

WICROCOMPUTER

 SSISTED CIRCUIT ESIGNRADIATION IMEASUREMENT: HOW IT'S DONE

OVP POWER AMPLIFIER MODULES

 OMP POWER AMPLIFIER MODULES
Now enjoy

 Industry. Leisure. available to suit the needs of the professional and hobby market. i.e., Industry. Leisure, Instrumental and Hi-Fi, etc. When comparing prices. NOTE all models include Toroidal Vu meter. Open and short circuit proof. Supplied ready built and tested.OMP100 Mk II Bi-Polar Output power. 110
watts R.M.S. into 4 ohms, Frequency Res ponse $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$. T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$.
PRICE $£ 33.99+£ 3.00$ P\&P.
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.002%, Input Sensitivity 500 mV , S.N.R -125 dB . Size $300 \times 123 \times 60$
PRICE $\mathbf{£} \mathbf{3 9 . 9 9 + £ 3 . 0 0}$ P\&P.
OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate 50V/uS, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R. 130dB, Size $300 \times 150 \times 100$
PRICE $£ 62.99+£ \mathbf{3 . 5 0}$ P\&P.

OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.R.D. Typica -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $£ 79.99+£ 4.50$ P\&P.

NOTE: Mos.Fets are supplied as stand (100 KHz bandwidth \& Input Sensitivity 500 mV). If required.

Vu METER Compatible with our four amplifiers detailed above A very accurate visual display employing 11 L.FD diodes (7 green, 4
ed) plus an additional on off indicator. Sophisticated logic contro ircuits for very fast rise and decay times. Tough inoulded plastic ase, with tinted acrylic front. Size $84 \cdot 27 \cdot 45 \mathrm{~mm}$ PRICE $\mathbf{f 8 . 5 0 + 5 0 p}$ P\&P.

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS R.M.S. Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details

POWER RANGE

${ }_{20}{ }^{8 \prime}$ " 50 W. WATT R.M.S. Hi -Fi/Disco
 $122^{\prime \prime} 100$ WATM $\mathrm{M} . \mathrm{M} . \mathrm{S} . \mathrm{Hi}$ Fi/Disco
50
50 oz. magnet $2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Die-cast chassis. White cone Res
Freq
25 Hz . Areq, Resp to 4 KHz . Sens. 95 dB . PRICE $£ 28.60 \cdot £ 3.00 \mathrm{P} \& \mathrm{P}$ ea

MCKENZIE

12" 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Disco

85 WATTR.M.S. C1285TC P.A./Disco $2^{\prime \prime}$ ally voice coil. Twin cone
Res. Freq 45Hz. Freq. Resp 10 Th Hz. PRICE 229.
15" 150 WATT R.M.S. C15 Bass Guitar/Disco. .
$3^{\prime \prime}$ ally yoice coll Die-cast chassis. Res. Freq. 40 Hz . Freq. Resp to 4 KHz . PRicer $10 " 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guita/Keyboard/'Mid. P.A.
2 " voice coil Res. Freq. 75 Hz . Freq. Resp. to 7.5 KHz Sens. 99 dB . PRICE $f 19.15+\varepsilon 2.00 \mathrm{P}$ P. 10 " 200 WATT R.M.S. C10200GP Guitar, Keyboard. Disco
$2^{\prime \prime}$ voice coil. Res. Freq. 45 Hz . Freq. Resp. to 7 KHz . Sens. 101 dB . PRICE $f 51.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ " 200 WATT R.M.S. C15200 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp to 5 KHz . Sens 101 dB . PRICE $f 59.45+£ 4.00 \mathrm{P} \& \mathrm{P}$
Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB . PRICE $£ 85.00+f 4.00 \mathrm{P} \& \mathrm{P}$.
FIM 70 WATT R.M.S. Multiple Array Disco etc.
1" voide coil. Res. Freq. 52 Hz Freq. Resp. to 5 K Kz . Sens. 89 dB . PRICE $£ 19.99+£ 1.50 \mathrm{P} \& \mathrm{P}$ ea 8 ", 150 WATT R.M.S. Multiple Array Disco etc.
volqe con Res. Freq. 48 Hz . Freq. Resp. to 5 KHz . Sens. 92 dB . PRICE $f 29.49+f 150 \mathrm{P} \& \mathrm{P}$ ea 300 WATT R.M.S. Disco/Sound re-enforcement etc.
vdice coil. Res. Freq. 35 Hz . Freq. Resp. \mathbf{t} 4KHz. Sens. 92 dB . PRICE $533.49+£ 2.00 \mathrm{P} \& \mathrm{P}$ ea a
 voice coil. Res. Freq 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRICE $£ 41.49+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea
soun DLAB (Full Range Twin Cone)
S" 60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
60 WATR R.M.S. Hi-Fi/Multiple Array Disco etc.
voice coil. Res. Freq. 63 Hz . Freq. Resp. to 20 KHz . Sens. 86 dB . PRICE $£ 9.99, f 1.00 \mathrm{P} 8 \mathrm{P}$ ea. $61 / " 60$ WATR R.M.S. Hi-Fi/Multiple Array Disco etc.
1 " voice coil. Res. Freq. 56 Hz . Freq. Resp to 20 KHz . Sen
$8^{\prime \prime} 60$ WAIT R.M.S. Hi-Fi/Multiple Array Disco sens. 89 dB . PRICE $f 10.99+51.50 \mathrm{P} \& \mathrm{P}$ ea 60 WATR R.M.S. Hi-Fi/Multiple Array Disco etc.
" volice coil. Res. Freq 38 Hz . Freq. Resp to 20 KHz .
" 60 WATT R.M.S. Hi-Fi/Disco etc.

OBBY KITS. Proven designs including glass bre printed circuit board and high qual m FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range 100
3 WATT FM TRANSMITTER 3 WATT $85 / 115 M H 2$ varicap controlled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Price: $f 14.49+75 \mathrm{p}$ P\&P.
SINGLE CHANNEL RADIO CONTROLLED TRANSMIPTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Recoiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price: $\ddagger 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt). Price: $£ 11.29$ P\&P +75 p each. S.A.E. for complete list.

3 watt FM

PRICES INCLUDE V.A.T. \star PROMPT DELIVERIES \star FRIEND
SERVICE \star LARGE S.A.E. 28 P STAMP FOR CURRENT LIST

BURGLAR ALARM

Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units. complete with
GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control - armed 30 second exit and entry delay Indoor alarm - Electronic swept freq. siren. 104d8 output.
Outdoor Alarm - Electronic swept freq. siren. 98dB output. Housed in a tamper-prool heavy duty meta case.
Both th
Both the control unit and outdoor alarm contain re-
chargeable batteries which provide full protection during mains failure. Power requirement $200 / 260$ Volt AC $50 / 60 \mathrm{HH}$. Expandable with door sensors. panic SAVE ± 138.00 Usual Price $£ 22885$
BKE'S PRICE $£ 89.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS The very best in quality and value. Made specially to suit iodays
need tor compactress with high sound output levels. Finished in hard wearing black vynits with protective corners, grille and carry
hande. All models 8 ohms Full range $45 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$. Size 20.1 handle. All models 8 ohms Full range 45 Hz - 20 KHz H2 Size 20 O.
OMP 12-100 Watts 1 O dB . Price $£ 149.99$
OMP $12-200$ Watts 102 dB . Price $£ 199.99$ per pair.
OVP 19" STEREO RACK AMPS

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S into 4 ohms). Input Sensitiviy 7 (Rmv MF200 $(100+100$ W. $£ 169.00$ Securicor MF400 $(200+200)$ W. $£ 228.85$ Delivery MF600 $(300+300)$ W. $£ 274.85 \quad £ 10.00$ SLIDE DIMMER
 oo 1 kw .
 ing through panel cabinet cut out \star Insulated pla

BS800

* Suitable for both resist
ance and inductive loads I numerable applications industry, the home.
disco's, theatres etc. PRICE f13.99-75p P\&P

BSR P295 ELECTRONIC TURNTABLE \star Electronic speed control $45 \& 33$, r.p.m $*$ Plus
Minus variable pitch control $*$ Beit driven $*$ Aluminium plater with stiobed rim \star Cue lever \star Anti
skate (bias device) \star Adjustable skate (bias devicel \star Adjustable counter balance \star
Manual arm \star Standard $1 / 2^{\prime \prime}$ cartige fixings ${ }^{\star}$.
Supplied

PIEZO ELECTRIC TWEETERS MOTOROLA

Join the piezo revolution. The low dynamic mass (no voice coll) of a Piezo tweeter produces an
improved transient response with a lower distortion level than ordinaiy dynamic tweeters As crossover is not required these units can be added to existing speaker systems of up to 100 watt TYPE ' A ' (KSN2036A) $3^{\prime \prime}$, round with protective wire speakers. Price $\mathrm{f4} .90$ each $+40 \mathrm{p} P \& \mathrm{P}$
TYPE 'B' (KSN1005A) $3^{\prime \prime}$ '" super horn. For genera purpose speakers, disco and P.A. systems etc. Price f5. 99 each
TYPE "C' (KSN6016A) 2 " $\times 5^{\prime \prime}$ wide dispersion horn For quality Hi-fi Systems and quality discos etc.

TYPE ' D^{\prime} (KSN1025A) 2" \& $6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality $H i-f i$ systems
40 P P\&P. TYPE ' E ' atractive silver finish trim. Suitable for tid fifi monitor systems etc. Price $f 5.99$ each +40 P P\&P. LEVEL CONTROL Combines on a recessed mount ing plate, level control and cabinet input jack socket.
$85 \times 85 \mathrm{~mm}$. Price $f 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segment 5 Inputs with individual faders providing a useful combination of the following:-
3 Turntables (Mag). 3 Mics, 4 Line plus Mic
with talk over switch. Headphone Monitor Pan Pot. L. \& R. Master Output controls. Ou
put 775 mV Size $360 \times 280 \times 90 \mathrm{~mm}$ Price $f 134.99 \times 280 \times 90 \mathrm{~mm}$.

Gary Herman: Editor lan Pitt: Deputy Editor Paul Chappell: Project Editor Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Duncan Neilson
Classified Sales Executive Andrew Selwood: Copy Control Dave Bradshaw: Group Editor - Electronics

PUBLISHED BY:
Argus Specialist Publications Ltd. Golden Square, London W1R 3AB DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
TYPESET AND ORIGINATION BY:
Design International.
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED BY:
Argus Press Design.
COVERS PRINTED BY:
Alabaster Passmore.

ABC Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other inellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conven-
tions are specifically reserved to Argus Specialist publications Limited and any reproduction requires the prior written consent of the Company. © 1986 Argus specialist Publications Ltd \amalg All reasonable care is aken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publica.
tion has closed for press.
II Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$. USA: \$29.50. Airmail: £49.50.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

Some events and a few newsy components.

READ/WRITE16

Chernobyl even affects the letters page and Auntie suggests a way to measure radiation.

SATELLITES - SETTING THE

 WORLD ALIGHT? Keith Brindley bumps into much hardware in this orbit round our planet.
PROJECTS

THE ETI DIRECT-ION
30
We won't lionize this ionize-er, it's more the size of a mouse.

MOTOR INTERFACE
A neat design by Peter Timothy and

MICRO-COMPUTER AIDED

 CIRCUIT DESIGN24 Julian Burt begins an investigation of some techniques involved with his trusty BBC.
JOBS FOR A CHANGE
 28

A new and refreshing idea in the field of electronics recruitment . . .!

THE MAIN EVENT 55
Andy Armstrong surveys British Electronics Week.

READER SURVEY

......... between pages 32 and 33

Jonathan Rabet which uses the BBC micro Centronics printer port for motor control.

THE UPGRADEABLE AMP. 38 Graham Nalty shuffles on to this moving coil.

DIGITAL SOUND SAMPLER. . . . 44 The power supply and software rounds off this project.

THE ETI TROGLOGRAPH 50 A different kind of underground test from Mike Bedford.

ETCETERA

ALF'S PUZZLE. 63 Alf has the capacity for even more.

CROSSWORD

66
Due to lack of space, we have had to hold over the final part of Fibre Optics and Lasers untll next month. Our apologles.

INFORMATION

NEXT MONTH	AD INDEX 63
READERS' SERVICES	CLASSIFIED ADS.............. . 64
PCB FOIL PATTERNS	

Nuff Said

'What we have seen recently is a tragic shuttle failure, two Titan rocket failures, the Delta rocket explosion, the Chernobyl nuclear accident and a surgical bombing
raid on Libya that turned out not to have been so surgical. It confirms what a lot of us knew all along- technology is not perfectible,' John Pike, associate director of the Federation of American Scientists.

Patently

A Patch-up

British Covernment proposals meant to 'encourage innovation' have been published in a White Paper entitled Intellectual Property and Innovation' (Cmnd 9712, price $£ 6.70$ and available from Her Majesty's Stationery Office.)
Launching the White Paper, the Secretary of State for Trade and Industry, Paul Channon, claimed that the proposals would make the UK's intellectual property system - which covers patents, copyright and trade marks 'more accessible and relevant'. In fact, the major proposals seem destined to make the system more intrusive and more confusing.

> Tremsistor Failure Investigated

Tests at Sandia National Laboratories are producing the first live TV pictures of silicon chip transistors as they experience a potentially catastrophic current surge. The surge is known as snapback, and if left uncorrected, can ruin the integrated circuit contained on the chip.

The pictures show a $1 / 100$ th of an inch square portion of a $1 / 4^{\prime \prime}$

In only one area are the proposals actually likely to encourage innovation - that is, the intention to allow easier public access to the Patent Office database. The patent system itself will remain almost unchanged. The Government's plan to take the Patent Office away from the Civil Service and make it a 'body corporate' rather like the BBC could be seen as a prelude to privatisation. It seems quite plausible that the Government may wish to make the Patent Office a paying business - charging for the traditional and newer services it has on offer.

Circuit designers will not find their position substantially modified as a result of any of the White Paper's recommendations. Protection of circuit designs may be afforded by the patent system although little has been suggested to make it less unwieldy and

IC. During snapback, microscopictransistors appear as short bright lines on an infrared TV image. The brightness is caused by high energy electrons flowing through the transistor. Transistors not in snapback do not shine because they have no high energy electrons.

Snapback attacks in-channel metal oxide semiconductor transistors. Some microelectronics experts believe that without proper planning and understanding, snapback could become a problem for the next generation of extremely small ICs, which will have individual features of 1.5 microns or less.

Snapback occurs only if two
expensive than it is. No clarification has been offered on the definition of originality as far as circuits go. There is a problem issue, since it can take vast amounts of time and money to prove a design does more than merely exploit the well-known characteristics of its components parts. For many manufacturers in such a fastmoving field as electronics, market lead has become far more important than patent protection.

It is possible that a proposed 'unregistered design right' may apply to circuit designs although the White Paper mentions only 'semiconductor chips' in this context. The new right is intended to protect the designs of 'purelyfunctional articles'fora ten year period. Disputes will be settled by the patent office but, unlike patents, the new right will not require the registration of a design.

It could be argued that a circuit design is the perfect 'purely fuctional article' since it doesn't even necessarily have a physical form, thereby avoiding all aesthetic or decorative aspects of its design. In fact, the White Paper recommends that the new right will come into force with the first expression of the design in any independent form, such as a drawing or in a computer, from which the article embodying the design can be produced' as well as from 'the first making of the article embodying the design.' We will, of course, have to wait for the White Paper to become law and for the lawto betested in court before we can safely assume that the new right will benefit circuit designers.
conditions are present. First, the transistor must be operating at or above a certain voltage, called the snapback voltage. Then an initiating event (weapon-produced x rays or simple static electricity that can occur during wafer testing, for example) must trigger snapback by producing an overabundance of electrons in a transistor. The excess electrons produce the uncontrolled current.

If allowed to continue, this excessive current can melt the wires that connect an IC to its ceramic package or the wires that interconnect different devices on the IC. Snapback can also cause electron migration, which can lead to short or open circuits.

For the public as a; whole, perhaps the most significant recommendations in the White Paper are the ones dealing with home taping.

The expected levyon blank tape is to be introduced, but will only cover audio compact cassettes of greater than 35 minutes playing time. 'The levy,' says the Department of Trade and Industry, 'will entitle consumers to make, for private purposes, sound recordings of broadcasts or prerecorded material but not to copy computer programs.' Make what you will of the fact that videotape, reel-to-reel tape and compact cassettes of 34.9 minutes playing time are excluded from the levy. Make what else you will of the fact that private recording from $T V$ broadcasts is to be legalised but not from pre-recorded video material. The proposals are shot through with such potential legal and moral minefields.

On the whole, the White Paper is a patch-up of the intellectual property system, which barely brings copyright and patent up to date and certainly does not simplify the intellectual property system. The idea that its recommendations will 'benefit. innovative talent' (as Paul Channon has said) is, to be kind, probably blind optimism.

One or two minor points worth noting are that the White Paper confirms the current position that computer programs are subject to copright even in non-human readable form (for example, on ROM chips) and that low power satellite broadcasts for TVRO or SMATV systems will also be subject to copyright.

Sandia's computer-controlled snapback test setup includes a 750 watt pulsed xenon laser (typtcally used for cutting metal and polysilicon lines on ICs, but used here to simulate the snapback triggering event), an automated probe station (typically used for obtaining a variety of electrical measurements on wafers), an infrared microscope TV camera and monitor, and appropriate voltage and current measuring instruments. The laser pulse deposits enough energy on a 10 -micron-square region of the IC to initiate snapback, thus permitting the minimum voltage required for sustained snapback to be measured.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

20
 B

 Kilo Cycles arry Porter, one of our regular contributors, will be taking part in a sponsored cycle ride in aid of the British Heart Foundation on Sunday June 15th.Barry, himself a victim of heart disease, will be joining over 20,000 other people on the London to Brighton run. Among those taking part will be three heart transplant patients, a number of people who have suffered various forms of heart disease and a sprinkling of celebrities including John Peel, Kenny Lynch and Sharon Davies. The ride is expected to raise over $£ 500,000$ which will go to fund a research group at Oxford.

The ride is now in its eleventh year. It started as an informal event with just 35 participants and last year attracted over 21,000, many taking part in fancy dress and using some rather unconventional forms of transport. The $£ 400,000$ raised went to support cardiac care groups.

The riders will set out from Clapham Common in South London. Groups of about 600 will
start at half-hourly intervals from around 6.00 am onwards. Barry's group will be setting off at the more civilised hour of 9.00 am .

The route chosen avoids main roads and runs through Mitcham, Carshalton, South Merstam, Smallfield, Turners Hill, Ardingley, Lindfield, Wivelsfield and Ditching. The ride is not a race, and Barry says he will be delighted to stop and accept liquid refreshment from any ETI readers who happen to be lining the route! He will be wearing an ETI T-shirt which is so new that we can't even tell you what colour it will be.
Anyone who would like to sponsor Barry (either by the mile or a fixed amount for the whole distance) should contact him after 7.00 pm on 0582-65231. The organisers are not accepting any more entrants for this year, but anyone who requires more general information should contact the British Heart Foundation, 102 Gloucester Place, London W1.

We hope to include a brief report of Barry's progress next month.

Amstrad and Eric Hammond Among 1986 Award Winners

A mstrad have gained the 1986 TOBIE award for Electronics Application of the Year with their best-selling PCW8256 word processor. The Electronics Personality of the Year award went to Eric Hammond, leader of the electricians union, who aroused considerable controversy last year by allowing his members to operate Rupert Murdoch's printing plant at Wapping in place of print union staff.

The TOBIE awards (Technology Or Business Innovation in Electronics) are announced annually at the British Electronics Week Ball, held this year at the Grosvenor House Hotel, London, on April 29th. The winners are decided by postal ballot among readers of the weekly trade paper Electronics Times.

There are three nominees in each category. The other candidates for the applications award were Epson with their Taxi Software package and Plessey whohave developed an Adaptive Compass which they believe will form the heart of future vehicle and aircraft navigation and weapon guidance systems. Eric Hammond's competitors for the personality award were Robb Wilmot of European Silicon Structures, a company producing low volume custom chips by direct writing using electron beams, and Peter Fraiman of Electronic

Brokers who is credited with having personally developed the concept of "second user" test equipment.
Among the other awards, the İnmos Transputer was pronounced Component of the Year and Mars Electronics gained the Product of the Year award with their Gazelle automatic circuit tester, a system said to offer the performance and facilities of products costing four times as much. The Research Achievement of the Year award went to Professor Desmond Smith of Heriot Watt University for his work towards developing the world's first optical computer.
British Telecom and Mercury Communications were both nominees in the Fibre Optic Achievement of the Year category but the award went to Cossor for their 213 S portable fault locator, a device designed for ease of use and reliability. The award for Export Achievement of the Year went to Rodime, whomaintained their export growth record in disc drives in spite of a market slump, and the Distributor of the Year award went to Farnell for their continued record earnings growth.
The TOBIE awards are administered by Evan Steadman Services Ltd, The Hub, Emerson Close, Saffron Walden, EssexCB101HL.

1000's OF barcatis FOR CAMFATS

CHE "ALLADDNS" CAVE OP COMPUELR ARD ELFCTRONIC EQUPEEEFI

 The fabulous TELEEOXX an INVALUABLE MUST for the owner of ANY video monitor with a composite input colour ormonochrome Made by a major UKCa as a To manufacture, this opportunity to

 monitor into A HIGH QUALI iY COLOUR Y 8 ET giving a real sound-THE TELEBOX even has an int ygral 4 wattaudio omplifier
 Other features include: Compact dimensions of only $15.75^{\prime \prime}$ w x tuneable channel push buttontuner AutoAGC c crecult SAW filter satety, Malns ON-OFF switch etc. Many other uses

LIMITED QUANTITY - DON'T MISS THIS OFFERI! ONLY £24.95 OR £19.95 if purchased with ANY of our video monitors. Supplied BRAND NEW with till instruct
GOLOUR \& MONOGNROME MONITOR SPEGLALS

SYSTEM ALPHA TA COLOUR MOLTINP

Made by the famous REDIFFUSION CO. for thelr own professional computer system this monitor has all the features to sur yoursite VIdeo allow direc
 Including our very own TELEBOX An internal speaker and audlo amp may be
IVC tor superior sound aully Many other

 plug for RGB input modular construction ercetc Must BoONEOFTHE YEARSEST BUYs. PC USER
Supplled BRAND NEW and BOXED, complete with DATA and 90 day quarantee ONLY $£_{11} 49.00$ as above OR IBM PC Version $£ 165$.
15 Day' σ skt $\varepsilon 1.00$, BNC skt 75 p BBC interface cable $£ 5.50$ DECCA 80 1 $8^{\prime \prime}$ COLOUR monitor. RGB Input. Little or hardly used manufacturers surpus enables us to offer this special
Converted DECCA RGB Colour Video TV Monitor at a super low price of only £99.00, a price for a colour monitor as yet unheard ofil Our own intertace satety modification and special $16^{\prime \prime}$ high definition PIL tube coupled with the
DECCA 80 series $T V$ chassis give 80 column definition and quality found only on mo to be celleved! Supplied complete and ready to plug direct to a BBC miCRO computer or any other system with a THL RGB output Other features TEAK CASE Compact dimenslons only 52 cm W $\times 34$ H $\times 24 \mathrm{~b}$, 90 da guarantee Although used
DECCA 80, 16" COLOUR monitor, Composite video Input Same as above model but fitted with Composite
VCR Or AUDIO VIISUAL Usa ONLY $£ 99.00+$ Car
REDIFFUSION MARK 3, 20" COLOUR monitor. Fitted with standard 75 ohm
 cations Supplied in AS NEW or little used condition ONLY £143.00 + Car

BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors. All units are fully cased and set for $240 v$ standard working with composite video
Inputs Units are pre tested and set up tor up to 80 column use. EEEen when
MiNOR screen burns exist - normal data displays are unaffected 30 day
 12" GREEN SCREEN version of KGM 320-1. Only 839.95
$9^{\prime \prime} K G M 324$ GREEN SCREEN fully cased very Compact unit Only $£ 49.00$

OCFOWE SUPPLY SPLGELS

 AC-DC Linger PSU for DISK drive and SYSTEM applications. Constructed on a
 input. Dim $28 \times 12.5 \times 7 \mathrm{~cm}$ NEW $£ 49.94$
Carriage on all PSU's $£ 3.00$
RAMMEDS
Manufacturer's BRAND NEW surplus DEC LA34 Uncoded keyboard with 67 qual
matrix- Ideal mlero conversions etca $\varepsilon 24.93$
 with 18 keys Many features such as On board Micra Single Sv rall full ASC and 9600 baud SERIAL TTL ASCII OUUTPUTII Less than half price

DON'T MISS THE CPM Deal

 OF the CENTURY The FABULOUS CPM TATUNG PC2000Professional Business System PC, CPM system, recently on sale at OVER t1 400, at a sCoop price
Not a toy, the BIG BROTHER of the EINBTIEN Computer, the DUAL PROCE880R PC2000 comprises a modern styllsh three plece system with ALL the necessities for the 8MALL BUSINESS, INDU8TRIAL, EDUCATIlaNAL OM Software packages such as WORDSTAR, FAST, DBASE2 etc, the PC2000 specificatlon, at our prices, CANNOT BE BEATENI!
The central processor plinth contalns the 64K, Z80A processor, DUAL TEAC 55 F 51/4 Double sided 40/80 track disk drives (1 Mb per drive), P8U, 4 K of memory mapped 8creen RaM, CENTRONIC8 and system expansion ports, and if that's not enougha ready to plug into 8 ANDARD $8^{\prime \prime}$ disk drives, either in doubie density or IBM format The uitra alims key, numeric keypad and text eding keya, even its owninte a

PC2000 Wordprocessor System
PC2000 System
OST CPER E14.
NOW only E399
PC2000 Business System with CPM
ith CPM and TEC FP25 daisywhee

only E399 NOW only E499

SURPLUS SPECIALS ON

 PRESTEL - VIEWDATA - TELEX PLESSEY VUTEL, ultra compact unit, sightly larger TELEPHONE (tone dial) with $5^{\prime \prime}$ CRT monitor and integral modem etc. for direct connection to PRESTEL VIEWDATA etc. Designed to sell to the EXECUTIVE atOver $6000!$ Our price BRAND NEW AND BOXED at only E99.00
DECCAFAX DECCAFAX VP1 complete Professional PRESTEL system in slimiline desk top unit containing Modem,
Numeric keypad, CPU, PSU etc. Connects dlrect to standard RGB colour monitor. Many other features Include: Printer output, Full keyboard input, Cassette
port etc. BRAND NEW with DATA. A FRACTION OF COST Only 855.00 er compact unit with integral FULL ALPHA NUMERIC keyboard, Just add a domestic TV receiver and you have a supterb PRESTEL system and
via PRESTE the cheapest TELEX service to be found!! Many features: CENTRONICS Printer output, Memory dialling etc. Supplied complete with data and
DIY mod for RGB or Composite video outputs. AS NEWOnly \&1 25.00

EX-STOCK INTEORNTED GIRCUITS

 4164200 ns D RAMS 9 for £ 114116 ns $\begin{array}{llll}£ 1.50 & 2112 & \text { E10.00 } 2114 & £ 2.50 \\ 6116 & 2102 & £ 2.00\end{array}$ 68A09 £8 6BBO9 £ $108085 A$ £5.50 8086 £15 8088 £8 NEC765 £8 WD2793 £28 8202 Z8OA CPU ع200. Thousands of IC's EX STOCK send SAE for list

DMCH DGM SC

Japanese $51 / 4^{\prime \prime}$ half helght 80 track double sided disk drlves by TEAC CANON, TOBHIBA ETC
Sold as NEW wIth 90 day guarantee ONLY $£ 85.00$ TEC FB503 Double slded HH 40 TRK NEW 975.00 8UGART 8A400 SS FH 35 TRK ES5.00
carriage on ${ }^{1 / 4}$ drives Brand NEW metal 2 HH $1 / 4$ DHK $\begin{array}{ll}\text { DKBC } 3 \text { As DSK1 LESS PSU } & \text { E12.95 +pp } 2.50 \\ \text { DSKC } 4 \text { As DSK2 LESS PSU } & \text { £10.95 +pp } 2.00\end{array}$ DSKC 4 As DSK2 LESS PSU
8'IBM tormat TESTED EX EQUIPMENT.
SHUGART $800 / 801$ SS
\&175.00 +pp 88.50 $\begin{array}{ll}\text { SHUGART } 800 / 801 \text { SS } & \varepsilon 175.00+p p \varepsilon 88.50 \\ \text { BHUGART } 851 \text { DS } & \text { E250.00 +pp } 88.50\end{array}$ comphuar in 2 Mb total capacity in smart case MITBUBIBHI M2894-63 B" DS 1 Mb equlv. to sHUGART
 Varlous disk drive PSU's Ex 8tock 8EEPSU section HRRDDIABLO DRIVES Exchangeable version 302.5 Mb front load es525.00 DIABLO $44 / \mathrm{DRE} 4000 \mathrm{~A}$, $\mathrm{B}+\mathrm{B}$ Mb from 8750.00 CDCHAWK $5+8$ Mbe795.00. CDC9762 80 MbRMO PERTEC D3422 5+5 Mb Clearance items-Sold as seen - No guarantea ICL2314 BRAND NEW $14^{\prime \prime}$ Mb Removable pack hard disk drle e cost over $£ 2000$ with data ONLY 89.00
BASF $61728^{\prime \prime} 23 \mathrm{Mb}$ Whnchesters Unless stated all drives are refurblshed with 90 day guarantea. Many other drives and spares

Join the communlcations revolution with our super to sult all applications and budgets.....
BRAND NEW State of the art products.
DACOM D8L-2123 Multil standard 300-300, 1200.75 Auto answer etc
DACOM DSL2 23 AO Auto dlal, smart modem with
e268.00 multi standard AUTO SPEED detect, and data buffer with flow control eta
DACOM DSL2123GT The CREAM of the Intelligen modems auto dlal, auto cail, Index buffer Steebeck 881212 V22 1200 baud FULL OUPLEX sync or asyng optional auto dial 300 bayd tul duplex originate only, RS232 interface $£ 49.00$ EX BRITISH TELECOM full spec CCITT, ruggedsed any MICRO or system with RS232 intertac MODEM 13A 300 baud unit, only $2^{\prime \prime}$ high fits under Mone CALA mode only baud Compact unit for use as subscriber end to PRESTEL, $839.05+$ GOLD MICREM 20-2 $1200-75$ baud Same as $20-1$ but to DATEL 2412. Made by SE Labs for BT this two part unit is for synchronous data links at 1200 or 2400
baud using $2780 / 3780$ protocol etc. Many features include 2 or 4 wire working self test auto answer etc DATEL 4800 , RACAL MPS4800 baud modem, EX MODEM TG2393. EX BT OFFER dupex wire or half duplex over 2 wire baud full

\section*{MAIIIX PRINTIERS
 SPECIAL BULK PURCHASE of these compact, high speed matrix printers. Bultin Japan or features quality construction giving ${ }^{100}{ }^{0} \mathrm{cps}$ bidirectional, full pin addressab fractor paper handling, RS232 and CENTRONIC paraile

and BOXED. COST $£ 420$. Our price Only $£ 199.00$ REGHARCFABLE BATTERIES Dry Fit MAINTENANCE FREE by Sonnenschein A 300

A $£ 13.95$

$\mathbf{\varepsilon 9 . 9 5}$} | A300 07191312 6v 3Ah NEW TESTED Ex |
| :--- |
| A300 07191202 6-0.6v 1.8Ah TESTE |

VDU TERLILIALS

Standard VDU data entry terminale at give away pricea!
QUME QVT108. Current product, state of the art erminal with detachable keyboard, 12 Green screen software setup, 25×80, Clock, Swivel and tilt base Sorinter port, Function keys etc. BRAND NEW
BOXED ATALMOSTHALFPRICE Only $\$ 225.00$ AJS10 - EX RENTAL, 280 controled, 15 green screen 24×80 display, graphics, Cursor addressing, with manual only $£ 225,00$
with manya - Dumb terminal, used, 12" b/w screen ONLY 2125,00 ne and printer port. TESTED. ONLY 100 's other terminals in stock, CALL for more details.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Logic-To-Logic Optoisolator

eneral Instrument claim their new family of optoisolators will save design engineers a lot of time and trouble. Unlike existing types, they have inputs and outputs which can be connected directly to logic circuitry.

Called Optologic, the new devices are available either as inverters or buffers and offer a choice of TTL-compatible totempole outputs or an open collector arrangement for use with $4.5-15 \mathrm{~V}$ CMOS. Both types have LS-TTLcompatible inputs and feature a propagation delay of 60 ns .

The new optoisolators come in standard 6-pin DIL packages and have an isolation voltage of 440 V RMS continuous, 2500 V RMS maximum. General Instrument expect them to be used in level shifting and for interfacing between different logic families. In addition, they could be used to drive power semiconductor devices like MOSFETS.

