardware. We are more interested in keeping the micro transfer (write) speed as high as possible than in keeping the already very slow printer working at maximum speed.

Most practical solutions turn out to be small standalone microsystems, consisting of a CPU, program ROM, RAM for scratchpad and buffer storage, and suitablé input and output ports for the host micro/word processor and printer. Logic could be used instead of a

The ETI printer buffer from July, 1985.

micro, in view of the relative simplicity of most of the control programs, but the design effort is probably not merited at the low speeds demanded of a printer buffer.

Most printers can work at a maximum of about 150 characters per second, and host transfer rates greater than eight to ten times this are unlikely to be required except under the most arduous of conditions, when you are not well advised to use a home micro anyway.

The immediately obvious answer is to load a very large buffer from the host in a single high speed burst transfer, and then release the host and let the buffertake over the task of supplying data and control signals to the printer hardware until it is completely empty again.

This type of alternate load/unload buffer consists of an array starting from a fixed base, into which the buffer's microloads characters presented by the host until either the array is full or the file transfer is complete. A chosen signal - a control code, for example - is used to indicate end of file.

The buffer's microthen resets the array and sends the characers one-by-one to the printer. Either the terminal count reached by the loading operation or the control character (appended to the file during the store mode), is used during output to indicate when all valid characters have been sent. This is the principle used by BASIC for its DATA statements.

Such an implementation is fine for word processing if your buffer is guaranteed to be larger than your maximum document size, but if you are spooling intermittent output from a program (for example, the results of calculations) you will have problems as soon as the buffer is full. The host must then be flagged to stop sending,
and is held up until the buffer has been completely emptied again. So, there is practically no bufferingaction unless output from the host is continuous, and the total data volume is less than the buffer size.

A solution to this hang-up is to use a small buffer and let the buffer's micro interrupt the host when it is empty, allowing the host to proceed with other tasks in the interim and placing on the buffer the requirement to request data. This needs more than the ideal minimum of buffer support code to reside in the host, and also raises problems of scheduling to avoid data losses, even supposing the host can find something useful to do while waiting for buffer access.

> We are more interested in keeping the micro transfer speed as high as possible than in keeping the already very slow printer working at maximum speed....

An alternative design, which is much better, although it needs a little more thought in implementation, is a buffer which can alternate according to demand between read and write operations on a byte-to-byte basis, keeping track of free space and using it as needed. The absolute size of the buffer RAM then has less effect on performance, and you can happily keep sending data to the buffer all day long without hanging the host micro up more than very occasionally.
Next month, we'll move on to a consideration of just such a buffer - the software semi-synchronous FIFO.

ETI

BEST PRICE MEMORIES

ALL THE LATEST FASTEST DEVICES AS USED BY INDUSTRY. DO NOT CONFUSE WITH SLOWER OLD STOCK OFFERED ELSEWHERE.
WE ONLY STOCK MEMORIES PRODUCED BY ESTABLISHED MANUFACTURERS WHOSE COMPONENTS HAVE BEEN SUBJECTED TO L U.K. TESTING. BEWARE OF CHEAP FAR EASTERN MEMORIES THAT MAY BE UNRELIABLE.

DRAM	5 v NMOS	150nS (Not Sm*ung or Texas)
4164	$64 \mathrm{k} \times 1$	£1.10
41256	$256 \mathrm{k} \times 1$	£2.35
4416	16k $\times 4$	£2.80
41464	$64 \mathrm{k} \times 4$	¢5.90
MSM37	128k $\times 1$	¢5.90
\$64		
(IBM AT UPGRADE)		
SRAM 5	NMOS	150nS
2114LP	1k $\times 4$	£1.50
2128LP	$2 \mathrm{k} \times 8$	¢250
SRAM 5v	CMOS	150ns
6116LP	2k $\times 8$	£1.40
6264LP	$8 \mathrm{k} \times 8$	£2.65
6256LP	$32 \mathrm{k} \times 8$	£49.50
NYRAM	Xicor/	NCR 300n
$\times 2210$	64×4	15. 25
$\times 2211$	128×4	£9.50
$\times 2212$	256×4	19.90
$\times 2001$	128×8	£11.50
X2002	256×8	£19.00

10\% DISCOUNT ON ALL ORDERS OVER 525 REGARDLESS OF MIX. ADD 15\%

 V.A.t. Pap FREEDESPATCH BY RETURN FROM LARGE STOCKS
EPROM 5VNMOS 2SONS
$\begin{array}{lrr}2716 & 2 k \times 8 & £ 2.85 \\ 2732 & 4 k \times 8 & £ 2.65 \\ 2764 & 8 k \times 8 & £ 2.50 \\ 27128 & 16 k \times 8 & £ 2.40 \\ 27256 & 32 k \times 8 & £ 3.90\end{array}$
EPROM 5VCMOS250nS
$\begin{array}{llll}27 \mathrm{C} 64 & 8 \mathrm{k} \times 8 & 88.50 \\ 27 \mathrm{C} 256 & 32 \mathrm{k} \times 8 & \mathrm{E} 15.00\end{array}$
EEPAOM
$9306 \quad 16 \times 16 \quad 250 \mathrm{KHz} £ 4.40$
$\begin{array}{lrl}9308 & 64 \times 16 & 500 \mathrm{KHz} 28.50 \\ 2816 \mathrm{~A} & 2 \mathrm{k} \times 8 & 250 \mathrm{nS} \mathrm{f13.50}\end{array}$
$\begin{array}{llll}2864 \mathrm{~A} & 8 \mathrm{k} \times 8 & 250 \mathrm{nS} & £ 4500\end{array}$

OUR EXTREMELY POPULAR EXEOUIPMENT MEMORIES guaranteed uv erased, Cleaned \& TESTED. 1000 's sold to delighted customers. $411616 \mathrm{k} \times 1$ DRAM 60p 10 For $£ 5.50$ $27162 k \times 8$ EPROM $£ 1.5010$ For $£ 14.00$ $27324 k \times 8$ EPROM $£ 1.50$ 10 For $£ 14.00$ $27648 k \times 8$ EPROM $£ 1.50 \quad 10$ For $£ 14.00$
ORDERS UNDER $£ 25$ ADD 15\% V.A.T. PLUS 50 p P\&P UK. OVERSEAS ORDERS WELCOME ADD £2.00 P\&P NO V.A.T (PAYMENT IN £ STERLING PLEASE)
SEND SA.E. FOR FULL LISTS 74HC CMOS LOGIC, DISK CONTROLLERS, ETC.

Part Lane, Broxbourne, Herts. EN10 7NQ. Telephone (0992) $444111 . T e l e x ~ 22478$

VALVE PREAMPLIFIER

Jeff Macaulay sets out to prove that thermionic emission isn't simply a load of hot air.

Despite twenty - odd years of solid state audio development there are still many audio enthusiasts who swear that valve equipment is better. At first sight these beliefs may seem a little eccentric; after all, modern semiconductor equipment boasts specifications which, at least on paper, far exceed those obtained with valves. In addition, valves require high voltages and a separate supply for the heaters. Another problem is that the parts can be difficult to obtain nowadays.

On the plus side, valves are approximately ten times more linear than transistors and are simple to design around. Furthermore the large signal swings available make it far easier to obtain high overload margins and low distortion at the same time without overall negative feedback. These features make the valve ideally suited to preamplifier designs.

The design to be described here is a stereo preamplifier which has an RIAA-equalised input for disc and un-equalised or 'flat' inputs for tuner, tape, compact disc, etc. Three double-triode valves are used giving a total of six active devices, three in each channel.

Figure 1 shows the complete circuit diagram of one channel of the preamp. One of the double triodes, V1 is used to provide RIAA equalisation. The pickup cartridge is fed directly into the grid of the lower triode which is held at ground potential by R3. This component also defines the input impedance to the required value of 47 k .

The triode acts as an input voltage to anode current converter, a transconductance amplifier. The anode is held at a

constant DC level of about 100 V by the cathode of the second triode, V1 a, which acts as a capacitance multiplier for C1. R1 and R2 provide grid bias whilst C1 decouples the grid to ground at AC .

As the second triode is in series with the first it follows that the anode current flows through both valves. One of the advantages of the cascode configuration is that the output impedance is extremely high, several tens of megohms in fact. As this is so, it follows that the output voltage generated across the load network is directly proportional to the impedance of the network.

In this case the anode load is the network consisting of R4, R5, C2 and C3. At low frequencies, below 50 Hz , R5 defines the gain at about 50 . Above 50 Hz the response rolls off at 6 dB per octave until a plateau is reached at about 500 Hz . This is due to the shunting effect of the series combination of C3 and R4. From 500 Hz the response is flat until 2160 Hz where it is 3 dB down due
to the impedance of C2. This component ensures that the response continues to fall at 6 dB per octave indefinitely, thus producing the standard EQ.

As was mentioned earlier, the output impedance at the anode is very high so the impedance 'seen' by the following stage is equal to the impedance of the network at any given frequency. This never exceeds $33 k$, so feeding it to a second stage with an input impedance of 1 M 0 won't upset the equalisation.

Having discussed the EQ stage we can now turn our attention to the second stage of the preamp based around V2. One of the main disadvantages of valves when compared to their solid-state counterparts is their high output impedance. In order to match the preamp to ancillary equipment a reasonably low impedance drive is required.

The obvious answer is to use a matching transformer but these are expensive and also, unless very carefully designed, are prone to treble loss as well. The solution

Fig. 1 Circuit diagram of one channel of the valve preamplifier.
used here is to 'dump' some of our available gain to provide a lowish output impedance.

Refering again to Fig. 1, V2 is half a double triode, the other half being used for the other channel. The valve is used in standard common cathode mode. Input signals are fed into the grid which is biased to ground by RV1. The value of this component defines the input impedance of this stage. R9 provides cathode bias and a little negative feedback. The output appears across R8.
the gain of the stage is about 40 which is more than is required, so to provide a lower output impedance the signal is fed via C5 to R10. As the valve is capable of providing 10 V RMS a 40 dB overload ratio is obtained from disc.

R13 and R14 form an
attenuator for high level inputs and the values are chosen with CD players in mind. The other input is designed for use with tuners and the sensitivity here is 50 mV for 500 mV output.

The Power Supply

The main problem associated with HT power supplies for circuits such as this one is the reduction of supply ripple.

With solid state audio equipment one can rely on overall feedback to reduce ripple voltages at the output. This is not the case here, so the key to getting a good sound is the quality of the power supply.

It is often said that amplifiers simply act like a kind of magnifying glass enlarging an already present signal. Nothing could be further from the truth! An amplifier, any
amplifier, manufactures an enlarged copy of the signal presented at its input. It does this by modulating an external power source, the power supply. No matter how good the signal path may be, if the power supply misbehaves you will have a badsounding piece of equipment.

In the present case the valves are operated in class A. That is to say that current consumption doesn't alter with varying input levels. To provide proper operation a low impedance output supply is required. In particular the impedance seen by the circuit between HT and ground must be as small as possible. To this end, the HT winding on T1 is centretapped and is full-wave rectified by D1 and D2. If I were a valve freak, which I'm not, I might use an EZ80 here. The IN4007's do the

BUYLINES

Complete kits for this project (less case) will be available from Bewbush Audio, 47b Elmer road, Middleton-onsea, Near Bognor Regis, Sussex PO22 6DZ. The price is $£ 49.99$ inclusive of VAT and postage. Those who prefer to find their own components should be able to obtain most of the parts without difficulty, but the mains transformer poses a problem. RS Components stock a transformer
which supplies the correct voltages (order code 196-072) but it is rated to supply much higher currents than are needed in this project and in consequence is quite expensive. RS will only supply to trade and professional customers, but most local radio and electrical dealers will obtain RS parts for you or you can order by post through Crewe-Allan \& Company of $\mathbf{5 1}$ Scrutton Street, London EC2 or

Trilogic, 29 Holm Lane, Bradford BD4 OQA. The altemative is to wind your own transformers. The only other components which may not be too widety available are the valves, and these can be obtained from Cricklewood (see advertisement in this issue) or Marco Trading, The Maltings, High Street, Wem, Shropshire SY4 5EN, tel 0930-32763.

Fig. 2 Wiring of the components underneath the chassis.
same job at a fraction of the cost.
Primary smoothing of the raw DC is done with C7B. R11 and C7A smooth the ripple down to a few millivolts. Final smoothing is achieved with a gyrator circuit comprising R12, Q1, and C6B. R12 and C6B provide a very smooth $D C$ voltage to the base of Q1. The latter component acts as an emitter follower providing a very low output impedance supply for V2.

R7 and C6A provide further smoothing and hefty decoupling for the input stage. Ripple voltages here are miniscule, of the order of a few microvolts.

Construction

Before assembling any part of the preamplifier you will have to decide what sort of case it is be built in and how the valves are to be mounted. The traditional approach, of course, is to use a case with a chassis in it and to mount the valveholders through the chassis. If this is your preferred method, use Figs. 2 and 3 as a guide and cut the holes for the valveholders with a $3 / 4^{\prime \prime}$ metal punch.
An alternative approach is to bolt the tagstrips and other components through the floor of a case in the usual way and to mount the valveholders on stand-

Fig. 3 Wiring of the power supply.
off pillars. If you do this, make sure the pillars are long enough to prevent the valveholderpins touching the case metalwork and use either nylon pillars and/or sleeved connections so that there is no risk of a pin shorting to the pillar. Bear in mind that the layouts in Figs. 2 and 3 show the underside of the valveholders and that the connections will run in reverse order if you are wiring them from above.
As a final suggestion, a small
metal box could be used as a chassis within a larger case. An example of this can be seen in the photograph. The boxes are of the type designed to carry conduit and wiring behidn wall switches, etc, and have pre-punched metal holes which are, conveniently, $3 / 4^{\prime \prime}$ in diameter. They may not be particularly attractive but they work as well as any other mounting method.

When your chosen case or chassis is ready, begin assembly by
installing the valveholders and the tag-strips. The tagstrips have to be held above the chassis to avoid shorting the contacts, and this is best done either with small spacers, or, if these are not to hand, with a couple of nuts between the tagstrip and the chassis. Both the valve holders and the tagstrips should be secured by means of 6 BA screws and nuts.

Wiring up a circuit on tagstrip is no more difficult than wiring up a PCB. Start by assembling the components onto the tagstrip, and then solder them. Remember to solder both ends of each component and visually check as you go that there are no dry joints. When all the components are in place, wire the links.

The easiest way to wire the interconnections is as follows. First wire the heaters as shown in Fig. 2. Next wire the links between the valveholder pins. Lastly connect flying leads, about 4" long to the remaining pins and connect the other ends to their appropriate terminations on the tagstrip. Valve equipment is very forgiving about wiring errors, and it is almost impossible to damage the valves by incorrect connection. Nevertheless, if the illustrations and these instructions are followed there should be no errors anyway.

Figure 3 shows the layout and interwiring of the power supply. A seven-way piece of tagstrip is used to mount most of the components.

An internal view of the development prototype. We suggest you don't follow this layout too closely....

