MICROCOMPUTER ASSISTED CIRCUIT DESIGN

STOP PRESS
RADIATION MEASUREMENT: HOW IT'S DONE

ION GENERATOR
BBC MOTOR CONTROLLER

SATELLITES: SETTING THE WORLD ALIGHT?
DIGEST...7
Some events and a few newy components.

READ/WRITE16
Chernobyl even affects the letters page and Auntie suggests a way to measure radiation.

SATELLITES — SETTING THE WORLD ALIGHT?...............19
Keith Brindley bumps into much hardware in this orbit round our planet.

PROJECTS

THE ETI DIRECT-ION30
We won't ionize this ionize-er, it's more the size of a mouse.

MOTOR INTERFACE.................................34
A neat design by Peter Timothy and

FEATURES

MICRO-COMPUTER AIDED CIRCUIT DESIGN...............24
Julian Burt begins an investigation of some techniques involved with his trusty BBC.

JOBS FOR A CHANGE.............................28
A new and refreshing idea in the field of electronics recruitment...

THE MAIN EVENT.................................55
Andy Armstrong surveys British Electronics Week.

READER SURVEYbetween pages 32 and 33

ETCETERA

OPEN CHANNEL.....................................61
Keith Brindley watches two giants struggle.

PLAYBACK..61
Will CD mean the end of the pre-amp asks Graham Nalty.

ALF'S PUZZLE...63
Alf has the capacity for even more...

CROSSWORD...66
Due to lack of space, we have had to hold over the final part of Fibre Optics and Lasers until next month. Our apologies.

INFORMATION

NEXT MONTH'S ETI....................................54
READERS' SERVICES...............................56
PCB FOIL PATTERNS..............................57

AD INDEX...63
CLASSIFIED ADS.................................64
The CMC Components
42 Clifton Industrial Estate, Cherry Hinton Rd, Cambridge CB1 4ZZ
Telephone: (0223) 213374

Ordering: All components are brand new and to full specification. Please add 65p postage/packing (unless otherwise specified) to all orders and then add 15% VAT to the total. Minimum order £5.00.

Credit Cards welcome Trade counter open: Mon to Sat 9.00 - 5.00

COMPUTER IC's

6532 500
6551 525
6800 190
6821 130
MC6802 250
MC6809 550
MC6832 500
MC6840 350
MC6845 600
MC6851 500
2812HC 150
28010 240
280CCT 250
2764-25 190
27126-25 250

DIL SOCKETS

low profile
8 pin 4
14 pin 7
16 pin 8
18 pin 9
20 pin 10
22 pin 11
24 pin 12
28 pin 14
40 pin 18

LINEAR

LM 301 30
LM 319 175
LM 324 38
LM 339 38
LM 347 55
LM 348 55
LM 556 90
LM 557 90
LM 741 16
LM 747 58
LM 1488 58
LM 1489 58

RIBBON CABLES

price/foot 100ft
10way 14 650
16way 24 1025
20way 28 1350
24way 36 1650
26way 38 1700
28way 50 1500
34way 58 1950
40way 67 2650
50way 84 3300

CRYSTALS

1.00MHz 360
200kHz 350
1.0MHz 260
1.000MHz 260
1.8432MHz 175
2.0MHz 180
2.4576MHz 85
3.2768MHz 100
4.0MHz 90
5.0MHz 120
6.0MHz 80
6.1144MHz 105
8.0MHz 80
10.0MHz 80
12.0MHz 80
16.0MHz 80
18.0MHz 90
20.0MHz 120

VOLTAGE REGULATORS

78L12 28
7805 40
7812 40
7815 40
7905 40
7912 40
7915 40
LM323K 400

'S' CONNECTORS

male 9 15 25 37
solder 50 80 120 145
angled 110 170 220 290
female
solder 85 120 175 270
angled 150 200 250 380
cover 70 70 70 80

SERIAL CABLES

APPLE IIe to NIGHTEGALE MODEM/JUKI 6100
APPLE II to NEC Printer
APPLE III to BROTHER HR/25/EPSON DX 100
MACINTOSH to IBM pc/DIALBO 930/EPSON PX9/
MACINTOSH/BCB MICRO

We can supply serial cables for all other popular computers. Please contact us for details.

Introductory Price £12 each

DISC DRIVES (uncased)

400K 5.25 TEAC Slimline
400K 5.25 TEAC Slimline, complete with a 40/80 switch
400K 5.25 Namal Drive
3 inch Disc drives for Amstrad Computers

(£5.00 for above items)

DRIVE ACCESSORIES

Single disk cable £5.50
Dual disk cable £7.50
Single disk drive case £8.00
Dual disk drive case £16.00
Single disk drive case with own power supply complete with signal and power cable £17.00
Twin disk drive case with own power supply complete with signal and power cable £25.00

TRANSISTORS

AC127 28 BC149 11 BC184L 10
AC128 28 BC149C 13 BC186 27
AC176 24 BC153 28 BC187 27
AC177 24 BC184 28 BC121L 10
AD161 40 BC158 14 BC213 09
AD162 40 BC159 10 BC213L 10
AF139 40 BC160 45 BC214 09
AF239 50 BC167A 14 BC214L 10
BC107 09 BC166B 12 BD121 95
BC107B 11 BC169C 10 BD124 110
BC108 10 BC170 18 BD131 40
BC108C 11 BC177 15 BD132 10
BC109 10 BC178 16 BD133 48
BC109C 11 BC179 18 BD135 30
BC110 28 BD181 28 BD136 30
BC119 29 BD182L 10 BD138 34
BC143 27 BD183 09 BD140 34
BC147 10 BD183L 09 BD140 34
BC148 10 BD184 10 BD158 65

TOROIDAL TRANSFORMERS

VA 1-9 These prices are for single
5 5.47 primary with two secondary
10 5.56 taps, with 8" coded fly
30 6.31 leads. Each transformer is
50 6.82 supplied with a mounting kit,
120 7.40 consisting of one steel washer,
160 8.72 two neoprene pads, and a nut
225 9.70 and bolt.
300 10.64 P&P £2.50 for above items.
500 14.47
1000 29.76
1.2KVA 34.32

ETI JULY 1986
In only one area are the proposals actually likely to encourage innovation - that is, the intention to allow easier public access to the Patent Office database. The patent system itself will remain almost unchanged. The Government's plan to take the Patent Office away from the Civil Service and make it a 'body corporate' rather like the BBC could be seen as a prelude to privatisation. It seems quite plausible that the Government may wish to make the Patent Office a paying business - charging for the traditional and newer services it has on offer.

Circuit designers will not find their position substantially modified as a result of any of the White Paper's recommendations. Protection of circuit designs may be afforded by the patent system - although little has been suggested to make it less unwieldy and more expensive than it is. No clarification has been offered on the definition of originality and as things go. There is a problem issue, since it can take vast amounts of time and money to prove a design does more than merely exploit the well-known characteristics of its components parts. For many manufacturers in such a fast-moving field as electronics, market lead has become far more important than patent protection.

It is possible that a proposed 'unregistered design right' may apply to circuit designs - although the White Paper mentions only 'semiconductor chips' in this context. The new right is intended to protect the designs of purely functional articles for a ten-year period. Disputes will be settled by the patent office but, unlike patents, the new right will not require the registration of a design.

It could be argued that a circuit design is the perfect 'purely functional article' since it doesn't even necessarily have a physical form, thereby avoiding all aesthetic or decorative aspects of its design. In fact, the White Paper recommends that the new right will come into force with the first expression of the design in any independent form, such as a drawing or in a computer, from the moment that the article embodying the design can be produced as well as from the first making of the article embodying the design. We will, of course, have to wait for the White Paper to become law and for the law to be tested in court before we can safely assume that the new right will benefit circuit designers. For the public as a whole, perhaps the most significant recommendations in the White Paper are the ones dealing with home taping.

The expected levy on blank tape is to be introduced, but will only cover audio compact cassettes of greater than 35 minutes playing time. 'The levy,' says the Department of Trade and Industry, 'will entitle consumers to make, for private purposes, sound recordings of broadcasts or pre-recorded material but not to copy computer programs.' Make what you will of the fact that the reel-to-reel tape and compact cassettes of 34.9 minutes playing time are excluded from the levy. Make what else you will of the fact that private recording from TV broadcasts is to be legalised but not from pre-recorded video material. The proposals are shot through with such potential legal and moral minefields.

On the whole, the White Paper is a patch-up of the intellectual property system, which barely brings copyright and patent up to date and certainly does not simplify the intellectual property system. The idea that its recommendations will 'benefit . . . innovative talent' (as Paul Channon has said) is, to be kind, probably blind optimism.

One or two minor points worth noting. First, the White Paper confirms the current position that computer programmers are subject to copyright even in non-human readable form (the tapes, or cassettes, or chips) and that low power satellite broadcasts for TVRO or SMATV systems will also be subject to copyright.

Nuff Said

'What we have seen recently is a tragic shuttle failure, two Titan rocket failures, the Delta rocket explosion, the Chernobyl nuclear accident and a surgical bombing raid on Libya that turned out not to have been so surgical. It confirms what a lot of us have said along - technology is not perfectible,' John Pike, associate director of the Federation of American Scientists.

Transistor Failure Investigated

Tests at Sandia National Laboratories are producing the first live TV pictures of silicon chip transistors as they experience a potentially catastrophic current surge. The surge is known as snapback, and if left uncorrected, can ruin the integrated circuit contained on the chip. The pictures show a 1/100th of an inch square portion of a 1/10 IC. During snapback, microscopic transistors appear as short bright lines on an infrared TV image. The brightness is caused by high energy electrons flowing through the transistor. Transistors not in snapback do not shine because they have no high energy electrons.

Snapback attacks in-channel metal oxide semiconductor transistors. Some microelectronics experts believe that without proper planning and understanding, snapback could become a problem for the next generation of extremely small ICs, which will have individual features of 1.5 microns or less.

Snapback occurs only if two conditions are present. First, the transistor must be operating at or above a certain voltage, called the snapback voltage. Then an initiating event (weapon-produced x-rays or simple static electricity that can occur during wafer testing, for example) must trigger snapback by producing an overabundance of electrons in a transistor. The excess electrons produce the uncontrollable current.

If allowed to continue, this excessive current can melt the wires that connect an IC to its ceramic package or the wires that interconnect different devices on the IC. Snapback can also cause a massive current migration, which can lead to short or open circuits.

Sandia's computer-controlled snapback test setup includes a 750 watt pulsed xenon laser (typically used for cutting metal and polyethylene lines on ICs, but used here to simulate the snapback triggering event), an automated probe station (typically used for obtaining a variety of electrical measurements on wafers), an infrared microscope TV camera and monitor, and appropriate voltage and current measuring instruments. The laser pulse deposits enough energy on a 10-micron-square region of the IC to initiate snapback, thus permitting the minimum voltage required for sustained snapback to be measured.
20 Kilo Cycles
Barry Porter, one of our regular contributors, will be taking part in a sponsored cycle ride in aid of the British Heart Foundation on Sunday June 15th.

Barry, himself a victim of heart disease, will be joining over 20,000 other people on the London to Brighton run. Among those taking part will be three heart transplant patients, a number of people who have suffered various forms of heart disease and a sprinkling of celebrities including John Peel, Kenny Lynch and Sharon Davies. The ride is expected to raise over £500,000 which will go to fund a research group at Oxford.

The ride is now in its eleventh year. It started as an informal event with just 35 participants and last year attracted over 21,000, many taking part in fancy dress and using some rather unconventional forms of transport. The £400,000 raised went to support cardiac care groups.

The riders will set out from Clapham Common in South London. Groups of about 600 will start at half-hourly intervals from around 6.00 am onwards. Barry's group will be setting off at the more civilised hour of 9.00 am.

The route chosen avoids main roads and runs through Mitcham, Carshalton, South Merton, Sayersfield, Turners Hill, Ardingly, Lindfield, Whelphill and Ditchling. The ride is not a race, and Barry says he will be delighted to stop and accept liquid refreshment from any ETI readers who happen to be lining the route! He will be wearing an ETI T-shirt which is so new that we can't even tell you what colour it will be.

Anyone who would like to sponsor Barry (either by the mile or a fixed amount for the whole distance) should contact him after 7.00 pm on 0582-65211. The organisers are not accepting any more entrants for this year, but anyone who requires more general information should contact the British Heart Foundation, 102 Gloucester Place, London W1.

We hope to include a brief report of Barry's progress next month.

Amstrad and Eric Hammond Among 1986 Award Winners
Amstrad have gained the 1986 TOBIE award for Electronics Application of the Year with their best-selling PCW8256 word processor. The Electronics Personality of the Year award went to Eric Hammond, leader of the electricians union, who aroused considerable controversy last year by allowing his members to operate Rupert Murdoch's printing plant at Wapping in place of print union staff.

The TOBIE awards (Technology Or Business Innovation in Electronics) are announced annually at the British Electronics Week Ball, held this year at the Grosvenor House Hotel, London, on April 29th. The winners are decided by postal ballot among readers of the weekly trade paper Electronics Times.

There are three nominees in each category. The other candidates for the applications award were Epson with their Taxi Software package and Plessey who have developed an Adaptive Compass which they believe will form the heart of future vehicles and aircraft navigation and weapon guidance systems. Eric Hammond's competitors for the personality award were Robb Wilmut of European Silicon Structures, a company producing low volume custom chips by direct writing using electron beams, and Peter Fraiman of Electronic

Brokers who is credited with having personally developed the concept of "second user" test equipment.

Among the other awards, the Inmos Transputer was pronounced Component of the Year and Mars Electronics gained the Product of the Year award with their Gazelle automatic circuit tester, a device said to offer the performance and facilities of products costing four times as much. The Research Achievement of the Year award went to Professor Desmond Smith of Heriot Watt University for his work towards developing the world's first optical computer.

British Telecom and Mercury Communications were both nominees in the Fibre Optic Achievement of the Year category but the award went to Cossor for their 213S portable fault locator, a device designed for ease of use and reliability. The award for Export Achievement of the Year went to Rodime, who maintained their export growth record in disc drives in spite of a market slump, and the Distributor of the Year award went to Farell for their continued record earnings growth.

The TOBIE awards are administered by Evan Steadman Services Ltd, The Hub, Emerson Close, Saffron Walden, Essex CB10 1HL.
FREE

Your computer comes complete with a superb Quality Colour TV Set.

HIGH QUALITY COLOUR TV SET

The functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED.

Any video monitor with a composite input, colour or monochrome, Mono or stereo, PAL B/G, PAL D/K, NTSC 4.43 or the whole system, will be taken on by this unit and converted, using state of the art technology and the latest conversion techniques, to give you a crisp, clear, full colour, TV monitor.

The TELEVISION, functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, gives you a full colour TV set, with a modern design, large screen, and all the bells and whistles of a modern colour TV set.

SURPLUS SPECIALS ON PRESTEL - VIEWDATA - TELEX

STANDARD DM

ESTIDIAL TELEPHONE (line with 5) with direct connection to PRESTEL and VIEWDATA etc. Designated as a Standard D M, it is a true colour TV set, functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, for £99.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

EMUPI

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, with a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £299.95.

INGLISH TELEVISION

A true colour TV set, functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, for £399.95.

STANDARD D M

STANDARD DM

SURPLUS SPECIALS ON PRESTEL - VIEWDATA - TELEX

STANDARD DM

ESTIDIAL TELEPHONE (line with 5) with direct connection to PRESTEL and VIEWDATA etc. Designated as a Standard D M, it is a true colour TV set, functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, for £99.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.

DECCAFAX 1

Complete functional TELEVISION and full VIDEO CONVERSIONS AND SERVICES INCLUDED, including a comprehensive array of modern day facilities, such as a built-in colour TV set, a modern design, large screen, and all the bells and whistles of a modern colour TV set. For £199.95.
General Instrument claim their new family of optoisolators will save design engineers a lot of time and trouble. Unlike existing types, they have inputs and outputs which can be connected directly to logic circuitry. Called Optologic, the new devices are available either as inverters or buffers and offer a choice of TTL-compatible totem-pole outputs or an open collector arrangement for use with 4.5-15V CMOS. Both types have LS-TTL-compatible inputs and feature a propagation delay of 60ns.

The new optoisolators come in standard 6-pin DIL packages and have an isolation voltage of 440V RMS continuous, 2500V RMS maximum. General Instrument expect them to be used in level shifting and for interfacing between different logic families. In addition, they could be used to drive power semiconductor devices like MOSFETS.

General Instrument, Optoelectronics Division, Times House, Station Approach, Ruislip, Middlesex HA4 8JG, tel 08956 - 36522.

ETI PCB Service

W hisper it quietly, but it does begin to look as though this ill-fated service may yet survive. A new agreement has been thrashed out with our existing supplier and we hope to re-start the service next month.

All outstanding orders should now have been cleared. If anyone is still waiting for a board they have ordered, please get in touch with our Readers' Services department at Hemel Hempstead.

The new arrangement will mean that some boards currently on the list will have to be dropped because they are simply not selling in sufficiently large numbers. However, we will continue to make sure that boards remain available for at least a year after an article is published.

We have also revised the pricing structure to remove some of the anomalies. At present, some small boards actually cost more than some larger boards. We are adjusting prices up and down as appropriate to rectify this situation.

- Graham Nalty, whose Upgradeable Amplifier is currently running as a project in ETI, tells us that he has access to custom case-building facilities. This might prove useful to those who are still missing out of the case for their JLLH Audio Design amplifiers. Anyone interested should contact Graham at the address given in the Buylines section on page 40.

- Spectrastrip is a flat cabling system which allows power, data and telephone wiring to be laid under carpeting with the minimum of trouble. A full set of complementery connectors is also available and the complete system is described in a 4-page brochure which is available on request. Contact Amphenol Ltd, Whiteway Way, Whitstable, Kent CT3 3JF, tel 0227 - 26441.

- Hawnt Electronics describe themselves as the UK's leading passive component supplier. Their new 272-page catalogue is now available and can be obtained from them at Firstwood Road, Garret Green, Birmingham B13 0TQ, tel 021-784 3355.

DIGITAL VOLTMETER MODULE
WITH HIGH BRIGHTNESS LED DISPLAY

• High accuracy
• ±0.1% + 1 digit.
• Operates from single supply 7-12V.
• Reads 99mV to 999mV which is easily extended.
• Large Bright 0.43" LED Displays.

We are pleased to once again offer this tried and tested Digital Voltmeter module which is suitable for use in a wide range of test equipment. Supplied with full details describing how to easily extend the basic range, measure current, resistance and temperature. The module, which is fully guaranteed, has been supplied to Electricity Authorities, Government Departments, etc.

TEMPERATURE MEASUREMENT KIT DT10

A simple though effective module which, when constructed, provides a linear output of 10mV per °C over the temperature range -100°C to 0°C. The unit is ideal for use in conjunction with the above DVM module, providing an accurate digital thermometer suitable for a wide range of applications.

DUAL POWER SUPPLY PS 209

This fully built mains power supply provides two, 9V stabilised outputs up to 250mA each. The unit is ideally suited for use with the Digital Voltmeter and the Temperature Measurement Unit DT10.

For KITS & COMPONENTS—
Choose the easy way—
WITH TK

SEND SAE NOW for our FREE CATALOGUE

HOME LIGHTING KITS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDI900K Remote Control</td>
<td>£14.95</td>
<td></td>
</tr>
<tr>
<td>TDI900K Transmitter</td>
<td>£4.50</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchdimmer</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchswitch</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDE2 Extension kit for 2-way switching</td>
<td>£2.95</td>
<td></td>
</tr>
<tr>
<td>LDX300K Light Dimmer</td>
<td>£3.95</td>
<td></td>
</tr>
</tbody>
</table>

We also STOCK a wide range of COMPONENTS, MULTIMETERS, TOOLS, BOOKS and over 30 other KITS for timers, infra-red remote control, disco lights, etc. PLUS VELLEMAN and PANTEC kits.

DIGITAL VOLTMETER MODULE
WITH HIGH BRIGHTNESS LED DISPLAY

• High accuracy
• ±0.1% + 1 digit.
• Operates from single supply 7-12V.
• Reads 99mV to 999mV which is easily extended.
• Large Bright 0.43" LED Displays.

We are pleased to once again offer this tried and tested Digital Voltmeter module which is suitable for use in a wide range of test equipment. Supplied with full details describing how to easily extend the basic range, measure current, resistance and temperature. The module, which is fully guaranteed, has been supplied to Electricity Authorities, Government Departments, etc.

TEMPERATURE MEASUREMENT KIT DT10

A simple though effective module which, when constructed, provides a linear output of 10mV per °C over the temperature range -100°C to 0°C. The unit is ideal for use in conjunction with the above DVM module, providing an accurate digital thermometer suitable for a wide range of applications.

DUAL POWER SUPPLY PS 209

This fully built mains power supply provides two, 9V stabilised outputs up to 250mA each. The unit is ideally suited for use with the Digital Voltmeter and the Temperature Measurement Unit DT10.

For KITS & COMPONENTS—
Choose the easy way—
WITH TK

SEND SAE NOW for our FREE CATALOGUE

HOME LIGHTING KITS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDI900K Remote Control</td>
<td>£14.95</td>
<td></td>
</tr>
<tr>
<td>TDI900K Transmitter</td>
<td>£4.50</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchdimmer</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchswitch</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDE2 Extension kit for 2-way switching</td>
<td>£2.95</td>
<td></td>
</tr>
<tr>
<td>LDX300K Light Dimmer</td>
<td>£3.95</td>
<td></td>
</tr>
</tbody>
</table>

We also STOCK a wide range of COMPONENTS, MULTIMETERS, TOOLS, BOOKS and over 30 other KITS for timers, infra-red remote control, disco lights, etc. PLUS VELLEMAN and PANTEC kits.

DIGITAL VOLTMETER MODULE
WITH HIGH BRIGHTNESS LED DISPLAY

• High accuracy
• ±0.1% + 1 digit.
• Operates from single supply 7-12V.
• Reads 99mV to 999mV which is easily extended.
• Large Bright 0.43" LED Displays.

We are pleased to once again offer this tried and tested Digital Voltmeter module which is suitable for use in a wide range of test equipment. Supplied with full details describing how to easily extend the basic range, measure current, resistance and temperature. The module, which is fully guaranteed, has been supplied to Electricity Authorities, Government Departments, etc.

TEMPERATURE MEASUREMENT KIT DT10

A simple though effective module which, when constructed, provides a linear output of 10mV per °C over the temperature range -100°C to 0°C. The unit is ideal for use in conjunction with the above DVM module, providing an accurate digital thermometer suitable for a wide range of applications.

DUAL POWER SUPPLY PS 209

This fully built mains power supply provides two, 9V stabilised outputs up to 250mA each. The unit is ideally suited for use with the Digital Voltmeter and the Temperature Measurement Unit DT10.

For KITS & COMPONENTS—
Choose the easy way—
WITH TK

SEND SAE NOW for our FREE CATALOGUE

HOME LIGHTING KITS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDI900K Remote Control</td>
<td>£14.95</td>
<td></td>
</tr>
<tr>
<td>TDI900K Transmitter</td>
<td>£4.50</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchdimmer</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDI900K Touchswitch</td>
<td>£7.75</td>
<td></td>
</tr>
<tr>
<td>TDE2 Extension kit for 2-way switching</td>
<td>£2.95</td>
<td></td>
</tr>
<tr>
<td>LDX300K Light Dimmer</td>
<td>£3.95</td>
<td></td>
</tr>
</tbody>
</table>

We also STOCK a wide range of COMPONENTS, MULTIMETERS, TOOLS, BOOKS and over 30 other KITS for timers, infra-red remote control, disco lights, etc. PLUS VELLEMAN and PANTEC kits.

DIGITAL VOLTMETER MODULE
WITH HIGH BRIGHTNESS LED DISPLAY

• High accuracy
• ±0.1% + 1 digit.
• Operates from single supply 7-12V.
• Reads 99mV to 999mV which is easily extended.
• Large Bright 0.43" LED Displays.

We are pleased to once again offer this tried and tested Digital Voltmeter module which is suitable for use in a wide range of test equipment. Supplied with full details describing how to easily extend the basic range, measure current, resistance and temperature. The module, which is fully guaranteed, has been supplied to Electricity Authorities, Government Departments, etc.

TEMPERATURE MEASUREMENT KIT DT10

A simple though effective module which, when constructed, provides a linear output of 10mV per °C over the temperature range -100°C to 0°C. The unit is ideal for use in conjunction with the above DVM module, providing an accurate digital thermometer suitable for a wide range of applications.