General Instrument, Optoelectronics • Division, Times House, Station Approach, Ruislip, Middlesex HA4 8JG, tel 08956 36522.

We also STOCK a wide range of COMPONENTS, MULTIMETERS, TOOLS, BOOKS and over 30 other KITS for timers, infra-red remote control, disco lights, etc. PLUS VELLEMAN and PANTEC kits.

ELECTRONICS
SEND" $\times 6^{\prime \prime}$ SAE OR CALL AT SHOP MON-FRI 9-5pm
SATURDAY $10-4 \mathrm{pm}$
LONDON W7 3SJ

TEL: 01-567 8910

FREE P\&P on orders over £20 (UK only), otherwise add $75 p$ + VAT. Overseas P\&P. Europe £2.75. Elsewhere £6.50. Giro No. 529314002. SCHOOL OR LOCAL AUTHORITY ORDERS WELCOME. Goods by return subject to availability.

ETI PCB Service

Whisper it quietly, but it does begin to look as though this ill-fated service may yet survive. A new agreement has been thrashed out with our existing supplier and we hope to re-start the service next month.
All outstanding orders should now have been cleared. If anyone is still waiting for a board they have ordered, please get in touch with our Readers' Services department at Hemel Hempstead.

The new arrangement will mean that some boards currently

- Graham Nalty, whose Upgradeable Amplifier is currently running as a project in ETI, tells us that he has access to custom case-building facilities. This might prove useful to those who are still missing parts of the case for their JLLH Audio Design amplifiers. Anyone interested should contact Graham at the address given in the Buylines section on page 40.
- Spectrastrip is a flat cabling system which allows power, data and telephone wiring to be laid under carpeting with the minimum of trouble. A full set of com-
on the list will have to be dropped because they are simply not selling in sufficiently large numbers. How ever, we will contine to make sure that boards remain available for at least a year after an article is published.
We have also revised the priceing structure to remove some of the anomalies. At present, some small boards actually cost more than some larger boards. We are adjusting prices up and down as appropriate to rectify this situation.
plementary connectors is also available and the complete system is described in a 4-page brochure which is available on request. Contact Amphenol Ltd, Thanet Way, Whitstable, Kent CT5 3JF, tel 0227-26441.
- Hawnt Electronics describe themselves as the UK's leading passive component supplier. Their new 272-page catalogue is now available and can be obtained from them at Firstwood Road, Garret Green, Birmingham B33 OTQ tel 021-784 3355

Electro Mech Industries Limited

Unit 2, Wessex Industrial Estate, Station Lane, Witney, Oxfordshire. Telephone (0993) 75827 or 76605 TRANSISTORS

DIARY

Advanced Infrared Detectors And Systems - June 3-5th Institution of Electrical Engineers, London. See March'86 ETI or contact the IEE at the address below.

Hitachi Summit Conference - June 9th
Wembley Conference Centre, London. An opportunity to learn about the latest developments at Hitachi from the Japanese design engineers responsible. Areas covered include telecommunications, computing and control, and image capture, processing and display. Tickets cost $£ 29.50$ inclusive from Hitachi Electronic Components (UK) Ltd, 21 Upton Road, Watford, Hertfordshire WD1 7TB, tel 0923-46488.

Network '86 - June 10-12th
WembleyConference Centre, London. For details see March'86 ETI or contact Online at the address below.

Power Electronics and Variable Speed Drives - June 10-12th
Institution of Electrical Engineers, London. For details see June'86 ETI or contact the IEE at the address below.

The Scottish Electronics Show - June 10-12th
The:Anderston Centre, Glasgow. For details see June' 86 ETI or contact Network Events Ltd, Printers Mews, Market Hill, Buckingham MK18 1JX, tel 0280-815 226.

The International ISDN Conference - June 10-12th
Wembley Conference Centre, London. For details see June' 86 ETI or contact Online at the address below.

Amstrad Computer Show - June 13-15th

Novatel, London. For details contact Database Exhibitions, 68 Chester Road, Hazel Grove, Stockport, Cheshire SK7 5NY; tel061-456 8835.

Scottish Technology Week - June 17-19th

The Scottish Exhibition \& Conference Centre, Glasgow. For details see June'86 ETI or contact Cahners at the address below.

Computer '86 - June 24-26th
G-Mex Exhibition Centre, Manchester. For details see June'86 ETI or contact Cahners at the address below.

Imarge Processing And Its Applications - June 24-26th
Imperial College of Science And Technology, London. Conference organised by the IEE at which over 60 papers from 14 countries will be presented, accompanied by technical sessions on image enhancement and restoration, interpretation, industrial and medical applications, etc. For details contact the IEE at the address below.

Association of Professional Recording Studios Exhibition - June 2527th
Olympia, London. For details contact the APRS, 23 Chestnut Avenue, Chorley Wood, Herfordshire WD3 4HA, tel 09278-72907.

Radio Receivers And Associated Systems - July 1-4th
University College of North Wales, Bangor. Conference organised by the IEE, the IERE and RSGB in this country in association with a variety of overseas bodies. Topics covered will include general and low-cost receiver design, digital techniques, mobile radio and ICs for telemetry and navigational systems. For details contact the Institution of Electronic \& Radio Engineers, 99 Gower Street, London WC1 E 6AZ, tel 013883071.

Voice Processing - July 2/3rd

Wembley Conference Centre, London. Conference. For details contact Online at the address below.

Addresses:

Cahners Exhbitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Institution of Electrical Engineers, Savoy Place, London WC2 0BL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-868 4466.

ETI

Forfhright/

 software £375.00
. $\sqrt{\text { Cross Compilers to produce }}$ ROM code
Core (buy only once)
Targets (each)
$£ 250$
Targets (each)
$6502,6511 \mathrm{Q}, 6800,6801 / 3,6809$, $68000,280,8080,8086,1802,28$. 99xxx, LSI 11.

VORTH 83 HS/FORTH 1 megabyte programs, graphics, floating point, assembler.
strings. $£ 230$

MPE-FORTH/09 for FLEX or OS9
Editor, assembler, full system integration, cross cọmpilers available.

Complete with:
SCREEN, 4BITOR
MAGHOASSEMBLEF
AFPICAMON GENERMIOR COMPREHENSME MAMUM
OHthow tors
EBNPE, APHISOT, MSDOS
GPN86, GPM 80 Fiticetis

Emensions:

Floating noint	\$
UEWHRACE	
debugger	835
cross compilers	

MicroProcessor

Engineering Ltd
21 Hanley Road, Shirley
Southampton SO1 5AP Tel: 0703780084

Master
 Electronics-Microprocessors -Now! The PracticalWay!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.

Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?

SEND THIS COUPON NOW.

01-208 1177 Technomatic Lid 01-208 1177
 BBC Micro Computer System
 DISC DRIVES

BBC Master Series

AMB15 BBC MASTER Foundation
computer $128 \mathrm{~K} \ldots \ldots \ldots \ldots \ldots . . \mathrm{m} 35$ (a) AMB12 BBC MAS 128 K (BC MASTER Econet computer AMC06 Turbo (65 C 102) Expansion Module
MDF13 Rom Cartridge. ADF10 Econet Module ADJ22 Ref. Manual Part I ADJ23 Ref. Manual Part 11 ... ADJ24 Adranced Ref. Manual ACO 2nd Processor.
6502 2nd Processor. Multiform Z 80 2nd Processor Acorn Teletext Adaptor Acorn IEEE Interface.

UPGRADE KITS
1770 DFS Upgrade for Model B $\mathbf{£ 4 3 . 5 0}$ (d) Dual Disc Controller Board for Model B
incl. 1770 controller..... incl. 1770 controller $£ 35$ (c

ADFS Rom (for B with 1770 DFS \& E Plus
$\&$ E Plus.................... $£ 26$ (d)
TORCH UNiCORN products iñcluding
. £26 (d)
nçfuding For detailed specification or information on our co Compatible GRADUATE in stock

PRINTERS

 EPSONLX-80NLQ
Optional Tractor Feed FX85 (80col) NLQ 8K RAM FX105 (136col)
JX90 4 colour printer LQ800 (80col) LQ1000. LQ1500 (136col) 2̈K buffer $£ 195$ (a) LQ1500 (136col) 32K buffer Integrex Colour Printer . $£ 20$ (c)

64K Upgrade Kit for B Plus........ $\boldsymbol{\text { 玉 }}$. (d) ECONET ACCESSORIES Econet Starter Kit. Econet Bridge . File Server Level File Server Level 11 Printer Server Rom 10 Station Lead set Adv. Econet User Guide. COMMUNICATIONS ROMS Termulator ..
ommunicator
Commstar... \qquad DATABEEB ... 528 BBC FIRMWARE \& SOFTWARE BBC FIRMWARE \& SOFTWARE
Database Management Systems. Wo Processors, Languages. Spreadsheets. Utilities ZसFp
TZDP 240 ZEP 100 with Te............ . $£ 229$ (a) PDP800P dual drive with built in monitor For full details on the wide range of above packages please write to us.
IBM Compatible GRADUATE in $£ 85$ (d) .$£ 85$ (c)
.$£ 34$ (c) £34 (c)
£ 174 (b) £ 174 (b)
.$~$.$\Sigma 75$ (d) E41 (d) £41 (d)
£26 (c) .$£ 26$ (c)
.$£ 10$ (d) .$£ 25$ (d) 49 (d) £24 (d) comprehensive BBC range please write to us.
EPSON

ACCESSORIES
PX plus sheet feeder.. 129.00 (b) Paper Roll Holder .. $\mathbf{£ 1 7 . 0 0}$ (d) EX80 Tractor attachment..00 (c) interfaces: 8143 RS232..28.00 (c)
 8165 IEEE + cable..00 (c Serial \& Parallet interfaces with larger buffers available. $\quad .55 .00$ (d)
Riben
RX/FX/M Ribbons: RX/FX/MX80.....................................00 (d)
 Spare pens for H 1807.50/set (d) X80 Tractor Attachment $\mathrm{E37}$ (c)
KAgA TAXAN
RS232 Interface + 2K Butter.................................. 85 (c) RS232 Interface.. 65 (c) Spare Daisy Wheel .. 14.00 (d) Ribbon ... $\mathbf{8 1 8 0}$ (d) Sheet Feeder .. $£ 122$ (a) BROTHER HR15:
Sheet Feeder.... $\varepsilon 189$ (a)
Tractor Feeder... 889 (a) Ribbons Carbon or Nylon.................................. $\mathbf{8} .50$ (d) Red Correction Ribbon $\mathbf{5 2 . 0 0}$ (d) BBC Primter Lead:
Parallet ($42^{\prime \prime}$)...........

Printer Leads can be supplied to any length

These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.
$\begin{array}{ll}\text { PD800P (} 2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T} & 3.5^{\prime \prime} \text { DRIVES } \\ 1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 80 \mathrm{~T} \text { DS TS } 35\end{array}$ DS) with built in monitor
 PD800P $(2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$
DS $) \ldots \ldots \ldots . .6269$ (a)
TS $4001 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$ TS $4001 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$

40/80T DS

3M FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.

51/4" DISCS
3 $1 / 2^{2}$ DISCS
40.SS DD \&10:50 (d) 40T DS DD $£ 12: 75$ (d) $180 T$ SS DD £18 (d)

80T SS DD £14.75 (d), 80T SS DD £16:00 (d) 80T DS DD $£ 25$ (d)

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives:... $31 / 2^{\prime \prime} £ 16$ (d), $51 / 4 " £ 14.50$ (d) Single Disc Cable.................................. 66 (d) Dual Disc Cable 88.50 (d) 10 Disc Library Case..81.80(c) 30 Disc Case.. 86 (c) 40 Disc Lockable Box 14 (c) 100 Disc Lockable Box ... (c)

MICROVITEC

All 14" monitors now available in plastic or metal cases, please specify your requirement.

14" RGB	14" RGB with PAL \& Audio
1431 Std Res £179 (a)	1431 AP Std Res £199 (a)
1451 Med Res....................... £2291(a)	1451 AP Med Res £275 (a)
1441 Hi Res............................ $£ 375$ (a)	
Swivel Base for Plastic 14" Microvitecs	$\underline{20}$ (c)
20" RGB with	AL \& Audio
2030CS Std Res.................. £380 (a)	2040CS Hi Res 6685 (a)
TAX	N 12" RGB
SUPERVISION III with ambe	green option £330 (a)
MITSUBISHI XC1404 14" RGB Med	IBM \& BBC Compatible... £229 (a)
MONOCHRO	- MONITORS:

TAXAN KX1201G Hi Res 12" Etched Green Screen £90' (a)
TAXAN KX1203A Hi Res $12^{\prime \prime}$ Etched Amber Screen
...£105 (a)
TAXAN KX1203A Hi Res 12"Etched Amber Screen
PHILIPS BM7522 12" Hi Res Amber Screen... .575 (a)
PHILIPS BM7522 12" Hi Res Amber Screen ... 21 (c)
Swivel Base for Kaga Monochrome fitted with Digital Clock

- All modems listed below are BT approved NM

MIRACLE 3000:

A new range of microprocessor based modems offering of upto 2400 baud, full duplex. Features include 'HAYES' protocol
compatibility, auto answer, auto dial, speed compatibility, auto answer, auto dial, speed Mains powered.
WS3000 V2123 (V21 \& V23)..............c295 (b) WS3000 V22 (as above plus 1200 baud ful WS300)....................................... 8495 (b) baud full duplex) $\mathbf{5 6 5 0}$ (b) MIRACLE 2000
A world standard modem covering V21, V23 (Bell 103/113/108 outside UK) and including $75,300,600,1200$ baud ratings. Optional Auto dial, auto answer cards, complete control from computer keyboard. WS2000 £102 (b)

GEC DATACHAT 1223 GECDATACHAT 1223: ? WNN BABT approved modem complying with CCITT V23 standard. Supplied with software............................... $\mathbf{£ 7 5 (b)}$
Data Cables for above modems available for most computers.

Serial Test Cable
Serial Cable switchable at both ends allowing pin options to bere-routed or linked at either end using a 10 way switch making it possibic o produce almost any Available as M / M or M / F

ع24.75 (d)

ATTENTION

$\begin{aligned} & \text { 2764-25 . } \\ & \text { 27128-25 } \\ & \text { 6264LP-15 } \end{aligned}$

All prices in this double page advertisemen are subject to change without notice. ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as foliows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Test

Minitors RS232C and CCITT V24
Transmissions, indicatingstatus with dual colour LEDs on 7 most significant lines:
Connects in Line.

GANG OF EIGHT INTELLIGENT FAST

EPROM COPIER

Copies up to eight eproms at a time and accepts all single rall eproms up to 27256 . Can reduce pro
gramming time by 80% by using manufacturer's suggested algorithms. Fixed Vpp of 21 \& 25 volts and variable Vpp factory set at 12.5 volts LCD display with alpha moving message $£ 395$ (b).

SOFTY II

This low cost intelligent eprom programmer can program $2716,2516,2532,2732$, and with an adaptor, 2564 and 2764 . Displays 12 berial and parallel O routines. Can be used as an emulator, cassette interface. (b) Adaptor for $2764 / 2564.1$ £25.00(c)

UV ERASERS

All erasers with built in safety switch and mains

 indicator,UV1B erases up to 6 eproms at a time. ... £47(c) UV1 T as above but with a timer £59(c)
UV140 erases up to 14 eproms at a time. 888 (b) UV140 erases up to 14 eproms at a time. $£ 88$ (b)
UV141 as above but with a timer......... 288 (b)

CONNECTOR SYSTEMS

EDGE CONNECTORS	AMPHENOL CONNECTORS Solder	IBBON			
0.1* 0.156		(grey/metre)			
$2 \because 6$-way (commodore) $\quad 150300 \mathrm{p}$	36 way plug $\quad \begin{gathered}\text { Solder } \\ 500 \mathrm{p}\end{gathered}$	10. way		34.way	
${ }_{2 \times 12}^{2} \times 12$-way (vic 20) $\quad 150 \mathrm{p} \quad 350 \mathrm{p}$	36 way skt 550p 500p	16-way	60p	40.way	180 p 200 p
2×18-way $\quad-\quad-140 \mathrm{p}$	24 way plug	26 -way	120p	64-way	28
2×23 way (2X81) $\quad 1750$	PEEE 475p 475				
$\begin{array}{ll}2 \times 25-\text { way } \\ 2 \times 28 \text {-way (Spectrum) } & \text { 225p } \\ \text { 200 }\end{array}$	24 way skt	IL HEADERS			
2×36 way $\quad 250$ p					
$\begin{array}{ll}1 \times 43 \text {-way } & 260 \mathrm{p} \\ 2 \times 22 \text { way } & 190 \mathrm{p}\end{array}$		14 pin 16 pin 18 pin 20 pin 24 pin 40 pin	40	r	
年 3 -way	24 way 700p 36way 750p				
$1 \times 77-$ way 2×50-way(S100conn) $\begin{array}{l}\text { 400p } \\ 600 p\end{array}$	GENDER CHANGERS 25 way Dtype		60		
EURO CONNECTORS	Male to Male. £10				
$\begin{aligned} & 2 \times 32 \text { way St Pin 230p 275p } \\ & 2 \times 32 \text { way Ang Pin 275p 320p } \end{aligned}$	Male to Female £10 Female to Female. £10				
	RS 232 JUMPERS	\because ¢GMNOLINE			
3×32 way St Pin 260 p 300 p 3×32 way Ang Pin 375 p 400 p	(25 way D)				
IDC Skt A + B 400p		VIEMDATA SYSTEM			
IDC Skt A + C 400p					
For 2×32 way please specify spacing ($A+B, A+C$).	24" Male Male $24^{\prime \prime}$ Male Female $£ 9.50 \mid$ 	for information and orders phone 01-450 9764. 24 hour			
MISC CONNS 21 pin Scart Connector.200p 8 pin Video Connector.200p	$\begin{array}{lll}\text { 4-way } & \text { 90p 6-way } & 105 p \\ 8 \text {-way } & \text { 120p } 10 \text {-way } & 140 p\end{array}$	service, 7 days a week.			

RIBBON

TECHNOLINE VIEMDATA SYSTEM Using 'Prestel' type protocols phone 01-450 9764. 2
74 semies

LINEAR ICs

ACE REGULAT
FIXED PLASTIC

COMPUTER COMPONENTS

(CMOS Z80)
$\begin{array}{c}\text { SUPPORT } \\ \text { OEVICES }\end{array}$

81595
814596
8
811597
814998

READ/WRITE

Common Concern

Dear Sir,
I have no wish to continue the Greenham Common controversy - however, I have now read two letters in Read/Write from readers who wish to cancel their ETI subscription because of the article.

The article occupied three-quarters of one page, an informative documentary feature like mercy killing or abortion would be on BBC 2 television - if you don't like it, you turn over. Considering there are 66 other pages to choose from, the majority of which are straight-to-the-point projects without even an SDP abbreviation, I feel anyone who cancels the magazine must be out of their tiny minds. Perhaps, more to the truth, they prefer the $£ 1.20$ in their pockets.

It has taken engineers like myself many years to climb the tree of success, over 30 years since my first crystal set in Luton in 1956. Do we stand still or do we progress? Technology and defence are linked and breakthroughs in technology will always find their way into defence. In my son's lifetime Star Wars will make Greenham Common obsolete, just like Fleet Street and black and white newspapers today.

Each month ETI is a chunk of progress - the latest innovations, advances in technology and new products - an Aladdin's cave of new thought every month. If no one dares to include a comment, an article, for fear of offending someone somewhere, what a dull lot and a dull country this would surely become.

Like many readers I have learned more about the nuclear industry in the past weeks than in all my schooldays. Through all the argument, the rights, the wrongs, the facts, one thing has become apparent to me. We are more likely to have nuclear accidents than nuclear war, and in a densely populated country such accidents
could have similar effects to a nuclear war. Such accidents as a fire leading to a meltdown in an old-style magnox reactor could cause an explosion which could not be contained. The result, as everyone knows from April 26 in Russia, is pollution of the air, the ground, the rain, the milk and the food chain, leading to cancer and certain death within a 30 mile radius within three days ... in a word, threads. Such an accident would not grant us 700 miles isolation and survival like Sweden. It is also apparent that such an accident whether caused by human error, component failure or terrorist attack could not offer a safe evacuation of the population in time.

The words I can hear are safe; inspected; automatic safeguards; cannot go wrong... everything made by man goes wrong sooner or later and a designer of nuclear reactors says he expects one to blow up every five years (First Tuesday - ITV - May 6).

Perhaps two readers who cancelled ETI are reading this.

Yours faithfully,
Keith Lawrence B.Sc.,
Ilkley,
West Yorkshire.

Of Caves and Waves

Dear Sir,
Mike Bedford, in his article on the Troglograph cave radio (ETI May '86) has made some fundamental errors in his explanation of the underlying electro-magnetic theory. Of course, it is not necessary to understand the e-m theory in order to produce a working practical design, but I am surprised that you should print and thereby perpetuate certain misconceptions about such a fundamental subject.

Mike states that we normally mean the electric field when referring to radio waves. In fact transistor radios with their ferrite
rod aerials, and radio amateurs with their frame aerials are both making use of the magnetic part of the radiated field, which does not in this case drop off under an inverse cube law as Mike states.

Mike also states that the electric field of 'normal' radio radiates in straight lines which is why direction finding (DF) is easier than using the 'eliptical loops' of the magentic field. This is not true. As I have mentioned above the magnetic field can be used for DF with no problem. (Rotate your transistor radio until the signal fades - the direction of the ferrite rod is then at right angles to the direction of the transmitter).

Thirdly, Mike states that electric fields need aerials of the order of a quarter or half a wavelength in order to radiate. Having an aerial of this size certainly helps, but it is not true in the general case and a circular loop can radiate a perfectly good electric field, just as a wire can produce a magnetic field.

I think Mike may be getting confused because what happens very close to an aerial (much less than a wavelength away) is very different to what happens at larger distances in terms of the way the fields behave. The maths is quite complicated, but in simple terms what happens is that a current oscillating in a wire or a loop causes both electric and magnetic fields to be set up in the surrounding medium. The maths can be simplified if we are either very close to or very far from the source of the fields. At large distances the electric and magnetic fields have a fixed relationship, and the magnitude of both (in certain directions at least) drops off with an inverse distance relationship. The result of this is that the power carried by the wave drops off as an inverse square relationship. This field is often called the radiation field, or the far field.

At close distances the picture is different. The dominant terms in
the maths do not suggest any power radiation. The electric and magnetic fields behave as if they originated from static conditions and are called the electrostatic and induction fields, or together they are called the near field. For a current loop the induction field drops off as an inverse cube relation, and the electrostatic field ans an inverse square. For a short wire aerial the relationships are the other way round. The magnitudes of all the field components depends on a number of factors, and a good approximation at low frequencies is to forget the radiation field altogether.

The field patterns are not quite as Mike states. It would take far too long to explain here why they are different, but it is important to realise that magnetic waves are not inferior to electric waves. It is a question of the orientation of the transmitter and whether it is the near or far field that is important.

In Mike's diagram of the magnetic field lines (Fig 2, page 26) the electric field lines would be concentric circles, not straight lines as he states, and for an electric dipole (a short wire aerial) the role of the electric and magnetic fields are reversed - no straight lines anywhere!

A personal view is that Mike is wrong to think that induction loops are used because waves can be somehow 'propagated' more easily than from an electric dipole. Both vertical and horizontal wires can perform well, if not better than a loop aerial. They have disadvantages in that they are less portable, require high voltages and are not (superficially at any rate) as easy to understand as loops. For anyone who wants further information I suggest the book ELF Communications Antennas by Burrows, published by Peregrinus which Mike himself quotes as a reference. A good book on e-m theory is Introduction to

Electromagnetic Theory by Clemmow, published by the Cambridge University Press.

Notwithstanding these technical errors, I am sure Mike has done a good job on producing a piece of working equipment, and that is what it is all about really isn't it? And it is pleasing to see an original project of this sort in ETI.

> Yours faithfully,
> David Gibson,
> Broadstone,
> Dorset.

We spoke to Mike Bedford, who agreed with the points made in the letter and suggested that the confusion is substantially semantic. Throughout the articles, read electromagnetic field for electric field and induction field for magnetic field. In the context of this project, the induction field is all that need worry the constructor. - Ed.

AUNTIE STATIC'S PROBLEM CORNER

Since the fire at the Chernobyl nuclear reactor, and the consequent rise in radiation levels throughout the British Isles, we have had numerous 'phone calls from ETI readers concerned about health hazards from contaminated food, milk, water, and from the general rise in background radiation levels. The Editor has asked me to devote my page this month to describing some of the ways that radiation can be detected and measured.

It has been known since the end of the last century that some elements are radioactive - that is to say, they spontaneously disintegrate, emitting high energy radiations. The three main types of radiation involved are alpha particles (helium nuclei), beta particles (electrons) and gamma rays (short wavelength radiation, which overlaps the high frequency end of the X-ray spectrum, and continues into very short wavelengths $-0.5 \AA$ to about $0.005 \AA$.)

There are a number of measurements and guidelines to 'safe' exposure to radiation. The most commonly used unit of exposure is the roentgen, R, defined as the amount of radiation that

A portable ratemeter with accessories. It can be used with a Geiger-Muller tube attached to a socket on the front (as shown) or with an extension lead and socket which allows the GM tube to be some distance away from the ratemeter. The applied voltage can be varied from about 350 V to 600 V to suit different tubes. The remaining controls select the count range and time constant, and a socket is also provided so that a semiconductor alpha particle detector can be used instead of a GM tube.
produces in air, under specified conditions, ions carrying $1 / 3 \times 10^{-9}$ coulombs of charge. Air was chosen because its mass absorption coefficient is almost the same as that for body tissue. The damage caused by radiation will depend on the absorbed dose, the exposure rate and the parts of the body exposed (hands and feet can receive comparatively high doses
without permanent injury, whereas the eyes are particularly sensitive). The effects of acute radiation exposure over the whole body (ignoring carcinogenic effects and genetic damage) are: 20-50R, some changes in blood composition; 100250R, severe illness, but recovery within six months; 400 R , fatal to 50% of
far as genetic damage is concerned, there is no safe limit, but the incidence of observable effects rises rapidly for an exposure of more than about 10R over 30 years. From background radiation, the dose to be expected over that time is about $4 R$, so the margin is very small.

Other units of dosage you may see bandied about in the press are: the rad (radiation absorbed dose) which is $10^{-5} \mathrm{~J}$ of absorbed energy per gram of absorbing material, and the rem (roentgen equivalent man) - a unit which takes into account the fact that different types of radiation cause widely differing amounts of damage for the same absorbed energy. Table 1 gives a rough indication of the RBE (relative biological effectiveness) - a nauseating term - of various types of radiation. Alpha particles, for instance, cause 10 to 20 times as much damage for a given energy as gamma rays. The biological dose in rems is calculated by multiplying the absorbed dose in rads by the RBE for the radiation concerned.

Radiation dosage over a period of time is conveniently measured by a device called a dosimeter. A low cost quartz fibre dosimeter is available from

Radiation Type	RBE
X-ray, gamma ray, beta ray	1
Thermal neutrons	$2-5$
Fast neutrons	10
Alpha particles, high energy ions	$10-20$

Table 1 A comparison of the relative biological effectiveness (RBE) of different types of radiation.

Audio Electronics, 301 Edgware Road, London W2 1BN (tel: 01-724 3564) for around $£ 7$. It looks like a fat fountain pen, and clips to your pocket in a similar way, so it can be carried around at all times. At one end is a lens, giving a view of a scale reading from zero to 5R. The ionisation caused by radiation entering the tube gradually causes it to discharge, moving a pointer across the scale, from which you can read your total radiation dosage.

In the current situation, the main concern is the radioactive material which is finding its way into milk, water and food. A dosimeter is of little use in testing radiation levels directly - if you left it next to some contaminated milk for a week, it would no doubt discharge, but by then the milk would be sour anyway. An indication of the degree of contamination can be obtained by using a Geiger counter. ETI's technical wizards came up with the circuit in Fig. 1 when asked to design one on the spur of the moment.

Fig. 1 Circuit diagram of a simple ratemeter.

I should point out that the circuit has not been entirely tested but it should certainly work with the minimum of attention. Strictly speaking, it is a rate meter rather than a Geiger counter, but it would be a simple matter to feed the pulses from Q2 into a counter IC instead.
The coil can be wound on a small pot core, taking a little care over the insulation of the secondary winding, since it produces about 450V. ZD1 to ZD4 are chosen to suit the particular GM tube used - the sum of their voltages should be equal to the tube's recommended operating voltage. GM tubes can be obtained from: Alrad Instruments, Turnpike Rd. Ind. Est., Newbury, Berks RG13 2NS. A general purpose gamma sensitive tube, the ZP1200, costs $£ 45.30$ inclusive of postage and VAT.

GM (Geiger Muller) tubes vary in construction, but typically consist of a tungsten anode in the centre of a tubular cathode - a metal cylinder or sometimes a layer of graphite on the inside of a glass tube. The window allows alpha and beta particles to enter with the minimum of obstruction and in some very sensitive tubes the window can be extremely fragile, and may admit ultra violet light, which can also trigger the tube. The best bet is to buy a low cost, general purpose tube, which will be quite adequate for testing your vegetables, and will give fewer spurious readings.

Inside the tube will be an inert gas, often neon, at a low pressure around $10 \mathrm{~cm} . \mathrm{Hg}$. In circuit, the applied voltage should be high enough to prevent recombination of any ions formed by radiation entering the tube,
but low enough not to exceed the dielectric strength of the gas. The tube will have a recommended range of operating voltages, so choose a voltage towards the centre of the range and fit the zeners accordingly.

Any radiation entering the tube will cause ionisation of the gas. Electrons from the ionisation will be accelerated towards the anode, producing more ions by collision on the way. This secondary ionisation produces more electrons, which produce yet more ions, and so it continues in geometric progression. A single charge in the tube will be enough to trigger a substantial discharge which can be detected as a sudden burst of current from the anode, amplified in our circuit by $\mathbf{Q 2}^{2}$.

The relatively massive positive ions drift more slowly towards the cathode, taking around $100 \mu \mathrm{~S}$ to reach it - by this time they will have considerable energy, and if left to their own devices would cause more electrons to be liberated from the cathode, giving continuous conduction. To prevent this, a quenching agent such as bromine is mixed in low concentration with the neon, to absorb the energy from the positive ions. This process has the unfortunate consequence of making the tube fairly slow to recover after a discharge - around $200 \mu \mathrm{~s}$ is needed between discharges if the tube is to behave correctly. If the radiation is too intense, the tube will 'freeze' or 'jam' in a state of continuous conduction. This certainly will not happen in testing your milk contamination, but should be borne in mind if using the meter for other purposes. - Auntie.

ETI

SATELLITES SETTING THE WORLD ALIGHT? With our ever-watchful gaze on the skies, we bring you an update on the world of satellites and the satellites of the world. Keith Brindley supplies the words.

During the Second World War considerable effort was spent on developing rocket propulsion for purposes other than communications. It became clear that manufactured Earth satellites could exist if rockets could be used to launch them high enough above the surface of the Earth. At the right altitude, a satellite could travel fast enough for its own centrifugal force to counter the tendency of gravity to bring it crashing down. Despite Werner von Braun's best efforts, it was not until 1957 that the first satellite (Sputnik 1) was launched. And it stayed only three weeks in orbit.

The world's first communications satellite (Score) was launched the following year by the USA. Like Sputnik 1, Score only lasted a short time. But satellite communication had been born, some 15 years after it had first been envisaged.

Figuratively Speaking

Since Sputnik 1 there have been an estimated 2,770 launches of satellites. Some of these have been multiple launches, so the total number of artificial earth satellites launched is nearer to 3,000 . There are actually 5,560 or so objects, artificial or otherwise, in orbit. They range from the Moon right down to fragments which have broken off other satellites.

Of the 3,000 launched satellites, about 1,000 have come down again. Few of the remaining 2,000 are still transmitting - a realistic estimate of as low as 10% to 15% makes only 200 to 300 satellites functioning at this moment! This is a very difficult figure to establish beyond question because nobody wants to admit to poor design. Authorities on both sides of the Iron Curtain keep this sort of information under their hats, merely ignoring the fact that satellites have failed until everyone's forgotten about them anyway.

Very roughly, there are about 100 new satellites put into orbit each year and about 80% of these are of Soviet origin (a figure which must embarrass the USA). Thought for the day must be why the Soviets launch so many. Is it because they see World supremacy in whoever has the best satellite systems? Or is it because their standard of electronic production is so poor that their satellites have only a very short working life? Or is it because while the USA puts all its efforts into glamorous, high profile projects like Moon landings and shuttles, the USSR prefers a more methodical and less publicity conscious form of
space exploration and exploitation?
In any form of satellite communication one of the first problems which has to be overcome is exactly how to transmit to and receive from an orbiting satellite. The satellite must be thousands of kilometres up in space for it to orbit, so transmissions to and from it will be quite weak by the time they have traversed the distances. On Earth, a satellite receiving station (commonly called an Earth Station) must have an acceptable aerial - or antenna - system to pick-up transmissions. The aerial must be accurately pointed at the transmitting satellite. Easy to say, but not so easy to do!