C6 and C7 are connected to earth through their cans which are not isolated. Q1 and R12 are mounted on the tagstrip as are D1 and D2. Note the orientation of these components. The central earthing

PARTS LIST

INTELLIGENT CALL METER

The trouble with most telephone call meters is that you have to tell them so much - whether it's a local call or not, what time it is, etc. Of course, says Chris Ranklin, a really intelligent call meter would work all that out for itself....

The intelligent call meter is a fully-automatic device which provides a continuous display of the cost of a telephone call as it progresses. It can handle both UK and international calls, has a memory which stores details of the last 135 calls made, and features a battery back-up to protect the stored data in the event of a power failure. It couples into a standard British Telecom telephone line using an optoisolator for safety and when not in use provides a 24 -hour clock display.

The meter is connected in parallel with the telephone line it is monitoring, either by hardwiring or by means of a dua adaptor which plugs into a standard BT socket. When the receiver is lifted and a number dialled, the call meter analyses the tones and voltages appearing on the line to determine whether the call is to a local, A, B, or B 1 number. It also uses data from an on-board clock and calendar to select the appropriate charge rate. The four-digit display then shows the cost as the call proceeds up to a total of $£ 99.99$ (which is unlikely to be exceeded on one call!!.
International calls are analysed in much the same way but there is the problem that many different dialling tones are used around the world. To overcome this, a button is provided which can be used to start the meter as soon as a call is connected. The meter will then assume international call charges and use the clock and calendar data to calculate and display the appropriate rate.
When a call is completed, the meter will store the final cost and

> WARNING!

> This circuit does not have BT approval and should therefore not be connected to a BT telephone line. It can, of course, be used with private exchanges or as the basis of a submission to BT for approval.

the number dialled in its memory. Up to 135 calls can be stored in this way, the earlier entries being dropped in favour of the newer ones when the memory is full. By pressing a button, the meter can be made to display the cumulative cost of all the calls it has details of in its memory, up to a total of £999.9. The charge rate
information which the meter uses is itself held in RAM and can be changed readily when BT change their prices.

The Circuit

The call meter is designed around a Z 80 microprocessor. A 2716 EPROM stores the operating software and a 6116 RAM holds the variables (call charge data, etc.) and stores details of calls made. The 6116 has a battery back-up which is trickle-charged from the supply during normal operation. This circuitry is contained on one board along with the four-digit liquid crystal display and the display drivers. The layout has been arranged so that the display can be mounted

Table 1 Dialling tones and times used on the public telephone network.

Line voltage	-50 volts with respect to earth
Dialling tone	400 Hz or 450 Hz continuous
Bandwidth	300 Hz to 3400 Hz
Ringing-in	63 volts to 100 volts 17 Hz or 25 hz
Busy line	400 Hz 1 volt, 750 ms on 750 ms off
Number unobtainable	400 Hz 1 volt continuous
Pay tone	400 Hz 1 volt, 125 ms on 125 ms off

-50 volts with respect to earth
300 Hz to 3400 Hz
63 volts to 100 volts 17 Hz or 25 hz 400 Hz 1 volt continuous
400 Hz 1 volt, 125 ms on 125 ms off
Table 2 Telephone line signal conditions and voltage levels.

Fig. 1 Circuit diagram of the call meter interface board.

HOW IT WORKS - INTERFACE BOARD

Diode D5 and resistor R24 limit the current through IC7 to about 0.5 mA . The V2 output of IC7 is buffered by IC6c and d, noise and interference being removed by resistor R30 and capacitor C17. This is connected to the data 0 input on the port.

Diode D6 and resistor R25 pass any positive voltage appearing on the line. This occurs during ringing in and when a local call is conected. The V1 output is buffered by IC6b and connected to the data 1 line. R28 and C16 remove any interference.

Diode D2 and resistor R7 rectify and limit the current through IC2 to approx 1 mA . The V1 output is connected to IC3a which is an LM3900 amplifier with a gain of two. The signal then goes to IC3b which is connected as a 400 Hz bandpass filter. This is fed via C8 and C9 to LM576 phase-locked-loops, ICs 4 and 5. The lock range is set by RV1 and RV2 for 400 and 450 Hz . The output from these 567 s is fed into the diode gate formed by R22, D3, D4 and buffer IC6a and then to the data 2 input on the port.

When the phone is down on the hook D0 is at 0 volts; if the phone is lifted D0 goes to 5 volts. The telephone handset pulses the line for 33 ms with 66 ms between each pulse during a
dialling operation. There is a minimum delay of 400 ms between each number dialled and this is called the interdigit pause (see Table 3). This figure, in $1 / 50$ ths of a second, is stored at memory iocation 0280 as 1B (hex).

On pulse	33 ms
Off pulse	66 ms
Interdigit pause	400 ms min
Clear forward	700 ms min
Seizure	50 ms min

Table 3 Telephone handset pulses.
If the phone is replaced for 700 ms the line is cleared and you get a dialling tone. This figure in $1 / 50$ ths of a second is stored at memory location 026B and 036D as 23 (hex). When local calls are connected a positive voltage appears on the line. This is called local reverse battery and D1 goes to 5 volts. This doesn't happen on calls to the operator so the machine will not charge for them.

For long distance calls, the 567 phase-locked-loop detects the ringing tone which has a minimum length of 400 ms . The 567 will not respond immediately due to turn on delay, so a minimum figure of $\mathbf{2 8 0} \mathrm{ms}$ is stored at
memory location 0383. Any interference or noise of shorter duration than this will not be regarded as a ringing tone and will be ignored. The maximum no ring time is 2 seconds +0.22 seconds + turn on delay: a figure of 2.4 secs is used. See Table 1 for dialling tones and time lengths. A greater time than 2.4 seconds means either the phone is down or the call is through. If $D 0$ is high and the ringing has stopped the call has been answered. If D0 is low the phone is down.

When the phone is ringing-in, DO goes to 5 volts and D1 goes to 5 volts (see Fig. 2 for ringing-in waveform and trip point). The software between 0253 and 0263 recognises this as ringing-in and ignores it.

Fig. 2 Ringing-in waveform and trip points.

Fig. 3 Circuit diagram of the main board of the call meter.

HOW IT WORKS - MAIN BOARD

On power up C19 and R37 reset the $\mathbf{Z 8 0}$ to memory location $\mathbf{0 0 0 0}$. IC9d is connected as a 2.6 MHz low power oscillator, and IC9e buffers this to the Z80 clock. The actual clock frequency is not critical as all timings are taken from the 50 Hz mains. IC2 on the interface board detects the 50 Hz sine wave on the transformer secondary and converts it to a square wave. This is fed to IC9a, then to IC9b and c which are connected in parallel for extra drive. The square wave is fed to the NMI of the $\mathbf{Z 8 0}$ as an interrupt every $1 / 50$ th of a second. This is also fed to the LCD backplane and phase of the driver chips (ICs 15 to 18) for update and display purposes.

The memory is kept as simple as possible as can be seen from the circuit diagram. The 2716 ROM IC12 is enabled by A11 (low) plus Mreq (low) in the range 000 to 7 FF plus. This chip

Table 4 Details of the memory addressing.
holds the software program.
The 6116 RAM IC13 is enabled by A11 (high) plus Mreq (low). This is done by IC11a and b for the range 800 to FFF. During normal use power is fed via diode D7 to IC13 pin 24. Diode D8 and resistor R39 trickle charge the
battery. During power down, battery B1 provides power via diode D9 with diode D7 blocking power to the rest of the circuit.
The input port consists of a 4503 tristate hex buffer (IC8) which is enabled by IORQ plus A4 (IC11c).
directly onto the board and viewed through a cut-out in the case.

A second board mounts below the first one in the case and carries the remainder of the circuitry (with the exception of the mains transformer, etc). Two HCPL2730 opto-isolators are used, these devices having specifications which meet BT requirements (BT spec. D5002). One of the optoisolators connects to the telephone line while the other derives a 50 Hz signal from the mains via the transformer secondary. Although a 2.6 MHz oscillator is contained on the main board, all timings are taken from this signal which provides a regular $1 / 50$ th of a second interrupt to the microprocessor. All delays and timed intervals are set-up in the software as multiples of $1 / 50$ th of a second and the internal clock and 7-day calendar are also generated in software directly from this signal.

Also contained on the optoisolator board are a regulated power supply and two phase-locked-loops. The PSU uses a
standard 5V IC regulator and supplies both boards. The two phase-locked-loops take the output from the telephone line via one of the opto-isolators and detect the 400 Hz and 450 Hz ringing tones which indicate longdistance calls.

In use, the output from the opto-isolator goes high when the receiver is lifted. There is then a short delay to allow for the response time of the phase-locked-loops and to ensure that any short duration noise or interference on the line is ignored. At the end of this period the software interrogates the data lines to determine whether the call being made is to a local or a long distance number. The output from the phase-locked-loops goes high to indicate long distance calls while the output of the optoisolator goes high when a positive voltage appears across the telephone line. This occurs only on local calls. This voltage will not be present during calls to the operator so the meter will not charge for them.

The meter will not count-up
charge while the line is ringing. As soon as the ringing stops, the software institutes a short delay before checking the line again. If the ringing has then resumed, the pause was probably just the normal gap between successive ringing tones. If the ringing is still absent at the end of the delay, the phone has either been put back on the hook or the receiver at the other end has been lifted and the call is through. The output from the opto-isolator will have returned to 0 V if the receiver has been replaced, so if this line is still high it indicates that the call is through. The meter will then check the time at which the call is established, determine a chargerate and begin counting-up the cost of the call.

When a call is received, both the opto-isolator and the phase-locked-loop outputs will be high during the ringing period. The software will recognise this as an incoming call and will not display a charge. When the 'phone is not in use at all, the system will revert to displaying 24-hour time.
To be continued.
ETI

Electronic clock module with MOS LSI circuit, 4 -digit $0.5^{\prime \prime}$ LED display. power supply and other components on a single complete pretested digitai clock/1imer tor many applications. Suitable for 50 or 60 Hz mains supplies. Direct (non-multiplexed) LED drive eliminates RF interterence. Supplied complete with 24 OV mains transformer and wiring
 With LIOUID CAYSTAL DISPLAY WATCH mODULE diffuser. micro lamp, precision crystal, trimmer, battery con-
PLESSEY MANS INTERFERENCE SUPPMESSORS Filter unit for mains borne interterence. Max current 1.5A. Our
Price, brand new only $\mathbf{\varepsilon 2 2 7}$
 Similar Unit but 10A. Brand new................... Mullard LP1173 Amplifier module. Needs 24 v DC Supply to give 10 watts into 4 ohm speaker. Size $112 \times 70 \times 29 \mathrm{~mm}$. Com plete with heat sink Only $\mathbf{\Sigma 2 . 4 0}$ complete with Date ALPS FF317U FMF FRONT END Beautiful precision made High Quality variable capacitor range of 87 to 109 MHz . 12 v supply ONLY $\mathbf{E s . 9 0}$ CAR RADIO FM IF AND STEREO DECODER

Miniature PCB with 10.7 MHz ceramic filters. 2-transformer ratio detector. AX010 noise suppression IC and TCA4500A FM tuner or car radio. Complete with circuit incradible value fat..

HART ELECTRONICS are specialist producers of kits for
designs by JOHN LINSLEY-HOOD. All kits are APPROVED designs by JOHN LINSLEY-HOOD. All kits are APPROVED
by the deaigner.
LINGLEY-HOOD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quatity low noise stereo cassette racorder. Circuits are optimised for our equalisation to cater for chrome and ferric tapes. Very easy to assemble on plug-in PCBs. Complete with full instructions.
 VU Meters to suit.................................. $\mathbf{7 5} 30$ ench Reprins Stereo Mic Amplifier 80

LINSLEY HOOD 300 SERIES AMPLIFIER KITS

Superb integrated amplifier kits derived from Jotm LinsleyHoods articles in 'HiFi News'.
Ultra easy assembly and set-up with sound quality to please the most discerning listener. Ideal basis for any domestic sound systom in quality matters to you. Buy the kit com
and save pounds off the individual component price.
K300-35. 35 Watt. Discount price for Complete Kit $\mathbf{5 9 8 . 7 9}$ K300-45. 45 Watt. Discount price for Complete Kit 8102.38
RLH485. Reprints of Original Articles from 'Hi-Fi News' RLH4\&5. Reprints of Original Articles from Hi-Fi News

LINSLEY-HOOD SYMCHRODYNE AM RECEIVER Very high quality kit for this recent design featured in Wireless World'. This unit represents the first attempt to make a much needed HIGH OUALITY AM Tuner since pre-FM days. This will give you Radio 4, or even 1 in better quality than your Eastern Author, uses 3 double sided PCBe in a stacked layout for total stability, ease of construction and minimal wiring. This module wili form the AM section of an ultra high quality AM/FM switched bandwidth tuner to match our 300 series amplifiers. Power supply and tuning gang will be included with the FM gection.
K450 JLH Synchrodyne Kit Special Price $\mathbf{5 5 9 . 9 5}$

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than new! Standard mountings make fitting assy and our TC1 Tost Cassette holps you set the azimuth sot-on. We are the actual importers which means you get the suppliers and see! The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-
HCOCK. Permetioy \mathbf{S} wreo Head. This is the standard head fitted as original equipment on most decks5.11 hais sendust Alloy Super Hoed. The best head we can find. tastic frequency responsese. 91 HOS51 4-Track Heed for auto-reverse or quadrophonic use. Full specification record and playback head........... 29.73 Please consult our list for technical date on ithese and other Special Purpose Heads.
Rasis1 Letwit veralon Double Mono (2/2) Record/Ptey heed. Replaces R484.......................................s8.s0 above or HO551 4-Track Head95 H524 standard Ertee Heed. Semi double gap, high effici-

HART TRIPLE-PURPOSE TEST

CASSETTE TC1

One inexpensive test cassette enables you to set up VU level. head azimuth and tape speed. Invaluable when fitting new heads. Only EA.E8 plus VAT and 50 p postage
Tape Hoed De-megnether. Handy size mains operated unit prevents build up of residual head magnetisation causing Cise on payback for inaccessible headsE4.54 Send tor your free copr of our LISTS Overseas please send Send for your free copy of our LISTS. Overseas p
IRCs to cover surfae Post or 5 IRCs for Airmail.

Piwne sed pert con of poot, pecking ond inmurnice as follow INLAND
Orders

OVERSEAS
Orders up to f 10 - $50 \mathrm{p} \quad$ Plense send sufficient to cover Orders $£ 10$ to $549-51$ Orders over $£ 50-\mathbf{~} 7.50$

Surface or Air Post as
Surface or
required.