DUAL POWER SUPPLY PS 209

This fully built mains power supply provides two, 9V stabilised outputs up to 250mA each. The unit is ideally suited for use with the Digital Voltmeter and the Temperature Measurement Unit DT10.
DISK DRIVES • DISKETTES • COMPONENTS • CONNECTORS • ELECTRO-MECHANICAL AND CABLE ASSEMBLIES

Electro Mech Industries Limited

Unit 2, Wessex Industrial Estate, Station Lane, Witney, Oxfordshire. Telephone (093) 75827 or 76605

Prices

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>120MB 3.5" Diskette</td>
<td>£0.40</td>
</tr>
<tr>
<td>250MB 3.5" Diskette</td>
<td>£0.75</td>
</tr>
<tr>
<td>525MB 3.5" Diskette</td>
<td>£1.20</td>
</tr>
<tr>
<td>1GB 3.5" Diskette</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μF 100V</td>
<td>£0.10</td>
</tr>
<tr>
<td>22μF 100V</td>
<td>£0.15</td>
</tr>
<tr>
<td>47μF 100V</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ω 1%</td>
<td>£0.05</td>
</tr>
<tr>
<td>10Ω 1%</td>
<td>£0.10</td>
</tr>
<tr>
<td>100Ω 1%</td>
<td>£0.20</td>
</tr>
</tbody>
</table>

Transistors

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>£0.50</td>
</tr>
<tr>
<td>2N2907</td>
<td>£0.80</td>
</tr>
</tbody>
</table>

Integrated Circuits

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS139</td>
<td>£0.90</td>
</tr>
<tr>
<td>SN74LS148</td>
<td>£1.20</td>
</tr>
<tr>
<td>SN74LS151</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N5408</td>
<td>£0.15</td>
</tr>
<tr>
<td>1N5406</td>
<td>£0.20</td>
</tr>
</tbody>
</table>

Other Components

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100V/2W Resistor</td>
<td>£0.05</td>
</tr>
<tr>
<td>200V/2W Resistor</td>
<td>£0.10</td>
</tr>
</tbody>
</table>

All items are Brand New and fully guaranteed. Export Orders – carriage at cost. Government and Educational orders welcome. Stock items dispatched by return.

All prices subject to change without notice.

MAIL ORDER ONLY

Unit 2, Wessex Ind. Est., Witney, Oxon. Telephone (093) 75827/76605

ETI JULY 1986
DIARY

Advanced Infrared Detectors And Systems — June 3-5th
Institution of Electrical Engineers, London. See March ’86 ETI or contact the IEE at the address below.

Hitachi Summit Conference — June 9th
Wembley Conference Centre, London. An opportunity to learn about the latest developments at Hitachi from the Japanese design engineers. Areas covered include telecommunications, computing and control, and image capture, processing and display. Tickets cost £29.50 inclusive from Hitachi Electronic Components (UK) Ltd, 21 Upton Road, Watford, Hertfordshire WD1 7TB, tel 0923-46488.

Network ’86 — June 10-12th
Wembley Conference Centre, London. For details see March ’86 ETI or contact Online at the address below.

Power Electronics and Variable Speed Drives — June 10-12th
Institution of Electrical Engineers, London. For details see June ’86 ETI or contact the IEE at the address below.

The Scottish Electronics Show — June 10-12th
The Anderton Centre, Glasgow. For details see June ’86 ETI or contact Network Events Ltd, Printers Mews, Market Hill, Buckingham MK18 1JX, tel 0280-819 226.

The International ISDN Conference — June 10-12th
Wembley Conference Centre, London. For details see June ’86 ETI or contact Online at the address below.

Amstrad Computer Show — June 13-15th
Novatel, London. For details contact Database Expositions, 68 Chester Road, Hazel Grove, Stockport, Cheshire SK7 5NY, tel 061-456 8935.

Scottish Technology Week — June 17-19th
The Scottish Exhibition & Conference Centre, Glasgow. For details see June ’86 ETI or contact Cahners at the address below.

Computer ’86 — June 24-26th
G-Mex Exhibition Centre, Manchester. For details see June ’86 ETI or contact Cahners at the address below.

Image Processing And Its Applications — June 24-26th
Imperial College of Science And Technology, London. Conference organised by the IEE at which over 60 papers from 14 countries will be presented, accompanied by technical sessions on image enhancement and restoration, interpretation, industrial and medical applications, etc. For details contact the IEE at the address below.

Association of Professional Recording Studios Exhibition — June 25-27th
Olympia, London. For details contact the APRS, 23 Chestnut Avenue, Chorley Wood, Hertfordshire WD3 4HA, tel 09278-72907.

Radio Receivers And Associated Systems — July 1-4th
University College of North Wales, Bangor. Conference organised by the IEE, the IERE and RSGB in this country in association with a variety of overseas bodies. Topics covered will include general and low-cost receiver design, digital techniques, mobile radio and ICs for telemetry and navigational systems. For details contact the Institution of Electronic & Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel 01-388 3071.

Voice Processing — July 2/3rd
Wembley Conference Centre, London. Conference. For details contact Online at the address below.

Addresses:
Cahners Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Institution of Electrical Engineers, Savoy Place, London WC2 OBL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-868 4466.

ETI JULY 1986
MIRACLE 3000
A new range of microprocessor based microcomputers of up to 16k, full duplex. Features include "HAYES" compatible communications, full software buffering, printer port, data security options.

- **Models**
 - WS3000 V2353
 - WS3000 V2352
 - WS3000 V2351

Special Offer
Get a full colour hardcover book "Data Communications" with WS3000 for an additional £25.00.

MODEMS
All modems listed below are BT approved.

- **FLOPPY DISCS**
 - 3M FLOPPY DISCS
 - High quality discs that offer reliable free performance for life. Each disc individually tested and guaranteed for life.

DISK ACCESSORIES
- FLOPPYLENE Disk Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives... £375.00 £185.00
 - Single Disc Cleaning... £8.00 Dual Disc Cleaning... £18.00
 - 10 Disc Library Case... £16.00 50 Disc Library Box... £19.00

MICROVITEC
All "14" monitors now available in plastic or metal cases, please specify your requirement.

- 14" RGB... £199.00 14" RGB with PAL & Audio... £279.00
- 1411 Hi Res... £375.00
- Swivel Base for 14" Microvitecs... £20.00

MONOCROME MONITORS
- TAXAN KC1201G Hi Res 12" Etched Green Screen... £60.00
- TAXAN KC1203A Hi Res 12" Etched Green Screen... £165.00
- PHILIPS BM792/12 Hi Res Amber Screen... £79.00
- Swivel Base for Kaga Monochrome fitted with Digital Clock... £21.00

SPECIAL OFFER
- 2764-25... £20.00
- 27128-25... £2.50
- 2664LP-15... £3.40

ATTENTION
All prices in this double page advertisement are subject to change without notice.

GM ALL PRICES INCLUDE VAT please add carriage 50p unless indicated as follows:
(a) £2.50 (b) £5.10 (c) £1.00

NEW
Minors HS222 and CICC V24 Transmissions, compatibility with domestic and LS-7, competition. Includes any significant lines.

GANG OF EIGHT
INTELLIGENT FAST
EPROM COPIER
Copies up to 19 page hard copy for any line and accepts all single raptors up to 27256. Can reduce program size by almost 50%. Features include "HAYES" compatible communications, full software buffering, printer port, data security options.

- **Models**
 - WS3000 V2353
 - WS3000 V2352
 - WS3000 V2351

Softy II
This low cost intelligent copier program can store up to 2716, 2158, 2752 and can adapt a module to suit your requirements. 2686 and 2647. Displays 32 byte page on a TV and has a serial and parallel output and can be used as an emulator, cassette interface.

- **Adaptor for 2674/2654... £25.00
- UV ERASERS**
All erasers with built in safety switch and main indicator.

- UV1 up to 6 erasors at a time... £47.00
- UV1 as above but with a timer... £59.00
- UV1 as above but with timer nos... £50.00
- UV1 as above but with timer nos... £88.00

CONNECTOR SYSTEMS

- **EDGE CONNECTORS**
 - No of Way... 10 x 10 10 x 20 20 x 20 20 x 30 30 x 30 40 x 40 60 x 60 100 x 100 200 x 200
 - Rear Panel... 10 20 30 40 60 80 100 200 500
 - Front Panel... 10 20 30 40 60 80 100 200 500

- **AMPHENOL CONNECTORS**
 - No of Way... 10 20 30 40 60 80 100 200 500
 - Rear Panel... 10 20 30 40 60 80 100 200 500
 - Front Panel... 10 20 30 40 60 80 100 200 500

- **DIL HEADERS**
 - No of Way... 10 20 30 40 60 80 100 200 500
 - Rear Panel... 10 20 30 40 60 80 100 200 500
 - Front Panel... 10 20 30 40 60 80 100 200 500

TECHNOLINE VISUODATA SYSTEM
Uses "Pretest" type protocols for information and ordering phone 01-950 9764, 24 hour service. 7 days a week.
Dear Sir,

I have no wish to continue the Greenham Common controversy — however, I have now read two letters in Read/Write from readers who wish to cancel their ETI subscription because of the article.

The article occupied three-quarters of one page, an informative documentary feature like mercy killing or abortion would be on BBC 2 television — if you don’t like it, you turn over. Considering there are 66 other pages to choose from, the majority of which are straight-to-the-point projects without even an SDP abbreviation, I feel anyone who cancels the magazine must be out of their tiny minds. Perhaps, more to the truth, they prefer the £1.20 in their pockets.

It has taken engineers like myself many years to climb the tree of success, over 30 years since my first crystal set in Luton in 1956. Do we stand still or do we progress? Technology and defence are linked and breakthroughs in technology will always find their way into defence. In my son’s lifetime Star Wars will make Greenham Common obsolete, just like Fleet Street and black and white newspapers today.

Each month ETI is a chunk of progress — the latest innovations, advances in technology and new products — an Aladdin’s cave of new thought every month. If no one dares to include a comment, an article, for fear of offending someone somewhere, what a dull lot and a dull country this would surely become.

Like many readers I have learned more about the nuclear industry in the past weeks than in all my schooldays. Through all the argument, the rights, the wrongs, the facts, one thing has become apparent to me. We are more likely to have nuclear accidents than nuclear war, and in a densely populated country such accidents could have similar effects to a nuclear war. Such accidents as a fire leading to a meltdown in an old-style magnox reactor could cause an explosion which could not be contained. The result, as everyone knows from April 26 in Russia, is pollution of the air, the ground, the rain, the milk and the food chain, leading to cancer and certain death within a 30 mile radius within three days … in a word, threads. Such an accident would not grant us 700 miles isolation and survival like Sweden. It is also apparent that such an accident whether caused by human error, component failure or terrorist attack could not offer a safe evacuation of the population in time.

The words I can hear are safe; inspected; automatic safeguards; cannot go wrong … everything made by man goes wrong sooner or later and a designer of nuclear reactors says he expects one to blow up every five years (First Tuesday — ITV — May 6).

Perhaps two readers who cancelled ETI are reading this. Yours faithfully,

Keith Lawrence B.Sc., Ilkley, West Yorkshire.

Of Caves and Waves

Dear Sir,

Mike Bedford, in his article on the Troglograph cave radio (ETI May ’86) has made some fundamental errors in his explanation of the underlying electro-magnetic theory. Of course, it is not necessary to understand the e-m theory in order to produce a working practical design, but I am surprised that you should print and thereby perpetuate certain misconceptions about such a fundamental subject.

Mike states that we normally mean the electric field when referring to radio waves. In fact transistor radios with their ferrite rod aerials, and radio amateurs with their frame aerials are both making use of the magnetic part of the radiated field, which does not in this case drop off under an inverse cube law as Mike states.

Mike also states that the electric field of ‘normal’ radio radiates in straight lines which is why direction finding (DF) is easier than using the ‘elliptical loops’ of the magnetic field. This is not true. As I have mentioned above the magnetic field can be used for DF with no problem. (Rotate your transistor radio until the signal fades — the direction of the ferrite rod is then at right angles to the direction of the transmitter).

Thirdly, Mike states that electric fields need aerials of the order of a quarter or half a wavelength in order to radiate. Having an aerial of this size certainly helps, but it is not true in the general case and a circular loop can radiate a perfectly good electric field, just as a wire can produce a magnetic field.

I think Mike may be getting confused because what happens very close to an aerial (much less than a wavelength away) is very different to what happens at larger distances in terms of the way the fields behave. The maths is quite complicated, but in simple terms what happens is that a current oscillating in a wire or a loop causes both electric and magnetic fields to be set up in the surrounding medium. The maths can be simplified if we are either very close to or very far from the source of the fields. At large distances the electric and magnetic fields have a fixed relationship, and the magnitude of both (in certain directions at least) drops off with an inverse distance relationship. The result of this is that the power carried by the wave drops off as an inverse square relationship. This field is often called the radiation field, or the far field.

At close distances the picture is different. The dominant terms in
the maths do not suggest any power radiation. The electric and magnetic fields behave as if they originated from static conditions and are called the electrostatic and induction fields, or together they are called the near field. For a current loop the induction field drops off as an inverse cube relation, and the electrostatic field as an inverse square. For a short wire aerial the relationships are the other way round. The magnitudes of all the field components depend on a number of factors, and a good approximation at low frequencies is to forget the radiation field altogether.

The field patterns are not quite as Mike states. It would take far too long to explain here why they are different, but it is important to realise that magnetic waves are not inferior to electric waves. It is a question of the orientation of the transmitter and whether it is the near or far field that is important.

In Mike's diagram of the magnetic field lines (Fig 2, page 26) the electric field lines would be concentric circles, not straight lines as he states, and for an electric dipole (a short wire aerial) the role of the electric and magnetic fields are reversed — no straight lines anywhere!

A personal view is that Mike is wrong to think that induction loops are used because waves can be somehow 'propagated' more easily than from an electric dipole. Both vertical and horizontal wires can perform well, if not better than a loop aerial. They have disadvantages in that they are less portable, require high voltages and are not (superficially at any rate) as easy to understand as loops. For anyone who wants further information I suggest the book ELF Communications Antennas by Burrows, published by Peregrinus which Mike himself quotes as a reference. A good book on e-m theory is Introduction to Electromagnetic Theory by Clemmow, published by the Cambridge University Press.

Notwithstanding these technical errors, I am sure Mike has done a good job on producing a piece of working equipment, and that is what it is all about really isn't it? And it is pleasing to see an original project of this sort in ETI.

Yours faithfully,
David Gibson,
Broadstone,
Dorset.

We spoke to Mike Bedford, who agreed with the points made in the letter and suggested that the confusion is substantially semantic. Throughout the articles, read electromagnetic field for electric field and induction field for magnetic field. In the context of this project, the induction field is all that need worry the constructor.

— Ed.

A PORTABLE RATERMETER

A portable ratemeter with accessories. It can be used with a Geiger-Muller tube attached to a socket on the front (as shown) or with an extension lead and socket which allows the GM tube to be some distance away from the ratemeter. The applied voltage can be varied from about 350V to 600V to suit different tubes. The remaining controls select the count range and time constant, and a socket is also provided so that a semiconductor alpha particle detector can be used instead of a GM tube.

produces in air, under specified conditions, ions carrying 3×10^{-9} coulombs of charge. Air was chosen because its mass absorption coefficient is almost the same as that for body tissue. The damage caused by radiation will depend on the absorbed dose, the exposure rate and the parts of the body exposed (hands and feet can receive comparatively high doses without permanent injury, whereas the eyes are particularly sensitive).

The effects of acute radiation exposure over the whole body (ignoring carcinogenic effects and genetic damage) are: 20-50R, some changes in blood composition; 100-250R, severe illness, but recovery within six months; 400R, fatal to 50% of people exposed; 600R, always fatal. As
far as genetic damage is concerned, there is no safe limit, but the incidence of observable effects rises rapidly for an exposure of more than about 10 R over 30 years. From background radiation, the dose to be expected over that time is about 4 R, so the margin is very small.

Other units of dosage you may see bandied about in the press are: the rad (radiation absorbed dose) which is 10^{-3} of absorbed energy per gram of absorbing material, and the rem (roentgen equivalent man) — a unit which takes into account the fact that different types of radiation cause widely differing amounts of damage for the same absorbed energy. Table 1 gives a rough indication of the RBE (relative biological effectiveness) — a nauseating term — of various types of radiation. Alpha particles, for instance, cause 10 to 20 times as much damage for a given energy as gamma rays. The biological dose in rems is calculated by multiplying the absorbed dose in rads by the RBE for the radiation concerned.

Radiation dosage over a period of time is conveniently measured by a device called a dosimeter. A low cost quartz fibre dosimeter is available from

<table>
<thead>
<tr>
<th>Radiation Type</th>
<th>RBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray, gamma ray, beta ray</td>
<td>1</td>
</tr>
<tr>
<td>Thermal neutrons</td>
<td>2-5</td>
</tr>
<tr>
<td>Fast neutrons</td>
<td>10</td>
</tr>
<tr>
<td>Alpha particles</td>
<td>10-20</td>
</tr>
</tbody>
</table>

Table 1 A comparison of the relative biological effectiveness (RBE) of different types of radiation.

Audio Electronics, 301 Edgware Road, London W2 1BN (tel: 01-724 3564) for around £7. It looks like a fat fountain pen, and clips to your pocket in a similar way, so it can be carried around at all times. At one end is a lens, giving a view of a scale reading from zero to 5 R. The ionisation caused by radiation entering the tube gradually causes it to discharge, moving a pointer across the scale, from which you can read your total radiation dosage.

In the current situation, the main concern is the radioactive material which is finding its way into milk, water and food. A dosimeter is of little use in testing radiation levels directly — if you left it next to some contaminated milk for a week, it would no doubt discharge, but by then the milk would be sour anyway. An indication of the degree of contamination can be obtained by using a Geiger counter. ETI technical writers came up with the circuit in Fig. 1 when asked to design one on the spur of the moment.

I should point out that the circuit has not been entirely tested but it should certainly work with the minimum of attention. Strictly speaking, it is a rate meter rather than a Geiger counter, but it would be a simple matter to feed the pulses from Q2 into a counter IC instead.

The coil can be wound on a small pot core, taking a little care over the insulation of the secondary winding since it produces about 450V. ZD1 to ZD4 are chosen to suit the particular GM tube used — the sum of their voltages should be equal to the tube’s recommended operating voltage. GM tubes can be obtained from: Aired Instruments, Turnpike Rd. Ind. Est., Newbury, Berks RG13 2NS. A general purpose gamma sensitive tube, the ZP1200, costs £45.30 inclusive of postage and VAT.

GM (Geiger Muller) tubes vary in construction, but typically consist of a tungsten anode in the centre of a tubular cathode — a metal cylinder or sometimes a layer of graphite on the inside of a glass tube. The window allows alpha and beta particles to enter with the minimum of obstruction and in some very sensitive tubes the window can be extremely fragile, and may admit ultra violet light, which can also trigger the tube. The best bet is to buy a low cost, general purpose tube, which will be quite adequate for testing your vegetables, and will give fewer spurious readings.

Inside the tube will be an inert gas, often neon, at a low pressure of around 10cm. Hg. In circuit, the applied voltage should be high enough to prevent recombination of any ions formed by radiation entering the tube, but low enough not to exceed the dielectric strength of the gas. The tube will have a recommended range of operating voltages, so choose a voltage towards the centre of the range and fit the zeners accordingly.

Any radiation entering the tube will cause ionisation of the gas. Electrons from the ionisation will be accelerated towards the anode, producing more ions by collision on the way. This secondary ionisation produces more electrons, which produce yet more ions, and so it continues in geometric progression. A single charge in the tube will be enough to trigger a substantial discharge which can be detected as a sudden burst of current from the anode, amplified in our circuit by Q2.

The relatively massive positive ions drift more slowly towards the cathode, taking around 100µs to reach it — by this time they will have considerable energy, and if left to their own devices would cause more electrons to be liberated from the cathode, giving continuous conduction. To prevent this, a quenching agent such as bromine is mixed in low concentration with the neon, to absorb the energy from the positive ions. This process has the unfortunate consequence of making the tube fairly slow to recover after a discharge — around 200µs is needed between discharges if the tube is to behave correctly. If the radiation is too intense, the tube will ‘freeze’ or ‘jam’ in a state of continuous conduction. This certainly will not happen in testing your milk contamination, but should be borne in mind if using the meter for other purposes. — Auntie.

ETI

ETI JULY 1986
SATRILATES — SETTING THE WORLD ALIGHT?

With our ever-watchful gaze on the skies, we bring you an update on the world of satellites and the satellites of the world. Keith Brindley supplies the words.

During the Second World War considerable effort was spent on developing rocket propulsion for purposes other than communications. It became clear that manufactured Earth satellites could exist if rockets could be used to launch them high enough above the surface of the Earth. At the right altitude, a satellite could travel fast enough for its own centrifugal force to counter the tendency of gravity to bring it crashing down. Despite Werner von Braun's best efforts, it was not until 1957 that the first satellite (Sputnik 1) was launched. And it stayed only three weeks in orbit.

The world's first communications satellite (Spike) was launched the following year by the USA. Like Sputnik 1, Spike only lasted a short time. But satellite communication had been born, some 15 years after it had first been envisaged.

Figuratively Speaking

Since Sputnik 1 there have been an estimated 2,770 launches of satellites. Some of these have been multiple launches, so the total number of artificial earth satellites launched is nearer to 3,000. There are actually 5,560 or so objects, artificial or otherwise, in orbit. They range from the Moon right down to fragments which have broken off other satellites.

Of the 3,000 launched satellites, about 1,000 have come down again. Few of the remaining 2,000 are still transmitting — a realistic estimate of as low as 10% to 15% makes only 200 to 300 satellites functioning at this moment. This is a very difficult figure to establish beyond question because nobody wants to admit to poor design. Authorities on both sides of the Iron Curtain keep this sort of information under their hats, merely ignoring the fact that satellites have failed until everyone's forgotten about them anyway.

Very roughly, there are about 100 new satellites put into orbit each year and about 80% of these are of Soviet origin (a figure which must embarrass the USA). Thought for the day must be why the Soviets launch so many. Is it because they see World supremacy in whoever has the best satellite systems? Or is it because their standard of electronic production is so poor that their satellites have only a very short working life? Or is it because while the USA puts all its efforts into glamorous, high profile projects like Moon landings and shuttles, the USSR prefers a more methodical and less publicity conscious form of space exploration and exploitation?

In any form of satellite communication one of the first problems which has to be overcome is exactly how to transmit to and receive from an orbiting satellite. The satellite must be thousands of kilometres above it to orbit, so transmissions to and from it will be quite weak by the time they have traversed the distances. On Earth, a satellite receiving station (commonly called an Earth Station) must have an acceptable aerial — or antenna — system to pick-up transmissions. The aerial must be accurately pointed at the transmitting satellite. Easy to say, but not so easy to do!

On the Right Tracks

The problem of ensuring that the aerial always points at the satellite closely and tracks it accurately is fairly complex. The aerial's horizontal and vertical position is commonly varied by steering systems, which are in turn controlled by the strength of the received signal so that, as the satellite traverses the sky, the aerial follows it and makes sure that maximum signal strength is obtained. Such aerial systems are complex, heavy and expensive; not the sort of thing to have on your roof, strapped to your chimney.

Even with this reception restraint, satellites with such orbits are used for a number of purposes. However, there is a way to overcome the tracking problem and make light work of transmission and reception.

This is the so-called geo-stationary orbit, first considered by science fiction writer Arthur C. Clarke in an article in the October, 1945 issue of 'Wireless World'. With brilliant foresight, Clarke realised that the inter-dependency of satellite orbit radius and period could be used to direct advantage by positioning a satellite so that its orbit radius ensured an orbital period equal to the Earth's rotational period. By putting the satellite in orbit about the Earth's equator, travelling in the same direction as the turning Earth, the satellite would appear stationary to an observer on the planet's surface.

The radius of the Clarks orbit is 3,621,641 km — that is 35,786km above the Earth's surface. Orbital speed at this height is 3,075 metres/second and period is approximately 23 hours and 56 minutes. This period is that of the sidereal day, and not the solar day which is exactly 24 hours. The orbit is, of course, circular.
The geo-stationary orbit (GSO) is of immense value, as earth stations with fixed aerials can be used to receive transmissions from satellites in GSO. This has meant the development of low-cost reception systems aimed at domestic consumers.

The first satellite to be launched to a geo-stationary orbit was the Syncom 3 communications satellite. It reached a geo-stationary orbit on 19 August 1964.

Near And Far

The GSO is quite a long way out in space: about 5½ times the Earth’s radius from its surface, in fact. At this distance, a single satellite with a sufficiently wide angle of transmission can broadcast line-of-sight radio frequencies with a ‘coverage area’ (sometimes called a ‘footprint’) of about one third of the Earth’s surface (Fig. 1). As few as three satellites can be used to cover the whole of the Earth’s surface and a signal can be transmitted from one Earth station via a satellite to any other station on the Earth’s surface. On the other hand, satellites in GSO with narrow angles of transmission can be used to broadcast to precise, fixed areas on the Earth’s surface (Fig. 2). Earth stations outside a ‘spot-beam’ will not be able to pick up the transmissions.