On The Right Tracks

The problem of ensuring that the aerial always points at the satellite closely and tracks it accurately is fairly complex. The aerial's horizontal and vertical position is commonly varied by steering systems, which are in turn controlled by the strength of the received signal so that, as the satellite traverses the sky, the aerial follows it and makes sure that maximum signal strength is obtained. Such aerial systems are complex, heavy and expensive; not the sort of thing to have on your roof, strapped to your chimney.

Even with this reception restraint, satellites with such orbits are used for a number of purposes. However, there is a way to overcome the tracking problem and make light work of transmission and reception.

This is the so-called geo-stationary orbit, first considered by science fiction writer Arthur C. Clarke in an article in the October, 1945 issue of 'Wireless World'. With brilliant foresight, Clarke realised that the interdependency of satellite orbit radius and period could be used to directadvantage by positioning a satellite so that its orbit radius ensured an orbital period equal to the Earth's rotational period. By putting the satellite in orbit about the Earth's equator, travelling in the same direction as the turning Earth, the satellite would appear stationary to an observer on the planet's surface.

The radius of the Clarke orbit is $42,164 \mathrm{~km}$ - that is $35,786 \mathrm{~km}$ above the Earth's surface. Orbital speed at this height is 3,075 metres/second and period is approximately 23 hours and 56 minutes. This period is that of the sidereal day, and not the solar day which is exactly 24 hours. The orbit is, of course, circular.

The geo-stationary orbit (GSO) is of immense value, as earth stations with fixed aerials can be used to receive transmissions from satellites in GSO. This has meant the development of low-cost reception systems aimed at domestic consumers.

The first satellite to be launched to a geo-stationary orbit was the Syncom 3 communications satellite. It reached a geo-stationary orbit on 19 August 1964.

Near And Far

The GSO is quite a long way out in space: about $51 / 2$ times the Earth's radius from its surface, in fact. At this distance, a single satellite with a sufficiently wide angle of transmission can broadcast line-of-sight radio frequencies with a 'coverage area' (sometimes called a 'footprint') of about one third of the Earth's surface (Fig. 1). As few as three satellites can be used to cover the whole of the Earth's surface and a signal can be transmitted from one Earth station via a satellite to any other station on the Earth's surface. On the other hand, satellites in GSO with narrow angles of transmission can be used to broadcast to precise, fixed areas on the Earth's surface (Fig. 2). Earth stations outside a 'spot-beam' will not be able to pick up the transmissions.

Fig. 1 A satellite in the GSO can transmit radio frequencies with a coverage area of about one third of the earth's surface.

In practice, limits on GSO satellite transmissions are reached at latitudes north or south of the equator of about 60° because the angle of arrival of the transmission becomes low enough to be blocked by hills, buildings and other surface features close to the Earth station. Adverse weather conditions at such latitudes may also attenuate satellite signals. This is not to say that satellite transmissions can't be received by Earth stations outside the 60° latitudes, just that larger aerials must be used to pick up the weaker signals, and aerial positioning becomes more critical.

For some purposes, the GSO is not useful. Earth surveillance satelites (that is, satellites with on-board sensors and cameras - more commonly called'remote sensing satellites') need to be close to the Earth's surface to allow sufficient resolution of details such as weather, crops, drought, pollution, mineral resources and ocean currents. At a tenth of the distance to the Moon, the GSO is just too high.

Latest surveillance satellites can resolve detail down to ten metres and their uses are as yet limitless. If you need to know anything about any aspect of the Earth's surface, a remote sensing satellite could check it out for you easily and quickly - and more often far more cheaply than sending out a team of observers would cost.

Remote sensing satellites usually fly a circular polar orbit (Fig. 3) at a height of around only 900 km . As the earth turns beneath them, they can survey the whole surface in a few orbital periods (Fig. 4). Earth stations which receive transmissions direct from such satellites encounter the tracking problems previously discussed. The GSO can help hereby providing a geostationary data collection and transmission relay, allowing simple earth stations to receive transmissions from satellites in other orbits, without the inherent tracking problems.

Fig. 2 A satellite in the GSO with a spot-beam can be used to transmit to selected areas of the earth's surface.

Spy satellites are really surveillance satellites in extremely low orbits so that they can resolve the finest of details, even - it is sometimes said - down to the headlines on a newspaper. As a result of such low orbits, severe atmospheric drag is common and spy satellites often re-enter the atmosphere only a few weeks after launch.

Fig. 3 A variety of possible satellite orbits and uses. Remote sensing satellites usually fly a circular polar orbit, at a height of around 900 km above the earth's surface. Communications satellites are usually in the GSO.

There is nothing against the GSO being used to hold a remote sensing satellite (as long as the resolution limits are acceptable), nor is there anything to prevent a circular or elliptical orbit being used to fly a communications satellite (provided that adequate tracking aerials
are used). It really all depends on the use.

Weather Satellites

There are a number of weather satellites, in various orbits, transmitting on various frequencies. Most of them transmit their data -cloud cover pictures, temperature profiles, sea state, ice precipitation, snow cover and so on - using the automatic picture transmission (APT) system, in which each picture is transmitted in an analogue line-by-line format similar to television pictures but at a much slower rate -120 lines per minute. A 2400 Hz carrier is amplitude modulated between 5% (black) to 80% (white), separated into lines by square wave synchronization pulses. Although these pictures can't be displayed by a basic television, some simple software running on a home computer is all that's required to re-process them to a form that can be displayed in your living room.

Fig. 4 A circular polar orbiting satellite will cover most of the earth's surface in a number of orbits.
The best type of orbit for weather satellites is polar, circular and at a height of about 900 km above the Earth's surface. Tiros (television infra-red orbital satellites) series satellites are launched and controlled by the National Oceanic and Atmospheric Administration (NOAA). The satellites are often known by the ' NOAA^{\prime} acronym, and there are currently four Tiros series satellites in orbit: NOAA-6, 7, 8, and 9, spread around the Earth. All of them have a 101 minute polar orbit, so pretty much all of the Earth's surface is covered over comparatively short time periods.

As they transmit at a relatively low frequency (137138 MHz) reception is fairly simple, with few tracking problems as ordinary non-directional dipole aerials can be used. APT pictures consisting of two scenes side by side, one of visible light and one of infra-red conditions, are continuously transmitted by each NOAA satellite.

Similar satellites launched and controlled by the Soviets, known as Meteor satellites also transmit APT pictures in the same frequency band between 137 and 138 MHz . Their transmissions are of single scenes in the visible spectrum.

Weather pictures commonly seen on television are usually taken from geostationary satellites, such as Meteosat, which is positioned directly over the Greenwich meridian at 0° latitude. There are a number of similar satellites spaced around the GSO so the whole world is effectively covered. Their data comes not only from on-board cameras, but also from hundreds of data collection platforms (DCPs) on the earth's surface. DCPs can be land-based, sea-based, or airborne. They can be automatic or semi-automatic and they can transmit only when the satellite requests information, on a predetermined weather event.

Each satellite's correlated data are first transmitted to a receiving and processing Earth station, where they are processed to enhance picture quality and add country outlines together with latitude and longitude lines. The data are then transmitted back to the satellite for general transmission either in a basicAPT format or in digital high bit rate format similar to the original format used to transmit the data Earthwards in the first place.

In either case, the pictures are of high quality due to the processing, and in the case of the digital high bit rate format very high resolution pictures can be received. Transmissions are at frequencies around 1.6 to 1.7 GHz , and are outside most amateur reception capabilities. Dish aerials, low noise converters and receivers are available from a number of sources, at prices up to about $£ 2,000$ for a system. It's probably better to buy a telly, and wait for the weathernen at those prices!

Amateur Satellites

There are a few satellites in orbit designed mainly for communications and telemetry purposes for radio amateurs and educational establishments. The two satellites of direct interest in the UK are UoSAT-2 designed and built by the Department of Electronic and Electrical Engineering at the University of Surrey (hence UoSAT).

The two UoSATs are sometimes known as OSCAR-9 and OSCAR-11 (Orbital Satellite Carrying Amateur Radio). Both are in polar orbits but at different altitudes, and so have different orbital periods.

OSCAR-9 (UoSAT-1) is at an altitude of 554 km with a 95 minute period. OSCAR-11 (UoSAT2) is at an altitude of 700 km , with a period of 98 minutes. Both satellites transmit télemetrical data at a frequency of 145.825 MHz so reception is fairly simply, with few tracking problems, although Doppler shift takes the apparent received frequency to about 145.830 MHz when the satellite approaches, and 145.810 MHz as it recedes. Data is transmitted on other frequencies too, up to 10.47 GHz in fact.

Another amateur satellite is OSCAR-10, like the other OSCARs but allowing two-way amateur radio communications. Separate uplink and downlink frequency bands are used for this facility, which is known as 'transponding'. The uplink frequency band is from 435.027 MHz to 435.179 MHz and the downlink band is from 145.825 MHz to 145.977 MHz . Any satellite which allows two-way communications uses this principle and has at least one transponder.

OSCAR-10 has an elliptical orbit, which means that the satellite is difficult to track as it approaches and recedes. At its apogee (the furthest point from the Earth, at about $33,500 \mathrm{~km}$), however, the satellite appears stationary for quite long periods and simple aerial systems suffice.

There are a number of Soviet amateur satellites (the RS series, standing for Radio Sputnik) with transponders and telemetrical beacons in circular polar orbits with periods of around 2 hours.

Broadcast Satellites

For reasons which should be apparent, any broadcast satellite television service must use satellites in the GSO - bandwidth requirements and the number of channels desired mean that high transmission frequencies must be used, which impose tracking problems if the broadcasting satellite is in anything other than a geostationary orbit. At high transmission frequencies, dish aerials are most suitable (although some new designs are currently being investigated and the neces-
sary tracking devices would make the aerial systems far too expensive for general public requirements. A satellite in the GSO, together with fairly small, cheap, fixed aerials are essential - particularly when it comes to direct broadcasting by satellite (DBS). DBS transmissions (to be distinguished from cable transmissions) are meant to be received by individual households. The transmissions will be more powerful than existing cable satellites produce and the recommended dish size is 0.9 m .

In 1971, the International Telecommunications Union designated frequencies in the 12 GHz frequency band for use by broadcasting satellites. For frequency allocation purposes the ITU divides the world up into three regions:
Region 1 - Europe, Africa and the Soviet Union; Region 2 - the Americas;
Region 3 - Australia, Asia including China and Japan.
The three regions are shown in Fig. 5. Frequencies in each region are slightly different and have to be shared on an equal basis with other services such as terrestrial broad casting, fixed and mobile services. The frequency allocations for region 1 is from 11.7 GHz to 12.5 GHz .

Fig. 5 The three world regions, defined by the International Telecommunications Union, for frequency allocation purposes.
This sharing of allocated frequencies with other services implied that action had to be taken to define exactly which frequencies could be used for which services, so a World Administrative Planning Conference (WARC) was set up in 1977. WARC77 defined the general guidelines which affect broadcast satellite services, such as channel allocations, channel widths, transmitter power and satellite positions in the GSO. These were only intended to be provisional and a number of minor changes to the guidelines have been made since 1977.

WARC77 confirmed that it should be possible to assign five channels to each country in the world by allowing each country a position in the GSO where its satellite could be orbited. The UK's satellite position, for example, was 31° west of the Greenwich meridian, and the five assigned channels were channels 4, 8, 12, 16, and 20, sharing the same GSO position with the Azores, the Canary Islands, the Ivory Coast, Spain, Iceland, Ireland, Liberia and Portugal.

This positioning of the satellite spot at about 30° west of the UK's longitude is typical of most countries and there is a specific reason. Figure 6a shows a non-scale illustration of the Earth, Sun and satellite in normal operation with no broadcast problems. Figure 6 b shows the same set-up with a problem: the satellite is in solar eclipse, so that the earth stands between it and the sun.

As the satellite circuits are solar powered, it is nonoperational and cannot broadcast.

This situation will occurfor a few minutes at or around each equinox in a year (these are the only times when the sun, Earth and satellite are directly in line), at about midnight. By positioning the satellite some 30° west of the country's longtitude, however, the 'midnight' blackout occurs at the satellite's longitude, that is about two hours after the country's midnight or around two o' clock in the morning when few programmes will be broadcast. Future satellites may be battery-backed with rechargeable cells to avoid these complications.

Another solar problem can occur when the satellite is directly between the Sun and the Earth, and an effect known as 'sun outage' takes place when the receiving aerial on the Earth, pointed directly at the satellite, is also pointing directly at the Sun, and so picks up extraneous noise. Again, this effect will happen at or around the two equinoxes for a few minutes at a time, around twelve hours after the eclipses - about two o' clock in the afternoon. There is no practical solution to this problem and broadcasters will simply have to schedule programmes so that no broadcasts are in progress at the time.

At the time of WARC77, a number of estimates as to receiver technologies were made, to define transmitter power and aerial size required. Developments in receiver technology have surpassed those estimates, and lower DBS transmitter power or smaller DBS receiving aerials - or both - will be the outcome. All that DBS is now waiting for is an economically viable plan - satellite receiver and aerial technologies are well developed and the major problem is cost. Later this year, France and Germany will be launching DBS satellites - TDF-1 and TVSAT, as they will be called.

Sidestepping DBS

Satellite Master Antenna Television (SMATV) uses satellites built for communications purposes to transmit signals basically for the use of cable television operators. The operators pick up the transmitted television signals and relay them to users on the cable network.

Where television signals like these are received by organisations such as hotels, pubs or clubs, the set-up suffers a name change and becomes a Television, Receive Only (TVRO) system. Communications satellites have transponders of much lower powers than planned DBS satellites (about 20 W , against 200 W). The receiving SMATV or TVRO aerials need to be significantly larger than DBS aerials (often twice the size at 1.8 M or so) and are, therefore, somewhat more difficult to site.

Fig. 6 (a) Illustrating a satellite in normal operation, and (b) a satellite which is in a solar eclipse. A broadcast satellite in this situation cannot transmit as its circuits are solar powered.

Had suitable DBS systems been developed and started as originally planned, SMATV and TVRO would have stayed exactly where they were intended - in pubs, hotels, clubs, and cable head-ends. But a market has
grown up around SMATV and TVRO, demanding that it becomes available on a wider basis. The public, it seems, wants the choice which even existing satellite television offers, and never mind the large dish aerials and expensive receivers. For $£ 10$, the Department of trade and Industry in the UK will sell you a licence to receive SMATV signals.

To meet this demand (or help create it?) several manufacturers have developed reasonably cheap equipment ($£ 1,000$ to $£ 2,000$) to receive the transmitted signals and convert them into a form suitable for use with domestic television receivers. At least one manufacturer's equipment is currently available for rental from selected DER television rental shops in the South East of England, on a trial run as a home-reception satellite television system. If the trial is successful, it's likely that the equipment will be made more widely available. As this availability increases it may be perfectly correct to think of the SMATV and TVRO signals as 'broadcast' television - much like DBS signals, but of lower power.

Currently, some 18 television services are 'broadcast' over the UK and Europe using transmissions from two communications satellites, although some of these services double-up and use the same channels. Most of the services are in English, with four or five in Italian, French or German. The more famous of the services are problably The Children's Channel, Premiere, MirrorVision, Music Box, Screen Sport, and Sky Channel.

The two satellites, European Communications Satellite 1 (ECS 1 or Eutelsat 1) and Intelsat V are primarily used to trunk telephone calls over Europe and between Europe and North America. They are both in orbit in the GSO - ECS 1 at 13° east of the Greenwich meridian, and Intelsat V at 27.5° west.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mall Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Argus Specialist Publications Ltd will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of this publication, summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent (up to a limit of $£ 2,000$ per annum for any one Advertiser so affected and up to $£ 6,000$ per annum in respect of all insolvent Advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of this publication but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties).
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements). Classified advertisements are excluded.

MICRO-

 COMPUTER AIDED CIRCUIT DESIGN
Julian Burt takes us through the first stages of circuit analysis on a home micro by way of nodal admittance and two-port networks.

There are two sides to computer aided circuit design. The main aspect of it is the actual analysis of a designed circuit-information about a circuit is fed into the computer and, after some numbercrunching, the required response is found. This aspect can be split into smaller areas: linear frequency domain analysis (AC small signal analysis); linear DC operating point analysis; and non-linear analysis. In this series we shall mainly be concerned with the first two since the third is a very complex matter hard to implement on a microcomputer.

The other aspect of CACD is the use of a computer to help with the mathematics of circuit design: solving simultaneous equations, numerical integration and so on. We will be looking at circuit transfer functions, which describe the output of circuits with respect to their inputs.

AC Analysis

Perhaps the most important area of circuit analysis is linear small signal analysis. The term 'linear' is used loosely as all components are non-linear to a degree (see Fig. 5). Luckily, they can be assumed linear over a small range of working conditions. We work on this assumption to form a method of analysis for linear circuits.

Fig. 1 (a) Equivalent impedance circuit, (b) equivalent admittance circuit.

A large number of circuits are of the two port type: they accept an input of some form and produce a corresponding output, as amplifiers and filters do.

All two port networks can be represented by a simple equivalent circuit. Because the circuit will probably use reactive components, we have to use an equivalent impedance circuit as shown in Fig. 1a. The input of this is defined by I_{1} and V_{1}, Z_{11} being the input impedance. The output, similarly, is defined by I_{2} and V_{2} with Z_{22} representing the output impedance:

$$
\begin{aligned}
& Z_{11}=V_{1} / I_{1} \text { with } I_{2}=0 \\
& Z_{12}=V_{1} / I_{2} \text { with } I_{1}=0 \\
& Z_{22}=V_{2} / I_{2} \text { with } I_{1}=0 \\
& Z_{21}=V_{2} / I_{1} \text { with } I_{2}=0
\end{aligned}
$$

Standard conversion formulae allow us to convert freely between impedance and admittance parameters:

$$
\begin{aligned}
& Z_{11}=Y_{11} / \Delta Y / Z_{12}=-Y_{12} / \Delta Y / Z_{22}=Y_{11} / \Delta Y / Z_{21}=Y_{21} / \Delta Y \\
& Y_{11}=Z_{11} / \Delta Y / Y_{12}=-Z_{12} / \Delta Z / Y_{22}=Z_{11} / \Delta Z / Y_{21}=Z_{21} / \Delta Y \\
& \Delta Z=Z_{11} Z_{22}-Z_{12} Z_{21} / \Delta Y=Y_{11} Y_{22}-Y_{12} Y_{21}
\end{aligned}
$$

Now we can draw an admittance equivalent circuit (Fig. 1b) where:

$$
\begin{aligned}
& Y_{11}=I_{1} / V_{1} \text { with } V_{2}=0 \\
& Y_{12}=I_{1} / V_{2} \text { with } V_{1}=0 \\
& Y_{22}=I_{2} / V_{2} \text { with } V_{1}=0 \\
& Y_{21}=I_{2} / V_{1} \text { with } V_{2}=0
\end{aligned}
$$

These results can be applied to a circuit we are analysing. For example, voltage gain is defined as:

$$
A_{V}=V_{2} / V_{1}
$$

where $\mathrm{V}_{2}=$ output voltage and $\mathrm{V}_{1}=$ input voltage. By Ohm's law we know that $V=I Z$ or $V=I / Y$, so that

$$
V_{2}=I_{2} / Y_{\text {out }}=-Y_{21} V_{1} /\left(Y_{22}+Y_{D}\right)
$$

but A_{V} is V_{2} / V_{1}. So, if we divide the equation above throughout by V_{1}, we get an expression for voltage gain:

$$
A_{V}=V_{2} / V_{1}=-Y_{21} /\left(Y_{22}+Y\right)
$$

The minus sign indicates that input and output currents are shown, in the equivalent circuit, as having opposite directions.

We can do a similar exercise with current gain, $A_{i}=I_{2} / I_{1}$.
Looking back at the impedance circuit (Fig. 1a) we can see that:

$$
-Z_{21} I_{1}=\left(Z_{22}+Z_{L}\right) I_{2}
$$

By rearranging this equation, we obtain an expression for current gain in terms of impedance. By applying the conversion formulae given above, we can express current gain in terms of admittance:

$$
I_{2} / I_{1}=-Z_{21} /\left(Z_{22}+Z_{1}\right)=Y_{21} Y_{l} /\left(\Delta Y+Y_{1} Y_{1}\right)
$$

A similar technique will yield expressions for the input and output impedance of the circuit for which Fig. 1 represents two equivalents.

$$
\begin{aligned}
& Z_{\text {in }}=\left(Y_{22}+Y_{j}\right) /\left(\Delta Y+Y_{11} Y_{\nu}\right) \\
& Z_{\text {out }}=\left(Y_{1}+Y_{S}\right) /\left(\Delta Y+Y_{22} Y_{s}\right)
\end{aligned}
$$

$$
Y_{S}=\text { source admittance and } Y_{L}=\text { load admittance. }
$$

From these expressions, it is clear that only values of admittance are needed. Because admittance is a complex quantity, we can also find the relative phase of each result - a subject dealt with elsewhere in this article.

Admitting Everything

We need a way to calculate admittances. One that is relatively simple and well-suited to computers (because it uses a large number of repeated calculations) is called the indefinite nodal admittance method. This involves the formulation of a set of equations which describe the currents and voltages at each node of a circuit.

The simplest way to explain this method is to consider the example shown in Fig. 2 - a basic two port passive circuit. The nodes and components have each been labelled to show their position in the circuit. A set

Fig. 2 Indefinite nodal admittance example circuit and its definite equivalent.
of simultaneous equations to describe the circuit will show currents summed at each node in terms of admittances and voltages measured with respect to an external reference (for example, ground):

$$
\begin{aligned}
& I_{1}=\left(V_{1}-V_{2}\right) Y_{12}+\left(V_{1}-V_{3}\right) Y_{13} \\
& I_{2}=\left(V_{2}-V_{1}\right) Y_{12}+\left(V_{2}-V_{3}\right) Y_{23} \\
& I_{3}=\left(V_{3}-V_{1}\right) Y_{13}+\left(V_{3}-V_{2}\right) Y_{23}
\end{aligned}
$$

These equations can be rewritten in matrix form (Fig. 3).

$$
\left\|\begin{array}{l}
I_{1} \\
I_{1} \\
I_{3}
\end{array}\right\|=\left\|\begin{array}{ccc}
\left(Y_{12}+Y_{13}\right) & -Y_{12} & -Y_{13} \\
-Y_{12} & \left(Y_{12}+Y_{23}\right) & -Y_{23} \\
-Y_{13} & -Y_{23} & \left(Y_{13}+Y_{23}\right)
\end{array}\right\|\left\|\begin{array}{l}
V_{1} \\
V_{2} \\
V_{23}
\end{array}\right\|
$$

Fig. 3 Indefinite nodal matrix of sample circuit.
The 3×3 matrix of admittance values is the nodal admittance matrix that we require and we can observe certain properties of the elements, $Y_{n m}$, where ' n ' is the column and ' m ' the row number:

$$
\begin{aligned}
& Y_{n m}=Y_{m n} \text { (the matrix is symmetrical); } \\
& \text { row and column elements sum to zero; } \\
& Y_{n m} \text { equals minus the admittance between } \\
& \text { nodes ' } n \text { ' and ' } m \text { '; } \\
& \text { to node ' } \mathrm{Y}^{\prime} \text { '. }
\end{aligned}
$$

Using the above rules, the formation of the nodal admittance matrix is a trivial task on a computer - and the rules are generalisable. The problem lies in properly organising the data in the first place, but before discussing thatwe must continue the explanation of the analysis method. A good understanding of this is imperative in order to write useful programs.

So far, we have not taken the frequency dependent component of impedance - reactance - into account. Capacitive reactance is calculated as $1 / 2 \pi f C$ and inductive reactance as $2 \pi f$. To incorporate these elements of impedance, we could produce a nodal admittance matrix for a range of frequencies sufficient to give an accurate picture of circuit behaviour. This is easy to program and memory-efficient but the calculations involved take a long time. An alternative technique, which is quicker but memory-inefficient, is to set up a capacitive and an inductive matrix using $2 \pi \mathrm{C}$ and $1 / 2 \pi \mathrm{~L}$ as respective admittance figures. At any given frequency, actual admittance is derived by multiplying each matrix (that is, each element of each matrix) by the frequency and adding the two matrices. The result is a generalised indefinite nodal admittance matrix for the purely reactive aspects of the circuit. Mathematically, this is a matrix of imaginary numbers. The corresponding real matrix represents the resistive characteristics of the circuit.

Node Trouble

A circuit with any number of nodes may be represented by an indefinite nodal admittance matrix. The next stage in the analysis is to convert this indefinite matrix into a definite one. This is done simply by assuming one node to be at the same voltage as the reference node in effect, by defining one node as ground, the reference point for all other nodes.

In the matrix representation, this simply involves removing the row and column corresponding to the
voltage we are setting to zero. In the basic example above, we might assume V_{3} to be zero with the result that the matrix would now look like this:
$\left\|\begin{array}{l}I_{1} \\ I_{2}\end{array}\right\|=\left\|\begin{array}{cc}\left(Y_{12}+Y_{13}\right) & -Y_{12} \\ -Y_{12} & \left(Y_{12}+Y_{23}\right)\end{array}\right\| \quad\left\|\begin{array}{l}V_{1} \\ V_{2}\end{array}\right\|$

Fig. 4 Input-output conditions.
Note that rows and columns no longer sum to zero but that the definite nodal admittance matrix could have been obtained from the indefinite matrix in which rows and columns did sum to zerobyapplying simple row and column additions. The process effectively demonstrates Kirchoff's laws, and results in a matrix - in the general case - which can easily be further reduced.

The rank order two matrix shown in Fig. 4 can be interpreted as a statement of of the input-output characteristics of the network. I_{1} and I_{2} are the input and output currents, previously ignored by assuming only internal currents and voltages. This type of matrix is, in general, what we are aftersince it expresses the equivalent circuit parameters of the original network.

The two port equivalent of more complicated networks can be derived by reducing the appropriate definite nodal admittance matrix. The process should be well-known to anyone familiar with the techniques for solving linear equations, and for further mathematical details readers are referred to any comprehensive text on matrices and/or linear equations.

The actual reduction method used here combines Gaussian row reduction with an application of what is known as Cramer's rule. Also involved - notionally, at least - are Kirchoff's laws which allow us the simplifying assumption that the sum of currents in all nodes of a closed circuit will be zero. This means that we can select input and output nodes as appropriate and set every other current value to zero. It helps with the manipulations if we make the input and output nodes 1 and 2 right from the start.

Let's assume we have a five node circuit which provides a definite admittance matrix of the order 4×4 with elements $Y_{i j}$. Thus:

$$
I_{i}=Y_{i j} \cdot V_{j} .
$$

Cramer's rule allows us to determine a value for V_{4} and thereby remove it from the system of equations. The new system of equations is described by:

$$
I_{i} Y_{44}-I_{4} Y_{14}=Y_{i j} Y_{44}-Y_{i 4} Y_{4 j} \cdot V_{j} .
$$

Since I_{4} is zero this can be simplified. In general, if we are removing V_{k} from the system all we have to do is replace each element of the definite nodal admittance matrix, $V_{i j}$ by

$$
Y_{i j}-Y_{i k} Y_{\mathrm{kj}} / Y_{\mathrm{kk}} .
$$

and then remove the k-th row and column. Assuming that nodes 1 and 2 have been chosen as input and output nodes, we can repeat this replacement in descending order of nodes until we have a simple 2×2 matrix which is the two port admittance matrix we are looking for.

In general, any circuit will contain reactive and resistive elements. Indeed, any real component will be both reactive and resistive to a degree - a capacitor has its equivalent series resistance, a wirewound resistor will clearly be inductive, even a length of wire will display some capacitance. Readers may be interested in pursuing this matter by reference to the series of articles by John Linsley Hood which appeared in ETI in 1985.

An actual program for nodal analysis will allow the addition of a small capacitance of about 1-2 pF in parallel with each resistor. This can be done by adding a notional capacitor to the reactive matrix in the same position as the resistor since we are using admittances. A resistance of about 1-10R might also be included in series with every inductor. The listings provided are not complete programs and are intended to be incorporated into programs written by readers.

Routine Treatment

Listing 1 is a routine to perform basic complex arithmetic. Complex arithmetic utilises so-called 'jnotation' (at least, it does if you're not a mathematician, for whom j-notation becomes i-notation). The central idea is that the phase changes in AC signals introduced by reactive components can be represented by use of the square root of -1 . This number is purely imaginary and can only be combined with real numbers to form socalled complex numbers. A complex number is actually no more than a two-dimensional number in which the real part can be thought of as indicating a position along a single horizontal axis at the centre of which we conventionally described as magnitude (or amplitude) and of as indicating a similar position along a single vertical axis. In this way, any position on a plane can be associated with a unique complex number of the form $a+j b$. The co-ordinates of the position on the plane are, of course, a and b. Fundamental AC signals can also be represented as two-dimensional quantities - conventionally described as magnitude (or amplitude) and phase. These two are actually equivalent to polar coordinates rather than cartesian ones, but the principle is the same.

The square root of -1 itself can be thought of as a single unit along the positive direction of the vertical axis of our plane. \AA single unit in the opposite direction would be-j. These two, j and -j, represent 90° phase differences with respect to quantities in the horizonal direction. Purely reactive components produce such phase changes so that, for example, the AC current through a capacitor reaches its maximum before the voltage across it. With a resistor, voltage and current change simultaneously - or in phase. With the capacitor, current leads voltage by 90° and with an inductor, currents lags behind voltage by 90°.

```
169 DEF FROCcomplex(a,b,c,d,type)
110. LDCAL outa, outb, outc, outd
120 LOCAL denom
136 IF type > 2 THEN GOTO 230 ELSE GOTO 140
140 IF type = THEN GOTO 150 ELSE GOTO 190
150REM **** addition ****
160 outreal =a+
170 Outimag
190REM **** subtraction ****
200 outreal = a -
210 outimag = b - d
220ENDFROC
230}\mathrm{ Outa =a*c
240}\mathrm{ Outb = b * d
270 IF type = = 3 THEN GOTO 280 ELSE GOTO 320
280REM **** multiplication ****
290 outreal = outa - outb
300 outimag = outc + outd
310 ENDPROC
320REM **** division ****
330 denom = c^2 + d*2
340 outreal = (outa + outb )/denom
350 outimag = ( outc - outd )/denom
360 ENDPROC
```

Listing 1 Complex arithmetic.
We need to take account of these phase changes in determining the impedance of a network. Impedance is usually given as a single figure in ohms, but in fact it is a complex quantity whose real part represents pure resistance and whose imaginary part represents pure reac-
tance. Only the latter is associated with phase changes and only the latter varies with signal frequency.

Very often we will need to combine two complex quantities, expressing impedance or admittance. The rules for handling such combinations follow from the graphical representation of them (or, indeed, from the fact that $j^{2}=-1$). If $Z=a+j b$ and $W=c+j d$, then:

$$
\begin{aligned}
& Z+W=(a+c)+j(b+d) \\
& Z-W=(a-c)+j(b-d) \\
& Z \times W=(a c-b d)+j(b d+a c) \\
& Z / W=(a c+b d) /\left(c^{2}+d^{2}\right)+j(b c-a d) /\left(c^{2}+d^{2}\right)
\end{aligned}
$$

and the magnitude and phase of Z are, respectively, $\sqrt{ }\left(a^{2}+b^{2}\right)$ and $\arctan (b / a)$. Magnitude and phase are dealt with in Listing 2.

```
100 DEF PROCphasemod(a,b
110 LOCAL moda, phasea
ll
140 modZ = SQR( moda )
150 phaseZrad = ATN ( phasea)
160 phaseZdeg = DEG( PhaseZrad)
170 ENDFROC
```

Listing 2 Complex phase and magnitude routines
Listings 3 and 4 äre routines to handle the reduction of matrices. Matrices are, in effect, equivalents to arrays. The matrix element $A_{i j}$ can be identified with the array element in a BASIC program $A(i, j)$. Matrix manipulation is therefore relatively easy in BASIC. Listing 4 operates about twice as fast as Listing 3, but it is not structured.

Both routines operate on the complete definite nodal admittance matrix of a circuit. That is, the input matrix is assumed to have complex elements and to have already had the 'ground node' taken into account. In fact, rather than have one matrix with complex elements, the routines use two matrices - Yreal (i, j) and Yimag($\mathrm{i}, \mathrm{j})$. The routines need to know how many nodes the matrices have (the variable is 'nodes' and each matrix will be of order' nodes' x ' nodes'). Matrix elements are held in the relevant array elements and Listing 3, at least, calls the procedure PROCcomplex from the routine in Listing 1. The result of the 'condensation' process is placed in a reduced matrix with elements Yreal (or Yimag) (1,1), (1,2), (2,1) and (2,2).