Universal Semiconductor Devices Ltd.
17 Granville Court, Granville Road, Horney, London MA 4EP, England. Tet 348 9420/9425* The 25157 undo g

We offer one of the largest ranges of semiconductors at highly economical process. The following semiconductor types are available from stock. If we don't stock what you need then we can get it fast from our facilities in West Germany and USA upon request.
TRAN8I8TOR8 - Bipolar - Germanium and Silicon
Small signal
Power
Darlington - all shapes and sizes
VHF/UHF devices - all shapes and sizes
FETS - Power Mosfets Unijunctions

DIODES - Germanium and Silicon Rectifiers and Bridges Opto-Electronic devices LED of all shapes and sizes

INTEGRATED CIRCUITS: Consumer - Digital/Analogue Microprocessors and Peripherals IIC Sockets
JAPANESE COMPONENTS - Vast range of discrete's and consumer IC's System A - All semiconductors available from USD. Amp - $\mathbf{8 7 5 . 0 0}$ Incl. VAT a pap. Preamp - $£ 90.00$ incl. VAT \& pap.
Mail order customers: Please send for our comprehensive price list, enclosing $£ 1.00$ in stamps. Cheque or postal order.

$$
\begin{aligned}
& \text { SYSTEM A AMP } \\
& \text { All semiconductors available-: } \\
& \text { Amp plus preamp } 50 \text { amp }
\end{aligned}
$$ Amp plus preamp $\mathrm{only} \mathrm{\Sigma} 5$

on
Catalogue sent free of charge, when requested on official letterhead (without refund), to OEM's, Schools, Colleges, Univeraties, Government Institutions Computer Firs, Electronic Repair Firms and Distributors. Special discounts and payment terms are available to above institutions.

Please enquire for quantity discounts. WE WELCOME TELEPHONE AND TELEX ENQUIRIES:

$-\mathcal{A}$ Amplifier Modules

The most sophisticated and highly protected modules available today.

MODULE	POWER/LOAD	PRICE
CE608	$60 \mathrm{~W} 8 \Omega$	$£ 23.00 \mathrm{Bi}$-Polar
CE1004	$100 \mathrm{~W} 4 \Omega$	$£ 27.00 \mathrm{Bi}$-Polar
CE1008	$100 \mathrm{~W} 8 \Omega$	$£ 28.90 \mathrm{Bi}$-Polar
CE1704	$170 \mathrm{~W} 4 \Omega$	$£ 38.50 \mathrm{Bi}$-Polar
CE1708	$170 \mathrm{~W} 8 \Omega$	$£ 38.50 \mathrm{Bi}$-Polar
CE3004	$300 \mathrm{~W} 4 \Omega$	$£ 49.00 \mathrm{Bi}-$-Polar
FE908	$120 \mathrm{~W} 8 \Omega$	$£ 34.50 \mathrm{MOSFET}$
FE1704	$220 \mathrm{~W} 4 \Omega$	$£ 59.50 \mathrm{MOSFET}$
FET 3	$450 \mathrm{~W} 4 \Omega$	$£ 74.50 \mathrm{MOSFET}$
CPR 2	Stereo Preamp	$£ 47.95$
REG 2	$+/-12 v$ Supply	$£ 17.50$

Prices include P+P, VAT. All modules are guaranteed for 2 years. For more information on these modules and our other products please write ((s.a.e.) or phone.

CRIMSON ELEKTRIK
STOKE PHOENIX WORKS 500 KING ST. LONG TON STOKE-ON-TRENT STAFFS

TEL.(0782) 330520

Agents:-
BRADLEY -MARSHALL 382-386 EDGEWARE RD. LONDON.

WILMSLOW AUDIO

 35-39 CHURCH ST. WILMSLOWCHESHIRE.

MICROBOX II ThE 6809 SINgLe BOARD COMPUTER THAT YOU BUILD YOURSELF

2 ST. STEPHEN'S ROAD • CHELTENHAM • GLOUCESTERSHIRE GL51 5AA Telephone: Cheltenham (0242) 510525

DIGITAL PANEL METER

Paul Chappell gets the measure of a meter...

0ur panel meter offer in the April issue was so popular that all the available stocks sold out within a few weeks, leaving many readers disappointed. As we can't get hold of any more, we thought the next best thing would be a project to build your own. The specification for this meter is similar to the one in the offer: $31 / 2$ digit LED display with a full-scale reading of 199.9 mV . In this meter, however, the display and control boards are separate so that you can mount them separately if required with a length of ribbon cable in between.

Dual Slope Conversion

The project is based on the ICL7107 panel meter IC, which is essentially a dual slope A-to-D converter with internal decoding and driving circuits for 7 -segment LED displays. Dual slope is a relatively slow method of A-to-D conversion; it can take up to 6,000 counts, or 24,000 clock cycles (the clock is internally divided by four to give the count rate) for the 7107 to perform a conversion, as opposed to only about 12 cycles for a successive approximation converter of similar resolution.

The advantage of the technique is that it can produce very accurate results with relatively simple and trouble free circuitry. For a voltage meter, it fits the bill nicely: two or three conversions a second is all that is required, and the $31 / 2$ digit (approximately 11-bit) accuracy is all important.

Figure 1 illustrates the general principle of dual slope conversion. At the beginning of the conversion, SW1, which represents an analogue switch, is set to position 1 for a fixed number of clock cycles. The circuit around the op-amp is an integrator, so C 1 will charge up at a rate proportional to the input voltage. At the end of the charge period, SW1 is set to position 2 and C1 discharges at a known rate dependent on the value of -V ref.

Fig. 1 Integrator used for dual slope conversion.

The clock cycles during this phase are fed to a counter - the number that occur during the discharge will be proportional to the voltage on the capacitor at the start of this phase, and therefore to the input voltage.
By judicious selection of the timing periods, the output count can be made to indicate the input voltage directly. For instance, suppose that $-V_{\text {ref }}=-1$ and the charge period was selected to be 1,000 clock cycles. For an input of 1 V , the output count would also be 1,000 ; for an input of 2 V the count would be 2,000, and the counter would indicate the input voltage directly at a scaling of 1 count per mV.

Error Reduction

As long as the sum of the errors in clock frequency, capacitor leakage, resistor temperature drift and so on can be kept to within 0.05% during each conversion cycle, the converter will be accurate enough for a $31 / 2$ digit meter.
This is an outrageously demanding specification for longterm drift, but can be met without much trouble for the time of a single conversion cycle. The beauty of the circuit is that long term stability in these factors doesn't matter in the least. If the value of R1 drifts, for instance, C1 may charge to a slightly lower voltage for a given input, but the discharge will be proportionately slower, and the two factors cancel out leaving the count exactly the same.

Unfortunately, there is one source of error that will not cancel: voltage offset in the op-amp. Suppose that the op-amp has an input voltage offset of 1 mV . Since the non-inverting input is grounded, the virtual earth point at the inverting input will be at -1 mV . this means that an input of $0 \vee$ will be seen as an input of 1 mV (it will cause current to flow into the virtual earth since R1 will have 1 mV across it), an input of1 mv will be seen as zero (since no current will flow in R1) and all readings will similarly be offset by 1 mV .

In a practical circuit the input to the integrator would be buffered, the output would go to a comparator, and each would introduce its own time and temperature dependent offset into the circuit, probably adding up to several mV . In the 7107, with a 200 mV full-scale, this would have disastrous results: each count on the display represents $100 \mu \mathrm{~V}$, so the last two digits of the display would be totally unreliable!

Offset errors are cancelled out by the 7107's auto-zero circuit, the principle of which can be seen in Fig. 2. The circuit is the same as Fig. 1 apart from the addition of C2 and some extra switching.

The conversion now has three phases. In the first SW1 disconnects R1 from the input and grounds it. At the same time, SW2 connects the output of the op-amp to its non-inverting input. C 2 and C 1 have no effect on the op-amp, since they are shorted by SW1, so the circuit stabilises with points A and B both negative offset voltage, and point C at $0 V$ due to R1. Enough time must be allowed for C1 and C2 to discharge via R1; this'auto-zero' phase has a period of 1,000 counts in the case of the 7107 .

When the circuit enters the charge phase, SW2 is opened and SW1 connects R1 to Vin. The opamp's offset voltage will be held by C2, so point C will still be at

0 V . This means that an input of 0 V will no longer cause a current in R1, and the offset has been cancelled.

It may not have escaped your notice that C 1 will also have the op-amp's offset voltage across it. In this simple circuit, the righthand side of C1 would have to be disconnected from IC1 and grounded during the auto-zero phase. In the 7107, the comparator which follows the integrator is also included in the

Fig. 2 Modified integrator giving offseticancellation.
auto-zero feedback loop, which makes this unnecessary.

Figure 4 is the analogue section of the 7107, taken directly from the Intersil data book. It isn't as complicated as it looks! The integrator corresponds to our opamp, $\mathrm{C}_{\text {INT }}$ to $\mathrm{C} 1, \mathrm{C}_{A Z}$ to C 2 and RINTto R1. The op-amp feeding R1 buffers the input, and the comparator provides a logic signal to denote the end of the discharge phase of $\mathrm{C}_{\mathrm{INT}}$. The circuit around the 6.2 V zener is a voltage

HOW IT WORKS

The bulk of the work is performed by the 7107 digital voltmeter IC, which is essentionally an A-to-D converter with internal circuitry to drive four 7segment LED displays. The full scale range of the IC is twice the voltage difference between pins 35 and 36. For a 200 mV full scale (a maximum reading of 199.9 mV , this voltage is set by R2 to be 100 mV . A reference voltage 2.8 V below the positive supply voltage is available at pin 32, and this holds the voltage across R2 and RV1 at 2.8 V so that the voltage set by RV1 will be stable.

R1 and C1 are the timing components for the internal oscillator. For reasons explained in the text, the oscillator does not need exceptional
long term stability, so there is little point in using a crystal or choosing high stability components for timing. R3 and C3 form a very simple low-pass filter to cut down any noise at the input, and R3 also provides some degree of protection for the IC against accidental connection to excessively high voltages.

C2 holds the reference voltage used during the 'de-integrate' phase of the conversion (see text). The capacitor is charged up to the reference voltage during the first (auto-zero) stage of conversion. A bridge arrangement of switches inside the IC (Fig.4) allows the voltage stored to be used either way around, according to whether the input voltage to be measured is
positive or negative. C4 is the autozero capacitor, C5 the integrating capacitor and R4 the integrating resistor. The function of these components is explained in detail in the text.
The sole function of IC2 is to provide a negative supply voltage for the 7107, so that the circuit will run from a single +5 V supply. It is a hex inverter IC: one of the inverters is used to present a single gate load to the 7107's clock. This inverter drives the remaining five in parallel, which in turn drive the voltage pump consisting of C6, D1, D2 and C7. This generates about $-\mathbf{3 . 5 V}$, which is fed to pin 26 of the 7107.

Fig. 3 Circuit of the digital meter.

regulator which establishes a reference voltage 2.8 V below the positive supply voltage, available to the internal circuit, and also to circuitry outside the IC via pin 32.
The remainder of the circuit is analogue switching - more complicated than in Fig. 2 since it allows for negative inputs and a corresponding positive reference voltage. Switches marked AZ are closed during the auto-zero phase, INT during the integrate phase, and DE during the discharge or 'de-integrate' phase.
Two small points: in the 7107, both the inverting and noninverting inputs of the integrator are connected to the 'common' reference voltage rather than to ground. All that is required for the auto-zero phase is that they should be at the same voltage.

Secondly, it may seem that the offset introduced by the input buffer will not be cancelled. It will. To see why, just imagine a voltage source equal to this offset voltage between the switch and R1 in Fig.2. The junction of C 2 and C 1 would end up at this offset voltage at the end of the auto-zero ohase. and a subsequent $0 V$ input, when offset by the buffer, would still result in no current in R1.

Construction And Setting Up

The two PC.Bs are assembled according to the overlay in Fig. 5. The two boards can be mounted together in a 'sandwich', with the two track sides facing each other. Quarter-inch spacers between the boards will be adequate to prevent any short circuits, and the mounting screws will go through both boards and hold them firmly. The smaller display board can be fixed either at the top or bottom of the driver board, according to which you find most convenient. If the driver board takes up too much space behind the front panel, it can be mounted

PARTS LIST

RESISTORS all 14 4W 5\% carbon film

R1	100k
R2	22k
R3	1M0
R4	47k
R5,6,7,8	180R (see text)

CAPACITORS

C1	100 p ceramic
C2	100 n polyester
C3	10 n ceramic
C4	470 polyesfer
C5	220 n polypropylene
C6	$47 n$ polyester
C7	$10 \mu 6 \mathrm{~V}$ tantalum

(C5 ideally should be polypropylene to prevent errors from dielectric absorption. If unobtainable, a polyester type can be substituted.)

SEMICONDUCTORS

	ICL7107
IC1	4069
IC2	1N4148
D1,2	0.5" common
LED1,2,3,4	anode, seven segment displays.

MISCELLANEOUS
PCB, 0.1" connectors.
that the common mode voltage range will be roughly +4.5 V to -2.5 V . If either meter input is taken beyond these limits, the readings will not be accurate, and if either input goes outside the range of +5 V to -3 V , IC1 may be permanently damaged.

Adjusting The Range

The full-scale reading of the meter, with the components shown, is 199.9 mV . In some circumstances, you may prefer to choose a different range. Suppose that you decided to use the meter to measure pressure, using (for example) the 136PC15G1 pressure transducer. This device has a range of 0-15 PSI and an output of 6.67 mV per PSI. One possibility would be to amplify the output to 10 mV per psi, giving a meter display of 100 counts per PSI, so that 15PSI would give a reading of 1500 . To avoid using an extra amplifier, the meter range can be adjusted; a full scale voltage of 133.4 mV will give the required reading of 100 counts per PSI. Generally speaking it is not a good idea to increase the meter sensitivity too far beyond 200 mV full scale as it becomes more difficult to maintain the full $31 / 2$ digit accuracy, but reducing the sensitivity for higher inputs is always preferable to using voltage dividers since, besides keeping down the number of components, it minimizes the noise.

The full scale range of the meter will be twice the voltage appearing between pins 35 and 36. For the 200 mV meter of Fig. 5 , this voltage is adjusted by RV1 to be 100 mV . For small variations of the scale, say up to $\pm 10 \%$, it is sufficient simply to adjust RV1. For larger variations, other component values must be changed. In general, for a full scale of $\boldsymbol{n x}$ 200 mV , increase the value of R4 by a factor of n and divide the value of C 4 by n .

For example, a range of 0 to 2 V can be achieved by increasing the voltage between pins 35 and 36 to 1 V (you will need to substitute a 20k preset for RV1 to allow this), multiplying the value of R4 by 10 to become 470 k , and reducing C4 to 47 n .

Applications

The frequency and capacitance meter circuits for the free PCB in the March and April, 1986, issues of ETI* can be used with this meter, and the 'bathminder' can
easily be adapted for temperature measurement Current readings can be made by the simple expedient of connecting a resistor across the input-a 1 RO resistor will give a range of 0 to 200 mA and a OR1 resistor will give readings up to 1.999 Amps.

For something a little more unusual, the circuit of Fig. 7 will allow the meter to be used with a low cost strain gauge (see Buylines). A strain gauge is a device which changes its resistance in proportion to small changes in its length. The one we have suggested is made from a copper-nickel foil on polyester film, and will measure length changes up to $\pm 4 \%$.

Strain gauges are used in engineering to measure the effects of loading on mechanical structures - bridges, cranes, industrial machinery, and so on. The gauge is bonded to the surface of the part to be tested, and any strain as a result of the loading is converted to an electrical signal and sent to the measuring apparatus.