In practice, limits on GSO satellite transmissions are reached at latitudes north or south of the equator of about 60° because the angle of arrival of the transmission becomes low enough to be blocked by hills, buildings and other surface features close to the Earth station. Adverse weather conditions at such latitudes may also attenuate satellite signals. This is not to say that satellite transmissions can’t be received by Earth stations outside the 60° latitudes, just that larger aerials must be used to pick up the weaker signals, and aerial positioning becomes more critical.

For some purposes, the GSO is not useful. Earth surveillance satellites (that is, satellites with on-board sensors and cameras — more commonly called ‘remote sensing satellites’) need to be close to the Earth’s surface to allow sufficient resolution of details such as weather, crops, drought, pollution, mineral resources and ocean currents. At a tenth of the distance to the Moon, the GSO is just too high.

Latest surveillance satellites can resolve detail down to ten metres and their uses are as yet limitless. If you needed to know anything about any aspect of the Earth’s surface, a remote sensing satellite could check it out for you easily and quickly — and more often far more cheaply than sending out a team of observers would cost.

Remote sensing satellites usually fly a circular polar orbit (Fig. 3) at a height of around only 900km. As the earth turns beneath them, they can survey the whole surface in a few orbital periods (Fig. 4). Earth stations which receive transmissions direct from such satellites encounter the tracking problems previously discussed. The GSO can help here by providing a geostationary data collection and transmission relay, allowing simple earth stations to receive transmissions from satellites in other orbits, without the inherent tracking problems.
are used). It really all depends on the use.

Weather Satellites

There are a number of weather satellites, in various orbits, transmitting on various frequencies. Most of them transmit their data — cloud cover pictures, temperature profiles, sea state, ice precipitation, snow cover and so on — using the automatic picture transmission (APT) system, in which each picture is transmitted in an analogue line-by-line format similar to television pictures but at a much slower rate — 120 lines per minute. A 2400Hz carrier is amplitude modulated between 5% (black) to 80% (white), separated into lines by square wave synchronization pulses. Although these pictures can’t be displayed by a basic television, some simple software running on a home computer is all that’s required to re-process them to a form that can be displayed in your living room.

Each satellite’s correlated data are first transmitted to a receiving and processing Earth station, where they are processed to enhance picture quality and add country outlines together with latitude and longitude lines. The data are then transmitted back to the satellite for general transmission either in a basic APT format or in digital high bit rate format similar to the original format used to transmit the data Earthwards in the first place.

In either case, the pictures are of high quality due to the processing, and in the case of the digital high bit rate format very high resolution pictures can be received. Transmissions are at frequencies around 1.6 to 1.7GHz, and are outside most amateur reception capabilities. Dish aerials, low noise converters and receivers are available from a number of sources, at prices up to about £2,000 for a system. It’s probably better to buy a telly, and wait for the weathermen at those prices!

Amateur Satellites

There are a few satellites in orbit designed mainly for communications and telemetry purposes for radio amateurs and educational establishments. The two satellites of direct interest in the UK are UoSAT-2 — designed and built by the Department of Electronic and Electrical Engineering at the University of Surrey (hence UoSAT).

The two UoSATs are sometimes known as OSCAR-9 and OSCAR-11 (Orbital Satellite Carrying Amateur Radio). Both are in polar orbits but at different altitudes, and so have different orbital periods.

OSCAR-9 (UoSAT-1) is at an altitude of 554km with a 95 minute period. OSCAR-11 (UoSAT2) is at an altitude of 700km, with a period of 98 minutes. Both satellites transmit telemetrical data at a frequency of 145.825MHz; reception is fairly simple, with few tracking problems, although Doppler shift takes the apparent received frequency to about 145.830MHz when the satellite approaches, and 145.810MHz as it recedes. Data is transmitted on other frequencies too, up to 10.47GHz in fact.

Another amateur satellite is OSCAR-10, like the other UoSATs but allowing two-way amateur radio communications. Separate uplink and downlink frequency bands are used for this facility, which is known as ‘transponding’. The uplink frequency band is from 435.027 MHz to 435.179 MHz and the downlink band is from 145.825 MHz to 145.977 MHz. Any satellite which allows two-way communications uses this principle and has at least one transponder.

OSCAR-10 has an elliptical orbit, which means that the satellite is difficult to track as it approaches and recedes. At its apogee (the furthest point from the Earth, at about 33,500 km), however, the satellite appears stationary for quite long periods and simple aerial systems suffice.

There are a number of Soviet amateur satellites (the RS series, standing for Radio Sputnik) with transponders and telemetrical beacons in circular polar orbits with periods of around 2 hours.

Broadcast Satellites

For reasons which should be apparent, any broadcast satellite television service must use satellites in the GSO — bandwidth requirements and the number of channels desired mean that high transmission frequencies must be used, which impose tracking problems if the broadcasting satellite is in anything other than a geostationary orbit. At high transmission frequencies, dish aerials are most suitable (although some new designs are currently being investigated and the neces-
sary tracking devices would make the aerial systems far too expensive for general public requirements. A satellite in the GSO, together with fairly small, cheap, fixed aerials are essential — particularly when it comes to direct broadcasting by satellite (DBS). DBS transmissions (to be distinguished from cable transmissions) are meant to be received by individual households. The transmissions will be more powerful than existing cable satellites produce and the recommended dish size is 0.9m.

In 1971, the International Telecommunications Union designated frequencies in the 12 GHz frequency band for use by broadcasting satellites. For frequency allocation purposes the ITU divides the world up into three regions:

Region 1 — Europe, Africa and the Soviet Union;

Region 2 — the Americas;

Region 3 — Australia, Asia including China and Japan.

The three regions are shown in Fig. 5. Frequencies in each region are slightly different and have to be shared on an equal basis with other services such as terrestrial broadcasting, fixed and mobile services. The frequency allocations for region 1 is from 11.7GHz to 12.5GHz.

As the satellite circuits are solar powered, it is non-operational and cannot broadcast.

This situation will occur for a few minutes at around each equinox in a year (these are the only times when the sun, Earth and satellite are directly in line), at about midnight. By positioning the satellite some 30° west of the country's longitude, however, the 'midnight' blackout occurs at the satellite's longitude, that is about two hours after the country's midnight or around two o'clock in the morning when few programmes will be broadcast. Future satellites may be battery-backed with rechargeable cells to avoid these complications.

Another solar problem can occur when the satellite is directly between the Sun and the Earth, and an effect known as ‘sun outage’ takes place when the receiving aerial on the Earth, pointed directly at the satellite, is also pointing directly at the Sun, and so picks up extraneous noise. Again, this effect will happen at or around the two equinoxes for a few minutes at a time, around twelve hours after the eclipses — about two o'clock in the afternoon. There is no practical solution to this problem and broadcasters will simply have to schedule programmes so that no broadcasts are in progress at the time.

At the time of WARC77, a number of estimates as to receiver technologies were made, to define the transmitter power and aerial size required. Development in this area have surpassed those estimates, and lower DBS transmitters power or smaller DBS receiving aerials — or both — will be the outcome. All that DBS is now waiting for is an economically viable plan — satellite receiver and aerial technologies are well developed and the major problem is cost. Later this year, France and Germany will be launching DBS satellites — TDF-1 and TVSAT, as they will be called.

Sidestepping DBS

Satellite Master Antenna Television (SMATV) uses satellites built for communications purposes to transmit signals basically for the use of cable television operators. The operators pick up the transmitted television signals and relay them to users on the cable network.

Where television signals like these are received by organisations such as hotels, pubs or clubs, the set-up suffers a name change and becomes a Television, Receive Only (TVRO) system. Communications satellites have transponders of much lower powers than planned DBS satellites (about 20W, against 200W). The receiving SMATV or TVRO aerials need to be significantly larger than DBS aerials (often twice the size at 1.8m or so) and are, therefore, somewhat more difficult to site.

Had suitable DBS systems been developed and started as originally planned, SMATV and TVRO would have stayed exactly where they were intended — in pubs, hotels, clubs, and cable head-ends. But a market has
FEATURE: Satellites

grown up around SMATV and TVRO, demanding that it becomes available on a wider basis. The public, it seems, wants the choice which even existing satellite television offers, and never mind the large dish aerials and expensive receivers. For £10, the Department of trade and Industry in the UK will sell you a licence to receive SMATV signals.

To meet this demand (or help create it) several manufacturers have developed reasonably cheap equipment (£1,000 to £2,000) to receive the transmitted signals and convert them into a form suitable for use with domestic television receivers. At least one manufacturer's equipment is currently available for rental from selected DER television rental shops in the South East of England, on a trial run as a home-reception satellite television system. If the trial is successful, it's likely that the equipment will be made more widely available. As this availability increases it may be perfectly correct to think of the SMATV and TVRO signals as 'broadcast' television—much like DBS signals, but of lower power.

Currently, some 18 television services are 'broadcast' over the UK and Europe using transmissions from two communications satellites, although some of these services double-up and use the same channels. Most of the services are in English, with four or five in Italian, French or German. The more famous of the services are probably The Children's Channel, Premiere, MirrorVision, Music Box, Screen Sport, and Sky Channel.

The two satellites, European Communications Satellite 1 (ECS 1 or Eutelsat 1) and Intelsat V are primarily used to trunk telephone calls over Europe and between Europe and North America. They are both in orbit in the GSO—ECS 1 at 13° east of the Greenwich meridian, and Intelsat V at 27.5° west.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisers in this magazine and pay by post in advance of delivery, Argus Specialist Publications Ltd will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:

1) You have not received the goods or had your money returned;
2) You write to the Publisher of this publication, summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has declared bankrupt or insolvent (up to a limit of £2,000 per annum for any one Advertiser so affected and up to £5,000 per annum in respect of all insolvent Advertisers. Claims may be paid for further amounts, or when the above procedure has not been complied with, at the discretion of this publication but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements). Classified advertisements are excluded.

AMATEUR RADIO & ELECTRONICS
HOBBY FAIR
Saturday 5th & Sunday 6th, July 1986.

At the Wembley Conference Centre
CATERING AND BAR FACILITIES AVAILABLE ALL DAY.

The first major two day event in the SOUTH of ENGLAND.

STAR RAFFLES, BRING & BUY WITH LOTS OF BARGAINS GALORE.

Over 200 TRADE STANDS FROM ALL OVER THE COUNTRY.

RTTY - SATELLITE T.V. & COMMUNICATIONS - MICROWAVES - HOBBY COMPONENTS - 934 MHz - AMATEUR TELEVISION AND LOTS, LOTS MORE...........

Organisers: Amateur Radio Promotions Ltd., Woodthorpe House, Clapgate Lane, Birmingham B32 3BU. Telephone: 021 421 5516

MICRO-COMPUTER AIDED CIRCUIT DESIGN

Julian Burt takes us through the first stages of circuit analysis on a home micro by way of nodal admittance and two-port networks.

There are two sides to computer aided circuit design. The main aspect of it is the actual analysis of a designed circuit — information about a circuit is fed into the computer and, after some number-crunching, the required response is found. This aspect can be split into smaller areas: linear frequency domain analysis (AC small signal analysis); linear DC operating point analysis; and non-linear analysis. In this series we shall mainly be concerned with the first two since the third is a very complex matter hard to implement on a microcomputer.

The other aspect of CACD is the use of a computer to help with the mathematics of circuit design: solving simultaneous equations, numerical integration and so on. We will be looking at circuit transfer functions, which describe the output of circuits with respect to their inputs.

AC Analysis

Perhaps the most important area of circuit analysis is linear small signal analysis. The term ‘linear’ is used loosely as all components are non-linear to a degree (see Fig. 5). Luckily, they can be assumed linear over a small range of working conditions. We work on this assumption to form a method of analysis for linear circuits.

A large number of circuits are of the two port type: they accept an input of some form and produce a corresponding output, as amplifiers and filters do.

All two port networks can be represented by a simple equivalent circuit. Because the circuit will probably use reactive components, we have to use an equivalent impedance circuit as shown in Fig. 1a. The input of this is defined by I_1, and Z_1, being the input impedance. The output, similarly, is defined by I_2 and V_2 with Z_{22} representing the output impedance:

$$Z_{11} = V_1/I_1 \text{ with } I_1 = 0$$
$$Z_{12} = V_1/I_1 \text{ with } I_1 = 0$$
$$Z_{22} = V_2/I_2 \text{ with } I_2 = 0$$
$$Z_{21} = V_2/I_1 \text{ with } I_2 = 0$$

Standard conversion formulae allow us to convert freely between impedance and admittance parameters:

$$Z_{11} = Y_{11}/\Delta Y/Z_{12} = -Y_{12}/\Delta Y/Z_{22} = Y_{11}/\Delta Y/Z_{21} = Y_{21}/\Delta Y$$
$$Y_{11} = Z_{11}/\Delta Y Y_{12} = -Z_{12}/\Delta Z Y_{22} = Z_{12}/\Delta Z Y_{21} = Z_{21}/\Delta Y$$
$$\Delta Z = Z_{11} Z_{22} - Z_{12} Z_{21} / \Delta Y = Y_{11} Y_{22} - Y_{12} Y_{21}$$

Now we can draw an admittance equivalent circuit (Fig. 1b) where:

$$Y_{11} = I_1/V_1 \text{ with } V_2 = 0$$
$$Y_{12} = I_1/V_2 \text{ with } V_1 = 0$$
$$Y_{22} = I_2/V_2 \text{ with } V_1 = 0$$
$$Y_{21} = I_2/V_1 \text{ with } V_2 = 0$$

These results can be applied to a circuit we are analysing. For example, voltage gain is defined as:

$$A_v = V_2/V_1$$
where \(V_2 = \text{output voltage} \) and \(V_1 = \text{input voltage} \).

By Ohm's law we know that \(V = IZ \) or \(V = I/Y \), so that
\[
V_2 = I_2/Y_{\text{out}} = -Y_{22}V_1/(Y_{22} + Y_1)
\]
but \(A_2 \) is \(V_2/V_1 \). So, if we divide the equation above throughout by \(V_1 \), we get an expression for voltage gain:
\[
A_v = V_2/V_1 = -Y_{22}/(Y_{22} + Y_1).
\]

The minus sign indicates that input and output currents are shown, in the equivalent circuit, as having opposite directions.

We can do a similar exercise with current gain,
\[
A_i = I_2/I_1.
\]

Looking back at the impedance circuit (Fig. 1a) we can see that:
\[
-Z_{21}I_1 = (Z_{22} + Z_1) I_2.
\]

By rearranging this equation, we obtain an expression for current gain in terms of impedance. By applying the conversion formulae given above, we can express current gain in terms of admittance:
\[
I_2/I_1 = -Z_{21}/(Z_{22} + Z_1) = Y_{22}Y_1/(\Delta Y + Y_1 Y_1).
\]

A similar technique will yield expressions for the input and output impedance of the circuit for which Fig. 1 represents two equivalents.

\[
Z_{\text{in}} = (Y_{22} + Y_1)//(\Delta Y + Y_1 Y_1)
\]
\[
Z_{\text{out}} = (Y_1 + Y_2)//(\Delta Y + Y_2 Y_2)
\]
\[
Y_s = \text{source admittance and } Y_l = \text{load admittance}.
\]

From these expressions, it is clear that only values of admittance are needed. Because admittance is a complex quantity, we can also find the relative phase of each result — a subject dealt with elsewhere in this article.

Admitting Everything

We need a way to calculate admittances. One that is relatively simple and well-suited to computers (because it uses a large number of repeated calculations) is called the indefinite nodal admittance method. This involves the formulation of a set of equations which describe the currents and voltages at each node of a circuit.

The simplest way to explain this method is to consider the example shown in Fig. 2 — a basic two port passive circuit. The nodes and components have each been labelled to show their position in the circuit. A set of simultaneous equations to describe the circuit will show currents summed at each node in terms of admittances and voltages measured with respect to an external reference (for example, ground):

\[
\begin{align*}
I_1 &= (V_1 - V_2) Y_{12} + (V_1 - V_3) Y_{13}
I_2 &= (V_2 - V_1) Y_{12} + (V_2 - V_3) Y_{23}
I_3 &= (V_3 - V_1) Y_{13} + (V_3 - V_2) Y_{23}
\end{align*}
\]

These equations can be rewritten in matrix form (Fig. 3).

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} =
\begin{bmatrix}
(Y_{12} + Y_{13}) & -Y_{12} & -Y_{13} \\
-Y_{12} & (Y_{12} + Y_{13}) & -Y_{23} \\
-Y_{13} & -Y_{23} & (Y_{13} + Y_{23})
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3
\end{bmatrix}
\]

Fig. 3 Indefinite nodal admittance matrix of sample circuit.

The 3 x 3 matrix of admittance values is the nodal admittance matrix that we require and we can observe certain properties of the elements, \(Y_{nm} \) where ‘n’ is the column and ‘m’ the row number:

- \(Y_{nm} = Y_{mn} \) (the matrix is symmetrical);
- row and column elements sum to zero;
- \(Y_{nm} \) equals minus the admittance between nodes ‘n’ and ‘m’;
- \(Y_{nm} \) equals the sum of all admittances connected to node ‘n’.

Using the above rules, the formation of the nodal admittance matrix is a trivial task on a computer — and the rules are generalisable. The problem lies in properly arranging the data in the first place, but before discussing that we must continue the explanation of the analysis method. A good understanding of this is imperative in order to write useful programs.

So far, we have not taken the frequency dependent component of impedance — reactance — into account. Capacitive reactance is calculated as \(1/2\pi fC \) and inductive reactance as \(2\pi fL \). To incorporate these elements of impedance, we could produce a nodal admittance matrix for a range of frequencies sufficient to give an accurate picture of circuit behaviour. This is easy to program and memory-efficient but the calculations involved take a long time. An alternative technique, which is quicker but memory-inefficient, is to set up a capacitive and an inductive matrix using \(2\pi fC \) and \(1/2\pi fL \) as respective admittance figures. At any given frequency, actual admittance is derived by multiplying each matrix (that is, each element of each matrix) by the frequency and adding the two matrices. The result is a generalised indefinite nodal admittance matrix for the purely reactive aspects of the circuit. Mathematically, this is a matrix of imaginary numbers. The corresponding real matrix represents the resistive characteristics of the circuit.

Node Trouble

A circuit with any number of nodes may be represented by an indefinite nodal admittance matrix. The next stage in the analysis is to convert this indefinite matrix into a definite one. This is done simply by assuming one node to be at the same voltage as the reference node — in effect, by defining one node as ground, the reference point for all other nodes.

In the matrix representation, this simply involves removing the row and column corresponding to the
voltage we are setting to zero. In the basic example above, we might assume \(V_3 \) to be zero with the result that the matrix would now look like this:

\[
\begin{bmatrix}
1 & (Y_{12} + Y_{13}) & -Y_{12} \\
1 & -Y_{12} & (Y_{12} + Y_{23})
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
= \begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
\]

Fig. 4 Input-output conditions.

Note that rows and columns no longer sum to zero, but that the definite nodal admittance matrix could have been obtained from the indefinite matrix in which rows and columns did sum to zero by applying simple row and column additions. The process effectively demonstrates Kirchhoff's laws, and results in a matrix — in the general case — which can easily be further reduced.

The rank order two matrix shown in Fig. 4 can be interpreted as a statement of the input-output characteristics of the network. \(I_1 \) and \(I_2 \) are the input and output currents, previously ignored by assuming only internal currents and voltages. This type of matrix is, in general, what we are after since it expresses the equivalent circuit parameters of the original network.

The two port equivalent of more complicated networks can be derived by reducing the appropriate definite nodal admittance matrix. The process should be well-known to anyone familiar with the techniques for solving linear equations, and for further mathematical details readers are referred to any comprehensive text on matrices and/or linear equations.

The actual reduction method used here combines Gaussian row reduction with an application of what is known as Cramer's rule. Also involved — notionally, at least — are Kirchhoff's laws which allow us the simplifying assumption that the sum of currents in all nodes of a closed circuit will be zero. This means that we can select input and output nodes as appropriate and set every other current value to zero. It helps with the manipulation if we make the input and output nodes 1 and 2 right from the start.

Let's assume we have a five node circuit which provides a definite admittance matrix of the order \(4 \times 4 \) with elements \(Y_{ij} \). Thus:

\[I_1 = Y_{11} V_1 \\ I_2 = Y_{12} V_1 - Y_{13} V_3 \\ I_3 = Y_{21} V_1 - Y_{23} V_3 \\ I_4 = Y_{31} V_3 - Y_{32} V_3 \\ I_5 = Y_{41} V_3 - Y_{42} V_3 \\ I_6 = Y_{51} V_3 - Y_{52} V_3 \\ I_7 = Y_{61} V_3 - Y_{62} V_3 \\
\]

and then remove the k-th row and column. Assuming that nodes 1 and 2 have been chosen as input and output nodes, we can repeat this replacement in descending order of nodes until we have a simple \(2 \times 2 \) matrix which is the two port admittance matrix we are looking for.

In general, any circuit will contain reactive and resistive elements. Indeed, any real component will be both reactive and resistive to a degree — a capacitor has its equivalent series resistance, a wirewound resistor will clearly be inductive, even a length of wire will display some capacitance. Readers may be interested in pursuing this matter by reference to the series of articles by John Linsley Hood which appeared in ETI in 1985.

An actual program for nodal analysis will allow the addition of a small capacitance of about 1-2pF in parallel with each resistor. This can be done by adding a notional capacitor to the reactive matrix in the same position as the resistor since we are using admittances. A resistance of about 1-10R might also be included in series with every inductor. The listings provided are not complete programs and are intended to be incorporated into programs written by readers.

Routine Treatment

Listing 1 is a routine to perform basic complex arithmetic. Complex arithmetic utilises so-called 'j'-notation (at least, it does if you're not a mathematician, for whom j-notation becomes i-notation). The central idea is that the phase changes in AC signals introduced by reactive components can be represented by use of the square root of -1. This number is purely imaginary and can only be combined with real numbers to form so-called complex numbers. A complex number is actually no more than a two-dimensional number in which the real part can be thought of as indicating a position along a single horizontal axis at the centre of which we conventionally described as magnitude (or amplitude) and of as indicating a similar position along a single vertical axis. In this way, any position on a plane can be associated with a unique complex number of the form \(a + jb \). The co-ordinates of the position on the plane are, of course, a and b. Fundamental AC signals can also be represented as two-dimensional quantities — conventionally described as magnitude (or amplitude) and phase. These two are actually equivalent to polar coordinates rather than cartesian ones, but the principle is the same.

The square root of -1 itself can be thought of as a single unit along the positive direction of the vertical axis of our plane. A single unit in the opposite direction would be -j. These two, j and -j, represent 90° phase differences with respect to quantities in the horizontal direction. Purely reactive components produce such phase changes so that, for example, the AC current through a capacitor reaches its maximum before the voltage across it. With a resistor, voltage and current change simultaneously — or in phase. With the capacitor, current leads voltage by 90° and with an inductor, currents lag behind voltage by 90°.

Listing 1 Complex arithmetic.

We need to take account of these phase changes in determining the impedance of a network. Impedance is usually given as a single figure in ohms, but in fact it is a complex quantity whose real part represents pure resistance and whose imaginary part represents pure reactance.
FEATURE: Micro-aided circuit design

tance. Only the latter is associated with phase changes and only the latter varies with signal frequency.

Very often we will need to combine two complex quantities, expressing impedance or admittance. The rules for handling such combinations follow from the graphical representation of them (or, indeed, from the fact that $j^2 = -1$). If $Z = a + jb$ and $W = c + jd$, then:

$$Z + W = (a + c) + (b + d)j$$

$$Z W = (ac - bd) + (bc + ad)j$$

and the magnitude and phase of Z are, respectively, $\sqrt{a^2 + b^2}$ and $\arctan(b/a)$. Magnitude and phase are dealt with in Listing 2.

Listing 2 Complex phase and magnitude routines

Listings 3 and 4 are routines to handle the reduction of matrices. Matrices are, in effect, equivalents to arrays. The matrix element A_{ij} can be identified with the array element in a BASIC program $A(i,j)$. Matrix manipulation is therefore relatively easy in BASIC. Listing 4 operates about twice as fast as Listing 3, but it is not structured.

Both routines operate on the complete definitive nodal admittance matrix of a circuit. That is, the input matrix is assumed to have complex elements and to have already had the 'ground node' taken into account. In fact, rather than have one matrix with complex elements, the routines use two matrices — $Yreal(i,j)$ and $Yimag(i,j)$. The routines need to know how many nodes the matrices have (the variable is 'nodes' and each matrix will be of order 'nodes' x 'nodes'). Matrix elements are held in the relevant array elements and Listing 3, at least, calls the procedure PROCComplex from the routine in Listing 1. The result of the 'condensation' process is placed in a reduced matrix with elements $Yreal$ (or $Yimag(1,1)$, $Yimag(1,2)$, $Yimag(2,1)$ and $Yimag(2,2)$.

Listing 3 Matrix reduction routine.

Listing 5 Impedance and gain calculations.