Listing 3 Matrix reduction routine.

```
100 DEF FROCpivotcondense(nodes)
116 FOR I%=nodes TO उ STEF - }
120 FOR J%=1 TO I%-1
130 pivota= = Yreal(I%,I%)`2+Yimag(I%,I%)`2
150 pivotb =Yreal(J%,I%)*Yreal (I%,k%)
M,
160 pivotc = Yreal(I%,k%)*Yimag(J%,I%)
Yimag(I%,K%)*Yreal (J%,I%)
170 Yreal (J%,K%)= Yreal (J%,k%)-(pivotb
Yreal (I%,I%)+pivote * Yimag(I%,I%))/pivota
180 Yimag(J%,K%)= Yimag(J%,k%)-(pivotc
* Yreal (I%,I%) - pivotb * Yimag(I%,I%))/pivota
196 NEXT K%:NEXT W%:NEXT I%
```

Listing 4 Fast matrix reduction routine.

Listing 5 - calculate results
100 DEF PROCresults
110 FROCcomplex (Yareal (1,1), Yaimag (1, 1),
Vareal (2,2), Yaimag (2,2),3)
120 Dreal=outreal: Dimag=outimag
130 PROCcomplex (Yareal (1,2), Yaimag (1,2),
Yareal (2, 1), Yaimag (2, 1), 3)
${ }^{1} 40$ FROCcomplex(Dreal, Dimag, outreal
outimag, 2)
150 Dyreal=outreal: Dyi mag=out imag
170 PROCcomplex (Yareal (2,2), Yaimag $(2,2)$,
YLreal, YLimag, 1)
YLreal, YLimag,
180
Areal $=o u t r e a l: ~ A i m a g m o u t i m a g ~$
190 FROCcomplex (Yareal (1, 1), Yaimag (1, 1),
YLreal, YLimag, 3)
200 Ereal moutreal:Bimag=outimag 210 FROCcomplex (Dyreal, Dyimag, Breal,
Bimag, 1)
220 Creal=outreal:Cimag=outimag
230 FROCcomplex (Areal, Aimag, Creal,

240 Zinreal=outreal:Zinimag=outimag
250REM $\# * * * * *$ output impedance 260 PROCcomplex (Yareal (1, 1), Yaimag (1, 1),
VSreal, YSimag, 1)
270 Areal=outreal: Aimag=outimag
280 FROCcomplex (Yareal (2,2), Yaimag (2, 2),
YSreal, ysimag, 3)
285 FROCcomplex (Dyreal, Dyimag, outreal,
outimag, 1)
290 FROCcomplex (Areal, Ai mag, outreal,
outimag, 4)
300 Zoutreal =outreal : Zout imag=outimag

YLreal, YLimag, 1)
330 FROCcomplex (-1 *Yareal (2,1),
-1*Yaimag $(2,1)$, outreal, outimag, 4) 340 Avreal =outreal: Avimag=outimag

360 FROCcomplex (Yareal (2, 1), Yaimag (2,1)
YLreal, YLimag, 3)
376 Areal =outreal: Aimagwoutimag
386 FRoCcomplex (Yareal (1, 1), Yaimag (1, 1),
386 Froccomp
YLreal, YLimag, 3)
400 FROCcomplex (Dyreal, Dyimag, outreal,
outimag, 1)
405 FROCcomple) (Areal, Ai mag, outreal,
outimag, 4) 410 Aireal =outreal : Ai i mag=out imag ENDPRTCL

Listing 5 Impedance and gain calculations.
Listing 5 makes use of PROCcomplex to calculate input and output impedances and voltage and current gain of the circuit under examination. The routine requires two arrays - Yareal $(2,2)$ and Yaimag $(2,2)$ which contain the two port admittance parameters of the circuit derived in Listings 3 and 4. The output impedance is given by 'Zoutreal' and 'Zoutimag' which give the resistive and reactive parts. Input impedance is given by'Zinreal' and 'Zinimag'. Voltage gain is given by 'Avreal' and 'Avimag' and current gain by 'Aireal' and 'Aiimag'. Magnitudes and phases can, of course, be found by further manipulating these results with the routine in Listing 2.

Fig. 5 Superposition and proportionality define linearity.
Next month we will look at equivalent circuits for active components including bipolar transistors, ideal transformers, transmission lines, op-amps and FETs. Following from that, we'll look at methods of writingyour own programs and coping with the lack of memory of most home micros - a discussion which will cover such topics as editors, data files and program overlay. ETI

JOBS FOR A CHANGE?

> Exchange Resources is an employment agency for people in electronics and computing. It was launched at the British Electronics Week exhibition by the group Electronics for Peace. Tony Wilson, their coordinator, explains how the agency came into existence and what makes it different from existing employment agencies.

Since Electronics for Peace was founded in 1982, people have been writing in and asking for advice on how to avoid working on military equipment. Many have sent their CVs in the hope that we might find them suitable work. Similarly, response to articles in ETI and other media has demonstrated that there are many people already working in or about to enter the electronics and computing industries who are concerned about the effects their work might have on other people, but who find it very difficult to obtain suitable work without military or other undesirable content. This is particularly obvious when I visit universities, polytechnics and sixth forms.

The picture is no better on the company side of the fence. One company I know has twice developed high tech servo mechanisms for the entertainments industry only to have the MoD take over. Rather than work with the MoD, this company gave their patented rights away. In another case, artificial limb development was delayed for years through lack of funds until the all-powerful MoD took an interest.

One of the effects of this is that people become alienated from their work and end up cynical, inefficient and dissatisfied. Companies find it hard to get venture capital for commercial products, and cannot patent anything without the very serious risk that the MoD will intervene "in the national interest".

I'm not arguing for no defence. I believe that this country needs a strong and effective defence indeed, I work as a consultant to defence companies. I believe I have the right to work in the defence industry and to criticise and try to change it. Our industry is rapidly going down the pan because of the enormous amounts of government money devoted to military research and development. It is well known that military investment is the least productive in terms of jobs, sales and growth, yet the trend continues and our imports increase as our exports decrease.

We don't need so much defence. If we spent one tenth as much as we do, not only would it be more effective than the shambles we have now (useless Nimrod, unuseable Trident, fiasco Falklands, et al), but there would be an extra $£ 17,000,000,000$ per year in R \& D money alone to boost our education, indus-
try and other essentials. That is the only way this country can be strong - not through military posturing but by real economic and social strength.

One of the aims of the new agency is to raise awareness in our industry of these issues. In my work in the defence industry I see people afraid to discuss the issues openly, not only at work but outside too. I want to see people talking openly to decide what kind of future we all want. Government needs a lead from us.

In Good Company

Exchange Resources already has a large number of companies willing to use our services. We are now busy talking to them so that they can be classified on our database according to the type of work they have and their employment policies. People who approach us for work will be asked to describe the sorts of things they are not prepared to do as well as what they hope to do. We will then try to match people with companies. There are some existing agencies who are prepared to work with us in helping to place people, and this is going to be extremely useful in our early days when resources will be stretched. It should mean that we will be at least as effective as the average agency, and perhaps more so. For those who want it, there is a counselling service to help clarify issues and develop confidence in taking decisions (it is not an advice service, although advice will be available).

Existing agencies charge from 10 to 20% of the first year's salary for anyone they place - this can range from less than $£ 1,000$ to over $£ 10,000$ and would typically be around $£ 2,000$. Exchange Resources in its first year of operation will charge only a registration fee of from $£ 50$ to $£ 2,000$ depending on the size of company and the type and quantity of staff required. So, if we place just one person with a company, they pay no more in registration fees than they would otherwise pay, and after that they effectively get any other staff placements free.

There are several good reasons for us doing this. Firstly, we don't need to advertise in the same costly way as do the other agencies. There are magazines and newspapers which are willing to give us editorial
space and once people know we exist they will contact us. Secondly, we regard current fees as extortionate and a burden on British industry. We also want to make it cost effective for people to care about their work and its effects on the world. And thirdly, we're not yet sure of the market, how easy it is to become established, and our effects on it. During this first year of operation, we will be appraising all aspects of our business so that we can set more appropriate rates in our second year. In this we will be aided by a post graduate research worker whose thesis will be based on us. He will be closely involved from the beginning and will give us regular feedback on our activities.

People who normally work as sub-contractors will receive the usual agency service - they will work via their limited companies and the agency will take a (moderate) slice off the top of their earnings. In addition ad this is surely unique we will offer the alternative of working directly for the client, with the agency taking a once and for all fee. There are pros and cons involved for both contractor and client, and these will be spelled out before any agreement is reached.

Of prime importance to the smaller client companies, co-operatives and sole trader partnerships is our business-to-business service. Any organisation or individual registered with us, provided they have paid their annual fee, will be able to contact us (telephone, telex, electronic mail or facsimile) for assistance in finding a business service. For example, a small software house might need a specific programming skill for a short job, or an electronics company might need inspection and rectification on a large number of PCBs immediately. We will search our database, contact likely people and put them in touch - very quickly. There might be a small fee for this, say $£ 5$ to $£ 20$, depending on the amount of time used and the urgency. This service will be developed into a major way of working for us and our clients - thus building up working relationships between companies and people who share a concern for the way they work and, of course, helping to keep costs down. Very soon this service will be extended to include help with starting new ventures.

There are a number of independent consultants in organisational and personal change associated with the agency, throughout the country. They will work with us to improve efficiency in those client companies who reqire help, and to help staff clarify ethical and inter-personal issues for themselves.

Finally, I should mention that the agency is intended to be in profit in its second year and that all profits generated will go towards furthering the aims of Electronics for Peace and the agency.

In addition to finding staff and positions for client companies and individuals, Electronics for Peace is also trying to find people to run several of its own projects.

The first project is the design and development of a three-waveband (SW/MW/FM) radio that can be assembled and maintained in Eritrea using the resources available locally. There is a pressing need for each village to have its own radio for news and education. The design arrived at must be battery operated with very low power consumption or use a combination of rechargeable batteries and solar power. Provision for an add-on tape module would be useful. The case should be made from PVC and will be produced in Eritrea using a forming tool which will also have to be designed. Those producing the radio design will also have to provide full instructions on assembly and test and on maintenance once in use.

If anyone feels they have skills which would be of use on this project and have time available to work on it, they should contact the agency at the address given below. It is hoped that at least one person will be able to go to Eritrea when the project is complete to see the radios being assembled and used.

The second project is the formation of a full-time monitoring team to build up a database on nonionizing radiation emissions in the UK and their effects on people. EfP hope to assemble the core of a team and then raise funding for the work. It is intended that the monitoring should start as soon as possible and preferably within six months. Again, anyone interested should contact the agency at the address below.

Electronics for Peace would also be interested to hear from anyone who has an idea for a project which uses technology in a socially beneficial way.

Tony Wilson and Exchange Resources can be contacted at Townsend House, Green Lane, Marshfield, Nr. Chippenham, Wiltshire SN14 8BR, tel 0225-891710.

Discussions have taken place between ETI and Exchange Resources with a view to our publishing a short, regular feature on jobs available through the agency. We would be interested to hear your views on this proposal. ETI

THE ETI DIRECT-ION

Paul Chappell reveals how you can be a magnet for ions and, amid a welter of puns, produces possibly the smallest ionizer

 ever.Many claims have been made for the benefits of air ionization. Supposedly, it can cure hay fever and bronchitis, and speed up the healing of burns. Ionization is said to improve concentration, reduce susceptibility to colds and flu and turn insomniacs into deep sleepers. Some of the effects are genuine and well documented; others should probably be taken with a middling to large pinch of salt.

Air ionization is a natural process, and both positively and negatively charged oxygen molecules are abundant in areas far removed from the main centres of population. Mountain tops are the romantic locations used as an example by the health magazines, but similar concentrations can be found in the middle of Dartmoor - or the Sahara desert, for that matter.

The lack of ions in man-made surroundings is easily measurable - it is often found to be less than the natural concentration by a factor of 100 or more. This depletion of oxygen ions is associated with pollution, modern buildings and the use of synthetic fabrics and furnishing materials. It has been blamed for everything from listlessness, depression and absenteeism to violence and murder: (See The Ion Effect by F. Soyka for the gruesome details).

Restoring The Balance

Experiments in restoring the natural ion balance have led to the conclusion that negative ions are the essential 'vitamins of the air'. Positive ions in high concentration have an initial stimulating effect which is followed, after a few hours, by fatigue and possibly headaches. Negative ions have
been found to give more profound benefits without any side effects, so air ionizers aim to produce these.

The method used is to apply a high negative voltage, several kV in fact, to a sharply pointed emitter. The negatively charged air is repelled from the emitter resulting in an 'ion breeze' you will feel if you put your hand close to the ionizing point.

There have been several published designs for air ionizers over the past few years, but we
achieved by running the oscillator at a fairly high frequency.

In the present design, the ladder runs directly from the mains. This cuts out the first two stages of the usual ionizer circuit. Larger capacitors are needed 10 nF as opposed to 100 pr or so but they are not much bigger in physical size. As the circuit uses no active components at all, it is almost certain to work first time, testing is easy, and the final circuit can be run continuously for years without problems.

make no apologies for offering another.

Previous circuits have, almost without exception, been split into three stages. First of all, the main voltage is reduced to 12 V or so, then rectified and smoothed. Next there is an oscillator driving a transformer to step the voltage back up to a few hundred volts again. Finally, there will be a ladder of rectifiers and capacitors to step the voltage up to a few kV . The justification for this cumbersome process appears to be little more than the reduction in size of the ladder capacitors,

Rectifiers

Another advantage of running the circuit at 50 Hz instead of 50 kHz or so is that 1 N 4007 rectifiers can be used. Ordinary rectifiers are not too keen to work at high frequencies, the main reason being their painfully slow reverse recovery time, which begins to degrade circuit performance at frequencies as low as 2 kHz in the case of a 1 N 4007. Readers may be interested in the results of applying a sine wave of increasing frequency to the circuit shown in Fig. 1.

At low frequencies, the output is a half-wave rectified sine wave, as you would expect.

At 2 kHz , a small reverse conduction spike is already visible, and by 10 kHz conduction does not stop until the input is at about -1.8 V . From then on, the situation gets progressively worse. By 1 MHz , whatever the 1 N 4007 is doing, it certainly isn't rectifying!

Construction

The 1 N4007 rectifiers are mounted vertically on the board in the four central rows of holes and the capacitors are mounted in the outer rows as shown in the component overlay (Fig. 2). Figure $3 a$ is an end-on view of the board with the first rectifier and capacitor in each row shown. All the rectifiers are mounted the same way around.

When putting in the capacitors, you will find it easier to put them all in place at once and hold them with a rubber band while soldering, rather than trying to solder them in one at a time. If any capacitor seems a tight fit, just turn it around - sometimes the leads are not quite central.

Fig. 1 The performance of the rectifier diminishes with frequency.

Fig. 2 Component overlay for the ionizer.

After soldering in the resistors, insulate about $1 / 2^{\prime \prime}$ of each lead of the neon bulb. Solder the bulb in place and, if you are using the recommended case, bend the leads so that it lies roughly parallel to the board as shown in Fig. 3b. If you are using a larger case, you may prefer to let the neon poke through, or to use a complete neon lamp assembly.

Fig. 3 End views of components on PCB.

Assembling The Case

Drill two holes in one end of the case (fig. 4). If you are using the recommended case, follow the instructions with regard to positioning. If you use a larger

Fig. 4 Drilling the $T 3$ case.
case, you can easily determine your own hole positions.

To position the holes accurately, you will find it easier to drill a small hole first, then widen it out with a larger drill to the correct size. A small hole is also needed at the top of the case, half way
between the two sides and 15 mm from the undrilled end (Fig. 4).
This hole can be made with a 1 mm drill if you have one, otherwise you can hold a soldering iron to the lead of one of the $2 M 7$ resistors and use the hot wire to melt the hole. The hole needn't be perfectly tidy as it can be covered up later, but don't let the soldering iron touch the case.

The hole is meant for the actual emitter - a length of pointed wire. You may, of course, use an emitter of your own devising. As long as it includes sharp points and is conductive, practically anything will do.

The neon cap is glued in place over the left-hand hole of Fig. 4a. A surround may be glued around the 1 mm hole in the top of the case to obscure the emitter. Use quick

PARTS LIST

SEMICONDUCTORS

D1-D30
1N4007

MISCELLANEOUS

Neon bulb and suitable cap; emitter surround; length of mains lead; insulated connecting wire; insulation; 10 nF 100 V capacitor and neon bulb for tester; ($71 \times 46 \times 22 \mathrm{~mm}$); epoxy resin; mains plugs; optional emitter (for example, PB22 phosphor bronze rifle cleaning brush available from gunshops).
setting epoxy resin for all the gluing operations.

Join the five $2 M 7$ resistors together by twisting the leads, soldering and then trimming (Fig. 5a). Glue the resistor assembly to the inside of the top of the case with lead A protruding through the 1 mm hole. This lead will form the emitter, or it may be soldered to a needle or other suitable object for example, a phosphor bronze rifle cleaning brush makes an attractive and efficient emitter. Solder about $3^{\prime \prime}$ of insulated wire to lead B, and trim the lead (Fig. 5b). Cover the resistor assembly and exposed leads with epoxy for insulation.

Fig. 5 The resistor assembly is mounted in the case.

Final Assembly

First, check the board carefully. Make sure that all the rectifiers are the right way around and all the components are in the correct position. Check the track side of the board for solder bridges, and also for excess flux residue, which could provide a leakage path clean it off if necessary. Solder the free end of lead B - the wire jointed to the 2 M 7 resistors - to point X in Fig. 2.

Remove about $38^{\prime \prime}$ of the white outer sheath of the mains cable and about $3 / 16^{\prime \prime}$ of insulation from the conductors and solder the live (brown) wire to point L and the neutral (blue) wire to point N on the overlay. Be sure to get the mains lead connections the right way around, and don't remove more of the outer sheath than is absolutely necessary.

There is no room for mounting screws in the recommended case, so the PCB has been made for a tight friction-fit into that case. First of all, cut the corners of the PCB as shown by the dotted lines on the overlay. Feed the mains cable through the right-hand hole (Fig. 4a) and gently ease the board into the case with the component side facing outwards. Push down on the board gently until it is held in place by the pillars at each corner of the case. Adjust the position of
the neon bulb so that it is behind the neon cap, but don't try to push it through the hole. Screw the base of the case in position, attach a plug with a 1A fuse to the mains lead, and straighten the emitter wire so that it points vertically upwards. Using a pair of side cutters with the flat face upwards, cut a small amount of wire from the end of the emitter. Using the cutters 'upside down' should leave the emitter wire with a sharp point at the end.

A larger case would be easier, if less elegant. The board can be fixed in a larger case with three or four blobs of epoxy, after testing.

Testing

A simple tester can be made from a 10 n capacitor and a neon bulb (see Fig. 7). Plug in the ionizer, and, if all is well, its own neon lamp will glow and a few seconds later you will hear a soft hiss from the emitter. If you hold one lead of the tester and move it towards the tip of the emitter, the neon bulb on the tester will begin to flash when its free lead is about $1 / 2^{\prime \prime}$ from the emitter, and will flash faster as it is brought closer. The flashing is not very bright, so it won't show up in direct sunlight.

If the ionizer's neon does not light, unplug the unit at once and touch the mains plug to the emitter to remove any residual charge on the capacitors. Check the mains connections, plug fuse and wiring of the 220 k resistor and neon lamp.

If the ionizer's neon glows, but the emitter does not hiss and the tester's neon does not flash, retrim the emitter wire and try to get a sharper point on it. If there is no sign of activity at the emitter at all, check again for a solder bridge between tracks, one of the diodes back to front, a short circuit in one of the capacitors, or a dry solder joint.

Finishing Touches

After testing, discharge the ionizer and remove the base. Take out the PCB and spray a few coats of anti-corona compound onto the back. If you do not have any anticorona spray, a smear of epoxy resin will do instead.

Place the board in its case. Now is the time to glue it in position. If you're using the recommended case, press the PCB down until the tops of the capacitors are about $3 / 16^{\prime \prime}$ below the rim of the case (Fig. 6). Run

Fig. 6 The PCB inside the case.
some glue onto the corners of the board and put some around the mains lead where it enters the case. For the sake of safety, the mains lead must be held firmly in place, so use a strain relief grommet, too, if you have room.

If you've got plenty of epoxy, fill the neon cap with it and cover the neon bulb. This gives a pleasant, diffused light when the neon glows.

Now, screw the case together. Fill the emitter surround with epoxy (this is not essential, but it improves the appearance) and trim the emitter wire to about $3 / \mathrm{s}^{\prime \prime}$ above the top of the surround (making sure to get a fine point on it).

Life With The Ions

Although some of the benefits of air ionization may be exaggerated, the action itself is real enough. One consequence of using an ionizer is that the ions attach themselves to any dust, dirt or pollen particles that happen to be floating around. The dust then becomes charged and will be attracted to the nearest netural surface, which by sod's law will be your expensive new wallpaper!

If you intend to run the ionizer within a foot or so of a wall, cover the wallpaper in some way. otherwise, try to position the ionizer towards the centre of the room where any charge dust will end up on the floor and be swept up during normal household cleaning.

The action of precipitating particles from the air is of immediate benefit to asthma and hay fever sufferers, no matter how beneficial the ions themselves may be. If you live in the country and think the air is pure and clean anyway, just try running the ionizer close to a sheet of white paper for a few days!

Improvements in health due to ionization occur over several days, rather than at the first breath of ionized air. The best position for an ionizer is by the bedside, where

HOW IT WORKS

The circuit is a standard Cockroft-Walton ladder network which steps up the mains voltage to -10 kV or so (open-circuit voltage) (Fig. 7). The operation of this type of circuit was described in detail in 'Designer's Notebook 1' in ETI, April 1983. The idea is that charge is transferred backwards and forwards from one row of capacitors to the other on each mains cycle, but always moving further up the chain because of the action of the rectifiers. When all the capacitors are fully charged, there will be a voltage across each of them equal, in theory, to the peak-to-peak voltage of the mains.

In practice, the regulation of this type of circuit is very poor, and the full voltage will never be measured because of leakage, corona discharge, and so on. The tiny ionizing current is quite enough to drop the output voltage to about -4 kV , which by a strange coincidence is the ideal output voltage for an air ionizer. Voltages above this level tend to produce ozone rather than ions, whereas voltages much lower will not ionize the air efficiently. Touching the emitter directly is enough to reduce the voltage to almost nothing.

Having said that, a word of warning is in order. Although the circuit as a whole

has a very high output resistance, individual capacitors don't, so please take care when you are testing the circuit. The capacitors will retain their charge for some time after the ionizer is unplugged, and a painful shock can be received from the back of the PCB if you are careless. The shock will be harmless to the average healthy ETI reader, but please don't take any risks if you have a weak heart or a pacemaker. The ionizer can be discharged by touching the mains plug to the ionizing point for a few seconds, and just to be certain you can run the mains plug down the line of diode connections on the PCB.

Fig. 7 Abbreviated circuit of ionizer and a simple tester.
you will breathe in the ions for eight hours or so at a time. This design is easily portable and you can move the device into the living room, or take it to work with you during the day.

By the time you are bouncing with health and energy, you'll probably be wondering what else you can do with an ionizer. Here are a few suggestions.

Ion ImPlants

Connect a length of wire from the ionizer emitter to the soil in the pot of a houseplant - one with sharp pointy leaves is best. Stand the plant pot on an insulating mat or polythene bag. The plant is now the emitter. If you hold a finger close to one of the
leaves, it will be drawn towards you. In the dark you may be able to see a faint blue glow around the leaf tips - this works better with some plants than with others, so try several different types. The plants don't mind at all, by the way, and often seem to thrive on it!

Got My Ion You

Carefully remove about $6^{\prime \prime}$ of insulation from some stranded wire, being careful not to break any of the strands. You will probably find it easier to remove the insulation in short lengths rather than all at once. Cut the wire $7^{\prime \prime}$ below the end of the insulation so that you are left with $7^{\prime \prime}$ of wire - 6" bare and $1^{\prime \prime}$

BUYLINES

This project is simple enough to cause few problems to the constructor wishing to do everything themselves. The biggest problem is undoubtedly the 10 n 630 V capacitors which are intended to be Plessey/Arcotronics Minibox polyester types. These are probably unobtainable for the constructor but can be replaced, especially if you do not intend to use the existing PCB. Suitable replacements include 10 n 600V polyesters from Greenweld, 443 Millbrook Road, Southampton SO1 0HX (tel: 0703 772501/783740) and almost physically identical metallised polycarbs from RS Components available through CreweAllen, Scrutton Street, London EC1. The order code for the 10 n 630 V version (supplied in packs of five) is 113-673. A variety of axial capacitors are available which could be used, but for reference the dimensions of the recommended capacitors are $13 \times 9 \times 4 \mathrm{~mm}$ ($\mathrm{LxH} \times \mathrm{W}$) with
pin diameter of 0.8 mm , spacing of 10 mm and length of 6 mm . The key point to remember if using a replacement is to ensure that discharge cannot occur between capacitors. The recommended case is available from Greenweld - or from Farnell, through Trilogic, 29 Holm Lane, Bradford BD4 0QA (tel: 0274 684289). The .Verobox 301 is slightly larger and is widely available as are any number of ABS boxes capable of holding the circuit. The box must be made entirely of plastic (with the exception of the fixing screws). Neon bulbs are stocked by Maplin and complete neon indicators are widely available. A complete kit of parts can be obtained from Specialist Semiconductors, Founders House, Redbrook, Monmouth, Gwent for $\mathbf{£ 9 . 5 0 + 6 0 p}$ postage and packing. The PCB alone will become available from our PCB service as soon as normal service is resumed.
insulated. Use this as the emitter.
When the ionizer is turned on, the emitter seems almost alive and will leap about when you put your hand close to it.

Ion Brew

Fill a glass jar with cigarette smoke, then carefully invert it over the ionizer so that the emitter is inside the jar. Within seconds, the smoke will disappear! This is one of the best demonstrations of ionizer action and with a large jar the effect is quite dramatic. The smoke hasn't disappeared, of course, it is still sticking to the jar - but the air inside the jar is perfectly clear.

Ion A Feeling

Wear rubber soled shoes. Touch the ionizer emitter for a few seconds until your body is thoroughly charged up. When your hair stands on end, that's just about enough. Then give everyone you meet a jolly electric handshake. Just think, you could lose all your friends in a single evening! (A meaner trick still is to charge up a glass of water or a pint of beer... Even your family won't speak to you after that!)

Electrostatics Experiments

The ionizer can be used as an EHT generator for electrostatics experiments. To generate a positive voltage rather than a negative one, just reverse all the rectifiers.

MOTOR INTERFACE

soldered into nine holes (labelled D0 to D7 and GROUND) on the circuit board.

If the power for the interface is to be obtained from the auxiliary socket of the BBC micro (the one used for disc drives), then the leads and connectors, shown in Fig. 3, must be made up. This allows the interface to obtain 12 V

This simple circuit and software, developed by Peter Timothy and Jonathan Rabet provides a painless but versatile first step in robotics.

This interface was developed with the help of the Microelectronics Education Programme, Wales, and provides a means of controlling up to four low-voltage DC motors from a Centronics-type printer port. The motor supply is variable between one and ten volts, so the interface may be used with most common types of model motors, including those made by Lego,
FischerTechnik and Robotix.
The interface is fitted with connections for the BBC microcomputer range and can be powered from any suitable 12 V supply, including the BBC micro's auxiliary output. Although software for the BBC is included in this article, it would be an easy. matter to adapt the programs so that the interface could run off any computer with an 8-bit data output. Using a printer port would allow handshaking to be incorporated as an elementary form of simple feedback.

We'll get down to building the interface without further ado.

Construction

It is best to start by constructing the motor connector and cable, since this requires the
use of potting compound. It can be set aside to harden while the rest of the circuit is being completed. The method of construction is shown in Fig. 1. The leads from the base of the PCBtype screw terminals pass through holes drilled in the potting box and will be firmly anchored by the potting compound once it sets.

The completed assembly is small enough to mount on almost any model or robot. At least one metre of ribbon cable should be used since this will allow the cable to stretch from the interface box, normally situated alongside the computer on a bench or table, down to floor level. The screw terminals provide an easy method of connecting up most types of motor and they will accept unmodified Robotix motor lead plugs. The PCB end of the cable will eventually be soldered into eight holes (labelled A to H) on the circuit board.

The printer port cable assembly is constructed as shown in Fig. 2 Only nine of the 20 wires are actually used, but the fitting of the IDC socket is made easier by leaving all the 20 wires intact at that end. The other end of the cable must be dressed as shown. This end will eventually be
from the computer without disconnecting other devices. If the interface is to be powered from any other supply, it should be capable of delivering at least 2 V more than the motor voltage at about 1A DC.

The main circuit components are mounted on a single-sided printed circuit board (Fig. 4). Solder the 11 wire links into position on the compound side of the board. Next insert the IC sockets (if you are using them), making sure that all the pins pass through the holes in the board. Insert the diode, D1, and capacitors C3, C4 and C5, making sure that each is the right way round. Solder these components in place.

Insert and solder resistor R1 and capacitors C1 and C2. Next insert and solder the variable resistor RV1, noting that the hole nearest to R1 is for the centre pin.

Solder IC1 and 2 into position, taking care that the flat, all metal surfaces are nearest the top edge of the PCB. Now insert and solder the eight relays. These are all identical and can only be fitted one way round.

Solder the wires of the printer port cable to the PCB, then the motor connector wires and the

Fig. 1 Motor connector and cable.

Fig. 3 Supplying power from the BBC.
power leads from the 2.1 mm socket.

Before inserting IC3 and IC4 into their sockets, apply 12 volts DC to the board and check that the voltage regulators are working correctly. IC1 may be checked by measuring the voltage between the links marked ' X ' and ' Y ' on Fig. 4. This should be 5 V . IC2 may be checked by measuring the voltage between link ' X ' and point ' Z ' on the overlay. By adjusting RV1, this voltage should be variable from about 1.25 V to 9.75 V . Now adjust RV1 until the voltage matches the rating of the motors to be used with the interface. Once satisfied with the operation of the voltage regulators, remove the power and insert IC3 and IC4 into their sockets.

Software

The programs included here have been written in BBC BASIC, a dialect of BBC BASIC called MEP C.ONTROL BASIC, BBC 6502 Assembler and Logotron LOGO. They will enable the interface to be used with almost any BBC micro. The BBC BASIC program is menu driven and allows motor sequences to be recorded and repeated (Listing 1). The three programs in other languages are simpler but can be incorporated into more complex structures to enable sophisticated control of up to four motors.

In general, motor control is achieved by writing to the printer port of the computer to which the interface is attached. The idea of using the printer port is to allow an existing user port to provide digital inputs - for example, in case an elaborate robotics system is being contemplated.

On the BBC, the eight lines of the parallel printer port are written to via location FE61H. Two bits are needed for forward and reverse

Fig. 4 Component overlay for the interface.

PARTS LIST

RESISTORS	
R1	$240 R 1 / 2 W$
RV1	$2 k 0$ cermet
CAPACITORS	
C1	330 n ceramic
C2	100 n ceramic
C3, 5	$4 \mu 716 \mathrm{~V}$ tant
C4	$22 \mu 16 \mathrm{~V}$ elect
SEMICONDUCTORS	
IC1	7805
IC2	LM317MP
IC3	7486
IC4	ULN2803A
D1	1N4001

and are decoded as shown in Fig. 7. The more significant of the eight bits repeat the Fig. 7 pattern for motors 2, 3 and 4 .

BBC Basic

On running the program (Listing 1), the user is presented with a menu consisting of three options: PROGRAM, RUN or MANUAL (lines 70 to 290).

Selecting the MANUAL option results in direction to PROCmanual. The screen displays the message: MANUAL CONTROL. The red function keys are used to control up to four motors connected to the interface, each key switching one relay when pressed and $\mathfrak{f} 9$ returning program control to the main menu.

Using INKEY with a negative argument (lines 790-870) tests for specific key presses and allows simultanteous control of more than one motor.

If the PROGRAM option is selected from the menu, PROCprogram is jumped to. This, also detects presees of the function keys and writes to FE61 H to drive the motors. This procedure differs from

MISCELLANEOUS
RLA1,2,3,4,5,6,7,8 microminiature relays $5-6 \mathrm{~V}$ coil, SPST 24 V 1A contacts; 26 -way IDC socket (BS9525)*; 6way Multicon plug and socket housings and plug and socket pins to order'; 2.1 mm panel-mounting power socket; 2.1 mm power plug; 4 -way PCB mounting screw terminal; small potting box; 14 -way and 18 -way IC sockets; 20-way ribbon cable; 8 -way ribbon cable; potting compound; PCB.
(*Optional, for use with BBC and BBCtype computers).
PROCmanual in that the length of time a particular combination of keys is pressed is stored in the array, steptime $\%$ (X). The contents of FE61H at that time are stored in the array, step\%(X).