In robotics, a strain gauge can be used to give an indication of, say, the strain on a robot arm as a result of a weight that it is trying to pick up. The signal can be used to prevent the arm from attempting to pick up anything too heavy, or as part of a feedback mechanism to allow the robot to judge the weight it is carrying, and perhaps to help it to keep its balance.
A common application of strain gauges is electronic weighing. Transducers for this purpose, which incorporate strain gauges, are called load cells and are usually very expensive ($£ 100$ and up). However, the simple arrangement shown in Figs. 6 and 7 can give reasonable results - the strain gauge measures the extension of the lower surface of a sheet of steel, which will be roughly proportional to the weight placed on it over a certain range.
The gauge should be glued with epoxy resin or cyanoacrylate to a metal surface which has been thoroughly cleaned and is free of grease. Avoid touching the surface of the gauge that is to be bonded -

Fig6 The structure and use of a typical strain gauge.

Fig. 7 Circuit of strain gauge amplifier
it can be picked up and placed in position by means of adhesive tape applied to the top surface. Hold the gauge firmly in place while the glue is curing, and make sure there are no air bubbles underneath.

The components shown in Fig. 6 are for a reading of 100 counts to 1% extension. The only adjustment to be made is to zero the meter reading with RV1 when the metal is unstressed. For weighing purposes, you will probably wish to adjust the gain of IC1 so that the meter scale gives a reading in grammes, pounds, or whatever. In this case, R5 and R6 can be replaced with a preset of a suitable value. Don't ask me what value - it depends on the mechanical arrangement of your weighing machine.
RV1 sets the full-scale voltage of the meter, and should be adjusted with a suitable accurate voltage source connected to the meter inputs. Alternatively, the meter can be calibrated against another voltage meter. Resistors R5 to R8

BUYLINES

The ICL7107 is available from Watford and Cricklewood - see 'Linear ICs' in their ads in this issue. Polypropylene capacitors can be obtained from Maplin (see back cover for address). Their 220 n polypropylene capacitor has order code FA22Y and costs $\mathbf{9 8 p}$. This capacitor is a $\mathbf{1 k V}$ type, and is rather large for the PCB. If you can find a low voltage one, use that instead (and let us know where you get it fromi).

There are many suitable displays for the meter. If you can order from RS, the stock number of the type we used is 588-320. Maplin's FR39N is also suitable - at $\mathbf{E 1 . 6 0}$ each plus postage.

Specialist Semiconductors of Founders House, Redbrook, Monmouth, Gwent can supply the HD1131R at four for $\mathbf{£ 3 . 6 0}$ inclusive of postage. Finally, the FND507, which you may see advertised from various sources in this magazine, is also suitable.
The strain gauge we used was a low cost one from RS components. Their stock no. 308-118 type is for use on aluminium. Unless you are a 'trade' user, you will have to ask someone else to order for you. Trilogic, 29 Holm Lane, Bradford, BD4 0QA (Tel: 0274 684289), for instance, will order from RS components for ETI readers. Either type of gauge should cost around E3.
are for the decimal points on the displays. Only one resistor will be required, according to which decimal point you would like to light. The decimal point connections are also available at the edge of the board in case you have ambitions to make an autoranging meter, or suchlike.
*Back issues of ETI can be obtained by sending $£ 1.70$ for each issue to: ETI Backnumbers Dept., Infonet Ltd., Times House, 179 The Marlowes, Hemel Hempstead, Herts. HP1 1BB. Please phone first to make sure the issue is available (0442 48432).

ETI

LOW COST C.A.D.

ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS!!

LB.M. PC (end compltbles), BBC MODEL B and SPECTRUM 4BK

ANALYSER I and 11 compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits GAIN and PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY (except Spectrum version) are caiculated over any frequency range required. The programs are in use regularly for frequencies between 0.1 HZ to 1.2 GHz . The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.
Circuits containing any combination of RESISTORS, CAPACITORS, INDUCTORS, TRANSFORMERS, BIPOLAR AND FIELDEFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simutated - up to 60 nodes and 180 components (IBM version).
Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LCUDSPEAKERS CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNED $t F$, AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. AND CHROMA FILTER CIACUITS LINEAR INTEGRATED CIRCUITS Etc. STABILITY CRITERIA AND OSCILLATOR CJRCUITS can be evaluated by "breaking the toop"
Check out your new designs in minutes rather than days.
Used by INDUSTRIAL, GOVERNMENT, and UNIVERSITY R \& D DEPARTMENTS workwide. IDEAL FOR TRAINING COURSES. VERY EASY TO USE. Prices from $£ 20-£ 195$.

LOW COST CONPUTER DRAUGHTING

ON THE BBC MODEL B
"DRAWER" enables quality drawings to be created, and modified, quickly, easily and with the minimum of hardware. Positional input is by standard games joystick. All of the majorprogram elements are written in machine code giving exceptional speed of operation. FEATURES

- Rubber Banding for drawing lines.
- Solir or Dotted line types.
- Circier, Arcs and partial or complete Ellipses. Vertical or Horizontal Text.
Pan and Zoom.
Merging of drawings and library symbols from disc.
Up to 20,000 lines on a drawing
Snap to a user defined grid.
Absolute or Relative cursor co-ordinates
Input frod on screen.
npuckerbill analogue joystick, mouse or
Output to standard dot matrix printer
Prices from £45-ex VAT.

Minimum Hardware Required:- BBC Model B. Single or Dual 5.25" Disc Drive - 40 or 80 track. T.V. Or Monitor. Games Joystick, Mouse or Trackerball. Dot Matrix Printer (Epson 80 series or Epson compatible - BBC default modei).

FULL AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service.
for illustrated leaflets and ordering information please contact: NUMBER ONE SYSTEMS LIMITED (REF ETY)
Crown Street, St tves, Muntingdon, Cambe PE17 4EB

SUPER HY-LKGT STROBE KIT
 E21.95). Footscap SAE lor further delails inclucing Hy Light and ULTRA VOUET BLACK LIGHT
FLUORESCENT TUBES

fif wart selfealusted mack wemt mencury ifs WATT SELF EALCASTED BLACK LCNT MERCUMY DULES. Available for either B C or E S fitting. price $£ 14+$ p\&p E .25 (torial in
VAI $£ 17.54$)
$400 W$ UV LAMP \& BALLAST complete $-£ 58.80+\mathbf{C 3 . 5 0}(69.35$ in 400 W UV LAMP only, $£ 28+$ p\&ip $\mathbf{E 2 . 5 0}$ ($£ 35.98$ inci VAT)

ROBOT ENTHUSIASTS

Escap precision Swiss-made rontase rotor. 6 V DC gaved Motor

 equipment, teated
nc. VAY f 5.75 .
SOLD STATE RELAY

nHCRO-SWITCH
Butcon yoe 10 omp do contects. eexe for 10 post peid. inc. VAT. 24V. O.C. Solenold Fluld Valve manufactured by Sperry Vickers Lucifer, 60 psi. Orit. 3/32. Brass body. Price: $\mathbf{E 7} .50+$ f1.00 pAp. (59.78 incl V.A.T.). NMS. water 5 psi . iniet-outlet $3 / 8^{\prime \prime}$. Forged brass body. Manut Wewraswitch Asco. Price: $\mathbf{5 6 . 5 0 + 5 1 . 0 0 \text { pep. (} \mathbf { 8 8 . 6 3 } \text { incl. }}$ V.A.T.) NMS.

12/2NV DC CENTFFUGAL BLONEA
a.en procucing 30 cuth 87.1
meta me. VAT
7 N.

COOUNG or EXTFMCTPR FAN
 +f 1 pep - toced inc. VAT 27.78 N.M. S . 240V. A.C. SOLENOND VALVE, Designed for Air/Gas at 0.7. Water 5 psi. Indet-outlet i". Forged bress body. (E8.63 incl. VAT)

VARIABLE VOLTAGE TRANSFORMERS 200W. 1A. Max ace so/00 Outruy 200 K . 1A Max
$0.5 \times V A I^{1} 12 \mathrm{AMa}$
1KVA 54 Max.
ZKVA 10 Max.
SIVA
2KVA 104 Max.
3KVA $15 A$ Max.
SKVA 2SA Mex.
10KVA 50A Max.
$15 K V A$ 75A Max
Ai V.V.TA plax. cmringe and VAT

3-PHASE VAFMABLE VOLTAGE TRANSFORMERS Dual inout 200-240V or $380-415 \mathrm{~V}$. Ster connected
3KVA. GKVA. 10 KVA. Ivaltable. Phone tor detaiss
COMpetioneine rano of TRANSFOAMERS L.T. ISOL ATION \& AuTO trame type arritethe for immediemp delvery. tembet on request

SPECIAL OFFER. 2KV Auto Transformers, tapped 0-115-126-220-230-240V. Price: E30.00 + carrlage at cost + V.A.T.

EPROM ERASURE KTT

 Haction of the price of a mede-rp unit. Complete kit of purts iess
cose to inchie 12.8 watt 2537 Angst. Tube. Ballaft urit. pant of bi-pin lesas. Neon indicator, sexfery microswinch. orvoff swnich LESS CASE: Price E13.en - 7Sop p\& (Totol inc. VAT ETE.50). everig: Tube used in this circuit is highty denperous to the ev

12V D.C. BLEE PUNOS

 (Ite.jin. VAT).
 ? nest inc vail

A.C. CAPACITOR. 16 UF 900 V . A.C. $50 / 60 \mathrm{~Hz}$. tded power facto correction. otc. $91 \times 6 \times 47$ ins. Wt. 71 Kg .
 100 WATr $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kQ} / 1.5 k \mathbf{N} / 2.5 \mathrm{k} 9 / 3.54$ c10.25 +75 p p\&p ($12 . \mathrm{ens}^{\text {ncl VAI }}$)
 TESTERS NEW! Test to i.E.E. Spec. Rugged metal const-
ruction suitable for bench or tield work
onstant speed cilct onstant speed clutcn. Size $L 8 i n$. W Win. W
Gin., weight 61 b 500 y . 500 megohms. $6 i n$, weight 61 b 500Y. 500 megohms. 148
p\&p $£ 2$ (558.65 incl. VAT).

Lr TRMNGFOMMERS

 GEARED MOTORS

ne valtures.

Clop IJock mi METER

Erich
SANG
SANGANO WESTON TMAE SWMTCH

M.M.S. How Memufictureos' Surphes

Ni.S. Recondrioned ond susted
Gaods normally despetched within 7 dovs
Ample parking space
Showroom open
Monday-Friday

57 BRIDGMAN ROAD, CHISWICK, LONDON WM 5BB. Tel: 01-995 1580 ACCOUNT CUSTOMERS MIN. ORDER EIO

Personal callers onty. Open Saturdeys 9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

UPGRADEABLE AMPLIFIER

Graham Nalty takes to the boards again with a moving magnet amplifier capable of up-staging itself.

Apreamplifier for magnetic record cartridges has two basic functions. First, it changes the frequency response to cancel the RIAA equalisation put on every record as a means of reducing noise, and second, it raises the level of the signal until it equals that obtained from radios and tape recorders.

Equalisation

The preamplifier requires a gain which varies with frequency as shown in Fig. 1. Typically we need a gain of about 50 at 1 kHz rising to 500 at 20 Hz and falling to

Fig. 1 The desired frequency response of an RIAA preamp.

5 at 20 kHz . The most common method of obtaining RIAA equalisation is by feedback, in which equalisation is carried out in the negative feedback loop of the active circuitry. A typical example is shown in Fig. 2.

This circuit uses a minimum of components, especially if built around an integrated circuit, but is becoming less popular amongst designers of higher-quality amplifiers because the amount of negative feedback varies with frequency. At low frequencies, where less negative feedback is applied, a very high open loop

gain is needed to maintain an accurate frequency response. At high frequencies a high level of feedback makes slew-rate limiting and transient intermodulation distortion more likely.

The shunt feedback circuit of Fig. 2 has an additional problem as the high frequency response does not roll off to zero but to a gain of 1. The effect of this error is to emphasise extreme high

Fig. 2 A typical shunt-feedback equalisation arrangement.

Fig. 3 A series-feedback equalisation arrangement.
frequencies, including sibilance and record scratches.

This problem can be solved by the series feedback circuit of Fig. 3, but only at the expense of increased input circuit noise. In this circuit, the impedance seen from the input is the resistor (47 k) in series with the cartridge (about 1 kO plus inductance). In the shunt feedback amplifier the impedance is the cartridge in parallel with the

Fig. 4 Combined shunt and series feedback arrangement.

47 k resistor and is much lower. Hence the noise level is much lower, but neither of these circuits can be considered ideal.

An elegant solution to this problem was put forward by Stan Curtis in ETI July 1981 (ref 1). Two stages of amplification are used. The first is a shunt feedback circuit (low noise) with a gain of 5 at all frequencies. This is followed by a series equalisation amplifier in which the virtual earth resistor is much lower than the 47 k required

Frequency	Input	Output of first amplifier	Input to second amplifier	Output of second amplifier	Input to third amplifier	Output
20 Hz	20 mV	159 mV	158 mV	1.26 V	1.26 V	$\frac{10 \mathrm{~V}}{1 \mathrm{kHz}}$
158 mV	1.26 V	1.26 V	10 V	1 V	17.9 V	
20 kHz	1.26 V	10 V	1 V	7.9 V	795 mV	16.3 V

Table 1 Maximum peak signal levels in the circuit of Fig. 6.

Frequency	Input	Output of first amplifier	Input to second amplifier	Output
20 Hz	20 m	V 447 mV	447 mV	10 V
1 kHz	200 mV	4.47 V	447 mV	$\frac{10 \mathrm{~V}}{2.24 \mathrm{~V}}$
20 kHz	447 mV	10 V	100 mV	

Table 2 Maximum peak signal levels in the circuit of Fig. 7.

Frequency	Single passive neitwork	Split Passive network	Feedback equalisation
20 Hz	20 mV	20 mV	20 mV
1 kHz	200 mV	158 mV	200 mV
20kHz	447 mV	1.26 V	2 V

for a single-stage series equalisation circuit. The basic circuit is shown in Fig. 4. The phase of the output is inverted, but where this causes problems an extra unity-gain series-feedback buffer amplifier can be added.

An alternative way to achieve correct response at extreme high frequencies is shown in Fig. 5. This again is a two stage circuit. The first stage has a constant gain at all frequencies and is followed by a passive high frequency roll-off network, turning over at 2122 Hz . The 50 Hz and 500 Hz turnover frequencies are equalised by the shunt feedback network in the second stage of amplification. This configuration has been used by a number of manufacturers of amplifiers at the more expensive end of the market.

The passive equalisation arrangement of Fig. 6 is one which I have used in a number of different amplifiers over the years. The signal is amplified by about 7 or 8 times in each stage and the 2122 Hz turnover (HF roll-off) is carried out by a resistor and capacitor after the first stage. The signal is then amplified a second time and the bass equalisation (50 Hz and 500 Hz turnovers) is carried out by a second passive network. Noise and overload margins are optimised when the gains of the stages are

Fig. 5. An alternative two-stage equalisation circuit.
are used. The intention in this design is to upgrade the preamplifier by providing separate power supplies for each stage of amplification, and with three stages this would quickly become very complicated.