Listing 5 makes use of PROCComplex to calculate input and output impedances and voltage and current gain of the circuit under examination. The routine requires two arrays — $Yreal(2,2)$ and $Yimag(2,2)$ — which contain the four-port admittance parameters of the circuit derived in Listings 3 and 4. The output impedance is given by 'Zoutreal' and 'Zoutimag' which give the resistive and reactive parts. Input impedance is given by 'Zinreal' and 'Zinimag'. Voltage gain is given by 'Avreal' and 'Avimag' and current gain by 'Aireal' and 'Aimag'. Magnitude and phases can, of course, be found by further manipulating these results with the routine in Listing 2.

Fig. 5 Superposition and proportionality define linearity.

Next month we will look at equivalent circuits for active components including bipolar transistors, ideal transformers, transmission lines, op-amps and FETs. Following from that, we'll look at methods of writing own programs and coping with the lack of memory of most home micros — a discussion which will cover such topics as editors, data files and program overlay.
JOBS FOR A CHANGE?

Exchange Resources is an employment agency for people in electronics and computing. It was launched at the British Electronics Week exhibition by the group Electronics for Peace. Tony Wilson, their coordinator, explains how the agency came into existence and what makes it different from existing employment agencies.

Since Electronics for Peace was founded in 1982, people have been writing in and asking for advice on how to avoid working on military equipment. Many have sent their CVs in the hope that we might find them suitable work. Similarly, response to articles in ETI and other media has demonstrated that there are many people already working in or about to enter the electronics and computing industries who are concerned about the effects their work might have on other people, but who find it very difficult to obtain suitable work without military or other undesirable content. This is particularly obvious when I visit universities, polytechnics and sixth forms.

The picture is no better on the company side of the fence. One company I know has twice developed high tech servo mechanisms for the entertainments industry only to have the MoD take over. Rather than work with the MoD, this company gave their patented rights away. In another case, artificial limb development was delayed for years through lack of funds until the all-powerful MoD took an interest.

One of the effects of this is that people become alienated from their work and end up cynical, inefficient and dissatisfied. Companies find it hard to get venture capital for commercial products, and cannot patent anything without the very serious risk that the MoD will intervene "in the national interest".

I'm not arguing for no defence. I believe that this country needs a strong and effective defence — indeed, I work as a consultant to defence companies. I believe I have the right to work in the defence industry and to criticise and try to change it. Our industry is rapidly going down the pan because of the enormous amounts of government money devoted to military research and development. It is well known that military investment is the least productive in terms of jobs, sales and growth, yet the trend continues and our exports decrease as our exports decrease.

We don't need so much defence. If we spent one tenth as much as we do, not only would it be more effective than the shambles we have now (useless Nimrod, useless Trident, fiasco Falklands, et al), but there would be an extra £17,000,000,000 per year in R & D money alone to boost our education, industry and other essentials. That is the only way this country can be strong — not through military posturing but by real economic and social strength.

One of the aims of the new agency is to raise awareness in our industry of these issues. In my work in the defence industry I see people afraid to discuss the issues openly, not only at work but outside too. I want to see people talking openly to decide what kind of future we all want. Government needs a lead from us.

In Good Company

Exchange Resources already has a large number of companies willing to use our services. We are now busy taking on all who we can. I see the future according to the amount of work they have and their employment policies. People who approach us for work will be asked to describe the sorts of things they are not prepared to do as well as what they hope to do. We will then try to match people with companies. There are some existing agencies who are prepared to work with us in helping to place people, and this is going to be extremely useful in our early days when resources will be stretched. It should mean that we will be at least as effective as the average agency, and possibly more so. For those who want it, there is a counselling service to help clarify issues and develop confidence in taking decisions (it is not an advice service, although advice will be available).

Existing agencies charge from 10 to 20% of the first year's salary for anyone they place — this can range from less than £1,000 to over £10,000 and would typically be around £2,000. Exchange Resources in its first year of operation will charge only a registration fee of from £50 to £2,000 depending on the size of company and the type and quantity of staff required. So, if we place just one person with a company, they pay no more in registration fees than they would otherwise pay, and after that they effectively get any other placements free.

There are several good reasons for us doing this. Firstly, we don't need to advertise in the same costly way as do the other agencies. There are magazines and newspapers which are willing to give us editorial
space and once people know we exist they will contact us. Secondly, we regard current fees as extortionate and a burden on British industry. We also want to make it cost effective for people to care about their work and its effects on the world. And thirdly, we’re not yet sure of the market, how easy it is to become established, and our effects on it. During this first year of operation we will be appraising all aspects of our business so that we can set more appropriate rates in our second year. In this we will be aided by a post graduate research worker whose thesis will be based on us. He will be closely involved from the beginning and will give us regular feedback on our activities.

People who normally work as sub-contractors will receive the usual agency service — they will work via their limited companies and the agency will take a (moderate) slice off the top of their earnings. In addition — ad this is surely unique — we will offer the alternative of working directly for the client, with the agency taking a once and for all fee. There are pros and cons involved for both contractor and client, and these will be spelled out before any agreement is reached.

Of prime importance to the smaller client companies, co-operatives and sole trader partnerships is our business-to-business service. Any organisation or individual registered with us, provided they have paid their annual fee, will be able to contact us (telephone, telex, electronic mail or facsimile) for assistance in finding a business service. For example, a small software house might need a specific programming skill for a short job, or an electronics company might need inspection and rectification on a large number of PCBs immediately. We will search our database, contact likely people and put them in touch — very quickly. There might be a small fee for this, say £5 to £20, depending on the amount of time used and the urgency. This service will be developed into a major way of working for us and our clients — thus building up helping relationships between companies and people who share a concern for the way they work and, of course, helping to keep costs down. Very soon this service will be extended to include help with starting new ventures.

There are a number of independent consultants in organisational and personal change associated with the agency, throughout the country. They will work with us to improve efficiency in those client companies who require help, and to help staff clarify ethical and inter-personal issues for themselves.

Finally, I should mention that the agency is intended to be in profit in its second year and that all profits generated will go towards furthering the aims of Electronics for Peace and the agency.

In addition to finding staff and positions for client companies and individuals, Electronics for Peace is also trying to find people to run several of its own projects.

The first project is the design and development of a three-waveband (SW/MW/FM) radio that can be assembled and maintained in Eritrea using the resources available locally. There is a pressing need for each village to have its own radio for news and education. The design arrived at must be battery operated with very low power consumption or use a combination of rechargeable batteries and solar power. Provision for an add-on tape module would be useful. The case should be made from PVC and will be produced in Eritrea using a forming tool which will also have to be designed. Those producing the radio design will also have to provide full instructions on assembly and test and on maintenance once in use. If anyone feels they have skills which would be of use on this project and have time available to work on it, they should contact the agency at the address given below. It is hoped that at least one person will be able to go to Eritrea when the project is complete to see the radios being assembled and used.

The second project is the formation of a full-time monitoring team to build up a database on non-ionizing radiation emissions in the UK and their effects on people. EFP hope to assemble the core of a team and then raise funding for the work. It is intended that the monitoring should start as soon as possible and preferably within six months. Again, anyone interested should contact the agency at the address below.

Electronic for Peace would also be interested to hear from anyone who has an idea for a project which uses technology in a socially beneficial way.

Tony Wilson and Exchange Resources can be contacted at Townsend House, Green Lane, Marshfield, Nr. Chippenham, Wiltshire SN14 8BR, tel 0225-891770.

Discussions have taken place between ETI and Exchange Resources with a view to our publishing a short, regular feature on jobs available through the agency. We would be interested to hear your views on this proposition. ETI
THE ETI DIRECT-i-ON

Paul Chappell reveals how you can be a magnet for ions and, amid a welter of puns, produces possibly the smallest ionizer ever.

Many claims have been made for the benefits of air ionization. Supposedly, it can cure hay fever and bronchitis, and speed up the healing of burns. Ionization is said to improve concentration, reduce susceptibility to colds and flu and turn insomniacs into deep sleepers. Some of the effects are genuine and well documented; others should probably be taken with a muddling to large pinch of salt.

Air ionization is a natural process, and both positively and negatively charged oxygen molecules are abundant in areas far removed from the main centres of population. Mountain tops are the romantic locations used as an example by the health magazines, but similar concentrations can be found in the middle of Dartmoor — or the Sahara desert, for that matter.

The lack of ions in man-made surroundings is easily measurable — it is often found to be less than the natural concentration by a factor of 100 or more. This depletion of oxygen ions is associated with pollution, modern buildings and the use of synthetic fabrics and furnishing materials. It has been blamed for everything from listlessness, depression and absenteeism to violence and murder (See The Ion Effect by F. Soyka for the gruesome details).

Restoring The Balance

Experiments in restoring the natural ion balance have led to the conclusion that negative ions are the essential ‘vitamins of the air’. Positive ions in high concentration have an initial stimulating effect which is followed, after a few hours, by fatigue and possibly headaches. Negative ions have been found to give more profound benefits without any side effects, so air ionizers aim to produce these.

The method used is to apply a high negative voltage, several kV in fact, to a sharply pointed emitter. The negatively charged air is repelled from the emitter resulting in an ‘ion breeze’ you will feel if you put your hand close to the ionizing point.

There have been several published designs for air ionizers over the past few years, but we achieved by running the oscillator at a fairly high frequency.

In the present design, the ladder runs directly from the mains. This cuts out the first two stages of the usual ionizer circuit. Larger capacitors are needed — 10nF as opposed to 100pF or so — but they are not much bigger in physical size. As the circuit uses no active components at all, it is almost certain to work first time, testing is easy, and the final circuit can be run continuously for years without problems.

| The DIRECT-i-ON |

make no apologies for offering another.

Previous circuits have, almost without exception, been split into three stages. First of all, the main voltage is reduced to 12V or so, then rectified and smoothed. Next there is an oscillator driving a transformer to step the voltage back up to a few hundred volts again. Finally, there will be a ladder of rectifiers and capacitors to step the voltage up to a few kV. The justification for this cumbersome process appears to be little more than the reduction in size of the ladder capacitors, making it easy to work with small capacitors, which are much less expensive than large ones.

Rectifiers

Another advantage of running the circuit at 50Hz instead of 50kHz or so is that 1N4007 rectifiers can be used. Ordinary rectifiers are not too keen to work at high frequencies, the main reason being their painfully slow reverse recovery time, which begins to degrade circuit performance at frequencies as low as 2kHz in the case of a 1N4007. Readers may be interested in the results of applying a sine wave of increasing frequency to the circuit shown in Fig. 1.

ETI JULY 1986
At low frequencies, the output is a half-wave rectified sine wave, as you would expect.

At 2kHz, a small reverse conduction spike is already visible, and by 10kHz conduction does not stop until the input is at about -1.8V. From then on, the situation gets progressively worse. By 1MHz, whatever the 1N4007 is doing, it certainly isn’t rectifying!

Construction

The 1N4007 rectifiers are mounted vertically on the board in the four central rows of holes and the capacitors are mounted in the outer rows as shown in the component overlay (Fig. 2). Figure 3a is an end-on view of the board with the first rectifier and capacitor in each row shown. All the rectifiers are mounted the same way around.

When putting in the capacitors, you will find it easier to put them all in place at once and hold them with a rubber band while soldering, rather than trying to solder them in one at a time. If any capacitor seems a tight fit, just turn it around — sometimes the leads are not quite central.

After soldering in the resistors, insulate about ½" of each lead of the neon bulb. Solder the bulb in place and, if you are using the recommended case, bend the leads so that it lies roughly parallel to the board as shown in Fig. 3b. If you are using a larger case, you may prefer to let the neon poke through, or to use a complete neon lamp assembly.

Assembling The Case

Drill two holes in one end of the case (Fig. 4). If you are using the recommended case, follow the instructions with regard to positioning. If you use a larger case, you can easily determine your own hole positions.

To position the holes accurately, you will find it easier to drill a small hole first, then widen it out with a larger drill to the correct size. A small hole is also needed at the top of the case, half way between the two sides and 15mm from the undrilled end (Fig. 4).

This hole can be made with a 1mm drill if you have one, otherwise you can hold a soldering iron to the lead of one of the 2M7 resistors and use the hot wire to melt the hole. The hole needn’t be perfectly tidy as it can be covered up later, but don’t let the soldering iron touch the case.

The hole is meant for the actual emitter — a length of pointed wire. You may, of course, use an emitter of your own devising. As long as it includes sharp points and is conductive, practically anything will do.

The neon cap is glued in place over the left-hand hole of Fig. 4. A surround may be glued around the 1mm hole in the top of the case to obscure the emitter. Use quick

![Fig. 2 Component overlay for the ionizer.](image)

![Fig. 1 The performance of the rectifier diminishes with frequency.](image)

![Fig. 3 End views of components on PCB.](image)

![Fig. 4 Drilling the T3 case.](image)

PARTS LIST

- **RESISTORS** (¼W, 5% unless stated)
 - R1 680k
 - R2 220k
 - R3-R7 2M7 ½W

- **CAPACITORS**
 - C1-C30 10nF 630V polyester
 - 1N4006

- **SEMICONDUCTORS**
 - D1-D30 1N4007

- **MISCELLANEOUS**
 - Neon bulb and suitable cap; emitter surround; length of mains lead; insulated connecting wire; insulation; 10nF 100V capacitor and neon bulb for tester; (71x46x22mm) epoxy resin; mains plugs; optional emitter (for example, PB22 phosphor bronze rifle cleaning brush available from gunshops).
setting epoxy resin for all the gluing operations.

Join the five 2M7 resistors together by twisting the leads, soldering and then trimming (Fig. 5a). Glue the resistor assembly to the inside of the top of the case with lead A, and trim the lead (Fig. 5b). Cover the resistor assembly and exposed leads with epoxy for insulation.

Fig. 5 The resistor assembly is mounted in the case.

Final Assembly

First, check the board carefully. Make sure that all the rectifiers are the right way around and all the components are in the correct position. Check the track side of the board for solder bridges, and also for excess flux residue, which could provide a leakage path — clean it off if necessary. Solder the free end of lead B — the wire jointed to the 2M7 resistors — to point X in Fig. 2.

Remove about 3/16" of the white outer sheath of the mains cable and about 3/16" of insulation from the conductors and solder the live (brown) wire to point L and the neutral (blue) wire to point N on the overlay. Be sure to get the mains lead connections the right way around, and don't remove more of the outer sheath than is absolutely necessary.

There is no room for mounting screws in the recommended case, so the PCB has been made for a tight friction-fit into that case. First of all, cut the corners of the PCB as shown by the dotted lines on the overlay. Feed the mains cable through the right-hand hole (Fig. 4a) and gently ease the board into the case with the component side facing outwards. Push down on the board gently until it is held in place by the pillars at each corner of the case. Adjust the position of the neon bulb so that it is behind the neon cap, but don't try to push it through the hole. Screw the base of the case in position, attach a plug with a 1A fuse to the mains lead, and straighten the emitter wire so that it points vertically upwards. Using a pair of side cutters with the flat face upwards, cut a small amount of wire from the end of the emitter. Using the cutters 'upside down' should leave the emitter wire with a sharp point at the end.

A larger case would be easier, if less elegant. The board can be fixed in a larger case with three or four blobs of epoxy, after testing.

Testing

A simple tester can be made from a 10n capacitor and a neon bulb (see Fig. 7). Plug in the ionizer, and, if all is well, its own neon lamp will glow and a few seconds later you will hear a soft hiss from the emitter. If you hold one lead of the tester and move it towards the tip of the emitter, the neon bulb on the tester will begin to flash when its free lead is about 3/16" from the emitter, and will flash faster as it is brought closer. The flashing is not very bright, so it won't show up in direct sunlight.

If the ionizer's neon does not light, unplug the unit at once and touch the mains plug to the emitter to remove any residual charge on the capacitors. Check the mains connections, plug fuse and wiring of the 220k resistor and neon lamp.

If the ionizer's neon glows, but the emitter does not hiss and the tester's neon does not flash, retrim the emitter wire and try to get a sharper point on it. If there is no sign of activity at the emitter at all, check again for a solder bridge between tracks, one of the diodes back to front, a short circuit in one of the capacitors, or a dry solder joint.

Finishing Touches

After testing, discharge the ionizer and remove the base. Take out the PCB and spray a few coats of anti-corona compound onto the back. If you do not have any anti-corona spray, a smear of epoxy resin will do instead.

Place the board in its case. Now is the time to glue it in position. If you're using the recommended case, press the PCB down until the tops of the capacitors are about 3/16" below the rim of the case (Fig. 6). Run some glue onto the corners of the board and put some around the mains lead where it enters the case. For the sake of safety, the mains lead must be held firmly in place, so use a strain relief grommet, too, if you have room.

If you've got plenty of epoxy, fill the neon cap with it and cover the neon bulb. This gives a pleasant, diffused light when the neon glows.

Now, screw the case together. Fill the emitter surround with epoxy (this is not essential, but it improves the appearance) and trim the emitter wire to about 3/16" above the top of the surround (making sure to get a fine point on it).

Life With The Ions

Although some of the benefits of air ionization may be exaggerated, the action itself is real enough. One consequence of using an ionizer is that the ions attach themselves to any dust, dirt or pollen particles that happen to be floating around. The dust then becomes charged and will be attracted to the nearest natural surface, which by sod's law will be your expensive new wallpaper.

If you intend to run the ionizer within a foot or so of a wall, cover the wallpaper in some way. Otherwise, try to position the ionizer towards the centre of the room where any charge dust will end up on the floor and be swept up during normal household cleaning.

The action of precipitating particles from the air is of immediate benefit to asthma and hay fever sufferers, no matter how beneficial the ions themselves may be. If you live in the country and think the air is pure and clean anyway, just try running the ionizer close to a sheet of white paper for a few days!

Improvements in health due to ionization occur over several days, rather than at the first breath of ionized air. The best position for an ionizer is by the bedside, where
HOW IT WORKS

The circuit is a standard Cockroft-Walton ladder network which steps up the mains voltage to ~10kV or so (open-circuit voltage) (Fig. 7). The operation of this type of circuit was described in detail in ‘Designer's Notebook 1’ in ETI, April 1982. The idea is that charge is transferred backwards and forwards from one row of capacitors to the other on each mains cycle, but always moving further up the chain because of the action of the rectifiers. When all the capacitors are fully charged, there will be a voltage across each of them equal, in theory, to the peak-to-peak voltage of the mains.

In practice, the regulation of this type of circuit is very poor, and the full voltage will never be measured because of leakage, corona discharge, and so on. The tiny ionizing current is quite enough to drop the output voltage to about ~4kV, which by a strange coincidence is the ideal output voltage for an air ionizer. Voltages above this level tend to produce ozone rather than ions, whereas voltages much lower will not ionize the air efficiently. Touching the emitter directly is enough to reduce the voltage to almost nothing.

Having said that, a word of warning is in order. Although the circuit as a whole has a very high output resistance, individual capacitors don't, so please take care when you are testing the circuit. The capacitors will retain their charge for some time after the ionizer is unplugged, and a painful shock can be received from the back of the PCB if you are careless. The shock will be harmless to the average healthy ETI reader, but please don't take any risks if you have a weak heart or a pacemaker. The ionizer can be discharged by touching the mains plug to the ionizing point for a few seconds, and just to be certain you can run the mains plug down the line of diode connections on the PCB.

Fig. 7 Abbreviated circuit of ionizer and a simple tester.

leaves, it will be drawn towards you. In the dark you may be able to see a faint blue glow around the leaf tips — this works better with some plants than with others, so try several different types. The plants don't mind at all, by the way, and often seem to thrive on it!

Got My Ion You

Carefully remove about 6" of insulation from some stranded wire, being careful not to break any of the strands. You will probably find it easier to remove the insulation in short lengths rather than all at once. Cut the wire 1" below the end of the insulation so that you are left with 7" of wire — 6" bare and 1"

This project is simple enough to cause few problems to the constructor wishing to do everything themselves. The biggest problem is undoubtedly the 10n 630V capacitors which are intended to be Plessey/Arcotronics Minibox polyester types. These are probably unobtainable for the constructor but can be replaced, especially if you do not intend to use the existing PCB. Suitable replacements include 10n 600V polyesters from Greenweld, 443 Millbrook Road, Southampton S01 0HX (tel: 0703 772301/783740) and almost physically identical metallised polycarbons from RS Components, Marsh Lane, Crewe, Cheshire, Cheshire CW1 4LE. The order code for the 10n 630V version (supplied in packs of five) is 113-673. A variety of axial capacitors are available which could be used, but for reference the dimensions of the recommended capacitors are 13x9x4 mm (LxHxW) with pin diameter of 0.6mm, spacing of 10mm and length of 6mm. The key point to remember if using a replacement is to ensure that discharge cannot occur between capacitors. The recommended case is available from Greenweld — or from Farnell, through Trilologic, 29 Holm Lane, Bradford BD4 0QA (tel: 0274 684289). The Verobox 301 is slightly larger and is widely available as are any number of ABS boxes capable of holding the circuit. The box must be made entirely of plastic (with the exception of the fixing screws). Neon bulbs are stocked by Maplin and complete neon indicators are widely available. A complete kit of parts can be obtained from Specialist Semiconductors, Founders House, Redbrook, Monmouth, Gwent for £9.50 + 60p postage and packing. The PCB alone will become available from our PCB service as soon as normal service is resumed.

insulated. Use this as the emitter. When the ionizer is turned on, the emitter seems almost alive and will leap about when you put your hand close to it.

Ion Brew

Fill a glass jar with cigarette smoke, then carefully invert it over the ionizer so that the emitter is inside the jar. Within seconds, the smoke will disappear! This is one of the best demonstrations of ionizer action and with a large jar the effect is quite dramatic. The smoke hasn’t disappeared, of course, it is still sticking to the jar — but the air inside the jar is perfectly clear.

Ion A Feeling

Wear rubber soled shoes. Touch the ionizer emitter for a few seconds until your body is thoroughly charged up. When your hair stands on end, that’s just about enough. Then give everyone you meet a jolly electric handshake. Just think, you could lose all your friends in a single evening! (A meaner trick still is to charge up a glass of water or a pint of beer... even your family won’t speak to you after that!)
This simple circuit and software, developed by Peter Timothy and Jonathan Rabet provides a painless but versatile first step in robotics.

This interface was developed with the help of the Microelectronics Education Programme, Wales, and provides a means of controlling up to four low-voltage DC motors from a Centronics-type printer port. The motor supply is variable between one and ten volts, so the interface can be used with most common types of model motors, including those made by Lego, FischerTechnik and Robotix.

The interface is fitted with connections for the BBC microcomputer range and can be powered from any suitable 12 V supply, including the BBC micro's auxiliary output. Although software for the BBC is included in this article, it would be an easy matter to adapt the programs so that the interface could run off any computer with an 8-bit data output. Using a printer port would allow handshaking to be incorporated as an elementary form of simple feedback.

We'll get down to building the interface without further ado.

Construction
It is best to start by constructing the motor connector and cable, since this requires the use of potting compound. It can be set aside to harden while the rest of the circuit is being completed. The method of construction is shown in Fig 1. The leads from the base of the PCB-type screw terminals pass through holes drilled in the potting box and will be firmly anchored by the potting compound once it is set.

The completed assembly is small enough to mount on almost any model or robot. At least one metre of ribbon cable should be used since this will allow the cable to stretch from the interface box, normally situated alongside the computer on a bench or table, down to floor level. The screw terminals provide an easy method of connecting up most types of motor and they will accept unmodified Robotix motor leads. The PCB end of the cable will eventually be soldered into eight holes (labelled A to H) on the circuit board.

The printer port cable assembly is constructed as shown in Fig 2. Only nine of the 20 wires are actually used, but the fitting of the IDC socket is made easier by leaving all the 20 wires intact at that end. The other end of the cable must be dressed as shown. This end will eventually be soldered into nine holes (labelled D0 to D7 and GROUND) on the circuit board.

If the power for the interface is to be obtained from the auxiliary socket of the BBC micro (the one used for disc drives), then the leads and connectors, shown in Fig 3, must be made up. This allows the interface to obtain 12 V from the computer without disconnecting other devices. If the interface is to be powered from any other supply, it should be capable of delivering at least 2 V more than the motor voltage at about 7 A DC.

The main circuit components are mounted on a single-sided printed circuit board (Fig 4). Solder the 11 wire links into position on the compound side of the board. Next insert the IC sockets (if you are using them), making sure that all the pins pass through the holes in the board. Insert the diode, D1, and capacitors C3, C4 and C5, making sure that each is the right way round. Solder these components in place.

Insert and solder resistor R1 and capacitors C1 and C2. Next insert and solder the variable resistor RV1, noting that the hole nearest to R1 is for the centre pin. Solder IC1 and 2 into position, taking care that the flat, all metal surfaces are nearest the top edge of the PCB. Now insert and solder the eight relays. These are all identical and can only be fitted one way round.

Solder the wires of the printer port cable to the PCB, then the motor connector wires and the circuit.
power leads from the 2.1 mm socket.