Selecting RUN from the main menu results in a jump to PROCrunmenu. This procedure puts up a secondary menu allowing selection of one of two run options or a return to the main menu. Option one runs the programmed sequence of operations as they were entered by the user - including any pauses when FE61H was at zero and no motor was on. The second option filters out these 'wait states', producing a smoother execution of the pre-programmed sequence. Both of these options invoke PROCrun, which loops through the array, step\%(X), and uses the associated variable, steptime\%(X), to provide a delay. If the parameter passed to PROCrun is FALSE, all occurences of step\% (X) = are skipped over.

Control Basic

This is an example of a program written using a BBC Basic

Fig 6 Standard motor control truth table.

CONTROL SIGNAL		MOTOR ACTION
BIT O	BIT 1	
0	0	OFF
1	0	
0	1	OFF
1	1	

Fig. 8 Truth table for the interface.

Fig. 5 Circuit diagram of the interface.

Two voltage regulators are used in the interface (Fig. 5). IC1 takes the incoming 12 volts and series regulates it down to 5 volts. This fixed 5 volts is then used to power the logic (IC3), the relay driver (IC4) and the relay coils. IC2 is another series regulator, but this time it is a variable output device. Its output is determined by the voltage applied to the ADJUST Pin, this voltage being derived from a potential divider, formed by R1 and RV1, connected across the output. The output voltage is adjusted to suit the motors being used. All five capacitors are for decoupling. Diode D1 protects the regulators should a reverse polarity supply be accidently connected to the interface.

The computer generated signals to control the motors are passed from the computer to the interface via the printer port. Eight data lines (D0 to D7) are available at this port and, since each motor used requires a two bit control signal, a maximum of four motors can be controlled simultaneously without using multiplexing techniques. In common with a large number of industrial motor control systems, bit 0 of the signal determines if the motor is on or off, while bit 1 determines the direction of rotation of the motor. The truth table for this scheme is shown in Fig. 6.
The chosen method of implementing the control scheme is shown, for one motor, in Fig. 7 and its new truth table is shown in Fig. 8 .
IC3 is a quad 2-input XOR-gate. IC4 is an octal Darlington driver used to energize the eight relay coils. This device acts as a buffer between the computer's data lines and the relay coils. A buffer is required because each coil takes approximately 40 mA when energized - enough to overload a data line or an XOR output.
The relays are ultra-miniature, singlepole change-over, with contacts rated at 24V, 1A DC. Most model electric motors take much less than 1A even on start-up under load.
extension (Listing 2). This extension allows programs to be simply written which access the Printer and user ports of the BBC microcomputer.

The example program controls a single motor using function keys f0 and f1. The Control Basic keyword, BIT, permits each bit of the printer port to be controlled individually.

Machine Code Motor Driver

The assembler program (Listing 3) will produce a machine code driver for the interface. It can be assembled at any suitable
address and occupies 42 H bytes. Once assembled, it can be used by POKEing the motor number (1, 2,3 or 4) into location 70 H and the motor action ($0=0$ off,
$1=$ forward, $2=$ back) into 71 H , then calling the driver at the address at which it was assembled using CALL.

The program as listed contains a BASIC routine to test the machine code driver. If this program is run, the assembled driver can be saved to disc or tape with
*SAVE DRIVER 3000+42
then load back with
*LOAD DRIVER
and called with CALL\&3000.

By specifying a hex address at the end of the *LOAD command, the driver can be reloaded to any suitable location and run by a CALL to that same address.

BUYLINES
 SOFTWARE

MEP Control Basic is available from MEP (South Yorkshire and Humberside), Exeter Road, Off Coventry Grove, Doncaster DN2 4PY. Logotron Logo is available from Logotron Ltd., Ryman House, 59 Markham Street, London SW3 4WD.
5. Indicate whether you'd like to see more or less in the magazine of the
foll Computer projects Audio projects Music projects Radio projects Test equipment projects $T V$ and video projects Security projects Car electronic proje Lighting projects Robotics projects Photographic projects Novelty projects Computer software Interfacing
Basic electronics theory Advanced electronics theory
sience
Experimental projects
eatures
Technical features
Product information
Design hints and tips
Letters
Circuit ideas
Reviews
Opinion columns
Crossword/Alf's p
Technical advice puzzle
Competitions
Others (please specify)

Please indicate which of the following you buy and how frequently:
complete electronic kits electronic components
ETI PCBs
PCB
PCB making equipment stripboard/wire-wrap etc गreprogrammed ROMs inprogrammed ROMs older/wicks/tips ミst gear
ases/case material mponent storage innectors/leads ols
ectronics books
mputer software
teries
opy disks/computer tapes
ond-hand equipment
cate how many kits or projects
0. . 1-3 4-12 hope to build in the next year: 'ou have diffic
have difficulty locating components
$N \square$
ou prefer to build projects from commercial kits, if they are available?
 often

13.
14. Dô λ alwa) 0
15. Please ino related hob
$£ 20$ or les £101-500
16. Please indicate what o Computers Photography
Film/video
Modelling (railway/aero)
Other (please specify).
17. With regard to the advertis

Read or look through nea Read or look through som ust read or look through , Very rarely/never look at
18. Thinking specifically abou rate the three types o Electromart - in terms type):

Very useful
Useful
Not very useful
Not at all useful
19. Do you order or buy prodı

Regularly
Occasionally
Never
20. If the answer to question 1 this way, and what was its
21. Do you use the Advertisers
22. Does anyone else read yo No only me \square
23. Do you keep your copy of One month
24. Do you read any of the follo Practical Electronics Everyday Electronics
Electronics Times
New Electronics
Personal Computing Worl Byte
Electronics \& Music Maker
Ham Radio Today
Scientific American

$\begin{array}{ll}Y \square & N \square \\ Y \square & N \square \\ Y \square & N \square\end{array}$

ct, if any, you built?
is
often \square sometimes
itely how much you spent on electronics or 12 months?

$1-50$	\square	$£ 51-100$	\square
$\mathbf{1 - 1 , 0 0 0}$	\square	$£ 1,000$ plus	

hobbies you have?

ts after reading advertisements in ETI ?

is positive, what was the last item you purchased alue?

Index?

r copy of ETI?
Yes (how many?)
TI for:
Six months
A year or more

wing publications?

\square	Elektor Electronics	\square
\square	Electronics and Wireless World	\square
\square	Electronics Weekly	\square
\square	Electronic Product Design	\square
\square	Practical Computing	\square
\square	Studio Sound	\square
\square	Hi-Fi News \& Record Review	\square
\square	New Scientist	\square
\square		

25. Please indicate what you thing of the following magazines.

Practical Electronics	Good	Average	Poor	Don't know
Elektor Electronics	\square	\square	\square	\square
Everyday Electronics	\square	\square	\square	\square
Electronics \& Wireless World	\square	\square	\square	\square
The Maplin Magazine	\square	\square	\square	\square
Electronics Digest	\square	\square	\square	\square
	\square	\square	\square	\square

26. Please tick the appropriate box which represents the annual total of your net income (i.e. after tax, National Insurance, etc.)
Lessthan $£ 4,780 \square \quad$ From $£ 4,780$ to $£ 5,970 \square \quad$ From $£ 5,980$ to $£ 7,470 \square$
From $£ 7,480$ to $£ 9,340 \square$ From $£ 9,350$ to $£ 11,680 \square$ Morethan $£ 11,690 \square$
27. Are you aware of ETI's scheduled publication day?

28. If the answer is yes to question 27 , do you attempt to purchase the magazine
on that day? on that day?
Y
N \square
29. Do you normally obtain your copy by:

Chance purchase
Newsagent home delivery
Newsagent shop collection
Subscription
Other
30. If you do not obtain your copy by subscription, is it due to one of the
following: following:
Subscription too expensive?
Not every issue required?
Have subscribed previously, but lapsed? Other
31. If you do not subscribe, from which type of newsagent do you most often obtain your copy? $\begin{array}{lll}\text { High Street shop } & \square & \text { Estate shop } \\ \text { Travel point } & \square & \text { Corner shop }\end{array}$
32. Which if any of the following daily newspapers do you read?
Daily Mail
The Sun
Daily Express
$\begin{array}{ll}\square & \text { Daily Mirror } \\ \square & \text { The Guardian } \\ \square & \text { Financial Time }\end{array}$
The Guardian
Financial Times
33. Which if any of the following Sunday newspapers do you read? $\begin{array}{llll}\text { The Sunday Times } & \square & \text { The Sunday Telegraph } \\ \text { Mail on Sunday } & \square & \text { The Observer } \\ \text { News of the World } & \square & \text { The Sun Mirror } & \square \\ \text { The Sunday Express People } & \square & \end{array}$
34. Do you read? TV Times $\quad \square \quad$ Radio Times

It would be a great help to us if you would kindly answer the following questions. The answers will enable us to obtain a more positive image of our
readership:
35. Age:
$\begin{array}{llllll}\text { Under } 15 & \square & 15-24 & \square & 25-34 & \square \\ 34-44 & \square & 45-54 & \square & 55-64 & \square \\ 65+ & \square & & \end{array}$
36. Marital Status

Children
Do any of your children follow your interest in electronics?
37. Educational level:

No formal qualifications $\quad \square \quad$ School certificate
College or F.E. qualifications \square Degree
38. Are you in employment? (if no, please go straight to Q. 42)
39．Please indicate the type of work you do？ Research \＆Technical support／ \square maintenance Consultancy／PR Clerical

\square	maintenance
\square	Skilled manual
\square	Sales

Training／teaching Semi－skilled manual \square Managerial
Other（please specify）
40．Is your work connected with electronics？Nロ
41．Are you responsible for the purchase or ordering of： a）electronic test equipment or capital b）electronic components or consumable items Yロ N b）electronic components or please indicate annual budget level： Under $£ 1000$ $\square \quad £ 1000-£ 9999$ £10000－£99999 ㅁ $£ 100000$ or more
42．Are you registered unemployed？ full time student？
 retired？ housewife／husband？
 disabled？
43．Are you studying（full or part－time？）
44．If yes，are you studying electronics or a related subject？
45．If you could make one improvement to the magazine，what would it be？
\qquad
\qquad

FIRST FOLD

THIRD FOLD \qquad the Isle of Man

BUSINESS REPLY SERVICE Licence No．WC3970

PROJECT：Motor Interface

Listing 1 BBC Basic．
10REM＊＊＊＊＊BEC BASIC MOTOR CONTROL＊＊＊＊＊ 200N ERROF GOTO 7D：REM RETURN TO MENU ON sDtat
40DIM steptıme\％ 5 （teps $\%=100$
total number steps\％）number steps $\%$ ），step SOREM steptime\％（x），step\％（x）AND count\％ak global． 60
$70 R E F E A T$
70REF
BO
$90 R E M$
9OREM＊＊＊＊
10OMODE
11 OFRINTTA
12EFRINTTAE $(16,2)$ MMAIN MENU＂
12 FFR INTTAE $(16,3) " * * * * * * * * * ~$
13UFRINTTAE $(16,10) " 1$ ．．FRROGRAM＂
1 4DFFINTTAE $(16,12)$＂2．．．RUN＂
150% RINTTAE $(16,14)$＂ $3 . .$. MANUAL
160
170REM＊＊＊＊＊ENTER MENU SELECTIUN＊＊＊＊＊
180 INFUT TAE

$2001 F$ Q\％ 1 OK $\mathrm{q} \%>3$ GOTO 100
200
10REM＊＊＊＊＊DISFLAY OFTION SELECTIUN＊＊＊＊＊ 2 ZロREM＊＊＊＊＊MND ERANCH TO FROGRAMING＊＊＊＊
240.
$2501 F$ a $\%=1$ ，FROCprogram
200IF $9 \%=2$ PROCrunmenu
${ }_{280}^{2701 F} \quad 9 \%==$ FROCmanual
270
2901
290UNTIL FALSE
3ODEND
SODEND
310
30
3SDREM＊＊＊＊＊RROCEDURES＊＊＊＊＊
З40REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
350
300
370DEFFROCprogram
3BDREM＊＊＊＊＊＊＊＊＊＊＊
39DLOCAL a\％，olda\％
40Dolda $4=0$
420 TIME $=0$
430CLS：PRIN
430CLS：PRINTTAE（15，10）＂FROGRAMMING＂
450 IF
OR 1 1 INKEY（－S3）AND NOT（INKEY－114）a\％＝a
460 IF INKEY（－114）AND NOt（INKEY－33）$a \%=a$ $47{ }^{3}$ IF INKEY（－115）AND NOT（INKEY－116）$a \%=$
\％OR
490 IF INKEY（－116）AND NOT（INKEY－115）a\％＝
$a \%$ of 12 NKEY
490 IF INKEY（－21）AND NOT（INKEY－117）a\％＝a
SED IF INKEY（－117）AND NOT（INKEY－21）a\％＝a
OR 48 INKEY（－118）AND NOT（INKEY－23）a
Si20 IF INKEY（－23）AND NOT（INEEY－118）a\％＝a \％OFI 192
ENLI ON IF INKEY（－120）ENDFROC：REM RETURN TO M ENLI ON $f 9$
＝rIME：a\％＞olda\％？RFE61＝a\％：steptime\％（count\％ ）＝rIME：step $\%(\operatorname{count} \%)=$ olda\％：olda\％＝a\％：TIME＝0： C
ount $\%=$ count $\%+1$ 550日GTO 44ロ

550 570

580DEFPROCrun（a\％）
59 DREM＊＊＊＊＊＊＊＊＊＊＊
CODLDCAL 1%
610？\＆FE61＝0
620FOF i $\%=1$ To count
340TIME＝0 $\%(i \%)=0$ AND $a \%=F A L S E$ GOTO 680
$6,40 T I M E=\varnothing$
$650 R E F E A T$
6．60？ 2 FE61 $=$ step $\% ~(i \%)$
6，7ロUNTIL TIME＝steptime\％（i\％）
\＆ 8 ONEXTi\％
6,9078 FE61 $=0$
7ODENDPROC
710
720
730 DEFFFROCmanual
$740 \mathrm{REM} * * * * * * * * * *$
750LOCAL olda\％，a\％
$76001 \mathrm{da} \%=0$
770CLS：FRINTTAB（ 13,10 ）＂MANUAL CONTKOL $780 a \%=0$
OR 1F INEEY（－S3）AND NOT（INKEY－114）a\％＝a日an IF INKEY（－114）AND NOT（INKEY－33）a\％＝a QR ${ }^{2}$
810 IF INKEY（－115）AND NOT（INKEY－116）a\％＝
820 IF INKEY（－116）AND NOT（INKEY－115）$a \%=$
\％DF 12 NKE（－1 12 ）AND $\mathrm{a}=$
BSO IF INKEY（－21）AND NOT（INKEY－117）a\％＝a
B．9D IF INKEY（－117）AND NOT（INKEY－21）a\％＝a \％OR 48 850 IF INKEY（－118）AND NOT（INKEY－23）a\％＝a \％OR 64 8 IF INKEY（－23）AND NOT（INKEY－118）a\％＝a \％OR 192 INKEY（－23） NU ON fQ INKEY（－120）ENDPROC：REM RETURN TO ME BGDIF
B90G0т0 7 olda\％7\％FE61＝a\％：olda\％＝a\％
9 9 EENDFFOC

910
930 DEFFROCrunmenu
940REM＊＊＊＊＊＊＊＊＊＊＊
950LOCAL 9%
960REFEAT：CLS
970FRINTTAB $(16,2)$＂RUN MENU＂
9月0PRINTTAB $(16,3)$＂$* * * * * * * *$
990FRINTTAB（10，10）＂1．．．RUN WITH WAIT STATE
1000fRINTTAB（10，12）＂2．．．RUN WITHOUT WAIT ST 1010FRINTTAE（10，14）＂3．．．RETLRN TO MAIN MENL

1020INFUT TAE（10，22）＂CHOICE ：＂ם\％
10301F $q \%=1$ FROCrunscreen：FROCrun（TRUE）
1040IF $q \%=2$ FROCrunscreen：PROCrun（FALSE）
105 UUNT IL
$1060 E N D F R O C$
$1060 E N D F R O C$
1070
1080
1090DEFPROCrunscreen
11 DOREM＊＊＊＊＊＊＊＊＊＊＊＊＊
1110 CL 5
$1120 \operatorname{FRINTTAB}(12,10)$＂EXECUTING PROGRAM＂
$1130 E N D P R O C$

Listing 2 Motor Control Basic．

10REM CAN ONLY EE USED WITH MEF SYH Contr
Basic
Domake
ZロMAKE PRINTER OUTFUT
3DREFEAT
$401 F$ INK
FROCmotor 11 （－S 5$)=$ TRUE AND $\operatorname{INKEY}(-114)=$ FAL
SOIF $\operatorname{INKEY}(-114)=$ TRUE AND $\operatorname{INKEY}(-33)=F A L S$
FFOCmotor1right
GDUNTIL FALSE
70
90DEFFROCmotor 11 eft
90REFEAT
1 DDMAKE BIT D，HIGH
120 UNTIL INKEY $(-33)=$ FALSE
130MAKE BIT $日, 1$ ，LOW
$140 E N D F R O C$
150
160DEFFROCmotor1right
$170 R E F E A T$
180 MAKE BIT 0 ，HIGH
190 MAKE BIT 1 ，LOW
20ロUNTIL INKEY（－114）＝FALSE
220ENDPROC

BUYLINES

There should be no problems with the components，especially since nothing is critical．Connectors are widely avali－ able．Maplin，for example，can supply them all（PO Box 3，Rayleigh，Essex SS6 8LR－tel： 0702 552911）and they can also supply the microminiature relays．A ready－built unit（including software can be supplied by Gwentec Electronic Instruments， 26 Churchwar－ den Drive，Newport，Gwent NP9 OSB （tel： 0633 280526）for $£ 42.50$ inclusive．Gwentec will also supply a kit of parts for $£ 29.25$ and a PCB for £5．50．Please phone first to check on availability．A slightly modified PCB will be available from our PCB service as soon as it becomes operational again．

Logo Motor Control

Two procedures in Logotron Logo are provided（Listing 4）to show how the machine code driver can be used in a language other than Basic．The procedure， PATCH，loads the driver at 2 FCÓH． The second procedure has two parameters，motor number followed by motor action．The ．CALL in the MOTOR procedure is to the decimal equivalent of

Listing 3 Program to assemble machine code motor driver．

1UREM ASSEMELEF MOTOR DRIVEF
2DF OF pass\％： 10 SIEF
30F\％＝230日0
40［0FT pass\％
50LDA 871
0－2）
O．K．GOEEQ store \if＂direction＂zero then
70CMF \＃3
80ECS end
then exit
9DORA
to 3 ODRA \＃\＃， 1 leaving 1 ＂OR＂with 1 to convert
to 100 leaving 1 as
106. Store
110010 DX
871
I store 0,1 or 3 in $\& 71$
$120 L D X \& 70$
$(0-4)$ （load \times with motor number
（0－4）
13 IUDEX
$140 \mathrm{CFX} \# 4$
$150 B C S$ end
$1605 T X: 70$
156
870
convert to $0-3$
if 4 or greater then exit
store new motor number in
870
170
180LDY \＃\＃FC
load mask：

$\begin{array}{ll}\text { 20VLD } 870 & \text { I } 10 \text { oad } \times \text { with motor number }\end{array}$
0 shift mask left
2205EC
$20-100 p 1$
$240 \mathrm{ROL} \because 72$
260DEX
270 ENE 1 OOP 1
motor number
280．jump 1
290LDA \％FE61
\therefore ODAND 875
ort with mask
310
$320 L D Y 271$
1071
3305TY $\because 72$
n 272 25 secord mas
20DDX 870 load x with motor number
need to shift if motor number 15 zero n
Toocil
370.10002

EORCI zo
ADODEX 4DODEX
motor number
420．jumpz
4300 FiA 872
440STA ：FEG1
4505TA \＆ 82
460. end

470RTS
4901
490NEXTpass\％
500
510
510
520
SJOREM＊＊＊＊＊TEST＊＊＊＊＊
S407\＆FE6
SSOREFEAI
SGQINFUT＂MOTOR（ $1,2,2,4$ ）： 4%
STDINFUT＂DIRECTION $(0,1,2): " d \%$
$5807870=\mathrm{m} \%:$ ？ $271=\mathrm{d} \%$
590CALi 3 SODO
SDRFFINT 3872
Listing 4 Logotron Logo procedures
utilising driver．

```
to FATCH
LOAL DRIVER 2FCD
```

MOTOR ：motornumber ：motordirection
－DEPOSIT 112 ：mot or number
DEFOSIT 113 ：motordirection
－CALL 12224
END

2 FCOH ．The primitive．DEPOSIT is the equivalent of the BASIC command，POKE．

Before the MOTOR procedure can be used，PATCH must be called once．

The－machine code driver could， of course，be used from within any suitable language running on any 6502 system with only minor modifications．

UPGRADEABLE
 AMPLIFIER

Graham Nalty begins his amplifier at the beginning with an upgradeable moving coil input stage.

The prime requirement of an amplifier for moving coil cartridges is that it should have very low noise. This would not be too much of a problem were it not for the fact that moving coil cartridges have very low impedances, typically around 2-3 ohms. Since it is a requirement of low noise design that the base resistance of the input transistor is as low as the resistance of the cartridge, this calls for a great deal of care both in the choice of transistors and in the configuration of the input stage.

Transistor Choice

The noise figure usually given in transistor data sheets is arrived at from the formula:

$$
N=10 \log \frac{\begin{array}{l}
\text { total output } \\
\text { noise power }
\end{array}}{\begin{array}{l}
\text { noise generated } \\
\text { by source only }
\end{array}} \mathrm{dB}
$$

A noise figure of 3 dB , therefore, indicates that the source noise and the transistor noise are equal in magnitude. A higher noise figure indicates that the transistor is contributing more noise whilst a lower noise figure indicates that the source is contributing most of the noise.

The specification sheet for a typical low noise transistor, the ZTX 384, shows a noise figure of 4 dB , but this alone does not tell us how suitable it is for our particular application. We need more information. Looking again at the noise figures, we see that they apply over a frequency range from 30 Hz to 15 kHz when $\mathrm{Vce}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}$ $=200$ microamps and $R_{s}=2 \mathrm{k}$ ohms.

At first glance it appears that 4 dB relative to a source impedance of 2 ko is far too high for a low impedance, low output moving coil cartridge.

However, if we are prepared to accept a noise figure of 2 dB as reasonable, we see from the data sheet that this can be achieved with a source impedance of around 500 ohms over a current range from 100 to 500 microamps. By using five transistors in parallel we could achieve 2 dB with a 100 ohm source impedance. This approach was frequently employed when moving coil cartridges first became popular about ten years ago, and remember one published design that used no fewer than eight transistors in parallel.

Another approach is to use medium power transistors, as did Stan Curtis in his System A preamp described in ETI in July 1981. Transistors designed for higher currents have a lower base
resistance. Medium current transistors such as the 2N4401 and 2 N4403 have a base resistance which is higher than that of most moving coil cartridges but considerably lower than the base resistance of most small signal transistors.

For practical purposes there is no reason why we cannot combine the two approaches, without going to the extreme of paralleling five or more transistors. Space is provided on the PCB for two transistors in parallel, and a pair of 2N4401s in this position will give a perfectly satisfactory performance at reasonable cost. This arrangement is recommended for the economy version of the preamplifier.

There are several alternatives when it comes to upgrading this

NOISE VOLTAGE (in $\mathbf{V} \sqrt{\mathrm{Hz}}$) at:

	10 Hz		100 Hz		1 kHz	
	Typ.	Max.	Typ.	Max.	Typ,	Max.
2SB737, 2SD786	0.55		0.4		0.4	
ZN459					1.1 2	5
2N4867A	8	10			2	
J230-232	8	30			3.0	3.8
OP37A	3.5 3.8	5.5			3.2	4.5
OP37C	3.8	8			3.5*	
NE5534					18	

OP71
*Frequency not stated.
Table 1 A comparison of the noise performance of selected low-noise FETs and ICs.
stage. One is to use the same arrangement but choose better quality medium power transistors which offer lower noise. The 2SC2385 transistors suggested in the parts list are ideal for this application and prove extremely quiet in practice.

The other approach is to use a transistor which has been designed specificially for moving coil input stages and which has a low enough base resistance to allow direct matching to the cartridge output. Several transistors of this type have been developed in recent years, and a good choice here is the 2SD786 which has a base resistance of just 4 ohms. These are, inevitably, quite expensive and not terribly easy to come by, but they do seem to offer the lowest noise figure of any type currently available. A comparison of the noise performance of these and other low-noise transistors and ICs is given in Table 1.

The Circuit

Like the other stages in this preamplifier, the moving coil stage is based around a simple but very effective discrete operational amplifier. This allows the stage gain to be determined by the values of two external resistors. As a result, the gains of the two channels can be matched to within very close limits without using preset potentiometers, thus avoiding the inconvenience, cost and sound degradation this would involve.

The circuit of the moving coil amplifier in its basic form is shown in Fig. 1. Transistors Q2 and Q3 form a differential pair in which approximately equal currents flow. The total combined current of Q2 and Q3 is kept almost constant by R3. Transistor Q5 is biased on by the voltage across R2.

With no signal input, the bases of Q2 and Q3 are close to 0 V . If a positive voltage is applied at Q2 with respect to Q3, more current will flow in Q2 and less current in Q3. The voltage across R2 will increase, and this will cause an increase in current in Q5. This will raise the voltage across R7 and give a positive output signal.

The effect of the negative feedback network comprising R5 and R6 is to feed some of the output back to the base of Q3. Provided the base of Q2 is at a higher voltage than Q3 the output will remain positive. If the open

Fig. 1 The circuit of the moving coil amplifier in its standard or 'economy' form.

Fig. 2 The circuit of the moving coil amplifier in its upgraded form.
loop gain is much greater than the ratio of the resistors R5 and R6, the voltage difference between the bases of Q2 and Q3 will remain small and the gain will be defined by the values of the resistors.

The use of a differential input is not ideal in terms of achieving the lowest possible noise, but it does remove the need for an input capacitor which would otherwise degrade the sound as well as being physically large and expensive. This means that a small current of the order of 10 microamps flows through the cartridge, but I have not seen any reliable reports which say that this is harmful. I have not observed any ill effects even at higher levels of current, but if you are at all worried by DC flowing through the cartridge, replace R1 by a 10 k resistor, connect a $4 \mu 7$ plastic film capacitor towards the input and place the original R1 across the input socket. Plastic film capacitors will pick up noise from the mains transformer, and if this is
troublesome you will either have to remove the transformer to a separate box or replace the capacitor with a tantalum type (negative end to transistor) with some degradation at high frequencies.

The input loading resistor on a moving coil cartridge is an important part of the design. A change in the value of this component will change the sound quality of the cartridge, and many people like to experiment to find the optimum loading for their system. As a rough rule, lowering the impedance reduces the high frequency output. A cartridge with a low output impedance will obviously require lower impedance matching from the amplifier and this should be considered when fitting the loading resistor in the circuit. As a practical compromise, a value of 33 ohms is suggested as a standard or a starting point for
experimentation.
The performance of the standard version can be further

Internal view of the complete pre-amplifier. The moving-coil stage is the bottom, left-hand board.
improved, mainly by the use of higher quality components. The circuit of the upgraded version is shown in Fig. 2. The upgrading measures are:

1) The use of ultra low noise transistors type 2SD786 for the input stage.
2) The use of Holco H8 ($1 / 8$ watt) precision resistors manufactured by Holsworthy Electronics. These offer better sound quality than standard grade metal film types (Ref. 1).
3) The replacement of polyester capacitors with polycarbonate types. Polycarbonate capacitors have a lower dielectric loss (Ref. 1, 2).
4) The by-passing of all medium value capacitors with polystyrene capacitors of around $3 \mu 9 \mu$ to 10μ. This improves the sound at high frequencies.
5) The use of transistor pads for all transistors. This holds them firmly to the board and reduces the possibility of distortion due to vibration. Anyone who has heard the improvement in sound quality
which results when a Mission Isoplat is placed under an amplifier will know what I mean.
6) The use of high power (metal tag) regulators: This should improve the sound quality by reducing the Temperature Generated Distortion (TGD).
7) The use of constant current diodes in place of R3 and R8. The high impedance (Ref. 3) reduces

BUYLINES

A complete kit of components and PCB for the moving coil stage can be obtained from the author at 6 Mill Close, Borrowash, Derby DE7 3GU. The cost is £12.50 for the standard version and $\mathbf{E 2 5 . 0 0}$ for the upgraded version. Both prices are fully inclusive. The PCB and parts are also available individually ask for a price list.
The case for the complete preamplifier (see pictures above and overleaf) costs $£ 49.00$ including VAT and carriage. An alternative front panel is available for those who do not want tone controls - please specify when ordering.
the power supply ripple voltage feedback to the input from the negative supply and greatly improves sound quality.

Construction

Refer to the components layout, Fig. 3, and start by soldering the resistors into place. Note that there are three holes to accommodate R3 and R8. The holes that are $0.5^{\prime \prime}$ apart are for the resistors and the holes that are $0.2^{\prime \prime}$ apart are for the FET constant current diodes (D1 and D2) used in the upgraded version. The flat faces of the FETs face the input side of the board and it is a good idea to mount them on transistor pads.

Next install the connecting pins (6 in each channel) and insert and solder the IC regulators. Now insert the transistors using the diagrams in Fig. 3 as a guide. The board is completed by soldering the capacitors into position.

Feed a supply of $\pm 15 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ to the board (up to $\pm 35 \mathrm{~V}$ if you are using 1A regulators) and check all voltages with a DVM or

Fig. 3 Component overlay for the moving coil amplifier board.

PARTS LIST

RESISTORS	STANDARD VERSI
R1, 7	33R Metal film 2\%
R2 (see text)	330R Metal film 2\%
R3	2k4 Metal film 2\%
R4	330R Metal film 2\%
R6	220R Metal Film 2\%
R8	3k9 Metal Film 2\%
R9	220k Metal film 2\%
CAPACITORS	
C1	3n9 polystyrene
C2	1u0 polyester
C3, 4, 5	-
C6, 7	470n polyester
C8, 9	220n polyester

UPGRADED VERSION

33 R2 Holco 0.5\% 50 PPM 332R Holco 0.5\% 50 PPM see D1
332R Holco 0.5\% 50 PPM 221R Holco 0.5\% 50 PPM see D2
220k Holco 0.5\% 50 PPM

3n9 polystyrene
140 polycarbonate
3n9 polystyrene
470n polycarbonate 220n polycarbonate
SEMICONDUCTORS

IC1	78L12
IC2	79L12
Q1, 2, 3, 4	2N4401
Q5	2N4403
D1	see R3
D2	see R8

7812
7912
2SC2385 or 2SD786*
2SB737 or 2SA978
J511 (4.7 mA)
J509 (3mA)
*Only two 2SD768 transistors are needed in each channel. The Q1 and Q4 positions should be left empty.

MISCELLANEOUS

PCB; $6 \times 1 \mathrm{~mm}$ PCB pins; 5 off T092 transistor pads (on upgraded version only); PCB pillars; case, power supply, sockets, wiring, etc, according to choice and application.

With the exception of the PCB, all components listed above are for one channel only. Two of each item will be required for stereo.
multimeter. A list of correct voltages is given in Table 2 to aid fault finding. One likely source of error is wrongly connected transistors, bearing in mind the different pin configurations of the various types.

For optimum performance, the current in Q1 (or Q1//Q2) should

Test location	Test voltage
IC 1 output -0 V	+12 V
IC 2 output -0 V	-12 V
Junction	
R6/R8-0V	less than $\pm 0.3 \mathrm{~V}$
Emitters	
Q1/Q4-0V	$0.6-0.7 \mathrm{~V}$
Across R7	0.1 V
Across R2	0.7 V
Across R4	0.7 V
Across R1	less than 1 mV
Table 2 Test voltages at various	
points around the circuit.	

be equal to the current in Q3 (or Q3//Q4). It has been shown (Ref. 4) that distortion is least when the currents in each side of a long tail pair are equal. When the circuit is built as recommended, there may be a mismatch of up to 10% in the collector currents of Q2 and Q3. At the low voltage levels of an MC cartridge this will be of very little importance, but anyone seeking the ultimate performance for their amplifier will want to match the
input currents as closely as possible.

There are two ways to do this: the first is by calculation using a DVM. Fig. 4 shows the voltages measured on a fully-upgraded moving coil stage. Current through Q2 is 2 mA and through Q3 is 2.09 mA , giving a mismatch of 4.5%. In view of the variations in the

Fig. 4 Typical voltages measured on a fully-upgraded MC stage.
specifications of constant current diodes ($\pm 10 \%$) larger mismatches may be expected through R2 and R4.