We can cut things down by using the single-stage passive equalisation arrangement of Fig. 7 which requires only two stages of amplification. The required gain of each stage is now increased to 23. The disadvantage, shared with any other RIAA single network, is that component values are very difficult to calculate accurately. I would like to pay tribute to work carried out in this area by Stanley Lipshitz (Ref 2) whose paper on RIAA networks is a great help to circuit designers. The component values used here are derived from tables in Mr Lipshitz's paper.

Overload

An important part of the design of an RIAA preamp is to obtain an adequate overload margin. This is to make certain that the loudest signals from the cartridge are amplified accurately and reproduced without clipping or slew-rate limiting. Problems start when you realise that different cartridges give a different output for a given recorded level in the disc and that the maximum signal in the groove can vary from record to record. There is thus no defined maximum cartridge output level on which to base our designs.

In practice, most RIAA preamps

Fig. 6 Using three stages simplifies the component value calculations.
approximately equal. This has all the important factors - correct phase, accurate frequency response and uniform feedback at all audio frequencies. It has the advantage that the component values can be easily and quickly calculated.

This method can be applied to circuits which do not have any feedback in their active stages. The only disadvantage is that three separate stages of amplification

Fig. 7 The two-stage equaliser which forms the basis of this design.

Fig. 8 Circuit diagram of the moving magnet stage in its standard version (one channel only). Note that the component numbering follows on from last month's moving coil stage.

are designed with an overload capability well above the maximum typical output of a cartridge. This can be a real benefit to the person who owns a higher-than-average output moving coil cartridge and a high gain head amp. In the past quite a bit of nonsense has been talked about overload margins by people who assume that a preamp with a larger overload margin will sound better. On other occasions reviewers have criticised a preamp because they have measured a lower overload margin. But unless a reviewer can actually feed a genuine signal from a cartridge into the preamp and show a clipped waveform, there can be no justification for criticising the overload margin.

To illustrate this point, I have
calculated the maximum possible signal at each stage in a passive equalisation circuit at $20 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 20 kHz assuming a) an overall gain of 500 equally divided between each stage of amplification and b) a maximum peak voltage of 10 V in either direction (Tables 1 and 2). Notice how the overload point (underlined) varies with frequency. Table 3 compares the maximum possible input voltage of these passive circuits with a feedback equalisation circuit. The overload margin could be increased by lower gain in the earlier stages of amplification but this may increase the noise of the circuit.

The MM preamplifier to be described here uses two separate
stages of amplification. RIAA equalisation is carried out by a passive network consisting of R20, R21, C21 and C22 located between the amplification stages.
The signal reaching the RIAA stage is filtered by R11 and C12 to remove radio frequency interference. It is then amplified by the first stage amplifier formed from Q6, Q7 and Q8. The gain is determined by resistors R16 and R17 and is calculated at R16 + R17/R16=23.

The output from the first stage is then equalised by the RIAA network and applied to the second active stage. This is based on Q9, Q10, and Q11 and also has a stage gain of 23 , defined by R26 and R27. A buffer resistor R30 protects the amplifier from low

PARTS LIST

RESISTORS	STANDARD VERSION (2\% unless stated)	UPGRADED VERSION Holco H8 0.5\% 50PPM ${ }^{\circ}$ C unless stated)
R10	68k	68k1
R11, 30	1k0	1 kOO
R12, 31	220k	221k
R13, 15	5k6	5 k 62
R14	47k	see D3
R16, 26	1k0 1\%	$1 \mathrm{k00}$
R17, 27	22k 1\%	22 k 1
R18, 28	33R	33 R2
R19	6 k 8	see D4
R20	22k	22k1
R21	22k 1\%	39 k 2
R22	3k31\%	5k62
R23	5k6	5k62
R24	47k	see D5
R29	6k8	see D6
CAPACITORS		
$\text { C10, 15, } 16$	470n polyester	470 n polycarbonate
C11, 17, 18, 20, 24, 25, 26	-	$3 \mathrm{n9}$ polystyrene or silver mica
C12	100p polystyrene	100p polystyrene or siver mica
C13, 14	- 407 polyester	220 l porycarbonate
C19	4u7 polyester 100n 5% polyester	$4 u 7$ polycarbonate 56n 1.5\% polystyrene
C22	33n 5\% polyester	19n 1.5\% polystyrene or silver mica
C 23	100 polyester	2u2 polycarbonate
SEMICONDUCTORS		
IC3	-	7812
IC4	-	79212
IC5	78 L 12	7812
1C6	79112	7912
Q6, 7, 9, 10	BC109C or BC184C	BC109C or BC184C
Q8, 11	BC214C	BC214C
D3, 5	-	J500 (240uA)
D4, 6	-	J507 (2.4mA)
MISCELLANEOUS		
only); PCB pillars; case, power supply, sockets, wiring, etc, according to choice and application.		
All of the components listed above are for one channel only (with the exception of thecase, power supply, etc). Two of each will be required for stereo.		

Test points	Voltage
Output of IC3, IC5 - ground	+12 V
Output of IC4, IC6 - ground	-12 V
Across R13, R23	0.7 V
Acros R18, R28	0.1 V
Emitters Q6, Q7, Q9, Q10 - ground	0.6 V
R17/C19 junction - ground	Less than 0.2 V
R27/C23 junction - ground	Less than 0.2 V

Table 4 Test voltages at various points around the circuit.

BUYLINES

A complete kit of parts for the moving magnet stage will be available from the author at 6 Mill Close, Borrowash, Derby DE7 3GU. The cost is $\mathbf{£ 1 1 . 5 0}$ for the standard version and $£ 29.00$ for the fully-upgraded version. Note that these prices are for one (mono) board and that two will be required for stereo. The PCBs can be purchased on their own for $\mathbf{£ 1 0 . 0 0}$ (two boards) and all the other components can also be supplied separately if preferred. A full price list is available from the address
above. All prices include VAT and postage.
A case for the complete preamplifier is also avalable (see photos here and in last month's article) and costs $\mathbf{E 4 9 . 0 0}$ inclusive. It is fully drilled and labelled ready to accept the modules described in this series of articles. The front panel can be supplied with or without provision for tone controls please specify which you require when ordering.
impedance or large capacitance loads. Onboard regulators provide regulated supplies of +12 V and -12 V to the active circuitry and these require input voltages of $\pm 15 \mathrm{~V}$ or greater.

The circuit of the standard economy version is shown in Fig. 8 with single 78L12 and 79L12 regulators powering both stages of amplification. Although ' ${ }^{\prime}$ ', , gain transistors are specified, ' ${ }^{\prime}$ ' gain devices should be fine. Two percent tolerance is adequate for resistors, but I have specified 1\% wherever the resistor affects the equalisation or gain. Capacitors are radial polyester and axial polystyrene types. Capacitor tolerance is important for the RIAA equalisation components so I have specified 5% types.
The circuit of the fully-upgraded MM stage is shown in Fig. 9 The improvements are:
a) the use of separate regulators
for each stage of amplification
b) the use of metal-tab T0220 regulators to reduce temperature generated distortion
c) the replacement of all standard metal film resistors with Holco H8 $0.5 \% 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ metal film resistors
d) the use of polycarbonate capacitors instead of polyester capacitors
e) the bypassing of higher value capacitors with 3 n 9 to 10 n polystyrene capacitors f) the replacement of R14, R19, R24, R29 with constant current regulator diodes (D3-D6) for better power supply ripple rejection
g) the use of close tolerance extended foil polystyrene capacitors for RIAA equalisation. h) the use of ' C ' gain transistors for Q9 and Q10 to give higher input impedance on that stage.

Construction

The moving magnet stage is assembled on a single-sided circuit board which carries one complete stage. The board is therefore mono and two will be required for stereo. Holes are provided on the board for the various upgrading options and also to allow several smaller polystyrene capacitors to be used instead of some of the less-readily obtainable larger ones. Make sure you know in advance which holes you need to use for the version of the preamp you are building.

Fig. 10 Component overlay for the moving magnet stage PCB. Note that the supply rail connections at the left-hand end perform different functions in the two versions.

The use of PCB pins is recommended for the external connections to the board. The pins should be installed before any of the other components and tapped lightly through the board before being soldered. The rest of the components can then be soldered into place, starting with the resistors and then the semiconductors and the capacitors. Finally, if you are building the standard version, insulated wire links will be needed to carry the power lines across the board to where the second set of regulators would be on the
upgraded version. The position of these links is indicated on the overlay.

When the board is complete, connect it to a power supply giving between $\pm 15 \mathrm{~V}$ and $\pm 25 \mathrm{~V}$. Using Table 4 as a guide, check that the voltages around the circuit are correct. If all seems well, connect up a record deck and cartridge to the input and feed the output into the tape, tuner or auxiliary input of a preamplifier. With luck, you should be able to hear music! If you built last month's moving coil stage, you can now try hooking it into the inputs of this stage and

connecting it to a moving coil cartridge. The moving magnet stage is so designed that two of them can be positioned side by side and the power connections can then be jumped across on short links to a moving coil board laid across their ends. This arrangement can be seen in the internal view of the complete preamplifier published last month.

The MM boards can be used with the Virtuoso preamplifier which is the subject of this series of articles or with any other preamplifier which has a dual-rail supply of between ± 15 and $\pm 25 \mathrm{~V}$ available. The boards could also be installed in a small case with their own power supply and used as a stand-alone, plug-in disc stage. This would make a useful accessory for PA amplifiers and audio mixers which do not have a low-level, RIAA equalised input. If preferred, the regulators can be omitted and a battery used instead. For a 9 V battery supply use two 33 k resistors in parallel for R14 and for R24 and replace R19 and R29 with 3 k 9 resistors.

References

1. Curtis. S. System A preamp

ETI july 1981.

2. Lipshitz. S. On RIAA equalisation networks. Paper presented to 61 st AES convention, New York. November 1978. ETI

SPEAKING ALARM CLOCK

Paul Woods' design tells the time and tells you. A good introduction to real-time clocks and allophone synthesis and a practical circuit to help the visually handicapped.

The clock functions are controlled by four buttons. When particular buttons are pressed, the clock speaks the time, or the alarm setting. The buttons alsoallow these to be set and issue spoken phrases to tell users what they are doing.

Time is kept on a 12 -hour clock, with 'am' or 'pm' announced as appropriate. When sounding, the alarm may be either cancelled, or muted for ten minute periods to allow for a snooze.

Audio output is about 2 watts - enough to arouse the soundest sleeper.

Figure 1 shows the block diagram of the speaking alarm clock. The circuit is based on a Z80 microprocessor, with supporting EPROM and RAM, which controls an MSM5832 clock IC and an SP0256-AL2 speech synthesizer. Output is provided by a TBA810AS audio power amplifier driving a 4 ohm load.

Fig. 1 Block diagram of clock.
Clock signals for the Z80 and the SP0256 are provided by a common crystal oscillator and divider chain. The MSM5832 uses a second crystal oscillator as its time reference. Battery backup ensures the clock will keep and remember the alarm setting during power cuts.

How it Works

Figure 2 shows the digital section of the circuit. Q1 is a crystal controlled Colpitts oscillator. Its output is divided by two by IC8 - a 74LS74A dual bistable - to give 3.07 MHz for the speech synthesizer, IC11. A further division bytwo yields 1.54 MHz for $\mathrm{Z80}$, IC2. This
low speed does not compromise preformance as most of the time the Z80 is waiting fora control switch depression or the speech synthesizer to finish saying an allophone.

C1 and R5 generate a power up reset signal to the Z80. PB5 also resets the Z80 and PB6 generates an interrupt. Both of these switches were used to debug the EPROM and are not now used.

The peripheral ICs are memory mapped, so some of the Z80 bus control signals, principally IORQ, MREQ and M1 are ignored. This avoids having to decode IN and OUT instructions as every read and and write cycle must be to memory. RFSH is also unused because IC6 is a static RAM.

IC3 and IC4 - both 74LS138 demultiplexers - are used as address decoders. By combining with RD in IC3, and WR in IC4, they generate read select and write select signals respectively for 2 Kbyte memory blocks (Fig. 7 shows how these areallocated). A1 4 and A15 from the Z80 are unused, so only the bottom 16 k of memory may be accessed.

The alarm clock program is stored in IC5, a 2716 EPROM, which is selected by RSO from IC3. Program variables are kept in the static RAM, IC6, enabled by RS1 and WS1.

An open collector gate is used for IC7 - used to select the RAM - so that a resistor pull up, R10, may be used on CE. R10 and IC6 are both connected to the backup battery, rather than V_{cc} so that loss of power does not destroy RAM contents. However, IC6's CE input is taken high, putting IC6 into a low power stand-by mode.

The four control push buttons are connected via IC1a to the Z80 data bus. These must be normally open switches.

IC10, the MSM5832 real time clock, keeps track of the time and the date. A 32768 Hz watch crystal is the time reference - for highest accuracy, this should be trimmed by adjusting CV1.
CV1 mustbeadjusted by one oftwo methods. The first is to compare the clock with a time signal over a few days, adjusting CV1 as necessary. Alternatively, build the circuit, and place IC1 only into its holder. Connect a frequency counter to pin 9 of IC10. Turn on the power and adjust CV1 until a frequency of exactly 1024 Hz is measured. Direct measurement of the frequency on pins 16 or 17 of IC10 will give false readings, since a

scope or frequency counter will load the crystal's high impedance circuit.

The clock IC requires a complicated sequence to access it. The HOLD (pin 18) must be at logic 1 before trying to read or write anything. This locks the time into the clock's internal registers, so that should a clock tick occur during the ensuing read cycles, it will not change the data being read by the Z80. Otherwise an incorrect time may beobtained, caused by a carry rippling through the clock's registers.

The stand by battery comprises three rechargeable

Ni Cads. R14 trickle charges the battery, D2 prevents it from attempting to supply the entire clock when power is turned off. The AA battery size chosen is quite large and provides about a month's back-up, but the cells are readily obtainable. If a smaller battery capacity is used then R14 must be increased to reduce, proportionately, the trickle charge current.

The speech synthesizer and audio amplifier are shown in Fugure 3. The speech chip is selected by WS5. Its ROM expansion pins are left unconnected and an external clock is used in preference to the internal

oscillator. The hand shake lines of IC11 are connected to the data bus so that the Z80 can recognize when to transmit allophones.

RV1 is the volume control for the speech generated by IC11. Actually, IC11 generates a supersonic square wave which is pulse width modulated with the speech information. So if looking around RV1 with an oscilloscope, expect to see a jittery square wave rather than an audio signal.

IC12 is a TBA810AS audio power amplifier. It is configured here to give about 2 W into a 40 hm speaker. The circuit used is slightly non-standard since the high input signal level requires a considerable reduction in gain and a feedback network has been added to make it a two pote 5 kHz low pass filter.

If a hi-fi system is to be used instead of IC12 then a 5 kHz low pass filter will be necessary. Otherwise a faithful reproduction of the inaudible supersonic square wave will be fed to the loudspeaker rather than the audible speech signal.

The recommended power supply is shown in Figure 4. It supplies a nominal 12 V to the audio amplifier and 5 V to all the logic ICs except the two fed indirectly by D2 and the standby battery.
cessible to the user. Figure 6 shows the layout used for these in the prototype. SW4 could be hidden at the back to prevent inadvertently changing the clock settings.