Before inserting IC3 and IC4 into their sockets, apply 12 volts DC to the board and check that the voltage regulators are working correctly. IC1 may be checked by measuring the voltage between the links marked ‘X’ and ‘Y’ on Fig. 4. This should be 5V. IC2 may be checked by measuring the voltage between link ‘X’ and point ‘Z’ on the overlay. By adjusting RV1, this voltage should be variable from about 1.25V to 9.75V. Now adjust RV1 until the voltage matches the rating of the motors to be used with the interface. Once satisfied with the operation of the voltage regulators, remove the power and insert IC3 and IC4 into their sockets.

Software

The programs included here have been written in BBC BASIC, a dialect of BBC BASIC called MEP CONTROL BASIC, BBC 6502 Assembler and Logotron LOGO. They will enable the interface to be used with almost any BBC micro. The BBC BASIC program is menu driven and allows motor sequences to be recorded and repeated (Listing 1). The three programs in other languages are simpler but can be incorporated into more complex structures to enable sophisticated control of up to four motors.

In general, motor control is achieved by writing to the printer port of the computer to which the interface is attached. The idea of using the printer port is to allow an existing user port to provide digital inputs — for example, in case an elaborate robotics system is being contemplated.

On the BBC, the eight lines of the parallel printer port are written to via location FE61H. Two bits are needed for forward and reverse and are decoded as shown in Fig. 7. The more significant of the eight bits repeat the Fig. 7 pattern for motors 2, 3 and 4.

BBC Basic

On running the program (Listing 1), the user is presented with a menu consisting of three options: PROGRAM, RUN or MANUAL (lines 70 to 290). Selecting the MANUAL option results in direction to PROCmanual. The screen displays the message: MANUAL CONTROL. The red function keys are used to control up to four motors connected to the interface, each key switching one relay when pressed and 9 returning program control to the main menu.

Using INKEY with a negative argument (lines 790-870) tests for specific key presses and allows simultaneous control of more than one motor.

If the PROGRAM option is selected from the menu, PROCprogram is jumped to. This also detects presees of the function keys and writes to FE61H to drive the motors. This procedure differs from PROCmanual in that the length of time a particular combination of keys is pressed is stored in the array, step%(X). The contents of FE61H at that time are stored in the array, step%(X).

Selecting RUN from the main menu results in a jump to PROCrun. This procedure puts up a secondary menu, allowing selection of one of two run options or a return to the main menu. Option one runs the programmed sequence of operations as they were entered by the user — including any pauses when FE61H was at zero and no motor was on. The second option filters out these ‘wait states’, producing a smoother execution of the pre-programmed sequence. Both of these options invoke PROCrun, which loops through the array, step%(X), and uses the associated variable, step%(X), to provide a delay. If the parameter passed to PROCrun is FALSE, all occurrences of step%(X) are skipped over.

Control Basic

This is an example of a program written using a BBC Basic
HOW IT WORKS

Fig. 5 Circuit diagram of the interface.

Two voltage regulators are used in the interface (Fig. 5). IC1 takes the incoming 12 volts and series regulates it down to 5 volts. This fixed 5 volts is then used to power the logic (IC3), the relay driver (IC4) and the relay coils. IC2 is another series regulator, but this time it is a variable output device. Its output is determined by the voltage applied to the ADJUST pin. This voltage being derived from a potential divider, formed by R1 and RVI, connected across the output. The output voltage is adjusted to suit the motors being used. All five capacitors are for decoupling. Diode D1 protects the regulator should a reverse polarity supply be accidently connected to the interface.

The computer generated signals to control the motors are passed from the computer to the interface via the printer port. Eight data lines (DO to D7) are available at this port and, since each motor used requires a two bit control signal, a maximum of four motors can be controlled simultaneously without using multiplexing techniques. In common with a large number of industrial motor control systems, bit 0 of the signal determines if the motor is on or off, while bit 1 determines the direction of rotation of the motor. The truth table for this scheme is shown in Fig. 6.

The chosen method of implementing the control scheme is shown, for one motor, in Fig. 7 and its new truth table is shown in Fig. 8.

IC3 is a quad 2-input XOR-gate. IC4 is an octal Darlington driver used to energize the eight relay coils. This device acts as a buffer between the computer's data lines and the relay coils. A buffer is required because each coil takes approximately 40mA when energized — enough to overload a data line or an XOR output.

The relays are ultra-miniature, single-pole change-over, with contacts rated at 24V, 1A DC. Most model electric motors take much less than 1A even on start-up under load.

extension (Listing 2). This extension allows programs to be simply written which access the Printer and user ports of the BBC microcomputer.

The example program controls a single motor using function keys F0 and F1. The Control Basic keyword, BIT, permits each bit of the printer port to be controlled individually.

Machine Code Motor Driver
The assembler program (Listing 3) will produce a machine code driver for the interface. It can be assembled at any suitable address and occupies 42H bytes. Once assembled, it can be used by POKEing the motor number (1, 2, 3 or 4) into location 70H and the motor action (0=off, 1=forward, 2=back) into 71H, then calling the driver at the address at which it was assembled using CALL.

The program as listed contains a BASIC routine to test the machine code driver. If this program is run, the assembled driver can be saved to disc or tape with

*SAVE DRIVER 3000+42
then load back with

*LOAD DRIVER
and called with CALL&3000.

By specifying a hex address at the end of the *LOAD command, the driver can be reloaded to any suitable location and run by a CALL to that same address.

BUYLINES SOFTWARE

MEP Control Basic is available from MEP (South Yorkshire and Humberside), Exeter Road, Off Coventry Grove, Doncaster DN2 4PY. Logotron Logo is available from Logotron Ltd., Ryman House, 59 Markham Street, London SW3 4WD.

ETI JULY 1986
1. Please indicate what you think of the following aspects of ETI's coverage:

- New product news
- News of events and personalities
- New theoretical/technological developments
- Sophisticated projects
- Basic projects
- Introductory features
- Telecommunications
- Audio
- Computers
- Semiconductors
- Others (please specify no more than three)

2. Indicate what you think of the services offered by the magazine:

- PCB service
- Photocopy service
- Project updates
- Corrections to projects/features
- Foil patterns
- Buylines (Auntie Static etc)
- Special offers
- Subscriptions (rate & delivery)
- Back numbers (price & availability)
- Letters page
- Advice services
- Corrections/Projects/features
- Back numbers (price & availability)

3. Please indicate whether you own any of the following types of equipment:

- Computer/computer peripherals
- Audio/hi-fi
- Electronic musical instrument
- PA/recording equipment
- Radio/satellite/CB equipment
- Video camera/monitor
- Car electronics
- Security equipment
- Remote control/robotics
- Photographic or darkroom equipment
- Test/measurement equipment
- Gadgets
- Others (please specify)

4. If you already own a computer, please indicate which one:

- Spectrum/Spectrum +
- Spectrum 128
- Commodore 64/128
- BBC B/B+/Master
- Acorn Electron
- Sinclair QL
- Apple II
- Amstrad CPC 464/6128
- Amstrad CPC 640/640
- Atari 520ST/1040ST
- Microbox II
- Microtan 65
- Dragon 32/64
- ZX80/81
- Z800/81
- Interak
- Context
- Others (please specify)
5. Indicate whether you'd like to see more or less in the magazine of the following:

<table>
<thead>
<tr>
<th>Category</th>
<th>More</th>
<th>Same</th>
<th>Less</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test equipment projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV and video projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car electronic projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotics projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photographic projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novelty projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer software</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic electronics theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced electronics theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>News features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design hints and tips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinion columns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crossword/Al's puzzle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical advice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (please specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Please indicate which of the following you buy and how frequently:

<table>
<thead>
<tr>
<th>Category</th>
<th>Not at all</th>
<th>Sometimes</th>
<th>Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete electronic kits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETI PCBs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB making equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stripboard/wire-wrap etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preprogrammed ROMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inprogrammed ROMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>older/wicks/tips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test gear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cases/case material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>component storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connectors/leads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>os</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronics books</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>computer software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cassettes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>copy disks/computer tapes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on-line equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rate how many kits or projects you hope to build in the next year:
0 1–3 4–12 more than 12

9. You have difficulty locating components:
 Y □ N □

10. You prefer to build projects from commercial kits, if they are available?
 Y □ N □

11. Our projects normally work first time?
 Y □ N □

12. You normally get them to work?
 Y □ N □

13. Do you usually build projects as printed or supplied?
 Y □ N □

14. How many mods do you make a few or many mods?
 Few □ Many □

16. Please indicate what other hobbies you have:

17. With regard to the advertising:

18. Thinking specifically about ETI Electromart — in terms of price range:

 Very useful
 Useful
 Not very useful
 Not at all useful

19. Do you order or buy products at ETI?

20. If the answer to question 19 is yes, then: What was the reason?

21. Do you use the advertisers?

22. Does anyone else read your copy of ETI?
 Y □ N □

23. Do you keep your copy of ETI?
 One month □

24. Do you read any of the following magazines?

 Practical Electronics
 Everyday Electronics
 Electronics Times
 New Electronics
 Personal Computing World
 Byte
 Electronics & Music Maker
 Ham Radio Today
 Scientific American

ETI JULY 1986
25. Please indicate what you think of the following magazines.

<table>
<thead>
<tr>
<th>Magazine</th>
<th>Good</th>
<th>Average</th>
<th>Poor</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektor Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everyday Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics & Wireless World</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Maplin Magazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Digest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26. Please tick the appropriate box which represents the annual total of your net income (i.e. after tax, National Insurance, etc.)

- Less than £4,780
- £4,780 to £5,970
- £5,980 to £7,470
- £7,480 to £9,340
- £9,350 to £11,680

27. Are you aware of ETI's scheduled publication day?

- Yes
- No

28. If the answer is yes to question 27, do you attempt to purchase the magazine on that day?

- Yes
- No

29. Do you normally obtain your copy by:

- Chance purchase
- Newsagent home delivery
- Newsagent shop collection
- Subscription
- Other

30. If you do not obtain your copy by subscription, is it due to one of the following:

- Subscription too expensive?
- Not every issue required?
- Have subscribed previously, but lapsed?
- Other

31. If you do not subscribe, from which type of newsagent do you most often obtain your copy?

- High Street shop
- Estate shop
- Travel point
- Corner shop

32. Which if any of the following daily newspapers do you read?

- Daily Mail
- Daily Express
- Daily Mirror
- The Sun
- Today
- The Guardian
- The Times
- The Daily Telegraph
- Financial Times

33. Which if any of the following Sunday newspapers do you read?

- The Sunday Times
- The Sunday Telegraph
- The Observer
- Mail on Sunday
- Sunday Mirror
- Sunday Express
- News of the World
- The Sunday People

34. Do you read:

- TV Times
- Radio Times

35. Age:

- Under 15
- 15-24
- 25-34
- 35-44
- 45-54
- 55-64
- 65+

36. Marital Status

- Children
- Single
- Married
- Divorced

37. Educational level:

- No formal qualifications
- School certificate
- College or F.E. qualifications
- Degree

38. Are you in employment?

- Yes
- No
39. Please indicate the type of work you do?
 Research & Development □ Technical support/ Development □ Technical support/ maintenance □ Sales □ Skilled manual □ Training/teaching □ Consultancy/PR □ Semi-skilled manual □ Clerical □ Managerial □ Other (please specify) …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Listing 1 BBC Basic.

```
10 REM***BBC BASIC MOTOR CONTROL****
20 REM** ERROR GOTO 70** RETURN TO MENU ON
30 ESEAY.
40 LIST PRINTTAB(18,21)"MAIN MENU"
50 LIST PRINTTAB(16,21)"ENTER NAME SELECTION**
60 LIST PRINTTAB(18,21)"DISPLAY MENU SELECTION**
70 LIST PRINTTAB(18,21)"DISPLAY OPTION SELECTION**
80 LIST PRINTTAB(18,21)"CONNECT TO COMPUTER**
90 LIST PRINTTAB(18,21)"PROCEDURES**
100 LIST PRINTTAB(18,21)"END OF PROGRAM**
110 Options: 1) Display Main Menu 2) Display Option Menu 3) Connect to Computer 4) Procedures
120 Options: 1) Enter Name Selection 2) Menu Selection 3) Option Selection 4) Computer Connection
130 Options: 1) Display Menu 2) Display Option Menu 3) Connect to Computer 4) Procedures
140 Options: 1) Main Menu 2) Option Menu 3) Computer Connection 4) Procedures
150 Options: 1) Display Menu 2) Display Option Menu 3) Connect to Computer 4) Procedures
160 Options: 1) Display Menu 2) Display Option Menu 3) Connect to Computer 4) Procedures
```

Listing 2 Motor Control Basic.

```
100 REM CAN ONLY BE USED WITH MFP SYH Contr
200 Basic MAKE PRINT OUTPUT
300 DEFPROC motor1
400 IF INKEY(35)=3 TRUE AND INKEY(114) false
500 PRINT TAB(16,21) "EXECUTING PROGRAM"
600 ENDPROC
```

Listing 3 Program to assemble machine code motor driver.

```
100 REM ASSEMBLER MOTOR DRIVER
20080 PLSKBN 0 1 1 1 1 3 3
202080 F 5 A 3 3
2040680 8 8 8
2060680 8 8 8 8 8 8 8
300 IF "direction" zero then
400 OA.
500 REM**
600 REM**
700 REM**
800 REM**
900 REM**
```

BUYLEINES

There should be no problems with the components, especially since nothing is critical. Connectors are widely available. Maplin, for example, can supply them all (PO Box 3, Rayleigh, Essex SS6 8LR — tel: 0702 552911) and they will also supply the microcontroller relays. A ready-built unit (including software can be supplied by Gwent Electronic Instruments, 26 Churchwarden Drive, Newport, Gwent NP9 0SB (tel: 0633 280526) for £42.50 inclusive. Gwencet will also supply a kit of parts for £29.25 and a PCB for £5.50. Please phone first to check on availability. A slightly modified PCB will be available from our PCB service as soon as it becomes operational again.

Logo Motor Control

Two procedures in Logotron Logo are provided (Listing 4) to show how the machine code driver can be used in a language other than Basic. The procedure, PATCH, loads the driver at 2FC0H. The second procedure has two parameters, motor number followed by motor action. The CALL in the MOTOR procedure is to the decimal equivalent of

Listing 4 Logotron Logo procedures utilising driver.

To PATCH: LOAD DRIVER 3705 END TO MOTOR: motor number: motor direction _DEPOSIT 112 motor number: _DEPOSIT 112 motor direction: CALL 12224 END

2FC0H.

The primitive .DEPOSIT is the equivalent of the BASIC command, POKE Before the MOTOR procedure can be used, PATCH must be called once. The machine code driver could, of course, be used from within any suitable language running on any 6502 system with only minor modifications.
The prime requirement of an amplifier for moving coil cartridges is that it should have very low noise. This would not be too much of a problem were it not for the fact that moving coil cartridges have very low impedances, typically around 2–3 ohms. Since it is a requirement of low noise design that the base resistance of the input transistor is as low as the resistance of the cartridge, this calls for a great deal of care both in the choice of transistors and in the configuration of the input stage.

Transistor Choice

The noise figure usually given in transistor data sheets is arrived at from the formula:

$$ N = 10 \log \frac{N_{\text{output}}}{N_{\text{generated}}} \text{ dB} $$

where N_{output} is the total output noise power and $N_{\text{generated}}$ is the noise power generated by the source only.

A noise figure of 3 dB, therefore, indicates that the source noise and the transistor noise are equal in magnitude. A higher noise figure indicates that the transistor is contributing more noise whilst a lower noise figure indicates that the source is contributing most of the noise.

The specification sheet for a typical low noise transistor, the ZTX 384, shows a noise figure of 4 dB, but this alone does not tell us how suitable it is for our particular application. We need more information. Looking again at the noise figures, we see that they apply over a frequency range from 30 Hz to 15 kHz when $V_{ce} = 5$, $I_e = 200$ microamps and $R_i = 2k$ ohms.

At first glance it appears that 4 dB relative to a source impedance of 2 kΩ is far too high for a low impedance, low output moving coil cartridge.

However, if we are prepared to accept a noise figure of 2 dB as reasonable, we see from the data sheet that this can be achieved with a source impedance of around 500 ohms over a current range from 100 to 500 microamps. By using five transistors in parallel we could achieve 2 dB with a 100 ohm source impedance. This approach was frequently employed when moving coil cartridges first became popular about ten years ago, and I remember one published design that used no fewer than eight transistors in parallel.

Another approach is to use medium power transistors, as did Stan Curtis in his System A preamp described in ETI in July 1981. Transistors designed for higher currents have a lower base resistance. Medium current transistors such as the 2N4401 and 2N4403 have a base resistance which is higher than that of most moving coil cartridges but considerably lower than the base resistance of most small signal transistors.

For practical purposes there is no reason why we cannot combine the two approaches, without going to the extreme of paralleling five or more transistors. Space is provided on the PCB for two transistors in parallel, and a pair of 2N4401s in this position will give a perfectly satisfactory performance at reasonable cost. This arrangement is recommended for the economy version of the preamplifier.

There are several alternatives when it comes to upgrading this

Table

Table 1 A comparison of the noise performance of selected low-noise FETs and ICs.

<table>
<thead>
<tr>
<th>FET/IC</th>
<th>10Hz</th>
<th>100Hz</th>
<th>1kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SB737, 2SD786</td>
<td>0.55</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2N459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N4667A</td>
<td>8</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>J230-232</td>
<td>8</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>OP37A</td>
<td>3.5</td>
<td>5.5</td>
<td>3.0</td>
</tr>
<tr>
<td>OP37C</td>
<td>3.8</td>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>NE5534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Frequency not stated.
stage. One is to use the same arrangement but choose better quality medium power transistors which offer lower noise. The 2SC2385 transistors suggested in the parts list are ideal for this application and prove extremely quiet in practice.

The other approach is to use a transistor which has been designed specifically for moving coil input stages and which has a low enough base resistance to allow direct matching to the cartridge output. Several transistors of this type have been developed in recent years, and a good choice here is the 2SD786 which has a base resistance of just 4 ohms. These are, inevitably, quite expensive and not terribly easy to come by, but they do seem to offer the lowest noise figures of any type currently available. A comparison of the noise performance of these and other low-noise transistors and ICs is given in Table 1.

The Circuit

Like the other stages in this preamplifier, the moving coil stage is based around a simple but very effective discrete operational amplifier. This allows the stage gain to be determined by the values of two external resistors. As a result, the gains of the two channels can be matched to within very close limits without using preset potentiometers, thus avoiding the inconvenience, cost and sound degradation this would involve.

The circuit of the moving coil amplifier in its basic form is shown in Fig. 1. Transistors Q2 and Q3 form a differential pair in which approximately equal currents flow. The total combined current of Q2 and Q3 is kept almost constant by R3. Transistor Q5 is biased on by the voltage across R2.

With no signal input, the bases of Q2 and Q3 are close to 0V. If a positive voltage is applied at Q2 with respect to Q3, more current will flow in Q2 and less current in Q3. The voltage across R2 will increase, and this will cause an increase in current in Q3. This will raise the voltage across R7 and give a positive output signal.

The effect of the negative feedback network comprising R5 and R6 is to feed some of the output back to the base of Q3. Provided the base of Q2 is at a higher voltage than Q3 the output will remain positive. If the open loop gain is much greater than the ratio of the resistors R5 and R6, the voltage difference between the bases of Q2 and Q3 will remain small and the gain will be defined by the values of the resistors.

The use of a differential input is not ideal in terms of achieving the lowest possible noise, but it does remove the need for an input capacitor which would otherwise, degrade the sound quality as well as being physically large and expensive. This means that a small current of the order of 10 microamps flows through the cartridge, but I have not seen any reliable reports which say that this is harmful. I have not observed any ill effects even at higher levels of current, but if you are at all worried by DC flowing through the cartridge, replace R1 by a 10k resistor, connect a 4uF plastic film capacitor towards the input and place the original R1 across the input socket. Plastic film capacitors will pick up noise from the mains transformer, and if this is troublesome you will either have to remove the transformer to a separate box or replace the capacitor with a tantalum type (negative end to transistor) with some degradation at high frequencies.

The input loading resistor on a moving coil cartridge is an important part of the design. A change in the value of this component will change the sound quality of the cartridge, and many people like to experiment to find the optimum loading for their system. As a rough rule, lowering the impedance reduces the high frequency output. A cartridge with a low output impedance will obviously require lower impedance matching from the amplifier and this should be considered when fitting the loading resistor in the circuit. As a practical compromise, a value of 33 ohms is suggested as a standard or a starting point for experimentation.

The performance of the standard version can be further
improved, mainly by the use of higher quality components. The circuit of the upgraded version is shown in Fig. 2. The upgrading measures are:

1) The use of ultra low noise transistors type 2SD786 for the input stage.
2) The use of Holco H8 (½ watt) precision resistors manufactured by Holsworthy Electronics. These offer better sound quality than standard grade metal film types (Ref. 1).
3) The replacement of polyester capacitors with polycarbonate types. Polycarbonate capacitors have a lower dielectric loss (Ref. 1, 2).
4) The by-passing of all medium value capacitors with polystyrene capacitors of around 3μF to 10 μF. This improves the sound at high frequencies.
5) The use of transistor pads for all transistors. This holds them firmly to the board and reduces the possibility of distortion due to vibration. Anyone who has heard the improvement in sound quality which results when a Mission Isoplats is placed under an amplifier will know what I mean.
6) The use of high power (metal tag) regulators. This should improve the sound quality by reducing the Temperature Generated Distortion (TGD).
7) The use of constant current diodes in place of R3 and R8. The high impedance (Ref. 3) reduces the power supply ripple voltage feedback to the input from the negative supply and greatly improves sound quality.

Construction

Refer to the components layout, Fig. 3, and start by soldering the resistors into place. Note that there are three holes to accommodate R3 and R8. The holes that are 0.5" apart are for the resistors and the holes that are 0.2" apart are for the FET constant current diodes (D1 and D2) used in the upgraded version. The flat faces of the FETs face the input side of the board and it is a good idea to mount them on transistor pads.

Next install the connecting pins (6 in each channel) and insert and solder the IC regulators. Now insert the transistors using the diagram in Fig. 3 as a guide. The board is completed by soldering the capacitors into position.

Feed a supply of ±15V to ±25V to the board (up to ±35V if you are using 1A regulators) and check all voltages with a DVM or

BUYLINES

A complete kit of components and PCB for the moving coil stage can be obtained from the author at 6 Mill Close, Borrowash, Derby DE7 3GU. The cost is £12.50 for the standard version and £25.00 for the upgraded version. Both prices are fully inclusive. The PCB and parts are also available individually — ask for a price list.

The case for the complete preamplifier (see pictures above and overleaf) costs £49.00 including VAT and carriage. An alternative front panel is available for those who do not want tone controls — please specify when ordering.
Fig. 3 Component overlay for the moving coil amplifier board.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th>STANDARD VERSION</th>
<th>UPGRADED VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 7</td>
<td>33R Metal film 2%</td>
<td>33R2 Holco 0.5% 50 PPM</td>
</tr>
<tr>
<td>R2 (see text)</td>
<td>330R Metal film 2%</td>
<td>332R Holco 0.5% 50 PPM</td>
</tr>
<tr>
<td>R3</td>
<td>2k4 Metal film 2%</td>
<td>see D1</td>
</tr>
<tr>
<td>R4</td>
<td>330R Metal film 2%</td>
<td>332R Holco 0.5% 50 PPM</td>
</tr>
<tr>
<td>R6</td>
<td>220R Metal film 2%</td>
<td>221R Holco 0.5% 50 PPM</td>
</tr>
<tr>
<td>R8</td>
<td>3k9 Metal film 2%</td>
<td>see D2</td>
</tr>
<tr>
<td>R9</td>
<td>220k Metal film 2%</td>
<td>220k Holco 0.5% 50 PPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3n9 polystyrene</td>
<td>3n9 polystyrene</td>
</tr>
<tr>
<td>C2</td>
<td>1u0 polyester</td>
<td>1u0 polycarbonate</td>
</tr>
<tr>
<td>C3, 4, 5</td>
<td>470n polyester</td>
<td>470n polycarbonate</td>
</tr>
<tr>
<td>C6, 7</td>
<td>220n polyester</td>
<td>220n polycarbonate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>78L12</td>
<td>7812</td>
</tr>
<tr>
<td>IC2</td>
<td>79L12</td>
<td></td>
</tr>
<tr>
<td>Q1, 2, 3, 4</td>
<td>2N4401</td>
<td>2SC2385 or 2SD768*</td>
</tr>
<tr>
<td>Q5</td>
<td>2N4403</td>
<td>2SB737 or 2SA978</td>
</tr>
<tr>
<td>D1</td>
<td>see R3</td>
<td>J511 (4.7mA)</td>
</tr>
<tr>
<td>D2</td>
<td>see R8</td>
<td>J509 (3mA)</td>
</tr>
</tbody>
</table>

*Only two 2SD768 transistors are needed in each channel. The Q1 and Q4 positions should be left empty.