Current $=4.09 \mathrm{~mA}$
Base Current through Q5
$=0.01 \mathrm{~mA}(\mathrm{Hfe}=300)$
Total Current $=4.1 \mathrm{~mA}$
Current per transistor $=2.05 \mathrm{~mA}$
Voltage required across R2

$$
=689 \mathrm{mV}
$$

Optimum value of $\mathrm{R} 2=\frac{689}{2.05}$

$$
=336 \text { ohm }
$$

The nearest E 96 value is 332 R or 340R.

The collector currents could alternatively be matched by either changing the value of R7 or by changing D2 (to a J508) or adjusting R8 as appropriate. I will leave the readers to make their own calculations if they wish to pursue these alternative options.

The other method of balancing the currents is by observing a null point with a multimeter or scope. The circuit is set up as shown in Fig. 5, with R2 and R4 replaced by resistors of $270 \mathrm{R}(0.5 \%), 39 R$, $22 R, 10 R, 4 R 7$, and $2 R 2$. Initially the $10 \mathrm{R}, 4 \mathrm{R} 7$ and 2 R 2 resistors are shorted out on both sides and a
meter is connected from A to B.
If current flows from A to B, the total resistance value is too high and needs to be reduced. If currrent flows from B to A, the total resistance value is too low and needs to be increased. The resistance on both sides should be adjusted by equal amounts by restoring the shorted resistances. This procedure should be repeated until a point is found where the current is lowest. That value is recorded and about 1 ohm added to allow for Q5's base current. The value of R2 is the nearest preferred value to this. It is important that the resistance values are exactly the same whilst measurements are being taken.

Whilst the final value of R2 is critical (to set the base voltage of

Negative supply	R3	R8
1.2V single nicad	120R	390R
5 V	1 kO	$1 \mathrm{k6}$
9 V	1 k 8	3 kO
12 V	2k4	3 k 9
15 V	3 k 3	5 k 1
18 V	3k6	6k2
Table 3 Values of R3 and R8 for use with alternative negative supply voltages.		

Q5), the value of R4 after the measurements are taken will have no real effect on the circuit. Either 330 R (or 332 R in E96 values) or a resistance equal to the final value of R2 would be appropriate.

Applications

Although designed for use with the upgradeable amplifier, the moving coil stage is also well suited for use in other equipment or as a stand-alone unit. Its $\pm 12 \mathrm{~V}$ regulators allow it to be hooked into almost any preamplifier which has $\pm 15 \mathrm{~V}$ regulated supplies, and it would make an ideal headamp for John Linsley Hood's Audio Design Preamp and similar amplifiers. In such instances the use of two separate stages of regulation will guarantee excellent sound quality. It would also work well as an isolated head amp with a suitable power supply.

You can also use the moving coil stage without its regulators if you have a high performance discrete regulator or a battery supply. The low noise upgraded version in particular will be extremely quiet on battery power supplies. It will also give

Fig. 5 Test circuit used to set equal collector currents in the input transistor pair.
outstanding sound quality when powered from high capacity batteries, but in this case it is wise to limit the short circuit current which might flow were a semiconductor to fail. The last thing you want is to have the short circuit current of a large rechargeable battery fed to the terminals of an expensive MC cartridge.

To prevent this, connect resistors of at least 10R (or 100R with a 12 V car battery) in series with D1 and D2. I don't think short circuit failure is common amongst FET diodes but I would rather be safe!

Whatever supply you use, it is essential that the correct currents flow from the negative rail. Table 3 shows suitable values of R3 and R8 for some of the more popular negative supply voltages. Constant current diodes are ideal for higher voltage working, but their impedance falls at low voltages. At 4.2 volts the current via the $J 511$ is 10% below the current at 25 volts.

References

1) Colloms, M. A passive role. Hifi News Oct 1985
2) Colloms, M. Capacity to Change. Hifi News Dec. 1985
3) Nalty, R.G. Constant Care. ETI April 1986

Taylor, E.F. Distortion in low noise amplifiers. Wireless World Aug/Sept 1977

The next article in this series will describe the construction of the moving magnet input stage. ETI

Interak

AN EXPANDABLE DISK-BASED Z80A DEVELOPMENT SYSTEM YOU CAN BUILD YOURSELF!

Universities, Colleges, Industry, Enthusiasts
Unlike homecomputers, development systems have entirely "open" architectures, use standard TTL etc. chips (ie no ally these superior in a proper engineering fashion. Usually these superior products carry a correspondingly superior price tag, but you can build Interak yourself board out of your thus afford a system which would normally be
 out of your reach and/or understanding.
 Z80A TV set, parallel ASC 4 drives. Any size (including $8^{\prime \prime}$ double density) can for up to but our 1 Megabyte $35^{\prime \prime}$ drives are proving) can be used, because theyan fit int the are proving very popular cost $£ 87.00$ each +VAT) or the giving access o thousands of "public domain" programs.
The system can be described as "future proof" because i uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system it has stood the test of time.
Send two second class stamps, or telephone for a
detailed descriptive leaflet, specification, prices, et

Greenbank

Greenbank Electronics (Dept T7E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG. Tel: 051-645 3391

PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drive with FREE updating service on all software

ARE YOU GETTING THE MOST FROM YOUR DOT MATRIX PRINTER AND DISC DRIVE?

DIAGRAM is a new program which really exploits the full potential of the BBC micro and will enable you to obtain printouts of a size and quality previously unobtainable from your system.

MARCONI TRACKER BALL AND ICON ARTMASTER PLUS
DIAGRAM SOFTWARE

PLUS VAT P\&P $£ 1.75$
ALL ORDERS SENT BY RETURNOFPOST
39 Brownlea Gardens, Seven Kings, IIford, Essex IG3 9NL Tel:01-599 1476

AUDIO KITS
 PRECISION AUDIO COMPONENTS


```
ETI VIRTUOSO PREAMP
Component Kits incl PCB
MC Stage standard version
MC Stage super upgraded versio
Ultra low noise Transistor 2SB737 (%np).
PORTABLE PA BY J. LINSLEY HOOD)
Component kits (pcb and case not includpril-May 1986)
COmponent kits (pcb and case not included)
P.A. Amplifier
TOP QUALITY................
```



```
LAR PREAMP, AUDIO DESIGN). SEND US YOUR REQUIREMENTS. SM A, MODU-
ALL KIT COMPONENTS SUPPLIED SEPARATELY.
SAE FOR PRICE LIST
AUDIOKITS, }6\mathrm{ Mill Close, Borrowash, Derby, DE7 3GU
Telephone 0332674929
```


* Discontinued sizes, special price valid while stock last. Please add $£ 3.00 \mathrm{P} / \mathrm{P}$ for the firstitem kits at give away prices. Large SAE for details. kits at give away prices. Large SAE for details.
Mail order only. To order send cheque/pastai que/postal order, same day dispatch for PO, 7 days for
cheque clearance.
TJ A DEVELOPMENT
53 Hartington Road, London E17 8AS

DIGITAL SOUND SAMPLER

At the risk of repeating ourselves, Paul Chappell puts the sampler into action.

The circuit of the sampler's power supply is shown in Fig. 1, and is assembled according to the component overlay in Fig. 5. The heat sinks mount horizontally on the board with a gap of only a few mms between them, so it would be a wise precaution to use insulating washers wherever a 79 -series regulator is next to a 78 -series one, as their tabs will be at different voltages. Three of the four wire links on the board run very close to the heat sinks. To avoid the possibility of shorts, these should be insulated.
photograph. You can arrange the front panel layout to suit your own taste, since all the controls are on flying leads.

It would be as well to keep the mains connections as far to the right of the case as possible, to minimize any hum pick up, but apart from that you have complete freedom.

We decided to put the input level control on the front panel, rather than use a preset on the PCB as originally specified. This allows a very wide range of input levels to be accommodated anything from a microphone input

We used a $19^{\prime \prime}$ rack-mounting case for the final assembly - there is no need to seek out exactly the same type, but you will need one of a similar size to allow room for the three boards. They fit neatly into the space available in a $19^{\prime \prime}$ case, as you can see from the
to several volts from a signal generator. The group of three LEDs is for status indication: they show SAMPLE READY (when sampling is to be triggered by the presence of sound), SAMPLER ACTIVE, and PLAYBÁCK. These indicators are not essential, as the information is
displayed on the TV screen, but if you'd like to include them, Fig. 2 shows how to do it.

Connection to the Spectrum was made via a 15-way Dconnector at the rear of the case going to a standard, $0.1^{\prime \prime}$ edge connector. The ground connection was taken via the shell of the Dconnector and the appropriate links to the Spectrum expansion port are shown in Fig. 3.

A single pole toggle switch was inserted in the interrupt line when the switch is off, it allows the Spectrum to be used for other purposes; when on, the sampler's interrupts jam the Spectrum's own, and the sampler takes control.

If the idea of having to operate a switch is too low-tech for you, the circuit of Fig. 4 will turn on the sampler automatically as soon as the tape has loaded - we didn't include it in the prototype, so it hasn't been allowed for the on the PCB, but it shouldn't be any great problem to add it.

Using The Sampler

The Sampler and computer must both be turned on and connected together before the program is loaded. If you try to load the tape without the sampler connected, the program will fail immediately, as one of the first things the program does when

Fig. 3 Spectrum edge connector, showing connections used for the sampler.
loaded is to change the $\mathrm{Z80} 0^{\prime} \mathrm{s}$ interrupt mode, and it requires an address from the sampler for the correct service routine.

To load the program, type LOAD ""'" CODE, followed by ENTER, and then switch on the cassette recorder, and also the switch in the interrupt line if you've plumped for the manual method. As the tape loads, you should see a colourful'SOUND SAMPLER' logo displayed on the TV. As soon as the loading is complete, this will be replaced by the help screen, as shown in the photograph, which lists the various commands you can use.

The option menu
To sample a sound, press ' 1 ' on the keyboard (which stands for 'input'), and you will then be given a choice of sampling rates. The higher the sampling rate, the better the sound quality, but the shorter will be the length of time

Fig. 4 Circuit for turning on the sampler's interrupts automatically.
you can sample for. Hāving chosen your sample rate, you will then be given the choice of initiating the sampling by the presence of a sound, or starting it immediately by pressing a key on the computer. A list of options is given on the TV screen at each stage, so there is no need to refer to this article or the instructions.

As soon as the sampling is complete, the computer will display the sampled waveform on the screen, in three rows, as shown in the photograph. Unless the waveform is at a very low frequency, all you will see at this stage is the envelope, so a constant amplitude wave will just appear as three bands across the screen, as you can see for the sine wave.

Sampled voice waveform

Sampled sine wave
To inspect the waveform in detail, there are two cursors which can be moved to frame the part of the sample you are interested in. Pressing ' E ' (for 'expand') on the keyboard will give a detailed picture of the portion of the sampler between the cursors. Photographs of the expanded voice waveform and sine wave show the result of doing this. Both the samples were taken at a low rate, so the individual sample points making up the waveforms can be seen. The samples in memory are in companded form, but the program calculates the correct position for each point so that it appears on the screen as if
the sampling had been linear.
The sample in memory can be edited - you can cut out parts that are not required, by moving the cursors, and you can also alter any sample to modify the waveform, or even to create your own waveforms.

To hear the sound, press ' P ' (for 'playback') on the computer. You will then be given the choice of having the sample played back once each time a key is pressed (which you will want if you have sampled a piano note, for instance), or of continuously looping around the sample to give a sustained note. On playback, only the portion of the sample between the cursors will be heard, so to play the entire sample you must move the cursors back to their original positions at either end of the sample. When you are looping around the sample to form a continuous note, there will be a click every few seconds because of the sudden jump from the last sample value to the first. You can eliminate this by choosing your loop beginning and end points (with the cursors) so that the last part of the sample leads smoothly into the first, or if you like the computer will choose the looping points for you automatically. Just press 'L' on the keyboard.

The sampler accepts a control signal from a standard 1 V per octave keyboard, with a +5 V gate signal. If you prefer to use a MIDI keyboard, you may like to consider building last month's MIDI to CV converter, which will allow any MIDI based instrument to interface with the sampler.

Expanded voice wafeform

PROJECT: Sound Sampler

Listing 1 Hex dump of the
sound sampler program.

OSCILLOSCOPES TELEQUIPMENT D75 Dual Trace 50 MHz Delay Sweep	Various $51 / 4 "$ Floppy Disk Drives and Motors Available.		
	Racal RA17L $500 \mathrm{KHz}-30 \mathrm{MHz} \ldots$. ONLY £ 140 each manual		
Portable $8 \times 10 \mathrm{~cm}$ display. With Manual $£ 200$ GOLLD OS258. Dual Trace 15MHz $£ 200$	ADVANCE AM/FM SIGNAL GENERATOR Type SG63A		
Dual Trace 10MHz. With	ADVANCE AM/FM SIGNAL GENERATOR Type SG63A		
150			
able AC or External DC operation 8x10	ADVANCE AM SIGNAL GENERATOR TYPe 62.150 KHz		
	PHILIPS WOBBULATOR		
TELEQUIPMENT D43. Dual Trace 15MHz. With			
State. With Manual	LPABGEAR COLOUR BAR GENERATOR CM6037		
PHILIPS DIGITAL MULTIMETERS 4 digit, auto ranging. Complete with batteries and leads TYPE PM2517X (LCO) (p\&p 957			
	836 MARCONi TF2600 (Later version of TF 1041 VTVM) $2 \mathrm{~Hz}-1500 \mathrm{MHz}$; $\mathrm{AC} / \mathrm{DC} / 0 \mathrm{hms}$ AC $300 \mathrm{mV}-300 \mathrm{~V}$		
AVO 8 Mk 2 Complete with batteries \& leads $£ 50$ AVO TEST SET No 1 (Military version of AVO 8)			
	PHILIPS COLOURBAR Generator type 5501		
Complete with batteries, leads \& Carrying			
AVO Model $7 \times$ x. Complete with bateres.			
carryng case $£ 40$			
AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batteries \& leads. $£ 18$ With batteries \& leads.......	NEW EQUIPMEI		
	HAMEG OSCILLOSCOPE 605. Dual Trace 60 MHz . Delay Sweep. Component Tester 8515 Component Tester 2270		
AVO TRANSISTOR TESTER TTI 169 Handed. GO/NO GO for In-situ Testing. Complete with batteries. leads $\&$ instructions. (p\&p £3) HOW ONLY £12			
	black star freauency counters pap eq Meteor $100-100 \mathrm{MHz}$. 126Meteor $600-600 \mathrm{MHz}$		
PROFESSIONAL $9 "$ GREEN SCREEN MONITORSmade by KGM for REUTERS Gives quality 80 column			
	Meteor $600-600 \mathrm{MHz}$.................... \sum^{126}		
	BLACK STAR JUPITOR 500 FUNCTION GENERATOR. Sine/Square/Triangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$ P P P $£ 4$ £ 110		
 Slze: W125mm, $\mathbf{H} 75 \mathrm{mmm}, ~ D 180 \mathrm{~mm}$. Cassd. Un-ussed. Only £ 10.00 each (P\&P $£ 2$) Qwerty keyboard (as in Lynx Micro). Push to make. Cased $£ 5$ e8ch (P\&P £2)			
	HUNG CHUNG DMM $6010.31 / 2$ digit. Hand held 28 rangesincluding P\&P $£ 4 \mathrm{Amp}$ AC DC . Complete with batteries $\&$ leads. P\&P £4		
	OSCILLOSCOPES PROBES. Switched $\times 1$; x10. P\&P$£ 2$.. 11		
Used equipment - with 30 days guarantee. Manuals supplied if possible. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Carriage.			
STEWART OF READING			

Universal Semiconductor Devices Ltd.

17' Granville Court, Granville Road,
Hornsey, London N4 4EP, England.
Tell: 348 9420/9425* Tix: 25157 usdco g

Weoffer one of the largestranges of semiconductors at highly economical prices. The following semiconductor types are available from stock. If we don't stock what you need then we can get it fast from our facilities in West Germany and USA upon request.
ȚRANSISTORS - Bipolars - Germanium and Silicon Small signal
Power
Darlingtons - all shapes and sizes VHF/UHF devices - all shapes and sizes
FETS - Power Mosfets Unljunctions

DIODES - Germanium and Silicon Rectifiers and Bridges Opto-Electronic devices LEDs of all shapes and sizes THYRISTORS and TRIACS -

INTEGRATED CIRCUITS: Consumer - Digital/Analogue Microprocessors and Peripherals IC Sockets
JAPANESE COMPONENTS - Vast range of discrete's and consumer IC's System A - All semiconductors available from USD. Amp - $£ 75.00$ incl. VAT \& p\&p. Pre-amp - $£ 90.00$ incl. VAT \& p\&p.
Mail order customers: Please send for our comprehensive price list, enclosing $£ 1.00$ in
stamps. Cheque or stamps. Cheque or postal order.

$$
\begin{aligned}
& \text { SYSTEM A AMPK } \\
& \text { All semi-conductors available. } \\
& \text { Amp plus preamp } \text { \&oniy } £ 75 \text { amp }
\end{aligned}
$$

Catalogue sent free of charge, when requested on official letterhead (without refund), to OEM's, Schools, Colleges, Universities, Government Institutions,
Computer Films, Electronic Repair Firms and Distributors. Speclal discounts payment terms are avallable to above institutions.

Please enquire for quantity discounts.
WE WELCOME TELEPHONE AND TELEX ENQUIRIESI

HART - The Firm for QUALITY

LINSLEY HOOD 300 SERIES AMPLIFIER KITS Superb, HART designed, integrated amplifier kits derived
from Linsley-Hoods articles in 'HiFi from Linsley-Hoods articles in 'HiFi News',
Ultra easy assembly and set-up with sound quality to
please the most discerning listener. Ideal basis for please the most discerning listener. Ideal basis for any
domestic sound systems if quality matters to the complete kit and save pounds off the individual com. ponent price.
K300-35. 35 Watt. Discount price for Complete Kit..
K $300-45$. K300-45. 45 Watt. Discount price for Complete Kit......
RLH4\&5. Reprints of Original Articles from 'HiFi News.
\qquad

Complete very high quality low-HOOD CASSETTE RECORDER CIRCUITS

Complete very high quality low noise signal handling stages for any stereo cassette recorder Separate record and replay sections for optimum performance. Switched bias and equalisation to cater for chrome and ferric tapes. Very easy to assemble on plug-in PCBs. Complete with full K800 Comp
860X Stereo RLH1 \& 2 Reprints of original Articles
Complete stereo record STUART TAPE RECORDER CIRCUITS
Complete stereo record, replay and bias system for reel-to-reel recorders. These circuits will give
studio quality with a good tape deck. Separate sections for studio quality with a good tape deck. Separate sections for record and replay give optimum performance and allow a third head monitoring system to be used where the deck has this fitted.
Standard 250 mV input and output levels. Standard 250 mV input and output levels.

.... $£ 65.67$
.£1.30 no VAT
HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treblel A worn head could be the problem
Tape heads are constantly improving and fitting one of our latest
replacement heads could restore performance to better than new!
Standard mountings fit most decks and our TC1 Test Cassette
will make it easy to set the azimuth spot on. As we are the actual importers you get prime parts
suitable for Dolby machines.
HC20 Permalloy Stereo Head. Good quality standard head fitted as original aquipment decks..5. 11 than ferrite, fantastic frequency response... 9.91
 Full data on these and other heads in our range are contained in our free list.

HART TRIPLE-PURPOSE TEST CASSETTE TC 1
One inexpensive test cassette enables you to set up VU (Doiby) level, head azimuth and tape speed without test equipment. Vital when fitting new heads. Complete with instructions...£4.66 Send for your FREE copy of our lists with full details of our complete range of Kits, Components, PCBs, Cassette Heads and Decks:- Overseas please send 5 IRCs for Airmail Post.
Please incld part cost of Post, careful packing and insurance as follows: Orders up to $£ 10-50$ p orders $£ 10$ to $£ 49-£ 1$, orders over $£ 50-£ 1.50$.

OMNI ELECTRONICS

'VISIT SCOTLAND'S NEWEST COMPONENTS SHOP'.

We stock a wide range of general electronic components, send now for our 21 page catalogue price $20 p+12 p$ p\&p or call at the shop Mon-Fri 9.00am6pm. Sat 9am-5pm.

Tel: 031-667 2611

> 174 Dalkeith Road, Edingburgh, EH16 5DX

1

H
Name
Address
International Correspondence Schools, 312/314 High St., Sutton,
Surrey SM1 1PR. Tel: $01-6439568$ or 041-2212926 (24 hrs) Dept EBS76

MAKE YOUR INTERESTS PAY!

More than 8 milllon students throughout the world have found it worth their while! An fun corresponde. ics has over 90 years experience in home-study courses and is the largest want under the guidance of expert 'personal' autors. find pace, when and where you POSt Or Dhone today for your FRE IMFORMATION PACK on the COurse of your cho

-

THE ETI TROGLOGRAPH

Not so much a field test, more a sort of soak test. Mike Bedford describes the results obtained with his prototype underground communications system and offers some hints on using and modifying it.

Initial tests with the Troglograph were carried out over a distance of about 200 yards with a reasonable received signal strength, but signals started to tail off significantly beyond this. These ranges were very encouraging as they compare favourably with the depths of most British caves and potholes. However, the Troglograph was not developed for surface communication - the acid test was how well it would work in the environment for which it was intended.

The field tests were carried out in a windswept valley in North Yorkshire on a Saturday in January, the surrounding hills still showing the remnants of recent snowfalls. The cave chosen for the tests was the West Kingsdale System, located about 3 miles north of Ingleton. There is an entrance in the valley bottom and the route then passes almost horizontally under the surrounding hills, providing a comparatively easy means of getting the equipment to a quite respectable depth. There is only one vertical pitch on the route chosen yet the final point is in excess of 300 feet below the hill top.

The party consisted of the author, his wife Margaret, Ivan Wuljahorodsky and James Fathers, of which the author and James made up the subterranean contingent. Figure 1 shows the West Kingsdale System, and consists of a survey of the cave passages superimposed upon a map of the surface features. It was used to pin-point corresponding positions above and below ground at which tests would be

Fig. 1 A map of the West Kingsdale cave system, showing the points where the Troglograph was tested.

The prototype Troglograph undergoing field tests.
coriducted. Although the System has a number of entrances, the one used in this expedition was the one referred to as Valley Entrance and the three points selected for tests were those marked 1, 2 and 3 on the map. Assuming that the cave passages are approximately horizontal, it is clear from the contours that these points must be about 100, 200 and 300 feet underground.

The first rendezvous point was reached in a matter of five or ten minutes, the entrance section being for the most part a walking or stooping passage with a couple of deep pools. One of these filled the passage to within a foot or so of the roof, serving to prove that the equipment was indeed waterproof. This first test proved encouraging with reasonably strong signals being received.

The equipment was packed away and we made our way to the second scheduled point, arriving there with a good five minutes to spare. As James rigged the pitch for our descent, a comparatively dry spot was found to set up the Troglograph. We switched it to
receive and were greeted with silence. Our spirits fell. At last, after two minutes of frantic tuning, the signal was heard. We later discovered that it had taken the surface party longer than anticipated to reach their destination - clearly there are times when it is quicker to travel underground! The signal strength was not particularly good, however, and the noise of the stream pouring over the nearby pitch as a waterfall made listening difficult.

With the second test completed, we went down the 25 foot pitch, the passage enlarging considerably to form Kingsdale Master Cave, the hub of the whole system. The recent snow and rain falls had left the cave much wetter than on previous trips, making progress against the flow of water somewhat slower than expected. At the end of the master cave the route to the third rendezvous point, Swinsto Great Aven, continued as a low crawl with occasional flat-out sections. It soon became clear from the deposits on the roof that this area
had quite recently been flooded completely. In view of the unsettled weather conditions, good sense prevailed and we retraced our steps, leaving a test at 300 feet to another day.
Nevertheless, we counted the expedition a success, signals having been received through 200 feet of solid rock and the ergonomic features of the design proven.

Further Developments

It is very unlikely that the first attempt at a project such as this will result in a piece of equipment which can't be improved upon. Indeed, although the field trip was a success, it served to identify a number of areas for future development. The author will probably continue to experiment in these areas, and it would be nice to think that this article will inspire others not only to build the Troglograph but to use it as an experimental project too.

Signal strength at 200 feet below ground was not as good as expected. Means of improving this

Following the field tests, the original Troglograph was re-housed by James Fathers in the case shown here. Not only is it easier to carry than the original, it also looks a lot better both inside and out (see external photo opposite). The new arrangement also dispenses with the rather cramped control panel of the original version, making operation easier. Note the use of slider potentiometers for the volume and regeneration controls.
have already been mentioned, but to recap slightly they involve increasing the number of turns and/or the coil area (especially of the surface coil) without increasing its resistance.

Audio volume proved something of a problem in locations with high background noise (for example, the waterfall). The LM380 certainly doesn't give its full power output into a 32 ohm load, so a possible solution here
would be to find miniature 8 ohm phones of sufficient power handling capacity. On the subject of phones, it was found that miniature stereo headphones do not fit over the hard hats used for caving. Perhaps it would be possible to fit phones into a hard hat?

Dragging a loop aerial and an ammo box in addition to ladders and ropes along a low passage is somewhat inconvenient. A form of
folding loop which could fit into the ammo box would be a marked improvement.

Perhaps the most ambitious next stage would be to develop speech communications, a facility which would bring it close to the Molephone described in the first part of this article. Initial calculations show that the most significant problem would be obtaining the required 3 kHz bandwidth. The traditional solution involves reducing the Q factor of the loop considerably, which could only be achieved practically by reducing the number of turns. Clearly this reduction in turns would have to be compensated for by a corresponding increase in the coil current. More recent designs such as the Molephone overcome bandwidth limitations by operating at a higher frequency, typically 100 kHz .

Licencing

As far as international frequency spectrum agreements are concerned the portion from $0-$ 9 kHz is un-allocated and no regulations restrict its use. Furthermore, since the Troglograph does not use radio in the normal sense of the word but uses very short range magnetic waves, it would be reasonable to assume that a transmitting licence is not required. In many countries this is the case and the Troglograph could be used without any sort of official authorisation. In Britain, however, a licence issued by the Department of Trade and Industry is required for all use of the electromagnetic spectrum.

Fortunately, a suitable licence is readily available, this being the one issued for deaf aid inductive loop systems in public halls. The cost of the licence is $£ 12.00$ for a period of five years and the application form (Form BR12) may be obtained from the following address: Department of Trade and Industry, Radio Regulatory Division, Waterloo Bridge House, Waterioo Road, London SE1 8UA

Unless mention is made in the application of the specific requirements, the licence obtained will restrict the loop current to one ampere turn. Although quite suitable for hearing aid systems this is clearly of no use for the Troglograph. Accordingly it should be requested that a limit of 100 uV per metre at 100 yards

PROJECT: Troglograph

OPERATION

The Troglograph has a minimum of controls and is simple to operate. The equipment only has a transmit/ receive switch, a switch to select automatic keying or morse, a volume control and a regenerating control.

This latter control is the only one which may need a word of explanation. In very strong signal conditions it really doesn't matter how the regeneration control is set - it will only be necessary to adjust the volume control to a comfortable level. When signals are weak, the regeneration should be advanced as far as possible without it self oscillating, then
the volume can be adjusted.
It should also be remembered that the transmit/receive switch has a third 'S' position. Forgetting this could result in the Troglograph being in its standby mode when it is meant to be transmitting or receiving. In practice it is unlikely that the operator will be unaware which mode the equipment is in. Although no 'sidetone' feature as such is included, the receiver continues to operate (with no aerial) when the Troglograph is transmitting, and enough signal is received to enable the or arator to hear what is being sent.
from the aerial be applied. It would be wise to apply for this licence in good time as applications are currently taking about two months to process.

A Caution!

It isn't the intention of this article to encourage irresponsible underground expeditions. Caves and potholes are potentially dangerous places, hazards including pitches (deep vertical shafts), rising water in unsettled weather, route finding and collapses. Whereas all of these hazards can be minimised by taking the proper precuations, the inexperienced caver should not be tempted to go underground alone. Anyone wanting to experiment with cave communications is advised to seek some experienced
potholers as companions or preferably to join a club. Numerous caving clubs are scattered around the country, especially in the Yorkshire Dales, Peak District, Mendips and South Wales. With the increasing interest in the Molephone in potholing circles, an electronics enthusiast might well be especially welcome
in caving clubs - particularly when one considers the high price of commercial equipment.

One other potential hazard is perhaps not quite so obvious. The loop aerial is tuned to resonance, which means that in common with all tuned circuits, the voltage across the coil could be much greater than the +24 V applied to the final amplifier. It doesn't require much imagination to realise how unpleasant it could be to use a poorly insulated aerial whilst standing up to ones waist in a pool of water.

Acknowledgements

The author would like to thank Steven Newhouse who coined the name "Troglograph" and his wife Margaret, Ivan Wuljahorodsky and James Fathers for their assistance in testing it in less than ideal conditions!

We would also like to point out that the Molefone (on which the Troglograph is based) is available from University of Lancaster Engineering Services, Department of Engineering, Bailrigg, Lancaster LA1 4TY, tel 0524-65201. Molefone is a registered trade mark.

ETI

THE RETURN OF THE VALVE

AUGUST ISSUE

ON SALE 4th JULY

Contrary to appearances, this is not an ETI project. But we're delighted to announce:

The ETI Valve Pre-amp

The battle between valves and semiconductor devices is far from won. Many audio enthusiasts swear by valves - and not just because they're supposed to give a 'warmer' sound. JeffMacaulay has designed a stereo pre-amp to exploit the known advantages of valves - linearity, simplicity, low noise and high overload margins. 'The sound,' he says, 'is a revelation.' But that's only the beginning, because pretty soon Jeff is swapping his triodes for transistors with surprising results.

Intelligent Call Meter

This ROM-based design is for a telephone call-meter as easy to use as a digital clock. With battery back-up, it features a 24 hour clock, automatic or manual switch-on and the ability to memorize and display individual and total call costs for up to 135 calls along with the numbers dialled. The unit can handle all STD calls whether inland or overseas. The ROM-based program makes use of unit-cost data stored in RAM which can be updated by the user. Perfect to check your bills or keep track of your telephone use.

Plus:

RGB-to-Composite Video Encoder, Health Hazards in The Electronics Industry, Tech Tips, your letters, reviews, news, opinions and lots more.

THE MAIN EVENT

. . . and, in the event, AT\&T came and so did ETI - neither of us, we're pleased to say, having been blown up. Andrew Armstrong sends in a report from the British Electronics Week exhibition and picks out one or two salient points.

There is a theory going round that less people are taking up electronics as a hobby than in days of yore. This is as maybe, but there is plenty of expansion in the professional area. At this year's British Electronics Week there were said to be about 1000 exhibitors. Certainly there were too many to glance at properly in a day, a far cry from the time when the show occupied a couple of rooms at the Grosvenor House Hotel.

Nominally the show was divided into four sections: The All Electronics Show, Electronic Product Design, Circuit Technology, and Fibre Optics. The first three of these were at Olympia, the last at Earls Court, with a coach shuttle service between the two venues.

Due to lack of time and stamina I gave the Earls Court part a miss. The Olympia part of the show was very popular, and it was sometimes difficult to move through the crowds.

If the show is a pointer to general trends, then I would say that the use of surface mount technology is steadily increasing, and is no longer quite so much of a black art. It is, of course, almost impossible to use a soldering iron on components on a surface mount board, so the ever-obliging manufacturers of assembly equipment will sell you a rework station for a cost just less than the national debt. This uses a very narrow stream of hot air to melt and reflow solder to enable individual components to be fixed or removed. It is the surface mount equivalent of the soldering iron.

Custom and semi-custom ICs were also much in evidence, with the inevitable accompaniement of a large range of computer aided design facilities.

Another sign of the increasing complexity of silicon technology was the profusion of static control products. Nowadays ICs with very small conductor areas can be damaged by an internal static discharge caused by an external static charge, and yet continue to work for some time before the inevitable failure
occurs. What may happen, for example, is that a hole is punched in an insulating layer, and some conductor material is transferred into it In use, ion migration either reinforces the plated hole, into a short circuit, or breaks the damaged conductor.

A company called Hartley Measurements has brought out a machine called the Autozap, which simulates the effect of a static discharge caused by the human body. This should permit reproducible evaluation of the resistance of devices to static.

There were many other items of interest. There were some very bright but tiny surface mount LEDs, and some seven segment LED displays with a surface mount driver chip on the back of the packages (see last month's News Digest). At a quick glance it looks just like an ordinary seven segment display.

Allbatteries had a couple of interesting products excellent solutions on the prowl for problems. The first is a range of solar power panels, the largest of which is reputed to supply 14.8 V at over an amp in bright sunlight, and perhaps 200 mA on an ordinary British day! At $£ 297$ it is an expensive way to charge up a car battery in a week or two, but it produces enough power to be useful and may find applications in remote locations.