There should be no problems in getting the circuit to run. The slow clock frequency willaid probing the circuit. Any fault in the clock generator may be noted by the absence of a 1.54 MHz square wave at pin 8 of IC8. A square wave is always present at the output of the speech synthesizer, pin 24 of IC11, so its absence is more interesting than its presence. Most faults will be found to be shorted tracks or incorrectly inserted ICs.

Telling the time

On turning on the clock the Z80 will check to see if the memory contents are corrupt. If they are, the clock will repeatedly say 'Reset Clock' until the clock is set.

To set the clock or alarm press the set button, SW4. The clock will say'Set'. Then press' clock', SW1, to set the time, or 'alarm', SW2, to set the alarm time. 'Set Clock Time' or 'Set Alarm Time' will be spoken as appropriate. Pressing SW1 will increment the hours, and SW2 the minutes, of the chosen function. After each press the current setting will be spoken. The new value is stored by

Construction

Building the clock should present no special problems to the careful constructor. The original was built on veroboard - wire-wrapping or Eurocard construction should do just as well. The use of IC sockets is recommended. All the parts are easily obtainable. The EPROM can be blown from Listing 1 or obtained ready programmed along with all the other semiconductors from Technomatic for $£ 8.00$ plus VAT and postage (see their advertisement in this issue).

The voltage regulator, IC15, requires a heat sink, as does IC14, the audio amplifier. The heat sink for IC14 may be bent from a scrap piece of aluminium to the pattern in Fig. 5. The cooling tabs will have to be bent up as shown in the figure. The TBA810S has a different tab shape from TBA810AS, but should be useable.

SW1 to 4, together with RV1, must be mounted on the outside of the case, all other switches should be inac-
pressing SW4 again and 'Clock Set' or 'Alarm Set' is said.

The set mode may be left at any time by pressing‘arm' SW3, on which 'Cancel' is said. Alternatively simply depress no buttons and after a ten second timeout the clock will leave set mode.

Once set, the current time is spoken when SW1 is pressed, and the alarm setting when SW2 is pressed.

To turn the alarm on, or off, press SW3, and the new state, 'Alarm On', or 'Alarrn Off', will be said. When the alarm is on the clock will repeatedly say 'Alarm' at the selected time. Pressing SW1 when the alarm is sounding will cause the current time to be said.

To cancel the alarm when it is sounding, press SW3. The alarm may be muted for ten minutes by pressing SW2. At the end of this period, the alarm will sound again, and may be re-muted as often as desired. If the alarm signal has not been cancelled after about three minutes, then the alarm will cancel itself.

Software

Figure 7 is a memory map for the clock．The EPROM and RAM occupy the bottom two． 2 Kbyte blocks，with the peripheral ICs at 2 Kbyte intervals．The memory addresses are not fully decoded，so a peripheral IC will respond to any address within its block．

A photocopy of the fully－annotated disassembled list－ ing of the program（with comments）is available from ETI Photocopy Serivce（SAC）， 1 Golden Square，London W1R 3AB，if you enclose a stamped，self－addressed envelope and a cheque or PO made out to ASP Ltd．for $£ 3$（inclusive）．The listing runs to 22 sheets of fanfold paper．

The listing printed here（Listing 1）is a complete hex dump of the program．It＇s in Intel format－ignore the first four bytes of each line and enter from address 0000 H ．

$$
\begin{aligned}
& \text { - 10009000319508c03R01CD0392CD0593c031012A19 }
\end{aligned}
$$

109040Q02150905F15019195E235E234E2346E043C3
$10207000053 R 0308139146239 ต 00940$ ต38913925c
1290800n3ดต298139345233200ค5992185130146ค3
－1000F0603200G5320028F5C50E013R0028R12GFR89
－10010日QDC1F1C9219FG4CD12032193087EFE002日FE
： 1001409911080 R2113081REEC0231310F93E023209
1091500eg30日3E0432日20日212c912200日e21F8日382
1010003110 AM 1 R2FEG日1123E0177CD5703C921F3
$1902306 B R A 3 C D A 503 C 9010002010 a n c 013 F 913272$

Fig． 8 （above and top right） Intel format hex dump of clock program

Abstract

 1022Cgnar 1902， 1 1031 199354002：5104CD1293C9F5ES3AO90日C004923ADA 1923CGGG7F：2GC7S329510231GF5RF3200102：1BED ightegne 025 1825500001504 FFED 484 FR065945F04FF022419 10059099日432G4FFg＠15948204FFg02535250520月5 1225490953105350569953094125459549054028 gencanges？

Happy Memories

Part type	1 off	$25-99$	100 up	
4164 150nS Not Texas		.95	.85	.80
41256 150ns	2.40	2.15	2.05	
2114 200ns Low Power		1.75	1.60	1.55
6116 150ns	1.40	1.25	1.20	
6264 150ns Low Power		2.75	2.45	2.20
2716 450ns 5 volt	2.90	2.60	2.45	
2732 450ns Intel type		2.70	2.40	2.25
$2764250 n s$ Suit BBC		1.90	1.70	1.65
27128 250ns Suit BBC		2.45	2.20	2.10
27256 250ns		3.85	3.45	3.20
	8	14	16	18
Low profile IC sockets：Pins	20	24	28	40
	Pence	5	9	10
	11	12	15	17

Available now－The ROAM BOARD for the BBC Micro． Reads Roms via a Low Insertion Force Socket and saves their contents as files，then reloads a file into its sideways Ram as required．

Full details on request．
74LS series TTL，wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces．Write or＇phone for list．

Please add 50p post \＆packing to orders under£15 and VAT to total．Access orders by＇phone or mail welcome． Non－Military Goverment \＆Educational orders welcome． £15 minimum．

HAPPY MEMORIES（ETI），
Newchurch，Kington，Herefordshire，HR5 3QR．
Tel：（054 422） 618

TECH TIPS

Variable Rate Joystick Autofire

Matthew Burt

Bournemouth

Later models of digital joystick on the market have an autofire feature. This circuit adds variable rate autofire to those joysticks without it.

With computers having nineway D connectors for their joysticks, it is possible to obtain the 5 V direct from the computer connector. The input of this circuit needs to be connected to the live side of the joystick button and the output to the button sense input on the computer.

Three sections of a CMOS 4093

IC are used. The first buffers and inverts the input signal, the second is configured as a gated oscillator and the third drives the output transistors. SW1 kills the circuit and restores normal operation. LED1 gives a visible indication of the button firing rate.
The current drawn is dominated by the LED's requirement of about 15 mA , so no problems will be found using the computer's 5 V rail. With the components shown the firing rate can be varied between about 1 and 40 Hz .

Program Cuer

LM. Loong
 Hong Kong

To save having to store many short tape cassettes I once used with my Apple II+ computer, I re-recorded them on to C60 tapes but then I found it annoying not knowing when one program ended and another began.

Ideally the cassette recorder used with a computer should have a digital counter for ease of locating the start and end of the required program. However, the lack of a counter can be mitigated by a voice recording the loading details before the program starts to load and the running instructions at the end of the program.
As the loudspeaker is automatically disconnected when the jack plug to the computer tape input is inserted, the following simple modification will permit a small amount of audio to be routed to the loudspeaker, and thus the user can monitor the start and finish of any program.

The only requirement is a resistor of about 180 or 220 ohms,

Low Cost Door Alarm

S.B. Tweedy BSc Tynemouth

This circuit is designed around a low cost CMOS IC and provides a battery operated door burglar alarm with both entry and exit delays.

the magnetic reed switch in the alarm box. The unit is therefore self contained and requires no wiring to install.
To use the alarm, turn the keyswitch from STANDBY to ON and leave the house, closing the door within 15 seconds (set by R2,C1). The alarm will now arm itself and is triggered by the door being opened. The R-S flip flop built around IC1b and e is set and C2 begins to charge via R4 to produce the entry delay (20 seconds). If the unit is not switched back to its standby mode, the voltage in C2 reaches the threshold value of IC1d and the piezo buzzer is energised by Q1. The unit can be reset at any time by switching the keyswitch back to the STANDBY Mode.
The supply current of the unit in either mode without the alarm sounding is small enough to provide long term operation from a 9V PP3 battery.

and a rating of a quarter of a watt. This is connected across the normally closed contacts of the jack socket.

Plug the cable to the computer input into the cassette recorder and play back any tape, computer or music. Then bridge between any two contacts on the socket with the two ends of the resistor until sound can be heard coming from the loudspeaker at a very low volume when the volume control is turned up to it's usual position for loading tapes into the computer.

Cut the resistor leads to length and fit insulating sleeving to them before soldering the resistor across these two points. The job is then complete.

Speaker Mute

K.S.Ng
Rotherham

The reader may presently have an amplifier which exhibits a minor fault in that an annoying thump can be heard when switching on. The circuit here has been designed to eliminate that. It also does a bit more. When the amplifier is switched off its reservoir capacitors discharge slowly, but the speakers are disconnected early so that the input signal cannot be heard 'sizzling' down.
When switched on, current passes through R1 and charges up C1. Q1 remains switched off until
the voltage across C1 exceeds that of ZD1, in about 0.5 second. When Q1 conducts, the rest of the circuit activates the relay, which in turn switches the speakers on.
When the amplifier is switched off and the supply votage falls below the value of D1, Q2 will stop conducting. Then Q3, the relay and the speakers will be switched off immediately. A simple remote switch SW1 attached to the base of Q3 can mute the speaker output.

My amplifier's power output section has a $32-0-32 \mathrm{~V}$ supply, so ZD1 was chosen to be 25 V . With any other amplifier, the value of ZD1 should be around $2 / 3$ of the power output's +ve supply rail. Also R7 should be chosen to suit the relay's operating parameters against the supply voltage.

Electronic Odometer

L. Robertson

Aberdeen

This device was designed to measure distances up to 19.999 km on a normal (26 inch) bicycle wheel, the circumference of which is 2.111 m .

The circuit requires a detector mounted on the wheel so that a negative-going pulse on each rotation sets the latch formed by IC5a and b, enabling the astable, IC1. IC2 counts IC1's output pulses until Q_{10} goes high (after 1024 pulses), at the same time resetting itself and the latch.

The 1024 pulses are simultaneously counted in IC3 whose outputs are gated to reset the chip after 485 pulses. This counter will have reset itself twice and will be at binary 54 , so for each revolution the output is $254 / 485$ or 2.111 .

The pulse to reset IC3 is stretched by IC4 (a monostable) and fed to IC7, a counter IC which drives the LCD display.

ETI PCB SERVICE

Please use the form below (or a photocopy of it) to make your order. Be sure to quote the board reference number and price code correctly - mistakes will delay your order.
The board reference number tells you when a particular project was published: the first two numbers are the year and the third and fourth numbers tell you the month; the number after the hyphen indicates the particular project. Re-prints of all articles are available for a small charge from our photocopy service - see the separate page (not printed in every issue of ETI). Please note
that complex projects are usually published in several parts.

Our terms are strictly cash with order. Unfortunately, we cannot accept official orders, but we can supply a pro-forma invoice for you to raise a cheque against. We must stress, however, that your order will not be worked on until payment is received.
The boards listed below are all that are available at the moment. We hope to make more types available in the future, but no details will be available for some while (so please don't phone us to ask!).

Please allow 28 days for delivery

ORDER FORM

TO: ETI READERS' SERVICES DEPARTMENT Argus Specialist Publications Ltd PO Box 35, Wolsey House, Wolsey Road, Hemel Hempstead, Herts HP2 4SS, UK

Please supply:

No. required per type	Board reference number	Price letter	Price each £		for dype $£$
	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$		$\begin{array}{lll} f & p \\ f & \vdots & p \\ f & \vdots & p \end{array}$		$\begin{aligned} & \mathrm{p} \\ & \mathrm{p} \\ & \mathrm{p} \\ & \mathrm{p} \end{aligned}$
POSTAGE \& P	PACKING			£	0.75 p
TOTAL ENCL	LOSED			£	- p

ORDER TO BE SENT TO: (BLOCK CAPS PLEASE)

\qquad
\square
\qquad
\qquad
\qquad
(Make cheques payable to ASP Ltd)
ACCESS and VISA credit card orders can be taken on 044241221 (office hours only).

Interak 1

AN EXPANDABLE DISK-BASED Z80A DEVELOPMENT SYSTEM YOU CAN BUILD YOURSELF!
 Universities, Colleges, Industry, Enthusiasts:

 Unlike homecomputers, development systems haveentirely "open" architectures, use standard TTL etc. chips (ie no ULA S! , and are built in a proper engineering fashion. Usually these superior products carry a correspondingly superior price tag, but you can build interak yourself board by board and thus afford a system which would normally be out of your reach and/or understanding.

The initial development system has 64 K of RAM, a 4 MHz Z80ACPU, parallel ASCI keyboard interface, VDU Interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Any size (including 8 " double density) can be used, but our 1 Megabyte $3.5^{\prime \prime}$ drives are proving very popular because they can fit into the system rack, (and they only cost£87.00 each +VAT). CP/M 2.2 is available, giving access to thousands of "public domain" programs.
The system can be described as "future proof" because it uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system was first made in 1977 so (unlike almost all other computers) it has stood the test of time.
Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc

Greenbank (Dept T7E), 92 New Chester Road

 Greenbank Electronics (Dept T7E), 92 New Chester Road,New Ferry, Wirral, Merseyside L62 5AG. Tel: 051-645 3391

OMNI ELECTRONICS

'VISIT SCOTLAND'S NEWEST COMPONENTS SHOP'.

We stock a wide range of general electronic components, send now for our 21 page catalogue price $20 p+12 p$ p\&p or call at the shop Mon-Fri 9.00am6pm. Sat 9am-5pm.

174 Dalkeith Road,
Tel: 031-6672611 Edingburgh, EH16 5DX

AUDIO KITS
 PRECISION AUDIO COMPONENTS

ETI VIRTUOSO PREAMP
Component Kits incl PCB
MM Stage standard version
£23
£58
MM Stage standard versio
MM Stage super version.
£58
Ultra low nolse Transistor 2SB737 (pno) 60p each
60 p each
PORTABLE PA BY J. LINSLEY HOOD (April-May 1986)
Component kits (pcb and case not included)
DC-DC Converte
£32.90
P.A. Amplifier

TOP QUALITY COMPONENTS FOR ETI AMPLIFIER PROZJECTS S SYSTEMA MODULAR PREAMP, AUDIO DESIGN). SEND US YOUR REQUIREMENTS.
ALL KIT COMPONENTS SUPPLIED SEPARATELY
SAE FOR PRICE LIST
AUDIOKITS, 6 Mill Close, Borrowash, Derby, DE7 3GU
Telephone 0332674929

OSCILLOSCOPES

TELEQUIPMENT D75 Dual Trace 50 MHz Dela COSSOR CDU150 Dual Trace 35 MHz Solid State Portable 8x10cm display. With Manual $\{200$ GOULD OS258. Dual Trace $15 \mathrm{MHz} \ldots \ldots$. $£ 200$ TELEQUIPMENT D61 Dual Trace 10 MHz . With
 Portable AC or External DC operation 8x10cm display. With Manual 1150 TELEQUIPMENT D43. Dual Trace 15 MHz . With Manual PMENT S54A. Single Trace 10MHz. Solid State. With Manual .