MISCELLANEOUS

PCB: 6 x 1mm PCB pins; 5 off T092 transistor pads (on upgraded version only); PCB pillars; case, power supply, sockets, wiring, etc. according to choice and application.

With the exception of the PCB, all components listed above are for one channel only. Two of each item will be required for stereo.

PROJECT: MC Stage

multimeter. A list of correct voltages is given in Table 2 to aid fault finding. One likely source of error is wrongly connected transistors, bearing in mind the different pin configurations of the various types.

For optimum performance, the current in Q1 (or Q1//Q2) should be equal to the current in Q3 (or Q3//Q4). It has been shown (Ref. 4) that distortion is least when the currents in each side of a long tail pair are equal. When the circuit is built as recommended, there may be a mismatch of up to 10% in the collector currents of Q2 and Q3. At the low voltage levels of an MC cartridge this will be of very little importance, but anyone seeking the ultimate performance for their amplifier will want to match the
input currents as closely as possible.

There are two ways to do this: the first is by calculation using a DVM. Fig. 4 shows the voltages measured on a fully-upgraded moving coil stage. Current through Q2 is 2mA and through Q3 is 2.09 mA, giving a mismatch of 4.5%. In view of the variations in the specifications of constant current diodes (±10%) larger mismatches may be expected through R2 and R4.

Current = 4.09 mA
Base Current through Q5 = 0.01 mA (Hfe = 300)
Total Current = 4.1 mA
Current per transistor = 2.05 mA
Voltage required across R2 = 689mV
Optimum value of R2 = 689
Optimum value of R2 = 336 ohm

The nearest E96 value is 332R or 340R.

The collector currents could alternatively be matched by either changing the value of R7 or by changing D2 (to a J50B) or adjusting R8 as appropriate. I will leave the readers to make their own calculations if they wish to pursue these alternative options.

The other method of balancing the currents is by observing a null point with a multimeter or scope. The circuit is set up as shown in Fig. 5, with R2 and R4 replaced by resistors of 270R (0.5%), 39R, 22R, 10R, 4R7, and 2R2. Initially the 10R, 4R7 and 2R2 resistors are shorted out on both sides and a meter is connected from A to B. If current flows from A to B, the total resistance value is too high and needs to be reduced. If current flows from B to A, the total resistance value is too low and needs to be increased. The resistance on both sides should be adjusted by equal amounts by restoring the shorted resistors. This procedure should be repeated until a point is found where the current is lowest. That value is recorded and about 1 ohm added to allow for Q5’s base current. The value of R2 is the nearest preferred value to this. It is important that the resistance values are exactly the same whilst measurements are being taken.

Whilst the final value of R2 is critical (to set the base voltage of Q5), the value of R4 after the measurements are taken will have no real effect on the circuit. Either 330R (or 332R in E96 values) or a resistance equal to the final value of R2 would be appropriate.

Applications

Although designed for use with the upgradeable amplifier, the moving coil stage is also well suited for use in other equipment or as a stand-alone unit. Its ±12V regulators allow it to be hooked into almost any preamplifier which has ±15V regulated supplies, and it would make an ideal headamp for John Linnsley Hood’s Audio Design Preamp and similar amplifiers. In such instances the use of two separate stages of regulation will guarantee excellent sound quality. It would also work well as an isolated head amp with a suitable power supply.

You can also use the moving coil stage without its regulators if you have a high performance discrete regulator or a battery supply. The low noise upgraded version in particular will be extremely quiet on battery power supplies. It will also give outstanding sound quality when powered from high capacity batteries, but in this case it is wise to limit the short circuit current which might flow were a semiconductor to fail. The last thing you want is to have the short circuit current of a large rechargeable battery fed to the terminals of an expensive MC cartridge.

To prevent this, connect resistors of at least 10R (or 100R with a 12V car battery) in series with D1 and D2. I don’t think short circuit failure is common amongst FET diodes but I would rather be safe.

Whatever supply you use, it is essential that the correct currents flow from the negative rail. Table 3 shows suitable values for R3 and R8 for some of the more popular negative supply voltages. Constant current diodes are ideal for higher voltage working, but their impedance falls at low voltages. At 4.2 volts the current via the J511 is 10% below the current at 25 volts.

References

1) Colloms, M. A passive role. Hifi News Oct 1985
3) Nalty, R.G. Constant Care. ETI April 1986

The next article in this series will describe the construction of the moving magnet input stage.

Table 3 Values of R3 and R8 for use with alternative negative supply voltages.

<table>
<thead>
<tr>
<th>Negative supply volts</th>
<th>R3</th>
<th>R8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2V single nicad</td>
<td>120R</td>
<td>390R</td>
</tr>
<tr>
<td>5V</td>
<td>1k0</td>
<td>1k6</td>
</tr>
<tr>
<td>9V</td>
<td>1k8</td>
<td>3k0</td>
</tr>
<tr>
<td>12V</td>
<td>2k4</td>
<td>3k9</td>
</tr>
<tr>
<td>15V</td>
<td>3k3</td>
<td>5k1</td>
</tr>
<tr>
<td>18V</td>
<td>3k6</td>
<td>6k2</td>
</tr>
</tbody>
</table>

Fig. 5 Test circuit used to set equal collector currents in the input transistor pair.
AN EXPANDABLE DISK-BASED
Z80A DEVELOPMENT SYSTEM
YOU CAN BUILD YOURSELF!

Universities, Colleges, Industry, Enthusiasts;

Unlike home computers, development systems have entirely "open" architectures, use standard TTL etc. chips (ie no ULA's), and are built in a proper engineering fashion. Usually superior price tag, but you can build interak yourself board by board and thus afford a system which would normally be out of your reach and/or understanding.

The initial development system has 64K of RAM, a 4 MHz Z80A CPU, parallel ASCII keyboard interface, VDU interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Any size (including 8" double density) can be used, but our 1 Megabyte 5.25" drives are proving very popular because they can fit into the system rack, (and they only cost £87.00 each, £10.00 each). OP/PM/2.2 is provided, giving access to thousands of "public domain" programs.

The system can be described as "future proof" because it uses plug in 4.25" 8" cards in an industrial quality 19" JU rack. We have been established since 1970, and this system was first made in 1977! (unlike almost all other computers) it has stood the test of time.

Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc.

Greenbank
Greenbank Electronics (Dept T7E), 92 New Chester Road, New Ferry, Wirral, Merseyside L52 5AG.
Tel: 051-645 3391

INSTRUMENTS, COMPONENTS, EQUIPMENT, ACCESSORIES

DC POWER SUPPLIES
Input 200-400 Vac. Stabilised
Direct meter reading volts and amps
243 £30/40 Watts £30.00
245 £74/75 Watts £53.00
146 £155 Watts £101.00
Also 12V 4.3 Watts £39.00 fixed voltage supply
Line output £30.00 each.

GENERATORS
(£29.50 each)

DC POWER SUPPLIES
Input 200-400 Vac. Stabilised
Direct meter reading volts and amps
243 £30/40 Watts £30.00
245 £74/75 Watts £53.00
146 £155 Watts £101.00
Also 12V 4.3 Watts £39.00 fixed voltage supply
Line output £30.00 each.

FREE CATALOGUE
On request with order or send S.A.E.
Expert send 1st with address. Price £3.00.
All prices inclusive of delivery (UK only).

DIGITAL METERS
(C/£50 each)

509 15 range £19.50
509 15 range £26.04
509 15 range £31.28
3010 Digital volt/ohm/hertz £20.83
3078 20 range swap range - memory £36.30
3078 20 range swap range - memory £34.50

ANALOGUE METERS
(C/£50 each)

1915 DC 150 range £22.10
1933 15 range 0-100 VDC £52.20
1935 20 range 0-100 VDC £56.50
1967 20 range 0-100 VDC £56.50
1969 20 range 0-100 VDC £56.50

LCD DIGITAL CAPACITANCE METER
(£3.50 each)

2200 LCD 20 range DC £20.00
2200 LCD 20 range DC £20.00

FREQUENCY COUNTERS
(£1.00 each)

LOGIC PULSER
2 inputs £3.00

LOGIC PROBE
20 MHz max. TTL CMOS memory £23.00

PIN Analog & Digital
20 MHz max. TTL CMOS memory £5.90

RACK MOUNTING CABINET

- Suitable for instruments, high quality amplifiers and many other purposes - Black anodised aluminium front panel - standard 19" rack mounting
- Metal, birch plywood, mounted on aluminium Tray, supplied. All units include a metal or black aluminium front panel. Kit contents will be the same as above. Eight at £20.00 each, or 20 at £40.00 each.

MANUFACTURER'S BALL ADDED:
Z80A not imported, but manufacturers and other supplies.

NICADS Rechargeable batteries
(C/£1.50 each)
4 plug in £9.00
6 plug in £12.00

 PATENTED ELECTRONIC TRAINING.

T J A DEVELOPMENT
53 Harrington Road, London E17 8AS

Programs for the BBC model 'B' with disc drive with
FREE updating service on all software

ARE YOU GETTING THE MOST FROM YOUR
DOT MATRIX PRINTER AND DISC DRIVE?

DIAGRAM is a new program which really exploits the full potential of the BBC Micro and will enable you to obtain printouts of a size and quality previously unobtainable from your system.

FEATURES
- Draw diagrams, schematics, plans etc., in any aspect ratio, eg 10X4, 4X12 screens.
- Access any part of the diagram rapidly by entering an index name, eg TR1, BS5 etc., to display a specific section of the diagram, and then scroll around to any other part of the diagram using the cursor keys.
- Up to 120 icons may be pre-programmed for each diagram, eg Transistors, Resistors etc., in full mode 0 definition, up to 32 pixels horizontally by 24 vertically.
- Hard copy printers in various print sizes up to 18 mode 0 screens on an A4 size sheet.

SELECT your PRINTER and DISC DRIVE.

Some printers are compatible with this program (eg Marconis, BDK's, etc.), while others need to be enhanced by adding their own interface cards and additional circuitry.

The modem version of DIAGRAM is now fully compatible with Marconis Tracker EK which allows "scrolling" of the screen and many of the editing features to be carried out using the tracker ball.

DIAGRAM is supplied in an attractive hard backed display wallet with manual and comprehensive instruction manual.

PINEAPPLE SOFTWARE

39 Broadlea Gardens, Seven Kings, Ilford, Essex IG3 9NL
Tel: 01-599 1476.
DIGITAL SOUND SAMPLER

At the risk of repeating ourselves, Paul Chappell puts the sampler into action.

The circuit of the sampler's power supply is shown in Fig. 1, and is assembled according to the component overlay in Fig. 5. The heat sinks mount horizontally on the board with a gap of only a few mms between them, so it would be a wise precaution to use insulating washers wherever a 79-series regulator is next to a 78-series one, as their tabs will be at different voltages. Three of the four wire links on the board run very close to the heat sinks. To avoid the possibility of shorts, these should be insulated.

We used a 19" rack-mounting case for the final assembly — there is no need to seek out exactly the same type, but you will need one of a similar size to allow room for the three boards. They fit neatly into the space available in a 19" case, as you can see from the photograph. You can arrange the front panel layout to suit your own taste, since all the controls are on flying leads.

It would be as well to keep the mains connections as far to the right of the case as possible, to minimize any hum pick up, but apart from that you have complete freedom.

We decided to put the input level control on the front panel, rather than use a preset on the PCB as originally specified. This allows a very wide range of input levels to be accommodated — anything from a microphone input to several volts from a signal generator. The group of three LEDs is for status indication: they show SAMPLE READY (when sampling is to be triggered by the presence of sound), SAMPLER ACTIVE, and PLAYBACK. These indicators are not essential, as the information is displayed on the TV screen, but if you'd like to include them, Fig. 2 shows how to do it.

Connection to the Spectrum was made via a 15-way D-connector at the rear of the case going to a standard, 0.1" edge connector. The ground connection was taken via the shell of the D-connector and the appropriate links to the Spectrum expansion port are shown in Fig. 3.

A single pole toggle switch was inserted in the interrupt line — when the switch is off, it allows the Spectrum to be used for other purposes; when on, the sampler's interrupts jam the Spectrum's own, and the sampler takes control.

If the idea of having to operate a switch is too low-tech for you, the circuit of Fig. 4 will turn on the sampler automatically as soon as the tape has loaded — we didn't include it in the prototype, so it hasn't been allowed for the on the PCB, but it shouldn't be any great problem to add it.
Using The Sampler

The Sampler and computer must both be turned on and connected together before the program is loaded. If you try to load the tape without the sampler connected, the program will fail immediately, as one of the first things the program does when loaded is to change the Z80's interrupt mode, and it requires an address from the sampler for the correct service routine.

To load the program, type LOAD "" CODE, followed by ENTER, and then switch on the cassette recorder, and also the switch in the interrupt line if you've plumped for the manual method. As the tape loads, you should see a colourful 'SOUND SAMPLER' logo displayed on the TV. As soon as the loading is complete, this will be replaced by the help screen, as shown in the photograph, which lists the various commands you can use.

The option menu

To sample a sound, press 'I' on the keyboard (which stands for 'input'), and you will then be given a choice of sampling rates. The higher the sampling rate, the better the sound quality, but the shorter will be the length of time you can sample for. Having chosen your sample rate, you will then be given the choice of initiating the sampling by the presence of a sound, or starting it immediately by pressing a key on the computer. A list of options is given on the TV screen at each stage, so there is no need to refer to this article or the instructions.

As soon as the sampling is complete, the computer will display the sampled waveform on the screen, in three rows, as shown in the photograph. Unless the waveform is at a very low frequency, all you will see at this stage is the envelope, so a constant amplitude wave will just appear as three bands across the screen, as you can see for the sine wave.

To inspect the waveform in detail, there are two cursors which can be moved to frame the part of the sample you are interested in. Pressing 'E' (for 'expand') on the keyboard will give a detailed picture of the portion of the sample between the cursors. Photographs of the expanded voice waveform and sine wave show the result of doing this. Both the samples were taken at a low rate, so the individual sample points making up the waveforms can be seen. The samples in memory are in companded form, but the program calculates the correct position for each point so that it appears on the screen as if

Fig. 3 Spectrum edge connector, showing connections used for the sampler.

Fig. 4 Circuit for turning on the sampler's interrupts automatically.
The sampling had been linear.

The sample in memory can be edited — you can cut out parts that are not required, by moving the cursors, and you can also alter any sample to modify the waveform, or even to create your own waveforms.

To hear the sound, press ‘P’ (for ‘playback’) on the computer. You will then be given the choice of having the sample played back once each time a key is pressed (which you will want if you have sampled a piano note, for instance), or of continuously looping around the sample to give a sustained note. On playback, only the portion of the sample between the cursors will be heard, so to play the entire sample you must move the cursors back to their original positions at either end of the sample. When you are looping around the sample to form a continuous note, there will be a click every few seconds because of the sudden jump from the last sample value to the first. You can eliminate this by choosing your loop beginning and end points (with the cursors) so that the last part of the sample leads smoothly into the first, or if you like the computer will choose the looping points for you automatically. Just press ‘L’ on the keyboard.

The sample accepts a control signal from a standard 1V per octave keyboard, with a +5V gate signal. If you prefer to use a MIDI keyboard, you may like to consider building last month’s MIDI to CV converter, which will allow any MIDI based instrument to interface with the sampler.

Expanded voice waveform

46 Expanded sine wave

ET1 JULY 1986
List 1 Hex dump of the sound sampler program.
Fig. 5 Component overlay for the sampler PSU board.

PARTS LIST

POWER SUPPLY

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1: 22R 5W</td>
<td>C1: 2200µ 25V axial electrolytic</td>
</tr>
<tr>
<td>R2: 22R 5W</td>
<td>C3: 10µ 25V tant.</td>
</tr>
<tr>
<td></td>
<td>C4: 220n polyester</td>
</tr>
<tr>
<td></td>
<td>C5: 10µ 25V tant.</td>
</tr>
<tr>
<td></td>
<td>C6: 220n polyester</td>
</tr>
<tr>
<td></td>
<td>C7: 470n polyester</td>
</tr>
<tr>
<td></td>
<td>C8: 220n polyester</td>
</tr>
<tr>
<td></td>
<td>C9: 470n polyester</td>
</tr>
<tr>
<td></td>
<td>C10: 220n polyester</td>
</tr>
<tr>
<td></td>
<td>C11: 470n polyester</td>
</tr>
<tr>
<td></td>
<td>C12: 220n polyester</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

| IC1: 7805 |
| IC2: 7805 |
| IC3: 7812 |
| IC4: 7912 |
| IC5: 7905 |
| BR1: BY164 |

MISCELLANEOUS

- On/off switch; neon panel lamp; fuseholder and 500mA fuse; transformer (12-0-12 12VA PCB mounting); PCB.

BUYLINES

The bridge rectifier BY164 is available from Maplin (see ad in this issue), order code QF43W. The transformer is RS 207-699, available through Crewe Allan and Co., 51 Scrutton Street, London EC2. A cassette tape of the program for the sampler, with instructions, is available from: The Software Farm, Craigo Farm, Tintern, Gwent at £9.50 + 40p postage and packing. The PCB will be available from our PCB service, but see the note in News Digest.
OSCOLOCOPES
TELEQUIPMENT DTS Dual Trace 50MHz Delay Sweep...
COLOSSUS DTS Dual Trace 50MHz Delay Sweep...
Portable Dual Trace display. With Manual...
CASSIUS DTS Single Trace 10MHz Delay Sweep...
Manual...
S.E. LARS SM111. Dual Trace 16MHz Sold State.
Portable AC & DC open circuit display. Manual...

PHILIPS DIGITAL MULTIMETERS
4 digit auto ranging Complete batteries and...
TYPE PMS1027 (LCD)...

MULTIMETERS
AVO 8 Mk 4 Complete with batteries & leads £30
AVO 8 Mk 3 Complete with batteries & leads £30
AVO TEST SET No 1 (Mk 1) £25 Complete with batteries, leads & Carrying Case
AVO Model 7x Complete with batteries, leads & Carrying Case...
AVO Model 7z Pocket Multimeter (Allegro) 30 ranges. Complete with batteries & leads... £18
AVO 7z - Similar to above but no AC current range. With batteries. £9...

AVO TRANSISTOR TESTER T110
Handles G8NO 03 for transistor testing. Complete with leads & instructions...
(No. C3) NOW ONLY £12

NEW EQUIPMENT
MACHINES OSCILLOSCOPE 883, Dual Trace 60MHz. Delay Sweep, Complete with instructions...
BOOMERANG SCOPE 203. Dual Trace 200MHz...

Receipts and Reprints of New Signal Articles from...

COMMUNICATION RECEIVERS
Radio RAAT, 500KHz-1MHz. ...ONLY £10 each with...
ADVANCED FM SIGNAL GENERATOR Type 5023A...
7.0-220MHz...
ADVANCED AM SIGNAL GENERATOR 5022B...
20KHz-220MHz...
METRIX WIDEBAND GENERATOR 510-10MHz...
100KHz-1GHz...
METRIX WIDEBAND GENERATOR 520-500MHz...
50KHz-500MHz...
VOLTAGE CONTROLLOR GENERATOR Type 5022A...
50KHz-20MHz...
MAGNUS VACUUM VOLTMETER Type 7100 50MHz-100MHz...
40...
PHILIPS COLOUR BAR GENERATOR Type P51...
£100...
PHILIPS COLOUR BAR GENERATOR type P505. Video output...
£60...
TELEDYNE FIELDS STRENGTH MEASUREMENT FIELD TESTER...
£100...

USED EQUIPMENT
- with 30 day guarantee. Manuals supplied if possible.
This is a VERY SMALL SELECTION of stock. G.A.T.E. or Telephone for details. Please check availability before ordering. GARRIAGE all units £12 V.A.T. to be added is Total of Goods & Garrage...

STEWARD DE READING
110 WYKEHAM ROAD. READING. BERKS RG6 1PL
Telephone: 0734 65041

OMNI ELECTRONICS
17 Dalkeith Road, Edinburgh, EH16 5DX

ELECTRONIC KITS LTD
1. Poyndon Mill, Osweystrey, Shropshire SY10 9AF
2.4 to SALES LINE (0691) 652894 Please ask VAT

OMNITRONICS
‘VISIT SCOTLAND’S NEWEST COMPONENTS SHOP’
We stock a wide range of general electronic components, send now for our 21 page catalogue price 20p + 12p p&p or call at the shop Mon–Fri 9.00am–6pm. Sat 9am–5pm.

MAKE YOUR INTERESTS PAY!
More than 6 million students throughout the world have found it worth whilst an ICS accredited student to study in their spare time and have more fun out of life! ICS has over 50 years experience in home-study courses and avoids the largest network of correspondents schools, colleges, universities, industries, and is a vast array of computing, electronics and business courses. Try us, the course is free, the student is free. We will send you our FREE INFORMATION PACK on the course of your choice.

ICS
Name...
Address...
P Code...

INTERNATIONAL Correspondence Schools, 319/314 High St. Sutton, Surrey SM1 1BS. Tel: 01-642 0888 to 041/221 3000 Day Div. 041-753070.

HART – The Firm for QUALITY
LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Suitable, HART designed, integrated amplifier kits derived from Linsley-Hoods articles in ‘Highinfo’. Ultra easy assembly and setup with sound quality. Its precisely what the most discerning listener, ideal basis for any domestic sound system. Quality matters to you. Buy the complete kit and save pounds off the individual components. K300-35. 35 Watt. Discount price for Complete Kit...

HART-LYND CASSETTE RECORDER CIRCUITS
Complete very high quality low noise signal handling stages for any stereo cassette recorder. Separate record and replay section for optimum performance. Switched bias and equalisation to cater for chrome and ferric tapes. Very easy to assemble on plug-in PCBs. Complete with instructions...

K800 Complete Stereo Record/Play Kit...

BORDOS Stereocap Amp Kit to suit...

RLH1.2 Reprints of original Articles...

STUART TAPE RECORDER CIRCUITS
Complete stereo record, replay and bias system for well-end recorder. These circuits will give studio quality with a good tape deck. Separate sections for record and replay give optimum performance. A third head means monitoring system to be used when the deck has this fitted. Standard 250VDC input and output levels...

K800U Stereo Kit with Wound Choke and Twin Meter Drive...

HIGH QUALITY REPLACEMENT CASSETTE HEADS
Do your tapes lack treble? A worn head could be the problem. Tape heads are constantly improving and fitting one of our latest replacement heads could restore performance to better than new! Standard mountings fit most decks and our TC1 Test Cassette will make it easy to set the azimuth spot. As we are the actual importers you get prime parts at lowest prices. All our heads are suitable for Dolby machines.

H20 Permalloy Stereo Head. Good quality standard head fitted as original equipment on many decks...£5.11

H27 Super Head. Quite simply the best. Longer life than permalloy, better sound quality...

H27D Permalloy LC-Audio. Suitable for use on both 1 and 2 channel quadraphonic use. Full specification read head...

Full data on these and other heads in our range are contained in our free list.
Not so much a field test, more a sort of soak test. Mike Bedford describes the results obtained with his prototype underground communications system and offers some hints on using and modifying it.

Initial tests with the Troglograph were carried out over a distance of about 200 yards with a reasonable received signal strength, but signals started to tail off significantly beyond this. These ranges were very encouraging as they compare favourably with the depths of most British caves and potholes. However, the Troglograph was not developed for surface communication — the acid test was how well it would work in the environment for which it was intended.

The field tests were carried out in a windswept valley in North Yorkshire on a Saturday in January, the surrounding hills still showing the remnants of recent snowfalls. The cave chosen for the tests was the West Kingsdale System, located about 3 miles north of Ingleton. There is an entrance in the valley bottom and the route then passes almost horizontally under the surrounding hills, providing a comparatively easy means of getting the equipment to a quite respectable depth. There is only one vertical pitch on the route chosen yet the final point is in excess of 300 feet below the hill top.

The party consisted of the author, his wife Margaret, Ivan Wulijhorodsky and James Fathers, of which the author and James made up the subterranean contingent. Figure 1 shows the West Kingsdale System, and consists of a survey of the cave passages superimposed upon a map of the surface features. It was used to pin-point corresponding positions above and below ground at which tests would be.
The prototype Troglograph undergoing field tests.

Conducted. Although the System has a number of entrances, the one used in this expedition was the one referred to as Valley Entrance and the three points selected for tests were those marked 1, 2 and 3 on the map. Assuming that the cave passages are approximately horizontal, it is clear from the contours that these points must be about 100, 200 and 300 feet underground.

The first rendezvous point was reached in a matter of five or ten minutes, the entrance section being for the most part a walking or stooping passage with a couple of deep pools. One of these filled the passage to within a foot or so of the roof, serving to prove that the equipment was indeed waterproof. This first test proved encouraging with reasonably strong signals being received.