I think that they will sell far more of the new rechargeable lithium batteries. These have double the energy density of nickel cadmium cells, and have the traditional lithium feature of low self discharge. They are very new, and 'handmade', so they cost around $£ 10$ each. When automatic machinery is in operation and the price drops, I think NiCads will find it hard to compete. The sale of primary cells may also be hit by the effect of this and the environmental concern over the disposal of used alkaline manganese cells.
Altogether the show was a 'don't miss' event, though these few words cannot begin to do it justice.

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not replyto enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK:
Oyerseas:

£18.10

$£ 22.50$ Surface Mail
\$29.50 Surface Mail (USA) £49.50 Air Mail
Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Lfd). Note that we run special'offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).
ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we' d like to hear about it

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the curren cover price of ETI plus 50p, and orders should be sent t甲: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is ($\mathbf{0 4 4 2 \text {) } 4 8 4 3 2 \text { . Please allow } 2 8 \text { days for delivery. }}$
We would normally expect to have ample stock of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber provesto be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an artcle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same wayas any othel photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982. the 1983 index in January 1984, the 1984 index in January 1985 and the 1985 index in December 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaintand asking for a reply. Quote any reference numberyou may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtàined by sending in an SAE.

Infra-red Intruder Alarm (August, 1984)
Q11, VN10LK, should be either a VN10LM or a VN10KM. R19 and R20 on Fig.5, p.59, should be R18 and R19. R20 is missing and should be soldered between Q6 collector and a suitable point on the +ve rail, preferably on the underside of the board. There are two C18s - the one on the upper left should be marked C17. C12 is missing. It should be connected just below L2, from Q5 collector to the track connected to R15, C8 and R13. Pads are available. The +ve on C8 is not marked: it should be uppermost. It should also be uppermost on the incorrectly marked C11.
Noise About Noise (July 1985)
In Fig. 5 on page 24, no connection should be shown between the cathode of the diode and the negative side of the 470 u capacitor.
The ETI Activator (January, 1986)
Several items were mssing from the parts list (p.34). Resistors R33, 93 and 94 areall $100 \mathrm{k} ; R, 7,45,46$ and 47 are all 1 M0; R40 is 47 k ; R80 is 100 k . The list includes two R68's --. the second (15 k) should be R88. There is no R7.9. anywhere - for some reason, the number was overlooked. Capacitor C 17 is missing - it should be $4 \mu 740 \mathrm{~V}$ minelect. SW1 is missing. It should be a DPDT push-button switch. On the circuit diagram (p.32), the resistor between C5 and pin 10 of IC2c is R8, 10k. R82 should be marked 2 k 7 , R20 should be 39 k , R21 should be 1 kO and the component between C10 and R27 is a 10 k resistor, R25 (not C25). Some of the IC numberings do not correspond with the PCB overlay. IC8d and IC8c should be exchanged and the pin numbers on the new IC8d and on IC1d and 2d should read, clockwise from the output, 14, 12 and 13. The new IC8C now has pin numbers 8,10 and 9 (clockwise from the output). IC8a and 8 bshould be exchanged and the new IC8a should have pins numbered 1,3 and 2 (clockwise from the output.). Likewise, IC8b should have pins numbered 7,5 and 6. R52 appears twice on the overlay ($p .34$). The one connected to pin 6 and IC2 should be R11. The parts list and circuit diagram includes two resistors (R27 and 67) specified at 14 k each. 15 k is the nearest preferred value, although you might prefer to use a $12 k$ fixed and 4 k 7 trimmer in series to adjust for optimum setting.
Digibaro (February 1986)
Capacitors C1, C3, C5 and C7 should be 470u 25 V types as shown on the circuit diagram, not 47 u 25 V types as stated in the parts list. We have also been told that one of the companies mentioned in Buylines, Hawke Electronics, no longer supply the MPX100a pressure transducer. The other company recommended, Macro Marketing, should still be able to help.
LED5 on Fig. 7, page 28, the component overlay, is shown as having 16 pins. It should have 18 pins and be extended rightwards to the two pads shown. In the author's prototype the LED displays used were both MAN6710 2-digit types, LED4 having pins 16, 17 and 18 removed.

RS232-Centronics Converter (March, 1986)
On the circuit diagram (Fig. 2, p. 53), pin 11 of IC2d should be marked pin 13. Pin 10 of IC3 is missing and should be shown connected to ground. Pin 9 of IC7f becomes pin 8 and vice versa. Also, in Table 1 the figure ' 8 ' in column SW1 b should be a zero and the ' 8 ' belongs in the 'DATA BITS' column. The specification of 74LS121 and 74LS07 is wrong, since LS types do not exist for these devices. They should be replaced with standard TTL. Finally, some confusion seems to have been generated over XTAL1. Although not mentioned in the text, a simple calculation should demonstrate that XTAL1 needs to be 6.144 MHz to produce the baud rates shown.

PCB FOIL PATTERNS

The foil pattern for the Direct-Ion board.

The BBC motor controller foil pattern.

The foil pattern for the
Digital Sound Sampler PSU.

Subscription Order Form

IT To：ETI Subscriptions Department，Infonet Ltd， Times：House， 179 The Marlowes，Hemel Hempstead， Herts HP1 1 BB．
Please commence my subscription to Electronics Today ［1］International．I enclose a cheque＊／Postal Order＊／Interna－ tional Money Order＊for the appropriate fee，made out to ASP L．td．
Please debit my Access＊／Barclaycard＊account number
\square
Signature
（＊delete as appropriate）
Please indicate subscription required and fee enclosed
UK \＆Rep of Ireland： £18．10 口
Overseas（Acclerated Surface Post）$\quad £ 22.50$ 口
USA（Accelerated Surface Post）
$£ 22.50$ 믐
$\$ 29.50$
Overseas air mail：
£49．50 ロ

PLEASE COMPLETE YOUR NAME AND ADDRESS

IN BLOCK CAPITALS
Name
Address
\qquad

PLEASE INCLUDE POSTAL CODEAS APPROPRIATE

Date of order．
THIS COUPON IS VALID UNTIL 30th June 1986
Backnumber Order Form
To：ETI Backnumbers Department，Infonet Ltd，

Times House， 179 The Marlowes，Hemel Hempstead，

Herts HP1 1BB．
Please supply me with the following backnumber（s）of ETI
Month Year

Month ．．．．．．．．．．．．．．．．．．．．．．．．．．．Year
Month ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Year
1 enclose cheque＊／Postal Order＊／International Money
Order＊to the value of $£ 1.60$ per magazine ordered，
made out to ASP Ltd（＊delete as appropriate）．
Total money enclosed $£$ ．．
PLEASE COMPLETE YOUR NAME AND ADDRESS IN．．．．．．．．．．．．．．．．．．．．．．．．．．．．． block capitals

Name
Address
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order．
Note that the cost is the same for orders from overseas as for UK orders；overseas orders will be sent by surface mail． PLEASENOTETHATBACKNUMBERSAREHELDFORONE YEAR ONLY AND SOME ARE NOW OUT OF STOCK．

THIS COUPON IS VALID UNTIL 30th June 1986
please include postal code as appropriate

Binder Order Form

To：ASP Readers＇Services，PO Box 35，Wolsey House， Wolsey Road，Hemel Hempstead，Herts HP2 4SS．

Please send me． \qquad ． ．binder（s）for ETI．
I enclose a cheque＊／Postal Order＊／International Money Order＊to the value of $£ 5.20$ per binder ordered，made out to ASP Ltd（＊please delete as appropriate）．

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Years required：198．．．．．．198．．．．．．198．．．．．．198．．．．．．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquadPLEASE INCLUDE POSTAL CODE AS APPROPRIATEB
Date of order．［
Note that binders cost the same for UK and overseas；overseas orders will be send by surface mail．

THIS COUPON IS VALID UNTIL 30th June 1986

Photocopy Order rorm
To：ETI Photocopies Department， 1 Golden Square， London W1R 3AB．
Please supply me with the following photocopies：
Month．．．．．．．．．．Year．．．．．．．．．．．Article ．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Page No ．．．．．．．．．．．
Month．．．．．．．．．．Year．．．．．．．．．．．Article ．．．．．．．．．．．．．．
0

I enclose cheque＊／Postal Order＊／International Money （1）Order＊tothe value of $£ 1.50$ per photocopy ordered，made

Total money enclosed £．．．
PLEASE COMPLETE YOUR NAME AND ADDRESS IN block Capitals

Name．
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
Note that the cost is the same for overseas orders as for UK orders；overseas orders will be sent by surface mail． PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING．

THIS COUPON IS VALID UNTIL 30th June 1986
\rightarrow mon mom

ALL THE LATEST FASTEST MEMORIES NOT TO BE CONFUSED WITH SLOWER OLD STOCK OFFERED ELSEWHERE

DRAM

5v NMOS 150 nS
$4164 \quad 64 \mathrm{k} \times 1$
EPROM
$41256256 \mathrm{k} \times 1$
 5716 NOS 250 n

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230, 240V a.c. 50/60 OUTPUT n-2.519V
200W. $0.5 \mathrm{KVA} \mathrm{I}^{1 / 2 A M}$ Ma
KKVA 5A Max.
2KVA 10A Max.
3KVA 15A Max.
5KVA 25A Max.
15KVA 50A Max.

3-PHASE VARIABLE VOLTAGE TRANSFORMERS Dual input $200-240 \mathrm{~V}$ or $380-415 \mathrm{~V}$. Star connected
3KVA. 6 KVA . 10 KVA . available. Phone for details.
Comprehensive range of TRANSFORMERS L.T. ISOLATION \& AUTO Comprehensive range of TRANSFORMERS L. T. ISOLATON $\&$ AUTO
$(110-240 \mathrm{~V})$. Either cased with American socket and mains lead of open frame type available for immediate delivery. Leaflet on request
SPECIAL OFFER: Brand new Sāfety Isolation Transformers. Primary 0-104-11-129-V 0-104-110-120V. Secondary 0-104-110-120V. $0-104-110-120 \mathrm{~V} .2 \mathrm{KVA} @$ £ 40.00. 3KVA @ $£ 60.00$. riage and VAT. 'Phone for further details.
SINGLE DIAPHRAGM COMPRESSOR NMS
Max. 20 PSI. One CFM 3pprox. 240 volts A.C. $£ 18+£ 2$ p\&p (f23 inc. VAT)

EPROM ERASURE KIT

Why waste money? Build your own EPROM ERASURE for raction of the price of a made-up unit. Complete kit of parts less bi-pin leads. Neon indicator, safety microswitch, on/oti switch
and circuit.
LESS CASE: Price $\mathbf{£ 1 3 . 6 0}+\mathbf{7 5 p}$ p 4 p (Total inc. VAT £16.50). Waming: Tube used in this circuit is highly dangerous to the

12V D.C. BILGE PUMPS
400 G.P.H. 15 h . head, 3 amp. $\mathbf{~ 8 . 0 0}+\mathrm{f} 1.00$ p\&p 700 G.P.H. 10 Ht . head, $3.5 \mathrm{amp}, \mathrm{£} 11.50+£ 1.50 \mathrm{p} \& \mathrm{p}$ ($\mathbf{1 7 5 9} 9.9 \mathrm{inc}$. VAT) head, 9 amp, $£ 15.00+f 1.75 p \& p$ $?$

A.C. CAPACITOR. 16 UH 900 V . A.C. $50 / 60 \mathrm{~Hz}$. Ideal power factor correction, etc. $91 \times 6 \times 4 \frac{3}{2}$ ins. Wt. $7 \frac{1}{2} \mathrm{Kg}$.
Price: $£ 12.00+£ 3.00$ p\&p. $(£ 17.25$ incl. VAT). N.M.S.

Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction, heavy duty brush
assembly. continuously rated. 25 WAIV. $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{k} \Omega$
 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kQ} / 1.5 \mathrm{kQ} / 2.5 \mathrm{kQ} / 3.5 \mathrm{k} \Omega$ $\varepsilon 10.25+75 \mathrm{p}$ p 8 p (12.65 incl VAT)
Black Siver Skirted Knob calibrated in Nos $1.9,1^{1} 2 \mathrm{in}$ dia. brass bush
INSULATED TESTERS NEW!
 INSULATED TESTERS NEW!
Test to I.E.E. Spec. Rugged metal construction
suitable for bench or field work onstant speed suitable for bench or field work onstant speed
clutch. Size L 8in., W 4ini. H 6 in. weight 61 b 500 V .300 megohms. 449 p 8 p f 2 IE58.65 inc VATI SAE for leaflet.

L.T. TRANSFORMERS

Special Offer" $0-6.3 \mathrm{~V}-0.6 .3 \mathrm{~V}$ at 10 Amp (12V 010 Amp or 6 V at 20 GEARED MOTORS

 VAT E27.c0) N.M.

Sutable TRANSFORNER for $230-240 \mathrm{~V}$ AC operation Price E520 , p\& fip 40
(Total inc. VAI E7.59) NMS
 Sutable TRAMSFORME 230 V AC Operation. Price $£ 5.20+50 \mathrm{p}$ p \& p (E .56 in
$\mathbf{1 0 0 . 7} \mathbf{r p m} \mathbf{6 5 1 b}$ in reversible $\mathbf{1 1 5}$ volt AC price $\mathbf{£ 3 0 . 0 0}$ p\&p $\mathbf{£ 4 . 5 0}$
(Total inc. VAT $£ 39.68$)
Sutable TRANSFOmuth for above $\mathrm{f} 10 \mathrm{P} \$ \mathrm{P} \mathrm{f} 1.50$ (f 1322 inc VAT)
 Wynstruments New. Ideal lor garage doors. Curtans etc. ONLY $\mathbf{1 1 2 . 0 0}+\mathbf{f 2 0 0}$
p\& (inct. VAT £16.10). inclusive capactor
 p\&p ITotal inc. VAT E12.90)
 (Total inc. VAT E7.59) NM.

 PRpp (Total nc. VAT E6.10)

S11.W)
SANGAMO WESTON TIME SWITCH
 override switch. Diametere $4^{\circ} \times 3^{\circ}$. Price $59.50+\{1.50$ p $8 p$ (12.65 inc. VAT
p\& D . Al so available with solar dia R T . Dther types available from stock. p\& D). Also available with solar dia R8T. Dther types availabie from siock.
N.M.S. New Manufacturers' Surplus N.M.S. New Mannuacturers Surplus
Reconditioned and tested

Goods normally despatched within 7 days. Personal callers only. Open Saturdays 9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

SRAM
$5 v$ CMOS 150nS $61162 \mathrm{k} \times 8$. 6264 8k \times

ORDERS UNDER £25 ADD 15\% V.A.T. PLUS 50p P\&P. OVERSEAS ORDERS WELCOME ADD £2.00 P\&P TO ALL ORDERS (NO V.A.T.)
SEND LARGE S.A.E. FOR LISTS OF 74HC CMOS, 4000 SEND LARGE S.A.E. FOR MICROPROCESSORS \& PERIPHERALS, DISK GONTROLLERS, ETC.
TECHNICAL ADVICE, DATA SHEETS, ETC. A PLEASURE PHONE OUR 24 HOUR SERVICE 0933626420

ALL ORDERS DESPATCHED BY RETURN
FROM LARGE STOCKS

AFFORDABLE ACCURACY

Quality Multimeters from

Full details and specification from:
Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts, EN10 7NQ
Telephone (0992) 444111 Telex 22478
TRADE ENQUIRIES WELCOME

OPEN CMANNER

For many months' now I have refrained from making comment about GEC's proposed takeover of Plessey. Both management and employees of Plessey are totally opposed to the takeover, and have referred it to the Monopolies Commission in an attempt to prevent it. The main argument against making comment is that whatever 1 write takes so long to come into print that it would be out-of-date before the reader sees it. This is a very real problem with something as volatile as the GEC/Plessey affair. However, it has been dragging on for so long that I can refrain no more.

Plessey's argument against the takeover relies on the fact that the company's acquisition will give GEC a monopolistic control of the market. But, as I am sure the Commission already knows, it won't. There are other companies, albeit much smaller, which design, manufacture and market similar telecommunications products - all of which are in direct competition with the
likes of GEC and Plessey. So the argument against a monopoly (which is why the bid was referred to the Commission in the first place) falls down almost immediately.

The Trades Unions stance against the takeover seems, in my view, a much more logical argument, on the other hand. The EETPU suggests that the takeover cannot give any increase in organisational efficiency and that the proposed single organisation will be so large that it will actually be less effficient. The Union is also, understandably, against the takeover on the grounds that a large number of job cuts will probably result.

However, the main function of the Monopolies Commission in this argument is to decide whether GEC would become a monopoly-holding company if the takeover comes about. As I said earlier, it won't - therefore the Commission has no alternative but to overrule Plessey. Or does the Commission know different?

Band III

While the topic is on GEC, I should mention the new Band III national trunked radio network which is due to be brought into
service in about seven or eight months' time. There are only two operators for the network: GEC and a consortium including Pye, Racal and Securicor. Detailed planning is not yet complete and no-one knows how it will work, but already there would seem to be a problem regarding the amount of radio spectrum allocated for the service. The operators, led by GEC, want more, but the Government won't let them have it.

But be fair. There is only a limited amount of radio spectrum, and it's not everyday that a significant portion of it becomes available as this portion did (the old VHF television frequencies). And other users want their bits, too. GEC will just have to make do with Plessey instead (that's if I'm right).

Data Day

In just over a year's time the BBC will start to transmit data signals along with regular broadcasts. These signals will not interfere with your pleasure when tuned to Radio4'sAfternoon Play and, in fact, may help to improve your reception! The signals will include information about the frequencies being used for broadcast purposes, station iden-
tification, and what's being broadcast on other stations.
All of this information is not a lot of good for your average tranny, of course, and it will only be a new generation of 'smart' radios which will be capable of receiving and using it. The idea is that, by decoding and using the information, the smart radio will be able to stay tuned to a particular station by itself, receiving the strongest transmission and hence giving the best sound output. This, I hearyou say, is not alot of good to your average tranny which, under most circumstances, sits in one place tuned only toone station anyway.

On the other hand, and this is the clever bit, radios in cars will certainly benefit. As a car moves around, so does the frequency at which best reception of any particular station will occur. A smart car radio will be able, by decoding the data signals, to follow the strongest transmission and give the best reception. Also, the user will be able to choose the type of programme received: the radio will pick out and automatically tune to, for example, weather announcements on other stations.

Wonderful stuff, this technology.
Keith Brindley

PLAYBACR

For many years, preamplifiers have been designed to accept flat'line' inputs from tuners and tape decks at around $100-200 \mathrm{mV}$. After the volume and balance controls, further amplification raises the signal to about 1 volt, enough to drive the power amplifier. With disc as the main sound source and the cartridge needing amplification from a very low level, the need to drive a power amp directly from a tape deck or tuner never arose.

Then along comes CD, its audio output level of around 2 V being more than enough to drive power amps directly. To avoid losses in sound quality from active preamps, the passive preamp is created. As many modern power amps have extra sensitivity, and tuners and tape decks extra gain to cover matching errors it has proved possible to connect a whole system (without a turntable) using only a passive preamp - just volume control, switches and input and output sockets.

So why do CDs have such a high output? Presumably a high output: enables much better signal to rioise and distortion figures.

The use of digital circuitry in audio applications is more likely to increase than disappear, and manufacturers are not likely to change their output levels if this degrades performance orif D to A convertors work at that level. We cannot really accept two completely different line input levels to amplifiers with the pre-topower level roughly halfway in between.

It is now time to standardise. Modern hi-fj systems do not require tone controls so it makes sense to arrange all high level outputs so that they can drive a power
amp directly using only a volume control and switch. Where tone control is needed, a graphic equaliser will do a better job. Avoiding an additional active gain stage saves on preamp powersupply costs and gives better sound quality.

Why not go one stage further? Why not include all the parts of a passive preamp in the power amplifier. The savings in preamp case and cable could either be passed on to the purchaser or used to improve sound quality.

But what of the analogue disc user? A preamp will always be
needed to provide RIAA equalisation and to raise the signal to 'line' level. The opportunity is there to provide specialised disc preamps to go with the turntable. Or why not inside the turntable where the use of balanced input amplifiers would provide such benefits as low radio interference, etc. And one less wellfinished box is required!
These developments seem logical, and would improve performance and save money. Whether or not they take place remains to be seen.

Graham Naliy

ELMASET INSTRUMENT CASE $300 \times 133 \times 217 \mathrm{~mm}$ deep．
REGULATORS
LM317T Plastic T0220 variable
$\varepsilon 1.00$
LM317 Metal \qquad
7812 Metal 12v 1A． tic．．．．．． \qquad 7805／12／15／24 plastic \qquad 80p $1000+16 p$
 CA3085 T099 Variable regulator ．．．．．．．．．．．．．．．．．．．．．．．．．．．1．00

COMPUTERICS

Used Eproms are erased and verified
27128－300nS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．New 83.60 10＋82．60 2764 Intel／Fujitsu 300nS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．60 Used \＆1．60 2716 EXEQPT．
itsu 300 nS ．
\qquad

2114 EX EQPT 60p 4116 EX EQPT ．．．．．．．．．．．．．．．．．．．．．．．．．．70p
6264LP15 8K static ram ． 23.60

6116 －2（TC5517AP－2）．．．．

 ．e2．20
POWER TRANSISTORS

2SC1520 sim BF259． 3／E1 100／822 2SD794 sim BD131 \qquad 4／E1 100／e20 TIP141，142， 147 £1 ea，TIP112，125，42B．．．．．．．．．．．2／£1．00 TIP35B \＆1．30 TIP35C． ．．． 81.60 TIP35B £1．30 TIP35C．．00
SE9302 100V 10A DARL SIM TIP121 2N3055 Ex eqpt tested．．． \qquad ．．．4／\＆1．00
Plastic 3055 or 2955 equiv 50p．．．．．．．．．．．．．．．．．．．．100／ع30．00 2N3773 NPN 25A 160V £1．80 \qquad ．10／\＆16．00

DISPLAYS

Futaba 4 digit clock，fluorescent display 5－LT 16
Futaba 8 digit calculator，fluorescent display 9CT－ 01－3L．．．． ay 9 CT－
ع1．80 01－3L Large LCD Clock display 1 ＂digits ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $2 / \mathbf{1} .00$
7 seg $0.3^{\prime \prime}$ display comm cathode ．．．．．．．．．．．．．．

QUARTZ HALOGEN LAMPS

A1／216 24v 150w． spot．．．．．．．． ． 22.28

H1 12v 55w（car spot）．

MISCELLANEOUS

FX2243 POT CORE \＆BOBBIN．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．60
FX2243 POT CORE \＆BOBBIN．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．5／\＆1 Linear hali effect IC Micro switch no 613 554 51M R5 304－267． \qquad ．．．． $\mathbf{2 . 5 0 ~ 1 0 0 + £ 1 . 6 0}$ OSC LLLOSCOPE PROBE KIT X1X10．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．00 Micro－switch no 613 SS4 sim RS 304－267
Cheap phono plugs．．．．．．．．．．．．．．．．．．．．．．．．．．．100／ع2 1000／ع18
Ipole 12 way Rotary switch ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．4／£1
Audio Ics LM380 LM386．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＆1 ea
Coax plugs．．．B／\＆1
4×4 MEMBRANE KEYBOARD ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．60
INDUCTOR $20 \mu \mathrm{H}$ 1．5A．．．5／£1．00
COAX PLUGS．．． \qquad ． 8 E1．00
15，000 F 40V．．．（1．50）
NEW BRITISH TELECOM PLUG＋LEAD．．．．．．．．．．．．．E1．60
1．25＂Panel Fuseholders．．
．．．．．．5／£1．00
MAINS ROCKER SWITCHES 6A SPST．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． STAINLESS STEEL HINGES $14.5^{\prime \prime}$ BY 1 ＂OPEN $£ 1.00$ each． ．．10／87．00 MAINS TRANSIENT SUPPRESSORS 245v．．． TOK KEY SWITCH 2 POLE 3 KEYS－ideal for car／home alarms． \qquad £3£100＋£2．00 12v 1.2 w small wire ended lamps fit AUDI／VW TR7 VOLVO SAAB．．．10／E1．00 12v MES lamps． \qquad Large Heat shrunk sleeving pack ．．．．．．．．．．．．．．．．．．．．．．22．00 PTFE sleeving pack asstd colours \qquad .82 .00
81.00 PTFE Sleeving pack asstd colour ．．． 81.00 Mixed electrolytic caps ．．．100／ع2．00 Stereo cass R／P head． \qquad ．．．．ع2．00 PCB Mono head £1，Erase head．．

Thermal cut－outs $50^{\prime}, 77^{\prime}, 85^{\prime}, 120^{\prime} \mathrm{C}$
．80p Thermal fuse $121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$ \qquad Vero pins fit 0．1＂Vero ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 200／ع1．00 TO3 Micas＋bushes \qquad 100／ع2．00 TO3Micas＋bushes 1．．20／ع1 RELAYS $240 v$ AC coil PCB mounting 2 pole changeover $£ 1$ 3 pole c／o．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．00
 KYNAR wire wrapping wire $20 z$ reel．．．．．．．．．．．．．．．．$£ 1.00$ PTFE min．screened cable．．．．．．．．．．．．．．．．．．．．．．．．．．． $10 \mathrm{~m} / \mathrm{k} 1.00$ TOKIN MAINS RFI FILTER 250V 15A．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． IEC Chassis plug／rfi filter 10A．．20 Mercury tilt switch small．．00 Min．rotary sw．4p c／0 1／8＂shaft ．．．．．．．．．．．．．．．．．．．．．2／E1．00 Thorn 9000 TV audio 0／p stage ．．．．．．．．．．．．．．．．．．．．．．．．．2／E1．00 10 m 7 CERAMIC FILTER 50p ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $100 /$／e20．00 6 m or 9 m CERAMIC FITLER 50p ．．．．．．．．．．．．．．100／⿷26．00 240V AC FAN 4．6＂SQUARE NEW．．．．．．．．．．．． $\mathbf{\varepsilon 6 . 6 0}$（ $£ 1.60$ ） 240／115v AC FAN 4．6＂SQ．NEW ．．．．．．．．．．．．．． $\boldsymbol{\varepsilon 7 . 0 0}$（ $£ 1.60$ ） BELLING－LEE 12－way block L1469 ．．．．．．．．．．．．．．．．．．．．．4／\＆1．00 POTENTIOMETERS short spindle
2k5 10k 25K 1M Lin． ．．． $5 / \mathrm{E} 1$
500 k lin 500 k log long spindle．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．4／£1
40KHZ ULTRASONIC TRANSDUCERS EX－EQPT． NO DATA ．．．PAIR／ع1．00 STICK－ON CABINET FEET．． 1.00 TO3 TRANSISTOR COVERS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／ع1．00 TRANSISTOR MOUNTING PADS TO5／T018 $£ 3 / 1 \mathrm{~K}$ DIL REED RELAY 2 POLEN／O CONTACTS．．．．．$£ 1.00$ ZETTLER 24 V 2 POLE c／o relay $30 \times 20 \times 12 \mathrm{~mm}$ sim RS 348－649．．．．

ع1．80 100＋£1

RECTIFIERS

SCRS

ACOV8FGM 800 mA 400 V TO－92 Triac ．．．．．．．．．．．．．．．．．．．．．3／ع． •
MCR72－6 400v．．
35A 600v stud．．． 2N5061 800mA 60V T092．．00 TICV106D ．8A 400V T092 3／\＆1．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／\＆16．00 MEU21 Prog．unijunction ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3／£1．00

TRIACS diacs 25p

TXAL225 8A 400V 5 TMA gate $2 / \varepsilon 1.00$ ．．．．．．．．．．．100／ع35．00
CONNECTORS（EX EQPT．price per pair）
Centronics 36way IDC plug ．．．．．．．．．．．．．．．．．．．．\＆4 10＋£3．60
Centronics 36way IDC skt．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£4．60
Centronics 36way plug（solder type）．．．．．．．．．．．．．．．．．．．．．． $\mathbf{\Sigma 4}$
＇D＇ 9 －way $£ 1$ ； 15 －way $£ 1.50$ ； 25 －way．．．．．．．．．．．．．．．．．．．．．．．．$£ 2.00$
37－way £2； 50 －way £3．50；covers 50 p ea
WIRE WOUND RESISTORS
W21 or sim 2.5 W 10OFONEVALUEFOR．．．．．．．．．．．．．．£1．00 R47 1R02R02R7 3R9 5R0 10R 12R 15R 18R 20R 27R 33R 36R 47R 120R 180R200R 330R 390R 470R 560 R 680 R 820 R 910R
1K 1K15 1K2 1K3 1K5 1K8 2K4 2K7 3K3 10K
R05（ 50 milll －ohm）1\％3watt ．．．．．．．．．．．．．．．．．．．．．．．．．．． 4 for $\mathrm{\varepsilon} 1$ W22 or sim 6 watt 7 OF ONE VALUE for．．．．．．．．．．．．． $\mathbf{£ 1 . 0 0}$ R47 1R5 9R1 10R 12R 20R 33R 51R 56R 62R 120R 180 270R 390R R 47 560R 620R 1K 1K2 2K2 3K3 3K9 10K W23 or sim 9 watt 6 OF ONE VALUE for．．．．．．．．．．．．．£1．00 R22 R47 1R0 3R0 6R8 56R 62R 100R 220R 270R 390R

680R 1K 1K8 10K
W24／sim． 12 watt 4 OF ONE VALUE for ．．．．．．．．．．．．．£1．00 R50 2R0 10R 18R 47R 68R 75R 82R 150R 180R 200R 270R 400R 620R 820R 1K

PHOTO DEVICES

Slotted opto－switch OPCOA OPB815．．．．．．．．．．．．．．．． $\mathbf{£ 1 . 3 0}$ 2N5777 50p ．．100／⿷26．00

TIL38 Infra red LED ．．．2／60p
OPI2252 Opto Isolator ．．．80p
Photo diode 50p．．．6／£2．00
MEL12（Photo darlington base n / c ）．．．．．．．．．．．．．．．．．．．．．．80p
RPY58A LDR 50p ORP12 LDR．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．86p
LEDs RED 3 mm or 5 mm 12／\＆1．．．．．．．．．．．．．．．．．．．．．100／E6．00 GREEN or YELLOW 3 or $5 \mathrm{~mm} 10 / £ 1$ ．．．．．．．．．．．．．100／ع6．60 FLASHING RED 5 mm 50p ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／ع30．00

DIODES

1N4148．．．．．
．．100／\＆1．60
1S3740 Germanium ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／£2，00
1N4004 or SD4 1A 300v ，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．100／ع3．00
1N5401 3A 100V．．．10／ع1．00
BA157 1A 400V Fast recovery ．．．．．．．．．．．．．．．．．．．．．100／ع2．60
BA159 1A 1000V Fast recovery ．．100／84．00

MULTI TURN PRESETS

10R 20R 100R 200R 500R．．．60p 2K 5K 22K 50K 100K 200K

IC SOCKETS

6－pin 15／£1 8－pin 12／£1；14－pin 10／£1．00；18／20－pin 7／£1； 100／£12；1k／ 550 ；22／28－pin 25p；24－pin 25p；100／£20； $1 \mathrm{~K} / \Sigma 100 ; 40$－pin 30p；16－pin 12／\＆1；100／\＆6
TRIMMER CAPACITORS small GREY 1．5－6．4pF GREEN 2－22pF ．．．．．．．．．．．．．．．．．．．．． 5 for 80p GREY larger type 2－25pF．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 for50p
SOLID STATE RELAYS NEW 10A 250v AC
Zero voltage switching
Control voltage 8－28V DC．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£2．60
VARIAC 0 to 130 V 6 A new uncased．．．．．．．．．．．．．．．$£ 8.00$（ $£ 2$ ）
POLYESTER／POLYCARB CAPS
1n／3n3／5n6／8n2／10n 1\％63v 10mm．．．．．．．．．．．．．．．．．．．．．100／£6 $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 / 47 \mathrm{n} / 68 \mathrm{n} 10 \mathrm{~mm}$ rad．．． \qquad ．100／\＆3．00 $2 u 2160 \mathrm{rad} 22 \mathrm{~mm}$ 101 $100 / \mathrm{E} 10.00$（ $£ 1.50$ ） 470 250v AC X rated rad $33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{v}$ AC X rated rad $15 \mathrm{~mm}10 / \& 1.00$ 10 n 250 v AC X rated rad $10 \mathrm{~mm} . ~ 10 / ع 1.00 ~(1) ~$ 100n 600V SPRAGUE axial 10／\＆1 ．．．．．．．．．．100／ع6．00（£1）

BEAD THERMISTORS

GLASS BEAD NTC Res＠20＇C ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 80
250R 1K2 50K 220K 1M4
R53 THERMISTOR ．．． \qquad $\mathbf{\Sigma 2 . 0 0}$

BEAD TANTALUM CAPS

825 V 47 u 3V 12／乏1．． 10 100／E6．00

MONOLOTHIC CERAMIC CAPS
100n 50 v ．． 100／86 1k／\＆40 10k／8300 100 N 50 V axial Shortleads． \qquad 100／E3．00 100 N 50 V ．． \qquad $100 / £ 3.00$
$100 / E 3.00$
470N 50 V 100／ $871 \mu \mathrm{~F} 50 \mathrm{~V}$ \qquad 100／E14
10N 50 v dil package 0.3 ＂rad．．．．．．．．．．．．．．． \qquad ．．E36／1k

STEPPER MOTOR 4 PHASE 2
9v WINDINGS

KEYTRONICS
 332 LEY STREET，ILFORD， ESSEX IG1 4AF
 MIN CASH ORDER £3．00 OFFICIAL ORDERS WELCOME
 UNIVERSITIES COLLEGES SCHOOLS GOVT DEPARTMENTS MIN．ACCOUNT ORDER £10．00
 P\＆P AS SHOWN IN BRACKETS（HEAVY ITEMS） 65p OTHERWISE（LIGHT ITEMS）
 Shop open Mon－Sat 10am－2pm TELEPHONE：01－553 1863
 ADD 15\％VAT TO TOTAL ELECTRONIC COMPONENTS BOUGHT FOR CASH

Alle's PuZzaE

The story so far:

Alf and Auntie Static are locked in mortal combat for control of the puzzle page. The key to supreme power lies in the legendary capacitor puzzle which was featured in ETI, May 1986. To restate it:-
Four $2 \mu \mathrm{~F}$ capacitors are connected as shown in Fig. 1. The arrangement should be equivalent to a single $2 \mu \mathrm{~F}$ capacitor, and

Fig. 1 The problem . . .
if the network is charged to 10 V , the energy of 25μ J per capacitor adds up to a total of 100μ j, as we would expect for a single $2 \mu \mathrm{~F}$ capacitor charged to 10 V . The charge on each capacitor in the network, however, is $10 \mu \mathrm{C}$, so the total charge on all four capacitors will be $40 \mu \mathrm{C}$ - twice as much as for a single $2 \mu \mathrm{~F}$ capacitor. Does this mean that it would take twice as much current for a given time to charge the network as it would for a single $2 \mu \mathrm{~F}$ capacitor?
Alf, being completely out of his depth, solicited the help of ETI reaclers to solve the puzzle, offering a prize of $£ 10$ for the correct answer that was easiest to understand. Now read on ...
Alf's choice, from the many correct replies, was difficult to make, but eventually he selected Bernard Chalk's explanation as being the most likely to be understood by a ten-year-old (and therefore by Alf himself):

Fig. $2 \ldots$ and the solution.
'The solution to the puzzle can be explained by drawing the series/parallel arrangement of capacitors with the inner connecting leads between the series capacitors reduced, as shown in Fig. 2. The charge on the inside plates is brought together and cancels, leaving onlythe charge of $10 \mu \mathrm{C}$ on the series capacitors, and therefore providing a total charge of $20 \mu \mathrm{C}$ on the arrange-
ment. The argument in the problem did not distinguish between charge provided by the power supply (only $20 \mu \mathrm{C}$) and charge that was merely rearranged between the plates (also $20 \mu \mathrm{C}$).