PHILIPS DIGITAL MULTIMETERS

 4 digit, auto ranging. Complete with batteries and. leads PM2517X (LCD) (p\&xp 55)$\ldots . .275$

MULTIMETERS

AVO 9 Mk 4 (Identical to AVO B Mk 4 but scaled differently) Complete with Batteries \& Leads. . . 255 AVO 8 Mk 2 Complete with Batteries \& Leads $£ 45$ Above Items in GOOD WORKING ORDER - appear ance not A1 hence the price Complete with batteries, leads \& Carrying Case AvO Model $7 x$. Complete with batteries, leads \& carrying case.
AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batteries \& leads. $£ 18$ AVO 72 - Similar to above but no AC current range. With batreries \& leads.

AVO TRANSISTOR TESTEA TT169
Handled. GO/NO GO for In-situ Testing. Complete With batteries, leads \& instructions. ($\mathrm{p} \& \mathrm{p}$ £3) NOW OHLY $£ 12$
PROFESSIONAL 9 GREEN SCREEN MONITORS made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in. Cased. Good
 Siza: W125mm. H75mm. 0180 mm . Gased. Un-used Only $£ 10.00$ such ($P \& P$ § 2)
Qwerty keyboard (as in Lynx Micro). Push to make Cased \& 5 ach (P\&P £2) Various $51 / 4 "$ Floppy Disk Drives and Stepping Motors Available.

Used equipment - with 30 days guarantee. Manuals supplied if possible

COMMUNICATION RECEIVEAS Racal RA17L $500 \mathrm{kHz}-30 \mathrm{MHz} \ldots$ OHLY E 140 gach with

ADVANCE AM/FM SIGNAL GENERATOR Type SG63 $7.5-230 \mathrm{MHz}$ ADVANCE AM SIGNAL GENERATOR SGGB........................... 220 MHz
 220 MHz
MHILLPS WOBBULATOR Type $2105-220 \mathrm{MHz}$ … 220 880MH2 WOBBJLATOR GM2877S $5-220 \mathrm{MHz}$ \& 440 LABGEAR COOLOUR BAR GENERATOR CM6037 (P\&P £4) CIRCUITS V VIA CRT ANALYSER/BOOSTEA (Scratched Case) $£ 60$ WAYNE KERR COMPONENT BRIOGE B5̈2i CCT375) 100uH-500KH; 1PF-5F; 1 milliohm-1000Mohm...E35 RACAL 32 MHZ UNIVERSAL COUNTER TIMER Type
836 MARCONI TF2̈OO4 (Later version of TF 1041 VTVM $20 \mathrm{~Hz}-1500 \mathrm{MHzi}$ AC/DC/Ohms AC $300 \mathrm{mV}-300 \mathrm{~V}$ MARCONI VALVE VOLTMETER TF2600 10Hz-100MHz; $1 \mathrm{mV}-300 \mathrm{~V}$ FSD
PHILIPS COLOURBAR GENËRATÖO Type 5501 PHILIPS COLOURBAR GENERATOR typ 5508. Video out. Many Functions........................... 125 Case ($\mathrm{P} \& \mathrm{P}$ £5)..
isolating taansformers
500 VA £15ea P\&P \&5 200 VA £8ea P\&P 83

HEW EQUIPMENT

HAMEG OSCILLOSCOPE 605. Dual Trace 60MHZ HAMEG OSCILLOSCOPE 203.5. Dual Trace 20MHz Component Tester . 2270

BLACK STAR FREOUENCY COUNTERS P\&P E4
 Meteor $600-630 \mathrm{MHz}$
Meteor 100 - 1 GHz
BLACK STAR JUPITOR 500 FUNCTION GENERATOR Sine/Square/Trianale. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$. P\&P § 4 § 11 l HUNG CHUNG DMM $6010.31 / 2$ digit. Hand held 28 ranges including $10 \mathrm{Amp} \mathrm{AC} / O \mathrm{C}$. Complete with batteries \& ead P\&P 14.
OSCILLOSCOPES PROBES Switched $\times 1$: $\times 10$ P\& £2.

This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units £12. VAT to be added to Total of Goods \& Cariage.

STEWART OF READIMG

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: 0734 68041Callers welcome 9 am - 5.30 pm Mon.-Fri. (until 8 pm Thurs.)
This is a VERY SI

Master Electronics-Microprocessors -Now! The Practical Way!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
Build an oscilloscope and master circuit diagram.
Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?

FRIH13! COLOUR BROCHURE OR TELEPHONE US 062676114
Please semd your brochure withour any obligation to OR TELEX 22758 (24 HR SERVICE)

PCB FOIL PATTERNS

The foil pattern for last month's BBC Motor Interface board, reproduced here because the foil pattern in the July issue shows it at the wrong size!

The foil pattern for the Upgradeable Amplifier moving magnet stage.

OPEN
 CHANNEL

The recent demise of an Ariane rocket (whićh suffered a booster failure and had to be destroyed minutes after take-off) begs a serious question: is the future of space communications via satellite in doubt? If it is (which I think is the case) then a second question arises: what are we going to do without space communications via satellite?
With America's space shuttle service out of commission for an indefinite period and problems with Ariane, there appear to be few other possibilities for getting new satellites up into orbit for commercial communications needs. Although this shouldn't be too great a problem yet, it will be if the situation persists.
As new as these communications services are, the world has already come to rely on them in no small way. If current satellites aren't replaced as they come to the end of their useful life and new services aren't launched, the world's communications systems will slowly grind down. In the limited time since satellite communications began, existing communications have been transferred to satellites and new satel-
lite communications systems have been inaugurated. In short, communications now rely on satellite services to such an extent that they could not easily return to using earlier technologies.

Perhaps (but only perhaps) the problems with the space shuttle and Ariane will soon be sorted out. Let's hope so.

OSI

Open systems interconnection development has had a recent boost with Burroughs announcement that they are to set up a European Network Systems Division in Bracknell. Burroughs aren't slow to see that early involvement in OSI is essential if they are to improve or even maintain their position in the communications world.

Eventually, of course, all participating companies will benefit from the development of OSI (which allows all connected computersto communicate), although it has taken some other large organisations a long time to see the potential. Burroughs move into the European market with this division shows how the company intends to realise OSI^{\prime} s potential worldwide.

Optical Fibres

By 1991, it appears, a whole new network of optical fibre links will be laid between Europe and

North America, forming a new high-transmission-rate service between the two continents. Five organisations (BT in Britain, AT\&T in the USA, Teleglobe in Canada, Telefonica in Spain, and the French PTT) have agreed to develop the network and are an xious to hear from organisations in other countries who would wish to share in development costs.
An extremely high transmission rate of 565 Mbits per second, transmitted at a wavelength of 1.55 microns ensures that the network (codenamed TAT9) will be the most up-to-date of its kind.

High-definition Television

Finally, European broadcasters have won a battle against the Japanese and North American broadcasters who wish their high definition television (HDTV) system to be the world standard. At a recent CCIR meeting the introduction of HDTV, a completely new system, was blocked and the European MAC television system was given the go-ahead.
MAC (multiplexed analogue component) is really an adaptation of the existing service, whereas HDTV is an 1125 -line television picture with a field rate of 60 Hz . HDTV thus suits North American and Japanese mains power requirements eminently
but it doesn't suit the European mains frequency of 50 Hz . Even though the Japanese and North Americans say the conversion problems only require some development work, there remain's the further problem of noncompatibility with existing television equipment. The European argument is that users of existing receivers will not wish to throw their televisions in the dustbin simply to buy a more expensive television receiver - even if it does give a better picture.

Pictures received on MAC receivers are not of such high quality as HDTV receiver pictures (nobody denies the HDTV superiority in this respect), but they are much better than the existing system's pictures. More importantly, users of existing receivers will merely need an adaptor to receive the signal, albeit at no better picture quality than at present. And the adaptor is most likely to be included in a satellite reception converter, thus cushioning its impact to the purchaser. Users with the money and the desire for higher quality pictures will also buy a MAC receiver probably as part of a complete package with the converter.

This setback for HDTV is, however, only the end of a battle. I am sure the HDTV proposers will say the war has yet to be won.

Keith Brindley

REVIEW

BASIC ELECTRONICS THEORY WITH PROJECTS AND EXPERIMENTS (2nd Edn.)
Delton T. Horn.

TAB Books Inc. PO Box 40, Blue Ridge Summit, PA 17214. 665pp, Price: $£ 17.00$ (paperback)

Delton T. Horn could only be an American name, and this colonial offering might well be likened to mom's apple pie: rather awful pastry surrounding an excellent filling. In his opening chapter Mr Horn rushes through essential theory like John Cleese in the European Tour Sketch, managing to confuse elementary ideas as he goes. For example, when describing a wet cell: "Copper gives up electrons easily (it's an excellent conductor) ..."'Such an unsound start does not inspire confidence.

Fortunately things do improve, although there is an irksome tendency to gloss over important detail while labouring fairly minor points. I suspect that few people
will benefit from the picture of an American mains socket; apart from anything else the photographs have all the clarity of an EEC directive and just as much grain. Similarly, the five pages of diagrams showing the numbers 0 to 9 on a seven segment display are, like the proverbial drunkard's lamp-post, used more for support than illumination.

These criticisms apart, the important chapters are well written and follow a logical, traditional sequence as Mr Horn takes the reader from Ohm's law to ICs. An interesting feature is the inclusion of multple choice questions at the end of each chapter: although entertaining, these seem designed to test whether
one has read the book ratherthan one's knowledge of electronics. They also rely heavily on a "none of the above" option, which suggests some lack of thought in their preparation.
I can be more enthusiastic about the experiments and projects which are presented in the three chapters within the main body of the text. These describe do-it-yourself demonstrations of the theory, showing that this is in fact a self instruction guide for the beginner, not a reference book for the initiated. Although there must be hundreds of books on basic electronics, and perhaps thousands on home construction, very few bridge the gap between theory and soldering iron so effectively and the author is to be congratulated for this.
With the closing chapters the reader is whisked off at speed once more, this time through a catalogue of all things electronic, and again the emphasis is on the superfluous and irrelevant. The section on computers imparts little more than the fact that home micros are small plastic boxes with keyboards. I'm as impressed as the next man with
the latest advances in micro-electronics, but this does not stop me from getting browned off at being told how wonderful it all is at every turn.

Since Basic Electronics Theory is a beginner's book, a few words are needed before anyone rushes off to spend $£ 17$ on their favourite grand-child. Because the author is, through no fault of his own, American, he uses all-nu (sic) star-spangled spelling and calls valves'tubes'. I find this sort of thing galling in the extreme, but that is simply a personal prejudice. More seriously the descriptions of television are based on the US system as opposed to PAL and the notes on AM stereo broadcasting do not apply in this country.

The book is neither cheap nor perfect, but nonetheless deserves to do well in competition with its rivals. If Mr Horn is planning a third edition, I should advise him to concentrate on pages 21 to 564 at the expense of the rest: as every Briton knows, exceedingly good cakes do not have too much pastry.

Nicholas Hacking

PLAYBACK

The Compact Audio Cassette has been the standard format for home recording for many years. As it developed from rather lo-fi beginnings, the once-popular open-reel machines declined into near oblivion. So the audio cassette became the unchallenged medium as improvements in tape formulations, cassette mechanisms and recording heads transformed it into the hifi unit we know today.
The boom in Compact Disc, with its many advantages over the vinyl LP, has stirred up interest in applying digital techniques to tape. Would digitally recorded tapes offer the same order of improvement over conventional cassettes as CD does over vinyl? Is the reign of the analogue audio cassette near its end?
Until now, digital recording equipment has been rather bulky and expensive. The snag is that, instead of a frequency response of around 10 kHz or just over, a full audio range
digital signal needs a response of over 2 MHz . To handle that sort of bandwidth we need a video recorder, and to encode the signals we must use an analogue-to-digital converter.
However, with an eye to the next consumer boom product, the tycoons from the land of the rising sun are busily working on the prototypes for domestic integrated digital recorders. Formats are already proliferating. Basically there are two systems, the R-DAT and the S-DAT. The Rotary Digital Audio Tape System, uses helican scan heads like a video recorder, whereas the Stationary Digital Audio Tape System, employs a stationary head.

Simultaneous Tracks

How does the S-DAT system get the necessary bandwidth? By laying down 20 simultaneous tracks using a head which employs thin-film semiconductor technology. Tape speed is the same as for conventional audio cassettes, but R-DAT uses tape at only one-sixth of that rate. The cassette size of R-DAT is marginally smaller than S-DAT, (both are smaller than
the compact audio cassette) so the advantage of the much slower tape speed shows up in longer playing time.
So tape costs would be lower with the R-DAT system, but the simpler mechanism of the S DAT should make for cheaper recorders. At present, Sony and Pioneer are supporting R-DAT, while Sanyo and Sharp have chosen S-DAT. Here we go again then, two rival incompatible systems. Will they co-exist like the video formats, or will each queer the pitch for the other, as happened with the quadrophonic systems.
A further complication is that there are four versions of R-DAT and five of S-DAT, each one being of slightly lower standard than the previous one in terms of sampling rate and quantisation steps. The top grade in each format has a 48 kHz sampling rate and 16 -bit quantisation which gives 65,536 sampling levels.
Will different manufacturers adopt different standards within the same format? There will probably be general agreement so as to present a united and compatible system format to
the consumer, but it is just as likely that someone will produce a cost-cutting lower-standard machine, or perhaps all of them will. Who knows?

Really though, digital tape does not offer the same advantage over conventional cassettes as the CD does over vinyl. Vulnerability to damage, tracing and tracking distortions, surface noise and size all made the vinyl disc obviously inferior to the CD. The lower recording distortion and noise of digital processing is less apparant to the average user.

In the case of tape, continued development of the audio cassette (particularly in the field of metal evaporated tape formulations that can be used on any high grade deck having a high bias setting) has pushed distortion and noise levels down to the point where it is difficult to tell the difference between them and a digital recording. Coupled with format uncertainties, it seems doubtful whether there will ever be a mass sale of digital tape to match that of the CD disc.

Vivian Capel

ALF'S PUZZLE

A few months ago, Alf came across a circuit which looked as if an op-amp was being used back to front - the input went to the op-amp's output, and the output from the circuit was taken from one of the op-amp's inputs. As it transpired, the output of the op-amp was not really used as an input to the circuit, but this month there's no doubt about it at all. The input is applied directly to the output of the op-amp, and there's nowhere else for it to go. Not only that, but the outputs from the circuit come from the power supply pins! What does the circuit do, and how does it work?
The op-amp used in the circuit is one in which the
supply current is independent of the supply voltage - Alf used an LM358 to make sure that his idea would work (the other half of this dual op-amp was left unconnected). RV1 should be adjusted so that the output of the op-amp is at 0 V . Those are the only hints Alf will allow me to give you, I'm afraid, so from now on you're on your own.
If you manage to work out what the circuit does, don't bother to build it. Although it works, after a fashion, it was devised to be puzzling rather than practical, and Alf will give a more sensible version next month. Don't be too sure you've got the answer - this one even took Auntie Static a while to work out, which caused Alf great glee.