The equipment was packed away and we made our way to the second scheduled point, arriving there with a good five minutes to spare. As James rigged the pitch for our descent, a comparatively dry spot was found to set up the Troglograph. We switched it to receive and were greeted with silence. Our spirits fell. At last, after two minutes of frantic tuning, the signal was heard. We later discovered that it had taken the surface party longer than anticipated to reach their destination — clearly there are times when it is quicker to travel underground! The signal strength was not particularly good, however, and the noise of the stream pouring over the nearby pitch as a waterfall made listening difficult.

With the second test completed, we went down the 25 foot pitch, the passage enlarging considerably to form Kingsdale Master Cave, the hub of the whole system. The recent snow and rain falls had left the cave much wetter than on previous trips, making progress against the flow of water somewhat slower than expected. At the end of the master cave the route to the third rendezvous point, Swinsto Great Aven, continued as a low crawl with occasional flat-out sections. It soon became clear from the deposits on the roof that this area had quite recently been flooded completely. In view of the unsettled weather conditions, good sense prevailed and we retraced our steps, leaving a test at 300 feet to another day.

Nevertheless, we counted the expedition a success, signals having been received through 200 feet of solid rock and the ergonomic features of the design proven.

Further Developments

It is very unlikely that the first attempt at a project such as this will result in a piece of equipment which can't be improved upon. Indeed, although the field trip was a success, it served to identify a number of areas for future development. The author will probably continue to experiment in these areas, and it would be nice to think that this article will inspire others not only to build the Troglograph but to use it as an experimental project too.

Signal strength at 200 feet below ground was not as good as expected. Means of improving this...
Following the field tests, the original Troglograph was re-housed by James Fathers in the case shown here. Not only is it easier to carry than the original, it also looks a lot better both inside and out (see external photo opposite). The new arrangement also dispenses with the rather cramped control panel of the original version, making operation easier. Note the use of slider potentiometers for the volume and regeneration controls.

have already been mentioned, but to recap slightly they involve increasing the number of turns and/or the coil area (especially of the surface coil) without increasing its resistance.

Audio volume proved something of a problem in locations with high background noise (for example, the waterfall). The LM380 certainly doesn't give its full power output into a 32 ohm load, so a possible solution here would be to find miniature 8 ohm phones of sufficient power handling capacity. On the subject of phones, it was found that miniature stereo headphones do not fit over the hard hats used for caving. Perhaps it would be possible to fit phones into a hard hat?

Dragging a loop aerial and an ammo box in addition to ladders and ropes along a low passage is somewhat inconvenient. A form of folding loop which could fit into the ammo box would be a marked improvement.

Perhaps the most ambitious next stage would be to develop speech communications, a facility which would bring it close to the Molephone described in the first part of this article. Initial calculations show that the most significant problem would be obtaining the required 3kHz bandwidth. The traditional solution involves reducing the Q-factor of the loop considerably, which could only be achieved practically by reducing the number of turns. Clearly this reduction in turns would have to be compensated for by a corresponding increase in the coil current. More recent designs such as the Molephone overcome bandwidth limitations by operating at a higher frequency, typically 100kHz.

Licencing

As far as international frequency spectrum agreements are concerned the portion from 0–9 kHz is un-allocated and no regulations restrict its use. Furthermore, since the Troglograph does not use radio in the normal sense of the word but uses very short range magnetic waves, it would be reasonable to assume that a transmitting licence is not required. In many countries this is the case and the Troglograph could be used without any sort of official authorisation. In Britain, however, a licence issued by the Department of Trade and Industry is required for all use of the electromagnetic spectrum.

Fortunately, a suitable licence is readily available, this being the one issued for deaf aid inductive loop systems in public halls. The cost of the licence is £12.00 for a period of five years and the application form (Form BR12) may be obtained from the following address: Department of Trade and Industry, Radio Regulatory Division, Waterloo Bridge House, Waterloo Road, London SE1 8UJ.

Unless mention is made in the application of the specific requirements, the licence obtained will restrict the loop current to one ampere turn. Although quite suitable for hearing aid systems this is clearly of no use for the Troglograph. Accordingly it should be requested that a limit of 100uV per metre at 100 yards.
OPERATION

The Troglograph has a minimum of controls and is simple to operate. The equipment only has a transmit/receive switch, a switch to select automatic keying or morse, a volume control and a regenerating control.

This latter control is the only one which may need a word of explanation. In very strong signal conditions it really doesn't matter how the regeneration control is set — it will only be necessary to adjust the volume control to a comfortable level. When signals are weak, the regeneration should be advanced as far as possible without it self oscillating, then the volume can be adjusted.

It should also be remembered that the transmit/receive switch has a third 'S' position. Forgetting this could result in the Troglograph being in its standby mode when it is meant to be transmitting or receiving. In practice it is unlikely that the operator will be unaware which mode the equipment is in. Although no 'sidetone' feature as such is included, the receiver continues to operate (without aerial) when the Troglograph is transmitting, and enough signal is received to enable the operator to hear what is being sent.

from the aerial be applied. It would be wise to apply for this licence in good time as applications are currently taking about two months to process.

A Caution!

It isn't the intention of this article to encourage irresponsible underground expeditions. Caves and potholes are potentially dangerous places; hazards include pitch noises (deep vertical shafts), rising water in unsettled weather, route finding and collapses. Whereas all of these hazards can be minimised by taking the proper precautions, the inexperienced caver should not be tempted to go underground alone. Anyone wanting to experiment with cave communications is advised to seek some experienced potholers as companions or prefer to join a club. Numerous caving clubs are scattered around the country, especially in the Yorkshire Dales, Peak District, Mendips and South Wales. With the increasing interest in the Molephone in potholing circles, an electronics enthusiast might well be especially welcome in caving clubs — particularly when one considers the high price of commercial equipment.

One other potential hazard is perhaps not quite so obvious. The loop aerial is tuned to resonance, which means that in common with all tuned circuits, the voltage across the coil could be much greater than the +24 V applied to the final amplifier. It doesn't require much imagination to realise how unpleasant it could be to use a poorly insulated aerial whilst standing up to ones waist in a pool of water.

Acknowledgements

The author would like to thank Steven Newhouse who coined the name ‘Troglograph’ and his wife Margaret, Ivan Wuljahorodsky and James Fathers for their assistance in testing it in less than ideal conditions.

We would also like to point out that the Molefone (on which the Troglograph is based) is available from University of Lancaster Engineering Services, Department of Engineering, Bailrigg, Lancaster LA1 4TY, tel 0524 — 65201.

Molefone is a registered trade mark.
THE RETURN OF THE VALVE

Contrary to appearances, this is not an ETI project. But we're delighted to announce:

The ETI Valve Pre-amp
The battle between valves and semiconductor devices is far from won. Many audio enthusiasts swear by valves — and not just because they're supposed to give a 'warmer' sound. Jeff Macaulay has designed a stereo pre-amp to exploit the known advantages of valves — linearity, simplicity, low noise and high overload margins.

'The sound,' he says, 'is a revelation.' But that's only the beginning, because pretty soon Jeff is swapping his triodes for transistors with surprising results.

Intelligent Call Meter
This ROM-based design is for a telephone call-meter as easy to use as a digital clock. With battery back-up, it features a 24 hour clock, automatic or manual switch-on and the ability to memorize and display individual and total call costs for up to 135 calls along with the numbers dialled. The unit can handle all STD calls whether inland or overseas. The ROM-based program makes use of unit-cost data stored in RAM which can be updated by the user. Perfect to check your bills or keep track of your telephone use.

Plus:
RGB-to-Composite Video Encoder, Health Hazards in The Electronics Industry, Tech Tips, your letters, reviews, news, opinions and lots more.

AUGUST ISSUE
ON SALE 4th JULY

THE VIDEO SPECIALISTS
THE NOVEX 1414

SUMMER OFFER £100
Inclusive VAT and carriage £128.80

The superb metal cased 14 inch RGB/Composite Computer Colour Monitor is unbelievable value at this price!

CCTV camera at attractive prices
All our prices include VAT, carriage & insurance and can only be held as long as stocks last!

Send £20 on a cheque or postal order to confirm your order now!
(Deliveries within 28 days)

CROFTON ELECTRONICS 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD
SALES & SERVICE: P.O. BOX 6, KINGSTON HRS 3SX. LYONSHALL 557
THE MAIN EVENT

... and, in the event, AT&T came and so did ETI — neither of us, we’re pleased to say, having been blown up. Andrew Armstrong sends in a report from the British Electronics Week exhibition and picks out one or two salient points.

There is a theory going round that less people are taking up electronics as a hobby than in days of yore. This is as maybe, but there is plenty of expansion in the professional area. At this year’s British Electronics Week there were said to be about 1000 exhibitors. Certainly there were too many to glance at properly in a day, a far cry from the time when the show occupied a couple of rooms at the Grosvenor House Hotel.

Nominally the show was divided into four sections: The All Electronics Show, Electronic Product Design, Circuit Technology, and Fibre Optics. The first three of these were at Olympia, the last at Earls Court, with a coach shuttle service between the two venues.

Due to lack of time and stamina I gave the Earls Court part a miss. The Olympia part of the show was very popular, and it was sometimes difficult to move through the crowds.

If the show is a pointer to general trends, then I would say that the use of surface mount technology is steadily increasing, and is no longer quite so much of a black art. It is, of course, almost impossible to use a soldering iron on components on a surface mount board, so the ever-obliging manufacturers of assembly equipment will sell you a rework station for a cost just less than the national debt. This uses a very narrow stream of hot air to melt and reflow solder to enable individual components to be fixed or removed. It is the surface mount equivalent of the soldering iron.

Custom and semi-custom ICs were also much in evidence, with the inevitable accompaniment of a large range of computer aided design facilities.

Another sign of the increasing complexity of silicon technology was the profusion of static control products. Nowadays ICs with very small conductor areas can be damaged by an internal static discharge caused by an external static charge, and yet continue to work for some time before the inevitable failure occurs. What may happen, for example, is that a hole is punched in an insulating layer, and some conductor material is transferred into it. In use, ion migration either reinforces the plated hole, into a short circuit, or breaks the damaged conductor.

A company called Hartley Measurements has brought out a machine called the Autozap, which simulates the effect of a static discharge caused by the human body. This should permit reproducible evaluation of the resistance of devices to static.

There were many other items of interest. There were some very bright but tiny surface mount LEDs, and some seven segment LED displays with a surface mount driver chip on the back of the packages (see last month’s News Digest). At a quick glance it looks just like an ordinary seven segment display.

All batteries had a couple of interesting products — excellent solutions on the prowl for problems. The first is a range of solar power panels, the largest of which is reputed to supply 14.6V at over an amp in bright sunlight, and perhaps 200mA on an ordinary British day! At £297 it is an expensive way to charge up a car battery in a week or two, but it produces enough power to be useful and may find applications in remote locations.

I think that they will sell far more of the new rechargeable lithium batteries. These have double the energy density of nickel cadmium cells, and have the traditional lithium feature of low self discharge. They are very new, and ‘handmade’, so they cost around £10 each. When automatic machinery is in operation and the price drops, I think NiCads will find it hard to compete. The sale of primary cells may also be hit by the effect of this and the environmental concern over the disposal of used alkaline manganese cells.

Altogether the show was a ‘don’t miss’ event, though these few words cannot begin to do it justice.
Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries but this is not possible with ETI projects; in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made.
- We do not have the resources to adopt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications.
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings that show the characteristics of oscillators if appropriate. With a bit of luck, by taking these measurements you’ll discover what’s wrong yourself. Please do not send us any hardware (except as a gift).
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of equipment.
- We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole.
- We receive a large number of letters asking if we have published particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- We are brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn’t help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK:</td>
<td>£18.10</td>
</tr>
<tr>
<td>Overseas</td>
<td>£29.50 Surface Mail</td>
</tr>
<tr>
<td></td>
<td>£49.50 Air Mail</td>
</tr>
</tbody>
</table>

Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 129 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1BB. Cheque or postal orders, etc should be made payable to ASPL Ltd.

Note that we do not accept orders or subscriptions by telephone from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we’d like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 129 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheque or postal orders, etc should be made payable to ASPL Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require, then the number is about the extent, by phone, 2 to 3 days. We would normally expect to have ample stocks of each of the last twelve issues, but occasionally, we cannot guarantee that this is the case, or a backnumber of particular interest to you is available, or where the issue you require appeared more than a year ago, photocopies of individual articles can be ordered instead. These cost £1.50 (UK or overseas surface mail), irrespective of the amount, and we will tell you whether an article appeared in several parts each part will be charged as one article. Your request should state clearly which date you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published as a separate leaflet with the index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982, the 1983 index in January 1984, the 1984 index in January 1985 and the 1985 index in December 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1V 3AB. Cheques, postal order, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we’ll get back to you if we think you are the interested and give you all the boring details. (Don’t forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:

1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been credited.
4. If you don’t receive a satisfactory reply from the supplier with, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
5. If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because logically the dispute is between you and the supplier, but a letter from us sometimes helps to get the matter sorted out. But please, don’t write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the Advertising Protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between a cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for a few weeks. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Infra-red Intruder Alarm (August, 1984)

Q11, VN10LK should be either a VN10LM or a VN10MK. R19 and R20 on Fig.5, p.59, should be R18 and R19. R20 is missing and should be soldered between Q6 and a suitable point on the positive rail of the board. There are two C18s—the one on the upper left should be marked C17. C12 is missing. It should be connected just below L2, from the adjacent track connected to R15, C8 and R13. Pads are available. The +ve on C8 is not marked: it should be uppermost. It should also be uppermost on the incorrectly marked C11.

Noise About Noise (July 1985)

In Fig. 5 on page 24, no connection should be shown between the cathode of the diode and the negative side of the 47pF capacitor.

The ETI Activator (January, 1986)

Several items were missing from the parts list (p.34). Resistors R33, 93 and 94 are all 100k, R7, 45, 46 and 47 are all 1M0; R40 is 475; R80 is 100k. The list includes two R60’s—the second (15k) should be R88. There is no R79 anywhere—for some reason, the number was overnight forgotten. It should be a DPDT push-button switch. On the circuit diagram (p.32), the resistor between pin 10 of I2C2 is R8, 10k. R25 should be marked 2k7, R20 should be 39k, R21 should be 1k0 and the component between C10 and R27 is a 10k resistor, R2 (not C25). Some of the IC numbering do not correspond with the PCB overlay. IC8b and IC8c should be exchanged and the pin numbers on the new IC8b and IC1d and 2d should read, clockwise from the output, 14, 12 and 13. The new IC8c now has pin numbers 6, 10 and 9 (clockwise from the output). IC8a and ICb should be exchanged and the new IC8c should have pins numbered 1, 3 and 2 (clockwise from the output). Likewise, IC8b should have pins numbered 5, 7 and 6. R32 appears twice on the overlay (p.34). The one connected to pin 16 and IC2 should be R11. The parts list and circuit diagram includes two resistors (R27 and 67 ohms) made to 14-val mylar, the nearest preferred value, although you might prefer to use a 12k fixed and 4k7 trimmer in series to adjust for optimum setting.

Digibaro (February 1990)

S1 and C1, C5, C9 and IC7 should be 470uV 25V types as shown on the circuit diagram, not 47uV 25V types as stated in the parts list. We have also been told that one of the companies mentioned in Bylines, Hawke Electronics, no longer supply the MPX100a pressure transducer; The other company recommended, Macro Marketing, should still be able to help.

LEDs on Fig. 7, page 28, the component overlay, is shown as having 16 pins. It should have 18 pins and be extended rightwards to the two pads shown. In the author’s prototype the LED displays used were both MAN6710 2-digit types, LED4 having pins 16, 17 and 18 removed.

RS232-Centronics Converter (March, 1986)

On the circuit diagram, pin 15 of IC2c should be marked pin 13. Pin 10 of IC13 is missing and should be shown connected to ground. Pin 9 of IC77 becomes pin 8 and needs a code. Pin 10 of the IC77 should be marked 5V1b should be a zero and the 8’s ' signaling in the 'DATA BITS' column. The specification of 74LS121 and 74LS05 is wrong, since 74LS5 do not exist for this voltage range. They should be replaced with standard TTL. Finally, some confusion seems to have been generated over TX1. Although non-essential in the text, a simple correction would demonstrate that TX1 needs to be 6.144 MHz to produce the baud rates shown.
PCB FOIL PATTERNS

The foil pattern for the Direct-Ion board.

The BBC motor controller foil pattern.

The foil pattern for the Moving coil stage of the Upgradeable Amplifier.
The foil pattern for the Digital Sound Sampler PSU.
Subscription Order Form
To: ETI Subscriptions Department, In felon Ltd,
Times House, 179 The Marlowes, Hemel Hempstead,
Herts HP1 1BB.
Please commence my subscription to Electronics Today
International. I enclose a cheque/Postal Order*/International
Money Order* for the appropriate fee, made out to
ASP Ltd.
Please debit my Access*/Barclaycard* account number
__

Signature ...
(* delete as appropriate)
Please indicate subscription required and fee encosed
UK & Rep of Ireland: £18.10 □
Overseas (Accelerated Surface Post) £22.50 □
USA (Accelerated Surface Post) $29.50 □
Overseas air mail: £49.50 □

PLEASE COMPLETE YOUR NAME AND ADDRESS
IN BLOCK CAPITALS

Name ..
Address ...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order

THIS COUPON IS VALID UNTIL 30th June 1986

Backnumber Order Form
To: ETI Backnumbers Department, In felon Ltd,
Times House, 179 The Marlowes, Hemel Hempstead,
Herts HP1 1BB.

Please supply me with the following backnumber(s) of ETI
Month .. Year
Month .. Year
Month .. Year
I enclose cheque/Postal Order*/International Money
Order* to the value of £1.60 per magazine ordered,
made out to ASP Ltd (* delete as appropriate).

Total money enclosed £.......................... PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS

Name ..
Address ...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order

THIS COUPON IS VALID UNTIL 30th June 1986

Binder Order Form
To: ASP Readers' Services, PO Box 35, Wolsey House,
Wolsey Road, Hemel Hempstead, Herts HP2 4SS.

Please send me binder(s) for ETI.
I enclose a cheque/Postal Order*/International Money
Order* to the value of £5.20 per binder ordered, made
out to ASP Ltd (* please delete as appropriate).

Total money enclosed £.......................... PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS

Name ..
Address ...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order

THIS COUPON IS VALID UNTIL 30th June 1986

Photocopy Order Form
To: ETI Photocopies Department, 1 Golden Square,
London W1R 3AB.

Please supply me with the following photocopies:
Month Year Article
Month Year Article
Month Year Article

Tick box if you require INDEX (cost £1.50) □
I enclose cheque/Postal Order*/International Money
Order* to the value of £1.50 per photocopy ordered, made
out to ASP Ltd (* delete as appropriate).

Total money enclosed £.......................... PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS

Name ..
Address ...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order

THIS COUPON IS VALID UNTIL 30th June 1986

59
OPEN CHANNEL

For many months' now I have refrained from making comment about GEC's proposed takeover of Plessey. Both management and employees of Plessey are totally opposed to the takeover, and have referred it to the Monopolies Commission in an attempt to prevent it. The main argument against making comment is that whatever I write takes so long to come into print that it would be out-of-date before the reader sees it. This is a very real problem with something as volatile as the GEC/Plessey affair. However, it has been dragging on for so long that I can refrain no more.

Plessey's argument against the takeover relies on the fact that the company's acquisition will give GEC a monopolistic control of the market. But, as I am sure the Commission already knows, it won't. There are other companies, albeit much smaller, which design, manufacture and market similar telecommunications products - all of which are in direct competition with the likes of GEC and Plessey. So the argument against a monopoly (which is why the bid was referred to the Commission in the first place) falls down almost immediately.

The Trades Unions stance against the takeover seems, in my view, a much more logical argument, on the other hand. The ETFTP suggests that the takeover cannot give any increase in organisational efficiency and that the proposed single organisation will be so large that it will actually be less efficient. The Union is also, understandably, against the takeover on the grounds that a large number of job cuts will probably result.

However, the main function of the Monopolies Commission in this argument is to decide whether GEC would become a monopoly-holding company if the takeover comes about. As I said earlier, it won't - therefore the Commission has no alternative but to overrule Plessey. Or does the Commission know different?

Band III

While the topic is on GEC, I should mention the new Band III national trunked radio network which is due to be brought into service in about seven or eight months' time. There are only two operators for the network: GEC and a consortium including Pye, Racal and Securicor. Detailed planning is not yet complete and no-one knows how it will work, but already there would seem to be a problem regarding the amount of radio spectrum allocated for the service. The operators, led by GEC, want more, but the Government won't let them have it.

But, fair be it. There is only a limited amount of radio spectrum, and it's not everyday that a significant portion of it becomes available as this portion did (the old VHF television frequencies). And other users want their bits, too. GEC will just have to make do with Plessey instead (that's if I'm right).

Data Day

In just over a year's time the BBC will start to transmit data signals along with regular broadcasts. These signals will not interfere with your pleasure when tuned to Radio 4's Afternoon Play and, in fact, may help to improve your reception! The signals will include information about the frequencies being used for broadcast purposes, station identification, and what's being broadcast on other stations.

All of this information is not a lot of good for your average tranny, of course, and it will only be a new generation of 'smart' radios which will be capable of receiving and using it. The idea is that, by decoding and using the information, the smart radio will be able to stay tuned to a particular station by itself, receiving the strongest transmission and hence giving the best sound output. This, I hear you say, is not a lot of good to your average tranny which, under most circumstances, sits in one place tuned only to one station anyway.

On the other hand, and this is the clever bit, radios in cars will certainly benefit. As a car moves around, so does the frequency at which best reception of any particular station will occur. A smart car radio will be able, by decoding the data signals, to follow the strongest transmission and give the best reception. Also, the user will be able to choose the type of programme received: the radio will pick out and automatically tune to, for example, weather announcements on other stations.

Wonderful stuff, this technology.

Keith Brindley

PLAYBACK

For many years, preamplifiers have been designed to accept flat 'line' inputs from tuners and tape decks at around 100-200mV. After the volume and balance controls, further amplification raises the signal to about 1 volt, enough to drive the power amplifier. With discs as the main sound source and the cartridge needing amplification from a very low level, the need to drive a power amp directly from a tape deck or tuner never arose.

Then along comes CD, its audio output level of around 2V being more than enough to drive power amps directly. To avoid losing in sound quality from active preamps, the passive preamp is created. As many modern power amps have extra sensitivity, and tuners and tape decks extra gain to cover matching errors it has proved possible to connect a whole system (without a turntable) using only a passive preamp - just volume control, switches and input and output sockets.

So why do CDs have such a high output? Presumably a high output enables much better signal to noise and distortion figures.

The use of digital circuitry in audio applications is more likely to increase than disappear, and manufacturers are not likely to change their output levels if this degrades performance or if D to A converters work at that level. We cannot really accept two completely different line input levels to amplifiers with the pre-to-power level roughly halfway in between.

It is now time to standardise. Modern hi-fi systems do not require tone controls so it makes sense to arrange all high level outputs so that they can drive a power amp directly using only a volume control and switch. Where tone control is needed, a graphic equaliser will do a better job. Avoiding an additional active gain stage saves on preamp powersupply costs and gives better sound quality.

Why not go one stage further? We won't include all the parts of a passive preamp in the power amplifier. The savings in preamp case and cable could either be passed on to the purchaser used to improve sound quality. But what of the analogue disc user? A preamp will always be needed to provide RIAA equalisation and to raise the signal to 'line' level. The opportunity is there to provide specialised disc preamps to go with the turntable. Or why not inside the turntable where the use of balanced input amplifiers would provide such benefits as low radio interference. And one less well finished box is required!

These developments seem logical, and would improve performance and save money. Whether or not they take place remains to be seen.

Graham Nalty

ETI JULY 1986
ALF'S PUZZLE

The story so far:
Alf and Auntie Static are locked in mortal combat for control of the puzzle page. The key to supreme power lies in the legendary capacitor puzzle which was featured in ETI, May 1986. To restate it-

Four 2µF capacitors are connected as shown in Fig. 1. The arrangement should be equivalent to a single 2µF capacitor, and

![Diagram of capacitors in series and parallel arrangement]

The problem is:
If the network is charged to 10V, the energy of 25J per capacitor adds up to a total of 100J, as we would expect for a single 2µF capacitor charged to 10V. The charge on each capacitor in the network, however, is 10µC, so the total charge on all four capacitors will be 40µC — twice as much as for a single 2µF capacitor. Does this mean that it would take twice as much current for a given time to charge the network as it would for a single 2µF capacitor?

Alf, being completely out of his depth, solicited the help of ETI readers to solve the puzzle, offering a prize of £10 for the correct answer that was easiest to understand. Now read on...

Alf's choice, from the many correct replies, was difficult to make, but eventually he selected Bernard Chalk's explanation as being the most likely to be understood by a ten-year-old (and therefore by Alf himself).