Bernard Chalk,
Southend on Sea,
Essex.'
Two other solutions, which Alf thinks worthy of a special mention for their simplicity, were sent in by Patrick Gaffney of Montenotte Park, Cork, and by Noel Moore of Belfast. Mr. Gaffney points out that if a resistor is connected across the charged network, only $20 \mu \mathrm{C}$ will flow through it, the rest of the charge being simply redistributed between the capacitors, so externally the network behaves like a single $2 \mu \mathrm{~F}$ capacitor. Mr. Moore says that Alf could have used the same spurious argument to claim that a series of capacitors, each with a charge Q, would require $n Q$ coulombs from the supply, rather than the Q coulombs actually neeeded.

Auntie Static claims that the problem is just as absurd as adding together the currents through all the components in a circuit, and then claiming that this must be the total current provided by the supply. (Just think of two resistors in series, for instance.) Adding the charges in a circuit is equally meaningless, but since we are more used to thinking in terms of currents, the flaw in the argument is not so easy to spot.

As the power struggle between Alf and Auntie has yet to be resolved, we have decided that neither of them can provide the puzzle for this month. Instead, we have an offering, sent in by reader Henry Earle, which - we hope - will finish with capacitors once and for all.
'Insert a resistor R between two $2 \mu \mathrm{~F}$ capacitors, then charge up to 10 V . When the charging is complete, the charge on the capacitors, and the energy stored, will be just the same as if there had been no resistor there at all. The resistor should be 'invisible' to the power supply, since the only current flowing through it is from the charge redistribution between the capacitors, yet it still dissipates an amount of energy given by $W=S_{S^{\top}} I^{2} R d t=50 \mu J$. Connect an AC supply and you have a free room heater!

Henry Earle,
Nottingham.
Well, there it is. Any comments? Is Mr. Earle's room heater really free? If not, how does the supply'know' that there is a resistor between the capacitors.

In the straightforward case of simply charging a capacitor to 10 V , all the energy in the capaci-
tor can be recovered - none has been dissipated. With a resistor - as in Mr. Earle's puzzle - the same amount of charge seems to be transferred from the power supply at the same voltage, involving the same amount of energy. Yet some energy will be dissipated by the resistor. The energy stored by the capacitors is equal in both cases, and should be qually recoverable (in the second case, we can short out the resistor as soon as the charging is complete.) So where does the extra energy which the resistor dissipates come from?

Mr. Earle goes on to point out, in his letter, that the energy dissipated is independent of the value of the resistor, and will always be equal to the amount stored by the capacitors.

Once again, a $£ 10$ prize for the simplest and most elegant correct solution received.

The anower to last month's puzzic.

The circuit is a voltage to current converter. Let's suppose the input is at 1 V , floating with respect to the op-amp's supply, with the 'resistor' side of the input more positive than the'op-amp' side. If
the output is not loaded at all, the non-inverting input of the opamp will be at +1 V with respect to the inverting input, and as a result the output will rise to its most positive voltage.

With a load on the output of the circuit, the op-amp's output (and therefore the 'left hand side' of the resistor R, by virtue of the input voltage) will rise until the current to the load, via R, is enough to drop 1 V across the resistor, at which point the noninverting and inverting inputs of the op-amp will be at the same voltage. The current into the load will be $1 / R$, or for a general input voltage V it will be V / R, regardless of the resistance of the load.

Thus the circuit acts as a voltage to current converter, delivering a current of V / R to the load (which would normally be connected to $0 V$, and not V - as shown, although the circuit will work in this configuration for opamps which allow the negative supply as a common mode input).

The circuit is not often seen, since the requirement that the input should be floating with respect to the supply, and that the entire output current should flow through the input, make it impractical in many applications.

ETI ADVERTISEMENT INDEX JULY 1986

Amateur Radio and Electronics Fair 23
Audiokits 43
BK Electronics IFC
BNR\&ES 13
Cambridge Microcomputer Centre 6
CIrkit
60
Cricklewood Electronics
Crofton Electronlcs 54
Display Electronics 10
Electro-Mech 12
Greenbank Electronics 43
Hart Electronlc Kits 49
Henry's/Audio Electronics 43
ICS 49
Jaytee Electronic Supplies IBC
Keytronics 62
Maplin Electronic Supplies Lid OBC
Mlcroprocessor EngineerIng 13
Microklt 60
Mlcro Concepts IBC
Number One Systems 23
Omni Electronics 49
Plneapple Software 43
Rlscomp 11 \& 53
Servlce Trading Co 60
Stewart of Reading 49
Technomatlc 14 \&
TJA Developments 43
TK Electronics 11
Universal Semiconductor Devices 49
Watford Electronlcs \& 5

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:
$45 p$ per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699 Ext 291
Send your requirements to: Duncan Neilson, ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

ALARMS

LOWEST PRICED TOP QUALITY fire and Intruderr alarm equipment, etc. SAE for catalogue Security Services, 62 High St, Hythe, Kent CT21 5JR.

BOOKS AND PUBLIGATIONS

LATEST TTL and CMOS data sheets. Complete set for only £5.00. Make cheques and P.O.S payable to J. S. Hayer. Send to Aldred Inc.. 248 Hucknall Road, Notts N̈65 1FB.

COMPUTER ADD-ONS

AMSTRAD OUTPUT PORT. Plugs into printer port and provides seven open-collector outputs Easy to use from Basic or M/C $£ 14.95$ inc. S.A.E. for details. NCJ Electronics, 13 Binfield Square, Ella Street, Hull HU5 3AP

COILS \& CHOKES

MAXI-Q

COILS AND CHOKES PREVIOUSLY MADE BY DENCO S.A.E. PRICE LIST

8 BRUNEL UNITS, BRUNEL RD, GORSE LANE IND. ESTATE, CLACTON, ESSEX CO15 4LU. TEL: (0255) 424152

COMPONENTS

SEND ORDINARY S.A.E. for list of our half price new branded components, eg., transformers $2 v A 60$ p. 9 v relays 65 p or 55 p for 10. Mulberry Ltd., 116 Grosvenor Road, Aldershot:

BARGAIN! $500 \quad 1 / 4 \mathrm{~W}$ resistors £4.95. Component pack lists! Amplifiers! Alarms! Electronic Kits! Send $£ 1.00$ for catalogue and lists. Pluto II Fortronics, 565 Street Lane, Leeds LS17 6JA.

GOMPONENTS

ROMNEY MARSH ELECTRONICS

 (PROPRIETOR: D. J. HOOKER)RESISTORS RESISTORS $5 \% 1 / 4 w 2 p$ EACH $15 \mathrm{p} / 1080 \mathrm{p} / 100$ PER VALUE. 10 OF EACH VALUE 10R-1M E12 SERIES 610 TOTAL £6.75, 25 OF EACHVALUE $£ 12.95$ CAPACITORS
ELECTROLYTIC (RADIAL 16v) 10u,22u,47u,-6p;100u,-7p;220u,-16p; 470u,-18p; 1,000u,
${ }^{22 p}$ POLYSTYRENE ($160 \mathrm{v} 5 \%$) 10pF-1nF,9p; 1n5-12nF, 11 p .
POLYSTYRENE ($160 \mathrm{v} 5 \%$) $10 \mathrm{pF}-1 \mathrm{nF}, 9 \mathrm{p} ; 1 \mathrm{n5}-12 \mathrm{nF}, 11 \mathrm{p}$
POLYESTER (RADIAL PCB MTN 10%) $10 \mathrm{n} / 100 \mathrm{v}, 22 \mathrm{n} / 100 \mathrm{v}, 33 \mathrm{n} / 63 \mathrm{v}, 47 \mathrm{n} / 63 \mathrm{v}, 68 \mathrm{n} / 63 \mathrm{v}, 8 \mathrm{p}$; POLYESTER (RADIAL PCB MTN 10\%)
$100 \mathrm{n} / 63 \mathrm{v}, 9 \mathrm{p} ; 220 \mathrm{n} / 63 \mathrm{v}, 12 \mathrm{p} ; 470 \mathrm{n} / 63 \mathrm{v}, 22 \mathrm{p}$.
$100 \mathrm{~N} / 63 \mathrm{v}, 9 \mathrm{p} ; 220 \mathrm{n} / 63 \mathrm{v}, 12 \mathrm{p} ; 470 \mathrm{n} / 6 \mathrm{~s}, 22 \mathrm{p} .2 \mathrm{pF}-1,000 \mathrm{pF}, 6 \mathrm{p} ; 1,200 \mathrm{pF}-4,700 \mathrm{pF}, 7 \mathrm{p} ; 10 \mathrm{nF} / 63 \mathrm{v}$,
MINIATURE 100 v CERAMIC PLATE 1.2 l
$22 \mathrm{nF} / 63 \mathrm{v}, 8 \mathrm{p}$.
CERAMIC DISC $50 \mathrm{v} 0.01 \mathrm{uF}, 4 \mathrm{p} ; 0.1 \mathrm{uF}, 8 \mathrm{p}$.
SEMICONDUCTORS
DIODES 1 N4001/2/3/4,4p; 1N4005/6/7,6p;1N5404/6,12p;1N5408,16p;1N4148,2p,£1.00 ZENERS $2 \mathrm{v} 4-39 \mathrm{v} 400 \mathrm{mw}, 8 \mathrm{p} ; 2 \mathrm{v} 7-39 \mathrm{v} 1.3 \mathrm{w}, 12 \mathrm{p}$. BRIDGE RECTIFIERS $1.5 \mathrm{~A} 50 \mathrm{v}, 18 \mathrm{p} ; 100 \mathrm{v}, 20 \mathrm{p}$. TRANSISTORS BC $107 / 8 / 9,10 \mathrm{p} ; \mathrm{BC} 182 / 3 / 4 \mathrm{~L}, 8 \mathrm{p} ; \mathrm{BC} 212 / 3 / 4 \mathrm{~L}, 8 \mathrm{p} ; \mathrm{BFY} 50,20 \mathrm{p} ; 2 \mathrm{~N} 3055,40 \mathrm{p}$. ICS 741,18p;555,20p. REGUULATORS 7805,7812,7815,7824,35p;7905,39p;78L05,78L12, 78L15,28p;79L05,30p;723,28p.
LOW PROFILE D.I.L. I.C. SOCKETS 8PIN,5p; 14PIN,8p;16PIN,9p;18PIN,10p;20PIN,11p; 24PIN,12p;28PIN,14p;40PIN,19p. PLEASE ADD 60p POSTAGE \& PACKING TO ORDER 'PENNYWOOD, CLARK ROAD, GREATSTONE, NEW ROMNEY, KENT TN28 8PB

PRIINTED CIRCUIT BOARDS one-offs and small quantities suppilied. Artwork carried out. Fenriell Industrial Electronics, 54 Watling Street, Nuneaton, Warks CV11 6JL. Tel: 0203 382:96.

FOR SALE

NICADS
AA/HP7 Rechargeable Cells
4 for $£ 2.30$ or 10 for only $£ 5$! (ex. equip. tested \& guaranteed) Universal Nicad Charger £8 with battery test faclility and LED indlcators or any combination PP3, AA indicators or any comblis
Above prices inclusive of $p \& p$ - goods sent by return
Croydon Discount
Electronics (E)
40 Lower Addiscombe Rd.

NEW STOCK! Sinclair 16K rampacks for ZX81. £6.00 including postage. Halsat, Unit 1, Bury Walk, Bedford MK41 7BW.

CORTEX II all interfaces, RX80 printer, twin drives, monitor, modem, D.OS. All cables, disks, manuals etc. £250. Tel: 0703 641945.

THOUSANDS OF POUNDS worth of components, printed circuit boards, electronic organs working and one incomplete. Data books, test equipment etc. Any reasonable offers. Must sell Husband deceased. Contact Mrs. Wilde(0277) 222715. Shenfield, Essex.
"100 WATT ITS CHILDSPLAY" -Superb quality fibreglass To3 poweramps and data $£ 7.50$.... matching mixers/£12.... KIA, 8 Cunliffe Road, Ilkley LS29 9DZ.

FM TRANSMITTER 88-108 MHz. $20 \times 40 \times 12 \mathrm{~mm}$, fully built, sensitive microphone $£ 6.50$ inc. Edmunds Electronics, 3 Orchard Waye, Uxbridge, Middlesex UB8 2BN.

REPAIRS

FIXED CHARGE REPAIRS to Spectrum, Commodore, BBC, Electron E.G. Spectrum £17.95, Commodore £29.95. Mansfield Computers, 33 Albert Street, Mansfield NG18 1EA. Tel 0623 31202.

KITS AND READY BUILT

FM TRANSMITTERS Same day despatch MINIATURE MODEL frequency $60-145 \mathrm{Mhz}$, range 1 mile. Glass fibre P.C.B. All components. Full instructions 912 V operation, broadcast reception. Super sensitive microphone. Pick up on FM/VHF radio. $£ 6.95$ inc or ready built £8.95. Size $57 \times 19 \times 12 \mathrm{~mm}$. HIGH POWER MODEL. 3 watts $80-108$ MHz . Professional broadcast performance. Low drift varicap controlled. Range up to 7 miles. 12 V operation. Any input audio/microphone. All components P.C.B. diagrams and instructions. Size $103 \times 39 \times 29 \mathrm{~mm}$. Kit 13.99 inc or ready built $£ 18.99$ inc. TONE GENERATOR 3selectable functions; PIP, Warble and pulse tone: All components, instructions \& P.C.B., feed into any audio input or transmitter; variable frequency and gating controls. 612 V operation $53 \times 38 \times 14 \mathrm{~mm}$. $£ 5.50 \mathrm{incl}$. TONE GENERATOR POWER AMPLIFIER. AII components, instructions and P.C.B. turnstone generator into a high power siren for alarms; 18 watts max. at $12-15 \mathrm{~V}$. $62 \times 38 \times$ 14 mm £ 7.00 inclusive DIGITAL CLOCK/TIMER MODULE. 12/24 hour \& seconds (0.7inch LED) display, 8 -functions. Applications: uncommitted output transistor for switching on Taperecorders: Lighting, Security, etc. External Loudspeaker Output. $84 \times$ $38 \times 16.25 \mathrm{~mm}$. Full instructions \& Modular PCB $£ 17.49$ inclusive. MAINS TANSFORMER for above if required: $£ 5.24$ incl. DIGITAL CODE LOCK MODULE: 4 18V.DC operation; 10,00 combination quality key pad; programmable code; low-power 3outputs (0.2A); 3-LED status indicators; All components, instructions \& PCB. Applications; Alarms; garage doors; cars, etc. 39 $\times 62 \times 9 \mathrm{~mm}$. Kit: $£ 15.95$ incl. Ready built; $£ 19.95 \mathrm{incl}$ ZENITH ELECTRONICS. 21 Station Road Indust. Estate, Hailsham, E. Sussex BN27 2EW. Tel: 043532647.

6809 FLEX KIT SYSTEM, 16 slot motherdisplay, $80 / 40$ track S/or/D sided discs. FULL STOCK OF FLEX SOFTWARE. VENTURE FORTH runs on a STANDARD flex random access file. ALSO 6809 for TANGERINES. S.A.E. for details FORNCETT-END NORWICH.

ETI KITS assembled and tested* by electronic trainees under supervision within a purpose built electronic workshop for as little as £10* (* depending on type of kit and complexity). Contact:- A.J. Smith, Dept K.A. Electronics Workshop, Lincoln I.T.E.C. Dean Road, Lincoln LN2 4JZ. Tel. 0522 43532.

J. Linsley Hood Designs

Distortion Analyser Kit. Millivoltmeter Kit. ETI Mostet P.A. Kit Audio Signal Gen. (.02\%) Kit. Audio Signal Gen. Fixed Freq. Sig/Gen Fixed Freq
(. 002%) Sig/Gen.
Case and Panel for $£ 14$ Reg. P.S.U. $1.5 / 35$ volts
$£ 25.00$
$£ 12.25$
$£ 12.00$
$£ 51.00$
$£ 28.50$
$£ 46.00$
$£ 14.00$
ve 9.50
$£ 12.80$ S.A.E. for full information. 325, Fore Street, London N9 OPE. Tel: 8073719

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon Tewkesbury, Glos. Tel. 0684 73127.

organ KEYBOARDS

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out. Special Offer: Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.

PLANS \& DESIGNS

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage tester, van de graph surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA.

POWER SUPPLIES

150W SWITCHMODE PSU. +5 V at $8.4 \mathrm{~A} ;+12 \mathrm{~V}$ at $4.8 \mathrm{~A} ;+24 \mathrm{~V}$ at 1.7 A ; -12 V at 0.2 A . Perfect working order, over $£ 70$ in Henries Radio $£ 29+$ Carr. 0245-50927 after 6.00 pm

240v AC ELECTRICITY from two 12v batteries!! Encapsulated ready built electronic module with screw terminals!! Comprehensive instructions supplied. Just add transformer and other easily obtained accessories. 250 W output. Limited number available. £25 (inclusive). Chataigne Products, Green Lane, Great Horkesley, Colchester, Essex, CO6 4HD (Proprietor J.A. Richmond.)

HI-FI SERVICE ENGINEER required for busy Audio Service Department. Excellent rates of pay for right person. Call Mr. West on 01-881-3320 or Waltham Cross (97) 32050

TRANING

PROFESSIONAL ELECTRONICS TECHNICIANS Short re-training courses (3 week) MICROCOMPUTER SERVICIN (ONC/OND/HNC also available in modules)
MSC GRANT AID to
EMPLOYERS/TRAINEES Television/Video/CCIVS Information Technology/ CADCAM/ATE MICROPROCESSORS/Computers/ LONDON ELECTRTROL 29 Penywern Dept (ETI) COLLEGE NEXT COURSE STARTS 21st JULY

WANT THE RIGHT PERSON FOR THE JOB? THEN WHY NOT ADVERTISE WITH E.T.I.

SERVICES

PROFESSIONAL PCB DESIGN. Single sided to PTH. Production facilities available. For quotes or further details phone Royston 62174 or write to JMJ Electronics, 14 Blenheim Close, Shepreth, Royston, Herts.

DESIGN SERVICES, micropro cessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork Prototype and small batch pro duction. ALAB ELECTRONICS Grantham (0476) 860089.

FLEX COMPUTER BOARDS drives PSUs ICs cases send SAE for list to M. Shalash, 29 Cooks Road, London SE17 3NG.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited, Finsbury House, 31 Head St, Halstead, Essex CO9 2BX. Tel: 0787477408.

SPEGIAL OFFERS

CLEARANCE BARGAIN!! Thousands of LED 7 Segment Display brand new 14 pin DIL RED .43 inch common anode display $0-9$ with right and left decimal point in stock. 10. pieces £2.50 (25p each) 50 pieces $£ 10.00$ (20p each) 100 pieces $£ 15.00$ (15 p each) 1000 pieces $£ 100.00$ (10p each). Telephone your order to 0296613816

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over $£ 10$ send only £1 p\&p to Woodside, Dowsett Lane, Ramsden Heath, Essex CM11 1JL.

WANTED

Turn your surplus

 transistors, IC's etc., into cash. Immediate settlementWe also welcome the opportunity to quote for complete factory clearance. Contact:

Coles Harding \& Co.
103 South Brink
Wisbech, Cambs.
ESTABLISHED OVER 10 YRS Tel: 0945584188

TRITON COMPUTER L7.2, L8.2, L9.2 operating systems in ROM or listing form also L9.2 D.O.S. Tel; (0934)415441

ScOPES

MENDASCOPE LTD.

repair \& recalibrate OSCILLOSCOPES
ALL MAKES ALL MODELS.
NATIONWIDE COLLECTION \& DELIVERY
FREE ESTIMATES
Phone 069-172-597

TEKTRONIX oscilloscopes, calibrated, good condition. 454A dual trace 150 MHz , delay sweep $£ 495$ 502A dual beam 100 microvolts, $1 \mathrm{MHz} £ 95.00,547$ dual .trace 50 MHz delay sweep £195,548B dual trace 24 MHz delay sweep £135. Telequipment D83 50 MHz delay sweep £385, manuals, spares, other test equipment. Tel: 018584221

TEKTRONIX 453 SCOPES. Good working condition 50 MHz dual timebase. Two channel. £200. Tel: 0555840409

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES. Easy to follow diagrams and uses only $£ 1$. Components and P.C.B.s available from HERRINGTON, 63 Homefarm Rd., Hanwell, London W7 1NL. Tel: 015786627.

CROSSWORD
No. 6

Solution to Crossword No. 5

ACROSS	23)	Top end	7)	Prescaler
1)	Earth loop	24)	Festoon	10)
Tick				
8)	Laser	25)	Reset	12)
Directory				
9)	Magenta	26)	Screening	15)
11)	All pass			
12)	Stylus			16)
Magnets				
13)	NEXT	DOWN	19)	Live
14)	RCA	2) Atari	20)	Norton
17)	ECL	3) Treble	22)	Acorn
18)	Load	4)	OTA	24)
21)	FOR			

ACROSS

-- 3) Japanese printer manufacturer (5).
7) Underwater object detector using sound waves (5).
8)
9) A square wave has a leading one and a trailing one (4).
11) __ capacitor, used to reduce the negative feedback effect of an emitter resistor to AC signals (6).
14) Two pole, two way switch ($1,1,1,1$).
15) When 13 down affects 9 across, this becomes longer $(4,4)$.
17) Used in both televisions and 'scopes (1,1,1).
18) The maximum a meter can show (1,1,1).
19) The Y-axis of an oscilloscope (8).
21) Wound component (4).
22) Sofware package to create and alter text files (6).
25) A BASIC command (4).
27) Cable \qquad , a collection of discrete wires tied or wrapped together (4).
28) Modulator/demodulator (short form) (5).
29) To wipe magnetic tape clean (5).

DOWN

1) Major Japanese domestic
electronic appliance manufacturer (4).
2) Basic command associated with read and restore (4).
-4) European domestic electronics company (3).
3) The old name for a stylus (6).
4) Magnetic recording tape transducers (5).
5) To convert an analogue value into a binary number (8).
6) The colour which signifies zero (5).
7) Microprocessor input/output channel (4).
8) The speed at which a circuit can react to a sudden change in input, measured in $\mathrm{V}_{\mu} \mathrm{s}^{-1}$ (4, 4).
9) Digital function block, capable of simple binary sums (5).
10) How to describe a circuit with uniform frequency response within a specified bandwidth (4).
11) Amplitude (6).
12) Mechanical man or industrial tool (5).
13) Tool for melting solder (4).
14) No connection (4).
15) Abbreviation for the mathematical expression used to calculate the average power available from a wave form (1,1,1).
(in-mFROM JAYTEE

THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS
IL.P have long been recognised as manufacturers of top quality amplifiers.

All ILP products are built to extremely high specification for the ultimate in hi-fi performance. They're unique in being completely encapsulated with integral heatsinks, and can bolt straight onto the chassis. They're also extremely robust, ensuring high levels of reliability as well as performance.
ILP Amplifiers are now available through Jaytee. The UK Distributor
with the availability and service to match the quality of the amplifiers.
POWER BOOSTER AMPUFERS
The C15 and C1515 are power booster amplifiers designed to increase
he output of your exisiting car radio or cassette player to 15 watt rms
C15................ 15 watts ... $£ 10.65$
C1515................ 15 + 15 watts..

ILP LOUDSPEAKER

power 350 watt rms
size........................ 12 inches
impedance 8 ohms
range 20 Hz to 5 KHz
FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.

PREAMPLIFIER MODULES
All modules are supplied with in line connectors but require potentionmeters switches, etc. If used with our power amps they are powered from the appropriate Power Supply.

Type Application F	Functions		Price
HY6 MonoPreAmp	ll HiFifacilit		
HY66...... StereoPre-Atip	Full HiFifacilities.................. $£ 13.95$		
HY73....... Guitar Pre-Amp	Two Guitars plus Microphone . 14.45		
78StereoPre-Amp	sHY66 less tone controls£ 13.45		
NEW! HY83 Guitar and Special Effects Pre-Amp as HY 3 Phu Overdive Reverb $\mathbf{£ 1 8 . 9 5}$			
MOUNTING BOARDS: For ease of construction we recommend the $B 6$ for HY6 $£ 0.95$. B66 for HY66-83 $£ 1.45$.			
MODULES	Type	Power	Impedenc
eal for Disco's, public address and		Watts (rms)	
plications with complex loads lline	MOS128		4.8..... f34.45
transformers etc.). Integral Heatsink	MOS248		8..... £39.45
lew rate $20 \mathrm{v} / \mu \mathrm{s}$ distortion less th	MOS364	180	¢64

BIPOLAR MODULES
 Ideal for Hi Fi, Full load protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$

$\left.\begin{array}{lll}\text { Type } & \begin{array}{l}\text { Output } \\ \text { Power } \\ \text { Watts (rms) }\end{array} & \begin{array}{c}\text { Load } \\ \text { Impedence } \\ \Omega\end{array} \\ \text { Price }\end{array}\right\}$

POWER SUPPLY UNIT		
Type	For Use With	Price
PSU30 PRE AMP...................................... E6.45		
PSU212 ... 1 or 2 HY30 16.46 .45		
PSU412 ... 1 or 2 HY60, 1 HY6060, 1 HY124............... 18.45		
PSU432... 1 MOS 128		
PSU512... 2 HY128, 1 HY244 22.45		
PSU52	.. 2 HY124..................	
PSU532 ... 2 MOS128... $£ 22.95$		
PSU722 ... 2 HY248 ... 27.45		
PSU742 ... 1 HY368... $£ 29.45$		
PSU752 ... 2 MOS248, MOS364 $£ 29.45$		
All the above are for 240v operation		

Jaytee Electronic Services, 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 All Prices include VAT, Post \& Packing

MICROBOX II the 6809 single board computer that you build yourself

2 ST. STEPHEN'S ROAD • CHELTENHAM • GLOUCESTERSHIRE GL51 5AA

Lowest possible prices? Top quality components? Fast reliable service? Large range?

Aledolls its irresistilile.

1986
 READER SURVEY

1．Please indicate what you think of the following aspects of ETI＇s coverage：
New product news
News of events and personalities
New theoretical／technological developments
Sophisticated projects
Basic projects
Introductory features
Telecommunications
Audio
Computers
Semiconductors
Others（please specify no
more than three）
Good Average
Bad Don＇t know
－$\ldots \ldots$.

Good	Average	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square

2．Indicate what you think of the services offered by the magazine：
PCB Service
Photocopy service
Project updates
Corrections to projects／features
Foil patterns
Buylines
Advice services（Auntie Static etc） Special offers
Subscriptions（rate \＆delivery）
Back numbers（price \＆availability）
Letters page

Good	Average	Bad	Don＇t know
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square

3．Please indicate whether you own any of the following types of equipment： computer／computer peripherals audio／hi fi
electronic musical instrument $\mathrm{PA} /$ recording equipment radio／satellite／CB equipment video camera／monitor car electronics security equipment remote control／robotics
photographic or darkroom equipment
test／measurement equipment
gadgets
Others（please specify）

This is your chance to make a really important contribution to ETI，and all we want in return are the answers to a few simple questions．The 1986 ETI Readers＇Survey is our chance to listen to you and so improve the quality of ETI．As a small incentive we＇re also going to offer a free subscription to the first ten completed forms to be picked out of a hat after our August 1 closing date．If you want to be entered for the draw，just include your name and address （or that of a nominee of your choosing） in the form．All information in the form remains strictly confidential and no names will be stored on a computer or in any electronically retrievable form．

Send your completed form to us to arrive by the last post on August 1， 1986.

4．If you already own a computer， please indicate which one：
Spectrum／Spectrum＋
Spectrum 128
Commodore 64／128
BBC B／B＋／Master
Acorn Electron
Sinclair QL
Amstrad 464／664／6128
Amstrad PCW8256
Atari 600／800／128XL
Atari 520ST／1040ST
Microtan 65
Dragon 32／64
Microbox II
ZX80／81
Interak
Cortex
5. Indicate whether you'd like to see more or less in the magazine of the following:

Computer projects
Audio projects
Music projects
Radio projects
Test equipment projects
$T V$ and video projects
Security projects
Car electronic projects
Lighting projects
Robotics projects
Photographic projects
Novelty projects
Computer software
Interfacing
Basic electronics theory
Advanced electronics theory
General science
Experimental projects
News features
Technical features
Product information
Design hints and tips
Letters
Circuit ideas
Reviews
Opinion columns
Crossword/Alf's puzzle
Technical advice
Competitions
Others (please specify)
6. Please indicate which of the following you buy and how frequently:

```
complete electronic kits
electronic components
ETI PCBs
PCB making equipment
stripboard/wire-wrap etc
preprogrammed ROMs
unprogrammed ROMs
solder/wicks/tips
test gear
cases/case material
component storage
connectors/leads
tools
electronics books
computer software
batteries
floppy disks/computer tapes
second-hand equipment
```

not at all	sometimes	often
\square	\square	\square

7. Indicate how many kits or projects you hope to build in the next year:
$0 \ldots . .$. 1-3 4-12 \qquad more than 12
8. Do you have difficulty locating components:

9. Do you find ETI projects: reliable
easy to build useful
10. What was the last ETI pro
11. Do you make your own P always
12. Please indicate approxir related hobbies in the las

$\mathbf{£ 2 0}$ or less	\square
$\mathbf{£ 1 0 1 - 5 0 0}$	\square
$\mathbf{E S}$	

16. Please indicate what other

Computers
Photography
Film/video
Modelling (railway/aero)
Other (please specify)
17. With regard to the advertis

Read or look through near Read or look through som Just read or look through + Very rarely/never look at
18. Thinking specifically abou rate the three types o Electromart - in terms , type):

Very useful
Useful
Not very useful
Not at all useful
19. Do you order or buy prodı

Regularly
Occasionally
Never
20. If the answer to question 1 this way, and what was its
21. Do you use the Advertisers Y
22. Does anyone else read you No only me \square
23. Do you keep your copy of One month
24. Do you read any of the follc Practical Electronics
Everyday Electronics Electronics Times New Electronics Personal Computing Worlc Byte
Electronics \& Music Maker
Ham Radio Today
Scientific American