Last month's puzzle was a competition, and since we are still sorting through the replies, Alf will give both answers next month.

ELECTRONICS TODAY INTERNATIONAL ADVERTISERS INDEX

ADL Technology 13
Audio Kits. 61
BNR \& ES . 61
BK Electronics IFC
j Bull Electronics . 10
Cirkit . 31
Crimson 40
Cricklewood. .
Croften 18
Display Electronics . 6
Greenbank . 61
Happy Memories 55
Hart Electronics . 39
Henry Audio Electronics . 12
ICS Electronics . 13
Jaytee Elect Supplies . 45
Mancomp . 8
Maplin . OBC
Micro Concepts . 40
Microkit . 31
Number One System . 46
Omni Electronics . 61
Pineapple Software . 23
Riscomp . 46/29
Service Trading . 46
Stewarts of Reading . 61
TK Electronics . 12
TJA Developments . 13
Thandor Electronics . 23
Universal Semi Conduct Devices 40
Watford Electronics . 4/5

Lineage:

$45 p$ per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on reauest)

01-437 0699 Ext 291
Send your requirements to: Duncan Neilson, ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

ALARMS

LOWEST PRICED TOP QUA-
LITY fire and Intruderr alarm equipment, etc. SAE for catalogue Security Services, 62 High St, Hythe, Kent CT21 5JR.

COILS \& CHOKES

MAXI-Q

COILS AND CHOKES PREVIOUSLY MADE BY DENCO S.A.E. PRICE LIST 8 BRUNEL UNITS, BRUNEL RD, GORSE LANE IND. ESTATE, CLACTON, ESSEX CO15 4LU. TEL: (0255) 424152

COMPUTER ADD-ONS

CQ4 ROBOT CONTROLLER
For Amstrad CPC464/664/6128, Spectrum, Sharp MZ80K. For the development of robots, turtles, security system 8 channel ADC, high speed 8 channel latched power controller 8 bit latched TTL output 8 bit TTL input Assembled and tested $£ 79$ inc P\&P. (Please state computer model). Write for details
CATHTRONICS (0772) 747882 12 Rookery Drive, Penwortham, Preston, Lancs PR1 9LU.

AMSTRAD OUTPUT PORT. Plugs into printer port and provides seven open-collector outputs. Easy to use from Basic or M/C. $£ 14.95$ inc. S.A.E. for details. NCJ Electronics, 13 Binfield Square, Ella Street, Hull HU5 3AP.

COMPONENTS

PROMs - EPROMs-PALs ANY PROGRAMMABLE IC SUPPLIED OR BLOWN
PRICES (Including Programming)
$2716 \begin{array}{lllr}276 & £ 2.85 & 2732 & £ 3.10\end{array}$
$2764 \quad £ 2.60 \quad 27128 \quad £ 3.85$ etc.
BIPOLAR PROMs from $£ 1.50$
e.g. 82S123, 185030, 745288

PALs, PLDs etc. from $£ 4.05$
e.g. 82S153, 16L8, EP300

Full design and prototyping service Any quantity programmed - SAE or
P.L.S., 16 Wordsworth Drive, Cheam, Surrey, SM3 8HF

Phone 01-664 8095

ESR
 ELECTRONIC

- Full range of Components
- Motors \& Servos
- Velleman Electronic Kits

Send for new catalogue. G0p inc. P\&P.
13 A Siation Road. Cullercoats,
North Snieids. Tyne \& WearNE 304 P
North Shieids. Tyne \& Wear NE 304 PQ

BARGAIN! $5001 / 4 \mathrm{~W}$ resistors £4.95. Component pack lists! Amplifiers! Alarms! Electronic Kits! Send E1.00 for catalogue and lists. Pluto II Fortronics, 565 Street Lane, Leeds LS17 6JA.

BURGLAR ALARMS! AMPLIFIERS! TUNERS! VELLEMAN ELECTRONIC KITS! for 24 page catalogue and Price List send £1.00 to PLUTO II FORTRONICS, 565 STREET LANE, LEEDS LS 17 6JA.

EQUIPMENT

FOR SALE

OSCILLOSCOPE 30 MHz single £ 100 . Analogue meter $£ 1212 \mathrm{v} / 2.5$ amp supply $£ 15$ Breadboards $£ 18$. Two logic probes $£ 12$. Logic pulser £10. HP 15C calculator n. new. £48. Sedgley 5578 after 7 pm .

PREAMPLIFIERS \& CONTROLS £8.95!!. . MAG/PU. . Selector...T\&B/Vol etc!!...Exequipment 100W/AMP Modulestested/ £7.50!!...KIA-8 Cunliffe Road, Ilkley...Catalogue / 60p!!

NEW STOCK! Sinclair 16K rampacks for ZX81. £6.00 including postage. Halsat, Unit 1, Bury Walk, Bedford MK41 7BW.

NICADS

AA/HP7 Rechargeable Cells
4 for $£ 2.30$ or 10 for only $£ 5$! (ex. equip. tested \& guaranteed) Universal Nicad Charger $£ 8$ with battery test facility and LED indicators or any combina
Above prices inclusive of p\&p - goods sent by return
Croydon Discount Electronics (E)
40 Lower Addiscombe Rd. Croydon CRO 6AA

6809 FLEX KIT SYSTEM, 16 slot motherboard. CPU, 64 K RAM, 80 character colour display, 80/40 track S/or/D sided discs. FULL 'STOCK OF FLEX SOFTWARE. VENTURE FORTH runs on a STANDARD TANGERINES. S.A.E. for details. ANGERINES. S.A.E. 1 ENG FORNCETT-END NORWICH.

ETI KITS assembled and tested* by electronic trainees under supervision within a purpose built electronic workshop for as little as £10* (* depending on type of kit and complexity). Contact:- A.J. Smith, Dept K.A. Electronics Workshop, Lincoln I.T.E.C. Dean Road, Lincoln LN2 4JZ. Tel. 0522 43532.

J. Linsley Hood Designs

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon Tewkesbury, Glos. Tel. 0684 73127.

ORGAN KEYBOARDS

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out. Special Offer: Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.

FM TRANSMITTERS Same day despatch MINIATURE MODEL frequency 60-145 Mhz, range 1 mile. Glass fibre P.C.B. All components. Full instructions 912 V operation, broadcast reception. Super sensitive microphone. Pick up on FM/VHF radio. $£ 6.95$ inc or ready built £8.95. Size $57 \times 19 \times 12 \mathrm{~mm}$. HIGH POWER MODEL. 3 watts 80-108 MHz . Professional broadcast performance. Low drift varicap controlled. Range up to 7 miles. 12 V operation. Any input audio/microphone. All components P.C.B. diagrams and instructions. Size $103 \times 39 \times 29 \mathrm{~mm}$. Kit 13.99 inc or ready built $£ 18.99$ inc. TONE GENERATOR 3selectable functions; PIP, Warble and pulse tone: All components, instructions \& P.C.B., feed into any audio input or transmitter; variable frequency and gating controls. 612 V operation $53 \times 38 \times 14 \mathrm{~mm}$. $£ 5.50 \mathrm{incl}$. TONE GENERATOR POWER AMPLIFIER. AII components, instructions and P.C.B. turnstone generator into a high power siren for alarms; 18 watts max at $12-15 \mathrm{~V}$. $62 \times 38 \times$ 14 mm E7.00 inclusive DIGITAL CLOCK/TIMER MODULE. $12 / 24$ hour \& seconds (0.7inch LED) display, 8-functions. Applications: uncommitted output transistor for switching on Taperecorders: Lighting, Security, etc. External Loudspeaker Output. $84 \times$ $38 \times 16.25 \mathrm{~mm}$. Full instructions \& Modular PCB £17.49 inclusive. MAINS TANSFORMER for above if required: $£ 5.24$ incl. DIGITAL CODE LOCK MODULE: 4 18V.DC operation; 10,00 combination quality key pad; programmable code; low-power 3outputs - (0.2A); 3-LED status indicators; All components, instructions \& PCB. Applications: Alarms; garage doors; cars, etc. 39 $\times 62 \times 9 \mathrm{~mm}$. Kit: $£ 15.95$ incl. Ready built; £19.95 incl ZENITH ELECTRONICS. 21 Station Road Indust. Estate, Hailsham, E. Sussex BN27 2EW. Tel: 043532647.

PLANS \& DESIGNS

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage tester, van de graph surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA.

MISCELLANEOUS

150W SWITCHMODE PSU. +5 V at $8.4 \mathrm{~A} ;+12 \mathrm{~V}$ at $4.8 \mathrm{~A} ;+24 \mathrm{~V}$ at 1.7 A ; -12 V at 0.2 A . Perfect working order, over $£ 70$ in Henries Radio $£ 29$ + Carr. 0245-50927 after 6.00 pm .

240v AC ELECTRICITY from two 12v batteries!! Encapsulated ready built electronic module with screw terminals!! Comprehensive instructions supplied. Just add transformer and other easily obtained accessories. 250W output. Limited number available. £25 (inclusive). Chataigne Products, Green Lane, Great Horkesley. Colchester, Essex, CO6 4HD. (Proprietor J.A. Richmond.)

REPAIRS

FiXED CHARGE REPAIRS to

 Spectrum, Commodore, BBC, Electron E.G. Spectrum £17.95 Commodore E29.95. Mansfield Computers, 33 Albert Street, Mansfield NG18 1EA. Tel 0623 31202.$\begin{aligned} & \text { TRIDENT ENTERPRISES LTD. } \\ & \text { COMPUTER REPAIRS }\end{aligned}$
Spectrums $£ 18$ HncluslveParts, P\&P, VAT
$\begin{aligned} & \text { £20.00 BBC } \mathbf{\Sigma 2 0 . 0 0} \\ & \text { DISK DRIVE } £ 20.00\end{aligned}$
(All Exlusive of Parts P\&P, VAT)
Plus all Commodore Computers, DIDrives
\& Printers. Send Faulty Machine Io
Goodwin Road, Britwell Slough
Tel: (0753) 21391

BBC REPAIRS FROM $£ 12.50$ by Microfix the Acorn Specialists. Also disc drives, printers etc. Microfix, 191 Freston Rd, London W10. (01) 9689214.

SATELLITE T.V.

SATELLITE TELEVISION, build your own system from $£ 220$ to £1,800. We can supply all the parts you will need, via MAIL ORDER, for Technical how to build manual send $£ 2.95$ (or catalogue, only 95p). To C \& S T.V. Paul Kendall, 11 Wensley Gardens, Leeds LS7 2LY.

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork. Prototype and small batch production. ALAB ELECTRONICS. Grantham (0476) 860089.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited, Finsbury House, 31 Head St, Halstead, Essex CO9 2BX. Tel: 0787477408.

BOXES, KNOBS, and other hardware in aluminium, steel made to your specifications. Send drawing andS.A.E.for quote to C.D.Burgess, 13 Leymoor Road, Longwood, Huddersfield HD3 43W

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$. Vomponents and P.C.B's available: Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

SITUATIONS VAGANT

HI-FI SERVICE ENGINEER required for busy Audio Service Department. Excellent rates of pay for right person. Call Mr. West on 01-881-3320 or Waltham Cross (97) 32050.

> KEEP AN EYE ON CLASSIFIED! FOR DETAILS PHONE 01-437 0626

SPECIAL OFFERS

CLEARANCE BARGAIN!! Thousands of LED 7 Segment Display, brand new 14 pin DIL RED 43 inch common anode display. 0-9 with right and left decimal point in stock. 10 pieces $£ 2.50$ (25 p each) 50 pieces $£ 1000$ (20p each) 100 pieces $£ 15.00$ (15p each) 1000 pieces $£ 100.00$ (10 p each). Telephone your order to 0296613816.

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over £10 send only £1 p\&p to Woodside, Dowsett Lane, Ramsden Heath, Essex CM11 1JL.

ScOPES

TEKTRONIX oscilloscopes, calibrated, good condition. 454A dual trace 150 MHz , delay sweep $£ 495$. 502A dual beam 100 microvolts, $1 \mathrm{MHz} £ 95.00,547$ dual trace 50 MHz delay sweep £195, 548B dual trace 24 MHz delay sweep £135. Telequipment D83 50 MHz delay sweep £385, manuals, spares, other test equipment. Tef: 018584221.

Solution to Crossword No. 6

ACROSS		21)	Coil	6)	Heads
		22)	Editor	10)	Digitise
3)	Epson	25)	USER	11)	Black
7)	Sonar	27)	Loom	12)	Port
8)	Even	28)	Modem	13)	Slew rate
9)	Edge	29)	Erase	16)	Adder
11)	Bypass			18)	Flat
14)	DPDT	DO	WN	19)	Volume
15)	Rise time	1)	Sony	20)	Robot
17)	CRT	2)	Data	23)	Iron
18)	FSD	4)	Pye	24)	Open
10)	Vertical	5)	Needle	26)	RMS

CROSSWORD No. 7

ACROSS

1) Electrical insulator between the plates of a capacitor (10).
2) Break into a protected data bank, or attack with an axe (4).
3) Two bytes treated as a single unit (4).
4) Frequencies within the range of human hearing (5).
5) Attached to the spindle of a potentiometer as a means of turning it (4).
6) One twelfth of a foot (4)
7) A test lead incorporating an active or passive circuit (5).
8) BASIC commandword, used for strong remarks in a program (3).
9) Something other than radio waves that comes from the sky! (4)
10) In semiconductor terms, the opposite of a free electron? (4)
11) Total harmonic distortion (abbr.) (1,1,1).
12) Inert gaseous element, Atomic No. 86 (5).
13) An adjustable support for a microphone (4).
14) Information (4).
15) Two terminal semiconductor (5).
16) Construction for raising an aerial above ground (4).
17) Video cassette format (4)
18) Typically, two magnetic contacts sealed in a glass tube $(4,6)$.

DOWN

1) Found on a VCR to indicate damp in the machine $(3,5)$.
2) European standard plug-in PCB for rack mounting (44).
3) 22 across used for restrict ing a waveform or setting a voltage in a circuit $(8,5)$.
4) Bands of frequencies used for transmission of signals $(5,8)$.
5) Inductor (5).
6) Eight terminal valve (6).
7) \qquad Frequency,
the natural frequency at which oscillations will occur most readily and with maximum amplitude in a given reactive circuit (8).
8) The condition which exists when a loadimpedance does not correspond to a source impedance (8).
9) Part of a valve, also called the filament (6).
10) Abbreviation of and equipment for Radio Detection and Ranging (5).

Pick up a copy of our new 1986 catalogue from any branch of W.H. Smith for just $£ 1.45$.

Or post this coupon now, to receive your copy by post for just $£ 1.45+40 \mathrm{p}$ p \& p. If you live outside the U.K. send $£ 2.50$ or 11 International Reply Coupons. I enclose $£ 1.85$.

Name
Address \qquad
\qquad

MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 552911
SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6.

Telephone: 01-748 0926.

- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 0703225831.
- SOUTHEND 282-284 London Rd, Westclif-on-Sea, Essex.

Telephone:0702-554000
Shops closed all day Monday.