The solution to the puzzle can be explained by drawing the series/parallel arrangement of capacitors with the inner connecting leads between the series capacitors reduced, as shown in Fig. 2. The charge on the inside plates is brought together and cancels, leaving only the charge of 10µC on the series capacitors, and therefore providing a total charge of 20µC on the arrangement.

ETI ADVERTISEMENT INDEX JULY 1986

<table>
<thead>
<tr>
<th>Advertisement Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Radio and Electronics Fair</td>
<td>23</td>
</tr>
<tr>
<td>Audiokits</td>
<td>43</td>
</tr>
<tr>
<td>BK Electronics</td>
<td>IFC</td>
</tr>
<tr>
<td>B&H ELECTRICAL SUPPLIES</td>
<td>13</td>
</tr>
<tr>
<td>Cambridge Microcomputer Centre</td>
<td>6</td>
</tr>
<tr>
<td>Clrkit</td>
<td>60</td>
</tr>
<tr>
<td>Croflewood Electronics</td>
<td>8</td>
</tr>
<tr>
<td>Crofton Electronics</td>
<td>54</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>10</td>
</tr>
<tr>
<td>Electro-Mech</td>
<td>12</td>
</tr>
<tr>
<td>Greenbank Electronics</td>
<td>43</td>
</tr>
<tr>
<td>Hart Electronic Kits</td>
<td>49</td>
</tr>
<tr>
<td>Henry's/Audio Electronics</td>
<td>43</td>
</tr>
<tr>
<td>ICS</td>
<td>13</td>
</tr>
<tr>
<td>Jaytee Electronic Supplies</td>
<td>IBC</td>
</tr>
<tr>
<td>Keytronics</td>
<td>62</td>
</tr>
<tr>
<td>Maplin Electronic Supplies</td>
<td>OBC</td>
</tr>
<tr>
<td>Microprocessor Engineering</td>
<td>13</td>
</tr>
<tr>
<td>Microkit</td>
<td>60</td>
</tr>
<tr>
<td>Micro Concepts</td>
<td>IBC</td>
</tr>
<tr>
<td>Number One Systems</td>
<td>23</td>
</tr>
<tr>
<td>Olin Electronics</td>
<td>49</td>
</tr>
<tr>
<td>Pineapple Software</td>
<td>43</td>
</tr>
<tr>
<td>Riscom</td>
<td>11 & 53</td>
</tr>
<tr>
<td>Service Trading Co</td>
<td>60</td>
</tr>
<tr>
<td>Stewart of Reading</td>
<td>14 & 15</td>
</tr>
<tr>
<td>Technomatic</td>
<td>43</td>
</tr>
<tr>
<td>TJA Developments</td>
<td>11</td>
</tr>
<tr>
<td>Universal Semiconductor Devices</td>
<td>49</td>
</tr>
<tr>
<td>Watford Electronics</td>
<td>4 & 5</td>
</tr>
</tbody>
</table>
ALARMS

FREE BOOKLET on BURGLAR ALARMS with LOWEST U.K. DIY PUBLISHED PRICES
PHONE OR WRITE FOR YOUR COPY
051-523 8440
AD ELECTRONICS
217 WARREMBROOKE
AINTREE, LIVERPOOL L9 OHU

LOWEST PRICED TOP QUALITY fire and intruder alarm equipment, etc. SAE for catalogue
Security Services, 62 High St, Hythe, Kent CT21 5JR.

BOOKS AND PUBLICATIONS

LATEST TTL and CMOS data sheets. Complete set for only £5.00. Make cheques and P.O.s payable to J. S. Hayter, Send to Aldred Inc., 248 Hucknall Road, Notts NG5 1FB.

COMPONENTS

ANSELL & BARBER LTD.

USED EPROMS UNCLEANED

22708 13.99
22708 13.99
22708 13.99
22708 13.99
22708 13.99

ERASED EPROMS 20p each

Please include postage of £1 plus VAT 15% with your order.

241 Tong Road, Leeds LS12 3NA.
TEL: Leeds 632131.

ESR ELECTRONIC COMPONENTS

• Full range of Components
• Motors & Service
• Robot Arms & Interfaces
• Vacuum Electronic Kits
Send for new catalogue.
60p inc. P&P.

13A Station Road. Catterick
North Shields. Tyneside NE30 4PQ
0641 203 4663

SEND ORDINARY SAE for list of our half price new branded components, eg., transformers
2VA 60p. 9v relays 65p or 55p for
10. Mulberry Ltd., 116 Groverson Road, Aldershot.

BARGAIN! 500 1/2W resistors
£4.95. Component pack list!
Amplifiers! Alarms! Electronic
Kits! Send £1.00 for catalogue and lists.
Pluto II Fortronics, 565 Street Lane,
Leeds LS17 6JA.

COMPUTER ADD-ONS

AMSTRAD OUTPUT PORT.
Plugs into printer port and provides seven open-collector outputs.
Easy to use from Basic or M/C.
£14.95 inc. S.A.E. for details.
NCJ Electronics, 13 Binfield Square,
Elia Street, Hull HUS 3AP

COILS & CHOKES

MAXI-Q

COILS AND CHOKES PREVIOUSLY MADE BY DENCO S.A.E. PRICE LIST
8 BRUNEL UNITS, BRUNEL RD,
GORSE LANE IND. ESTATE,
CLACTON, ESSEX CO15 4LU.
TEL: (0255) 424152

SEND YOUR REQUIREMENTS TO:
Duncan Neilson,
ETI Class. Dept.,
ASPD.,
1 Golden Square,
London W1.
FOR SALE

NICADS

AA/HP7 Rechargeable Cells

4 for £2.30 or 10 for only £5.50 (ex. eqp. tested & guaranteed)

Universal Nicad Charger £8

with battery test facility and LED Indicators or any combination PP3, AA, or C/AA cells

Above prices inclusive of p&p - goods subject to availability.

Croydon Discount Electronics (E)

40 Lower Addis Rd.
Croydon CR0 6AA

NEW STOCK

Sinclair 16K rampacks for ZX81 £6.00 including postage. Halsat, Unit 1, Bury Walk, Bedford MK41 7BW.

CORTEX II

all interfaces, RX80 printer, twin drives, monitor, modem, D.O.S. All cabs, disks, manuals etc. £250. Tel: 0703 641945.

THOUSANDS OF POUNDS

worth of components, printed circuit boards, electronic organs working and one incomplete Data books, test equipment etc. Any reasonable offers. Must sell - Husband deceased. Contact Mrs. Wilde (0277) 222715. Shenfield, Essex.

"100 WATT ITS CHILDPLAY"

- superb quality fibreglass T63 poweramps and data £7.50...
- matching mixers/£12...
- CIA & 8 Cunitoff Road, Ilkeby LS29 9DZ.

FM TRANSMITTER

88-108 MHz.

20x40x12mm, fully built, sensitive microphone £8.50 inc. Edmunds Electronics, 3 Orchard Way, Uxbridge, Middlessex UB8 2BN.

KITS AND READY BUILT

KITS

J. Linsley Hood Designs

- Detonator Analysis Kit £5.00
- Microcontroller Kit £15.25
- Case and Panel for above £12.00
- ETI Motorised Kit £51.00
- Audio Signal Gen. (J.78N) Kit £28.50
- Audio Signal Gen. (J.07N) Kit £44.00
- Fixed Freq. Sig.Gen. (0425) £41.00
- Cab and Panel for above £9.50
- Reg. P.C.B. for J.78N only £12.00

S.A.E. for full information.

TELEPHONE ELECTRONICS

325, Fore Street, London N8 OPE. Tel 807 3719

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Stallon Drive, Bredon, Tewkesbury, Glos. Tel. 0864 73127.

ORGAN KEYBOARDS

PLANS & DESIGNS

SITUATIONS VACANT

POWER SUPPLIES

150W SWITCHMODE PSU, +5V 6.A, +12V at 4.8A, +24V at 1.7A.

- 12V at 0.2A. Perfect working order, over £70 in Henries Radio, 19 + Carr. 0245-50927 after 6.00pm.

240V AC ELECTRICITY from two 12v batteries! Encapsulated ready built electronic module with screw terminals! Comprehensive instructions supplied. Just add transformer and other easily obtained accessories. 250W output, limited number available. £25 (inclusive). Chalgate Products, Green Lane, Great Horkesley, Colchester, Essex, CO6 4HD. (Proprietor J.A. Richmond.)

TRAINING COURSES

PROFESSIONAL ELECTRONICS ENGINEERS

Short training courses (3 week)

- MICROSERVICES
- MICROCONTROLLERS
- MICROCOMPUTERS

MICROPROCESSORS/Computer/Services

LONDON ELECTRONICS COLLEGE

Dept. (E)

29 Penyre Road, LONDON SW5 9SU

NEXT COURSE STARTS 21st JULY

APPLICATIONS VACANT

WANT THE RIGHT PERSON FOR THE JOB? THEN WHY NOT ADVERTISE WITH E.T.I.

SERVICES

DESIGN SERVICES

microprocessor, special interfaces, analogue, digital, sensitive, alarm systems, PCB design and artwork. Prototype and small batch production.

ALAB ELECTRONICS

Grantham (0476) 860089.

FLEX COMPUTER BOARDS

drives PSUs ICs cases send SAE for list to M. Shalash, 29 Cooks Road, London SE17 3NG.

FREE PROTOTYPE

of the finest quality with every P.C.B. artwork designed by two highly qualified hard rates, and high standard of work. Halstead Designs Limited, Finsbury House, 31 Head St, Halstead, Essex CO9 2XB. Tel: 0767 477408.
SPECIAL OFFERS

CLEARANCE BARGAIN!! Thousands of LED 7 Segment Display, brand new 14 pin DIL RED. 43 inch common anode display 0-9 with right and left decimal point in stock: 10 pieces £25.50 (25p each) 50 pieces £10.00 (20p each) 100 pieces £15.00 (15p each) 1000 pieces £100.00 (10p each). Telephone your order to 0296 613816.

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over £10 send only £1.50 to Woodside, Dowsett Lane, Ramsden Heath, Essex CM11 1JL.

WANTED

Turn your surplus transistors, IC's etc., into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact: Coles Harding & Co. 103 South Brink Wisbech, Cambs. ESTABLISHED OVER 10 YRS Tel: 0945 384188

TRITON COMPUTER L72, L82, L92 operating systems in ROM or listing form also: L92 D.O.S. Tel: (0934) 415441.

SCOPES

MENDASCOPE LTD.

REPAIR & RECALIBRATE OSCILLOSCOPES.

ALL MAKES ALL MODELS.

NATIONWIDE COLLECTION & DELIVERY

FREE ESTIMATES

Phone 069-172-597

TEKTRONIC oscilloscopes, calibrated, good condition. 454A dual trace 150MHz, delay sweep £495. 502A dual beam 100 microvolts, 1MHz £95.00, 547 dual trace 50MHz delay sweep £145, 548B dual trace 24MHz delay sweep £135. Telequipment D83 50MHz delay sweep £385, manuals, spares, other test equipment. Tel: 01 858 4221.

TEKTRONIX 453 SCOPES. Good working condition 50 MHz dual timebase Two channel £200. Tel: 0655 840409.

SWITCHES

COMMERCIAL ELECTRONICS LTD.

VOICE/SOUND ACTIVATED SWITCHES. Easy to follow diagrams and uses only £1. Components and P.C.B's available from HERRINGTON, 63 Homefarm Rd., Harwell, London W7 1NL Tel: 01-578 6627.

CLASSIFIED ADVERTISEMENT

ORDER FORM

Rate 45p per word (min 15 words)

Post to: ETI, 1 Golden Square, London W1A 3RB

ADVERTISERS PLEASE ADD 15% VAT

Please use BLOCK CAPITALS and include post codes.

Classification

Name (Mr/Mrs/Miss/Ms)

Address

Signature

Daytime Tel. No.

Date

Solution to Crossword No. 5

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Solution to Crossword No. 5

<table>
<thead>
<tr>
<th>Across</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Laser</td>
<td>2) Basic command associated with read and restore (4).</td>
</tr>
<tr>
<td>3) Magnet</td>
<td>3) Japanese printer manufacturer (5).</td>
</tr>
<tr>
<td>4) Stylus</td>
<td>4) Underwater object detector using sound waves (5).</td>
</tr>
<tr>
<td>5) Diode</td>
<td>5) Parity (4).</td>
</tr>
<tr>
<td>6) NEXT</td>
<td>6) A square wave has a leading one and a trailing one (4).</td>
</tr>
<tr>
<td>7) RCA</td>
<td>7) capacitor, used to reduce the negative feedback effect of an emitter resistor to AC signals (6).</td>
</tr>
<tr>
<td>8) ECL</td>
<td>8) Two pole, two way switch (1,1,1,1).</td>
</tr>
<tr>
<td>9) Load</td>
<td>9) When 13 down affects 9 across, this becomes longer (4,4).</td>
</tr>
<tr>
<td>10) Bipolar</td>
<td>10) Used in both televisions and oscilloscopes (1,1,1).</td>
</tr>
<tr>
<td>11) Dipole</td>
<td>11) The maximum a meter can show (1,1,1).</td>
</tr>
<tr>
<td>13)</td>
<td>13) Wound component (4).</td>
</tr>
<tr>
<td>14)</td>
<td>14) Software package to create and alter text files (6).</td>
</tr>
<tr>
<td>15)</td>
<td>15) A BASIC command (4).</td>
</tr>
<tr>
<td>16)</td>
<td>16) Cable (4).</td>
</tr>
<tr>
<td>17)</td>
<td>17) Modulator/demodulator (short form) (5).</td>
</tr>
<tr>
<td>18)</td>
<td>18) To wipe magnetic tape clean (5).</td>
</tr>
<tr>
<td>19)</td>
<td>19) How to describe a circuit with uniform frequency response within a specified bandwidth (4).</td>
</tr>
<tr>
<td>20)</td>
<td>20) Amplitude (6).</td>
</tr>
<tr>
<td>21)</td>
<td>21) Mechanical man or industrial tool (5).</td>
</tr>
<tr>
<td>22)</td>
<td>22) Tool for melting solder (4).</td>
</tr>
<tr>
<td>23)</td>
<td>23) No connection (4).</td>
</tr>
</tbody>
</table>

Wrongly given as '15 last month.

ACROSS

ETI JULY 1988
THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS

ILP have long been recognised as manufacturers of top quality amplifiers. All ILP products are built to extremely high specification for the ultimate in hi-fi performance. They’re unique in being completely encapsulated with integral heatsinks, and can bolt straight onto the chassis. They’re also extremely robust, ensuring high levels of reliability as well as performance.

ILP Amplifiers are now available through Jaytee. The UK Distributor with the availability and service to match the quality of the amplifiers.

POWER BOOSTER AMPLIFIERS

The C15 and C1515 are power booster amplifiers designed to increase the output of your existing car radio or cassette player to 15 watt rms. C15 - 15 watts .. £10.65
C1515 ... £19.78

ILP LOUDSPEAKER

Power: 350 watt rms
Size: 12 inches
Impedance: 8 ohms
Range: 20 Hz to 5 kHz

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

NEW £78.61

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentiometers, switches, etc. If used with our power amps they are powered from the appropriate Power Supply.

<table>
<thead>
<tr>
<th>Type</th>
<th>Application</th>
<th>Functions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY6</td>
<td>Mono PreAmp</td>
<td>Full HiFi facilities</td>
<td>£8.45</td>
</tr>
<tr>
<td>HY66</td>
<td>Stereo Pre-Amp</td>
<td>Two Guitars plus Microphone</td>
<td>£14.45</td>
</tr>
<tr>
<td>HY73</td>
<td>Guitar Pre-Amp</td>
<td>Two Guitars plus Microphone</td>
<td>£14.45</td>
</tr>
</tbody>
</table>

NEW! HY73 Guitar and Special Effects Pre-Amp as HY 73 Plus Overdrive and Reverb £14.95

POWER BOOSTER AMPLIFIERS

The C15 and C1515 are power booster amplifiers designed to increase the output of your existing car radio or cassette player to 15 watt rms.

POWER SUPPLY UNIT

<table>
<thead>
<tr>
<th>Type</th>
<th>For Use With</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU502</td>
<td>PRE AMP</td>
<td>£6.45</td>
</tr>
<tr>
<td>PSU702</td>
<td>1 or 2 HY300</td>
<td>£16.45</td>
</tr>
<tr>
<td>PSU722</td>
<td>2 or HY128, 1 HY244</td>
<td>£18.45</td>
</tr>
<tr>
<td>PSU422</td>
<td>1 HY126</td>
<td>£20.45</td>
</tr>
<tr>
<td>PSU522</td>
<td>1 HY51</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU523</td>
<td>HY722</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU524</td>
<td>HY752</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU525</td>
<td>HY782</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU526</td>
<td>HY832</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU572</td>
<td>HY932</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU573</td>
<td>HY1048</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU574</td>
<td>HY1248</td>
<td>£22.45</td>
</tr>
</tbody>
</table>

All the above are for 240v operation

BIPOLAR MODULES

Ideal for Hi Fi, Full load protection, integral heatsink, slow rate 10V/s

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Power Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15 - 4.8 - 10.45</td>
</tr>
<tr>
<td>HY60</td>
<td>30 - 4.8 - 16.45</td>
</tr>
<tr>
<td>HY6060</td>
<td>30-30 - 4.8 - 21.95</td>
</tr>
<tr>
<td>HY124</td>
<td>60 - 4 - 17.45</td>
</tr>
<tr>
<td>HY128</td>
<td>60 - 8 - 17.45</td>
</tr>
<tr>
<td>HY244</td>
<td>120 - 4 - 22.45</td>
</tr>
<tr>
<td>HY248</td>
<td>120 - 8 - 22.45</td>
</tr>
<tr>
<td>HY384</td>
<td>180 - 4 - 33.45</td>
</tr>
<tr>
<td>HY388</td>
<td>180 - 8 - 34.95</td>
</tr>
</tbody>
</table>

Distortion less than 0.01%

MOSFET MODULES

Ideal for Discos, public address and applications with complex loads line transformers etc. Integral Heatsink

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Power Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS124</td>
<td>60 - 4.8 - 9.45</td>
</tr>
<tr>
<td>MOS248</td>
<td>120 - 4.8 - 9.45</td>
</tr>
<tr>
<td>MOS344</td>
<td>180 - 4 - 16.45</td>
</tr>
</tbody>
</table>

POWER SUPPLY UNIT

<table>
<thead>
<tr>
<th>Type</th>
<th>For Use With</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU502</td>
<td>PRE AMP</td>
<td>£6.45</td>
</tr>
<tr>
<td>PSU702</td>
<td>1 or 2 HY300</td>
<td>£16.45</td>
</tr>
<tr>
<td>PSU722</td>
<td>2 or HY128, 1 HY244</td>
<td>£18.45</td>
</tr>
<tr>
<td>PSU422</td>
<td>1 HY126</td>
<td>£20.45</td>
</tr>
<tr>
<td>PSU522</td>
<td>1 HY51</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU523</td>
<td>HY722</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU524</td>
<td>HY752</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU525</td>
<td>HY782</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU526</td>
<td>HY832</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU527</td>
<td>HY932</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU528</td>
<td>HY1048</td>
<td>£22.45</td>
</tr>
<tr>
<td>PSU529</td>
<td>HY1248</td>
<td>£22.45</td>
</tr>
</tbody>
</table>

All the above are for 240v operation

BARE PCB'S AND DOCUMENTATION

+ SYSTEM SUPPORT MONITOR + SYSTEM UTILITIES DISC – £95.00
FLEX + EDITOR + ASSEMBLER £75.00

2 ST. STEPHEN'S ROAD • CHELTENHAM • GLOUCESTERSHIRE GL51 5AA
Telephone: Cheltenham (0242) 510525

FROM JAYTEE
Lowest possible prices?
Top quality components?
Fast reliable service?
Large range?

Maplin it's irresistible.

Pick up a copy of our new 1986 catalogue from any branch of W. H. Smith for just £1.45.
Or post this coupon now, to receive your copy by post for just £1.45 + 40p p & p. If you live outside the U.K., send £2.50 or 11 International Reply Coupons. I enclose £1.85.

Name
Address

MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8JR.
Telephone: Southend (0702) 552911
SHOPS
• BIRMINGHAM: Lynton Square, Perry Barr, Tel: 021-366 7292.
• LONDON 159-161 King Street, Hammersmith, W6.
 Telephone: 01-748 0326.
• MANCHESTER: Oxford Road, Tel: 061-236 0281.
• SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 0703 225631.
• SOUTHEND 282-294 London Rd, Westcliff-on-Sea, Essex.
 Telephone: 0702-554000

Shops closed all day Monday.
1. Please indicate what you think of the following aspects of ETI's coverage:

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Good</th>
<th>Average</th>
<th>Bad</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>New product news</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>News of events and personalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New theoretical/technological developments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophisticated projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (please specify no more than three)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Indicate what you think of the services offered by the magazine:

<table>
<thead>
<tr>
<th>Service</th>
<th>Good</th>
<th>Average</th>
<th>Bad</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photocopy service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project updates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrections to projects/features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foil patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buylines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advice services (Auntie Static etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special offers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscriptions (rate & delivery)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back numbers (price & availability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letters page</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Please indicate whether you own any of the following types of equipment:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Own</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer/computer peripherals</td>
<td></td>
</tr>
<tr>
<td>audio/hi fi</td>
<td></td>
</tr>
<tr>
<td>electronic musical instrument</td>
<td></td>
</tr>
<tr>
<td>PA/recording equipment</td>
<td></td>
</tr>
<tr>
<td>radio/satellite/CB equipment</td>
<td></td>
</tr>
<tr>
<td>video camera/monitor</td>
<td></td>
</tr>
<tr>
<td>car electronics</td>
<td></td>
</tr>
<tr>
<td>security equipment</td>
<td></td>
</tr>
<tr>
<td>remote control/robotics</td>
<td></td>
</tr>
<tr>
<td>photographic or darkroom equipment</td>
<td></td>
</tr>
<tr>
<td>test/measurement equipment</td>
<td></td>
</tr>
<tr>
<td>gadgets</td>
<td></td>
</tr>
<tr>
<td>Others (please specify)</td>
<td></td>
</tr>
</tbody>
</table>

4. If you already own a computer, please indicate which one:

- Spectrum/Spectrum +
- Spectrum 128
- Commodore 64/128
- BBC B/B+/Master
- Acorn Electron
- Sinclair QL
- Amstrad 464/664/6128
- Amstrad PCW8256
- Atari 600/800/128XL
- Atari 520ST/1040ST
- Microtan 65
- Dragon 32/64
- Microbox II
- ZX80/81
- Interak
- Cortex
- Others (please specify)
5. Indicate whether you'd like to see more or less in the magazine of the following:

<table>
<thead>
<tr>
<th>Topic</th>
<th>More</th>
<th>Same</th>
<th>Less</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test equipment projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV and video projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car electronic projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotics projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photographic projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novelty projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer software</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic electronics theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced electronics theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>News features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design hints and tips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinion columns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crossword/Alf's puzzle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical advice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (please specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Please indicate which of the following you buy and how frequently:

<table>
<thead>
<tr>
<th>Item</th>
<th>Not at all</th>
<th>Sometimes</th>
<th>Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete electronic kits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETI PCBs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB making equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stripboard/wire-wrap etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preprogrammed ROMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unprogrammed ROMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solder/wicks/tips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test gear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cases/case material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>component storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connectors/leads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronics books</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>computer software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floppy disks/computer tapes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>second-hand equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Indicate how many kits or projects you hope to build in the next year:

 0 1-3 4-12 more than 12

8. Do you have difficulty locating components?:

 Y □ N □

9. Do you prefer to build projects from commercial kits, if they are available?

 Y □ N □

10. Do your projects normally work first time?
 Do you normally get them to work?

 Y □ N □

11. Do you usually build projects as printed or supplied?
 If no, do you make a few or many mods?

 Y □ N □
 Few □ Many □

12. Do you find ETI projects:
 reliable □ easy to build □ useful □

13. What was the last ETI project you read:

 □ always □

14. Do you make your own projects:

 □ always □

15. Please indicate approximately the value of any ETI related hobbies you have in the last:

 □ £20 or less □ £21-£50 □ £51-£100

16. Please indicate what other hobby you have:

 Computers □ Photography □ Film/video □ Modelling (railway/aero) □ Other (please specify) ... □

17. With regard to the advertisement:

 Read or look through near check box:
 □ Never □

 Read or look through some of the time:
 □ Very rarely/never at all □

18. Thinking specifically about ETI, rate the three types of ETI projects:

 Electromart — in terms of helpfulness of content:

 Very useful □ Useful □ Not very useful □ Not at all useful □

19. Do you order or buy products?

 Regularly □ Occasionally □ Never □

20. If the answer to question 1 is yes, how was it?

21. Do you use the Advertisers?

 Y □ N □

22. Does anyone else read your magazine?

 No only me □

23. Do you keep your copy of ETI for:

 One month □

24. Do you read any of the following magazines?

ETI JULY 1986